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Abstract

Wrist rehabilitation robots have been broadly investigated in the past

decades. Robot-aided rehabilitation aims to assist patients in restor-

ing motor functions of the wrist joint after neurological disorders, of

which patients’ motor intention plays an important role in the con-

trol strategy. Electromyography (EMG) signal provides a promising

solution to estimate motor intention at the spinal cord level. It is chal-

lenging to adopt the EMG-based approach for control of the wrist re-

habilitation robots. The implementation of the EMG-based approach

with the control strategy is still at the very beginning, and current

EMG-based approaches fail to capture the underlying intermediate

muscular and skeletal information that aids the robot-aided wrist re-

habilitation.

This thesis aims to develop real-time EMG-driven musculoskeletal

models for the wrist joint as well as model-based active assistive con-

trol strategies. This first goal is to develop an EMG-driven musculo-

skeletal model for wrist flexion/extension motion. By interpreting the

internal transformation from the muscle activity to the joint kinetic

and kinematic characteristics, this model is able to identify wrist mo-

tion correctly. Secondly, a sensitivity analysis is conducted to invest-

igate the sensitivity of the model’s performance to the key parameters

of the model. To facilitate the use of the EMG-driven model in the

practical scenario, a direct collocation method is proposed to effect-

ively optimize the subject-specific parameters. Thirdly, two control

strategies incorporating the EMG-driven musculoskeletal model are

developed, namely, adaptive cooperative control strategy and assist-

as-needed control strategy. The first control strategy combines a po-

sition controller and an admittance controller to adapt the robot’s
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behaviour by consideration of the subject’s voluntary effort and joint

stiffness. The other control strategy employs the admittance control-

ler combined with a force controller to assist the subject to accomplish

the intended motion. Finally, the development of the EMG-driven

model is explored for estimating the continuous multiple degree-of-

freedom wrist kinematics using mirrored bilateral movement. This

model also lays the substantial groundwork for future development

for multiple DoF wrist robots.

The proposed EMG-driven musculoskeletal models provide insightful

understandings of the underlying transformation from muscle activ-

ity to the wrist joint motion intention and achieve high estimation

accuracy. This thesis first demonstrates the implementation of the

model-based control strategy for improving the performance of the

wrist rehabilitation robot. The model-based control strategy opens

up new possibilities in the field of robot-aided wrist rehabilitation.
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Chapter 1

Introduction

1.1 Background

Wrist joint contributes significantly to the functions of the upper limb for per-

forming the activities of daily lives (ADLs), experiencing multiple tasks, e.g.,

drinking, eating, and writing, throughout the day [19]. The wrist joint allows the

hand performs the object manipulation with respect to the forearm. However,

its functionalities are severely affected by the motor impairment that caused by

stroke, which is a leading cause of disability and the fourth killer in the UK. It is

reported that around 38000 people are died because of stroke and there are over

1.2 million stroke victims in the UK in 2016 [20].

Motor impairment is the most common and widely recognized impairment caused

by stroke, with respect to the significant deviation in structure of the nervous

system or a limitation in mobility [21]. The symptoms in upper limb after stroke

include weakness in the arms, a lack of coordination, a change in muscle tone,

swelling, pain, and spasticity. The functionalities of the wrist joint is reduced or

eliminated [22]. Recovery of the impairment and the related functions are the

primary goal of stroke rehabilitation [23].

Conventional wrist rehabilitation program contains the active/passive range of
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1.1 Background

Figure 1.1: Examples of wrist joint therapy: (a) Assisted movement [1]. (b)

Muscle strength training [2].

motion (RoM) training and muscle strength training protocols for post-stroke pa-

tients. Training protocols including high-intensive, repetitive and task-oriented

movements that can promote motor recovery [23]. However, the long-term re-

habilitation programs, throughout the patients’ life, are labour-intensive and

costly [24]. To tackle these issues, robot-aided therapy has grown rapidly in

the last decades. Robots hold promising advantages to deliver therapy for a long

time period in a high-intensive and precise manner [25–29].

Wrist rehabilitation robots are categorized into two types, end-effector and exo-

skeleton. The end-effector type provides prescribed motions to the patient’s wrist

joint, by asking patients hold the manipulator’s end-effector. The exoskeleton is

composed of a mechanical structure that is closely integrated with the wrist joint.

Control strategies have been broadly designed and implemented for both types,

delivering different rehabilitation tasks.

The control strategies are designated to restore the functionalities of wrist joint

and promote the motor recovery [30]. As shown in Figure 1.2, the control strategy

is divided into two categories, trajectory tracking control strategy and active as-

sistive control strategy. The trajectory tracking control guides the wrist joint

2



1.1 Background

Figure 1.2: Classifications of control strategies and motion intention estimation

for wrist rehabilitation robots

following a reference trajectory to stretch the muscles and restore the range of

motion. The active assistive control strategies are developed to provide the ro-

botic assistance to provoke motor recovery in rehabilitation programs [31–34]. It

is crucial to understand the patient’s motion intention in these control strategies.

Conventional methods for intention estimation use the force/torque sensor [5], or

combined with robot’s dynamics [35]. Nevertheless, the measured motion inten-

tion may not represent the true voluntary effort due to the inherent noise, such

as gravity, friction, and inertia. Recently, there is an increase trend in the use

of biological signals for wrist rehabilitation robots, such as electroencephalogram

(EEG) or electromyogram (EMG). The EMG signal is widely used as the signal

is recorded from the spinal cord level and is more suitable to be integrated with

the active assistive control strategies [36].
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1.2 Research motivations

The state-of-the-art EMG-based motion intention estimation approaches are mostly

based on the pattern recognition algorithm [37], and the model-free approach [38].

However, the pattern recognition algorithm is limited by its inherent discrete and

sequential features and it can not recognize continuous kinematic variables. The

model-free approaches employ the numerical transfer functions to map the EMG

signal to the corresponding motion intention, but these approaches fail to inter-

pret the underlying neuromuscular complexity. The musculoskeletal model-based

approach explicitly represents the transformations between the EMG signal and

musculoskeletal system to mimic the physiological human joint movement [39–41].

However, the use of EMG-driven musculoskeletal models for wrist rehabilitation

robots has received less attention. The application of the model-based approach

in the practical scenario is also limited by its complicated physiological paramet-

ers, resulting in a lengthy time to identify these values for each individual.

While EMG-based approaches are developed for few decades, incorporating the

EMG-based approaches for the wrist robot is still at the very beginning [42, 43].

Efforts should be made into adopting the model-based approach for the control of

wrist robots to realise more efficient and safe rehabilitation training environment.

The main motivations of this research are to develop real-time EMG-driven wrist

musculoskeletal models to provide accurate motion intention estimation while also

provides the underlying intermediate effects between the muscular and skeletal

systems. The musculoskeletal model-based approach then incorporates with the

wrist rehabilitation robot to allow for active assistive control strategies with en-

hanced efficiency and safety.
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1.3 Aims and objectives

1.3.1 Aims

The aim of this research is to develop real-time EMG-driven subject-specific mus-

culoskeletal models for the wrist joint, which models are integrated with a wrist

rehabilitation robot to improve its control performance as well as encourage active

participation and enhance safety. In specific, the aims are:

• To develop EMG-driven musculoskeletal models for estimating the motion

intention of wrist joint with high estimation performance.

• To reduce the optimization time for obtaining the subject-specific paramet-

ers in order to facilitate the clinical setup.

• To develop the musculoskeletal model-based control strategies for the wrist

rehabilitation robot to enhance the training effectiveness and safety.

1.3.2 Objectives

The objectives are divided into several steps to achieve the aims described above.

• To develop and validate the EMG-driven musculoskeletal models for estim-

ating continuous wrist flexion/extension motion.

• To evaluate the influence of the optimized parameters to the model estim-

ation performance.

• To develop a method based on the optimal control theory to enhance the

computational speed for parameter optimization.

• To incorporate the musculoskeletal model-based approach into advanced

control strategies.
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• To develop and evaluate the model-based approach for estimating the wrist

joint in two degrees of freedom (DoFs) for the prostheses application using

mirrored bilateral training strategy.

1.4 Thesis outlines

This thesis presents the work carried out in this research to achieve the aims and

objectives. The first and second objective are achieved in chapter two and six with

development of the EMG-driven musculoskeletal for estimating the continuous

wrist flexion/extension motion. The sensitivities of the model parameters are

analysed. The third objective is achieved in chapter four. A direct collocation

method is proposed to optimize the physiological parameters in the wrist EMG-

driven musculoskeletal model. The fourth objective is achieved in Chapter five.

Two active assistive control strategies are implemented for a wrist rehabilitation

robot, combined with the EMG-driven musculoskeletal model. The model is able

to identify the subject’s joint torque and joint stiffness in real-time. The last

objective is achieved in Chapter six, in which the EMG-driven musculoskeletal

model are developed to estimate the multiple DoFs of wrist joint using the mirror

bilateral movement. Part of this thesis has been either published in peer reviewed

conference and journal paper or submitted for possible publication.

In specific, this thesis are organized in the following:

Chapter one introduces the background of robot-aided wrist rehabilitation,

along with the control strategies and motion intention estimation. The motiva-

tions, aims and objectives are presented.

Chapter two present a review of the state-of-the-art wrist rehabilitation robots

and control strategies. This chapter also gives a review of the EMG-based motion
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intention approaches implemented in wrist rehabilitation robots. Terminologies

of the wrist anatomy used in the filed of robot-aided wrist rehabilitation are

introduced. Furthermore, the gap of knowledge are defined.

Chapter three presents the development of the model-based approach that is

used to estimate the continuous wrist flexion/extension movement. The underly-

ing transmitted states from EMG signal to joint kinematics are explicitly presen-

ted. To optimize the subject-specific parameters, a genetic algorithm is designed

to minimize the differences of predicted joint motion and ground truth. Further-

more, a sensitivity analysis is conducted in order to analyse the sensitivities of

the model output to the optimized parameters. This chapter contains materials

that have been published in [44]:

• Y. Zhao, Z. Zhang, Z. Li, Z. Yang, A. A. Dehghani-Sanij and S. Xie, ”An

EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Mo-

tion,” in IEEE Transactions on Neural Systems and Rehabilitation Engin-

eering, vol. 28, no. 12, pp. 3113-3120, Dec. 2020.

Chapter four presents the development of an effective parameter optimization

algorithm for the model-based approach, according to the optimal control theory.

A comparison of the computation speed is conducted with the use of genetic

algorithm for model-based approach. Result demonstrates the proposed method

require less optimization time. This chapter contains materials that have been

published in:

• Yihui Zhao, Zhiqiang Zhang, Zhenhong Li, Ahmed Asker, Abbas A. Dehghani-

Sanij and Sheng Q. Xie, “A Direct Collocation method for optimization of

EMG-driven wrist muscle musculoskeletal model”, 2021 IEEE International

Conference on Robotics and Automation, Xian, China, 30 May to 5 June

2021.
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Chapter five proposes the implementation of the musculoskeletal model-based

approach for a pneumatic muscle driven wrist robot. two control strategies, ad-

aptive cooperative control strategy and assist-as-needed control strategy, are de-

veloped. This first control strategy combines a position controller and a admit-

tance controller to adapt the robot’s behaviour by consideration of the subject’s

voluntary effort and joint stiffness. The other control strategy employs the ad-

mittance controller in combined with a force controller to assist the subject to

accomplish the intended motion. In addition, the robot’s compliance is adapted

in response to the estimated joint stiffness through the EMG-driven model. This

chapter contains materials that have been accepted for publication in:

• Yihui Zhao, Abbas A. Dehghani-Sanij and Sheng Q. Xie, “Electromyography-

based Adaptive Cooperative Control for a Wrist Orthosi”, IEEE 27th In-

ternational Conference on Mechatronics and Machine Vision in Practice

(M2VIP 2021), November 26-28, 2021, in Shanghai, China.

Chapter six investigates and validates the model-based approach that can be

used for establishing the EMG-based interface for the prostheses device. A

mirrored bilateral training is conducted to optimize the parameters for the missing

limb. The estimation performance is evaluated on the six able-bodied subjects.

This chapter contains materials that have been submitted for part of the possible

publication as:

• Yihui Zhao, Zhiqiang Zhang, Member, IEEE, Zhenhong Li, Zhixin Yang,

Abbas A. Dehghani-Sanij and Sheng Q. Xie, “An EMG-driven Musculo-

skeletal Model for Estimation of Wrist Kinematics using Mirrored Bilateral

Movement”, IEEE transaction on measurement and instrumentation. (un-

der review)

Chapter seven summarizes the research work in this thesis and presents recom-
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mendations for its further development.
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Chapter 2

Literature Review

This chapter is organized into four sections. The first section gives an overview

of the wrist anatomy and its functional range of motion. The second section

investigates the wrist rehabilitation robot and the control strategy. Two types of

wrist rehabilitation robots, end-effector type and exoskeleton are introduced re-

spectively. The control strategies are categorized into trajectory tracking control

and active assistive control strategy. The third section provides a review of the

EMG-based motion intention estimation approaches that are used for the control

of the wrist rehabilitation robot. Finally, a summary of the previous research

areas is presented. The gaps of knowledge regarding EMG-based approaches for

motion intention estimation and control strategies are discussed, which leads to

the objectives and contributions of this research.

2.1 Wrist joint

Wrist joint represents the most complex joint system in the human body. This

joint connects five metacarpal bones of the hand to the ulna and radius bones of

the forearm governed by a series of small bones, muscles and ligaments [45]. As

illustrated in Figure 2.1, these carpal bones are roughly organized into two rows:
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2.1 Wrist joint

the distal row and proximal row. The proximal row contains scaphoid, lunate,

triquetrum and pisiform. Their movements depend on the mechanical force from

surrounding articulations. The distal row is comprised of trapezium, trapezoid,

capitate and hamate. The distal row bones are tightly bound to the metacarpal

representing the carpometacarpal joint [46].

Figure 2.1: (a) Wrist anatomy. (b) Primary muscles contribute to wrist motion.

(c) Wrist kinematics.
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2.1 Wrist joint

The wrist joint motion are typically recognized as two degrees of freedom (DoFs),

including wrist flexion/extension, ulnar/radial deviation. These kinematic are

articulated at the radiocarpal joint, the midcarpal joint, the carpometacarpal

joint, and between individual carpal bones [18]. Table 2.1 gives the mean Range

of Motion (RoM) of the wrist motions.

There are several muscles crossing the wrist joint and contributing to the wrist

motion. These muscles can be grouped into flexors and extensors. Although

all muscles are capable of rotating the wrist joint, the wrist motion is primarily

articulated by the five wrist muscles, namely, flexor carpi radials (FCR), flexor

carpi ulnaris (FCU), extensor carpi radials longus and brevis (ECRL, ECRB),

and extensor carpi ulnaris (ECU).

In specific, the contraction of FCR and FCU are mainly contributing to the wrist

flexion, with assistance from the fingers flexors, palmaris longus and abductor

pollicis longus. The ECRL, ECRB, and ECU are primarily contributing to the

wrist extension, with the help of the fingers extensors. The flexors and extensors

also contribute wrist ulnar/radial deviation. Ulnar deviation is primarily caused

by the contraction of FCU and ECU. The radial deviation is caused by the con-

traction of FCR, ECRL, and ECRB.

According to the International Society of Biomechanics (ISB) recommendation,

the neural position of wrist joint is defined as in neutral flexion/extension and

neutral ulnar/radial deviation, the third metacarpal long axis is parallel with the

long axis of the radius [47]. In this thesis, the wrist flexion, ulnar deviation are

defined as the positive direction while extension and radial deviation are defined

as the negative direction.

It’s critically considered that the forearm pronation/supination belongs to the

forearm movement since this motion rotates around the forearm longitudinal

axis. This is explained by the fact that the forearm pronation/supination is ar-
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Table 2.1: mean RoMs for the wrist joint [18].

Motion Range of Motions (RoMs)

Wrist flexion/extension 85◦/-75◦

Ulnar/radial deviation 35◦/-25◦

ticulated at the distal radioulnar joint and is produced by the contraction of an

entirely different set of muscles. The pronator quadratus and pronate tere are the

primary muscles for pronation. The supinator and biceps brachii mainly contrib-

ute to the supination. Thus, wrist flexion/extension and ulnar/radial deviation

are considered as the pure wrist motion.

2.2 Wrist rehabilitation robots

2.2.1 Wrist rehabilitation

Patients after stroke or spinal cord injuries have the reduced or eliminated func-

tionality at wrist joint that affects ADLs significantly. Physical therapies are

delivered to help patients regain the motor control to perform the functional

motion tasks. Several rehabilitation training strategies have been investigated,

including the task-specific functional training, e.g., patients voluntarily perform

the standard and repetitive tasks or strengthening training with some functional

goal, [23, 48]. Other training strategies include constraint-induced movement

therapy, which requires patients to use the impaired side to perform the functional

tasks when patients while the unimpaired side is constrained [49–51]. Further-

more, bilateral training is another strategy to promote motor recovery, of which

patients are required to perform the tasks using both arms. This is because that
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2.2 Wrist rehabilitation robots

the unimpaired side is able to improve the recovery of the impaired side due to

the coupling effects between two arms [52].

2.2.2 End-effector type and exoskeleton

Wrist rehabilitation robots have been developed to alleviate the burden of the

therapists as well as deliver the rehabilitation strategy. Wrist rehabilitation ro-

bots can be classified into two types, end-effector and exoskeleton, as elaborated

in Table 2.2.

The end-effector based robots provides prescribed motions to the patient’s wrist

joint by asking patients to hold the robotic manipulator end-effector [53]. Some

examples are illustrated in Figure 2.2. MIT-MANUS [3] is one of a typical ro-

botic end-effector that is designed for wrist rehabilitation. This robot is cap-

able of providing three active DoFs for wrist movements, including wrist flex-

ion/extension, ulnar/radial deviation, and pronation/supination. Oblak et al.,

developed an end-effector, called universal haptic drive (UHD) that provides the

forearm pronation/supination in a ‘wrist’ mode [4]. By changing the offset pos-

ition of the handle bar, UHD is designed to deliver wrist flexion/extension and

ulnar/radial deviation exercise. Xu et al., developed a single DoF wrist rehab-

ilitation robot (WRed) for wrist flexion/extension[5]. The forearm is supported

by an arm holder, the wrist joint is approximate to the rotation centre of WRed.

Furthermore, Hesse et al., developed a robotic end-effector to provide the passive

and active bilateral training for forearm pronation/supination and wrist flex-

ion/extension.

Exoskeleton has the mechanical structure that mirrors the skeletal structure of the

limb. i.e., each segment of the limb associated with a joint movement is attached

to the corresponding segment of the device. Martinez et al., developed a wrist

gimbal to enable the wrist rehabilitation for 3 DoFs [7]. Two bearings supports are
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Figure 2.2: End-effector based wrist rehabilitation robots: (a) MIT-MUANS [3].

(b) Universal haptic drive [4]. (c) WRed [5].

implemented to ensure robustness and mechanical rigidity. An adjusted handle

is used to keep the subject’s wrist joint with robot’s axes of pronation/supination

and ulnar/radial deviation. Gupta et al., developed a 4-DoF Rice-Wrist for the

wrist joint [6]. a 4-DoF spherical joint is used to add the redundancy of the

system and permits large rotations. Recently, Zhang et al., developed a parallel

wrist rehabilitation robots (PWRR), which is designed according to 2 spherical-

universal-prismatic configuration [8]. It is driven by two pneumatic actuators to

provide wrist flexion/extension and ulnar/radial deviation.

Figure 2.3: Wrist exoskeletons: (a)RiceWrist [6]. (b) Wrist Gambal [7].

(c)PWRR [8].

The exoskeleton also includes wearable robots that are concerned with the ad-

vantages of portability and low-weight (Figure 2.4). The wearable exoskeleton
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allows the patients to easily don/doff. These exoskeletons are usually attached

along the dorsal side of the forearm, covering the wrist joint and hand. Wrist

flexion/extension and ulnar/radial deviation are commonly considered [54, 55].

For example, Chiaradia et al., developed a cable-driven wrist exosuit to assist the

wrist flexion movement [9]. A 3D-printed ergonomic plastic support is sewn in a

glove to reinforce the force transferred from a dc motor to the wrist joint. The soft-

ness of wrist exosuit provides a high level of comfort for the user. Choi et al., de-

veloped a soft tendon-driven wearable robots, called EXO-Wrist [10]. It provides

assistance in wrist extension, in which the tension force is provided through a wire

connected in series with a rotary motor. Exo-Wrist consists of a corset anchor to

increase the force transmission efficiency. Higuma et al., developed a low-profile

wrist exoskeleton for wrist flexion/extension and ulnar/radial deviation [11]. As

it is driven by two linear actuators that transform the force through two elastic

elements, this device meets the requirements of compactness, low weight and

flexibility. Su et al., developed a 3 DoF wrist exoskeleton [56]. A lightweight

and compact design is achieved by allocating three actuators in parallel with the

forearm while the torque outputs for assistance are still guaranteed.

Figure 2.4: Wearable wrist exoskeletons: (a) WristExoSuit [9]. (b) Exo-Wrist [10]

(c) Low profile wrist exoskeleton [11].
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2.2.3 Type of actuator

Actuators are used to provide force to drive the robots to perform desired motion.

Three types of actuators are commonly implemented for wrist rehabilitation ro-

bots including electric motors, series elastic actuators, and pneumatic actuators.

The electric motors are commonly implemented for the wrist rehabilitation ro-

bots, in which the motors are used to actuate the robotic joint directly, such as

MIT-MUANS, WRed, Wrist Gimbal. The electric motor can provide the high

torque and be easily controlled, but the electric motors are heavy and have high

impedance [34, 53].

To realise compliant actuators for wrist rehabilitation robots, pneumatic artificial

muscle (PAM) and series elastic actuators are employed. Pneumatic artificial

muscle (PAM) is a tube-like actuator that is characterized by a decrease in muscle

length when pressurized. When compressed air is applied to the interior of the

rubber tube, it contracts in length and expands radially. As the air exiting the

tube, the inner netting acts as a spring that restores the tube to its original

form. The PAM has the features of inherently compliant, lightweight, and high

power-to-weight ratio so that it is commonly utilized for wearable exoskeletons.

For example, Andrikopoulos et al., utilized PAMs for a wrist exoskeleton. Two

pairs of PAMs are placed on the dorsal and palmar side of forearm to provide two

DoF by inflating/deflating corresponding pairs of PAMs [57]. Bartlett et al., used

the PAMs, in combination with a glove and elbow sleeve to provide a soft wrist

exoskeleton [58]. The major drawback is that it is difficult to control the output

force of the PAM because of the on-linearity and hysteresis [59]. Precise control of

force output requires advanced modelling methods when using the proportional

valves.

Series elastic actuators are employed in wrist rehabilitation robots such as UHD

and the low-profile exoskeleton. Su et al [56] also developed a wrist rehabilita-
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tion with the series elastic actuator. An elastic element is used to increase the

compliance between the motor and the load, allowing for the high-performance

force control and more precise interaction with patients.

Recently, the cable-driven actuators are utilized in the wrist robots, such as Wrist

EXOsuit and EXO-wrist. This actuator has lightweight, lower inertia and high

flexibility, as the force is transmitted through cables to actuate the joint. A

smart material, shape memory alloy, is proposed as actuators for a 3 DoFs wrist

robots [60]. A constitute model is used to derive the output force of the SMA

actuator in response to the temperature, stress, strain and phase composition.
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Table 2.2: List of state-of-the-art wrist rehabilitation robots.

End-effector type

Studies DoFs Acutation Control strategies Feedback signals

MIT-MANUS [3, 25] 3 Motor Impedance controller EMG, force/torque sensor

Universal Haptive Drive [4] 2 SEA Impedance controller Potentiometer

CR2-Haptic [61] 1 Motor Trajectory tracking control Encoder

Hesse et al., [62] 1 Motor Trajectory tracking control Force sensor; Encoder

Haptic knob [26, 63] 2 Motors Impedance controller Force/torque sensor; Encoder; BCI

WRed [5] 1 Motor Admittance controller Force/torque sensor; Encoder

H.S.Nam et al., [64] 1 Motor Not specified Torque sensor

Exoskeleton

Rice-Wrist [6, 65–67] 3 Motor PD controller Force/torque sensor; Encoder

Akdogan et al., [68] 3 Motors Impedance controller encoder, torque sensor;

ARMin [69] 1 Motor Impedance controller Torque sensor; Potentiometer

PWRR [8] 2 Pneumatic actuator Not specified Magnetic sensor; pressure regulator

Squeri et al., [28] 3 Motor Impedance controller Force/Torque sensor; Encoder

WRES [70] 3 SEA Trajectory tracking control Encoder

Su et al [56] 3 SEA Impedance control Angle encoder, force encoder

Wrist Exosuit [9] 1 Motor(Cable-driven) Admittance controller Force sensor;IMU

SCRIPT [71] 1 Motor Not specified Potentiometer

EXO-Wrist [10] 1 Motor(Cable-driven) Not specified Force sensor

Higuma et al., [11] 2 Linear actuator Not specified Not specified

WEP [42] 2 Linear actuator Force control EMG

Andrikopoulos et al., [57] 2 PMA Trajectory tracking control Force sensor; Flexible sensor

Bartlett et al., [58] 2 PMA Not specified Pressure sensor

Hope et al., [60] 3 SMAA force sensor, position sensor position control

Abbreviation: SEA = series elastic actuator; PMA = pneumatic muscle;

SMAA = Shape memory alloy actuator;
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2.3 Control strategies for wrist rehabilitation

robots

The goal of wrist rehabilitation robots is to provide series of training exercises for

the stroke patient. These exercises should be task-specific, precise, robust and

safe in order to provoke the neural plasticity [72]. These standard protocols are

exerted through the control strategies, which can be categorised into trajectory

tracking control strategy and active assistive control strategy.

2.3.1 Trajectory tracking control strategy

Trajectory tracking control strategy is refereed to passive training exercise. Wrist

robots guiding the patient’s wrist joint following a predefined trajectory. The

predefined trajectory is obtained by the recommendation of the physiotherapist

and depends on the healthy subject’s RoM. The patient remains passive and does

not offer any muscular efforts. The trajectory tracking control is also referred to

as ’passive training’ in the literature.

