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Summary

In this thesis I give a new description for the moduli space of stable n pointed curves of 

genus zero and explicitly specify a natural isomorphism and inverse between them that 

preserves many important properties. I also give a natural description for the universal 

curve of this space. These descriptions are explicit and defined in a straight forward way. 

I also compute the tangent bundle of this space. In the second part of the thesis I compute 

the ordinary integral cohomology ring from the above description and specify a basis for it.
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CHAPTER 1

Introduction

The theory of moduli spaces is a well established tool in modern algebraic geometry. Here 

we study the moduli space of n-pointed stable curves of genus zero denoted X n and give 

a new very concrete description of it. A stable curve of genus zero is a complex algebraic 

curve with some marked points, satisfying conditions to be described later. X n is the set 

of isomorphism classes of stable curves with n marked points. It has a natural structure 

as a smooth projective variety over C. It was introduced by Grothendieck and has been 

widely studied. The cohomology of X n has been determined by Keel [9], but his answer is 

not very explicit. The point of the thesis is to introduce a new, more explicit model for X n 
and to deduce a new, more explicit description of its cohomology. There are many other 

descriptions of X n, however they are non-explicit and difficult to analyze. For example it 

has been shown that X n may be constructed as certain iterated blowups, see Keel [9] or 

Kapranov [8], for example, who give two different such representations in this form. Keel 

uses his description to compute its Chow ring, prove we have an homology isomorphism 

and to give a recursive definition of its Poincare series. We will show that our approach 

is closer to Kapranov’s construction but be more explicit.

We will denote our space M s and define it as a subspace of a product of projective spaces 

■Ms Q \\PVt where the product is taken over each T C S with |Tj at least 2. Vt 
is a complex vector space of dimension \T\ — 1 . Thus our space comes equipped with 

projections to each PVr. There are natural projection maps 7r  ̂ : Vt —» Vu whenever 

U C T C S which have a natural composition rule. We will use these to impose the 

conditions on our subspace in a straightforward way. From this it will immediately follow 

that M s  is a projective variety. We then proceed to analyze M s  and prove it is the 

stated space. We also calculate its cohomology ring H *(M s ,Z ) whose presentation is 

computationally easy to work with. In particular our work will give an independent proof 

that it is finitely generated by its elements of degree 2 and free as an abelian group, the 

rank of H2(M s) is 2n -  1 -  n -  2 ^ .  That is we have one generator for each subset 

T of 5  of size at least 3, for subsets T of size 2 PVt is just a point. These classes are

5



1. INTRODUCTION

just the pullback of the standard generators'of H*(PVTi Z) under the projection maps 

,kt • M s  —*■ PVT. We also give a basis B[S] for this ring which uses the combinatorics of 

trees.

Let S be a finite set of size n at least 2 and write S+ =  S II {0 }. By a generic S-curve 

we will mean a pair (C, x ) where C is an algebraic curve isomorphic to C P 1 and x is an 

injective map x : S+ —► C, see example 1 below for a pictorial representation of such a 

curve. ■

We write [C, x] for the isomorphism class of the S-curve (C,x). In this situation two such 

curves (C, x) and (D, y) are isomorphic if there is an algebraic isomorphism 9 : C —*■ D 
with 9 o x  =  y, that is the fixed points are sent to the fixed points and their order 

is preserved. For C =  D — C P 1 we know any such map is a rational homogenous 

polynomial of degree 1. We define Xs to be the set of isomorphism classes of all generic 

S-curves. It is straightforward to identify Xs with a Zariski open dense subset of C P ^  2 
that consists of the complement of a finite union of hyperplanes, all the diagonals. In this 

"document we will study a certain compactification Xs of Xg that was first constructed 

by Deligne and Mumford in the 1960’s. These spaces have been studied extensively and 

may be constructed in several ways, using geometric invariant theory, Chow quotients, or J iterated blowups. They form an operad in the category of schemes, which is important in 

| quantum cohomology and conformal field theory. The complex points of X s  parameterize 

the isomorphism classes of stable S-curves. Knudsen and Mumford proved in the late 

T970’s that X s is a projective variety. The proof was developed over 3 papers and relies 

heavily on the theory of sheaves. From our definition this will be immediate.

'An important combinatorial invariant attached to any S-curve is that of its tree type. For
\

M s  we will define the notion of a tree that is right for our construction. More generally 

we define a forest on 5  as a collection P  of subsets of S such that for every U, V £ P  
either U C V  or F  C U or U fl V is empty and an 5-tree T  to be a forest on S with

S £ T. The combinatorics of these trees and forests will feature heavily throughout this
.

[document in the structure of M s  and later in its cohomology ring when we construct a
I
basis for it, although in a different context.



1. INTRODUCTION 7

In chapter 2 we begin by defining the vector spaces Vj, one for each T C  S of complex

dimension \T\ — 1 and maps between them 7ru : Vr Vu which are required in our

definition. We then define our space Ms  as a subspace of n  PVr- It will be immediate

from our definition that A t5 is a projective variety. We then generalize our construction to

a space M e  defined in an analogous way as a subspace of J] PVp where £  is a collection
Ten

of subsets of S. It is again immediate that this is a projective variety. It is this approach 

that is important for our analysis of Ms- Of particular importance to us is the study of 

the space M e  when L is an S'-tree T. In this case we will show that M r  is the total space 

of an iterated projective bundle. We will use this case, which is the easiest, to analyze 

more complicated examples by comparing them with the evident projection map onto 

| these tree cases. In particular this approach will make it easy to prove that everything
f j

we consider is smooth and irreducible.

I In chapter 3 we define and develop some simple combinatorial objects such as forests and 

trees and attach to them various numbers that we use throughout this thesis in both the 

algebraic and topological aspects. A notion of particular use is that of the length of a 

tree, this is equivalent to its usual combinatorial counterpart. We will use this inductively 

j when studying the space Mr- Many of the results presented here are trivial and included 

ij only for completeness. We also gather some one-off results that fit more neatly into this 
chapter.

In chapter 4 we will develop a catalogue of results that will form the basis for the un- 

I! derstanding of our space Ms- In particular to any »S'-tree T  we define a space M r  as a 

i subset of J"J PVr with the product taken over T, the space M r  is a natural generalization 

; to that of M  5. Our analysis of this space is important for many later results. We also 

ishow that to study M r  when T  is a forest easily reduces to the case of trees. We will 

( show that M r  can be seen as the total space to a tower of projective bundles, this forms 

| part of a more general result regarding fibre bundles. Prom this it will immediately follow 

that M r  is a smooth irreducible projective variety of complex dimension |Sj — 2. We will 

then use the embedding i : Mr  —► n  -PVr to compute the tangent space of M r  as a 

sub-bundle of Tj\PVr  =  hom( Mr, Vr/Mr)- This computation will easily generalize 

to more complicated collections other than trees and in particular we will be able to com- 

: pute the tangent bundle of Ms- This we consider in chapter 6. Lastly in this chapter we 

| will show that M r  can also be obtained from the iterated blowup of PVs along certain 

1 projective subspaces and their strict transforms. This result will be easily obtained and



8 1. INTRODUCTION

we will use it later to prove a more general result but in the same spirit. In particular we 

will be able to establish the existence of an isomorphism from X$ to Ais-

. In chapter 5 we are mainly concerned with the computation of the cohomology ring of 

M?r for forests A, we will denote this by Rj?. This ring will help us to simplify our picture 

! of the cohomology ring of Ais  which we denote by Rs. We will use the iterated projective 

bundle description of A i r  for trees T  given in chapter 4 to inductively construct the 

cohomology ring of A ir, this calculation will be straightforward. We then deduce the 

general case for forests T , this will just be an application of the Kiinneth theorem. In 

particular we will show that Rj.- finitely generated by its elements of degree 2 and free as 

; an abelian group, these generators will be the Euler classes over pullbacks of tautological 

line bundles. The rank of R&p will be the number of elements of T  of size at least 3. We 

■; compute two different bases for this ring, the second description will be explicit in its 

use of forests and will extend naturally to our ring Rs . To finish this section we specify 

necessary and sufficient conditions for a monomial x of R? to be zero. In particular we 

i show that any monic monomial of maximum degree that is non-zero is equal to the 

top class, again we will see how to generalize these results to the ring Rs- By the end 

of this chapter we will have a good algebraic understanding of the ring R?  as well as a 

topological impression. This will serve as a good model when we come to consider the 
ring Rs in chapter 9.

In chapter 6 we examine the topological structure of the space A ic  for a quite general class 

; of £. These sets we call thickets whose elements consists of subsets of S. The advantages 

of doing this is that we obtain many general results without much extra work and in 

1 particular we will be able to use a result by Kapranov [8] to prove that and A is  are 

in fact isomorphic. Although this will not be as satisfactory as we would like, this we 

explain in a moment. To start with we attach to every element M  G A ic  a tree T , trees 

! encode the minimal amount of data that one requires to describe an element of AAc 
from its image in Air- Then under the projection map 7r : A ic  Ai r  we will be able 

to compare a Zariski open set of A ic with one of A ir, a space we are already familiar 

! with, moreover the open set of Aic  will be saturated. These open sets will cover Aic  and 

enable us to show that Aic  is a smooth irreducible projective variety of dimension |5j — 2. 

We will then proceed, again using results developed in chapter 4, to compute the tangent 

bundle of A ic . In particular all of these result apply to A is- We will then prove that 

the cohomology ring of A ic  denoted Rc is well behaved, that is finitely generated by its
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elements of degree 2 and free as an abelian group. We will also compute the total degree 

of our ring in a combinatorial way using forests. This we will use in the last chapter to 

I; compute a basis for RS- The final section in this chapter is a generalization of the blowup 

‘ description from chapter 4. More precisely we will show that the space A ic  may be seen 

as a blowup of PVS over linear spaces and their strict transforms. This m particular will 

enable us to prove that X s  and Ai s  are isomorphic, while this is good to know at this 

stage it only stipulates the existence of an isomorphism without specifying it. This is of 

course not a satisfactory answer to our question but is useful in at least that it provides 

| limits to what form the functions intuitively may take. We will explain this at the end of 

this section. We give an explicit isomorphism in chapter 8 where we apply a more careful 

| analysis to A s  and morphisms from it to the projective space PVs-

In chapter 7 we only consider the space Ms- We start by examining the various notions 

of trees that can arise, we then explains how we consider these different representations 

: equivalent by specifying various bijections between them. These bijections will preserve 

several important properties. There are well known stratifications of the space X s  by the 

combinatorics of trees. Several important results are known about these subspaces which 

we state in the next chapter when we examine in more detail the space Xs- We will prove 

i the analogue of these results for our space here, this will mean considering subspaces of 

A is that consists of elements of like tree type. We denote these spaces by M s('P ) an(A 

j; also consider there closures M s('P ) where T  is a tree. These results will be required in 

chapter 8 to prove neatly that a certain morphism from X s to M s  is bijective and thus 

i an isomorphism as everything is smooth and complete. However these results are useful 

;| in their own right to understand the structure of the space Ms- M the last section of 

this chapter we apply a more local analysis and consider the morphism n . Ms+ Ms  
| together with its structure sections. In particular we will show that the restricted map 

!] 7r : TV” 1 (M s) -*■ M s  is a C P 1 bundle. We also explain in this section how to construct a 

map of sets from Ms  to ~XS, although we will not see that it is a morphism of varieties 

I here. This map it will turn out is the inverse to the morphism already mentioned.

| In chapter 8 we consider in more detail the space Xs- Most of this chapter is already 

! well known. Our contribution will appear towards the end. Parts of chapter 8 are closely 

;j related to unpublished notes by Professor N.P. Strickland. We begin by defining the points 

i of Xs, that is we define what a stable 5-curve is. Firstly we define the generic elements of 

¡1 our space, a representative of which is a 5-marked copy of C P 1. We then proceed to define
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the general ¿'-curve. Each irreducible component of this is a generic T-curve for some 

collection T. We continue by defining the graph associated to each element [C, x] 6 Xs  

\ and prove that it is a tree and this is equivalent to having Oc) =  0 which is part

of the definition of an ¿-curve. After defining families of ¿-curves and stating Mumford’s 

crucial theorem, that proves we have a moduli space which can be given the structure 

of a variety, we give a catalogue of results that are already well established. We will 

: require these later. We will define a regular map 0S : X s PVs this will be analogous 

to a construction by Kapranov [7]. It is well known that maps into projective spaces 

are characterized by locally free sheaves of rank one over the domain scheme that are 

u generated by global sections. We use the universal properties of X s  to analyze this map. 

We will then use the contraction maps defined by Knudsen 7rf : X s  —> X T to construct 

-regular morphisms $§■ : X s  —> PVr given by dj. =  which will then give us an 

induced regular morphism of varieties Os : X s —* PVr- We will prove that the image 

' actually lies in M s  and that it is an isomorphism. Then we show that the projection map 

ns ■ M s+  —»■ M s  is the universal curve whose induced map ps : M s  —► X s  specified by 

Ps{M) =  ns 1(M) is the inverse for 0s-

l In chapter 9, the final part of this thesis, we are concerned with the computation of 

the integral cohomology ring of Ms- We will define a ring Rs as the quotient of the 

polynomial ring Zs over Z by a homogeneous ideal Is- Because Ms Q Y[PVt there is 

one generater yT for each T contained in ¿  with size |T| > 2. When the size of T is 2 

! the space PVT is just a point. We will show that this gives us the rank of H2Ms  as 

— 1 “  n — Q) where n =  [¿|. One of the relations in Is is then 1 =  0 inherited 

from the cohomology of the space PVj- We have shown in chapter 6 that H2(Ms) is 

generated by elements of degree two. These are the Euler classes of a natural collection 

; of line bundles, specifically the pullback of the tautological vector bundles over PVr by 

the projections 7r : Ms  —» PVr- We specify a natural ring map rs : Rs —> H*{Ms) and 

prove this is an isomorphism after analyzing the ring Rs further. We also compute a basis 

¿ [¿ ]  for Rs that uses the combinatorics of forests and is a natural extension to the work 

of chapter 5. We next specify necessary and sufficient conditions for elements of Rs to 

be-zero, this requires us to further develop some combinatorial ideas that we started in 

chapter 5. In the next section we define a smaller set of relations that defines an ideal Js 
and we will show that J5 =  Is this result is of combinatorial interest and easy to prove. 

We then explicitly compute the natural map cl : A*{MS) H*(MS) from the Chow



1. INTRODUCTION 11

ring to the cohomology ring that we proved in chapter 6 was an isomorphism. This result 

should be compared with Keel in [9] who also proves we have an homology isomorphism. 

In the final section of this chapter we offer an alternative approach to analyzing the ring 

Rs that does not require us to compare it with the cohomology ring H*{M.s) but we do 

not prove any of the claims. This is where we leave our analysis of the space M s-

We aim in this thesis to convince the reader that our approach to this moduli space is 

useful for geometric intuition and computation and hope that our description will be a 

useful alternative to other representations.





CHAPTER 2

The definition of Ais and generalizations

In this chapter we define the main objects that axe required in the definition of M-s and 

give some of the notation we will be using throughout this thesis.

Definition 2.0.1. Let n be an integer greater than 1 and S a finite set of size n. Then 

for any subset T of S whose size \T\ is at least 1 we define the following spaces.

F(T, C) =  " { f  :T  —> C \ f  a, function }

Cp =  {  /  G F(T , C) | /  is constant }

VT = F(T,C)/Ct

P V t  =  associated projective space

Remark 2.0.2. For each subset T of S, F(T, C) is a complex vector space of dimension’ 

|Tj and we give it the usual topology by identifying it with (C^ in the standard way. For 

each T C S of size at least one Cp is a 1 dimensional subspace of F(T, C) consisting of 

the constant functions. We write qp ■ F(T, C) —► Vp for the quotient map, Vp is then a 

complex vector space of dimension |Tj — 1. Throughout this document we shall use the
i i
! notation <  to denote “is a subspace of” I

I Definition 2.0.3. For any sets U ■ C T C S we have the natural projection maps 

"pi : F(T, C) -► F(U, C) given by =  f\v . Since j%(CT) =  C,j we then have m'aps 

\pu '■ Vt —> Vu given by ir^ (/ +  Cp) =  f\u +  Cu■ These in turn induce partial maps 

Pu : PVp --•> PVu given by pjj{[f +  Cp]) =  [7r^ (/ +  Cp)] where [x] :=  spanc {x }. These 

maps are undefined for elements [u] with v e ker(7r^). We will use the partial arrow —•» 

to denote a map being partial.

13



2. THE DEFINITION OF Ms  AND GENERALIZATIONS

Lemma 2.0.4. For every U C V C T  we have 7r  ̂=  7r  ̂o 7Xy and p  ̂ =  p(j ° py whenever 
defined. □

Given our previous definitions we are now in a position to define our main object of 

! interest, the space Mis-

Definition 2.0.5. M s  is the subspace of n  -PVx defined as follows. An element
TCS__  m>i

M  in P V t  lies in M s  if and only, if for every pair of sets U  C T  C S  we have
T C S

| T |>1

M t  <  (7rJj)~ l Mu where each M v  is the U  component of M.

i In set theoretic notation, this is

M s  = M e  Y l p VT
T C S
\T\>1

Mt < {*u) Mu for all U ç  T ç  S

Example 2.0.6. For n — 0,1 M s is empty. For n =  2, M s  is a point and for n =  

3 M s  is a copy of C P 1. For n =  4, Mi5 is the blowup of PVs over the four special 

marked points [0 : 0 : 0 : 1], [0 : 0 : 1 : 0], [0 : 1 : 0 : 0], [1 : 0 : 0 : 0]

I, In order to understand the topology of the space A4 5 it is natural to generalize the above 

] construction to more general collections C of subsets of S. This we will do in the next defi- 

; nition. We shall then analyze these spaces to deduce information about our original space.

Definition 2.0.7. For any collection C of subsets of S with |T| > 1 for every T £ C we 

define,

M e  = M  G JJ p v t  
Tec

Mt <  (7rjy) 1Mu for all U,T £ £  with U Ç.T

Remark 2.0.8. It is clear that for such collections £  of subsets of S, M e  is a closed 

projective variety. Throughout this thesis whenever we specify a collection £  of subsets 

of S we will implicitly assume that every element T G £  has size at least 2.
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Definition 2.0.9.

L t  =  tautological vector bundle over P V r  

yT =  e (LT ) Q H 2P V t  the Euler class of L t

Lemma 2.0.10. Let V  be a complex vector space of dimension a 
where y =  e(L) and L is the tautological vector bundle over PV.

V be a complex vector space of dimension d then H*{PV) — 'L[y\jyd
T  „ J- U ~  4 - s . f . 1 r n & f l r . V '  h l i m f l l p  t l l l P V  P V .  CJ

Remark 2.0.11. Let £  be a collection of subsets of S with |Tj > 1 for every T e  £. We 

will sometimes describe the space M e  in a slightly different way using the partial maps 

Pu '■ PVt —■> PVu for any U C T  C S previously defined.

We have suppressed the notation U,T G £  with U C T .l t  is clear that both definitions

\ Definition 2.0.12. Define Us  =  {  /  G F(S, C) | /  is injective }. This is naturally the 

j configuration space c jf ' i.e. the complement of all diagonals in C 1' .̂ We then define the 

I space Us =  PsQs{Us ) where qs : F(S, C) Vs and ps : Vg -*  PVS are the quotient maps.

] Remark 2.0.13. The space Us C PV$ appears throughout this thesis. It is straightfor- 

ward to check that Us is a Zariski open dense set. It is well known that, modulo the 

Jfact we have not defined them yet, the set of generic curves give a copy of Us■ We also 

note here that the restricted map irs : TTgl (Us) -> Us  gives us an isomorphism where 

\rcs : M s  —» PVS. These facts will be proven later in chapter 6, section 2.

Here we state some conventions that we will be applying throughout this thesis. Let R

be a ring and r e  R be a non zero element. In general whene we write r — a%ri whh 
i iel
Oi e  Z we suppose that a.irl 0 and rl for all j . l i r  r”* we suppose m > 0.

iei
We may on occasion relax these conventions but this should be clear from the context.

M e =  < M G  PVT Pu{Mt) =  Mv whenever pJj{MT) is defined

I are precisely the same.





Combinatorial results

An important combinatorial invariant of an n-pointed stable curve of genus zero is that of 

the associated tree. Here we introduce a notion of trees, more generally forests that will 

appear throughout this paper in the structure of Ads and its cohomology ring. In this 

chapter we gather some miscellaneous results about trees and other objects. Here we will 

develop some simple combinatorial properties of these objects. We will consider them in 

* more detail later, as they are required. In particular we will show that the relationship 

t between the classical associated combinatorial tree and our trees are equivalent. The 

■ sense in which they are equivalent will be explained later.

3.1. Forests and the length of a tree

Definition 3.1.1. A forest on A is a collection T  of subsets of S such that,

for .all T e  T  \T\> 1,

i if U , T e F  then either U fl T is empty or U C T or T C U.

An S — tree is a forest T  on S with S G T. We say that a forest T  is proper if it is not a 
i tree.

i Remark 3.1.2. If a collection of subsets A7 of S' is a forest, then so is any subset of T. 

Definition 3.1.3. Let T  be a forest and T any element of T  then we define the T-treen.
J-\t by T\t =  {U  e T | h c r }  and call this set the restriction of jF to T.

Definition 3.1.4. Let C be a collection of subsets of S then we define the sets F/; =

{ F  £  I ?  is a forest } and Xc =  {T  C C \ T  is an S-tree }, that is the set of forests 
respectively trees of C.

CHAPTER 3

17



1 We next introduce the concept of the depth of an S-tr.ee T. This will be analogous to the 

concept of the length of a rooted tree, which is defined as the length of longest path from 

| the root to a terminal vertex without repetitions. It will turn out that this concept will 

i provide us with a nice inductive way of studying the space Adr, this is the subject of the 

I next chapter.

Definition 3.1.5. Let T  be an S-tree. A chain of T  is a subset C of T  such that for all 

: U, V E C either U C  V  or V  C  U. We write Cr for the set of all chains on T  and define 

lithe depth of T  denoted d(T) by d(T) =  max{ \C\ \ C E Cr }•

Lemma 3.1.6. Let T  he an S-tree and T C S an element o fT  then T \ t  is a T-tree and 
d(T|r ) < d(T).

Proof. The proof of this is clear.

□

3.2. Partitions of forests

¡ The power set P{S ) of S has its usual natural order given by inclusion. For any collection 

£  of subsets of S we can use the order induced on it to give a natural decomposition of 

C by sets CT) one for each T E C given by, for any U E £, U E £ t if and only i f U c T  
and is maximal in T. This decomposition, when applied to trees will actually turn out 

- to give us a natural partition of it. We shall later see that the combinatorics of such a 

partition will turn up a lot. We next explain this notion more precisely.

Definition 3.2.1. For any collection £  of subsets of S and for every V E C, we say V 
is maximal in C if there is no T E £  such that V C T and write M {£) for the set of all 

maximal elements, that is M{£)  =  {  V E £  \ V  is maximal in C }. We call this the set of 

maximal elements of C. We say V is minimal in C if there is no T E C with T CV.

Let U,T E C, we say U is maximal in £  under T if U C  T and there is no F  E £  
with U C V  C  T. Let T E £  we write M(£, T) =  { U E £  | U is maximal in £  under T } 

and call this the set of maximal objects of £  under T.

18 3. COMBINATORIAL RESULTS
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Lemma 3.2.2. For any collection of subsets £  of S we have £  =  M{£)  U (J M(£,T).
Tec

Proof. Clearly we have M(£)  U |J M (£, T) C £. Let U E £,  then either U E M {£ )
Tec

or U ^ M(£).  In the second case we need to show that U E M (£ ,T ) for some T E £. 
Suppose for a contradiction that U M(£, T) for any T E £. Let T E £  be a set of 

1 minimal size containing U, there must exist such a set since U £ M{£).  Then we know 

that U M(£,  T) and U C T so there exists V E £  such that U C V  CT,  this contradicts 

; ; the minimality of T .

jj . ' □

Lemma 3.2.3. Let F  be a collection of subsets of S, then F  is a forest if and only if for 
every T E F  the set M(F,  T) is a collection of pairwise disjoint elements and M(F)  is 
also a collection of pairwise disjoint elements.

; Proof. =>■ Suppose that for some T E F  there are distinct elements U,V E M(F,T)  
with u n v  non-empty. Then since J7 is a forest, we have that either U C V  C T or 

!7 C T. This contradicts maximality in F  under T.

If S' E T  then M{fF) — {S'}, so we may suppose S £ T. Then, we are required to show 

that M(tF) is disjoint. Suppose there are distinct elements U,V E M(tF) with U C\V non 

j empty Then either U c V c S o v V c U c S ,  contradicting maximality in T

<= We prove this inductively. Define

Fx = M(F)

Fi+l = F  U U  M (F,T )
Te?i

=  Fi U ] ] LM (F ,T )
TeUi

where Ui =  Fi\ Fi-x. Then it is clear F\ is a forest and given Fi is a forest then Fi+l isv
| a forest. Clearly there is some n such that F  =  Fm for all r n > n  and we are done.

. □

Lemma 3.2.4. For every forest F  and for every distinct U,V E F  M(F,  U) C M(F,  V)

I emPty and for every T E F  M{F)T\M{F) T) is empty, that is all the sets are disjoint.
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j , Proof. Suppose for a contradiction there are elements U,V G T  with M(F, U) fl 

j M(F, V)  not empty. Let W  G M(F, U) n M(F,  V) , then W  C  U and W  C  V  therefore

[ /  n V is not empty. Since F  is a forest we must have either U C  V  or V C  U. Ii U C  V

then W c U c V . l i V c U  then W  C  V  C  U. In both cases we have a contradiction. A 

similar result holds for the second case.
□

|| Corollary 3.2.5. For any forest F  of S we have F  =  M(F)  II LI M(F, T) □

Corollary 3.2.6. For any forest F  of S we have,

J2\M(F,T)\ =  \F\-\M{F)\
\ TQf

E E m m
T e ^ t /e M ^ T ) Ve?\M(F)

! □

3.3. Numbers associated to forests

We next define some numbers associated to each forest F  and develop some simple com 

binatorial properties of them. These number will appear throughout this document in 

both the algebraic and topological aspects of our project.

Definition 3.3.1. For each forest F  and for any T € F  we define

m (F,T) =  E (M-1)
U<EM(F,T)

n (f,T ) = (m-1)- E (M-2)
UeM(F,T) '
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I Lemma 3.3.2. For each forest T  and for any T G T  we have,

E roU>T> = ( X  m)-|MOT|
Ter KT€M(F) /

= ( E m) + ui-2im(di
t’c-p- ^TeM(r)

21

Proof.

E m U > r ) .

re^
E(|r|-1)-E E (Ti-1)

r e ^  ueM(r,T)Ter

= (E iti) - iu-E  E w+E imut)i
\-Ter '  TerueM(r,T) ■ T er

E Tl) -lMU)l
TeM(r) '

To prove the first case we used corollary 3.2.6. To prove the second case we note that

n{T, T) =  m{T, T) +  \M{T, T)| and again use corollary 3.2.6 together with the first case.
V . : □

Construction 3.3.3. Let T be a subset of S and define S/T to be the set of equivalence 

classes of S under the equivalence relation ~  given by u ~  v u — v or u, v G T.

We then define qT : S —> S/T to be the evident quotient map. Let £+ be a collection of 

subsets of S and T  an element of £+ of minimal size. Then we write £  to be the set £ + 

with T removed and put £  =  gT(£), note that by the minimality of T every element of £  

has size at least two. It should also be noted that we do not display the dependance of £  

on T as this avoids extra notation and should cause no confusion.

| Definition 3.3.4. Let £  be a collection of subsets of S and T a subset of S then we 

(define Forests(£, T) — { T  £ F/; | T G T  }. We also write Forests(£) =  F/;

Lemma 3.3.5. Let S, T, £ +, £  be as in the previous construction then there is a bijective 
correspondence b : Forests(£+,T ) Forests(£) such that
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:!

m (F, U) 

n(P, U)

where W  is the minimal element of IF with W  D T should it exist.

