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Abstract

Finite volume (FV) numerical solvers to the two-dimensional shallow water equations are

the foundation of the current state-of-the-practice, industry-standard 
ood models. The

second-order Discontinuous Galerkin (DG2) alternative show a promising way to improve

current FV-based 
ood model formulations, but is yet under-studied and rarely utilised to

support 
ood modelling applications. This is contributed by the mathematical complexity

constructed within the DG2 formulation that could lead to large computational costs and

compromise its stability and robustness when used for practical modelling. Therefore, this

PhD research aims to develop a new 
ood model based on simpli�ed DG2 solver that is

improved for 
ood modelling practices. To achieve this aim, three objectives have been

formed and addressed through analyses involving academic and experimental test cases, as

well as test cases that are recommended by the UK Environment Agency to validate 2D


ood model capabilities, whilst benchmarking the simpli�ed DG2 solver against four FV-

based industrial models. Key research �ndings indicate that the simpli�ed DG2 solver can

equally retain conservative properties and provide second-order accurate predictions as the

standard DG2 solver whilst o�ering around 2.6 times runtime speed up. Additionally, the

simpli�ed DG2 solver can be reliably e�cient to provide predictions close to the outputs of

industrial models, in simulating 
ood scenarios covering large catchment-scale areas and at

a grid resolution � 5 m, particularly when the local limiting is disabled. However, the local

limiting is still needed by the simpli�ed DG2 solver when modelling detailed velocity �elds at

sub-metre grid resolutions, particularly in regions of highly active wave-structure interactions

as commonly encountered in urban 
ooding around steep-sloped building structures.
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Chapter 1

Introduction

Some contents used to prepare for this chapter have been published in the following publica-

tions:

1. Ayog, J. L., Kesserwani, G., Shaw, J., Shari�an, M. K., Bau, D. 2021. Second-order

discontinuous Galerkin 
ood model: Comparison with industry-standard �nite volume

models, J. Hydrol. 593 125924. https://doi.org/10.1016/j.jhydrol.2020.125924

2. Ayog, J. L., Kesserwani, G, Bau, D. 2021. Well-resolved velocity �elds using discon-

tinuous Galerkin shallow water solutions, J. Hydraul. Eng. in review. The preprint is

available in http://arxiv.org/abs/2104.11308.

1.1 Background of the research

1.1.1 Industry-standard �nite volume 
ood models

Floods account for 43% of the natural disasters occurring worldwide, and have resulted in

242,000 global fatalities and US$ 662 billion in �nancial losses over the past two decades

(CRED 2015). To lessen the impacts of 
oods, stakeholders have increasingly relied on

predictions from computational hydraulic models to develop 
ood risk reduction and man-

agement strategies (A�� et al. 2019, L•owe et al. 2017, S�en & Kahya 2017). Most of these

models are built around numerical solvers of the full two-dimensional shallow water equations

1
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(2D-SWE) (Teng et al. 2017). Within this scope, the �nite volume (FV) method is the most

widely adopted 2D-SWE solvers and has been enhanced, particularly in the past years, in the

current industrial 
ood modelling packages (Alcrudo 2004, Neelz & Pender 2009, Teng et al.

2017). They are also often preferred by government agencies in the UK, Netherlands and

Australia for 
ood risk assessment and for the management of urban and rural 
oodplains

(Engineers Australia 2012, Henckens & Engel 2017, Neelz & Pender 2013). FV-based 
ood

models are known for their ability to capture the widest range of 
ow transitions, making

them well-suited to provide reliable predictions for complex, real-world 
ood applications. For

example, FV models are applied to produce hydrographs with detailed velocity transients to

estimate structural damages on residential buildings (Pistrika & Jonkman 2010), to identify

safe parking locations for emergency vehicles during 
ood evacuation (Arrighi et al. 2019),

and to develop quanti�able hazard classi�cation for 
ood vulnerability assessment (Costabile

et al. 2020, Shirvani et al. 2020, 2021). Similarly, for gradually propagating 
oods, hydro-

graphs produced by the FV-based models are used to estimate arrival times and 
ood levels

in low-lying areas (Alkema 2007, Latrubesse et al. 2020), e.g. to assess the clearance time

for 
ood evacuation (Cheng et al. 2011) and to identify zones for 
ood rescue prioritisation

(Patel et al. 2017).

One issue with industry-standard FV models is that they often employ a �rst-order accu-

rate �nite volume (FV1) solver, as in the case, for example, of TUFLOW-FV1 (BMT-WBM

2016), Infoworks ICM (Lhomme et al. 2010), JFlow+ (Crossley et al. 2010), LISFLOOD-FP

with Roe solver (Neal et al. 2012), RiverFlow2D (Hydronia LLC 2019), and BASEMENT

(Vetsch et al. 2018). Such models may not be ideal for certain applications, as the outputs of

an FV1 solver can be severely a�ected by rapid accumulation of numerical di�usion, partic-

ularly when the �ne grid resolution needed to alleviate these errors is una�ordable (Lhomme

et al. 2010, Neal et al. 2012). For example, an FV1-based 
ood model tends to predict late

arrival times and narrower wetting extents (Schubert et al. 2008, Kesserwani & Shari�an

2020), and fails to capture small-scale transients in hydrograph predictions (Soares-Fraz~ao

& Zech 2008, de Almeida et al. 2018). Error analyses in the published literature show that
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FV1-based models tend to produce larger deviations in hydrograph predictions when gauging

stations are located far from the in
ow and the 
ood duration lasts several days (Echeverribar

et al. 2019, Horv�ath et al. 2020, Xia et al. 2019).

To improve the capability of FV-based models, second-order accurate �nite volume (FV2)

solvers have been used in existing industrial 
ood models, for example in TUFLOW-FV2

(BMT-WBM 2016), TUFLOW-HPC (BMT-WBM 2018), ANUGA (Mungkasi & Roberts

2013), and Iber (Blad�e et al. 2014). Many FV2-based models adopt the Monotonic Upstream-

centred Scheme for Conservation Laws (MUSCL) approach to reconstruct piecewise-linear

solutions, but this widens the calculation stencil to the neighbour's neighbour of the element

where local 
ow data are updated. The MUSCL approach comes hand-in-hand with a Total

Variation Diminishing (TVD) slope limiter to ensure that the reconstructed 
ow solutions are

free from unphysical oscillations. As the slope limiter is inherent to any MUSCL-FV2 solver

and is applied globally over each grid element, choosing a slope limiter function that can

simultaneously retain second-order accurate, oscillatory-free solutions, and ensure reliable

reproduction of real-world features (Delis et al. 2011, Delis & Nikolos 2013, Hou et al. 2015,

Zhao et al. 2018, Bai et al. 2018) and wave arrival times if the resolution is insu�ciently �ne

(Kesserwani & Wang 2014, Zhao et al. 2018) can be challenging.

When modelling velocity �elds around regions of wave-structure interactions, such as

around houses and building blocks in an urban residential areas and cities during 
ash 
ood-

ing, MUSCL-FV2 solvers have been reported to require the addition of an eddy viscosity term

as the resolution becomes �ner and when there is drastic change in the velocity magnitude

and direction (Collecutt & Syme 2017, Syme 2008). Adding the eddy viscosity term can

reduce the MUSCL-FV2 solver tendency to over-expand the extent of the recirculation 
ows

and, thereby, improves the modelling of spatial velocity pro�les (Bazin 2013). However, the

eddy viscosity approach require case-dependent and often quite onerous calibration e�orts.

Additionally, the fast growth rate of numerical di�usion in MUSCL-FV2 solvers has been ob-

served to smear the presence of small-scale eddies in the recirculation zones (Cea et al. 2007,

•Ozgen-Xian et al. 2021), leading to signi�cant discrepancies in the velocity �eld predictions
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around hydraulic structures such as bridge piers (Horritt et al. 2006).

1.1.2 Second-order Discontinuous Galerkin solver

The second-order discontinuous Galerkin (DG2) solver provides an alternative approach to

the MUSCL-FV2 solver by generating and updating a piecewise-planar solution per grid ele-

ment, where the solution slopes are de�ned intrinsically, thereby avoiding slope reconstruction

and reducing the calculation stencil to the direct neighbours. With a DG2 solver, slope limit-

ing becomes irrelevant and can drastically spoil the quality the predictions if applied globally

as with MUSCL-FV2. Rather, the slope limiter should only be applied locally to stabilise

the DG2 solution at very steep discontinuities within the wet portions of the computational

domain (Kesserwani & Liang 2012b, Krivodonova et al. 2004). Hence, the choice for the lim-

iter function is not pertinent with a DG2 solver, for which the key challenge has rather been

to identify and apply a method to localise the operation of the slope limiter, which increases

the computational cost of a DG2 solver (Fu & Shu 2017, Le et al. 2020, Marras et al. 2018,

Qiu & Shu 2005, Vater et al. 2019).

Compared to the MUSCL-FV2 solver, the DG2 solver is more resistant to numerical

di�usion, as demonstrated in the comparative study by Kesserwani & Wang (2014). This

property enables the DG2 solver of the 2D-SWE to capture small-scale eddies in velocity

�elds for coastal and estuary modelling applications without the need of an eddy viscosity

term, as hinted in a few published papers. Kubatko et al. (2006) studied the performance of

DG2 and higher-order DG solvers in reproducing 2D velocity �elds for a tidal 
ow over an

idealised channel. The investigators concluded that the DG2 solver can deliver well-captured

eddies outside of the channel inlet, leading to velocity �elds that are as accurate as those

produced by higher-order DG solvers. Alvarez-V�azquez et al. (2008) applied a DG2 solver

for the simulation of �sh migration to support the design of vertical slots along a �shway

structure, with results showing a great potential for the DG2 solver to reproduce small-

scale eddies within its 2D velocity �eld predictions. Beisiegel et al. (2020) explored a DG2

solver to simulate 
ow circulation, reporting that their DG2 solver was able to replicate the
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asymmetrical patterns of the recirculation eddies extracted from a 3D model. Despite this,

very few 2D hydraulic modelling packages have adopted DG-based solvers, of which DG-

SWEM (Bunya et al. 2009, Kubatko et al. 2006), SLIM (Lambrechts et al. 2010) and Thetis

(K•arn•a et al. 2018) are among the examples. Existing DG-based solvers have been primarily

aimed to support modelling applications in lake, estuary and coastal systems (Le Bars et al.

2016, Clare et al. 2020, Le et al. 2020, Mulamba et al. 2019, Pham Van et al. 2016, Wood

et al. 2020). However, the application of DG2 solvers for 2D 
ood inundation modelling

has been little explored (Kesserwani & Shari�an 2020, Engineers Australia 2012) due to its

expensive runtime cost contributed by excessive mathematical complexity (Kesserwani &

Wang 2014). Although DG2 can naturally preserve well-balanced properties (which means

that the model is able to simulate motionless water surface over an uneven topography for

a long time period), complications relating to the numerical integration of steep topographic

slopes do arise, and this has not yet been fully resolved (Caviedes-Voulli�eme & Kesserwani

2015, Cale� et al. 2016).

