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Abstract

Finite volume (FV) numerical solvers to the two-dimensional shallow water equations are

the foundation of the current state-of-the-practice, industry-standard flood models. The

second-order Discontinuous Galerkin (DG2) alternative show a promising way to improve

current FV-based flood model formulations, but is yet under-studied and rarely utilised to

support flood modelling applications. This is contributed by the mathematical complexity

constructed within the DG2 formulation that could lead to large computational costs and

compromise its stability and robustness when used for practical modelling. Therefore, this

PhD research aims to develop a new flood model based on simplified DG2 solver that is

improved for flood modelling practices. To achieve this aim, three objectives have been

formed and addressed through analyses involving academic and experimental test cases, as

well as test cases that are recommended by the UK Environment Agency to validate 2D

flood model capabilities, whilst benchmarking the simplified DG2 solver against four FV-

based industrial models. Key research findings indicate that the simplified DG2 solver can

equally retain conservative properties and provide second-order accurate predictions as the

standard DG2 solver whilst offering around 2.6 times runtime speed up. Additionally, the

simplified DG2 solver can be reliably efficient to provide predictions close to the outputs of

industrial models, in simulating flood scenarios covering large catchment-scale areas and at

a grid resolution ≥ 5 m, particularly when the local limiting is disabled. However, the local

limiting is still needed by the simplified DG2 solver when modelling detailed velocity fields at

sub-metre grid resolutions, particularly in regions of highly active wave-structure interactions

as commonly encountered in urban flooding around steep-sloped building structures.
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Chapter 1

Introduction

Some contents used to prepare for this chapter have been published in the following publica-

tions:

1. Ayog, J. L., Kesserwani, G., Shaw, J., Sharifian, M. K., Bau, D. 2021. Second-order

discontinuous Galerkin flood model: Comparison with industry-standard finite volume

models, J. Hydrol. 593 125924. https://doi.org/10.1016/j.jhydrol.2020.125924

2. Ayog, J. L., Kesserwani, G, Bau, D. 2021. Well-resolved velocity fields using discon-

tinuous Galerkin shallow water solutions, J. Hydraul. Eng. in review. The preprint is

available in http://arxiv.org/abs/2104.11308.

1.1 Background of the research

1.1.1 Industry-standard finite volume flood models

Floods account for 43% of the natural disasters occurring worldwide, and have resulted in

242,000 global fatalities and US$ 662 billion in financial losses over the past two decades

(CRED 2015). To lessen the impacts of floods, stakeholders have increasingly relied on

predictions from computational hydraulic models to develop flood risk reduction and man-

agement strategies (Afifi et al. 2019, Löwe et al. 2017, Şen & Kahya 2017). Most of these

models are built around numerical solvers of the full two-dimensional shallow water equations

1
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CHAPTER 1. INTRODUCTION 2

(2D-SWE) (Teng et al. 2017). Within this scope, the finite volume (FV) method is the most

widely adopted 2D-SWE solvers and has been enhanced, particularly in the past years, in the

current industrial flood modelling packages (Alcrudo 2004, Neelz & Pender 2009, Teng et al.

2017). They are also often preferred by government agencies in the UK, Netherlands and

Australia for flood risk assessment and for the management of urban and rural floodplains

(Engineers Australia 2012, Henckens & Engel 2017, Neelz & Pender 2013). FV-based flood

models are known for their ability to capture the widest range of flow transitions, making

them well-suited to provide reliable predictions for complex, real-world flood applications. For

example, FV models are applied to produce hydrographs with detailed velocity transients to

estimate structural damages on residential buildings (Pistrika & Jonkman 2010), to identify

safe parking locations for emergency vehicles during flood evacuation (Arrighi et al. 2019),

and to develop quantifiable hazard classification for flood vulnerability assessment (Costabile

et al. 2020, Shirvani et al. 2020, 2021). Similarly, for gradually propagating floods, hydro-

graphs produced by the FV-based models are used to estimate arrival times and flood levels

in low-lying areas (Alkema 2007, Latrubesse et al. 2020), e.g. to assess the clearance time

for flood evacuation (Cheng et al. 2011) and to identify zones for flood rescue prioritisation

(Patel et al. 2017).

One issue with industry-standard FV models is that they often employ a first-order accu-

rate finite volume (FV1) solver, as in the case, for example, of TUFLOW-FV1 (BMT-WBM

2016), Infoworks ICM (Lhomme et al. 2010), JFlow+ (Crossley et al. 2010), LISFLOOD-FP

with Roe solver (Neal et al. 2012), RiverFlow2D (Hydronia LLC 2019), and BASEMENT

(Vetsch et al. 2018). Such models may not be ideal for certain applications, as the outputs of

an FV1 solver can be severely affected by rapid accumulation of numerical diffusion, partic-

ularly when the fine grid resolution needed to alleviate these errors is unaffordable (Lhomme

et al. 2010, Neal et al. 2012). For example, an FV1-based flood model tends to predict late

arrival times and narrower wetting extents (Schubert et al. 2008, Kesserwani & Sharifian

2020), and fails to capture small-scale transients in hydrograph predictions (Soares-Frazão

& Zech 2008, de Almeida et al. 2018). Error analyses in the published literature show that
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FV1-based models tend to produce larger deviations in hydrograph predictions when gauging

stations are located far from the inflow and the flood duration lasts several days (Echeverribar

et al. 2019, Horváth et al. 2020, Xia et al. 2019).

To improve the capability of FV-based models, second-order accurate finite volume (FV2)

solvers have been used in existing industrial flood models, for example in TUFLOW-FV2

(BMT-WBM 2016), TUFLOW-HPC (BMT-WBM 2018), ANUGA (Mungkasi & Roberts

2013), and Iber (Bladé et al. 2014). Many FV2-based models adopt the Monotonic Upstream-

centred Scheme for Conservation Laws (MUSCL) approach to reconstruct piecewise-linear

solutions, but this widens the calculation stencil to the neighbour’s neighbour of the element

where local flow data are updated. The MUSCL approach comes hand-in-hand with a Total

Variation Diminishing (TVD) slope limiter to ensure that the reconstructed flow solutions are

free from unphysical oscillations. As the slope limiter is inherent to any MUSCL-FV2 solver

and is applied globally over each grid element, choosing a slope limiter function that can

simultaneously retain second-order accurate, oscillatory-free solutions, and ensure reliable

reproduction of real-world features (Delis et al. 2011, Delis & Nikolos 2013, Hou et al. 2015,

Zhao et al. 2018, Bai et al. 2018) and wave arrival times if the resolution is insufficiently fine

(Kesserwani & Wang 2014, Zhao et al. 2018) can be challenging.

When modelling velocity fields around regions of wave-structure interactions, such as

around houses and building blocks in an urban residential areas and cities during flash flood-

ing, MUSCL-FV2 solvers have been reported to require the addition of an eddy viscosity term

as the resolution becomes finer and when there is drastic change in the velocity magnitude

and direction (Collecutt & Syme 2017, Syme 2008). Adding the eddy viscosity term can

reduce the MUSCL-FV2 solver tendency to over-expand the extent of the recirculation flows

and, thereby, improves the modelling of spatial velocity profiles (Bazin 2013). However, the

eddy viscosity approach require case-dependent and often quite onerous calibration efforts.

Additionally, the fast growth rate of numerical diffusion in MUSCL-FV2 solvers has been ob-

served to smear the presence of small-scale eddies in the recirculation zones (Cea et al. 2007,

Özgen-Xian et al. 2021), leading to significant discrepancies in the velocity field predictions
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around hydraulic structures such as bridge piers (Horritt et al. 2006).

1.1.2 Second-order Discontinuous Galerkin solver

The second-order discontinuous Galerkin (DG2) solver provides an alternative approach to

the MUSCL-FV2 solver by generating and updating a piecewise-planar solution per grid ele-

ment, where the solution slopes are defined intrinsically, thereby avoiding slope reconstruction

and reducing the calculation stencil to the direct neighbours. With a DG2 solver, slope limit-

ing becomes irrelevant and can drastically spoil the quality the predictions if applied globally

as with MUSCL-FV2. Rather, the slope limiter should only be applied locally to stabilise

the DG2 solution at very steep discontinuities within the wet portions of the computational

domain (Kesserwani & Liang 2012b, Krivodonova et al. 2004). Hence, the choice for the lim-

iter function is not pertinent with a DG2 solver, for which the key challenge has rather been

to identify and apply a method to localise the operation of the slope limiter, which increases

the computational cost of a DG2 solver (Fu & Shu 2017, Le et al. 2020, Marras et al. 2018,

Qiu & Shu 2005, Vater et al. 2019).

Compared to the MUSCL-FV2 solver, the DG2 solver is more resistant to numerical

diffusion, as demonstrated in the comparative study by Kesserwani & Wang (2014). This

property enables the DG2 solver of the 2D-SWE to capture small-scale eddies in velocity

fields for coastal and estuary modelling applications without the need of an eddy viscosity

term, as hinted in a few published papers. Kubatko et al. (2006) studied the performance of

DG2 and higher-order DG solvers in reproducing 2D velocity fields for a tidal flow over an

idealised channel. The investigators concluded that the DG2 solver can deliver well-captured

eddies outside of the channel inlet, leading to velocity fields that are as accurate as those

produced by higher-order DG solvers. Alvarez-Vázquez et al. (2008) applied a DG2 solver

for the simulation of fish migration to support the design of vertical slots along a fishway

structure, with results showing a great potential for the DG2 solver to reproduce small-

scale eddies within its 2D velocity field predictions. Beisiegel et al. (2020) explored a DG2

solver to simulate flow circulation, reporting that their DG2 solver was able to replicate the
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asymmetrical patterns of the recirculation eddies extracted from a 3D model. Despite this,

very few 2D hydraulic modelling packages have adopted DG-based solvers, of which DG-

SWEM (Bunya et al. 2009, Kubatko et al. 2006), SLIM (Lambrechts et al. 2010) and Thetis

(Kärnä et al. 2018) are among the examples. Existing DG-based solvers have been primarily

aimed to support modelling applications in lake, estuary and coastal systems (Le Bars et al.

2016, Clare et al. 2020, Le et al. 2020, Mulamba et al. 2019, Pham Van et al. 2016, Wood

et al. 2020). However, the application of DG2 solvers for 2D flood inundation modelling

has been little explored (Kesserwani & Sharifian 2020, Engineers Australia 2012) due to its

expensive runtime cost contributed by excessive mathematical complexity (Kesserwani &

Wang 2014). Although DG2 can naturally preserve well-balanced properties (which means

that the model is able to simulate motionless water surface over an uneven topography for

a long time period), complications relating to the numerical integration of steep topographic

slopes do arise, and this has not yet been fully resolved (Caviedes-Voullième & Kesserwani

2015, Caleffi et al. 2016).

1.2 Research aim and objectives

Based on the research gaps identified in Sec. 1.1, this PhD research main aim to present a

newly-developed hydraulic model based on a 2D-SWE DG2 solver that is made less complex,

yet robust and competitive as industry-standard FV-based solvers for practical flood mod-

elling applications. This DG2 solver applies square grids considering the reported benefits

in terms of the accuracy and the computational efficiency compared to its triangular mesh

counterpart (Wirasaet et al. 2010, 2014). With this purpose in mind, the following research

objectives have been formed to support the achievement of the main aim of this research,

namely:

1. To develop a 2D-SWE model based on a simplified grid-based DG2 formulation, and

analyse its robustness and conservation properties against a standard DG2 formulation

over varying flow types and topography shapes.
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2. To assess the performance of the simplified DG2 flood model relative to commonly

used FV-based models, including FV1- and FV2-based industry-standard modelling

packages.

3. To identify suitable settings within the simplified DG2 model for flood modelling appli-

cations involving gradually and rapidly propagating floods, and with detailed velocity

fields predictions around building structures.

1.3 The structure of the thesis

Immediately after this current chapter, the research approach and findings obtained from

this PhD research are discussed and organised in this thesis following the structure presented

below:

Chapter 2 contains the reviews of previous literatures describing the 2D-SWE and clas-

sical numerical methods solving the 2D-SWE used in practical flood modelling software pack-

ages. This chapter also overviews existing research involving the DG2 method and highlights

research gaps pertaining to 2D-SWE modelling, including some discussion on past studies

that have compared the performance of the DG2 relative to FV2 within the similar scope. The

evolution of benchmark tests that have been used to analyse the capabilities of the industry-

standard 2D flood models are also discussed, ranging from catchment- and regional-scale

applications to smaller urban flood modelling practices.

Chapter 3, dedicated to address Objective 1, is centred around the simplified DG2

formulation, whilst highlighting its difference relative to the standard DG2 formulation. Both

the simplified and standard DG2 formulation are compared over test cases that assess their

2D characteristics and ability to capture shock and rarefaction waves. Further exploration

is made on the simplified DG2 formulation with respect to its conservation properties over

varying topography and with dynamic movement of wetting and drying relevant to practical

2D-SWE modelling.

Chapter 4 extends the exploration performed in Chapter 3 through the development
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of a flood model based on the simplified 2D-SWE DG2 solver. The key similarities and

differences between simplified 2D-SWE solver and the FV-based solvers are identified. This

chapter also aims to address Objective 2, whereby the capabilities of the simplified DG2

flood model are evaluated against established industry-standard FV1- and FV2-based mod-

elling packages. The comparative assessments are done using well-known 2D hydraulic model

benchmark tests with gradual and rapid flood propagation. Analysing the performance of

the 2D-SWE DG2 solver also entails finding the suitable setting for the 2D-SWE DG2 solver

for common flood modelling applications, thus addressing in part Objective 3.

Based on the findings observed in Chapter 4, Chapter 5 investigates further the capa-

bilities of the simplified DG2 solver involving less common modelling applications requiring

detailed velocity field predictions. This chapter also intends to address the remaining part

of Objective 3 by identifying potential applications of an alternate setting than the one

proposed for the simplified DG2 solver in Chapter 4. Selected test cases with extensive

coverage of building structures, modelled at sub-metre grid resolutions, are used to assess the

simplified DG2 capabilities relative to FV2 solver, particularly in predicting spatial velocity

fields with small-scale recirculation eddies at regions of wave-structure interactions.

Chapter 6 presents the conclusion of the thesis, including the highlights of the research

objectives achievement along with significance of the major findings. This chapter ends with

several suggestions for future works.



Chapter 2

Literature Review

Hydraulic models are often applied to comprehend, analyse and forecast flooding and the

transport of debris and water contaminants in order for key stakeholders and decision mak-

ers to take steps that can safeguard vulnerable population. These hydraulic models have

been widely applied for flood risk mapping (e.g. Webster et al. (2014), Mudashiru et al.

(2021)), flood damage assessment (e.g. Jonkman et al. (2008)), real-time flood forecasting

(e.g. Barthélémy et al. (2017)), design of flood defence structures (e.g. Siviglia et al. (2009)),

validation of insurance claims (Zischg et al. 2018) and management of water resources (e.g.

Leskens et al. (2014)). Additionally, these models have been made as an important part of the

assessments of sediment erosion and transport (e.g. Mouri et al. (2013)), pollutant transport

(e.g. Drago et al. (2001)), floodplain ecology (e.g. Karim et al. (2015)), river system hydrol-

ogy (e.g. Inthasaro & Wu (2012)) and catchment hydrology (e.g. (Yu & Coulthard 2015)).

They have also frequently been coupled with climate, hydrological and sewerage models, and

further extended to analysing risk related to climate change (e.g. Morita (2011), Banks et al.

(2014)) and subsurface flows (e.g. Sommer et al. (2009)). Progressive improvement in mod-

ern hydraulic models have produced reliable and robust simulations, making them feasible to

effectively manage environmental flows for healthy aquatic environment (e.g. Salmon et al.

(2017)).

Computational-based hydraulic models, which typically solve mathematical equations

8
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derived from the laws of physics, are often the preferred choice to represent the movement of

water in areas that are flood-prone (i.e. towns and cities located in a floodplain). Amongst

these models, the three-dimensional models based on Navier-Stokes equations (3D-NS) can

provide the closest physical representation of the water dynamics. However, they tend to be

very complex mathematically thus entail very high computational costs (Toombes & Chanson

(2011), Mintgen & Manhart (2018)) and are impractical for river reach-scale of more than

1 km, along with other issues associated with the representation of the water levels, high-

order turbulence and the movement of shorelines (Teng et al. (2017)). In contrast with

the 3D-NS models, the two-dimensional models solving shallow water equations (2D-SWE),

despite having reduced numerical complexity, are more commonly used for flood modelling

particularly in areas with poorly defined flow path (Toombes & Chanson (2011)) and also in

riverine systems with frequent flow exchange between the main channel and the floodplain.

This is because the 2D-SWE models can provide very good representation of floodplain

conveyance and are well suited to simulate the extent of inundation that constantly change

over time. These features have made the 2D-SWE models the favourite selection for modelling

flood flows in urban and coastal settings, and also in riverine systems recurrent with overbank

flows.

2.1 Two-dimensional shallow water equations (2D-SWE)

The 2D hydraulic models are generally developed around the 2D-SWE, which is achieved

by averaging the 3D-NS equations over the flow depth (Teng et al. 2017, Alcrudo 2004).

This simplification thus eradicates the complications encountered with the 3D-NS equations

in calculating the position of the free water surface (Alcrudo 2004). The 2D-SWE can be

expressed in Eqs. 2.1, assuming a uniform and constant flow density (Cozzolino et al. 2021):

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0 (2.1a)
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∂qx
∂t

+
∂

∂x

(
gh2

2
+
q2
x

h

)
+

∂

∂y

qxqy
h

= −gh∂z
∂x
− ghSfx (2.1b)

∂qy
∂t

+
∂

∂x

qxqy
h

+
∂

∂y

(
gh2

2
+
q2
y

h

)
= −gh∂z

∂y
− ghSfy (2.1c)

where x and y indicate the coordinates of a given location, t is the time, h is the wa-

ter depth, qx = hu and qy = hv are the unit-width discharge components along x and y

directions, with u and v the directional components of the depth-averaged velocity, z is the

bed topography, Sfx and Sfy are the friction terms, with Sfx = −n2
Mu(u2 + v2)1/2/h4/3 and

Sfy = −n2
Mv(u2 + v2)1/2/h4/3 (where nM is the Manning’s resistance coefficient), and g is

the gravity acceleration. Eq. 2.1a represents the mass equation, whilst Eqs. 2.1b and 2.1c are

the x- and y-directional momentum equations respectively.

Other influences such as the viscosity effects, Coriolis terms, wind shear stress terms and

wall friction terms can be included in the 2D SWE as well. In flood modelling however,

the Coriolis terms that accounts the effects of the Earth’s rotation are normally neglected.

The wind shear stress terms are normally considered if the wind strength and direction can

significantly influence flood predictions in very large flat plains, whilst wall friction is generally

relevant in applications involving very high resolution modelling.

Although flood models based on the 2D-SWE are the most popular, they are not rep-

resentative of the true water movements on the Earth’s surface. Besides the discrepancies

instigated from the averaging procedure for the 2D SWE, the following lists the known limi-

tations of this approximation (Alcrudo 2004):

• Velocities in the vertical directions are ignored (resulting in zero vertical accelerations),

• A hydrostatic pressure distribution is assumed in the flow system,

• The topography gradient is assumed small,

• The horizontal velocity is assumed to be uniform,

• The effects due to turbulence are ignored,
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• The friction value is determined from uniform flow conditions.

Regardless of the limitations described above, majority of the modern industry-standard

flood models are built upon solving the 2D-SWE, indicating that using these models in

representing the physical processes of flooding are still relevant (Duan 2005, Neelz & Pender

2009, Aureli et al. 2015). The 2D-SWE can be solved using a variety of numerical methods,

but these mostly fall into one of the three classical methods described in the next section.

2.2 Classic numerical methods in 2D-SWE flood models

Many of the numerical methods applied to discretise the spatial domain can be classified into

one of the following major groups: the finite difference (FD), finite element (FE) and the finite

volume (FV) methods (Teng et al. 2017, Alcrudo 2004, Neelz & Pender 2009, Hinkelmann

et al. 2015) regardless whether the computational grids used is either of structured (square

or quadrilateral), unstructured (triangular) or more recently, flexible, mixed-type mesh.

Among these groups, the finite difference (FD) method is the most straightforward to

be implemented and much more established for practical applications. This method approx-

imate unknown variables for the derivative involved in the 2D-SWE in sets of grid points.

Despite the rather simple approach, the popularity of these methods is in decline among the

academic communities due to their rigidity in geometrical sense especially around curving

river channels and floodplains (Alcrudo 2004, Neelz & Pender 2009). Furthermore, FD flood

models are generally based on the ADI (Alternating Direction Implicit) approach, which can

very reliable when modelling flood flows on mild slope, but tend to generate spurious numer-

ical oscillation around sharp gradients in the solution particularly in flash flooding and on

short hilly catchments (Liang et al. 2007, Kvočka et al. 2015). On the other hand, modelling

software packages built on the FD method are still popular among industrial communities

and academic researchers dealing with real-world flooding applications e.g. DIVAST-2D (Mu-

solino et al. 2020, Kvočka et al. 2016, 2017) and MIKE FLOOD (Beden & Ulke Keskin 2021,

Shrestha et al. 2020, Löwe et al. 2017) mainly because they are more compatible with raster-
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based digital terrain and bathymetry models, although such software packages may need to

adopt shock-capturing algorithms such as the TVD approach, that can be more than 8 times

longer to run compared to the ADI approach (Kvočka et al. 2015).

The finite element (FE) method works by solving the weak formulations of the conserva-

tion laws using selected test functions (usually via the Galerkin method) for a solution space

that is discretised into a finite number of elements. Unlike the FD method, the FE method

conserves mass over the whole spatial domain (but not within each grid element) (Bradford

& Sanders 2002), although the underlying mathematical foundation is more rigorous, which

perhaps the reason why this method are not widely used in commercial software packages.

The FE-based software packages may produce large computational time, as a result of its high

mathematical complexity, and can complicate mesh generation if no proper mesh generating

tool is available (Alcrudo 2004, Neelz & Pender 2009). Despite the shortcomings, the mathe-

matical theory behind the FE method is well-developed, hence they could accommodate more

flexibility (as unstructured grids are usually applied) and achieve higher accuracy, especially

in domains with complex boundaries and boundary conditions. A well-established FE-based

flood modelling software developed by Électricité de France (EDF) called TELEMAC-2D has

successfully been applied to simulate real cases of flood inundation (Bates et al. 1999, Horritt

& Bates 2001, Horritt et al. 2006, Alho & Aaltonen 2008, Vu et al. 2015, Pavĺıček & Bruland

2019) although later versions of this model are blended with the finite volume methods (Ata

2012).

In the recent decades, the finite volume (FV) method has become the most adopted spatial

discretisation approach in modern flood models. This methods discretises the solution space

into certain number of non-overlapping finite volumes, in which the integral form of the

hyperbolic 2D-SWE is applied. Also known as the conservative Godunov-type formulations

(Godunov 1959, Toro 2001, Toro & Garcia-Navarro 2007, Garćıa-Navarro et al. 2019), the FV

method is inherently local and first-order accurate in the sense that the flux balance evolves

a mean coefficient, which is a piecewise-constant approximation of the state variables. Based

on their advantages in terms of intrinsic shock-capturing ability, great geometrical flexibility
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(i.e. can be applied to structured, unstructured and flexible meshes), conservation properties

and simplicity in the underlying mathematical concept, the FV-based method is preferred to

FD or FE methods to be applied in many known industry-standard flood modelling packages,

both for commercial and academic purposes (Neelz & Pender 2009, 2013, Teng et al. 2017).

These FV-based packages have been proven to be stable and robust in modelling real-world

flooding problems. However, first order FV method tends to be strongly affected by numerical

diffusion, thus causing undesired effects in the predictions such as smearing of the solution

along with smooth, rounded edges of wave fronts in flows containing discontinuities (e.g.

dam-break cases) that can deliver inaccurate numerical results (Neal et al. 2012, Hou et al.

2015).

To increase the accuracy of the FV-based models, second-order formulations have been de-

veloped by reconstructing piecewise-linear approximations from the initial piecewise-constant

data beyond immediate neighbouring cells, but in doing so the locality of the computational

stencil will be sacrificed (Van Leer 1979, Yamamoto et al. 1998, Caleffi et al. 2006, Xing 2016).

FV2-based flood models have relatively wider calculation stencil, which has been observed

to adversely affect practical applications, such as wetting and drying (Begnudelli & Sanders

2006, 2007, Bradford & Sanders 2002, Kesserwani & Wang 2014, Morales-Hernández et al.

2021), and conservation properties needed to deal, for example, with slope limiters (Hou

et al. 2014, Kesserwani & Wang 2014, Nikolos & Delis 2009, Sanders & Bradford 2006) that

can potentially reduce the accuracy of the FV2 model to first order. Challenges pertaining

to slope limiters in the FV2 models are further discussed in Sec. 4.2.2. To address these

challenges, investigation on other types of the Godunov-type numerical methods is signif-

icantly progressing in recent years particularly for the application in flood risk assessment

and management. One of the said methods is the Discontinuous Galerkin (DG) method in

Section 2.2.1.
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2.2.1 Discontinuous Galerkin (DG) method

In light of the Godunov-type philosophy, the DG method is naturally an extension to the

finite volume method, by combining the locally-conservative finite volume principles and the

flexibility of the finite element weak formulation to form a solution over a computational

element. This is achieved by evolving a polynomial solution while restricting to use the

initial data that is locally contained within an element alongside its immediate adjacent

neighbours for numerical flux calculation. But compared to the traditional FE (based on the

continuous Galerkin) and the FV methods, the DG method needs to store and evolve more

than a mean coefficient to define the local polynomial solution. The number of coefficients

needed to be stored and evolved depends on the order of accuracy, spatial dimensionality and

spatial resolution (Caviedes-Voullième & Kesserwani 2015). In this respect, the mathematical

complexity that forms the basis of the DG formulations increases in proportion to these

influences; increasing the expected order of accuracy will affect the computational efficiency

and numerical stability, which pose a challenge when integrating salient features crucial for

practical applications. Therefore, a second-order DG method (DG2) is often a selected option

as a trade-off (Kesserwani & Liang 2011, Kesserwani & Wang 2014).

