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Abstract

Let @ be an inverse semigroup. A subsemigroup S of Q) is a left I-order in
Q, and Q is a semigroup of left I-quotients of S, if every element in () can be

1'is the inverse of @ in the sense of inverse

written as a~'b, where a,b € S and a~
semigroup theory. If we insist on a and b being R-related in (), we say that S

is straight in () and @ is a semigroup of straight left I-quotients of S.

In Chapter 4, we give two equivalent sets of necessary and sufficient conditions
for a semigroup to be a straight left I-order. The first set of conditions is in terms
of two binary relations and an associated partial order and the proof relies on
the meet structure of the L-classes of inverse semigroups. The second set of
conditions in terms of two binary relations and a ternary relation and the proof

is purely algebraic.

We characterise right ample straight left I-orders that are embedded as a unary
semigroup into their semigroups of straight left I-quotients. As a special case of
this, we characterise two-sided ample left I-orders that are embedded into their

semigroups of left I-quotients as (2,1,1)-algebras.

Straight left [-orders always intersect every L-class of their semigroup of straight
left I-quotients. We characterise straight left I-orders that intersect every R-class
of their semigroup of straight left I-quotients. We use this to prove that if a semi-
group S has both a semigroup of straight left I-quotients, (), and a semigroup
of straight right I-quotients, P, then P and () are isomorphic if and only if their

R and L relations restricted to S are equal.

We characterise left I-orders whose semigroups of quotients have a chain of
idempotents. As a special case of this, we characterise left I-orders in inverse

w-semigroups.

We determine when two semigroups of straight left I-quotients are isomorphic.
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Chapter 1
Introduction

The theory of orders and quotients has its history in classical ring theory. Let
R be a subring of a ring ) with multiplicative identity. Then @ is a ring of
left quotients of R and R is an left order in Q) if every g € () can be written as
q = a~'b for some a,b € R, and if, in addition, every non-zero divisor in R has
an inverse in (). With this definition, we are able to describe the relationship
between Z and Q. Ore in 1931 [27] proved that a ring R has a ring of left
quotients if and only if it is left Ore. By saying that a ring is left Ore, we mean
that for any non-zero a € R, d € A, we have Aa n Rd # 0, where A is the set of

non-zero divisors of R.

Several definitions of a semigroup of quotients have been proposed and studied
by a number of authors. The earliest definition is that of a group of left quotients,
introduced by Dubreil in 1943 [4], building on Ore’s work. A subsemigroup S
of a group G is a left order in G and G is a group of left quotients of S if every
g € G can be written as ¢ = a~'b for some a,b € S. Dubreil showed that a
semigroup S has a group of left quotients if and only if S is right reversible and
cancellative. By saying that a semigroup S is right reversible we mean for any
a,be S, San Sb+# .

Murata in 1950 [25] extended the notion of a group of left quotients to a
semigroup of classical left quotients by letting the semigroup of quotients be
a monoid, and considering inverses lying in the group of units. A subsemigroup
S of a monoid M is a classical left order in M and M is a semigroup of classical

left quotients of S if every m € M can be written as m = a~'b for some a,b e S
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where a™! is the inverse of a in the group of units of M, and if, in addition, every
cancellative element of S is in the group of units of M. Murata showed that
a semigroup S has a monoid of classical left quotients if and only if S satisfies
the left Ore-Asano condition. By saying that a semigroup S satisfies the left
Ore-Asano condition, we mean that for any a € A, b € S, we have Sa n Ab # O,

where A is the set of cancellative elements of S.

A different definition proposed by Fountain and Petrich in 1986 [9] was restricted
to completely O-simple semigroups of left quotients. Gould in 1986 [15] extended
this concept to left orders in an arbitrary semigroup, which we will call left
Fountain-Gould orders. A subsemigroup S of a semigroup @ is a left Fountain-
Gould order in @) and @) is a semigroup of left Fountain-Gould quotients of S
if every ¢ € Q can be written as ¢ = a*b for some a,b € S, where a” is the
inverse of a in some subgroup of ), and if, in addition, every square-cancellable
element of S lies in a subgroup of (). We will define square-cancellable formally
in Chapter 2, but for now it is enough to know that it is a necessary condition
for an element to lie in a subgroup of an oversemigroup, in the same way that
cancellativity is a necessary condition for an element to lie in the group of units
of an oversemigroup. Additionally, S is a straight left Fountain-Gould order in
Q, if every ¢ € Q can be written as ¢ = a™b for some a,b € S, such that a R b in
Q. Gould in 2003 [17] gave necessary and sufficient conditions for a semigroup

to be a straight left Fountain-Gould order.

The concept central to this thesis is that of a semigroup of left I-quotients, first
defined by Ghroda and Gould in 2010 [14]. A subsemigroup S of an inverse
semigroup () is a left I-order in ) and @ is a semigroup of left I-quotients of S if

1'is the inverse

every element in Q can be written as a='b where a,be S and a~
of a in the sense of inverse semigroup theory. Note that there is no additional
condition guaranteeing that certain elements have inverses, as in the classical
case and the Fountain-Gould case. The reason for this is that in an inverse

semigroup, every element already has an inverse.

A subsemigroup S of an inverse semigroup () is a straight left I-order in () and
Q is a semigroup of straight left I-quotients of S if every ¢ € () can be written
as ¢ = a~'b where a,be S and aR b in Q.

The notion of semigroups of I-quotients has effectively been defined by a number

of authors without using the above terminology. The first case of this is probably
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Clifford in 1953 [2] where he showed that every right cancellative monoid S with
the (LC) condition has a bisimple inverse monoid of left I-quotients. By saying
that a semigroup S satisfies the (LC) condition we mean for any a,b € S there
exists ¢ € S such that Sa n Sb = Sc. Thus, (LC) is a stronger condition than
right reversibility.

Left I-quotients have also appeared implicitly in work on inverse hulls of right
cancellative semigroups developed in [26] and [23], and taken further in [1].
A related approach recently appeared in Exel and Steinberg’s work on inverse
hulls of O-left cancellative semigroups [5]. All of these examples are left ample
(or right ample), and so we can determine the structure of their inverse hulls

using Theorem 3.7 of [10]. We will explore this more in Subsection 5.2.1.

Fountain and Kambites also utilise left I-quotients in Section 2 of [7], in which
they use the fact that certain graph products are left I-orders in related inverse
semigroups to show that that this relationship is in fact that of a semigroup and

its inverse hull.

The main purpose of this thesis is to develop a comprehensive theory for semi-
groups of left I-quotients. The ‘I’ stands for ‘Inverse semigroup’. Including this
introduction, this thesis comprises eight chapters. In Chapter 2, we begin by in-
troducing the standard semigroup theory used throughout the thesis along with

the basics of inverse semigroup theory.

In Chapter 3, we give the formal definitions of left I-orders and of straight left
[-orders, along with some preliminary properties of left I-orders. We also pro-
vide a number of examples of left I-orders. In the second section, we show many
of the connections between the historical theory of semigroups of quotients and
that of semigroups of I-quotients, including many results guaranteeing straight-
ness. In the final section of this chapter, we determine when a homomorphism
between straight left I-orders can be lifted to a homomorphism between the
semigroups of straight left I-quotients. Consequently, we find necessary and

sufficient conditions for a semigroup of straight left I-quotients to be unique.

In Chapter 4, we determine the conditions under which a semigroup S is a
straight left I-order. We have two approaches which we cover in two separate
sections. Section 4.2 characterises straight left I-orders using the meet structure

of the L-classes of inverse semigroups, and we give our conditions in terms of
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two binary relations and an associated partial order. Section 4.3 characterises
straight left I-orders in a ‘purely algebraic’ way, and we give our conditions in
terms of two binary relations and a ternary relation. The final section answers
the much simpler question of whether a subsemigroup of a given inverse semi-
group, @, is straight left I-order in (). Many of the results in the following
chapters are characterisations of particular classes of semigroups of I-quotients
and each of their proofs rely on at least one of the results from this chapter,

simplifying them considerably in application.

In Chapter 5, we use the results in Chapter 4 to reprove some established results
for semigroups of I-quotients. In the first section, we reprove a characterisation
of straight left I-orders in primitive inverse semigroups from [12]. In the final
section, we reprove the result that left ample semigroups are left I-orders in their
inverse hull if and only if they have the (LC) condition from [10], and we apply
this result to Exel and Steinberg’s work on inverse hulls of O-left cancellative

semigroups [5].

In Chapter 6, we examine right ample left I-orders. In the first section, we
characterise right ample straight left I-orders that are embedded into their semi-
groups of straight left I-quotients as (2,1)-algebras. In the final section, we char-
acterise two-sided ample left I-orders that are embedded into their semigroups

of left I-quotients as (2,1,1)-algebras.

In Chapter 7, we focus on straight left I-orders that intersect every R-class of
their semigroups of straight left I-quotients. In the first section, we characterise
such straight left I-orders. In Section 7.2, we characterise left ample straight
left T-orders that intersect every R-class of their semigroup of straight left I-
quotients. In the final section, we prove that if a semigroup S has both a
semigroup of straight left I-quotients, (), and a semigroup of straight right I-
quotients, P, then P and () are isomorphic if and only if their R and L relations

restricted to S are equal.

In Chapter 8, we consider semigroups of left I-quotients with totally ordered
idempotents. In the first section, we characterise left I-orders whose semigroups
of left I-quotients have totally ordered idempotents. In the last section, we
characterise left I-orders in inverse w-semigroups, along with three special cases

of inverse w-semigroups: no kernel, simple and proper kernel.



Chapter 2
Preliminaries

In this chapter, we introduce the semigroup theory used throughout the thesis.
All definitions and results are standard and can be found in [20] and [3] unless

a reference is given.

2.1 General semigroup theory

A semigroup S = (5,.) is a non-empty set S together with an associative binary

operation on S. Unless stated otherwise, S denotes a semigroup throughout.

If S contains an element 1 such that al = 1la = a for all a € S, then 1 is called
an identity and S is called a monoid. If S contains an element 0 such that
a0 = 0a = 0 for all a € S, then 0 is called a zero element of S. Note that

identity and zero elements, if they exist, are unique.

Let M be a monoid. An element a of M is called a wunit if there exists b € M
such that ab = ba = 1.

We use St to denote the semigroup S with identity adjoined if necessary. That
is,
o1 S if S is a monoid,

S u{l} otherwise,

with the multiplication extended by defining al = 1a = a for all a € S*.

A non-empty subset T" of a semigroup S is a subsemigroup of S if T' is a semigroup
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under the operation of S. In this case, we also say that S is an oversemigroup
of T'. If T is a group under the operation of S then it is called a subgroup of S.

If S is a monoid, the units of S form a subgroup called the group of units.

An element e € S is an idempotent if e = e. The set of all idempotents of S is
denoted by E(S). We define a partial order < on E(S) by

e< f ifand only if ef = fe=e

We call this the natural partial order on idempotents. We write e < f to denote
that e < f, but e # f.

A band is a semigroup where every element is idempotent. A semilattice is a

commutative band.

Let A be a set with a partial order <, and let a and b be two elements of A. An
element ¢ of A is the meet (or greatest lower bound) of a and b if the following

two conditions are satisfied:

(i) e <aand ¢ <b.

(ii) h < a and h < b implies that h < c.

We denote the fact that the meet of a and b exists and equals c by a Ab=c. A
meet of a and b will not necessarily exist, but if it does exist then it is unique. If,
for every a,b € A, the meet of a and b exists, we say that A is a meet semilattice

under <.

Proposition 1.3.2 of [20] demonstrates that semilattices are precisely meet semi-
lattices. Given a semilattice (S, -), we can define a meet semilattice (S, <) by
taking < to be the natural partial order on idempotents. Then a A b = a - b.

Conversely, a meet semilattice (5, <) is a semilattice under A.

Let A and B be subsets of S. We write
AB = {ablac A,be B}.

We write aB for {a}B = {ab|b e B}.

A non-empty subset A of a semigroup S is called a right ideal if AS < A, a left
ideal if SA < A and an ideal if A is both a right ideal and a left ideal.
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Lemma 2.1.1 (Principal Ideal Lemma for Idempotents). Let S be a semigroup
and let z € S and e € E(S). Then x € Se if and only if v = xe.

Proof. If x € Se, then x = se for some s € S. Therefore, using the fact that e is

an idempotent, we have

I6=S€2=S€=I.

Conversely, if x = xe, then z € Se since x € S. O
An ideal M of a semigroup S is called minimal if it does not properly contain
an ideal of S. A semigroup can have at most one minimal ideal. To see this,
suppose that M and N are both minimal ideals of S. Then, since MN is an
ideal contained in both M and N, we have that M = MN = N. Therefore a

semigroup S either has no minimal ideals or a unique minimal ideal, which we
call the kernel of S.

A binary relation p on S is right compatible if, for all a,b,z € S,
(a,b) € p implies that (az,bx) € p.
Dually, p is left compatible if, for all a,b,x € S,
(a,b) € p implies that (xa,xb) € p.
Also, p is compatible if, for all a,b,c,d € S,
(a,b) € p and (c,d) € p implies that (ac, bd) € p.

A right congruence is a right compatible equivalence relation and a left con-
gruence is a left compatible equivalence relation. A congruence is a compatible
equivalence relation. Equivalently, a congruence is a relation that is both a right

congruence and a left congruence.

Let p be a congruence on S. Denoting the equivalence class of a € S by ap, we

can define a binary operation on the quotient set S/p in the following way:

(ap)(bp) = (ab)p.

With respect to this operation, S/p is a semigroup.
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Let A be an ideal of S. Then for a,b € S, we define a ps b to mean that either
a = b or that both a and b belong to A. We call ps the Rees congruence modulo
A. We shall write S/A to mean S/p4, and we call S/A the Rees factor semigroup
of S modulo A.

Let S and T be semigroups, T having a zero element, and let A be an ideal of
S. The S is an ideal extension of A by T if the Rees factor semigroup S/A is

isomorphic to T

A preorder < is a binary relation that is reflexive and transitive. Given a preorder

on a set A, one may define an equivalence relation ~ on A such that
a ~ b if and only if a < b and b < a.
It is then possible to define a partial order on A/~ by
[a] < [b] if and only if a < b,

where [a]| and [b] are the ~-classes of a and b, respectively. We will call these

the associated equivalence relation and the associated partial order, respectively.

The equivalence relation R on a semigroup S is defined by the rule that
aRb if and only if aS* = bSt.

We might also write R if the semigroup S used to generate the relation is
unclear. Dually, the equivalence relation £ on a semigroup S is defined by the
rule that

a Lb if and only if S'a = S'b.

It is easy to see that R and L are a left congruence and a right congruence,
respectively. We say that a J b if S'aS' = S'0S!. The intersection of R and £
is denoted by H. It is a significant fact that R and £ commute in the semigroup
of binary relations on S, and consequently D = R o L is also an equivalence
relation. We call these five equivalence relations Green’s relations. The R-class

containing the element a will be written as R,. Similarly for L., H,, D, and J,.

It is convenient to visualise a D-class as what Clifford and Preston [3] call an

eggbox picture, in which each row represents an R-class, each column represents
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Figure 2.1: An eggbox picture
Lq

an L-class, and each cell represents an H-class. Note that this may well be an

infinite eggbox.

We say that a semigroup S is bisimple if it consists of a single D-class. We
say that a semigroup S is simple if it consists of a single J-class. Equivalently,
we can define a simple semigroup as a semigroup with no proper ideals or a
semigroup which is its own kernel. A semigroup S is 0-simple if S? # 0 and {0}
and S\ {0} are the only [J-classes.

Theorem 2.1.2 (Green’s Theorem). If a € S, then a lies in a subgroup of S if
and only if a H a®.

There is a preorder associated with Green’s relation R which is defined by the
rule that

a <g b if and only if aS' < bS'.

Dually, the preorder associated with Green’s relation £ is defined by the rule
that
a <¢ b if and only if S'a < S'b.

Note that these have associated equivalence relations, R and L, respectively.

We may write a <, b to denote that a <, b, but that a and b are not L-related.

Lemma 2.1.3. Let S be a semigroup such that E(S) is a semilattice and let
e,feE(S). Thene< f,e<g f and e <. f are all equivalent.

Proof. We start by proving that e < f and e <, f are equivalent.

Let e < f. Then e = ef. Therefore S'e = Slef < S'f, and so e < f.
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Conversely, let ¢ <, f. Then e € S'f. Since f is an idempotent, we have that
S'f = Sf. We can therefore apply Lemma 2.1.1, to get that e = ef. Using the

fact that idempotents commute, fe = ef = e, and so e < f.

The fact that e < f and e <z f are equivalent is dual, using the dual of
Lemma 2.1.1. O]

There is another generalisation of Green’s relation R which is defined by the rule
that a R* b if and only if the elements a, b of S are related by Green’s relation R
in some oversemigroup of S. According to Lemma 1.7 of [23], a R* b is equivalent
to the condition that za = ya if and only if 2b = yb for all x,y € S*. Given
this, it is easy to see that R* is transitive and then a left congruence on S.
The relation £* is defined dually. The R*-class containing the element a will be

written as R}. Similarly for L}.

Lemma 2.1.4. Let S be a semigroup such that E(S) is a semilattice. Then

there can be at most one idempotent in each R*-class (L*-class).

Proof. Let e, f € E(S) such that eR* f. Then e = le = ee implies that
f=1f =ef. Similarly, f = ff implies that e = fe. Therefore, using the

fact that idempotents commute, we have e = fe =ef = f.

The fact that there can be at most one idempotent in each L£*-class is proved
dually. O

There are two further preorders associated with R* and L£*, namely <z+ and
<g«. For a,b € S, we say that a <z« b if and only if a <z b in some oversemi-
group of S. Note that this has associated equivalence relation R*. According to
Lemma 2.2 of [17], a <g= b is equivalent to the condition that xzb = yb implies
that xa = ya for all z,y € S*. Clearly this is a left compatible preorder. The

relation </ is defined dually.

Lemma 2.1.5. [18] Fore, f € E(S),
e <gs+ [ if and only if e <p f

and

e <pgx fif and only if e <. f.
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An element a € S is left cancellative if ab = ac implies b = ¢ for all b,c € S.
If every element in S is left cancellative, then S is called a left cancellative
semigroup. Dually, an element a € S is right cancellative if ba = ca implies b = ¢
for all b,c € S. If every element in S is right cancellative, then S is called a right
cancellative semigroup. An element a € S is called cancellative if it is both left
cancellative and right cancellative. If every element in S is cancellative, then S

is called a cancellative semigroup.

A semigroup S with zero is defined to be 0-right cancellative if for all a,b,c € S,
ab = ac # 0 implies that b = c¢. Dually, a semigroup S with zero is defined to
be 0-left cancellative if for all a,b,c e S, ba = ca # 0 implies that b = c.

An element a € S is square-cancellable in S if for all z,y € S', xa® = ya® implies
that za = ya and a?z = a?y implies that ax = ay. This is clearly equivalent to
aH*a?, where H* = R* n L*.

Let S and T be semigroups. A function ¢ : S — T is called a homomorphism of
S to T, if for all a,b € S, we have (ag)(bp) = (ab)¢. If ¢ is injective, then ¢ is an
embedding of S into T'. Note that following the ring theoretic terminology, an
embedding is an injective homomorphism and nothing more. If ¢ is surjective,
then ¢ is an epimorphism. If ¢ is bijective, then ¢ is an isomorphism. We say
that S and T are isomorphic if there is an isomorphism between S and T and

we write S ~ T

If a semigroup S has an additional unary operation, we call S a unary semigroup.
If S and T are both unary semigroups and there exists an embedding ¢ : S — T
that preserves the unary operation, we say that S is embedded in T" as a unary
semigroup, or S is embedded in T as a (2,1)-algebra. A bi-unary semigroup is a
semigroup equipped with two unary operations. If S and T are both bi-unary
semigroups and there exists an embedding ¢ : S — T that preserves both unary
operations, we say that S is embedded in T as bi-unary semigroup, or S is
embedded in T" as a (2,1,1)-algebra.

A transformation on a set X is a function from X into itself. The set of all
transformations on X is a semigroup under composition (from left to right). It

is called the full transformation semigroup on X and is denoted by Tx.

A partial transformation on a set X is a function o mapping a subset A of X

into a subset B of X. The set of all partial transformations on X is a semigroup
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under the composition of partial mappings, that is,
domaf = (ima ndom B)a™! and Yz e domaf, z(af) = (za)p.

It is called the partial transformation semigroup on X and is denoted by P7Tx.

2.2 Inverse semigroups

An element a of a semigroup S is regular if there exists an element z in S such

that axa = a. A semigroup S is reqular if every element of S is regular.

An element b e S is an inverse of a € S if
a = aba and b = bab.

We denote the set of inverses of a by V(a). An inverse semigroup is a semigroup
S such that |V (a)| = 1 for all @ € S. The unique element of V'(a) is denoted
by a~!. Equivalently, an inverse semigroup is a regular semigroup in which all
the idempotents commute. It is worth noting that in an inverse semigroup S,

(a™")™' =aand (ab)"' =b"'a" forall a,be S.

For an inverse semigroup, each R-class and each L-class contains exactly one

1 1

idempotent, namely aa™ € R, and a~"a € L,. We consequently obtain the

following result.

Lemma 2.2.1. Let a and b be elements of an inverse semigroup. Then a R b if
and only if aa™t = bb™t, and a Lb if and only if a=*a = b~1b.

We can therefore immediately see that in an inverse semigroup,

xRy if and only if = Ly

Lemma 2.2.2. Let M be an inverse semigroup with an identity, and let a be in
the group of units of M. Then the inverse of a in the group of units is equal to

the 1nverse of a in the sense of inverse semigroup theory.

Proof. Denote a’ as the inverse of a in the group of units of M, and o' as the
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inverse of a in the sense of inverse semigroup theory. We see that
ad'a = a and d'ad’ = d,

so a' € V(a). Since M is an inverse semigroup, a~! is the unique element in
V(a). Therefore a’ = a™'. O

The symmetric inverse monoid on a set X, denoted by Zy, is the subsemigroup
of PTx consisting of the set of all one-to-one partial transformations of a set X.
The symmetric inverse monoid is an inverse semigroup, where the inverse of «

in the sense of inverse semigroup theory is the inverse of o as a map. That is, if

1

a:doma — ima, then o™ : ima — dom « such that

aa ™t = tgoma and o ta = tima,

where ¢4 is the identity map on A, for any A < X.

We give Lemmas 2.2.3 and 2.2.5 and their duals, as they are useful results that

we will refer to throughout this thesis.
Lemma 2.2.3. Let a and x be elements in an inverse semigroup. Then

tRza if and only if v = vaa™ .

Proof. Let x R xa. By Lemma 2.2.1, we know that this is equivalent to

zr~! = (za)(za)™' = zaa " x!

Therefore, using the fact that in an inverse semigroup idempotents commute,

1 1 1 1

r=xr 'z =xaa 'z e = xx '\zaa” 1

= zaa .

Conversely, let © = zaa™!. Then

By Lemma 2.2.1, we know that this is equivalent to xR za. [
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Lemma 2.2.4. Let a and x be elements in an inverse semigroup. Then
aLzxa if and only if a = 2 ' xa.

Lemma 2.2.5. Let a and b be elements in an inverse semigroup. Then
a <p b if and only if bb~'a = a.

a <g b if and only if bb~'a = a.

Proof. Let a <g b, i.e. aS* < bS!. Then there exists an x € S* such that a = bx.
Then
bb~la = bb~lbr = bx = a.

Conversely, let bb~'a = a. Then
aS™h =bb"'aS" < bS".

]

Lemma 2.2.6. Let a and b be elements in an inverse semigroup. Then a <, b
if and only if ab—'b = a.

Definition 2.2.7. Let S be a semigroup that embeds into an inverse semigroup
Q. The inverse hull 3(S) of S is then the subsemigroup of () generated by the
elements of S and their inverses. Note that this is dependent on the embedding
chosen, but this detail may be omitted in the case where S has a canonical

embedding into an inverse semigroup.

2.2.1 The meet structure of inverse semigroups

Let @ be an inverse semigroup. As previously described, <, is a preorder on @)
defined by a <, b if and only if Q'a < Q'b, with associated equivalence relation

L. The associated partial order on the L-classes of @) is then:

L, <, Ly if and only if a <. b.
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Using this partial order, we can consider the meet of two L-classes. In a general
semigroup, two L-classes need not have a meet, but in an inverse semigroup the

meet always exists.

Lemma 2.2.8. Let Q) be an inverse semigroup. Then Q/L is a meet semilattice

under <z, with Ly A Ly = L. if and only if c"'c = a~tab™'b.

Proof. In an inverse semigroup, (), every L-class has a unique idempotent. Using

Lemma 2.1.3, we see that for idempotents e, f € @),
Le<pLy = e<pf <= e<f.

Therefore the poset Q/L is order isomorphic to the semilattice of idempotents

under the natural partial order.

Proposition 1.3.2 of [20] gives us that the semilattice of idempotents is a meet
semilattice with the meet of e and f equalling ef. Therefore Q/L is a meet
semilattice with Lo A Ly = Ley. The result then immediately follows from the
fact that a La 'a. O

Lemma 2.2.9. Let S be a semigroup such that E(S) is a semilattice and let
e,f e E(S). Then Ly n L} = L.

Proof. We know that ef <,s f and ef = fe <;s e. Therefore ef </« e, f.

Now let h € S such that h </« e, f. By definition h </« e implies that h < q e
for some (Q, an oversemigroup of S. Therefore, there exists ¢ € Q' such that
h = qe in ). Similarly A </« f implies that there exists P, an oversemigroup
of S such that h = pf in P, for some p € P'. Therefore, by calculating in P we

obtain
hf=pf*=pf=h.

Consequently h = hf = gef in ), and so h < ¢ ef. Therefore h </« ef. n

2.3 Ample semigroups

Definition 2.3.1 (Left Ample Semigroup). We define a semigroup S to be left

ample if and only if every R*-class contains an idempotent, £(5) is a semilattice,
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and S satisfies the left ample condition which is:
(ae)"a = ae for all a € S and e € E(S)
where, for x € S, z* is the (unique) idempotent in the R*-class of .

Note that in a left ample semigroup, a R* b if and only if a™ = b*.

Definition 2.3.2 (Right Ample Semigroup). We define a semigroup S to be
right ample if and only if every L*-class contains an idempotent, E(S) is a

semilattice, and S satisfies the right ample condition which is:
a(ea)” = ea for all a € S and e € F(S)
where, for x € S, z* is the (unique) idempotent in the £*-class of z.

We know that ™ and z* must be unique by Lemma 2.1.4. An ample semigroup

is one which is both left and right ample.

Alternatively, we can define a semigroup S to be left ample or right ample by
using the structure of Zx. Let Zx be the symmetric inverse monoid on a set X.

We can define three unary operations ~!, * and * as follows:

a~! is the inverse of a; ¢™ = aa™! and a* = ¢ ta.
Let S be a subsemigroup of Zx. If S is closed under ~! then it is an inverse
semigroup. If S is closed under * then S is a left ample semigroup. If S is closed

under * then S is a right ample semigroup.

A unary semigroup is left ample if and only if it embeds as a unary semigroup
in some Zy, where the unary operation on Zx is *. Left ample semigroups form
a quasi-variety of unary semigroups. Right ample semigroups may be defined in
a dual way as the subsemigroups of some Zx that are closed under *. Following
[19], it is worth noting that an ample semigroup S may not be embeddable into

an inverse semigroup in such a way that preserves both * and *.

We give some elementary properties of left ample semigroups. The duals of these

properties apply to right ample semigroups.

Lemma 2.3.3. Let S be a left ample semigroup. Then for all a,b,x € S':
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(i) ata = a;

(i1) (ab)®™ = (ab*)*;

(i17) (xa)Tx = za™;

(iv) x* = (xa)™ if and only if x = xa™; and

(v) (ab)* < a™.

Proof.

(i)

(i)

(i)

(iv)

We know that a R* a®. Therefore, by the definition of R*, we have that

atat = a* implies that ata = a.

Using the fact that R* is a left congruence, we see that b R*b™ implies
that abR* ab™.

Since a* is an idempotent, we can use the left ample condition to give us

zat = (zat)*z. We can then apply (ii) to get the intended result.
Let t = (za)™. Then, using (i) and (iii), we have

r=z"r=(va)tr =za".

Conversely, let = za™. Then, applying * to both sides,

using (ii) in the last equality.

Since (ab)*a™ is an idempotent, we have that
(ab)*a™ = ((ab)*a™)" = ((ab)"a)",
using (ii). We can then apply (iii) to obtain
((ab)a)™ = (ab™)" = (ab)”,

using (ii) again. Putting these together and remember that idempotents

commute, we have that (ab)*a™ = a*(ab)* = (ab)™, and so (ab)™ < a™.
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Note the similarity between Lemma 2.3.3 (iv) and Lemma 2.2.3.

Lemma 2.3.4. Let S be a left ample subsemigroup of an inverse semigroup Q).
Then S is embedded as a unary semigroup into Q) (i.e. embedded in such a way
that * is preserved) if and only if R n (S x S) = R*.

Proof. Let S be embedded as a unary semigroup into (). We know that
RPN (S x S) < R* is true by definition. Let a,b € S such that a R* b. Hence
we have at = b* in S and (by the preservation of *) a* = b* in Q). Therefore
aa~t = bb~!, giving us that a R? b. Therefore R* € R9 n (S x S) as well.

Conversely, let R? n (S x S) = R*, and let a € S. Since a R*a™, we have
that a R9 a*. Since @ is inverse, there is a unique idempotent in each R%-class.

Therefore at = aa™"'. 0

Following [18], for any left ample semigroup S we can construct a (2,1)-
embedding of S into the symmetric inverse semigroup Zg as follows. For each

a € S, we define p, € Zg by
P i Sa™ — Sa, Vse Sa’, sp, = sa.
Then the map g : S — Zg given by
ablls = pa,

is a (2,1)-embedding.

2.4 Semilattices of semigroups

We now describe the following well-known construction.

Definition 2.4.1. Let Y be a semilattice. A semigroup S is called a semilattice

Y of semigroups S,, o € Y, if S is the disjoint union S = | J S,, where
acY

SaSp S Sap-
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This definition gives us what we might call the “gross structure” of S. By this
we mean that there are potentially many different ways for S to be a semilattice
Y of semigroups S,, o € Y. For s, € S, and sg € S, we know that s,s5 € Sag,
but there are no other restrictions except for the associativity of S. Its “fine
structure” would then be how the products s,sg are located in S,g. We now

introduce such a fine structure.

Definition 2.4.2. Let Y be a semilattice. To each o € Y associate a semi-
group S,. For each pair o, 5 € Y, such that o > 3, let .5 : S, — Sz be a

homomorphism such that the following conditions hold:

(1) @aa =ts, forall a €Y, where 14 is the identity map on a set A;

(1) PapPsy = Pan forall a,f,7 €Y such that a = = ~.