PROOF. Define the function b : Forests(£, F) —> Forests(F) by b(T) =  qx{T\  {F })  

and c : Forests(£) —» Forests(F, T) by c{U) =  qffifA) II {T}.  Then b is a bijection with 

inverse c. To prove the final part of the claim we only need to check elements U E T  
with T C  U. First suppose T C  U and consider M(T,U),  since T E T  and the size 

of T is minimal there must be an element V E M (F , U) with T  C  V. If T C  V  then 

V E C and for any other W E M (T , U) \W\ =  \W\ thus (|!7| -  1) -  (|Vj -  1) =  

-  \T\) -  (|V| -  \T\) .= (|U| -  1) -  (\V\ -  1) and m(b(TfU) =  m(T,U). If V =  T 
then |U| -  1 =  \U\ -  \T\ =  (\U\ -  1) -  (|F| -  1) and again m(b(T),U) =  m (T ,U). The 

case when U =  T is clear. The proof of the second statement is similar.

□

Definition 3.3.6. Let T  be a forest and U C F  then we define P u— W (m(U,T) — 1),
Teu

P$ =  1 and m{F)  =  £  Pu. We also define, n(F) =  f ]  n(F, T ).
UCF T&T

Lemma 3.3.7. Let T+ be a tree and T E T+ be an element of minimal size. Put F  to be 
¡the set T+ with T removed and F  — qxi'T) where qx ■ S —> S/T is the collapsing map.

: Let b : Forests(Ff, T) —y Forests(F) be the bijection of lemma 3.3.5 then for any forest 
F  E Forests (Fj., F) we have P? =  (|F| — 2)Pb{?)-

m(b(F),U)

\T\-1
if

if

U ^ T  

U =  T

n(b(F),U) if U ^ T , U ^ W

=  < n(b(F),U) +  l if U =  W  
|T| — 1 if U =  T

Proof. Using the construction in lemma 3.3.5 we see that b{F) — qx{U) where U =  
\P\{F }. Again by lemma 3.3.5 we see that for every U EU that m(F, U) =  m(b(F), U). 

|Since the evident induced map qx :U b(F) is a bijection we see that
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=  n  M K -U .E O - 1)
ueb{T)

=  n ( mw u T ) - i )
ueu

U€U

and so Pr  =  (|T| -  2)Pb{T).

□

Next we prove that m(T)  =  n(T) for any tree T, more generally it is true for any forest 

P ■ We require this fact but prove it more efficiently later.

Lemma 3.3.8. Let T  be an S-tree then m(T) =  n{T).

Proof. To prove the claim we will show that both sides satisfy a certain recur­

rence relation with the same initial conditions. The particular relation is given by 

aT+ =  ar +  (|T| — 2)a^, a$ =  1. First Let W  G T  be the set of minimal size con­
taining T then

ar+ a T  +  ( | T |  —  2 )a if

J[ n (T ,U )  +  m - ^ ) Y [ n ( T , V )
uer v e r

[ n  n(T+,U))\n{T,W) +  (\T\-2)\ J ]  n(T+, t/)l (r»(T+, W) -  1)
U € T +  L U e r +

Û WÛ T UjtWÛ tT

[ n  " ( T+, C l  [" (T+. W) +  (IU -  2) +  (|r| -  2)(n(T+, W) -  1)’
uer+ û w ÛT

[ ¡ I  n(T+,U))](\T\-l)(n(T+,W))
uer+ U?W ÛT

=  n  " U + . o
UeT+
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for the second numbers we have
h;

ar+ =  ax +  (|T| — 2 )a^

¡! =  Y ]  Pr +  (\T\ ~ 2) y~]
^ cr  j c r

•̂ CT Tc/T

=  E P / +  Pjf by lemma 3.3.7
f c r +  ? c t +TjiJ7 rer

FQ7+
=  rn(T+)

clearly these formula agree on the initial terms and we have proven our result. We will 

use this result to later see that the equality is also true for forests T.
□

i Definition 3.3.9. For any finite set S we define a function from the power set P2(S) of 

\P(S) to P(S) called the support supp : P 2(S) —> P(S) by supp(£) =  |J U.
i U€C

Lemma 3.3.10. supp(£Y U V) =  supp(W) U supp(V)
|'

Proof. The proof is immediate from the definitions.
□



CHAPTER 4

The topology of M e  f ° r trees

In this chapter we consider the topology of the space Aic for the case when £  is an 5-tree 

IT, this case will be the easiest to consider. We will show that Air can be seen as the 

total space of an iterated projective bundle, we make this notion precise in what follows, 

jrhis will enable us to show that M r is a smooth irreducible projective variety and thus 

also a smooth complex manifold, its complex dimension is 151 — 2. This description will 

Ithen make it easy to compute its cohomology ring. We consider this in the next chapter. 

We will use the embedding i : Air Tl PVt to identify the tangent space of Air as 

ja sub-bundle of the tangent space of n  PVt - ln fhe last section of this chapter we will 

¡show that the space A ir  can also be seen as an iterated blowup of PVs over certain linear 

jsubspaces. This result will then be used to prove a more general result that we consider 

later. The understanding of the spaces Air will turn out to be both convenient and neat 

for the understanding of the spaces Aic for more general collections A  enabling us to 

deduce the respective analogous statements about them. This will be explained later in 

the relevant chapters.

4.1. The projective bundle description for A ir

Here we prove the projective bundle description for Air- Specifically if we remove 5  

from T , we are left with a forest y ,  which can be written as a disjoint union of trees, 

|y =  U T\t- It is clear from the definitions that Air =  [J Afr\T• There is an
TeM(r) reM(r)

evident projection map r  : Air —+ Air and we will show that this lifts to an isomorphism 

Air =  PWr for some vector bundle WV over Air- This fact will then enable us to deducej •* i»
ia number of results about Air, inductively, on the depth of the tree T , which we defined 

|in the previous chapter. Later these will be used to obtain general result about Aic- We 

twill exhibit the vector bundle Wr over A ir directly as the pullback over an algebraic
n ■ ■ ■ ■
map of the tautological bundle of a certain grassmann space.

25
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Lemma 4.1.1. Suppose F  is a forest then M r  =  f l  ~Mf \t and each r  is a tree-
TçM(F)

26

j, Proof. It is clear that T =  n rw and each P\T is a T-tree. The proof is then
[' TQM(f)
clear from the definitions. O

j Remark 4.1.2. The last lemma tells us that to study M r  for forests P  it is enough to 

understand the cases for trees T. We next define a map of vector spaces whose importance 

will be seen in the following lemma. We will then use this map to prove our claim that 

M r  is the total space of a projective bundle over M r-

Definition 4.1.3. Let T  be a forest and for any U,T G P  with U Ç T let tî  : Vr Vu 
be the usual restriction map. Suppose M (P ,T ) is non-empty then define the map 

tf ,t ■ VT -> ®  Vu by 7rr,r =  W ^u-
' U Ç.M (F,T) UeM(F,T)

Lemma 4.1.4. Suppose T  is an S-tree and d(T) > 1. Put P  to be T  with S removed then,

Mir —  ̂M_ £ -Mr x PVs Ms F q ^

Proof.

M r  ~  < M  ^ PVr MT < (ir^)~1Mu for all U,T G T  with U C T
TeT

=  < M e (  [ ]  M r  It ) x PVs Ms <  f|
y ' TeM{T,S)  ' TeM(T,S)

=   ̂M_ G M .r  x P V s  M s 5; Fq-x§{@Mu) ^

|The second step requires some comment. First the inclusion C is clear. We now prove 

the reverse inclusion. Let M_ be an element of the second set. Then to prove M  G M r  
iit is enough to prove that for every U G T  we have Ms <  ff)~xMu- Let U G T , the 

claim is clear if U =  S so we suppose otherwise. Now we can factor U C S with some 

Jr G M (7 j 5). That is U C T C S and U,T G T\t . Thus we have Ms <  (tt$)~1Mt and 

M r < {TrJj)~xMu thus Ms <  (^ )~ l(nJj)-lMu =  (n^^M u. This proves the claim. □



Next, given N  G M ?  we put W rtN =  7îÇ1s (®iV{/)- ^  we can assemble these vector spaces 

into a vector bundle Wr over M r,  the above lemma will show that M r  =  PW r  and 

thus A i'T is a projective sub-bundle of A i r  x PVs- In what follows we will explain how 

| to do this assembly.
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1 ■
j Lemma 4.1.5. Let P  be a forest and T  G P  such that M ( P ,T ) is non-empty. Then the

I map 'Kjrj' : Vf —► 0  Vu is surjective, the dimension of the kernel is m(P, T) and
U<=M(F,T)

dim(7r^1T(®AL[;)) =  n(P,T).  These numbers are defined in definition 3.3.1

i Proof. For any y G 0  Vu and any U G M(P,T)  let yv G Vu be the U com- 
I ueht(r;r)
:ponent and yv : U —> C be a representative for yv . Next put W  =  T\  |J V and
i . . UeM{F,T)

¡ define x : T —> C by

x{t) =
yu(t) if t e U  

0 if t Ç.W

This construction is well defined since the sets U G M (P , T) are disjoint. Then x G Vr 

land 7r(x) =  ÿ  thus irr,T is surjective. The dimension of the kernel is now clear using the 

Tank nullity formula for linear transformations.

■Next put Wr,M =  7rflT(®Mu) then the restricted map irr,r : Wt ,m -*■ Uç̂ :f t ) Mu 1S 

¡surjective and clearly has the same kernel as the unrestricted map. We then apply the 

¡rank nullity formula again, the previous calculation tells us the dimension of the kernel.

¡Definition 4.1.6. Let T  be an S-tree with d(T ) >  1. Then we have the surjective map
i __
pr,S • Vs —> 0  Vp. We define the induced map ixr,s • n  PVT —>• Grass(Vs,&) by
j; TeM(T.S) ’
j7fr,.?(M) =  'xf1s (M). where k =  n(T,S).  It is clear that this map is a morphism of 

¡varieties.

¡Proposition 4.1.7. Suppose T  is an S-tree with d (T ) >  1 then there is a smooth al­

gebraic vector sub-bundle W j  C M r  x Vs of dimension n(T,S) over M r  such that 

\Mr =  PW r, the projective bundle of W j. Ifd(T)  =  1 then M r  =  PV$.



Proof. Let L be the k dimensional tautological vector bundle over Grass(ks, k) wheref!
k — n(T,S).  We have by the previous definition the map Wr,s '• TI PVt Grass(Vg, fc) 

and define the smooth vector bundle Vfi over f ]  PVt to be the pullback of L over Wr,s- 

Define ixT : M r  —> Y[PVt to be the projection where the product is taken over M(F).  
Next define the vector bundle W r over M r  to be the pullback of Vr over Tr-r : M r  

PVt■ Then it is clear that this is the required vector bundle. To see that Wr is smooth 

we use induction on the depth of the tree T. For any S-tree T  with d(T ) =  2 we have 

that Wr =  Vr which we all ready know is smooth. Suppose the result is true for any 

5-tree T  with d(T ) < n — 1. Let T  be any S-tree with d (T ) =  n then we know Wr is 

the pullback of the smooth vector bundle Vr over the algebraic map 7xr ■ M r  II PVt - 

:For each T E M(F)  we have T\r is a T-tree and d(Tjx) <  d(T). If d(T|x) > 1 then 

by induction each M T\t is the projectivization of a smooth algebraic bundle and so is 

smooth. If d(T’lx) =  1 then Mr\T — PVt which is smooth. Thus M r  =  X\Mr\T is 

jsmooth. Therefore we have that Wr is the pullback of an algebraic vector bundle with 

smooth base over an algebraic map and so is a smooth algebraic vector bundle.

□

Definition 4.1.8. Let T  be a forest a n d W C F  then we say that U is closed downwards 

if for every U EU  and V E T  with V  C U we have V Eli.
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!!i
jCoROLLARY 4.1.9. Let T  be a forest and li C T  be closed downwards. Then the projec­

tion it : M r  —> M u is a fibre bundle map. D

Definition 4.1.10. Let T  be an 5-tree and for each T  E T  let Lr be the tautological 

vector bundle over PVt and r T : M r  —> PVT be the projection map. Then we define 

the vector bundle Nr to be the pullback of Lr over 7tt- Suppose d (T ) > 1 then let Vr 

;be the m(T, S)-dimensional trivial vector bundle over M r  whose fibre is ker^^s) where
I ■ *
Tr.s : Vg —* ©  Vr is the usual map.

T € M ( T ,S )

(Lemma 4.1.11. Let T  be an S-tree with d(T) > 1 then we have the smooth isomorphism 

\of vector bundles WT =  V r ® X r  where X T =  0  NT.
T e M (T ,S )
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Proof. For each N_ e  Air we have the short exact sequence on the fibres of the 

vector bundles

ker(7Tr,5) —- ^r\s(®Xr) ®XT

ker(7rT)S) --------- - V s -------- ©VT

This induces a short exact sequence of vector bundles Vr W?— » X r  and a choice of

smooth inner product on the vector space Vs gives us the splitting W r =  Vr © Vr • We 

then use the map 7xr,s to give us the isomorphism of the perpendicular bundle V? with
i '
Xr- Thus we obtain the splitting Wr =  Vr © Xr- □

f 4.2. The irreducibility and dimension of M r

Here we will prove that A ir  is a smooth irreducible algebraic manifold of dimension 

IS| — 2. In particular this will mean that any non-empty Zariski open set is dense in the 

Zariski topology and moreover in the classical topology.

I' »
Lemma 4.2.1. Let T  be an S-tree then Air is a smooth irreducible projective variety of 
dimension 151 — 2.

Proof. Since Air =  P{Wr ) and WT is a smooth algebraic vector bundle it is clear

that Air is a smooth projective variety. To show Air is irreducible and compute its

dimension we use induction on the depth of the tree T. The cases when d(T) =  1 are well

. known. Assume the cases to be true for d(T) <  n— 1, then for d(T ) =  n and for every T e

\M(lF) each T\t is a T-tree and d (7 jr ) < d(T). We first show that Air is irreducible. ^By

(induction each Xir\T is irreducible, thus Air =  Air\T is irreducible, therefore Air
reM(r)

is the projectivization of a smooth algebraic vector bundle whose base Air is irreducible. 

¡Thus Air is irreducible. We next compute the dimension. By the above description of 

Air we see inductively that the dimension of Air is |T| — 2. Now the dimension
TeM(F)

of the projective bundle follows from proposition 4.1.7 and is n(T, S) — 1, thus we have
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dim(A/ir) =  n(T,S ) -  1 +  E  ( m - 2)
T&M{r)

=  i5 i - 2 -  E  ( P i - 2) +  E  ( P i - 2)
T e M { T ,S )  T& M {F)

=  |5|-2 since M (T , S') =  M(JF)

□

4.3. The tangent space to Air

¡We next compute the tangent bundle of the space M.r- Using the embedding of A ir  in 

El PVr we identify it as a sub-bundle of the tangent bundle T  ]][ PVr =  II  ̂ PVr- This 

result will then enable us to calculate the tangent bundle for more general collections 

C of subsets of 5, this we consider later. In particular we will be able to compute the 

jtangent space of Ais- Before we can begin our computations we will need to introduce 

some definitions. These definitions will be generalized in later sections and are important 

throughout this thesis. Here we also prove special cases of more general results as they 

are particularly easy and serve as a warmup for later results.

D efinition 4.3.1. Let T  be an 5-tree and M  G A ir • We define the type of M  denoted 
type(M) as,

type CM) =  { u e T I for all T D U with TeT => = 0 }

¡Remark 4.3.2. It is clear that type(M) is an 5-tree.

Definition 4.3.3. Let T  and U Q T  be 5-trees then we define a function root : T  —> UI %
by root(U) =  T where T 6 U is the element of minimal size containing U. We say T is 

: the root of U in U.

i Remark 4.3.4. Let T  and U  C T  be 5-trees. Let ¡ J g T  then root(Z7) =  U in U  if and 

only if U G IA. Further if U C V  then root(U) C root(U). On occasion we may extend 

this definition to elements T C 5  other than those in T.
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Lemma 4.3.5. Let T  be an S-tree and M e  M r  an element of tree type U. Let U e  T  

and put T  =  root(i7) in U then -kJ/Mt =  Liu-

Proof. Suppose for a contradiction 7ffiMr =  0. Then clearly U U for otherwise 
X  __

"  ro°t(f/) =  JJ and 7xJjMt — Mr- Let V e  T  with V D U then since T is minimal
V X) T1-  1 Z> U and nfiMy =  nf/nlfiMy <  rffiMr =  0 thus U G U a contradiction. □

4.3.6. Let V be a finite dimensional complex vector space, L the tautological vector 
Undle over PV  and M  e  PV. Define inc(M, V ) to be the subset o/hom (M , V) consisting 

 ̂the non zero functions. We then define the algebraic map h : inc (M, V ) —► PV by 

= a(M) and qm - V  —+ V/M to be the quotient map then

U) The map h is locally a product projection in the Zariski topology.

(2) The derivative d h : horn (M, V ) —* T^PV is surjective at every point.

(3) The kernel of the derivative dh of h is hom(M, N).

(4) TPV =  hom(L, V /L )

(5) The derivative d h : hom (M, V) —> hom(M, V/M) is dh(f) =  qm ° /

Lroof. We first prove that the map h is locally a product projection. The fibre of 

Riap is =  inc(M, N). It is clear that we can form the smooth algebraic vector

LP over PV  with fibre WN =  hom(M, N). Write 7r : W  —> PV  for the projection 

rPhism and let U be a Zariski open set containing N  so that n~l (U) ~  U x C is trivial.
Lgf Ttrv

^  {  {N,v) E W  | v 7̂  0} and write ttx : W x —► PV  for the evident morphism.

A ctin g  C to C* we obtain the smooth isomorphism 7rx~1(U) ~  U x C x with fibre 
9t hr i .

t)eiRg h~1(N ), this show us that h is locally trivial. Since h : inc(M, V)  —*■ PV  
is a

Product projection near N  G PV  with h(g) =  N  where g : M  —* V  we see that 
the <Tfp

^erential dh at g : M  —► V  is surjective. Thus we then have the surjective map 

' Lom(A4j V) —► TnPV. We have Wjv =  hom(M, IV) is a subspace of hom(Ai, V) and
ijj jg ‘ 1

ear h sends Wjf =  inc(M, N) to a point and g G W/j thus taking the derivative we
A.1

at the kernel of the map contains Wn , but the kernel of the map is one dimensional
80 W* : ker(dfi) at g. When N — M  we have dh : h.om.{M,V)/Wm —► TmPV  is 

ls°morphism. The former space may be identified with hom (M,V/M),  we can do
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^ 'S Really for each M  G PV. Let U be an open set containing M. If we put ker(hu) 
for°r vector bundle corresponding to the kernel of the derivative we obtain the local 

ls°morphisms dhu : hom(M, V )/  ker(hu) —> T\u(PV), we may then glue these to obtain 

^le ângent bundle. Then the tangent space at each point M  G PV  is represented 

y hom(M, V/M). Now the spaces hom(M, V/M) fit together over P V  to form a smooth

I 6C*:or bundle and the evident quotient map into the tangent space is an isomorphism. One
th

en sees that we may then take the derivative map dh : hom(M, V) —> hom(M, V/M) 
by d/i( /)  =  qM o f .  . □

4. THE TOPOLOGY OF M e  FOR TREES

t ) E p ;

r
Nation 4.3.7. Let T  be an S-tree and M  a point in M r  then for any U and T in 

with U q t  we have the usual map 7r  ̂ : Vr —> Vu- Then rJj(MT) < Mu, so we have

Mu and nj) : Vt/Mt —► Vu/Mu. We then define a complexlllduced maps tïtj : MT
Vector space by

Wat = Q. G 11  hom (My, Vr/Mr)
r&r

ixJjOir =  oîû u f°r all U Ç.T with U,T G T

We
then define aT =  U  <Jt ,m - Note that the condition in the braces is just the requirement

. , ,  M
that  th e fo llow in g  d ia g ra m  is c o m m u ta tiv e  for a ll U,T G T  w ith  U Ç.T.

ar
M r ------- *■ Vr / Mr

7T;U

Mu

7T;U

Otu
Vu/Mu

EfINition 4.3.8. Let M  G M r  with tree type U and T G U. Suppose M(U,T) is 

emPty then let 7iu,r • Vr —► ©  Vu be the usual map. Then we define the vector
Spa "  ’ U€M(U,T)

Ce =  i^u]r{®Mu). If M(U, T) is empty we define Wm_,t =  VT.

Co
^sTRuction 4.3.9. Let T  be an 5-tree and M_ G M r-  Put U =  type(M). Let 

 ̂ and put T =  root(I7) in U then we define the surjective restriction maps 

u • bom(Mt , Vt /M t ) —> hom(Mi/, Vu/M u) as follows. Since T =  root(U ) we have

Ü
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an(j ^us ^he restricted map it]} : Mr —■► Mu is an isomorphism. We also 

Ve ^le induced quotient maps if] : Vt/Mt —> Vu/Mu. Then given an element aT G 

hoHMT>VT/MT) we may define the element 9]}(ar) G hom(Mu, Vu/Mu) by #y(aT) =—.'p
na r ( 7 r ^ ) - i f W e  th e n  d efine a  m a p  $  ; jQ  h o m (Mt ,Vt/Mt) —> n  h o m (Mv , Vu/Mu)

, Tew c/er
°y 0 = J-J r̂oot(CT)

Per u '

■̂Em

*1 ■ V,
ARK 4.3.10. We observe here that 9]} — dp f  where p]} : PVt \ ker(7rjy) —> PVu and 

T ~~*Vu is the usual map. That is over the part where p]} : PVt —* PVu is regular.

^eMMa 4.3.11. Let T  be an S-tree and M  G M r- Put U — tvpe(M) and write N_ for the 
'rtla9e of in fjien

(1) The projection 7r : <ttm  au,lL *s an isomorphism of vector spaces. .

(2) crw ,j v =  II hom(Mt;, W m ,u/Mu)

1 =  liS'l — 2
( )̂ The map 9 restricts to 9 : o~u,n —* &t,m which is inverse to 7r 

I'll Proof of this is deferred to lemma 6.3.4 where we give the statement in greater 
Sotierality.

Êivt:

k  n,
4.3.12. Let U,W C S  with U C W  and put T  to be the tree {U, W }. Then the

'9ent bundle to M r  is ar .

■f'ltOop. Let M  6 M t and for each T  G T  let inc(Mr, hr) be the subset of hom(Mr, Vr) 
l is t in g  of the non zero functions and define a map hT : inc(Mr , Vr) —> PVT by

h71 f« \
vu?v =  aT(MT). Define Yr to be the variety hom{MW)Mjj) x Y [’mc(MT)VT) and X j  

the closed subvariety of Yr given by X r  =  {  (7]j , aw, au) G Yr | tt]j aw =  auJu' }
that •ls the following diagram commutes.

Mw — — —- Vw

w 7u 1T,Wu

M,u
au

Vu
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^ext consider the following commutative diagram where q : X r  —► A ir  is given by 

9(7,a) = (hw(aw), hy(ay )) and r : mc(Mw , Vw) x inc(Mu, Vy) —> PVW x PVb is given
by p _ 1 ,

~~ nw x hy, p is the projection and j  the inclusion.

X 7 P inc(Mw , Vw) x inc(M{/, Vu)

A ir PVW x PVh

i first c âim that this algebraically is a pullback. Let Zr  be the pullback and p : X r  —*■ ZT 

e comparison map. We produce an inverse s : Zr —> X r  as follows. Let (TV, a^) 

6 a Point of ZT then by definition N_ =  (aw (Mw),oiu{Mu)), so that the restricted 

^Ps with the same names onto their images give us the isomorphism of vector spaces
a,
w : Mw

c°Hst;
Nw and au : Mu —*■ Ny. We also have 7ry Nw < Nv . Now we need to

ruct a linear map jy  : Mw —s' My so that 7r)f aw =  &uly ■ Then it is clear that

rtlUst be the unique map defined by jy  =  a^ity aw, so we define s : Zr —► X r  by

^ )0cw ,av) =  (a.y1'Kjj aw,oiw^Oiu)- This gives us the desired inverse morphism. Next

 ̂ êrnrna 4.3.6 r is locally a product projection. Thus we see that the derivative dr is

UrJective at every point and since Mr is smooth we see that the pullback Zr is a smooth 
algebrs

Hext

raie variety thus X T is a smooth algebraic subvariety of Yr .

as T is a product projection and the diagram is a pullback we see that q is a prod- 

Pr°jection.' Thus the differential of q is surjective at every point. In particular we 

(^i inc, inc) G X 7- where 7r — Tty and the differential is surjective at this point. 

Pr°ve our claim we are required to show that dj  (TmM t ) Q gm_ or equivalently that 

^ K ^ .in C,inc)X r ) Ç o m _ .  Let (x,yw,Uu) £ T ^ ^ ^ X j  then we can choose a smooth 

^  P : R _> x r  given by p(t) =  (7(t ) ,a w (t ) ,a y (t ) )  such that p(0) =  (tt, inc, inc) and 

(x ,Vw,yu) where dp(t) =  ('Y(t),a/W(t) ,a ,u (t)). Since p(t) G X r  then we have

Uct 

have 
î<

dP(0)

nu o

ty o
the
ff.

aw(t) =  a u(t)o'y(t). We then take derivatives with respect to t using a Leibniz argu­

e d  evaluate at t =  0 to see that 7Ty oa'w {0) =  O!/[/(0) o7 (0) +  q;[7(0) o7/(0) therefore 

Vw =  yv o ny +  inc o x. Now the differential of the map hr : Inc(Mr, Vr) —► PVr at 

delusion inc :M T -+VT is the map dhT :'hom(Air , VT) -> hom(Mr , VT/MT) induced
0lPthe quotient map qT : Vr Vt/Mt and we have quity. =  ity qw and g^oinc =  0 thus



C0r«P0,sing with qu we have qurff o yw =  qvyu °  ref that is W f o (qwyw) =  (quVu) °  n f  

^ave the following commutative diagram
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Mw Vw — ^  VwfM w

7T,

Mu Vu Vu Qu

ww

Vu/Mtu

if
i

therefore
^  Put aw =  qw yw  and au — quVu then we have a  G TmM t and n f  °  &t — <*u ° f t f

TmM t  <<?t m  and a dimension check gives us an equality.

□
COR°LLary 4.3.13. Let T  be an S-tree then the tangent bundle of M r  is aT.

Proof. Let M e M r m d U ,T e T  with U C T. Put V =  {  U, T  }  and consider the 

g diagram.Allowing

M r n pv--
7T

rer

re

M v n  p v t
rev

i ^re i and j  are the inclusions. Let a G di(TM_Mr) then by taking the differential of
this

Mil
^tagram and using the previous lemma on the space M y  we have that o(y G aVî

is|5|
6re JV =  tr(M) for each such pair U and T. Thus a  G <tt,m . Now the dimension of ot,m 

2 by lemma 4.3.11 thus we may take the tangent space TmM t  to be &t ,m - ^

4.4. The blow up description for M r

\ lu this section we will show that for any S-tree T  the space M r  is an iterated blowup
• Ofq •• , '

e Projective space PVs taken over certain linear subspaces. We will use this to later 

I  ̂ °Ve a more general result about blowups over linear subspaces of PVs without much 

rtW  effort. Let inc : M r  M r  x PVs be the inclusion, rex : M r  x PVs —> M r  be
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the Projection onto the first factor and 7r2 : M r  x PVS —> PVS the projection onto the 

econd. Then section 4.1 told us the composition 7ir o inc : M r  —> M r  is a projective 

Undle. Here we prove that the composition 7r2 o inc : M r  —> PVs is an iterated blowup. 

reduce this calculation to the most basic case of a tree of depth 2. This case is easily 
c°mPuted.