1.2 Research aim and objectives

Based on the research gaps identi�ed in Sec. 1.1, this PhD research main aim to present a

newly-developed hydraulic model based on a 2D-SWE DG2 solver that is made less complex,

yet robust and competitive as industry-standard FV-based solvers for practical 
ood mod-

elling applications. This DG2 solver applies square grids considering the reported bene�ts

in terms of the accuracy and the computational e�ciency compared to its triangular mesh

counterpart (Wirasaet et al. 2010, 2014). With this purpose in mind, the following research

objectives have been formed to support the achievement of the main aim of this research,

namely:

1. To develop a 2D-SWE model based on a simpli�ed grid-based DG2 formulation, and

analyse its robustness and conservation properties against a standard DG2 formulation

over varying 
ow types and topography shapes.



CHAPTER 1. INTRODUCTION 6

2. To assess the performance of the simpli�ed DG2 
ood model relative to commonly

used FV-based models, including FV1- and FV2-based industry-standard modelling

packages.

3. To identify suitable settings within the simpli�ed DG2 model for 
ood modelling appli-

cations involving gradually and rapidly propagating 
oods, and with detailed velocity

�elds predictions around building structures.

1.3 The structure of the thesis

Immediately after this current chapter, the research approach and �ndings obtained from

this PhD research are discussed and organised in this thesis following the structure presented

below:

Chapter 2 contains the reviews of previous literatures describing the 2D-SWE and clas-

sical numerical methods solving the 2D-SWE used in practical 
ood modelling software pack-

ages. This chapter also overviews existing research involving the DG2 method and highlights

research gaps pertaining to 2D-SWE modelling, including some discussion on past studies

that have compared the performance of the DG2 relative to FV2 within the similar scope. The

evolution of benchmark tests that have been used to analyse the capabilities of the industry-

standard 2D 
ood models are also discussed, ranging from catchment- and regional-scale

applications to smaller urban 
ood modelling practices.

Chapter 3 , dedicated to addressObjective 1 , is centred around the simpli�ed DG2

formulation, whilst highlighting its di�erence relative to the standard DG2 formulation. Both

the simpli�ed and standard DG2 formulation are compared over test cases that assess their

2D characteristics and ability to capture shock and rarefaction waves. Further exploration

is made on the simpli�ed DG2 formulation with respect to its conservation properties over

varying topography and with dynamic movement of wetting and drying relevant to practical

2D-SWE modelling.

Chapter 4 extends the exploration performed inChapter 3 through the development
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of a 
ood model based on the simpli�ed 2D-SWE DG2 solver. The key similarities and

di�erences between simpli�ed 2D-SWE solver and the FV-based solvers are identi�ed. This

chapter also aims to addressObjective 2 , whereby the capabilities of the simpli�ed DG2


ood model are evaluated against established industry-standard FV1- and FV2-based mod-

elling packages. The comparative assessments are done using well-known 2D hydraulic model

benchmark tests with gradual and rapid 
ood propagation. Analysing the performance of

the 2D-SWE DG2 solver also entails �nding the suitable setting for the 2D-SWE DG2 solver

for common 
ood modelling applications, thus addressing in partObjective 3 .

Based on the �ndings observed inChapter 4 , Chapter 5 investigates further the capa-

bilities of the simpli�ed DG2 solver involving less common modelling applications requiring

detailed velocity �eld predictions. This chapter also intends to address the remaining part

of Objective 3 by identifying potential applications of an alternate setting than the one

proposed for the simpli�ed DG2 solver in Chapter 4 . Selected test cases with extensive

coverage of building structures, modelled at sub-metre grid resolutions, are used to assess the

simpli�ed DG2 capabilities relative to FV2 solver, particularly in predicting spatial velocity

�elds with small-scale recirculation eddies at regions of wave-structure interactions.

Chapter 6 presents the conclusion of the thesis, including the highlights of the research

objectives achievement along with signi�cance of the major �ndings. This chapter ends with

several suggestions for future works.



Chapter 2

Literature Review

Hydraulic models are often applied to comprehend, analyse and forecast 
ooding and the

transport of debris and water contaminants in order for key stakeholders and decision mak-

ers to take steps that can safeguard vulnerable population. These hydraulic models have

been widely applied for 
ood risk mapping (e.g. Webster et al. (2014), Mudashiru et al.

(2021)), 
ood damage assessment (e.g. Jonkman et al. (2008)), real-time 
ood forecasting

(e.g. Barth�el�emy et al. (2017)), design of 
ood defence structures (e.g. Siviglia et al. (2009)),

validation of insurance claims (Zischg et al. 2018) and management of water resources (e.g.

Leskens et al. (2014)). Additionally, these models have been made as an important part of the

assessments of sediment erosion and transport (e.g. Mouri et al. (2013)), pollutant transport

(e.g. Drago et al. (2001)), 
oodplain ecology (e.g. Karim et al. (2015)), river system hydrol-

ogy (e.g. Inthasaro & Wu (2012)) and catchment hydrology (e.g. (Yu & Coulthard 2015)).

They have also frequently been coupled with climate, hydrological and sewerage models, and

further extended to analysing risk related to climate change (e.g. Morita (2011), Banks et al.

(2014)) and subsurface 
ows (e.g. Sommer et al. (2009)). Progressive improvement in mod-

ern hydraulic models have produced reliable and robust simulations, making them feasible to

e�ectively manage environmental 
ows for healthy aquatic environment (e.g. Salmon et al.

(2017)).

Computational-based hydraulic models, which typically solve mathematical equations

8
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derived from the laws of physics, are often the preferred choice to represent the movement of

water in areas that are 
ood-prone (i.e. towns and cities located in a 
oodplain). Amongst

these models, the three-dimensional models based on Navier-Stokes equations (3D-NS) can

provide the closest physical representation of the water dynamics. However, they tend to be

very complex mathematically thus entail very high computational costs (Toombes & Chanson

(2011), Mintgen & Manhart (2018)) and are impractical for river reach-scale of more than

1 km, along with other issues associated with the representation of the water levels, high-

order turbulence and the movement of shorelines (Teng et al. (2017)). In contrast with

the 3D-NS models, the two-dimensional models solving shallow water equations (2D-SWE),

despite having reduced numerical complexity, are more commonly used for 
ood modelling

particularly in areas with poorly de�ned 
ow path (Toombes & Chanson (2011)) and also in

riverine systems with frequent 
ow exchange between the main channel and the 
oodplain.

This is because the 2D-SWE models can provide very good representation of 
oodplain

conveyance and are well suited to simulate the extent of inundation that constantly change

over time. These features have made the 2D-SWE models the favourite selection for modelling


ood 
ows in urban and coastal settings, and also in riverine systems recurrent with overbank


ows.

2.1 Two-dimensional shallow water equations (2D-SWE)

The 2D hydraulic models are generally developed around the 2D-SWE, which is achieved

by averaging the 3D-NS equations over the 
ow depth (Teng et al. 2017, Alcrudo 2004).

This simpli�cation thus eradicates the complications encountered with the 3D-NS equations

in calculating the position of the free water surface (Alcrudo 2004). The 2D-SWE can be

expressed in Eqs. 2.1, assuming a uniform and constant 
ow density (Cozzolino et al. 2021):

@h
@t

+
@qx
@x

+
@qy
@y

= 0 (2.1a)
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where x and y indicate the coordinates of a given location,t is the time, h is the wa-

ter depth, qx = hu and qy = hv are the unit-width discharge components alongx and y

directions, with u and v the directional components of the depth-averaged velocity,z is the

bed topography, Sf x and Sf y are the friction terms, with Sf x = � n2
M u(u2 + v2)1=2=h4=3 and

Sf y = � n2
M v(u2 + v2)1=2=h4=3 (where nM is the Manning's resistance coe�cient), and g is

the gravity acceleration. Eq. 2.1a represents the mass equation, whilst Eqs. 2.1b and 2.1c are

the x- and y-directional momentum equations respectively.

Other in
uences such as the viscosity e�ects, Coriolis terms, wind shear stress terms and

wall friction terms can be included in the 2D SWE as well. In 
ood modelling however,

the Coriolis terms that accounts the e�ects of the Earth's rotation are normally neglected.

The wind shear stress terms are normally considered if the wind strength and direction can

signi�cantly in
uence 
ood predictions in very large 
at plains, whilst wall friction is generally

relevant in applications involving very high resolution modelling.

Although 
ood models based on the 2D-SWE are the most popular, they are not rep-

resentative of the true water movements on the Earth's surface. Besides the discrepancies

instigated from the averaging procedure for the 2D SWE, the following lists the known limi-

tations of this approximation (Alcrudo 2004):

ˆ Velocities in the vertical directions are ignored (resulting in zero vertical accelerations),

ˆ A hydrostatic pressure distribution is assumed in the 
ow system,

ˆ The topography gradient is assumed small,

ˆ The horizontal velocity is assumed to be uniform,

ˆ The e�ects due to turbulence are ignored,
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ˆ The friction value is determined from uniform 
ow conditions.

Regardless of the limitations described above, majority of the modern industry-standard


ood models are built upon solving the 2D-SWE, indicating that using these models in

representing the physical processes of 
ooding are still relevant (Duan 2005, Neelz & Pender

2009, Aureli et al. 2015). The 2D-SWE can be solved using a variety of numerical methods,

but these mostly fall into one of the three classical methods described in the next section.

2.2 Classic numerical methods in 2D-SWE 
ood models

Many of the numerical methods applied to discretise the spatial domain can be classi�ed into

one of the following major groups: the �nite di�erence (FD), �nite element (FE) and the �nite

volume (FV) methods (Teng et al. 2017, Alcrudo 2004, Neelz & Pender 2009, Hinkelmann

et al. 2015) regardless whether the computational grids used is either of structured (square

or quadrilateral), unstructured (triangular) or more recently, 
exible, mixed-type mesh.

Among these groups, the �nite di�erence (FD) method is the most straightforward to

be implemented and much more established for practical applications. This method approx-

imate unknown variables for the derivative involved in the 2D-SWE in sets of grid points.

Despite the rather simple approach, the popularity of these methods is in decline among the

academic communities due to their rigidity in geometrical sense especially around curving

river channels and 
oodplains (Alcrudo 2004, Neelz & Pender 2009). Furthermore, FD 
ood

models are generally based on the ADI (Alternating Direction Implicit) approach, which can

very reliable when modelling 
ood 
ows on mild slope, but tend to generate spurious numer-

ical oscillation around sharp gradients in the solution particularly in 
ash 
ooding and on

short hilly catchments (Liang et al. 2007, Kvo�cka et al. 2015). On the other hand, modelling

software packages built on the FD method are still popular among industrial communities

and academic researchers dealing with real-world 
ooding applications e.g. DIVAST-2D (Mu-

solino et al. 2020, Kvo�cka et al. 2016, 2017) and MIKE FLOOD (Beden & Ulke Keskin 2021,

Shrestha et al. 2020, L•owe et al. 2017) mainly because they are more compatible with raster-
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based digital terrain and bathymetry models, although such software packages may need to

adopt shock-capturing algorithms such as the TVD approach, that can be more than 8 times

longer to run compared to the ADI approach (Kvo�cka et al. 2015).

The �nite element (FE) method works by solving the weak formulations of the conserva-

tion laws using selected test functions (usually via the Galerkin method) for a solution space

that is discretised into a �nite number of elements. Unlike the FD method, the FE method

conserves mass over the whole spatial domain (but not within each grid element) (Bradford

& Sanders 2002), although the underlying mathematical foundation is more rigorous, which

perhaps the reason why this method are not widely used in commercial software packages.