We define S as the disjoint union S = | J S, with multiplication
acY

058 = (SaPaas)(5ap.ap)

for s, € Sy and sg € Sp.

With respect to this multiplication S is a semigroup called a strong semilattice

Y of semigroups S,, a €Y.

Figure 2.2: An example of a strong semilattice of semigroups

We could also consider strong semilattices of semigroups to be presheaves of

semigroups over meet semilattices. A meet semilattice (Y, <) can be regarded as
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a category with an arrow existing from « to g exactly when o < 5. Now consider
the dual category (Y, <)°P, in which the arrows are turned around. That is, there
exists an arrow from o to 3, ¢, 4, if and only if o > 3. Then the strong semi-
lattices Y of semigroups are exactly the functors F : (Y, <)°® — Semigroups

to the category of semigroups, with S, = F(a) and ¢, 5 = F'(¢a3)-

Not every semilattice of semigroups is a strong semilattice of semigroups, but

clearly every strong semilattice of semigroups is a semilattice of semigroups.

2.4.1 Clifford semigroups

In a semigroup S, an element c is defined to be central if cs = sc for every s € S.

A Clifford semigroup is an inverse semigroup with central idempotents.
The next theorem from [20] gives an alternative description of Clifford semi-

groups.

Theorem 2.4.3 ([20, Theorem 4.2.1]). Let S be a semigroup. Then the following

statements are equivalent:

(1) S is a Clifford semigroup;
(2) S is a semilattice of groups;

(8) S is a strong semilattice of groups;

1

(4) S is an inverse semigroup such that xx=' = 7'z for all vz € S.

1

Let S be a Clifford semigroup. Since zz~! = z7 !z for all z € S, we can use

Lemma 2.2.1 to give us that R = L =H in S.

Lemma 2.4.4. Let Y be a semilattice, and let S be a strong semilattice Y of
groups Go, o € Y. Let g, € G, and hg € Gg. Then the following statements

are equivalent:
(1) a < B;
(2) 15 ga = gu, where 15 is the identity of Gg;

(3) Gals = gu, where 1g is the identity of Gg;
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(‘)/‘) Jo SR hﬁ;
(5) Ja <£ hg.

Proof. (1) = (2): Using the fact that S is a strong semilattice, we know that

15 9o = (15Y)a;

for some homomorphism ¢ : Gg — G,. Since homomorphisms between groups

preserve the identity, we know that (13¢) = 1,. Therefore
16911 = la 9o = Y-

(2) = (4): By Lemma 2.2.5, g, <g hg if and only if hﬁhglga = go. Since hg is
an element of the group G, we have that hghgl = 1, where 15 is the identity
of Gg. Therefore g, <z hg if and only if 15 g, = ga.

(4) = (1): Since g, R 1, and hgR 13, we know that g, <z hg implies that
1o <z 1. Applying Lemma 2.1.3 gives 1, < 1, and therefore 1,15 = 1,. Since

S is a semilattice, we know that 1,15 € G,s. Therefore a8 = «, and so a < 3.

(1) = (3) = (5) is dual. O

Example 2.4.5. Let G, = {(%). |a,b positive odd integers} be the group of
positive odd fractions, with normal fraction multiplication (%), (5). = (35)a>
and let Gg = {(%), |a,b positive integers} be the group of positive rationals,
with multiplication (%), (5), = (35)s-

We define ¢, 3 : G, — G by
(3), pas = (3),

Let P = G, U Gg, where U denotes disjoint union. We extend the multiplication
of G, and G by

(8),(5), = (9), (8, = ((4), %as) (&), = (8,

Then P is a strong semilattice Y of groups Gy, i € Y, where Y = {a, f} with

Salls]

a = . Therefore P is a Clifford semigroup.
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2.5 Primitive inverse semigroups

Remember that the natural partial order on idempotents is defined by f < e if
and only if fe = ef = f. An idempotent element e is called primitive if e # 0
and f < e implies that either e = f or f = 0. This concept is akin to atoms in
lattices [20].

An inverse semigroup S with 0 such that S # {0} is called a primitive inverse

semigroup if all its nonzero idempotents are primitive.

Brandt semigroups are a special class of both primitive inverse semigroups and
completely O-simple semigroups. They are important for many reasons, one of
which is that there is a one-to-one correspondence between Brandt semigroups
and connected groupoids, as demonstrated by Proposition 6 of [22, Section 3.3].
The structure of completely 0-simple semigroups is given by the Rees Theorem
[20, Theorem 3.2.3], of which the construction given in the following definition

is a special case.
Definition 2.5.1 (Brandt semigroup). Let G be a group and let I be a non-
empty set. Then B = B(G, 1) is the set (I x G x I) u {0} with multiplication

(1,ab,l) if j =k,
0 if 5 # k.

(i,a,j)(k,bl) =

We call such a semigroup a Brandt semigroup.

Lemma 2.5.2. Let B = B(G, I) be a Brandt semigroup. Then:
(1) (i,a,7)RP (k,b,1) if and only if i = k and a R b;
(2) (i,a,3) LB (k,b,1) if and only if j =1 and a LT b;
(3) (i,a,5)~" = (j,a7",i).

Let {S; : i € A} be a family of semigroups with zero, pairwise intersecting only

at the zero element. Let S = (] S; with multiplication
€A

ab if a,be S; for some i € A,
ab =

0 otherwise.
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We then call S the 0-direct union of the S;. In Theorem 5 of [22, Section 3.3],
it is shown that every primitive inverse semigroup is a 0-direct union of Brandt

semigroups, and vice versa.

Following Theorem 3.3.4 and Theorem 3.3.5 of [22], primitive inverse semigroups
are exactly groupoids with zero adjoined and Brandt semigroups are exactly

connected groupoids with zero adjoined.

2.6 Bruck-Reilly semigroups

We start this section by defining a very useful inverse semigroup. We define the

bicyclic monoid as the set B = N x N° along with the binary operation
(a,b)(c,d) = (a — b+ max{b, c},d — ¢ + max{b, c}).

This is an inverse semigroup with (a,b)™! = (b,a). The idempotents of the
bicyclic monoid are elements of the form (n,n) and under the natural ordering

of idempotents these form a descending chain
(0,0) = (1,1) = (2,2) = (3,3) = ...
Therefore the bicyclic monoid is an example of an inverse w-semigroup defined

in Definition 8.2.1.

We now define Bruck-Reilly semigroups, which are a generalisation of the bicyclic

monoid.

Let T be a monoid with group of units H and let 6 be a morphism from 7" into
H. Then the Bruck-Reilly semigroup over T with respect to 6 is N° x T x N°

with multiplication
(m,a,n)(p,b,q) = (m —n+t,(ad")(bO"P),q—p+1),

where t = max{n,p} and where ¢° is interpreted as the identity map on T. We
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could equivalently write the multiplication as

(m—n+p,(adP"™)b,q) if n<p,
(m’a’n)(p’ b’ q) - (m7ab7 q) if n= p,
(m,a(b0"P),q—p+n) if n>p.

We denote the Bruck-Reilly semigroup over T with respect to 6 by BR(T,6).
The proof that this multiplication is associative can be found in Section 5.6 of

120].

Bruck-Reilly semigroups are important due to several structure theorems by
Reilly [29], Kochin [21] and Munn [24]. Reilly [29] showed that bisimple inverse
w-semigroups are isomorphic to Bruck-Reilly semigroups of the form BR(G,6),
where G is a group. Kochin [21] and Munn [24] extended this independently,
showing that simple inverse w-semigroups are isomorphic to Bruck-Reilly semi-
groups of the form BR(T, 6), where T is a finite chain of groups. Munn [24] also
extended this to a structure theorem of arbitrary inverse w-semigroups with

kernel, which we will use heavily in Section 8.2.
We give some properties of Bruck-Reilly semigroups in the following Proposition.

Proposition 2.6.1 ([20, Proposition 5.6.6]). Let T be a monoid and let
S = BR(T,0). Then:

(1) (m,a,n)R® (p,b,q) if and only if m = p and a RT b;
(2) (m,a,n) L% (p,b,q) if and only if n = q and a LT b;

(8) S is an inverse semigroup if and only if T is an inverse semigroup. If T

is an inverse semigroup, then (m,a,n)~! = (n,a™t, m).
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Left I-orders

In this chapter, we will introduce the basic definitions of left I-orders and semi-
groups of left I-quotients and give some examples. We concentrate on straight
left I-orders, the reason being that they are much easier to work with than ar-
bitrary left I-orders. In many situations left I-orders are automatically straight,

as we shall see in the following chapters.

We give some properties of straight left I-orders which we will use throughout

this thesis, especially in the proofs of Theorem 3.3.7 and Theorem 4.2.1.

In Section 3.2, we show that left I-orders sit in the context of other types of left
orders. Consequently, we can use an established result on Clifford semigroups
of left Fountain-Gould quotients to obtain an analogous result for Clifford semi-

groups of left I-quotients.

In Section 3.3, we consider when a homomorphism between straight left I-orders
can be lifted to a homomorphism between the semigroups of straight left I-
quotients. Consequently, we determine necessary and sufficient conditions for

two semigroups of straight left I-quotients of a given semigroup to be isomorphic.

All results are the joint work of myself and Professor Victoria Gould, unless

indicated otherwise through the citation of a supporting reference.

25
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3.1 Definitions and examples

We give the formal definition of a semigroup of left I-quotients, first introduced
by Ghroda and Gould in [14].

Definition 3.1.1. Let S be a subsemigroup of an inverse semigroup (). Then
Q is a semigroup of left I-quotients of S, and S is a left I-order in @), if every
q € @ can be written as

g=a'b

for some a,b € S, where a~! denotes the inverse of a in the sense of inverse
semigroup theory. Right I-orders and semigroups of right I-quotients are defined
dually. If S is both a left I-order and a right I-order in @), then we say that S is

an I-order in @), and @ is a semigroup of I-quotients of S.

We now define what it means for a left [-order to be straight. Straightness is
not only a very useful property, but one that appears typical in left I-orders.
Indeed, we cannot find a left I-order which is not straight. We conjecture that
there are left I-orders which are not straight, but we have no counterexample to
date.

Definition 3.1.2. A left I-order S in an inverse semigroup @ is straight in )
if every element in Q can be written as a~'b where a,b € S and a R?b. We
also say that @ is straight over S, and we call Q) a semigroup of straight left
I-quotients of S. Semigroups of straight right I-quotients are defined dually.

In this thesis we will see that straightness is a very important property for a left I-
order to have. Most of the results in this thesis will be specifically about straight
left I-orders. We will find in later results (for example, Lemma 3.3.4, Lemma
3.3.6 and Lemma 4.3.2) that, if S is straight, we can determine equalities and
products in @) using equalities and relations between elements of S. This makes
straight left I-orders easier to work with than general left I-orders. Because of
this, it is of interest to determine when a left I-order is straight. In this regard,

the following result is an important tool; it is an unpublished observation of
Nassraddin Ghroda and Victoria Gould.

Lemma 3.1.3 (Ghroda, Gould). Let S be a left I-order in Q. Then S is straight
mn Q if and only if S intersects every L-class of ().
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Proof. Let S be straight in @, and let ¢ = a~'b € Q such that a,b € S and
aR®b. Then
g lg=blaa b =b"tob"b = b7 1D,

andsobe SnL,.

Conversely, suppose S n L, # J for all ¢ € ). Let ¢ € @); we know that
g = a~'b, where a,be S. Then

qg=a taa bbb = a1 f0,

where f = aa”'0b™! € F(Q). Since S intersects every L-class, there exists

ueSn Ly and so f =utu. Hence

1 1 -1

(ua)(ua)™ = vaa v = ufaaut = ufut = uu

Similarly (ub)(ub)™! = uu™".
We can therefore write
q=a'fb=atu"tub = (ua)"*(ub),
where ua R? ub. It follows that Q is straight over S. [

The rest of this section is devoted to illustrative examples. The first is a left
[-order in an inverse semigroup with totally ordered idempotents. We will study

these types of left I-orders in Chapter 8.

Example 3.1.4 (Bicyclic Monoid). Let B be the bicyclic monoid and let S be
the R-class of the identity, S = {(0,n)|n € N°}. We have that B is an inverse

semigroup and for any (a,b) € B,
(a,8) = (@,0)(0,b) = (0,)(0,0)

so B is a semigroup of left I-quotients of S. Additionally, since (0,a)R” (0, b)
for all (0,a), (0,b) € S, we see that B is straight over S.

One question we can ask is if a given semigroup has at most one semigroup of

left I-quotients. The answer to this is no. We will use a semilattice of groups to
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show this. In the case of semilattices of groups, semigroups of left I-quotients

are exactly semigroups of left Fountain-Gould quotients, so this is not new.

Example 3.1.5 (Counterexample to Uniqueness). Consider the semigroup
(N, -). It lies inside the group (Q,-) and is a left I-order in (Q™, -), since for all

%€ Q7, we have ¢ = b~'a with a,be N.

We will now show that the semigroup P from Example 2.4.5 is also a semi-
group of left I-quotients of (N,-). We see that P is an inverse semigroup with
($)7t=(2),, and (¢)-' = (2),. We define an embedding ¢ : (N,-) — P by

B
¢{(

We see that P is a semigroup of left I-quotients of (N, -), since

). if n odd,

)s if n even.

=3 I3

($)o = (b0) ' (ag) and (), = (2b0) " (2a¢).

We know that P is not isomorphic to (Q%,-) because P has two idempotents
whilst (Q%, ) only has one.

3.2 Connections with other types of semi-

groups of quotients

Up to this point, we have defined semigroups of quotients in terms of inverse
semigroup theory. However, in generality, one could attempt to say that, for )
a semigroup and S a subsemigroup of (), that @ is a semigroup of left quotients
of S if every ¢ € QQ can be written as ¢ = a~'b for some a,b € S. However,
this definition has no meaning without defining what we mean by a~!. By
using different interpretations of a=!, we find different types of semigroups of

left quotients.

In this section we look at two different types of semigroups of left quotients
distinct from semigroups of left I-quotients. We look at the connections be-
tween them and semigroups of left I-quotients. We use one of these connections
to obtain necessary and sufficient conditions for a semigroup to be a Clifford

semigroup of I-quotients.
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3.2.1 Semigroups of classical left quotients

The earliest type of semigroups of quotients are groups and use group inverses.
This definition originates from work of Ore on rings of left quotients [27] and was
formalised by Dubreil [4]. For a more comprehensive history, read [3, Section
1.10).

Definition 3.2.1. Let S be a subsemigroup of a group G. Then G is a group
of left quotients of S, and S is a left order in G, if every g € G can be written

as ¢ = a~'b for some a,be S.

We know that every group is an inverse semigroup with the inverse elements in
the sense of inverse semigroup theory being equal to the group inverses. There-
fore it is easy to see that every group of left quotients is a semigroup of left
[-quotients. Moreover, since the R-relation in a group is the universal relation,

every group of left quotients is a semigroup of straight left I-quotients.

The question of whether a semigroup has a group of left quotients was answered
implicitly by Ore [27] and formalised by Dubreil [4]. We give the result below.

Definition 3.2.2. A semigroup S is right reversible or left Ore if for any a,b € .S,
Sa n Sb # @. That is, there exists u,v € S with ua = vb.

Theorem 3.2.3 ([27], [4]). A semigroup S has a group of left quotients if and

only if S is cancellative and right reversible.

We can generalise groups of quotients by letting the semigroup of quotients ) be
a monoid and considering a~! to be the inverse of a in the group of units. Note
that this means a is a unit. We call these semigroups of classical left quotients

to distinguish them from other types of semigroups of left quotients.

Definition 3.2.4 ([25]). Let S be a subsemigroup of a monoid M. Then M is

a monoid of classical left quotients of S if

(i) for every cancellative a € S, there exists an a~' € M;

(ii) every m € M can be written as m = a~'b for some a,b € S.

This is a departure from Definition 3.2.1, since only certain elements need group

inverses.
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Proposition 3.2.5. If M is a monoid of classical left quotients of S and M 1is

an inverse semigroup, then M is a semigroup of straight left I-quotients of S.

Proof. In this proof we will adopt the temporary convention that for a € M,
a’ denotes the inverse of a in the group of units of M, and a~! denotes the

inverse of a in the sense of inverse semigroup theory.

Let m € M. Since M is a monoid of classical left quotients of S, we know that

we can write m as m = a’b for some a,b € S.

Since M is an inverse semigroup, we can apply Lemma 2.2.2 to obtain that
a~! = a’. Therefore, we can write m as m = a~'b for some a,b e S. Hence M is

a semigroup of left I-quotients of S.

We will now prove that M is straight over S by proving that S intersects every
L-class of M. Let ¢ € M. Since M is a monoid of classical left quotients of .5,

we know that we can write ¢ as ¢ = a’b for some a,b e S. We see that
aqg = aa’b = 1b = b.

Therefore ¢ L0, and so b € L, n.S. Therefore S intersects every L-class of M.
We apply Lemma 3.1.3 to obtain that M is straight over S. O

The question of whether a semigroup has a monoid of classical left quotients

was answered by Murata [25]. We give the result below.

Definition 3.2.6. Let S be a semigroup. We say that S satisfies the left Ore-
Asano condition if for every b € S and cancellative a € S, there exists b’ € S and

cancellative a’ € S such that b'a = a'b.

Theorem 3.2.7 ([25]). A semigroup S has a monoid of classical left quotients
if and only if S satisfies the left Ore-Asano condition.

The proof of this theorem is similar to that of Theorem 3.2.3.

3.2.2 Semigroups of left Fountain-Gould quotients

A different definition of semigroups of quotients was proposed by Fountain and

Petrich in 1986 [9], although this definition was restricted to completely 0-simple
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semigroups of quotients. Gould generalised this concept to all semigroups, and
to the one-sided case later that same year [15]. In this definition elements are
inverted by finding the inverse in a subgroup. In the literature, these are called
semigroups of left quotients without an additional qualifier. However, in this
thesis I will refer to them as semigroups of left Fountain-Gould quotients, in

order to distinguish them from semigroups of I-quotients.

We use the convention that a” denotes the inverse of a in some subgroup of
Q. From knowledge of subgroups of semigroups, we know that if a* exists, it is

unique.

Definition 3.2.8. Let S be a subsemigroup of a semigroup (). Then @ is a
semigroup of left Fountain-Gould quotients of S, and S is a left Fountain-Gould
order in @ if

(i) every square-cancellable element lies in a subgroup of Q;

(i) every q € Q can be written as ¢ = a*b for some a,be S.

We give a connection between semigroups of Fountain-Gould quotients and semi-

groups of I-quotients.

Lemma 3.2.9. Let S be a left Fountain-Gould order in ) with ) an inverse
semigroup. Then S is a straight left I-order in Q.

Proof. Let a € S. If a* exists, then clearly a=! = a. We have that every ¢ € Q
can be written as ¢ = a”b for some a,b € S. Therefore every ¢ € @ can be

written as ¢ = a~'b for some a,be S.

We will now prove that S is straight in ) by proving that S intersects every
L-class of Q. Let ¢ € Q. We know that ¢ € () can be written as ¢ = a*b for

some a,b e S. We see that
g = a”b L% aa™b = a”ab LY ab.

We know that ab € S. Hence b e L, n S. Therefore S intersects every L-class of
. We apply Lemma 3.1.3 to obtain that S is straight in Q. O

We know that if an inverse semigroup is a semigroup of left Fountain-Gould quo-

tients, then it is a semigroup of left I-quotients. However, there are semigroups
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of left I-quotients which are not semigroups of left Fountain-Gould quotients.

We give an example taken from [10, Example 2.3].

Example 3.2.10. Let H be a left order in a group G, and let B = B(G, ) be

a Brandt semigroup over G with |I| > 2. Fixing i € I, we define
Si = {(Z,h,,j)“lEH,]GI} Y {O}

We claim that S; is a left I-order in B, but not a left Fountain-Gould order in
B. We start by acknowledging that S; is a subsemigroup of B. To prove that S;
is a left T-order in B, we first notice that 0 = 0710. For non-zero (j, g, k) € B,

since we can write g = a~'b for a,b € H, we have

(J.9.k) = (i,a,5) 7" (i,b, k).

To prove that S; is not a left Fountain-Gould order in B, we first consider which
elements are in subgroups. We know that 0 is in its own trivial subgroup. By
Green’s Theorem, we know that (m, a,n) € B lies in a subgroup of B if and only
if (m,a,n)H (m,a,n)?, which is true if and only if m = n. Therefore non-zero

elements of S; that are in subgroups of B are elements of the form (i, a, 7).

Assume S; is a left Fountain-Gould order in B. Consider non-zero (j,g,k) € B

such that 7 # ¢. By assumption, we can write this element as
(j7g7 k) = S#tu

for s,t € S;. Since (7, g, k) is non-zero, we know that s and ¢ are non-zero. Also,
by definition, s is in a subgroup of B. Therefore we can write the above equation

as
(j, g, k) = (i,a,0)%(i,b,n) = (i,a",i)(i,b,n) = (i,a"'b,n).

Since j # 1, this is a contradiction.

Clifford semigroups of left quotients

Given the connection between left Fountain-Gould orders and left I-orders
demonstrated in Lemma 3.2.9, we see that we can use established results for

left Fountain-Gould orders to obtain results for left I-orders. In this subsection,
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we will use established conditions for a semigroup to be a left Fountain-Gould
order in a Clifford semigroup to give conditions for a semigroup to be a left

[-order in a Clifford semigroup.

The following theorem of Gould gives necessary and sufficient conditions for a

semigroup to be a left Fountain-Gould order in a Clifford semigroup.

Theorem 3.2.11 ([16, Theorem 3.1]). A semigroup S is a left Fountain-Gould
order in a semilattice Y of groups G, o € Y, if and only if S is a semilattice

Y of right reversible, cancellative semigroups S,, a €Y.

We use this theorem give the analogous result for Clifford semigroups of left

[-quotients.

Corollary 3.2.12. A semigroup S is a left I-order in a semilattice Y of groups
Go, a € Y if and only if S is a semilattice Y of right reversible, cancellative

semigroups Sy, a € Y.

Proof. Let () be a semilattice Y of groups G,, a € Y. We know that every
element of @ lies in a subgroup. Consequently, for every a € @, a? exists and
a~! = a”. We can therefore see that a semigroup S is a left I-order in @ if and
only if S is a left Fountain-Gould order in ). By Theorem 3.2.11, we know that
this is true if and only if S is a semilattice Y of right reversible, cancellative

semigroups S,, @ € Y. n

3.3 Uniqueness and extension of homomor-

phisms

We have shown that a semigroup can have two non-isomorphic semigroups of
straight left I-quotients. It is then natural to ask: if S has two semigroups of
straight left I-quotients, () and P, under what conditions are () and P isomor-

phic?

To answer this we first consider a related question: when does a homomorphism
from a straight left I-order lift to a homomorphism from its semigroup of left

[-quotients? We will answer both of these questions in this section.

We begin by introducing the following notions.
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Definition 3.3.1. Let S be a subsemigroup of () and let ¢ : S — P be a
homomorphism of S into a semigroup P. If there is a homomorphism ¢ : Q — P
such that ¢|s = ¢, then we say that ¢ lifts to Q. If ¢ lifts to an isomorphism,

then we say that () and P are isomorphic over S.

To achieve our goal, we must first examine when two quotients a='b = ¢~ 1d are
equal, where a,b,c,d € S and S is a left I-order in Q with a R®b and ¢ R?d.
This relation has already been determined by Ghroda and Gould [10].

Lemma 3.3.2 ([10, Lemma 2.7]). Let S be a straight left I-order in Q. Let
a,b,c,de S withaRPb and cRPd. Then a™'b = ¢ 'd in Q if and only if there

exists x,y € S such that

zra =ye, tb=yd, Ry, ' R%a and y ' R%c.

However, we need to be able to express the conditions in Lemma 3.3.2 entirely
in terms of elements of S. We remind the reader that in an inverse semigroup
@, we have that  R? y if and only if 27! L@y~ L.

Lemma 3.3.3. Let () be an inverse semigroup and let x,a € Q). Then
'R a if and only if xR xa LC a.
Proof. Let 27! R9 a. Using the fact that R? is a left congruence, this implies
raR®zx ' RO x.

We know that 27! R? a implies that = £2 a~!. Therefore, using the fact that

L9 is a right congruence, we also have

ra Ll a 'a L9 a.

Conversely, let za € R, n L,. By [20, Prop. 2.3.7], we have that L, n R, contains

an idempotent, e.

Then, as L9 e, we have 27! R? e~ = e R% a. O

We can now rewrite Lemma 3.3.2 in terms of relations restricted to .S. The next

result is an adaptation of [10, Lemma 2.7].
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ra T

Lemma 3.3.4. Let S be a straight left I-order in Q. Let a,b,c,d € S witha R b
and cR9d. Then a='b = c~'d if and only if there exists x,y € S such that

za = ye, ©b = yd, t R za L a, and yRP yc LY c.
Note that since xa = yc, the conditions imply that xRy and a LC c.

This has internalised the condition a=!'b = ¢7'd to equalities on S and Green’s

relations in @) restricted to elements of S.

The next thing to address is multiplication on Q. Let a='b and ¢~ 'd be elements
of @ in standard form, meaning that a,b,c,d € S with a R? b and ¢ R? d. Since
b,c € S, we know that bc™! € (). Therefore, since Q is a semigroup of straight
left I-quotients of S, there exists u, v € S with uR? v, such that

bl =u o

in ). Therefore, multiplication on @) is given by

a tbetd = (ua)(vd),

!'= ¢~ in Q. In the same way as we have internalised to S the

1

where be~

condition that a='b = ¢~'d, we need to be able to express bc™! = v~ v solely in

terms of elements of S. We start with a useful lemma of Ghroda and Gould.

Lemma 3.3.5 ([10, Lemma 2.6]). Let b, c,u,v be elements of an inverse semi-
group Q such that uRPv. If be™' = u~'v then ub = ve.

Proof. We have that

beteb™t = (b H(be ™) = (wh)(u )T = w o e = u T
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as uR9v. Therefore, using the fact that idempotents commute,
bete = bbb e = beteb b = utub.

We can left multiply this by u to obtain

ubc e = ub. (3.1)

We can also see that
ve = vv we = uutue = ube e (3.2)
We compare (3.1) and (3.2) to obtain our result. O

Lemma 3.3.6. Let (Q be an inverse semigroup and let b,c,u,v € Q) such that
uR%v. Then bc™' = u v in Q if and only if

— Q _ 7@
ub = ve, vRve and LY A LY = LY,

Proof. Let bc™' = v~'v. By Lemma 3.3.5, we have ub = ve. Since uR9 v, we

1 1

know that uu~! = vo~!. Therefore, using u='v = be™! and ub = ve, we have

1 1

V=00 U =UuUu 1

v =ubc™! = vee™ L.

Therefore, by Lemma 2.2.3, we have v R? ve. Finally, again using be™! = v~ v

and ub = vc, we have
b= 'be e = b tue = b tu T ub = (ub) T (ub).

Therefore, by Lemma 2.2.8, we have that L? ALY = Lfb.

Conversely, let
ub = ve, vRYve and L,? ALY = Lgb.

By Lemma 2.2.3, we know that v R% ve implies that v = vee™!. Using this along

with ve = ub, we have

w v =utvee ™t = uube ™ = wtubboe ™t = bb Tt u T fube (3.3)
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using the fact that idempotents commute in the last equality. By Lemma 2.2.8,
we know that L? A L9 = L% implies that b~'bc¢'c = (ub)~"(ub). Therefore

botutube ™t = b(ub) M (ub)e Tt = bbb et = be (3.4)
Putting Equations (3.3) and (3.4) together, we obtain u™tv = be™!. O

We now give necessary and sufficient conditions for a homomorphism from a
straight left I-order to an inverse semigroup P to lift to a homomorphism from

its semigroup of straight left I-quotients to P.

Theorem 3.3.7. Let S be a straight left I-order in Q) and let T be a subsemigroup
of an inverse semigroup P. Suppose that ¢ : S — T is a homomorphism. Then
¢ lifts to a (unique) homomorphism ¢ : Q — P if and only if for all a,b,c € S:

(i) aR?b implies that ap RY bp; and
(ii) LY A Ly = LQ implies that LY, A L¥, = LE,.
If (i) and (ii) hold and S¢ is a left I-order in P, then ¢ : Q — P is onto.

Proof. First, let ¢ lift to a homomorphism ¢. Since homomorphisms preserve
Green’s relations, (i) holds. For (i), let L9 A L? = LY. Since @ is inverse,
Lemma 2.2.8 gives us that

atab b =cle

in (). Since homomorphisms preserve inverses, we have that

(ag) ™" (ad)(bg) ™ (bo) = (cd) ™" (co)

in P. Lemma 2.2.8 then gives us L, A Lj, = L%,. Therefore, we see that (ii)
also holds.
Conversely, suppose (i) and (ii) hold. Note that by applying (ii) with a = b, we
have that for all a,c€ S,

(*) aL?c implies that ap LT co.

We define ¢ : Q — P by
(a™'b)¢ = (ad)~"bg
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where a,be S and a R?b.

To show that ¢ is well-defined, suppose that a~'b = ¢~ 'd where a,b,c,d € S,
aR%b and ¢ R d. Then by Lemma 3.3.4, there exists z,y € S such that

za = yc, xb = yd, 2 Reza L?a and yRCyc LY c.

Therefore, using the fact that ¢ is a homomorphism along with (i) and (*), we
have that

zpad = ypcd, xob = yodd, xo R” xdad L™ ag and yo R” yce L co.
Therefore, again by Lemma 3.3.4, we have (a¢) 'b¢ = (c¢) 'dp. Therefore ¢ is
well-defined.

To see that ¢ lifts to ¢, let h € S. We can write h = k1, where k,1 € S with
kR 1. We see that
kh =kk =11 =1,

which also implies that
h =k =k"kh.

By Lemma 2.2.4, this implies that h L% kh. Since ¢ is a homomorphism applying
(x) gives us that
kohd = 1o and ho LY koho.

By Lemma 2.2.4, it follows that
hé = (ko) 'koho = (k¢)"'1¢ = ho.

To show that ¢ is a morphism, let a='b, ¢ 'd € Q with a R b and ¢ R9d. We
know that bc™! = w~'v for some u,v € S with « R?v. By Lemma 3.3.6, this
implies that

vRYve = ub and LbQ ALY = Lgb.

Using (i) and (ii) this gives us

up R v R ved = ugbp and Lj, n Ll = Li,,.
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Since P is an inverse semigroup, we can apply Lemma 3.3.6 to obtain
bo(co) ™ = (ug)vo.
Multiplying in (), we have
atbetd = a”'utod = (ua) " tud,
with ua R? ub = ve R% vd. Therefore in P

((a="'0)(c'd))o

so ¢ is a morphism as required.
We have that ¢ is unique, since homomorphisms must preserve inverses.