To achieve the trajectory tracking control strategy, the proportional-integral-

derivative (PID) controller with feedback control signals, such as velocities, angle

or torque are used [73]. For example, Rice-Wrist utilized a PD controller to min-

imize the trajectory tracking errors. WRES [70] also implemented the trajectory

tracking control scheme while compensated for the effects of the gravity and the

gear motors viscous friction.

This control strategy guides the patients’ wrist joint along the predefined traject-

ory without taking into account the level of impairment. Patients may experience

discomfort because the robot does not allow them to move their wrist joints ac-

cording to their own efforts.
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2.3.2 Active assistive control strategy

Active assistive control strategies not only take account of the patients’ disability

level but also encourage the patient’s active participation in rehabilitation [72, 74].

To achieve the active assistive control strategies, impedance and admittance con-

trollers are commonly employed in order to provide assistance in response to the

patient’s intention. The impedance controller asks the robots to rend particu-

lar mass, spring and damping properties to interact with the patient’s generated

torque. In other words, robots sense the changes in motion and provide the ex-

ternal force/torque to the patient. For example, an impedance controller is used

to adjust the endpoint impedance of the MIT-MANUS, which allows the patient

to free drive the robot [3]. UHD used the impedance controller to provide the

‘patient-in-charge’ mode and ‘robot-in-charge’ mode by setting the robot with

low impedance and high impedance respectively. The patient is allowed to orient

the UHD without any resistance in ‘patient-in-charge’ mode while the patient is

passive in the ‘robot-in-charge’ mode. Squeri et al., also proposed an impedance

controller for the wrist robot [28]. The patient is asked to move the wrist robot

following a desired task. The robot increases/decreases the supported torque by

the robot as the patient’s interactive torque decreases/increases. In this manner,

the patient is encouraged to participant in the rehabilitation training exercise.

Furthermore, Su et al., proposed a cascaded impedance controller containing an

inner loop of force control and an outer loop of position control, allowing for free

movement (zero impedance) and resistance exercise by setting different stiffness

and damping parameters.

The admittance controller is also utilized in the wrist rehabilitation robots, which

provides the desired position in response to the patient’s intention. For instance,

Xu et al., proposed an admittance control for the WRed, which robot modified

the predefined reference trajectory based on the interaction torque measured by
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the torque sensor [5]. This ’patient cooperative control strategy’ can enhance the

training safety and comfort as well as engage the patient’s active participation

in rehabilitation. The wrist exosuit also utilized the admittance controller to

compute the reference motion by sensing the interaction torque generated by the

user [9].

The active assistive control strategies are also achieved through other approaches.

For example, a commercial wrist device, called Omega 7, is used to provide haptic

feedback when the patients perform the virtual tasks in the virtual reality [75].

Furthermore, several studies utilized electromyography (EMG) signal and elec-

troencephalogram (EEG) signal to trigger the assistance. Hu et al., utilized the

EMG signal to trigger a wrist robot’s assistance [33]. The assistive torque is pro-

portional to the amplitude of FCR and ECR. Ang et al., utilized the EEG signal

to initiate the physical therapy of the haptic knob for stroke patients [63].

Adaptation is an another important aspect of the human-robot interaction in

wrist rehabilitation robots. Simple impedance and admittance controllers, how-

ever, may not be capable of dealing with the time-varying capacities of the pa-

tients and may deliver the inaccurate intervention [76]. The adaptation of the

active assistive control strategy demonstrates the potential benefits of support

that can be automatically adapted to the patient’s changing needs [72]. The

adaptation can be achieved through either the modification of the trajectory or

modification of the parameters in the controller in response to the performance

criteria, e.g., tracking error or completing time. Kreb et al., proposed an adaptive

method for the MIT-MANUS. The stiffness parameter is progressively updated

based on the patient’s performance, which is evaluated through four performance

indexes [25]. Squeri et al., developed an adaptation method that the RoM of

the wrist robot is updated through a performance evaluator [28, 77]. That is,

if the patient can accomplish five consecutive trial successfully, the wrist robot
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increase it RoM for next trial. Pehlivan et al., also proposed the adaptive law

that the robot adjusts the permissible trajectory tracking errors while estimating

the patient’s contributed force during the repetitive task [66].

2.3.3 Motion intention estimation

Wrist rehabilitation robots interact with patients in both physical and cognitive

aspects, in which the human-robot interaction plays a crucial role. The interac-

tion between patients and robots provides vital information for design and ad-

aptation of active assistive control strategies. Motion intention reflects the user’s

intended action, which could be interpreted as kinematic parameters (joint posi-

tions, velocities or accelerations) or dynamic parameters (force or joint torque).

The active assistive control strategies continuously evaluate the patient’s inten-

tion in order to provide the corresponding robotic assistance. The common meth-

ods applied to estimate the motion intention, including the force/torque method

and sensorless method. The force/torque sensor is used to measure the torque

provided by the patients directly or is combined with the robotic dynamics to

estimate the intention. However, the measured signal may not truly represent

the motion intention, as it also captures the uncertain noise, e.g., friction [35].

Sensorless method is developed to extract the intention from disturbance, e.g.,

non-linear disturbance observer [67]. However, it requires a complex algorithm

which increases the computation cost. The un-modeled dynamics is another in-

fluence to identify the intention.

Recently, there are a increasing trend for using the biological signal for wrist

rehabilitation robots, such as EMG [33] and EEG [63]. The biological signal

could establish the direct link between the nervous system and patients’ motion

intention [36].
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2.4 EMG-based motion intention estimation

2.4.1 Electromyography (EMG)

Skeletal muscle contains a limited number of motor units. Each motor unit

is controlled by one nerve ending, which consists of a synaptic junction in the

ventral root of the spinal cord, a motor axon, and a neuromuscular junction in

the muscle fibres [78]. The motor unit controls from 3 muscle fibres to 2000 muscle

fibres. An active potential is propagated through nerve fibres and transmitted

down the motor axon. It reaches the neuromuscular junction and stimulates

the contraction. Therefore, the action potentials generated in the muscle fibres

of one motor unit is called a motor unit action potential (MUAP) [79]. The

superposition of the MUAPs results in the EMG signal which can be detected by

the electrode.

The electrode used for the EMG signal recording are mainly categorised into

invasive type and non-invasive type [80]. Invasive type, such as the needle, fine-

wire electrodes can provide higher precision and more specific targeting signal,

which are used to detect the deeper muscle or individuals MUAPs. However, the

invasive nature may hurdle the usability in developing rehabilitation robots. Non-

invasive types, i.e., surface electrodes are commonly utilized in the rehabilitation

field, due to their safety and ease of application.The surface electrode is used to

detect the muscle activities of the superficial muscle and gives more reproducible

results than invasive type [78]. The interest of surface EMG (sEMG) signal for

developing the human-machine interface is popular for wrist rehabilitation robots,

which is utilized to predict the joint torque or joint motion of interest [37].

There exist a time delay, namely, electromechanical delay (30 ms - 100 ms), which

is the intention can be detected in advance before the actual motion happens [81].

This advantageous feature allows the robots to respond the patients’ motion
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intention in advance.

Table 2.3 gives the current approaches for the EMG-based intention estimation

for wrist rehabilitation robots. Conventional EMG-based approaches in the wrist

rehabilitation robots are using simple sequential, on/off control methods due to

the robustness. On/off control is applied in a single DOF device with the adjusted

threshold to trigger the robot’s assistance [27, 43].

Patten recognition approach is an another approach to control the wrist rehabilit-

ation robots [42, 65, 82, 83]. This approach extracts the features of EMG signals

(feature extraction), and map to the desired motion intention (classification).

Feature extraction identifies the information from the time-domain, frequency

domain and other domains. The common features extracted from EMG signals

include mean absolute value, autoregressive coefficients, root mean square, zero

crossing or waveform length. Classification is used to map the feature vectors

or combined features to the corresponding response. Common classification al-

gorithms include support vector machine and linear discriminant analysis. For

example, Mcdonald et al., used the pattern recognition to decode the wrist move-

ment when isometric contractions of the desired tasks are preformed [65]. The

autoregressive coefficients and root-mean-square are used for feature extraction

and LDA is used as the classifier. The pattern recognition provide high classific-

ation accuracy, but degraded performance is found when the pattern recognition

is applied for patients with spinal cord injuries.

The pattern recognition approach is a discrete control method that only allows

the user to control one motion class at a time. Current research interests trend

to the continuous intention estimation [37]. The wrist rehabilitation robot should

provide the assistance related to the motion intention more intuitively.
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2.4.2 Model-free approach

The continuous motion intention estimation, which are categorised into model-

free approach and musculoskeletal model-based approach. The model-free ap-

proaches utilize the regression algorithms to estimate the motion intention, such

as wrist muscle forces, joint torque or joint position. The underlying numerical

function or parameters are trained to map the EMG signal to the desired object-

ives. For instance, Liu et al., proposed the NARX neural network to estimate the

continuous joint motion for stroke patients. The NARX neural network contains

a hidden layer with three neurons and a linear output layer with three output.

The results shows the variance accounted for 98% for all joints [38]. Furthermore,

they also used a linear and non-linear cascade regression algorithm for motion

estimation. This regression algorithm showed the potential for the real-time ap-

plication with 22 ± 0.6 ms delay, using a window length of 1024 ms and a window

increment of 32 ms [84].

Two studies demonstrated that incorporating the EMG-based intention estim-

ation into control of rehabilitation robots. Killic et al., used the time-delayed

neural network to estimate the wrist muscle force and implement a assistive con-

trol strategies on a wrist device [85]. Experiment result show that the muscle

activations of FCR and ECR are reduced in the motion task when the wrist

device is enable. Kiguchi et al., proposed a neurofuzzy modifier to estimate

weight matrix in order to determine the joint torque [86]. An impedance control-

ler is implemented in a 7 DoFs exoskeleton to provide assistance in response to

users intentions.

Model-free approaches for wrist rehabilitation robots have shown the ability to ac-

curately interpret user’s intentions. Studies also demonstrated that the potential

of the model-free approaches in combined with active assistive control strategies.

However, there are several limitations for this approach. First, a large amount
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of training data sets, including EMG signals and the associated motion data

are required to tune/train the numerical parameters/functions. In addition, the

muscle activities vary throughout the long-term rehabilitation, re-training/tuning

the model-free approaches is necessary after a certain interval. It could lead

to a time-consuming task and frustrates patients’ motivations for robot-aided

rehabilitation.

Secondly, model-free approaches interpret user’s intention by mapping the nu-

merical functions between EMG signals and the corresponding intention. The

underlying relationships between the muscular and skeletal systems are omitted.

When developing assistive control strategies, the biomechanical characteristics of

the wrist joint should be taken into account [53].

Thirdly, model-free approaches may not be able to respond to novel conditions

that are not defined in the training data sets, e.g., different postures. This is due

to the fact that differing upper-limb postures can vary the length of the muscle

fibres that generate muscle force.

2.4.3 Musculoskeletal model-based approach

The musculoskeletal model-based approach consists of simulated muscular and

skeleton system in order to model the movement of joints controlled by central

nervous system. The musculoskeletal model-based approaches represent the un-

derlying relationship between the EMG signal and joint kinematic and kinetic

characteristics, to compute the muscle force and joint moments accordingly. In

other words, the intermediate transformation from neural commands to muscular-

skeletal systems are explicitly interpreted, e.g., muscle force.

There exist many noise in the EMG signals, including the inherent noise in the

electronics equipment, ambient noise and motion artefact [80]. Therefore, the

raw EMG signal should be filtered prior to interpret the muscle activation level.
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To interpret the muscle activation level, mathematical models first take account

of a time delay for the muscle activation, such as a first-order linear differential

equation [40, 87] or a second-order differential equation [88, 89]. To address the

non-linearity between the processed EMG signal and muscle activation, a non-

linear function is used to obtain the muscle activation with respect to the EMG

signal [88, 90].

Alternatively, linear envelope approach is also used to interpret the muscle ac-

tivation, because it follows the trend of EMG signal and quite closely resemble

the shape of tension curve [78]. It is achieved by filtering the full-wave recti-

fied wave with a low-pass filter. In addition, this approach does not need the

numerical integrations of the differential equations that could reduce the compu-

tational cost. The linear envelope approach only requires few steps of common

filter configurations and could be implemented both in the digital circuit or in

software [91].

The muscle-tendon force is computed regarding to the targeted muscle and the

associated muscle activation level, which is established based on the Hill’ muscle

model. Hill proposed the Hill-type muscle model based on empirical experiments,

representing the physical and mechanical properties of muscle [92]. Muscle con-

traction and dynamic are governed by one differential equation, making the mod-

elling of the muscle computationally efficient. Hill’s muscle model consists of a

muscle fibre that is connected to a elastic tendon element. The muscle fibre in-

cludes a contractile element (CE) and a parallel elastic element (PE), which are

connected in parallel. Furthermore, some models added an elastic component in

parallel with CE and PE to characterise the viscous component [93]

The active force generated by CE when the tissue is stimulated by the neural

command, is characterised by a force-length relationship and a force-velocity

relationship [39, 88, 90, 94]. The muscle fibre produces the peak force when it at
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its optimal muscle fibre length. The force-generating property is degraded to zero

when the muscle fibre length decreases or increased to 0.5 and 1.5 of its optimal

muscle fibre length. The force-velocity curve is relate to the muscle contraction

speed to its force production, which is derived from the Hill’s equation [92].

The PE generates force when the muscle is strengthened exceed the optimal

muscle fibre length. The force-generating property of PE is characterised as an

exponential relationship.

Tendon is modelled as an elastic element and generates force when it exceed the

slack length [39, 88]. The tendon force increases as the tendon length exceeds its

slack length, representing a linear relationship to the tendon strain when tendon

strain is above a certain value [87]. However, it is reported that the real-time

performance is significant affected by the elastic tendon [95]. Together with the

explicit models of the CE, PE and tendon, the muscle-tendon force is calculated

in response to the muscle activation.

Musculoskeletal modelling technique

The musculoskeletal modelling technique, which represents the geometry of skel-

etons and complex relationships associated with the joint of interest, is used

to obtain the muscle-tendon length as well as the moment arm. Muscle-tendon

length is determined through the muscle origin and insertion. Conventionally, the

origin is the point that muscle is attached to a more stable bone. The insertion

refers to the attachment of the muscle to a more mobile bone. Moment arm is

the distance from the joint centre to the muscle’s line of action, is a function of

the muscle-tendon length. Besides, it is notable that the muscle-tendon length

and moment arm change as a function of the joint angle.

Throughout the literature, several methods for the determination of the muscle-

tendon length and moment are found. For example, Pau et al., proposed a simpli-
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fied musculoskeletal modelling technique for the elbow joint [91]. The elbow joint

is treated as a single hinge joint with a fixed centre of rotation, actuated by two

muscles. The muscle length and moment arm of triceps and biceps are obtained

using the trigonometry of the geometric schematic. However, it is oversimplified

to describe muscle and bones as straight lines which are connected from origin

to insertion point. This is because that nearly every muscle may bend or wrap

around other structures at some joints [88]. Another technique is used for the

determination of the muscle-tendon length and moment arm upon using the bio-

mechanical software, such as OpenSim [96] , SIMM [97] and AnyBody [98]. The

muscle-tendon length and moment are are determined in these software with a

well-established biomechanical model. For example, Lloyld et al., used the SIMM

to obtain the muscle-tendon length and moment arm for knee joint [94]. Ma et

al., obtained the muscle-tendon length and moment arm of lower limb based upon

the generic biomechanical model in OpenSim. The morphological data are scaled

down based on anthropometric data of the subject and kinematic data from gait

analysis experiment using the motion capture system [40]. Sartori et al., used

the cubic B-spline interpolation method to obtain the muscle-tendon length from

the OpenSim software [99].

Parameter optimization

The muscle-tendon parameters as well as the parameters for interpreting the

muscle activation level should be optimized for each individual [88]. This is be-

cause these parameters representing the characteristics of the muscular properties,

e.g., activity levels. Unlike the model-free approach, one set of the training data

is required to optimize these parameters.

The methods for parameter optimization commonly employ the heuristic al-

gorithms, e.g., genetic algorithm [91] and simulated annealing algorithm [90, 100].
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The optimization time of the musculoskeletal model is dependent upon the num-

ber of muscles of interest and joints of interest. However, lengthy optimizations

were reported in the literature, which may lead to barriers for implementing

the musculoskeletal model-based approach for rehabilitation in practice. For in-

stance, Sartori et al reported that 20 CPU hours are taken for 34 muscles in

a lower limb model using the simulated annealing algorithm [90]. Pau et al.,

reported an average one hour for each trial when the genetic algorithm to tune

24 muscle parameters for elbow flexion/extension [91]. Moreover, Crouch et al.,

reported the execution time of optimization taking approximately 20 hours in

their model using the simulated annealing algorithm [100].

EMG-driven models in wrist rehabilitation robots

There is a growing tendency toward using EMG-driven musculoskeletal models in

rehabilitation robots for the lower limb [40, 89, 90, 94, 101]. For example, Shao et

al., utilized the EMG-driven musculoskeletal model to estimate the muscle force

and joint during ankle flexion/extension for stroke patients [89]. The mode-based

approach shows the feasibility to correctly estimate the muscle force and moment

for stroke patient. Ma et al., also proposed an EMG-driven musculoskeletal model

for knee joint. Two muscles around the knee joint are used to computed the knee

joint moments during gait cycle, in which estimation accuracy achieve mean 0.9

correlation. It shows the potential of realizing real-time computation for gait

rehabilitation robot control [40]. Recently, Durandau et al., demonstrated that

the patients with post stroke, voluntarily control a lower-limb robotic exoskel-

eton [102]. Yao et al., demonstrated the model-based approach to estimate the

ankle dorsiflexion intention. A control strategy is then used to provide robotic

assistance according to model’s estimation [103].

The musculoskeletal model-based approach are also investigated to estimate the
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motion intention for the prosthesis control. For instance, Crouch et al., proposed

a musculoskeletal model-based approach to estimate the flexion/extension mo-

tion of wrist and metacarpophalangeal (MCP) joint [100]. Furthermore, they

extended their model-based approach for real-time control of a virtual cursor

during the path tracking task [104]. Blana et al., demonstrated the viability of

real-time computation of musculoskeletal model-based approach in performing

wrist and hand movement using the simulated EMG signals [105]. Sartori et al.,

first demonstrated the real-time control a wrist-hand prothesis using the muscu-

loskeletal model-based approach [106].

Despite that above studies demonstrated that the EMG-driven musculoskeletal

models provide the accurate intentions estimation and the feasibilities for real-

time application. There is a lack of studies examining the application of the

musculoskeletal model-based approach for robot-aided wrist rehabilitation. One

study is found in the literature [107]. However, they used the musculoskeletal

model-based approach to estimate the muscle-tendon parameters under isometric

conditions instead of estimating the motion intention.
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Table 2.3: Review of the EMG-based intention estimation approach for wrist rehabilitation robots

Study Application EMG

channels

DoF Approach Control

strategy im-

plemented

Notes

Khohar et

al., [42]

Wrist robot 4 2 Pattern recognition Y Classification accuracy

reaches 88% for nineteen

classes. Classification accur-

acy reaches 96% for thirteen

classes.

Song et

al., [43]

Wrist robot 2 1 Proportional Y Stroke patients: a non-

significant increase in RoM,

a significant decrease in

RMSE.

Zhang et

al., [108]

Wrist rehab HD-

EMG (89

channels)

3 Pattern recognition N High-average classification

accuracies above 95% are

achieved for most stroke

patients.
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Table 2.3. (Continued)

Study Application EMG

channels

DoF Approach Control

strategy im-

plemented

Performance

McDonald et

al., [65]

MAHI Exo-

II

8 3 Pattern recognition N Able-bodied subject: Single

DoF = 99%, Mutilple DoF

= 90%; SCI subject: Single

DoF = 85%-90%; Mutliple

DoF = 60%

Liu et

al., [38]

Exoskeleton 2 1 NARX Neural Net-

work

N VAF = 95% for either stroke

and able-bodied subjects.

Liu et

al., [84]

Exoskeleton 2 1 Linear non-linear

cascade regression

N Able-bodied subject: VAF

= 85%; Stroke patients:

VAF =85 %
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Table 2.3. (Continued)

Study Application EMG

channels

DoF Approach Control

strategy im-

plemented

Performance

Kilic et

al., [85]

Wrist

robots

2 1 Artificial neural

network

Y RMSE = 0.15 ; R2 = 0.9;

The muscle activation levels

are reduced with the robot’s

assistance.

Kiguchi et

al., [86]

Exoskeleton 6 3 Neurofuzzy modi-

fier

Y The impedance properties of

an impedance controller ac-

cording to the posture; The

muscle activation levels are

reduced with robot’s assist-

ance
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Table 2.3. (Continued)

Study Application EMG

channels

DoF Approach Control

strategy im-

plemented

Performance

Crouch et

al., [100]

Prothesis 2 1 Model-based N Able-bodied subject: mean r

= 0.94 in single DoF; r =

0.75 in simultaneous move-

ment. Amputated subject: r

= 0.92 in single DoF ; r =

0.75 in simultaneous move-

ment.

Sartori et

al., [106]

Prothesis 8 3 Model-based Y They demonstrate the used

of musculoskeletal model-

based approach for real-time

control of a prosthesis.
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Table 2.3. (Continued)

Study Application EMG

channels

DoF Approach Control

strategy im-

plemented

Performance

Blana et

al., [105]

Prothesis Simulated 3 Model-based N Using the musculoskeletal

model-based approach to

simulate the American Sign

Language

Colacino et

al., [107]

Wrist

Rehab

4 1 Model-based N Using the musculoskeletal

model to estimate the

muscle-tendon parameters

under isometric contrac-

tions.

Abbreviations. VAF = variance accounted for. RMSE = root-mean-square error. R2 = correlation of determination.
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2.5 Discussion

Wrist rehabilitation robots have been widely developed in the last decades. To-

gether with the trajectory control strategies and active assistive control strategies,

the robot-aided rehabilitation provide significant benefits for the patients with

stroke or other spinal cord injuries. The motion intention estimation plays an

crucial role in the active assistive control strategies. Current intention estimation

methods are based on the force/torque sensor or sensorless method. However, the

force/torque sensor may not interpret the patient’s interacted torque accurately.

The signal also contains noise from the uncertain dynamics of the wrist robot,

such as friction. Saadatzi et al., reported that utilising an inverse dynamic tech-

nique for intention estimation with appropriate wrist robot’s parameters resulted

in a 20% average inaccuracy [35]. To overcome this limitation, the EMG signal

is applied to establish a direct link from the central nervous system or muscles

to patients’ intentions. Such a biological signal can intuitively estimate the in-

tention directly from muscle activities, and it is more generalizable to a variety

of wrist robots. This thesis focuses on the development of the EMG-driven mus-

culoskeletal models for robot-aided wrist rehabilitation including the estimation

of motion intentions and control of a wrist rehabilitation robot.

2.5.1 Gap of knowledge

Current EMG-based motion intention estimation for wrist rehabilitation robots

are based on the pattern recognition, as shown in Table 2.3. The pattern re-

gression only allows the user to control one motion class sequentially and it can

not recognise the continuous kinematic variables, e,g., joint acceleration. Con-

tinuously evaluation of the motion intention is the key to achieve smooth control

of the wrist rehabilitation robot [109]. Several studies developed model-free ap-
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proaches for continuous intention estimation. However, the major drawback of

these approaches is that the underlying transformations from neural signals to

muscular states are omitted. These biomechanical properties provide valuable

insights into wrist joint movements as well as may achieve higher estimation

accuracy. The EMG-driven musculoskeletal model is a promising approach to

estimate motion intentions. It consists of sub-models to explicitly recognize the

wrist joint movement in accordance with neural signals and muscle contractions.

It is found that the EMG-driven musculoskeletal model-based approach for robot-

aided wrist rehabilitation is received less attention. Although many achievements

have been already made in the lower extremities [89, 90] and prosthesis [104–106],

there is a lack of studies evaluating the model-based approach for wrist joint.

In addition, the real-time implementation of the EMG-driven musculoskeletal

model is limited by the integration of the muscle fibre length at each iteration

(numerical stiffness) [95]. We will adopt the EMG-driven musculoskeletal model

for the wrist joint to achieve accurate motion intention prediction and to realize

real-time computation.

Another challenge is found that the optimization procedure to identify the subject-

specific parameters requires a long optimization time for each individual, as re-

ported in the literature [90, 91, 100]. This lengthy procedure may discourage the

user’s participation and hurdles the implementation of the model-based approach

in practical scenario. To overcome this limitation, we will develop an optimization

method for the wrist musculoskeletal model in order to obtain the subject-specific

parameters effectively.

Throughout the literature, incorporating the EMG-based intention estimation

method for control of the wrist robot is at an early stage. Few studies implement

the EMG-based intention estimation for control of wrist rehabilitation robots,

based on the pattern recognition [42], proportional control [43] and model-free
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approach [85, 86]. However, the former two approaches determine the robot as-

sistance according to the discrete motion class or the simple amplitude, and the

model-free approaches only interpret the extent of the muscular effort. It is sug-

gested that the inclusion of the biomechanical characteristics, e.g., joint stiffness,

for the active assistive control strategies can achieve more intuitive human-robot

interaction and enhance training efficiency and safety [53, 110–112]. These meth-

ods fail to fulfil the consideration of joint stiffness for wrist rehabilitation robots.

To fill the gap of knowledge, we will provide a solution to estimate the wrist joint

stiffness in real-time, and we will develop the active control strategy based on

the EMG-driven musculoskeletal model for a wrist exoskeleton. To the authors’

best knowledge, the model-based control strategies have not been implemented

for real-time control of the wrist rehabilitation robot.