The FE-based software packages may produce large computational time, as a result of its high

mathematical complexity, and can complicate mesh generation if no proper mesh generating

tool is available (Alcrudo 2004, Neelz & Pender 2009). Despite the shortcomings, the mathe-

matical theory behind the FE method is well-developed, hence they could accommodate more


exibility (as unstructured grids are usually applied) and achieve higher accuracy, especially

in domains with complex boundaries and boundary conditions. A well-established FE-based


ood modelling software developed by�Electricit�e de France (EDF) called TELEMAC-2D has

successfully been applied to simulate real cases of 
ood inundation (Bates et al. 1999, Horritt

& Bates 2001, Horritt et al. 2006, Alho & Aaltonen 2008, Vu et al. 2015, Pavl���cek & Bruland

2019) although later versions of this model are blended with the �nite volume methods (Ata

2012).

In the recent decades, the �nite volume (FV) method has become the most adopted spatial

discretisation approach in modern 
ood models. This methods discretises the solution space

into certain number of non-overlapping �nite volumes, in which the integral form of the

hyperbolic 2D-SWE is applied. Also known as the conservative Godunov-type formulations

(Godunov 1959, Toro 2001, Toro & Garcia-Navarro 2007, Garc��a-Navarro et al. 2019), the FV

method is inherently local and �rst-order accurate in the sense that the 
ux balance evolves

a mean coe�cient, which is a piecewise-constant approximation of the state variables. Based

on their advantages in terms of intrinsic shock-capturing ability, great geometrical 
exibility
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(i.e. can be applied to structured, unstructured and 
exible meshes), conservation properties

and simplicity in the underlying mathematical concept, the FV-based method is preferred to

FD or FE methods to be applied in many known industry-standard 
ood modelling packages,

both for commercial and academic purposes (Neelz & Pender 2009, 2013, Teng et al. 2017).

These FV-based packages have been proven to be stable and robust in modelling real-world


ooding problems. However, �rst order FV method tends to be strongly a�ected by numerical

di�usion, thus causing undesired e�ects in the predictions such as smearing of the solution

along with smooth, rounded edges of wave fronts in 
ows containing discontinuities (e.g.

dam-break cases) that can deliver inaccurate numerical results (Neal et al. 2012, Hou et al.

2015).

To increase the accuracy of the FV-based models, second-order formulations have been de-

veloped by reconstructing piecewise-linear approximations from the initial piecewise-constant

data beyond immediate neighbouring cells, but in doing so the locality of the computational

stencil will be sacri�ced (Van Leer 1979, Yamamoto et al. 1998, Cale� et al. 2006, Xing 2016).

FV2-based 
ood models have relatively wider calculation stencil, which has been observed

to adversely a�ect practical applications, such as wetting and drying (Begnudelli & Sanders

2006, 2007, Bradford & Sanders 2002, Kesserwani & Wang 2014, Morales-Hern�andez et al.

2021), and conservation properties needed to deal, for example, with slope limiters (Hou

et al. 2014, Kesserwani & Wang 2014, Nikolos & Delis 2009, Sanders & Bradford 2006) that

can potentially reduce the accuracy of the FV2 model to �rst order. Challenges pertaining

to slope limiters in the FV2 models are further discussed in Sec. 4.2.2. To address these

challenges, investigation on other types of the Godunov-type numerical methods is signif-

icantly progressing in recent years particularly for the application in 
ood risk assessment

and management. One of the said methods is the Discontinuous Galerkin (DG) method in

Section 2.2.1.
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2.2.1 Discontinuous Galerkin (DG) method

In light of the Godunov-type philosophy, the DG method is naturally an extension to the

�nite volume method, by combining the locally-conservative �nite volume principles and the


exibility of the �nite element weak formulation to form a solution over a computational

element. This is achieved by evolving a polynomial solution while restricting to use the

initial data that is locally contained within an element alongside its immediate adjacent

neighbours for numerical 
ux calculation. But compared to the traditional FE (based on the

continuous Galerkin) and the FV methods, the DG method needs to store and evolve more

than a mean coe�cient to de�ne the local polynomial solution. The number of coe�cients

needed to be stored and evolved depends on the order of accuracy, spatial dimensionality and

spatial resolution (Caviedes-Voulli�eme & Kesserwani 2015). In this respect, the mathematical

complexity that forms the basis of the DG formulations increases in proportion to these

in
uences; increasing the expected order of accuracy will a�ect the computational e�ciency

and numerical stability, which pose a challenge when integrating salient features crucial for

practical applications. Therefore, a second-order DG method (DG2) is often a selected option

as a trade-o� (Kesserwani & Liang 2011, Kesserwani & Wang 2014).

In formulating a robust DG2 method for 2D-SWE modelling, there are less developments

involving square grids and quadrilateral mesh types (Kesserwani & Liang 2010, 2012a, 2015),

compared to their triangular counterparts, despite reported bene�ts in terms of accuracy

and computational e�ciency (Wirasaet et al. 2010, 2014). Previous studies exploring square

grids and quadrilateral meshes (Gerhard et al. 2015, Kesserwani & Wang 2014, Kesserwani

& Liang 2012a) only focused on the mean coe�cients in the DG2 solutions when studying

well-balanced properties, which generally involved smooth-shaped topography. Thus, further

investigation is still deemed necessary to investigate the full extent of the well-balancedness

properties beyond the mean (average) coe�cients along with considering the steep-sloped

topography shapes. Furthermore, most investigations (Gerhard et al. 2015, Kesserwani &

Wang 2014, Kesserwani & Liang 2012a) adopted the pre-balanced form of the SWE (Lu &

Xie 2016), in which the main variable is represented by the water level, instead of the water
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depth. In contrast to the conventional form of the SWE, the pre-balanced form is likely

unneeded and can entail additional computational runtimes (Lu & Xie 2016).

In recent decades, the development of the DG method is progressively maturing in the

context of practical 2D-SWE modelling. Increased interests on this method is also noted

in the �eld of water resources in tandem with the advancement of �nite volume modelling

(Bokhove 2005, Ern et al. 2008, Gourgue et al. 2009, Kesserwani & Liang 2011). This method

is also highly compatible for parallel computing technologies, both in the conventional central-

processing unit (CPU) platforms (Biswas & Devine 1994, Eskilsson et al. 2009, Brus et al.

2017, Dawson et al. 2013, Samii et al. 2016, Shaw et al. 2021) and also in graphics-processing

units (GPUs) (Fuhry et al. 2014, Kl•ockner et al. 2009, DuChene et al. 2011, Chan et al.

2016, Shaw et al. 2021), as the DG method remains local (i.e. data transfer and storage are

restricted only between local grid and its immediate neighbours) when higher-order accuracy

is required. It also forms the basis for local mesh, polynomial order and time step adaptivity

(Dawson et al. 2013, Samii et al. 2016, Chan et al. 2016, Conroy & Kubatko 2016). Despite

these merits, the DG method is not widely used for 
ood inundation modelling and hydraulic

engineering applications, partly due to the expensive runtime costs (Kesserwani & Wang

2014)) as well as issues pertaining to well-balancedness and stability (Caviedes-Voulli�eme

& Kesserwani 2015, Cale� et al. 2016). Hence, the reduction in the complexity level of

DG formulations is necessary in favour of a�ordable computational costs and robustness for

modelling realistic 
ooding scenarios. In addition, an accurate topography discretisation

should be established so that the precise equilibrium between the 
ux and the topography

source terms can be achieved, ensuring the conservativeness (i.e. preservation of well-balanced

property) of the DG2 method.

2.2.2 Comparative studies between FV2 and DG2 methods

Previous studies assessing the performance of the DG2 method relative to the FV2 method

using academic and experimental test cases have demonstrated the potential bene�ts of the

DG2 method for practical 2D-SWE modelling. Wang & Liu (2005) compared DG2 against
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FV2 in producing a smooth, symmetrical 
ow curvature in a uniformly rotating 
ow �eld.

They found that after one rotation, the FV2 predicted a much 
atter and assymetrical curving

of the 
ow with signi�cant underestimation of the peak depth and the extent of recirculating

eddies. In contrast, the DG2 method produced solutions that are less di�usive and preserves

the shape of the 
ow curvatures and the recirculation 
ows. Duran & Marche (2014) assessed

the capability of DG2 against FV2 based on the pro�les of the water depth extracted from

the 2D outputs of water drop in the middle of a square pool. The resulting DG2 pro�les

showed better capturing of the wave crest propagating away from the pool centre and followed

very well a small curving around the wave trough in the analytical solution. In a laboratory

experiment analysing 
ood propagating along a crossroad, Ghostine et al. (2009) analysed

the water surface pro�les replicated by the DG2 and FV2 from the experimental data and

compared to a 3D model. They found that DG2 is able to replicate the pro�les of the

experimental data and the 3D model much closer than FV2 particularly around the regions

of recirculation 
ows, thus a�rming the �ndings made by Wang & Liu (2005).

A more comprehensive assessment on the capabilities of DG2 and FV2 for 
ood inundation

modelling has been done by Kesserwani & Wang (2014). The assessment covered test cases

involving realistic 
ooding scenarios caused by a dam-break and 
uvial 
ooding over real-

world terrain conditions. Their �ndings showed that the FV2 predictions tends to degrade

as the meshes coarsened, with more di�usive predictions around the regions of high 
ow

curvature (corroborating with the results of Wang & Liu (2005) and Duran & Marche (2014))

and mispredictions of the vanishing velocity at the wet-dry interfaces. On the other hand,

DG2 is capable to provide results with increased prediction quality on very coarse grids and

with detailed capturing of the velocity transients, albeit with at least 10 times more expensive

in runtimes compared to the FV2. The capability of DG2 to produce reliable results on coarse

resolutions is also supported by the �ndings of Ghostine et al. (2019) who simulated 
ooding

over urbanised environments. They found that the water depth predicted by DG2 around

regions of wave-structure interactions are closer to reference data than FV2 on coarse meshes.

Despite these studies highlighted the advantages of using DG2 for real-world 
ood modelling,
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which are also noted by some industrial community (Engineers Australia 2012), there is still

the need to a�rm the utility of the DG2 method for industry-standard modelling applications.

2.3 Benchmarking of industry-standard 2D 
ood models

Initially, 
ood model benchmarking exercises focus on tracking development of new numer-

ical methods and techniques based on the input data and computing resources available at

that time. These exercises however, were more focused on using the model equations that

solve hyperbolic conservation laws, with less emphasis on real-life applications. Early bench-

marking exercises within this scope were done in the 1990s and reviewed by Leopardi et al.

(2002). With the introduction to sophisticated data gathering techniques, such as high res-

olution satellite imagery and Light Detection and Ranging (LiDAR) scanner, the collation

of hydraulic data to build digital elevation models (DEM) and to estimate 
ow friction have

tremendously improved, making 2D 
ood modelling much more appealing (Cobby et al. 2001,

Pender 2006, Sanders & Bradford 2006). As these techniques progress, studying the e�ects of

applying 2D 
ood models for 
ood risk studies has become necessary in cases where complex


oodplain 
ow processes are much more dominant.