In formulating a robust DG2 method for 2D-SWE modelling, there are less developments

involving square grids and quadrilateral mesh types (Kesserwani & Liang 2010, 2012a, 2015),

compared to their triangular counterparts, despite reported benefits in terms of accuracy

and computational efficiency (Wirasaet et al. 2010, 2014). Previous studies exploring square

grids and quadrilateral meshes (Gerhard et al. 2015, Kesserwani & Wang 2014, Kesserwani

& Liang 2012a) only focused on the mean coefficients in the DG2 solutions when studying

well-balanced properties, which generally involved smooth-shaped topography. Thus, further

investigation is still deemed necessary to investigate the full extent of the well-balancedness

properties beyond the mean (average) coefficients along with considering the steep-sloped

topography shapes. Furthermore, most investigations (Gerhard et al. 2015, Kesserwani &

Wang 2014, Kesserwani & Liang 2012a) adopted the pre-balanced form of the SWE (Lu &

Xie 2016), in which the main variable is represented by the water level, instead of the water
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depth. In contrast to the conventional form of the SWE, the pre-balanced form is likely

unneeded and can entail additional computational runtimes (Lu & Xie 2016).

In recent decades, the development of the DG method is progressively maturing in the

context of practical 2D-SWE modelling. Increased interests on this method is also noted

in the field of water resources in tandem with the advancement of finite volume modelling

(Bokhove 2005, Ern et al. 2008, Gourgue et al. 2009, Kesserwani & Liang 2011). This method

is also highly compatible for parallel computing technologies, both in the conventional central-

processing unit (CPU) platforms (Biswas & Devine 1994, Eskilsson et al. 2009, Brus et al.

2017, Dawson et al. 2013, Samii et al. 2016, Shaw et al. 2021) and also in graphics-processing

units (GPUs) (Fuhry et al. 2014, Klöckner et al. 2009, DuChene et al. 2011, Chan et al.

2016, Shaw et al. 2021), as the DG method remains local (i.e. data transfer and storage are

restricted only between local grid and its immediate neighbours) when higher-order accuracy

is required. It also forms the basis for local mesh, polynomial order and time step adaptivity

(Dawson et al. 2013, Samii et al. 2016, Chan et al. 2016, Conroy & Kubatko 2016). Despite

these merits, the DG method is not widely used for flood inundation modelling and hydraulic

engineering applications, partly due to the expensive runtime costs (Kesserwani & Wang

2014)) as well as issues pertaining to well-balancedness and stability (Caviedes-Voullième

& Kesserwani 2015, Caleffi et al. 2016). Hence, the reduction in the complexity level of

DG formulations is necessary in favour of affordable computational costs and robustness for

modelling realistic flooding scenarios. In addition, an accurate topography discretisation

should be established so that the precise equilibrium between the flux and the topography

source terms can be achieved, ensuring the conservativeness (i.e. preservation of well-balanced

property) of the DG2 method.

2.2.2 Comparative studies between FV2 and DG2 methods

Previous studies assessing the performance of the DG2 method relative to the FV2 method

using academic and experimental test cases have demonstrated the potential benefits of the

DG2 method for practical 2D-SWE modelling. Wang & Liu (2005) compared DG2 against
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FV2 in producing a smooth, symmetrical flow curvature in a uniformly rotating flow field.

They found that after one rotation, the FV2 predicted a much flatter and assymetrical curving

of the flow with significant underestimation of the peak depth and the extent of recirculating

eddies. In contrast, the DG2 method produced solutions that are less diffusive and preserves

the shape of the flow curvatures and the recirculation flows. Duran & Marche (2014) assessed

the capability of DG2 against FV2 based on the profiles of the water depth extracted from

the 2D outputs of water drop in the middle of a square pool. The resulting DG2 profiles

showed better capturing of the wave crest propagating away from the pool centre and followed

very well a small curving around the wave trough in the analytical solution. In a laboratory

experiment analysing flood propagating along a crossroad, Ghostine et al. (2009) analysed

the water surface profiles replicated by the DG2 and FV2 from the experimental data and

compared to a 3D model. They found that DG2 is able to replicate the profiles of the

experimental data and the 3D model much closer than FV2 particularly around the regions

of recirculation flows, thus affirming the findings made by Wang & Liu (2005).

A more comprehensive assessment on the capabilities of DG2 and FV2 for flood inundation

modelling has been done by Kesserwani & Wang (2014). The assessment covered test cases

involving realistic flooding scenarios caused by a dam-break and fluvial flooding over real-

world terrain conditions. Their findings showed that the FV2 predictions tends to degrade

as the meshes coarsened, with more diffusive predictions around the regions of high flow

curvature (corroborating with the results of Wang & Liu (2005) and Duran & Marche (2014))

and mispredictions of the vanishing velocity at the wet-dry interfaces. On the other hand,

DG2 is capable to provide results with increased prediction quality on very coarse grids and

with detailed capturing of the velocity transients, albeit with at least 10 times more expensive

in runtimes compared to the FV2. The capability of DG2 to produce reliable results on coarse

resolutions is also supported by the findings of Ghostine et al. (2019) who simulated flooding

over urbanised environments. They found that the water depth predicted by DG2 around

regions of wave-structure interactions are closer to reference data than FV2 on coarse meshes.

Despite these studies highlighted the advantages of using DG2 for real-world flood modelling,
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which are also noted by some industrial community (Engineers Australia 2012), there is still

the need to affirm the utility of the DG2 method for industry-standard modelling applications.

2.3 Benchmarking of industry-standard 2D flood models

Initially, flood model benchmarking exercises focus on tracking development of new numer-

ical methods and techniques based on the input data and computing resources available at

that time. These exercises however, were more focused on using the model equations that

solve hyperbolic conservation laws, with less emphasis on real-life applications. Early bench-

marking exercises within this scope were done in the 1990s and reviewed by Leopardi et al.

(2002). With the introduction to sophisticated data gathering techniques, such as high res-

olution satellite imagery and Light Detection and Ranging (LiDAR) scanner, the collation

of hydraulic data to build digital elevation models (DEM) and to estimate flow friction have

tremendously improved, making 2D flood modelling much more appealing (Cobby et al. 2001,

Pender 2006, Sanders & Bradford 2006). As these techniques progress, studying the effects of

applying 2D flood models for flood risk studies has become necessary in cases where complex

floodplain flow processes are much more dominant.

Considering that many decision-making activities are dependent on the results obtained

from the 2D flood models, several countries have written modelling guidelines to ensure flood

models are able to perform tasks relevant to flooding assessments in riverine and urban areas

(Engineers Australia 2012, Scottish Environment Protection Agency 2016, Henckens & Engel

2017). Hence, the benchmarking tasks lately focus on identifying models suitable for given

flood risk mapping and management studies. These models are identified based on their

current capabilities that meet the minimum modeling requirement of each industry-relevant

application. In the United Kingdom, such benchmarking efforts were initially done using

real-world hydrometric data and images of flood extent from aerial photographs and airborne

radars that were obtained from several, specifically chosen flooding events. Horritt & Bates

(2001) tested an FE-based 2D-SWE flood model, TELEMAC-2D, against inundation map

and hydrometric data for River Thames which were then compared to those from a raster-
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based flood model, LISFLOOD-FP. They later conducted similar study on TELEMAC-2D

for River Severn (Horritt & Bates 2002). In a more rigorous comparative study on industry-

standard 2D hydraulic models, Hunter et al. (2008) tested six models (three 2D-SWE FD-

based models (TUFLOW, DIVAST-ADI and DIVAST-TVD), one 2D-SWE FV-based model

(TRENT) and two simplified 2D models (JFLOW and LISFLOOD-FP)) in simulating a flood

event in the city of Glasgow, Scotland. They found that in areas where there are less friction

and shallower water depths, 2D-SWE flood models without shock-capturing capability yields

more numerical oscillations in the water depth predictions. The full 2D-SWE models were

also computationally cheaper than the simplified models when modelling on very fine mesh

resolution (i.e. 2 m), but significant optimisation works on the simplified models, along

with the addition of parallel computing technologies, have made both models to be equally

competitive in recent years (Neal et al. 2018, Shaw et al. 2021).

Since 2009, 2D flood model benchmarking has been shifted from using specific flood events

to assess the overall performance of the model, to using only simple academic test cases that

can reliably validate the numerical robustness required for a given practical engineering appli-

cation. Lhomme et al. (2010) evaluated an FV-based model IW2D (also known as Infoworks

2D) against another FV model, TELEMAC-FV and one FD-based model (TUFLOW), all

of which are commonly-used in consultancy works, over five academic test cases with avail-

able analytical solutions. They reported that whilst IW2D and TELEMAC-FV performed

equally well when modelling dam break and rapid transients over dry surfaces, both fall short

in tidal environments with cyclic wetting and drying, with TELEMAC-FV generated signifi-

cant dampening of wave amplitude compared to IW2D. Realising that better understanding

is needed for a range of 2D hydraulic modelling packages used for flood-related projects, the

UK Environment Agency (UK EA) has proposed and recommended eight benchmark tests

to assess frequently used 2D flood models and mapped the tests to specific flood-related ap-

plications (Neelz & Pender 2009, 2010, 2013). A summary of the benchmark tests is shown

in Table 2.1, with the mapping of the tests to each modelling application of the UK EA

provided in Table 2.2. The capabilities of eight 2D-SWE flood models using FD- and FV-
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Table 2.1: The summary of UK EA benchmark tests (Neelz & Pender 2010,
2013).

EA Test
No.

Description
Model

dimensionality

1 Flooding a disconnected water body.

2D model only

2 Filling of floodplain depressions.
3 Momentum conservation over a small (0.25m) obstruction.
4 Speed of flood propagation over an extended floodplain.
5 Valley flooding.
6A & 6B Dam break.

7 River to floodplain linking.
2D model with

1D river network

8A & 8B Rainfall and sewer surcharge flood in urban areas.
2D model with
2D rainfall or

1D sewer model

based solvers were assessed in the first UK EA benchmarking exercise (Neelz & Pender 2010)

followed by another round of benchmarking using additional or more updated version of

2D modelling packages (Neelz & Pender 2013). Since UK EA benchmarking tasks involved

many well-known industry-standard flood models and with thorough analyses of the mod-

els’ capabilities, the benchmark tests become popular that these have been implemented to

newly-developed and enhanced 2D models that are not part of original UK EA benchmarking

assessments, such as HEC-RAS 2D (Brunner 2016), 3Di (Schuurmans & Leeuwen 2014), Swift

(Cohen et al. 2016), PCSWMM/SWMM5 (James et al. 2013) and MOHID (Pina et al. 2015).

Also, the developers of TUFLOW (who participated in the UK EA benchmarking exercises)

have reapplied the same tests to their latest software packages equipped with state-of-the-art

modelling technology (i.e. parallelised and/or GPU computing) (Huxley et al. 2017). A list

of flood models based on full 2D SWE that have been benchmarked using the UK EA tests

is shown in Table 2.3.

2.3.1 Detailed velocity field predictions

Most of the flood modelling applications listed in Table 2.2 indicate that the spatial scope of

applications relevant to the UK EA tests are of large catchment- or regional-scale. However,

comprehensive assessments of the capabilities of industry-scale 2D flood models for smaller
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Table 2.2: Mapping of benchmark test cases to model for UK EA applications
(Neelz & Pender 2010, 2013).

Application
Prediction
required

Relevant
benchmark

tests

Large-scale flood risk mapping
(up to 1000 km2)

flood extent 1 & 2

Catchment flood management plan
flood extent;

maximum depth
1, 2 & 7

Flood risk assessment and
detailed flood mapping

flood extent;
maximum depth

1, 2, 3 and 7

Strategic flood risk assessment
flood extent;

maximum depth
and velocity

1, 2, 3, 4, 7 and 8

Flood hazard mapping
flood extent;

maximum depth
and velocity

1, 2, 3, 4, 7 and 8

Contingency planning for real time
flood risk management

time-varied
flood extent,

depth and velocity
1, 2, 3, 4, 5, 7 and 8

Reservoir inundation mapping
time-varied

flood extent,
depth and velocity

1, 2, 3, 4, 5 and 6
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Table 2.3: List of flood modelling software packages based on full 2D-SWE that
have been tested using the UK EA benchmark tests.

Model name Numerical method Mesh type Sources

ANUGA FV Flexible Neelz & Pender (2010, 2013)

FloodFlow FD Square grid
Neelz & Pender (2010)

Infoworks 2D FV Flexible

ISIS2D FD Square grid

Neelz & Pender (2010, 2013)
MIKE FLOOD FD Square grid
SOBEK FD Square grid
TUFLOW (ADI) FD Square grid

TUFLOW (FV)
FV
(1st and 2nd order)

Flexible

Flowroute-iTM FV Square grid

Neelz & Pender (2013)
Infowork ICM FV Flexible
ISIS 2D GPU FV Square grid
JFLOW + FV Square grid
XPStorm FD Square grid

LISFLOOD-Roe FV Square grid Neal et al. (2012)

HEC-RAS 2D FV Flexible Brunner (2016)

3Di FV Flexible Schuurmans & Leeuwen (2014)

Swift FV Square grid Cohen et al. (2016)

PCSWMM/
SWMM5

FV Flexible James et al. (2013)

MOHID FV Square grid Pina et al. (2015)

TUFLOW-Classic FD Square grid

Huxley et al. (2017)
TUFLOW-HPC FV (2nd order) Square grid
TUFLOW-GPU FV (1st order) Square grid
TUFLOW FV
(2014 Release)

FV
(1st and 2nd order)

Flexible

RiverFlow2D Plus FV Flexible
Jenkins & Garcia (2015)

RiverFlow2D Plus GPU FV Flexible

Tygron Geodesign
Platform

FV Square grid TYGRON (2019)
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spatial scale, such as urban flooding along complex road networks around buildings in a

city, is also important. For smaller spatial scope, it is necessary that the selected 2D flood

model is able to provide reliable information on the spatial velocity fields in order to estimate

the flood hazard over the whole inundation area, which often the goal of flood inundation

modelling (Bates et al. 2014, Smith et al. 2012). This would mean that in urban areas with

irregular flood extent and with many regions of wave-structure interfaces, the flood model

can produce sufficiently realistic velocity fields with localised variability of the distribution

pattern around the buildings (Hunter et al. 2007, Schubert & Sanders 2012, Dottori et al.

2013). Additionally, there is also a need for detailed spatial information of velocity within

city streets to mobilise operational flood management during an urban flooding (Guo et al.

2021).

At present, there is no specific set of benchmark tests, such as the UK EA tests, that

is available to assess the suitability of industry-standard 2D flood models for producing de-

tailed spatial velocity fields for urban flood modelling. This is perhaps due to the difficulties

in acquiring observation data to validate the models, particularly when the inundation cov-

erage is extensive and direct in-situ measurements can pose safety concerns if conducted

during flooding (Bates et al. 2014). Instead, the 2D flood models are assessed using velocity

fields measured from physical models that were purposely designed to replicate real-world

hydrodynamics around dense urban structures. For instance, the velocity fields produced

by two FD-based flood models (TUFLOW and MIKE-FLOOD) were analysed against mea-

sured velocity data collated from a physical model representing an urban residential area with

small piers (Smith et al. 2016). An industry-standard FV2-based model, Rubar20, is used

to study spatial velocity fields predictions relative to the velocity measured using particle

imagery velocimetry (PIV), around raised sidewalks and obstacles smaller than a common

building structure within a right angle junction (Bazin et al. 2017, Bazin 2013). Although

these assessments were made to analyse the reproduction of the velocity field around urban

fixtures as seen from the physical models, deeper investigation is still required to identify

the capabilities of the 2D flood models to predict spatial velocity for field-scale modelling
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applications.



Chapter 3

Grid-based DG2 formulation for

2D-SWE modelling

Contents used to prepare for this chapter have been published in the following publications:

1. Ayog, J. L., Kesserwani, G. 2018. ”Reformulation of 2D DG2 Scheme for Shallow Wa-

ter Modelling”, Proceedings of the HIC 2018: 13th International Conference on Hydroin-

formatics, Palermo, Italy. EPiC Series in Engineering, https://doi.org/10.29007/xlvx.

2. Kesserwani, G., Ayog, J. L., Bau, D. 2018. Discontinuous Galerkin formulation for

2D hydrodynamic modelling: Trade-offs between theoretical complexity and practical

convenience, Comput. Method Appl. Mech. Engrg. 342 (2018) 710-741.

https://doi.org/10.1016/j.cma.2018.08.003.

3.1 Chapter overview

This chapter, which seeks to address Objective 1, elucidates the formulation of the simplified

DG2 solver based on the conservative form of the 2D-SWE, along with the analyses of its

well-balanced properties not only for the mean coefficients but also the slope coefficients. In

Sec. 3.2, the standard DG2 formulation is firstly described, then followed by the simplified

DG2 formulation. The simplified DG2 formulation, which has been developed to produce

24
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a slope-decoupled formulation, is made capable in preserving well-balanced properties fully

(for all mean and slope coefficients) considering a range of realistic flow cases and topography

shapes. Sec. 3.3. presents the test cases that are tailored to compare the performance of the

simplified DG2 solver against the standard DG2 solver, and later to verify the simplified DG2

solver practical capabilities in terms of its accuracy and conservation properties. Finally, the

key findings from these test cases are summarised in the concluding remarks in Sec. 3.4.

3.2 DG2 formulations on grid elements

By considering the hyperbolic conservation laws, which is expressed in its conservative form

in Eq. 3.1, the DG2 numerical solutions are explored over a 2D domain Ω:

∂tU + ∂xF(U) + ∂yG(U) = S(U) (3.1)

where U(x, y, t) is the vector of the state variables at location (x, y) and time t, F(U) and

G(U) are spatial flux vector corresponding to the x- and y-directions, and S(U) represents

the source term vectors. In Eq. 3.1, ∂t, ∂x and ∂y are the partial derivatives relative to t, x

and y, respectively.

The 2D domain Ω is discretised into MQ×NQ uniform grid elements Qc (c = 1, ...,MQ×

NQ). Each element Qc is centred at (xc, yc) with a size of ∆x = ∆y, and can be expressed

as Qc = [xc − ∆x
2 , xc + ∆x

2 ]× [yc − ∆y
2 , yc + ∆y

2 ] (see Fig. 3.1).

3.2.1 Standard DG2 formulation

An approximate solution of Uh of Eq. 3.1 is sought by multiplying both-hand sides of the

equation by a test function vh(x, y), which is compactly supported on Qc, and then integrating
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over Ω. These produce the following weak formulation:

∫∫
Qc

∂tUh(x, y, t)vh(x, y)dxdy +

∫∫
Qc

∂xF(Uh)vh(x, y)dxdy +

∫∫
Qc

∂yG(Uh)vh(x, y)dxdy

=

∫∫
Qc

S(Uh)vh(x, y)dxdy

(3.2)

Integration by parts of the second and third terms at the left-hand side of Eq. 3.2 gives:

∫∫
Qc

∂xF(Uh)vh(x, y)dxdy

=

[∫ yc+∆y/2

yc−∆y/2
F(Uh)vh(x, y)dy

]xc+∆x/2

xc−∆x/2

−
∫∫

Qc

F(Uh)∂xvh(x, y)dxdy

(3.3)

∫∫
Qc

∂yG(Uh)vh(x, y)dxdy

=

[∫ xc+∆x/2

xc−∆x/2
G(Uh)vh(x, y)dx

]yc+∆y/2

yc−∆y/2

−
∫∫

Qc

G(Uh)∂yvh(x, y)dxdy

(3.4)

In Eqs. 3.3 and 3.4, the spatial derivatives are now removed from the flux terms. By

inserting these two equations into Eq. 3.2, and moving the spatial components to the right-

hand side of the equation, the weak formulation can be expressed as:

∫∫
Qc

∂tUh(x, y, t)vh(x, y)dxdy = Lh (3.5)

Lh = −[(Ih + Jh)− (Mh + Nh + Sh)] (3.6)

In Eq. 3.6, Lh is the spatial operator, in which Ih and Jh are local flux balance terms
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throughout the x - and y-direction, respectively:

Ih =

[∫ yc+∆y/2

yc−∆y/2
F(Uh)vh(x, y)dy

]xc+∆x/2

xc−∆x/2

(3.7)

Jh =

[∫ xc+∆x/2

xc−∆x/2
G(Uh)vh(x, y)dx

]yc+∆y/2

yc−∆y/2

(3.8)

and Mh, Nh and Sh are local volume integral terms for the fluxes and source terms, given

by:

Mh =

∫∫
Qc

F(Uh)∂xvh(x, y)dxdy (3.9)

Nh =

∫∫
Qc

G(Uh)∂yvh(x, y)dxdy (3.10)

Sh =

∫∫
Qc

S(Uh)vh(x, y)dxdy (3.11)

To construct a local planar DG2 solution on the grid elements, a suitable choice for the

test function vh is by using the 2D tensor product of the Legendre polynomial basis, over

which the stencil of a grid element Qc in Fig. 3.1 is applied. This then generates the following

planar approximate solution, Uh, expressed as:

Uh(x, y, t)|Qc = U0
c(t) +

(x− xc)
∆x/2

U1x
c (t) +

y − yc
∆y/2

U1y
c (t) (3.12)

The planar solution in Eq. 3.12 is defined by a set of coefficients, consisting of the mean

coefficient, U0
c and the slope coefficients in the x-direction, U1x

c and y-direction, U1y
c . These

coefficients needed to be initialised using the formulae below:

U0
c =

1

4
[U0(G1) + U0(G2) + U0(G3) + U0(G4))] (3.13a)
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Figure 3.1: The stencil of a grid element Qc for the standard DG2 form. Gi

(i = 1, 2, 3 and 4) are the local Gaussian points where the volume integral terms in
Eqs. 3.9-3.11 are evaluated. Meanwhile, Ei,Wi, Ni and Si(i = 1, 2) are the Gaus-
sian points at the eastern, western, northern and southern faces that aggregates
Riemann fluxes contribution in Eqs. 3.7-3.8.

.
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U1x
c =

√
3

4
[U0(G3)−U0(G4) + U0(G2) + U0(G1))] (3.13b)

U1y
c =

√
3

4
[U0(G3)−U0(G2) + U0(G4) + U0(G1))] (3.13c)

where Gi (i = 1, ..., 4) are 2D Gaussian points (see Fig. 3.1), which are mapped from a

reference element via mathematical transformation:

Gi =

(
x

(
±1√

3

)
, y

(
±1√

3

))
=

(
xc ±

√
3

6
∆x, yc ±

√
3

6
∆y

)
(3.13d)

The coefficients U0
c , U1x

c and U1y
c are evolved by the local spatial operators L0

c , L1x
c and

L1y
c that are obtained by considering Eq 3.12:

LK
c = −

[
(IKc + JK

c )− (MK
c + NK

c + SK
c )
]

(K = 0, 1x, 1y) (3.14)

The flux balance terms, IKc and JK
c , are computed by resolving solution discontinuities

at the faces between adjacent grid elements using an approximate Riemann solver (Toro

1999, 2001), which in this work, is based on the Roe solver (Roe 1997). The term IKc

is approximated at the Gaussian integration points (Fig. 3.1) at the Eastern (i.e. E1,2 =

(x(1), y(± 1√
3
)) = (xc+

∆x
2 , yc±

√
3

6 ∆y)) and the Western faces (i.e. W1,2 = (x(−1), y(± 1√
3
)) =

(xc−∆x
2 , yc±

√
3

6 ∆y)), where the x-directional Riemann flux F̃ is evaluated by averaging across

the faces. Similarly, the term JK
c is approximated considering the Gaussian integration points

(Fig. 3.1) at the Northern (i.e. N1,2 = (x(± 1√
3
), y(1)) = (xc ±

√
3

6 ∆x, yc + ∆y/2)) and the

Southern faces (i.e. S1,2 = (x(± 1√
3
), y(−1)) = (xc±

√
3

6 ∆x, yc−∆y/2)) where the y-directional

flux G̃ is evaluated for averaging across the faces. The terms involving volume integrals of

the fluxes, MK
c and NK

c , and the source terms, SK
c , are approximated via the 2D quadrature

rules at four Gaussian points (i.e. G1,G2,G3 and G4 in Eq. 3.18, with reference to Fig. 3.1).
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Special notes

The spatial discretisation described within Eq. 3.14 is applied within a two-stage Runge-Kutta

(RK) time integration (Eq. 3.15) to form the so-called RKDG2 approach. The RK time inte-

gration is used to update the DG2 solution from n to n+1 (n = 1, 2, ..., total number of iteration):

(UK
c )n+1/2 = (UK

c )n + ∆t(LK
c )n (3.15a)

(UK
c )n+1 =

1

2
[(UK

c )n + (UK
c )n+1/2 + ∆t(LK

c )n+1/2] (3.15b)

in which ∆t is an adaptive time step calculated using Eq. 3.16:

∆t = min

{
CFL×∆x

|u(x, y, t)|+
√
g × h(x, y, t)

,
CFL×∆y

|v(x, y, t)|+
√
g × h(x, y, t)

}
(3.16)

where CFL is Courant–Friedrichs–Lewy (CFL) number. Each RK stage in Eq. 3.15

should be preceded by slope limiting procedure (described in detail in Chapter 4) to ensure

that local DG2 slope coefficients, i.e. U1x
c and U1y

c , have limited variation relating to slopes

differentiated from the means at Qc and its adjacent neighbours. However, it is worth noting

on several key points relating to this DG2 structure.