Let Y u i. oe a variety, Y  a subvariety and write ir : B lyX —► X  for the blowup of X  over
y  T

11 Particular for a blowup we have (1) the restricted map 7r : 7r-1 (X  \ Y) —> X  \ Y
IS ft ■

isomorphism and (2) the fibre of the map over Y  is a projective space of dimen- 

°n c°dim(X, Y) — 1. In the case when X  and Y  are smooth k~1(Y) may be identified 

I cne Projective normal bundle of Y  in X. It is stated in [4, page-604 remark 4] that 

1 n^ions (1) and (2) characterize the blowup in the smooth case. This would greatly 

mplify °ur situation. However no proof of this is supplied and I cannot prove it so we 

Pr°ceed differently. In our situation everything is smooth, this simplifies our analysis, 

k Category of smooth complex manifolds there is a local approach to the process of 

°Win§ up. We give a reference to [4] for more details on this approach.

4. THE TOPOLOGY OF M e  FOR TREES

4.4.1. Let i : W  —> V be an injective map of vector spaces and i : P W  —> PV  

induced embedding. Let N  e  PW  , M  — i(N) and write i : N  —► M  for restricted 
% which is then an isomorphism , j  : W/N —► V/M for the induced quotient map.

the
en the derivative di : hom(N,W/N) hom(JVf, V/M) is given by di { f )  j f i  and

image of & is hom(M,W/M)  where W  =  i(W). Further let Lw be the tautological

ci°r bundle over PW  then N(i) =  hom (Lw, V/W) where N(i) is the normal bundle.

°P. Consider the following commutative diagram,

PW

h

PV

h

ine (N, W) ine (M, V)

ĥi
. 6fe  ̂ : ine(N ,W ) —> inc(M ,V) is given by k(f) =  if i  h Then k(inc(N,N))

aud
and taking derivatives we obtain the desired result. The results on the image

^ttnal bundle are then clear. □
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Particular given T  C 5  we define an equivalence relation on 5  by u ~  v if and only 
if ii __

~~ v °r u, v G T  and write S/T for the equivalence classes. We will then define a 

atural embedding of PVs/t into PVs- This embedding, which we define next, will appear
thr°ughout the thesis.

° nStruction 4.4.2. Let T C S and qr : S —> S/T be the usual quotient map. For each
U Q o . _ _

-  o we write U =  qr(U) and qu : U —> U for the restricted quotient map. Then we 
define
For

maps a rv : PVjj -> PVu as follows. We first define a map rv : F(U, C) F(U, C). 

any fjj € F(TJ, C) we define f v G F(U, C) by fu =  fw° Qu- Now rv sends constants to
Estants
tiye

so we can define the induced injective map rjj \ V j j  —* Vjj and in turn an injec-

We have
rnaP tv ; PVjj —> PVu, this is the first of our desired maps. One readily verifies that

deft
a short exact sequence Vjj Vu —> Vrnu and we define Vv =  ker(7r^na). We then

to be
ne ĥe isomorphisms Su :Vu ~^Vjj by the short exact sequence and sv : PVu —> PVjj

ĥe induced map. This is the second of our desired maps.

;! h'on
4.4.3. Let T  Ç S and qT : S 

as above we have maps ru ■ PVu

S/T the quotient map. Then with the nota- 

PVu and su '■ PVu —*■ PVjj. We also write
U ■ PVyr ^  PÏ7 

Vers
PVu to be the restricted map of ru onto its image. Then ru and su are in- 

Gs f°r each other. Let U C W  C S then we have the following commutative diagrams,

Vrw

7T-.

VfU

^ v w

ru

7T;Wu

Vu

v w - ^ v .

7T,

VV
Su

w

7TW
U

Vfu

h
Articular if \U\ =  1 then we obtain nff rw — 0

^Nition 4.4.4. We say that (T, S, T) is compatible if T  is an 5-tree, T C S and for 
tt

y U E T  with TC\U non-empty we have T C U. Then T i l  {T }  is an 5-tree. We then
^rite t  c- ■

J+ for the tree T I I  {T }  and T is a minimal element of T+.



Construction 4.4.5. Let (T ,S ,T ) compatible and write T  — qr(T) where qr : S —> 

ls the collapsing map. Then we define a map j r  • M r  —> M r  as follows. Given 

 ̂ MY  and U E T  we define Mu — ru(Njj). This clearly gives an injective map
t ~1\~A
• M y  -> Ĵ [ p y u _ \ye must show that its image lies in M t ■ Given U, W  G T  with

U Q r , UeT __ __
"  ^  We have U C W  and it is then clear from the first commutative diagram of the 

^Rima that we have a map j r  ’■ A4y  —> M r  and we have the following lemma.
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its
4.4.6. Let (T ,S ,T ) be compatible then the map j r  ■ M-r M r  is injective and

lm'a9e is the closed variety

Z{T,T) =  {  M  g M r  | for a l lU e T  with U D T =>• t%M v =  0 }

LitOOF. The inclusion image(jr) Q Z (T ,T ) is immediate since for every U D T we

e the short exact sequence Vu/r —> Vj/ —► Vr- Let M  G Z (T ,T ) then by definition

PVr
v — 0 for every U D T  with U G T  thus Mu G PVu■ We have the map su : PVi

clai

°/T and write Njj for the image of Mu then by the second commutative diagram of 

a we immediately see that N  G M f  and jr(N.) =  M  thus the image is askst lemm

lraed. It is clearly Zariski closed from the definition.

□

°NstruCtion 4.
M

4.7. Let (T ,S ,T ) be compatible. We then define a map iT : PVr x

?  M r+ by ir(M r,M ) =  (Mr. ir(M )). Because T  has minimal size we see by the 

k'ttuna that this does indeed lie in Mr+

4.4.8. Let (T , S, T) be compatible then the following diagram is a pullback.

M r  x PVt

V

M r

7T

M r .....' Jr- .* M r
□
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LeMm

kthe
A 4.4.9. Let (T ,S ,T ) be compatible and U =  root(T) in T. Let Xu ■ M r  —► PVu 

Projection map and ru : PVu/t PVu be the usual embedding then ttu ftl ru-

Proof. We begin by working out the images of the respective tangent maps. Then

e Proceed to work out their sum. In this proof we will be making extensive use of lemma 
4-1.5 tco work out the dimensions of the various vector spaces we consider. This should be 

ar from the context and will not be explicitly stated when used.
LetAf 

that

*T:Vr

ç  M T and N  G PVu/t such that ttu{M) =  'Tu(N). Then it is clear by lemma 4.4.1

the image of the tangent space of k is hom(M/y, VI /Mu) where W  =  ker(7r^) and

VT is the usual restriction map. Next put U =  type(M) and W  =  root(U) in U.

Corfipute the image of the tangent space of ttu at M  we need to compute the image of the

 ̂Section map x : &r,M —*> hom (Mu, Vu/Mu)- By lemma 4.3.11 we have the isomorphism
9 ; q. ____

:: <rr,M where N_ is the image of M  in M u  and uu,n — II hom (Mu, Wm u/Mu).
IT

To

VGA
We see that we must compute the image of hom(Mw, Wju,w/Mw) under the map

hom {M u,Vu/Mu). Equivalently let n/// : Vw —> Vu be the 

Projection map then the image of hom(Mw ,Wm,w /M w) under 6/f is the space

Qty ,
ü : h°K(Mw,Vw/Mw)

asUal
h,

( W m , w ) / M u ) .  Define A(U) =  {  V  G M(U, W ) \V Ç U }. If A(U) is empty
the

whole claim is trivial since x/j (Wm,w ) =  Vu so we suppose otherwise. Then we have 
the fo|i

Rowing commutative diagram where all the maps are surjective.

V\
7TWu

w

Ku,w

©  W
x e M (u ,w )

P

Vu

tu

0  W
YeA{u) ‘

■Pt 2
tu~(®MY) then we prove that the image of the tangent space of iru at M  is

hi
^^UtZ/Mu). The diagram induces the map 7 : xu/w ((BMx ) —► x [/1(©M y) where
Kw

as a h

the

xu,w(®Mx), j f f  is the restricted map of x/f and we are using the same limits
°ve. We neec[ prove that this is surjective. Put B(U) to be the complement of

8et A(U) in M(U, W ) and write q : Vw —*■ Vu 0  ©  Vx for the evident map. T his
tïlap XeB(U)

t -
ls surjective as Y  fl U is empty for each Y  G B(U). One then sees that the kernel of

IS o 'l9 (Of/ © ©  MY). Given this we have the following dimensions,



40
4. THE TOPOLOGY OF M e  FOR TREES

dim(ker(7y ) )  =  |B(OI +  \W\ -  1 -  X  (lv l “  0  -  (1^1 “  0
YeB(U)

dim(Z) =  \ U \ - l -  dX l ~ 2)
xeA(U)

dim (^V(®M x )) =  \ W \ - l -  X
xeM{u,w)

One
then readily checks using the observation A(U) II B(U) =  M(U, W ) that we have

dim (nu*w (®Mx )) =  dim(ker(7^ ))  +  dim(Z)

Thi
is

^°ra

s then shows us that the image of the projection map n : ar,M hom(Mu, Vu/Mjj) 

^ i K iZ / M u ) .  "

transverse intersection we must show that hom (Mu, Z /Mv) +  hom(Mu,W/Mu) —

^ u , Vt/Mu) or equivalently Z +  W  =  Vu■ Now let p : Vu —> Vt © 0  by be 
theevid yea(u)

ent map then this map is surjective because Y  fl T is empty for every Y  e  A(U) 
since U •
^  ls the minimal element containing T  and we know the dimension of the kernel. 

e°Ver the space Z D W  is p- 1(0r © 0  M%) thus we have the following dimensions,

dim(Z) =  £  \X\-2
xeA{U)

dim(W ) =  \U\-\T\

d im (Z H W ) =  \A(U)\ +  \ U \ -1 - J2  (|N| -  1) -  (|T| -  1)
xeA(u)

T t “" S * < =  o b t a in

dim(Z +  W ) =  dim(Z) +  dim(W ) -  dim(Z n W ) =  \U\ -  1 

^  are done.
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eMma 4.4.10. Let X  be a smooth variety and Y, Z smooth subvarieties. Suppose Y  and 
Z '

Vrdersect transversely and put W  — Y (~\ Z. Write tt : BlYX  —» X  for the blowup of X  

°n9 Y then the restricted map 7r : 7r~1(Z) —> Z is the blowup of Z along W.

por a Proof see for example [13, page 74]

Lemma.
then

4-4.11. Let 7T : B1YX  —* X  be the blowup of X  along Y  and Z be any variety

n x : B lyft x Z —> X  x Z is the blowup of X  x Z along Y  x Z. □

^Ma 4.4.12. Let V be a complex vector space, W  a subspace o fV  and it : V  —> V/W the 

t^nt map then the blowup of PV  along PW  is the projection p : B(V, W ) —► PV where

B(V, W ) =  {  {L, M ) e  PV  x P(V/W) \ L < tt X(M ) }

PRoop. We have P W  =  { M £  P V  17r(M) =  0 }  thus

pwPV =  cl{(M , N ) e P V x  Piy/W ) I M  e P V \  PW, N  =  7r(Af) }  

<  B{V,W )

0He
6asily sees this is the closure as B(V, W) is irreducible and we are done.

□

^  0LLa*Y 4.4.13. Let S be a finite set and T C  S. Let rs : P V s/ t  —*■ PVs he the em- 
n9 °f construction 4.4.2 then the blowup of PVs over P V s/ t  is 7i: M .{s ,ry  PVs.

p.
° F- Consider the short exact sequence Vs/t Vs —> Vr- The last lemma tells 

Us that- n,
tJi the blowup of PVS along PVS/T is B(VS,VS/T). Write tt : 'Vs -+ Vs/Vs/T for

V.
quotient

Vn
map and 7rf : Vs/Vs/t Vr for the induced isomorphism where nf :

T it the standard map. Then we have 7r| =  it  f i r .  Consider the isomorphism
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■PV<
fact­

s' x P(ys/Vs/T) —»• PVS x PVr induced by 7rf which is the identity on the first

0r' Then 6 restricts to an isomorphism 9 : B(Vs, Vs/t ) M {s,t} that commutes with 

Actions to PVS. Thus the claim is proven. □

Lemma 4-4.14. Let (T ,S ,T ) be compatible then the blowup of M r  along M 7 is given by 
M T. ;

Lroof. Let U =  root(T) in T  and put V to be the set T  with U removed. Consider 

the ^Lowing commutative diagram where j T is the map of construction 4.4.5 and k cu is 
e °bvious factoring.

me
M-T+ ------- *■ M.{u,T} X Mly

l7r

M r
me

PVu X M.y

JT

%

PVu/T X M y

I fifgt I •
c aim that image(k) DM r  =  imagery). Let M  G image(k) flM r  then 7 (Mu) =  0. 

A°w iet v
v v be any element containing T then since T  is a tree we have V D U and

M  Mv)
s°me
4-4.l3

~ Mv and therefore 7Xj-My =  0 thus by lemma 4.4.6 we have M  == j(N_) for 

Unique N  e  m 7 . The other inclusion is automatically true. Then using lemmas

^rphi,
and 4.4.11 we see that the blowup of PVu x M y  along PVu/t x M y  is given by the

fbat

are

Srn It is easy to see by lemma 4.4.9 that k iti inc then using lemma 4.4.10 we see

4Le blowup of M r  along M 7 is the restricted morphism l : l~l(M r ) —»■ M r-  We

fibbed to prove that Mr+ =  l” 1 (M r)- The inclusion C is clear by the commutative
§ am. To gee reverse inciusion iet G l~l (M r)  then for any V D T  with V  G T  

a Win b
Co 6 enouSb to prove that -¡if My < Mr- Because U is the smallest element of T

Ining T we have T C U C V. By construction we have nil Mu <  Mr and nYMy < Mu 
bfiis ~.v, ,  ___
q, T iv — n fn f jM y  <  nj-M u <  M r- This proves M  G Mr+ and we have the equality. 

arly we have n : Mr+ —► M r  is the desired blowup, as claimed. □
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be the usual em-r°Llary 4.4.15. Let ('T ,S ,T ) be compatible and j r  : M .? —* M r  

tn9- Then the normal bundle is hom(Nu/r, Vr) where U =  root(T) in T. The projec­

t i o n  of the normal bundle is the trivial bundle M .j x PVr■

Proof. Consider the following commutative diagram where V is T  with U removed 
and all the maps are embeddings

A4 t PVu x A4v

3t

A4, PVjJ/T X Ady

Then 
the

We Pave an induced map N (jr ) —> N(k) and a transverse intersection tells us that 

rilaP *s surjective on fibres. The dimension of the fibres are both |T| — 1 thus the map is

PVu and we haveorphism on fibres. Clearly N(k) = N{ru) where ru : PVu/t 
shnrf

r exact sequence Vu/t —> Vu —> hr- Thus by lemma 4.4.1 N(k) =  hom(Lu/r, Vr).
bet Ar U __
p u/r be the pullback of the tautological bundle Lu/r over the projection tv : M r

u/t- Then we see that the normal bundle is hom(Nu/r, Vp) where we write Vr for the 
trivial h

undle with the same fibre. This can also be written as Njj/T <g> Vp where the 
Stat Stoles the dual bundle. This gives the projectivization as M r  x PVr the expected

'er.

□
P>E;

Pro

are

^ îTion 4.4.16. Let Us be the usual open set of PVs and ir : M r  —> PVs be the 

^ J cti0n map. Then we have proven that 7r is a composition of blowups and is there- 

SUrjective. We then define the non-empty Zariski open set A4r =  7r—1 (t/s-). Then
M

T is dense in the classical topology since M r  is smooth and irreducible.

CoiNstru

T\z
CTiON 4.4.17. Given an 5-tree T  we fix an order on it as follows. We define 

aud =  { 5 }.. Suppose Ti, ...,Tr and 7 j , a r e  defined then we define Tr+X 6

to an element of maximal size and %+x =  Tr TL {Tr+1}. Then % =  {  7} | j  < i } 

u Qefine Srf  =  P(ker(r£)), Bx = PVS and Bi+1 =  B15tP, where T =  Ti+1 and write 

 ̂ rt+i —> A4rt for the projection map. Then for any [ /G  T w e  define S t̂_1 =  strict
““s fo tm o fs f in B i.
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eMMa 4.4.18. Let T  be an S-tree and % be an order as above then Bi =  and given 
U  ̂T  . , ,, __

with U =  Tk we have S f = for every i < k and is zero otherwise where

patient in qv ; S —> S/U and write ju =  j-j? in particular Bm =  M.r  where m =  \T\.

Proof. We prove the claim by an induction on i. The case when i =  1 is clear from

e definitions. Put T =  Ti+1 then inductively Bi =  M r{ and S f  =  jr(A 4^,). Then by

rtla 4*4.14 we see that the blowup of Bi along S f is Bi+\ =  A4rj+1* We are left to 
Prove tfio i ■ue claim for the strict transforms. Choose i +  1 < k and put U =  Tk then define 
tyu

We
S ?\Sf where inductively S f  =  ju (M j.)  then we need to calculate

first Prove that

We
le:

be

ju (M Ti+1) C  7rf+\(Wf) C ju (M Ti+1)

Pr°ve the left hand inclusion first. Let IV G A4yt+l and put M  =  ju(M[)■ Then by 

Illa 4.4.6 we see that for every V £,%+x with V D U we have nfM y =  0. Put L to
the iimage of M  under 7Tj+1. Then again by lemma 4.4.6 we see that L G S f. Because 

<7 Tf u
by choice of order we see 7rfMs ^  0 so that L 0 S f  thus M  G (W f)  and the 

inclusion is true. .left hand i

N,ext let M

B.
)ecause L 

,ecanse L

€ 7Ti+1i(W ii/) and put L to be its image under 7ri+i* Consider W f  C

this

^ S f  by lemma 4.4.6 we can find a V  G % containingT  such that iff My =  MT. 

€ S f  we deduce that 7rWM w =  0 for all W  G %  with W  D U. In particular

the*i tells
Phe

us that 'kJjM't =  0 if T D U. This proves the right hand inclusion

;,f;ri taki

1186 W 'W fr,,, we see that Sf.
1Ilduction.

ng the closure of both sides and recalling that ju  is a proper map and M ?,¿+1
• i+1 1 d(*i+\(WT)) — jui-M-Ti+i)- This completes the

□



CHAPTER 5

The cohomology of M e  for forests

er we compute the cohomology of the space M ?  for any forest T. We begin^  this chapt

*  defining a ring Rr  and showing that it has a natural decomposition mto a tenso
pr°duct of
T the

rings R r a  ®  R fy. where each T\r »  a T-tree. For the case of an S-tree 

result of proposition 41.7 represents M r  as the total space of a tower of projective
bundl

es- Effectively, this will enable us to compute its cohomology ring and prove it
is ^ n __

0r the tree case. We then prove more generally that the cohomology of M.?  is
This ls just the Klinneth theorem. This will help us to understand the cohomology

PQg of ~j~7
JV[s , which is the main subject of chapter 9. In particular we will show that the

0rn°logy ring of is finitely generated by its elements of degree two and free as an
abefia

n group, there is a natural choice for these generators, and the rank of R% is the
^nib
of

Th.
this

er °f elements in T  whose sizes IT1) are at least three. We also compute the rank 

ring. This will enable us to produce two different descriptions of a basis for it.

r̂st description will be the natural one associated to the cohomology of a'projective
bundle turue second basis will provide some insight into the structure of the cohomology 

s and will be formulated in the language of trees. Later we will see that theriri§ of Ad <
Second 

a neces
description extends naturally to rings of greater generality. We will also specify

essary and sufficient condition for a monomial x in R ?  to be zero, this result will 
be ^eful ,) and developed further when we later examine the zeros of more general rings
aad ^  . __

Particular the cohomology ring of M s- We recall here that we will be using the 
c°tiventi

0ns in chapter 2 regarding rings.

la

the
this

Proof

5.1. The cohomology ring RT

Section we will compute the ordinary integral cohomology ring of the space M.?,

total
Presented here relies on the previous chapter for the description of A ir  as the

of the
sPace of an iterated projective bundle. We then proceed inductively (on the depth 

tree T) to compute its cohomology ring using a general result that relates the
45
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homology of a projective bundle to that of it base space and the Chern polynomial of 

underlying vector bundle, a notion we define next as this is non standard terminology.

EPINition 5.1.1. Let 7r : V  —> X  be an n dimensional complex vector bundle over X  

cm(V) g H2m(X) be the mth Chern class of V then we define the Chem polynomial 
iv(i) 6 .ff’ pf)[t] by f v (t) =  E  Ci(y )tn-<

i=0

n0xr
remind the reader of some standard results about Chern polynomials, these fol­

low

the
nnrnediately from the properties of Chern classes. We then state a result that relates

c°homology of X  with the cohomology of P(V), the projective bundle of V  over X  
togeth

r with the Chern polynomial of V. For the proofs see any standard texts on char­

i t i e s  classes [11] for example.

F*it
Position 5.1.2. Let V and W  be vector bundles over a base space X  then the Chem 

°̂knc0Triial of the vector bundle U =  V  ® W  is fv®w =  fvfw -

□

, P° SITI0 N  5.1.3. Let V be a trivial complex vector bundle over X  of dimension d then 
H t ) ^ td . :

□

^OPosm on 5.1.4. Let V be a complex Une bundle over X  then the Chem polynomial
°f  V i s fv(t) =  t -e(V)  where e(V) is the euler class o f V.

□

th.
Is

hBivr 5.1.5. let V be ann dimensional vector bundle over X  and fv{t) G H*(X)[t] be
®SSOi

U(dural
ciated Chem polynomial then H*(PV) — H*(X)[t]/fv{t) where the identification

t> Moreover {  1 ,t ,...,tn 1 }  form a basis making H*{PV) free of rank n over

LltUcTiON 5.1.6. Let T  be an S-tree with d(T ) > 1 and for every T G T  define 
^ o b e ̂ tautological line bundle over PVt and yr =  e(Lr), the Euler class of Lt -

thr S6̂  S removed. For every T G M {X) let ir? '■ -M-r —► PVt be
 ̂Auction map and put xT =  nf(yT)- We define the polynomial f r  G H*(Mr){t] by
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fr(t) fn{T ,S)
¡ 1  ( f - a c  t)-

T gM (T,S)

5.1.7, Let T  be an S-tree with d(T ) >  1 then f r  is the Chem polynomial of the 

Ĉ°r bundle Wq- where XVq- is the vector bundle of Proposition 4.1.7.

Phoof. Lemma 4.1.11 gives us the splitting W? =  V r® X r  where Xq- =  0  NT.
Then ■ ' reM(T,s)

USlng the previously discussed results on Chern polynomials we have

fw  — fvr H  f NT .
TeM(T,S)

=  tm(T’s) n . (* -
TeM(T,S)

=  t™ ™  n  ( * - * * )
TeM(r,s)

□

^ ^^^ION 5.1.8. For any forest T  of S let I?  be the ideal in the polynomial ring 

^[Vt \T e  F ]  generated by elements of the form (yT — yv ) where

by

ls ueM{F,T)
ai1 element of T. Note that when M(tF, T) is empty i.e. T is a minimal in T  we take 

invention the relation to be yq^ 'T̂  =  y ^  2• We then define Sjr =  Zjr//jr.

Le
5.1.9. Let T  be a forest then Sr 0  S?\T

TeM{F)
□

kop
0.Sun

ar

cl

°SITI0N 5.1.10. Let T  be a forest then S?  is the cohomology ring of M f  and is free 
ubelian group with finite rank. The identification sends yq to Xq where

: p v T and zT is the standard generator of H*(PVf).

^ O of . We prove this for the case of an ¿'-tree first. We proceed by an induction 

Sunient on the depth of the tree T. If d(T) =  1 then we have that M T =  PVS thus the 

is clear in this case. Assume the result is true for a tree of depth d(7~) ft n 1 thenaim

c% ider any tree of depth d(T ) =  n. We have by proposition 4.1.7 that 7r : M r  —»• M T
' ^r°jective bundle where T  is the set T  with S removed and we now apply theorem
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compute its cohomology. Then,

^  ^  proposition 5.1.5

[® H * {M t\t )\ [t] t
fr(t) 

[® Sr|r ] [t] 
fr { t ) 

^ [ i ]

inductively by the. Kiinneth theorem

by induction

fc{t)

It

=  St

by lemma 5.1.9

Thus e see ST is finitely generated and free as an abelian group and Sr is the cohomology 
dug 0f ~t-t

JV\-r- Note that by a slight abuse of notation we have not identified the various
h{t)

c°ufu.
Under each isomorphism to avoid extra notation. This should not lead to any 

Sl°n. The arbitrary case of M r  then follows from the description given in lemma4 — — w ii MJJ. J  V U iU V  V Ji. V r *• J -  •

'1-1 4L
e Kiinneth theorem and the previous tree 

° * ° LLARY 5.1.11.

case.

Let T  be an S-tree with d(T) > 1 then Sr — [®3r|r][*]
fr (t)

□

□

H;aviir
S Proven Sr is the cohomology ring of M r  we now proceed to describe a different

ate ffi
,Jr ^hat is naturally isomorphic to Sr, in fact they are equal but this is not immedi-

0rn the definitions. This ring will be in a more natural form to enable us to compare
With the cohomology ring of M s  which we consider in chapter 9.

D

T

ItIon 5.1.12. For any forest T  of S let Jr be the ideal in the polynomial ring

\T 6 T ] generated by elements of the form y™̂ T'T'> n  (Vt — Uu) where
 ̂JL i U€M(T,T)

and T  C T  is a T-tree of depth 2 or less. Note that in the case that T  has depth 

• 6 Tave the special relation y ^ T'I") =  corresponding to the fact that M (T , T)

y- We define Rr =  'Lr/ and write B r  for the standard monomial basis of Z -̂.
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eMark 5.1.13. More explicitly let T,Ui,..:,Ur G T  with the { / ¡ C T  and disjoint then 

^ave ^ e  relation yp Y[(yr — yuj =  0 where m =  |T| — 1 — XX|i7i| — 1). The ideal Ir  

relates to the case when {Uu Ur} =  M (F, T).

Hem 

have

fusion .

5.1.14. It is immediate that we have Ir  C Jr  and that for every U C T  wehave thp f n • ___  —■—following commutative diagram where 7r : M r  —5> Mu and s is induced from the

7T
H*(MU) —  H*(Mr)

Su Sr

We will
T,°Pol,
be

next show that this inclusion of ideals is actually an equality so that Rr =  Sr- 
°gically from the above diagram this will be easy to prove, since we may put U to

the T-

*“> M d i
tree associated to the relation we wish to prove. Then the equivalent relation

We °ould
in H*(MU), we obtain the result by applying n*. However it would be better if 

understand this ring from a purely algebraic viewpoint.