Considering that many decision-making activities are dependent on the results obtained

from the 2D 
ood models, several countries have written modelling guidelines to ensure 
ood

models are able to perform tasks relevant to 
ooding assessments in riverine and urban areas

(Engineers Australia 2012, Scottish Environment Protection Agency 2016, Henckens & Engel

2017). Hence, the benchmarking tasks lately focus on identifying models suitable for given


ood risk mapping and management studies. These models are identi�ed based on their

current capabilities that meet the minimum modeling requirement of each industry-relevant

application. In the United Kingdom, such benchmarking e�orts were initially done using

real-world hydrometric data and images of 
ood extent from aerial photographs and airborne

radars that were obtained from several, speci�cally chosen 
ooding events. Horritt & Bates

(2001) tested an FE-based 2D-SWE 
ood model, TELEMAC-2D, against inundation map

and hydrometric data for River Thames which were then compared to those from a raster-
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based 
ood model, LISFLOOD-FP. They later conducted similar study on TELEMAC-2D

for River Severn (Horritt & Bates 2002). In a more rigorous comparative study on industry-

standard 2D hydraulic models, Hunter et al. (2008) tested six models (three 2D-SWE FD-

based models (TUFLOW, DIVAST-ADI and DIVAST-TVD), one 2D-SWE FV-based model

(TRENT) and two simpli�ed 2D models (JFLOW and LISFLOOD-FP)) in simulating a 
ood

event in the city of Glasgow, Scotland. They found that in areas where there are less friction

and shallower water depths, 2D-SWE 
ood models without shock-capturing capability yields

more numerical oscillations in the water depth predictions. The full 2D-SWE models were

also computationally cheaper than the simpli�ed models when modelling on very �ne mesh

resolution (i.e. 2 m), but signi�cant optimisation works on the simpli�ed models, along

with the addition of parallel computing technologies, have made both models to be equally

competitive in recent years (Neal et al. 2018, Shaw et al. 2021).

Since 2009, 2D 
ood model benchmarking has been shifted from using speci�c 
ood events

to assess the overall performance of the model, to using only simple academic test cases that

can reliably validate the numerical robustness required for a given practical engineering appli-

cation. Lhomme et al. (2010) evaluated an FV-based model IW2D (also known as Infoworks

2D) against another FV model, TELEMAC-FV and one FD-based model (TUFLOW), all

of which are commonly-used in consultancy works, over �ve academic test cases with avail-

able analytical solutions. They reported that whilst IW2D and TELEMAC-FV performed

equally well when modelling dam break and rapid transients over dry surfaces, both fall short

in tidal environments with cyclic wetting and drying, with TELEMAC-FV generated signi�-

cant dampening of wave amplitude compared to IW2D. Realising that better understanding

is needed for a range of 2D hydraulic modelling packages used for 
ood-related projects, the

UK Environment Agency (UK EA) has proposed and recommended eight benchmark tests

to assess frequently used 2D 
ood models and mapped the tests to speci�c 
ood-related ap-

plications (Neelz & Pender 2009, 2010, 2013). A summary of the benchmark tests is shown

in Table 2.1, with the mapping of the tests to each modelling application of the UK EA

provided in Table 2.2. The capabilities of eight 2D-SWE 
ood models using FD- and FV-
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Table 2.1: The summary of UK EA benchmark tests (Neelz & Pender 2010,
2013).

EA Test
No.

Description
Model

dimensionality
1 Flooding a disconnected water body.

2D model only

2 Filling of 
oodplain depressions.
3 Momentum conservation over a small (0.25m) obstruction.
4 Speed of 
ood propagation over an extended 
oodplain.
5 Valley 
ooding.
6A & 6B Dam break.

7 River to 
oodplain linking.
2D model with

1D river network

8A & 8B Rainfall and sewer surcharge 
ood in urban areas.
2D model with
2D rainfall or

1D sewer model

based solvers were assessed in the �rst UK EA benchmarking exercise (Neelz & Pender 2010)

followed by another round of benchmarking using additional or more updated version of

2D modelling packages (Neelz & Pender 2013). Since UK EA benchmarking tasks involved

many well-known industry-standard 
ood models and with thorough analyses of the mod-

els' capabilities, the benchmark tests become popular that these have been implemented to

newly-developed and enhanced 2D models that are not part of original UK EA benchmarking

assessments, such as HEC-RAS 2D (Brunner 2016), 3Di (Schuurmans & Leeuwen 2014), Swift

(Cohen et al. 2016), PCSWMM/SWMM5 (James et al. 2013) and MOHID (Pina et al. 2015).

Also, the developers of TUFLOW (who participated in the UK EA benchmarking exercises)

have reapplied the same tests to their latest software packages equipped with state-of-the-art

modelling technology (i.e. parallelised and/or GPU computing) (Huxley et al. 2017). A list

of 
ood models based on full 2D SWE that have been benchmarked using the UK EA tests

is shown in Table 2.3.

2.3.1 Detailed velocity �eld predictions

Most of the 
ood modelling applications listed in Table 2.2 indicate that the spatial scope of

applications relevant to the UK EA tests are of large catchment- or regional-scale. However,

comprehensive assessments of the capabilities of industry-scale 2D 
ood models for smaller
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Table 2.2: Mapping of benchmark test cases to model for UK EA applications
(Neelz & Pender 2010, 2013).

Application
Prediction
required

Relevant
benchmark

tests
Large-scale 
ood risk mapping
(up to 1000 km2)


ood extent 1 & 2

Catchment 
ood management plan

ood extent;

maximum depth
1, 2 & 7

Flood risk assessment and
detailed 
ood mapping


ood extent;
maximum depth

1, 2, 3 and 7

Strategic 
ood risk assessment

ood extent;

maximum depth
and velocity

1, 2, 3, 4, 7 and 8

Flood hazard mapping

ood extent;

maximum depth
and velocity

1, 2, 3, 4, 7 and 8

Contingency planning for real time

ood risk management

time-varied

ood extent,

depth and velocity
1, 2, 3, 4, 5, 7 and 8

Reservoir inundation mapping
time-varied


ood extent,
depth and velocity

1, 2, 3, 4, 5 and 6
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Table 2.3: List of 
ood modelling software packages based on full 2D-SWE that
have been tested using the UK EA benchmark tests.

Model name Numerical method Mesh type Sources
ANUGA FV Flexible Neelz & Pender (2010, 2013)
FloodFlow FD Square grid

Neelz & Pender (2010)
Infoworks 2D FV Flexible
ISIS2D FD Square grid

Neelz & Pender (2010, 2013)
MIKE FLOOD FD Square grid
SOBEK FD Square grid
TUFLOW (ADI) FD Square grid

TUFLOW (FV)
FV
(1st and 2nd order)

Flexible

Flowroute-iTM FV Square grid

Neelz & Pender (2013)
Infowork ICM FV Flexible
ISIS 2D GPU FV Square grid
JFLOW + FV Square grid
XPStorm FD Square grid
LISFLOOD-Roe FV Square grid Neal et al. (2012)
HEC-RAS 2D FV Flexible Brunner (2016)
3Di FV Flexible Schuurmans & Leeuwen (2014)
Swift FV Square grid Cohen et al. (2016)
PCSWMM/
SWMM5

FV Flexible James et al. (2013)

MOHID FV Square grid Pina et al. (2015)
TUFLOW-Classic FD Square grid

Huxley et al. (2017)
TUFLOW-HPC FV (2 nd order) Square grid
TUFLOW-GPU FV (1 st order) Square grid
TUFLOW FV
(2014 Release)

FV
(1st and 2nd order)

Flexible

RiverFlow2D Plus FV Flexible
Jenkins & Garcia (2015)

RiverFlow2D Plus GPU FV Flexible
Tygron Geodesign
Platform

FV Square grid TYGRON (2019)
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spatial scale, such as urban 
ooding along complex road networks around buildings in a

city, is also important. For smaller spatial scope, it is necessary that the selected 2D 
ood

model is able to provide reliable information on the spatial velocity �elds in order to estimate

the 
ood hazard over the whole inundation area, which often the goal of 
ood inundation

modelling (Bates et al. 2014, Smith et al. 2012). This would mean that in urban areas with

irregular 
ood extent and with many regions of wave-structure interfaces, the 
ood model

can produce su�ciently realistic velocity �elds with localised variability of the distribution

pattern around the buildings (Hunter et al. 2007, Schubert & Sanders 2012, Dottori et al.

2013). Additionally, there is also a need for detailed spatial information of velocity within

city streets to mobilise operational 
ood management during an urban 
ooding (Guo et al.

2021).

At present, there is no speci�c set of benchmark tests, such as the UK EA tests, that

is available to assess the suitability of industry-standard 2D 
ood models for producing de-

tailed spatial velocity �elds for urban 
ood modelling. This is perhaps due to the di�culties

in acquiring observation data to validate the models, particularly when the inundation cov-

erage is extensive and directin-situ measurements can pose safety concerns if conducted

during 
ooding (Bates et al. 2014). Instead, the 2D 
ood models are assessed using velocity

�elds measured from physical models that were purposely designed to replicate real-world

hydrodynamics around dense urban structures. For instance, the velocity �elds produced

by two FD-based 
ood models (TUFLOW and MIKE-FLOOD) were analysed against mea-

sured velocity data collated from a physical model representing an urban residential area with

small piers (Smith et al. 2016). An industry-standard FV2-based model, Rubar20, is used

to study spatial velocity �elds predictions relative to the velocity measured using particle

imagery velocimetry (PIV), around raised sidewalks and obstacles smaller than a common

building structure within a right angle junction (Bazin et al. 2017, Bazin 2013). Although

these assessments were made to analyse the reproduction of the velocity �eld around urban

�xtures as seen from the physical models, deeper investigation is still required to identify

the capabilities of the 2D 
ood models to predict spatial velocity for �eld-scale modelling
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applications.



Chapter 3

Grid-based DG2 formulation for

2D-SWE modelling

Contents used to prepare for this chapter have been published in the following publications:

1. Ayog, J. L., Kesserwani, G. 2018. "Reformulation of 2D DG2 Scheme for Shallow Wa-

ter Modelling", Proceedings of the HIC 2018: 13th International Conference on Hydroin-

formatics, Palermo, Italy. EPiC Series in Engineering, https://doi.org/10.29007/xlvx.

2. Kesserwani, G., Ayog, J. L., Bau, D. 2018. Discontinuous Galerkin formulation for

2D hydrodynamic modelling: Trade-o�s between theoretical complexity and practical

convenience, Comput. Method Appl. Mech. Engrg. 342 (2018) 710-741.

https://doi.org/10.1016/j.cma.2018.08.003.

3.1 Chapter overview

This chapter, which seeks to address Objective 1, elucidates the formulation of the simpli�ed

DG2 solver based on the conservative form of the 2D-SWE, along with the analyses of its

well-balanced properties not only for the mean coe�cients but also the slope coe�cients. In

Sec. 3.2, the standard DG2 formulation is �rstly described, then followed by the simpli�ed

DG2 formulation. The simpli�ed DG2 formulation, which has been developed to produce

24
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a slope-decoupled formulation, is made capable in preserving well-balanced properties fully

(for all mean and slope coe�cients) considering a range of realistic 
ow cases and topography

shapes. Sec. 3.3. presents the test cases that are tailored to compare the performance of the

simpli�ed DG2 solver against the standard DG2 solver, and later to verify the simpli�ed DG2

solver practical capabilities in terms of its accuracy and conservation properties. Finally, the

key �ndings from these test cases are summarised in the concluding remarks in Sec. 3.4.