Cross-dimensional slope dependency. The slope evolution operators L1x
c and L1y

c

although aimed to update the x - and y-directional slope coefficients, U1x
c and U1y

c , still

depends on both slope coefficients, mainly due to the location of the evaluation points in the

stencil (Fig. 3.1). In effect, at any of the relevant evaluation points - namely Ei, Wi, Ni and

Si (i = 1, 2) and Gi (i = 1, 2, 3 and 4) in Fig. 3.1 - the local planar solution Uh|Qc reads:

Uh(Ei, t) = U0
c(t) + U1x

c (t)± U1y
c (t)√

3
(i = 1, 2) (3.17a)

Uh(Wi, t) = U0
c(t)−U1x

c (t)± U1y
c (t)√

3
(i = 1, 2) (3.17b)
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Uh(Ni, t) = U0
c(t)±

U1x
c (t)√

3
+ U1y(t) (i = 1, 2) (3.17c)

Uh(Si, t) = U0
c(t)±

U1x
c (t)√

3
−U1y(t) (i = 1, 2) (3.17d)

Uh(Gi, t) = U0
c(t)±

U1x
c (t)√

3
± U1y

c (t)

c
(i = 1, ..., 4) (3.18)

for which, as in Eqs. 3.17 to 3.18, both x- and y-directional slope coefficients must be

present in any of the evaluations.

Impact of the slope limiter. The slope limiter in DG formulation comes in as an FV

tool aimed to stabilise the solution around sharp discontinuities (i.e. avoid the development

of the Gibbs phenomenon). Nonetheless, it is generally demonstrated that slope limiters

may have adverse effects such as distorting the solution around smooth areas (Marras et al.

2016, Krivodonova et al. 2004, Sanders & Bradford 2006, An & Yu 2014, Kesserwani & Liang

2012c). To reduce such an impact on DG predictions, the slope limiting process may be

localised based on the so-called troubled cell indicator (Qiu & Shu 2005), such as the shock

detector in (Krivodonova et al. 2004) used in this study. Further information on the shock

detector used in this research is provided in Chapter 4. However, given the cross-dimensional

slope dependency issue raised above, any potential impact due to slope limiting would be

omnipresent across all the evaluations.

Operational costs. At each RK stage, the DG2 discretisation requires solving 8 dif-

ferent Riemann problems to calculate the flux balance terms, 8 Gaussian point evaluations

to calculate the flux volume integrals, and 16 Gaussian point evaluations to calculate the

volume integrals of the source terms. Hence, at least 32 spatial operations are needed to

enable progressing the state of the solution over one grid element by half a time step, which

is computationally expensive.
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Figure 3.2: Stencil of a grid element Qc for the simplified DG2 formulation.
Two different sets of Gaussian points {Gxi}i=1,2 and {Gyi}i=1,2 are involved in a
fully decoupled manner along the horizontal and vertical centrelines, respectively.
Furthermore, only a single evaluation for the Riemann flux at any of the four
faces is sought, involving the centres E and W of the eastern and western faces
along [Gx1, Gx2] and N and S of the northern and southern faces along [Gy1, Gy2].
Points EN,ES,WS and WN indicate the corner of Qc that are named based on
the two faces they connect (e.g., WS indicates the corner point at which the western
and southern faces intersect).
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3.2.2 Simplified DG2 formulation

A simplified DG2 formulation is presented using the same choice for the local basis functions

as in Sec. 3.2.1, but based upon a different local stencil, which is described in Fig. 3.2.

As shown in this figure, there are now two different sets of Gaussian points, {Gxi}i=1,2 and

{Gyi}i=1,2, that are involved in an entirely decoupled manner along the x - and y-directional

centrelines, respectively. With this setting, the set {Gxi}i=1,2 is applied to approximate all

the integral terms in the operator L1x
c , considering no variation occur along the y-direction.

Similarly, the set {Gyi}i=1,2 is used to approximate all the integral terms in the operator L1y
c

considering no variation occur along the x -direction. Also, only one evaluation for the flux

at any of the four faces is required, namely at points E and W that are located at the centre

of the eastern and western faces, and points N and S located at the centre of the northern

and southern faces. These points are positioned along the centrelines of the grid element

Qc that intersect at its centre whilst crossing the Gaussian points [Gx1,Gx2] and [Gy1,Gy2]

respectively (Fig. 3.2). The main purpose of adopting this stencil is to decouple the slope

dependencies in the all evaluations with respect to the Cartesian directions. This can be

easily shown, considering the stencil depicted in Fig. 3.2, that any local evaluation at the

relevant points only involves one slope coefficient, namely:

Uh(E, t) = U0
c(t) + U1x

c (t) (3.19a)

Uh(W, t) = U0
c(t)−U1x

c (t) (3.19b)

Uh(N, t) = U0
c(t) + U1y

c (t) (3.19c)

Uh(S, t) = U0
c(t)−U1y

c (t) (3.19d)
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Uh(Gxi, t) = U0
c(t)±

U1x
c (t)√

3
(i = 1, 2) (3.20a)

Uh(Gyi, t) = U0
c(t)±

U1y
c (t)√

3
(i = 1, 2) (3.20b)

As opposed to Eqs. 3.17 to 3.18, Eqs. 3.19 to 3.20 result in sole involvement of the x -

directional (or y-directional) slope coefficient in the evaluation of the Riemann problem and

integral terms involving the x -directional flux F (or y-directional flux G) within the L0
c , L1x

c

and L1y
c local spatial operators. Considering also that the x -directional and y-directional

variations of the local planar solution are zero along the y-direction and x -direction, the

following spatial operators can be obtained for updating the mean and slope coefficients over

Qc over an RK time stage:

L0
c = − 1

∆x

(
F̃E − F̃W

)
− 1

∆y

(
F̃N − F̃S

)
+ S(Uh(xc, yc), t)) (3.21a)

L1x
c = − 3

∆x

{
(F̃E + F̃W )− (F(Uh(Gx2, t)) + F(Uh(Gx1, t)))

−∆x
√

3

6
[S(Uh(Gx2, t))− S(Uh(Gx1, t))]

} (3.21b)

L1y
c = − 3

∆y

{
(F̃N + F̃S)− (G(Uh(Gy2, t)) + G(Uh(Gy1, t)))

−∆y
√

3

6
[S(Uh(Gy2, t))− S(Uh(Gy1, t))]

} (3.21c)

where F̃E = F̃(Uh(E−, t),Uh(E+, t)), F̃W = F̃(Uh(W−, t),Uh(W+, t)), F̃N = F̃(Uh(N−, t),

Uh(N+, t)) and F̃E = F̃(Uh(S−, t),Uh(S+, t)) represent the Riemann flux evaluations across

the eastern, western, northern and southern faces of the element Qc, considering the limited

slope coefficients in Eqs. 3.19-3.20 with the same localised slope limiter as in the standard
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formulation (Sec. 3.2.1). When compared to the standard DG2 formulation, the simplified

formulation (Eqs. 3.21) reduces the total number of operations from 32 to 12 (4 Riemann

problem solutions and 8 Gaussian point evaluations), leading to a drastic reduction in oper-

ational cost. The simplified DG2 formulation is thus expected to offer speed up in runtime

relative to the standard DG2 formulation by a factor of 2.6 (see also Sec. 3.3.1). It also has

the advantage of being well-balanced for all mean and slope coefficients as discussed in the

next subsection.

2D-SWE with bed topography

The conventional form of the 2D-SWE can be expressed by Eq. 3.1, assuming that:

U =


h

qx

qy

 , F =


qx

q2x
h + g

2h
2

qxqy
h

 , G =


qy

qxqy
h

q2y
h + g

2h
2

 and S =


0

−gh∂xz

−gh∂yz

 (3.22)

where h(x, y, t) represents the water depth, qx = hu and qy = hv are volumetric discharges

per unit width expressed in terms of the velocities u(x, y, t) and v(x, y, t) along the Cartesian

directions, g represents the acceleration due to gravity, and ∂xz and ∂yz are the partial

derivatives of a topography function z(x, y).

The system of Eqs. 3.1 and 3.22 (which is similar to Eq. 2.1 in Chapter 2 without the

friction terms) may be referred to as non-homogeneous hyperbolic conservation laws (Xing &

Shu 2014) when z(x, y) 6= 0. A known challenge is to find a straightforward discretisation of

the source terms that balances the flux gradients when the flow admits steady state solutions,

i.e. producing a well-balanced 2D-SWE solver (Xing & Shu 2014). In principle, a well-

balanced DG2 solver should preserve the ’lake-at-rest’ stationary solution over an uneven

topography (Xing & Shu 2014), for which the conditions are:

h+ z = constant and (qx, qy) = (0, 0) (3.23)
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In the context of practical hydrodynamic simulations, the design of a well-balanced DG2

solver that retains the condition in Eq. 3.23 faces numerous challenges, including: (a) the

DG2 solver should verify the discrete balance between the gradients of the fluxes and the

topography; (b) the DG2 solver should remain stable for a flow over a steep terrain, e.g. a

building-like block, where the topography function is not differentiable; (c) all DG2 operators

in Eqs. 3.21 should be well-balanced with respect to the mean coefficient, U0
c , and the slope

coefficients, U1x
c and U1y

c , as well. In the next subsection, we later demonstrate that the

simplified DG2 operators can offer a simple approach to effectively address these challenges.

Well-balancedness consideration in the simplified 2D-SWE DG2 solver

The simplified DG2 operators in Eqs. 3.21 are considered to study the well-balancedness

for the DG2 planar solution in Eq. 3.12. An appropriate initial projection, considering the

stencil in Fig. 3.2, is vital to achieve well-balancedness. The initial conditions for the local

coefficients in Eqs. 3.13 can be made valid on this stencil by involving the evaluations at the

corner points EN , ES, WS and WN as they are present in both stencils (Figs. 3.1 and 3.2):

U0
c(0) =

1

4
[U0(EN) + U0(ES) + U0(WS) + U0(WN)] (3.24a)

U1x
c (0) =

1

4
[U0(EN)−U0(WN) + U0(ES)−U0(WS)] (3.24b)

U1y
c (0) =

1

4
[U0(EN)−U0(ES) + U0(WN)−U0(WS)] (3.24c)

In turn, given the slope-decoupled formulation, integrating over a coordinate direction

the information at the faces considering the other direction are averaged, which leads to the

following relationships:

1

2
(U0(EN) + U0(ES)) = U0(E) (3.25a)
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1

2
(U0(WN) + U0(WS)) = U0(W ) (3.25b)

1

2
(U0(EN) + U0(WN)) = U0(N) (3.25c)

1

2
(U0(WS) + U0(ES)) = U0(S) (3.25d)

By substituting Eqs. 3.25 into Eqs. 3.24, the initial conditions for the coefficients can be

rewritten so that to involve the nodes E,W,N and S (see Fig. 3.2) where key treatments are

performed:

U0
c(0) =

1

2
[U0(E) + U0(W )] =

1

2
[U0(N) + U0(S)] (3.26a)

U1x
c (0) =

1

2
[U0(E)−U0(W )] (3.26b)

U1y
c (0) =

1

2
[U0(N)−U0(S)] (3.26c)

Eqs. 3.26 becomes relevant when linking the DG2 coefficients to the inter-elemental nodes

at the grid element faces where flux exchange occurs, hence making them suited to address

any change occurring at the nodes due to wetting and drying treatments. Also, Eqs. 3.26

reveal even more clearly that the planar topography projections, denoted by zh(x, y)|Qc over

Qc with coefficients z0
c , z

1x
c and z1y

c defined as in Eqs. 3.24, are continuous at all four main

nodes, E,W,N and S, considering the stencil in Fig. 3.2. For instance, considering the

topography approximation across the inter-elemental node E, which is shared by the grid

elements Qc and Qc+1, yields:

zh(E−)|Qc = z0
c + z1x

c = zh(E) = z0
c+1 − z1x

c+1 = zh(E+)|Qc (3.27)
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Another key issue is how to evaluate the derivative of the local topography projection

∂xzh|Qc and ∂yzh|Qc while remaining consistent with the stencil in Fig. 3.2. A straight

forward method would be to derive them from the following local planar solution, zh|Qc :

zh|Qc = z0
c +

(x− xc)
∆x/2

z1x
c +

(y − yc)
∆y/2

z1y
c (3.28)

which has constant slope coefficients over Qc and thus leads to the following local bed

slope terms:

∂xzh|Qc =

(
2

∆x
z1x
c

)
(3.29a)

∂yzh|Qc =

(
2

∆y
z1y
c

)
(3.29b)

Eqs. 3.29 that are used to discretise the local bed slope terms is sufficient to ensure well-

balancedness for the mean coefficients. However, this introduces irrelevant cross-dimensional

slope dependencies (e.g. z1x
c within L1y

c across the DG2 operators responsible for the update

of slope coefficients (see the mathematical proof in Appendix A)), leading to mild unbal-

ancedness in the slope coefficients of the discharges, which might eventually impact the well-

balancedness of all the coefficients (as shown later in Section 3.3.2). Therefore, an alternative

slope-decoupled discretisation for the local bed gradients is here proposed:

∂x [zh(0, y)|x=0] = 0 and ∂xzh|y=0 = ∂x [zh(x, 0)|Qc ] =

(
2

∆x

)
z1x
c (3.30a)

∂y [zh(x, 0)|y=0] = 0 and ∂yzh|x=0 = ∂y [zh(0, y)|Qc ] =

(
2

∆y

)
z1y
c (3.30b)

In addition, the positivity-preserving amendments are applied to retain the well-balanced

property in the presence of wetting and drying. By denoting U±E , U±W , U±N , and U±S as the



CHAPTER 3. GRID-BASED DG2 FORMULATION 39

limits of the DG2 solutions at the nodes E,W,N and S (Fig. 3.2), such that:

U±E = Uh(E±) =
[
h±E , (qx)±E , (qy)±E

]T
and zE = zh(E±) (3.31a)

U±W = Uh(W±) =
[
h±W , (qx)±W , (qy)±W

]T
and zW = zh(W±) (3.31b)

U±N = Uh(N±) =
[
h±N , (qx)±N , (qy)±N

]T
and zN = zh(N±) (3.31c)

U±S = Uh(S±) =
[
h±S , (qx)±S , (qy)±S

]T
and zS = zh(S±) (3.31d)

their positivity-preserving reconstructions will be denoted by
{
U±,∗E , z∗E

}
,
{
U±,∗W , z∗W

}
,{

U±,∗N , z∗N
}

and
{
U±,∗S , z∗S

}
. Eqs. 3.26 are then applied to redefine the positivity-preserving

coefficients as follows:

U
0x
c (t) =

1

2

[
U−,∗E + U+,∗

W

]
(3.32a)

U
0y
c (t) =

1

2

[
U−,∗N + U+,∗

S

]
(3.32b)

U
1x
c (t) =

1

2

[
U−,∗E −U+,∗

W

]
(3.32c)

U
1y
c (t) =

1

2

[
U−,∗N −U+,∗

S

]
(3.32d)

It is worth noting that Eqs. 3.32a and 3.32b are identical as long as no change occur

at any node due to wetting and drying. This decoupled form for the mean coefficients (i.e.

Eqs. 3.32a-3.32b) is consistent with slope decoupling, and yet necessary to preserve well-

balancedness for the slope coefficients when wetting and drying occur at any of the nodes
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E,W,N or S (Fig. 3.2). In addition to Eqs. 3.32, the bed gradient terms need to be re-defined

in relation to potential change made by the wetting and drying at any of the nodes, as follows:

z1x
c =

1

2
[z∗E − z∗W ] (3.33a)

z1y
c =

1

2
[z∗N − z∗S ] (3.33b)

3.3 Test results and discussions

In this section, numerical results for selected 2D test cases are presented to compare the

simplified DG2 formulation with the standard DG2 formulation, and verify its conservation

properties for practical shallow water modelling. Section 3.3.1 contains a comparative investi-

gation on the accuracy of the simplified DG2 formulation against the standard version based

on classical benchmark tests (the linear advection and the radial dam-break tests). Section

3.3.2 explores the conservative properties of the simplified DG2 solver (well-balancedness and

accuracy) with test cases involving uneven topographies and wetting-drying processes. For

both solvers, the selected CFL number is set equal to 0.25, and the limiting of the slope coef-

ficients is applied when the shock detector in Krivodonova et al. (2004) exceed the threshold

100.

3.3.1 Standard vs. simplified DG2 formulation

The standard and simplified DG2 formulation are hereby benchmarked and compared against

analytical or reference data. Two numerical 2D tests are considered involving bi-directional

flows in order to entirely investigate the 2D character of the formulation. Quantitative

analyses are conducted to investigate the grid convergence rate of the DG2 formulation in

the case of the 2D inviscid linear advection equation. A qualitative assessment of the DG2

ability in reproducing wave non-linearity and discontinuities relevant to a classical radial

dam-break flow is also provided.



CHAPTER 3. GRID-BASED DG2 FORMULATION 41

Figure 3.3: Numerical results of the exact (black line), the standard DG2 form
(red-dotted line) and the simplified DG2 form (green-dotted line) along the diagonal
(using 40 × 40 grids).

Quantitative assessment

To compare the performance of the standard and simplified DG2 formulation, a 2D linear

advection equation (Toro 1999) is considered, which is usually the model equation on which

numerical methods solving hyperbolic conservation laws were initially developed (Toro 1999):

∂tu+ a∂xu+ b∂yu = 0 (3.34)

Equation 3.34 is solved over a 2D domain [0, 2]2 with characteristic speed coefficient

a = b = 1. The initial condition is u(x, y, 0) = sin(π(x+ y)) and boundary conditions are set

to be periodic. Simulations are run up to t = 1 s on MQ ×NQ = 10× 10, 20× 20, 40× 40,

80× 80 and 160× 160 grid elements, respectively.

Fig. 3.3 illustrates the mean coefficients produced by the standard and simplified DG2

formulation extracted diagonally from the grid enclosing 40 × 40 grid elements and at t =

1 s. Both DG2 form appear to consistently predict the undulant characteristics observed

in the analytical solution. Fig 3.4 displays the local 2D planar solutions (i.e. via Eq. 3.12)

associated with both DG2 predictions, showing a similar qualitative behaviour despite the

difference in the stencils involved. To compare the formulation based on quantitative metrics,

accuracy-order and runtime cost analyses are performed. Table 3.1 contains the relative errors
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(a)

(b)

Figure 3.4: The 2D full planar solutions (uh(x, y, t = 1 s)|Qc
) for the (a) standard

DG2 form and (b) simplified DG2 form for the 20 × 20 grid domain.
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Table 3.1: L1-norm, L2-norm and L∞-norm errors and orders of accuracy of
the standard and simplified DG2 formulation and their CPU times (relevant to the
test in Sec. 2.4.1).

DG2 solver Grid size
L1-

error
L1-

order
L2-

error
L2-

order
L∞-
error

L∞-
order

Runtime
(s)

Standard

10×10 3.86e−02 - 4.11e−02 - 5.98e−02 - 4.0
20×20 8.70e−03 2.148 1.03e−02 1.993 1.53e−02 1.963 15.9
40×40 2.00e−03 2.153 2.50e−03 2.020 3.60e−03 2.071 62.5
80×80 4.68e−04 2.067 6.02e−04 2.081 8.57e−04 2.090 243.6

160×160 1.17e−04 2.001 1.34e−04 2.167 1.93e−04 2.153 960.0

Simplified

10×10 4.97e−02 - 5.22e−02 - 7.41e−02 - 1.8
20×20 1.00e−02 2.311 1.20e−02 2.116 1.74e−02 2.089 6.5
40×40 2.10e−03 2.268 2.70e−03 2.130 3.90e−03 2.151 24.5
80×80 4.87e−04 2.095 6.22e−04 2.145 8.92e−04 2.136 97.0

160×160 1.21e−04 2.003 1.38e−04 2.170 1.97e−04 2.176 381.8

between the analytical and numerical solutions taken along the diagonal centreline, namely

Error = (1/MQ × NQ)||uexact–uDG2||/||uexact||, which are evaluated considering L1–norm

(also known as the mean absolute error), L2–norm (i.e. the root mean square error) and

L∞–norm (i.e. the maximum absolute error). These error metrics, along with their respective

rate of convergence, are often used to assess the performance of newly-developed or updated

numerical methods (Chartres & Stepleman 1972, Cockburn & Shu 2001, Eskilsson & Sherwin

2004, Bunya et al. 2009, Duran & Marche 2014). The rate of convergence is expressed in

Eq. 3.35 as shown below:

L1,2,∞-order =
log(

efiner

ecurrent
)

log(
MQ(current)
MQ(finer) )

(3.35)

where ecurrent and MQ(current) are the error value and the grid size of the current grid,

whilst efiner and MQ(finer) are the error value and the grid size of the immediate finer

grid. The errors and the rate of convergence are calculated and shown in Table 3.1 for both

the standard and the simplified DG2 formulation based on the aforementioned series of grids,

together with their CPU runtimes. It can be observed in the table that the L1–norm, L2–norm

and L∞-norm errors of the simplified DG2 formulation are consistently slightly larger than

those of the standard DG2 formulation. This clearly indicates that the simplified DG2 version
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is, as expected, slightly less accurate than the standard DG2 formulation. Nonetheless,

looking at the rate of convergence in Table 3.1 in terms of L1–norm, L2–norm and L∞-

orders, the simplified DG2 formulation can deliver second-order accurate predictions, which

are practically as good as the standard DG2 formulation and, in this respect, constitutes a

formally second-order accurate alternative. It is worth stating that relatively similar error

and accuracy-order results are obtained by considering the full 2D profiles of the analytical

and numerical solutions as with those from the 1D diagonal centreline. In terms of speed up

ratio between the two DG2 solvers, the CPU runtimes in Table 3.1 indicate a range between

2.25 and 2.55, which is pretty close to the predicted operational cost ratio of 2.6 (Sec. 2.3).

Qualitative assessment

To further compare the performances of the DG2 formulation in shallow water applications,

a circular dam-break test (Toro 2001) is here considered. Such test is appropriate for testing

the 2D-SWE DG2 solvers’ ability to simulate shock propagating and rarefaction waves as it

considers the instantaneous collapse of a circular dam on a flat bed. Water in the dam is

contained by a thin 2.5 m radius circular wall centred at xc = 0 m, yc = 0 m. The water

depth is 2.5 m inside the dam and 0.5 m outside. The model is a 40 m × 40 m square domain

made up of 201 × 201 grids. Initial velocities u (along x ) and v (along y) are set equal to

zero and slip numerical boundary conditions are used. The reference solution (Toro 2001)

is obtained using a 1D MUSCL-FV2 solver (Kesserwani 2013) of the 1D radial-symmetric

version of the 2D-SWE that is modelled on 1001 grid elements.

Fig. 3.5 shows the free surface elevation and velocity plots in the radial direction for the

reference solution, the standard DG2 solver and the simplified DG2 solver. Immediately

after the initial collapse of the dam, a primary shock wave began to propagate away from the

centre, while a rarefaction wave moves inwardly and reaches the centre at t = 0.4 s (Fig. 3.5a)

with a well-defined depth gradient developed behind the shock wave. At t = 0.7 s (Fig. 3.5b),

the rarefaction wave has fully imploded at the centre and reflects radially outward, creating

a small dip in the free surface where the velocity is nearing zero. At t = 1.4 s (Fig. 3.5c), the
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primary shock wave continues to move away from the centre and the free surface has dropped

below the initial water depth outside of the dam. A secondary shock wave has also formed

at this time, as clearly shown by the velocity profile, which exhibits two small and yet sharp

fronts behind the primary shocks. At t = 3.5 s (Fig. 3.5d), the primary shock is approaching

the boundary while the secondary shock is travelling in the opposite direction with the free

surface falling very close to the bed. Finally, at t = 4.7 s (Fig. 3.5e), the primary shock

is about to reach the boundary while the secondary shock has imploded in the centre and

reflects outwardly, resulting in another dip in the free surface at the centre.

Figure 3.5: The free surface elevation and velocity plots for the reference solution
(black line), standard DG2 solver (red line) and simplified DG2 solver (green line)
for (a) t = 0.4 s, (b) t = 0.7 s, (c) t = 1.4 s, (d) t = 3.5 s, and (e) t = 4.7
s.(cont.)
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Figure 3.5: The free surface elevation and velocity plots for the reference solution
(black line), standard DG2 solver (red line) and simplified DG2 solver (green line)
for (a) t = 0.4 s, (b) t = 0.7 s, (c) t = 1.4 s, (d) t = 3.5 s, and (e) t = 4.7 s.
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As seen in Fig. 3.5a, at t = 0.4 s, the standard DG2 solver satisfactorily corresponds

with the reference solution, except at the peak free surface elevation associated with local

zero velocities. There, it shows a slight overestimation as compared to the simplified DG2

version. This seems to indicate that the standard DG2 solver is much more sensitive to slope

variations around points of critical flow. The discrepancy between the two DG2 solvers is

also due to the convoluted involvement of both directional slope coefficients combined with

the over-allowing character of the shock detector adopted for local limiting. In other words,

its overlooking effects (to reduce the applicability of the slope limiter) are expected to double

when applied with the standard DG2 solver. However, such discrepancy does not affect the

overall performance of the solver, as one may observe in the predictions at t = 0.7 s and t =

1.4 s (Fig. 3.5b and Fig. 3.5c). At these times, the flow only entails primary waves and both

DG2 solvers provide predictions very similar to the reference solutions. When the secondary

waves emerge at t = 3.5 s and t = 4.7 s (Fig. 3.5d and Fig. 3.5e), the predictive capability

of the standard DG2 and the simplified DG2 solvers becomes more distinct in the results,

especially around the flow features defined by the secondary shock fronts and associated

pattern where the standard version clearly outperforms. However, the simplified DG2 solver

still delivers 2D predictions that are close to those achieved by the standard DG2 solver, and

can satisfactory follow the sequence and form of the shock and rarefaction waves produced

by the reference solutions.