2.6 Chapter summary

The chapter first introduces the wrist biomechanical characteristics and the re-

habilitation for the wrist joint. In the second section, the state-of-the-art wrist

rehabilitation robots are investigated, which can be classified into end-effector

type and exoskeleton. The control strategies for the wrist rehabilitation robots

are reported. These control strategies include the trajectory tracking control

strategy and active assistive control strategy. The trajectory tracking control

strategy is designed to deliver precise, repetitive tasks, while the active assist-

ive control strategy is designed to engage the patient’s active participation and

provide robotic assistance. Most of the active assistive control strategies are im-

plemented through the impedance and control controller based on the estimated

user’s intention. To recognize the motion intention more intuitively, the EMG

signal is used in the field of wrist rehabilitation.
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The last sections give a review of the current EMG-based motion estimation

approach for the wrist rehabilitation robots. Most of the current approaches

are using the model-free approach that mapping the EMG signal to the desired

motion intention. However, the model-free approaches ignore the underlying

muscular and skeleton effects. In contrast, the musculoskeletal model-based ap-

proaches take accounts into the internal transformation from neural commands

to the muscular-skeleton systems, which provides the motion estimation more

closer to physical wrist motion. a workflow of the EMG-driven musculoskeletal

model-based approach is presented. The gaps of knowledge regarding EMG-

based intention estimation and control strategies are discussed, which identify

the further objectives and contributions of the development of the EMG-driven

musculoskeletal models for robot-aided wrist rehabilitation.
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Chapter 3

An EMG driven Musculoskeletal model

for Estimating the Continuous wrist

motion

This chapter presents the development of the EMG-driven musculoskeletal model

for estimating the motion intention. EMG-based continuous wrist joint inten-

tion estimation has been identified as a promising technique with huge potential

in assistive robots [37]. Conventional data-driven model-free methods tend to

establish the relationship between the EMG signal and wrist motion using ma-

chine learning or deep learning techniques, but cannot interpret the functional

relationship between neuro-commands and relevant joint motion. This model in-

terprets the muscle activation levels from EMG signals. A muscle-tendon model

is developed to compute the muscle force during the voluntary flexion/extension

movement, and a joint kinematic model is established to estimate the continuous

wrist motion. To optimize the subject-specific physiological parameters, a genetic

algorithm is designed offline to minimize the differences of joint motion prediction

from the musculoskeletal model and joint motion measurement using motion data

during training. Furthermore, a sensitivity is also conduced to investigate the ef-
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fects of each parameters to the model estimation performance. Results show that

mean root-mean-square-errors are 10.08◦, 10.33◦, 13.22◦, and 17.59◦ for flexion,

extension, continuous cycle, and random motion trials, respectively. The mean

coefficient of determination is over 0.9 for all the motion trials.

3.1 Introduction

Estimating human joint motion is critical for the human-machine interfaces (HMIs)

that can respond to users’ intentions accurately and promptly [113]. This is due

to the fact that electromyogram signal (EMG)-based HMIs have prospective ad-

vantages in estimating human intention:

1) The use of non-invasive electrodes to capture EMG can interpret the muscle

activities (superficial muscle) precisely;

2) EMG signal can be detected ahead of actual motion about 10-100ms, which

enables estimate intended action in real-time [114];

3) EMG-based HMIs allow users to control the assistive robot more intuitively

and smoothly [115].

EMG-based continuous limb motion estimation approaches can be categorized

into two subsets, model-free approach and model-based approach.

For model-free approaches, they involve machine learning techniques, mapping

the relationship between EMG signals and the desired motion by the numer-

ical functions. Several artificial neural network methods are applied to estimate

continuous motion for the human upper limb. For example, Lei proposed a back-

propagation (BP) neural network to estimate continuous elbow motion [116]. The

BP neural network has three layers, of which a tansig function and a pureli func-

tion are used for the hidden layer and output layer respectively. Côté-Allard et

al., developed a deep learning algorithms to recognise hand gestures [117]. Never-
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theless, model-free approaches have some limitations. It is a ‘black box’ method,

employing a general map function rather than explicitly revealing the functional

relationships between neuro-commands and the corresponding joint motion. A

large amount of data sets containing EMG signals as well as the related motions

is required to train the transfer function in order to interpret the accurate estim-

ation with given EMG signals. In addition, model-free approaches may not be

able to respond to novel motions that are not defined in the training sets.

To provide the explicit representation between the EMG signal and joint kin-

etic and kinematic characteristics and reduce the acquirement of training data,

model-based approaches have been widely applied to estimate the users’ intention.

These approaches estimate the continuous limb motion through an EMG-driven

musculoskeletal model. For example, Pau et al., proposed a simplified geometric

model together with a musculoskeletal model to estimate the continuous motion

of the elbow joint [91]. A musculoskeletal model was employed to simulate the

shoulder and elbow joint motion in real-time using a passive damper to avoid the

numerical stiffness [118]. Blana et al., proposed the implicit formulation of the

musculoskeletal model in order to drive the wrist/hand motion in real-time [105].

However, their models’ parameters are adapted from the existed biomechanical

models and have not taken the subject-specificity into account. Crouch et al.,

developed a musculoskeletal model using subject-specific parameters to estim-

ate the flexion/extension motion of wrist joint and metacarpophalangeal (MCP)

joint [100]. Nevertheless, using few muscles to establish the musculoskeletal model

may over-estimate the physiological parameters, i.e., the parameters may exceed

the physiological range when these muscles are assumed to be the only muscle

groups contributing to the joint motion. In [100], the subject-specific parameters

exceeded the physiological range largely, because they have only used two wrist

muscles to estimate the wrist flexion/extension motion.
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In this chapter, we propose a model-based approach to estimate the wrist con-

tinuous joint motion. The main contributions of this chapter include:

1) Five primary wrist muscles are grouped into flexor/extensor to avoid over-

estimating parameters;

2) According to the selected muscle groups, a musculoskeletal model including

a muscle-tendon model and a joint kinematic model is derived to estimate the

continuous wrist flexion/extension motion. Assuming the tendon is rigid, the

numerical stiffness of the muscle-tendon model is alleviated.;

3) A parameter optimization algorithm is designed and implemented to tune the

parameters within the physiological range by minimizing the differences of joint

motion between the model’s estimation and the measured data.

The remaining chapter is arranged as follows. Section 3.2 details the EMG-driven

musculoskeletal model-based approach. Section 3.5 describes the data acquisition

and experiment protocol. Section 3.3 discusses the method for optimization of

physiological parameters and sensitivity analysis. Experiment results and discus-

sion are presented in 3.6 and 3.7 respectively. Final section gives conclusion and

future work.

3.2 Methods

In the single degree of freedom (DoF) configuration, five primary wrist muscles

are grouped as wrist flexor extensor. The flexor digitorum superficialis (FDS) and

extensor digitorum (ED) are excluded due to these muscles mainly contribute to

the metacarpophalangeal (MCP) joint motion. Therefore, the five main wrist

muscles (i = 1, 2, . . . , 5) are described in following:

1) Flexor (i = 1, 2) includes Flexor Carpi Radialis (FCR) and Flexor Carpi

Ulnaris (FCU);
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2) Extensor (i = 3, 4, 5) includes Extensor Carpi Radialis Longus (ECRL), Ex-

tensor Carpi Radialis Brevis (ECRB) and Extensor Carpi Ulnaris (ECU).

The wrist joint motion is computed by a muscle activation interpretation method,

a muscle-tendon model and a joint kinematic modelling technique. Muscle ac-

tivation interpretation method computes the muscle activation levels from EMG

signals. The muscle-tendon model estimates the muscle-tendon force regarding

the force-length/velocity relationships and muscle activation levels, based on the

Hill’s muscle modelling technique. Then the joint kinematic modelling technique

is developed to determine the muscle tendon length and moment arms against

joint angle and computes the joint motion using forward dynamics. A parameter

optimization algorithm is developed to tune the physiological parameters. In the

rest of this section, we will explain how to estimate the wrist joint motion using

the proposed model.

3.2.1 Muscle activation interpretation method

To interpret the muscle activation level of each muscle during the wrist motion,

the EMG signals are processed through a non-linear equation. To remove the

DC offset and artefact noise, the raw EMG signals are first filtered by a 4nd or-

der Butterworth band-pass filter at cut-off frequencies between 25 Hz and 450

Hz and then fully rectified. The rectified signals are low-pass filtered to obtain

the characteristics of EMG to muscle force relation through a 4th order Butter-

worth low-pass filter at a corner frequency of 4 Hz,according to [88]. Filtered

signals are normalized by dividing the peak value of isometric maximum volun-

tary contraction (IMVC). Resultant EMG signal ui(t) has the range of 0 to 1.

Furthermore, the following equation takes account of the non-linear relationship

between pre-processed signal ui(t) and muscle activation ai(t)

ai(t) = eAui(t) − 1
eA − 1 (3.1)
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where non-linear shape factor A has the range of highly non-linearity (-3) to

linearity (0.01) [119].

3.2.2 Muscle-tendon model

Figure 3.1: Schematic of Hill’s type muscle model.

The Hill’s modelling technique is used to compute the muscle-tendon force

Fmt
i , which consists of a elastic tendon in series with a muscle fibre. The muscle

fibre includes a contractile element (CE) in parallel with passive elastic element

(PE). Figure 3.1 illustrates the schematic of the Hill’s type muscle model, of which

lmti , lmi and lti are the muscle-tendon length, muscle fibre length and tendon slack

length respectively. Pennation angle φi is the angle between the orientation of the

muscle fibre and tendon, and the pennation angle at current muscle fibre length

is calculated by

φi = sin−1
(
lmo,i sinφo,i

lmi

)
(3.2)

where lmo,i and φo,i represent the optimal muscle fibre length and the optimal

pennation angle respectively. Besides, a scale coefficient kmti is introduced to
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account the difference of the muscle-tendon length across subjects. The muscle

fibre length is then represented as

lmi = (kmti lmti − lti)cos−1φi. (3.3)

The Fmt
i is the summation of the active force FCE,i and the passive force FPE,i,

which can be written as

Fmt
i = (FCE,i + FPE,i) cosφi. (3.4)

The FCE,i is the active force generated by CE, which can be written as

FCE,i = Fm
o,ifa(l

m

i,a)f(vi)ai(t) (3.5)

where Fm
o,i is the maximum isometric force. The function fa(·) represents the

active force-length relationship at different muscle fibre length and muscle activ-

ations, as illustrated as the blue curve in Figure 3.2. The mathematical form is

written as

fa(l
m

i,a) = e−(lmi,a−1)2k−1 (3.6)

of which

l
m

i,a = lmi /(lmo,i(λ(1− ai(t)) + 1) (3.7)

where lmi,a is the normalized muscle fibre length with respect to the corresponding

activation levels. is and λ is a constant, which is set to 0.15 [94]. The k is a

constant to approximate the force-length relationship, which is set to 0.45 [120].

As shown in Figure 3.3, the function f(vi) represents the force-velocity relation-

ship between the lmi and the normalized contraction velocity vi [121]

f(vi) =


0.3(vi+1)
−vi+0.3 vi ≤ 0

2.34vi+0.039
1.3vi+0.039 vi > 0

(3.8)
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Figure 3.2: Normalised force-length re-

lationships for the muscle fibre.
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Figure 3.3: Normalised force-velocity re-

lationship for the muscle fibre.

where vi = vi/vo,i. vo,i represents the maximum contraction velocity, which is set

to 10 lmo,i/sec [87]. The vi is computed through the time derivative of the muscle

fibre length. In specific, differentiating equation (3.3) with respect to time yields

kmti vmt = vti + vicosφi −
dφi
dt
lmi sinφi (3.9)

rewriting and differentiating the equation (3.2) gives

lmi sinφi = lmo,i sinφo,i (3.10)

φ̇i = − vi sinφi
lmi cosφi

(3.11)

substituting equation (3.11) into equation (3.9) yields

kmti vmt = vti + vi
cosφi

(3.12)

where vti is equal to zero as the the tendon element is assumed to be rigid enough.

Therefore, the muscle fibre velocity is equal to

vi = kmti vmt cosφi (3.13)
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Note that the passive force FPE is the forced produced by the passive elastic

element, obtained by

FPE,i =

 0 lmi ≤ lmo,i

fp(l
m

i )Fm
o,i lmi > lmo,i

(3.14)

where l
m

i = lmi /l
m
o,i indicates the normalized muscle fibre length. The fp(·) is

illustrated as the orange curve in Figure 3.2, in the form of

fp(l
m

i ) =e
10(lmi −1)

e5 . (3.15)

3.2.3 Joint kinematic modelling technique

The single joint configuration is used in this chapter. Therefore, the muscle-

tendon length lmti and moment arm ri against wrist joint angle are obtained using

the polynomial equation (the Fourier equations) and the scale coefficient [122].

Table 3.1 gives the coefficients for each muscle. The mean fitting accuracy is over

0.98.

lmti (θ) = a0 + a1cos(θω1) + b1sin(θω1) (3.16)

ri(θ) = c0 +
2∑
i=1

cicos(iθω2) + di ∗ sin(iθω2)

The joint torque of each muscle can be calculated as

Mi = Fmt
i ri. (3.17)

Therefore, the total joint torque during wrist motion is written as

τ =
2∑
i=1

Mflexor,i −
5∑
i=3

MExtensor,i (3.18)

where Mflexor,i and Mextensor,i represent the flexor torque and extensor torque,

respectively.

50



3.2 Methods

Table 3.1: Regression coefficients for muscle-tendon length and moment arm

Muscle-tendon length lmti Moment arm ri

a0 a1 b1 ω1 c0 c1 d1 c2 d2 ω2

FCR 0.2982 0.01423 -0.03854 0.3874 0.0119 0.003831 0.001774 -0.0008396 0.0001208 1.286

FCU 0.2628 0.04982 -0.06095 0.2454 0.01463 0.0001644 0.003642 8.152e-05 -0.0007975 1.286

ECRL -0.1317 0.4661 0.1343 0.07499 -0.01081 0.0008298 0.00358 0.0003497 -0.001045 1.286

ECRB 0.2371 0.04893 0.0622 0.2138 -0.01248 - 0.0007674 0.003978 0 0 0.597

ECU 0.2905 -0.0001401 0.005483 1.213 0.003555 - 0.01009 - 0.004209 0.0003308 0.002431 0.9968

Figure 3.4: Muscle activation interpretation methods gives muscle activation

levels of each muscle, muscle-tendon force is computed by a muscle-tendon model,

and the joint kinematic estimation model estimates the muscle-tendon length,

moment arm and the wrist joint motion θ. The physiological parameters, e.g,.

optimal muscle fibre length lmo,i, tendon length lti, maximum muscle force Fm
o,i and

optimal pennation angle φi are optimized using the GA algorithm.

The muscle activation level does not have a directly relationship with the joint

motion, it is necessary to compute joint acceleration using the forward dynam-

ics. As shown in Figure 3.4, an initial joint angle is given, the current states of

muscle-tendon length and moment arm are calculated. Then the muscle length
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and muscle-tendon force are obtained according to equation (3.3) and (3.4).

Therefore, the joint moment is calculated, and the current state of joint acceler-

ation is obtained and integrated to joint angle.

To obtain the joint acceleration, the wrist joint is assumed to be a single hinge

joint, the palm and fingers are assumed to be a rigid segment rotating around

wrist joint in the sagittal plane. Thus, the joint acceleration is computed through

the forward dynamics:

θ̈ = τ −mgLsin(θ)− Cθ̇
I

(3.19)

where θ̈ is the angular acceleration. τ is derived from equation (3.18). I is the

moment of inertia of hand, which is equal to mL2 +Ip. Ip is the moment of inertia

at the principal axis which is parallel to the wrist flexion/extension axis [123]. m

and L are the mass of hand segment and the length between rotation centre to

hand’s centre of mass, which are measured from subjects. θ and θ̇ are the wrist

joint angle and angular velocity respectively. C is the damping coefficient rep-

resenting the elastic and viscous effects from tendon, ligaments [124]. Therefore,

the EMG-driven musculoskeletal model for the wrist joint motion estimation in

discrete time can be written as

θ̇t+1 = θ̇t + θ̈t∆t (3.20)

θt+1 = θt + θ̇t∆t

where ∆t is the sampling time, and θ̇t and θt are the angular velocity and joint

angle at time t.

3.3 Parameter optimization

According to the previous sections, several parameters are used to compute the

muscle-tendon force and joint moment. These muscle-tendon parameters in the
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proposed model, e.g., maximum isomeric muscle force, optimal fibre length, ten-

don length and optimal pennation angle are difficult to measure in vivo and varies

between the age, gender. Thus, these parameters are required to be optimized for

each subject. The initial guess and the physiological boundaries of the muscle-

tendon parameters are chosen according to [125] and [126], which are presented

in Table 3.2. The boundaries of maximum isometric force are set to ±50% of the

initial guess since the variation of the physiological cross-sectional area (PCSA)

are varied significantly across subjects. The parameters combined into a vector,

which is represented as

χ = [Fm
o,i, l

m
o,i, l

t
o,i, φi, k

mt
i , A]T (3.21)

The estimation of χ can be written as

χ̂ = arg min
χ
{f(χ)} (3.22)

where

f(χ) =

√√√√ 1
N

N∑
n=1

(θ − θ̂) (3.23)

where θ and θ̂ are the measured joint angle and estimated joint angle respectively,

and N is the number of samples.

Genetic algorithm (GA) is used to find out the best match of the subject-specific

parameters. GA is commonly implemented in the musculoskeletal model [91]. It

can evaluate multiple solutions in the search space, and reduce the risk of falling

into a local minima. GA mimics the nature evolutionary process by represent-

ing the muscle-tendon parameters as a ‘chromosome’. This algorithm randomly

generates a set of possible solutions for the joint kinematic modelling technique.

The objective function evaluates the “fitness” of each possible solution at each

generation and reaches the best set of parameters iteratively.
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Table 3.2: Boundary conditions of the parameters

Parameters (units) Bounds

Maximum isometric muscle force Fm
o,i (N) [initial guess±50%]

Optimal muscle fibre length lmo,i (m) [initial guess±0.010]

Tendon length lti (m) [initial guess±0.010]

Optimal pennation angle φo,i (rad) [initial guess±5%]

Non-linear shape factor A [-3,0.01]

Scale coefficient kmti [0.9,1.2]

3.4 Sensitivity analysis

After the parameter optimization, a sensitivity analysis is conducted to invest-

igate the sensitivities of the model output to the optimized muscle-tendon para-

meters. The sensitivity can be calculated by [127]:

SIj = (Mj,pret −Mopt)/Mopt

(Pj,pret − Pj,opt)/Pj,opt
(3.24)

where Mj,pret and Mopt represent the perturbed model output and optimal model

output respectively. Pj,pert and Pj,opt are the jth perturbed parameter and the

jth optimized parameter in the proposed model respectively. The muscle-tendon

lengths and moment arms are also included.

To evaluate the effects of each parameters to the model output, optimal muscle

fibre length, tendon length and optimal pennation angle are perturbed by ±10%

of the initial value. The maximum isometric forces are perturbed by ±20% due

to the large variety of PCSA across subjects. The sensitivity coefficient SIj is

used for comparison between parameters.
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3.5 Experiment

The experiment is approved by the MaPS and Engineering Joint Faculty Research

Ethics Committee of the University of Leeds (MEEC 18-002). Eight subjects

participate in this experiment (six males and two females), between the age of

25 and 31. The consent forms are signed by all subjects. The subject’s weight

data and the length of their hand are measured prior to experiment, in order to

calculate the moment of inertia of the hand.

Figure 3.5: Experimental setup 16 reflective markers are attached on subject’s

right upper limb. Electrodes are placed on five primary muscles of wrist joint

including FCR, FCU, ECU, ECRL and ECRB.

EMG data acquisition

Delsys TrignoTM system is used to record the raw EMG signals. The sampling

rate of EMG signals is 2000 Hz. Avanti electrodes are placed over five wrist

muscles over right forearm, according to section 3.2. The placement of electrodes

is placed following SENIAM recommendation [128] and palpation.
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Motion Capture system

The trajectory data is captured through the motion capture system (VICON

Motion Systems Ltd. UK) at 250 Hz. 16 reflective markers are placed on the

subject’s right upper limb. Markers are allocated over the spinous process of the

7th and the 10th thoracic vertabra, right scapula, xiphoid, acromio-clavicular joint,

clavicle, lateral/medial humerus medial epicondyle, right radial/ulnar styloid,

middle forearm and the right third metacarpus. The kinematic data and EMG

data are synchronized using a trigger module via the VICON nexus software. The

wrist joint angle is computed from VICON upper limb model [129].

Experiment setup

Subjects are asked to seat on the armchair while torso is fully straight, right

shoulder is abducted at 90◦ and elbow is flexed at 90◦, as shown in Figure 3.5.

Their forearm and hand are fully relaxed and the position of hand is set as the

neutral position (θ = 0◦). The subject’s arm is shaved and skin is cleaned up

using an alcohol wipe in order to minimize the artefact and impedance of the

electrodes. The quality of the signal is checked visually before the experiment.

The IMVCs and the static anatomical posture of each subject are also recorded.

Four sets of wrist movement are performed whilst the MCP joint is keeping full

extension to reduce the effects of digit muscles during the experiment. Wrist

movement speed is not constrained. Furthermore, the subjects are informed to

avoid the ulnar/radial deviation and the experimental data with radial/ulnar

deviation are excluded.

The wrist motion trials include:

1) Flexion motion, which move the wrist towards to the palm side and then

return to neutral position.
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2) Extension motion, which starts from neutral position, move the wrist towards

to the back-hand side and then return to neutral position.

3) Continuous cycle motion requires to perform consecutive wrist flexion/extension

motion. Starting from neutral position, and then move the wrist to either flex-

ion/extension direction, and finally return to neutral position.

4) Random motion is based on the subject’s intention. They are asked to move

their wrist freely in varying amplitudes and at varying speed.

The resultant motion data are low-pass filtered and set as the reference. Five

repetitive trials are performed for each movement and a three minute break is

given between each trial to prevent muscle fatigue. The first continuous cycle

trial is selected as a training trial to optimize the parameters. The remaining

four continuous cycle motion trials and all flexion/extension motion and random

motion trials are used for validation. Each flexion/extension motion trial and

the training trial lasts for 2-5 seconds while the continuous cycle/random motion

trial lasts for about 15-20 seconds.

3.6 Results

3.6.1 Verification of EMG-driven model

The proposed model is verified by the validation sets using the root-mean-square-

error (RMSE) and the coefficient of determination (R2). RMSE and R2 indicate

the difference in terms of amplitude and correlation between the estimated joint

angles/velocities and reference respectively. Table 3.3 and Fig. 3.7 summarizes

the mean RMSEs and R2 of the experimental motion trials across all subjects.

The random motion trials of subject 2 and subject 3 are excluded due to the

unacceptable noise captured in the experiment. In this study, the mean RMSE
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and R2 of the random motion trials are calculated using the remaining subjects’

data.

Predefined motion

The results of one single flexion/extension and one continuous cycle trial of sub-

ject four are illustrated in Figure 3.8 and Figure 3.9 respectively. In each subfig-

ure, joint angle (top panel) and joint velocity (bottom panel) denote the estimated

results compared with the experimental measurement. The results of the single

flexion/extension trials indicate the model can estimate the correct motion ac-

cording to the measured EMG signals. Furthermore, the results of the pre-defined

trials shows the proposed model with the optimized muscle-tendon parameters

can estimate the wrist flexion/extension motion accurately.
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Figure 3.6: Representative examples of the recorded EMG signal. Left: female

subject; right: male subject.
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Figure 3.7: Mean R2 across subjects in the flexion (mean R2 = 0.95), extension

(mean R2 = 0.94), continuous cycle motion (CCT, mean R2 = 0.96) and random

motion (mean R2 = 0.91) with the standard deviation.
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Figure 3.8: Representative example of the estimated results (red dashed line)

and the reference (black line) of single flexion (R2 = 0.985,RMSE = 7.79◦),

single extension (R2 = 0.971,RMSE = 8.49◦). In each panel, the estimated joint

angle (top figure) and joint velocity (bottom figure) are presented.
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Figure 3.9: Representative example of the estimated results (red dashed line)

and the reference (black line) of continuous cycle motion (R2 = 0.972,RMSE =

13.27◦) and random motion (R2 = 0.875,RMSE = 14.87◦). In each panel, the

estimated joint angle (top figure) and joint velocity (bottom figure) are presented.

Random motion

The results of random motion trials denote that the proposed model can provide

the accurate estimation in trend (mean R2 = 0.91), but the amplitudes deviate

from the reference (mean RMSE = 17.59◦). Additional estimation performance

of subject six and eight are illustrated in Fig. 3.10 and Fig. 3.11, respectively.

3.6.2 Parameters Identification

The subject-specific parameters are identified by GA. Table 3.4 presents the vari-

ation of the optimized parameters together with the initial guess (left column) of

subject five. The deviations of the optimal fibre length, tendon length, optimal

pennation angle and muscle-tendon length scaler are small from the initial guess

(max 7.46% in ECRL). The maximum isometric forces deviate largely from the

initial value. The optimized non-linear shape factor A is -2.716.
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Figure 3.10: Representative example of estimation result of one random trial in

subject six. The R2 and RMSE are 0.962 and 13.5◦ respectively.
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Figure 3.11: Representative example of estimation result of one random trial in

subject eight. The R2 and RMSE are 0.937 and 14.6◦ respectively.
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Table 3.3: Mean RMSE (deg) in validation trials

Trial

Subject Flexion Extension Continuos cycle Random

S1
Mean 12.49 14.39 13.48 15.06

Std. 1.11 6.57 1.70 1.72

S2
Mean 3.54 8.50 14.45 Null

Std. 0.91 5.14 3.51 Null

S3
Mean 12.71 7.93 9.40 Null

Std. 3.05 2.55 1.15 Null

S4
Mean 9.59 9.01 15.64 14.94

Std. 2.66 2.00 3.61 5.38

S5
Mean 8.08 10.27 8.59 26.63

Std. 2.23 1.90 1.38 8.77

S6
Mean 6.50 15.85 15.47 17.79

Std. 1.48 5.49 2.97 4.85

S7
Mean 16.91 9.03 15.50 12.99

Std. 2.32 0.91 2.58 0.42

S8
Mean 10.80 7.69 13.25 18.13

Std. 1.66 0.75 1.88 1.00

Trials mean 10.08 10.33 13.22 17.59

Std. 4.13 3.08 2.77 4.41

Std. = standard deviation
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Table 3.4: Representative example of the optimized parameters

Parameter index

lmo,i (m) Fm
o,i (N) lti (m) φo,i (rad) kmti

Muscle index Initial Variation Initial Variation Initial Variation Initial Variation Initial Variation

FCR 0.062 101.40% 407 68.96% 0.24 103.90% 0.05 102.38% 1 96.38%

FCU 0.051 100.78% 479 92.33% 0.26 100.85% 0.2 99.73% 1 97.87%

ECRL 0.081 98.38% 337 73.77% 0.24 104.02% 0 NaN1 1 96.47%

ECRB 0.058 99.73% 252 136.03% 0.22 99.47% 0.16 97.79% 1 92.54%

ECU 0.062 98.86% 192 139.28% 0.2285 96.46% 0.06 96.61% 1 94.88%

1 The denominator is zero. The optimized pennation angle of ECRL is 0.0399 rad.

3.6.3 Sensitivity analysis

To evaluate the sensitivities of the optimized parameters, the results of the sensit-

ivity analysis of the optimized parameters is presented. Figure 3.12 and Table 3.5

illustrate the sensitivity coefficient of each parameters, of which the SI of the non-

linear shape factor A is 0.3134. The muscle-tendon length and tendon length have

significant effects on the model output. The muscle fibre length, maximum iso-

metric force and the moment arm have moderate effects on the model output.