3.2 DG2 formulations on grid elements

By considering the hyperbolic conservation laws, which is expressed in its conservative form

in Eq. 3.1, the DG2 numerical solutions are explored over a 2D domain 
:

@t U + @xF(U ) + @yG(U ) = S(U ) (3.1)

whereU (x; y; t ) is the vector of the state variables at location (x; y) and time t, F(U ) and

G(U ) are spatial 
ux vector corresponding to the x- and y-directions, and S(U ) represents

the source term vectors. In Eq. 3.1,@t , @x and @y are the partial derivatives relative to t, x

and y, respectively.

The 2D domain 
 is discretised into M Q � NQ uniform grid elements Qc (c = 1 ; :::; M Q �

NQ). Each element Qc is centred at (xc; yc) with a size of � x = � y, and can be expressed

as Qc = [ xc � � x
2 ; xc + � x

2 ] � [yc � � y
2 ; yc + � y

2 ] (see Fig. 3.1).

3.2.1 Standard DG2 formulation

An approximate solution of U h of Eq. 3.1 is sought by multiplying both-hand sides of the

equation by a test function vh(x; y), which is compactly supported onQc, and then integrating
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over 
. These produce the following weak formulation:

ZZ

Qc

@t U h (x; y; t )vh(x; y)dxdy +
ZZ

Qc

@xF(U h )vh(x; y)dxdy +
ZZ

Qc

@yG(U h )vh(x; y)dxdy

=
ZZ

Qc

S(U h )vh(x; y)dxdy

(3.2)

Integration by parts of the second and third terms at the left-hand side of Eq. 3.2 gives:

ZZ

Qc

@xF(U h )vh(x; y)dxdy

=

" Z yc+� y=2

yc � � y=2
F(U h )vh(x; y)dy

#xc+� x=2

xc � � x=2

�
ZZ

Qc

F(U h )@xvh(x; y)dxdy
(3.3)

ZZ

Qc

@yG(U h )vh(x; y)dxdy

=

" Z xc+� x=2

xc � � x=2
G(U h )vh(x; y)dx

#yc+� y=2

yc � � y=2

�
ZZ

Qc

G(U h )@yvh(x; y)dxdy
(3.4)

In Eqs. 3.3 and 3.4, the spatial derivatives are now removed from the 
ux terms. By

inserting these two equations into Eq. 3.2, and moving the spatial components to the right-

hand side of the equation, the weak formulation can be expressed as:

ZZ

Qc

@t U h(x; y; t )vh(x; y)dxdy = L h (3.5)

L h = � [(I h + Jh ) � (M h + N h + Sh )] (3.6)

In Eq. 3.6, L h is the spatial operator, in which I h and Jh are local 
ux balance terms
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throughout the x- and y-direction, respectively:

I h =

" Z yc+� y=2

yc � � y=2
F(U h )vh(x; y)dy

#xc+� x=2

xc � � x=2

(3.7)

Jh =

" Z xc+� x=2

xc � � x=2
G(U h )vh(x; y)dx

#yc+� y=2

yc � � y=2

(3.8)

and M h , N h and Sh are local volume integral terms for the 
uxes and source terms, given

by:

M h =
ZZ

Qc

F(U h )@xvh(x; y)dxdy (3.9)

N h =
ZZ

Qc

G(U h )@yvh(x; y)dxdy (3.10)

Sh =
ZZ

Qc

S(U h )vh(x; y)dxdy (3.11)

To construct a local planar DG2 solution on the grid elements, a suitable choice for the

test function vh is by using the 2D tensor product of the Legendre polynomial basis, over

which the stencil of a grid elementQc in Fig. 3.1 is applied. This then generates the following

planar approximate solution, U h , expressed as:

U h (x; y; t )jQc = U 0
c(t) +

(x � xc)
� x=2

U 1x
c (t) +

y � yc

� y=2
U 1y

c (t) (3.12)

The planar solution in Eq. 3.12 is de�ned by a set of coe�cients, consisting of the mean

coe�cient, U 0
c and the slope coe�cients in the x-direction, U 1x

c and y-direction, U 1y
c . These

coe�cients needed to be initialised using the formulae below:

U 0
c =

1
4

[U 0(G1) + U 0(G2) + U 0(G3) + U 0(G4))] (3.13a)
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Figure 3.1: The stencil of a grid elementQc for the standard DG2 form. Gi

(i = 1 ; 2; 3 and 4) are the local Gaussian points where the volume integral terms in
Eqs. 3.9-3.11 are evaluated. Meanwhile,E i ; Wi ; N i and Si (i = 1 ; 2) are the Gaus-
sian points at the eastern, western, northern and southern faces that aggregates
Riemann 
uxes contribution in Eqs. 3.7-3.8.

.
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U 1x
c =

p
3

4
[U 0(G3) � U 0(G4) + U 0(G2) + U 0(G1))] (3.13b)

U 1y
c =

p
3

4
[U 0(G3) � U 0(G2) + U 0(G4) + U 0(G1))] (3.13c)

where Gi (i = 1 ; :::; 4) are 2D Gaussian points (see Fig. 3.1), which are mapped from a

reference element via mathematical transformation:

Gi =
�

x
�

� 1
p

3

�
; y

�
� 1
p

3

��
=

 

xc �

p
3

6
� x; yc �

p
3

6
� y

!

(3.13d)

The coe�cients U 0
c, U 1x

c and U 1y
c are evolved by the local spatial operatorsL 0

c, L 1x
c and

L 1y
c that are obtained by considering Eq 3.12:

L K
c = �

�
(I K

c + JK
c ) � (M K

c + N K
c + SK

c )
�

(K = 0 ; 1x; 1y) (3.14)

The 
ux balance terms, I K
c and JK

c , are computed by resolving solution discontinuities

at the faces between adjacent grid elements using an approximate Riemann solver (Toro

1999, 2001), which in this work, is based on the Roe solver (Roe 1997). The termI K
c

is approximated at the Gaussian integration points (Fig. 3.1) at the Eastern (i.e. E1;2 =

(x(1); y(� 1p
3
)) = ( xc+ � x

2 ; yc�
p

3
6 � y)) and the Western faces (i.e.W1;2 = ( x(� 1); y(� 1p

3
)) =

(xc� � x
2 ; yc�

p
3

6 � y)), where the x-directional Riemann 
ux eF is evaluated by averaging across

the faces. Similarly, the term JK
c is approximated considering the Gaussian integration points

(Fig. 3.1) at the Northern (i.e. N1;2 = ( x(� 1p
3
); y(1)) = ( xc �

p
3

6 � x; yc + � y=2)) and the

Southern faces (i.e.S1;2 = ( x(� 1p
3
); y(� 1)) = ( xc�

p
3

6 � x; yc� � y=2)) where they-directional


ux eG is evaluated for averaging across the faces. The terms involving volume integrals of

the 
uxes, M K
c and N K

c , and the source terms,SK
c , are approximated via the 2D quadrature

rules at four Gaussian points (i.e. G1; G2; G3 and G4 in Eq. 3.18, with reference to Fig. 3.1).
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Special notes

The spatial discretisation described within Eq. 3.14 is applied within a two-stage Runge-Kutta

(RK) time integration (Eq. 3.15) to form the so-called RKDG2 approach. The RK time inte-

gration is used to update the DG2 solution fromn to n+1 ( n = 1 ; 2; :::; total number of iteration):

(U K
c )n+1 =2 = ( U K

c )n + � t(L K
c )n (3.15a)

(U K
c )n+1 =

1
2

[(U K
c )n + ( U K

c )n+1 =2 + � t(L K
c )n+1 =2] (3.15b)

in which � t is an adaptive time step calculated using Eq. 3.16:

� t = min

(
CFL � � x

ju(x; y; t )j +
p

g � h(x; y; t )
;

CFL � � y

jv(x; y; t )j +
p

g � h(x; y; t )

)

(3.16)

where CFL is Courant{Friedrichs{Lewy (CFL) number. Each RK stage in Eq. 3.15

should be preceded by slope limiting procedure (described in detail in Chapter 4) to ensure

that local DG2 slope coe�cients, i.e. U 1x
c and U 1y

c , have limited variation relating to slopes

di�erentiated from the means at Qc and its adjacent neighbours. However, it is worth noting

on several key points relating to this DG2 structure.

Cross-dimensional slope dependency. The slope evolution operatorsL 1x
c and L 1y

c

although aimed to update the x- and y-directional slope coe�cients, U 1x
c and U 1y

c , still

depends on both slope coe�cients, mainly due to the location of the evaluation points in the

stencil (Fig. 3.1). In e�ect, at any of the relevant evaluation points - namely E i , Wi , N i and

Si (i = 1 ; 2) and Gi (i = 1 ; 2; 3 and 4) in Fig. 3.1 - the local planar solution U h jQc reads:

U h (E i ; t) = U 0
c(t) + U 1x

c (t) �
U 1y

c (t)
p

3
(i = 1 ; 2) (3.17a)

U h (Wi ; t) = U 0
c(t) � U 1x

c (t) �
U 1y

c (t)
p

3
(i = 1 ; 2) (3.17b)
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U h (N i ; t) = U 0
c(t) �

U 1x
c (t)
p

3
+ U 1y(t) ( i = 1 ; 2) (3.17c)

U h (Si ; t) = U 0
c(t) �

U 1x
c (t)
p

3
� U 1y(t) ( i = 1 ; 2) (3.17d)

U h (G i ; t) = U 0
c(t) �

U 1x
c (t)
p

3
�

U 1y
c (t)
c

(i = 1 ; :::; 4) (3.18)

for which, as in Eqs. 3.17 to 3.18, bothx- and y-directional slope coe�cients must be

present in any of the evaluations.

Impact of the slope limiter. The slope limiter in DG formulation comes in as an FV

tool aimed to stabilise the solution around sharp discontinuities (i.e. avoid the development

of the Gibbs phenomenon). Nonetheless, it is generally demonstrated that slope limiters

may have adverse e�ects such as distorting the solution around smooth areas (Marras et al.

2016, Krivodonova et al. 2004, Sanders & Bradford 2006, An & Yu 2014, Kesserwani & Liang

2012c). To reduce such an impact on DG predictions, the slope limiting process may be

localised based on the so-called troubled cell indicator (Qiu & Shu 2005), such as the shock

detector in (Krivodonova et al. 2004) used in this study. Further information on the shock

detector used in this research is provided in Chapter 4. However, given the cross-dimensional

slope dependency issue raised above, any potential impact due to slope limiting would be

omnipresent across all the evaluations.

Operational costs. At each RK stage, the DG2 discretisation requires solving 8 dif-

ferent Riemann problems to calculate the 
ux balance terms, 8 Gaussian point evaluations

to calculate the 
ux volume integrals, and 16 Gaussian point evaluations to calculate the

volume integrals of the source terms. Hence, at least 32 spatial operations are needed to

enable progressing the state of the solution over one grid element by half a time step, which

is computationally expensive.
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Figure 3.2: Stencil of a grid element Qc for the simpli�ed DG2 formulation.
Two di�erent sets of Gaussian points f Gxi gi =1 ;2 and f Gyi gi =1 ;2 are involved in a
fully decoupled manner along the horizontal and vertical centrelines, respectively.
Furthermore, only a single evaluation for the Riemann 
ux at any of the four
faces is sought, involving the centresE and W of the eastern and western faces
along [Gx 1; Gx 2] and N and S of the northern and southern faces along[Gy1; Gy2].
Points EN; ES; WS and WN indicate the corner of Qc that are named based on
the two faces they connect (e.g.,WS indicates the corner point at which the western
and southern faces intersect).
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3.2.2 Simpli�ed DG2 formulation

A simpli�ed DG2 formulation is presented using the same choice for the local basis functions

as in Sec. 3.2.1, but based upon a di�erent local stencil, which is described in Fig. 3.2.