If (i) and (ii) hold and S¢ is a left I-order in P, then for any p € P we have
p = (ap)~'bo for some a,b € S. Since ¢ is a homomorphism, and homomor-

phisms between inverse semigroups preserve inverses, we have that

(a™'0)¢ = (a)~"bd = (ag)~'be = p,

and hence ¢ is onto. Note that we do not need S¢ to be straight in P in order
to do this. O

We will now use Theorem 3.3.7 to prove that if S has two semigroups of straight
left I-quotients, ) and P, then () is isomorphic to P if and only if the restrictions
of their R and L-relations to S are equal. To do this we use the next result on

the preorder associated with £ in semigroups of straight left I-quotients.

Lemma 3.3.8. Let S be a straight left I-order in Q) and let a,be Q). Then
a<cob if and only if a £LPdb

for some d € S.
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Proof. Let a <,q b. By definition there exists ¢ € () such that a = gb. We
can write ¢ as ¢7'd with ¢,d € S and ¢ R?d. We can see that a = ¢ 'db and
ca = db, and so a L2 db. Conversely, if a L9 db, then since db <,q b, we obtain

a<£Q b. ]

Theorem 3.3.9. Let S be a straight left I-order in () and let ¢ : S — P be
an embedding of S into an inverse semigroup P such that S¢ is a straight left
I-order in P. Then Q) is isomorphic to P over S if and only if for any a,be S':

(i) aRPb if and only if ap R bo; and
(ii) a L2 b if and only if ap LE bo.

Proof. 1f @) is isomorphic to P over S, then Green’s relations are preserved.

Conversely suppose (i) and (ii) hold. Firstly we will use (ii) to show that for all
a,b,ce S:

() a <geo bif and only if a¢ <,r b¢; and
(##) L9 A L? = L2 if and only if Lby, ~ L, = LE,.

We see that () is a direct consequence of Lemma 3.3.8.

For (#*), let a,b, c € S such that

L9 A LY = L.

a

Since P is an inverse semigroup, P/L” is a meet semilattice by Lemma 2.2.8, so
P P P
Lad’ VAN Lbd’ — Lp

for some p € P. Since S¢ is a straight left I-order in P, Lemma 3.1.3 implies
that S¢ intersects every L-class of P. Therefore there exists some d € S such
that p £ d¢. Therefore

LY, ~ Ly, =L,

We know that ¢ <;¢ a,b. We use (x) to obtain c¢¢ <,;r a@,bp. Therefore, by

the definition of meet, this gives us c¢ < r do.
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Similarly, we apply () to d¢ <.r a¢,bd to obtain d <, a,b. Therefore, by the
definition of meet, d <o c¢. Applying (*) once again, we have that d¢ <,r co.

Putting both together gives us c¢ L dp. Therefore
P P P

The converse is similar.

From Theorem 3.3.7, ¢ lifts to a homomorphism ¢ : Q — P, where, for a,b e S,

(a™'b)¢ = (ap)'bg. Since every element of Q) can be written as a~'b, with
a,be S, this wholly defines ¢.

Since ¢ is an embedding, ¢ : S — S¢ is an isomorphism. Therefore,
¢ 1:S¢p— S is also an isomorphism. By Theorem 3.3.7, ¢! lifts to a
homomorphism ¢=1 : P — Q, where for a,b € S, ((a¢) 'bp)¢p~! = a~'b. Since
Sé is a left I-order in P, this wholly defines ¢—1.

Clearly ¢ and ¢—! are mutually inverse, and so are isomorphisms. O]

There seems to be no simplification of Theorem 3.3.7 in general, along the lines
of Theorem 3.3.9, the reason being that in order to obtain the preservation of
the meet function, one must have two-sided preservation of the <, function,

which one cannot conclude from a homomorphism.



Chapter 4
The general case

In this chapter, we will determine the conditions under which a semigroup S is a
straight left I-order. We adopt two approaches. The first makes use of the meet
structure of the L-classes of inverse semigroups, and we present our conditions
in terms of two binary relations and an associated partial order. The second is
‘purely algebraic’ in that we give our conditions in terms of two binary relations

and a ternary relation on S.

4.1 Preliminaries

Assume S has a semigroup of straight left I-quotients (). We aim to identify
properties of S inherited from () with the eventual goal of reconstructing such

a () from these properties.

By definition, every element in () can be written as a~'b, where a,b € S and
aR%b. Therefore, we can reconstruct () as ordered pairs of elements of S under
an equivalence relation. That is, we have a bijective correspondence between @)
and the set

{(a,b)|a,be S, aR?b}/ ~,

where (a,b) ~ (¢, d) if and only if a='b = ¢'d in Q. We have already determined
this relation in terms of R? and £¥ in Lemma 3.3.4. The conditions given in

Lemma 3.3.4 will determine our ~.

The next thing to address is multiplication on ). We note that for every b, c € .S,

42
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bc~! € @ and therefore, since () is a semigroup of straight left I-quotients of .S,
there exists u,v € S with uR9v, such that bc™' = w~'v in Q. Therefore,
multiplication on @ is given by a 'bc™'d = (ua)~*(vd), where bc™! = u~'v in
Q. In the same way that we internalised to S the condition that a='b = c¢~'d
in Lemma 3.3.4, we need to find a method of expressing bc™! = u~'v solely
in terms of elements of S. In Section 4.2, we will use the meets of L-classes
applying Lemma 3.3.6. In Section 4.3, we will use a more algebraic approach,

employing a ternary relation to express this relation.

4.2 The general case using an ordering on in-

verse semigroups

The aim of this section is to prove Theorem 4.2.1.

Before stating the result, we will first introduce the notation used in the Theorem
4.2.1 and throughout this section. We use £’ to denote the equivalence relation
associated with the preorder <;. We use L], to denote the £'-class of a. We use
A to denote the meet on £'-classes associated with the preorder <;. For example
L, A Ly = L denotes that the meet of the £'-class of a and the £'-class of b is

the L'-class of ¢. The relation R* will always refer to S.

We use Greek letters in this theorem in order to lessen confusion when applying

the listed properties.

Theorem 4.2.1. Let S be a semigroup and let R' and <; be binary rela-
tions on S. Then S has a semigroup of straight left I-quotients, @, such that
RN (SxS)=TR and <o n(S x S) =< if and only if R' is a left com-
patible equivalence relation; <; is a preorder such that the L'-classes form a

meet semilattice under the associated partial order; and S satisfies Conditions
(M1) - (M6).

(M1) For all o, 3 € S, there exists vy,6 € S such that

YR'OR 6 =~ya and L, A Ly =1L,
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(M2) Right multiplication distributes over meet, that is, for all a,, B,7y,d € S,
L, ~ Ly = L. implies that Lys A L5 = L’ ;.

(M3) For all a, 5 € S, aff < 5.
(M4) R' < R*.

(M5) Let o, 3,7,0 € S such that yR' ya L' o and 6 R' 0 L' 5. Then v L' 0 if
and only if a R’ 5.

(M6) For all o, B,y € S, a L' L vya =0 implies that o = f3.

Before we prove this theorem, let us first discuss (M1) - (M6) and why they are

natural properties for this context:

(M1) This is the equivalent to the Ore condition in Definition 3.2.2. It implies
that for o, 5 € S, there exists v, € S such that a3~ = v716 with yR% 4.

We will refer to this condition as the Ore condition.

(M2) This property is true in any inverse semigroup and is a result of the fact

that idempotents commute in inverse semigroups.

(M3) This property states that under the preorder <, final factors are larger
than the product from which they are taken.

(M4) By definition, the restriction to S of R in any oversemigroup of S, should

be contained in R*.

(M5) This property demonstrates the fact that in an inverse semigroup, a R? 3
if and only if a=! L% 571,

(M6) This is a cancellation property that occurs in an inverse semigroup.

Note that Properties (M2) - (M6) are true in all inverse semigroups, whilst
Property (M1) is specific to straight left I-orders.

We start the proof of Theorem 4.2.1 by first proving the forward implication.
We assume that S has a semigroup of straight left I-quotients, (), and we put
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REN(SxS)=R, L2~ (SxS)=Land <qo Nn(SxS)=<;. From knowl-

edge of Green’s relations, we know that R’ is a left congruence on S, and that

<, is a preorder on S with the associated equivalence relation, £’. Using Lemma

2.2.8,

we know that Q/L% forms a meet semilattice under <,¢. Since S inter-

sects every L£%-class, this means that S/L' forms a meet semilattice under <;.
We now prove that Properties (M1) - (M6) hold.

(M1)

(M2)

(MG6)

Let a, 8 € S. Then o, € @ and so, by closure under taking of inverses
and multiplication, a3~! € Q. Since Q is a semigroup of straight left
I-quotients of S, there exists v,d € S such that af~! = y~1§ with YR’ 4.

Lemma 3.3.6 then gives the result.

Since () is an inverse semigroup, we can use Lemma 2.2.8 to give us that

L, n L= L is equivalent to ataB7tB = y~1v. Therefore

(a8) " (a0)(80)"1(86) = 6T~ 08015715
= tatap1B0
=0"1y1N6
= (70)7(79).

And so, using Lemma 2.2.8 again, L,; A Lj; = LL;.
This is true in any semigroup, since Q'a3 < Q'f.

Since R’ = R9 n (S x S) and Q is an oversemigroup of S, then, by
definition, a R’ § implies that a R* 5.

By Lemma 3.3.3, in an inverse semigroup we have that vR'va L' « im-
plies that v~ ' R? o, and similarly 6 R’ 65 £’ 8 implies that 6! R? 3. Then
aR' B implies that 7' RLaR? BR? L. We know that v P R 5! im-
plies that v £ d, and so v £'§. The converse is similar.

Since v and «y are elements in an inverse semigroup, « £ vy« if and only if
a =y 'ya by Lemma 2.2.4. Similarly, 5 £ 73 if and only if 8 = vy~ 143.
Therefore, ya = v together with o L' vy and 5 L' v, implies that

a=7"ya=y"98=5
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This proves the forward implication of Theorem 4.2.1.

We now prove the converse. This will consist of proving that the following
construction, P, yields a semigroup of straight left I-quotients of S, with
R =RFn (S x8)and <;=<,r n (S xS). For the convenience of the reader,

we now set up the ‘roadmap’ for the proof.

Roadmap 4.2.2. Let S be a semigroup with R’, <; and L’ satisfying the
conditions of Theorem 4.2.1. Note that by considering (M2) with o = v, we
see that <; is right compatible. Therefore, since £’ is an equivalence relation

associated with a right compatible preorder, £’ is a right congruence.
We begin by defining
Y ={(a,b) e S xS|aR b}.

We then define an equivalence relation ~ on X, by
(a,b) ~ (¢,d)
if and only if there exists z,y € S such that
ra =yc, b =yd, xR 'za L a, yR yc L c.

Note that R’y and a L' ¢ as a consequence.

We show that this is an equivalence relation in Lemma 4.2.4. We use |[a, b] to

denote the equivalence class of element (a,b) under ~.

We then define P = ¥ /~ and multiplication on P with the following rule:

[a, b][c, d] = [ua,vd], where uR'v R ve=ub, Ly n L. =1L.,.

Note that such a u and v exist in S by (M1).

We show that P is a semigroup in Lemma 4.2.5 and Lemma 4.2.6 and an inverse

semigroup in Lemma 4.2.8 and Lemma 4.2.9.

We then show that S embeds into P, by defining ¢ : S — P by a¢ = [z, zal,
where x is an element in S such that R’ za £’ a. The existence of such an z is
a consequence of (M1) proved in Lemma 4.2.3. We will prove that this function

is an embedding in Lemma 4.2.10.
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We show that the restriction of R” to (S x S) is R’ in Lemma 4.2.11, and that
the restriction of < r to (S x S) is <; in Lemma 4.2.12. Lastly, we show that

P is a semigroup of straight left I-quotients of S¢ in Lemma 4.2.13.

Now that we have set up the ‘roadmap’, the rest of the section will be the ‘road
trip’. The properties in Theorem 4.2.1 will be used extensively, so the reader
might prefer to have the list of properties in front of them whilst reading. For all
of the following results in this section, S, R’, <; and L’ are as described in the

conditions of Theorem 4.2.1, and X, ~, P and ¢ are as described in Roadmap
4.2.2.

The following lemma will provide a few shortcuts in the proof.

Lemma 4.2.3.

(i) For all a € S, there exists an x € S such that x R' xa L a.
(ii) For all a,b,x € S, xR xa L' a and aR'b implies that xR’ xb L.
(111) For all z,a € S, we have L', A L), = L.

(iv) For all a,b,xz,y € S, aR'b and xa L ya implies that xb L yb.
Proof.

(i) By applying (M1) with o = = a, there exists z € S such that xR za
and L), =L A L = L.

(ii) Let a,b,z € S such that a R'b and x R’ za L' a. Using the fact that R’ is a
left congruence, bR’ a implies that bR’ xa R’ z. By (i), there exists y € S
such that y R’ yb L' b. We can then use (M5), to see that a R’ b implies that
x L y. Therefore, using the fact that £ is a right congruence, xb L yb L' b.

(iii) Let z,a € S. By (M3), we know that za <; a, Therefore, by the definition

of meet, we have that L), A Ll = L' .

(iv) Applying (M1) to za and ya, there exists w, z € S such that

wxa*

wR' 2R zya = wra and L, A Ly, = L,
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Since xa L' ya, this gives us
wR wra L za and 2 R zya L ya.

Using the fact that R’ is a left congruence, we have that aR’b implies
that both za R’ b and ya R’ yb. Therefore we can apply (ii) to both of the

above equations to get
wR wrb L xb and z R zyb L yb.

Also we can apply (M4) to wxa = zya to get wxb = zyb. Therefore
xb L wxb = zyb L yb.

Lemma 4.2.4. The relation ~ is an equivalence relation.

Proof.

Reflexivity: Let (a,b) € 3. By definition, (a,b) ~ (a,b) if there exists z,y € S
such that xa = ya, b = yb, x R’ xa L' a, y R’ ya L' a. By Lemma 4.2.3 (i), there
is an x € S such that x R xa L a. Then take y = x to get reflexivity.

Symmetry: Let (a,b) ~ (¢,d). By definition there must exist z,y € S such
that
xa =yc, 2b=vyd, v R za Ll a, yR yc L c,

By switching the roles of = and y, we can immediately see that (¢, d) ~ (a,b).

Transitivity: Let (a,b) ~ (¢,d). Therefore there exists z,y € S such that

ra =yc, b =yd, xR za L a, yR yc L c. (4.1)
Suppose also that (¢, d) ~ (e, f). Then there exists w, z € S such that

we = ze, wd = z2f, wR wcL ¢, 2R ze L e. (4.2)
We need (a,b) ~ (e, f). That is we need X,Y € S such that

Xa=Ye, Xb=Yf, XR' XaLl'a,YR YeLl e. (4.3)
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We apply Property (M1) to y and w, to get that there exists h, k € S such that

hR' kR kw = hy, and L A L, = Lj,. (4.4)
We then take X = hz, Y = kz giving us that

Xa = hra = hyc = kwe = kze = Ye
Xb = hxb = hyd = kwd = kzf =Y.
using (4.1), (4.4) and (4.2). Also since R’ is a left congruence,

xR za = X = hxR hza = Xa
2R ze = Y =kzR kze = Ye.

Using Property (M2) we have that (4.4) implies that L; A L;,. = L;, .. Hence,

hyc*
using za = yc from (4.1) and we L' ¢ from (4.2), we have L), A Ll = L} ... We

hza*

can then use (4.1) to give us a L' za = yc L' ¢, and so L, A L), = L} .. Therefore
Xa L' a.

The last relation needed can be obtained similarly or achieved quicker by noticing

el cL al Xa=Ye.

Lemma 4.2.5. Multiplication in P is well-defined.

Proof. Let [a,b],[c,d] € P. From Roadmap 4.2.2, we have that
[a,b][c, d] = [ua,vd],

where u,v € S are the elements that exist by (M1) such that

uR' vR ve =ub, Ly, n L, =L,

We need to show that the product, [a, b][c, d], depends neither upon the choice
of representative for the equivalence class, nor the choice of u and v appearing

in the rule for multiplication. We start with the choice of u and v.
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Choice of v and v: Let

uR' vR ve=ub, Ly n L,=1.,, (4.5)
so that [a,b][c, d] = [ua,vd]. Also let
sR'tR tc=sb, Ly n L., =L, (4.6)

so that [a,b][c,d] = [sa,td]. We show that (ua,vd) ~ (sa,td), which is true

exactly if there exists w, z € S such that
wua = zsa, wvd = ztd, wR wua L ua, zR' zsa L sa. (4.7)
Applying Property (M1) to ua and sa, let w and z be elements such that

wR' 2R zsa = wua and L, A L., = L.

wua*®

(4.8)
Using the fact that a R’ b, we see that
(M4

)
wua = zsa = wub = zsb.

Then, as ub = vc and tc = sb from (4.5) and (4.6), this gives us wvc = ztc. We
then use ¢ R'd, to get

wvc = ztc S wvd = ztd.
From (4.5) and (4.6), we also see that
L,=L AL, =L, = ubLsb,

which, together with a R'b, implies that ua £’ sa by Lemma 4.2.3 (iv). Using
the definition of A, along with (4.7), we then have

Lo = Lo = L A Ly = Lipua = L.

wua zsa*

This gives us the required properties for (ua,vd) ~ (sa,td).



CHAPTER 4. THE GENERAL CASE 51

First Variable: Let (a,b) ~ (@,b). Therefore there exists z,y € S such that
za = ya, xb=yb, s R za L a, yR ya L a. (4.9)

In order to show well-definedness in the first variable, we need that for all [¢, d] €
P, [a,b][c,d] = [a,b][c,d]. With that goal in mind, we apply (M1) to b and ¢,
to get that there exists u,v € S such that

uR' vR ve=wuband Ly A L, = L,,. (4.10)

Therefore [a, b[c, d] = [ua, vd].

Our aim is to first find elements @ and & which witness [a, b][c, d] = [aa, vd]. We

will then prove that (ua,vd) ~ (ta,vd). Of course, we could use (M1) applied

to b and ¢, but for our purposes we need to be more careful.

Applying Property (M1) to v and x, we know that there exists s, ¢ € S such that
sRItR tu= sz and L, AL, =L.,. (4.11)

We take u = sy and v = tv.

We want to prove that [a,b][c,d] = [ua,#d]. To prove this, it is sufficient that
@R o R ¢ = ub, and that Ly A L, = L;. Rewriting this, we need to prove that

sy R tv R tve = syb (4.12)

and

!/ / /
We start by proving each relation in Equation (4.12) in turn:

We know that y R’ x from (4.9) and u R’ v from (4.10). Using the fact that R’ is
a left congruence, y R’ v and u R’ v imply that sy R’ sz and tu R’ tv respectively.
Then, as sz = tu from (4.11), this gives us that sy R’ tv. Using left compatibility
of R’ again, v R'vc from (4.10) implies that tv R’ tve. Also, using ve = ub,

tu = sx, xb = yl;, we get

tve = tub = szb = syb. (4.14)
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We now prove Equation (4.13). We can use (M2) to give us

! / / / / !
Lx A Lu = Lsx - be A Lub = Lsxb'

Using Lemma 4.2.3 (ii), we have that a R’ b imples that x R’ xb L' b. Using zb L’ b
and Ly A L, = L,

s We have

LA(LiAL)=1L
b b c

sxh*

Therefore
LyAnL =(Ly~nL) AL =L

sxbh*

(4.15)
Using Lemma 4.2.3 (ii) again, we have that a R’ band y R’ ya L a by (4.9) implies
that y R ybL'b. Therefore, using (4.9), we have that b £’ xb = ybL'b. Using
this together with b = yb and (4.15), we have

L'B AL =1

syb’
which is (4.13). Therefore [a,b][c, d] = [sya, tvd).

Using za = ya from (4.9), this also means that [@,b][c,d] = [sza,tvd].
Therefore, in order to have well-definedness in the first variable, one needs

(ua,vd) ~ (sza,tvd). This is true exactly if there exists w, z € S such that
wua = zsra, wod = ztvd, wR wua L ua, 2R zsxa L sxa.

Applying Property (M1) to ua and sza, take w and z to be elements in S such
that

wR' 2R zsxa = wua and L, A L., =L

sxra wua*

(4.16)

Since a R'b, we know that wua = zsza implies wub = zsxb by (M4). We then
use sxb = tvc from (4.14) and ub = ve from (4.10) to obtain wve = ztve. And

therefore, using (M4) again, ¢ R’ d implies that wvd = ztvd.

Using Property (M2), L’ A L) = L’ implies that L/ A L], = L’

sxa*

We then
use za L' a from (4.9) and Lemma 4.2.3 (iii), to get

L. AL, =L, =— L AL,=L1, = L, =1L

sra sra sxa*
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We then compare this with L), A L., = L/ . from (4.16) to obtain

sra wua
/ _ /
Lua - qua .

(ua,vd) ~ (sza,tvd) = (aa, vd).

Lastly, sxa L ua L wua = zsxa. Altogether, this proves that

Second Variable: Let (¢,d) ~ (¢,d). Therefore there exists z,y € S such that
ze=yé, xd =yd, R zcL ¢, yR ye L E. (4.17)

In order to show well-definedness in the second variable, we need that for all

[a,b] € P, [a,b][c,d] = [a,b][¢,d]. With that goal in mind, given [a,b] € P, we
apply (M1) to b and ¢, to get that there exists u, v € S such that

uR' vR ve=wub and L, A L. = L,,. (4.18)

Therefore [a, b][c, d] = [ua, vd].

Our aim is to find elements @ and # which witness [a, b][¢, d] = [@a, 9d]. We will

then prove that (ua,vd) ~ (wa,vd).
Applying Property (M1) to v and x, we know that there exists p,q € S such
that

pR'qR qv=pv and L, A L, = L. (4.19)
We take u = pu and v = qy.

We want to prove that [a,b][¢, d] = [ia, 5d]. To prove this, it is sufficient that
@R OR' v¢ =ab and Ly A L. = L. (4.20)

Rewriting this, we need to prove that
puR qy R quyé = pub (4.21)

and

LoALL=1L

! b (4.22)

We start be proving each relation in Equation (4.21) in turn:

We know that wR’v from (4.18) and that x R’y from (4.17). Using the fact
that R’ is a left congruence, u R’ v and z R’y imply that puR’ pv and qz R’ qy
respectively. Then, since pv = gz from (4.19), this gives us that pu R’ qy. Using
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left compatibility of R’ again, u R’ ub from (4.18) implies that pu R’ pub. Also,
using ub = ve from (4.18), pv = gz from (4.19), and zc = y¢ from (4.17), we get

pub = pvc = qrc = qyc. (4.23)
We now prove Equation (4.22). Using (M2) on (4.19), we have

L,AL,=L,, = L,.AL,=1L

puc*

We apply Ly A L, = L) from (4.18) and xc L' ¢ from (4.17) to get

(LA L)AL =1L

pvc*

Therefore
LyAnL, =Lyn(LLAL)=L

pvc*

We apply ¢ L' zc = yé L' ¢ from (4.17) and ub = ve from (4.18) to get

/ / /

This concludes the verification of Equations (4.21) and (4.22). Therefore
[a,b][¢,d] = [pua, qyd] = [pua, gzd] using (4.17).

Therefore, in order to have well-definedness in the second variable, one needs

(ua,vd) ~ (pua,qxd). This is true exactly if there exists w, z € S such that
wua = zpua, wovd = zqxd, wR wua L ua, 2R’ zpua L pua.

Applying Property (M1) to ua and pua, take w and z to be elements in S such
that wR' 2R’ zpua = wua and L, A L, = L, We use pub = gzc from

(4.23) and ub = ve from (4.18), along with a R’ b and ¢ R’ d to obtain

(M4) (M4)
wua = zpua = wub = zpub = wvc = zqrc = wvd = zqxd.

Using Property (M2), L, A L, = L) implies that L, A L. = L, .. We then
use zc L' ¢ from (4.17) and Lemma 4.2.3 (iii), to get

L.AL . =L = L AL =L = L _ =L 6 = L,=L

puvc pve pve pub*



CHAPTER 4. THE GENERAL CASE 55

We apply Lemma 4.2.3 (iv) to ub L' pub and a R’ b to obtain ua L' pua. Therefore

Liywa = Ly A Ly = Ly, Lastly pua £ ua £ wua = zpua, which gives us all

the necessary conditions for (ua,vd) ~ (pua, qrd) = (ta,vd).

Note that by using well-definedness in the first variable and well-definedness in
the second variable together, we can see that for (a,b) ~ (@, b) and (¢, d) ~ (¢,d),

we get

(a,b)(c,d) ~ (@,b)(c,d) ~ (a.b) (¢, d).
Therefore, by transitivity, this multiplication is well-defined. n

Lemma 4.2.6. Multiplication in P is associative.

Proof. Let [a,b],[c,d], e, f] € P.

Applying Property (M1) to b and ¢, we choose u,v € S satisfying
uR vR ve=wub and Ly A L, = L},. (4.24)
This gives us that [a, b][c, d] = [ua,vd]. Similarly, we choose p, q € S satisfying
pR qR qe =pd and Ly A L, = Ly, (4.25)

Then [c,d][e, f] = [pc, qf].

Applying Property (M1) to v and p, we know that there exists 7, j € S such that
iR jR jp=iv and L, A L, = L, (4.26)
We want to prove that

([a, 0]le, d])e, 1 = [ua, vd][e, f] = [i(ua), (Gg) f], (4.27)

and that
la, 0]([c, d][e, f]) = [a,b][pc, af] = [(iu)a, j(qf)]. (4.28)

This would prove associativity.

In order to prove (4.27), we need

iR jq R jge = ivd (4.29)
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and
L;d A L’6 = L;Ud. (4.30)

We start by proving each relation in Equation (4.29) in turn:

Since R’ is a left congruence, ¢ R’ p implies that jqR' jp, which in turn is R’-
related to i. Using again the left compatibility of R, we see that ¢ R’ ge implies
that jqR' jge. Also, using ge = pd and jp = iv, we see that jge = jpd = ivd.

We now prove Equation (4.30). We apply (M2) to L, A L;, = Lj, to give us that

Ly~ Ly = L, And so, using Ly A Ly = L, and Lemma 4.2.3 (iii), we have

L;d A L;)d = L;'vd e L;;d A (Liz A L/e) = L;vd
= (Lyy A Lyg) A Ly, = Ly,

/ I T/
- Lvd A Le_Livd'

We now have proved both (4.29) and (4.30), which together gives us (4.27).

In order to prove (4.28), we need
iuR' j R jpc = iub (4.31)

and
Ly A L]’Dc =

iub*

(4.32)

We start by proving each relation in Equation (4.31) in turn:

Since R’ is a left congruence, uR'v implies that iuR’iv, which in turn
is R’-related to j. Using again the left compatibility of R', we see that
c¢R'd implies that jpcR’ jpd and pR’'pd implies that jpR’'jpd. There-
fore j R jpR' jpd R jpec. Also, using ub = wvc and v = jp, we see that

1ub = twe = jpe.

We now prove Equation (4.32). We apply (M2) to L, A L, = Lj, to give us that

L. A L, = Lj,.. And so, using Ly A L, = L;,. and Lemma 4.2.3 (iii), we have

we*

! r_ T/
ch A ch - Livc

= (L, A L) AL, = L;

ub
= L, A (L. A L;)c) =

iub
— [ L =1
A pc iub*
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We have now proved both (4.31) and (4.32), which together gives us (4.28),
finishing the proof. [

We have now proved that P is a semigroup. The following lemma provides a

couple of useful shortcuts to help in the later parts of this proof.

Lemma 4.2.7. These statements are true in P:

(1) [a,a] = [b,b] if and only if a L' b;

(i1) [a,b][b,a] = [a,al.

Proof.

(i)

(i)

We know that [a,a] = [b, b] if and only if there exists w, z € S such that
wa = zb, wR wa L a, 2R 2b L. (4.33)

Let [a,a] = [b,b]. Therefore there exists w, z € S satisfying (4.33). Hence
al' wa = zbL'b.

Conversely let a £'b. Applying (M1) to a and b, there exists w, z € S such
that wR’' 2R’ 2b = wa and L, A L; = L . Therefore, since a L' b, we have
L,.=1L n~nL =L, and consequently zb = wa L a L' b. Comparing with
(4.33), we see that [a,a] = [b, b].

By Lemma 4.2.3 (i), there exists y € S such that y R yb L b. By com-
paring with the definition of multiplication in Roadmap 4.2.2, we see
that [a,b][b,a] = [ya,ya]. Since aR'b, Lemma 4.2.3 (ii) gives us that
yR' ya L a. So by (i), |a,b][b,a] = [a,a].

Lemma 4.2.8. The semigroup P is reqular.

Proof. Let [a,b] € P. By Lemma 4.2.7 (ii), [a,b][b, a][a,b] = [a,a][a,b]. By
Lemma 4.2.3 (i), there exists y € S such that y R’ ya £ a. Therefore, by our

definition of multiplication, [a, a][a,b] = [ya, yb].
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We want to prove that (a,b) ~ (ya,yb). That is there exists w, z € S such that
wa = zya, wb = zyb, wR wa L a, 2R’ zya L ya.

Applying Property (M1) to a and ya, there exists w, z € S such that
wR' 2R zya = wa and L, A L), = L,,.

We use (M4) to give us that wa = zya implies wb = zyb. We can also use a L' ya

to give us that L), = L, A L,, = L,. Therefore a L ya L wa = zya.
So we have that [a, b][b, a][a, b] = [a, b]. Therefore P is regular. O

It is good to note that in the exactly same way [b, a|[a, b][b, a] = [b, a]. Therefore
[b, a] € V([a, b]).

Lemma 4.2.9. The semigroup P is an inverse semigroup, with [a,b]™' = [b, a].

Proof. We start by identifying the idempotents of P.

Let [a,b] € P be an idempotent, i.e. let [a,b][a,b] = [a,b]. We know that
[a, b][a,b] = [ua,vb], where u and v are the elements that exists by (M1) such
that

uR'vR va=ub and L), A L, = L}, .

Consequently we know that (a,b) ~ (ua,vb). Therefore there exists w,z € S
such that

wa = zua, wb = zvb, wR wa L a, z R zua L ua.

By Lemma 4.2.3 (ii) we have that a R’ b implies that w R’ wbL'b. Also, by

applying (M4) to both wb = zvb and wa = zua and using va = ub, we have

wa (M) zva = zub (M) wb.

Therefore a L wa = wbL'b. We then apply Property (M6) to give us a = b.