However, the optimal pennation angle show very low SI.

Table 3.5: Sensitivity coefficients (SI) of the optimized parameters

FCR FCU ECRL ECRB ECU

Value SI Value SI Value SI Value SI Value SI

lmo,i (m) 0.0629 0.89 0.0514 0.55 0.080 0.12 0.058 0.33 0.0613 0.032

Fm
o,i (N) 280.65 0.45 442.27 0.54 248.60 0.081 342.79 0.44 267.42 0.018

lti (m) 0.249 11.00 0.262 20.46 0.249 5.01 0.219 19.12 0.2204 1.95

φo,i 0.0511 0.00059 0.199 0.019 0.0399 0.00039 0.157 0.005 0.0580 -2.5E-05

lmti 22.97 49.88 17.23 22.48 13.79

ri 0.35 0.44 0.02 0.24 0.01
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Figure 3.12: Sensitivity analysis of the muscle-tendon parameters of each muscle.

3.7 Discussion

Model’s performance

In this chapter, the experiments are conducted to evaluate the accuracy and

tracking performance of the proposed model for the estimation of the continuous

wrist joint flexion/extension motion. The estimated joint angles of all motion

trials are highly correlated to the reference elucidate that the proposed EMG-

driven model can respond to the subjects’ intention accurately according to the

given EMG signals. The EMG-driven model shows its capability to maintaining

high performance (mean R2 = 0.91) in terms of the varying rotating velocities

and different range of motions.

The RMSEs are similar in the single flexion/extension trials but increase in the

continuous cycle motion and random motion trials. The estimation errors may be

caused by the crosstalk and the muscle co-activation that generates small muscle

force during the wrist flexion/extension motion. Recently, high-density surface
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EMG is used to collect the high-resolution signals over the forearm. Therefore,

the spatial distribution of the muscle activities can be identified and clustered to

increase the fidelity of the EMG signals [130]. Furthermore, the passive tendon

force is largely different in wrist flexion/extension motion which also results in

estimation errors. Nevertheless, it is preferred to estimate the joint motion with

greater R2 rather than the RMSE for the application of EMG-based HMIs in

assistive robots [131]. This is because the EMG-driven musculoskeletal is an open-

loop estimation model. In practical, the close-loop control strategies are employed

in HMIs. The estimation errors can be reduced through adding feedback signals,

e.g., using a Kalman filter [132] or an error estimation model [41]. Furthermore,

the proprioceptive output from the muscle spindle model or the force feedback

from the Glogi tendon organ model may also have potential as the feedback

signals in the EMG-driven model [133].

Comparison with literature

The proposed model is compared with the models [91] and [100], which estimate

the singe degree-of-freedom joint motion through the open-loop musculoskeletal

model. The proposed model shows better performance in the continuous cycle

motion and random motion compared with [91], whose method has the mean

RMSEs of 22◦ and 22.4◦ for continuous cycle motion and random motion re-

spectively. The mean RMSE of single elbow flexion/extension is smaller than the

proposed model. However, they have tuned each trial four times and selected the

smallest RMSE. The lumped-parameter model shows the mean correlation of 0.94

for the wrist random motion trials of the able-bodied subjects [100]. However,

the optimized parameters are over-estimated, e.g., the optimal muscle length and

maximum isometric muscle force is their model.
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Parameters of the EMG-driven model

The optimized parameters are constrained within the physiological range, as

shown in Table 3.4. The proposed EMG-driven model uses five primary muscles

of wrist joint [106], the effects of finger flexor/extensor are minimized by keeping

the thumb and digits relaxed. The tendon length and the optimal muscle fibre

length deviate slightly from the initial guess, indicating these parameters are not

over-estimated.

According to the results of the sensitivity analysis, the proposed model has very

low sensitivity to the pennation angle (SI ≈ 10−3), which is consistent with [134].

The model output has moderate sensitivities to optimal fibre length, maximum

isometric force, moment arm and non-linear shape factor. The sensitivities of

the tendon length and the muscle-tendon length are very high in the proposed

model, because these parameters influence the muscle fibre length with regard

to the joint angle. This suggests that the muscle-tendon force is affected by the

muscle-tendon properties except for the optimal pennation angle.

Using the regression algorithms to estimate the muscle-tendon length can only

represent the average value from cadaver studies. State-of-the-art methods to

determine the muscle-tendon length include using the biomechanical model API,

e.g., OpenSim [96], or the highly accurate estimation model [99]. Nevertheless,

using the regression algorithms to compute the muscle-tendon length can ease the

computational burden when the musculoskeletal model is used in real-time [133].

The exclusion of the elastic tendon can also reduce the computational cost through

alleviating the numerical stiffness in the muscle-tendon model. The wrist muscles

have smaller ratios of tendon length to muscle fiber length, which has less effects

to the muscle-tendon force output [87]. When elastic tendon is considered, the

forward integration of the muscle fibre length at each iteration are required. How-

ever, if a(t) and f(a) are close to zero, this equation becomes to numerically stiff.
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To address this issue, other approaches have used a passive damper which is mod-

elled in parallel with the CE to avoid computing the infinite muscle contraction

velocity in the muscle-tendon model [118], or have used the implicit formula-

tion of the musculoskeletal model to reduce the numerical stiffness [105, 133].

Nevertheless, the proposed model shows similar results in terms of R2 compared

with [133], by assuming the tendon is rigid without increasing the computational

complexity.

Genetic algorithm is used for the Hill’s muscle model and can avoid local minima

using the physiological constraints. The average optimization time is around half

an hour. The optimization time can be further reduced by reducing the number

of parameters for optimization based on the sensitivity analysis, e.g., optimal

pennation angle.

Offline computation time

The processing time of the proposed model is measured by executing a 20-second

continuous trial [100]. The mean computation time for the muscle activation

interpretation method, the muscle-tendon model and the joint kinematic mod-

elling technique are 68 ms, 390 ms and 690 ms respectively. The program is

executed on a personal PC with quad-core processing unit (4.2GHz) and 16GB

of RAM memory. The overall computation time of the proposed model indicates

that it is feasible for real-time implementation, according to the real-time control

constraints.

Limitations and future work

The proposed EMG-driven musculoskeletal model is experimentally verified on

wrist flexion/extension motion. Nevertheless, there are several limitations. Firstly,

the grouped five primary muscles not only have the contributions to wrist flex-
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ion/extension, but also to other DoFs, i.e., ulnar/radial deviation.

Secondly, the proposed model has been validated on healthy subjects.Patients

with neurological discords, e.g., stroke patients, have abnormal EMG patterns

when performing daily activities. For example, Nizamis et al., demonstrated

that Duchenne muscular dystrophy patients have a higher activation level than

the healthy subjects when perform wrist motion [130]. Nevertheless, the EMG-

driven musculoskeletal model shows the potential to estimate the motion intention

for the stroke patients at the lower limb [89, 102]. Future work will carry on

evaluating the performance of the proposed model for patients.

Future work includes the qualitative evaluation of real-time application of the

proposed model into our wrist rehabilitation robot [12]. In addition, the model

will be extended to estimate continuous wrist motion with multiple DoFs.

3.8 Chapter summary

This chapter proposes an EMG-driven musculoskeletal model to estimate the con-

tinuous wrist motion. Muscle activation levels are calculated from five superficial

wrist muscles. Together with the muscle activation levels and musculoskeletal

model, the muscle-tendon model computes the muscle-tendon force. The con-

tinuous wrist flexion/extension motion is obtained through the joint kinematic

modelling technique. The genetic algorithm is developed and implemented to ob-

tain the subject-specific physiological parameters. In addition, the muscle-tendon

parameters are bounded within the physiological range. The proposed musculo-

skeletal model shows an accurate estimation in the wrist flexion/extension motion

with the mean R2 of 0.9 for all the motion trials. The mean RMSEs are 10.08◦,

10.33◦, 13.22◦ and 17.59◦ for single flexion/extension, continuous cycle and ran-

dom motion trials, respectively.

68



3.8 Chapter summary

Only calibration trial is used for each subject, which is selected from the continu-

ous cycle trial. This indicates that the musculoskeletal model-based approach

can facilitate the rehabilitation setup since only a few training data are required.

To meet the real-time application requirement, the tendon element is assumed to

be stiff enough. This setting can significantly reduce the computational burden

by alleviating the numerical stiffness in the muscle-tendon models. Furthermore,

the design of the interactive control strategies for the wrist rehabilitation robots

can benefit from the use of the musculoskeletal model-based approach due to it

reveals the underlying states of the muscular and skeleton states and estimates

the motion intention accurately.
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Chapter 4

A Direct Collocation Method for

optimization of EMG-driven Wrist

musculoskeletal model

This chapter presents the new method for the subject-specific parameter optim-

ization for the EMG-driven musculoskeletal model. The EMG-driven musculo-

skeletal model has been broadly used to detect human intention in rehabilitation

robots. This approach computes muscle-tendon force and translates it to the

joint kinematics. However, the muscle-tendon parameters are difficult to measure

in vivo and are varied across subjects. A direct collocation method is proposed to

optimize the subject-specific parameters in the wrist musculoskeletal model. The

resultant optimized parameters are used to estimate the wrist flexion/extension

motion. The estimation accuracy is compared with the parameters optimized

by the genetic algorithm. Experiment results show that the direct collocation

method has a similar estimation accuracy compared with using the genetic al-

gorithm, the mean correlations are 0.96 and 0.93 for the genetic algorithm and

direct collocation method respectively. Besides, using the direction collocation

method requires less optimization time (75 seconds) thus indicates the potential
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use for the clinical scenario.

4.1 Introduction

Decoding the user’s intention based on the electromyography (EMG) signal can

provide an intuitive control strategies for rehabilitation robots. The interests in

using the EMG-driven musculoskeletal (EMG-MS) model to estimate the joint

motion have risen recently [39, 102]. This approach uses the muscle activation

dynamics and muscle-tendon model to transfer the EMG signals to the muscle-

tendon force accordingly [119]. Together with the explicit representation of the

joint geometries, the joint kinematics are computed [91, 100]. Nevertheless, the

output of the EMG-driven musculoskeletal model is influenced by the muscle-

tendon parameters significantly, i.e., maximum isometric force, optimal muscle

fibre length, tendon length and pennation angle [135, 136]. It is difficult to

measure these parameters in vivo and these parameters are closely related to

gender, age and activity levels. Thus, these parameters must be optimized in

order to create a subject-specific EMG-MS model for each individual.

Several methods are proposed to optimize the muscle-tendon parameters in the

musculoskeletal model-based approach [91, 100, 137, 138]. For example, a linear

scaled method is proposed. The muscle-tendon parameters are linearly scaled in

response to the anatomical dimension obtained from a motion capture system. A

reference biomechanical model then is used to scale the musculoskeletal anthro-

pometric properties are scaled to different subjects [137]. However, this method

has scaled the subject-specific parameters from the user’s anatomical data solely,

which has the less accuracy in intention estimation. To date, the inverse (or

forward) dynamics methods are used to optimize the subject-specific paramet-

ers, which minimize the difference between the experimental measurement and
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the model estimated joint moment/motion [91, 100, 139]. The resultant para-

meter optimization problems are commonly solved by the heuristic algorithms,

e.g., genetic algorithm, to find the best ’fitness’ to minimize the targeted object-

ive function. However, due to a large amount of muscle-tendon parameters and

the corresponding large search space, the heuristic algorithms may require a long

optimization time that leads to barriers for implementing the EMG-MS model in

the clinical environment [140]. For instance, an average optimization time of 20

hours was reported in a lower limb EMG-MS model for estimating the multiple

degrees-of-freedom joint moments [90]. Pau et al., used the genetic algorithm to

optimize 24 muscle parameters in an EMG-MS model, which took an average one

hour for each trial [91]. Moreover, Crouch et al., reported the execution time

of optimization taking approximately 20 hours in a lumped-parameter EMG-MS

model using the simulated annealing algorithm [100].

To alleviate the optimization time, the parameter optimization problem can be

solved by formulating the EMG-MS model into an optimal control problem [141].

However, solving the optimal control problem using the indirect method is also

computationally expensive [142]. Instead, the direct collocation method is a

computationally efficient method in finding the solutions in the EMG-MS model

related problems. Recently, the direct collocation method becomes popular to

determine the muscle activities [143], internal joint contact force [144] or the

optimal trajectories [145]. With a given movement and EMG signals, the dir-

ect collocation method is able to determine the muscle-tendon parameters. Fa-

lisse et al. applied the direct collocation method to estimate the optimal tendon

slack length and the optimal muscle fibre length by minimizing the joint moment

between model’s estimation and measured joint moment in a lower limb muscu-

loskeletal model [146]. However, they only optimize two kinds of muscle-tendon

parameters and compared them with the linear scaled method.
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This chapter proposes a direct collocation method to optimize the muscle-tendon

parameters in a wrist joint musculoskeletal model, which includes maximum iso-

metric force, optimal muscle fibre length, tendon length and pennation angle. For

this purpose, a wrist joint EMG-MS model is formulated into an optimal control

problem and converts it into a non-linear programming (NLP) problem. A vec-

tor including the discretized state variables, control variables and muscle-tendon

parameters is generated. In order to determine the muscle-tendon parameters,

the control variables are set the input EMG signals during the optimization.

A gradient matrix of a objective function and a Jacobian matrix of constraints

are established for the NLP solver. The optimized parameters are then applied

for the wrist EMG-MS model to estimate the continuous wrist flexion/extension

motion. Based on the same objective function, maximum iteration number and

stop criteria, the estimation performance through the direct collocation method

is compared with the genetic algorithm. Results show that the optimized para-

meters by the direct collocation method can estimate the wrist flexion/extension

accurately. Under the same performance, the direct collocation method requires

less optimization time.

The remaining sections of this chapter are organized as follows. In section 4.2,

the experiment protocol are presented. Section 4.3 gives the description of para-

meter optimization using genetic algorithm and the direct collocation method

respectively. Section 4.5 gives the results regarding the optimized muscle-tendon

parameters and the comparison with the genetic algorithm, followed by a conclu-

sion in Section 4.6.
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4.2 Experimental protocol

In this chapter, the EMG and motion data are selected from the continuous

wrist flexion/extension trial in Chapter three. The continuous motion trial

lasts about 15-20 seconds and five repetitions are performed for each subject.

Detailed description for the experimental protocol can be found in section 3.5

in Chapter three. One cycle of the continuous wrist flexion/extension motion is

extracted from the first trial in order to optimize the parameters using the direct

collocation method and genetic algorithm respectively. The remaining motion

trials are used to validate and compare the estimation performance between the

direct collocation method and genetic algorithm.

4.3 EMG-MS model

Similar to the previous chapter, the EMG-MS model in this chapter is used to

estimate the flexion/extension motion of the wrist joint, which comprises the

muscle activation dynamics, muscle-tendon dynamics, and joint kinematic es-

timation model. The dynamic equations should be differentiable in the direct

collocation method. For a fair comparison, the EMG-MS model is the same for

both optimization methods.

Muscle activation dynamics

The raw EMG signals are first filtered using a 2nd order butterworth band-pass

filter at cut-off frequencies between 25 Hz and 450 Hz to remove baseline and

artefact noise, and then fully rectified. The rectified signals are then low-pass

filtered using 4th order butterworth low-pass filter at a corner frequency of 4 Hz.

Filtered signals are normalized by dividing the peak value of isometric maximum

voluntary contraction, resulting the enveloped signal ei(t). A first order differ-
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ential equation is used to compute the muscle excitation si(t), which is written

as [105]:
dsi(t)
dt

= (ei(t)
tact

+ 1− ei(t)
tdeact

)(ei(t)− si(t)) (4.1)

where the tact and tdeact are the activation time and deactivation time, are set to

15 ms and 50 ms respectively [121]. A non-linear function is used to transfer the

ei(t) to muscle activation ai(t), which is represented as [119]:

ai(t) = eAsi(t) − 1
eA − 1 (4.2)

where the non-linear shape factor A has the range of -3 to 0.01.

Muscle-tendon model

The muscle-tendon force Fmt
i is computed by the muscle-tendon model, compris-

ing a tendon in series with a muscle fibre. The muscle fibre includes a contractile

element (CE) in parallel with passive elastic element (PE). Thus the Fmt
i can

be derived by the the summation of the active force FCE,i and the passive force

FPE,i, which can be written as,

Fmt
i = (FCE,i + FPE,i) cosφi. (4.3)

where the FCE,i and FPE,i are

FCE,i = Fm
o,ifa(

lmi
lmo,i(λ(1− ai(t)) + 1))f(vi)ai(t) (4.4)

FPE,i = Fm
o,ifp(

lmi
lo,i

) (4.5)

where φi is the pennation angele in response to current muscle contraction state.

Fm
o,i indicates the maximum isometric force. lmi and lmo,i are the muscle fibre length

and optimal muscle fibre length respectively. λ is set to 0.15 in this study. The

equations of pennation angle and active/passive force-length relationships are the

same in the previous chapter. Additionally, two simplification are made in this
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study for calculation of the derivatives for the direct collocation method. First,

the f(vi) is set to 1 in this study. Second, the muscle tendon force Fmt
i is fully

derived by the variation of the lmi , in which the tendon length is assumed to be

constant in this study. Therefore, the muscle fibre length lmi is computed through

lmi = (lmti − lti)cos−1φi (4.6)

where lmti are lti are the muscle-tendon length, tendon length respectively.

Joint kinematic estimation

In this study, the joint kinematics is computed by the coordinate relative to the

wrist joint, where is located at the mid of the radial and ulnar bones. It is

assumed that the hand is a rigid segment and is rotated around the joint centre

in the sagittal plane. Thus, the equation of motion is written as

Iθ̈ +mgLsinθ + Cv̇ = τ (4.7)

where I is the moment of inertia of hand. θ̈ is the angular acceleration. m

and L represent the mass of subject’s hand and the length of the hand. θ and v̇

represent the wrist joint angle and angular velocity respectively. C is the damping

coefficient representing the elastic and viscous effects from tendon, ligaments. τ

is the joint torque, which is calculated by (i = 1 . . . 5):

τ =
2∑
i=1

Mflexor,i −
5∑
i=3

Mextensor,i (4.8)

where Mflexor,i and Mextensor,i represent joint torque computed by the wrist flexor

and extensor respectively.

Mi = Fmt
i ri. (4.9)
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The lmt and ri are obtained using the Fourier equations, which are differentiable.

lmti = b0 + bncos(nwθ) (4.10)

ri = d0 +
2∑

n=1
dncos(nwθ) + hnsin(nwθ)

where the coefficient bi, di and hi are the regression coefficients. Then, the wrist

joint motion can be estimated through the EMG-MS model through the forward

dynamics.

4.4 Parameters optimization

To establish the subject-specific EMG-MS model, the muscle-tendon parameters

including the optimal muscle fibre length, tendon slack length, maximum iso-

metric force, and pennation angle are optimized for each subject. The non-shape

factor A is also included. For the direct collocation method and genetic algorithm,

the parameters can be represented in a form of

p = [FmT

o,i , l
mT

o,i , l
tT

o,i, φ
T
o,i, A] (4.11)

where p is a parameter vector used in both optimization methods. This parameter

optimization problem is solved by an objective function. The objective function

is written as

Ψ =
∫ tf

t1
(θmeasured − θestimated)2dt (4.12)

where θmeasured and θestimated represent the measured joint angle and estimated

joint angle respectively. The t1 and tf represent the initial time and end time

respectively. Furthermore, the boundary conditions of parameters for both op-
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timization method are set as

10 ≤ Fm
o,i(N) ≤ 1000;

0.06 ≤ lmo,i(m) ≤ 0.1;

0.2 ≤ lti(m) ≤ 0.4;

0 ≤ φo,i(rad) ≤ π

2 ;

−3 ≤ A ≤ 0.01. (4.13)

4.4.1 Genetic algorithm

In the previous chapter, the genetic algorithm is applied for parameter optim-

ization. Results suggest that, together with the parameters optimized through

the genetic algorithm, the EMG-MS model can provide the precise wrist flex-

ion/extension motion estimation. The genetic algorithm mimics the natural

Figure 4.1: Flowchart of the genetic algorithm for parameter optimization.

evolutionary process by representing the parameters as a ‘chromosome’. The

algorithm randomly generates a set of possible solutions (population) for this

parameter optimization problem. The best fitness (selection) at each generation

to generate the “offspring” (crossover and mutation). The best set of parameters

can be reached iteratively. It can evaluate multiple solutions in the search space,

and reduced the risk of falling into local minima. Thus, to determine the best

match of the subject-specific parameters, the objective function can be rewritten
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as

p̂ = arg min
p
{Ψ(p)} (4.14)

where p̂ is the optimized parameters. In this study, the MATLAB GLOBAL

optimization toolbox is used to solve this optimization problem. The tolerance is

set to 1 × e−4 and the maximum iteration number is set to 1000, other settings

are set to the default value.

4.4.2 Direct Collocation Method

In this section, a transcription method is introduced to convert the the optimal

control problem into the finite-dimension NLP problem, which treats the controls,

states and static parameter p as an unknown vector [141]. Thus, the direct

collocation is used to optimize the parameters.

In specific, the wrist EMG-MS model has the enveloped EMG signals ei(t) as the

control variables

u(t) = [ei(t)]. (4.15)

The state variables contain the joint angle θ, velocity v and muscle excitation

si(t), which can be represented by

x(t) = [θ, v, si(t)]. (4.16)

The static parameter is

p = [FmT

o,i , l
mT

o,i , l
tT

o,i, φ
T
o,i, A]. (4.17)

Therefore, the objective function can be rewritten as

Ψ =
∫ tf

t1
(θmeasured − θestimated(x(t), u(t), p))2dt (4.18)
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Figure 4.2: Flowchart illustrates the processes for the parameters optimization

using the direct collocation method. The controls, states are discretized for the

IPOPT solver. The optimal solution is solved that the objective function is

minimized.

The control variables and state variables are discretized simultaneously into num-

ber of grid points N with respect to the time history. We use a vector Y to

combine the discretized controls, discretized states,

Y = [xT1 , uT1 , xT2 , uT2 , xT1 , uT1 , . . . , xTN , uTN , p],

0 = t1 < t2 < t3 < · · · < tN = tf (4.19)

where N is the number of grid points. We add the the parameter vector p the

end of Y for optimization.

80



4.4 Parameters optimization

Constraints and boundary conditions

Figure 4.3: Transcription method for the wrist EMG-MS model. At each grid,

the system dynamics should satisfy constraints.

The wrist EMG-MS mode can be rewritten as the system dynamics, including

the muscle activation dynamics, muscle-tendon mode and joint kinematic model

f(x, ẋ, u, p) =


θ̇ − v

Iv̇ +mgl sin(θ) + Cv − τ

ṡi − (ei − si)( ei

tact
+ 1−ei

tdeact
)

(4.20)

where θ̇k, v̇k and ṡi,k represent the derivatives of the state variables.

The states, control and static parameters at each grid should satisfy the con-

straints that are imposed by the system dynamics [147]. Thus, the system dy-

namics are converted into the equality constraints using the finite differential

approximation. The mid-point rule is used this study.

ck = f(xk+1 + xk
2 ,

xk+1 − xk
tk+1 − tk

,
uk+1 + uk

2 , p) = 0 (4.21)

k = 1, 2, 3 . . . N − 1;
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where ck represents the equality constraints at each grid. Furthermore, task

constraints are also used to restrict that the motion is consistent with measured

data at the initial and end condition.

si(t0) = 0;

θ(t0) = θ(tf ) = 0;

v(t0) = v(tf ) = 0; (4.22)

In addition to equation (4.13), we introduce two additional boundary conditions

for the controls and states,

0 ≤ ei, si ≤ 1;

−70◦ ≤ θ ≤ 70◦; (4.23)

The boundary conditions for the direct collocation method are reformulated as

UB = {xU(t1), uU(t1), xU(t2), uU(t2), . . . , pU}

LB = {xL(t1), uL(t1), xL(t2), uL(t2), . . . , pL} (4.24)

Where the UB and LB represent the upper bound and lower bound respectively.

Note that the length of boundary conditions should be the same as the discretized

parameter vector Y .

Implementation

After the transcription, this parameter optimization problem contains 7 states

variable (2 joint kinematics and 5 muscle activations), 5 controls variables (5

enveloped EMG signals) and 21 static parameters. The optimization trial is

discretized into 101 equal interval (N = 101), which results 12× 101 + 21 = 1233

variables in vector Y and 7× (101− 1) + 10 = 710 equality constraints.
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4.4 Parameters optimization

To enhance the computational efficiency, the gradient matrix G of the objective

function and the Jacobian matrix J of the constraints are calculated, which are

written as

G = ∂Ψ
∂Y

=



∂Ψ
∂Y1

∂Ψ
∂Y2
...
∂Ψ

∂YN−1

∂Ψ
∂YN


(4.25)

J =



∂c1
∂Y1

∂c1
∂Y2

· · · · · · ∂c1
∂YN

∂c2
∂Y1

. . . . . . . . . ∂c2
∂YN... . . . . . . . . . ...

∂ck

∂Y1
∂ck

∂ck
· · · · · · ∂ck

∂YN


(4.26)

In addition, the partial derivatives of the constraint functions with respect to the

static parameters are written as

[− ∂τ

∂Fm
o,i

T

,− ∂τ

∂lmo,i

T

,− ∂τ

∂lto,i

T

,− ∂τ

∂φo,i

T

] (4.27)

This NLP problem can be solved by the standard solver. In this study, an IPOPT

is chosen as it is insensitive to the initial guess. The IPOPT solver is set with the

Hessian matrix approximation, and the tolerance is also set to 1 × e−4 and the

maximum iteration number is set to 1000. Other settings are remaining default.

The genetic algorithm and the direct collocation method are executed using the

MATLAB R2020a on the PC with quad-core (4.2 GHz) and 32 G RAM.