Le
^  5-1.15. Let VF be a forest then Rr Sr

Ml!
op- We prove this for 5-trees first. We use the description of Sr as —  T— -

■ere th /HO
le product is taken over M (T , 5) to prove inductively on the depth of the tree

that q° r  a**d Rr  are equal. When d(T ) =  1 this case is clear. Assume the result 

true for any 5-tree with d(T ) <  n — 1 then we have Sr =  an(j go
^  Utly rp JTyt)

J 'tree IA of depth 2 or less where T ^  S we obtain the desired relation. Weals.0 haave the relation y ^ T’s'> (ys — yr)- Now let V be an 5-tree contained in
^ (7 , S), r TSM(T,5)

) U {5 }  then we use a downward induction on the size of V to prove that we havetM i. 1
.Nation y p v's) E[ (Vs ~ Vt)- Put -m =  |M(T,5)| -I- 1 then when |V| =  m the 

TeM(V,S)
j , lrnrnediately true. Suppose the claim is true for some V of size l +  1 < m andclaH  is

s an 5-tree contained in M {T , 5) U {5 }  of size ¿. Then extend W  to a set V by
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Q J 1*
ng one disjoint element W  of M (T, S). Then by induction we have the relation.

t ? v's) n  =  °
TeM(y,s)

xs ’ )+1 JJ  (xs - x T) =  xwx™{v'S) ■ (xs -  xT) expanding (xs -  xw)TeA/;vv,s) i'eA/;vv,.s’)
S 1 ,1  JJ  (xs - x T) = -  z|jrl_1£ s (v’,S’) JJ  (xs -  xT) iterating 

TeM(w,s) , T€M(w ,s)

'Ŝ (xs — Xt) =  0 as inductively x|^_1 =  0
TeM(W,S) •

5. THE COHOMOLOGY OF M e  FOR FORESTS

Tlllls >
y mduction we obtain the result. Next given any other ¿'-tree U of depth 2

We

U(T)
Pr°ve that the equivalent relation holds in our ring. For each T  £ M (T , S) put

less than
{U  € U  \ U C T  }  and Hr =  M(T)  U {T }. First observe that the depth of Ut is 

or equal to 2. Next put

w  == { T . e M ( T , S ) | M(T) is non-empty }

w 1 == . { T £  W| \UT\ == 2}  /

W " == {T  £ W  | \UT\ 2}

H" II VV". Put V — W " U { ¿ }  so that W  =  M (V, S) and we have

M(U, S) =  ] J  M{Ut , T) E M(V, S) 
revv'

b ach T  <= \ y  we have by induction the relation x ™('Ut,7"> f ]  (x t  — x u) — 0.
h u t ¡1 U e M (U r,T )

T'T to ^ie quotient of the ring R T  by the ideal (x s  — x T ) then we obtain

n (x s  -  Xu) =  o in R t ,t  thus x ™{Ut,t) f ]  (x s  -  xu) =  f r ( x s  ~  x t )-

^ hV.s =  W  U { ¿ }  and multiply the above equations for each T £ W ' together

"  x t ) for each T e M(V, S) =  W " to obtain

x ? ~  r r  =  i  n  f a - M
UZMV.S) ■

x y u , S) T T  :( x  _  X tt)  =  j x f n  ( i s  - x v )  =  0
b A t U€M(Ws,S)ueM{u,s)
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where m = m(UTì T ) and we need to show that m +  m(Ws, S) =  m(U, S)
T e w '

+  m m (Ws ,S ) +  ^ ,m (W T,r )
Tew'

= isi- i - £ ( p i - i)+ £  K m -1) -  £  (iG-i)]
Tew Tew' ueM(uT,T)

= |S| -1 -  £ (P I -1) -  £  £  (ivi -1)
w" Tew' u &m (u t ,t )

• i s i - i -  £  < m - i )
TeM(U,S) ...

=  m(U, S)

Tli''
COrnpletes the induction. Hence we have proven that I?  =  Jr thus St  — Rt • Now 

c°Usid r an arbitrary forest F  then we have each F\t is a T-tree and

Lt| t — R f

I ’he

St  — Q9 s?\t =  0 9  RJ
TeM(T) TeM(T)

imposition of these maps s : S't  Rt  is induced from the identity map on Zt - 
Slnce this composition is an isomorphism we see that It  =  Jt  and St  =  Rt

□
He

to.
^ARk 5.1 16. The next lemma which is now immediate from corollary 5.1.11 is the key

PUrely algebraic understanding of the ring Rt we shall use this description to that end.

Lr%IA 5_
is Ilk?

5-1.17. Let T  be a S-tree with d(T ) >  1 then Rt
[®  forij# ] 

f r { t )
where the product

en over M{T,S) and Rt  =  ® R t \t • Moreover { 1, £, ...,td l } form a basis for Rt 
°ver p

V  where d =  n{T, S). □

CohollARY 5.1.18. Let IF be a forest then the rank of Rt  is n(F)  =  n  (̂.T7, T)
TeT

^ ° ° F- We first prove this for the case of an 5-tree T. We proceed by an indue-
on f"Vi

f lile depth of the tree T. For d(T') =  1 the claim is clear. Assume the case 

h ^ 1 Wl̂  ^  n “  1 then for d(T) =  n we see by the previous lemma that
fe#T|T] { l  , t , ..., td 1}  as free modules where d =  deg(fT) =  n(T, S). Put U to be
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the set T  with S removed then,

5. THE COHOMOLOGY OF M e  FOR FORESTS

rank(i?r ) =  n(T, S) JJ  rank(i?T|T)
TeM(U)

=  n(T ,s )  n  n  n(T|r, U) by induction
T&M{U) UeTIr

=  n(T,S) J [ n ( T , T )
Teu ■

n  n(T -T)
Ter

^ rd line is valid because for each U £ TW we haveMiTIr, U) =  M(T, U) so that
n(7| .

T,u) ~  n(T, U) and we also have U =  II r\T. This completes the induction.
TeM(u)

N°w kt T  be any forest. We have Rjr =  0  Rf \t - Thus
TeM(F)

rank(ß^r) =  n
TeM{F)

=  n  n  » ( ^ . ¡ 0
TeM(F) UeF|t

=  n
TeF

□

5.2. A  basis for Rjr

We cq _  _
Plete our description of the ring by specifying basis A[T] and B[T\ for it. The

Dasis ^
and

the

‘4t*1 Will naturally follow from the projective bundle description of M .r for trees T
we will
set

see that the set B[F\ uses the combinatorics of forests. Later we will see how 

can be used more generally to produce a basis for the cohomology ring of Ads-

tW

%
ITi° n 5.2.1. Let Bjr be the monomial basis for Z^-. For any monomial y =  IT Vtt e

We c[pc Tew
eune functions called the shape, shape : Bp —> P 2(S) and called the support, supp : 

^{S) by shape(y) =  U and supp(y) =  (J T.
T e u
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FiNition 5.2.2. For any monomial y with y =  n  VtT so that shape(y) =  U and for
any v c u Teu

we write y |y =  f j  y'v and call y\y the restriction of y to V. 
vev

C>Ep;
InITion 5.2.3. Let T  be a forest then for each W C F w e  define,

and

A-lT] =  i  JJ  y™T j 0 <  ut < n{T, T) for every T E T  | 
l Ter )

=  qr[A[!F]) where q? : Zjr —> Rr  is the quotient map .

^[FWU] =   ̂ J J  y™T 11 <  tut < m(U, T) for every T GU 
Teu

B \?\ =  \i_B\r\p]
u c r

B[T] =  qr (B[F})

I'he
Uriibers n{T,T)  and m(J-,T) are defined in 3.3.1

Le^Ma

ation
5-2.4. Let T  be an S-tree with d(T) > 1, J7 a forest and U C T  then in natural

"A[T] =  ( JJ A[T\T]) { l , . . . . ,y i  where d =  n{T,S)
TeM(T,S)

A i r  =  n
TeM(r)

¡ n r  =  n w
TeM(T)

B[U] - C B\T)

Lp
tokA

5-2.5. LetJ7 be a forest J7 thenn(J7) =  |J4[^r]|, m{fF) =  |5[.F]| and^J7) =  m{F).
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Proof. Let F  be a forest. From the previous lemma we deduce that n(F)  =  |A[JF]|
and if 7

s clear from the definitions that m(F) — |5 [JF]| where these numbers are defined 
■̂3-6. For ^  cage wken q- -s an g_tTee Jemma 3.3.8 tells us that m (T) =  n(T). We 

Use previous lemma to see that

5. THE COHOMOLOGY OF M e  FOR FORESTS

n(•£■) = 1 ^ 1 =  n  WUr]l = n  IBRMI = \B\n = m(T)
TeM(F) TeM(F)

□

Lem
^  5.2.6. For any forest F  we have that A[F] is a basis for Rj?.

R0°F  We begin by proving it for an ¿'-tree T . We proceed by induction on the 

^(3") of the tree T. If d(T ) =  1 then we are reduced to the case of the cohomology 

5 which is well known. Suppose the case is true for d (T ) <  n for some n > 1 then

dePth

°f P^
for . 

S d ' a

apPVthe
to dedr

= n lemma 5.1.17 to tells us that Rr — [<S> Rr\T]{ 1) t , ..., id_1 }  as free modules 

: R(T, S). Inductively we see that A[T\t \ is a basis for Rt\t and one can check by 

above correspondence that in natural notation A[T\ =  A[T\t\{1, xs , ..., z^-1}

Uce our result. To complete the proof let F  be a forest then R ?  =  0  R ^T and
We Use TeM(F)

ne tree case to deduce our result.

□

2-7. Let F  be a forest and y =  n  VrT ^ B[F\ then
TeU

U =  M (F) and mx =  |T| — 2 for(1) D  mr <  ' ■ S  dT l -  2) with e<iuality *T$U T€M{F)
ea c hTeM{F) .  , ,

(2) For each U e  U «  have £  ™r <  W  ~  2 wii'* ^  U[u '  {  } “
Teu\u

mu =  \U\-2

r , •£ 'r • C w  W mrr <  151-2 with equality <=> U =  anawj In particular if F  is an b-tree 2 ^ mT _  I 1

=  |5| -  2.

We first Prove the special case when F  is an ¿-tree.
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Proof.

Teu T&A 

Teu

: ^ 2  1̂ 1 “  \M(U)\ -  \U\ by lemma 3.3.2
TeM(U)

=  | ] ] [  T\-\M(U)\-\U\
TeM(U)

< |«S'| — 2 as \M(U)\, \U\ >  1

It }g
^  °w c êar that we have equality if and only if U =  {S'} and ms =  |S| — 2. To prove

§eUeral case we observe that we have the partition T  =  II *1r where each T\t 
is a TeM(r)

ee and apply the special case. □

5.3. A  filtration for R?

W(

thi
ext define a weight function on R ?  which we use to give us a filtration. We will use

g
0 show that the set B[B] spans Rf.  Since we have shown that the size of B[B] is

the _
°t the ring Rjr, which is a finite free module, this then shows us that BIB] is a 

Dasis fo d
-Tr. We do not provide many of the proofs in this section as they are particulary

Sli%le

rank of the 
)r Rjr. W<

and unilluminating.

IQN 5.3.1. Let Bjr be the monomial basis for and y  G B?  so that y =  Y\ Vtt 
8ay. W , T er

define a function wt : Bjr —» N called the weight by wt(y) =  nr|T|. In 
Partial . Ter

ar this gives the monomial yr weight \T\. We also put deg : R ?
coh, N to be the

°UioL°gical degree function, so that deg(y) =  2 Ylt nT
T er

^  5.3.2.
N j(^|

wt(zy) wt(r) +  wt(y) and deg(a:) <  wt(x) <  | deg(:r) where n =

□
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EfINition 5.3.3. We define filtrations on Z ? by

Fk 'Lr =  span{ y G B ? | wt (y) > k }  

GkZr  =  span{ y G Br  | deg(y) >  k }

3-3.4. Put H  =  F  or G then HkZr is a convergent decreasing filtration o fZ? ,
ihat i*

ZT =  H0Zr  D HiZjt D H2z r  D ... 'and p| HkZr  =  {0 }
k> 0

□
DE;Pi^ition
por

5.3.5.: We define a function w t : Z?  —>• NU {oo } called the weight as follows, 

su V6r̂  non' zero V e  Zjr we know by the previous lemma that there exists a largest k 
that y £ FkZjr but y fi Fk+{Z?. We define wt(y) =  k and wt(0) =  oo

5-3.6. The weight function has the following properties

(1) If y =  £  aiVi with Vi € Br  and *  fi 0 then wt (y) =  min{ wt(y*) \i e l }

t2) M{xy)  =  wt(a:) +  wt(y).

□
b

ITi°N 5.3.7. We define filtrations on by FkR?  =  q^(FkZr ) and GkRp 
^  where : Z ?  —» it r̂ is the quotient map.

Le

%  t
3-3.8. Put H  =  F  or G then HkRp is a convergent decreasing filtration of Rjr,

is.

Rfi =  HqRf  D H\Rp D H2R r  2  ••• and f̂ | HkRjr =  {0 }
k>0
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I __ ° P' ^ le part is clear. By lemma 5.3.2 it is clear that FfL^ C G{Lf where

/n l and N  is the integer part of a thus FkRr  =  q r A A )  C =  (?«#*-.
1 before n p &

y  £  f l  =  { 0}  as ifjr is graded by degree.

□

fnii l0N We next define a function wt : R r  —► N U {o o } called the weight as
0II°Ws. p0r

jar very non-zero rr G i f f  we know by the previous lemma that there exists a

e N such that x  6 FkR f, but x £ Fk+iRp. We define wt(rr) =  k and wt(0) — ~~oo.

Lem
^-3.10. The function wt has the following properties.

( ! ) / / x J2 &iXi with xi e  Ryr then wt(rr) >  min{ wt(xf) j i e  1}

i2) There Zan m e  N such that wt(s) < m for all non-zero x  
(3) wt(xy) >  wt(rr) +  wt(y)

^{Qx {x)) >  wt(rr)

^E:
:PINiTION

□

5.3.11. We define FkB\F] — {  x € B[F] | wt(rr) >  k }  and the induced set

^ (F kB\F\)

:pmmoN
%nad:
%

^ssibl
5-3.12. Let y e  TL? be a monomial. We say y is admissible if y e  B[F] and

foil,
e if U $ B[F}. We also say y G 7L? is minimally inadmissible if it has one of

°wing forms

( l )  yTm(T,T)

(2) J r h l /
'  yT for some T € F.

1] Vu with T  a T-tree of depth 2 and m (T, T) is as defined in 3.3.1

T ini then z is inadmissible if and only if5.3.13. Let z € % r b e a  non-zero monom , Q
with x minimally inadmissible.

ht;
^ 5-3.14. If y g is minimally inadmissible then wt(qr(y)) >  wt(y).



58 PftOOF. We have by a relation  that x™iT 'T* II (* p  -  *r) =  0 . U p o n  expansion
J UeM(T,T)

5. THE COHOMOLOGY OF M e  FOR FORESTS

oî this expression we have n , 4

rn TT XU -xT I I  i=r
ueM(Y>F)

where e •. I -v {± 1 }  and m =  m CT^)- Put " Consider an

-  1 — z and for every [7 €  we ^aV6 ^

%  =  sh ap ed ) then ^  C  M (T ,T ), \%\ =  
~ element x™+lXi of this

stffla then,

>  m r  ' ueMlr,T)

_= wt(y)

■ \ T \ + £  'm

we have wt(qHn)) *  min( ^

C°ROLLARY 5.3.15. Let z € %? ie a 
z $ B[jr| ^ave wt(qr(z)) ^

monor

D

omial. Then if  z  is
is inadm issible, that is

. .ble element then
PROOF. Let z € ^  an toadmiss

thnirnally admissible thus we h

?t(qAxy^

we may write z xy with x

t(q^(z)) wt

— wt(qjr(x)qjr(y)) 

>  vrt(qr(x))
+  wt (qAy^

by lemma
>  w t ( x ) + wt(y) Y

5.3.10
part 4 5.3.14

wt 

wt(xy) 

wt(z)
D
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Lemma 5-3.16. Rjr =  spanB ^]

TROOF Tk .
. ' ne proof will follow from a downward induction on the weight w of the
Catemeiit tli t —

g o '  at tor every k e  N FkRjr =  sp&nFkB[F\. For ¿ > 0 we know by lemmas 

£ anc* 5.2.7 that FkR? =  0 =  sp an F *#^ . Suppose it is true for all k > w.

,, ~  Qf (Fw%f ), then x =  qr(y) where y =  Y^aiVi e  FwZp and y* G -B^
aUs Wtfy.') X o . . ie/ ■ _

It 5>o it is enough to show that for every i G I, q?{yi) G spa.nFwB[F].

tjj ^  ^en  this holds so we may assume that y* g  £?[F]. In this case we know 

sp,drip  ^ ( y i ) )  > wt(yj) >  and so by induction qr{yi) G Fk+\Rr =  spanFfc+1i?[F] C 

^ ] ' Therefore ibr =  FQR?r =  spanF0B[F] =  spanB[F] and we are done.

□
Lem^ A 5 q 17 _

'■ For each forest F  the set B[F] forms a basis for Rp. Put X f =  JJ 
andn=- V . TeAf(r)
an 5, ^eg(a;̂ r) then we have Rfp =  Z[x^] and =  0 /o r  i > 2n. In particular if F  is 

iree then n =  L9I —l-S'l — 2. and R,2(|5|—2) 
T Z {x f~ 2\.

tJiat
^Roop.

\B[F]\ =
The previous lemma shows us that R?  — spanF[.F] and lemma 5.2.5 shows

rank(i^). Thus \B[F}\ =  rank (7?^) <  \B[F}\ < \B[F)\ so that \B[F}\ =
raak(% ) si' °mce Xjr £ B[F\ we see that x ?  is non-zero and by lemma 5.2.7 part 1 the 

Xjr maximal and is the only element of maximal degree. This completes the

□

e8R!e of x , 
Proof.

g _
’ T8. Let F  be a forest and U Ç F. Let i \Zu —» Z ? be the inclusion map. We

is . lnclusion of ideal Ju Ç Jr  and an induced map <fi : Ru —> Ryr. Then the map 6 
Active.

Tr,
op- The proof is trivial since we have an inclusion of basis B\U] Ç B[F\

C°Ro
□

%■at

>LlARY 5.3.19. Let y G ZT with shape(y) =  V say and put x =  qr (y) where 
7
T ^  Rr  is the usual quotient map. Suppose there exists a subset U of V such 

eS(l/| )̂ >  2(|supp(Zd)| — 1) then x =  0.
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PRoof. Put T =  supp(W) and Put W to be the T-tree WU {T }. by co^ de^  S ^  ^  

atl element in Rw we see by the Previous result that x\u =  0 m Rw ' ® J  we

b'  « »  ring map induced by the inclusion i : si“ “  Q

ee that x ~ x\u • x' is zero in Rf-

5.4. The zero condition for monomials of

... ■ i r iLp ring R f  are zero. Later we
ls section we ¡prove Precisely which monomias o . jn

-  W  u, use this to deduce which — als are « »  -
for the cohomology ring of S t  The last corollary gives us sufEc,

for -  . __ t.Vipv are also necessary.

fo this

-a iM  xor the cohomology ring oi w s   ̂ they are also nece
We next proveMonomials of R f  to be zero. monomial-

neeree of a msection we will be using the ordm 7

n . the set of monomials of the

rt £ st We define N [f\t0 _  2 We then defineDefinition 5.4.1. Let 5  be a forest. V  ny <  \T\
. rp (z f  we naveiorm y =  Y[ such that for every u£T

-  Te:F • the Quotient map-lvir-1 Rr  is the quw=  qf{N[R}) where Qf ■

LEM̂  54.2. Let T h e an S-tree. Let y =  H\ f  <* «  elemmt °f  N[T] V ^  ^  
**U S remooed. Suppose that M(V) ^non-empty then m +  degfe) -  " s  <  |S| -  2

|S |-1 -  E  ( f f l - i )
T€M(V)

PRoof. We have,

m +  deg(y) - n s =  m + ^ n r
rev

=  m +  ^  na 
reM(v) nevir

<  m +  ^ 2  (|T| -  2) by definition 5.4.1
reM(v)

>  |S|-l-r|M (V)|

<  |5 | -  2 as |M(V)| >  1
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5.4. THE ZERO CONDITION FOR MONOMIALS OF R ,

5.4.3. Let x be an element of R r nrd y £ I f  1 = qr(v) * “

(»■) 1x (y )= 0  if and only if y<fN[F)- , m  _  2 then x =  X
M  if y e N [i] and shape(y) is a T-tree o f momma

61

_  JTI-2 
T

Pr.O(
OP. We first prove the special case for 5-trees T. We have already proven in 

leQl«ia 5.3 lq ,
^  ’ tJlaf if y N]T] then x =  qr{y) =  0 so it remains to prove the other

it i
We prove that for any x G N[T] we have x ^  2 deĝ x x |5|-2 . From thislTYi L J

mediately follows that x ±  o. Let y — II VuJ be an element of N[T], we may
ose

|5|

SuPpose bv i ueu
|i?| rtlrna 5.3.17 that U ^  {5 } .  Put V to be the set U with 5  removed and

{\V\ — 1) then we have the relation '1
PeAi(v)

JJ (xs - x v) =  0
M(V)

JJ (xs - x v) =  0
vev

veJW(v) 

XS
vev

vev vev

x |S|-2-deg(a;)+ns n « v - x s x y - i) =  o

X |S|-2-deg(x) ns
X<

vev

r h
vev

xnv
V xsx 7 - 1) =  0

for ^
aiid l0Urt^ steP we use lemma 5.4.2 to see that n =  \S\ — 2 +  ns — m -  deg(:r) >  0tile fourth

Ultiply V  Ts- Then expanding the last equation we see that,

|S | - 2-deg(x) _O/g Jy — ^ e ( 0 4 5|“ 2_des(3Si)

Mr
hi

tJi
e Xi properly divide x. Therefore the Xi lie in N[T] and deg(xj) <  deg(:r). We alsoave

Wat e : /
^Pient -  •• ieI

{ ± 1}  and J2 =  1 • To prove the claim we now apply an inductionar
OUiaonttru r 0n We degree of x. For deg(x) =  0 the claim is clear, then assume the claim is

for
any monomials x with deg(a;) < n then for deg(a:) =  n we have
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X|S|—2—deg(s)
X =

iei

|S|-2-deg(£i)
Ju c «*'?,

iei

x |S |-2

¿e/
_  JS{-2
—  Jj  a

this

have

Prove

Ptetes the induction. Since we know by lemma 5.3.17 that rrj  ̂ 2 is non-zero we 

 ̂0ven the first part of the claim. The second claim is now immediate. We now 

e claim for an arbitrary forest T. One first checks that in the natural notation 

N{T\t ) and then apply lemma 5.1.9 to deduce our result.

□

^kfARY
^at.ness

5.5. Summary of results

5-5.1. Here we summarize the results of this chapter. Let T  be a forest, for

We suppose that every T  e  T  has \T\ > 2. Clearly if \T\ = 2  we have xT — 0.

( ° )  S r  5 

(!) The

(2) A,

= Rp and the specified relations of I?  are minimal with |W| generators, 

cohomology ring of M ?  is R?.
, j  i,v ng elements of degree 2.ix  is a finite free module genera 

The rank of Rjr isj^ l-

(4) R-p g* 0  r tW  and each ?\t is a T 'tree>

rn, TeM(^  . ^  _  n  nCF T) and n{R) =* rn{R).■ ) The rank of R r  1S n i^') ~  ’

(6)  Rr  a  l® «T h -1W where f r  is ¿etaed “ >nstruction 5'1'6'
- J  frit)

$ )  A[R] and B[V] form basis for Rr-

 ̂ Ì Tor any U C J  the evident map <f> : Ru 
A/'fjr] are the non zero eiements of Rjr. 

(1°) Put

Rjr is injective.

x?  — [ ]  x p  2 and n =  deg(xjr) then R p  =  Z [x?] and Ky =  0 for

1 2n.
TeM(T)



CHAPTER 6

The topology of M e  for non tree sets

shall
next consider the space M r  for certain collections C of subsets of S other than 

Crests Tb
ne restrictions we will impose on these sets will be mild for our purposes but 

necessarv f
3 mr our approach. For such sets C this will enable us to introduce the notion of1X10

e of an element M  £ M r  This will be an 5-tree whose elements are members of
jC,, Jj. j ----

s this construction that will enable us to compare the spaces M e  with M r-  The 
iatter spa u
^  1 Ce has already been studied in some detail in chapter 4 and the map between

ls Just the evident projection map. By the end of this chapter we will prove that M c 
asiUooth-

1 '• A?L __
to compute the tangent bundle of M e- Given a result from chapter 4

educes to computing the dimension of a certain vector space. We also gather in this 
fiaPter a . . __

. number of results concerning the cohomology of M e- These will be required
^ ^ w h e r e  

tJlat for

irreducible projective variety of dimension |5j -  2 and we use the embedding

we give a presentation for the cohomology ring of M s- We will prove 

char. perrnitted C its cohomology ring is a finite free module generated by certain

£ iirni 1C c âsses in degree two and the rank of H2(Mc)  is the number of elements in 
1Ze |Fj at least three. The same techniques will allow us to analyze the Chow ring.

■Mth
InParti
bln Ĉ ar ^ is  aH works for Ms-  For the final section of this chapter we prove using a

[8]

eUce
arSument that M s and Xs  are in fact isomorphic, however this only implies the

°f such
also

a morphism between them. The approach relies on a paper by Kapranov

Provides some motivation for the construction of an isomorphism.

6.1. The associated tree to elements of M e

\  next
of define the notion of the type of an element M  £ M e  which for a large collection 

°Iinf de a tree. The point of this definition is that it encodes the minimal amount

aUd rriata°n that one requires to reproduce elements of M e  with the specified tree type 

je °Ws'Us to compare the space M e  with the various tree spaces M r  under the pro-

¡8 ^  For the space M s  we will later see that this notion of the type of an element

aIent to the ordinary notion of the tree attached to an S-curve. We will explain
63
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this
6. THE TOPOLOGY OF Me  FOR NON TREE SETS

^hich a 6̂nCe precisely in the relevant chapter. First we define the notion of a thicket £  
collection of subsets of S. We will see in a moment that the notion of a thicket

s Precisely th ■ • __e condition required to ensure that the type of every element in M e  is a tree.

D® IN'TION 6. 

1“ T s 'C |T|
1.1. We say that a collection of subsets £  of S' is a thicket if S' G £  and for 

> 1 and for any U, V  G £  with U n V  non-empty we have W  =  U U V  G £.

6.1.2.

<nkcti« i f a ni
Let U,W  Ç S and put T =  

only i fU n W  is non-empty.

U U W  then the map 1r VT

C>Ep
tvn / l0N Let £  be a thicket and M  G M e  then we define the type of M  denoted 
yP(W )  as.

type(M ) =  {  U G £  | for all T D U with T G £  ==> =  0 }

6.1.4
Let £  be a thicket and M  G M e then type(M) is an S-tree.

elg 0p- Suppose for a contradiction that type (A/) is not a forest. Then there are 
mepts rr T/

Ip ^  ̂ e type(M) such that U % V, V £  U and U D V  is non-empty. Put

TV , ’ as ^  is a thicket W  G £  and W  D U,V therefore Mw =  0 and -Ky Mw =  0.
11 cy lg

is a f0:
eiïlrna 6.1.2 we see that Mw =  0 a contradiction since Mw G PVw, thus type(M)

rest- It rs also clear that S G tvpe(M) therefore type(M) is an S-tree.

□

h

u t M ^ ^ r  =  W m ' SUTT°Se
Mma 6.1.5. Let £  be a thicket and HL

(1)  T  €  T

O’ G £  and U Q T  v at — 0
h i  P tt r  V  C T  we have KuM v - vM  For all V  G £  with U C V t

en 0  e  t .