3.3.2 Verification of simplified DG2 properties

The previous tests have shown that the simplified 2D-SWE DG2 solver is formally second-

order accurate and is able to capture complex wave propagation with predictive accuracy

quite similar to the standard DG2 solver. Here, the ability of the simplified DG2 solver in

preserving numerical conservation properties is further assessed. This involves 2D numerical

tests aimed to assess the well-balanced property of the solver for various scenarios involving

smooth and sharp-edged terrain shapes with presence of wet-dry zones in the domain, and

to preserve accuracy-order when the flow is subjected to constantly moving of wet-dry fronts
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(a)

(b)

Figure 3.6: The initial water surface and full planar DG2 topography projections
(zh(x, y)|Qc), via Eq. 3.29a, of: (a) differential topography (Eq. 3.36) and (b)
non-differential topography (Eq. 3.37).
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over non-flat topography.

Well-balanced property

The first numerical test intends to diagnostically investigate the effects of the different DG2

based bed slope terms discretisation, i.e. Eqs. 3.29 vs. Eqs. 3.30, on the reliability of the

simplified DG2 solver in numerically preserving the well-balanced property over uneven ter-

rain with wetting and/or drying. The test assumes a motionless flow in a 75 m × 30 m

domain. Two cases are investigated to distinguish between differential and non-differential

topography shapes, which resemble real-world natural and artificial terrain features. The

differential topography represents a hilly terrain and consists of three mounds with different

peak heights. In such case, the topography function is:

z(x, y) = max

[
0, 1− 1

5

√
(x− 20)2 + (y − 15)2, 2− 1

2

√
(x− 40)2 + (y − 15)2,

3− 3

10

√
(x− 60)2 + (y − 15)2

] (3.36)

Alternatively, the non-differential topography resembles buildings of varying heights and

consists of three rectangular blocks. In this other case, the topography function is:

z(x, y) =



0.86, if 16 ≤ x ≤ 24, 11 ≤ y ≤ 19

1.78, if 36 ≤ x ≤ 44, 11 ≤ y ≤ 19

2.30, if 56 ≤ x ≤ 64, 11 ≤ y ≤ 19

0, otherwise

(3.37)

Figs. 3.6a and 3.6b provide a view on the 2D local planar DG2 projections, via Eq. 3.29a,

for the topography functions Eq. 3.36 and Eq. 3.37, respectively. In both cases, the choice

for the initial free-surface elevation is taken according to three scenarios: fully submerged

(h > 0 m at one peak), critically wet (h = 0 m at another peak) and partially wet involving

wet-dry fronts (h ≤ 0 m, in the sense where the local planar DG2 solutions cut through the
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highest peak). This leads to set a free-surface elevation value of 1.78 m and 1.95 m for the

first and second cases, respectively (see also Fig. 3.6) together with zero discharge values for

qx and qy. These initial states should be maintained as there is no external force exerted on

the flow at any of the boundaries. To study the numerical well-balancedness of the simplified

DG2 solver, the domain is discretised using 1 m2 grids, and simulations are run for relatively

long time evolution (t = 100 s) considering transmissive numerical boundary conditions. To

conduct a thorough analysis of the well-balanced property, the time histories of the maximum

errors are calculated (for each simulation) for all the discharge coefficients spanning the local

DG2 solutions (namely the mean coefficients q0
x and q0

y , the x-directional slope coefficients

q1x
x and q1x

y , and the y-directional slope coefficients q1y
x and q1y

y ). These errors are plotted

and analysed to explore the well-balanced property at the level of both the mean and the

slope coefficients.

Simulation results relative to the first case are summarised in Fig. 3.7, which shows the

time histories of the errors for the mean and slope (discharge) coefficients up to t = 100

s, with a time step, ∆t, of approximately 0.08 s. In particular, Fig. 3.7a shows the results

considering the bed slope discretisation in Eqs. 3.29. At the start of the simulation (t < 7 s),

the mean coefficients q0
x and q0

y are within the round off error even in the presence of wet-dry

fronts. This finding reinforces the well-balancedness validation statement in Appendix A,

according to which the solver should be well-balanced for the mean coefficients with both

bed slope term discretisations Eqs. 3.29 and Eqs. 3.30. In Fig. 3.7a, similar behaviour can

also be observed for the discharge slope coefficients relative to the mainstream directions, q1x
x

and q1y
y . However, the discharge slope coefficients across the opposite direction, q1y

x and q1x
y ,

display a different behaviour, showing a drastic rise in error magnitudes from the very start of

the simulation. Although this rise seems to settle quite soon (t > 17 s), it appears to produce

numerical artefacts, which gradually (for t > 7s) affect the other discharge coefficients that

were initially well-balanced (for t < 7s). From t = 17 s onward, relatively mild perturbations

are observed for all discharge coefficients, which seems to suggest that Eqs. 3.29 do not

provide a fully well-balanced simplified DG2 solver. In contrast, by re-running the simulation
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(a)

(b)

Figure 3.7: Time histories of the resulting maximum errors for the mean and
slope discharge coefficients over a differential topography (case 1) using the (a)
original discretisation Eqs. 3.29 and (b) alternative discretisation Eqs. 3.30.
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using the proposed alternative topography discretisation, via Eqs. 3.30, more consistent error

magnitudes are obtained as shown in Fig. 3.7b. In this setting, it can be noticed that the

variation of all discharge coefficient errors remains substantially bounded within the range of

the round-off throughout the simulation.

In the second case, where the topography function is not differentiable, the adverse effects

of the choice of the bed slope discretisation of Eqs. 3.29 are observed to augment as seen in

Fig. 3.8a. The resulting time histories for the discharge coefficient (maximum) errors again

imply a partially well-balanced behaviour up to certain time around t = 13 s, i.e. for the mean

coefficients, q0
x and q0

y , and the slope coefficients relative to the mainstream directions, q1x
x

and q1y
y . However, the errors produced for the cross-directional slope coefficients, q1y

x and q1x
y ,

are now seen to exhibit a much higher increase up to eight times larger than those observed

in the first case (compare Fig. 3.7a to Fig. 3.8a). These errors continue to rise until t = 13

s when they reduce and become relatively stable. They also show a behaviour similar to the

first case, in that they eventually (13 s < t < 100 s) affect the errors of the other discharge

coefficients, which were initially well-balanced (0 s < t < 13 s). These findings seem to

suggest that any unbalance in a slope coefficient, if overlooked, can gradually affect the well-

balanced property for all other coefficients, and hence eventually that of the full DG2 planar

solutions. In contrast, by using the proposed choice for the bed slope term discretisation, via

Eqs. 3.30, in combination with the simplified DG2 solver all error magnitudes remain bounded

near the range of machine precision, as shown in Fig. 3.8b, irrespective of the discontinuous

character of the topographies involved in this case. These results imply that all mean and

slope coefficients for the discharge remain numerically well-balanced in this setting. Hence,

one can conclude that the simplified DG2 solver complemented with Eqs. 3.30 for the bed

slope discretisations is fully well-balanced for both mean and slope coefficients in all three

scenarios.
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(a)

(b)

Figure 3.8: Time histories of the resulting maximum errors for the mean and
slope discharge coefficients over a non-differential topography (case 2) using the
(a) original discretisation Eqs. 3.29 and (b) alternative discretisation Eqs. 3.30.
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Accuracy order

Having verified that the simplified DG2 solver with Eqs. 3.30 is well-balanced, further assess-

ments are made to test the conservative features of this solver. In particular, the numerical

accuracy of the solver is verified for a transient flow case involving moving 2D wet-dry fronts

over a non-flat topography. This numerical test relies upon the well-known 2D oscillatory

flow in a parabolic bowl problem (Bunya et al. 2009), in which a set of parametric values

are used following Ern et al. (2008). The model is set in a 2D domain of square length

[−4000m,+4000m]2. The topography is defined as z(x, y) = αr2, where α is a constant

equal to 1.610−7 m-1 and r is the radial distance with r2 =
√
x2 + y2. The initial veloci-

ties, u(x, y, 0) and v(x, y, 0), are set to zero, and the initial free surface elevation is h(r, 0) =

(1+a(Y −X)r2)/(X+Y ), where X and Y are equal to 1 m-1 and -0.41884 m-1, respectively.

The wet domain is defined such that h(r, t) > 0 for r <
√

(X + Y cosωt)/α(X2 − Y 2), which

can be used to identify the interface between the wet and dry regions. This numerical test

assumes a period of τ = 2π/ω equivalent to 1,756.2 s with ω2 = 8gα. There is no specific

boundary condition to be prescribed, as the free surface does not reach the domain boundary.

The analytical solution is given in Thacker (1981):

h(r, t) =
1

X + Y cosωt
+ α(Y 2 −X2)

r2

(X + Y cosωt)2
(3.38)

(u(x, y, t), v(x, y, t)) = − Y ωsinωt

(X + Y cosωt)

(
x

2
,
y

2

)
(3.39)

Figs. 3.9 and 3.10 contain the plots of the computed free surface elevation and discharges,

respectively, using similar grid resolutions and display patterns as in Bunya et al. (2009).

These figures allow to compare the mean coefficients (or average values) calculated by the

simplified DG2 solver (across the centreline x = 0) with the exact solution for two grid

resolutions (i.e. ∆x = 100 and 200, with ∆x = ∆y) at the six output times t = 0, τ/6, 2τ/6,

3τ/6, 4τ/6, 5τ/6 and τ . In the prediction of the free surface elevation, as shown in Fig. 3.9,

the simplified DG2 solver is observed to perform very well, yielding calculations that are in
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t = 0 t = τ/6

t = 2τ/6 t = 3τ/6

t = 4τ/6 t = 5τ/6

t = 6τ/6

Figure 3.9: Free surface elevation sliced along x = 0 km at six output times
considering two grid resolutions with size ∆x = 100 m and 200 m.
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t = 0 t = τ/6

t = 2τ/6 t = 3τ/6

t = 4τ/6 t = 5τ/6

t = 6τ/6

Figure 3.10: Discharges sliced along x = 0 km at six output times considering
two grid resolutions with size ∆x = 100 m and 200 m.
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Table 3.2: L1-norm, L2-norm and L∞-norm errors and orders of accuracy for
the 2D parabolic bowl test: analysis for the water depth, h, at t = τ/2 (wetting
stage).

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 4.60e−03 - 4.70e−03 - 5.80e−03 -
200.0 1.10e−03 2.031 1.20e−03 2.000 1.40e− 03 2.014
100.0 2.77e−04 2.021 2.92e−04 2.011 4.33e−04 1.740
50.0 6.70e−05 2.048 7.08e−05 2.044 1.02e−04 2.085
25.0 1.56e−05 2.100 1.67e−05 2.085 3.80e−05 1.426
12.5 3.39e−06 2.207 3.82e−06 2.129 1.32e−05 1.522

Table 3.3: L1-norm, L2-norm and L∞-norm errors and orders of accuracy for the
2D parabolic bowl test: analysis for y-direction discharge, qy, at t = τ/2 (wetting
stage).

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 3.76e−02 - 4.58e−02 - 7.42e−02 -
200.0 7.30e−03 2.372 8.20e−03 2.484 1.36e−02 2.447
100.0 1.60e−03 2.215 1.70e−03 2.266 3.10e−03 2.138
50.0 1.89e−04 3.052 2.25e−04 2.919 4.70e−04 2.718
25.0 7.47e−05 1.338 8.97e−05 1.326 2.37e−04 0.986
12.5 4.18e−05 0.837 5.06e−05 0.827 1.11e−04 1.096

good agreement with the exact solutions for all the output times considered, and irrespective

of the grid resolutions. Fig. 3.10 shows that, in terms of discharge predictability, the solver

is also observed to closely follow the exact profiles for both grids and at almost all output

times, except at t = τ when the numerical solutions do not fully capture the zero discharge,

which is a common deficiency for this test (Kesserwani & Wang 2014, Ern et al. 2008, Bunya

et al. 2009). Generally, these results reveal that the simplified DG2 solver can capture very

well the flow features with curvature and persistent wetting and drying.

To gain further insights on the grid convergence (as in Sec. 3.3.1), analyses considering

L1-, L2- and L∞-norm errors and their relative orders were performed using the sliced profiles

of the depth and discharge (in Figs. 3.9 and 3.10) on six grid resolutions (i.e. with ∆x =

12.5, 25, 50, 100, 200 and 400, respectively). The analyses are done at the times t = τ/2 and

τ , which represent a wetting stage and a drying stage, respectively. Results of the analyses

are presented in Tables 3.2 to 3.5.
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Table 3.4: L1-norm, L2-norm and L∞-norm errors and orders of accuracy for
the 2D parabolic bowl test: analysis for the water depth, h, at t = τ (drying stage).

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 7.30e−03 - 7.03e−03 - 9.40e−03 -
200.0 1.80e−03 2.022 1.80e−03 2.009 2.30e−03 2.009
100.0 4.39e−04 2.029 4.59e−04 1.982 5.93e−04 1.978
50.0 1.07e−04 2.035 1.12e−04 2.039 1.50e−04 1.988
25.0 2.69e−05 1.995 2.70e−05 2.048 3.68e−05 2.024
12.5 7.69e−06 1.806 7.00e−06 1.947 9.51e−06 1.951

For the water depth, as shown in Tables 3.2 and 3.4, the acquired order-of-accuracy are

consistently very close to second-order for all the grid resolutions considering L1- and L2-

orders. Although a drop in the L∞-orders (to around 1.5) is noted at t = τ/2 (Table 3.2)

on the finer grids, L∞-orders at t = τ (Table 3.4) remain consistently second-order. For the

y-direction discharges, the results in Tables 3.3 and 3.5 show alternating order-of-accuracy

in the range of 0.8–3.0 at t = τ/2 (Table 3.3), and of 1.2–2.0 at t = τ (Table 3.5). Excluding

the results associated with two finer grids in Tables 3.3 and 3.5, all L1-, L2- and L∞-orders

indicate second-order accurate predictions for the discharges. In contrast, for the two finer

grids, the drop in L1-, L2- and L∞-orders to less than 1.5 are most likely caused by the

aforementioned deficiency in predicting the zero discharges occurring at t = τ/2 and t =

τ (see Fig. 3.10). Nonetheless, these results reveal that the simplified DG2 solver has a

good tendency to deliver second-order accurate simulations of fully 2D nonlinear shallow

water flows over uneven topography with constant wetting and drying, in addition to being

formally a second-order accurate solver as shown in the previous analysis in Table 3.1 (Sec.

3.3.1).

3.4 Concluding remarks

In this chapter, the conceptual formulation of a DG2 numerical solver to the 2D-SWE on

grid elements have been presented. The derivation of the proposed 2D-SWE DG2 solver

considered the standard formulation (i.e. based on the stencil in Fig. 3.1) as a starting point,

which was then simplified to produce the so-called slope-decoupled formulation (i.e. based



CHAPTER 3. GRID-BASED DG2 FORMULATION 59

Table 3.5: L1-norm, L2-norm and L∞-norm errors and orders of accuracy for
the 2D parabolic bowl test: analysis for y-direction discharge, qy, at t = τ (drying
stage).

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 3.44e−02 - 3.60e−02 - 4.58e−02 -
200.0 8.90e−03 1.951 9.40e−03 1.929 1.27e−02 1.855
100.0 2.40e−03 1.901 2.60e−03 1.860 3.80e−03 1.717
50.0 6.90e−04 1.787 8.00e−04 1.702 1.30e−03 1.621
25.0 2.65e−04 1.382 3.24e−04 1.302 4.67e−04 1.424
12.5 1.03e−04 1.366 1.34e−04 1.276 2.04e−04 1.191

on the stencil in Fig. 3.2). In the simplified DG2 formulation, theoretical complexity was

deliberately compromised to acquire a setting whereby key challenges relevant to the practical

modelling of hydrodynamics are conveniently addressable (i.e. well-balancing between spatial

flux and steep topography gradients, robust incorporation of wetting and drying processes,

and reduction of operational costs). The well-balanced property of the simplified DG2 solver

was extensively studied for two possible approaches to discretise the bed slope terms, following

a consistent manner based on the local DG2 discrete planar projection to the topography.

The first approach, via Eqs. 3.29, involves both x - and y-directional bed slope coefficients

as full contribution for the planar topography projections. In the second approach, via

Eqs. 3.30, any possible cross-dimensional bed slope dependency was zeroed to keep consistent

with the slope-decoupled formulation adopted for the simplified 2D-SWE DG2 solver. It was

theoretically demonstrated that the simplified DG2 solver can only be partially well-balanced

(i.e. for the means and some slope coefficients) with the first approach for integrating DG2

topography projections. In contrast, when complemented with the second approach, the

simplified DG2 solver is fully well-balanced (i.e. for all the coefficients spanning the DG2

solutions). Selected numerical tests were employed to verify the applicability of the simplified

DG2 solver, considering the comparison in the performance to the standard DG2 solver, and

the verification of its conservative abilities relating to the 2D shallow water modelling.

When comparing the performance of the two DG2 solvers, the simplified DG2 solver is

able to achieve second-order grid convergence and close predictive capability as the standard

DG2 solver. Further numerical verifications revealed a fully well-balanced behaviour of the
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simplified DG2 solver with the combination of the second DG2 bed slope projection approach,

even when the topography admits non-differentiable shapes (e.g. building like) and/or when

the domain is partially dry (e.g. when the local planar DG2 flow solution cut through the

local planar topography projection). Moreover, the solver could preserve its second-order

grid convergence when the flow involves cyclic movement of wet-dry fronts over an uneven

topography, and show a remarkable capability in simulating realistic features associated with

2D modelling of hydrodynamics (i.e. wetting and drying processes, flow over irregular terrain

and flow curvatures). It can therefore be concluded that the simplified 2D-SWE DG2 solver

is a valid option to develop a flood model with desirable robustness properties to simulate

real-world practical applications.



Chapter 4

Performance against

industry-standard FV-based flood

models

Contents used to prepare for this chapter have been published in the following publication:

Ayog, J. L., Kesserwani, G., Shaw, J., Sharifian, M. K., Bau, D. 2021. Second-order

discontinuous Galerkin flood model: Comparison with industry-standard finite volume models,

J. Hydrol. 593 125924. https://doi.org/10.1016/j.jhydrol.2020.125924

4.1 Chapter overview

This chapter, which seeks to address Objective 2 and part of Objective 3, centred around

a new flood model that has been developed using the simplified 2D-SWE DG2 solver de-

scribed in Chapter 3. This DG2 flood model is analysed considering two possible variants

of this DG2 solver: with (DG2-LL) and without local slope limiting (DG2-NL), to uncover

its potential and identify its best possible setting in modelling flow features relevant to flood

inundation (Objective 3). The analyses are made through comparative benchmarking against

industry-standard FV1- and FV2-based flood models (Objective 2). Sec. 4.2. discusses the
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methodological similarities and differences between the DG2 and FV-based solvers, and then

the mass and energy conservation properties of the solvers over time are numerically assessed.

The performance of the DG2 model considering the two variants are further assessed in Sec.

4.3 against the outputs of four industry-standard FV-based flood models at similar resolu-

tion, as well as the outputs of the best performer DG2 variant and the MUSCL-FV2 solver at

twice-coarser resolution. The comparisons include qualitative and quantitative analyses on

the water level and/or velocity histories (Sec. 4.3) along with their respective computational

runtimes (Sec. 4.4). Finally, Sec. 4.5 concludes by identifying when a DG2-based flood model

could add value to support industrial-scale flood modelling, and which DG2 variant is the

most appropriate in relation to the intended modelling study.

4.2 Grid-based flood models

The simplified DG2 solver, which is developed based on the slope-decoupled formulation,

has been designed to provide well-balanced piecewise-planar solutions on a simplified stencil

compatible with that of existing grid-based FV flood models. This DG2 solver has been

demonstrated, earlier in Chapter 2, to reduce the runtime cost per element by 2.6 times

compared to a standard DG2 solver while preserving second-order accuracy. In this study,

the simplified DG2 solver is further optimised to make it suitable for practical 2D flood

inundation modelling. A MUSCL-FV2 alternative is also presented and its main differences

and similarities to the DG2 solver are discussed. Later, the conservation properties of both

DG2 and MUSCL-FV2 solvers are then analysed through a synthetic test case involving

nonlinear flow with periodic wetting and drying cycles over an uneven topography.

4.2.1 DG2 solver

Local piecewise-planar solutions

As shown in Chapter 2, the simplified DG2 solver uses local piecewise-planar approximate

solutions, Uh, to the flow vector U. Over each grid element Qc, Uh is expanded by coefficients
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representing a mean, U0
c , and two slopes on the Cartesian directions, U1x

c and U1y
c , as follows:

Uh(x, y, t)|Qc = U0
c(t) +

(x− xc)
∆x/2

U1x
c (t) +

(y − yc)
∆y/2

U1y
c (t) (4.1)

The mean and slope coefficients are initialised from a given initial condition, U0(x, y, t),

such that:

U0
c(0) =

1

2
[U0(E) + U0(W )] =

1

2
[U0(N) + U0(S)] (4.2a)

U1x
c (0) =

1

2
[U0(E)−U0(W )] (4.2b)

U1y
c (0) =

1

2
[U0(N)−U0(S)] (4.2c)

where U0(p), with p = E, W, N and S, are the initial condition values at the face-centred

nodes (see Fig. 3.2, Chapter 2), which are averaged earlier from the values at the grid element

corner nodes (Eqs. 3.24 - 3.26, Chapter 2). The time-invariant topography coefficients, z0
c ,

z1x
c and z1y

c , which represent the piecewise-planar topography approximations, zh(x, y), are

initialised in a similar approach to Eq. 4.2 with the values at the corner nodes representing

the data points extracted from a Digital Elevation Model (DEM).

Well-balanced and depth-positivity preserving DG2 operators

In an explicit second-order Runge-Kutta (RK2) time integration (Eq. 3.15, Chapter 2), with

a maximum CFL = 0.3 (Cockburn & Shu 2001), the DG2 coefficients considering the flow

vector, UK
c (t), are updated using the spatial operators LK

c (K = 0, 1x, 1y). These spatial

DG2 operators (see Eqs. 3.21, Chapter 2) – after algebraic manipulations and zeroing cross-
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dimensional bed-slope dependencies (see Appendix A) – can be reduced to read:

L0
c = − 1

∆x
(F̃E − F̃W )− 1

∆y
(G̃N − G̃S) + 2g


0

h̄0
c z̄

1x
c

∆x

h̄0
c z̄

1y
c

∆y

 (4.3a)

L1x
c = − 3

∆x

{(
F̃E + F̃W

)
−
(

F

(
U0

c(t) +
1√
3
U1x

c (t)

)
+ F

(
U0

c(t)−
1√
3
U1x

c (t)

))
+

2g√
3


0

h̄1x
c z̄

1x
c

0


}

(4.3b)

L1y
c = − 3

∆y

{(
G̃N + G̃S

)
−
(

G

(
U0

c(t) +
1√
3
U1y

c (t)

)
+ G

(
U0

c(t)−
1√
3
U1y

c (t)

))
+

2g√
3


0

0

h̄1y
c z̄

1y
c


}

(4.3c)

Note that the friction effects are excluded from the spatial operators in Eq. 4.3 as they are

added separately. The terms F̃E , F̃W , G̃N and G̃S are the inter-elemental fluxes evaluated

from the limits of the piecewise-planar approximate solutions at either side of the face-

centred nodes p = E,W,N and S (Fig. 3.2) after applying appropriate revisions to preserve

well-balancedness and depth-positivity (Liang & Marche 2009). For example, the limits

at the eastern face-centred node, E, are expressed as: U−E = U0
c(t) + U1x

c (t) and U+
E =

U0
neiE

(t)−U1x
neiE

(t), where ′neiE ’ is the index of the direct neighbour from the eastern side.