4.4.3 Jacobian matrix of the constraints

The Jacobian of the constraints with respect to the variables results in a large

sparse matrix In this sparse matrix, the constraints ware the function of two

adjacent grids, as the controls, states are obtained through the mid-point rule.
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4.5 Results and discussion

As illustrated in Figure 4.4, the sparse matrix include 700 × 1233 = 863100

elements, but only 5910 are non-zeros elements. The dense blocks indicate the

partial derivatives of constraints with respect to the controls, states and static

parameters.

In detail, the black circle presents a 7-by-12 matrix that describes the non-zero

elements of the Jacobian matrix at a single grid. The first row indicates the partial

derivatives of motion dynamics with respect to the kinematic state variables, θ

and v. The second row contains the partial derivatives of the muscle-tendon

model (equation (4.3) – (4.9)) with respect to the state variable v. The last

5 rows are the piratical derivatives of muscle activation levels (equation (4.1))

with respect to the muscle excitation si(t) and the enveloped EMG signals ei(t).

Besides, the last 10 rows (circled in yellow) represent the task constraints at the

beginning and end of the optimization trial. The last 21 columns (circled in red)

are also non-zero elements which represent the partial derivatives of the constraint

functions with respect to the static parameters.

The Jacobian matrix can be easily solved in the NLP solver, the sparse structure

can improve the computation performance.

4.5 Results and discussion

4.5.1 Verification of the optimized parameters

The optimized parameters through the direct collocation method and the genetic

algorithm are verified using the remaining wrist continuous flexion/extension tri-

als. Root-mean-square-error (RMSE) and coefficient of determination (R2) are

used to evaluate the estimation performance compared with the measured joint

trajectories. Hereinafter, the optimized parameters through the genetic algorithm

and direct collocation method are referred as GA-based parameters and DC-based
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4.5 Results and discussion

Figure 4.4: The Jacobian matrix is computed for the direct collocation method,

comprising 5190 non-zero elements for N = 101. The row and column repres-

ents the constraints and discretized parameter Y respectively. The top figure

indicates the Jacobian matrix at a single grid, which comprising 19 non-zeros ele-

ments. Each non-zero elements correspond to the derivatives of the constraints

to the controls and states. In addition, the non-zero elements related to the task

constraints and static parameters are circled in yellow and red respectively.
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4.5 Results and discussion

parameters in the following sections.

Figure 4.5: Comparison of estimation performance using two different optim-

ization methods in one representative subject. Correlations are 0.98 and 0.96

respectively.

Figure 4.5 and Figure 4.6 illustrate the estimation accuracy with the optimized

parameters using two different methods in two subjects. In each figure, the first

panel is the estimation when the genetic algorithm is applied. The second panel

is the estimation when the direct collocation method is applied. The bottom

figure corresponds to the enveloped EMG signals (bottom figure) ei(t). The

R2 (R2 > 0.9) are similar in both subjects, but RMSE increases from 0.25 rad

to 0.32 rad in the Figure 4.5 and from 0.17 rad to 0.23 rad in the Figure 4.6,

respectively, when the DC-based parameters are applied.

Figure 4.7 illustrates the mean R2 across all subjects. The mean R2 are 0.93 and

0.96 for the DC-based parameters and GA-based parameters, respectively. The

correlation of the DC-based parameters is slightly less than the genetic algorithm

based but overall R2 is high (R2 > 0.9). Fig 4.8 presents mean RMSE across

subjects, which are 0.27 rad and 0.38 rad for the GA-based parameters and DC-
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Figure 4.6: Comparison of estimation performance using two different optim-

ization methods in one representative subject. Correlations are 0.97 and 0.95

respectively.

S1 S2 S3 S4 S5

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Direction collocation

Genetic algorithm

Figure 4.7: The mean R2 across all subjects are 0.93 and 0.96 for DC-based

parameters and GA-based parameters respectively.

based parameters respectively.

Both methods can offer the EMG-MS model with optimal parameters that ac-

curately estimate continuous wrist flexion/extension motion. However, the mean
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Figure 4.8: The mean RMSE across all subjects are 0.38 rad and 0.27 rad for

direct collocation method and genetic algorithm, respectively.

RMSE of the genetic algorithm is less than the DC-based parameters, which indic-

ates using the genetic algorithm can provide a better motion estimation in terms

of the amplitude of wrist flexion/extension motion. The differences in RMSE

between two methods may be caused by the difference of the optimized para-

meters. Both methods cannot determine the unique optimized parameters due

to a large search space that is presented in equation (4.13). This indicates that

the proposed method may be trapped in the local minimal, whereas the genetic

algorithm shows the capability to reduce the risk to be trapped in local minima.

This leads to different optimized parameters. For instance, the muscle-tendon

force is sensitive to these parameters, which results in different joint kinematics

accordingly. To prevent the proposed method is trapped in the local minimal,

future work can apply different initial guesses for the optimization to reduce the

risk to be trapped in local minima [142]. Nevertheless, it is worthy to note that

the high RMSE is commonly occurred in most of the EMG-MS models, even using

the genetic algorithm. This is because the EMG-driven model is an ‘open-loop’

estimation model. Moreover, the EMG signal are an non-stationary signal and
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4.5 Results and discussion

the subject cannot perform the same muscle activation level in one trial, e.g., the

muscle activation levels in Figure 4.5.

Table 4.1: Comparison of the optimized parameters of one representative subject

using two different optimization methods.

Fm
o,i(N) lmo,i (m) lto,i (m) φi (rad)

Muscles Var.(GA) Var.(DC) Var.(GA) Var.(DC) Var.(GA) Var.(DC) Var.(GA) Var. (DC)

FCR 135.72% 117.90% 149.75% 138.48% 104.20% 123.73% 60.51% 213.86%

FCU 59.28% 98.42% 100.06% 131.07% 132.41% 140.37% 166.97% 132.24%

ECRL 49.32% 111.44% 130.01% 153.34% 111.55% 113.95% 2051.60 % 1796.20%

ECRB 27.82 % 164.67 % 121.74% 150.53% 106.42% 126.64% 146.58% 10.14%

ECU 247.95% 261.04% 129.25% 135.87% 167.47% 133.10% 225.18% 243.52%

Var. = variation. GA = genetic algorithm. DC = direct collocation method.

Fm
o,i = maximum isometric force. lmo,i = optimal muscle fibre length.

lto,i = tendon length. φo,i = optimal pennation angle.

The variations of the optimized parameters of one representative subjects with

respect to the initial value are listed in Table 4.1. The variations of the non-linear

shape factor A are 67.825% and 4.21% for GA-based parameters and DC-based

parameters respectively. The optimized optimal muscle length, tendon length and

pennation angle increase in both approaches, compared with the initial value. The

most deviations occur at the pennation angle. However, due to the sensitivity

analysis in the previous chapter, the optimal pennation angle has less effects

on the muscle-tendon force output. In addition, the muscle-tendon length and

optimal muscle fibre length are increased after optimization for both methods,

which affect the muscle-tendon force output significantly [135, 136]. The most

difference between the two parameter sets is the optimized maximum isometric

force of the FCR, FCU and ECRB. In GA-based parameters, these parameters

decreased significantly while they are increased when direct collocation method
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4.5 Results and discussion

is used.

4.5.2 Computational performances

Table 4.2: Computation performances (mean) of two difference methods

time (second) R2 RMSE(rad)

Genetic algorithm 1697 0.96 0.27

Direct collocation 75 0.93 0.38

Both optimization methods are run several times within the limited maximum

number of iterations (iterations = 1000) to calculate the mean optimization time.

The best value of the objective function are selected using the same stop criteria

(tolerance = 1 × e−4). Table 4.2 presents the mean computation time for the

genetic algorithm and the direct collocation method. The most prominent dif-

ference between the genetic algorithm and the direct collocation method is the

computation time, which are 1697 s and 75 s respectively. The optimization time

using the direct collocation method is significantly reduced. This is because that

the proposed method simultaneously estimates the solution at all node points.

Furthermore, the large sparse constraint Jacobian matrix is used, which can be

easily computed in the NLP problem [147].

This studies has several limitations: 1) only one optimization technique is com-

pared in this study. We will include more heuristic algorithms for this parameter

optimization problem in future. 2) the static parameters are non-zero elements

allocated at the end of each row in Jacobian matrix. Further improvement in

computational speed may be obtained by treating the muscle-tendon parameters

as controls, then these controls are adding into each block. A special constraint

is then used to ensure that the control remains constant through the iterations.
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4.6 Chapter summary

4.6 Chapter summary

In this chapter, the direct collocation method is proposed to optimize the subject-

specific parameters in the wrist EMG-MS model. After formulating the wrist

EMG-MS model into an optimal control problem, a transcription method is used

to transcribe it to a non-linear programming problem by discretizing the control

variables and state variables into discretized grid. By adding the parameters into

the unknown vectors, the subject-specific parameters can be optimized through

the IPOPT solver.

The optimized parameters using the direct collocation collocation method are

verified through the wrist EMG-MS model and compared to the optimized para-

meters using the genetic algorithm. Experimental results indicate both methods

can estimate the wrist flexion/extension motion with high correlations, but the

RMSE is higher when the DC-based parameters are used.

The aim of this chapter is to use the direct collocation method for the reduction

of the optimization time for the wrist EMG-MS model. The computational speed

is significantly greater than the genetic algorithm, which the optimization time

are 1697 s and 75 s for the direct collocation method and the genetic algorithm

respectively. This suggests that the direct collocation method has the potential

to be utilized in the clinical setting.
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Chapter 5

EMG-driven Model-based Control for a

Wrist Exoskeleton

This chapter presents the use of the EMG-driven musculoskeletal model to in-

corporate with the active assistive control strategies. The EMG-driven muscu-

loskeletal model not only estimates the motion intention but also provides the

assessment of the joint in real-time that aids the control strategies. Two control

strategies are implemented on a wrist exoskeleton that is actuated by pneumatic

muscles. It is a wearable exoskeleton to assist the wrist flexion/extension motion.

The capability of the EMG-driven musculoskeletal model for joint stiffness estim-

ation is experimentally evaluated with the mean passive and active joint stiffness

were 0.78 Nm/rad (Std = 0.55) and 10.53 Nm/rad (std = 3.22) respectively. Both

estimated joint stiffnesses are within the range of measurements reported in the

literature.

The adaptive cooperative control strategy is first proposed. This control strategy

consists of an admittance controller and a position controller in order to modify

the reference trajectory based on the joint torque. The admittance parameters are

adapted by the estimated joint stiffness. In this manner, the wrist robot is capable

to change its compliance and adapt its behaviour to the subject’s muscular effort.
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5.1 Introduction

Experimental work was conducted on the 12 healthy subjects including three

training protocols: Trajectory tracking control (TTC), fixed cooperative control

(FCC) with two cooperative ratios, and adaptive cooperative control (ACC) with

two cooperative ratios. Results reveal the mean root-mean-square are 0.264 rad,

0.172 rad, and 0.2 rad for TTC, FCC and ACC. It is found that ACC changes the

robot’s compliance in accordance with the wrist joint impedance, which shows

that the proposed control strategy has the potential to enhance the training

efficacy and safety of robot-aided wrist rehabilitation.

This chapter also proposes an active assistive control strategy, namely, the assist-

as-needed control strategy. In contrast to the ACC, this control strategy does not

rely on the reference trajectory. It is an active training strategy that encourages

the subjects to actively trace a trajectory. An admittance controller is combined

with a low-level force controller to assist the subjects to accomplish the intended

movement. The robot’s assistance is determined through the kinematic errors and

is adapted by the joint impedance property. Experimental evaluation is conducted

on ten healthy subjects. Results show that the proposed control strategy could

provide assistance by the consideration of the subjects’ muscular efforts and wrist

joint impedance.

5.1 Introduction

Rehabilitation robots has grown rapidly in the last two decades [34, 53]. Robots

hold promising advantages that deliver high-intensive and precise training for

stroke patients [23]. It is proven that the active participation can improve the

muscle function and neural-motor skills during robot-aided rehabilitation [32].

Estimation of the patient’s intention and related control strategies played the

important role in interactive training scheme.
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Incorporating the EMG signal to estimate the patient’s intention has been widely

extended into rehabilitation robots [76]. The EMG signal is used to trigger the

robot’s assistance for the patient when exceeding a certain ’threshold’. For ex-

ample, Kreb et al., proposed the performance-based impedance control strategy

to modulate the robot’s assistance according to speed, time and EMG. The EMG

signal is used to initiate the game when EMG activation above the threshold [25].

Song et al., used the EMG signal to trigger the assisted torque for the wrist

flexion/extension that is proportional to the EMG amplitude [33]. The pattern

recognition method is also applied to control a wrist exoskeleton. Khokhar et

al., demonstrated the the support vector machine (SVM) classification technique

to control a wrist exoskeleton in real-time. However, the pattern recognition

only recognize the motion class sequentially. To achieve the smooth control of

the rehabilitation robots, it is important to estimate the continuous motion vari-

ables [109].

Major attentions of current EMG-based continuous approaches are concerned

with regression methods [37]. Regression methods map the EMG signal to the

desired intention through the numerical functions, which cannot describe the

neural musculoskeletal states during motion tasks [39, 148]. In contrast, the

musculoskeletal model is an alternative approach for intension estimation. It ex-

plicitly interprets the relationships from the EMG signal to intention by imitating

the interactive effects between muscular and skeletal systems [149]. Estimating

the underlying musculoskeletal states, i.e., muscle force and joint stiffness, are

also available through the model-based approach. These musculoskeletal states

benefit the design of control strategies for interactive training.

The impedance control and admittance control are commonly utilized in the

wrist rehabilitation robots. The impedance control asks the robots to rend par-

ticular mass, spring and damping properties to interact with user’s muscular
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effort. That is, the inputs of the impedance controller is the motion changes

and robot outputs the force/torque [73]. For example, Squeriet al., proposed an

impedance controller for a wrist robot [28]. The impedance control scheme in-

creases/decreases the supported torque by the robot as the patient’s interactive

torque decreases/increases. In this manner, the patient is encouraged to parti-

cipate in the rehabilitation training. The admittance controller is also utilized in

several robots, which outputs the desired position with respect to the interaction

force/torque inputs. For instance, Xu et al., proposed the admittance control

for a wrist device, which reacquires the desired position during the pre-defined

trajectory [5]. It can enhance the training safety and comfort as well as engage

the patient’s active participation.

The constant parameters impedance/admittance controller may fail to incorpor-

ate the variability of the patient, e.g., the joint impedance properties changes

across individuals and muscle activities. To overcome this limitations, adaptive

methods have been designed in order to continuously challenge and engage the

patients to exert their own effort in the robot-aided therapy [150]. It is reported

that regulating the controller parameters in response to the stiffness property of

the joint can improve the performance of human-robot interaction [110, 151–153].

In specific, the human’s limb impedance is continuously modified by the central

nervous system according to the task requirement. Although the torque contri-

butions of different muscles may counteract each other, impedance contributions

of muscles always add to the joint impedance.

It is a challenging task to estimate the joint stiffness property in real-time [154],

as the joint impedance property increased with muscle contraction. Joint imped-

ance property is commonly evaluated through experimental measurements. For

example, the passive joint stiffness is estimated by the torque-wrist motion rela-

tionship with robot manipulator in a certain RoM [16, 17]. The active stiffness

95



5.2 Wrist exoskeleton

is measured through keeping wrist stable when the subject holds an end-effector

under an external position or torque perturbation [155]. The model-based ap-

proach, however, is able to estimate the joint stiffness directly by differentiating

the model dynamic equations [156].

The aims of this chapter is to incorporate the EMG-drive musculoskeletal model

for the control of a wrist exoskeleton, while the real-time evaluated biomechan-

ical characteristics of wrist joint is utilized to design the adaptation law. Two

EMG-driven model-based control strategies, adaptive cooperative control (ACC)

strategy and assist-as-needed control (AAN) strategy, are proposed. To the au-

thor’s best knowledge, the model-based control strategies have not been imple-

mented for real-time control of wrist rehabilitation robots. This chapter is divided

into four sections, which are organized in the following. Section 5.2 introduces the

wrist exoskeleton, which has one DoF and is actuated by the pneumatic muscles.

The mechanical design and sensory system are also discussed. Section 5.3 gives

the evaluations of the EMG-driven musculoskeletal model for wrist joint estima-

tion. Section 5.4 details the design of the adaptive cooperative control strategy.

Experimental results are discussed accordingly. Section 5.5 discusses the assist-

as-needed control strategy with experimental evaluation. The final section gives

the chapter summary.

5.2 Wrist exoskeleton

The proposed EMG-driven musculoskeletal model-based control strategies are

incorporated with the wrist exoskeleton that is designed to assist wrist flex-

ion/extension. As illustrated in the Figure 5.1, the wrist exoskeleton consists

of a customized frame, two Festo pneumatic muscles and sensory system. The

Festo Fluidic muscles are used as the antagonistic actuators. Each muscle has the
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effective length of 9 cm and the maximum contraction length of 1.8 cm and is con-

nected to a mechanical hinge by a steel wire. Besides, the hinge is secured coaxial

with the biological wrist joint to prevent the undesired torque. The steel wires

are guided around the cylindrical hinges in the clock/counter-clockwise setup, in

which ball bearings are used to reduce the friction in the hinge.

Figure 5.1: Mechanical configuration of the wrist exoskeleton [12]. PAM is the

abbreviation of pneumatic artificial muscle. (a) The CAD of the wrist exoskel-

eton. (b) Force distribution of the pneumatic muscles. (c) The configuration

of steel wires enables flexion/extension movement. (d) Placement of the angle

sensor.

To set the wrist robot at the neutral position, the wires are under certain tension

by pressurizing both muscles. The length of two pneumatic muscle should retain

l1 + l2 = const (5.1)

where l1 and l2 represent the length of two pneumatic muscles respectively.

The sensory system is illustrated in Figure 5.2. Two load cells are connected

in line with the pneumatic muscles respectively. A potentiometer is utilized as

a angle sensor, which is also aligned with rotation centre. Two proportional

pressure regulators are used for pressure control of two muscles.
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Figure 5.2: (a) The sensory system of the wrist exoskeleton. (b) Control interface

in LabView software.

All sensors are communicated with the NI-myRIO contoller. A custom LabVIEW

program is designed to process the sensing information and provide the control

strategies discussed in the following sections.

5.3 EMG-driven musculoskeletal model-based ap-

proach

To incorporate the model-based approach with the active assistive control strategy,

the EMG-driven musculoskeletal model is developed to estimate the joint torque

and joint stiffness in the wrist flexion/extension motion. The optimized model of

each subject is utilized for the proposed control strategies.
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5.3.1 Estimation of wrist joint torque

In this section, the EMG-driven musculoskeletal model is utilized to compute the

joint torque during the wrist flexion/extension motion, and the physiological para-

meters are optimized offline using the genetic algorithm. Detailed equations and

parameter optimization can be found in section 3.2 and section 3.3 in Chapter

three, respectively.

5.3.2 Estimation of joint stiffness

The EMG-driven musculoskeletal model is also capable of estimating the joint

impedance property, i.e., either passive joint stiffness and active stiffness, in real-

time. As the wrist joint stiffness varies upon the passive element of the muscle

tissues as well as active muscle activities during motion tasks [13], it is important

for control strategies to take account of the joint impedance property. To obtain

the joint stiffness Kjoint, the stiffness of each muscle is first calculated by

Kmt
i = (KCE

i +KPE
i )Kt

i

KCE
i +KPE

i +Kt
i

(5.2)

where Kmt
i indicates the muscle-tendon stiffness. The KCE

i , KPE
i and Kt

i are the

stiffness of the contractile element, passive element and tendon element. Similar

to the Hill’s muscle model, the KCE
i is in parallel with KPE

i , and the Kt
i is

connected in series with KCE
i and KPE

i . Inclusion of the elastic tendon (the

numerical stiff equation increases the computation burden of the muscle-tendon

model, which hurdles the implementation of the EMG-driven model in real-time.

The tendon is assumed as the rigid element in this study, due to the ratio of tendon

slack length to muscle-fibre length is small in wrist muscles [87]. Therefore, the

muscle-tendon stiffness can be re-written as

Kmt
i = KCE

i +KPE
i (5.3)
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where

KCE
i =

γai(t)Fm
o,ifa(l

m

i,a)
lmo,i

(5.4)

where γ is set to 23.4 [157]. The KPE
i is calculated by the slope of the passive

force-length relationship to account for the muscle fibre stiffness in absence of the

muscle activation ai(t) [156]. In specific, the KPE
i is obtained through

KPE
i =

 0.0751Fm
o,i l

m

i < 1

6.32Fm
o,i l

m

i ≥ 1
(5.5)

Thus, the wrist joint stiffness Kjoint is obtained by [156]

Kjoint =
5∑
i=1

(r2
iK

mt
i + ∂ri

∂θ
Fmt
i ) (5.6)

5.3.3 Data collection for joint stiffness estimation

The date collection section is conduced to optimize the physiological parameters

for each subject. Although the estimation performance is already proved by

the previous chapters, The joint stiffness estimation is not yet evaluated. The

feasibility of the model-based joint is also evaluated, which is compared with the

measurements from the literature.

Twelve healthy subjects (age between 27 and 30) are participated into this data

collection section. Prior to the experiment, participation consent forms are signed

by all subjects. This experiment is approved by the MaPS and Engineering Joint

Faculty Research Ethics Committee of the University of Leeds (MEEC 18-002).

To measure the EMG signal, electrodes (Delsys quattor sensor) are attached over

four wrist muscles, including Flexor Carpi Radialis (FCR), Flexor Carpi Ulnaris

(FCU), Extensor Carpi Radialis(ECR), Extensor Carpi Ulnaris (ECU). The raw

EMG signal of ECR is assigned to the Extensor Carpi Radialis longus (ECRL)

and Extensor Carpi Radialis Brevis (ECRB), as these two muscles are closely
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adjacent [106]. The placement of electrodes are first based on the palpation.

The qualities of signal are then evaluated through the Delsys data acquisition

software. The sample frequency is 2000 Hz.

To record the motion data, two inertia measure units (IMUs) are attached at

the third metacarpal bones and back of the forearm respectively. The sample fre-

quency is 256 Hz. A Kalman filter is used to computed the wrist flexion/extension

angle.

Before the experiment, subject are asked to perform the maximum voluntary con-

tractions (MVCs) for muscle activation normalization. Then subject are asked

to perform the continuous wrist flexion/extension motion for parameter optim-

ization. Each motion trial lasts 15 seconds and 3 trials are recorded. 5 minutes

interval are given between trials to avoid the muscle fatigue. Since IMUs are

sampled at 256 Hz, all sensors are resampled and synchronized at 1000 Hz for

data processing.

5.3.4 Evaluation of joint stiffness

The estimation performance of the EMG-driven musculoskeletal model has been

previous evaluated. After the optimization, the R2 across all subjects is range

from 0.75 to 0.9. All optimized parameters and MVCs are stored for further

implementation in active assistive control strategies. One representative example

is illustrated in Figure 5.3.

After optimization, the joint stiffness is calculated based on equation (5.6). The

passive and active stiffness are evaluated by comparing with measurements in

the literature respectively. The passive joint stiffness is simulated at the zero

muscle activation level (ai(t) = 0) and neutral position (θm = 0). The active

joint stiffness is emulated at the neutral position (θm = 0) while the flexor are

activated around 15% MVC (a1,2(t) = 0.15), as reported in [155, 158]
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Figure 5.3: Representative subject of estimated joint torque and joint stiffness

using the optimized muscle-tendon parameters.

The results of the estimated passive and active joint stiffness across all subjects are

presented in Table 5.1. The passive joint stiffness has a range from 0.21 Nm/rad

to 2.22 Nm/rad, while the active joint stiffness has a range from 7.45 Nm/rad

to 16.48 Nm/rad. The mean passive and active joint stiffness are 0.78 Nm/rad

(Std = 0.55) and 10.53 Nm/rad (std = 3.22) respectively. Figure 5.4 elucidates

the comparison of the passive joint stiffness with measurements in the literature.

Table 5.2 gives the comparison between the model estimation and reported mean

value under the same condition which wrist joint is at neutral position and flexors

are activated around 15% MVC. Results yield that the model estimation has the

similar value compared with [158], but slightly larger than [155].
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Table 5.1: Results of joint stiffness estimation across all subjects.

Subject Index

S1 S2 S3 S4 S5 S6

Passive stiffness (Nm/rad) 0.81 0.43 0.41 0.19 0.21 0.55

Active stiffness (Nm/rad) 14.31 7.27 11.44 7.45 10.07 9.14

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

Passive stiffness (Nm/rad) 1.17 2.22 0.83 0.64 0.83 1.06 0.78 0.55

Active stiffness (Nm/rad) 9.56 16.48 6.30 10.51 8.86 14.94 10.53 3.22

* Active stiffness is calculated at neutral position with flexor activation of 15% MVC.
* Std. = standard deviation.

Table 5.2: Comparison of active joint stiffness with literature

Study Contraction Position Active stiffness

(Nm/rad)

Model estimation

(Nm/rad)

Halaki et

al., [158]

Flexor

(15%MVC)

Neutral 10.5 ± 0.4 10.53 ± 3.22

Milner et

al., [155]

Flexor

(15%MVC)

Neutral 9.22± 6.60 10.53 ± 3.22

5.3.5 Discussion

Wrist joint stiffness play an important role in motion and postural control [159].

In this section, the passive and active joint stiffness are derived through the EMG-

driven musculoskeletal model. To evaluate the estimated joint stiffness, the joint

stiffness found in the literature are used for comparison, which are measured

experimentally with the aid of rigid manipulators. In specific, the passive joint
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Figure 5.4: Comparison of the estimated passive stiffness with measurements in

the literature. Prior measurements has the range from 0.554 Nm/rad in [13],

0.89 Nm/rad (Std. = 0.18) in [14], 0.554 Nm/rad in [15], 2.2 Nm/rad in [16] and

0.85 Nm/rad (Std. = 0.007) in [17].

stiffness is determined by the passive torque-angle curve, i.e., the wrist joint

is passively driven from neutral position to the certain RoMs. Likewise, the

active joint stiffness is determined by the external perturbation, i.e., the position

perturbations are applied to wrist joint while the subject maintains a constant

level of torque or EMG Level [160]. The regression algorithms are used to obtain

either passive or active joint stiffness.