6.1. THE ASSOCIATED THEE TO ^  =  0 . T h is  is < * > »

PHOOE. Choose any V 6 C V ~  ^  T  g  V. P *  *  “  ’̂  ^
f either V C T o r T C  V  so suppose neither y  tpUs Mw 0 88 _

’ 3  t f l n d  so  W  e  £  since £  < . * * * *  ^  ^ ‘  T  0 I d
, „ITMw =  Wv “  „  ,w  u , „  =  ^ (O t) =  and

sr\T

Then

2  U and soW  e t  smw ~ 

hy lemma 6.1.2 we must have 
' -V S/f„ =  7tK

tt̂ M w

uid Mw Ç P V w  • T h u s

/e must nave ,.v 
TT^Mxa -  îr^7r{f =  4 r Mw

£T .

Definition

, ( T c £ | T i s » S - « “ >
thicket £ of S «  define To

____ 6.1.6. For any thicKe r T
Apfine a function »o t

A r  e ^ c tiien ■ ■ <rU. We say ^  1S
®romoN 6.1.7. Let £• he a thicket an ^ im a l size contain»

f toot(U) = T  where T  e T is the elemeB S S T.

ho root oi u in T . This always exis

r> „ a W  if define
. f e l i . * * 1”

,  ̂ rr PVu °nd ^  e'Adr tiien
*^Ma. 6.1.8. Let £  be a tfwcfcet, —  . uen d suppose that

‘r - . U P V ^ n P V » » * ^ ^,, fee uer
following are equivalent

U) M e M r  and type(M) ^  T  , =  root(l/)

(2) For e-uery T £ ?  andU £ ^ ** ^ the second property
■ l h respect to

Moreover M is the unique element vn

hliOOF

Suppose for a contradiction that there is a 17 €  £  with T  root(U)

~  0. Then clearly U $  T , define Cy — {V  6  C\U  C  V Ç T  } .  Since
a orii exists an element V  €E Cy with Tty M y  — M y

with respect to this
)0 F - = *  S ^ P 086 £OT a  7 ‘ 7 , h  T  define d  =  U  =  ~  ' v M v  =  M o

■ that * jM r  =  0. Then clearly IM* • t v  e C v wlth ayV T hlnere exists an eieu resuect to this
^  then by the previous lemma ther  ̂ ^  size is maximal with

1 clearly V ^ T .  Choose such an elemen ^ ^ ^  ^  Q and again by the previou 

t0Perty, then for all W £ ¿v  we baVe r  =  Mu-
- ^  „  m n t r a d i c t i o u  thy, then for all W  G £ v  we ^ave ^  t Mt — Mu-

and root(U) C V  C T , a contradiction t us u ^  ^  root(Cf) and
c /■* TX/itll L/ _rz V« A

‘he converse let V  and V  b e elements o „  {  Mu =  and
^ , „„nition 2 we have Mv v
"  r°o t(y ) then T C W  and by condi
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w < MT hy the assumption that 7rT(M ) G M r-  Therefore

=  ¿uM \v

=  TTyV  ̂Afw 

<  ityMr 

=  M u

^Us M  c~T7
^ A1£ . Now iven 7̂ e  £  \ r  put T  -  voot(U) then T  D U and rrJjMr =

■ U8£/tf<-
*  cype(A£) therefore typ e(M ) C 7". The uniqueness issue is clear, this completes 

le Proof. •

i

BMma 6.1.9. The map type '• M e  '
t «  sur^cUve-

e ‘ Ms lS

* “ " ■  T°  thiS * * ? -  „  can choose an ^  '  m ( i 0 . Then I claim
»jective. Then given any T e  c . map and ^  T> Suppose ior a

'■ ^  *c ■■ M s  -  V ic  be tlie ¿ efiniti0BS that ty p e U  '  =  0
* «  ty p e ®  .  T . It is cleat horn ^  ^  g ^ ) that ̂  ^  g  g  with

“ Mtadictton that we can find U e y  i  type(M-) *  ^  root(iy )  e  T  C £

7 y v  e  £  suictiy. coy an s th a t. ? « « '  *  = * * Mw *  ° a
^  £ £ strictly containing U Thus ftu^T ove the special

M  Mr — rww• oue win Pruvc
So that by the previous lemma *w ^  the map is surjective- O

c°atradiction. Thus type(£Q =  ^  an

tilSe in lemma 7.2.3 ^
and irredticihilily of M e

«.a.  T h e sm oothness ^ sffiooth irreducible pto-

rt.ion we show that Me  t every non-empty
£ he a thicket on S. *  * *  ^  pMticular this will mean ^  ^  ^  ^  ^  

*- » variety of dimensmn 1 ^  topology. L em m a ^  ^  £ M c  f» m  rts

open set is dense in uniquely determ „minimal such data.

4 by T =  ty p e (il) '» a h  es “  ding of these spaces.
^  6 M T under the Ptoiectmn m ^  ,n the undeIstan

, , f^inwing definit
 ̂STlcrcrcko-hei
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6-2. THE SMOOTHNESS AND IRREDUCIBILITY OF Me 

° N 6.2.1. Let £  be a thicket and T  G Tc then we define,

67

Arc{T) =  { M e M n | t y p e ( M ) Ç T }

A^(T) =  {  N  G M r  I for all N G £  we have *  0 >

map then
6'2-2- Let £  be a thicket, T  G X£ and 7rr  : M r  M r  be the usual projection

(1) AT;

■ (2 )H l

^  Afc(T)nj\fe(W) =  A ^ (T n W )

(4) J J  ATC(T ) =  M e and £

r (T ) =  nT(Mc (T)) andMclX) =
c(T ) and J\f’c (T) are non-empty Zariski open

r €T , TeT£

p . fi, 8. Let U  e ATC'n and detoe an elementHoof . This result is essentially lemma • . ¡J  € C This makes sense since

f  5 JJcPVu Mv =  *%Nt Where T  =  I00t{U) SOiJ Z  Nt for each T € T . Now apply- 
y instruction each Mv is non-zero. Furthermore t  ^  £  Then since

&S le5Tirna 6.1.8 we see that A£ G M e  and typ6^ ' > "  delusion let N  G T r{Mc{T))
a t t'TW  To see the reverse

= JV we see that N  G Fr(Mc(y ))■ C T. Thus applymg
tW  Ar ,  Kf tr\ That is to say type(ALJ -

&  -  M K )  for some M  €  M cP )- ^  we have an equality. The sec-
mir‘a again, we see immediately that JV G C t 0f lemma 6.1.8. To see

°ild part of the first statement is now immediate frorn^ ® k T  =  r00t(U )}

claim for each C 6 £  dehne C„ -  1 *  ^  > * * *  'tW  -tien cv  is clearly Zariski closed and

Afc {T) =  {  N  G M r  I for all U G C we have m °t(U)Nroot(u) +  0 }  

=  M r  \ U  Cu
uec

^Us . __
j\f ^  > is Zariski open. Now since 7rr : M e M r  is a morphism of varieties and 

M 1 (N'c(T)) we see that Afc(T) is also Zariski open. They are non-empty by 

-i-9. The third and fourth parts of the claim are clear from the definitions.

vc ( T )

□
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6-2-3. Let C be a thicket, T  € Tc and nT : M e -> M r  be the usual projectionmap p,p
n the restricted man nr • M AT) -+ M AT) is a isomorphism of Zariski open

^Hoop.
to

Of

first construct an injective map Or - M A X )  ^  M e  which is inverse
T as sets. We will then proceed further in the argument to prove it is a morphism

Given N  G M AX) and any U G C put T =  xoot(U) in T  then we .mayvarieties,
define Ai
Ujap V e  P X  by Mv .— pu(MT) where p f  : PVT —* PVu is the usual partial 

w Put Af — then by the lemma 6.1.8 we have that M  G Mc{T) and
rT 0 Q,Put r

mc- I claim that 6r  is the inverse for the restricted map of nr . For brevity we

Af anb Ac =  M AT) then it suffices to prove that nr l(Ac) — Or (AA), as

and
H r )  c 70

this
We

3

Put i\r: 

Proper^

r  (Yc) =  6Y(Yc) C  M A X )  thus Or (A’c) — M A T )- Let M  G ^ ( Y c )
^ (M .)  € Yc then by lemma 6.1.8 there is only one element A£ G yVi£ with 

'W naruely J£ =  Or(M) thus M_ G #r(Yc), the other inclusion is automatic.

it mUSt Cilecli that 0r  : Ac -*■ is a morphism of varieties. For any T G T  let 

Pvt be the projection map and put X T =  j TX A -  Then for any U G £  with’ c
r°ot(f/)

Partial
T defme 3u '• Ac -* PVu by j f  — pJjjT where pf : PVT — ■> -PVp is the usual

^  then Or — JJ restricted to Ac- For each U G £  with root(U) — T

H r ^  ^lat is contained in the regular part of pj} that is pj} '■ PVr\kev(nJ)) —► PVj

apd V,j is the usual map. Clearly by lemma 6.1.8 we have X T C PVT\kev(nJ))
3u

0v3 thus Or is a morphism of varieties as required.

□
'PlNl’j'

, ns :X i
l0N 6.2.4. Let £  be a thicket then we define M e  — ^s1{Ps) and Pc — s(Mc(S)) 

>PVS is the usual map.

6-2.5. For every thicket £  we see that Us C Uc and by the last lemma we know 

aUd ' Pc is an isomorphism with M A X  — X ^ X c )  so that M e Q Mc(S)7T5 » k,
VIc Us is an isomorphism. In the case when £  is all subsets W  C  S with

^ 1 we
IW[

see that M s — Mc{S) which consists of the generic curves and U s— Pc-

4 % t
Plsi 1j 6-2.6. One can easily verify that we have a homotopy equivalence M s ~  

uere we take S1 to be the set of complex number with length 1 and take S1 to
“' ‘ by

^Multiplication. Again one checks that we then get M s  x S1 ~  c j f ‘.
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6 3 THE^ ^ DtET0 M \ 0« » , 0P *  — 0|,X S °
and supp°se we x  ¡s irreducible-

U mha 6 , , .  Let X be a t ^  ^  *

t o  X .  U V . ,  » * *  < • * * * * * *  Q  ■“  T h e n *  may wnte

diction that X  is not ^ ^ g '^ o w  consider eny element 
PBOOF. Suppose for a contia 1 d subsets A an • contained in A or

X = AUB for some proper non trivia we n »st * * *  ^  consider any other

oi our cover, U say, then since V  is a s suppose U -  ' non-e»pty and
d in B. Without loss of in A- * * * ” £  ̂  n V) -  cl(V)

dement V of our cover then I claim V 18 a =  d (U) -  A' . c  A . hs A is Proper
the irreducible set V  «h a v e  c ^  Then,X =  0  > '

. . j th e  c la im »  r
-  =1(V) =  cl((J) C A an is true.

thus our clan

°Pen in 

thus V C
- .... ^ d W C A a n d t h e m ^  .

. . .  ,. thus onr cl»1
ttiis provides ,a contradiction, , ^%ve

Mh irreducible prop
g then 7Xc is asm°  in the dnsMeal

W a y  e , , .  Let £  be a 0?CT1 subset .but «  * »
„  A KAr iS 0 ia

variety of dimension \S\~~2 an -r-*
* • ■< true for M s-
topology. in particular this i __. 4.2.1 that M r

O

, • •, true for w -
tyology. in particular this i _-~r

Q 4 2 1 that M r
mr, in lem«ia 4 -Z-

rr of C we liave 86 , Kf< (T) is a ZarlSkX
j s_ttee T  01 i cl — 2 and PCX'1 ' r

Proof. For any thicket £  an q£ ¿maension 1 bave the morphism o
is ‘  sm ooth irreducible projective varie ^  ieffiffla w e ^  ^  ttos

subset and thus irreducible- Now *T ' an open cover

rictics nT : M e  -  ^  ot * *  * *  ^  is irredneible- It is

Urr' ' Zaiiski open irredue* e ^  last lem »» - omorphisms.
- -  . . , ^ , V e ( S )  * e r e i0«  £  , _ ep cover under th e ^

et aad  thus irreuuw—
^leties- -r - __y  T '• Me -+ Mr which restricts to  an isoiu ^ r

fe a Zariski open irreducible subset of H e- Now, the Mc<Xl form 
M c a,id n V c(T ) =  Mc(S) therefore by the last lemma M e  is irreducible. It is

^ °°th of d fieiion  |S| _  2 as this is true for the open cover under the isomorphisms. 

to l?e fi”a’  Part of the claim aS ̂  is ̂ reducible we see that M c  is dense in the Zariski
’ X f„  is smooth we see that it  is dense in  the classical topology.

□

A\p to M e  bundle
R -  The ta u g h t
b%6' „-Tj.fnrM
6 .3. lilt: uw.. _ _ _

H8. hr°ceed to  com pute the tangent bundle oc o f M e for when £  is  a  im u..,,.

e me Phu, ___

$ Shedding i : M e f ]  to  identify it as a  sub-bundle o f T\\ PVT where 

^ o d t /  Tec
71 Covn-d Mr, VTfM T). Given our calculation in section 4.3 this reduces to
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sho’
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d fi S the dimension of a certain vector space which is a natural extension to that 

111 is ¡S’) _  2. This space we define below.

n  rr a T e  T  Suppose M{T,T) isDefinition 6.3.1. Let M e  Me with tree type T and
0n-empty then let

nr,r  : Vt- e Vu be the usual map. Then we define the vector
Space b y p p  U e M (T ,T )

à£,T — If M(T, T) is empty we define Wm,t =  Vt.

__  , T . v  -+ Vn be the usual map. ThenEd it io n  6.3.2. Let M  be a point in M e  and *u • t ^

V T  . Mrr -*■ Mu and irv ■ uivW t) <  MU} so we have induced maps 4  - M r i v
and define aCM by

'H e n

a €  hom(Mx, Vt/Mt)
Tee

Tr^ar =  cîû u f°r U Ç.T with U,T e  C

define oc =  H  iM. Note that the condition in the braces is just the requirement 

at the following diagram is commutative. For al1U Q T  with U,T £ C

Mt — Vt/Mt

7T.U

M,u
au Vu/Miu

^ N st. 
Let u Rücti0 n 6.3.3. Let £  be a thicket on S and M £ M c. Put T

S C
type(M). 

fion maps

hom(M[/, Vu/Mu) ns follows. Since T  =  root(17) we have

ffr % '  an<d put T =  root (£7) in T  then we define the surjective restriction maps

*lkT ^ U t,V t/M t')
^ and thus the restricted map nj/ : Mt —* Mu is an isomorphism. We also

h
the

Educed quotient maps ttJ} : Vt/Mt —► Vu /Mu. Then given an element aT
T,

0%

^ 0 :

^t/Mt) we may define the element ^ (ctr) £ hom(Mu,Vu/Mu) by &u(aT) =

• We then define a map 6 : Jj hom(M-r, Vt/Mt) —► f ]  hom{Mu,Vu/Mu)
ÎÎ or°°m

T e T uee
J<zC
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Lemma 6.3.4. Let C, be a thicket and M_ G M e- Put T  =  tvve(M) and write N_ to be the 

lrnage0f M i n M T then

(1) The projection ir : <j c ,m_ <?t ,n  is an isomorphism of vector spaces.

(2) o’r.jv =  II hom{Mu, Wm,t/Mu)
. . T er
(3) dim(cr7-,iv) =  |*S'| — 2

(4) The map 6 restricts to 9 : at ,n  —► <t c ,m  which is inverse to it

Proof. It is clear that (?c ,m  is a vector subspace of hom (M T , Vt /M t ). We next 
. ’ •. Tec

Xattune how the commutative diagrams restricts the functions au, a r  for U C T  that we

are interested in.

Let Af g anc[ jĵ j ' £ £  with U C T C S .  Then by construction either ttu(Mt) =  Mu 

°r nu{MT) =  o. In the first case we have that n f  : MT —> Mu is an isomorphism and 

So given a.T £ hom(MT, Vt/Mt) there exists a .unique au G hom(Mu Mu/Mjj) with the 

Squired property, namely au =  nJjaT^uY1 =  ^ ( « r ) -  In the second case for any au 6 

h°m(Mv , Vu/Mu) we have au^u =  0 and so Ly the commutative diagram we must have 

nu®T =  0 that is we require im (ar) <  ker(7f^). It is clear that ker(7f^) =  K u/Mt where 

■̂u =  (ttJ/)~l {Mu) and so for any au G hom(Mv , Vu/Mu) and a r  G hom(Mt ,Vt/Mt) 
L̂e required diagram commutes if and only if a r  G hom (Mr, K///MT) where we are using 

L̂e obvious notation.

Let A£ ^ ju\c v/ith 7" — type(M), then given any T G T  and U G C with U C T it is clear 

^at 7rJj{Mt ) =  0 if and only if U C W  for some W  G M (T, T). Put nT =  \M{T,T)\ 

aild suppose ut >  0, then given a r  G hom(MT, Vt/Mt ) we must have that a r  G 

L°m(Mr , (7r Jj)~xMu/Mt) for all U G M (T, T). That is to say a r  G hom (M r, Wm,t/Mt) 

^here Wm ,t — f l  {^ u ^M u  <  Vr- If nr =  0 then we take Wm,t =  Vr- Next put
, UeM(T,T)
Tjv =  n  hom(Mr, Wm t /Mt ), this proves we have a projection map n : ac m —>> o'tn - 

W t6t  ’
e next construct the inverse. For any T E T  let aT £ hom(MT, Wm,t/Mt). Let U G C

tyith T =  root(f/) then by construction 7ru(Mt) — Mu and we define au to be the only

cLoice possible from this commutative diagram, that is au — 7fua r(7i"u)_1 =  #u(ar )■

first need to check that the a constructed in this way does indeed lie in oc,m -

Let JJ g  V  C S and put T =  root(£/),VF =  root(V), then T  C W  and we have

nu{MT) =  Mu, 7fy Mw =  My- First suppose that T =  W  then given a linear map



We are forced to take ay and ay  to be the unique function satisfying the conditions 

that aynjj =  7Tyar and ayiiy =  7Ty-ar- We are required to prove that, ay%y =  Wyay.

have that 7XyMT =  M y , — iiy and the map 7Xy is invertible so 7Xy =  ^y{^y)~l

als° =  WyWy. We then have,

ayir% =

=  7f^o;r (7r̂ )_1

—v— TTyay

N°w suppose T C W  then we can find an X  G M (T , W ) with T C X . From this we 

See that 7TjT Mw =  0 and therefore aw — 0. Now ay  is the unique function satisfying 

<*v’'7rv' ~  7f^ a w and since ityMy =  0 we are required to prove that Tty ay =  0

7fyay  =  TTyWyaw {^ y)~ l

■= * u a w { TT̂ ) - 1

=  0

Tvnis proves that a  is a point in ac,M, thus we have the injective map 6 : a'r  N —>■ oc,m -
'T'i ‘ • *

nis is clearly the inverse map. Next put Ht =  hom(MT, Wm,t/Mt ) and dr =  dimc (/Tr)-

are required to prove that dimc (crc,M) =  X) =  |5| — 2. For each T e  T, dT =
di Ter— 1. If tit >  0 let 7rr.r : Ft —► 0  Vb be the usual map, then we
I ■ ueM(T,T)

ave ^ m,t =  and by corollary 4.1.5 we have dime Wm,t =  n(T, T) and so

T̂ ^  n{T, T) — 1. If nr =  0 we see that Wm,t =  Ft and so in all cases =  n(T, T) — 1. 
therefore,

u 6. THE TOPOLOGY OF M e  FOR NON TREE SETS

dimc (o-£)M) =  ^ ( n ( T , T ) - l )
Ter

=  151 -  2 by lemma 3.3.2

ĥ ext we have the projection map 7r : ac,M and the map 9 : a'r  N —> oc,m thus

CoiRposing we see that cr'T N C cry,a- ^  Fs also clear from our calculations that we have the 

projection p : ar ,N -> This shows ar ,N C o'TK thus ctt ,n =  &t ,n and our claims
are □Proven.
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Lemma 6.3.5. Let C be a thicket then the tangent bundle of M e  is ae

73

Proof. For |£| <  2 we see that £  is an 5-tree and we have already proven this claim 

^  lemma 4.3.12 so we may suppose |£| >  2. Let M  € M e  and U, T  E £  with U C T. Put 

^ ^  {  U, T  }  and consider the following commutative diagram,

M e

7r

]J P V T
Tec

V

M u  — l [ P V r
Teu

Lut N  to be the image of M  in Mu- Then the tangent space TKM U =  0u,n thus we may 

identify the tangent space T u M e  <  <Tc,m but d im {T ^ _M e) — l^l 2 =  dimfer^ju) by 

i'be previous lemma thus T M c  =  ac-

□

Corollary 6.3.6. For any finite set S, M s  is a smooth irreducible projective variety of 

dimension |5j — 2 with tangent bundle as-

6.4. Results on the cohom ology ring o f  M e

^  ^ is section we will produce a certain pullback diagram that will give rise to a Mayer 

^ietoris type sequence. This diagram will be one useful way of deducing many pleasant 

fesults about the cohomology rings of M e  and in particular M s- In the following section 

1,Ve wdl use the same approach to analyze the Chow ring. This diagram will also turn out 

t° have other nice properties that we discuss in the last section.

L)EfinITIqn 6.4.1. Let £  be a thicket on S. Then for each T € C we define the elements 

71 ^ F 2(M e) by xt — where tct - M e  —*■ PVt is the projection map and yr is

standard generator of H2(PVr), that is yr =  e(LT) where LT is the tautological line 

bundle over PVT.



Definition 6.4.2. We say a triple (C,S,T) is admissible if C C P(S), C is a thicket, 

r  £ S and there is no U € C with U C T . Further if £+ =  C II {T }  is a thicket we call 

admissible triple an admissible thicket.

Co n s t r u c t io n  6.4.3. Let T C S and ~  be an equivalence relation on T. Write T for

set of equivalence classes of T and let qr : T —> T be the quotient map then we

define a map rT : PVT PVT as follows. We first define a map rT : F (T , C) -+ F(T, C).

ôr any f f  e F(T, C) we define /y  €  F(T, C) by /y  =  /y  0  Qt - Then fy  send constants

to constants so we can define the induced injective map rT : V f VT and in turn an

injective map rT : PVT -*■ PVr, this is the first of our desired maps. One readily checks

Vv’e have a short exact sequence Vf —> Vt —> and we define V t =  her (7if). Thus
u e t  _

have isomorphisms sy ’. Vy —> induced from this sequence and sy . P V t  ̂ PVp.

^he latter is the second of our desired maps.

'4 g THE TOPOLOGY OF Me  FOR NON TREE SETS

CeMma 6.4.4. L etT  C S and 
Hon

be a equivalence relation on T. Then with the nota-

as above we have maps ry : PVf —* PVt and St ■ PV t —► PVT. We also write 
rT : PVf —► p v T to be the restricted map of rT onto its image. Then rT and sT are in- 

Verses for each other. Let U be a subset o fT  and give U the induced equivalence relation 
then we have the following commutative diagrams,

In Particular if \U\ =  1 then we obtain T^ry =  0

P r o o f . The proofs of these claims are clear.

□

Definition 6.4.5. Let T C S. Then in this section we make extensive use of the equiva- 

^Rce relation on S by,T defined by u ~  v if and only if u =  v or u, v G. T. We write S/T.
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£
0r the equivalence classes and qs : S —> S/T for the quotient map. Let U C S and put 

^ ^ Qs{U) then we write qu : U —> U for the induced quotient map on U.

Construction 6.4.6. Let (£, S, T) be admissible then we define a map je  ■ M z  >-► M e  
95 follows. Given any set U G C we write U =  qr(U) where qr ' S —*■ S/T is the quotient 

IllaP then \U\ > 1 because U £  T. We define Mu =  tu{Njj) and je{i£) — ITru{Njj). To 

see that the image of jc  lies in M e  we observe that by the last lemma we have the follow- 

commutative diagram. Let U, IV £ C with U C W  and U, W  be their images in C then,

rw Vw .

7T: 7TW
U

%
ru Vru

Lemma 6.4.7. Let (C, S, T) be admissible then

H M z ) =  {  M  G M e  | for a l lU e C  with U n T  non-empty irynTMu 0 }

Proof. Let M  G M e  and U G C with U fl T  non-empty. Then because 7r\jnTMu =  0 

See that Mu G P(Vu). Then given U G C  we may define an element N jj G PVjj by 

u ^  Su(Mu). We must check this is well defined. Let W  G £  be another element with 

^(1T) — qT{JJ). Then by the first part we readily deduce that root(17) =  root(W) in 

^Pe(A£) so that we are well defined. Put N_ =  N jj then it is clear from the commuting 

Vagram below of 6.4.4 that N  G M j  and M  =  ir(N)

Th.e reverse inclusion is clear as we have the short exact sequence Vjj/T —> Vu —■► Vuar- D
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Construction 6.4.8. Let (£ ,S ,T ) be admissible. We then define a map ie : P\t x 

M c + by ic(M x,M ) =  (M r,jn (M ))- Because T has minimal size we see by the 

tast lemma that this does indeed lie in Me+

6. THE TOPOLOGY OF M e  FOR NON TREE SETS

following lemma is a refinement of the previous one that works for admissible thickets 

(£>S,T). This will be important for several results we will require later.

6.4.9. Let (£, S, T) be an admissible thicket then 

3c{M.-£) =  {  M  G M e  | for allU G £  with U 3 T  =4» iffMu =  0 }

Proof. Suppose we have M_ G M e  and for all U G £  with U d T  we have iff Mu =  0.

^hen for each U G £  with UflT non-empty. Put V =  UUT D T  and W  =  U(IT then as £+

ls a thicket we have V  G £  and iff My =  0. Then by lemma 6.1.2 we must have iff My =

as U and T have non-trivial intersection. Then iffy Mu =  irf/nfMy =  iffy My =  0

because W  C T and iff My =  0. Let q? : S S/T be the usual quotient map. For

6ach U £ £  pU£ jj _  qT{p) then because Mu G PVu  we may define Njj =  su(Mu) and

^  ^  to see this is well defined let W  G £  with qr{U) =  qr(W) then by the first

^art we deduce that root (U) =  root (IP) and we are well defined. Next I claim N_ G M^,

is immediate from the previous commutative diagram of lemma 6.4.4
T'u __

eri it is clear je{N.) =  M  therefore M  G je(M ^). The reverse inclusion of this result

ls clear because of the short exact sequence Vu/t —*Vu ~* Vt -

■ □  

Pr°Position 6.4.10. Let (C,S,T) be an admissible thicket. Then we have the following 
^Iback diagram,



h and j c are injective closed maps and n.: (M c+,&iz) (M e, Be) is a relative isomor-

Phism where Ac =  ie (M z  x PVT) and Bc =  jc (M z ) are Zariski closed moreover the 

,rnaP 7T is surjective and the square is a pushout.

Proof. The commutativity of this diagram is clear from the definitions of the various 

maPs. We next prove that the map jc  '■ M z  >—* M e  is injective. Suppose we are given 

£ M z  with je {K )  =  L =  je(M ), then for any U £ £  we have Lv =  ru(Njj) =  

Since rjj is injective we must have Mjj =  Njj and therefore N_ =  M . From this 

 ̂follows that the map ie is also injective.