Both limits at E for zh are equal, zE = zh(E±), as Eq. 4.2 ensures the continuity property (see

also Eq. 3.27, Chapter 2). Dummy limits that are depth-positivity preserving, denoted with

the ‘*’ symbol, are reconstructed for the components of the flow vector, as: h±E = max(0, h±E),

(hu)±,∗E = h±,∗E u±E and (hv)±,∗E = h±,∗E v±E , where u±E = (hu)±E/h
±
E and v±E = (hv)±E/h

±
E when

h±E is above a drying tolerance, toldry, and zeroed when h±E < toldry. A dummy revision

of the continuous topography limit zE is also applied to preserve well-balancedness when a
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motionless body of water is blocked by a high wall, i.e. z∗E = zE −max(0,−h−E). The revised

limits U±,∗E are then used to evaluate F̃E = F̃(U−,∗E ,U+,∗
E ) via two-argument numerical flux

function, F̃, based on an approximate Riemann solver. The Riemann solver of Roe is applied

as it forms the basis of the flood models explored in Sec. 4.3 and it is arguably the best choice

with a DG2 solver for the SWE with source terms (Kesserwani et al. 2008). The fluxes F̃W ,

G̃N and G̃S are evaluated similarly as F̃E , after reconstructing dummy flow limits (U±,∗W ,

U±,∗N and U±,∗S ) and topography limits (z∗W , z∗N and z∗S). Dummy DG2 modes are then

formed, appended with a ’bar’, by reapplying Eq. 4.2 to the dummy nodal limits of the flow

and topography, as:

U
0x
c =

1

2
(U−,∗E + U+,∗

W ) (4.4a)

U
0y
c =

1

2
(U−,∗N + U+,∗

S ) (4.4b)

U
1x
c =

1

2
(U−,∗E −U+,∗

W ) and z̄1x
c =

1

2
(z∗E − z∗W ) (4.4c)

U
1y
c =

1

2
(U−,∗N −U+,∗

S ) and z̄1x
c =

1

2
(z∗N − z∗S) (4.4d)

Replacing the evaluated fluxes F̃E , F̃W , G̃N and G̃S alongside the positivity-preserving

modes in Eq. 4.4, altogether in Eq. 4.3, lead to a well-balanced evaluations for the DG2

operators without spurious errors across wet-dry fronts located at very steep bed-slopes, as

verified in Sec. 3.3.2.

Friction source term and local limiting treatments

Piecewise-planar approximate friction term integration is applied, involving the mean, (Sf )0
c ,

and the two slope coefficients, (Sf )1x
c and (Sf )1y

c . The contribution of the friction term

coefficients is added to their respective discharge coefficients prior to each RK2 step, based
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on a standard implicit splitting integration (Kesserwani & Liang 2010). The integration

procedure is performed at the element centre (xc, yc) to increment the discharges in U0
c ,

whereas the evaluation at Gaussian points Gxi and Gyi (Fig. 3.2), followed by appropriate

differentiation, are made to increment the discharges in U1x
c and U1y

c .

Local limiting (LL) is applied as a separate step before each RK2 time stage, but after

applying friction effects and boundary conditions. Slope limiting to coefficients U1x
c and U1y

c

over a grid element Qc comes into play as an FV tool in order to limit the variations of these

slopes with respect to the slopes differentiated of the mean coefficients, based on a Total

Variation Diminishing (TVD) slope limiter (Sweby 1984, Toro 1999). It is well known that

TVD slope limiting with DG methods is only useful at the elements where the solution is

about to develop shock-like gradients, otherwise, it can greatly destroy the solution or even

affect overall robustness (see examples in Kesserwani & Liang (2012b, 2011)). With DG2

numerical solvers, LL is commonly used for which the main challenge has been to deploy

a localisation procedure to identify where slope limiting is needed (Fu & Shu 2017). The

shock detector proposed by Krivodonova et al. (2004) is selected, as it is recognised to be one

of the best options available to achieve the localisation procedure (Qiu & Shu 2005). The

shock detector is applied component-wise, per slope coefficient and physical component. For

example, to detect if the x -directional slope component U1x
c (t) at a grid element Qc needs

limiting, the normalised magnitude of solution discontinuities at the face-centred eastern and

western nodes, DSp (p = E,W ), need first to be calculated as:

DSp =
|U+

p −U−p |
∆x
2 max(|U0

c(t)− 1√
3
U1x

c (t)|, |U0
c(t) + 1√

3
U1x

c (t)|)
(4.5)

Then, slope limiting will only be needed for U1x
c (t) when at least one inter-elemental

discontinuity is detected, namely when max(DSE ,DSW ) > 10 (Krivodonova et al. 2004),

to ensure that Eq. 4.5 will only detect strong discontinuities, i.e. of shock types. If LL is

needed, the Generalised minmod limiter (Cockburn & Shu 2001) is then applied to limit the



CHAPTER 4. DG2 VS. FV-BASED FLOOD MODELS 67

slope coefficient Û1x
c (t):

Û1x
c (t) = minmod(U1x

c (t),U0
neiE

(t)−U0
c(t),U

0
c(t)−U0

neiW
(t)) (4.6)

Note that the limiter in Eq. 4.6 is commonly used with DG methods for LL, and that the

choice of the slope limiter function is insignificant here as the limiting operation is restricted

to the locality of a shock. Worth also noting that shock detection and limiting for the water

depth slope component, h1x
c (t), is avoided, but Eqs. 4.5-4.6 are applied instead for the free

surface elevation (h1x
c (t)+z1x

c ) to get ( ̂h1x
c (t) + z1x

c ) and then deduce ĥ1x
c (t) = ( ̂h1x

c (t) + z1x
c )−

z1x
c . This ensures that the presence of topographical steps does not falsely trigger slope

limiting. In a similar way, shock detection and limiting are applied to analyse the y-directional

slope component U1y
c in grid element Qc and potentially limit it to become Û1y

c .

Regardless of slope limiting, the localisation procedure entails an overhead cost, since

Eq. 4.5 needs to be applied twice for each element Qc, and since the presence of at least

one wet-dry front needs to be checked for deactivating the limiter. Otherwise Eq. 4.6 may

unnecessarily replace U1x
c (t) by a falsely amplified slope that can trigger instabilities. In

this version of the DG2 flood model, dry elements are flagged only by analysing the mean

coefficient of the water depth component, h0
c , relative to a toldry = 10−5 instead of analysing

all local evaluations at the four Gaussian points (see Fig. 3.2) spanning the full piecewise-

planar solution. This approach for dry element detection is consistent with the way dry

elements are detected in FV-based flood models.

4.2.2 MUSCL-FV2 solver

MUSCL-FV2 and FV1 model counterparts are described for the same computational stencil

used to describe the simplified DG2 flood model (Fig. 3.2), whilst adopting similar notations

to map the fundamental similarities and differences among the DG2 and FV-based flood

models.
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Local piecewise-constant solutions

The FV-based flood models only involve piecewise-constant averaged data, U0
c and z0

c , per

grid element Qc, namely Uh(x, y, t)|Qc = U0
c(t) and zh(x, y)|Qc = z0

c , which is carried out

with an RK2 scheme with MUSCL-FV2, and with a forward Euler scheme with FV1, with

L0
c expressed as:

L0
c = − 1

∆x
(F̃E − F̃W )− 1

∆y
(G̃N − G̃S)− g


0

h̄0x
c z̄

1x
c

h̄0y
c z̄

1y
c

 (4.7)

The fluxes F̃E , F̃W , G̃N and G̃S are evaluated after applying the MUSCL approach (Van

Leer 1979) to form the solution limits at either side of the face-centred nodes p (p = E,W,N

and S), with a different approach to produce revised limits in order to accomodate the

discontinuous nature of zh in the FV-based flood models.

Well-balancedness and depth-positivity preserving operations

Applying the MUSCL linear reconstructions, solution limits can be evaluated at the eastern

face-centred node E as:

U−E = U0
c + 0.5∇1x

c and U+
E = U0

neiE
− 0.5∇1x

neiE
(4.8)

where ∇1x
c is an x -directional gradient term defined as:

∇1x
c = φ

(
U0

c −U0
neiW

U0
neiE
−U0

c

)(
U0

c −U0
neiW

)
(4.9)

The symbol φ is a slope limiter function that is applied component-wise, and by setting

φ(r) = 0 will lead to an FV1 solver. The choice of φ is discussed and justified later in the

next subsection. In a similar manner, the limits U±p at the other three face-centred nodes

p (p = W,N, S) can be reconstructed. Achieving these MUSCL reconstructions for all four

limits U±p in an element Qc requires a wider calculation stencil that needs further access to
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Figure 4.1: Second-order TVD region proposed in Sweby (1984) for the choice
of a valid slope limiter within a MUSCL-FV2 solver.

the neighbour’s neighbour piecewise-constant data.

In contrast to the DG2 solver, a different approach is applied to form the dummy limits

U±,∗p and z∗p (p = E,W,N and S), based on an intermediate involvement of the free surface

elevation h+ z. This involvement is necessary to ensure well-balancedness given the inherent

involvement of the slope limiter in the FV2 solver (Liang & Marche 2009). For example, at

E, the starting point is to construct two dummy topography limits z±E , via Eq. 4.8, as z±E =

(h+ z)±E − h
±
E , from which z∗E = max(z−E , z

+
E ) is computed to ensure the continuity property.

Next, dummy water depth limits h±,∗E are reconstructed as h±,∗E = max(0, (h + z)±E − z∗E),

through which the discharge limits become (hu)±,∗E = h±,∗E u±E and (hv)±,∗E = h±,∗E v±E on wet

elements. The adjustment z∗E = z∗E −max(0,−[(h + z)−E − z∗E ]) is also applied to preserve

well-balancedness when a motionless body of water is blocked by a high wall. The dummy

revisions for h
0x
c , z

1x
c , h

0y
c and z1y

c remain the same as in Eq. 4.4. These positivity preserving

revisions are valid with Eq. 4.7 as long as the CFL number does not exceed 0.5, in order to

preserve water depth-positivity over an update of each time step.
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Friction source term and choice for the limiter

The friction effects are integrated by following the same procedure as the DG2 solver. It

suffices to reapply the same treatment to update discharges within the FV averaged data.

However, the slope limiting process is substantially different from the MUSCL-FV2 solver

where the limiter function φ(r) becomes a core component to both prevent spurious oscilla-

tions near sharp solution gradients and establish second-order accuracy. The choice for φ(r)

is usually made such that it is within the 2nd order TVD region proposed in Sweby (1984)

which is bounded by two limiters, minmod and superbee, that form the lower and upper

limit respectively, as shown in Fig. 4.1. These two limiters are not practically recommended

(Sanders & Bradford 2006): the minmod limiter does not use slope amplification and thus

yields the most solution smearing, but this pays off with more stability in particular at wet-

dry fronts, as the two-argument minmod limiter zeroes the signs of two opposite slopes. In

contrast, the superbee limiter involves maximum slope amplifications, but it can over-amplify

the slopes and cause severe instabilities at wet-dry fronts. A sensible choice for a limiter

function in flood modelling is one that is strictly below the superbee limiter bound and is

fairly higher than the minmod limiter bound as well. Such a choice includes the generalised

Sweby symmetric limiter with the β parameter ranging 1 < β < 2 (An & Yu 2014) and the

Barth-Jespersen limiter (Berger et al. 2005) among many others. In this research, the Sweby

limiter is selected subject to using β = 1.25 instead of the commonly reported value of 1.5,

in order to make this limiter lower than the upper bound (Fig. 4.1). It is worth to also note

that the sensitivity analysis made on the choice for β over the synthetic test case in Sec.

4.2.3 (results not shown here) indicates that the condition β < 1.3 is necessary to preserve

the stability of the MUSCL-FV2 solver around wet-dry fronts.

4.2.3 Analytical assessments of solver conservation properties

The synthetic test of curved oscillatory flow in a parabolic bowl presented in Kesserwani &

Wang (2014) is reconsidered, for which both MUSCL-FV2 and DG2 solvers could equally

reproduce the analytical solution at grid resolutions of 2 m × 2 m and 10 m × 10 m, respec-
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Figure 4.2: Water level predicted by the DG2, FV2 and FV1 solvers extracted
along the x-directional centreline after 7-period cycles, when the domain is: (a)
maximally wet at t = 7τ/2, and (b) maximally dry at t = 8τ .

tively. Both solvers have also been demonstrated to deliver second-order grid convergence

when simulating only one cycle of wetting and drying, with DG2 producing better quality

velocity outputs. The aforementioned test is revisited in order to explore the numerical mass

and energy conservation properties of the DG2 solver compared to the FV-based solvers over

much longer time evolution and for relatively coarse grid modelling. In this test and also

later in Sec. 4.3, all models are run on their maximum allowable CFL number (i.e. 0.3 for

DG2 and 0.5 for MUSCL-FV2).

The curved oscillatory flow test case (Thacker 1981) is applied with the same test setup

used by other investigators (Bunya et al. 2009, Ern et al. 2008, Kesserwani & Wang 2014).

Initially (t = 0 s), the discharges are zero and the water level follows a concave profile, for

which the wet-dry frontline is at its narrowest extent (see analytical profile in Fig. 4.2b). This

state of the flow is termed maximally dry profile and should be retrieved after a period cycle

τ =1756.2 s, as the oscillatory flow runs on a frictionless domain. The opposite situation is

expected to occur after half-a-period cycle, at t = τ/2, leading to the maximally wet profile

characterised by a convex profile for which the wet-dry frontline is at its widest extent (see

analytical profile in Fig. 4.2a). A grid with a resolution of 40 m × 40 m is applied to discretise

the 2D spatial domain where the DG2, MUSCL-FV2 and FV1 solvers are run up to 30-period
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cycles (t = 30τ). Simulation results are presented for two DG2 variants with LL (DG2-LL)

and with no limiting (DG2-NL), in terms of water level predictions to the maximally dry and

maximally wet profiles after 7-period cycles, as shown in Fig. 4.2.

The results in Fig. 4.2, after t = 7τ , are particularly useful to examine the extent to

which the DG2-LL, DG2-NL, MUSCL-FV2 and FV1 solvers are impacted by the growth of

numerical diffusion, and how this impact eventually manifests within the model predictions.

Both DG2-NL and DG2-LL predictions are found identical (to a numerical precision of 1

× 10-12 m) for this test, remaining close to the analytical profiles, whereas MUSCL-FV2

and FV1 solvers’ predictions are relatively poorer. FV1 and MUSCL-FV2 solvers lead to

a narrower wetting extent and an over-prediction of the water level in the wet zone for the

maximally wet profile (Fig. 4.2a). For the maximally dry profile (Fig. 4.2b), the FV1 and

MUSCL-FV2 solvers lead to a wider wetting extent and an under-prediction of water level

in the wet zone.

To quantify the impact of the accumulated numerical diffusion on the conservation prop-

erties of the DG2-LL, DG2-NL, MUSCL-FV2 and FV1 solvers over the 30-period cycle (t =

30τ), mass error and total energy are measured. This impact is also quantified by consider-

ing twice-finer grids (i.e. resolution of 20 m) to gain further insight into the different model

response to resolution coarsening. As the flow oscillates in an enclosed system, there is an

exchange between kinetic and potential energy, but the total energy should be conserved as

there is no friction. The 2D domain-integrated total mass M is calculated as:

M(t) =

∫ −4000

+4000

∫ −4000

+4000
h(x, y, t) dxdy (4.10)

The mass error (i.e. the difference between the initial and current total mass) is calculated

over time and normalised to the initial mass M0 = M(0). Also, the 2D domain-integrated
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Figure 4.3: Time histories of the 2D domain-integrated: (a) normalised total
energy and (b) mass error, for the grids with a resolution of 20 m and 40 m,
respectively, and over a simulation time of t = 30τ .

total energy E is calculated using the following relationship (McRae 2015):

M(t) =

∫ −4000

+4000

∫ −4000

+4000
h(x, y, t)

(
1

2
h(x, y, t)(u(x, y, t)2 + v(x, y, t)2)

)
+

1

2
g
(
(h(x, y, t) + z(x, y))2 − z(x, y)2

)
dxdy

(4.11)

and is then normalised to the initial energy E0 = E(0). While a perfectly energy-

conservative solver yields 1 for the normalised total energy, a value below 1 is indicative

of the impact of accumulated numerical diffusion as time evolves.

Fig. 4.3 shows the time histories of the normalised total energy and the mass errors

recorded from the DG2-LL, DG2-NL, MUSCL-FV2 and FV1 outputs for two investigated

grid resolutions (20 m and 40 m). As expected, the net effect of numerical diffusion in the

DG2 variants, MUSCL-FV2 and FV1 solvers induces a gradual decay in the total energy

(Fig. 4a). Even on the finer grid, the FV-based solvers are observed to dissipate energy quite

rapidly, around 9% of the initial energy after 30 period cycles. This dissipation of initial

energy is observed earlier with the coarser grid, which indicates that FV-based solvers are
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Table 4.1: List of the industrial models considered for the comparison against the
DG2 models.

Model name Supplier Numerical scheme Mesh type

TUFLOW FV1 BMT-WBM FV1 with 1st order time integration Flexible mesh

TUFLOW FV2 BMT-WBM MUSCL-FV2 with 2nd order time integration Flexible mesh

TUFLOW HPC BMT-WBM MUSCL-FV2 with 4th order time integration Square grid

Infoworks ICM Innovyze FV1 with 1st order time integration Flexible mesh

more prone to losing energy as grid resolution is coarsened. In contrast, both DG2-LL and

DG2-NL variants exhibit better energy conservation properties, with around 1% loss of the

initial total energy despite grid resolution coarsening. This is because the DG2 solver evolves

its local slope coefficients based on a discrete translation of the conservative model equations

(Eqs. 4.3b and 4.3c) involving inter-elemental Riemann fluxes. Apart from the discrepancies

observed in terms of numerical energy conservation, all models yield a zero relative mass

error (Fig. 4.3b), suggesting that they are perfectly mass-conservative.

Overall, this test suggests that the DG2-NL variant can be as good as the DG2-LL when

modelling (shockless) shallow water flows with wetting and drying. The DG2 solver is equally

mass conservative as the FV-based solvers, but is more energy conservative due to its superior

resistance to numerical dissipation. This property seems to make a DG2-based model better

suited for flood inundation modelling over a long timescale and/or on coarser grids.

4.3 Comparative analyses against flood model outputs

The assessment of a flood model based on the simplified DG2 solver is made over six

industrially-relevant test cases recommended by the UK Environment Agency (Neelz & Pen-

der 2010, 2013), which have already been studied using various industrial flood models.

Comparative analyses are made with respect to available outputs from four, well-established

industrial FV-based flood models (Table 4.1), all adopting the Roe Riemann solver within an

FV1 solver or an FV2 solver based on MUSCL linear reconstructions with TVD slope limiting

(BMT-WBM 2018, Huxley et al. 2017, Innovyze 2011, Jamieson et al. 2012, Lhomme et al.

2010, Neelz & Pender 2009). The test cases have been broadly categorised as to whether the
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Table 4.2: Selected benchmark test cases with their specific parameters (Neelz &
Pender 2010, 2013)

Benchmark test cases
Finest DEM

resolution (m)

Reported

resolution (m)
nM

Output time

T

Gradual flood propagation

Flooding and drying cycle over

a sloping topography (Sec. 4.3.1)
2 10 0.03 20 hrs

Symmetrical flood flow propagation

over a flat bed (Sec. 4.3.2)
Not available 5 0.05 300 min

Slow filling of multiple ponds (Sec. 4.3.3) 2 20 0.03 48 hrs

Rapid flood propagation

Momentum conservation over an

obstruction (Sec. 4.3.4)
2 5 0.01 900 s

Torrential flooding over a rural

catchment (Sec. 4.3.5)
10 50 0.04 30 hrs

Dam break over an oblique building

(Sec. 4.3.6)
0.05 0.1 0.01 120 s

flood flow propagation is gradual (Froude number < 1): covering test cases in Secs. 4.3.1 -

4.3.3, or rapid (Froude number ≤ 1): covering test cases in Secs. 4.3.4 - 4.3.6. These test

cases are listed in Table 4.2 with their specific description parameters.

For each test case, DG2 model simulations are run on the same grid resolution as re-

ported for the industrial model outputs (Table 4.2). DG2-NL and DG2-LL simulations are

performed with a dual purpose: (a) to further diagnose the utility of the DG2-NL alternative

for simulating flood-like flows; and (b) to uncover trade-offs related to the standard DG2-LL

alternative. Between these two DG2 variants, the best performing DG2 (DG2-BP) will be

selected to be rerun alongside an in-house built MUSCL-FV2 model, both on a twice-coarser

grid, to also assess the different model responses to doubling the resolution. If both DG2

variants perform equally well, then DG2-NL will be selected as the DG2-BP by default.

MUSCL-FV2 simulations are also performed on the finest DEM resolution available (Ta-

ble 4.2) for the first five test cases to form a reference solution, to which all flood model

outputs are compared qualitatively and measured quantitatively by two statistic indices: the

R-squared (R2) coefficient, or coefficient of determination, and the L1-norm error. These
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indices are evaluated for the water level and/or velocity time histories recorded at the

sampling points specified for each test case. Their expressions are:

R2 =

 ∑T
t=1(V R

t − V̄ R)(VM
t − V̄M )√∑T

t=1(V R
t − V̄ R)2

∑T
t=1(VM

t − V̄M )2

2

(4.12)

L1-norm error =
1

Ns

(
T∑
t=1

∣∣V R
t − VM

t

∣∣) (4.13)

where t denotes the current time, T the simulation output time (Table 4.2). The values

V R
t and VM

t refer to an entry from the reference and modelled time histories at time t,

respectively; V̄M and V̄ R represent time-averaged mean values; and Ns is the size of the time

histories. The R2 coefficient takes values between 0 and 1, indicating stronger correlation

to the reference solution as it gets closer to 1. The R2 coefficient is useful to quantify

the resemblance between the predicted solution and the reference solution (e.g. similarity in

hydrograph shapes), whereas the L1-norm error provides an estimate of the average deviation

of a model prediction from a reference solution (e.g. closeness of the predicted data to the

reference data). Runtime costs are also analysed between MUSCL-FV2 and the DG2 variants

for the same resolution of the industrial model outputs and for the grid with twice-coarser

resolution (Table 4.2).

4.3.1 Flooding and drying cycle over a sloping topography

This test is often used to assess the ability of a flood model to reproduce a slow flooding and

drying cycle occurring over a long duration. It involves a unidirectional flow moving over a

2D sloping topography (nM = 0.03). The topography is initially dry except for a small water

volume ponding near the west boundary with water level of 9.7 m (Fig. 4.4a, lower panel).

The water inflow (Fig. 4.4b) at the west boundary pushes the surface flow upslope and then

downslope to accumulate in the pond (Fig. 4.4a, from x = 300 m to x = 700 m). Over time,

the accumulated water reaches the level 10.35 m, at which the whole topography becomes

fully inundated. The water remains at this level until t = 11 hrs and then starts to recede
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Figure 4.4: Flooding and drying cycle over a sloping topography: (a) plan view
(upper panel) and longitudinal profile (lower panel) of the topography including
the location of the sampling points (red dots). Blue shaded area in the lower panel
indicates initial water volume in the domain; and, (b) inflow water level hydrograph
imposed at the west boundary.

towards the west boundary. Eventually, the topography dries out except in the pond, where

the water level reduces to about 10.25 m. The time histories of the water level were recorded

at the two sampling points shown in Fig. 4.4, and are presented in Fig. 4.5.

In the water level time histories (Fig. 4.5), there are slight differences in all the models’

predictions of the ground level at each sampling point, between t = 0 s to when the water

level starts to rise. These differences may be attributed to the mesh types used by the

models, topography discretisation approaches, and also the effects of DEM data coarsening

for the 20 m grid resolution models. Nevertheless, on the grid with 10 m resolution, DG2-LL

provides water level predictions that are outside the range of the water levels predicted by

the industrial models. This suggests that local limiting with DG2 could still impact the

DG2 flood model predictions, in particular during the flooding stage when the inflow is still

feeding into the domain. In contrast, DG2-NL produces predictions that are in the range

of the industrial model predictions and in closer agreement with the reference solution (at a

2 m resolution), even on a grid at 20 m resolution. The plots of the R2 coefficient and the

L1-norm error in Fig. 4.6 confirm that DG2-NL excels in producing the most similar and the

closest water level histories in relation to the reference solutions, even at 20 m resolution.

DG2-LL at 10 m resolution, although providing similar shape as the reference solution, leads
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Figure 4.5: Flooding and drying cycle over a sloping topography. Water level
histories predicted by DG2-LL and DG2-NL at 10 m resolution, DG2-NL and
MUSCL-FV2 models at 20 m resolution, the industrial models at 10 m resolution
and the reference solution at 2 m resolution.

to predictions that are relatively more deviated than DG2-NL at 20 m resolution. This test

points out the potential of using the DG2-NL variant to model gradual flooding and drying

over a long period, and reproduce the industrial model predictions at twice-as-coarse grid

resolution.

4.3.2 Symmetrical flow propagation over a flat bed

This test involves a short-duration flow that gradually breaches a wall and propagates sym-

metrically across a rough and flat bed (nM = 0.05). An inflow discharge with a peak of 20

m3 s-1 (Fig. 4.7) enters the dry bed through a 20 m opening located in the middle of the

west boundary. Over time, this inflow forms a fan-like 2D spread illustrated in Fig. 4.7. The

history of the water level and velocity is recorded at four sampling points (Fig. 4.7), and is

compared in Fig. 4.8 to those predicted by the industrial models and to the reference solution

(at 2 m resolution).

The time histories in Fig. 4.8 reveal identical performance for DG2-NL and DG2-LL at 5

m resolution, and almost similar performance is observed with DG2-NL at 10 m resolution.

The time histories predicted by all DG2 variants fall within the range of those made by the

industrial models and show a close agreement with the reference solution. Fig. 4.9 shows
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Figure 4.6: Flooding and drying cycle over a sloping topography. Difference
among the flood model predictions relative to the reference solution: R2 coefficients
(left) and L1-norm errors (right).