Therefore the idempotents of P are of the form [a, a], where a € S.

We now prove that idempotents commute. Let [a,a],[b,b] be idempotents

in P. Applying Property (M1) to a and b, we choose u and v such that
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[a, a][b, b] = [ua, vb], where
uR'vR' vb=wa and L) A L, =1L.,.

By inspection we can see that v and wu satisfy the necessary properties for

[b,b][a, a] = [vb,ua]. And so we see that, since ua = vb, we have
[a, al[b, ] = [wa, vb] = [vb, ua] = [b, ][, al.

Therefore the idempotents of P commute. Since P is also regular, this means

that P is an inverse semigroup.

Moreover since [b,a] € V([a,b]), we easily see that [a,b]”! = [b,a] for all
[a,b] € P. O

We now prove that S embeds into P. We do this by defining a function ¢ : S —
P, by a¢p = [z, za], where z is the element such that R’ za L a, that exists by
Lemma 4.2.3 (i). Note that [z, za] € P.

Lemma 4.2.10. The function ¢ is an embedding.

Proof.

Well-defined: Let tR'za L' a and let y R ya L a. By our definition, this
means that a¢p = [z, za] and that a¢ = [y, ya]. Therefore, i order to prove that
¢ is well-defined, we need to prove that (z,za) ~ (y,ya). This is true exactly if

there exists w, z € S such that
wr = zy, wra = zya, wR wx L'z, 2R 2y L'y.

Applying Property (M1) to x and y, we take w and z to be elements in S such
that wR' 2 R'wz = zy and L, A L, = L, . Trivially wza = zya. Using (M5),
xR za L a and y R ya L' a implies that = L'y. Therefore

L, =L AL =L,

For the last necessary property, we notice y L'z L wx = zy.

Homomorphism: Let a,b € S, and let 2,y € S such that x R za £ a and
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y R’ yb L'b. Therefore, by definition, a¢ = [z, za] and b¢ = [y, yb]. Then

(a0)(b6) = [, zally, yb] = [u, vyb] = [uz, uzab],
where u and v are the elements that exist by (M1) such that

uR'vR vy =uxa and Ly, A L, = L,

uzxra*

We want to prove that this is equal to (ab)¢.

Using the fact that R’ is a left conguence, we have that ybR’y implies that
vyb R vy, and xa R’ x implies that uzra R’ ux. Therefore

urab = vyb R vy = ura R ux.

We use za L' a to obtain L, A L = L. We can then apply Property (M2) to

uxra*

Ly A Ly = L, to give us that L, A L, = L, ., Using yb LD, this means that

ura

Ly ALy=L, .. Wecan then apply Lemma 4.2.3 (iii) to give us ab L uxab.

By the definition of ¢, since ux R’ uxab L' ab, this means that
(ab)¢ = [ux, uxab] = (ag)(b).

Injective: Let a,b € S such that a¢ = bp. Therefore, choosing = and y such
that R za L' a and yR'ybL' b, we have that [x,za] = [y,yb]. This means

there exists w, z € S such that
wr = zy, wra = zyb, wR wx L x and 2R zy L y.

Therefore, using the fact that £’ is a right congruence, we have that = £ wx
implies that za £ wxa. Consequently, a £ xa L wxa. Similarly, y £’ zy implies
that yb L' zyb. And so, bL yb L' zyb = wzxb, using zy = wzx in the last equal-
ity. Therefore, we can apply Property (M6) giving us that a £ wxa = wzbL'b
implies that a = b. O

Lemma 4.2.11. Let a,be S. Then aR'b if and only if ap RY be.

Proof. We have already proved that P is an inverse semigroup, so a¢ R b¢ if
and only if (a)(ag) ! = (b$)(bs) .
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Let t R'xa L' a and yR' ybL'b, so that ap = [x,za] and b = [y,yb]. Then
(ap)(ag)™" = [z,xa][xa,x] = [z, x], by Lemmas 4.2.9 and 4.2.7 (ii). Similarly
(b6)(bd) ™" = [y, ybl[yd. b] = [y, y]-

Therefore agp RY b if and only if (z, ) ~ (y,y), which is true if and only if z £y,

using Lemma 4.2.7 (i). We then use (M5) to give us that this is equivalent to
aR’b. O

Lemma 4.2.12. Let a,be S. Then a <; b if and only if ap < r bo.

Proof. We have already proved that P is an inverse semigroup, so a¢ <,r b¢ if
and only if a¢ = (a®)(bp)~'(bp) by Lemma 2.2.6.

Let 2 R'za L a and y R ybL'b, so that ap = [z,xa] and bp = [y,yb]. Using
Lemma 4.2.7, we have (b@) ™' (bo) = [yb, y][y, yb] = [yb, yb] = [b,b]. Therefore

(ag)(bg) ™ (b)) = [z, za][b, b] = [uz, vb],
where u and v are the elements that exist by (M1) such that

uR' vR vb =wuza and L), A L, = L]

ura*

Note that since za £ a, this means that L), A L) = L/

We use vb = uza to give us that (a¢)(bg)~(bd) = [uz, ura]. Therefore ap < r
bo if and only if (z, xa) ~ (ux,uza), which is true exactly if there exists w, z € S
such that

wr = zux, wra = zuzra, wR wr L v, 2 R zux L uz. (4.34)

We know that x R’ xa, and so ux R’ ura as R’ is a left congruence. Therefore we
can use Lemma 4.2.3 (ii) to rewrite (4.34) to the equivalent expression (4.35).
That is, a¢p <,r b¢ if and only if there exists w, z € S such that

wr = zur, wra = zuzra, w R wra Ll ra, 2 R 2uxra L uza. (4.35)

Let ap < r by, ie. let w and z exist in S such that (4.35) is satisfied. We
see that uxa L' zura = wzra Ll za Ll a. Therefore L) A Ly = L), , = L,. By

definition this means that a <; b.
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On the other hand, let a <; b. By definition L], A L; = L!. Therefore

L. =L AL =L =1L,

ura

Applying Property (M1) to xa and uza, there exists w, z € S such that

/ / o / ' T
wR 2R zura = wra and L,,, AN L,, = L

wxa*

Using xR’ za, we know that zura = wzxa implies that zur = wx by (M4).
Using the fact that ura L' za, we see that L), = L! . AL\, = L, . Therefore

wra ura

ura L' ra L wxra = zuza. This gives us (4.35), and so ap <,r bo. ]
Lemma 4.2.13. The semigroup P is a semigroup of straight left I-quotients of
So.

Proof. Let [a,b] € P. Note that a,be S with a R’ b.

Let xR za L a and yR ybL'b, so that ap = [z,za] and bp = [y,yb]. By
Lemma 4.2.11, a¢p RY bg. We have

(ag) ™" (bd) = [za, z][y, yb] = [uza, vybd],
where u and v are the elements that exist by (M1) such that
uR'vR vy =ux and L, A L, = L,

We want to prove that (a¢)~'(bg) = [a, b].

We see that (a,b) ~ (uza,vyb) exactly if there exists w, z € S such that
wa = zuxa, wb = zvyb, wR wa L a, z R zuza L uzxa.

Applying Property (M1) to a and uza, we know that there exists w, z € S such
that

/ / . 1 / R 2
wR 2R zura = wa and L, A L, = Ly,,-

We see that wa = zuxa implies wb = zuxb by (M4), and therefore, since ux = vy
we have wb = zvyb. We use Property (M5) to get that a R’ b implies x L'y, and
therefore L, = L, A L}, = L. We then use the fact that £ is a right congruence

to give us that uz £’ x implies uxa L' xa L a. Therefore L], = L) A L), = L',
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and so zura = wa L' a £ uza. This gives us [a,b] = (ag) 1 (bp), where ap R bo.
[l

We have now finished the proof of Theorem 4.2.1.

4.3 The general case using a ternary relation

on inverse semigroups

This is an alternative approach that does not use partial orders on £L-classes, but
instead utilises a ternary relation that implicitly uses this natural order. In some
cases it may be preferable to use this result instead of Theorem 4.2.1 because
the meet structure of the L-classes can be complicated to deal with directly. 1
will use the configuration explored in this section later to characterise straight
left I-orders which intersect every R-class of their semigroups of straight left

[-quotients.

I now define the ternary relation ¢ on an inverse semigroup Q).

Definition 4.3.1 (U relation). Let @ be an inverse semigroup. Then
(byc,u) eU? = u T RYbc.
Note that (b, c,u) € U? if and only if u=tu = be~teb™! in Q.

As a motivation for introducing this relation, we will show how it can be used
to construct a similar result to Lemma 3.3.6.
Lemma 4.3.2. Let (Q be an inverse semigroup and let b,c,u,v € Q) such that

uRPv. Then be™! = u='v in Q if and only if ub = vc and (b,c,u) € U?.

Proof. Let bc™' = u='v. By Lemma 3.3.5, ub = vc. Also

uwlu=utov = beteb L

Therefore (b, ¢, u) € U®.

Conversely, let ub = ve and (b,c,u) € U?. Since (b, c,u) € U?, we know that
u™lu = bclebt. By left multiplying by w, this gives us that u = ubc=tcb™!.
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Therefore

ubb™t = ubcteb ™! = ube bt = u,

and so uRub by Lemma 2.2.3. This means that v RuRub = wvec, and so

v = vee”! by Lemma 2.2.3. Therefore

1 —1

o = utvee™ = wtube ™! = be !,

where the final equality used u~tuR bc™!, since (b, c,u) € U®. O

We will now prove the relationship between U and the meet of L-classes.

Lemma 4.3.3. Let Q be an inverse semigroup. Then (b,c,u) € U if and only
of
Ll? ALY = Lgb and u R ub.

Proof. Let (b,c,u) € U?. Then u~tu = be~teb™!. Then
(ub) " (ub) = b~ 'utub = b~ tocteb b = b e e,

and so, L,? ALY = LSb by Lemma 2.2.8.

We can left multiply u='u = be=tcb™! by u to obtain u = ubc 'cb~!. Therefore
(ub)(ub) ™ = ubb™'ut = ubctebtob Tt = wbeteb e = vt

so u R ub as well.

Conversely, let Lz? ALY = Lfb and let u R9 ub. By Lemma 2.2.3, u R% ub implies
that u = ubb™', and so u~'u = v~ ubb~'. Using L¥ A L9 = LY | Lemma 2.2.8

ub

gives us

b 'uub = b 'be e = bb 'y ubb Tt = bbb eb !

= u tubb™' = beteb L.

Putting these two together gives us u~'u = be~lcb™!. Therefore (b, c,u) € U%.
]

We can say even more about the relationship between &/ and the meet structure

of £%@-classes in the case that Q is a semigroup of straight left I-quotients.
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Lemma 4.3.4. Let a,b,c,d € S and let S have a semigroup of straight left
I-quotients Q. Then LY A LbQ = L@ if and only if there exists u € S such that

(a,b,u) eU? and c LC ua.

Proof. Let L A LY = LQ. Then ¢ '¢ = a~'ab™'b by Lemma 2.2.8. Since Q is a
semigroup of straight left I-quotients, there exists u, v € S with u R? v such that

ab~! = u~lv. Lemma 4.3.2 gives us that (a,b,u) € U? and ua = vb. Therefore
cle=a u"twb = (ua) " (ua).

Therefore (a,b,u) € U9 and ¢ L? ua.

Conversely, let there exist u € S such that (a,b,u) € U9 and ¢ L% ua. Therefore

cle=a W ua = a tab 'ba"ta = atab M.

So by Lemma 2.2.8, L¢ A LY = L9. O

We will use this ternary relation to write another set of equivalent necessary and
sufficient conditions for a semigroup to be a straight left I-order. We will use

Theorem 4.2.1 in the proof of this result.

Theorem 4.3.5. Let S be a semigroup and let R’ and L' be binary relations
on S and U’ be a ternary relation on S. Then S has a semigroup of straight
left I-quotients, Q, such that RY n (S x S) = R/, L® n (Sx S) =L, and
U? n (S xS x8)=U"if and only if R’ is a left congruence, L' is a right
congruence, and S satisfies Conditions (U1) - (U11).

(U1) For all o, € S, there exists v,0 € S such that YR'dR' 6 = v, and
(a,8,7) el
(U2) For all a,B e S, (B,5,a) eU if and only if a R' af LS.

(U3) For all o,3,v,6 € S, (o,8,7v) € U and (0,¢,58) € U implies that
(ad,e,y) el

(U4) For all «,fB,v,6 € S, (af,v,0) € U and aBL [ implies that
(B,7,0a) el
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(U5) For all o, B,7v,0 €S, (a,B,7) €U and B L implies that («,d,v) e U'.

(U6) Let o, 3,v,6 € S such that (o, 8,7) €U'. Then (a, 5,6) € U if and only if
~yL'6.

(U7) For all o,5,7v,6 € S, yva = 0R'I and (a,B,7) €U implies that
(B,a,0) el

(U8) For all a, B,v € S, (af, B,7) € U" implies that (af, af3,y) e U'.
(U9) R < R*.

(U10) Let o, 3,7,6 € S such that yR' ya L'a and 6 R' 6 L'3. Then v L' 6 if and
only if a R' B.

(U11) For all o, 5,7 € S, a L' B L ya =~ implies that o = .

We start the proof of Theorem 4.3.5 by proving the forward implication. We
assume that S has a semigroup of straight left I-quotients, @), and we label
RN (SxS)=R, LY n (SxS) =L and U? n (S xS xS)=U" From
knowledge of Green’s relations, we know that R’ will be a left congruence on S
and £ will be a right congruence on S. Note that Properties (M1) - (M6) from
Theorem 4.2.1 hold. We now prove that Properties (U1) - (U11) are satisfied.

(U1) Let a, 8 € S. Then o, 8 € Q and so 37! and hence o~ € Q. Since Q is a
semigroup of straight left I-quotients of S, there exists 7,0 € S such that
af™t = 4716 with yR’§. Lemma 4.3.2 then gives us that §3 = ya and
(o, B,7) € U'. Using Lemma 4.3.3, we see that («, 5,7) € U’ implies that
YR ya.

(U2) We have that (3,8,«a) € U if and only if o la = BB713871 = BB,
which is true exactly when a R’ a8 L' 8 by Lemma 3.3.3.

(U3) Let (o, 8,7) € U and (6,¢,8) € U'. Therefore a3~ 'fa! = v~y and
deted ! = 718 in Q. Then

Y 'y =af Bat = ade b aT = (ad)e T e(ad) T

Therefore (ad,e,v) e U'.
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(U4) Let (aB,7,0) € U and aB L' 3. Therefore 616 = afy v~ la™l. By
Lemma 2.2.4, B L' of implies that 3 = a~taf. Therefore

(6a) " (0ar) = a6 da = a By B e la = By TIyBT,

and so (5,7,0a) eU’.

(U5) Let (a,8,7) € U and BL'S. Then v 1y = af~'8a™! = ad~1da™!, so
(a,0,7) el

(U6) Let (o, B,7) € U'. TIf (a,3,0) € U, then v v = af 1pat = §714.
Conversely if v £'§, then 71§ = v 1y = a1 Ba™?, and so («, 3,8) e U'.

(UT) Let va = 08R’ 6 and (a, B,~) € U’. Then
gl =a v lya=a e Bala = a BB
Using 68 R’ §, we know that
5716 = 8376710857 = B~ a8 = fatap .
Therefore (8, a, 6) € U'.
(U8) Let (a3, B,v) € U'. Therefore
vy =afpTis e = e a e
Therefore (af, af,v) eU'.
(U9) (M4)
(U10) (M5)

(U11) (M6)

This proves the forward implication of Theorem 4.3.5.

We will prove the converse using Theorem 4.2.1. In order to do this, we need to

find a suitable <; and A.
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We define <; as a <; b if and only if there exists u € S such that

(a,b,u) eU" and ua L' a. (4.36)

We will prove that this is a preorder later. We will often use this definition in

conjunction with Property (U1).

Lemma 4.3.6. Let a <; b. Then there exists u,v € S such that
uR' vR vb = ua, (a,b,u) eU" and ua L a.
Proof. Since a <; b, we know that there exists € S such that
(a,b,x) eU" and xa L' a.
Applying (U1) to a and b, there exists u,v € S such that
uR' vR vb=wua and (a,b,u) e’

By (U6), we have that (a,b,z) € U and (a,b,u) € U’ implies that x L u. Since

L' is a right congruence, we have xa £ ua, and therefore ua £ a. O

We now need to find a suitable A. We will define it first and prove some basic
properties. We will prove that it is the meet of the £'-classes with respect to <;

later.

We define A as L, A Lj = L’ if and only if there exists u € S such that

(a,b,u) eU" and ua L' c. (4.37)

The fact that this is a well-defined function on £’-classes is not obvious and will

be addressed in Lemma 4.3.9.

We will often use the definition of A in conjunction with (U1) as follows.

Lemma 4.3.7. Let L, A Ly = L. Then there exists u,v € S such that

uR vR vb = wua, (a,b,u) eU" and ua L' c.
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Note that this gives an alternative stronger definition of A.
Proof. Since L) A Ly = L., by definition there exists x € S such that
(a,b,z) eU" and za L' c.
Applying (U1) to a and b, there exists u,v € S such that
uR v R vb=wua and (a,b,u) el

By (U6), we have (a,b,z) € U’ and (a,b,u) € U’ together imply that x L' u.

Since £’ is a right congruence, we have za £ ua, and therefore ua L' c. H

In order to prove that A is the meet of the £'-classes with respect to <; we will

use the following lemma. We use [a] to denote the ~-class of a.

Lemma 4.3.8. Let ~ be an equivalence relation on S and let the ~-classes of
S form a semilattice under o. Additionally, let < be the binary relation on S
defined by a < b if and only if [a]o[b] = [a]. Then < is a preorder on S with the
associated equivalence relation ~. Moreover, S/~ is a meet semilattice under

the partial order associated with <, and o is the meet operation.

Proof.

< reflexive: Since ~-classes of S form a semilattice under o, every element is

an idempotent. Therefore, for all a € S, we have [a] o [a] = [a], and so a < a.

< transitive: Let a,b,c € S such that a < b and b < ¢. Therefore [a]o[b] = [a]
and [b] o [¢] = [b]. Consequently

and so a X c.

Associated equivalence relation is ~: Let a,b € S such that a < b and

b < a. Then, using the fact that o is commutative,

and so a ~ b. The converse is clear.
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o is the associated meet: Let [a] o [b] = [¢]. We see that

Therefore ¢ < a. Similarly ¢ < b.

Now let h € S such that A < a and h < b. This means that [h] o [a] = [h] and
[h] o [b] = [h]. Then

And so h < ¢. So [c] is the meet of [a] and [b] with respect to <.

S/~ is a meet semilattice: Let a,b € S. Since the ~-classes of S form a

semigroup under o, there exists some c € S such that [a] o [b] = [c]. O

Our aim is to apply Lemma 4.3.8 with ~= £’ and o = A. It is obvious by
comparing (4.36) and (4.37) that a <; b if and only if L/, A L; = L/ . Therefore
our X in Lemma 4.3.8 will be <;. We now need to prove that the £’-classes of

S form a semilattice under A.

Lemma 4.3.9. The L'-classes of S form a semilattice under .

Proof. Commutativity will be proved first since it will make the rest of the proof
much easier. Since we have not shown that A is a function yet, we can think of

this as a result on the ternary relation L/, A Ly = L.

Commutativity: Let L, A L) = L. Then by Lemma 4.3.7, there exists u,v € §
such that

uR' vR vb = ua, (a,b,u) €U and ua L c.
By (U7), we see that (b,a,v) € U’. Combining this with vb = ua L' ¢, this gives
us that Lj A L), = L.
Well-definedness: Let L) A Lj = L!. Then, by Lemma 4.3.7, there exists
u,v € S such that

uR vR vb = ua, (a,b,u) eU" and ua L c.

Firstly, let b £'b. Then by (U5), we have (a, b, u) € U'. As we also have ua L' ¢,
it follows that Lj, A L7 = L.
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Secondly, let ¢ £’ ¢. Then (a,b,u) e U’ and ua L' ¢ L' ¢, so L, A L} = L.

Lastly, let a £ a. Using commutativity and our previous observations on well-

definedness, we have
LALy=L = AL =L = LyAL.=L = L. AL, =1L.

Associativity: Let L), A Lj = L. Then, by Lemma 4.3.7, there exists u,v € S
such that
uR v R vb=wua, (a,b,u) e and ua L' d. (4.38)

Note that (U7) implies that (b, a,v) € U as well.
Also let Ly A L, = L. Then, by Lemma 4.3.7, there exists p, ¢ € S such that
pR qR gc = pb, (b,c,p) €U and pb L' e. (4.39)
Applying (U1) to v and p, there exists i, j € S such that
iR 'jR jp=ivand (v,p,i) el (4.40)

Note that (U7) implies that (p,v,j) e U’ as well.

We will prove that

(LLALY AL =Ly AL =1L

Jjgc

Ll =L AL =L A (LyA L. (4.41)

ua

We start by proving jgc = iua. This is true, since qc = be from (4.39), jp = iv
from (4.40), and vb = ua from (4.38) together gives us jgc = jpb = ivb = iua.

We now prove that Lj A L, = L .. We see that
(,p i) e, (be.p) et L2 (b, e i) eld. (4.42)

Using v = jp from (4.40) and pb = gc from (4.39), we see that ivb = jpb =
jge. In addition, we can use the fact that R’ is a left congruence to get that
q R’ qc implies that jq¢R' jqc. We can then apply (U7) to b = jqcR' jq and
(vb,c,i) € U from (4.42) to obtain (c,vb, jq) € U'.

We know that vb = ua L' d. Therefore we can apply (U5) to (¢, vb,jq) € U to
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obtain (c,d,jq) € U'. This proves L, A Ly = L',

Finally we prove L), A L, = L.,.. We have

(p.v,5) e, (ba,v) et L2 (pb,a,j)elt.

Using jp = v and vb = ua, we see that jpb = ivb = tua. In addition, we can use
the fact that R’ is a left congruence to get that u R’ ua implies that iu R’ iua.
We can then apply (U7) to jpb = iua R iu and (pb,a,j) € U' from (4.3) to
obtain (a, pb,iu) € U'.

We know that pb L' e. Therefore we can apply (U5) to (a, pb,iu) € U’ to obtain
(a,e,iu) € U'. This proves L A L. = L,

ua*

Therefore (4.41) is satisfied and so A is associative.

Idempotent: Let L A L! = L!. Then there exists x € S such that
(a,a,z) eU" and za L c.

Using (U2), we have x R'zaL'a. Therefore L), = L', = L., and so
L AL, =L forallaesS. O

Therefore we can apply Lemma 4.3.8 to get that <; is a preorder on S with the
associated equivalence relation £'. Moreover, S/L’ is a meet semilattice under
the associated partial order and A is the meet operation. Therefore, in order to
prove that S, R’ and < satisfy the conditions of Theorem 4.2.1, all we need is
(M1) - (M6).

This lemma will provide a shortcut in the proof of (M2).

Lemma 4.3.10. For all a € S, there exists an x € S such that x R xa L a.

Proof. Applying Property (Ul) with o = = a, there exists = € S such that
(a,a,z) € U'. By Property (U2), this is equivalent to z R’ xa L’ a. ]

(M1) Let a, 8 € S. By (Ul) there exists v, € S such that yR'd R’ 68 = ~a,
and («a, 8,7) e U'. By definition, L, A Ljy = L’ ,.

(M2) Let a, 3,7,6 € S such that L), A Ly = L. By Lemma 4.3.7, there exists
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u,v € S such that
uR vR vf = ua, (o, B,u) e and ua L. (4.43)

By Lemma 4.3.10, there exists y € S such that y R yd L' 5. Therefore
(0,0,y) e U by (U2).

Applying (U1) to a and y, there exists s,t € S such that

sR'tR'ty = sa and («,y,s) e U’ (4.44)
Applying (U1) to s and u, there exists p,q € S such that

pR qR qu = ps and (s,u,p) e U’ (4.45)

We can apply (U7) to ps = quR’ q and (s, u,p) € U to get (u,s,q) eU'.
Applying (U3) to (a,y,s) e U and (6,0,y) € YU’ implies that

(ad,0,s) el (4.46)
Applying (U3) to (u,s,q) € U’ and (ad,d, s) € U' implies that
(uad, d,q) e, (4.47)

We then apply (U8) to (uad, d,q) € U’ to give us (uad, uad, q) € U'. There-
fore, by (U2)
q R quad L' uad. (4.48)

Using the fact that £’ is a right congruence, ua £’y implies that uad £ 9.
Therefore, putting this together with (4.48) and qu = ps from (4.45), we
have

v L' uad L quad = psad. (4.49)

At the same time, using the fact that R’ is a left congruence, y R’ yd implies
that ty R'tyd. Since ty = sa, this means that sa R’ sad. Therefore, we
can apply Property (U7) to s(ad) = (sa)d R’ sa and (9, d,s) e U’ from
(4.46) to obtain (9, ad, sa) € U'.

Applying (U3) to (s,u,p) € U and (a,B,u) € U’ implies that
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(M4)
(M5)

(MG6)

(sa, B,p) eU’. Since R’ is a left congruence, vR'vf implies that
qu R qup. Also, using ps = qu and ua = v, we have psa = qua = qufs.
Therefore we can apply Property (U7) to psa = quBR qu and
(sa, B,p) € U’ to obtain (3, sa, qu) e U'.

We then put the results from the two previous paragraphs together to

obtain

(B, sa, qu) eU’, (6, a0, sa) e U’ &9 (B9, ad, qu) e U’

We can apply (U8) to (ad,d,s) e’ from (4.46) to get (ad,ad,s) el
Therefore s R’ sad L' ad by (U2). Since R’ is a left congruence, this implies
that ps R’ psad. Also, using v = ua and qu = ps, we have quBd = quad =
psad. Therefore we can apply Property (U7) to quBd = psad R’ ps and
(B9, ad, qu) € U’ to obtain («d, £0, ps) € U'.

Therefore, we use this last relation and equation 4.49, to see that ps € S
such that (ad, 59, ps) e U’ and 0 L' psad. Therefore, by definition, we
have Ljs n Lis = L.

Let o, € S. Applying (Ul) to a8 and 3, we have that there exists
u,v € S such that uR'v R vB = waf, and (af,B,u) € U'. Applying
(U8), this gives us that (af,af,u) € U'. Applying (U2), this gives us
uR uaf L af. Since there exists u € S such that (af,,u) € U' and
uaf L' af, this means that af <; 5.

(U9)
(U10)

(U11)

We have now shown that the relations R’ and < satisfy all of the conditions

of Theorem 4.2.1. Applying Theorem 4.2.1 gives us that S has a semigroup of
straight left I-quotients, Q, such that R¢n(SxS) = R’ and <ye N (Sx9) =<;.
Note that consequently £2 n (S x S) = L as this is the equivalence relation
associated with <;. Finally we need to check that U? n (S x S x S) =U".

Lemma 4.3.11. Let b,c,ue S. Then (b,c,u) e U if and only if (b,c,u) € U.
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Proof. Let (b,c,u) € U'. Referring to (4.37), this means that L; A L/ = L, by
definition. Therefore, since <;o N (S x.S) = <, this also means that L? ALY =
LY.

Applying (U1) to b and ¢, there exists p,q € S such that pR' ¢ R’ g¢c = pb and
(b,e,p) e U'. Applying (U6), we have that (b,c,u) € U’ and (b, c,p) € U" implies
that u L' p.

Since @ is an inverse semigroup with R n (S x S) = R and LY~ (S x S) = L/,
we have u L9 p and pR9 pb. Since R? is left compatible, we can left multiply
by p~! to get p~'p R p~Ipb. Since uL?p, we know that v 'u = p~'p, and
therefore v~ 'u RY? u~tub. Left multiplying by w then gives us uR? ub.

By Lemma 4.3.3, we can put these together to get that Lz? ALY = LS,) and
u R ub implies that (b, c,u) € U®.

Conversely, let (b, c,u) € U?. We know that Q is an inverse semigroup. Therefore
by Lemma 4.3.3, we know that LbQ ALY = Lgb and u R ub. Therefore, since
<pa N (S xS)=<;, wehave Ly A L, = L.

Applying (U1) to b and ¢, there exists p,q € S such that pR' ¢ R’ g¢c = pb and
(b,c,p) e U'. By definition, Ly A L, = L;;,. Therefore L, = Ly A L, = L}, , that
is ub L' pb.

Since @ is an inverse semigroup with R n (S x S) = R and LY~ (S x S) = L/,
we have ub L% pb and pR? pb. From knowledge of Green’s relations we know
that p R? pb implies that pp~ = pbb~'p~!, and therefore p = pbb~'p~1p = pbb~!.
Similarly, © R? ub implies that u = ubb™!.

Since £ is right compatible, ub £ pb implies that u = ubb~* L pbb~! = p, and
therefore u £’ p. We then apply (U6) to (b, ¢,p) € U’ to obtain (b,c,u) eU’. O

We have now finished the proof of Theorem 4.3.5.

4.4 Straight left I-orders in given inverse semi-

groups

One may have noticed that in both Theorem 4.2.1 and Theorem 4.3.5, most of

the properties required are true in all inverse semigroups, not just semigroups
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of straight left I-quotients. Consequently, if you are checking whether a given
subsemigroup is a straight left I-order in a particular inverse semigroup, then

this requires a much simpler result.

Corollary 4.4.1. Let S be a subsemigroup of an inverse semigroup ). Then S
15 a straight left I-order in Q if and only if for all b,c € S there exists u,v € S
such that uR%v and be™" = ulw.

Proof. Let R' = RN (SxS) and let <; =<0 N (SxS). Then R’ will be a left
congruence and <; will be a preorder, such that, denoting the associated equiv-
alence relation by £, S/L' is a meet semilattice under the associated partial
order. Properties (M2) - (M6) are true in all inverse semigroups, so are satis-
fied. Therefore the only property to check is the Ore condition, (M1), which
by Lemma 3.3.6 is equivalent to the condition in the result. Conversely in a
straight left I-order (M1) is always true. O

We will apply Corollary 4.4.1 on the semidirect product of a semilattice and a
group.

Let Y be a semilattice and let G be a group acting by automorphisms on Y.
That is, let - : G xY — Y be a group action on Y, such that for every g € GG, the
action by ¢ is an automorphism on Y. Then we say that the semidirect product
of Y and G is the semigroup made from pairs («, g), where a € Y and g € G,

with the multiplication

(avg)(ﬁu h) = (Oé(g ’ ﬂ)agh)
We write this as Y x (. This is an inverse semigroup with

1

(a,9) ' =(g7"

" Q, gil)
and a semilattice of idempotents isomorphic to Y. Using Lemma 2.2.1, we also
see that

(a, ) R (B,h) if and only if a =

and
(o, 9) L(B,h) ifand only if g1 -a=h"'- 3.
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Corollary 4.4.2. Let Q =Y x G, where Y is a semilattice and G is a group,
and let S be a subsemigroup of Q. Then S is a straight left I-order in Q) if and
only if for all (o, g), (B, h) € S, there exists (v, f), (v,7) € S such that fg = jh

and vy = (f-a)(j- ).