We next prove that the map of pairs tt : (M c+,A e) -*  (M e, Be) is a relative isomor­

phism. For this the following result will be useful. We have that,
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t  \M)\ =  1 4= »  there exists U £ £  with U D T  such that tt̂ Mu ^  0

T0 See the first direction suppose there is no such U then by lemma 6.4.9 we see M  £ 
11Tlage(j£) ) ancj ^  the commutativity of the diagram contains a copy of PVT

therefore |7t_1(M)| =  oo. To see the converse choose a set U D T  of minimal size with 

^  o. Write Mt =  n^Mu- Let V £ £  be any element with V D T  then we need 

show that 7r}fMv <  Mt - Put W  =  U U V  then U CiV D T therefore W  £ £  as £  is 

a thicket. Clearly we can’t have both Mw =  0 and 7ry M w  =  0. First suppose that
7j.lV 3i
0 Mw Q, then w'y Mw =  Mu- Because n^-Mu =  MT we have that 7 Mw =  Mr- 

therefore 7r^Mw =  Mv as V D T and tt%Mv =  tt̂ t Mw =  7 Mw =  MT. Next 

Sl:Ppose 7 Mw =  0 then 7r̂ M w =  0 as T C U and 7ry Mw =  My and therefore 

tMv =  wlfwy^Mw — itr Mw =  0. Then in all cases we have 7x^Mv <  M t -

the previous lemma we have for any M_ £ M e  then M  £ je (M z ) if and only if for 

eVery U £ £  with. U D T  we have n^My =  0. Thus this proves our map 7r: (M c+,Ac) —>
(M

fu:
C'BC) is a bijection. We now construct the inverse over our relative spaces for the

Action 7r. Write Acc for the complement of Ac in M e  and Bcc for the complement of 

c lri M c+. Then as M e  is a complete variety for every £  we see that Ac and Be are 

^ariski closed. Next put Ut =  {U  £ £\U  D T }  and define a function pT - Bcc —> PVt 

by M(L) =  (J 74 (Mu) . We then define d : B% -*• A% by 6{N) =  (N ,pT(K))- 

ls Js clearly the inverse map, we must show that fir is a morphism of varieties. For



each tree T  e  Tc put Oc (T) =  J\fc(T) n Bcc . Then each Oc{T) is Zariski open and 

U Oc {T). For each T  put U =  root(T) in T. Then I claim the partial map
U TeTc *

Pt : PVv —+ PVT is defined at Mv . Note that this is not a consequence of lemma 6.1.8 

as T 0 C and we are extending the definition of the root function for this case (in the 

evident natural way) to the element T. For suppose otherwise that n^Mu =  0. Let V G £  

with then root(V) D root(T) =  U. Put W  =  root(V) so that 7Xy Mw =  My thus

t,rMv ~  ■Kj.ny Mw =  Mw =  it Mw <  i^M u  =  0 contrary to the assumption 

^at Af <= pc. Thus the restricted map of pT to Oc (T) is given by pT{M ) =  Pt (m u ) 

ŵ ere pU : p y v y p(ker 7r^) —> PVT and is therefore a regular morphism of varieties.

finally we prove that the diagram is a pushout. Let Wp be the pushout of this diagram 

and p ; w c ke the evident map. Then since We is compact and M e  is Hausdorph

 ̂*ill kg enough t0 pr0ve that p is a bijection. This is then clear since jc  is injective tt 

ls sarjective and 7r : (M c+,A c) -> (M e, Bc ) is a relative bijection.

□

Proposition 6.4.11. Let (C ,S,T ) be an admissible thicket, then we have the long exact 
spMence,
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H *(M C) —  H *(M c) © H*(M C+) —  H *(M Z x PVT) H*+1(M C).

vih
eref*c =  U h **) andgl =  i*c - p *

Proof. T o prove this claim it will be enough to show that the diagram of Proposition 

'̂ •10 is a homotopy pushout. Since %e is an embedding of smooth compact manifolds we 

is a cofibration and by lemma 6.4.10 the diagram is a pushout thus the diagram issee it

°Riotopy push out and we obtain the specified Mayer-Vietoris type sequence.

□

P-RMark 6.4.12. We will see later that the odd cohomology is zero and all the modules 

re free: Therefore the exact sequence decouples and we will obtain a series of split exact
seque.Rees in even degrees.
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Lemma 6.4.13. Let ic : M e x PVT M c+ and jc  ■ M e  -* M e  be the maps of 

Proposition 6.4.10, then for any U G C we have i\{xv) =  xpj 0  1 , jc (xu) =  xu and 
^{xt) =  1 0  xT. Note the slight abuse of notation, this should cause no problems.

Proof. W6 prove this for jc  the other case being similar. It is clear from the defini- 

tion °f jc  that we have the following commutative diagram..

M e — ~ —- M e

PVjj- ^ — PVu

^°w it is easy to check that yjj =  r^(yu) thus by definition we see that xjj =  j*c {xv).

□

L-EMark 6.4.14. Before we prove a list of results concerning the cohomology ring of

we need one definition and a lemma so that we may compute the Poincare series.

e also recall a result from chapter 3 that we need. Let £  be a thicket and T C S

Qt : S —> S/T the usual collapsing map. Recall in chapter 3 we defined a map

' P°rests(£, T) —> Forests(£) which we proved in lemma 3.3.5 was a bijection with the

i)r°Perty of preserving the numbers m (P,T). We will use this to give a (rather crude)

c°ttibinatorial description of the Poincare series of our cohomology ring. This description

'VlL be in the right form to later allow us to compare the rings and work out a basis for

ea°b cohomology ring. This is considered in the final chapter. We will write PS(H*X) 
fot*r the Poincare series of the cohomology ring of X  and in the case of X  =  M e  we may 

abbreviate this to PSC-

^ eEinition 6.4.15. For any thicket £  of S' and for any forest T  G Fn let U G J- and
Writ m{F,U) - 1

te Pf ,u =  t\ and p?  =  n  Pr,u- We then define Pc =  Pf
¿=1 U&fF fFGLFjr

■̂EMark; 6.4.16. It is possible that pjr V and so p?  can be zero. This can happen if and 

nly ^ there is an element U G T  of size 2 and corresponds to the fact that Xu =  0 or 

^ (p ,U) =  {W } and |W| =  |C/| — 1 this will corresponds to the relation xu(xu — %w) 

We have in this case.
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Lemma 6.4.17. Let (C, S, T) be an admissible thicket and b : Forests(£+, T) —»• Forests(£) 

6e the bisection of lemma 3.3.5 where £  =  qr(£) then for any forest T  E Forests(£+ ,T )
|T| —2

e have p-p =  pb̂ p T where pr =  tl.
i=l

Proof. Using the construction in lemma 3.3.5 we see that b(J-) =  qr{U) where U =  

{P }. Again by lemma 3.3.5 we see that for every U Eli that m{fFU) =  m(b(lF), U) 
__ p _  Since the evident induced map qT —> b{XF) is a bijection we see that

and so pp =  pb{T)VT.

Pb(F) ~ n  pb(F),u
ueb(F)

= I ! u
U€U

=  X {  Vr u
ueu

□

Pr°Position 6.4.18. For any finite set S and thicket £  of S we have the following.

H2m+1M C =  0

HmM c is a finite free module

=  Z { xT I T E £ , \T\ >  2 }

=  |{ r  e £  I |r| >  2 }|

is generated as a ring by H2M c  

=  Pc

=  z [4 S|" 2]

=  0 for m > 2(|5| — 2)

H2M C

mnk(H2M c)

H *M C

PS(H *M C)

H-2{\S\-2)Ĵ c

HmM c

Proof. We use an induction argument to prove our claims. For l^l =  3 the claims 

Fe trivial to check for any thicket £  of S '. Suppose the claims are true for |1S'| =  n — 1 for
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any thicket £  of S. Then for sets S of size |<Sj =  n let £  be any thicket. We use induction

°n the size |£|. For |£| =  1 the results are again clear. Suppose the result is true for some

ticket £  of S' of size |£| =  m — 1. Then for any thicket £+ of S with |£+ | =  m, m > 1

^  ■C to be the set £ + with T removed where T is an element in £ + of minimal size. 
Tk ■ .en it is clear that £  is a thicket and |£| =  m — 1. We first suppose |T| =  2 in this case 

 ̂^ clear that M.c+ — M-c and xt =  0 thus by induction all of our claims hold. Next we 

SuPpose |£| >  2 then in this case £  is a thicket of S/T and |SyTj <  |Sj.

first prove that H*M c is generated in degree 2 by { x t \T G £ } .  Let w G H *M c+ then 

^actively i*c (w) is a polynomial in H2(M ^)® H 2PVT which is generated by { xjj, xT\U G 

J- Choose a section sy : £  —> £  ie qrSr =  id and put w' to be the obvious same 

P°iyiiorrual in { xs^ , x Tj  C H*Mc+ so that i*c (w) =  i*c (w'). Now consider the long 

e3Cact sequence from proposition 6.4.11 .Then (0, w — w') G ker(g£) =  im (f£) and so there 

ls some u g H *M C with w — w' =  7r*(u) but H*Aic is generated by degree 2 and thus 

^ w +  7r*(w) where u is a polynomial in degree 2 elements. From this it immediately 

°fi°Ws that there is no odd cohomology.

We

the
next prove that H*M.c is a finite free module. Since the odd cohomology is zero 

eXact sequence of proposition 6.4.11 decouples and inductively both H 2q(M c) and

i-M-g- x PVt) are finite free modules thus the short exact sequence splits and we obtain 

^ t  P*{M.C+) is a finite free module. By considering the H2 term of our sequence we 

ak° obtain that 1

TSLnk(H2M c+) 1 +  rank (H2M C)

1 +  |{ 17 G £  I |/7| > 2 }|

\{U G £+ I \U\ >  2 }| because |T| >  2

Ni
e3ct we prove that the inclusion k : Z[xt \ T  G £ , |Tj > 2] H 2M c  is an isomorphism. 

'■Pap k is surjective by the first part and by the previous part we deduced that the^he

raukis are equal so k is an isomorphism.
r

r the Poincare series we have by the split exact sequence that PS(Aic+) +  PS(M.^) =

(■Me) +  P S(M^) PS (PVt ) ' Bxid PS (PVt) =  Yh ^ thus rearranging we find that 
£<? _  ¿=o

— PSc +  PS^Pt thus inductively we find that
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PS, =  PSc +  PSZPT

=  Pc +  Y , PuPt
UÇC

-  Y . pr +  E Pj- by lemma 6.4.17
TÇC TeTCC+

= E pr+ E PT
T&TÇL+ T&TÇC+

- E *
TÇC+

=  pc+

^ere we prove the final two parts of the claim. The spaces M e  and PVs are compact and 
ha

Ve the same dimension. Consider the map ns : M e  
ns : M  
tell

PVs which is an isomorphism 

c —> Uc, M e  =  ^̂ {U e )-  Put d =  dim(A4/:) =  2(|5j — 2) then Poincaré duality 

s Us that Hd(M c) =  Zu and Hd(PVs) =  Zu. Therefore ir%(v) =  ku  where k =  deg(7rg). 

e 7T : 7r_1f/c —► t/£ is an isomorphism we see that deg(7r) =  ±1. Because 7r is analytic
We

See deg(7r) =  1. Thus 7r| : Hd(PVs) —> Hd(M c) is an isomorphism. We know u =  y§n—2

^  mu yi o for every non-zero m G Z so we deduce 2 =  -K*s (mu) ^  0. The last part 
*s cfear. □

Pe

sh,

Phii

the

^Ark 6.4.19. In particular let i  : ~Me \[PVT be the inclusion map then we have 

°wn that the map i* : H*(Y[ p v t ) H *(M e) is surjective and in degree 2 an isomor- 

sm- Then H *{M C) is a quotient of Z[xT \ T  G C and \T\ >  2] and the kernel contains 

Ideal generated by the x ^ ' 2.

111 this
and

h

6.5. Com parisons with the Chow  ring

section we consider the natural map cl : A *(M c) —► H2*(M e ) [3, Chapter 19]

prove it is an isomorphism for thickets C. In particular we will show that M s  is a 

O ology isomorphism. This will be easy given our current results. We then given an 

Xplicit description for this map in chapter 9 for the case of M s-
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pRMMA 6.5.1. Let C be a thicket then the natural map cl : A* (M e)  H2ill(M e) is an

lSorn°rphism. In particular every analogous result to proposition 6.4.18 holds for A*(Ms)-

Proof. Consider the following commutative diagram where the bottom row is short 

6Xact and the top row is right exact by [3, Example 1.8.1]

A*(MZ x PVT)    A , (M Z) © A*(Mc+)    A ,(M e)

cl cl cl

H2*(M z x PVT) —  H2*(M z ) © H2*(M c+) —  H2*(M c )

en it is well known that cl : A*(PV) —> H2*(PV) is an isomorphism because for 

XaRiple PV  has a cellular decomposition. Thus we may use an induction argument 

Proposition 6.4.18 to suppose that the outside maps are isomorphisms and then 

simple diagram chase to deduce that the middle map is an isomorphism and thus 

' ^*(A4£) H2*(M c) is an isomorphism. We leave the details to the interested reader

as in. 

Use a

as
Previous calculations are similar. □

ElktMA 6.5.2. Let C be a thicket then the natural map cl : A*(Me)  —> H 2*(Me) is an 
0rn°rphism.

Proof. Consider the following commutative diagram

A*(\[PVT) — ~A*(M e)

cl cl

H2*(\{PV T) —  H2*(M C)

th,

suri
the left hand vertical map is an isomorphism and the bottom horizontal map is 

Jective thus the map c l : A* (Me)  —> H2*(Me)  is surjective. We deduce using the last
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lemma that both are finite free modules and have the same rank.

ls°niorphism.

Thus the map is an

□

6 .6 . The blowup description for M e

^  finai section of this chapter we extend the result of chapter 4 section 3 by proving 

^ at the commutative diagram of section 4 is actually a blowup diagram and that the 

Pace A is may he seen as an iterated blowup of projective space. This should be com- 

Pared with Kapranov’s approach [8]. It will also become clear that the order in which the 

^Wup is obtained is not of great importance although some care is required. Although 

Section answers the question of whether the two spaces X s and M s  are the same in 

affirmative it does not provide us with an actual isomorphism between the two so as
such i

lat
ls not a satisfactory answer to this question. We will provide a more careful analysis 

er chapters to produce an explicit isomorphism.

nrst introduce an order on the set P +(S), this is the subset of P(S ) whose elements 

W e  |7| > p This js the order introduced by Kapranov in [8]. We will use this to 

hr°ve that X s the moduli space of stable n +  1 pointed curves of genus zero and M s  are 

0lPorphic by blowing up the same initial space along the same subspaces in the same 

êr- Here whenever S is a finite set with |Sj =  n we take S =  { 1, 2, ..,n }.

EpINition 6.6.1. Let S' be a finite set with |5j =  n and put Sm =  {  1 ,2,..., n — m }  for 

^ 772 < n then we define

P li  =  { T  G Sm | |T| =  \Sn \ - i ,  n - m  6 T } .

F inition 6.6.2. Let S' be a finite set of size n with the evident order then we define the

1Ilary ordering < on P+(S) by U < V 
Uiap

Mi,

=>■ ^2 2“ <  ^2 2V. For any T Ç S we have the 
u€U vëV

Qt : S —+ S/T and give S/T the induced order under the injection qT : S \T  —► S/T 

ere We use j  =  max T  for the equivalence class T.
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DefINition 6.6.3. We define a total ordering ^  on P +(S) by-

max U or

maxU  and |V| <  \U\ or 

max U and |V| =  \U\ and U < V

VVe write T\, T2, ......,Tm for this order where m =  2n -  1 -  n. ■

Remark 6.6.4. Let U, V  £ P +(S) then U £ Piti and V  £ Pm,j then the above ordering is 

bivalent to the following,

U < V  «  maxH < 

maxH =  

max V  =

U ■< V m < l 

m =  l 

m =  l

or

and j  < i or

and j  =  i and U < V

Le 6.6.5. I fU C T  then T 4  U. □

^EMark 6.6.6. The last result tells us that if for each U C S we put Cv =  {T  C S\T 4  U}
p •is a thicket.

-̂EMark 6.6.7. Here we state the following fact, the proof is unilluminating so we do not
oft

0rie. Define the following recurrence relation

K - i  =  " " I
fc- 2

U -1 =  vz’  +  E ^ - i - O O L ’f t - *
i=l

th
611 =  dim(H*(M s)) where n =  l^l



86

LEMMA 6.6.8. Let (C,S,T) be an admissible thicket and put Tc(T) =  {  T  £ Te j T  il 

is a tree }  then for any tree T  <=T(T ) we have the following commutative diagram

6. THE TOPOLOGY OF M e  FOR NON TREE SETS

M c

3c

TTl
M t

7T2

3t

M r

^i 13t {M y ) nJVr(T) =  jc (M z )n M c(T )  

U  M T )  D jc {M Z)
T€Tc{T)

Proof. Let M  G 7r̂ ^ ( M y ) L )N e (T )  then M  £ M c (T )  and N_ =  tt\(x ) G 3t {M y ) H

c fi~) since jVc(T ) is a saturated set. Because j r  is injective there is a unique L  G M y

^  '3r{L) =  jV. We prove that L G A/T(T). We first observe that the map qr '■ T  —± T

SUrjective. Now let U G £  and put T =  root(17) in T . Then T =  root(U) in T. As

""  ̂N'c{T) then by definition tt̂ Nt ^  0. By the definition of j r  we see that Nt =  Ly )

^  Ay — ry(Ly). Thus we may apply lemma 6.4.4 to deduce that 7rTAy ^  0 and so

"■  ̂ Now 7r fx(N) =  M  and there is a unique K_ G A/^(T) with 7t2 (A ) =  L and

before M_ =  j c (K_). Thus 7r f1jr (A 4^) nJ\fc(T) C je (M e)  fi M e(T) and the reverse 
iiicln • .usion is automatically true.

W t

W e

given M  G je (M e)  put T  =  type(M). Let U £ £  with U D T non-empty and 

P- By the minimality of T we have U % T. It follows that W  — U U T D T and 

£  as £ + is a thicket. Then since by lemma 6.4.9 we have 7r^ {Mw) =  0 we must 

7Tu'(Mw) =  Mjj thus U £ T .  Therefore T II {T }  is an 5-tree.

□

Co
E° lLary 6.6.9. Let (£, 5, T-) be an admissible thicket then the following diagram is a 

û ack and 7r : M e+ —* M e  is the blowup of M e  along M y -
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M c  X PVT M c +

V 

M e

7T

]C - 7 -7------- ► M e

y

bl

Proof. Let b : B lyX  —> X  to be the blowup of X  along X  where X  =  M e  and 

e- Let 7r : M e + —► M e  be the standard projection. Then to prove 7r is theM

°WuP of X  along Y  it will be enough to cover M e  by Zariski open sets {Ui}ieI so that 

(^ ) and b~l{Ui) are isomorphic by a morphism (necessarily unique) that commutes
*ith Projection onto Ui. Let T  be an element of Te(T) and consider the following com-
mutati1Ve diagram

M e + -----—* M t+

7T

3c

M-,
Tl

7T4

M e ---------- *■ M t

Jt

M r

B
 ̂ W m a  6.2.3 7r2 maps N eiX) isomorphically onto M'C{T). By the previous lemma 

Riaps j c (M e) Pi Afe(T) isomorphically onto jr (M X ) P\N'c{T) as saturated sets and

by lemma 4.4.14 tt4 M r M t is the blowup of M r  along M f-  Thus we have 

(•^c(T)) is isomorphic to ^ X i-^ cX )) commuting through the restricted map of 7r2 
their respective bases. Now put Ur =  7r_1(A/£(T)) and Vr =  7tJ'1(A/’'(£ )) then it is 

lllgh to show that the map 7t3 : Ur —*■ Vr is an isomorphism. This is clear since T is an
ele;

^ n t  of minimal size. Thus we obtain 7r l(J\feX)) is isomorphic to b l (Mc {T)) with 

Actions commuting through Me{T) C M e- By the previous lemma we have that

’ L l ’ X e {T )D jc {M e)
TeTc {T)
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that

* 0n each of these open sets Me{P) we have shown that 7r 1{Me{T)) is isomorphic to 

(•Yc(T)) with projections commuting through J\fc(T). Now by lemma 6.4.10 we see

bl
 ̂ '• M c + —> M e  is an isomorphism away from je (M e)  thus we see that 7r is the 

°WuP of M e  along M e+ •
n

^°Rollary 6.6.10. Let (C ,S,T) be an admissible thicket and je  '■ M £ —> M e -be the 
err>hedding. Then the normal bundle is hom{We, Vr) and the projectivization of the nor- 

nia! bundle is the trivial bundle M e  x PVt- We define We below.

Proof. Consider the following commutative diagram where T  £ Pe{T)

M e

Jc

TTl
M t

3r

M r  — 'M'

eillnia 6.6.8 essentially tells us that over A /j(T ) the normal bundle N (jc ) is N (jr) and

s ^ hom(N u/t , Vf) where U — root(T) in T. Doing this for each tree in C we obtain

description for the normal bundle. One can check that the N u/t  are compatible over

WlSe intersection in our cover and glue to obtain the vector bundle We, thus we may 
taL-
• 6 ^ (je ) =  hom('We, Vt)• This can also be written as W f ® Vt where the star denotes

e dual bundle. This gives the projectivization as M~i x PVt the expected

dii

Wal
Pair

answer.

□

0lSisTRucTiON 6.6.11. Given a thicket t  we define an order on it as follows. We define 

~~ o and =  {S'}. Suppose T j,..., Tr and C\,...,Cr are defined. Then we define 

1-+1 € C \ Cr to be an element of maximal size and £ r+i =  Cr II {Tr+1}. Then it is 

lhat the (C{, S, Ti+1) form a sequence of admissible thickets and C\ =  {  Tj | j  < i }. 

e then define a sequence of spaces Bi, S!f by Bi =  M e j =  PVs, Sx =  P(ker(7r^)) 

SJven Bi and S f  are defined. We define Bi+X =  BlsrBi where T — Ti+X and writ?
7r. _ —  __  *

+1 • -^d£i+1 —> M c t for the projection map. Then for any U £ C we define Sry_x =  strick
tn

ail8form of SF in B<
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Lbmma 6.6.12. Let C be a thicket and Ci an associated sequence of thickets then we have 

following sequence of commutative diagrams

M  x PVt _  Mcn

V

M c.n

+i

7r

Tk

and i
en A  =  jvlCi an& given U G C with U =  Tk we have S f =  for every i < k

is zero otherwise where we quotient in qu : S —> S/U and we write ju =  j^,.

Proof. We prove the claim by an induction on i. The case when i =  1 is clear from 

definitions. Put T =  Ti+1 then inductively A  =  M ct and S f =  jriM ^.). Then 

 ̂^mma 6.6.9 we see that the blowup of Bi along S f  is Bi+1 =  M c i+1- We are left to
Vw

Ve the claim for the strict transforms. Choose i +  1 < k and put U =  Tk then define
Ppu ___ __

~~ Sf \ S f  where inductively S f  =  ju(M-tf) then we need to calculate c l ^ ^
w<e first prove that

We

le
Prove the left hand inclusion first. Let N_ G M.~ci+1 an<d put M  =  ju  (TV). Then by 

6.4.7 we see that for every V  G £¿+1 with VDU  non-empty we have 7ifnUMv =  0. 

Ut to be the image of M  under 7Tj+i. Then again by lemma 6.4.7 we see that L G Sf. 

eca,Use T % U by choice of order we see ixfMg 0 so that L S f  thus M  G n ffi(W f)
tVi icue left hand inclusion is true.

ext let M_ g 7r~|_\ (W f)  and put L  to be its image under 7r;+1. Consider W f  C M .cv  Now

Hi

£
aRd A +i are both thickets and L Sf. Thus by lemma 6.4.9 we can find a V G A
Ltai;Gaining T such that n fM v =  MT. Because L G S f  we deduce that =  0 for

if Jï
^ A  such that WDU is non-empty. In particular this then tells us that irfnuMT =  0 

^ B is non-empty. This proves the right hand inclusion.

eR taking the closure of both sides and recalling that ju is a proper map and A4 .̂+1 

dense in M i i+1 we see that- Sf+1 =  cl(7ri+i(^/T)) =  du(M-^i+f). This completes the
Eduction. □
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C°ftOLLARY 6.6.13. The spaces X s and M,s are isomorphic as projective varieties .

Proof. Here we take £  =  P +{S) and use the order from definition 6.6.3. We then 

aPply the previous result. □

As a

flowing
result of the previous corollary and given the uniqueness of blowups we have the 

g commutative diagram where 9S : X s —> M s  (necessarily unique) is an isomor-

PVS is^ Srn> 17s : X s —> PVs is Kapranov’s regular map defined in [7] and ws : M s
the standard projection map.

¿ V
9s Ms

cle,!arly the restricted map as : Xs -> Us is an isomorphism. Suppose for each T  C  S we 

C°uld show that the following diagram is commutative where tt| : X s -► X T is a natural 

discussed in [9]

X s ------ 2. M<

7ry I TTAf

—1 ÛT ___
X j ' -----------► MIt

th,611 ^ is easy to see that the map 9s is given by [J ar7rf. This is not an unreasonable 

fe ta t io n  given that to prove this diagram commutes we would only have to restrict 

lJi'Seif to the isomorphisms oy : Xv —> Uy and intuitively it is clear what form this 

aP must have. However we do not explicitly analyze this map over the spaces Xv . In 

er chapter we will describe an equivalent map ( ie differing by an isomorphism ) 

s ‘ —► PVs that is a natural extension for the usual identification of Xs with Us-

lat

Ph:
ah

ls will have the desired properties and will give us an explicit isomorphism as described
°Ve.



CHAPTER 7

The topology of Ms

Ia thisWe section we turn our attention back to the main object of interest, the space M s-

WHI introduce various notions of trees and compare them by constructing natural

Actions between them. We will then consider the different representations equivalent

y these correspondences. We also prove a number of analogous results from the theory of
^  __

s associated to subspaces M s ( T )  of M s  that consists o f elements of tree type T.  These
sPace;

c°*istr
s are of particular importance for the study of M s  and we have already used similar

Auctions in chapter 6. The results we prove will highlight the tree structures of our 

Pace. We will need these later when we compare in more detail the spaces M s  with X s - 

^tailed proof of some of the results in this chapter would be unilluminating so we do 

supply them. Instead we give (carefully chosen) examples that should highlight the 

ideas. These results are self contained and will not be mentioned elsewhere.

7.1. The com binatorial structure o f  M s

In

We
this section we examine in more detail the combinatorial structure of M s -  In particular

wiH define a space Ps that is constructed in the same spirit as .Ms modulo some natural

Uiatorial structure. This should be thought of as a universal way of assigning to

^ n ts  of M s the structure of a tree. We then consider the combinatorial notion of 
a tfe and our original definition in 3.1.1 and explain the way that we consider them 

bivalent , that is produce natural bijections between them.

c°mb
ele;

D
^INition 7.1.1. For every T Ç S with \T\ > 1 we define,

Qt =  {  partitions of T into at least 2 blocks }

eT ; p y T Qt by % ~eT(MT) j  m T 
qT : F {T, C) VT is the quotient map.

m(i) =  m (j) for all m G qT1{MT) where

91



aEMARK 7.1.2. Equivalently we may define the previous map as follows. Given an element 

^T  ̂PVT and U C T  we define the image 9t {Mt) by U £ 6t (Mt ) -<=>■ 7r ̂ {Mt) =  0 

ailc* I°r any other set V D U we have HyMT ^  0, that is U is maximal with respect to 
^is property.

7. THE TOPOLOGY OF M s

Lem 7.1.3. For every U Ç T Ç S the restriction of partitions gives partial maps 
. Qt —+ q v defined by pJj(V) = V CiU compatible with 0t that is, the following 

‘Fo,rn commutes whenever it is defined. This happens if and only if pf(M x) is defineddia,

or
e9uivalently if p f (to) is defined where u =  The latter just means U is not

Gained in a single block of the partition u ofT.

PVT

T  1Pu I

+
PVv Ôu

Qt

TPu

+
Qu

ProOF. This is clear given the last remark.

Definition 7.1.4.