For the passive stiffness, the model estimated has the mean value of 0.78 Nm/rad

(Std. = 0.55). Prior studies reported the passive stiffness in wrist flexion/extension

range from 0.554 Nm/rad (toward flexion) and 1.021 Nm/rad (toward extension)

in [13], 0.89 Nm/rad (Std. = 0.18) in [14], 0.554 Nm/rad in [15], 2.2 Nm/rad

in [16] and 0.85 Nm/rad (Std. = 0.007) in [17]. The model estimated passive
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joint stiffness in this study is within the middle range of reported value from

prior measurement.

Likewise, the active stiffness is compared with two studies. In [155, 158], the

EMG signal are measured during the perturbation, while subjects sustain 15%

MVC of flexors. The mean estimated active joint stiffness is 10.53 Nm/rad (Std.

= 3.22), which falls into the middle range of the experimental measurements from

the literature(10.53 Nm/rad (Std. = 0.4) and 9.22 Nm/rad (Std. = 6.6) respect-

ively). The age group reported in the literature, either passive or active, covers

the age group tested in this study. The results reveal that the EMG-driven mus-

culoskeletal model has the capability to interpret the wrist joint stiffness property

after optimization. In addition, the use of the EMG-driven musculoskeletal model

allows for the real-time computation of the joint stiffness.

It is worthy to notice that the optimized trial for each subject does not exceed

the limits of the wrist’s RoMs, in which passive stiffness is mainly charactered by

the stretch of muscle tissues. The passive stiffness has a distinctive difference if

encounters the limits of the wrist’s RoMs, which increases significantly due to the

stretch of ligaments [155]. The active joint stiffness is dominated by the muscle

contraction. This study emulates the active stiffness at the neutral position. The

active stiffness varies over the wrist’s RoM, as show in Figure 5.3. This can

be explained by the active force-length curve in response to the variability of

the muscle fibre length during motion tasks. The muscle activation levels also

contribute to the active joint stiffness, which is caused by the increases/decreases

in the number of cross bridges [161].

The joint stiffness varies across the subjects, range from 0.21 Nm/rad to 2.22 Nm/rad

and 7.45 Nm/rad to 16.48 Nm/rad for passive stiffness and active stiffness respect-

ively. The variabilities may caused by muscle conditions that affect the muscle-

tendon force generating properties, such as the physiological cross-sectional area.
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In the EMG-driven musculoskeletal model, these properties are represented by

the optimized parameters, such as the maximum isometric force.

The joint stiffness is a significant factor for the assessment of the patients after

stroke. One of the most prevalent symptoms and a key source of impairment

is the increased joint stiffness [13]. This is may due to the alteration of the

intrinsic muscle properties, resulting in the abnormal joint stiffness [162]. The

methods used to evaluate subject’s joint stiffness provide vital information during

robot-aided therapy. In other word, the estimated joint stiffness not only can be

used to facilitate the clinical assessment of impairment and the evaluation of

therapeutic efficacy, but also can be conducive to design of the active assistive

control strategy. For example, the robot’s behaviour can be modified in response

to the wrist joint stiffness during rehabilitation. The regression algorithms used

in the prior studies are difficult for real-time implementation. Additional efforts

are needed to establish the relationship between the stiffness, joint position, and

muscle activation level. In contrast, the joint stiffness can be estimated in real-

time without additional computational cost.

This section presents the parameters optimization of each subject as the prepar-

ation for the control strategy. The use of the EMG-driven musculoskeletal model

for wrist joint stiffness estimation is also evaluated and discussed. Therefore,

the following sections implement the EMG-driven musculoskeletal model into the

design of the active assistive control strategies, with respect to the participant’s

voluntary effort and the real-time assessment of the joint stiffness.

5.4 Adaptive cooperative control strategy

One of the active assistive control strategies, namely, adaptive cooperative control

strategy (ACC) is proposed in this section, which aims to improve the training
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effectiveness and safety [112, 163]. In the proposed control strategy, the robot is

capable to adapt its behaviour through accommodating the subject’s voluntary

effort. The wrist exoskeleton re-acquires the trajectory during the rehabilitation

training exercise. The controller parameters are adapted according to the joint

stiffness property in order to improve the performance of human-robot interac-

tion [152].

5.4.1 Control strategy

This control strategy consists of a PID-based position controller and an admit-

tance controller. The position controller is used to ensure the tracking perform-

ance when tracking a reference trajectory. The admittance controller is implemen-

ted to modify the reference trajectory based on the subject’s muscular effort. To

guarantee the patient’s safety during rehabilitation exercise, the wrist exoskeleton

should provide adjustable compliance by changing the parameters of the admit-

tance controller [112]. This is achieved by regulating the admittance parameter is

response to the variation of the joint stiffness Kjoint (equation (5.6)). The estim-

ated joint torque and joint stiffness property are accessed through EMG-driven

musculoskeletal model-based approach in real-time.

Figure 5.5: The block diagram of the PID controllers for trajectory tracking

control and force control.
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Trajectory tracking control is commonly implemented to delivery the passive

training for the stroke patients, which guides the patient’s wrist following the

reference trajectory [61, 70, 164]. The reference trajectory can be determined

from the RoMs of the healthy subject.

As illustrated in Figure 5.5, the trajectory tracking control is achieved through a

PID controller, which is utilized to control the pressure of each pneumatic muscle.

The mathematical form is written as

eθ(t) = θd(t)− θm(t) (5.7)

P2×1(t) = Ktpeθ(t) +Kti

∫ t

0
eθ(t)dt+Kte

deθ(t)
dt

(5.8)

where θd and θm are the desired angle and measured angle respectively. The

parameters Ktp, Kti and Ktd are well-tuned to minimize the tracking errors (Ktp

= 4.65; Kti = 0.0075; Ktd = 0.00225). P2×1 is the desired pressures for two PAMs

respectively. The result of the trajectory tracking control is shown in Figure 5.6.

The reference trajectory is set with the amplitude of 0.25 rad and frequency of

0.05 Hz. The max error is 10% and root-mean-square error is 0.0129 rad.

To achieve the cooperative control strategy, an admittance controller is utilized

to determine the deviation of the trajectory in response to estimated joint torque

τ̂ . The wrist exoskeleton deviates the reference trajectory whenever the motion

intention is detected, otherwise it continue to follow the reference trajectory. In

this study, the joint position and joint torque is defined as positive when wrist is

flexed. The transfer function of the admittance controller is written as

θd(s) = θr(s) + CrT̂ (s)
Ms2 +Bs+K

(5.9)

where θd and θr are the desired trajectory and reference trajectory respectively. Cr
is the cooperative ratio. T (s) is the joint torque obtained from the EMG-driven

musculoskeletal model. The M,B and K are the mass, damping and stiffness
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Figure 5.6: Tracking performance of the trajectory tracing control. The pre-

defined trajectory is set as an amplitude of 0.25 rad with the frequency 0.05 Hz.

parameters of the admittance controller. In this manner, the estimated joint

torque by the EMG-driven musculoskeletal model is the input to the admittance

controller, the admittance controller outputs the deviation of the trajectory which

is added to the reference trajectory. The estimated joint stiffness is used to modify

the damping and stiffness parameters of the admittance controller. During the

training protocols, the PID controller is used to minimize the tracking errors.

Figure 5.7 gives the block diagram of the proposed control strategies.

To adjust the compliance of the wrist exoskeleton, an adaptation method is de-

rived based on the estimated joint stiffness Kjoint (equation 5.6). The stiffness

parameter K of the admittance filter is linearly adapted by

K = Kmax − (Kmax −Kmin)
Kjoint −Kmin

joint

Kmax
joint −Kmin

joint

(5.10)

The damping parameter B is a function of stiffness parameter, which is determ-

109



5.4 Adaptive cooperative control strategy

Figure 5.7: The block diagram of the control system in the wrist exoskeleton.

ined by [153]

B = 0.2
√
K (5.11)

The Kmax and Kmin are determined by trial and errors. To limit the stiffness

parameter and avoid the instability of the control system and enhance safety, a

saturation function is implemented in the LabView program.

5.4.2 Experiment protocol

Twelve subjects (S1-S12) (same subjects in the 5.3.3) are participated in this test

in the lab environment. All subjects have no reported wrist muscular disorders

and can perform the wrist flexion/extension in full RoMs. Before the experi-

ment, the subject is guided to set on the chair and wear the wrist exoskeleton

comfortably. The arm is supported by two customized arm holders to minimize

the gravitational effect.

The placement of the electrode is the same in section 5.3.3, as shown in Figure 5.8.
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Figure 5.8: Experiment setup. The wrist exoskeleton guides the subject’s wrist

following the predefined trajectory. The sEMG signal is recorded from the

primary wrist muscles.

The quality of the EMG signals is evaluated using the customized LabView pro-

gram. Besides, all sensor data are synchronized at 200 Hz and stored in the

customized LabVIEW program for offline analysis.

In this study, three training protocols, namely, trajectory tracking control (TTC),

fixed cooperative control (FCC), and adaptive cooperative control (ACC) are

implemented. For FCC and ACC, two different cooperative ratios are utilized to

evaluate the performance. In specific, each training protocol is defined as,

1) The first training protocol (TTC) is conducted without the cooperative con-

trol strategy (Cr = 0). T the parameters of the PID controller are same as

in section 5.4.1. The joint torque τ̂ and muscle activation levels ai(t) are

monitored at the same time.

2) The second protocol (FCC) is conducted with the fixed admittance paramet-

ers, of which the M , K and B are set to 0.15, 10 and 0.63. Two cooperative

ratio (Cr = 0.3, 0.6) are used in FCC. In this experiment, the desired traject-

111



5.4 Adaptive cooperative control strategy

ory is determined by the estimated joint torque solely.

3) The third protocol (ACC) is conduced with the proposed adaptive control

strategy. Two cooperative ratio (Cr = 0.3, 0.6) are also utilized in the ACC.

In this experiment, reference trajectory and wrist robot’s compliance are reg-

ulated according to the estimated joint torque and joint stiffness.

During experiments, subjects are not required to be passive during experiment.

Instead, subjects are encouraged the involve their voluntary effort. The reference

trajectory for all experiment is set as a sine-wave with the amplitude of of 0.25 rad

and frequency of 0.05 Hz. In addition, the deviation is limited between ±0.45 rad,

which is close to the maximum ROM of wrist robot exoskeleton. Each protocol

contains three trials and each trial lasts 60s. Five-minute break are given between

trials to prevent muscle fatigue.

5.4.3 Statistical analysis

Three performance indexes are utilized to evaluate the performance of three train-

ing protocols including root-mean-square-error (RMSE), root-mean-square of es-

timated joint torque (RMSτ ), and root-mean-square of the deviation (RMSdev).

The RMSE between the desired trajectory (reference trajectory for TTC) and

measured trajectory is calculated to evaluate the tracking performance.

To evaluate the performance of the proposed adaptive cooperative control strategies,

the ratio of the RMSτ and RMSdev is computed.

rtd = RMSτ/RMSdev (5.12)

where the large value indicates the wrist exoskeleton modifies the trajectory

slightly in response to muscular efforts. The small value means the wrist exoskel-
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eton gives more RoMs when the subject’s muscular effort is detected.

RMSE =

√√√√ N∑
n=1

(θd − θm) (5.13)

RMSτ =

√√√√ N∑
n=1

τ̂ (5.14)

RMSdev =

√√√√ N∑
n=1

(θd − θr) (5.15)

Separate one-way analysis of variance (ANOVAs) are for each experiment. RMSE

is used as the response variable. Furthermore, a post-hoc analysis using Tukey’s

Honest Significant Difference test is applied when there is a significant difference

between control strategies. The significance level is set at p < 0.05.

5.4.4 Results

Figure 5.9 gives a representative example of TTC, along with the estimated joint

torque and muscle activation. The black solid line indicates the reference tra-

jectory and the red dotted line is the measured trajectory, of which the RMSE

is 0.0209 rad and RMSτ is 0.552 Nm. The result shows that the measured tra-

jectory deviates significantly when the subject’s intention is presented, e.g., at

10 second.

The representative examples of tracking response for the second experiment (FCC)

are shown in Figure 5.10 and Figure 5.11. The green line represents the desired

trajectory which is generated according to the estimated joint torque. For the

FCC with 0.3 Cr, the RMSE between the desired trajectory and measured tra-

jectory is 0.016 rad. The RMSτ and RMSdev are 0.401 Nm and 0.012 rad, respect-

ively. For the FCC with 0.6 Cr, the RMSE, RMSτ and RMSdev are 0.0146 rad,

0.319 Nm, and 0.0191 rad.

In FCC, the deviation of the reference trajectory is in line with the estimated joint
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Figure 5.9: Representative example of the first training protocol (TTC) with

consideration of subject’s participation. The RMSE and RMSτ are 0.0209 rad

and 0.552 Nm respectively.

torque. For instance, in Figure 5.10, in the span of 20 seconds and 30 seconds,

the wrist exoskeleton gives more RoM toward wrist flexion when the joint torque

is positive. The robot reduces the RoM in the extension as the joint torque is

positive between 10 seconds and 20 seconds. A larger deviation is found when the

larger cooperative ratio is applied.

Figure 5.12 and Figure 5.13 illustrate the tracking performance of the ACC

with two different cooperative ratios in a representative subject. The RMSE
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are 0.0174 rad and 0.0268 rad when the cooperative ratio is set to 0.3 and 0.6

respectively. The real-time adaptation of admittance parameters is also presen-

ted in figures. In the third training protocol, stiffness and damping parameters

increase as muscular efforts decrease while parameters decrease as muscular ef-

forts increase. These parameters are also affected by the joint position. As

such, the robot becomes more compliant and allows the subject to change the

trajectory significantly. For instance, at 10 seconds of Figure 5.12, the reference

trajectory deviates more in flexion when the admittance parameters are small.

In Figure 5.13, the wrist exoskeleton reaches the limited deviation when the stiff-

ness and damping parameters are small while large muscular efforts are detected,

during 20 to 30 seconds.

Statistical results

Each experiment contains 36 trials (n = 36) for statistical analysis. Two-way

ANOVAs analysis results that both factors has significant effects (p = 0.014), of

which adaptation has more significant effect than the cooperative ratio (p < 0.001

versus p = 0.019).

Figure 5.14 illustrates the results of each experiment. The mean RMSE of TTC

is 0.0264 rad (std = 0.008). The post-hoc tests show that TTC is significantly

different from other experiments(p < 0.001).

The mean RMSE are 0.0172 rad (std = 0.002) and 0.0171 rad (std = 0.002) for

FCC with 0.3 Cr and 0.6 Cr respectively. The mean RMSE are 0.0186 rad (std =

0.002) and 0.214 rad (std = 0.006) for ACC with 0.3 Cr and 0.6 Cr respectively.

The mean RMSE significantly decreases when the cooperative control strategies

are applied. Small RMSEs are found in FCC with two different cooperative ratios

are applied. However, no significant difference is found between FCC with two

different cooperative ratios (p = 1). The ACC with 0.3 Cr is not significant
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Figure 5.10: Tracking performance of one representative example of FCC (0.3

Cr). The RMSE is 0.016 rad. RMSτ and RMSdev are 0.401 Nm and 0.012 rad

respectively.

different to ACC with 0.6 Cr (p = 0.104), and is not significant different to the

FCC with 0.3 Cr (p = 0.718). However, there is a significant difference between

ACC with 0.6 Cr and FCC with 0.6 Cr (p = 0.002).

The ratio of the RMSτ and RMSdev is calculated for fixed cooperative control

and adaptive cooperative control respectively. The FCC with 0.3 Cr has the

largest rtd among all protocols (32.87). The ACC with 0.3 Cr also have a large

rtd (25.093), but smaller than the FCC with 0.3 Cr. In addition, the smallest rtd
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Figure 5.11: Tracking performance of one representative example of FCC (0.6

Cr). The RMSE, RMSτ and RMSdev are 0.0146 rad, 0.319 Nm, and 0.0191 rad.

is found in ACC with 0.6 Cr (11.59), compared with FCC with 0.6 Cr (16.435).

This indicates the wrist exoskeleton become more compliant for subjects by the

consideration of the wrist joint impedance.

5.4.5 Discussion

This section proposed the adaptive model-based control strategy to improve train-

ing effectiveness and safety. During the repetitive motion exercise, the EMG-
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Figure 5.12: Tracking performance of one representative example of ACC (0.3

Cr). The RMSE is 0.0174 rad. RMSτ and RMSdev are 0.494 Nm and 0.022 rad

respectively.

driven musculoskeletal model is used to continuously evaluate the subject’s mo-

tion intention as well as the wrist joint biomechanical characteristics. The wrist

exoskeleton is under a passive mode if there is no active torque and switch to ACC

when the muscular effort is detected. Results reveal that the robot is capable of

modifying the trajectory to accommodate the subject’s intention. An adaptation
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Figure 5.13: Tracking performance of one representative example of ACC (0.6

Cr). The RMSE is 0.0268 rad. RMSτ and RMSdev are 1.404 Nm and 0.2 rad

respectively. In this trial, RoM’s limitation is reached to ensure the training

safety.

law is proposed to change the robot’s compliance to ensure training safety. Ex-

perimental work is conducted with three different training protocols and different

cooperative ratios. The performance of the proposed adaptive cooperative con-

trol strategy is evaluated and compared with TTC and FCC through the RMSE

and the ratio of RMSτ and RMSdev.
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Table 5.3: Results of TTC across subjects.

Subject Index

S1 S2 S3 S4 S5 S6

RMSE(rad) 0.0225 0.0355 0.0264 0.0327 0.0282 0.02

rmsτ (Nm) 0.505 0.515 0.382 0.274 0.145 0.137

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

RMSE(rad) 0.0254 0.0245 0.021 0.020 0.0328 0.0263 0.0264 0.008

rmsτ (Nm) 0.165 0.429 0.368 0.312 0.355 0.278 0.317 0.18

Std. = standard deviation.

Table 5.4: Results of FCC (Cr = 0.3) across subjects.

Subject Index

S1 S2 S3 S4 S5 S6

RMSE(rad) 0.0162 0.0146 0.0204 0.0163 0.0164 0.0162

rmsτ (Nm) 0.375 0.527 0.1524 0.169 0.34 0.278

rmsdev(rad) 0.0112 0.0157 0.0046 0.005 0.0102 0.0083

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

RMSE(rad) 0.0195 0.0186 0.0189 0.016 0.0155 0.0178 0.0172 0.002

rmsτ (Nm) 0.144 0.5441 0.5693 0.379 0.235 0.7883 0.3828 0.2

rmsdev (rad) 0.0043 0.0167 0.017 0.011 0.0071 0.028 0.0119 0.007

Std. = standard deviation.

Figure 5.14 (a) gives the mean RMSE of each protocol. The mean RMSE of

TTC is significantly greater than other experiments when the subject actively
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Table 5.5: Results of FCC (Cr = 0.6) across subjects.

Subject Index

S1 S2 S3 S4 S5 S6

RMSE(rad) 0.0172 0.0167 0.0207 0.0173 0.0163 0.0159

rmsτ (Nm) 0.4 0.4345 0.223 0.302 0.247 0.287

rmsdev(rad) 0.024 0.026 0.013 0.018 0.015 0.0172

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

RMSE(rad) 0.0198 0.018 0.0159 0.0144 0.0158 0.0178 0.0171 0.002

rmsτ (Nm) 0.207 0.43 0.423 0.33 0.232 0.721 0.353 0.15

rmsdev (rad) 0.0124 0.0259 0.0253 0.02 0.014 0.052 0.0219 0.011

Std. = standard deviation.

Table 5.6: Results of ACC (Cr = 0.3) across subjects.

Subject Index

S1 S2 S3 S4 S5 S6

RMSE(rad) 0.016 0.0169 0.0211 0.0178 0.0204 0.02

rmsτ (Nm) 0.538 0.323 0.308 0.167 0.406 0.37

rmsdev(rad) 0.021 0.0138 0.0106 0.005 0.0144 0.0216

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

RMSE(rad) 0.0229 0.0204 0.0155 0.0174 0.0199 0.0156 0.0186 0.003

rmsτ (Nm) 0.326 0.6225 0.446 0.451 0.2703 0.5566 0.3923 0.15

rmsdev (rad) 0.0131 0.023 0.015 0.026 0.016 0.026 0.0168 0.008

Std. = standard deviation.
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Table 5.7: Results of ACC (Cr = 0.6) across subjects.

Subject Index

S1 S2 S3 S4 S5 S6

RMSE(rad) 0.022 0.018 0.0196 0.0196 0.0208 0.023

rmsτ (Nm) 0.604 0.420 0.295 0.323 0.475 0.285

rmsdev(rad) 0.063 0.036 0.02 0.027 0.035 0.032

Subject Index

S7 S8 S9 S10 S11 S12 Mean Std.

RMSE(rad) 0.030 0.024 0.015 0.030 0.022 0.014 0.0214 0.006

rmsτ (Nm) 0.392 0.66 0.357 0.652 0.317 0.39 0.431 0.16

rmsdev (rad) 0.031 0.052 0.025 0.11 0.028 0.038 0.0415 0.028

Std. = standard deviation.

participants in the experiment. This may be explained by the backdrivability of

the pneumatic actuated wrist exoskeleton, which ensures safety in rehabilitation

but leads to large tracking errors [165]. Moreover, it may cause discomfort or

injury to the wrist joint if the robot still follows the reference trajectory or has a

rigid actuator.

To evaluate the performance of the proposed ACC, the effects of FCC and ACC

are compared with the different Cr. Statistical results also reveal no significant

differences are found between ACC with 0.3 Cr and FCC with 0.3 Cr. When the

cooperative ratio is set to 0.6, a significant difference between the ACC and FCC

is found. This reveals that the proposed ACC mainly takes account of the min-

imization of the tracking errors under a small cooperative ratio. In contrast, the

wrist exoskeleton becomes more compliant to ensure the safety when cooperative

ratio is set to a large value. The rTD yields that the wrist exoskeleton becomes
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Figure 5.14: Results of the each training protocol. (a) RMSE; (b) RMSτ ; (c)

RMSdev; (d) The ratio of RMSτ and RMSdev;

more compliant in ACC when compared with FCC.

The results of FCC show that the mean RMSEs are similar with two Crs (0.0172 rad

versus 0.0172 rad), but FCC with 0.6 Cr has less rtd, which means the wrist exo-

skeleton gives more ROMs based on the estimated joint torque when a higher

ratio is applied. It is found that ACC has increased RMSE compared with FCC.

This is may be caused by the selection of the stiffness parameters, which leads

to larger compliance at the minimum stiffness parameter (Figure 5.13). This is

consistent with results that the wrist exoskeleton provides the largest RoMs when
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5.4 Adaptive cooperative control strategy

the cooperative ratio is set to 0.6 in ACC. It is worthy noticed that the selection of

boundaries of stiffness parameter is determined by the trial and error in this study.

Nevertheless, the performance of the ACC is significantly better than TTC. In

this experiment, FCCs have less RMSEs than the ACCs with the corresponding

Crs. The ACC, however, presents advantages compared to that with FCC based

on a fact that the robot is capable of adapting the compliance according to wrist

joint stiffness. This would increase the robot’s backdrivability while maintaining

the adequate tracking performance. It is suggested that robot-assisted training

with real-time assessment of the wrist joint will likely make therapy safer and

more efficient [53, 112].

The EMG-driven musculoskeletal model provides accurate intention estimation

performance, as demonstrated in previous chapters. Other methods for intention

estimation include mechanical force/torque sensor, sensorless method and EMG-

based model-free approaches. The force/torque sensor is commonly installed at

the robot’s joint of interest to measure the voluntary efforts directly. However, the

measured signal is contaminated by the other components, e.g., friction, which

influence the intention estimation accuracy significantly [35]. A complicated sys-

tem identification is required to identify the subject’s voluntary efforts from the

sensor’s measurement. Sensorless method does not need the force/torque sensor.

However, a complex algorithm is utilized to extract the intention, which increases

the computation cost. The other unknown input, such as un-modelled dynam-

ics, is another hurdle to estimate the intention [67]. The use of EMG signal

provides the direct estimation of the subject’s motion intention. However, the

model-free approaches only estimate the intention according to the training data.

To access the wrist biomechanical characteristics in real-time, exhaustive efforts

are required the establish the relationship from the EMG signal, motion data

to joint stiffness [166]. The model-based approach shows a promising solution
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in this study. After optimization, the musculoskeletal model is able to estimate

the wrist joint stiffness in accordance with the measured EMG signal, joint mo-

tion and muscle contraction conditions without additional computational cost.

The estimated joint stiffness is evaluated and compared with the literature, as

demonstrated in the previous section.

There are several limitations in the current studies. The proposed EMG-driven

model-based approach is tested on 12 healthy subjects. More subjects will be

recruited, including patients with neurological diseases to validate the perform-

ance of the proposed control strategy. In addition, the selection of admittance

parameters is based on the trial and error. Future studies will be carried out to

determine the optimized admittance parameters in order to apply the proposed

approach for patients.

5.5 Assist-as-needed Control

In this section, an assist-as-needed (AAN) control strategy is proposed. This con-

trol strategy includes an admittance controller combined with a PID-based force

controller to provide the assistance to help the patient accomplish the intended

movement. In the proposed AAN, a virtual trajectory is provide to encourage

the the subject actively participant the training exercise. The proposed control

strategy determines the desired trajectory based on the subject’s motion intention

and the assistance is obtained by the kinematic errors between the measured tra-

jectory and desired trajectory. Similar to ACC, robot’s assistance is also adapted

in response to the wrist joint impedance property.
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5.5.1 Control strategy

To achieve the proposed AAN, a force controller is implemented to enable the

assisted torque provided by wrist exoskeleton. According to the mechanical design

(section 5.2), the torque is computed by the force difference of the antagonistic

PAM, which is written as
τm
rp

= F1 − F2 (5.16)

where τm is the torque measured by the wrist device and rp is the radius of the

hinge (rp = 0.86 cm). F1 and F2 represent the the force measured in each muscle

respectively. Therefore, the output torque is transformed to the force output of

each PAM. The force controller is based on the PID controller (Figure 5.5). The

mathematical form is written as

ef (t) = fd(t)− fm(t); (5.17)

P2×1(t) = Kfpef (t) +Kfp

∫ t

0
ef (t)dt+Kfe

def (t)
dt

(5.18)

where ef (t) is the error between the desired force fd(t) and measured force fm(t).