Figure 4.7: Symmetrical flow propagation over a flat bed. Left panel shows the
flood distribution at t = 60 min with the breach location (red line, middle of west
boundary) and 4 sampling points (red dots); and, right panel shows the inflow
imposed at the breach.
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that in all cases the R2 coefficient is at least 0.93, and the L1-norm error does not exceed

0.08, which confirms that all models in this test closely reproduce the reference solution, and

with a very good overall fit. Most notably, the DG2 variants produce the least deviation at 5

m resolution, while DG2-NL at 10 m resolution can still capture the wave-front arrival more

accurately than the industrial models at a 5 m resolution.

4.3.3 Slow filling of multiple ponds

This test involves a long-duration flooding over a down-sloping topography (nM = 0.03) with

16 smooth ponds (Fig. 4.10). The surface slope in the y-direction is about twice of that in the

x -direction. The highest elevation of the topography is at (0 m, 2000 m), whereas the lowest

one is at (2000 m, 0 m). An inflow discharge with a peak of 20 m3 s-1 (Fig. 4.10) flows from

a 100 m breach opening (red line, Fig. 4.10) over the initially dry terrain. When the inflow is

active, the propagating flood gradually fills seven ponds near the breach (covering the points

4, 3, 2 and 1, and the points 8, 7 and 6 shown in Fig. 4.10) until the inflow empties at t =

1.5 hrs. Then, driven by gravity, the flow slowly propagates into farther ponds covering the

points 5, 10, 11 and 12, until the simulation terminates at t = 48 hrs. As the ponds at points

9, 13, 14, 15 and 16 remain dry during the simulation, the time histories of water level are

recorded only at the remaining eleven points.

Fig. 4.11 contains the time histories of the water levels in which no difference is identified

(to a precision of 1 × 10-5 m) between the predictions made by DG2-NL and DG2-LL at

20 m resolution, both delivering the best agreement with the reference solution (at a 2 m

resolution). Near the breach (i.e. at points 4, 3, 2 and 1, and points 8, 7 and 6), all DG2

model predictions are found to be closer to the range of predictions made by the industrial

models, as opposed to the MUSCL-FV2 predictions at 40 m resolution, which are slightly out

of the range for t > 1.5 hrs. Further away from the breach (i.e. at points 5, 10, 11 and 12),

discrepancies start to emerge, and the MUSCL-FV2 at 40 m resolution predicts the highest

water levels amongst all models, whereas the DG2 variants at 20 m resolution predict the

lowest. The DG2-NL at 40 m resolution is seen to deliver water levels and arrival times that
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Figure 4.8: Symmetrical flow propagation over a flat bed. Histories of the water
level (left) and velocity (right) predicted by DG2-LL and DG2-NL at 5 m resolu-
tion, DG2-NL and MUSCL-FV2 at 10 m resolution, the industrial models at 5 m
resolution and the reference solution at 2 m resolution.
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Figure 4.9: Symmetrical flow propagation over a flat bed. Difference among the
flood model predictions relative to the reference solution R2 coefficients: (left) and
L1-norm errors (right); (a) water level and (b) velocity.
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Figure 4.10: Slow filling of multiple ponds: the left panel shows the 2D terrain
including 16 ponds, the location of the breach (red line, top corner) and the sam-
pling points (red dots) at the middle of each pond; the right panel illustrates the
inflow hydrograph imposed at the breach.

are relatively closer to the range of predictions made by the industrial models than those

obtained with MUSCL-FV2.

By analysing the R2 coefficient plots in Fig. 4.12, the largest difference in the water

histories patterns is identified at the points 5, 11 and 12, where the DG2 variants at 20 m

resolution offer the best agreement. Notably, DG2-NL at 40 m resolution reproduces a shape

that is compatible with the reference solution (R2 > 0.9) despite leading to relatively higher

deviations via the L1-norm errors. At the points located close to the breach (i.e. 4, 3, 2, 1,

8, 7 and 6), DG2-NL at 40 m resolution leads to R2 coefficients and L1-norm errors that are

very close to those of the industrial models and DG2 variants at 20 m resolution, which is in

line with the findings in Sec. 4.3.1.

Overall, this test shows that a DG2 alternative allows more accurate capturing of hydro-

graphs over long time evolution even when taken at the same resolution as the industrial

models. With a twice-as-coarse resolution, the DG2 alternative tends to produce deviated

hydrographs as the location of the gauges become far away from the breach (i.e. sufficiently

away from the flooding source for the flood flow propagation to be solely driven by topo-

graphic connectivities and decelerated by frictional forces). Still, compared to MUSCL-FV2,
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Figure 4.11: Slow filling of multiple ponds. Water level histories recorded from
the DG2-LL and DG2-NL simulations at 20 m resolution, DG2-NL and MUSCL-
FV2 models at 40 m resolution, the industrial models at 20 m resolution and the
reference solution at 2 m resolution.



CHAPTER 4. DG2 VS. FV-BASED FLOOD MODELS 85

Figure 4.12: Slow filling of multiple ponds. Difference among the flood model
predictions relative to the reference solution: R2 coefficients (left) and L1-norm
errors (right).

the DG2 model at a twice-as-coarse resolution can produce hydrographs that better correlate

with those produced by the industrial models.

4.3.4 Momentum conservation over an obstruction

This test involves a rapid unidirectional flow, filling two initially dry ponds separated by a

hump at x = 200 m over a short duration. The 2D topography (Fig. 4.13) has a smooth

surface allowing fast flow acceleration (nM = 0.01). The inflow has a peak discharge of

65.5 m3 s-1 (Fig. 4.13) and accelerates downslope from the west boundary to fill the first

pond (Fig. 4.13, from x = 100 m to x = 200 m). While the first pond is large enough to

hold the total inflow volume, models solving the full SWE tend to predict a small volume

of water over-topping the hump to fill the second pond (Fig. 4.13, from x = 200 m to x =

300 m). Once all ponds are filled, the water within each pond oscillates until it completely

settles. At sampling points 1 and 2 (marked in Fig. 4.13), the time histories of the water

level and velocity (at point 1 only) are recorded and compared in Fig. 4.14 against those of

the industrial models and the reference solution (at a 2 m resolution).
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Figure 4.13: Momentum conservation over an obstruction. Plan view and lon-
gitudinal profile of the topography with location of sampling points marked by red
dots (left panel); inflow discharge hydrograph imposed at the west boundary (right
panel).

For the water level histories at point 1, the DG2 variants at 5 m resolution predicted

slightly earlier wave arrival and faster flow-rising rate compared to the industrial models.

These DG2 variants are also the only models that are able to capture the undulating profile

visible in the reference solution (Fig. 4.14, left part in the upper panel). In terms of velocity

histories, all DG2 variants at 5 and 10 m resolution exhibit a sharper peak alongside a faster

rate of recession, vanishing and occurrence than the industrial models, and result in a more

consistent agreement with the reference solution. The velocity histories at point 1 therefore

suggests that the DG2 variants at 5 and 10 m resolution induce faster water filling patterns

compared to the FV-based industrial models and the reference solution. This observation

is confirmed by the water level histories of the DG2 variants at point 2. Their predicted

arrival times are earlier (compare with those of point 1), which leads to faster filling, better

momentum capturing, and a more defined oscillatory flow pattern that manifests as distinct

undulating shapes in DG2-related water level histories (Fig. 4.14, left part in the lower panel).

These shapes are not seen in the water level histories made by the FV-based industrial models,

although this is barely observable in the reference solution. No major differences are noted

between the DG2-NL and DG2-LL predictions, but DG2-NL is in a slightly better agreement

with the reference solution for this test (Fig. 4.14, left part in the lower panel; see also
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Figure 4.14: Momentum conservation over an obstruction. Time histories of
water level (at points 1 and 2) and velocity (at point 1), recorded for DG2-LL and
DG2-NL at 5 m resolution, DG2-NL and MUSCL-FV2 at 10 m resolution, the
industrial models at 5 m resolution and the reference solution at 2 m resolution.
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Fig. 4.15).

The analysis of the R2 coefficient and L1-norm error plots reinforces the DG2 variants’

ability to predict profiles that are closer to the shape of the reference solution and within the

range of deviation of the industrial model outputs. These metrics also allow to clearly distin-

guish the performance between the DG2 variants, suggesting that DG2-NL at 5 m resolution

delivers better agreement with the reference solution, while still leading to competitive results

at 10 m resolution. This test confirms (recall Sec. 4.3.3) the benefits of the DG2-NL alter-

native to also improve capturing of fast (shockless) flow, for example in flash flooding, where

its better response to resolution coarsening is found to capture velocity variations better.

4.3.5 Torrential flooding over a rural catchment

This test considers a long-duration torrential flooding occurring over a down-sloping valley

(Fig. 4.16) within a 17.0 km × 0.8 km rural catchment, with a naturally rugged (nM = 0.04)

and initially dry topography. Flooding inflow occurs from a hydrograph casting a dam breach

located southwest of the valley with a peak of 3,000 m3 s-1 (Fig. 4.16). The breach has a

260-m wide opening, through which the flood rapidly advances to accumulate downstream

on the east side of the valley (i.e. within the area located at sampling point 5, shown in

Fig. 4.16). As the flood advances, it is expected to fill shallow ground depressions along the

valley. This flooding is simulated until t = 30 hrs. The time histories of the water level and

velocity, recorded at the sampling points (marked in Fig. 4.16), are shown in Fig. 4.17, along

with the histories of the industrial models and the reference solution (at 10 m resolution).

Fig. 4.17 (right side) contains the velocity histories at point 1 and point 3 (during 2 hrs),

located within the mainstream flow direction (point 1 close to the breach and point 3 by the

middle of the valley), and point 4 (during 3.5 hrs) located at the downstream end of the valley.

At point 1, results are analysed during the first 1.5 hrs when there is still momentum forcing

from the inflow: DG2 and MUSCL-FV2 at 100 m resolution yield velocities that are deviated

higher (thus faster flow) from those predicted by the other models at 50 m resolution and

the reference solution, although still producing the same velocity patterns. At point 3, the
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Figure 4.15: Momentum conservation over an obstruction. Difference among
the flood model predictions relative to the reference solution: R2 coefficients (left)
and L1-norm errors (right); (a) water level and (b) velocity.
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Figure 4.16: Torrential flooding over a rural catchment. Left panel shows the
2D topography with the breach location (red line, southwest of the catchment) and
the sampling points (red dots). The right panel shows inflow hydrograph imposed
at the breach.

DG2 variants at 50 m resolution capture the transient curving observed within the reference

solution (∼1-1.3 hrs), which is not reproduced by any of the industrial models. At point

4, the velocities predicted by DG2 and MUSCL-FV2 at 100 m resolution are less deviated

from the predictions made at 50 m resolution by the DG2 variants and the industrial models.

This convergence in performance seems to arise from the fact that the flow that passes point

4 after 1.5 hrs is relatively slower (i.e. entirely driven by gravity when inflow-forcing is no

longer in place and decelerated by high friction effects). However, at point 4, none of the

100 m resolution models is able to capture the undulating velocity patterns observed around

2-2.8 hrs in the 10 m reference solution generated using MUSCL-FV2, as small topographic

details particularly the sharp channel bend (Fig. 4.16) have been made smoother as an effect

of the DEM coarsening. Thus, a grid resolution ≤ 50 m is required for the DG2 variants to

observe these velocity transients.

Fig. 4.17 (left side) shows the water level histories at the same points 1 and 3, and then at

point 5 located farthest from the flooding source. At points 1 and 3, no major discrepancies

are observed between the model predictions at both 50 m and 100 m resolution. All models
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Figure 4.17: Torrential flooding over a rural catchment. Time histories of the
water level (left side) at point 1, point 3 and point 5, and of the velocity (right
side) at point 1, point 3 and point 4, produced by the DG2-LL and DG2-NL at
50 m resolution, by the DG2-NL and MUSCL-FV2 models at 100 m resolution,
against those produced by the industrial models at 50 m resolution and the reference
solution at 10 m resolution.
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exhibit very similar water level profiles and closely match the reference solution. At point 5

where the flow arrives around 4.5 hrs of flooding, DG2 and MUSCL-FV2 at 100 m resolution

predict patterns for the water level histories that are entirely consistent with those of the

industrial models and DG2 variants at 50 m resolution. However, at 100 m resolution, DG2

and MUSCL-FV2 clearly present the most deviated histories from the reference solution and

from the predictions made by the DG2 variants and the industrial models at 50 m resolution.

Notably, the 100 m resolution models predicted faster flow arrival, particularly when the

flooding duration has exceeded 24 hrs. This finding reinforces the observation in Sec. 4.3.3

that a DG2 alternative at twice-coarser resolution would yield more deviated water level

hydrographs as the gauging point becomes increasingly far from the flooding source.

The observations discussed previously can be further supported by analysing the plots of

the R2 coefficients and L1-norm errors in Fig. 4.18 at the respective sampling points. The

R2 coefficients for the water level and velocity are greater than 0.88, which indicates strong

similarities with the hydrograph patterns of the reference solution. The L1-norm error for

water level predictions (Fig. 4.18a), is relatively bigger at point 5 for the models run at 100

m resolution. This indicates that resolution coarsening produces hydrographs that are fairly

different than those obtained with the models run at 50 m resolution. In terms of velocity

predictions (Fig. 4.18b), L1-norm errors indicate that all model predictions at 50 and 100

m resolution yield a relatively good fit to the reference solution, and that the DG2 variants

are among the best performers. Overall, for a flooding case with rapid flows over a naturally

rugged terrain, a DG2-NL alternative pays off with a more accurate capturing of the velocity

transients for coarse resolution modelling (≤ 50 m resolution).

4.3.6 Dam-break over an oblique building

This test case considers an abrupt wave propagation involving the reflection of multiple shock

waves, the formation of a hydraulic jump, and the occurrence of small-scale eddies near wake

zones. These phenomena are induced by the release of a dam-break wave over an initially

wet floodplain to interact with an oblique building structure and solid walls enclosing the
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Figure 4.18: Torrential flooding over a rural catchment. Difference among the
flood model predictions relative to the reference solution: R2 coefficients (left) and
L1-norm errors (right); (a) water level and (b) velocity.
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Figure 4.19: Dam-break over an oblique building. Plan view of the spatial domain
and the location of 6 sampling points (red dots).

floodplain. The test case domain, shown in Fig. 4.19, is made of a long flume with a smooth

bed (nM = 0.01), and upstream walls with a gate separating two water bodies that are 0.4

m deep at the upstream and 0.02 m deep downstream. As the gate is swiftly opened, a shock

wave rapidly propagates and collides with the building to form a reflected hydraulic jump (i.e.

within the neighbourhood of G2, Fig. 4.19) and later splits into two shock waves that move

in different directions (i.e. one towards G3 and one towards G4, Fig. 4.19). Downstream

of the building, a wake zone emerges and surrounded by wave crossings, whilst producing

small-scale wake eddies (i.e. within the neighbourhood of G5, Fig. 4.19). The general flow

patterns in this test can be observed in the plan view of the 2D depth snapshots in Fig. 4.20.

A grid with a cell size of 0.1 m is used to discretise the whole flume, including the oblique

building and the dam structure as a part of the side walls, all incorporated as bed-slope source

terms within the DG2 model discretisation. Simulations are run up to t = 30 s, during which

the time histories of the water level and the velocity are computed at sampling points G2,

G4 and G5 located around the building, where highly energetic flow features occur, and at

point G6 behind the dam wall, where water flow is relatively slower. The time histories of the

water level produced by DG2-LL and DG2-NL and the industrial models at resolution 0.1

m, and by DG2-LL and MUSCL-FV2 at resolution 0.2 m, are compared in Fig. 4.21 against

the measured data from Soares-Frazão & Zech (2007).

The water level and velocity histories at points G2 and G4 reveal that none of the models

can fully reproduce the experimental profiles. At point G2, only the first wave arrival is well
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Figure 4.20: Dam-break over an oblique building. The plan view of the 2D depth
snapshot at (a) 1 s, (b) 4 s, (c) 6 s and (d) 10 s.
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Figure 4.21: Dam break over an oblique building. Time histories of the water
level (top and middle parts) at points G2, G4, G5 and G6, and the velocity (bottom
part) at points G2 and G4 relative to DG2-LL and DG2-NL at 0.1 m resolution,
DG2-LL and MUSCL-FV2 models at 0.2 m resolution, the industrial models at
0.1 m resolution and the experimental data.
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captured (around 1 s) by the models, as it is clearer in the velocity predictions (Fig. 4.21,

bottom panel, left part). Within the first 10-20 s, the models fail to capture the rapidly in-

creasing water jump transition (Fig. 4.21, top panel, left part), although the velocity histories

(Fig. 4.21, bottom panel, left part) indicates that DG2-LL at 0.1 m resolution is the best

performer, particularly in capturing the vanishing velocity at t ∼ 11 s. In contrast, DG2-NL

at a 0.1 m resolution fails to predict meaningful results in both water level and velocity his-

tories (Fig. 4.21, top and bottom panels, left part), which is rather an expected shortcoming

when swiching-off the slope limiter within a shock-dominated flow simulations. At point

G4, the predicted depth and velocity histories indicate more clearly that none of the mod-

els can appropriately reproduce the experimental wave arrival times, which are smeared out

(Fig. 4.21, top panel, right part) and predicted with a significant lag (Fig. 4.21, bottom panel,

right part). These shortcomings in model predictions are not surprising as the wave patterns

around points G2 and G4 become complex and highly unstable to be captured by 2D-SWE

models under the hydrostatic assumption and without a turbulence closure. Nonetheless, the

time histories at G2 and G4 still show benefits in applying DG2-LL to sufficiently reproduce

small-scale transient features occurring in a highly dynamic flow type.

The DG2-LL capability is clearly discernible in the water level histories recorded at point

G5 (Fig. 4.21, middle panel, left part). There, DG2-LL at a 0.1 m resolution excels in cap-

turing the varying disturbances observed in the experimental histories with greater accuracy

as compared to the industrial models, even at 0.2 m resolution where MUSCL-FV2 yields

a relatively flat histories without disturbances. At point G6, where the flow is very much

flood-like, the DG2 variants at 0.2 m resolution perform equally well as other models at 0.1

m resolution, thus demonstrating that the DG2 model can be a viable option to predict flows

away from the shock-dominated area at twice-coarser resolution than those of the FV-based

models. The better fit of the TUFLOW model predictions with the measured data are likely

due to the addition and ad-hoc calibration of eddy viscosity parameters. These parameters

are used as counterbalancing measure to the so-called “resolution-to-depth” ratio effect as it

becomes significant in line with the increase of modelling resolution and water depth (Syme
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2008).

Fig. 4.22 contains the plots of the R2 coefficients and L1-norm errors at the respective

sampling points. Except for point G6, the R2 coefficients for the water level are at best

around 0.6. This suggests that all models reproduce history patterns that are more than 60%

distorted from the experimental patterns, although without a significant deviation since the

L1-norm errors do not exceed 0.06 m. On the other hand, the R2 coefficients for the velocities

are more illustrative of the DG2-LL’s potential in capturing the transient patterns in a fast

and abrupt flow (R2 > 0.6), leading to the least deviated results (smallest L1-norm error).

Overall, this test recommends DG2-LL model to simulate complex flow hydrodynamics with

shocks and to be particularly useful in the capturing of small-scale transients around eddy

wakes.

4.4 Computational runtimes and discussions

For each test case in Secs. 4.3.1 - 4.3.6, the runtimes generated by DG2-NL, DG2-LL and

MUSCL-FV2 are recorded at output time T as reported for the industrial models (Table 4.1)

and for the best performer DG2 variant (DG2-BP) on a twice-coarser resolution. The selected

DG2-BP is the DG2 variant that produced the highest R2 and lowest L1-norm errors in

the flow predictions at all (or most) gauging points. If the values produced by both DG2

variants are similar, then the DG2-BP is selected based on the fastest recorded runtimes.

The models’ runtimes, listed in Table 4.3, are recorded on the same desktop computer using

a single-core CPU. Note that these runtimes are not compared with those reported for the

industrial models, as these models were run some time ago by their respective software

packages suppliers, either a CPU with 12 cores or a GPU card with thousands of CUDA

cores. The mass balance errors for the MUSCL-FV2 and the DG2 variants in the UK EA

test cases are considered minimal, with errors less than 1%.

As shown in Table 4.3, the runtimes of DG2-NL are found to be 1.8 to 2.2 times faster

than those of DG2-LL in the first five test cases involving flood-like flows (Secs. 4.3.1 to

4.3.5). Compared to the runtimes of MUSCL-FV2 on the same resolution as the industrial
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Figure 4.22: Dam break over an oblique building. Difference among the flood
model predictions relative to the experimental data: R2 coefficients (left) and L1-
norm errors (right); (a) water level and (b) velocity.
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Table 4.3: Runtime costs for DG2-NL, DG2-LL and MUSCL-FV2 based on the
same grid resolution reported for the industrial models (Table 4.1), and considering
the best performer DG2 variant (DG2-BP) on twice-coarser resolution. All simu-
lation runtimes are generated from the same desktop computer using a single-core
CPU.

Test cases
Output
time T

Runtimes (sec): same resolution
reported for the industrial models

Runtimes (s):
twice-coarser

resolution
DG2-LL DG2-NL MUSCL-FV2 DG2-BP

Flooding and drying cycle
over a sloping topography
(Sec. 4.3.1)

20 hrs 166 75 69 21

Symmetrical flow propagation
over a flat bed (Sec. 4.3.2)

5 hrs 9,350 4,373 3,416 515

Slow filling of multiple
ponds (Sec. 4.3.3)

48 hrs 1,734 833 307 222

Momentum conservation
over an obstruction
(Sec. 4.3.4)

15 min 12 5.5 3.4 1.5

Torrential flooding over a
rural catchment (Sec. 4.3.5)

30 hrs 22,260 12,297 3,822 2,320

Dam break over an oblique
building (Sec. 4.3.6)

2 min 15,337 10,363 1,205 497
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models, DG2-NL is found to be 1.4 to 6.6 times faster on twice-coarser resolution. Hence,

DG2-NL is undoubtedly the best performer to support realistic flood modelling over large

spatial areas and long timescales. DG2-NL partly falls short around the zone of shock-

dominance (Sec. 4.3.6) and has the least speed up compared to DG2-LL (i.e. 1.4 times).

For the simulation of flooding scenarios with shocks and wave reflection, e.g. a tsunami or

dam-break wave propagation over across obstacles, DG2-LL should still be favoured as the

best performer.

4.5 Concluding remarks

The potential of a DG2 model for practical flood modelling has been studied in comparison to

industry-standard flood models, which are based on second-order finite volume (FV2) or first-

order finite volume (FV1) numerical solvers. A simplified form of the DG2 flood model that

is devised for robust flood modelling was presented, while drawing on its key similarities and

differences to the standard MUSCL-FV2 approach. Results from a synthetic test revealed

notable momentum conservation property of the DG2 model due to its greater ability to

withstand numerical dissipation, despite the grid resolution coarsening and long duration of

simulation. This analysis also shows that the DG2 model with no slope limiting (DG2-NL) is

as valid as the expensive variant with local slope limiting (DG2-LL) in simulating flood-like

flows with wetting and drying movement that are often present in flood inundation modelling.

The performance of the DG2-LL and DG2-NL models was then explored for six test cases

published by the UK Environment Agency, which are well-accepted by both industrial and

academic hydraulic modelling communities for benchmarking the capabilities of 2D flood

inundation models. The outputs of DG2-LL and DG2-NL were analysed and compared to

the outputs of four prominent FV-based industrial models (i.e. TUFLOW-FV1, TUFLOW-

FV2, TUFLOW-HPC and Infoworks ICM) for the same resolution reported for the industrial

models. Outputs of the best performing DG2 variant (DG2-BP) were then analysed at

twice-coarser resolution compared to the outputs of an in-house MUSCL-FV2 model. All

analyses are quantified using R2 coefficient and L1-norm errors, representing the correlation
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and deviation of the model outputs with respect to a reference solution, either produced

by running MUSCL-FV2 on the finest DEM available or via available measurement data.

CPU runtimes were also scrutinised to contrast the runtime cost of DG2-LL vs. DG2-NL

on the same resolution as the industrial models, and also DG2-BP vs. MUSCL-FV2 on a

twice-coarser resolution.

The performance comparison between DG2 and FV-based model outputs offered a deeper

insight into the practical requirements and the potential for deploying a grid-based DG2

flood model for industry-scale simulations. Local limiting was found to be unnecessary for

a DG2 model to reliably support the modelling of a wide range of flooding flows (i.e. not

dominated by strong flow discontinuities) such as in pluvial, fluvial and coastal flooding.

The DG2-LL costs twice as much to run (Sec. 4.4) and can still produce misleading results,

for example when a gradually-propagating inflow is still loading onto a small wet domain

(Sec. 4.3.1). The DG2-NL yields closer predictions to the industrial model outputs, even

at twice-coarser resolution such as seen in a symmetrical flow over a floodplain (Sec. 4.3.2).

The DG2-NL at twice-coarser resolution could maintain a good correlation to the industrial

models in simulating a flood flow driven by topographic- and friction-effects over a larger

area (Sec. 4.3.3) and sample more accurately the water level hydrographs far away from the

flood source.

For rapidly propagating flood waves on downslope channel with ponding (Sec. 4.3.4)

and over a real-world natural valley (Sec. 4.3.5), DG2-NL, including at twice-coarser resolu-

tion, has shown ability to capture more detailed flow hydrographs incorporating small-scale

transients. In particular, DG2-NL displayed sharper velocity peak and distinct oscillatory

patterns of a sloshing flow settling in the ponds (Sec. 4.3.4) and managed to capture small

transient curving in the velocity predictions (Sec. 4.3.5). In contrast, for a case with a strong

dam-break wave interacting with a building-like obstacle (Sec. 4.3.6), deploying DG2-LL may

still be useful for detailed capturing of small-scale flow variations caused by highly dynamic

wave interactions with obstacles. Nonetheless, away from the shock-dominated region e.g.

behind the dam wall (Sec. 4.3.6), DG2-NL can still produce competitive results relative to
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the industrial model outcomes. Overall, these findings lead to the conclusion that DG2-NL

can offer a more efficient and accurate alternative for the industrial modelling communities

to improve long-range and coarse-resolution flood flow simulations.