□

JJ Qt : Pu(u>t) — for all U Ç T  Ç S whenever pJj(ojt) is defined
T Ç S
|T|>1

{ S-trees T  }

isomorphisms classes of rooted trees, all vertices of valence at least 3, 
leaves labelled bijectively with S

Ip
last definition we assume that 0 $ S and call the root 0.
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Construction 7.1.5. Here we construct a map $s : Ais  —*■ Ps that we will later see is 

Urjective. Given M_ G *M,s we define u>t G Qt by u>t =  9t (Mt)- Then by the partially 

0niniuting diagram of lemma 7.1.3 and remark 2.0.11 it is easily seen that u =  u>t G P s -

ePin itio n  7.1.6. Let t e V s  then for each internal vertex v of t we put Tv to be the set 

 ̂kaves of t lying below v away from the root 0.

Cor

‘ 3 : T
STruction 7.1.7. Here we produce natural maps T\ : Us Ps, T2 : P5 —> T5 and 

5 —> Us. We will then explain why these are bijections.

first construct the map T\ : U,g —> Ps- Given t 6  Us and U C S with \U\ > 1 

be the subtree of t that spans U, that is the (rooted) subtree whose leaves are on U,
rt/ thne root of ty and u(t)u the partition of T by components of tT \ { t’t } -  Equivalently 

 ̂ fie a tree of Us and write Vj(t) for the set of internal vertices of t. Then for each 

^ ernal vertex v in Vj(t) let Tv be as above.. Then Tv is a subset of S and it is clear 

{  Tv | v is an internal vertex of t }  is an ¿'-tree. Now given U C S with \U\ > 1that T
Put y root(U) in T  then we define u{t)u to be the induced partition on U from the

bartitioxi of T defined by u ~  v if and only if u =  v or u, v G W  for some W  G M (T, T). 

^ ^  w(i). Then to see u lies in Ps we observe that given U Q V  C S then p (̂u>v) isN ;

H if an only if root (U) =  root(V) in T  and when this is the case we see p(j (uv ) COu-

a Nple 7.I.8.

L •
 ̂^  is the first tree and Y — {5,9,10,13,15} then root(y) =  U , U is partitioned as 

^ 5}, {9}, (10,'ll, 12,13,14,15,16}} then u(t)Y =  {{9 } , {5 }, {10,13,15}}
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We ne*t construct a map T2 : Ps T5. Given w G P s  define,

^2(~) ~ {U  CS\\U\>1 and for every U C T  C S pjj (lot ) is undefined }

C*aim this gives us an element in T5 . Suppose for a contradiction that T  =  T2(oj) is

^  a forest. Then we may choose elements U,V G T  with U ■% V,V  £  U and U fl V

Il0ll' ernPty. Put T =  UU V  then lot £ Qt is a partition of T into at least 2 blocks. Since

^{^t) and Py ((jOt) are undefined the induced partitions of coT restricted to U and V  are

Ûst { U} and { y }  but then we can choose elements X, Y  G u>T with U C X  and V C  Y  
thij

s X  Pi Y  contains U fl V  and so is non-empty, as u>T is a partition we have X  =  Y  and
th,erefore uiT =  {T }. This contradicts the fact that lot has at least 2 blocks. Thus T  is a 

and it is clear that S' G T  so that T  G T5.f°rest

n°w construct a map T3 : T5 —»• "Us- Given an S-tree T  G T j we define an ele-

i g Us as follows. We define the set of internal vertices of t by Vj(t). =  T  and 
the
V

Set of external vertices by Vk(f) =  S II {0 }. For every U,V G Vi{t) we then connect 

W V by an edge if and only if U G M (T, V) or V  G M (T , U). For every T G T  we
t

e " t =  T\  £J U then observe Ut =  S. We connect every external vertex 
ueM(T,T) TeT

ut to the internal vertex T. The vertex 0 is the root of the tree and is connected to 
the

UeM(T,T) 
ternal ver

eternal vertex S. We then take the isomorphism class of this tree.

Hi
We produce the inverse for the bijection T3 : Ts —>• Us as we will need it explicitly

elf
r- We first construct a map U3 : Us —► Ts- Let t be a tree of Us and write Vj(t) for 

Set of internal vertices of t. Then for each internal vertex v in Vj(t) let Tv be the setthe

°f 1,eaves of t lying below v away from the root 0. Then Tv is a subset of S and it is clear
th^ rj.

1 =  {  Tv | v is an internal vertex of t }  is an ¿'-tree. It is easy to see that this map
an iinverse for T3, moreover J/ 3 =  T2 ° T%.

7.1.9. The maps Ti ,T2 and T3 are natural bijections Ps — Us — such that 
aVe the following commutative diagram.

we



7.2. THE ASSOCIATED TREE TO ELEMENTS OF M s 95

111 this

7.2. The associated tree to elements of M s

section we define the tree type attached to each element M  in M s  and consider

detail the combinatorial notion of trees in Us. We will then introduce a partial
°rderilng on the sets Ts and Us. The ordering on Us will be the standard one which is
usedi111 the study of X S- We will show that the bijection U3 : Us Ts will respect several
^tural properties including the partial orderings and in particular we will construct in a

â er chapter an isomorphism of Xs  with M s  such that the induced maps onto trees are 

 ̂eserved by our bijection.

Dç

We
PiNition 7.2.1. Recall from chapter 6 that we constructed the map type : M s  

Use this map to define the combinatorial tree type of an element M  of M s-
Ts-

He

are
7.2.2. It is useful be kept in mind that any of the previous constructions of trees 

eclUivalent to the above definition in the obvious sense.

Le;
7.2.3. The map type : M s  —* Ts is surjective.

Of . The proof of this may be seen from proposition 7.3.6 part 2.

□
D

^ N ition 7.2.4. For every T  Ç S' we define a map 7rf : Ts —> Tr  by,

7T|(T) =  { V  fl T I R  G T  and \V fl T\ >  1 }
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â So define a map tt?  : Us —> Ur as follows. Given a rooted tree i G Us we define the 

r6e 1̂T ^  7rf (i) € Ur to be the restriction of the leaves S of t to the set T subject to the 

0llstraint that if some vertex has valency 2 after restricting we remove that vertex and 

IIlâ e ^at edge rigid. We call this process stably forgetting the set S\T. See below for 
an Sample.

7. THE TOPOLOGY OF M s

Example 7.2 .5.

7.2.6. Let U C T C S then for each of the maps 7rf above we have the composition 
fly =  TxfjTif and we have the following commutative diagram

□

SpiNition 7.2 .7. Here we define orderings on T5 and U 5. For T 5 we define T  < U  
^ Id. For U5 we define t <  u ■<= t is obtained from u by contracting some internal

See 7.2.5 for an example.

7.2.8. Let t ,u e  Us and put T  =  U3{t), U =  U3(u) then t <  u <i=  ̂ T  < U that 

orders are equivalent under this bisection. See 7.2.9 for an example. O
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Ex aMple 7.2.9.

first tree in set form is U =  {S,T,U, V, W }  the second tree is T  =  {S, T ,U} and 

-  ^  so that T <U.

7.2.10. From now on we will use whichever definition of trees that is the most
CQtl

Venient and the choice should be clear from the context.

^INition 7.2.11. For every S-tvee T  e T g  we define,

M S{T) =  type_1(T) 

M s(T)  =  I\ M S{U)
UOT

Ms =  type-1 ( {5 } )

^ ^ A rk 7.2.12. The space M s{T )  is non-empty because the map type : M s  —> Ts is 

A ctive. Recall from chapter 6 that we defined the Zariski open subvariety Us of PVs

Proved that the map n : M s

jjs that classifies generic curves.

PVs restricted to Ms  gives us an isomorphism

7.3. Tree isomorphisms

In
th

this section we produce analogous results to those already known about X 5 regarding 

6 structure of the spaces Ms{T) and Ms(T). We will require these results in the next 

aPter when we analyze the space X s  in more detail.
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Def;
of

W(

INition 7.3.1. For any S-tree T  and given an element T e T w e  define CT to be the set

equivalence classes of T  under the relation u ~  v u v or u, v G W  G M (T, T).

e call CT the children of the vertex T on the tree T. This should be compared with its 

°mbinatoriai counterpart. Observe the map qx : T \ ] j  W  ► Cx\ M (T ,T ) is a
bjj . W e M (T ,T )

ecfion where qT :T  -+ Cx is the quotient map.

Exa^ple 7.3.2.

P
°r the first tree Cy =  { {5 } , { 6}, Tw} and for second tree Cv — {5 ,6, w}

h,E;

vert,
7.3.3. For each tree i G Us and corresponding 5-tree T  let v be an internal 

ex with T — Tv then there is a natural bijection b : Cv —> Cx sending i G 5  D Cv to

aRd u to T„

Qq
^sTruction 7.3.4. Let T  be an 5-tree and qx : T —* Cx be the usual quotient

aP. We construct a map r : n  TcT —■> I s  by r(ff\TT) =  Wq^ifTr)- In more detail a 
Poinf TET

1 °f n  consists of a system of trees Tt C P(Cx), one for each T G T. We let 
‘ rT*' 1 —► Cx be the usual quotient map and define q fl (Tx) =  { q^fU ) | U G Tx }, so each 

^  (?t) c  P(T) is a T-tree. We then put =  IIq^i^r)-

7.3.5. The map r : n  TcT
U ry.^. TeT

Staining T.

T5 is injective, and the image is the set of S—trees

E*Roof. It is clear that the map is injective and r{]f[Tx) is an 5-tree. For every 

 ̂^  since Cx € Tt we see that T G qf.l(Tx) and so T  C r ( f ]  Tt ). Given any 5 —tree U 

l in in g  T  let T G T, put Ux =  {  U G U | root(U) =  T in T }  then we have an induced
Tt ~  gT(iyt ) an(j _  u □



7.3. TREE ISOMORPHISMS 99

ProPosition 7.3.6. We have the first equality and let T  be an S-tree then we also have,

Ms  =  I I  M s(X)
T eTs

M s(T ) =  I J  M Cr
T€T

Ms(T) = J j M c r
TeT

cl (MS(T)) =  M S(T)

Tk
Second isomorphism is an extension of the first and type(^(fj M Ct)) =  r (n  type(M Cr)) 

^ is the inverse morphism to the second map.

The
Cloi

Proofs will be given at the end of this section. We observe here that in principle the

our
SUfes could be different in the Zariski topology and the classical topology. However as 

Varieties are smooth and irreducible this result is valid in both topologies.

^ N ition 7.3.7. For any finite set S we define P +(S) — {  U C 5* | \U\ >  1 }  to be the 

Ûced power set of S.

7.3.8. The space M s(T ) — II Ms(M) is a Zariski closed subvariety of M s
UDT

P'Roop . The proof of this is easy since

M S(T) = ] ± M S{U) 
uor

=  M s \ U  A/s(V)
V2T

each Afs (V) is Zariski open by lemma 6.2.2 part 2.

□



loo

°WsTRuction 7.3.9. Let T  an S-tree and U C S any subset with \U\ > 1. For each 
T C rj-

1 we have the quotient map qr ■ T —> Ct■ Suppose U C T then we define
Cu ^ ■
T ^ 9r(t/), we then have C Ct - If T  =  root(£/) in T , that is the smallest ele-

-P r r -  TT *oi i containing U then by construction \Cj- \ >  1- This construction then gives us 

map s : P +(S) -> ]J P +{Ct) defined by s(U) =  qTOot(u)(U) G P +{CrocA{U)). It is easily
ih 'T&'T
tnat this map is surjective and has the following properties.

7. THE TOPOLOGY OF M s

(1) s{U) =  s(V) <=> root(£7) = T =  root(F) and qT(U) =  qT(V).

(2) Let T G T  then for a llU Q T  we have root (£7) =  T \qT(U) | > 1.

(3) s(U) e  P +{CT) 4=>- root(£7) =  T.

pQr
each T e  T  and U C T  with |£7| > 1 and associated set C? we define the induced 

fiUQtient map <ff : £7 —> Cj- by qff =  qr\u where qr is the quotient map qr :T  —> Ct

Lè1V[ 7.3.10. For any U C W  with T  =  root (IF) then we have the following commuta-

diagrams where the vertical maps are the usual projections. The image of rw is Vw
and th _ _crie maps rw : Vc w —» Vw °nt° *75 image and sw : Vw —► Vc w are inverses.

yc w ----- —— - Vw

7T;

Vc vvm
ru

7T,WU

Vju

V w

7T,

st

su

Vr-w

7TWnu

Vc u

k
particular if root(£7) zfc. T then \Cw\ =  1 and we have rr^rw — 0

^ItOOF. This is a particular case of lemma 6.4.4

'^ S tructton 7.3.11. For any S-tree T  we define an injective map <f> : AdcT
tyL T$zT

°Se image is contained in M-sifP) and type(</>(nMr)) =  r (E[ type(M r )).

□

Ads
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Let U c  S, \JJ\ >  1 and T =  root({7) we define Mv =  ru(Mc u). We then define 

"" "  n  Mu. I claim this gives us an element of Ais- For any T G T  define

=  {  U C S | \U\ > 1 and root(i7) =  T in T  }

then

P+(S) =  JJ  C S,T
TeT

N,

tell.

°W Lor every U C  V  C  S  with \U\ >  1 we have V G C s ,t  and V  G Cs,w where 

r°ot(U), W  =  root(F) and T C  W. Suppose first that T  =  W  then lemma 7.3.10 

Us that My <  (7Xu)~lMu- If T C W  then again using lemma 7.3.10 we see that 

U(MV) ~  q because jn case |(7̂ | — 1. Thus we have M  G M s- The construction 

LLis map can be viewed more clearly by the following commutative diagram, the top 

aPs are projections.

11  M-Ct ■M-Croot(u) PVa{l})

ru

M s -------------------- -----------“ PVu

next prove that tvpe(<^(n M Cj.)) =  r f f j  type(MCr)). For each T e  T  put UT — 

and use the map r : f l  Tcy —> T5 to define an »S-tree U. Put M  =  ))

^ T  and choose U G r̂ 1(Z7r) Q Then root(U) =  T  in T  and to prove U G 

^ e(Af) we neecj £0 show that 'kJj M v  =  0 for all U C 7 C  S. Since U C  V  we have that
* C n

^s,w where W  =  root(V) in T  and T C  W. First suppose T C  W  then as in the first
TV\_

a§raph ixfjMy =  0. Next suppose that T =  W, since U C  P  we see that Cj- C  Cy. 

^ CaUse U G q^l {UT) we see C? G Ut and that U is the maximal set with qr{U) — C?. 

1;s see that CU C  CZ. Now put X  =  CU and Y =  CY then as X  G Ut we seeT[Y . 1
=  q Thus by the first diagram of lemma 7.3.10 we have 7v^My, =  0. We have 

°Vei1 the condition for each V D U thus U G type(M) and U C  type(M).



Ne*t choose a set U C S  so that U is not in any q^i^w ) and put T  =  root([/) m T  

So that U g £ 5)T. If 0  Wr then we can find U C  V C T  with C f  C C£, such that 

put *  =  c t/ and y  =  q V .then tt\My =  Mx . Thus by lemma 7.3.10 we see that 

=  Mu and so U ?  type(M). K (%  G Wr put V" =  ) then as V  ta the

^ im a l set with qT(V) =  C# and gt(V ) =  «r (^ ) we see that V  2  U. As U & qT (Tt ) 
We see that V D U thus applying lemma 7.3.10 using the fact that we find that

and U ft type(M) therefore r{X[UT) =  type(M) as claimed. The inactivity 

°fthis map is clear. It is now immediate from lemma 7.3.5 that type(M) D T .  Thus the 

Ŝ'ge of the map is contained in M-si'P) as required.

7_ THE TOPOLOGY OF M s

Co
NsTRuction 7.3.12. For any S-tree T  we construct a map 6 : Ms{T) >-» II MicT-

T er

0llsider a point M G Ms(T). For each T G T, we must define an element Mc G M c T.
wit,

the previous notation we have P+(S) =  £J £ s ,t - Fix T G T, I first claim that for
TeT®Very w 6 £ s ,t  and M  G M S{T) we have n$nV(Mw) =  0 for each V G M (T ,T ) with

!Wn V | _
I >  1 and therefore Mw G PVw- To see this put U =  type(M ) and X  =  root (IT)

ltl U. Then as U D T  we have V C X  C T  , ■k^M x — Mw and ity Mx  — 0. One then 

uces the result. Then by construction we may use the second diagram of lemma 7.3.10 

■Re the following map. Let M  G X is(T ) and fix T G T  then for each U G £ s ,t  we 
aVe Mrr (= pV

to defi 
It

°he

•fit
tit

G PVu  and define Mc v =  sT(Mu). We need to check this is well defined. Put 

'  r°ot({7) in U and choose another V  G £,s,t  with qr{V) =  C?. Then as C? =  C? 
readily deduces that root(T) =  W. From this we see our construction is well defined. 

611 for every such T this define a element MCt = Mc u. We are required to prove

tit

AMCt g M ct - This is now clear from the second diagram in lemma 7.3.10. Repeating 

every T e T  then gives as an element Y [M c T G Y [ M c T- This completes thetllis for

STuction. It is a simple fact to verify that this is injective. One also readily verifies 

°ver M S(T) the map reduces on each component toat
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M S{T) --------- Ucr -----—  M Ct

M s ---------- - PVt

We
are how in a position to prove proposition 7.3.6.

PrOop. It is dear that M s  =  U  M s(T ). We next prove that M S{T) =  II M Ct- 
By _  _  TeT

previous constructions we have the map <f) : 71 M c T —► M s  and the map 
/). Ter

■ M S(T )
it is rer

hj

I ]  M ct with the image of 0 contained in A'i.s(T). Now by lemma 7.3.10 

c êar that these maps are inverses to each other. Thus the third claim is true. To 

°Ve that M s(T )  =  17 M ct we observe that the restricted map 0 : 71 ■McT —* -Ms
•as if • T eT  TeCr

s Hnage in M s{T )  and 6 : M s{T )  —»■ n  ^ c T- Finally we prove the last part of the
d a j j v ,  TeCr

that cl(A^5(T )) =  Ms(P): By the previous part the map </>: 71 McT > A ?s(T )
®̂tHp+ TeT

cts to a map 0 : 17 McT —► Ms{P)- By lemma 6.2.8 McT is an open dense
Subset f ___  TeCT __1 of M Ct thus 71 M Ct is an open dense subset of 71 Mcr and by lemma 7.3.8
the s ___  TeCr TeT

Pace M S(T) is Zariski closed and by definition contains Ms{P) thus,

M S ( T )  2  cl( M s ( T ) )  =  el(c6( n  M e ? )
TgCt

2  m  n  M °r))
TeCr

=  ^ M c r )
TeT

=  M S(T)

ĥ
e Wst argument works equally well in the Zariski or classical topology. This completes

°Ur results.

□
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Here

7. THE TOPOLOGY OF Ms 

7.4. The natural maps from Ms  to Mr

We define natural projection maps 7r| : Ms  —*► Mr- These will be analogous to the 

X T that we consider later and are important in the study of Xs-âps ns . ^

EpiNItion 7.4.1. let T Ç S then we define the natural projection map ttj- : M s  -* M r
9-S fnll _ *

°ws. For every U Ç T we define nr(M)u — Mu

7.4 2. For every U C T  C S we have that the following diagram commutes

Ms

^Roof.

7TA
M-t

The proof of this is clear from the definitions. □
Lï;;

ii
'^M a  7. 4.3. The map 7r| : T5 —► Tt of definition 7.2.4 commutes in the following

M s ----------- T.c

7r| 7Xn

M t type
T71

if

H/

^r°OF. Let M  G M s  put N_ =  7r|(M ) and U =  7t|(T) where T  =  type(M). Let 

 ̂^  and V  G T  so that W  =  V f)T . Then we must show that n^M x  =  0 for every 

^ X  Q t . For this it suffices to prove that in T  we have Y  =  root(X ) D V. Then

MX and 7XyMy =  0 because V  G T  thus we deduce that n^M x  =  0 so thatw1

\ s  
it x ,

typeQV). Because W  C X  there is some r G X \ W .A s X  C T  we see that x £ S\T. 
x & W I IU =  V  for some U C S\T, ie x E X \ V  so that X  % V. Put Y  =  root(X) 

then as W  is non-empty and W  =  V  fl T C X  C Y  we see that Y  fl V  is non-empty.
ecaUl

So
se T  is a tree either Y  G V  or V  C Y. In the former case we would have X  C Y  C V  

^at X  C V  a, contradiction,, thus we deduce V C Y  =  root(X).
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t c  71 \W\ >  1 and W  U. Put Y  =  root(W) in T  then n^My =  Mw

erefore if We put 2j =  Y  n T we see that Z D W  so that Z £U . Then as VP ^ U we see
that 17

W therefore we have Mz = nXMy and we deduce that ir^Mz =  Mw therefore

 ̂type (TV) thus we have shown that type(N) =  U and the diagram commutes.

□

^INition 7.4.4. Let T  be an S'-tree then for each T £ T  and i £ S we define the 
°wing trees where S+  =  S II {+ } .

A{T,T) =  { U +  \ U e T M d U D T } U { V \ V e T & a d V £ T }

B(T,T) =  A (T ,T )U {T }

C(T, i) =  { U +  \ U  e T  and i £ U } U { V \ V  e T  ¡m d i g V }U  { { i ,  + } }

\
then define the set of trees

B(T) \ \ { A ( T , T ) } U ] l { B { T , T ) } l L Y [ { C ( T , i ) }
T&r r e r  ies
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MMa 7.4.6. For any finite set S and any T  G T5 let irf+ : Xs+ —> Ts be the usual map 

K T ’ t T )  =  E(T) and | (*r f+ )-1(7')| =  \E(T)\ =  2|T| +  |S|

^rOof. Suppose we can prove that (7r|+) 1(T) =  E{T) then the second part of the 
claim jq 1^ ^ clear. To prove the first claim is not difficult but unilluminating. Instead we refer

reader to the diagram above for a picture of the process.

□

PiNITion 7.4.7. We introduce a grading on the set of trees Ts by

Ei =  { T  e T s \\T\ =  i ]

ail(1 define hn =  J2 \E?\t\ where n =  |5|. Then hn( 1) =  |Ts| and by the last lemma welave the i>0
following result.

It :
7.4.8. hn+i(t) =  t2h'n(t) +  th'Jt) +  nthn(t) and h2 =  t

It
^ 4  7.4.9. For every T  Ç S and for any tree T  e Tt

□

^ sT) -\ M T{r ))  =  n M s{U)
we(4 )-i(T)

(tt| ) - 1(A4r (T)) =  IJ  M S(U)
ue(*s)-i(T)

5r,
^HOof. The first equality is immediate from lemma 7.4.3 and the second from the 

ttsffig the description of A 4j(T ). □

It this

7.5. The p rojection  from  M s+  to  M s

section we will investigate the local structure of the projection map n : M s+

0ver Ms  and construct universal structure sections a : S+ x Ms  —*► Ms+ where

* ^ 5 U {0}. We will see later that the geometric fibre of this map n~l (M) together with

Ullage of it structure sections at M  is a stable ¿'-curve and this will be an example
i a f __

amily 0f ¿-curves over Ms- These notions are defined precisely in sections 3 and
1 Of 4.1 ' __

116 next chapter. In particular it is the universal curve for our moduli space. X 5
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*¡11 be the space of isomorphism classes of 5-curves and we will have the induced map

5 X s . This will turn out to give us an isomorphism of varieties. We prove this 

^ er hi the document.

hfilVt;
^  7.5.1. Let 7T : M s+ LAs be the usual projection map then the restricted map

' 7T1{M s) —»• M s is a C P1 bundle, tt 1( M s ) =  P(Ns ® C) where abusively we write
s hr the restriction of the usual bundle Ns over M s  to the open set M s-

0p- Consider the following commutative diagram

M s+

V

7r
M s

P

7r
Af{S+,S} -------* PVs

%■en

VeCtor
know 7r : ,A/i{s+is} —> PVs is the projectivization of a 2-dimensional algebraic

an i

%
tiai

rest:
%

foi

bundle so it is a C P 1 bundle and by lemma 6.2.3 the restricted map p : M s  —> Us 

lsomorphism with M s — P~l {Us)- Next put X s — n~x(M s) and =  ^ ( U s )  
P ^ITj) = Xs  and to prove the claim it will be sufficient to show that the restricted 

 ̂P - X s —> Ws is an isomorphism. That is we need to construct an inverse for the 

tlcted map p : X s Ws . Let Ns x Ns+ G Ws and T C S with |P| >  2. Then it is clear 

define Ms =  pfNs as Ns G Us and MT+ =  p^_Ms+. For any set U C 5 +  with 

"   ̂ there is only one point in PVu so that Mu is uniquely defined. We then define 

H Mv . We see that this defines an injective map r : Ws —» X s and by construction

c°iq
•ge r(N_) is the unique point in M s  determined by N_ which is inverse to p. This 

Netes the proof.

□

"°hs'TRUction 7.5.2. Let 7r : M s+  —» M s  be the usual projection map then we define
^ o*s

1 foil,
cr : S+ x M s  —► M ’s+- For each i G 5+ we define a section m : M s  —> M s +

°Ws. For i G 5  consider the tree % =  {5 + , {i, + } } .  Proposition 7.3.6 tells us that
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^s+(Ti) Si M c s+ x M {ii+} =  M s x pt =  M s  where the second isomorphism is in- 

duce<i from the bijection b : S Cs+ given by b(J) =  3. This gives us ail isomorphism 

: M Si.(7l) One readily checks that the map implicit in this is just the inclu-

810113i - M s+(Ti) -+ M s+ composed with the projection tc : M s+ -* M s- Thus we may 

^ ne a section by =  j jo a L 1. For i — 0 we define the tree % — {S+, 6*}. Then again by 

pr°Position 7.3.6 we obtain M s+{%) ^  M s x M cs+ =  M s x pt =  M s- This gives us.the 

IS°Qiorphism a0 : M S+(T0) —> M s- Again one checks a0 =  7rj0 thus we define a section 

0 ^ Jo0»^ 1. This completes our constructions and gives us a map a : S+ x M s  —* Mss--

frkMARK 7.5.3. We will later see that the pair tt : M s+ -► M s and a :S + x M s ~* M s+ 
f

rrtl die universal curve for our moduli space.



CHAPTER 8

Definitions and properties of the space Xg

fo this chapter we introduce the moduli space X s and using certain established results we 

c°nsider the structure of this space. The most important of these will be Mumford’s main 

theorem and the natural morphisms n : X s+ —► X s constructed by Deligne and Mum- 

ford. We begin by defining a generic point of X s and put-As to be the Zariski open space 

consisting of all the generic points. We will then show that there is a natural isomorphism 

: Xs —» Us . Next we proceed to introduce the non generic elements of our space. We 

then explain the construction of the tree associated to a stable S'-curve and use this to 

stratify the space ~XS. This is the approach we used on M s  in chapter 7. After introducing 

the notion of a family of 5 -curves over a scheme X  we state Mumford’s main theorem 

■8-6.3. We will then use this to construct a regular morphism of varieties 6S : X s —► PVS 

that is a birational equivalence. In particular the restricted map 9S : Xs —> Us will be 

au isomorphism of varieties that agrees with (¡>s. In the last section of this chapter we 

construct an isomorphism 9s : X s  —► M s  induced from the maps 9T : X t —> PVt . This 

*iU preserve certain natural properties such as the tree types as specified by the bijections 

Under which we consider the various notions of trees equivalent. Parts of this chapter are 

closely related to unpublished notes by Professor N.P. Strickland. In this chapter we will 

^rite Vs for the vector space F(S, C) for brevity, 5 +  =  5  H {p t} and 5+ =  5  H {0}.

8.1. Introduction to  m oduli spaces

^  moduli spaces typically consists of two pieces of data, a class of objects and a notion 

°f an algebraic family of these objects over a scheme. Let C be a class of objects and for 

aUy base scheme B let S(B ) be the set of all families over B. Let ~  be an equivalence 

Elation on S(B) and consider the functor F  from the category of schemes to the category 

°f sets given by F(B) =  S(B)/ ^  . F  is called the moduli functor of our moduli problem. 