As shown in this �gure, there are now two di�erent sets of Gaussian points, f Gxi gi =1 ;2 and

f Gyi gi =1 ;2, that are involved in an entirely decoupled manner along thex- and y-directional

centrelines, respectively. With this setting, the set f Gxi gi =1 ;2 is applied to approximate all

the integral terms in the operator L 1x
c , considering no variation occur along they-direction.

Similarly, the set f Gyi gi =1 ;2 is used to approximate all the integral terms in the operatorL 1y
c

considering no variation occur along thex-direction. Also, only one evaluation for the 
ux

at any of the four faces is required, namely at pointsE and W that are located at the centre

of the eastern and western faces, and pointsN and S located at the centre of the northern

and southern faces. These points are positioned along the centrelines of the grid element

Qc that intersect at its centre whilst crossing the Gaussian points [Gx1; Gx2] and [Gy1; Gy2]

respectively (Fig. 3.2). The main purpose of adopting this stencil is to decouple the slope

dependencies in the all evaluations with respect to the Cartesian directions. This can be

easily shown, considering the stencil depicted in Fig. 3.2, that any local evaluation at the

relevant points only involves one slope coe�cient, namely:

U h (E; t ) = U 0
c(t) + U 1x

c (t) (3.19a)

U h (W; t) = U 0
c(t) � U 1x

c (t) (3.19b)

U h (N; t ) = U 0
c(t) + U 1y

c (t) (3.19c)

U h (S; t) = U 0
c(t) � U 1y

c (t) (3.19d)
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U h (Gxi ; t) = U 0
c(t) �

U 1x
c (t)
p

3
(i = 1 ; 2) (3.20a)

U h (Gyi ; t) = U 0
c(t) �

U 1y
c (t)
p

3
(i = 1 ; 2) (3.20b)

As opposed to Eqs. 3.17 to 3.18, Eqs. 3.19 to 3.20 result in sole involvement of thex-

directional (or y-directional) slope coe�cient in the evaluation of the Riemann problem and

integral terms involving the x-directional 
ux F (or y-directional 
ux G) within the L 0
c, L 1x

c

and L 1y
c local spatial operators. Considering also that thex-directional and y-directional

variations of the local planar solution are zero along they-direction and x-direction, the

following spatial operators can be obtained for updating the mean and slope coe�cients over

Qc over an RK time stage:

L 0
c = �

1
� x

�
eFE � eFW

�
�

1
� y

�
eFN � eFS

�
+ S(U h (xc; yc); t)) (3.21a)

L 1x
c = �

3
� x

(

( eFE + eFW ) � (F(U h (Gx2; t)) + F(U h (Gx1; t)))

�
� x

p
3

6
[S(U h (Gx2; t)) � S(U h (Gx1; t))]

) (3.21b)

L 1y
c = �

3
� y

(

( eFN + eFS) � (G(U h (Gy2; t)) + G(U h (Gy1; t)))

�
� y

p
3

6
[S(U h (Gy2; t)) � S(U h (Gy1; t))]

) (3.21c)

where eFE = eF(U h (E � ; t); U h (E + ; t)), eFW = eF(U h (W � ; t); U h (W + ; t)), eFN = eF(U h (N � ; t),

U h (N + ; t)) and eFE = eF(U h (S� ; t); U h (S+ ; t)) represent the Riemann 
ux evaluations across

the eastern, western, northern and southern faces of the elementQc, considering the limited

slope coe�cients in Eqs. 3.19-3.20 with the same localised slope limiter as in the standard
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formulation (Sec. 3.2.1). When compared to the standard DG2 formulation, the simpli�ed

formulation (Eqs. 3.21) reduces the total number of operations from 32 to 12 (4 Riemann

problem solutions and 8 Gaussian point evaluations), leading to a drastic reduction in oper-

ational cost. The simpli�ed DG2 formulation is thus expected to o�er speed up in runtime

relative to the standard DG2 formulation by a factor of 2.6 (see also Sec. 3.3.1). It also has

the advantage of being well-balanced for all mean and slope coe�cients as discussed in the

next subsection.

2D-SWE with bed topography

The conventional form of the 2D-SWE can be expressed by Eq. 3.1, assuming that:

U =

2

6
6
6
6
4

h

qx

qy

3

7
7
7
7
5

; F =

2

6
6
6
6
4

qx

q2
x
h + g

2h2

qx qy
h

3

7
7
7
7
5

; G =

2

6
6
6
6
4

qy

qx qy
h

q2
y
h + g

2h2

3

7
7
7
7
5

and S =

2

6
6
6
6
4

0

� gh@xz

� gh@yz

3

7
7
7
7
5

(3.22)

whereh(x; y; t ) represents the water depth,qx = hu and qy = hv are volumetric discharges

per unit width expressed in terms of the velocitiesu(x; y; t ) and v(x; y; t ) along the Cartesian

directions, g represents the acceleration due to gravity, and@xz and @yz are the partial

derivatives of a topography function z(x; y).

The system of Eqs. 3.1 and 3.22 (which is similar to Eq. 2.1 in Chapter 2 without the

friction terms) may be referred to as non-homogeneous hyperbolic conservation laws (Xing &

Shu 2014) whenz(x; y) 6= 0. A known challenge is to �nd a straightforward discretisation of

the source terms that balances the 
ux gradients when the 
ow admits steady state solutions,

i.e. producing a well-balanced 2D-SWE solver (Xing & Shu 2014). In principle, a well-

balanced DG2 solver should preserve the 'lake-at-rest' stationary solution over an uneven

topography (Xing & Shu 2014), for which the conditions are:

h + z = constant and ( qx ; qy) = (0 ; 0) (3.23)
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In the context of practical hydrodynamic simulations, the design of a well-balanced DG2

solver that retains the condition in Eq. 3.23 faces numerous challenges, including: (a) the

DG2 solver should verify the discrete balance between the gradients of the 
uxes and the

topography; (b) the DG2 solver should remain stable for a 
ow over a steep terrain, e.g. a

building-like block, where the topography function is not di�erentiable; (c) all DG2 operators

in Eqs. 3.21 should be well-balanced with respect to the mean coe�cient,U 0
c, and the slope

coe�cients, U 1x
c and U 1y

c , as well. In the next subsection, we later demonstrate that the

simpli�ed DG2 operators can o�er a simple approach to e�ectively address these challenges.

Well-balancedness consideration in the simpli�ed 2D-SWE DG2 solver

The simpli�ed DG2 operators in Eqs. 3.21 are considered to study the well-balancedness

for the DG2 planar solution in Eq. 3.12. An appropriate initial projection, considering the

stencil in Fig. 3.2, is vital to achieve well-balancedness. The initial conditions for the local

coe�cients in Eqs. 3.13 can be made valid on this stencil by involving the evaluations at the

corner points EN , ES, WS and WN as they are present in both stencils (Figs. 3.1 and 3.2):

U 0
c(0) =

1
4

[U 0(EN ) + U 0(ES) + U 0(WS) + U 0(WN )] (3.24a)

U 1x
c (0) =

1
4

[U 0(EN ) � U 0(WN ) + U 0(ES) � U 0(WS)] (3.24b)

U 1y
c (0) =

1
4

[U 0(EN ) � U 0(ES) + U 0(WN ) � U 0(WS)] (3.24c)

In turn, given the slope-decoupled formulation, integrating over a coordinate direction

the information at the faces considering the other direction are averaged, which leads to the

following relationships:

1
2

(U 0(EN ) + U 0(ES)) = U 0(E ) (3.25a)
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1
2

(U 0(WN ) + U 0(WS)) = U 0(W ) (3.25b)

1
2

(U 0(EN ) + U 0(WN )) = U 0(N ) (3.25c)

1
2

(U 0(WS) + U 0(ES)) = U 0(S) (3.25d)

By substituting Eqs. 3.25 into Eqs. 3.24, the initial conditions for the coe�cients can be

rewritten so that to involve the nodes E; W; N and S (see Fig. 3.2) where key treatments are

performed:

U 0
c(0) =

1
2

[U 0(E ) + U 0(W )] =
1
2

[U 0(N ) + U 0(S)] (3.26a)

U 1x
c (0) =

1
2

[U 0(E ) � U 0(W )] (3.26b)

U 1y
c (0) =

1
2

[U 0(N ) � U 0(S)] (3.26c)

Eqs. 3.26 becomes relevant when linking the DG2 coe�cients to theinter-elemental nodes

at the grid element faces where 
ux exchange occurs, hence making them suited to address

any change occurring at the nodes due to wetting and drying treatments. Also, Eqs. 3.26

reveal even more clearly that the planar topography projections, denoted byzh(x; y)jQc over

Qc with coe�cients z0
c ; z1x

c and z1y
c de�ned as in Eqs. 3.24, are continuous at all four main

nodes, E; W; N and S, considering the stencil in Fig. 3.2. For instance, considering the

topography approximation across the inter-elemental nodeE, which is shared by the grid

elementsQc and Qc+1 , yields:

zh(E � )jQc = z0
c + z1x

c = zh(E ) = z0
c+1 � z1x

c+1 = zh(E + )jQc (3.27)
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Another key issue is how to evaluate the derivative of the local topography projection

@xzh jQc and @yzh jQc while remaining consistent with the stencil in Fig. 3.2. A straight

forward method would be to derive them from the following local planar solution, zh jQc :

zh jQc = z0
c +

(x � xc)
� x=2

z1x
c +

(y � yc)
� y=2

z1y
c (3.28)

which has constant slope coe�cients over Qc and thus leads to the following local bed

slope terms:

@xzh jQc =
�

2
� x

z1x
c

�
(3.29a)

@yzh jQc =
�

2
� y

z1y
c

�
(3.29b)

Eqs. 3.29 that are used to discretise the local bed slope terms is su�cient to ensure well-

balancedness for the mean coe�cients. However, this introduces irrelevant cross-dimensional

slope dependencies (e.g.z1x
c within L 1y

c across the DG2 operators responsible for the update

of slope coe�cients (see the mathematical proof in Appendix A)), leading to mild unbal-

ancedness in the slope coe�cients of the discharges, which might eventually impact the well-

balancedness of all the coe�cients (as shown later in Section 3.3.2). Therefore, an alternative

slope-decoupled discretisation for the local bed gradients is here proposed:

@x [zh(0; y)jx=0 ] = 0 and @xzh jy=0 = @x [zh(x; 0)jQc ] =
�

2
� x

�
z1x

c (3.30a)

@y [zh(x; 0)jy=0 ] = 0 and @yzh jx=0 = @y [zh(0; y)jQc ] =
�

2
� y

�
z1y

c (3.30b)

In addition, the positivity-preserving amendments are applied to retain the well-balanced

property in the presence of wetting and drying. By denoting U �
E , U �

W , U �
N , and U �

S as the
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limits of the DG2 solutions at the nodes E; W; N and S (Fig. 3.2), such that:

U �
E = U h (E � ) =

�
h�

E ; (qx ) �
E ; (qy) �

E

� T and zE = zh(E � ) (3.31a)

U �
W = U h (W � ) =

�
h�

W ; (qx ) �
W ; (qy) �

W

� T and zW = zh(W � ) (3.31b)

U �
N = U h (N � ) =

�
h�

N ; (qx ) �
N ; (qy) �

N

� T and zN = zh(N � ) (3.31c)

U �
S = U h (S� ) =

�
h�

S ; (qx ) �
S ; (qy) �

S

� T and zS = zh(S� ) (3.31d)

their positivity-preserving reconstructions will be denoted by
�

U � ;�
E ; z�

E

	
,
�

U � ;�
W ; z�

W

	
,

�
U � ;�

N ; z�
N

	
and

�
U � ;�

S ; z�
S

	
. Eqs. 3.26 are then applied to rede�ne the positivity-preserving

coe�cients as follows:

U
0x
c (t) =

1
2

h
U � ;�

E + U + ;�
W

i
(3.32a)

U
0y
c (t) =

1
2

h
U � ;�

N + U + ;�
S

i
(3.32b)

U
1x
c (t) =

1
2

h
U � ;�

E � U + ;�
W

i
(3.32c)

U
1y
c (t) =

1
2

h
U � ;�

N � U + ;�
S

i
(3.32d)

It is worth noting that Eqs. 3.32a and 3.32b are identical as long as no change occur

at any node due to wetting and drying. This decoupled form for the mean coe�cients (i.e.