Ktp, Kti and Ktd are set to 0.025, 0.001 and 0.00025. Result of the force control

is illustrated in Figure 5.15, in which the desired torque is set as a sine wave with

0.1 Nm amplitude and 0.025 Hz frequency. The max force error of the first PAM

is 1.3889 N. The max force error of the second PAM is 1.6284 N.

The block diagram of the AAN control strategy is illustrated in Figure 5.16 (a).

In contract to the ACC (section 5.4), the reference trajectory is not specified

to a sine wave. θr is set to a initial neutral position prior to the experiment. In

this scenario, active training exercise is conducted, as the patient is encouraged to

participant the training exercise. A virtual trajectory is shown on a monitor. The

admittance controller is utilized to generate the desired trajectory in response to

the subject’s intention, which is estimated by the EMG-driven musculoskeletal
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Figure 5.15: Force control of the wrist exoskeleton.

model. The transfer function of admittance controller is written as:

θd(s) = T̂ (s)
Ms2 +Bs+K

. (5.19)

The stiffness K and damping parameter B are set to 5 and 0.1 in this study,

respectively. The M is set to zero due to the small acceleration of the wrist

exoskeleton. In this study, the stiffness and dampling parameters are determined

through the trial and error method. Therefore, the admittance controller outputs

the intended motion with the inputs of the user’s estimated joint torque. If the

subject fails to track the trajectory by his/her own effort, the robot provides the
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5.5 Assist-as-needed Control

Figure 5.16: (a) The block diagram of the adaptive EMG model-based control

strategy. (b) Subjects are asked to track the virtual trajectory shown on the

screen.

assistance based on the kinematic errors. The assisted torque is determined by

position errors and velocity errors between the desired trajectory and measure

trajectory [167], which is written as

τa = Kd(θd − θm) +Bd(θ̇d − θ̇m) (5.20)

where τa is the assisted torque. Kd and Bd are the parameters. The assisted

torque also takes the wrist impedance property into account [153], as the wrist

joint stiffness changes as the function of the joint position and muscle activities

(equation (5.3)). Therefore, the adaptation of Kd is proposed with the consider-

ation of the real-time assessment of the wrist joint stiffness Kjoint. Additionally,

to guarantee the stability of the proposed control strategy, a boundary is set for

the stiffness parameter, which is obtained by

Kd = (Kmax
d −Kmin

d )
Kjoint −Kmin

joint

Kmax
joint −Kmin

joint

+Kmin (5.21)

where Kmax
d and Kmin

d are the boundaries of the stiffness parameter, where are

determined experimentally. The Kmax
joint and Kmin

joint are maximum and minimum

128



5.5 Assist-as-needed Control

wrist joint stiffness through the equation (5.3). The parameter Bd is a function

of the Kd, which is obtained by

Bd = 0.02
√
Kd (5.22)

The assisted torque is then transformed to the distributed force as the desired

force in each PAM that allows the wrist exoskeleton to control force through the

PID force controller.

5.5.2 Experiment protocol

Ten healthy subjects participated in this experiment in the lab environment. All

subjects have no reported wrist muscular disorder and can perform the wrist flex-

ion/extension in full (RoM). The raw EMG signal are processed and downsampled

to 100 Hz. All sensing data are synchronized and stored via the customized Lab-

VIEW program at 100 Hz.

The subjects are asked to wear the wrist exoskeleton, as shown in Figure 5.8.

Electrodes are attached over four wrist muscles, including Flexor Carpi Radialis

(FCR), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus (ECR). The

placement of the electrode is the same as in the previous section. The quality of

the EMG signals is evaluated prior to the experiment. The maximum voluntary

contraction and dynamic flexion/extension trials are also recorded for normal-

ization and muscle-tendon parameter optimization. During the experiment, the

subjects are asked to track a marker on the screen. The trajectory of the marker

is set to 0.45 rad.

In this study, different Kd are utilized, including:

• Kd is set to constant (Kd = 2, 4, and 6).

• Kd and Bd are obtained according to equation (5.22) and (5.21) (Adaptive).
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Three trials are performed in each experiment and five-minute interval is given

to prevent muscle fatigue.

5.5.3 Performance criteria

The rmse of position error (same as equation (5.13)), joint torque and assistance

torque are calculated.

RMSE =

√√√√ N∑
n=1

(θd − θm) (5.23)

RMSτ =

√√√√ N∑
n=1

τ (5.24)

RMSτa =

√√√√ N∑
n=1

τa (5.25)

where the θd in the AAN is the desired trajectory generated by subjects when

tracking the marker’s trajectory.

5.5.4 Results

Figure 5.17 presents tracking response of the proposed AAN when Kd is set to 2

and 4 respectively. The desired trajectory (black solid line) is generated through

the admittance controller when the subject is asked to track the virtual marker.

The red dotted line indicates the measured trajectory. When Kd is set to 2, the

RMSE, RMSτ and RMSτa are 0.083 rad, 0.335 Nm and 0.163 Nm. The RMSE,

RMSτ and RMSτa for Kd = 4 are 0.076 rad, 0.307 Nm and 0.294 Nm.

The tracking responses of Kd = 6 and Kd = adaptive are illustrated in Fig-

ure 5.18. For Kd = 6, the RMSE, RMSτ and RMSτa are 0.086 rad, 0.277 Nm

and 0.495 Nm. When Kd is set to be adaptive, the RMSE, RMSτ and RMSτa are

0.101 rad, 0.315 Nm and 0.153 Nm.
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Figure 5.17: Representative examples of tracking performance when Kd is set to

2 (left figure) and 4 (right figure) respectively.

Table 5.8 gives mean RMSE, RMSτ , and RMSτa with different value of Kd. The

results show that the proposed control strategy with different level assistance has

the similar tracking accuracy. When Kd = 2 and Kd = 4 are applied, the mean

RMSτ is slightly larger than the mean RMSτ when Kd = 6 and adaptive Kd. The

robot assistance, RMSτa , increases as the value of Kd increases. The smallest

assistance is found when the Kd is in response to the joint stiffness.

The results yield that the wrist exoskeleton is able to respond to the subjects’

muscular effort and provide the robot assistance accordingly. The mean RMSE

is larger than the adaptive cooperative control strategy (section 5.4.1). This is

because that the proposed AAN utilizes the low-level PID controller to control

the force output of the pneumatic muscles, whereas the torque control of the

wrist exoskeleton is an ‘open-loop’ control. To improve the tracking performance,

future work will take account of the wrist exoskeleton’s assembly precision to
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Figure 5.18: Representative examples of tracking performance when Kd = 6 (left

figure) and adaptive Kd (right figure) respectively.

develop a ‘close-loop’ torque control. Moreover, the pneumatic muscle has the

non-linearity and hysteresis properties, the precise force control will be achieved

by the applying advanced modelling techniques and the flow control valve.

The RMSτ indicates the subject’s muscular effort, which are similar across dif-

ferent value of Kd. This is due to the fact that the desired trajectory is solely

obtained by the admittance filter. To track the virtual trajectory, the subjects

perform similar muscular efforts in each trial. The major advantage of the EMG

signal, the electromechanical delay, is not observed in this experiment. Future

work will implement the proposed control strategy in a microcontroller with a

high sample frequency to capture this characteristic.

The RMSτ is generated with respect to the kinematics errors and is in consistent

with the values of Kd. The smallest assistance is found when the adaptive Kd

is used. This can be explained by the fact that the healthy subjects perform
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the voluntary wrist flexion/extension resulting in a small variation of Kd. For

example, as shown in Figure 5.18 (a), the max kd occurs at maximum flexion

position. When the kinematic errors are same, the robot assistance with con-

stant Kd might be larger than the assistance when adaptive Kd is applied. The

Kd = 4 and Kd = 6 may provide too much assistance and may have negative

effects for patients, e.g., slacking [72]. The use of the adaptive Kd provide the

compliant assistance in response to the subject’s own effort and joint stiffness.

For example, at low joint impedance, same assistance is required to drive the

wrist joint. At high active stiffness, the robot needs large assistance to guide the

wrist joint to the intended motion. In this experiment, it is not demonstrated

that the significant differences between each value of Kd through the performance

criteria. In addition, It is not able to be measure the interaction torque during

the experiment. This is because the force sensor is used to the control the force

output of the PAMs. The force difference can not truly represent the interaction

force.

To conclude, this section presents an active assistive control strategy in order to

assist the subject to accomplish the virtual motion task. Experiment results show

that the wrist exoskeleton is able to drive the wrist joint to the desired position

in response to the subject’s motion intention. Similar to the ACC, the adaption

law is used to determine the robot’s assistance based on the subject’s stiffness.

However, current study has several limitations. The performance criteria is sig-

nificantly affected by the configuration of the wrist exoskeleton. Future work will

carry out improvements to the wrist exoskeleton including precise torque con-

troller and PAM force controller. The qualitative and quantitative analysis of

the AAN with different values of Kd will be re-evaluated. Future work will also

recruit more subjects including patients with muscular disorders to validate the

proposed control strategy.

133



5.6 Chapter summary

Table 5.8: The mean (standard deviation) RMSE, RMSτ , and RMSτa of AAN

with different Kd across ten subjects.

Performance criteria

RMSE(rad) RMSτ (Nm) RMSτa(Nm)

Kd = 2 0.117 (0.032) 0.418 (0.069) 0.233 (0.065)

Kd = 4 0.104 (0.036) 0.410 (0.074) 0.413 (0.144)

Kd = 6 0.106 (0.031) 0.385 (0.063) 0.625 (0.187)

Adaptive Kd 0.122 (0.0278) 0.377 (0.046) 0.207 (0.052)

5.6 Chapter summary

This chapter presents the EMG-driven musculoskeletal model-based active as-

sistive control strategy for the wrist rehabilitation robot. The wrist exoskeleton

used in this research is first introduced. The exoskeleton actuated by two pneu-

matic muscles provides antagonistic force for wrist flexion/extension motion. The

second section gives the evaluation and validation of the EMG-driven musculo-

skeletal model for estimation of the wrist joint stiffness. The passive and active

joint stiffness are emulated according to the literature. Results yielded the pass-

ive joint stiffness has the range from 0.21 Nm/rad to 2.22 Nm/rad, and the active

joint stiffness has the range from 7.45 Nm/rad to 16.48 Nm/rad. Both estim-

ated joint stiffnesses fall into the middle range of measurements reported in the

literature.

In the third section, the adaptive cooperative control strategy is proposed to

improve the training efficiency and ensure safety. This control strategy consists

of the PID-based position control and the admittance controller. The admittance

parameters are adapted with the aid of the real-time assessment of the wrist

joint stiffness. The wrist exoskeleton is under the passive model to guide the
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wrist joint following the reference trajectory. If the subject’s voluntary effort is

detected, the wrist exoskeleton is able to modify the reference trajectory and

robot’s compliance in accordance with the motion intention and joint impedance.

Experimental results show that the tracking performance of the proposed control

strategy (ACC) is significantly better than TTC, but the RMSE is larger than

FCC. ACC is capable of modifying the robot’s compliance in accordance with joint

stiffness. The proposed adaptive cooperative control strategy shows the potential

to enhance the training efficacy and safety for robot-aided wrist rehabilitation.

The assist-as-needed control strategy is proposed in this chapter, which assists

the subject to accomplish the intended motion. The force controller is utilized

to provide the desired torque, and the admittance controller is used to generate

the desired position based on the user’s intention. In the AAN, the subject is

encouraged to track the trajectory by his/her own efforts. Robot’s assistance

is calculated by the position and velocity errors. Furthermore, the assistance is

adapted based on the estimated joint stiffness. Experiment results show that the

wrist exoskeleton is able to assist the wrist joint to the intended motion, and the

assistance torque with adaptive Kd is smaller than the torque with constant Kd.

Improvements to wrist exoskeleton will be carried out in order to provide more

qualitative and quantitative results when different value of Kd are applied.

To conclude, the EMG-driven musculoskeletal model benefits the control of the

wrist rehabilitation robot. The model estimates the intention more intuitively

and provides a promising solution to access the wrist joint impedance property

in real-time without additional cost. The proposed EMG-driven model-based

control strategies provide a new solution to control the wrist rehabilitation robots

with improved effectiveness and safety.
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Chapter 6

An EMG-driven Musculoskeletal model

For Estimating of Wrist Kinematics

using Mirrored Bilateral Movement

Myoelectric control has been broadly studied for amputees in the last decades.

The major challenge for myoelectric control is that the demand for training data

to be recorded from the amputated side, which is impossible for the amputee.

This chapter presents a musculoskeletal model-based approach to estimate the

wrist joint kinematics of contralateral side using electromyogram (EMG) signals

from ipsilateral side using the mirrored bilateral training strategy. The proposed

approach computes the internal force/joint torque and integrates the wrist kin-

ematics using the forward dynamics, based on the recorded wrist muscle activities.

The experiments are conducted on six able-bodied subjects, involving symmetric

movements of both limbs with single degree-of-freedom and combined movements

of wrist flexion/extension and radial/ulnar deviation. For the contralateral case,

results show that the proposed approach can provide accurate wrist movements

estimation, in which the mean coefficient of determination and mean normalized

root-mean-square-errors are 0.84 and 0.15 respectively, across all movement tri-
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als and subjects. The proposed approach and setup give feasible meaning for the

simultaneous and proportional control of wrist kinematics. Furthermore, the de-

velopment of the multiple degrees of freedom wrist EMG-driven musculoskeletal

model can be used on the wrist rehabilitation robots.

6.1 Introduction

The loss of upper limbs impairs physical functionality and mobility that degrades

the quality of life significantly.The myoelectric control methods, using the surface

electromyogram (EMG) from the residual limb, strive to restore the functionality

for the amputee to perform the activities of daily life [168].

To estimate the joint kinematics using the EMG signal, a conventional approach

is concerned with the pattern recognition algorithm[65]. This algorithm is lim-

ited by its inherent sequential control strategy, which recognises the desired

motion classes at a time [169]. To realize the natural movements of the wrist

joint that involve the combined activation of the multiple degrees-of-freedom

(DoFs) [170, 171], the proportional control needs to be achieved. That is, con-

tinuous motion kinematic variables are derived from the EMG signal, instead

of desired motion classes [84]. Furthermore, myoelectric control methods should

provide the proportional control of multiple DoFs simultaneously [172].

The techniques for the simultaneous and proportional wrist kinematics estimation

are categorized into two approaches, model-free and musculoskeletal model-based.

The model-free approaches are broadly used for the myoelectric control [173–

178]. These approaches establish the relationships between EMG signals and

the desired movements using numerical functions. Nevertheless, the model-free

approaches are limited by the demand for the abundant data to train the relev-

ant transfer functions. Moreover, the trained functions underlying one specific
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condition, may not be able to respond to one novel condition, i.e., different pos-

tures [39].

The musculoskeletal model-based approach comprises muscle physiology (i.e.,

Hill’s muscle model) and musculoskeletal geometry to mimic the physiological

human movement. This approach entails the underlying muscular transform-

ation from neuro-commands to the corresponding limb motion. Recently, the

model-based approach is emerging for the proportional estimation about the

single DoF. For instance, Pau et al., proposed a simplified musculoskeletal model

to predict the elbow movements [91]. Han et al., also utilized the model-based ap-

proach in conjunction with EMG features to estimate the elbow flexion/extension

movements[132]. To provide the myoelectric control simultaneously, Blana et al.,

proposed the musculoskeletal model for myoelectric control of hand movements

to perform the American sign language [105]. Nevertheless, this model is based

on the simulated EMG signals. Crouch et al., proposed a lumped-parameter mus-

culoskeletal model to compute the wrist and metacarpophalangeal (MCP) joint

flexion/extension [100]. However, only wrist flexion/extension motion are con-

cerned in their model. The wrist primary muscles also contribute to ulnar/radial

deviation.

The physiological parameters in the model-based approach should be optimized

to each individual to preserve the estimation accuracy. However, the training

data, which requires the recording of the EMG signal and the corresponding

wrist motion from the same side, is not possible in amputees. Studies addressed

this problem by the mirrored bilateral movement training strategy because the

amputees are able to generate the virtual movements voluntarily with their am-

putated side[173–175, 179]. The similar neural muscular contractions have been

observed during the mirrored bilateral movement [180]. In [100], the musculo-

skeletal model was developed for amputees through the mirrored bilateral move-
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ment. However, only two wrist muscles are included and the optimized paramet-

ers exceeded the physiological range, e.g., the muscle fibre length is much larger

than the measurement in vivo [125].

In this chapter, we propose an EMG-driven musculoskeletal model to estimate

the wrist flexion/extension and radial/ulnar deviation using the mirrored bilat-

eral movement training strategy. Contributions of this paper are two-fold, which

are 1) the explicit computation of the underlying neural-mechanical process with

respect to five primary muscles, comprising the muscle activation dynamics, the

muscle-tendon model, and the joint kinematics estimation model, improves the

reliability for simultaneous and proportional estimation of wrist multiple kinemat-

ics. 2) the mirrored bilateral movement training strategy improves the model’s

feasibility that the internal physiological parameters are optimized according to

the EMG signal recorded from one limb (ipsilateral) and the wrist kinematic data

are recorded from the contralateral limb. Experimental work is conducted on six

able-bodied subjects through a series of wrist mirrored bilateral movements in

free space. Results demonstrate the proposed model-based approach provides

high estimation accuracy in the contralateral case with mean R2 of 0.86 and 0.82

for wrist flexion/extension and radial/ulnar deviation, respectively.

The remaining sections are structured as follows. Section 6.2 presents the ex-

periment protocol and the musculoskeletal model-based approach. Section 6.3

describes the results and section 6.4 gives discussion regarding the estimation

performance of the ipsilateral and contralateral cases respectively. The final sec-

tion gives a conclusion.
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6.2 Methods

6.2.1 Experimental protocol

Six able-bodied subjects participant in the experiments (referenced as S1-S6,

the ages between 25 and 31). The experimental information sheets are given

to all subjects and the consent forms are signed prior to the experiment. The

experimental protocol is approved by Maths and Physical Science and Engineering

Joint Faculty Research Ethics Committee of the University of Leeds (MEEC 18-

002).

At the start of the experiments, the subjects are asked to sit on an armchair with

the torso fully straight, the shoulders are abducted around 30◦ and the elbows are

flexed about 90◦. The elbows are supported by two customized armrests and the

forearms and MCP joints are kept relaxed. The symmetric position of the upper

limbs is checked carefully before each experiment. The neutral position of the

wrist joint is defined as the palm facing inwards [47]. Surface EMG signals from

the right forearm and the motion data from both forearms are recorded during

the experiments. A period of time is given for the subject to familiarize with

the experimental protocol before the experiment. and the maximum voluntary

contractions (MVC) are recorded.

Subjects are instructed to perform a series of mirrored bilateral movements, in-

volving the combination of the wrist movement. The experimental trials consist

of purely wrist flexion/extension or radial/ulnar deviation and the combination

of two movements, as detailed in Table 6.1. Each trial starts from the neutral

position and takes approximately 2 s for one defined movement cycle. Five trials

containing five repetitions of each movement are recorded. One trial from each

movement is used to optimize the parameters of the proposed musculoskeletal

model-based approach for the ipsilateral case and contralateral case respectively.
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The rest of the trials are used to validate the performance of the proposed model-

based approach. A five-minute break is given between trials to prevent fatigue.

Table 6.1: Experimental protocol

Index Movement set Active DoF(s)

1 Sinusoidal movement Wrist flexion/extension(WFE)

2 Sinusoidal movement Radial/Ulnar Deviation (RUD)

3 Combined movement in a circular

clockwise (CW)/Counterclockwise

(CCW)

WFE and RUD

6.2.2 Data acquisition

EMG recording

The surface EMG signals are recorded by the Avanti Sensors (Delsys TrignoTM)

in this experiment. The EMG signals of five muscles (i = 1, 2, . . . , 5) articulat-

ing the wrist joint are collected, including Flexor Carpi Radialis (FCR), Flexor

Carpi Ulnaris (FCU), Extensor Carpi Radialis Longus (ECRL), Extensor Carpi

Radialis Brevis (ECRB) and Extensor Carpi Ulnaris (ECU). EMG signals are

recorded from the right forearm (right top corner in Fig. 6.1). The location of

electrode placement are found by palpation and evaluated by performing contrac-

tion while looking at the signal prior to experiment. The skin is cleaned using

an alcohol wipe to minimize the impedance prior to electrode placement (shaved

if necessary). The EMG signals are acquired through the base station, sampled

at 2000 Hz.
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Wrist motion recording

The wrist kinematics data are captured using a 8-camera motion capture system

(VICON Motion Systems Ltd. UK). To compute the wrist flexion/extension

angle and ulnar/radial deviation angle, a coordinated system is adopted based

on [175]. The reflective markers are attached symmetrically on the subject’s

forearms (seven markers at each limb). Four markers are allocated in hand area,

including the radial head of the second metacarpal bone (RMC), the ulnar head of

the fifth metacarpal bone (UMC), the radial styloid (STR) and the ulnar styloid

(STU). Two markers are placed over the lateral (MEP) and medial epicondyles

(LEP) of the humerus. Two markers are positioned on the acromio-clavicular

join (SHO) and three markers are attached on the 7th spinous process (C7), right

clavicle (CLAV) and xiphoid (STE) respectively. The qualities of the movements

data are evaluated after each trial, trials containing the markers’ trajectory with

the excessive gaps are abandoned. The kinematic data are sampled at 250 Hz and

low-pass filtered.

6.2.3 Data processing

EMG processing

The recorded EMG signals are filtered using a 4th order Butterworth band-pass

filter (pass band at 20 Hz and 450 Hz) to remove the movement artefact and

dc offset. The filtered signals are fully rectified and low-pass filtered by a 4th

order Butterworth low-pass filter at a corner frequency of 4 Hz. To interpret

the envelope of the muscles activities between 0 and 1, the filtered signals are

normalized by the MVCs. The resultant enveloped signals ei(t) are the inputs for

the musculoskeletal model-based approach.
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Figure 6.1: The placement of electrodes (right) and markers position of the right

limb (left), along with the corresponding coordinate system. Markers on each

limb are attached symmetrically.

Kinematics data processing

Similar to [175], the coordinate system (Figure 6.1) can be described in the fol-

lowing.

1) The original point O is defined as the centre of the wrist, at the midpoint

between the STR and STU.

2) The y-axis is located along with the centre axis of the forearm, the positive

direction points to the proximal joint.

3) The x-axis is perpendicular to the palm, the positive direction points inward.

Then the z-axis is determined by the right-hand rule, orthogonal to the y-axis

and x-axis. The positive direction points upward.

The midpoint between the RMC and UMC is denoted by H, allocating on

the y-z plane. Thus the wrist joint angles θj (j = 1, 2) for wrist flexion/extension
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and radial/ulnar deviation can be calculated by the following equations.

θ1 = arctan
(
Hx

Hy

)
(6.1)

θ2 = arctan
(
Hz

Hy

)
(6.2)

where Hx, Hy and Hz are the projections of H on x-axis, y-axis and z-axis respect-

ively. θ1 and θ2 represent the wrist flexion/extension and radial/ulnar deviation

respectively. The positive directions correspond to the wrist flexion and ulnar

deviation respectively. The surface EMG signals and kinematic data are syn-

chronized in VICON Nexus software through a trigger module. The synchronized

signals are resampled to 100 Hz for computing the muscle activation levels.

As elaborated in Figure 6.2, the filtered enveloped signal are recorded from the

right side. The wrist kinematics are recorded from the both sides of the forearm,

optimizing the physiological parameters for each case. Then the optimized model

of the contralateral case is validated using the validation trials and is compared

with ipsilateral case.

6.2.4 Musculoskeletal model-based approach

The wrist joint kinematics are estimated through the proposed musculoskeletal

model-based approach for ipsilateral and contralateral cases respectively, which

comprises the muscle activation dynamics, the muscle-tendon model and the joint

kinematics estimation model. The muscle activation dynamics computes the

muscle activation levels of the wrist muscles. Then the muscle force are calculated

in response to muscle activation level and current states of muscle-fibre length.

The joint angles are estimated with the combination of the skeletal properties

through the forward dynamics.
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Figure 6.2: The flowchart of the EMG-driven musculoskeletal model: the en-

veloped EMG signals are taken from the right limb, computing the wrist joint

angles through muscle activation dynamics and musculoskeletal model. The wrist

angles are taken from the ipsi and contralateral sides are used to optimize the

parameters, as shown in the dashed block.

Muscle activation dynamics

The muscle activation ai(t) is obtained through the non-linear transformation of

the filtered enveloped signal ei(t) [119], which can be formed as

ai(t) = eAui(t) − 1
eA − 1 (6.3)

where A is the non-linear shape factor.

Muscle-tendon model

For each muscle, the muscle-tendon model is modelled as an elastic tendon con-

nected in series with a muscle fibre (Hill’s muscle model). The muscle fibre

contains the contractile element (CE) in parallel with passive element (PE). In

this study, the tendon is assumed as a rigid elements, thus the muscle-tendon

force Fmt
i can be computed by the sum of active force FCE,i and passive force
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FPE,i

Fmt
i = (FCE,i + FPE,i) cosφi (6.4)

FCE,i = Fm
o,ifa(l

m

i,a)f(vi)ai(t) (6.5)

FPE,i = Fm
o,ifp(l

m

i ) (6.6)

where FCE,i is the active force generated by CE, including the function fa(l
m

i,a)

and f(vi) to account for the active force-length curve and the force-velocity curve

respectively. Fm
o,i is the maximum isometric force. The force-length curve and

force-velocity curve can be expressed as

fa(l
m

i,a) = e−(lmi,a−1)2k−1
0 (6.7)

f(vi) =


0.3(vi+1)
−vi+0.3 vi ≤ 0

2.34vi+0.039
1.3vi+0.039 vi > 0

(6.8)

where l
m

i,a is equal to l
m

i,a = lmi /(lmo,i(λ(1 − ai(t)) + 1) [94]. lmi and lmo,i are the

current state of muscle fibre length and optimal fibre length respectively. The

coefficient k0 is set to 0.45 in order to approximate the force-length curve [120].

For the force-velocity curve, vi is obtained by normalization of muscle contraction

velocity vi to lmo,i/sec [87], in which vi is the derivative of the muscle fibre length

with respect to time.