Proof. By Corollary 4.4.1, S is a straight left I-order in @ if and only if for
all (o, ), (B,h) € S there exists (v, f), (6,7) € S such that (v, f) R? (4, 7) and

(@, 9)(8,h) ™ = (7, /)71(0, ).
Assume that S is a straight left I-order in @), and consequently such a (v, f) and
(6,7) exists. Since (v, f) R% (4, ), we have that v = §. We calculate

(a,9)(B,h) " = (o, g)(h™" - B,h7") = (a(gh™ - B),gh ™) (4.50)

and

(VO d) = 7y ) = (7 f749). (4.51)

Comparing the last coordinate of (4.50) and (4.51), this gives us that
gh™!' = f~14, which is equivalent to fg = jh since G is a group. Comparing the
first coordinate of (4.50) and (4.51), we have f~!-~v = a(f~'j - 3). Acting on
both sides by f we find that this implies that v = (f - a)(j - 5).

Conversely, assume that for all (a, g), (6,h) € S, there exists (v, f), (7,7) € S
such that fg = jh and v = (f - «)(j - ). Since G is a group, fg = jh implies
that gh™' = f~15. Actingon v = (f-a)(j-3) by f~! we then obtain

oy =alf8) =algh™ - B).

Therefore (4.50) and (4.51) are equal, and so (a, g)(3,h)~! = (v, f)~L(~, j) with
(v, ) R (v, ). Therefore S is a straight left I-order in Q) by Corollary 4.4.1. [



Chapter 5

Proving established results using

my general theorem

Some characterisations of special cases of semigroups of I-quotients already exist
in the work in [13], [12], [10] by Nassraddin Ghroda and Victoria Gould. In this
chapter, we consider two of these established results and prove them both using

the main result of the previous chapter, Theorem 4.2.1.

In Section 5.1, we reprove a characterisation of straight left I-orders in primitive

inverse semigroups.

In Section 5.2, we reprove the fact that left ample semigroups are left I-orders
in their inverse hull if and only if they have the (LC) condition. We apply
this result to Exel and Steinberg’s work on inverse hulls of 0-left cancellative
semigroups [5], which is an example of when semigroups of I-quotients are used

in the literature implicitly.

5.1 Primitive inverse semigroups of left I-
quotients
In this section we reprove Theorem 3.1 of [12] using Theorem 4.2.1. This result

provides a characterisation of left I-orders in primitive inverse semigroups. All

such left I-orders are straight.

Recall that an inverse semigroup S with zero is a primitive inverse semigroup if

78
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all its nonzero idempotents are primitive, where a nonzero idempotent e of §S'is

called primitive if f < e implies that f =0 or e = f.

A semigroup S with zero is categorical at 0 if for all a,b,c € S, ab # 0 and bc # 0

implies abc # 0. We say that S is 0-cancellative if for all a,b,c € S, either one

of ab = ac # 0 or ba = ca # 0 implies that b = c.

We will use the following facts about primitive inverse semigroups throughout

this chapter.

Lemma 5.1.1. Let Q) be a primitive inverse semigroup. Then

(1) Q is categorical at 0.

i) If a,be Q\{0}, then ab # 0 if and only if a=ta = bb~ 1.
(1)

(11i) Q is 0-cancellative.

Proof. (i) [3, Lemma 7.61]

(i)

(i)

Let a,b € Q\{0}. We have that a~*a = bb~"! if and only if there exists an
idempotent, e, contained in L, n Ry. By [20, Prop. 2.3.7], this is true if
and only if ab e R, N Ly.

a ab

Let ab € R, n Ly. Since a is nonzero, zero cannot lie in R,. Therefore
ab # 0.

Conversely, let ab # 0. Since @) is a 0-direct union of Brandt semigroups,
it follows that a and b are both nonzero elements of the same Brandt
semigroup. Using Definition 2.5.1 and Lemma 2.5.2, we see that for a,b

nonzero elements of a Brandt semigroup, ab # 0 implies that ab e R, N Ly.

From (ii), we can see that ab = ac # 0 implies that a~'a = bb™! and

1 1 1

a~ta = cc7!. Therefore b = a~tab = alac = ¢. Dually ba = ca # 0

implies that b = c.



CHAPTER 5. PROVING ESTABLISHED RESULTS 80

We will need the following relation.

Definition 5.1.2 () relation). Let S be a semigroup with 0. Then

aAb if and only if a =b=0 or San Sb+# {0}.

In the next proposition we identify some properties of a semigroup which has
a primitive inverse semigroup of left I-quotients. Most of these properties are

from Proposition 2.4 of [12].

We make the convention that if S is a left I-order in @), then R, £ and <, will

be relations on (), and R* and \ will be relations on S.

Proposition 5.1.3. Let S be a subsemigroup of a primitive inverse semigroup

Q. If S is a left I-order in @, then

(1) S contains the 0 element of Q;

(2) S is a straight left I-order in Q;

(8) Sa # 0 for all non-zero a € S;

(4) L (S x8) =X\

(5) R (S x S) =R

(6) if a,be S, then a <, b if and only if a\b or a = 0.

Proof. Let S be a left I-order in Q.

(1) By definition, since 0 € @, we have that there exists a,b € S such that
a 'b = 0.

If a and b are in different Brandt semigroups, then ab = 0 is an element of
S by closure. If a and b are both elements of the same Brandt semigroup,
B = B(G,I),leta = (i,g,j) and b = (k, h,l), where g, h € Gand i, j,k,l € I.

2

Since a” is an element of S, we have

a2 = (Zuguj)(l7g7j)
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(3)
(4)

(5)

(6)

and so either 0 € S or ¢+ = j. Similarly, ab and b? are elements of S, and
so we either have 0 € S or ¢« = j = k = [. In the latter case, we can then

rewrite a and b as a = (j,¢,j) and b = (j, h, j) and conclude

0=a"'b=(jg7"5)0h.1) = (5,97 "h, 1) #0,
which gives us a contradiction. Thus 0 € S.

Suppose that ¢ € Q. If ¢ = 0, then ¢ = 070 and 0R 0. If ¢ is non-zero,
then ¢ = a™'b, for some a,b € S. Since a~'b # 0, Lemma 5.1.1 (ii) gives us
that (a™')"'a™ = aa™! = bb~!, and so a R .

Let a = 271y # 0 for some z,y € S, where x Ry. Then za = y # 0.

If a b, either a = b = 0 and therefore a Lb, or za = yb # 0 and therefore

1

7'z =aa! and yly = bb~!. And so a = 2 'yb and b = y~'za, so that

alb.

Conversely if a £b, then either a = b =0, or a # 0 and a = 2~ 'yb for some

rlye @, z,ye S, x’Ry. Therefore xa = yb # 0 and so a \b.

It is clear that R n (S x §) <€ R*. To show that R* < R n (S x 5), let
aR*bin S. By (2), there exists y in S such that ya # 0. Hence yb # 0 by
Lemma 2.2 of [8]. By Lemma 5.1.1 (ii), aa™! = y~'y = bb~! and therefore
aRbin Q.

The relation <, can only occur within a single Brandt semigroup in @). In
a Brandt semigroup, a <, b if and only if either a = 0 or a £b. We then use
(4) to get the result.

O

We now give Ghroda and Gould’s characterisation of left primitive inverse semi-

groups of left I-quotients from [12].

Theorem 5.1.4 ([12, Theorem 3.1]). A semigroup S is a left I-order in a prim-

itive inverse semigroup @ if and only if S satisfies the following conditions:

(A) S is categorical at O;
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(B) S is 0-cancellative;
(C) X is transitive;

(D) Sa # 0 for all non-zero a € S.

The original proof was constructive in nature. However, by applying Theorem
4.2.1, our proof bypasses this construction. Note that the construction in the
original proof and the construction in the proof of Theorem 4.2.1 are identical

for primitive inverse semigroups.

We start with proving the forward direction. Suppose that @ is exists, then
S inherits Conditions (A) and (B) from (. By Proposition 5.1.3 we have that
Conditions (C) and (D) hold.

We will prove the other direction using Theorem 4.2.1. Let R’ = R*, and let
a <; b if and only if aA\b or a = 0. Note that R’ is a left congruence, and L’,

defined as the equivalence relation associated with <;, is equal to .

Lemma 5.1.5. Let S satisfy Conditions (A) - (D). Then

(i) the binary relation <; is a right compatible preorder;

(i1) S/L" is a meet semilattice under <; with

L. if a\b,

L ALy =

Ly if aXb.
Proof. (i) We start by proving reflexivity. We want that for all a € S, the
relation a A a holds. This is trivially true for a = 0 and for a # 0, we have
SanSa = Sa # {0} by (D). Soa\a for all a € S and we have that a <; a

as required.

We now consider transitivity. Let a <; b and b <; ¢. If a = 0, we have that
a <; c immediately. If a # 0, then a <; b give us that a AD, and so b # 0.
Since b is non-zero, b <; ¢ gives us that b A c. Therefore using (C), aAb ¢

implies that a Ac, and so a <; c.

Lastly we consider right compatibility. Let a <; band let z € S. If ax = 0,

we have that axr <; bx immediately. If ax # 0, then a # 0 and so a <; b
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implies that a Ab. Therefore Sa n Sb # {0}, and so there exists u,v € S
such that ua = vb # 0. Since ax # 0, (A) gives us that uax = vbxr # 0 and

so Sax n Sbx # {0}. Therefore ax A bz, which implies ax <; bx.

(ii) (a) Let aAb. We see that L/ = L, and so, by the definition of meet, we
have L), A L) = L.

(b) Now let a Xb. We will prove that L/, A Lj = L;. Firstly, by definition,

we have 0 <; a,b. Secondly, if h <; a,b and h # 0, this would mean

that hAa and hAb. By (C), A is transitive, and therefore a A b, a

contradiction. Therefore h is 0, and so h <; 0. By definition, this

mean that L is the meet of L/ and Lj.

]

We will use the following lemma repeatedly in our proof of (M1) - (M6).

Lemma 5.1.6. Let S satisfy Conditions (A) - (D). Then xa # 0 implies that

T R*xaMa.

Proof. Let xa # 0. We start by proving  R* za. If u,v € S* such that ux = vz,
then obviously uza = vxa. Conversely if ura = vra # 0, then ur = vx by
O-cancellativity. On the other hand if uxa = vra = 0, then by categoricity at 0,

ur = vx = 0.

In addition, since za # 0, we have Sxa n Sa = Sza # {0} by (D), so that
ra\a. O

We will now prove (M1) - (M6) with R" and <; defined as above.

(M1) Let o, € S. We need v,d € S such that yR*0 R*0f = ~a and
Ly~ Ly=1L,.
Case 1: Either a = 3 = 0 or a X 3. In either case, we have L), A Lj; = Lj.

Therefore, we can take v = = 0.

Case 2: a, 3 non-zero such that a A 8. This means that L;, = L, and so
L, ~n L= L,. We know Sa n S # {0}. Therefore there exists 7,4 € S
such that yao = 08 # 0. By Lemma 5.1.6, v # 0 implies that v R* va A «,
and so L., = L. Similarly, 68 # 0 implies that 6 R* 93
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(M2)

(M3)

(M4)

(M5)

Let Ly, n Ly =L and let § € S.

We need Li,s A Lis = L. 5. From Lemma 5.1.5 (ii), we need only consider

two cases:

Case 1: aAfAy. By Lemma 5.1.5 (i), A is a right compatible rela-
tion, and therefore ad A 36 Avd. By Lemma 5.1.5 (ii), this gives us that
Liys A Ligs=Lls.

Case 2: a X3 and v = 0. We want to prove that Ll; A Ljs = L.

If a6 X0, then Lemma 5.1.5 (ii), we have L5 A Ljs = Lj and we are
done.

If ad A 39, then, by definition, either ad = 6 = 0 or Sad = SPI # {0}.
If ad = 30 =0, then Li5 A Lz = Ly A Ly = L.

If Sad = SPS # {0}, then there exists u,v € S such that uad = vfd # 0.

By 0-cancellativity, ua = vB # 0, and so a A 3, giving a contradiction.

Therefore, in all cases, Lis A Lis = Ly = Ll;.

Let a, 8 € S. If af = 0, then by definition af <; 5. If af # 0, then by
Lemma 5.1.6, we have af A 3, and so a8 <; 8 by the definition of <.

R* < R*.

Let yR*vyaAla, 6 R* BN 5. We want to prove that v A ¢ if and only if
aR* B. Note that 0 is its own R*-class and its own A-class, so v =9 =0
implies that yao = 68 = 0 and therefore « = = 0. Similarly a« = 5 =0
implies that v = 6 = 0. Therefore if any «, 3,7, 9, v, 05 are zero we are

done. Now assume these are all non-zero.

Firstly, let ¥ Ad. To show that aR* 3, assume that z,y € S! such that
ra = ya. We want to prove that x5 = yp3.

Case 1: =y = 1. Then 26 = 3 = yp.

Case 2: z € S and y = 1. Then xa = «a. Since 7\ is non-zero, we
know that there exists u,v € S such that uy = vd # 0. We know that
~va is non-zero, and so we can use left multiply ra = « by v to obtain
yra = ya # 0. By 0O-cancellativity, this gives us that yx = v # 0. We
then left multiply by u to obtain uyxr = uy # 0, and so véx = vd # 0. By
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(MG6)

0-cancellativity, this gives us that dx = § # 0, and so dzf3 = 05 # 0. We
then use O-cancellativity once again to obtain x5 = . The case in which

ye€ S and x =1 is similar.

Case 3a: z,y € S and za = ya # 0. By 0-cancellativity, x = y and so
zf = yp.

Case 3b: z,y € S and za = ya = 0. We will prove x5 = 0 by con-
tradiction. If x8 # 0, then by Lemma 5.1.6, z3 3. Using the right
compatibility of A\, yAd implies that v Ad5, and therefore using (C),
rBANLBANIBAYSE. Since zf # 0, this means that there exists u,v € S such
that uxf8 = vyB # 0. By 0-cancellativity this gives us that uzr = vy # 0
and therefore ura = vya. This gives us our contradiction, because vy # 0
and ya # 0 implies that vya # 0 by (A), but since xa = 0, we have
ura = 0. Therefore 3 = 0. Similarly y38 = 0.

We now consider the converse. Let aR* 5. Then, since R* is a left
congruence ya R* 3, and therefore, as va # 0, v # 0. We then apply
Lemma 5.1.6 to get v£ A 8, which in turn means that v5 Ad5. Since v3 #
0, this means that S5 n S§5 # {0}, and so there exists u, v € S such that
uyf = vdp # 0. We use (B) to give us that uy = vd # 0, and therefore
Y AO.

Let a Aya, BAyB, ya = vB. We want a = 5.

Case 1: ya = v = 0. Since A is transitive and {0} is a A-class, this gives
us that o = 5 = 0.

Case 2: ya = v # 0. Using O-cancellativity, we have a = 3.

Therefore, applying Theorem 4.2.1, we see that S has a semigroup of straight
left I-quotients, @, such that R? n (S x S) = R’ and <o n (S x 5) =<;. We

will now prove that () is a primitive inverse semigroup.

Let e be a non-zero idempotent of () and let f be an idempotent of () such that
f < e. By Lemma 2.1.3, this means that f < ¢ e.

Since S'is a straight left I-order in (), we know that S intersects every L-class of
Q. Therefore there exists s,t € S such that s £9 f and t L9 e. Therefore s <; t.
By the definition of <;, this means that either s = 0 or s At. If s = 0, then
f =0.If sAt, then s £L2t, and so e L f. Since there is a unique idempotent
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in each L-class of an inverse semigroup, this gives us e = f. Therefore e is a

primitive idempotent.

Since every non-zero idempotent of () is primitive, () is a primitive inverse

semigroup.

5.2 Left ample left I-orders in their inverse
hulls

In this section, we prove Theorem 3.7 of [10] using part of Theorem 4.2.1 and
Corollary 4.4.1. This result gives a necessary and sufficient condition for a left

ample semigroup to be a left I-order in its inverse hull.

In Section 2.3, we showed that there is an embedding of a left ample semigroup
S into the symmetric inverse semigroup Zs. We take the inverse hull ¥(.S) of
S to be the inverse subsemigroup of Zg generated by imfg, where g is the
embedding of S into the symmetric inverse semigroup Zg as defined in Section
2.3. Where convenient we identify S with its image under fg in 3(.S). We begin

with the following useful lemma.

Lemma 5.2.1. Let S be a left ample semigroup and let a,b € S. Then p, R py
in X(S) if and only aR*b in S.

Proof. Recall that a R* b if and only if a* = b*. We have that p, R p, if and
only if p,p, ! = pb,ob_1 if and only if dom p, = dom p;. This is true exactly when
Sa*™ = Sb*, which is true if and only if a™ = b™. O

Lemma 5.2.2. Let S be a left ample semigroup and let a,be S. Then p, <. pp
in 3(S) if and only if Sa < Sb.

Proof. Suppose that a,b € S. Using Lemma 2.2.6, we know that p, <, p, in
3(S) if and only if p, = pap, 'pp. We can rewrite this as p, = p, Idim,, , which

is true if and only if im p, < im p,. This is equivalent to Sa < Sb. [

We can therefore immediately see the meet structure of the L-classes of ¥(.5).

Corollary 5.2.3. Let S be a left ample semigroup. Then, for any a,b,c € S,
L, AL, =L, if and only if Sa n Sb = Sc.
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Proof. Intersection of sets is the meet of set inclusion. O]

Lemma 5.2.4 ([10, Lemma 2.4]). Let S be a left ample semigroup, embedded
(as a (2, 1)-algebra) in an inverse semigroup Q. If S is a left I-order in Q, then
S is straight.

Proof. Let ¢ = a='b e Q where a,be S. Then
q=(aTa) ' (b'b) = ataTbTb = a bt aTh = (bta) "t (aTh).
We have
aTbR*atbt =bTat R*bTa

and so aThbRPb*a and S is straight. O

We now give the characterisation of left ample semigroups which are left I-orders
in their inverse hulls from [10]. By saying that a semigroup S satisfies the (LC)

condition we mean for any a,b € S there exists ¢ € S such that Sa n Sb = Sc.

Theorem 5.2.5 ([10, Theorem 3.7]). Let S be a left ample semigroup. Then
SOs is a left I-order in its inverse hull if and only if S has the (LC) condition.

Proof. Let S be a left ample semigroup such that Sfg is a left I-order in its
inverse hull ¥(S). By Lemma 5.2.4, we know that Sfg is straight in ¥(S). By
Lemma 2.2.8, we know that the L-classes of ¥(.S) form a meet semilattice under
<. Since Sfg intersects every L-class of 3(5) by Lemma 3.1.3, this means that
for any a,b € S, there exists ¢ € S such that L, A L, = L, Using Corollary
5.2.3, this is equivalent to Sa n Sb = Se. This is the (LC) condition.

Now let S be a left ample semigroup with the (LC) condition. By Corollary
4.4.1, we know that SOg is a straight left I-order in X(.5) if for all b,c € S there

exists u, v € S such that
pu R p, and pyo; ' = p," po.
By Lemma 3.3.6, this is true if and only if

pu RS py RES) pop. = pupy and L, N L, =L,.,, (5.1)



CHAPTER 5. PROVING ESTABLISHED RESULTS 88

Note that since 0g is an embedding, p,p. = pve and pupy = Pup-

Let b,c € S. By the (LC) condition there exists w € S such that
Sbn Sc = Sw.
Therefore there exists x,y € S such that
xb = yc = w.
We take v = xb™ and v = yc*. We see that
ub = xb"b = xb = yc = ycc = ve. (5.2)

Using, the fact that R* is a left congruence, we see that b™ R* b implies that
ub™ R* ub. Therefore

u=xb" =zb"b" = ub” R* ub. (5.3)
Similarly
v =wvc" R*ve. (5.4)
Lastly, note that
Sbn Sc= Sw = Sxb= Szb*b = Sub. (5.5)

We compare (5.2), (5.3), (5.4) and (5.4) with (5.1). Using Lemma 5.2.1 and
Lemma 5.2.3, we see that (5.1) is satisfied. Therefore, by Corollary 4.4.1, we

have that S is a left I-order in its inverse hull. O

Theorem 5.2.5 gives a necessary and sufficient condition for a left ample semi-
group to be a left I-order in its inverse hull. The question of when a left ample
semigroup is a left I-order in other types of inverse semigroup remains an open
question, but we cover two additional special cases in this thesis. The first is
two-sided ample left I-orders, covered in Section 6.2, in which we consider left
[-orders that are both left ample and right ample. The second is left ample
left I-orders that intersect every R-class of their semigroup of left I-quotients,

covered in Section 7.2.
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5.2.1 Exel and Steinberg’s result on the inverse hull of
a 0-left cancellative semigroup in the context of
Ghroda and Gould’s result on left ample left I-

orders

We will now apply Theorem 5.2.5 to Exel and Steinberg’s work on inverse hulls
of O-left cancellative semigroups [5], as an example of when semigroups of I-
quotients are used in the literature implicitly. Note that as Theorem 5.2.5 is
joint work of Ghroda and Gould, my work is not necessary in order to make this

connection.

Exel and Steinberg’s work is motivated by the study of certain C*-algebras asso-
ciated with the inverse hull of 0-left cancellative semigroups. There are various,
now standard, methods of constructing C*-algebras from inverse semigroups,
such as Exel’s tight C*-algebra [6] or Paterson’s universal C*-algebra [28]. In
[5], Exel and Steinberg consider the tight groupoid of the inverse hull of the
path semigroup of a particular kind of directed graph, and they use this as their
motivating example to study the inverse hulls of 0-left cancellative semigroups.
The path semigroup of a graph has many other useful properties, which they
use to get their strongest results; namely 0-categoricity, right reductivity and

the existence of right local units.

We will be using the dual statements of the results in [5], in order to continue

working with left I-orders instead of the corresponding work on right I-orders.
We start by defining the terms used.

Recall from Section 5.1 that a semigroup S with zero is defined to be categorical
at 0 if for all a,b,c€ S, ab # 0 and bc # 0 implies abc # 0.

A semigroup S with zero is defined to be 0-right cancellative if for all a,b,c € S,

ab = ac # 0 implies that b = c.
A semigroup S is called left reductive if xs = xt for all x € S implies that s = t.

A semigroup S is said to have left local units if for every s € S, there exists an

idempotent element e € E(S) such that es = s.

We note that if S is a 0-right cancellative semigroup with left local units, then a

non-zero element, s, of S has a unique left local unit, since if es = s and fs = s
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for e, f € E(S), then es = fs # 0 and therefore e = f.

Definition 5.2.6. If S is a O-right cancellative semigroup with left local units,

then for s € S\{0}, we denote by s the unique idempotent such that ss = s.

We remind readers that S satisfies the (LC) condition if for any a,b € S there
exists ¢ € S such that Sa n Sb = Sc.

We consider the dual of Theorem 7.22 in [5].

Theorem 5.2.7 ([5, Theorem 7.22]). Let T be a 0-right cancellative, left re-
ductive semigroup that is categorical at zero, has left local units and satisfies the
(LC) condition. Then the non-zero elements of the inverse hull are precisely

those elements of the form p;'p; with 5 = t.

Assuming that S embeds into its inverse hull, this describes S as a left I-order.
We want to show that this is obtainable from Ghroda and Gould’s result on left

ample left I-orders, and my re-working, Theorem 5.2.5.

Firstly, we must prove that the semigroup 7" described in Theorem 5.2.7 (which
from now on we shall refer to as T') is left ample. We can do this without using
the (LC) condition.

Lemma 5.2.8. Let S be a 0-right cancellative, left reductive semigroup that is

categorical at zero and has left local units. Then S s left ample.

Proof. We will use Definition 2.3.1 to define a left ample semigroup as a semi-
group where every R*-class contains an idempotent, F(S) is semilattice, and S

satisfies the left ample condition.

Every R*-class contains an idempotent: We need that for every s € 5,
there exists s* € F(S) such that s R* s*. We claim that we can take

s if s # 0,
0 ifs=0.

Obviously 0 is an idempotent that is R*-related to 0.

Now let s be non-zero. By definition, 5 is an idempotent. We will prove s R* s.
Let 2,y € S! such that

Ts5 = Ys.
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We can right multiply s and use 55 = s to obtain
rs = ys.
On the other hand, let z,y € S* such that
rs = ys.
Using §s = s, we can rewrite this as
r5s = Yss.

If this is non-zero, we can use 0-right cancellativity to obtain 25 = ys5. Otherwise,
we have

x55 = y5s = 0.

Since s is non-zero, we have ss = s # 0. Using categoricity at 0, we therefore
obtain

x5 =0 =ys.

Therefore, for all z,y € S, xs = ys if and only if 5 = y5. By definition, this

means s R* s.

Left ample condition: We need that for every a € S and e € E(S),
(ae)"a = ae.
If ae = 0, this is obvious. If ae # 0, then (ae)™ = @e. Therefore
aeae = ae = aee.

Since this is non-zero, we can use O-right cancellativity to give us

E(S) is a semilattice: We will prove this in two parts. These can be found in
Proposition 3.13 and Proposition 3.15 of [5].

(i) Let se S and e € E(S). Then se # 0 implies that se = s.
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Proof. 1f se # 0, then se = see # 0. We can then use 0-right cancellativity to

obtain s = se. O
(ii) Let e, f € E(S). Then e # f implies that ef = 0.

Proof. We prove the contrapositive. Let ef # 0. By (i), we have ef = e. We
right multiply by e to obtain

efe =€’ =e.

Since ef is non-zero we know that e is non-zero. Therefore efe is non-zero.

Therefore fe is non-zero. By (i), this gives us that fe = f.

Since ef = e, we have that Se € Sf. Similarly, fe = f implies that Sf < Se.
Together this gives us that Se = Sf.

We will now prove that ze = x f for all x € S.

Let x € S. Either x € Se = Sforx ¢ Se=Sf. If vt € Se = Sf, then Lemma
211 givesus ze =x =xf. If v ¢ Se = Sf, then Lemma 2.1.1 gives us xe # x
and zf # x. We apply (i) to obtain ze = 0 = xf.

Thus ze = xf for all x € S. We apply left reductivity to obtain e = f. m

From (ii), we easily get commutativity of idempotents. Let e, f € E(S). If
e=f,thenef =e?>= fe. Ife# f, thenef =0 = fe, by (ii). O

Since we see that T is a left ample semigroup with the (LC) condition, we should
be able to apply Theorem 5.2.5 directly. However, due to the broad use of the
term ‘inverse hull’, it is perhaps prudent to check that the definition of inverse

hull of T" is the same in each paper first.

Ghroda and Gould’s [10] definition of the inverse hull of a left ample semigroup

is defined in Section 2.3, but copied here for convenience. We define
po:Tat — Ta, s— sa.

In [10], Ghroda and Gould define the inverse hull of a left ample semigroup as

the inverse subsemigroup of Zr generated by T'p, where

p: T —1Ip, a— p,.
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Clearly p, maps zero to zero. Since T is categorical at zero, p, maps only zero
to zero, as we now show. Let sa™ € Ta™ be non-zero and suppose (sa™)p, = 0.
That is,

sata = 0.

+

Since sat is non-zero, a® is non-zero. By our definition of T, a is non-zero

and ata = aa = a is non-zero. Since sa™ is non-zero and a*a is non-zero, by

0-categoricity, sata is non-zero leading to a contradiction.

Since p, maps only zero to zero, we can consider p, as p, : Ta*\{0} — T'a\{0},
without changing the structure of the inverse hull. Note that T'a*\{0} = T'a\{0}.

We now consider the definition of the inverse hull in [5]. As before, we use the
dual definitions. Let
F,={xeT|xa+0}

and
E, = Ta\{0}.

We define

0,: F, > E,, s~ sa.

In [5], Exel and Steinberg define the inverse hull of a 0-right cancellative semi-

group as the inverse subsemigroup of Zr generated by 70, where

0:T—1Ipr, a—0,.

We will prove that these two definitions are equal by showing that 6, = p, for

all @ € S. We start with their domains.

Lemma 5.2.9. Let T be 0-right cancellative, categorical at 0, and have left local
units. Then x € F, if and only if v € T'a\{0}.

Proof. Let x € F,. That is let x € T such that xza # 0. Therefore
raa = xa # 0.
We use O-right cancellativity, to obtain

za =z # 0.
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Therefore z € T'a\{0}.
Conversely, let x € Ta\{0}. Therefore,

r = sa # 0,

for some s € T. Therefore

Tra = saa

We know that sa # 0 and aa = a # 0. Therefore, by 0-categoricity,

ra = saa # 0, and so x € F,,. O

Given that the domains of 6, and p, are equal and the mapping is the same,

this gives us 6§, = p, for all a € S.

We can now apply Theorem 5.2.5 to T" to obtain Theorem 5.2.7. Note that the
fact that s and ¢ can be chosen such that 5 = ¢ is exactly due to the fact that
left ample left I-orders are always straight (Lemma 5.2.4).



Chapter 6
Right ample straight left I-orders

In this chapter, we characterise right ample and two-sided ample left I-orders.
Note that right ample left I-orders are in no way dual to left ample left I-orders,

as the dual of left ample left I-orders is right ample right I-orders.

Section 6.1 is devoted to the proof of Theorem 6.1.3, which gives necessary and
sufficient conditions for a right ample semigroup to be a straight left I-order

embedded into its semigroup of straight left I-quotients as a (2,1)-algebra.

In Section 6.2, we use Theorem 6.1.3 to prove Corollary 6.2.1, which gives a
necessary and sufficient condition for an ample semigroup to be a left I-order

embedded into its semigroup of left I-quotients as a (2,1,1)-algebra.

6.1 Right ample straight left I-orders - the gen-
eral case

This section is dedicated to the proof of Theorem 6.1.3, which gives necessary

and sufficient conditions for a right ample semigroup to be a straight left I-order

embedded into its semigroup of straight left I-quotients as a (2,1)-algebra. We

begin with the following useful lemma, which is the dual of Lemma 2.3.3.

Lemma 6.1.1. Let S be a right ample semigroup. Then for all a,b,xz € S:
(1) bb* = b;
(ii) (ab)* = (a*b)*;

95
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(i1i) x(bx)* = b*x; and
(iv) b* = (ab)* if and only if b = a*b.

In order to apply Theorem 4.2.1, we must find <,¢ and the associated meet.