Chapter 5

Velocity fields predictions with

small-scale eddies

Contents used to prepare for this chapter have been published in the following publication:

Ayog, J. L., Kesserwani, G, Bau, D. 2021. Well-resolved velocity fields using discontin-

uous Galerkin shallow water solutions, J. Hydraul. Eng. in review. The preprint is available

in http://arxiv.org/abs/2104.11308.

5.1 Chapter overview

This chapter, which relates to Objective 3, extends the investigation made on the performance

of the simplified 2D-SWE DG2 solver in Chapter 4, particularly in predicting detailed spatial

velocity fields at sub-metre resolutions. The capabilities of this DG2 solver are further studied

relative to the commonly-used MUSCL-FV2 solver through a series of selected test cases in

which spatial velocity field experiments are available. In Sec. 5.2, the selected test cases

that are used to assess the capabilities of the DG2 solver relative to MUSCL-FV2 solver

are presented. These test cases involve small-scale flow interaction with steep topographic

structures, for a wide range of flow regimes and transitions and considering a real-world

flooding scenario in a residential area. The performance of the DG2 solver is then analysed

104
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for two configurations, with and without activating local slope limiting (i.e. DG-NL and

DG-LL), jointly with that of the MUSCL-FV2 solver. Sec. 5.3 presents the analyses of

performances include a qualitative comparison of predicted velocity streamlines in the areas

with recirculation flows, and an evaluation based on a range of quantitative indices (described

in Sec. 5.2). Finally, Sec. 5.4 presents the conclusions drawn from the analyses to come up

with a most suitable configuration for the DG2 solver for more efficient and accurate 2D

velocity field predictions, which are detailed enough to capture the small-scale features in

and around the zones of wave-structure interactions in realistic flooding conditions.

5.2 Selection of test cases and quantitative indices

Test cases with experimental velocity fields are selected to study the predictive capability of

the DG2 solver in the reproduction of spatial 2D velocity fields, at the sub-metre resolution,

for hydraulic simulation problems that are characterised by wave-structure interactions. The

features of the selected test cases, along with the experiment data sources, are summarised in

Table 5.1. In the first two tests, the DG2-LL and DG2-NL variants are compared to identify

and adopt a DG2 configuration that is most suited for the intended hydraulic simulation

problems. The adopted DG2 variant is analysed further in the other test cases, all of which

involve alternative simulation outcomes from the MUSCL-FV2 predictions to investigate the

transferability of the DG2 solver to practical-scale velocity fields.

As in Chapter 4, the quantitative analyses are performed using the R2 coefficient of

determination and the L1-norm error, but involving only the 2D velocity vectors and

spatial profiles produced by DG2 and MUSCL-FV2 solvers. Hence, these quantitative

indices are now expressed as:

R2 =

 ∑Ns
k=1(V EXP

k − V̄ EXP )(V NUM
k − V̄ NUM )√∑Ns

k=1(V EXP
k − V̄ EXP )2

∑Ns
k=1(V NUM

k − V̄ NUM )2

 (5.1)

L1-norm error =
1

Ns

(
Ns∑
k=1

∣∣V EXP
k − V NUM

k

∣∣) (5.2)
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Table 5.1: The description of the selected test cases with their respective features
and experimental data sources

Test case Features and experimental data source

Dam-break flow through multiple blocks Highly transient flow narrowly constricted between
sharp-edged obstacles followed by a downstream hy-
draulic jump. The spatial profiles of the depths
and velocity magnitudes from the experimental mea-
surements were obtained from Soares-Frazão & Zech
(2008).

Flow separation at a T-junction Steady subcritical flow separation considering two
different T-junction configurations - with and with-
out a small obstacle – with a recirculation zone along
the lateral branch. The recirculation flow extent, and
the lateral profiles of the experimental velocity com-
ponents were obtained from Bazin et al. (2017).

Quasi-steady flow in sharp building cavities Inflow with skewed velocities, and high-resolution
measurements of 2D velocity fields containing small-
scale eddies in the side cavities of two adjacent build-
ings. Relevant experimental data measured using
particle image velocimetry (PIV) is provided in Ru-
binato et al. (2021).

Flooding in an urban residential area Real-world flash flooding scenario around buildings
on small piers simulated using a high-resolution digi-
tal elevation model (DEM). The DEM of the physical
model, measured water level time histories and the
spatial velocity vectors are sourced from Smith et al.
(2016).
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Figure 5.1: Plan view of the spatial domain, indicating the location of the gate
(green line) and the location of the extracted water level and velocity profiles (red
line).

In Eqs. 5.1 - 5.2, V EXP and V NUM are the velocity magnitudes from the experi-

ments, whereas V̄ EXP and V̄ NUM represent their numerical counterparts calculated as space-

averaged velocity magnitudes. Ns denotes the total number of sampled data with k = 1, ...

Ns. The indices for the spatial profiles are calculated in a similar manner to the 2D velocity

vectors, but by using the spatial point values instead of the velocity magnitudes. Besides

these indices, another quantitative index, named the relevance index (RI), is used to analyse

velocity field directions, and is expressed as:

RI =
1

Ns

(
Ns∑
k=1

(
uEXP
k × uNUM

k

)
+
(
vEXP
k × vNUM

k

)
V EXP
k × V NUM

k

)
(5.3)

where uEXP and vEXP are the 2D velocity components from experimental observations

and uNUM and vNUM are those from the numerical solvers. The coefficient RI is used to

quantify the directional alignment of the predicted velocity fields to experimental observation,

with the velocity alignment becoming higher as the RI approaches unity.

5.3 Test results and discussions

5.3.1 Dam-break flow through multiple blocks

This test is aimed to identify a range of practical applications at which local limiting within

DG2 (DG2-LL) is needed. In Chapter 4, when analysing the hydrodynamics of a dam-break

wave interaction around one building block (Sec. 4.3.6), the DG2-LL proved necessary to

capture physically-meaningful depth and velocity time histories at fixed spatial points behind
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Figure 5.2: Longitudinal profiles of the depths (left) and velocity magnitudes
(right) of MUSCL-FV2 (red line), DG2-LL (blue line) and DG2-NL (green line)
extracted along y = 0.2 m relative to the experimental observations (black dots)
at t = 4, 5, 6 and 10 s. The grey shades indicate the building blocks, and the
white strips between the blocks are the flow intersections. The R2 coefficients and
L1-norm errors of each model are provided in the figure.
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the block. Therefore, a further investigation is required on the validity of the DG2-LL variant

in a more challenging setting, such as when extracting depth and velocity spatial profiles at

a given time and when the dam-break flow hydrodynamics is affected by the presence of

multiple building blocks.

The test is based on the experiment of Soares-Frazão & Zech (2008). It consists of a

long flume (Fig. 5.1) with a smooth bed surface (nM = 0.01 m1/3s-1). The flume contains

twenty-five square blocks, each of 0.3 m × 0.3 m dimension and separated by a 0.1 m gap.

The blocks are meant to represent an idealised city located on a flat floodplain downstream

of the flume, which also contains a gate separating a 0.4 m and a 0.011 m deep water body.

When the gate is swiftly removed, a dam-break wave occurs to propagate toward the blocks

and interact with them. The presence of the blocks on the floodplain constricts the flow from

moving further into the narrow gaps except for a small amount of water that accelerates

across the blocks and forms a hydraulic jump downstream. The constricted flow forms a

backwater zone in which the water depth upstream of the blocks is raised. The backwater

zone spreads to the flume side walls over time and pushes lateral flows between the building

blocks until the flow stabilises. This simulation is run up to t = 10 s on a mesh with a grid

size of 0.02 m. The longitudinal profiles of water depth and velocity magnitude obtained

from DG2-NL, DG2-LL and MUSCL-FV2 at t = 4, 5, 6 and 10 s are extracted along y =

0.2 m (red line, Fig. 5.1). They are shown in Fig. 5.2, where they are also compared with

observed longitudinal profiles.

As seen in Fig. 5.2, the DG2-LL produces relatively smooth patterns for the longitudinal

profiles that are akin to those generated by MUSCL-FV2, but in a slightly better agreement

with the observed profiles. In contrast, DG2-NL generates profiles with widespread noises, as

expected when slope limiting is disabled within highly dynamic flow transitions around steep

obstacles. Still, DG2-NL profiles are observed to follow the observed profiles reasonably well,

in particular at the early stages of the dam-break wave propagation. This can be seen in the

profiles predicted at t = 4 s, when the DG2-NL results are better correlated to the observed

experimental data. As water becomes deeper within the gaps at t = 5 s, the DG2-LL retains
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Figure 5.3: Streamlines of 2D velocity fields produced by the MUSCL-FV2 (left),
the DG2-LL (middle) and the DG2-NL (right) solvers around all blocks at t = 10
s.

a significantly stronger correlation, whereas the DG2-NL shows the most deviated prediction

from the experimentally observed profiles, as the largest L1-norm error indicates. At t = 6 s

and t = 10 s, the DG2-LL also stands out in producing profiles that more closely resemble

those of the MUSCL-FV2 (compare their R2 coefficients in Fig. 5.2) and are closer to the

observed profiles compared to DG2-NL (compare their L1-norm errors in Fig. 5.2). For the

velocity magnitude profiles, in particular, DG2-LL gives the best fit of the profiles to the

observed profiles at the output time, t = 10 s, where it shows the highest R2 and the lowest

L1-norm errors amongst all the models. The findings in Fig. 5.2 suggest that the DG2-LL is

a better option to more reliably predict velocities in highly transient flows including complex

interactions with topographic structures.

To gain deeper insights into the velocity patterns observed in the longitudinal profiles

in Fig. 5.2, analyses have been performed considering the streamlines extracted from the

numerically predicted 2D velocity fields around the blocks at the output t = 10 s. The

streamlines made from the predictions of the MUSCL-FV2, the DG2-LL and the DG2-NL are

shown in Fig. 5.3. The DG2-LL displayed smooth streamlines, consistent with its longitudinal

profiles (Fig. 5.2), with regular distribution patterns around the blocks particularly in the

upstream backwater zone (x < 5 m), in the x -directional gaps between the blocks (5 m ≤ x ≤

6.9 m) and in the wake downstream, where successive converging crossflows are noted with two

elongated eddies at the wake edge (x > 6.9 m). Similar features are also seen in the MUSCL-
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Figure 5.4: T-junction spatial domain showing the main (white horizontal band)
and the lateral (white vertical band) branches, and the upstream inflow (blue
arrows) from the east of the main branch. The insert plot (red box) contains
the zoomed-in view of the small obstacle position (magenta square) near the T-
junction.

FV2 streamlines, albeit with two distinct eddies formed in the backwater zone close to flume

walls. However, the DG2-NL streamlines show chaotic distribution patterns with extensive

spread of noises that are manifested as eddies in the backwater zone. These noises also lead to

a very turbulent wake and forms swirling eddies at the wake edge resembling vortex shedding

at t = 10 s. The analysis of the streamlines imply that the DG2-NL can lead to misleading

2D velocity predictions and should be avoided when modelling 2D velocity fields. Besides, for

this 10 s simulation, the DG2-NL is 3 times more expensive to run than the DG2-LL because

of the need to adopt increasingly smaller time-step (impacted by the noises). Instead, the

DG2-LL seems a more reliable option for applications that require detailed capturing of 2D

velocity fields, even with very smooth subcritical flow as demonstrated next.

5.3.2 Flow separation at a T-junction

This test case involves mainstream subcritical flow separated into the lateral branch of a right-

angled T-junction, and is run to examine further the performance of DG2-LL and DG2-NL

in producing spatial 2D velocity fields and the lateral profiles from experimental observation
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(Bazin 2013, Bazin et al. 2017, Mignot et al. 2013). Two configurations are considered, as

shown in Fig. 5.4: one without a 5 cm square obstacle located in the main branch, which

represents a classical flow diversion into the lateral branch where the velocity field becomes

more complex, and another with the obstacle that would also affect the velocity field in the

main branch. For both configurations, a steady inflow discharge of 0.002 m3s-1 is considered,

associated with a Froude number of 0.23, entering the main branch from the eastern boundary.

Fixed water depths of 45.1 mm and 44.6 mm from Bazin (2013) are imposed at the end of the

downstream and the lateral branches, respectively. The bed surface is flat and smooth with a

roughness value of nM = 0.01 m1/3s-1, which is within the range of roughness values measured

in the laboratory experiment. The simulations are run on a mesh with grid size of 0.005 m,

which is the finest size used by the 2D-SWE models in Bazin et al. (2017), until steady-state

was reached. Simulations are performed for each of the configurations using the MUSCL-FV2,

DG2-LL and DG2-NL solvers, and analyses were conducted by considering the streamlines

produced from the simulated 2D velocity fields, and by comparing the components of the

simulated spatial velocity profiles with the available experimental data.

For the no-obstacle configuration, the extracted streamlines shown in Fig. 5.5 indicate

that, with all solvers, the mainstream flow is characterised by a region of separation along

the eastern bank of the lateral branch. Within this region, MUSCL-FV2 streamlines exhibit

a large flow recirculation centred close to the entrance of the lateral branch with regular,

semi-elliptical patterns that narrows further downstream. In contrast, the DG2-LL and

DG2-NL streamlines exhibit more uneven recirculation patterns, but resemble the measured

flow recirculation pattern presented by Bazin et al. (2017), which is also quite uneven. Both

the DG2-LL and DG2-NL streamlines also indicate a sequence of small-scale eddies within the

inner zone of the recirculating flows, which is not observed with the MUSCL-FV2 streamlines.

A major difference between the velocities predicted by DG2-LL and DG2-NL can, however,

be observed for the u- and v -velocities extracted at the location x = 0.15 m near the entrance

of the lateral branch. In Fig. 5.6, the corresponding velocity profiles are compared against

the available experimental profiles of Bazin et al. (2017) . The DG2-NL profiles exhibit sharp
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Figure 5.5: Streamlines of the 2D velocity fields obtained with MUSCL-FV2
(left), DG2-LL (middle) and DG2-NL (right). In each subpanel, the measured
recirculation extent in the lateral branch (red line) and the location of the extracted
u-velocity and v-velocity at x = 0.15 m (yellow dashed line) for the case without
the obstacle are also shown.

wavy patterns that are more apparent in the v -velocity profile, where a very sharp dip is

predicted just after the entrance of the lateral branch (0.3 m ≤ y ≤ 0.6 m), suggesting the

presence of a negative spurious velocity component. Such a deficiency is confirmed by the fact

that the DG2-NL generates the smallest R2 correlation coefficient and the largest L1-norm

error, hence providing the least correlated and the most deviated predictions with respect

to the experimental velocity profiles. In contrast, the profile of the DG2-LL velocity fields

is much smoother and fits significantly better with the experimental velocity data and those

extracted from MUSCL-FV2. These analyses confirm that the DG2-LL solver is a better

alternative to the DG2-NL to capture complex 2D velocity fields more reliably even when

these fields occur under a subcritical flow regime with a low Froude number.

Similar analyses are presented for the results obtained from the MUSCL-FV2, the DG2-

NL and the DG2-LL solvers using the configuration that included the obstacle upstream of

the T-junction. The extracted streamlines are shown in Fig. 5.7, which clearly indicates more

complex velocity fields behind the obstacle in the main branch. The MUSCL-FV2 streamlines
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Figure 5.6: Lateral profiles of the u-velocity (left) and v-velocity (right) from
the MUSCL-FV2 (red line), the DG2-LL (blue line) and the DG2-NL (green line)
solvers at x = 0.15 m, alongside the measured velocities (black dots) for the case
without the obstacle. The R2 and L1-norm errors calculated along the lateral
branch in each profile are also provided.

Figure 5.7: Streamlines of the 2D velocity fields obtained with the MUSCL-FV2
(left), the DG2-LL (middle) and the DG2-NL (right) solvers for the case with the
obstacle (magenta square). In each subpanel, the location of the extracted u-velocity
and v-velocity at x = 0.15 m (yellow dashed line) is also shown.
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Figure 5.8: Lateral profiles of the u-velocity (left) and v-velocity (right) for the
MUSCL-FV2 (red line), the DG2-LL (blue line) and the DG2-NL (green line)
solvers at x = 0.15 m, alongside the measured velocities (black dots) for the case
with the obstacle (magenta square). The R2 and L1-norm errors calculated along
the lateral branch in each profile are also provided.

exhibit a wake behind the obstacle with smooth recirculation flows extending downstream.

This wake deflects the mainstream flow to the downstream part of the main branch, and thus

effectively expands the recirculating flows in the lateral branch. The DG2-NL streamlines also

display a wake behind the obstacle, but this is much smaller and cleared of any streamline,

which suggests the presence of a ”stagnant” zone (i.e. a zero velocity region). This smaller

wake allows some of the mainstream flow to separate and form small-scale eddies within the

lateral branch, which tend to progressively become more enlarged further downstream. In

contrast, the DG2-LL streamlines do not show any wake behind the obstacle, suggesting that

this solver can predict more mainstream flow separating into the lateral branch with a series

of smaller-scale eddies that propagate along the eastern bank of the lateral branch.

Fig. 5.8 includes the lateral profiles of the u- and v -velocities predicted by the MUSCL-

FV2, DG2-LL and DG2-NL solvers at x = 0.15 m. Because of the complexity of the flow

patterns, neither the MUSCL-FV2 nor the DG2 solvers can produce profiles that capture

the velocity profiles observed experimentally within the main branch (0 m ≤ y ≤ 0.3 m).

This means that the velocity fields in this region are too complex to be captured by the

depth-averaged assumption featured in 2D SWE-based models without adding a turbulence
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closure or an eddy viscosity component (Bazin et al. 2017). Conversely, in the lateral branch,

the u-velocity profiles from the MUSCL-FV2 and the DG2 solvers are comparatively more

consistent with the experimental velocity data. Slight discrepancies are seen in the v -velocity

profiles, in which DG2-NL yields the most deviated and least correlated predictions (compare

R2 coefficients and L1-norm errors in Fig. 5.8). As supported further by the findings from

Fig. 5.7 and Fig. 5.8, the DG2-LL is recommended for use when the aim of the application

is focused on high-resolution analysis of spatial velocity fields that would be affected by the

presence of sharp topographic edges, such as river groynes and building cavities.

5.3.3 Quasi-steady flow in sharp building cavities

In this test, the ability of the DG2-LL to produce more reliable spatial velocity fields is further

examined by applying it to replicate high-resolution experimental data of 2D velocity fields.

These data are obtained from particle image velocimetry (PIV) measurements performed in

a physical model in the University of Sheffield involving one of the parking lots configurations

with a closed manhole (Rubinato et al. 2021). The configuration is illustrated in Fig. 5.9, and

installed on top of an existing experimental flume (Rubinato 2015). The flume slopes at 0.001

m/m and has a smooth surface (nM = 0.011 m1/3s-1), where a quasi-steady flow develops.

The flow is driven by an inflow characterised by skewed velocities, which are extracted from

the measured 2D velocity fields along the flume’s southern boundary (red box, Fig. 5.9).

At the northern boundary of the flume, free outflow conditions are imposed. DG2-LL and

MUSCL-FV2 are run on a mesh with a grid size of 0.016 m, which matches the resolution of

the PIV data. Simulated 2D velocity fields are extracted every 10 s and contrasted against

the measured velocity fields based on the L1-norm error.

The time histories of the L1-norm errors, up to 350 s, are illustrated in Fig. 5.10, for the

DG2-LL and the MUSCL-FV2 solvers in order to analyse the runtime costs in producing the

least deviated 2D velocity fields predictions. A sharp decrease in L1-norm errors is observed

with both solvers in the first 20 s of the simulation. After then, a further decrease in the

L1-norm error is noted for the DG2-LL solver that stabilises from 40 s onwards, suggesting
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Figure 5.9: The test configuration involving the large buildings (grey area) and
side cavities. The black arrows in the red box indicate the inflow velocities extracted
from the PIV-measured velocity fields along the southern boundary of the flume.

Figure 5.10: The time history of L1-norm errors based on the velocity fields
produced by MUSCL-FV2 (red line) and DG2-LL (blue line) up to t = 350 s.
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Figure 5.11: Spatial vectors and streamlines of 2D velocity fields obtained from
the PIV data (left), MUSCL-FV2 (middle) and DG2-LL (right) at t = 350 s with
their respective R2 and RI coefficients.

that any 2D velocity prediction by this solver has the least deviation from the measured

velocity fields after 40 s. In contrast, the MUSCL-FV2 solver seems to require at least 300 s

of simulation time for the L1-norm error to stabilise at values that result slightly larger than

for the DG2-LL. Overall, the L1-norm error analysis indicates that in order to predict the

closest possible velocity fields to the experimental data, the MUSCL-FV2 solver should be

around 7.5 times more expensive to run than the DG2-LL. Even at that cost, the MUSCL-

FV2 results are not as accurate as those of the DG2-LL, as discussed next.

Fig. 5.11 displays the spatial vector map and its corresponding streamlines extracted from

the 2D velocity fields experimentally measured using the PIV, compared to those predicted

by the MUSCL-FV2 and the DG2-LL at t = 350 s. The spatial vector maps distinguish the

regions of higher velocities, indicated by darker vector shades, to those with lower velocities,

with much lighter vector shades. In the main channel, both DG2-LL and MUSCL-FV2

streamlines show consistently linear patterns that are relatively like the PIV streamlines
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in the high velocity region (darker vector shades), except near the upstream cavity of the

left building where the velocities are low (lighter vector shades). Here, the extent of the

recirculation flow region predicted by MUSCL-FV2 is strongly similar to those of the PIV

but containing an overly elongated main channel eddy, with slightly underpredicted centre

and position of the eddy in the upstream cavity of the left building. In contrast, DG2-LL

streamlines replicates relatively well the main channel eddy’s centre and the location of the

upstream cavity’s eddy, but with much smaller extent of the recirculation flow region. The

observation on MUSCL-FV2 and DG2-LL streamlines shows that neither of the solvers can

entirely capture recirculation flows in this region, highlighting the limitation of a 2D depth-

averaged solvers in capturing complex 3D flows resulting from highly dynamic interactions of

the eddies with the sharp edges of the upstream cavity. However, in low velocity region near

the southern edge of the left middle cavity and near the northern edge of the right middle

cavity, the DG2-LL solver perform much better in replicating the recirculation patterns of the

eddies. The similarities between the streamline patterns of the DG2-LL and PIV-measured

velocities can be quantitatively confirmed by particularly analysing the RI coefficient, instead

of R2, for which the solver yields a stronger fit in terms of both the magnitude and the

directionality of the measured velocity fields. It is also worth noting that there could be

some uncertainties present, particularly in the inflow data, that can affect the accuracy of

the velocity fields obtained from the PIV measurements. Despite this limitation, the results

of this test case and the previous one highlight the potential of applying the DG2-LL to

produce more detailed and reliable velocity fields of quasi-steady flows and at a fraction of

the computational cost.

5.3.4 Flooding in an urban residential area

This test further investigates the DG2-LL capabilities to reproduce spatial velocity fields

measured in a physical model for a flash flooding that spreads over an urban residential area

with buildings on small piers. The physical model was developed by Smith et al. (2016)

and consisted of a 12.5 m long and 5 m wide prototype representing the Morgan-Selwyn
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Figure 5.12: The left panel illustrates the DEM of the Morgan-Selwyn floodway
prototype, and includes the outlines of the buildings on piers (black boxes), water
level sampling points (black dots) and the inflow boundary (red line, bottom of the
panel). The blue box on the right provides a zoomed-in view of the walls and piers
within the piered buildings (right panel).

floodway in Merewether, Australia, to recreate the flooding scenario that occurred during the

‘Pasha Bulker’ storm. A steady-state inflow discharge of 19.7 m3s-1, which is the estimated

peak flood discharge from the ‘Pasha Bulker’ storm, flows through a 38 m opening located

at the southern boundary (red line, Fig. 5.12). This inflow propagates over the initially-

dry topography that is constructed using road base materials. Free outflow conditions are

imposed across the downstream boundary located at the north and wall boundary conditions

are specified elsewhere. For the numerical model simulations, topographical survey points

collated from the prototype are used to generate a digital elevation model (DEM) with a

very fine grid size of 1 cm. This DEM is then resampled at a grid size of 17.5 cm (Ayog

& Kesserwani 2021), in which square blocks with sizes of 52 cm for the corner piers and 35

cm for the side piers are added, as shown in Fig. 5.12. The dimensions of these piers are

estimated by measuring the piers in the photographs provided in Smith et al. (2016). These

piers are assumed to be unsubmerged along with other non-piered building blocks in the
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Figure 5.13: The time histories of the water levels predicted by the DG2-LL and
the MUSCL-FV2 solvers at all sampling points up to t = 800 s, alongside the
historical flood levels records of the Pasha Bulker storm and the measured water
level of the floodway prototype (Smith et al. 2016).

prototype. The flood simulations are run at the resampled DEM grid size up to t = 800 s at

which steady state is reached at sampling point 4 located downstream of the piered buildings

(left panel, Fig. 5.12).