Eqs. 3.32a-3.32b) is consistent with slope decoupling, and yet necessary to preserve well-

balancedness for the slope coe�cients when wetting and drying occur at any of the nodes



CHAPTER 3. GRID-BASED DG2 FORMULATION 40

E; W; N or S (Fig. 3.2). In addition to Eqs. 3.32, the bed gradient terms need to be re-de�ned

in relation to potential change made by the wetting and drying at any of the nodes, as follows:

z1x
c =

1
2

[z�
E � z�

W ] (3.33a)

z1y
c =

1
2

[z�
N � z�

S] (3.33b)

3.3 Test results and discussions

In this section, numerical results for selected 2D test cases are presented to compare the

simpli�ed DG2 formulation with the standard DG2 formulation, and verify its conservation

properties for practical shallow water modelling. Section 3.3.1 contains a comparative investi-

gation on the accuracy of the simpli�ed DG2 formulation against the standard version based

on classical benchmark tests (the linear advection and the radial dam-break tests). Section

3.3.2 explores the conservative properties of the simpli�ed DG2 solver (well-balancedness and

accuracy) with test cases involving uneven topographies and wetting-drying processes. For

both solvers, the selected CFL number is set equal to 0.25, and the limiting of the slope coef-

�cients is applied when the shock detector in Krivodonova et al. (2004) exceed the threshold

100.

3.3.1 Standard vs. simpli�ed DG2 formulation

The standard and simpli�ed DG2 formulation are hereby benchmarked and compared against

analytical or reference data. Two numerical 2D tests are considered involving bi-directional


ows in order to entirely investigate the 2D character of the formulation. Quantitative

analyses are conducted to investigate the grid convergence rate of the DG2 formulation in

the case of the 2D inviscid linear advection equation. A qualitative assessment of the DG2

ability in reproducing wave non-linearity and discontinuities relevant to a classical radial

dam-break 
ow is also provided.
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Figure 3.3: Numerical results of the exact (black line), the standard DG2 form
(red-dotted line) and the simpli�ed DG2 form (green-dotted line) along the diagonal
(using 40 Ö 40 grids).

Quantitative assessment

To compare the performance of the standard and simpli�ed DG2 formulation, a 2D linear

advection equation (Toro 1999) is considered, which is usually the model equation on which

numerical methods solving hyperbolic conservation laws were initially developed (Toro 1999):

@t u + a@xu + b@yu = 0 (3.34)

Equation 3.34 is solved over a 2D domain [0; 2]2 with characteristic speed coe�cient

a = b = 1. The initial condition is u(x; y; 0) = sin (� (x + y)) and boundary conditions are set

to be periodic. Simulations are run up to t = 1 s on M Q � NQ = 10 � 10, 20� 20, 40� 40,

80� 80 and 160� 160 grid elements, respectively.

Fig. 3.3 illustrates the mean coe�cients produced by the standard and simpli�ed DG2

formulation extracted diagonally from the grid enclosing 40 � 40 grid elements and att =

1 s. Both DG2 form appear to consistently predict the undulant characteristics observed

in the analytical solution. Fig 3.4 displays the local 2D planar solutions (i.e. via Eq. 3.12)

associated with both DG2 predictions, showing a similar qualitative behaviour despite the

di�erence in the stencils involved. To compare the formulation based on quantitative metrics,

accuracy-order and runtime cost analyses are performed. Table 3.1 contains the relative errors
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(a)

(b)

Figure 3.4: The 2D full planar solutions (uh (x; y; t = 1 s)jQ c ) for the (a) standard
DG2 form and (b) simpli�ed DG2 form for the 20 Ö 20 grid domain.
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Table 3.1: L 1-norm, L 2-norm and L 1 -norm errors and orders of accuracy of
the standard and simpli�ed DG2 formulation and their CPU times (relevant to the
test in Sec. 2.4.1).

DG2 solver Grid size
L 1-

error
L 1-

order
L 2-

error
L 2-

order
L 1 -
error

L 1 -
order

Runtime
(s)

Standard

10Ö10 3.86e� 02 - 4.11e� 02 - 5.98e� 02 - 4.0
20Ö20 8.70e� 03 2.148 1.03e� 02 1.993 1.53e� 02 1.963 15.9
40Ö40 2.00e� 03 2.153 2.50e� 03 2.020 3.60e� 03 2.071 62.5
80Ö80 4.68e� 04 2.067 6.02e� 04 2.081 8.57e� 04 2.090 243.6

160Ö160 1.17e� 04 2.001 1.34e� 04 2.167 1.93e� 04 2.153 960.0

Simpli�ed

10Ö10 4.97e� 02 - 5.22e� 02 - 7.41e� 02 - 1.8
20Ö20 1.00e� 02 2.311 1.20e� 02 2.116 1.74e� 02 2.089 6.5
40Ö40 2.10e� 03 2.268 2.70e� 03 2.130 3.90e� 03 2.151 24.5
80Ö80 4.87e� 04 2.095 6.22e� 04 2.145 8.92e� 04 2.136 97.0

160Ö160 1.21e� 04 2.003 1.38e� 04 2.170 1.97e� 04 2.176 381.8

between the analytical and numerical solutions taken along the diagonal centreline, namely

Error = (1 =MQ � NQ)jjuexact { uDG 2jj=jjuexact jj , which are evaluated consideringL 1{norm

(also known as the mean absolute error),L 2{norm (i.e. the root mean square error) and

L 1 {norm (i.e. the maximum absolute error). These error metrics, along with their respective

rate of convergence, are often used to assess the performance of newly-developed or updated

numerical methods (Chartres & Stepleman 1972, Cockburn & Shu 2001, Eskilsson & Sherwin

2004, Bunya et al. 2009, Duran & Marche 2014). The rate of convergence is expressed in

Eq. 3.35 as shown below:

L 1;2;1 -order =
log( ef iner

ecurrent
)

log( M Q (current )
M Q (f iner ) )

(3.35)

where ecurrent and M Q(current ) are the error value and the grid size of the current grid,

whilst ef iner and M Q(f iner ) are the error value and the grid size of the immediate �ner

grid. The errors and the rate of convergence are calculated and shown in Table 3.1 for both

the standard and the simpli�ed DG2 formulation based on the aforementioned series of grids,

together with their CPU runtimes. It can be observed in the table that the L 1{norm, L 2{norm

and L 1 -norm errors of the simpli�ed DG2 formulation are consistently slightly larger than

those of the standard DG2 formulation. This clearly indicates that the simpli�ed DG2 version



CHAPTER 3. GRID-BASED DG2 FORMULATION 44

is, as expected, slightly less accurate than the standard DG2 formulation. Nonetheless,

looking at the rate of convergence in Table 3.1 in terms ofL 1{norm, L 2{norm and L 1 -

orders, the simpli�ed DG2 formulation can deliver second-order accurate predictions, which

are practically as good as the standard DG2 formulation and, in this respect, constitutes a

formally second-order accurate alternative. It is worth stating that relatively similar error

and accuracy-order results are obtained by considering the full 2D pro�les of the analytical

and numerical solutions as with those from the 1D diagonal centreline. In terms of speed up

ratio between the two DG2 solvers, the CPU runtimes in Table 3.1 indicate a range between

2.25 and 2.55, which is pretty close to the predicted operational cost ratio of 2.6 (Sec. 2.3).

Qualitative assessment

To further compare the performances of the DG2 formulation in shallow water applications,

a circular dam-break test (Toro 2001) is here considered. Such test is appropriate for testing

the 2D-SWE DG2 solvers' ability to simulate shock propagating and rarefaction waves as it

considers the instantaneous collapse of a circular dam on a 
at bed. Water in the dam is

contained by a thin 2.5 m radius circular wall centred at xc = 0 m, yc = 0 m. The water

depth is 2.5 m inside the dam and 0.5 m outside. The model is a 40 mÖ 40 m square domain

made up of 201Ö 201 grids. Initial velocities u (along x) and v (along y) are set equal to

zero and slip numerical boundary conditions are used. The reference solution (Toro 2001)

is obtained using a 1D MUSCL-FV2 solver (Kesserwani 2013) of the 1D radial-symmetric

version of the 2D-SWE that is modelled on 1001 grid elements.

Fig. 3.5 shows the free surface elevation and velocity plots in the radial direction for the

reference solution, the standard DG2 solver and the simpli�ed DG2 solver. Immediately

after the initial collapse of the dam, a primary shock wave began to propagate away from the

centre, while a rarefaction wave moves inwardly and reaches the centre att = 0.4 s (Fig. 3.5a)

with a well-de�ned depth gradient developed behind the shock wave. Att = 0.7 s (Fig. 3.5b),

the rarefaction wave has fully imploded at the centre and re
ects radially outward, creating

a small dip in the free surface where the velocity is nearing zero. Att = 1.4 s (Fig. 3.5c), the
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primary shock wave continues to move away from the centre and the free surface has dropped

below the initial water depth outside of the dam. A secondary shock wave has also formed

at this time, as clearly shown by the velocity pro�le, which exhibits two small and yet sharp

fronts behind the primary shocks. At t = 3.5 s (Fig. 3.5d), the primary shock is approaching

the boundary while the secondary shock is travelling in the opposite direction with the free

surface falling very close to the bed. Finally, at t = 4.7 s (Fig. 3.5e), the primary shock

is about to reach the boundary while the secondary shock has imploded in the centre and

re
ects outwardly, resulting in another dip in the free surface at the centre.