Lemma 6.1.2. Let S be a right ample semigroup embedded as a unary semigroup

into an inverse semigroup Q. Then for all a,b,c,x € S,

(1) a <gq b if and only if a* = a*b* if and only if a <+ b;
(ii)) Lo N Ly = L. if and only if ¢* = a*b*; and

(111) Lo N Ly = Lyq if and only if ab* = z*a.

Proof. Since S is embedded in () in such a way that * is preserved, we have that

for all a € S, a* = ata.

(i) Since a L@ a* for all a € S, we have that a < ¢ b if and only if a* < ¢ b*.
By Lemma 2.1.5, a* <, b* if and only if a* </« b*, which is equivalent to

a <gx b, since a L* a* for all a € S. By Lemma 2.1.3, a* < ¢ b* if and only

*

if a* < b*, which is equivalent to a* = a*b*, since idempotents commute

in a right ample semigroup.
(i) Lemma 2.2.8 gives the result.

(i) Let Ly, A Ly = Ly, . Therefore, by (ii), we have a*b* = (za)*. Then, using
Lemma 6.1.1 (i) and Lemma 6.1.1 (iii),

ab* = aa*b* = a(zra)* = z*a.
On the other hand let ab* = z*a. Then, using Lemma 6.1.1 (ii),

and so by (ii), we have L, A Ly = Ly, .

We now introduce the main theorem of this section.
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Theorem 6.1.3 (Right Ample Straight Left I-Orders). Let S be a right ample
semigroup and let R’ be a binary relation on S. Then S has a semigroup of
straight left I-quotients, @), such that S is embedded in Q) as a unary semigroup
and R? n (S x S) = R if and only if R’ is a left compatible equivalence relation
such that S satisfies Conditions (A1) - (A3).

(A1) For all a, € S, there exists v,6 € S such that yR'6 R' 6 = vya and
af* = ~v*a.

(A2) For all a, B,y € S, yaR'vf implies that v*a R’ v*5.

(A3) R' < R*.

Proof. We consider the forward implication first. Let S be a right ample straight
left I-order in @, such that S is embedded in ) as a unary semigroup, and let
R' =R?n (S x S). We know that R’ is a left congruence and that therefore
yaR'vB implies that v 'yaR' v~ 1v8, so (A2) is satisfied. Using Theorem
4.2.1, we know that (M1) and (M4) are satisfied, which are exactly (A1) and
(A3) respectively, using Lemma 6.1.2 (iii).

We will prove the converse by proving each property in Theorem 4.2.1 with
<; = <g«. Using the fact that a £* a* for all a € S, along with Lemma 2.1.3 and

Lemma 2.1.5, this means that a <; b if and only if a*b* = a*, for a,b,€ S. Note

that £ = L£*. We already know that </« is a right compatible preorder.

By Lemma 2.2.9, we know that L*. A Lj, = L¥;,«. Therefore, using the fact

that there is a unique idempotent in each L£*-class, we have that

LY A Ly = L if and only if ¢* = a™b*.

a c

We will now prove (M1) - (M6) with <; = </« in order to satisfy the conditions
of Theorem 4.2.1.

(M1) Let o, 8 € S. Applying Property (Al), there exists v,d € S such that
YR OR' 6 = ya and af* = y*a. We can use Lemma 6.1.1 (ii), along
with af* = v*a to obtain
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Therefore L7, A L= L7,

(M2) Let L; A Lj = L*. Then v* = a*4*. Also, let § € S. We use

Lemma 6.1.1 (iii) twice, to get
Iad)*(B)* = a™6(B0)* = a*[%0.
Therefore, using Lemma 6.1.1 (ii),
(@*f70)* = (6(ad)*(B0)%)" = (0%(ad)*(B0)*)" = 0%(ad)*(Bd)*.  (6.1)
Also, since o <; § which we will prove shortly in (M3), we have that
3 (ad)* = (ad)™. (6.2)
Lastly, using Lemma 6.1.1 (ii),
(v0)" = (v*0)" = (" f%0)". (6.3)
Putting all this together,
(v6)" & (a3 2 5% (06" (80)" 2 (a0)*(85)"

which gives us that Lgs A Lg; = L;.
(M3) By definition, we know that a8 < 5.
(M4) This is Property (A3).

(M5) Let y R va L* v and let § R’ 65 L* f. We have that yv* = 7R’ ya. There-
fore we can use Property (A2) to obtain v* = v*y* R’ v*a. We also have
that yo L* «, and so (ya)* = a*. By Lemma 6.1.1 (iv) this is equivalent
to a = v*«. Similarly 0* R’ 6*5 and 8 = 0*f.

Let v £* 6, and so v* = §*. Therefore a = v*aR'v* = §* R/ §*5 = (.

Conversely, let a R’ 5. We see that v* R v*a = aR' f = §*F R’ 6*, and
therefore using (A3), v* R*d§*. We know from Lemma 2.1.4, that since
E(S) is a semilattice, there can only be one idempotent in each R*-class,

and so v* = 0*.
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(M6) Let a L* 5 L* vy L* B and let ya = yB. We have that

a* =" = (ya)* = (v4)",

and so we can use Lemma 6.1.1 (iv) to give us that @ = v*« and g = *f.
We then use the fact that v £L*v*, to give us that ya = «f implies that
v*a = v*, and therefore a0 = .

Therefore, S with <; = </« satisfies the conditions of Theorem 4.2.1 and we
can apply Theorem 4.2.1 to give us that S has a semigroup of straight left
I-quotients, @, such that RN (SxS) = R and <o N (SxS) = <. Therefore
LA (S x8)= L

Let a,b € S. We have that a* = b* if and only if a £*b, which we see is true

exactly when a='a = b~'bin Q). Therefore * is preserved. That is, S is embedded
in @ as a (2,1)-algebra. O

6.2 Two-sided ample left I-orders

Now we consider the two-sided ample case, where S is both right ample and left
ample. If S is embedded in @) such that © and * are preserved, then by Lemma
2.3.4 and its dual, we have that RY n (S x S) = R* and LY n (S x S) = L*.
That is, a R9b if and only if a* = b" and a L9 b if and only if a* = b*, for
a,beS.

Corollary 6.2.1 (Two-sided ample left I-orders). Let S be a two-sided ample

semigroup. Then S has a semigroup of left I-quotients such that © and * are

preserved if and only if for all b,c € S, there exists u,v € S such that

ub = ve, ut =0T = (ve)*, be* = ub. (*)

Note that in this case we get, perhaps, the best possible result, in that the Ore

condition is sufficient to give us our result.

Proof. We first consider the forward implication. Let S be a two-sided ample

semigroup with a semigroup of left I-quotients, @, such that * and * are pre-
served. We know that a R®b if and only if a™ = b* and « £9b if and only
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if a* = b*. By Lemma 5.2.4, we know that S is straight in (). Therefore, by
Theorem 6.1.3, Property (A1) is satisfied. Therefore (%) is satisfied.

For the backward implication, we aim to apply Theorem 6.1.3 with R’ = R*.
That is, a R’ b if and only if at = b". Note that this is a left congruence. We
now prove Properties (A1) - (A3).

(A1) Satisfied by (*).

(A2) Let xaR* xb. This means
(za)™ = (xb)™.

We apply Lemma 2.3.3 (ii) to get

Right multiplying this by x gives us
(za™) Tz = (b)) "
We then apply the left ample property to give us
rat = xb".
By the definition of £*, we know that x L* x*. Therefore, the above equa-

tion implies that
*a* .

¥a" =1
Therefore, applying * to both sides, we have
(z*a™)" = (z*b")".
Then, Lemma 2.3.3 (ii) gives us
(z%a)" = (z"b)",
and so z¥a R* x*D.

(A3) R/ = R*.
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Therefore, Theorem 6.1.3 gives us that S has a straight left I-order, (), such that
* is preserved and R? n (S x S) = R*. Therefore, by Lemma 2.3.4, ™ is also

preserved. O



Chapter 7

Straight left I-orders that

intersect every R-class

In this chapter, we characterise straight left I-orders, S, with semigroups of

straight left I-quotients, (), such that S intersects every R-class of ().

We know that every straight left I-order, S, intersects every L-class of any
semigroup of straight left I-quotients, (). By insisting that S also intersects every
R-class of (), we are asking that S and () have an even stronger relationship.
This can lead to new results. We have already witnessed some examples of this
in the preceding chapter, as a right ample straight left I-order, S, embedded as

a unary in its semigroup of straight left I-quotients, @), intersects every R-class
of ().

Section 7.1 is devoted to the proof of Theorem 7.1.3, which gives necessary and
sufficient conditions for a semigroup, S, to have a semigroup of straight left

I-quotients, @, such that S intersects every R-class of ().

In Section 7.2, we use Theorem 7.1.3 to prove Proposition 7.2.1, which gives
necessary and sufficient conditions for a left ample semigroup, S, to have a

semigroup of left I-quotients, @), such that S intersects every R-class of Q).

In Section 7.3, we use Theorem 7.1.3 to prove Proposition 7.3.1, which states
that if a semigroup S is both a straight left I-order and a straight right I-order,
then its semigroups of I-quotients are isomorphic if and only if their R and £

relations restricted to S are equal.

102
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7.1 Straight left I-orders that intersect every

R-class - the general case

This section is dedicated to the proof of Theorem 7.1.3, which gives necessary
and sufficient conditions for a semigroup, S, to have a semigroups of straight left
[-quotients, @, such that S intersects every R-class of (). We will start with an
important property of straight left I-orders that intersect every R-class of their

semigroups of straight left I-quotients.

Lemma 7.1.1. Let S have a semigroup of straight left I-quotients, (). Then S
intersects every R-class of Q if and only if for all x € S, there exists a € S such
that x RC za L9 a.

Proof. Let S be a subsemigroup of an inverse semigroup () such that .S intersects
every R-class of (). Let z € S. Since () is an inverse semigroup, we have that
27! e ). Since S intersects every R-class of @Q, there exists an a € S such that
aR® 27!, By Lemma 3.3.3, we have x R¥ za L? a.

Now let S have a semigroup of straight left I-quotients, @), such that for all
x € S, there exists a € S such that s R®zaL%a. Let ¢ € Q. Since Q is a
semigroup of straight left I-quotients, there exists x,y € S such that ¢ = 271y,
with  R? y. We have that

1

qq ' =ayy ! !

r=2x "T.

By our assumption, for every x € S, there exists a € S such that 2 R za L% a.
By Lemma 3.3.3, this means that ¢ R? 2~'. Therefore, there exists an a € S
such that a R? 27! R? ¢q. Therefore, S intersects every R-class of Q. O

We will be using Theorem 4.3.5 in this section, so we need to understand the U
relation from Section 4.3 in this context. Note that although we will be using the
U relation as a tool in the proof of Theorem 7.1.3, it will not appear explicitly
in the statement of Theorem 7.1.3. We remind the reader that i/ is a ternary

relation on an inverse semigroup, (), which can be defined as

(b,c,u) e U? if and only if utu = be b,
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Given that S is a subsemigroup of inverse semigroup, (), with S intersecting

every R%-class, we can give U restricted to S in terms of R? and LY.

Lemma 7.1.2. Let S be a subsemigroup of inverse semigroup, @), such that S
intersects every R-class of Q and let b,c,u € S. Then (b,c,u) € U if and only

if there exists m € S such that
cRYem L9m and wR? ubm LY bm.
In this case we will say that m witnesses (b, c,u) € U%.

Proof. Let (b,c,u) € U?. Since c € S, we have ¢! € Q. Therefore, using the
fact that S intersects every R-class of (), we know that there exists an m € S
such that m R9 ¢!, so that mm ™ = ¢~ 'c. By Lemma 3.3.3, this gives us that
cRY em L9 m. By applying (b, ¢, u) € U?, we get

ulu = betebt = bmm ot = (bm) (bm) L

Therefore bmR?u~!, and we can apply Lemma 3.3.3 again, to obtain
u R ubm L bm.

Conversely let
cRPem L9 m and uRE ubm L2 bm.

We apply Lemma 3.3.3 to both expressions to obtain m R? ¢~! and bm R¥ v,
Therefore

uwtu = (bm)(bm)™t = bmm b = be b,

and so (b, c,u) € US. O

We now introduce the main theorem of this chapter.

Theorem 7.1.3 (Straight Left I-Orders that Intersect every R-class). Let S be
a semigroup and let R and L' be binary relations on S. Then S is a straight left
L-order in an inverse semigroup Q with RN (SxS) =R’ and L2 (SxS) = L’
such that S intersects every R-class if and only if R’ is a left congruence, L'
is a right congruence, and S satisfies the Conditions (R1) - (R6).
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(R1) For all o, € S, there exists v,9,m € S such that

YR OR 68 =~va, BR Bm L' m and v R yam L am.

(R2) For all a € S, there exists v € S such that y R ya L «.
(R3)(r) For all o, 5,v€ S, aR afy implies that a R’ af5.
(R3)(1) For all o, B,y € S, afy L'~ implies that By L .

(R}) R' < R*

(R5) Let v, 5,7, € S such that y R ya L' and S R' 65 L' 5. Then v L' § if and
only if a R' 3.

(R6) For all o, ,v€ S, a L' B L ya =0 implies that o = 5.

Proof. We begin with the forward direction. Let S be a straight left I-order in an
inverse semigroup @ that intersects every R%?-class and let R’ = R? n (S x S)
and £ = L2 n (S x S). Obviously R’ is a left congruence and £’ is a right
congruence. Now we prove (R1) - (R6). Note that, by Theorem 4.3.5, we know
that Properties (U1) - (U11) are satisfied with U’ =U? n (S x S x S).

(R1) Using Lemma 7.1.2, this is (U1).

(R2) Applying (U1) to « twice, there exists v € S such that («, a,7y) € U'. By
U2), this means that v R ya L' «.
( TRy

(R3)(r) By definition of <re, we know that
afy <re af <ge a.

Since R¥ is the equivalence relation associated with <zq, we can use the
anti-symmetric property of <z on R-classes to give us that a R oy
implies that a R¥ af.

(R3)(1) Dual of (R3)(r)
(R4) (U9)

(R5) (U10)
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(R6) (U11)

We now consider the converse. Let S be a semigroup and let R’ be a left con-
gruence on S and £’ be a right congruence on S such that S satisfies Conditions
(R1) - (R6). Note the special application of (R5), in which v = § or a = 3,

which will be used.

We define U’ to be the ternary relation on S given by (b, ¢, u) € Y’ if and only if

there exists m € S such that
cR' 'em L'm and uR ubm L bm.

Our aim is to apply Theorem 4.3.5. The following lemma will give us some

useful shortcuts for this proof.

Lemma 7.1.4. Let S be a semigroup with a left congruence R', and a right
congruence L', such that S satisfies (R1) - (R6). Then, for all a,b,z,y € S,

(i) xR 'za L' a and aR'b implies that xR’ b L' b;
(1)) xR ' za L a and x L'y implies that y R' ya L a;
(111) aR'b and xa L' ya implies that xb L' yb.

Proof. (i) Let a,b,x,y € S such that x R’ za L' a and aR’'b. Using the fact
that R’ is a left congruence, we know that aR’'b implies that za R’ xb.
Therefore x R’ xa R’ xb.

By (R2), there exists y € S such that y R yb L' b. By (R5), we know that
a R’ b implies that x £ y. Using the fact that £’ is a right congruence, we
know that x £y implies that xb L' yb. Therefore xb L yb L'b.

Putting these two together, we have xR’ b L'b.

(ii) Let a,z,y € S such that 2 R’ za L a and x L'y. Using the fact that £ is
a right congruence, we know that x £’y implies that xa £ ya. Therefore
ya L' ra L a.
Implicitly, by Property (R1) with § = y, there exists b € S such that
yR' ybL'b. By (R5), we know that x Ly implies that a R'b. Using the
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fact that R’ is a left congruence, we know that a R’ b implies that ya R’ yb.
Therefore y R yb R’ ya.

Putting these two together, we have y R’ ya L' a.

(iii) Let a,b,z,y € S such that a R’'b and za L' ya. Applying (R1) to za and

ya, there exists w, z, m € S such that
wR' 2R zya = wra, ya R yam L' m and wR wxam L zam.

Using ya L' za, (ii) gives us that za R’ xam L' m. We then use za R’ zam
and (i) to obtain
wR wra L za. (7.1)

We can then use the fact that ya £ xa L wzra = zyaR' z, to get
2R zya L ya. (7.2)

Since R’ is a left congruence, a R’ b implies that both xa R’ xb and ya R’ yb.
We can therefore apply (i) to both (7.1) and (7.2) to get

wR wrb L zb and 2R zyb L yb.

Using a R’ b, Property (R4) gives us that zya = wzxa implies that zyb =
wxb. Therefore xb L wxb = zyb L yb.

O

We now have the tools to prove (Ul) - (Ull) with with R’ = R’, £’ = £ and
u=u.

(U1) True by (R1) and the definition of ¢/’
(U2) Let (8,5, «) € U'. Therefore, by definition, there exists m € S such that
BR Bm L m and aR afm L' Bm.

By Lemma 7.1.4 (i), we can use the fact that 3R’ fm to give us that
aR aB L' 5.
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On the other hand, let « R’ a5 £’ 8. Implicitly, by (R1), there exists m € S
such that SR fm L' m. By Lemma 7.1.4 (i), we can use the fact that
BR' pm to give us that a R’ apm L' fm. Therefore m witnesses (3, 3, «) €
u'.

(U3) Let (o, 8,7) €U’ and (d,¢,5) € U'. Then there exists m,n € S such that
BR fmL m and v R vam L am

and
eR'enL'n and BR' BonL dn.

Using (R5), we know that 5 L' 5 implies that m R’ on. Therefore, using the
fact that R’ is a left congruence, am R’ adn. We can then apply Lemma
7.1.4 (i) to YR yam L am to obtain ¥R’ yadn L adn. Therefore, since
eR'en L' n and v R’ yadn L' adn, we see that n witnesses (ad, €,7v) € U'.

(U4) Let (aB,7,0) e U’ and af L' B. Therefore there exists an m € S such that
YR ym L' m and 6 R dafBm L afm.

Using the fact that £’ is a right congruence, af L' implies that
afm L' fm. We apply (R3)(r) to 0 R dafm to obtain daR’ jafm.

Putting these two facts together, we have
YR ym L' m and daR' dapm L fm.

Therefore m witnesses (3,7, da) e U'.

(U5) Let (o, 8,v) e’ and S L. Then there exists m € S such that
BR pm L m and vR vam L am.

We apply Lemma 7.1.4 (ii) to 8 R’ Bm L' m to obtain 6 R’ ém L' m. There-

fore m witnesses (a, d,7v) € U'.

(U6) Let (o, 8,7v) € U’. Then there exists m,n € S such that

BR pm L m and vR vam L am.
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Firstly, let (o, 3,0) € U’. Then there exists n € S such that
BR BnL' n and R dan L an.

We apply (R5) to give us that 5 £’ § implies that m R’ n. Therefore, using
the fact that R’ is a left congruence, we have am R’ an. We then apply
(R5) again to obtain ~y L'J.

Conversely, suppose that ~L'4. Applying Lemma 7.1.4 (i) to
YR vyam L am, we know that ~ L9 implies that dR dam L am.

Therefore m witnesses («, 3,0) e U'.
Let yao = 63 R’ and let («, 3,77) € U'. Then there exists m € S such that
BR pm L m and vR yam L am.
Applying (R1) to 5 and «, we know that there exists p, g, n € S such that
pR qR qo =pB, aR an L' n and pR pBn L pn.

Since R’ is a left congruence, a R’ an implies that ya R’ yan. Therefore,
using ya = 6 and 08 R’ 4, we have that § R’ 66 R’ §5n. Applying (R1)
to ¢ and ~, we know that there exists ¢, j, x € S such that

iR iR jy=1iq, YR vz L x and i R iqx L qz.

Comparing this with v R’ yam L am, we obtain z R’ am by (R5). There-
fore, we have qr R’ qaum by left compatibility. This means we can apply

Lemma 7.1.4 (i) to ¢ R'iqz L qx to obtain i R’ igam L' qam.

Since ga = pf, this means that ipBfm L' pfm. Using SR’ fm, we can
apply Lemma 7.1.4 (iii) to give us ipf L pB. Therefore

Jop = jya = iga = ipB L pp.

Using the fact that £’ is a right congruence, this means that we can right

multiply by n to obtain

joBn L pBn L' Bn.
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Therefore by (R3)(1), d8n L fn. This mean that there exists n € S such
that
aR anl'n and §R' 68n L Bn.

Therefore (5, «,0) e U'.

(U8) Let (af, B,7v) e U’. Then there exists m € S such that
BR Bm L' m and vR vyafm L afm.

Using the fact that R’ is a left congruence, SR’ Sm implies that
af R apm. Therefore by Lemma 7.1.4 (i), we have that

YR vaB L af.

From our proof of (U2), we have already proved that this implies that
(afB,af,y) el

(U9) (R4)

(U10) (Rb)

(U11) (R6)

We can therefore apply Theorem 4.3.5 to give us that S has a semigroup of

straight left I-quotients, @, such that R? n (S xS) =R/, L? n (S x S§) = L/,
and UQ ~ (S xS xS)=U".

Implicitly, by (R1), we can see that for all ¢ € S, there exists an m € S such that
cRPem L m. Therefore, by Lemma 7.1.1, we know that S intersects every
R-class of Q). O

7.2 Left ample straight left I-orders that inter-

sect every R-class

Up until this point we have only been able to tell whether a left ample semigorup

is a left I-order in its inverse hull. We will now provide a new result on left ample
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left I-orders in the case that they intersect every R-class of their semigroup of

left I-quotients.

Proposition 7.2.1. Let S be a left ample semigroup and let L' be a binary
relation on S. Then S is embedded as a unary semigroup in a semigroup of left
I-quotients, Q, such that S intersects every R-class of Q with L' = L? ~ (S x S)
if and only if L' is a right congruence such that S satisfies (L1) - (L4).

(L1) For all o, 3 €S, there exists v,d,m € S such that

yr=6"= (08", 68 =~a, BL m* and v L (am)".

(L2) For all a,7,6 € S, ya L dav implies that yat L' dat.
(L3) L' < L*.

(L4) For all a, 5,y € S, a L' BL va = ~B implies that o = .

We start the proof with this useful lemma.

Lemma 7.2.2. Let S be a left ample semigroup with a right congruence, L',
such that (L2) and (L3) are satisfied. Then x L' a™ if and only if t R* xa L a.

Proof. Let x £ a™. Since £’ is a right congruence, we can right multiply this by
a to obtain

ral'ata = a.
Similarly, we can right multiply by a® to obtain
xat L at.

Therefore

v L a* L' za™ = (va)*z,

using Lemma 2.3.3 (iii) in the last step. Using Lemma 2.3.3 (i), this means that
xtx L' (xa)*z. We can then apply (L2) to this to obtain

" L (xa)TxT.
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Using (L3), this means that % £* (za)*x*. There is only one idempotent in
each L*-class of a left ample semigroup, so x* = (za)Tz". We right multiply

by x and apply Lemma 2.3.3 (iii), to obtain
= (za)tz = za™.

Therefore 27 = (za)*, by Lemma 2.3.3 (iv).

Conversely, suppose that zR*za L’ a. This means that z* = (za)", and
therefore © = za* by Lemma 2.3.3 (iv). We also have zaL'a = a*
Lemma 2.3.3 (). We then apply (L2) to give us that za™ L' ata® = a*.

Therefore

a, using

r=zxa" L a”.

]

We start the proof of Proposition 7.2.1 with the forward direction. Let S be
a left ample semigroup embedded as a unary semigroup in a semigroup of left
[-quotients, (), such that S intersects every R-class of (). By Lemma 5.2.4, we
know that @) is a semigroup of straight left I-quotients. Therefore Properties
(R1) - (R6) are satisfied with R" = R? n (S x S) and £ = L% n (S x S).
Since S is embedded as a unary semigroup in (), this means that a R’ b if and

only if a R* b, which is equivalent to a™ = b*. We will now prove Properties
(L1) - (L4).

(L1) Using Lemma 7.2.2, this is Property (R1).

(L2) Let a,~,d € S such that ya £’ §a, and so ya L2 §a. Using the fact that

1

L? is a right congruence, this implies that yaa™! L% Jaa™!. Since S is

embedded as a unary semigroup in @, we know that aa™! = ot € S.
Therefore ya* L' §a™.

(L3) Since L' = LN (SxS) and Q is an oversemigroup of S, then, by definition,
a L' 5 implies that o L* 3.

(L4) (R6)

We now prove the backwards direction of Proposition 7.2.1. Let S be a left
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ample semigroup with right congruence, £, such that (L1) - (L4) are satisfied.
We take R’ to be R*, i.e. aR'b if and only if a™ = b™.

We aim to apply Theorem 7.1.3. By definition £’ is a right congruence. Since
R = R*, we know that R’ is a left congruence. We must prove Properties
(R1) - (R6). We can prove each of these directly, except for (R3)(1) which is a
little harder. We therefore leave (R3)(1) to the end in order to use the other

properties in the proof.

(R1) Using Lemma 7.2.2; this is (L1).

(R2) Let a« € S. By Lemma 7.2.2, we need an v € S such that v £ a™. We can
simply take v = at.

(R3)(r) Let o, 8,y € S such that a* = (afy)". Using Lemma 2.3.3 (v) gives us
both that (af)*(afv)t = (afy)* and that (af)"at = (af)*. Then,

using at = (afy)" twice, we have
a’ = (afy)" = (af) (aBy)" = (aB)Ta’ = (af)”,
and so a R af.
(R4) R =R*.

(R5) Let «, 8,7,0 € S such that y R ya L'« and 6 R’ 68 L. By Lemma 7.2.2,
this means that v £L'a™ and § L' .

If v£'0, then o™ L' 8. Since £’ < L£*, this implies that o™ £* 1. Since
there is a unique idempotent in each L*-class of a left ample semigroup,

this gives us a™ = g+.

Conversely, if a™ = %, then
vy L ot =3 L.
(R6) (L4)

Property (R3)(1) is a little harder and we will use the next lemma to help us.

Lemma 7.2.3. Let S be a left ample semigroup with a right congruence, L',
such that (L1) - (L4) are satisfied. Then:
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(i) for all a,b,x e S, xR*xaLl a and aR*b implies that x R* xbL'b;

(ii) for all c,m,p,q,v € S, pL'ct, qL'n" and vpcL' qc implies that
vpn L' pn.

Proof.

(i) Let a,b,x € S such that s R*za L' a and aR*b. By Lemma 7.2.2,
x R* xa L a implies that = L' a™*. Since we know that a™ = b*, this means

that = £'b*. We then apply Lemma 7.2.2 again to get the required result.

(ii) Let ¢,n,p,q,v € S such that pL' ct, ¢ L' n* and vpe L' ge. Using the fact
that £’ is a right congruence, p L' ¢* implies that pnt £’ c¢*n® Similarly,

q L' n™ implies that gc™ L ntet. Putting these together gives us
qct L'ntct =ctnt L pn™. (7.3)

Applying Lemma 7.2.2 to p L' ¢t gives us pR* pe, i.e. pt = (pc)*. There-
fore p = pct by Lemma 2.3.3 (iv).

We use (L2) to give us that vpc L' gc implies that vpe™ L' qc*. Using (7.3)

along with p = pct, we see that
vp = vpct L qct L pnt.

We can then use the fact that £’ is a right congruence and right multiply
by n to obtain vpn L pn.

We now prove Property (R3)(1).
(R3)(1) Let afpy L v. By (R2), there exists an x € S such that
xR zafy L afy.

Note that by (R3)(r), we know that xafR'xafy. Therefore, using
afy L' v, we have
zaff R zafy L 7. (7.4)
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We apply (R1) to f and zaf to get that there exists w, v, m € S such that
uR v R vraf =uB, raBR zafmL m and uR ufmL fm. (7.5)

Using (R5), comparing zaf R’ xafm L' m to (7.4), we see that m R’ ~.
Using the fact that R’ is a left congruence, this implies that gm R’ 5.
Therefore, by Lemma 7.2.3 (i), u R ufm L' fm implies that

ul' uBy L' 3. (7.6)

Implicitly, by Property (L1), we know there exists n such that g £ n*. By

Lemma 7.2.2, we know that this means that
BR BnL n.

We aim to prove that
v R veafn L zafn. (%)

We can prove the R’ relation of (%) quite simply. Since R’ is a left congru-
ence, we know that vzaS R vrafn. Since we already know that v R vzas

from (7.5), this gives us v R’ vzafn.

In order to obtain the £’ relation of (), we start by applying Lemma 7.2.2
to (7.4) to obtain zaf L' ~v*. Using vzaf = uf from (7.5) along with
ufy L' pry from (7.6), we have

vzafy = uby L By.

We also note that S L n*. We can therefore apply Lemma 7.2.3 (ii) with
c=7vn=mn,p=uzxab, g=F and v = v to obtain vrafn L xafn.
Therefore (x) is satisfied.

Using the fact that R’ is a left congruence, [SR’[fBn implies that
zaf R xafn. Therefore we can apply Lemma 7.2.3 (i) to (x) to obtain

vR vraf L zap.

Using the fact that £’ is a right congruence, vraf L' raf implies that
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vrafy L zafy. Therefore, using Equations (7.6), (7.5) and (7.4), we have
By L' ufy = vaafy L xaBy L .

We have now proven that S with relations £ and R’ satisfies the conditions
of Theorem 7.1.3. Applying Theorem 7.1.3 we have that S is a straight left
I-order in inverse semigroup @ such that S intersects every R%-class with
RPN (S x S) =R Since R n (S x S) = R*, Lemma 2.3.4 gives us that S is

embedded in () as a unary semigroup.

7.3 Straight left I-orders which are also straight
right I-orders

We are now very familiar with straight left I-orders. A semigroup, S, is a straight
left I-order if there exists an inverse semigroup, (), such that every element of

Q can be written as a~'b, where a,b € S and a and b are R-related in Q.

There is a dual concept of a straight right I-order. We say that a semigroup, .S,
is a straight right I-order if there exists an inverse semigroup, P, such that every
element of P can be written as de™!, where ¢,d € S and ¢ and d are L-related
in P. For every result we have on left I-orders, there is a dual result on right

T-orders.

This section proves that when a semigroup is both a straight left I-order and a
straight right [-order, then its respective semigroups of straight I-quotients are

in fact the same inverse semigroup if their R and L relations are equal.

By saying that two semigroups () and P are isomorphic with respect to a shared
subsemigroup S, we mean that there exists an isomorphism from ) to P, which

is the identity map on S.

Proposition 7.3.1. Let a semigroup S have a semigroup of straight left
I-quotients () and a semigroup of straight right I-quotients P. Then ) =~ P
with respect to S if and only if RE n (S x S) = R n (S x S) and
LA (Sx8)=L?~(Sx89).

Proof. The forward implication is obvious. If ¢) and P are isomorphic with
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respect to S, then their Green’s relations restricted to S will be equal.