Furthermore, FPE,i is the passive force generated by the PE in muscle fibre. The

passive force-length relationship fp(l
m

i ) denotes if the muscle fibre length exceeds

the optimal muscle fibre length, which be presented as

fp(l
m

i ) = e10(lmi −1)

e5 (6.9)

where lmi is the normalization of muscle fibre length with respect to lmo,i.

The pennation angle φi is angle between the tendon and muscle fibre. It changes

as the muscle contraction, which is obtained by

φi = sin−1(
lmo,i sinφo,i

lmi
) (6.10)
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in which φo,i represents the optimal pennation angle.

In order to obtain the current states of the muscle fibre length, a large combina-

tions of wrist movement involving wrist flexion/extension and radial/ulnar devi-

ation simultaneously are simulated by restricting other DoFs to the experimental

posture [96]. The simulated results are exported to generate the polynomial equa-

tion of the muscle-tendon lengths lmti with respect to the wrist joint angles. Then

the muscle fibre length can be obtained by

lmi = (kilmti (θ)− lti)cos−1φi (6.11)

where lmti and lti are the muscle-tendon length and tendon length respectively. The

scale coefficient ki is introduced to account for the difference of the muscle-tendon

length across subjects.

The moment arm is then obtained by the partial derivatives of the muscle-tendon

length with respect to the corresponding joint angles

rj,i = ∂lmti
∂θj

(6.12)

where rj,i represents the moment arm of ith muscle with respect to the jth joint

angle. Therefore, the corresponding wrist joint torques can be computed by

τj =
5∑
i=1

rj,iF
mt
i (6.13)

where τj is a 2×1 vector, representing the joint torques at wrist flexion/extension

and ulnar/radial deviation respectively.

Joint kinematics estimation model

The wrist joint is modelled as a universal joint. The axis of radial/ulnar devi-

ation is believed to be slightly distal to the axis of wrist flexion/extension [181].

Nevertheless, the distance between the axes is small and has the negligible effects
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on the wrist dynamic [182]. The equation of motion is computed by.

τj = Mθ̈j + Cθ̇j +Kθj +G (6.14)

where matrix M is the inertia term, which estimated according tos the subject’s

body weight and height [183]; Matrix C and K are the damping and stiffness

parameters respectively [162]. G is the gravitational term which only has the

effects on radial/ulnar deviation in this study. θ̈j, θ̇j and θj are the joint acceler-

ations, joint velocities and joint angles respectively. Therefore, the joint torques

(τj) are computed through the current states of muscle-tendon model together

and muscle activation level. The joint accelerations are forward integrated to

estimate the next state of wrist joint angles, using the 4th order Runge-Kutta

method.

Parameters optimization

As discussed in previous chapters, the proposed model-based approach contains

several parameters that represent the characterization of the subject’s muscle

properties [119]. These parameters vary across subjects due to the different condi-

tions of the anatomical status, e.g., skin condition. Thus, the maximum isometric

muscle force, optimal muscle fibre length, tendon length and scale coefficient ki
are optimized for each subject for either ipsilateral case and contralateral cases.

Besides, the non-linear shape factor is also included.

It is worthy to note that although these parameters are not available in amputees,

these parameters still can be optimized via contralateral case for the phantom

limb that can constrain the estimated movements within the physiologically feas-

ible RoMs.

For each subject, the nominal value of these parameters are assigned accord-

ing to [126]. The boundaries for each parameters are the in Chapter Three
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(Table 3.2), which are constrained within the physiological range [96]. The ge-

netic algorithm is applied in this study to optimize these parameters for each

subject and their movements,by finding the minimum value of the cost function.

The cost function is written as

χ = [Fm
o,i, l

m
o,i, l

t
i, ki, A]T (6.15)

χ̂ = arg min
χ
{f(χ)} (6.16)

where

f(χ) = 1
N

2∑
j=1

N∑
n=1

(θj − θ̂j) (6.17)

where f(χ) is the objective function that minimizes the difference between the

estimated joint angles and measured joint angles. θj and θ̂j are the measured joint

angles and estimated joint angles respectively, and N is the number of samples.

6.2.5 Performance index

To quantify the estimation performance of the proposed EMG-driven model, the

coefficient of determination (R2) and normalized root-mean-square-error (NRMSE)

are used as the metric for each DoF, which can be expressed as

R2
j =1− Var(θj − θ̂j)

Var(θj)
(6.18)

NRMSEj =

√∑N
n=1(θj − θ̂j)2

θmax,j − θmin,j
(6.19)

where θj and θ̂j represent the jth measured joint angle and the jth estimated

joint angle respectively. θmax,j and θmin,j are the maximum and minimum value

of the jth measured joint angle. In equation (6.18), the numerator represents

the mean-square-error (MSE) and denominator is the total variance [173]. The

NRMSE and R2 quantify the difference in terms of amplitude and correlation
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between the estimated joint angles and the measured joint angles. Higher values

of R2 and lower NRMSE indicate the musculoskeletal model-based approach can

estimate the joint angle accurately. In addition, separate one-way ANOVAs are

conducted for each DoF to evaluate the differences between the ipsilateral case

and contralateral case in terms of the R2 and NRMSE. Statistical significance

value is set to p = 0.05.

6.3 Results

For each subject, the wrist kinematic data are collected bilaterally and the EMG

signal is collected from the dominant side are used to calibrate the muscle-tendon

parameters. The estimated results for the ipsilateral case and contralateral case

across the single DoF movement and combined movement trials are illustrated in

Figure 6.3.

The one-way ANOVA analysis indicates that there is no statistical difference

between the ipsilateral case and the contralateral case. The p values are 0.27 and

0.77 for wrist flexion/extension (WFE) and radial/ulnar deviation (RUD) respect-

ively. In the single activation trial, the mean R2 and mean NRMSE in the case of

ipsi(contra)lateral are: 0.905(0.895), 0.118(0.141); 0.887(0.875), 0.138(0.131) for

the WFE and RUD respectively. In the combined motion trials, mean R2 and

mean NRMSE are 0.856 (0.838) and 0.143 (0.138) for WFE. For the RUD, the

mean R2 and mean NRMSE are 0.791 (0.784) and 0.157 (0.176).

The estimation performance of the contralateral case are summarised in Table 6.2,

in terms of the R2 and NRMSE for each subject. Results indicate the proposed

EMG-driven musculoskeletal model can provide an accurate wrist joint kinematics

estimation. When one DoF is activated, the estimation performance is better

than the performance when the combined movements are performed, e.g., in the
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Figure 6.3: Comparison of the estimation performance between the ipsilateral and

contralateral case in the single activation trials and combined movement trials.

Top panel and bottom panel present the R2 and NRMSE respectively. WFE

and RUD correspond to the wrist flexion/extension and radial/ulnar deviation

respectively.

contralateral case, the R2 of WFE is 0.90 in the single movement trial and is 0.84

in the combined trial.

One representative example for comparison between the ipsilateral case and con-

tralateral case is given in Figure 6.6. For the ipsilateral case, the R2 (NRMSE)

are 0.91 (0.08) for WFE and 0.85 (0.12) for RUD, respectively. For the contralat-
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eral case, the R2 (NRMSE) are 0.89 (0.09) and 0.82 (0.12) for WFE and RUD

respectively.

Table 6.2: Estimation performance across all subjects in the contralateral case

Subject Trial
R2 NRMSE

WFE RUD WFE RUD

S1

T1/T2 0.90 0.85 0.14 0.14

T3 0.79 0.85 0.14 0.17

T4 0.81 0.80 0.13 0.14

S2

T1/T2 0.90 0.90 0.11 0.11

T3 0.84 0.85 0.14 0.12

T4 0.88 0.82 0.12 0.16

S3

T1/T2 0.89 0.92 0.18 0.12

T3 0.93 0.57 0.12 0.16

T4 0.86 0.78 0.15 0.26

S4

T1/T2 0.89 0.89 0.17 0.13

T3 0.79 0.74 0.13 0.18

T4 0.85 0.73 0.15 0.23

S5

T1/T2 0.90 0.90 0.12 0.13

T3 0.83 0.88 0.14 0.13

T4 0.80 0.84 0.14 0.15

S6

T1/T2 0.89 0.81 0.13 0.16

T3 0.83 0.81 0.16 0.17

T4 0.83 0.75 0.14 0.15

Mean 0.86 0.82 0.14 0.16

Std. 0.04 0.08 0.02 0.04

Std. = standard deviation
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Figure 6.4: Estimation performance of the representative subject for single DoF

in the contralateral case. The R2 and NRMSE for the corresponding trials are:

(left) 0.95 (0.07) for WFE, (right) 0.96 (0.08) for RUD. Errors are presented in

blue dashed line
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Figure 6.5: Estimation performance of the representative subject for co-

contraction in the contralateral case. (Left) 0.84 (0.10) for WFE and 0.87 (0.11)

for RUD and (Right) 0.86 (0.12) for WFE and 0.89 (0.10) for RUD.
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Figure 6.6: Representative example for comparison between the ipsilateral case

(Top) and contralateral case (Bottom). Red dash line denotes the estimated

WFE angles (top figures) and RUD angles (bottom figures), black line denote

the measured joint angles. For ipsilateral case, the R2 (NRMSE) are 0.91 (0.08)

for WFE and 0.85 (0.12) for RUD, respectively. For contralateral case, the R2

(NRMSE) are 0.89 (0.09) and 0.82 (0.12) for WFE and RUD respectively. Errors

are presented in blue dashed line.
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6.4 Discussion

6.4.1 Mirrored bilateral movement

The EMG signal and kinematic data are collected when the subjects perform

the wrist movements using the mirrored bilateral movements train strategy. The

proposed musculoskeletal model-based approach is used to estimate the multiple

DoF wrist kinematics of the contralateral side using the EMG signals captured

from the ipsilateral side. Muscle activations are computed from the wrist primary

muscles. The experiments are conducted on the able-bodied subjects to show the

feasibility of the proposed method.

The proposed musculoskeletal model-based approach is tested on the able-bodied

subjects, laying the groundwork for future research on amputees. Neverthe-

less, it has been shown that the amputees can voluntarily produce the muscle

activities to experience different movements after amputation. This suggests

that the phantom arm remains the functionalities of expressing the preserved

limb movements by generating relevant motor commands as if the limb is still

there [179, 184]. Therefore, the EMG signals from amputees can be applied into

the proposed model-based approach to estimate the phantom limb’s kinematics.

The experimental results demonstrate that the proposed model-based approach is

able to estimate the wrist joint angles of contralateral side by using the EMG sig-

nals from ipsilateral side using the mirrored bilateral movements. This approach

provides the accurate joint angular movements estimation in the contralateral

case (Figure 6.3), which can be replicated for the unilateral amputees. In addi-

tion, to obtain the accurate estimation based on the user’s intention, the model-

based approach requires the parameters to be optimized by the objective function

(equation (??)) and the training data. The mirrored bilateral movement training

strategy plays the crucial role in the proposed approach to facilitate the para-
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meter optimization, in which the kinematic data are unavailable from amputated

side [174, 180].

6.4.2 Model performance

The experimental results demonstrate that the proposed EMG-driven model can

respond to the able-bodied subject’s intention in the simultaneous and propor-

tional wrist joint movements. It reflects the biological process from the EMG

signals to the wrist kinematics, interpreting the internal muscle active/passive

force and the joint torques [131]. In the contralateral cases, the mean R2 are 0.86

(±0.04) and 0.82 (±0.08) for WFE and RUD respectively, which is slightly lower

than the ipsilateral case. Both cases have the similar NRMSE, which are 0.14

(±0.02) and 0.16 (±0.04) for ipsi and contralateral cases respectively.

For the single DoF movement trials, the estimation performance shows a high

correlation and lower NRMSE than the combined movement trials. One potential

issue is that the performance is affected by the crosstalk, which leads to the model

treats the crosstalk signals as the muscle activities and generates the muscle force.

Moreover, the passive tendon force is another issue that results in estimation

errors. Besides, the subject may slightly involve the forearm pronation/supination

when the combined movements are performed, which the muscle activities may

deviated [19]. The primary wrist muscles are selected in this study. For the single

DoF movements, the selected wrist muscles act as the antagonist and agonist pair.

For example, the FCR and FCU are the flexor group and activated simultaneously.

These muscles are active alone when both DoFs are actuated [139, 185]. For the

amputees, it may be difficult to locate the targeted muscles after amputation.

Some studies applied the High-density (HD) EMG electrodes to record the muscle

activities from the amputated side[174, 175]. Therefore, the activities of the

targeted muscles of the missing limb can be clustered and identified by the spatial

157



6.4 Discussion

information [130, 139], and estimated through the muscle synergy technique [186].

State-of-the-art myoelectric control schemes are mostly based on machine learn-

ing techniques, extracting features from the captured EMG signals, training the

numerical transfer functions, and then to estimate the joint angles correspond-

ingly [174]. Although it cannot be compared with data-driven approaches, the

estimation performance shows similar performance compared with the model-free

approaches in terms of R2. Muceli et al. reported that the overall R2 for all DoFs

has over 0.79 [174]. Jiang el al. showed higher R2 in wrist flexion/extension

and radial/ulnar deviation movement when only DoF was close to the maximum

range of motion (mean R2 = 0.88 for contralateral case) [175]. However, ma-

chine learning techniques requires a large amount of datasets to maximise the

estimation performance. Pan et al., reported that for the same training data,

the model-based approach is significantly better performance than the artificial

neural network (ANN) and linear regression (LR) algorithm [131]. Furthermore,

it is proved that the musculoskeletal model-based approach is robust to the dif-

ferent postures. In addition, the proposed approach has a similar performance

compared with [185], who proposed a neural regression mode combined with a

generic musculoskeletal model to estimate the wrist joint kinematics. The mean

R2 is 0.8 for the able-bodied subjects in their study. Although they also estim-

ated the forearm pronation/supination, the related muscles are pronator teres and

musculus supinator mainly, and the effects on the flexion and deviation moments

are excluded [185].

The proposed model-based approach contains several physiological parameters,

which affect the model output significantly, i.e., isometric maximum force, muscle

fibre length, tendon length and non-linear shape factor. The pennation angle is

set to constant due to the fact it has minor effect on the model output [127].

These parameters cannot be obtained from amputees. Nevertheless, the pro-
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posed model can be established for the phantom arm using the mirrored bilateral

movement training strategy. The parameters are optimized through the genetic

algorithm with an average optimization time of 20 minutes offline. In addition,

the muscle-tendon lengths of selected muscles are determined by the regression

algorithm, including the complicated combination of the wrist movements with

respect to wrist flexion/extension and radial/ulnar deviation. Other approaches

to generate the subject-specific muscle-tendon model by scaling the model based

on the recorded data [39], where the scaling process is not suitable for the am-

putees. To account for the subject-specificity, the scaling coefficient is introduced

for the muscle-tendon length.

The tendon compliance could hurdle the real-time application of the musculo-

skeletal model-based approach, i.e., numerical stiffness in muscle-tendon model [95].

The tendon is assuming stiff enough in this study. The proposed model-based

approach still guarantee accurate wrist joint angles estimation in response to the

surface EMG signals. An average offline computation time of a 20 seconds trial

is 0.556 seconds on a desktop computer with a quad-core processor and 32GB

RAM. It is indicated that the proposed model has the capability of real-time

application.

6.4.3 Limitations

The proposed strategy is experimentally verified on the able-bodied subjects to

show the feasibility of estimating the accurate wrist joint angles. However, there

are some limitations to the current study, including 1) the performance of the

proposed approach and mirrored bilateral training strategy are only tested on

with a limited number of subjects. We will recruit more subjects including am-

putated patients for further investigation. 2) two DoFs are included in this study.

We will further develop and verify the musculoskeletal model-based approach for
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the movements of hand open/close and forearm rotation.

6.5 Chapter summary

In this Chapter, we proposed a musculoskeletal model to estimate the 2 DoFs

wrist kinematics of the contralateral limb based on the muscle activities from

the ipsilateral limb using the mirrored bilateral movements. The proposed model

interpreted the biological process from the muscle activities to wrist joint angles.

In the contralateral case, the proposed approach shows that the mean R2 are

0.86 and 0.82 for the wrist flexion/extension and radial/ulnar deviation respect-

ively. Results indicate the potential solution for simultaneous and proportional

control of wrist kinematics for the unilateral amputee. Future work includes the

extensions of kinematics estimation of hand open/close and forearm rotation and

further validation on the amputated patient.
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Conclusions and Future work

This research presented the design and development of EMG-driven subject-

specific musculoskeletal models for the wrist joint and eventually incorporated

the EMG-driven model into the wrist robot to improve its control performance.

The following research objectives were achieved. Firstly, a EMG-driven mus-

culoskeletal model was developed for wrist flexion/extension motion, and the

estimation accuracy was validated experimentally. Secondly, a sensitivity ana-

lysis was conducted to identify the influence of the physiological parameters on

the estimation performance. Thirdly, a direct collocation method was proposed

to optimize the subject-specific parameters efficiently. Its computational speed

was evaluated and compared with the computational speed when the genetic

algorithm was applied. Fourthly, the EMG-driven musculoskeletal model was in-

corporated with two active assistive control strategies to validate its applicability

and practicality. The internal muscular states were used to identify the wrist joint

stiffness which aided the adaptation method of control strategies. The perform-

ance of the control strategies were experimentally evaluated. Finally, the multiple

DoF wrist EMG-driven musculoskeletal model was developed to predict the wrist

flexion/extension and ulnar/radial deviation using the mirrored bilateral train-

ing strategy. The estimation accuracy was also experimentally validated. This
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chapter presents the research contributions and outlines the future work resulted

from this research.

7.1 Conclusions and Contributions

Development of the EMG-driven musculoskeletal model for estimation

continuous wrist motion

Current approaches of the EMG-based motion intention for wrist joint are based

on the model-based approach. These approaches interpret the motion intention

based on the numerical functions and fail to capture the underlying muscular

and skeletal information that is used for robot-aided wrist rehabilitation. Fur-

thermore, the model-free approaches require a large amount of training data to

map the EMG signal to motion intention. Chapter 3 presented the development

of an EMG-driven musculoskeletal model for the wrist joint to overcome these

limitations. This model comprises three sub-models to explicitly elucidate the re-

lationships from the muscle activities to muscle force and eventually to joint mo-

tion. The genetic algorithm was utilized to obtain the subject-specific parameters,

and these parameters were bound within the range to realize the physiological

joint movement. With the assumption of the rigid tendon element, this model

showed the feasibility of real-time computation. Experimental validation yielded

that the proposed model has high predictive accuracy. This model-based ap-

proach provides valuable insights to understand the transformation between the

muscle contraction and the resultant joint motion. In addition, only one calibra-

tion trial was utilized to obtain the subject-specific parameters, which indicated

that this model-based approach can facilitate the rehabilitation setup process.

The sensitivity analysis was also conduced in Chapter 3 to investigate the effects

of physiological parameters on the estimation accuracy. It was found that the
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tendon length and muscle-tendon length had high sensitivities. The optimal fibre

length, maximum isometric force, moment arm and non-linear shape factor had

moderate sensitivities, whereas the pennation angle had the lowest sensitivity.

Development of an effective optimization method of the wrist muscu-

loskeletal model

The state-or-art optimization methods for the musculoskeletal model required

a long period to obtain the subject-specific parameters, which leads to barriers

for implementing the model-based approach in the practical scenario. Chapter 4

presented the development of an effective optimisation method to optimize the

subject-specific parameters in the wrist EMG-driven musculoskeletal model and

to increase the optimization speed significantly. The direction collocation method

transcribed the muscle activation model, the EMG signal, the muscle activation,

and joint kinematics of the wrist EMG-driven musculoskeletal model into the

control and state variables. Together with constraints imposed by dynamics in

the EMG-driven model, the resultant non-linear programming problem was solved

efficiently by the IPOPT solver. Experimental results demonstrated that the use

of the direction collocation method achieved the similar predictive accuracy to the

use of the genetic algorithm. The computational speed was significantly greater

than the genetic algorithm, as the optimization time were 1697 s and 75 s for the

direct collocation method and the genetic algorithm respectively. This suggested

that the direct collocation method has the potential to be implemented in the

practical scenario. The proposed method also could be beneficial for those EMG-

driven musculoskeletal models which require subject-specific parameters.
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EMG-driven musculoskeletal model-based control strategies for a wrist

exoskeleton

Incorporating the EMG-based approaches for the control of the wrist rehabilit-

ation robot provides an intuitive response to the subject’s motion intention. It

is also suggested to incorporate the biomechanical property with the active as-

sistive control strategy to improve the control performance [53, 110–112]. It is

a challenging task to evaluate the joint stiffness in real-time. It requires time-

consuming experimental work to establish the relationship between the joint stiff-

ness, joint position and EMG signal, and the stiffness profile is varied across sub-

jects. Chapter 5 provided a solution for the real-time estimation of wrist joint

stiffness without additional cost. Furthermore, this chapter presented the devel-

opment of the EMG-driven musculoskeletal model-based control strategies for a

wrist exoskeleton to improve its control performance. It is the first time that the

EMG-driven musculoskeletal model-based control strategies have been implemen-

ted for the wrist rehabilitation robot. Experimental validation was conducted on

12 healthy subjects. The mean passive and active joint stiffness were 0.78 Nm/rad

(Std = 0.55) and 10.53 Nm/rad (std = 3.22) respectively, which were within the

range of measurements reported in the literature. Results indicated that the

model-based approach is capable to estimate the joint stiffness in real-time.

The adaptive cooperative control strategy was proposed, which included a PID-

based position controller and an admittance controller. This control strategy was

proposed to modify the reference trajectory based on the subjects’ motion inten-

tion. The admittance parameters were adapted in response to the wrist joint stiff-

ness. Experimental results demonstrated that the proposed control strategy not

only achieved adequate tracking accuracy but also adapted the robot’s behaviour

by the consideration of the subjects’ motion intention and wrist joint impedance.

The proposed ACC showed the potential to enhance the training efficacy and
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safety for robot-aided wrist rehabilitation. This chapter also proposed the assist-

as-needed control strategy. An admittance controller was combined with a force

controller to deliver the assistance. In this study, subjects were encouraged to

participate the exercise by tracking a virtual trajectory. The desired trajectory

was computed based on the muscular effort through the admittance controller.

The robot’s assistance was determined through the kinematic errors and was ad-

apted by the joint impedance. Experimental evaluation was conducted with the

adaptive parameter and with the constant parameters. Results demonstrated the

proposed control strategy was able to provide the compliant assistance in accord-

ance with subject’s wrist joint stiffness. To concluded, the proposed EMG-driven

musculoskeletal model control strategies provide a novel solution to incorporate

subjects’ motion intention and biomechanical characteristics into the robot-aided

wrist rehabilitation robot.

Development of the EMG-driven musculoskeletal model for estimation

multiple wrist DoFs

In Chapter 6, the EMG-driven musculoskeletal model was developed to estimate

the 2 DoFs of wrist kinematics. The aim was to exploit the use of mirrored bilat-

eral movement to estimate the wrist kinematics of the contralateral limb according

to the muscle activities recorded from the ipsilateral limb. It provided a solution

for the prothesis calibration. Results showed that the model-based approach

provides high predictive accuracy in the contralateral case. The mean R2 were

0.86 and 0.82 for the wrist flexion/extension and radial/ulnar deviation respect-

ively, which indicated the potential solution for simultaneous and proportional

control of wrist kinematics for the unilateral amputee. This study could also

be applied for robot-aided wrist rehabilitation as discussed in previous chapters.

The development of the wrist EMG-driven musculoskeletal model in this study
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paves the way for future implementation on multiple DoFs wrist rehabilitation

robots.

7.2 Future work

Further research should be undertaken to improve the performance of EMG-

driven musculoskeletal models for robot-aided wrist rehabilitation.

1) In this research, electrodes were used to capture the muscle activities. For

human wrist joint, these muscles are mainly attached at forearm. The signal

quality is influenced by the muscle shift and cross-talk during the movement

tasks. Future work will apply the high-density electrode, e.g., 8-by-8 array

electrodes, to capture the muscle activities. More information, such as the

temporal and spatial characteristics, can be obtained to establish a greater

degree of accuracy in determining the muscle activation levels of the wrist

primary muscles.

2) The proposed models in this thesis are ‘open-loop’ estimation models. Future

work will explore the use of the afferent signals, e.g., the muscle spindle model

and Golgi Tendon Organ model, as feedback signals to improve the estimation

performance.

3) In Chapter 2, sensitivity analysis yielded the estimation accuracy was highly

sensitive to the muscle-tendon length. Future work can applied magnetic Res-

onance Imaging technique or ultrasound technique to generate the 3D model

for the subject-specific muscle-tendon length. The regression algorithm can

be used to reliably interpret the 3D model with a low computational cost.

4) In Chapter 5, the model-based approach was used to estimate the wrist

joint stiffness in flexion/extension. Experimental evaluation conducted on 12
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healthy subjects demonstrated the feasibility of the proposed method. Future

work will provide the model-based joint stiffness estimation in two-dimension,

i.e., wrist flexion/extension and ulnar/radial deviation.

5) Chapter 5 presented the model-based assist-as-needed control strategy. Fur-

ther improvements of the force control performance to the PAM-driven wrist

exoskeleton will be carried out including PAM modelling technique and the

robot’s dynamics. The adaptation method will be further adjusted to provide

the optimal performance based on the wrist joint impedance. Future work will

implement the model-based control strategies for multiple DoFs wrist rehabil-

itation robots based on the developed EMG-driven musculoskeletal model in

Chapter 6.

6) The EMG-driven musculoskeletal models developed in this thesis were exper-

imentally validated on the healthy subjects. However, patients with neur-

ological disorders may have the abnormal activation patterns and different

muscular properties. Future work will recruit patients with neurological dis-

orders to investigate the performance of the proposed model-based control

strategies.

7) Further work will carry on the evaluations of the model for different sessions

in the rehabilitation program using the EMG-driven musculoskeletal model.

This is because that the rehabilitation is a long-time program. The EMG

activation pattern varies, i.e., the EMG signal is different among the training

sessions [33]. In addition, EMG signal may also vary between days. Therefore,

the proposed models should be re-optimized when the estimation accuracy

degrades at a certain level. Furthermore, the proposed model may provide in-

sights into evaluating the patient’s impairment at the muscular level according

to the re-optimized physiological parameters between different sessions. For
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instance, evaluation of the varied physiological parameters, such as isomet-

ric force, joint stiffness, provides a new perspective to assess the patient’s

rehabilitation outcomes.
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