Figure 3.5: The free surface elevation and velocity plots for the reference solution
(black line), standard DG2 solver (red line) and simpli�ed DG2 solver (green line)
for (a) t = 0.4 s, (b) t = 0.7 s, (c) t = 1.4 s, (d) t = 3.5 s, and (e) t = 4.7
s.(cont.)
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Figure 3.5: The free surface elevation and velocity plots for the reference solution
(black line), standard DG2 solver (red line) and simpli�ed DG2 solver (green line)
for (a) t = 0.4 s, (b) t = 0.7 s, (c) t = 1.4 s, (d) t = 3.5 s, and (e) t = 4.7 s.
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As seen in Fig. 3.5a, att = 0.4 s, the standard DG2 solver satisfactorily corresponds

with the reference solution, except at the peak free surface elevation associated with local

zero velocities. There, it shows a slight overestimation as compared to the simpli�ed DG2

version. This seems to indicate that the standard DG2 solver is much more sensitive to slope

variations around points of critical 
ow. The discrepancy between the two DG2 solvers is

also due to the convoluted involvement of both directional slope coe�cients combined with

the over-allowing character of the shock detector adopted for local limiting. In other words,

its overlooking e�ects (to reduce the applicability of the slope limiter) are expected to double

when applied with the standard DG2 solver. However, such discrepancy does not a�ect the

overall performance of the solver, as one may observe in the predictions att = 0.7 s and t =

1.4 s (Fig. 3.5b and Fig. 3.5c). At these times, the 
ow only entails primary waves and both

DG2 solvers provide predictions very similar to the reference solutions. When the secondary

waves emerge att = 3.5 s and t = 4.7 s (Fig. 3.5d and Fig. 3.5e), the predictive capability

of the standard DG2 and the simpli�ed DG2 solvers becomes more distinct in the results,

especially around the 
ow features de�ned by the secondary shock fronts and associated

pattern where the standard version clearly outperforms. However, the simpli�ed DG2 solver

still delivers 2D predictions that are close to those achieved by the standard DG2 solver, and

can satisfactory follow the sequence and form of the shock and rarefaction waves produced

by the reference solutions.

3.3.2 Veri�cation of simpli�ed DG2 properties

The previous tests have shown that the simpli�ed 2D-SWE DG2 solver is formally second-

order accurate and is able to capture complex wave propagation with predictive accuracy

quite similar to the standard DG2 solver. Here, the ability of the simpli�ed DG2 solver in

preserving numerical conservation properties is further assessed. This involves 2D numerical

tests aimed to assess the well-balanced property of the solver for various scenarios involving

smooth and sharp-edged terrain shapes with presence of wet-dry zones in the domain, and

to preserve accuracy-order when the 
ow is subjected to constantly moving of wet-dry fronts
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(a)

(b)

Figure 3.6: The initial water surface and full planar DG2 topography projections
(zh (x; y)jQ c ), via Eq. 3.29a, of: (a) di�erential topography (Eq. 3.36) and (b)
non-di�erential topography (Eq. 3.37).
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over non-
at topography.

Well-balanced property

The �rst numerical test intends to diagnostically investigate the e�ects of the di�erent DG2

based bed slope terms discretisation, i.e. Eqs. 3.29vs. Eqs. 3.30, on the reliability of the

simpli�ed DG2 solver in numerically preserving the well-balanced property over uneven ter-

rain with wetting and/or drying. The test assumes a motionless 
ow in a 75 m Ö 30 m

domain. Two cases are investigated to distinguish between di�erential and non-di�erential

topography shapes, which resemble real-world natural and arti�cial terrain features. The

di�erential topography represents a hilly terrain and consists of three mounds with di�erent

peak heights. In such case, the topography function is:

z(x; y) = max

"

0; 1 �
1
5

p
(x � 20)2 + ( y � 15)2; 2 �

1
2

p
(x � 40)2 + ( y � 15)2;

3 �
3
10

p
(x � 60)2 + ( y � 15)2

# (3.36)

Alternatively, the non-di�erential topography resembles buildings of varying heights and

consists of three rectangular blocks. In this other case, the topography function is:

z(x; y) =

8
>>>>>>><

>>>>>>>:

0:86; if 16 � x � 24; 11 � y � 19

1:78; if 36 � x � 44; 11 � y � 19

2:30; if 56 � x � 64; 11 � y � 19

0; otherwise

(3.37)

Figs. 3.6a and 3.6b provide a view on the 2D local planar DG2 projections, via Eq. 3.29a,

for the topography functions Eq. 3.36 and Eq. 3.37, respectively. In both cases, the choice

for the initial free-surface elevation is taken according to three scenarios: fully submerged

(h > 0 m at one peak), critically wet (h = 0 m at another peak) and partially wet involving

wet-dry fronts ( h � 0 m, in the sense where the local planar DG2 solutions cut through the
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highest peak). This leads to set a free-surface elevation value of 1.78 m and 1.95 m for the

�rst and second cases, respectively (see also Fig. 3.6) together with zero discharge values for

qx and qy . These initial states should be maintained as there is no external force exerted on

the 
ow at any of the boundaries. To study the numerical well-balancedness of the simpli�ed

DG2 solver, the domain is discretised using 1 m2 grids, and simulations are run for relatively

long time evolution (t = 100 s) considering transmissive numerical boundary conditions. To

conduct a thorough analysis of the well-balanced property, the time histories of the maximum

errors are calculated (for each simulation) for all the discharge coe�cients spanning the local

DG2 solutions (namely the mean coe�cients q0
x and q0

y , the x-directional slope coe�cients

q1x
x and q1x

y , and the y-directional slope coe�cients q1y
x and q1y

y ). These errors are plotted

and analysed to explore the well-balanced property at the level of both the mean and the

slope coe�cients.

Simulation results relative to the �rst case are summarised in Fig. 3.7, which shows the

time histories of the errors for the mean and slope (discharge) coe�cients up tot = 100

s, with a time step, � t, of approximately 0.08 s. In particular, Fig. 3.7a shows the results

considering the bed slope discretisation in Eqs. 3.29. At the start of the simulation (t < 7 s),

the mean coe�cients q0
x and q0

y are within the round o� error even in the presence of wet-dry

fronts. This �nding reinforces the well-balancedness validation statement in Appendix A,

according to which the solver should be well-balanced for the mean coe�cients with both

bed slope term discretisations Eqs. 3.29 and Eqs. 3.30. In Fig. 3.7a, similar behaviour can

also be observed for the discharge slope coe�cients relative to the mainstream directions,q1x
x

and q1y
y . However, the discharge slope coe�cients across the opposite direction,q1y

x and q1x
y ,

display a di�erent behaviour, showing a drastic rise in error magnitudes from the very start of

the simulation. Although this rise seems to settle quite soon (t > 17 s), it appears to produce

numerical artefacts, which gradually (for t > 7s) a�ect the other discharge coe�cients that

were initially well-balanced (for t < 7s). From t = 17 s onward, relatively mild perturbations

are observed for all discharge coe�cients, which seems to suggest that Eqs. 3.29 do not

provide a fully well-balanced simpli�ed DG2 solver. In contrast, by re-running the simulation
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(a)

(b)

Figure 3.7: Time histories of the resulting maximum errors for the mean and
slope discharge coe�cients over a di�erential topography (case 1) using the (a)
original discretisation Eqs. 3.29 and (b) alternative discretisation Eqs. 3.30.
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using the proposed alternative topography discretisation, via Eqs. 3.30, more consistent error

magnitudes are obtained as shown in Fig. 3.7b. In this setting, it can be noticed that the

variation of all discharge coe�cient errors remains substantially bounded within the range of

the round-o� throughout the simulation.

In the second case, where the topography function is not di�erentiable, the adverse e�ects

of the choice of the bed slope discretisation of Eqs. 3.29 are observed to augment as seen in

Fig. 3.8a. The resulting time histories for the discharge coe�cient (maximum) errors again

imply a partially well-balanced behaviour up to certain time around t = 13 s, i.e. for the mean

coe�cients, q0
x and q0

y , and the slope coe�cients relative to the mainstream directions, q1x
x

and q1y
y . However, the errors produced for the cross-directional slope coe�cients,q1y

x and q1x
y ,

are now seen to exhibit a much higher increase up to eight times larger than those observed

in the �rst case (compare Fig. 3.7a to Fig. 3.8a). These errors continue to rise untilt = 13

s when they reduce and become relatively stable. They also show a behaviour similar to the

�rst case, in that they eventually (13 s < t < 100 s) a�ect the errors of the other discharge

coe�cients, which were initially well-balanced (0 s < t < 13 s). These �ndings seem to

suggest that any unbalance in a slope coe�cient, if overlooked, can gradually a�ect the well-

balanced property for all other coe�cients, and hence eventually that of the full DG2 planar

solutions. In contrast, by using the proposed choice for the bed slope term discretisation, via

Eqs. 3.30, in combination with the simpli�ed DG2 solver all error magnitudes remain bounded

near the range of machine precision, as shown in Fig. 3.8b, irrespective of the discontinuous

character of the topographies involved in this case. These results imply that all mean and

slope coe�cients for the discharge remain numerically well-balanced in this setting. Hence,

one can conclude that the simpli�ed DG2 solver complemented with Eqs. 3.30 for the bed

slope discretisations is fully well-balanced for both mean and slope coe�cients in all three

scenarios.
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(a)

(b)

Figure 3.8: Time histories of the resulting maximum errors for the mean and
slope discharge coe�cients over a non-di�erential topography (case 2) using the
(a) original discretisation Eqs. 3.29 and (b) alternative discretisation Eqs. 3.30.
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Accuracy order

Having veri�ed that the simpli�ed DG2 solver with Eqs. 3.30 is well-balanced, further assess-

ments are made to test the conservative features of this solver. In particular, the numerical

accuracy of the solver is veri�ed for a transient 
ow case involving moving 2D wet-dry fronts

over a non-
at topography. This numerical test relies upon the well-known 2D oscillatory


ow in a parabolic bowl problem (Bunya et al. 2009), in which a set of parametric values

are used following Ern et al. (2008). The model is set in a 2D domain of square length

[� 4000m; +4000m]2. The topography is de�ned as z(x; y) = �r 2, where � is a constant

equal to 1:610� 7 m-1 and r is the radial distance with r 2 =
p

x2 + y2. The initial veloci-

ties, u(x; y; 0) and v(x; y; 0), are set to zero, and the initial free surface elevation ish(r; 0) =

(1+ a(Y � X )r 2)=(X + Y), where X and Y are equal to 1 m-1 and -0.41884 m-1, respectively.

The wet domain is de�ned such that h(r; t ) > 0 for r <
p

(X + Y cos!t )=� (X 2 � Y 2), which

can be used to identify the interface between the wet and dry regions. This numerical test

assumes a period of� = 2 �=! equivalent to 1,756.2 s with ! 2 = 8g� . There is no speci�c

boundary condition to be prescribed, as the free surface does not reach the domain boundary.

The analytical solution is given in Thacker (1981):

h(r; t ) =
1

X + Y cos!t
+ � (Y 2 � X 2)

r 2

(X + Y cos!t )2 (3.38)

(u(x; y; t ); v(x; y; t )) = �
Y !sin!t

(X + Y cos!t )

 
x
2

;
y
2

!

(3.39)

Figs. 3.9 and 3.10 contain the plots of the computed free surface elevation and discharges,

respectively, using similar grid resolutions and display patterns as in Bunya et al. (2009).

These �gures allow to compare the mean coe�cients (or average values) calculated by the

simpli�ed DG2 solver (across the centreline x = 0) with the exact solution for two grid

resolutions (i.e. � x = 100 and 200, with � x = � y) at the six output times t = 0, �=6, 2�=6,

3�=6, 4�=6, 5�=6 and � . In the prediction of the free surface elevation, as shown in Fig. 3.9,

the simpli�ed DG2 solver is observed to perform very well, yielding calculations that are in
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