We now consider the backwards direction. We define
R=R'NnSxS=RP~nSxS

and

L=L"SxS=L~SxS6S.

For a € S, we use a~! to denote the inverse of a in P, and a' to denote the
inverse of a in ). By saying that an element dc=! of P is in standard form, we
mean that c,d € S such that ¢£'d. By saying that an element ab of @ is in

standard form, we mean that a,b € S such that a R'b.

By the dual of Lemma 3.1.3, we know that S intersects every R-class of P. Let
x € S. Since 27! € P, we know that there exists an a € S such that a RF 27!
in P. By Lemma 3.3.3, this implies that 2 R'xa L' a. Since R’ and L' are
also both restrictions of relations on (), this means that for all x € S, there
exists a € S such that  R®xa L? a. Therefore S intersects every R-class of
@ by Lemma 7.1.1. We can therefore apply Theorem 7.1.3 to give us that S
satisfies Properties (R1) - (R6). Dually, S also intersects every L-class of P, and
therefore we can apply the dual of Theorem 7.1.3 to give us that S satisfies the
duals of Properties (R1) - (R6), which we label (R1)" - (R6)’.

We want to construct an isomorphism from P to (). Let dc™! be an element
of P in standard form. Applying (R1) to d and ¢, we have that there exists
a,b,m € S such that

aR' bR bc =ad, cR ' em L' m, and aR adm L' dm.

We apply Lemma 7.1.4 (ii) to d £'¢ and ¢R'em L' m to obtain d R dm L m.
We can then apply Lemma 7.1.4 (i) to dmR’'d and a R’ adm L' dm to obtain
aR adL'd.

To summarise, we know that for all d, c € S such that d L' ¢, there exists a,b e S

such that a R’ b, ad = be and a R ad L' d.

We will define 0 : P — Q. Let de™! be an element of P in standard form. We
define 6 as
(de™1)0 = a'b,
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where

aR'b, ad =bc and aR ad L' d. (7.7)

Note such an a and b exists in S by above. Also, since a R'b, a'b is an element

of @) in standard form. We will now prove that 6 is an isomorphism.
0 is well-defined:

Let de! be an element of () in standard form, and let
(de™)8 = a'b and (de™)0 = plq.
By definition, this means that
aR'b, ad = bc and aR ad L'd, (7.8)

and that
pR q, pd = gc and pR pd L d. (7.9)

We want that a'b = pfq in Q. By Lemma 3.3.4, this is true if and only if there

exists x,y € S such that

xa = yp, b =vyq, xR va L a, and yR yp L p. (7.10)

Applying (R1) to a and p, we have that there exists x,y, m € S such that
2R yR yp =za, pR'pm L' m and xR xzam L am. (7.11)

Using property (R5), we can compare pR'pm L m from (7.11) to pR' pd L' d
from (7.9), to obtain mR'd. Using the fact that R’ is a left congruence, we
have that m R’ d implies that am R’ ad R’ a, using (7.8) in the last relation. We
can then apply Lemma 7.1.4 (i) to am R’ a and z R’ zam L am from (7.11), to

obtain x R za L a.

We can apply (R5) to a R’ ad L' d from (7.8) and p R’ pd L' d from (7.9) to obtain
aL'p. We use this, along with x Ry and xa = yp from (7.11), to see that
xR xa L a implies that y R yp L p.

Lastly, since xa = yp, we can right multiply by d, to get xad = ypd. Using
ad = bc and pd = qc, this gives us zbc = yqc. We then right multiply in @) by
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¢!, to obtain
wbec’ = yqect. (7.12)

From (7.8), we have that bR’ a R’ ad = bc. Therefore, by Lemma 2.2.3, we have
that b = bee!. Similarly, (7.9) implies that ¢ R’ ge. Therefore, by Lemma 2.2.3,

we have that ¢ = gec’. We apply these two facts to (7.12) to obtain that zb = yq
in both ) and S.

Therefore, we see that (7.10) is satisfied and therefore 6 is well-defined.
0 is a homomorphism:

Let dc™! and kj~! be elements of P in standard form, and let
(de™1)0 = a'b and (k57160 = hli.

By definition, this means that

aR'b, ad = bc and aR ad L' d. (7.13)
and that
hR'i, hk =ij and h'R'hk L k. (7.14)
We want to prove that
((de™)(kj™1))0 = (de™)0(kj™")0 = (aTb)(hTi). (7.15)

Applying (R1) to b and h, we have that there exists z,y, m € S such that
xR yR yh = xb, hR' hm L' m and xR xbm L bm. (7.16)

Using Property (R5), we can compare h R' hk L'k from (7.14) and h R' hm L m
from (7.16), to obtain m R’ k. Using the fact that R’ is a left congruence, m R’ k
implies that bm R’ bk. Applying Lemma 7.1.4 (i) to bm R’ bk and x R’ xbm L' bm
from (7.16), we obtain

xR’ xbk L' bk. (7.17)

Considering (7.16), we see that (b, h,x) € U? by Lemma 7.1.2. Since we also
have x R'y and xb = yp, we can apply Lemma 4.3.2 to obtain bh' = 2Ty in Q.
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Therefore, in @,
(a'b)(hi) = ' (bh1)i = ol (2Ty)i = (za)T (yi). (7.18)

Note that since R’ is left compatible, a R’ b implies that za R’ xb and h'R'i
implies that yh R’ yi. Therefore, using the fact that xb = yh from (7.16), we
have

raR zb = yhR yi. (7.19)
And so, (za)'(yi) is an element of @ in standard form.

By applying the dual of (R1) to ¢ and k, we know that there exists v,u,n € S
such that
vL uLl' ku=cuo, nR' ncL' ¢ and nkR nku L u. (7.20)

Using bR’ a, ad = be, and ¢ L' d, a R" ad L' d implies that bR’ be L' ¢. Therefore,
by (R5), bL n. Since £’ is a right congruence, b L' n implies that bt L' nt. We
can then apply Lemma 7.1.4 (ii) to nt R’ ntu L' u from (7.20) to obtain

bk R bku L' u. (7.21)

Considering (7.20), we see that (c, k,v) is in the dual of U by the dual of Lemma
7.1.2. Since we also have u £ v and ku = cv, we can apply the dual of Lemma
4.3.2 to obtain ¢ 'k = vu~! in P. Therefore, in P,

(de™)(kj™") = d(c™ k)i~ = d(vu)j ™" = (dv)(ju) " (7.22)

Using the fact that £ is right compatible, we see that d £’ ¢ implies that dv £ cv
and k £’ j implies that ku L' ju. Therefore, using cv = ku from (7.20), we have

dv L' cv = kuLl' ju. (7.23)

Therefore (dv)(ju)™! is an element of P in standard form.

Consulting (7.18) and (7.22), we see that (7.15) is satisfied if and only if

((dv)(ju)™") 0 = (va)’(yi).
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By definition, this is true if and only if
raR yi, vadv = yiju and za R’ xadv L' dv. ()

We already know that xa R’ yi from (7.19).

Using ad = be from (7.13), b = yh from (7.16), cv = ku from (7.20), and
hk = ij from (7.14), we see that

xadv = xbcv = yhku = yiju.

Using bk L' xbk from (7.17), we can apply Lemma 7.1.4 (ii) to bk R’ bku L' u from
(7.21) to get
xbk R’ xbku L u.

Using zb = yh from (7.16) and hk = ij from (7.14), we have zbk = yhk = yij

Therefore, we can rewrite the above equation as
yij R yiju L u. (7.24)

From (R3)(l), we know that yiju £ u implies that ju £ u Using the fact that
R’ is a left congruence, i R'ij from (7.14) implies that yi R’ yij. Therefore, we

can use the relations in (7.24) to obtain
yi R yiju L' ju.

Sinc za R yi from (7.19), dv L' ju from (7.23), and zadv = yiju, the above
equation implies that
raR zadv L dv.

Altogether, this gives us (x). Therefore (7.15) is satisfied and 6 is a homomor-
phism.

0 preserves elements of S:

Let s € S. We can write s as an element of P in standard form as (sa)a™?,
where a € S such that s R’ sa L a. We know that such an a exists by the dual

of Lemma 4.2.3 (i).

Similarly, we can write s as an element of @ in standard form as z(xs), where
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x € S such that t R zs L' s. We know that such an « exists by Lemma 4.2.3 (i).

In order to prove that 6 preserves elements of .S, we need that

(sa)a™)0 = ()" (ws),
which is true if and only if
rR'xs, xsa = xsa and xR xsa L sa. (7.25)

We already know that z R’ zs and that xsa = zsa. Finally, since s R’ sa, we can
apply Lemma 7.1.4 (i) to a R zs L' s to get * R’ xsa L' sa. We have therefore

satisfied (7.25), and so 6 preserves elements of S.
0! is a well-defined homomorphism:

We define ! : Q — P from elements of @) in standard form to elements of P
in standard form. Let a' be an element of () in standard form. Then we define
(a'h) 0! = dc™!, where

dL'c, ad = bc and aR ad L' d.

It is obvious that #~! is the inverse of 6.

By the exact dual of everything we have done so far, we know that d and c exist

and that 6! is a well-defined homomorphism.

Therefore 0 is surjective and onto, and therefore an isomorphism. O



Chapter 8

Left I-orders with totally

ordered idempotents

In this chapter, we consider semigroups of left I-quotients, (), with totally ordered
idempotents, that is, for every e, f € E(Q), either e < f or f < e, using the

natural ordering of idempotents. In this case, we say that E(Q) forms a chain.

In Section 8.1, we consider the most general case of semigroups of left I-quotients
with totally ordered idempotents. We prove Theorem 8.1.3, which gives neces-
sary and sufficient conditions for a semigroup S to be a left I-order in an inverse

semigroup with totally ordered idempotents.

In Section 8.2, we investigate left I-orders in inverse w-semigroups. We find
necessary and sufficient conditions for a semigroup to be a left I-order in an
inverse w-semigroup, along with the three special cases of inverse w-semigroups:

no kernel, simple and proper kernel.

8.1 Left I-orders in inverse semigroups having
totally ordered idempotents - the general

case

The aim of this section is to find necessary and sufficient conditions for a semi-

group S to be a left I-order in an inverse semigroup with totally ordered idem-

123
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potents.

Lemma 8.1.1. Let QQ be an inverse semigroup with totally ordered idempotents.

Then <, and < are both total preorders.

Proof. Let z,y € Q. We know that 27 'z L9z and y~'y L9 y. Since z~'z and
y~ 'y are idempotents and @ has totally ordered idempotents, either 2!z < y~ 'y
or y ly < 7'z, Without loss of generality, let x7 1z < y~'y. By Lemma 2.1.3,

this implies that 7'z <,q y~'y. Therefore
v LY <poy 'y L,

and so xr <,q y.
The fact that <z is a total preorder can be proved dually. O

Lemma 8.1.2. Let S be a left I-order in Q) with totally ordered idempotents.
Then S is straight in Q).

Proof. By Lemma 3.1.3, S is straight in @) if and only if S intersects every L-
class of (). Let ¢ € Q. Our aim is to prove that ¢ is L-related to some element
of S. Define e = ¢7'q € E(Q). We know that ¢ L9 e. Since S is a left I-order
in @, we have that e = 27y, where z,y € S. By Lemma 8.1.1, <g is a total

order, so either x <z y or y <z .

If x <g y, then by Lemma 2.2.5, we have that yy 'z = 2. Using the fact that

1

e is an idempotent, e™" = e, so we have

e=ee ! = :p_lyy_lx =z .
Therefore e L7 € S.

If y <g x, then by Lemma 2.2.5, we have that xz~'y = y. Therefore

1

e=elte= Yy xx_ly = y_ly.

Therefore e L2y € S.

In either case, S n L, = S n L, # J, and therefore S is straight in Q. m
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We now introduce the main theorem of this section. We denote the equivalence

relation associated with <; by £'.

Theorem 8.1.3. Let S be a semigroup and let R’ and <; be binary relations
on S. Then S is a left I-order in an inverse semigroup with totally ordered
idempotents, Q, such that R% n (S x S) = R’ and <pe n (S x S) =< if and
only if R is a left compatible equivalence relation, <; is a right compatible total
preorder, and S satisfies Conditions (T1) - (T5).

(T1) For all a, 5 € S such that o <; 3, there exists v, € S such that

YRIOR'GB =~va and yva L a.

(T2) For all a, B € S, af <; B.
(T3) R' < R*.

(T4) Let o, 3,v,0 € S such that YR ya L o and 6 R' S L B. Then vL'6 if
and only if a R’ 5.

(T5) For all o, ,v€ S, a L' L ya =B implies that o = 5.

Proof. We start the proof of Theorem 8.1.3 by proving the forward implication.
We assume that S has a semigroup of left I-quotients, (), with totally ordered
idempotents, and we label R? n (S x S) = R’ and <o N (S x S) =<;. From
knowledge of Green’s relations we know that R’ is a left congruence and < is
a right compatible preorder. From Lemma 8.1.1, we know that <; is a total

preorder.

By Lemma 8.1.2, we know that S is straight in (). Therefore, by Theorem 4.2.1,
we know that Properties (M1) - (M6) hold.

We now prove that Properties (T1) - (T5) are satisfied.

(T1) Let o, B € S such that o <; 8. Since (M1) is satisfied, there exists v, € S
such that
YRIOR'OB =~a and L, A Ly =1L,
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Since a <; 3, we have that
L’m =L A LIB =1L,

and so ya L' a.
(T2) (M3)
(T3) (M4)
(T4) (Mb)
(T5) (M6)
This proves the forward implication of Theorem 8.1.3.

We now consider the converse. Let S be a semigroup, R’ be a left compatible
equivalence relation on S, and <; be a right compatible total preorder on S, such
that S satisfies Conditions (T1) - (T5). We will prove that S is a left I-order,
by showing that the relations R’ and <; satisfy the conditions of Theorem 4.2.1.

Firstly, since <; is a total preorder, we have that for all a,b € S either a <; b or
b <; a. This implies that either L/, A L, = L! or L, A L; = Lj, respectively.
Therefore the £'-classes of S form a meet semilattice under the associated partial

order.

Note that since £ is the equivalence relation associated with <, the right com-
patibility of <; implies that £’ is right compatible. We now need to prove
Properties (M1) - (M6).

(M1) Let «, € S. Since <; is a total preorder, either o <; § or 5 <; .

If o <; B, then, by (T1), there exists 7,6 € S such that
YROR OB = ~va and ya L a.

Since a <; 8, we have Lj, n Lj = L;, = L, proving (M1).

If 8 <; o, then, by (T1), there exists d,v € .S such that
SR'YR'~va =683 and 68 L' S.

Since 8 <; o, we have L, n L = L = Lsz = L’ ,, again proving (M1).

Yo
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(M2) Let L, A L = L.. Since <, is a total preorder, either a <; f or 8 < «
Without loss of generality, let o <; 5. Therefore,

L=L, A Ly=1L,

and so v L' «. Since L' is a right congruence, this implies that v L' ad.

Since <; is right compatible, a <; g implies that ad <; 59, and therefore

Los A Ligs = Liys = L.

(M5) (T4)
(M6) (Th)

Therefore, we can apply Theorem 4.2.1 to obtain that S has a semigroup of
straight left I-quotients, @, such that RYn(SxS) = R and <0 n (SxS) =<,.

We now prove that @) has totally ordered idempotents. Let e, f € E(S). Since S
is straight in ), then, by Lemma 3.1.3, we know that S intersects every L-class
of ). Therefore there exists s,¢ € S such that e £ s and f £L?¢. Since <; is a
total preorder on S, either s <; t or t <; s. Without loss of generality, let s <; t.
Using the fact that <o n (S x §) =<, this gives us that

€£QS <raQ tLQf,

and so e <,o f. By Lemma 2.1.3, this means that e < f. Therefore the
idempotents of () are totally ordered. n

8.2 Inverse w-semigroups of left I-quotients

In this section, we consider inverse w-semigroups of left I-quotients. Inverse w-
semigroups are inverse semigroups whose idempotents form an inverse w-chain.
Since an inverse w-chain is a type of chain, the idempotents in an inverse w-

semigroup are totally ordered.
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Ghroda [11] gives necessary and sufficient conditions for a semigroup to have a
bisimple inverse w-semigroup of left I-quotients, extending the result of Gould’s
[15] categorisation of bisimple inverse w-semigroups of left Fountain-Gould quo-

tients.

In this section, we investigate left I-orders in general inverse w-semigroups. In-
verse w-semigroups fall into one of three different types, depending on whether

they have a kernel, and if they have a kernel on whether their kernel is proper.

In Subsection 8.2.1 we give necessary and sufficient conditions for a semigroup to
be a left I-order in an inverse w-semigroup with no kernel. Inverse w-semigroups
with no kernel are a type of Clifford semigroup, so we can easily characterise

left I-orders in inverse w-semigroups with no kernel using Corollary 3.2.12.

In Subsection 8.2.2, we consider left I-orders in general inverse w-semigroups
using Munn’s [24] structure theorem. We prove Theorem 8.2.12, which gives
necessary and sufficient conditions for a semigroup to be a left I-order in a
general inverse w-semigroup. We then do the same for three special cases:
inverse w-semigroups with kernel, simple inverse w-semigroups, and inverse

w-semigroups with proper kernel.

Definition 8.2.1. An inverse w-semigroup, (Q, is an inverse semigroup whose

idempotents form an inverse w-chain; that is,

E(Q) = {e;]|ie N} with ey >e; >ey>....

This is a special case of the previous chapter, since the idempotents are totally
ordered. Therefore, if S is a left [-order in an inverse w-semigroup, ), then S is
straight in @), by Lemma 8.1.2.

Munn [24] provides a structure result for inverse w-semigroups.

Proposition 8.2.2 ([24]). If Q is an inverse w-semigroup then it is one of the
following types:

(1) Q is an inverse w-chain of groups (if Q has no kernel),
(2) Q is a Bruck-Reilly semigroup over a finite chain of groups (if Q is simple),

(3) Q is an ideal extension of a semigroup of Type (2) by a finite chain of
groups (if Q has a proper kernel).
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We consider inverse w-semigroups of left I-quotients of Type (1) in Subsection
8.2.1. We consider inverse w-semigroups of left I-quotients of all types in Sub-

section 8.2.2.

8.2.1 Inverse w-semigroups of left I-quotients with no

kernel

In this subsection, we characterise inverse w-semigroups of left I-quotients of

Type (1) from Proposition 8.2.2.

Figure 8.1: An w-chain of groups

Go

Gy

Corollary 8.2.3. A semigroup S is a left I-order in an inverse w-semigroup with
no kernel if and only if S is an inverse w-chain of right reversible, cancellative

SEMIGroups.

Proof. Let S be a left I-order in an inverse w-semigroup with no kernel, (). By
Proposition 8.2.2, () is an inverse w-chain Y of groups G,, a € Y. By Corollary
3.2.12, S is an inverse w-chain Y of right reversible, cancellative semigroups S,
aeY.

Conversely, let S be an inverse w-chain Y of right reversible, cancellative semi-
groups, So, @ € Y. By Corollary 3.2.12, S is a left I-order in (), an inverse w-chain
Y of groups G, a € Y. By Proposition 8.2.2, () is an inverse w-semigroup with

no kernel. O
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8.2.2 Inverse w-semigroups of left I-quotients - the gen-

eral case

In this subsection, we characterise inverse w-semigroups of left I-quotients. We

start by giving two structure theorems for inverse w-semigroups with kernel.
Theorem 8.2.4 ([24, Theorem 4.11]). A semigroup K is a simple inverse
w-semigroup if and only if K = BR(T,0) for a finite chain of groups, T.
Moreover, if T is a chain of d groups, then the number of D-classes of K is d.
Theorem 8.2.5 ([24, Theorem 2.7]). Let K be a simple inverse w-semigroup
with group of units Go and let C' be a finite chain of groups disjoint from the

non-unit elements of K, with group of units, Gy.

Let Q) = C U K, extending the multiplication of C and K as follows. Let c € C
and x € K. Then

(i) cx = (clo)x,
(ii) xc = x(1pc),

where 1¢ is the identity of Gy.

Then Q 1is an inverse w-semigroup with kernel. Conversely, if Q) is an inverse
w-semigroup with kernel, then @ is isomorphic to a semigroup constructed as

above.

Note that by Theorem 8.2.4, if C' is a group, then Gy € K and () is simple.

This is a very complicated structure, so we devise convenient notation to refer

to a semigroup of this type.

The semigroup w(C,T,0).

Let T be a finite chain of d groups. We label the groups that comprise T' as
Ey, Fy, ..., Fy_1, with Fy the largest and Fy_; the smallest. Therefore T' = dol F,
with associative multiplication satisfying F,,Fjg S Fiax{a, 8} o

Let 6 be an endomorphism on 7" such that 70 < F,. Let K = BR(T,0) be

the Bruck-Reilly semigroup over 7" with respect to . We remind readers from
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Section 2.6 that this describes K as the semigroup K = BR(T,0) = N x T'x N°

with multiplication

(m—=n+p,(a")b,q) if n<p,
(maa>n)(pv b> Q) = (m,ab, Q) if n= p,
(m,a(b0"P),q—p+n) if n>p.

Note that units in K have the form (0, hg, 0), where hg € Fp.

Figure 8.2: A visual representation of w(C,T,0) with k =0

(07 h070) (O7h07 1)

(07 hd—lyo) (Oa hd—h 1)
(1, ho, 0) (1, ho, 1)

(1)hd—170) (]-ahd—l)l)

Let C be a finite chain of k + 1 groups. We label the groups that comprise
Cas G_,G_gyi1,...,G_1,Gq, with G_j the largest and G, the smallest. We
require that Gy is the group of units of K, i.e. Gy = { (0, ho,0) | ho € Fy }. Note

0
that Gy = F. Therefore C = |J G; with associative multiplication satisfying
i=——k
GZ‘G]‘ - Gmax{i,j}-
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Figure 8.3: A visual representation of w(C,T,0) with k # 0

G2

(0, ho, 0)

(07 hd—17 O)

(0, ho, 1)

(Oa hd—17 1)

(17 ho, O)

(17 hd—h 0)

(17 ho, 1)

<1a hd—h ]-)

132
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Then w(C, T, ) is then the union, C'u K extending the multiplication of C' and

K as follows:

(i) giwr = (gilo)z,
(i) g = z(1ogs),

where g; € G;, x € K and 1 is the identity of Gj.

By Theorem 8.2.5, a semigroup is an inverse w-semigroup with kernel if and only

if it is isomorphic to w(C, T, @) for some appropriate C, T, 6.
By Theorem 8.2.4, if k = 0, then w(C, T, ) is simple.

We give some properties of w(C, T, ) in the following two lemmas. These are
proved easily by referring to Lemma 2.2.1 and Lemma 2.2.6. For brevity, we
label elements of F,, with the appropriate Greek letter subscript and elements

of GG; with the appropriate Latin letter subscript.

Lemma 8.2.6. Let Q = w(C,T,0). Then

(1) for all g; € G; and g; € G;, g: R? g; if and only if i = j;

(2) for all g; € G; and (m,hq,n) € K, iR (m, ha,n) if and only if i = 0,

m=0,n=0 and a =0;

(3) for all (m,hq,n),(p,hs,q) € K, (m, ha,n)RQ (p, hs,q) if and only if

m=p and o = (.

Lemma 8.2.7. Let Q = w(C,T,0). Then

(1) for allz e K and ce C, x <pq ¢;
(2) for all g; € G; and g; € G;, g; <o g; if and only if i = j;
(3) for all (m,hq,n), (p,hg,q) € K, (m, ha,n) <o (p,hs,q) if and only if

either n > q or both n = q and o = f3.

Lemmas 8.2.6 and 8.2.7 are stated as they are for convenience, but their duals
also hold.

Recall the bicyclic monoid, B, from Section 2.6. We introduce a generalisation

of this semigroup.
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Definition 8.2.8. We define the semigroup B;. Let d be any positive integer.
Then By is defined by

Bi={(m,n)eB: m=n(modd)},
where B is the bicyclic monoid.

We introduce a homomorphism from simple inverse w-semigroups to By. This
homomorphism is mentioned in [24], but we will show that the semigroup oper-

ation is preserved here for completeness.

Lemma 8.2.9. If Q) is a simple inverse w-semigroup, then there exists a homo-

morphism ¢ from Q) to By for some d.

Proof. By Theorem 8.2.4, we know that Q = BR(T,6). In order to use the
notation we have introduced, we will consider @ as w(Gyg, T, 0), where Gy is the
group of units of K. We will label an element of F, with a subscript a for clarity.

For example, g, is an element of F,.

We define ¢ : Q — By as
(m, ga,n)p = (md + a,nd + ).

We need to prove that this is a homomorphism. Let (m, g, n), (p, hs, q) € Q.

Our aim is to prove that

((m, ga, n) (P, hp; @) @ = (M, o, n) (D, hg, ) - (*)

There are three cases: either n =p, n>p or n <p.

Case 1: Let n = p. Then, by multiplying in the bicyclic monoid,

(M, g, n)O(p, hg, @)¢ = (md + a,nd + a)(pd + 3, qd + B)
= (md + max{a, f}, gd + max{a, 8}),

since n = p implies that max{nd + «, pd + } = nd + max{«, f}. On the other

hand, we have
((m7 Ga, n) <p7 hﬁa Q>) ¢ = (m7 gahﬂa q)¢
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We know that gohg € Fiiax{a,sy- Therefore

(1, gahs, @)¢ = (md + max{a, 8}, qd + max{a, 3}).

This gives us (*).

Case 2: Let n > p. Then

(M, Ga )P, g, @) = (md + a,nd + a)(pd + 3, qd + 3)
= (md+ a,(¢g—p+n)d+ «a),

since n > p implies that nd + a > pd + . On the other hand, we have
((m, 9o, n) (P, b3, 4)) @ = (1, 9a(hsb™ "), ¢ — p + ).
Since T'0 < Fy, we know that g,(hg0"?) € Fiax{a,0y = Fa. Therefore
(m, ga(hgd" P),q—p+n)p = (md+ a,(¢g—p+n)d+a),

giving us (*).
Case 3: Let p > n. This is dual to Case 2.

135

O

We can conclude from Lemma 8.2.9 that H is a congruence on simple inverse

w-semigroups, and the H-trivial semigroups of the form w(Gy, T, ), where T

has length d, are isomorphic to Bj.

We will now do a same thing for all inverse w-semigroups with kernel. We will

see that H is a congruence in this more general case, and that the H-trivial

semigroups of the form w(C, T, ), where C has length k£ + 1 and T has length

d, will be isomorphic to Ay 4, which we define in the following definition.

Definition 8.2.10. We define the semigroup Ay 4 for d a positive integer and

k a non-negative integer.

If k =0, we define Ay 4 = By. If k is positive, we adjoin k new elements to By

to obtain Ay g =By u {(4,))]| —k <j < —1}.

We then define the multiplication over all elements as

(a,b)(c,d) = (a — b+ max{b, c},d — ¢ + max{b, c}).
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This is consistent with the multiplication of B;. In this way, we can consider

both By and Ay, 4 to be subsemigroups of Z x Z under the above multiplication.
Note that for (a,b) € B; and j <0,

((I, b)(],j) = (]7])(avb) = (a>b)'

Lemma 8.2.11. If Q) is an inverse w-semigroup with kernel, then there exists a
homomorphism ¢ from Q to Ay for some positive integer d and non-negative

integer k.

d—1
Proof. By Theorem 8.2.5, we know that ) = w(C,T,0), where T'= ] F, is a
a=0

0
chain of d semigroups and C' = (J G; is a chain of k£ + 1 semigroups.
i=—k

We define ¢ : Q — Ay 4. Since Q = K u C, we can define ¢ piecewise.
Let (m, hq,n) € K. Then

(m, ha,n)p = (md + o, nd + ).
Let g; € G; with —1 < ¢ < 0. Then

We must check that the image of elements of GGy are well-defined, since these
elements are in the intersection of C' and K. Thinking of elements of GGy as
elements of C, ¢ maps them to (0,0) by the above definition. Thinking of
elements of Gy as elements of K, they have the form (0, hg, 0), for some hq € Fy,
and so ¢ maps them to (0d + 0,0d + 0) = (0,0). This gives us well-definedness.

From the proof of Lemma 8.2.9, we know that ¢ restricted to K is a homomor-

phism.

We prove that ¢ restricted to C' is a homomorphism. Let g; € G; and g; € G
and let ¢ = max{i, j}. Then

(9i9)(9;9) = (1,)(4, ) = (&, 1),
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We know that g;g; € G; by the definition of C'. Therefore

(9:95)0 = (t,1).
Finally, let g; € G; and (m, g,,n) € K. Then
Gi® (M, ga,n)p = (i,1)(md + o,nd + o) = (md + a,nd + ).
On the other hand,

gi(m7 gomn) = (gi10)(magaan)'

We know that g;19 € Gy and therefore g;1¢ = (0, hg, 0) for some hg € Fy. There-
fore
gi(ma o, n) = (07 ho, 0) (ma o, TL) = (m7 (hoem)ga, TL) :

Since hof™ € Fy (whether or not m = 0), we have (ho0™)g, € F,. Therefore
(g:(my gayn)) @ = (M, (ho0™)ga,n) ¢ = (Mmd + a,nd + «).

The proof that ((m, ga,n)g;) ¢ = (M, go,n)Pg;¢ is dual. O

We introduce the main theorem of this subsection.

Theorem 8.2.12. A semigroup S is a left I-order in an inverse w-semigroup if

and only if S satisfies the following conditions.

(A) There is a homomorphism ¢ : S — Ay q for some k =0, d > 1, such that,
defining sp = (r(s),1(s)), the image [(S) is infinitely large.

(B) For xz,y,a €S,

(i) l(x),l(y) = r(a) and za = ya implies x =y,

(ii) r(z),r(y) = l(a) and ax = ay implies x = y.

(C) For any b,c € S with [(b) = l(c), there exists u,v € S such that
ub = ve, r(u) =r(v) and l(u) = r(b).

Proof. We start with the forward implication. Let S be a left I-order in an
inverse w-semigroup, (). Either () has a kernel or ) has no kernel. We will deal

with these two cases separately.
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If ) has no kernel, then () is an inverse w-chain of groups, by Proposition 8.2.2.
We label the groups that comprise Q as Gy, G1,Ga, ... with GiGj S Guaxfij}-
For conciseness, we will label an element x with a subscript x; to denote that
x; € G;. We will show that in this case S satisfies Properties (A), (B) and (C).

(A)

(B)

(©)

We define ¢ : Q — B by
xz¢ = (Z’l)a
for z; € G;. Note that r(a) = l(a) for all a € S. Also l(a) = I(b) if and

only if a < ¢ b by Lemma 2.4.4. We show that ¢ is a homomorphism. Let
xT; € Gl and Y; € G] Then

i y; 6 = (i,1)(4,7) = (max{i, j}, max{i, j}).