As recommended by Smith et al. (2016), the optimal roughness value, of nM = 0.042

m1/3s-1, is calibrated by running both the MUSCL-FV2 and the DG2-LL solvers so as to

closely reproduce the historical water level records of the ‘Pasha Bulker’ storm and the

measured water levels of the prototype. Fig. 5.13 contains the associated time histories of the

water level predicted by the MUSCL-FV2 and the DG2-LL solvers for this roughness value at
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Figure 5.14: The spatial vectors of the MUSCL-FV2 (left panel) and DG2-LL
(right panel) velocity fields around the piered buildings at t = 800 s against the
measured velocity vectors. The RI coefficient and L1-norm errors are provided
in each panel. The green boxes indicate the region where the streamlines of 2D
velocity fields around the northwest piered buildings are analysed.

the four sampling points shown in Fig. 5.12. It can be seen that the water level predictions by

both solvers are in a good agreement with the measured water levels (maximum discrepancy

of 0.1 m) and do not exceed the historical flood levels at point 1. To validate the velocity

prediction around the piered buildings, velocity vectors produced by the MUSCL-FV2 and

the DG2-LL solvers at t = 800 s were extracted at a 10 m spacing over the prototype where

sparsely-measured velocity fields are available. Fig. 5.14 shows the velocity fields predicted

by the solvers and the measured velocity vectors. Both solvers can effectively capture the

sparsely-measured velocity fields within the region where the piered buildings are located.

However, the DG2-LL solver yields slightly higher RI and lower L1-norm error, indicating a

better alignment with the measured velocity vectors.

A more detailed investigation of the local distribution of the velocity fields around the

piers is conducted by analysing the streamlines of the MUSCL-FV2 and the DG2-LL fine-

resolution velocity predictions at t = 800 s. Only zoomed-in portions are considered for the

northwest piered buildings (green box, Fig. 5.14) where the flood wave interactions with the

piers are more complex as shown in Fig. 5.15. The streamline plots indicate that the MUSCL-

FV2 solver predicts chaotic recirculation patterns forming behind the front walls of buildings
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Figure 5.15: The streamlines extracted from the MUSCL-FV2 (left panel) and
the DG2-LL (right panel) velocity fields around the northwest piered buildings at t
= 800 s. The building numbers are provided in the left panel.

1, 2 and 3. Similar recirculation patterns are also observed in the DG2-LL streamlines,

but these are characterised by smaller-scale eddies coinciding with those observed previously

with the DG2-LL in the flow separation region in the previous T-junction test. The DG2-LL

also produces relatively irregular streamlines downstream of the back piers of buildings 2

and 3, which are less smooth than the MUSCL-FV2 streamlines. Additionally, the DG2-LL

streamlines exhibit larger swirling patterns with eddies around piers southwest of building

1 and north of buildings 5 and 6. Hence, the analysis of the streamlines indicate that the

DG2-LL solver can provide more precise velocity fields, and allows to gain a better insight on

the localised flow patterns and (re)distributions around small topographical structures, such

as when modelling flooding around piered buildings.
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5.4 Concluding remarks

This chapter has demonstrated the capabilities of a second-order discontinuous Galerkin

(DG2) solver in reproducing detailed velocity fields when solving the depth-averaged shal-

low water equations without an eddy viscosity or turbulence term. These capabilities were

investigated over four selected test cases for two DG2 variants with and without slope lim-

iting, and by comparing their velocity predictions against those produced by the commonly

used MUSCL-FV2 solver. The selected test cases required detailed capturing of small-scale

velocity transients, at sub-metre scale, that occur at zones where the waves interact with

steep topographies, for different flow conditions ranging from rapidly propagating transient

flow to steady subcritical flow across a junction structure, within building side cavities, and

behind small building piers. The solver predictions were compared using quantitative metrics

and qualitative analysis of the predicted streamline at the zones of the recirculating flows.

Performance analyses revealed that local limiting with the DG2 solver is needed to produce

reliable velocity field predictions at sub-metre resolution even when the flow is subcritical and

steady. Within this configuration, the DG2 solver is able to capture small-scale recirculation

eddies in the velocity field prediction that are otherwise smeared out by the MUSCL-FV2

solver. Furthermore, the DG2 solver is more efficient than MUSCL-FV2, in the sense that

it is much faster (around 7.5 times) to deliver the required steady state velocity predictions.

These findings offer strong evidence that the DG2 solver is a valuable alternative to FV2

modelling, when detailed velocity fields are required within regions of wave-structure inter-

actions, and without the need of additional mathematical complexity beyond the standard

shallow water equations.



Chapter 6

Conclusions

In this concluding thesis chapter, a summary of the PhD research is provided in Sec. 6.1.

Here, the key findings associated with the achievement are also discussed along with the

research limitations. The significance of these findings to the current gaps of practical flood

modelling applications is then briefly explained in Sec. 6.2, followed by some recommenda-

tions for potential future research in Sec. 6.3.

6.1 Summary of the thesis

The background of this research has been elucidated in the Chapter 1, in which the ad-

vantages and limitations of the finite volume 2D-SWE solvers adopted in industry-standard

flood modelling applications have been discussed. An alternative to the industry finite vol-

ume solvers, namely the DG2 solver, is seen to have the capabilities to improve these flood

modelling software packages, however it is rarely been explored for such application, even

more so for industrial modelling practices. The exploration on the capabilities of the DG2

solver in flood modelling may have been discouraged by the fact that this solver, in its stan-

dard formulation, entails very long runtime due to its high mathematical complexity, added

with the complications on ensuring conservation properties and stability are met when steep

topographic structures are present. These challenges uncovered the opportunity to develop

a novel 2D-SWE flood model based on a simplified DG2 solver that can implemented for
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practical flood inundation modelling, which serves as the main aim of this PhD research.

Based on this research aim, three objectives have been formed. The first objective, which

is to develop and assess the performance of the simplified 2D-SWE DG2 model relative to

the standard DG2 model, has been addressed and discussed in Chapter 3. In this chapter,

the differences between these two DG2 formulation were analysed, and further investigation

was later done on the simplified DG2 formulation considering two different topography dis-

cretisation. The capabilities of the simplified and standard DG2 formulation were compared

against test cases that assess their 2D flow characteristics and shock-capturing ability in a

radial dam-break on a flat bed. Another set of test cases was selected to analyse conservative

properties relating to the well-balanced properties and accuracy of the simplified 2D-SWE

DG2 solver over different types of topography and moving wetting and drying in a parabolic

bowl.

The second objective, which is to assess the performance of the simplified DG2 solver

relative to well-established FV-based software packages that commonly used for industry-

scale modelling applications, has been addressed and studied in Chapter 4. Concurrently,

the viability of using the simplified 2D-SWE flood model for this scope of applications is also

studied and verified. In this chapter, the main similarities and differences between the simpli-

fied DG2 solver and the FV-based solvers (i.e. FV1 and MUSCL-FV2 solvers) were detailed,

followed by an analytical assessments of the solvers’ conservative properties of mass and en-

ergy over long simulation period and with two grid resolutions. Comparative analyses were

later done on the outputs of the simplified DG2 flood model against those from four promi-

nent FV-based industrial models (i.e. TUFLOW-FV1, TUFLOW-FV2, TUFLOW-HPC and

Infoworks ICM) for the same resolution as the industrial models using six benchmark test

cases published by the UK Environment Agency. Using the same tests, the simplified DG2

model was further analysed at twice-coarser resolution and compared to the outputs of an

in-house MUSCL-FV2 model. The analyses were done quantitatively and qualitatively with

respect to a reference solution that were either produced by running MUSCL-FV2 on the

finest DEM resolution or by using available experimental data.
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Finally, the third objective, which is to identify suitable settings for the simplified 2D-SWE

DG2 model for different flood modelling applications, has been addressed in both Chapter 4

and Chapter 5. These settings are specifically relevant to the applicability of the local slope

limiting within the simplified DG2 model considering flood modelling applications that are of

catchment- and regional-scale with grid resolutions more than 5 m (Chapter 4), or of small-

scale flooding in urbanised environment that is modelled at sub-meter resolution (Chapter 5).

In particular, Chapter 5 is dedicated to explore the capabilities of the simplified 2D-SWE DG2

model in producing detailed spatial velocity fields with small-scale eddies in regions of wave-

structure interactions without an eddy viscosity or turbulence term. Such capabilities are

explored against a MUSCL-FV2 model over four test cases with experimental velocity fields,

for different flow conditions across multiple building blocks, a junction structure, around

building side cavities and for a real-world flooding scenario in an urban residential area.

The codes and data used in this thesis can be accessed in https://doi.org/10.5281/zenodo.

5921132.

6.1.1 Key findings and limitation of the research

The achievement of the research objectives discussed earlier unfold the following key findings

of the research:

The achievement of first objective revealed that the simplified DG2 formulation, which

relies on the slope-decoupled discretisation based on the stencil in Fig. 3.2, reduces the amount

of mathematical evaluations and operations from 32 to 12 when compared to the standard

formulation. This in return allows the simplified DG2 formulation to provide runtime speed

up by around 2.6 times per flow variable. Despite producing errors that are slightly larger

than the standard formulation, the simplified DG2 formulation can equally deliver predictions

at second-order accuracy and adequately track the evolution of the shock and rarefaction

waves of a rapid dam-break. By employing the slope-decoupled approach to discretise the

bed topography, the simplified DG2 formulation is able to fully ensure that the well-balanced

properties are preserved for both mean and slope coefficients, and over smooth and steep

https://doi.org/10.5281/zenodo.5921132
https://doi.org/10.5281/zenodo.5921132
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topography shapes. Such capability along with the ability to retain second-order accurate

predictions when subjected to constant wetting and drying processes on uneven topography,

validates the simplified DG2 formulation to be further developed into a 2D-SWE flood model

for practical modelling applications.

The achievements of the second and third objectives signify that a grid-based flood model

based on simplified 2D-SWE DG2 solver is stable and robust to be applied for industry-

standard and real-world modelling applications. It can significantly resist numerical dissipa-

tion for long simulation period compared to the FV-based solvers due to its better energy

conservation property, and it is less sensitive to grid coarsening. For spatial scope covering

a large catchment or a whole region with the modelled grid resolution > 5 m, DG2 with no

slope limiting (DG2-NL) is found to be more appropriately applied than with the local slope

limiting activated (DG2-LL) as the former can be run at 1.8-2.2 times faster with reliable

predictions in simulating shockless flood flows. When modelled at twice-coarser resolution,

DG2-NL is able to predict close predictions to the outputs of the industrial flood models in

simulating topographic-driven flood flows with high friction effects and when sampling the

water level hydrograph far from the flooding source is needed. However, the more expensive

DG2-LL is still required for applications when the spatial scale is smaller, such as within an

urban environment with dense coverage of sharp-edged building blocks, that is modelled at

sub-meter grid resolution. In such type of applications, DG2-LL is able to provide detailed

capturing of small-scale temporal and spatial variations of the flows around recirculation ed-

dies that are formed due to complex wave-structure interactions, even without eddy viscosity

or turbulence term. DG2-LL can also achieve steady state velocity predictions at around 7.5

times faster than MUSCL-FV2, and can produce more reliable predictions of the localised

flow patterns and distribution around small piers of urban houses during a real-world flooding

event.

The limitation when conducting this research is primarily on the availability of sufficient

computational resources, which is particularly crucial when simulating large-scale flooding

cases with very fine grid resolution (such as in modelling spatial velocity fields). Whilst it
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is preferred that computational runtime for all test cases to be considered in this research,

constant recalibration and validation of the DG2 model for each test case especially on a

single CPU core computer can still be extremely time-consuming. Another research limitation

identified is in the difficulty of getting data of spatial velocity fields from real-world flooding

event. It is notably acknowledged that the lack of such data may be contributed to the

safety concerns associated with acquiring the data during an actual flooding, so a test case

such as the one based on Morgan-Selwyn floodway in Merewether, which is first simulated

in a physical model (but calibrated using actual flood level), was selected instead to get the

closest representation of the spatial velocity fields in a real-world flooding scenario.

6.2 Significance of research findings

The key findings of the PhD research elaborated in Sec. 6.1.1 has finally validated the po-

tential benefits offered by simplified 2D-SWE DG2 solver as an alternative to other classical

numerical 2D-SWE solvers in practical flood modelling applications, as noted by some in-

dustrial communities (Engineers Australia 2012). As the simplified DG2 flood model can

produce reliable predictions at coarser grid resolutions, it may serve as a useful modelling

tool to aid urban flood risk management in developing countries and data sparse localities

(Nkwunonwo et al. 2020). This DG2 model, with local slope limiting, is also a viable op-

tion to higher-order FV models in applications requiring detailed capturing small eddies in

turbulent flows (Özgen-Xian et al. 2021). In a larger picture, the significance of these find-

ings indicate that this newly developed DG2 flood model can contribute to the fulfillment

of Goal 11, United Nation’s Sustainable Cities and Communities, in assisting mitigation and

adaptation to water-related disaster globally.

6.3 Recommendations for future research

Based on the research limitation stated in Sec. 6.1.1, the following recommendations for

future research can be made:
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Significant improvement can be made on the computational efficiency of the DG2 and

MUSCL-FV2 solvers using CPU and GPU parallelisation technologies. Recently, these solvers

have been embedded in LISFLOOD-FP modelling package which can be run on parallelised

computing techniques. With this advantage, more assessment can be made on the compu-

tational runtimes and efficiencies between these two solvers considering real-world flooding

events on very large and complex catchment(s) or on very fine grid resolutions around steep

building or topographic structures, that may take days or months to simulate on a single

CPU core computer.

The ability of the DG2 model (with local limiting) in producing spatial velocity fields

with fine-scale recirculation eddies brings out other possibilities to analyse the applicability

of the DG2 model for non-flood modelling applications, such as in the assessments relating to

enviromental flows and sediment transport. For such applications, a comparative assessment

between the DG2 and higher-order FV-based model may be able to illustrate the advantages

(or limitations) of the DG2 model in capturing details of recirculation flows. In certain

flow conditions, eddy viscosity or turbulence term may not be avoidable especially in highly

turbulent flows, thus future investigation on how eddy viscosity improves the velocity field

predictions of the DG2 model is highly recommended.



Appendix A

Before demonstrating why the proposed alternative topography projection is required to

ensure complete well-balancedness of the simplified 2D-SWE DG2 solver for the mean and

slope coefficients, a demonstration of the well-balanced properties of the DG2 solver is first

considered for 1D case, shown in the following section.

Demonstration of well-balanced properties in a 1D case

As a background, the system of Eq. 3.1 becomes Eq. A.1 for the 1D case considering the

variables in Eq. A.2:

∂tU + ∂xF(U) = S(U) (A.1)

U =

 h

qx

 , F =

 qx

q2x
h + g

2h
2

 , and S =

 0

−gh∂xz

 (A.2)

In such case, the simplified DG2 space operators are reduced to:

L0
c = − 1

∆x
(F̃E − F̃W ) + S(Uh(xc, t)) (A.3a)
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L1x
c = − 3

∆x

{
(F̃E − F̃W )− (F(Uh(Gx2, t)) + F(Uh(Gx1, t))

− 3

∆x
[S(Uh(Gx2, t))− S(Uh(Gx1, t))]

} (A.3b)

A DG2 solver is deemed able to preserve well-balancednedness when it could achieve the

still water motionless condition over an uneven topography for a long time (Duran & Marche

2014), for which the initial conditions are:

h+ z = constant and qx = 0 (A.4)

The condition, h + z = constant is particularly true at the local discrete level, that is

for all grid elements Qc given the continuity of zh as per Eq. 3.27:

(h+ z)h = hh + zh = constant (A.5)

After the application of depth-positivity preserving reconstructions at the eastern and

western interfaces, the discrete still water in Eq. A.5 can be expressed as:

h
1x
c + z1x

c = 0 (A.6a)

h
0
c =

h−,∗E + h+,∗
W

2
and h

1x
c =

h−,∗E − h+,∗
W

2
(A.6b)

z1x
c =

z∗E − z∗W
2

(A.6c)

The local (i.e. over Qc) approximate solution Uh consist mainly of water depth variable hh

expressed by means of positivity-preserving coefficients (Eq. A.6b) along with the bed slope

coefficients (Eq. A.6c). Terms from the flux and source vectors remain due to the hydrostatic
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balance equation remaining within the momentum equation (mass equation vanishes with the

still water condition in Eq. A.4); they are expressed as f(hh) = g
2h

2
h and s(hh) = −ghh∂xzh|Qc

considering the coefficients in Eq. A.6 and Eq. 3.27.

Under the still water condition, with f̃(h−,∗E ) = g
2(h−,∗E )2 and f̃(h−,∗W ) = g

2(h+,∗
W )2, the

difference and sum of the Riemann flux evaluations can be manipulated to:

f̃(h−,∗E )− f̃(h+,∗
W ) =

g

2
[(2h

0
c)(2h

1x
c )] (A.7a)

f̃(h−,∗E ) + f̃(h+,∗
W ) =

g

2
[2(h

0
c)

2 + 2(h
1x
c )2] (A.7b)

The local volume integral of the flux term (involved in the slope spatial operator (Eq. A.3b))

becomes:

f(hh(Gx2)) + f(hh(Gx1)) = f

(
h

0
c +

h
1x

√
3

)
+ f

(
h

0
c −

h
1x

√
3

)
=
g

2

[
2(h

0
c)

2 +
2

3
(h

1x
c )2

]
(A.8)

The source term evaluations (involved in both mean and slope spatial operators in Eqs. A.3)

becomes:

s(hh(xc)) = s(h
0
c) = −gh0

c

(
2z1x

c

∆x

)
(A.9a)

s(hh(Gx2))− s(hh(Gx1)) = s

(
h

0
c +

h
1x
c√
3

)
− s

(
h

0
c −

h
1x
c√
3

)
= −g

(
2z1x

c

∆x

)(
2h̄1x

c√
3

)
(A.9b)

The replacement of Eqs. A.7-A.9 in the spatial operators (Eqs. A.3) (for the remaining

momentum terms) will produce:

L0
c = − 2g

∆x

[
h

0
c

(
h

1x
c + z1x

c

)]
(A.10a)
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L1x
c = − 3g

∆x

{
2

3

(
h

1x
c

)2
− 2

3

[(
−z1x

c

) (
h

1x
c

)]}
(A.10b)

Given the slope coefficients relationship in Eq. A.6a (i.e. −z̄1x
c = h̄1x

c ), Eqs. A.10 will

then be zeroed:

L0
c = − 2g

∆x

[
h

0
c

(
−z1x

c + z1x
c

)]
= 0 (A.11a)

L1x
c = − 3g

∆x

{
2

3

(
h

1x
c

)2
− 2

3

[(
h

1x
c

)(
h

1x
c

)]}
= 0 (A.11b)

Demonstration of well-balanced properties in the 2D case

For the 2D case, consider again the system of Eq. 2.1 with the flow variables in Eq. A.13:

∂tU + ∂xF(U) + ∂yG(U) = S(U) (A.12)

U =


h

qx

qy

 , F =


qx

q2x
h + g

2h
2

qxqy
h

 , and S =


0

−gh∂xz

−gh∂yz

 (A.13)

The simplified DG2 spatial operators for the 2D case are as in Eqs. 3.21a-3.21c (refer also

to Fig. 3.2):

L0
c = − 1

∆x

(
F̃E − F̃W

)
− 1

∆y

(
F̃N − F̃S

)
+ S(Uh(xc, yc), t)) (A.14a)

L1x
c = − 3

∆x

{
(F̃E + F̃W )− (F(Uh(Gx2, t)) + F(Uh(Gx1, t)))

−∆x
√

3

6
[S(Uh(Gx2, t))− S(Uh(Gx1, t))]

} (A.14b)



135

L1y
c = − 3

∆y

{
(F̃N + F̃S)− (G(Uh(Gy2, t)) + G(Uh(Gy1, t)))

−∆y
√

3

6
[S(Uh(Gy2, t))− S(Uh(Gy1, t))]

} (A.14c)

Under discrete still water conditions (i.e. h + z = constant and (qx, qy) = 0) and after

depth positivity-preserving reconstruction, Eq. A.5 becomes:

h
1x
c + z1x

c = 0 and h
1y
c + z1y

c = 0 (A.15a)

h
0x
c =

h−,∗E + h+,∗
W

2
and h

1x
c =

h−,∗E − h+,∗
W

2
(A.15b)

h
0y
c =

h−,∗N + h+,∗
S

2
and h

1y
c =

h−,∗N − h+,∗
S

2
(A.15c)

Now, the main variable is hh, the mass conservation equation vanishes, and only hy-

drostatic balance equations remain within the momentum equations relative to both x - and

y-directions.

Within these conditions, the fluxes and source terms involved in the momentum equations

are:

F(hh) =

 g
2h

2
h

0

 , G(hh) =

 0

g
2h

2
h

 , S(hh) =

 −ghh∂xzh
−ghh∂yzh

 (A.16)

The difference and the sum of the Riemann fluxes become:

F̃(h−,∗E )− F̃(h+,∗
W ) =

g

2

 (2h
0x
c )(2h

1x
c )

0

 (A.17a)
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G̃(h−,∗N )− G̃(h+,∗
S ) =

g
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W ) =

g

2

 2(h
0x
c )2 + 2(h

1x
c )2

0

 (A.17c)

G̃(h−,∗N ) + G̃(h+,∗
N ) =

g

2

 0

2(h
0y
c )2 + 2(h

1y
c )2

 (A.17d)

The volume integral of the flux term that is involved in the slope evolution operators

(Eqs. A.14) become:

F(hh(Gx2)) + F(hh(Gx1)) =

 g
2

[
2
(
h

0x
c

)2
+ 2

3

(
h

1x
c

)2
]

0

 (A.18a)

G(hh(Gy2)) + G(hh(Gy1)) =

 0

g
2

[
2
(
h

0y
c

)2
+ 2

3

(
h

1y
c

)2
]
 (A.18b)

If considering the standard planar topography projection (i.e. ∂xzh|Qc = 2
∆xz

1x
c and

∂yzh|Qc = 2
∆yz

1y
c ), the source term evaluations involved in the spatial operators (Eqs. A.14)

become Eqs. A.19:

S(hh(xc)) =

 −gh0x
c

(
2z1xc
∆x

)
−gh0y

c

(
2z1yc
∆y

)
 (A.19a)

S(hh(Gx2))− S(hh(Gx1)) =

 −g
(

2z1xc
∆x

)(
h
1x
c√
3

)
−g
(

2z1yc
∆y

)(
h
1x
c√
3

)
 (A.19b)

S(hh(Gy2))− S(hh(Gy1)) =

 −g
(

2z1xc
∆x

)(
h
1y
c√
3

)
−g
(

2z1yc
∆y

)(
h
1y
c√
3

)
 (A.19c)



137

Replacing Eqs. A.16-A.19 in Eqs. A.14, considering only the remaining terms in the

momentum conservation equation, the DG2 operators can be rearranged as follows:

L0
c =

 − 2g
∆x

[
h

0x
c (h

1x
c + z1x

c )
]

− 2g
∆y

[
h

0y
c (h

1y
c + z1y

c )
]
 (A.20a)

L1x
c =

 − 3g
∆x

{
2
3(h

1x
c )2 − 2

3

[(
−z1x

c

) (
h

1x
c

)]}
− g

∆y

(
z1y
c h

1x
c

)
 (A.20b)

L1y
c =

 − g
∆x

(
z1x
c h

1y
c

)
− 3g

∆y

{
2
3(h

1y
c )2 − 2

3

[(
−z1y

c

)(
h

1y
c

)]}
 (A.20c)

By also applying the slope conditions in Eqs. A.15a, i.e. −z1x
c = h

1x
c and −z1y

c = h
1y
c ,

Eqs. A.20 are simplified to:

L0
c =

 0

0

 (A.21a)

L1x
c =

 0

g
∆y

(
z1yz1x

c

)
 (A.21b)

L1y
c =

 g
∆x

(
z1xz1y

c

)
0

 (A.21c)

Clearly, Eqs. A.21 show that only operator L0
c vanishes, meaning that the scheme is well-

balanced only for the mean (discharge) coefficients. As for the discharge slope coefficients,

the well-balanced condition is partially met given the remaining cross-dimensional slope de-

pendency introduced in L1x
c and L1y

c by using the standard planar topography projection to

discretise the local bed slope terms.

Therefore, to ensure that the simplified DG2 operators are completely well-balanced, an
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alternative topography projection expressed in Eq. A.22:

∂x[zh(0, y)|x=0] = 0 and ∂xzh|y=0 = ∂x[zh(x, 0)|Qc ] =

(
2

∆x

)
z1x
c (A.22a)

∂y[zh(x, 0)|y=0] = 0 and ∂yzh|x=0 = ∂y[zh(0, y)|Qc ] =

(
2

∆y

)
z1y
c (A.22b)

must be considered instead prior to evaluating Eqs. A.21b and A.21c, which then lead to

the following slope-decoupled versions of them:

S(hh(Gx2))− S(hh(Gx1)) =

 −g
(

2z1xc
∆x

)(
h
1x
c√
3

)
0

 (A.23a)

S(hh(Gy2))− S(hh(Gy1)) =

 −g
(

2z1yc
∆y

)(
h
1y
c√
3

)
0

 (A.23b)

In turn, Eqs. A.23 (together with Eqs. A.17-A.21a) in Eqs. A.14 lead to the full zeroing

of the DG2 slope operators L1x
c and L1y

c to ensure completely well-balanced DG2 planar

solutions and a slope-decoupled 2D-DG2 solver.
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Horváth, Z., Buttinger-Kreuzhuber, A., Konev, A., Cornel, D., Komma, J., Blöschl, G.,
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