On the other hand, since G;G; S Guax{i,j}, We know that z;y; € Gaxfijy-

Therefore
(z:y;)¢ = (max{i, j}, max{i, j}).

Therefore ¢ is a homomorphism. We restrict ¢ to S to get a homomor-
phism ¢ : S — B. Note that B = A1, so ¢ is of the correct form. By the
proof of Corollary 8.2.3, we know that S intersects every G;. Therefore
[(S) is infinitely large.

(i) Let x,y,a € S such that I(z),l(y) = r(a) and za = ya. We right
multiply to obtain zaa™! = yaa™'. We know that r(a) = I(a), for all

a € S. This gives us I(z) = r(a) = l(a), and so < a. By Lemma

2.2.6, this means that za 'a = z. Using the fact that a 'a = aa™! in

1

a Clifford semigroup, this gives us xaa™' = z. Similarly, l(y) = r(a)

1

implies that yaa™ = y. Therefore

T =zaa "t = yaa_l =y.

(ii) Dual of (B)(i)

Let b,c € S such that {(b) = I(c). Hence b <,e c. Since S is a left I-
order in an inverse semigroup with totally ordered idempotents, we can

use Property (T1) of Theorem 8.1.3 to give us that there exists u,v € S
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such that
uRCvRPve = ub and ubL0.

Since @ is a chain of groups, we see that R¢ = £ with 2 R? y if and only
if r(z) = r(y). Therefore, we see that both r(u) = r(v) and

l(u) = r(u) = r(ub) = l(ub) = 1(b) = r(b).
Putting this all together, we have

ub =wve, r(u) =r(v) and l(u) = r(b).

This proves the forward direction when () has no kernel.

We now assume () has a kernel. We know that Q) = w(C,T,6). We prove that
Properties (A), (B) and (C) hold.

(A)

(B)

From Lemma 8.2.11, we know there exists a homomorphism ¢ from @ to
Aj.q. Since S is a subsemigroup of @), it follows that we can restrict ¢ to

S to get a homomorphism ¢ : S — Ay 4.
Using Lemma 8.2.6 and Lemma 8.2.7, we see that defining s¢ = (r(s),(s)),

we have

aR9Y if and only if r(a) = r(b)

and
a <go b if and only if [(a) = (D).

Defining the function ! in this way, [ partitions the elements of @ into
L%-classes, and the image [(Q) is infinitely large. Since S is a straight
left T-order in @), we know that S intersects every L-class of (). Therefore,

the image [(S) is also infinitely large.

(i) Let z,y,a € S such that I(z),l(y) = r(a) and za = ya. We consider

four cases:
Case 1: I(z),l(y),r(a) all non-negative.

This implies that x,y and a are all elements of K. By right mul-

tiplication, we have that zaa™' = yaa™!.

raa~'. Since a and z are both elements of K, we can write them

We start by calculating
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as a = (M, ga,n) and x = (p,hg,q). Then l(z) = qd + S and

r(a) = md + a. From Proposition 2.6.1, we know that
aa"t = (m, ga,n)(n, gt m) = (m, 1o, m),

where 1, is the identity of F,.
Since [(x) = r(a), we have gd + = md + «. Since «, 5 € [0,d — 1],
we have two cases: either ¢ > m or both ¢ = m and § > a.

Case 1la: Let ¢ > m. We calculate
zaa ' = (p, hg, q)(m, 14, m) = (p, hs(1,07™),m —m + q).

Since 6 is a homomorphism into F, we see that 1,077™ = 1, the
identity of T'. Therefore

zaa~" = (p,hg,q) = .
Case 1b: Let ¢ = m and g > . We calculate

xaa_l = (p7 hﬁa‘])(mv 1O¢7m) = (p7 hﬁlo"Q)'

Since § = « as an integer, we know that § < « in the semilattice.

Therefore hgl, = hg by Lemma 2.4.4. Therefore zaa™ = z.

1

In either case, we have raa™! = x. We can obtain yaa™! = y similarly.

Therefore,

1 1

T =xaa = =yaa =~ =Y.

Case 2: I(z),l(y) non-negative, r(a) negative.
This implies that x,y € K and a ¢ K. Therefore, using xa = ya, we
have

z(1lpa) = za = ya = y(1pa).

Since 1ga € Gy, this gives us r(1pa) = 0. Therefore I(z),(y) = r(1pa)
and we have reduced this to Case 1.

Case 3: One of [(x),[(y) negative, the other non-negative.

Without loss of generality, let [(z) be non-negative and let I(y) be

negative. Since [(z),{(y) = r(a), we have that r(a) is negative. There-
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fore, we have x € K, y € G; and a € G}, where j, k negative integers
such that j > k. This implies that xa € K, but ya € G;, and therefore
ya ¢ K. Since ra = ya, this leads to a contradiction.

Case 4: [(z),l(y),r(a) all negative.

By the definition of ¢, this means that x,y,a are all elements
of the Clifford semigroup C, and r(a) = [(a). This gives us
[(x) =2 r(a) =1l(a), and so x <,e a. By Lemma 2.2.6, this means

that za™'a = . Using the fact that a 'a = aa™! in a Clifford

1

semigroup, this gives us xaa™' = z. Similarly, {(y) > r(a) implies

that yaa™! = y. Therefore

1 1

T =zaa ~ =yaa - =Y.

(ii) Dual of (B)(i).

(C) Let b,c € S such that I[(b) > I(c). Using Lemma 8.2.7, we see that this
implies that b < ¢ c¢. Since S is a left I-order in an inverse semigroup with
totally ordered idempotents, we can use Property (T1) of Theorem 8.1.3

to give us that there exists u,v € S such that
uRPv R ve =ub and ubL%b.
By Lemma 8.2.6 and Lemma 8.2.7, this gives us that
r(u) = r(v), r(v) = r(ve) and I(ub) = I(b). (8.1)
Since ub = vc, we have that
r(ub) = r(ve) = r(v) = r(u). (8.2)
Since ¢ : S — Ay 4 is a homomorphism, we have
(r(ub), l(ub)) = (r(u), l(u))(r(0),1(b)) = (r(u) = (u) +t, 1(b) —r(b) + 1),
where t = max{l(u),r(b)}. Therefore, using (8.2), we have

r(u) = r(ub) = r(u) — l(u) + t,
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and so t = [(u). Since [(ub) = [(b), by (8.1), we also have
[(b) = l(ub) = 1(b) — r(b) + t,

and so t = r(b). Therefore I(u) =t = r(b). Putting this all together gives
us
ub =wve, r(u) =r(v) and l(u) = r(b).

This proves the forward implication. We now consider the converse. Let S
satisfy Properties (A), (B) and (C). We start by proving that S satisfies the
conditions of Theorem 8.1.3, with R’ and <; defined by

aR'b if and only if r(a) = r(b) (8.3)
and
a <; b if and only if I(a) = (D). (8.4)

Obviously R’ is an equivalence relation and <; is a total order. We define £ as
the equivalence relation associated with <;. We prove that R’ is left compatible

and <; is right compatible.

Let a,b,x € S such that a R'b, that is r(a) = r(b). Using the fact that ¢ is a

homomorphism, we have that
(r(za),l(za)) = (r(x),(x))(r(a), (a))
= (r(z) — l(x) + max{l(z),r(a)}, l(a) — r(a) + max{l(x),r(a)}).

Therefore

r(za) = r(x) — l(x) + max{l(z),r(a)}.

Similarly
r(zb) = r(x) — l(x) + max{l(z), r(b)}.

Since r(a) = r(b), we know that
max{l(z),r(a)} = max{l(x),r(b)},

and therefore r(xa) = r(xb) or, equivalently, za R’ xb. Therefore R’ is left

compatible.
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Now let a,b,z € S such that a <; b, that is, [(a) = (D). Using the fact that ¢

is a homomorphism, we have that

(r(ax),l(az)) = (r(a),l(a))(r(z), ()
= (r(a) = l(a) + max{l(a),r(x)}, l(x) — r(z) + max{l(a),r(x)}).

Therefore
l(ax) = l(z) — r(z) + max{l(a), r(x)}.

Similarly,
l(bx) = l(x) — r(x) + max{l(b),r(x)}.

Since I(a) = I(b), we know that

max{l(a),r(z)} = max{l(b),r(z)},

and therefore [(ax) = [(bx) or, equivalently, ax <; bx. Therefore <, is right

compatible.

We now prove Properties (T1) - (T5) with R' and <; defined as in (8.3) and
(8.4).

(T1) Let a, 8 € S such that o <; 8. By (C), there exists 7,6 € S such that
yoo =08, r(y) = r(d) and I(v) = r(a).
Since I(y) = r(a), we have that
(r(ya), lya)) = (r(7), (7)) (r(a), l(a)) = (r(9), (@) .

Therefore [(ya) = I(«). Also, using ya = 63 and r(vy) = r(J), we have
that
r(08) = r(ya) = r(7y) = r(9).

Putting this all together, we have

YR'OR'6B = ya and ya L a.
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(T2) Let «, 5 € S. By definition, and a now familiar argument,

l(aB) =1(B) —r(B) + max{l(a),r(5)}.

We see that max{l(«),7(5)} — r(B), is either zero or positive. Therefore,
for all o, 5 € S, we have l[(af) = (), and hence aff <; .

(T3) Let a,b € S such that r(a) = r(b). We want to prove that a R*b. Let
x,y € S such that za = ya. It is sufficient to prove b = yb. f x =y = 1
this is obviously true, so we only need to consider two cases without loss

of generality: either z,y € S, or x € S and y = 1.

Firstly let 7 € S and y = 1. Then za = a. Therefore
I(za) = I(a) — r(a) + max{l(z),(a)} = I(a),
so max{l(z),(a)} = r(a), ie. r(a) > I(x). Therefore, using ra = a again,
r(za) = r(z) — l(z) + max{l(z), r(a)} = r(z) — I(z) + r(a) = r(a),

so r(x) = Il(x).

Applying Property (C) with b = ¢ = a, we have that there exists X € S
such that {(X) = r(a). We know that I(X) = r(a) = [(x). Therefore we
can apply Property (C) with b = X and ¢ = x, to obtain u,v € S such
that

uX = vz, r(u) =r(v) and (u) = r(X).

Therefore
(8.5)

using {(X) = r(a) in the last equality. Since ¢ is a homomorphism, we can

use r(x) = I(z) to obtain

(r(vx), l(ve)) = (r(v) — l(v) + max{l(v),r(z)}, (z) — r(z) + max{l(v),r(x)})
= (r(v) — l(v) + max{l(v), r(x)}, max{l(v),r(x)}) .
(8.6)
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Since uX = vz, we can compare the first variable of (8.5) and (8.6), and

use 7(u) = r(v) to obtain
r(v) =r(u) = r(uX) =r(zr) =r) —I(v) + max{l(v), r(z)}.

Therefore max{l(v),r(z)} = l(v). Comparing the second variable of (8.5)

and (8.6), we can then obtain
r(a) = l(uX) =l(vz) = l(z) — r(x) + max{l(v),r(z)} = l(v), (8.7)

using r(x) = (). Since xa = a, we can left multiply to obtain vza = za.
By (8.7), l(vz) = l(v) = r(a), and so we can apply Property (B)(i) to
obtain vz = v. We right multiply by b to get vzb = vb. Using r(x) — I(z),

we have that
r(zb) = r(x) — l(x) + max{l(z),r(b)} = max{l(x),r(b)}.

Therefore r(xb) = r(b). Also r(b) = r(a) = l(v) by (8.7). Putting this to-
gether r(xb),r(b) = l(v), and so we can apply Property (B)(ii) to vab = vb
to obtain xb = b.

Now let z,y € S with xa = xb. We split this into three cases: Either [(x)
and [(y) are both larger than r(a), {(x) and [(y) are both smaller than

r(a), or one is larger and one is smaller.
Case 1: Let I(2),l(y) = r(a).

We can use Property (B)(i) to give us that za = ya implies that z = y.
Clearly then xb = yb.

Case 2: Let I(z),l(y) < r(a).

Since I(z) < r(a), we have that
r(za) = r(x) — l(x) + max{l(z),r(a)} = r(z) — l(x) + r(a). (8.8)
Similarly, since [(y) < r(a), we have

r(ya) = r(y) — l(y) + r(a). (8.9)
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We know that xa = ya, so that r(za) = r(ya). Therefore, comparing (8.8)
with (8.9), we have that

r(z) = U(z) = r(y) = y)- (8.10)

Applying Property (C) with b = ¢ = a, we have that there exists X € S
such that I(X) = r(a). We know that I(X) = r(a) = I(z). Therefore we
can apply Property (C) with b = X and ¢ = z, to obtain u,v € S such
that

uX = vz, r(u) =r(v) and l(u) = r(X).

Therefore, using I[(X) = r(a),

—
=
N
S
S
N~—
\;\l
—
S
S
N—
N—
I
—~
=3
—
S
N~—
\;\l
—
S
=
—
=
—~
>
N~—
\;\l
—
e
~—
N~—

(8.11)

Since ¢ is a homomorphism,

(r(vz),l(vz)) = (r(v) = l(v) + max{l(v),r(x)},l(x) — r(z) + max{l(v),r(x)}).
(8.12)
Since uX = vz, comparing the first variable of (8.11) and (8.12) and using

r(u) = r(v) gives us
r(v) =r(u) = r(uX) =r(ve) = r(v) — l(v) + max{l(v),r(z)}.

Therefore max{l(v),r(x)} = l(v). Comparing the second variable of (8.11)
and (8.12), we can then obtain

r(a) = l(uX) = l(vx) = l(x) — r(z) + max{l(v), r(z)}

8.13
=l(z) —r(z) + l(v). (8.13)

Therefore
l(v) =7r(x)—l(z) +r(a) =r(x), (8.14)

since r(a) = l(x). We can combine this with (8.10) to obtain

l(v) = r(y) =) +ra) = ry), (8.15)
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since r(a) = [(y). We can then calculate

l(vy) = U(y) = r(y) + max{l(v),7(y)} = ly) = r(y) + I(v) = 7(a), (8.16)

using (8.15), (8.10) and (8.14). Since za = ya, we can left multiply to
obtain vra = vya. Using (8.13) and (8.16), we have that [(vy) = r(a) =
[(vx). Therefore, we can apply Property (B)(i) to obtain vx = vy. We
right multiply by b to get vab = vyb.

Using r(b) = r(a) = I(z), we have
r(zb) = r(z) — I(z) + max{l(z), 7(b)} = r(z) — (z) + r(b).
Using r(a) = r(b) and (8.14), this implies that
r(zb) = r(z) — (z) + r(a) = {(v).
Similarly, using #(b) = r(a) = I(y), we have
r(yb) = r(y) — Uy) + max{l(y),r(b)} = r(y) — I(y) + r(b).
Using r(b) = r(a) and (8.15), this implies that
r(yb) = r(y) — l(y) + r(a) = I(v).

Using r(yb) = r(xb) = I(v), we can apply Property (B)(ii) to vab = vyb to
obtain xb = yb.

Case 3: Let one of [(x) and I(y) be greater than or equal to r(a) and the

other be less than or equal to r(a).

Without loss of generality, let I(z) = r(a) = [(y). This gives us
l(za) = l(a) — r(a) + max{l(z),r(a)} = l(a) — r(a) + I(z).

and
l(ya) = l(a) — r(a) + max{l(y),r(a)} = l(a).
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(T5)

Since za = ya, we must have [(za) = [(ya). Therefore

l(a) —r(a) + l(z) = l(a).
This means that {(z) = r(a) and we have reduced this to Case 2.

Let a, 3,7, € S such that YR ya L' a and § R' 05 L' 5. Then

(r(ya), l(ye)) = (r(v), le)) and (r(65), 1(35)) = (r(9), I(B))-

We know that
(r(ya), l(ya)) = (r(y) = U(v) + ¢, l{a) = r(a) + 1),

l(ya)) = (r(v), l(@)) im-

where ¢ = max{l(7),r(a)}. Therefore (r(ya),
r (68)) = (r(), 1(8)) implies

plies that I(y) = t = r(«). Similarly, (r(60),
that () = r(5).

We can now see that () = (J) if and only if r(a) = r(5).

Let o, 8,7 € S such that a £/ 8 £ ya = y8. Then
l(yar) = l(@), I(yB) = U(B) and yor =~f.
We know that
l(ya) = (@) — r(a) + max{l(y), r(a)}.
Therefore, since I(ya) = I(a), we have
max{l(7),r(e)} = r(a),

and so r(a) = I(y). Similarly I(yf5) = I(/) implies that r(8) = I(v).

We can then apply Property B(ii) to obtain o = .

We can now apply Theorem 8.1.3 to give us that S is a left I-order in an inverse

semigroup with totally ordered idempotents, Q, such that for all a,b € S, a R? b
if and only if r(a) = r(b) and a < ¢ b if and only if I(a) = I(b). Note that this
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implies that a £2 b if and only if [(a) = [(b). By Lemma 8.1.2 we also have that
S is straight in Q.

We now need to prove that @) is an inverse w-semigroup. We know that ) has
totally ordered idempotents, so we only need that () has a maximal idempotent

and no minimal idempotent. We will do this by

Let e € E(Q). By Lemma 3.1.3, S intersects every L-class of (). Therefore,
there exists a. € S such that a, L? e. We define a function L : E(Q) — Z by

L(e) = l(a.), where a. € S such that a.L?e.

We know that such an a, exists by above. The function L is well-defined, since
Qe, be € S with a, L9 b, L? e implies that I(a,) = I(b,.).

We will now prove that L is injective. We see that L(e) = L(f) implies
that ac,ay € S such that a, L%, a; L f, and I(a.) = l(as). Therefore
fLPa.L%a; L9 f. Since Q is inverse, there is a unique idempotent in each
L-class of (). Therefore e = f.

Let e, f € E(Q), and let a.,ay € S such that a. L% e and a; L2 f. Using Lemma
2.1.3, we see that

e<f <= e<pof <= a <peay <= l(a.) =l(ay) < L(e) = L(f).
Additionally, we can use the fact that L is an injective function, to obtain
e< f < L(e) > L(f). (8.17)

Therefore natural ordering of the idempotents is a subset of the ordering of the
integers. Now we just need that ) has a maximum idempotent and no minimum

idempotent.

From the structure of Ay 4, we know that the smallest possible value of [(5),
and therefore L(E(Q)), is —k. Let e be the element of E(Q) such that L(e) is

the smallest value. By (8.17), e is the maximum idempotent of Q).

We prove that there is no minimum idempotent by contradiction. Assume that
@ has a minimal idempotent, f. Let a; € S such that a; L9 f. By Property
(A), 1(S) is an infinitely large subset of the integers. Therefore, the fact that
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[(S) has a minimum value implies that [(S) has no maximum. Therefore there
exists t € S such that I(t) > I(ay). Therefore L(t~'t) > L(ay), and by (8.17),
t~'t < f. Contradiction.

Therefore () is an inverse w-semigroup. O]
The previous theorem characterises all inverse w-semigroups of left I-quotients.
We now consider some special cases of inverse w-semigroups. Since we have al-
ready dealt with inverse w-semigroups of left I-quotients without kernel in Corol-

lary 8.2.3, we start by characterising inverse w-semigroups of left I-quotients with

kernel.

Corollary 8.2.13. A semigroup S is a left I-order in an inverse w-semigroup

with kernel if and only if S satisfies the following conditions.

(A) There is a homomorphism ¢ : S — Ayq for some k = 0, d = 1, such
that, defining s = (r(s),1(s)), the image 1(S) is infinitely large and there
exists x € S such that r(x) # l(x).

(B) For x,y,a €S,

(i) 1(x),l(y) = r(a) and za = ya implies x =y,

(i) r(x),r(y) = l(a) and ax = ay implies x = y.
(C) For any b,c € S with [(b) = I(c), there exists u,v € S such that

ub =wve, r(u) =r(v) and l(u) = r(b).

Proof. First, let S be a left I-order in an inverse w-semigroup with kernel Q).
We know that Q = w(C,T,6). From Lemma 8.2.11, we know there exists a
homomorphism ¢ from @ to Ay 4, defined by

(m, ha,n)p = (md + o, nd + «),

for (m, hy,n) € K and

for g; € G;. We can restrict ¢ to S to obtain a homomorphism ¢ : S — Ay 4.
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Assume that r(z) = [(x) for all z € S. We know that there exists an element
of the kernel of @, (m, ha,n), such that m # n. Since S is a left I-order in @,

there exists s,t € S such that
(m, hg,n) = s 't.

Since r(z) = l(x) for all z € S, we can write r(s) = I(s) =i and r(t) = (t) = j.
We know that homomorphisms between inverse semigroups preserve inverses, so

we can apply ¢ to both sides of this equation to obtain
(md + a,nd + a) = (i,) 7 (j,§) = (i,9)(j,j) = (max{i, j}, max{i, j}),

which is a contradiction since m # n. Therefore, there exists an x € S such that
r(x) # [(z). By the proof of Theorem 8.2.12, we know that S satisfies the rest

of the conditions.

Now let S satisfy Properties (A) - (C). By Theorem 8.2.12, we know that S has
an inverse w-semigroup of left I-quotients, ). Also, by the use of Theorem 8.1.3

in the proof of Theorem 8.2.12, we know that for a,b € S,
aR9b if and only if r(a) = r(b) and aL?b if and only if I(a) = ().

We will now prove that () has a kernel by contradiction.

Assume that () does not have a kernel. By Proposition 8.2.2, we know that @)
is a chain of groups. Therefore, if a € S, then a is in a subgroup of (). By
Green’s Theorem, this implies that a H? a2, or equivalently, r(a?) = r(a) and
I(a®) = I(a). We know that

(r(a*),1(a®)) = (r(a),(a)) (r(a),l(a)) = (r(a) — U(a) + t,U(a) — r(a) +1),

where t = max{r(a),l(a)}. Therefore, r(a*) = r(a) implies that ¢ = I(a) and
l[(a?) = I(a) implies that t = r(a). Together this means that r(a) = I(a) for all
a € S. This contradicts Property (A). O

We now characterise simple inverse w-semigroups of left I-quotients.

Corollary 8.2.14. A semigroup S is a left I-order in a simple inverse

w-semigroup if and only if S satisfies the following conditions.
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(A) There is a homomorphism ¢ : S — By for some d = 1, such that, defining
s = (r(s),l(s)), the image I(S) is infinitely large and there exists x € S
such that (r(z),l(z)) € ({0} x N) u (N x {0}).

(B) For z,y,a €S,
(i) 1(x),l(y) = r(a) and za = ya implies x =y,
(ii) r(x),r(y) = l(a) and ax = ay implies © = y.

(C) For any b,c € S with [(b) = l(c), there exists u,v € S such that
ub = ve, r(u) =r(v) and l(u) = r(b).

Proof. Let S be a left I-order in a simple inverse w-semigroup ). By Theorem
8.2.4, we know that Q = BR(T,0) for a finite chain of groups, 7. By Lemma
8.2.9, we know that there exists a homomorphism ¢ from @ to B, defined by

(m, ho,n)ep = (md + a,nd + ),

for (m, hqa,n) € Q.
We could also write @ as Q@ = w(C,T,0), where C = G. Considering @) this

way, we can see that the homomorphism above is equal to the homomorphism
from the proof of Corollary 8.2.13. Using Lemma 8.2.6 and Lemma 8.2.7, we see
that defining s¢ = (r(s),l(s)), we have a R?b if and only if r(a) = 7(b) and
a <go b if and only if I(a) = I(b).

We will now prove that there exists x € S such that

(r(x), l(z)) € ({0} x N) u (N x {0}).

Consider (0, hg,1) € @, where hy € Fy. Since @) is a semigroup of straight left

I-quotients of S, we can write (0, hg, 1) as
(0, ho, 1) = 571, (8.18)

where s,t € S with s R?¢. That is, r(s) = r(t). Applying ¢ to the left side of
(8.18) gives us
(07 hOu 1>¢ = (07 d)
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Applying ¢ to the right side of (8.18) gives us

(5710 = (s9) 7 (t)) = (r(s),1(s)) ™" (r(1), (1))
= (U(s),7(s)) (r(t), 1(£)) = (I(s), (1)) .

Therefore I(s) = 0 and [(t) = d. If (r(s),l(s)) € N x {0}, we are done by taking
x = s. If not, then r(s) = 0, and therefore r(t) = r(s) = 0. As a result,
(r(t),l(t)) € {0} x N, and we are done by taking = = .

Corollary 8.2.13 then proves the rest of Conditions (A) - (C).

Now let S satisfy Properties (A) - (C). Note that there exists x € S such that
r(x) # (z). By Corollary 8.2.13, we know that S has an inverse w-semigroup
of left I-quotients with kernel, ). Also, by the application of Theorem 8.1.3 in
the proof of Corollary 8.2.13, we know that for a,b € S,

aR9b if and only if r(a) = r(b) and a <ge b if and only if I(a) = I(b).

We will now prove that @) is simple by contradiction.

Assume that @ is not simple. By Theorem 8.2.5, this means that @ = w(C, T, 6),
where C' is a finite chain of at least two groups. Let G_j; be the largest group
of C'. Note that G_; & K, where K is the kernel of Q).

Case 1: Let (r(z),l(z)) € N x {0}. We see that r(z) # [(z). Therefore, by the
proof of Corollary 8.2.13, x is not in a subgroup of ). Using the structure of
(), we see that this implies that = is an element of the kernel, K. Since K is an

inverse semigroup, this means that 'z is also in K.

Since [(x) = 0, z is the element of S with the smallest possible value of {(S). By
the proof of Theorem 8.2.12, this implies that 'z is the maximal idempotent.
Therefore 'z € G_;, £ K. Contradiction.

Case 2: Let (r(z),l(x)) € {0} x N. We see that r(x) # [(x). Therefore, by the
proof of Corollary 8.2.13, x is not in a subgroup of ). Using the structure of
() we see that this implies that x is an element of the kernel, K. Since K is an

inverse semigroup, this means that zz~! is also in K.

Since S is a straight left I-order in ), we can write

Tr

I
IS

_’U,
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where u,v € S with ¥ R?v. By Lemma 3.3.6, this implies that «R? ux and
L, A L, = L,,. We can rewrite this as r(u) = r(uz) and [(z) = [(ux). We see
that

(r(uz), (ux)) = (r(u) = l(u) + t,1(x) —r(z) +1),

where ¢ = max{l(u),r(z)}. Therefore, since (r(ux),l(ux)) = (r(u),l(x)), this
implies that [(u) =t = r(z) = 0.

Since [(u) = 0, u is the element of S with the smallest possible value of {(S). By
the proof of Theorem 8.2.12, this implies that «~'u is the maximal idempotent.
Therefore u='u e G_;, € K We see that

u e = v uu e = o e = (ute) (ute) T

= (zo ) (zz ™) ' =z e = 2

Therefore z2~! = u='u e G_;, £ K. Contradiction. O

By Theorem 8.2.4, we can use Corollary 8.2.14 with d = 1 to obtain the bisimple

case. This is similar, but not identical to Theorem 3.1 of [15].

Corollary 8.2.15. A semigroup S is a left I-order in a bisimple inverse

w-semigroup if and only if S satisfies the following conditions.

(A) There is a homomorphism ¢ : S — B such that, defining s = (r(s),1(s)),
the image 1(S) 1is infinitely large and there exists x € S such that

(r(x),l(z)) € ({0} x N) U (N x {0}).
(B) For x,y,a €S,

(i) l(x),l(y) = r(a) and za = ya implies x =y,

(ii) r(z),r(y) = l(a) and ax = ay implies v = y.

(C) For any b,c € S with [(b) = I(c), there exists u,v € S such that

ub = ve, r(u) =r(v) and l(u) = r(b).

We now characterise inverse w-semigroups of left I-quotients of Type (3) from

Proposition 8.2.2.
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Corollary 8.2.16. A semigroup S is a left I-order in an inverse w-semigroup

with proper kernel if and only if S satisfies the following conditions.

(A) There is a homomorphism ¢ : S — Apq for some k =1, d = 1, such that,
defining sp = (r(s),l(s)), the image 1(S) is infinitely large and includes a

negative number, and there exists x € S such that r(x) # l(x).
(B) For z,y,a €S,

(i) l(x),l(y) = r(a) and za = ya implies x =y,

(ii) r(z),r(y) = l(a) and ax = ay implies v = y.

(C) For any b,c € S with [(b) = l(c), there exists u,v € S such that
ub = ve, r(u) =r(v) and l(u) = r(b).

Proof. Let S be a left I-order in an inverse w-semigroup with proper kernel, Q).
By Theorem 8.2.5, we know that @ = w(C,T,0), where C' is a finite chain of at
least two groups. Let GG_j be the largest group of C'. Note that k is a positive
integer and therefore G_; & K, where K = BR(T,0) is the kernel of Q.

By Lemma 8.2.11, we know that there exists a homomorphism ¢ from Q) to A 4,
defined by

(m, ho,n)ep = (md + a,nd + @),
for (m, hy,n) € K, and
for g; € G;. This is the same homomorphism from the proof of Corollary 8.2.13.

Since S is a straight left I-order in @), Lemma 3.1.3 tells us that S intersects
every L-class of Q. We have that G_j, is its own £%-class. Therefore there exists
s€ S nG_;. We see that

and so [(S) includes a negative number.
Corollary 8.2.13 then proves the rest of Conditions (A) - (C).

Now let S satisfy Properties (A) - (C). By Corollary 8.2.13, we know that S has

an inverse w-semigroup of left I-quotients with kernel, ). Also, by the use of
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Theorem 8.1.3 in the proof of Corollary 8.2.13, we know that for a,b € S,
aR®b if and only if r(a) =7(b) and a < e b if and only if I(a) = I(D).

Since < ¢ is a total order, the meet structure of the £%-classes is completely
determined by < ¢. Therefore, ¢ : S — Ay 4 from Condition (A), satisfies the
conditions of Theorem 3.3.7. We apply Theorem 3.3.7 to obtain that ¢ lifts to

a homomorphism ¢ : Q) — Ay 4.

We will now prove that the kernel of () is proper. This is equivalent to proving

that () is not simple, which we will do by contradiction.

Assume that @ is simple. We know that there exists an = € S such that r(z) #
[(z). By the definition of A}, 4, we see that z¢ is in the B, part of Ay 4. We also
know that there exists an s € S such that [(s) is negative. By the definition of
A}.q, we see that s is not in B,;. Since () is simple, we know that x and s are
J-related. Therefore there exists p,q € () such that

s = pxq.
We apply ¢ to this to obtain
s = (pp)re(gp).
We see that B, is an ideal of Ay 4. Therefore, since z¢ € By, we have
s = (pp)zp(qp) € Ba.

However, we also know that sp ¢ By, giving us a contradiction. [
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