Suppose F  is representable by a scheme M  then we say the scheme is a fine moduli space 

for the moduli problem F.
109
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8.2. Generic 5-curves

Definition 8.2.1. A generic 5-curve is a pair (C ,x) where C is an algebraic curve 

isomorphic to C P 1 and x : 5+ ->• C is an injective map. We consider two generic 5- 

curves (C, x) and (D ,y) isomorphic if there is a algebraic isomorphism s : C D such 

that s o x  =  y, that is the distinguished marked points of C are sent to those of D under 

the isomorphism s with their order preserved. This is clearly an equivalence relation and 

write [C, x] for the isomorphism type of a generic 5-curve (C, ¡c) under our equivalence. 

We define Xs to be the set of isomorphism classes of generic 5-curves.

Example 8.2.2. This is a generic curve with 5 marked points.

We next need to show how to give As the structure of a variety. We will do this by 

identifying it with a Zariski open subset of PVS. This identification will be important for 

our understanding of X s which we consider later. Recall in 2.0.12 that we defined the 

Zariski open subset Us of PVS consisting of the ‘injective functions’.

Proposition 8.2.3. There is a natural bijection <ps '■ As Us.

P roof . Let [C7, x] £ Xs be a generic 5-curve and (D, w) be a representative for this 

efiuivalence class. Then we can choose an isomorphism f  ■ D  ► C P where we consider 

CP1 =  C U {oo} such that f(u (0)) =  oo. Since u : 5+ -+ D is injective and by construction 

/(u(z)) £ C. Then we may define a function z : 5  > C by z(i) =  f(u (i)). We observe

that this function is injective and so we have an induced element z £ Us- ^Te must 

check that this construction is well defined. Let (P, v) be another representative of [G, x] 

and g : E  -*  C P 1 be another isomorphism with g(v(0)) =  oo. Define an injective map 

V) : S -> C in the same way, that is for each i £ 5  w(i) =  g(v(i)). We can choose an 

isomorphism a  '. E  —> D with u =  ol o v  and put h =  f  cxg , this is a map h . C P  * CP  
With /¿(oo) =  oo thus h = az +  Pfor some (a, b) £ C* x C. Then for each i £ 5  we have 

z{i) _  j ufy  =  fav{i) =  hgv{i) =  hw{i) =  aw(i) +  b thus-z =  w in Us and our map is 

Well defined. There is an inverse for this map and so (ps is a bijection as claimed. O
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Given the bijective map 4>s : Xs —► Us there is evidently a unique way in which to regard 

as a variety for which <ps is an isomorphism.

8.3. Stable 5-curves

Eere we define the compactification X s of Xs . To do this we need a more general marked 

Curve, this we define next.

Definition 8.3.L A stable S-curve is a pair (C,x), where C is a (possibly singular) 

^gebraic curve over C and x : 5+ —> C is an injective map, such that certain conditions 

are satisfied. To formulate these, we say that a point in C  is marked if it is in the image 

and special if it is either singular or marked. The conditions are as follows.

(a) C is reduced and connected, and any singular points are ordinary double points. 

Equivalently, the completion of the local ring at any point is isomorphic either 

to C[z] (for a smooth point) or C\x,y\/xy (for a singular point).

(b) All the marked points are nonsingular.

(c) Each irreducible component of C is isomorphic to C P 1, and contains at least 

three special points.

(d) H\C-,Oc ) =  0.

^ ”e: consider two 5-curves (C, x) and (D, y) to be isomorphic if there is an algebraic 

lsomorphism s : C  —> D such that s o x =  y, that is s send marked points to marked 

Points and preserves the order and define X s  to be the set of isomorphisms classes of 

s(;able 5-curves, observe Xs C Xs-

Example 8.3.2. This is a non-generic curve with 12 marked points



8.4. The tree associated to  elements o f  X s

There is a natural way to partition the set ~XS that reflects the combinatorics of an S- 

curve (C, x). This is the notion of the tree type associated to a curve and is an important 

construction for the study of ~XS- We next discus how to construct the associated tree, 

this will require several intermediate results.

H2 8. DEFINITIONS AND PROPERTIES OF THE SPACE Xs

Lemma 8.4.1. Let (C ,x ) be a stable S-curve. Then every global regular function on C is 

constant, so H °(C;O c ) =  C.

PROOF. This is well-known for CP\ and every irreducible component of C is a copy 

of CP1, so every regular function on C is constant on irreducible components and thus 

takes only finitely many values. As C  is connected, the claim follows.

□

Lemma 8.4.2. Let s be the number of singular points in C . Then H l(C\ O c ) =  0 if and 
only if there are precisely s +  1 irreducible components.

P roof . Let C \ ,...,C t be the irreducible components of C , so the claim is that t =  

s +  1 if and only if f f x(C, Oc) — 0- Put C — 11*=i ^  — U i=i C P 1, and let q : C —> C 

Le the obvious map from the disjoint union to the actual union. Now let D C C be the 

finite set of singular points, and let i : D —► C be the inclusion. Each point d G D has 

Wo preimages in C ; we choose one and call it a0(d), and then we call the other one cri(d). 

Given an open set U C C  and a regular function /  on q~lU, we define 8(f) : Di~\U —► C by 

S(f)(d) =  f(a 0(d)) -  f(ai(d)). This construction gives a map 8 : q*Og -> z*C of sheaves 

°R C, which is easily seen to be an epimorphism with kernel Oc . As H l(C] Og) =  0 we 

have the following four term exact sequence,

H°(C; Oc) ~  tf°(C ; Q*Od) -  H°(C-, u C) -  H^C; Oc ),

°r equivalently



that is
t

C ^ ® C ^ ® C ^ / / 1(C;C»c)
i= l deD
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then counting dimensions we see dim H l{C‘,O c) — 1 — t +  s. Thus dim H X(C, Oc) =  

 ̂ *£==>■ t =  s -f 1 as required.
□

next define a graph G =  G{C, x], more precisely an isomorphism class of a simplicial 

c°naplex whose geometric realization is the associated graph to an isomorphism class of 

an 5-curve (C,x). We then proceed to prove that this graph is in fact a tree. Of-course 

0lir construction is equivalent to the ordinary graph associated to an 5-curve that is well 

hijown to be a tree. Here we clarify this fact.

Construction 8.4.3. We define a graph G =  G(C, x) as follows. We let V0 be the set 

°f marked points (so x gives a bijection 5+ a  V0) and we let Vi be the set of irreducible 

c°mponents of C. The vertex set of our graph is V =  V0 H V\. The vertices in VQ are 

Called external, and those in X\ are called internal. For each marked point we have a cor- 

responding external vertex, and also an internal vertex corresponding to the component 

C containing the marked point. The graph has an edge joining these two vertices; these 

are called external edges. Next, every singular point is a double point and so lies in the 

intersection of two irreducible components. We give the graph an edge joining the two 

c°rresponding internal vertices. (In principle, this could lead to multiple edges between 

same two vertices.)

Note that we have one edge for each special point. If Co is an irreducible component, then 

the edges incident on the corresponding internal vertex biject with the special points in 

Co, so the valence is at least three.

The combinatorial graph associated to the curve [C,x\ G is then defined to be the 

lsomorphism class of the graph G. It is clear that this construction is well defined modulo 

lsomorphism classes. *
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Example 8.4.4. This example shows how we construct the graph.

Proposition 8.4.5. The graph G(C,x) is a tree (and thus has no multiple edges).

Proof. Let |G| be the geometric realization of G, obtained by taking a copy of the 

Ulht interval for each edge and making the obvious gluings. We first claim that |G| 

ls connected. If not, choose a disconnection |G| =  X Q II X x and let Ei be the set of 

c°mponents of C such that the corresponding internal edges lie in X t. Now let Ci be the 

Urkon of the components in Ei} and observe that ( 7 ^ 0  and C =  Cq II Ci, contradicting 

connectedness of C.

put n =  151 and let s be the number of singular points, so there are s + 1  irreducible 

c°»iponents. There are then n +  1 external vertices, n +  1 external edges, 5 +  1 internal 

Vertices, and s internal edges. The Euler characteristic of |G| is thus x(|G|) =  (n +  1 +  

s +  1) — (n +  1 +  5) =  1, which implies that |G| is contractible and thus that G is a tree.

□

8.5. The regular map 6S : X s PVS

have already shown that there is an isomorphism 0s : <Ts —* Us- In order to continue 

°Rr analysis of Tbs we wish to extend 0s to a map 9g '■ X s PVs of all of Tbs- Clearly 

should such a map exists it must be unique as PVs is separated and Tbs has the same 

dimension as Tbs- Here we define Os as a map of sets. Later we will give a more care- 

hil construction that works for parameterized families of curves and thus gives a map of 

schemes. This map should be compared with Kapranov’s construction in [7].
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Definition 8.5.1. Let (C,x) be an 5-curve. We define M  =  M (C ,x) to be the set of 

rational functions on C  with at worst a simple pole at x(0), and no poles elsewhere.

Remark 8.5.2. This is clearly a vector space containing the set C of constant functions, 

will need two lemmas about M, the proofs are given later in this section.

Demma 8.5.3. For each S-curve (C,x) we have dime(M (C ,x)) =  2.

Lemma 8.5.4. Let (C,x) be a stable S-curve. Suppose that f  e  M (C ,x) and f  vanishes 

all marked points other than x(0). Then f  =  0.

Construction 8.5.5. Let [C, x] be a stable 5-curve and (D, u) be a representative. Then 

We define a linear map a : M(D, u) F(S, C) as follows. For any /  G M (D, u) and i E S 

define — f{u(i)), this makes sense as u is injective and /  has a pole only at x(0).

By lemma 8.5.4 this map is injective and sends constants to constants, and thus induces 

an injective linear map a : M {C ,x) -> V5 with image L €  PVS say. We need to check 

that this construction is well defined. Let (E,v) be any other representative and given 

9 € M {E ,v) define a(g)(i) =  g(v{i)). Let h : D ^  E  be an isomorphism with h o u  =  v 
then clearly the map h* : M (E,v) -+ M(D, u) defined by h*(g) =  gh is an isomorphism 

of vector spaces. Then put /  =  h*{g) then <r(/)(i) =  ghu{i) =  gv(i) =  a{g){i). This 

shows that the images of the vector spaces M (D,u) and M (E,v) under a are the same 

thus our map is well defined. We now define a map 9s • X s * PVs by 9s{[E  ̂x]) L.

Proposition 8.5.6. If[C,x] is a generic S-curve, then the above construction is the same 
Qs in proposition 8.2.3.

Proof. Let (C, x) be a representative for [C, x] and choose an isomorphism /  : C  —► 

CP1 with f (x (0)) =  oo as in Proposition 8.2.3. As /  is an isomorphism, we see that 

d is regular away from x(0) and has a simple pole at x(0) thus { 1, / }  is a basis for 

=  M {C;x). It follows that if we put g =  f  o x  and g to be the image in PVS then {p } 

ls a basis for L =  a(M), and the claim follows directly. □
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now prove the two deferred lemmas. We will make some detours along the way, to 

Pick up results that will be useful later.

Lemma 8.5.7. Let f  be a rational function on C P 1 =  C U {o o } with at worst a simple 
P°le at oo and no poles elsewhere. Suppose also that f  vanishes at two distinct points in 

Then /  =  0.

PROOF. As f { z )  is rational with no poles in C, it must be polynomial. As it has at 

Worst a simple pole at infinity, it must have degree at most one. The claim follows easily.

□

Proof of Lemma 8.5.4. Let G be the tree defined in Construction 8.4.3, and let 

vo be the external vertex corresponding to z(0). Let Co be the irreducible component in 

c  containing x(0), and let e0 be the corresponding external edge. Let vx be the internal 

Vertex corresponding to C0, so e0 joins v0 to vx. Every edge e ^  e0 corresponds to a 

special point in C \ (x (0)}, and we write /(e )  for the value of /  at that point. Every 

eternal vertex v ^  v0 corresponds to a marked point different from x (0), so f(v )  =  0. 

Every internal vertex v ±  vx corresponds to a component on which /  is regular and 

thus constant, with value f{v )  say. If an edge e and a vertex v are incident, it is clear 

that /(e )  =  f(v). Using the fact that G is a tree, and working inwards from the external 

vertices, we see that /(e )  =  0 for all e +  e0 and f(v ) =  0 for all v & (u0, vx}. In particular,

We see that /  vanishes at all special points other than z(0). By assumption, there are at(
least two such points in the component C0, and it follows from Lemma 8.5.7 that /  =  0 

°n Co as well.

□

Now let D be the set of marked points other than x(0) (so x gives a bijection S -> D) 
and let /  : D  -»> C  be the inclusion. Let J0 be the ideal sheaf of functions vanishing at 

i(0), let J  be the ideal sheaf of functions vanishing on D, and put K -  J  ® Thus 

Jo" 1 is the sheaf of functions with at worst a simple pole at ar(0), and regular elsewhere, 

so Af =  H°(C; J q" 1). Moreover,* JC is the subsheaf of such functions that vanish on D. 

Lemma 8.5.3 says that dim(M) =  dim(tf°(C; Jo-1)) =  2, so it is part, of the following
result
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Proposition 8.5.8. If we write h^T) =  dimc (iP(C;.F)), then

h°(Oc )

h°(j*0D)

h \ J o l)
h°(K)

1

n

2

0

h\Oc ) 
hl (j*0D)

h W )
h\K)

0

0

0
n — 2.

Proof. Lemma 8.4.1 says that h°(Oc ) =  1, and we are given that hl (Oc ) =  0. 

As j*0 D is a skyscraper sheaf, it is standard that H°(C] j*Oo) =  ® ieD C =  Vs and 

^ l{C\j*0D) =  0, so h*(jtOo) is as described. Next, put,.f\f =  J q 1/Oc■ This is another 

skyscraper sheaf, with a one-dimensional stalk at x (0), so h°(N) =  1 and hx{N) =  0. 

The short exact sequence Oc  —>■ Jq 1 - » W  gives a six-term sequence

C M  -* H°(C\M) 0 H\C- Jo"1) -► 0,

showing that /¿V o “ 1) =  0 and dim(M) =  /¿V o “ 1) =  h°(Oc ) +  h°(N) =  2. Finally, 

Lemma 8.5.4 tells us that /¿°(/C) =  0. There is a short exact sequence /C —» -* j* 0 D,

Sming a six-term sequence

0 —> M —>Vs -+ H x(C ;X) —> 0 —> 0. 

^ follows that hx(K) — dim(Vs) — dim(M) =  n — 2.

□

8.6. Families of stable ¿-curves

To make into a variety, the key point is to decide what we mean by an algebraically 

Varying family of stable ¿'-curves, parameterized by a scheme X . We should certainly 

have a stable curve (Ca, xa) for each point a £ X . Given these, we can form a set

C =  {(a, c) | a 6 X  and c £ Ca}.

We then have a map n : C  —► X  given by 7r(a, c) =  a, and a map x : S+ x X  —► C given 

hy x(i,a )'=  (a,xa(i)), so that 7r(x(i,a)) =  a. It is certainly natural to require that C 

should be a scheme, and that the functions w and x should be maps of schemes. One 

also needs some other technical conditions to make the theory work smoothly. The full 

definition is as follows.
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Definition 8.6. L Let X  be a locally Noetherian scheme over C. A stable S-curve over 

% is a scheme C  equipped with maps S+ x X  C X  of schemes such that

(a) 7r is flat and proper

(b) x is a closed inclusion
(c) 7r o x  is just the projection 5+ x X  —► X  (so for each a E X  we have a.fibre 

Ca =  7r_1{a } and a map xa : S+ —» Ca)

(d) each pair (Ca, xa) is a stable ¿'-curve. ' " .

b°r any stable ¿'-curve C  over X , we can define a function ■ X  —> X s by 

j c (a) =  the isomorphism class of (Caixa) E X s .

^ morphism of stable ¿'-families (C, X, ir, x) and (D, Y, n, y) is defined to be morphisms 

9 : C —> D and h : X  —>Y such that the following diagrams commute.

C D

x y

S+ x X  ——  S + x Y  
h

A morphism is an isomorphism if g and h are. A morphism of families over the same base 

ls a morphism of families with X  =  Y  and h : X  —* Y  is the identity map.

The Noetherian hypothesis is not essential, but is included for technical convenience.

E x a m p l e  8.6.2. Take ¿ ' =  {1 ,2,3 } and A  =  C \ { 1}  =  spec(C[a][(a -  l ) “ 1]). Put

C =  {(a, [x \y : z]) E X  x CP2 | xy =  az2}

and 7r(o, [x\y : z]) — a. In other words, the fibre Ca over a point a E X  is the projective 

closure of the hyperbola xy =  a. As C  is a closed subscheme of X  x C P 2, the projection n 

ls certainly proper. We can rewrite the defining equation in terms of the variable u =  x —y 

as y2 +  u y -  az2 =  0, showing that the homogeneous coordinate ring of C is a free module 

over O x [u) z] with basis { 1, y}\ it follows easily that it is also flat.



then define p : S+ x X  —> P by

p{0 ,a) =  (a, [1 : 0 : 0]) 

p (l,o ) =  (a, [0 : 1 : 0]) 

p{2 ,a) =  (a, [a : 1 : 1]) 

p(3,a) =  (a, [1 : a : 1]).

removed the point a =  1 from X  to ensure that p(2 , a) is never equal to p(3, a). Given 

this, one can check that p is injective and that it gives an isomorphism of S+ x X  with 

the closed subscheme given by the equation (x +  y -  (1 +  a)z)z =  0. Thus, p is a closed 

delusion. It is clear that n o p : S+ x X  X  is just the projection. For a ^  0 we can 

define an isomorphism C P 1 —> Ca by [s : t] t-» [s2 : at2 : st], so Ca is a generic S-curve. In 

the case a =  0 the curve C0 is {[x : y : z] G C P 2 | xy =  0}. The irreducible components 

are C'Q =  { [ a ; 0 : z\ | [x : z] 6 C P 1}  and Cq =  {[0 : y : | [y : z] e  C P 1}, both of which

are isomorphic to C P 1. The components intersect only at the point c =  [0 : 0 : 1]. The 

Part of C0 where z =  1 is an affine open neighborhood of c, with equation xy =  0 in C2. 

'hhe completed local ring is thus C\x,y\/xy, so we have an ordinary double point. This 

shows that Co is a stable P-curve, so C is a stable P-curve over X.
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Results of Deligne and Mumford can be summarized as follows:

Theorem 8.6.3. One can make the set X 3  into a variety, and construct a universal stable 

S-curve Cs over Xs> such that

(a) The classifying map 'yes ’■ X s X s is just the identity.

(b) For any locally Noetherian scheme X  overC, and any stable S-curve C over X , 

there is a unique map 7c  : X  —* X s of schemes such that 7qCs is isomorphic to 
C. Moreover:

(i) The induced map of complex points is just 7c  as defined previously.

(ii) The isomorphism 7qCs — C is unique. □

As far as possible, we will use the universal property stated above, rather than any of the 

various constructions of X 5. The first exercise is to prove the following result:
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Proposition 8.6.4. The inclusion Xs -  X s is actually a morphism of varieties.

PROOF. We have by lemma 4.1.7 that : M {s+Is} -  PVs is the projectivization 

°f a Zariski locally trivial vector bundle of rank 2. We need to construct an 5-curve 

over Us. Put Cs =  k~~1(Us) and write 7r : Cs —► Us for the restricted projection map. 

This is clearly flat and proper. We next define sections x : 5+ x Us -+ Cs as follows. 

Let i e  5  and : S+ -*  5  be the quotient map defined by qt{j) =  j  if j  £  +  and 

fc(+) =  i. Then the map qt induces a map n : PVS -+ PVS+ in the usual way. We also 

define r0 : PVS -*  PVS+ by r0 {N) =  L where L =  ker(w : PS+- -*• Vs). This defines us 

an injective map x : 5+ x Us -  Os such that tt o x =  id. It is clear that the fiber of 

7T: c s -> Us is a copy of C P 1 thus i r :C s ~*Us together with x : S+ x Us Cs is a 

stable family of 5-curves over Us . There is thus a morphism 7 -Us.-* * s  of schemes with 

fC s -  c s , whose effect on complex points is just the map 7cs - Each fibre of Cs 1S clearly 

a generic 5-curve, so j Cs is a map from Us to Xs . We claim that <pslcs =  id as a map from 

U8 to itself. In other words, we claim that for a point N e  Us , the corresponding fibre 

(CV, XN) of satisfies fa([CN, xN]) -  N. We can define a m a p ^ C ^ C U  { 00}  by 

h( TV, L) =  TW fJgd where f e L  and we have h(x( 0, N)) =  00. Next define g : 5  -> C by 

9{i) =  hx(i, N) we need to prove the image of g in PVs is N  this is clear by construction, 

s° f s ([CN,x N}) =  N as claimed. Since is a bijection we have 7cs =  and therefore 

the inclusion i ■. Xs - * X S can be written as 7 o 05 so is a morphism of schemes. This 

should be compared with 7.5.1.
□

8 .7 . A  catalogue o f  results on X s

In this section we discuss a number of results regarding the space X s that will be required 

in our analysis. We recall the results here and refer the reader to standard references for 

more details on these matters. We will discuss a map r  : X s+ -+ X s that together with 

certain structure sections x : 5+ x X s -* X s+ form the universal curve for our moduli 

space. We will also discuss the structure of the tree partition X s =  \ lX s {t) and the
__ . t __

structure of the spaces X s (t) =  c\Xs{t) that are important in the study of X s .
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Construction 8.7.1. Here we describe a process which acts on the isomorphism classes 

°f stable ¿-curve known as stably forgetting. Given any element [C , x] X s+ we form the 

flew curve of genus zero [D,y\ G X s  as follows. We first forget the marked point x(+ ). 

^his new curve may be unstable. This can happen if and only if the component C +  of 

C containing the marked point x (+ ) contains only one other marked point x(j) say for 

some j  g S. We then form the new ¿-curve D by shrinking this component to a point and 

replacing the marked point x(j) to be this new point, the corresponding singular point of 

C- This process then forms the stable ¿-curve [D, y] G X s and the process is known as 

stably forgetting the marked point +.

Example 8.7.2. This illustrates the last construction

Theorem 8.7.3. There is a canonical morphism r  : X s+ —► X s which acts on the 

lsomorphism classes of stable S+-curves by stably forgetting the point +. This morphism 

ls compatible with restriction to trees.

Xs+ ---------- " Us+

X s ------------ - U  5

□

Construction 8.7.4. Let [D,x] G Xs  be a stable ¿-curve with combinatorial tree type 

Then we may disconnect D into its irreducible components one for each internal vertex 

v of t. Each of these is a copy of C P 1. To each such component Dv of D we can consider it 

as a stable curve with its markings induced from [D, x] together with the points where Dv



lntersected the curve D. For each internal vertex v, together these marked points are Cv 

Te children of the vertex v we write [Dv, xv] for each such curve. It is clear that each of 

.^ese is a generic curve in the moduli space XCv and that the original curve [D, x] can be 

^constructed from the [Dv, xv\ by gluing them along the intersection points, see 8.7.5 for 

ai1 example. This construction then gives us a bijective map 6 t : Xs (t) —> Y[XCv. Given
V

a little more work it also turns out there is a bijection extending the previous map which 

We also (abusively) call 6 t given by 0t : X s (t) X Cv, this construction is analogous in
V

a reasonable sense to the first construction, where X s ( t ) =  Xs(u).  We will not need 

ĥe second map in our analysis.
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u<t

Example 8.7.5. An illustration of the previous construction

Theorem 8.7.6. Let t be a tree then we have the following results

(1) X s (t) =  c l* 5(t)

(2) The map 9t : X s(t) —>• f ]  XCv is an isomorphism.
V __

(3) The map 9t : Xs{t) —> Y [X cv is an isomorphism extending the previous map.

Construction 8.7.7. Here we construct sections x : S+ x X s —> 'Xs+ that will endow 

the map tv : X s+ —> X s  with the structure of a stable family. Let [G, y] G X s be a 

stable curve and t be its combinatorial tree type. For each j  e  S+ let tj be the tree t 

with an extra edge attached to the middle of the edge whose external vertex is j  and 

label the vertex of this new edge +. Clearly tj is a tree on S+ and we define x(j, [C, y\) 

to be the unique curve [D,z] with ir([D,z]) =  [C, y]. Equivalently D is the curve C 

with an extra sphere connected to the marked point y(j) and the markings z of D are 

mduced from those of y with the exception that the marked point for the labels j  and
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+ are attached to the new sphere. We note that there is only one isomorphism type of 

a sphere with 3 marked points thus this construction uniquely define the isomorphism 

type of [D,z\. To be explicit let i  be the smallest tree, that is the tree associated to a 

generic curve and for each i G S let U be the tree associated to fa s  above and u,v the 

Vernal vertices with v such that Cv =  {*, +}■ Then as before consider the space X S(U). 

Then ~XS{U) =  ~Xcu x ~Xcv -  ~Xcu x pt =  X Cu — X s . The last isomorphism is induced 

from the bijection b : S -* Cu given by b(j) =  j  is j  ^  i and b(i) =  v. This gives us 

the isomorphism cq : X S(U) -* X s . One can check that the map imPllclt m thls 1S the 
inclusion j t : X S{U) -*■ X s+ composed with the projection tt : X s+ -»■ X s . So we have a 

section a  =  ji o a ï 1. This is the same as the previous définition since they agree on Xs . 

One can also do a similar construction with the tree ¿o-

Theorem 8.7.8. The map i r : X s + -* * s  together with its sections x : S + x X s -> *<?+ 
makes this pair a stable family of S-curves moreover this is canonically the universal curve

forX s .

8.8. Functors of coherent sheaves

We will need to show that the function 9S : X S ^  PVS is actually a morphism of vari­

eties. It is well known that morphism to projective spaces are characterized by invertible 

sheaves over the domain scheme, or in other words line bundles, that are generated by 

global sections. Our definition and analysis of 6 S involved cohomology of sheaves. Thus, 

ta define 6 S for families of stable curves, we need cohomology of families of sheaves, or 

In other words, push-forward functors and their derivatives. In this section, we recall the 

basic facts about these functors.

Let (C, x) be a stable 5 -curve over a locally Noetherian scheme X . Recall that a 

sheaf J- of O^-modules is coherent if locally on C  one can find a right-exact sequence 

Oc n _► Qc m _» jF for some m and n. Given such a sheaf J7, we can restrict to get a 

coherent sheaf Ta over Ca for each a G X, and then compute the cohomology groups 

^{Ca'iTa). We write hfXa) for the dimensions of these groups over C (which are always 

finite). These numbers can jump discontinuously as a moves, but the Euler characteristic

x (Xa) :=  h\Ta) -  ti{T a)
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Is constant on each, connected component of X . If it happens that h'ÇFa) is constant, 

then we would like to assemble the vector spaces Hl(Ca; Xa) into a vector bundle over 

W Equivalently, we would like to construct a locally free sheaf Q of Ox-modules with 

=  //*(Ca; Xa) for all a. We next explain the obvious candidate for Ç.

We define a sheaf of Ox-modules by

(n,F)(U) =  X{n~lU)
• •

any open subset U Ç X . This functor is left exact but not right exact in general. 

However, as our map 7r is proper and flat of relative dimension one, there is only one 

higher derived functor, denoted by Rfir* (see [6 , Corollary III. 11.2]). Thus, a short exact 

sequence

J-o —» T\ —> J~2

°f sheaves on C  gives a six-term exact sequence

71*^0 —> T t i f J - i  — *  71*^2 7r*J^o —  ̂ —► R } ' ï ï ifJ ~ 2

(and Rqtt*X =  .tt*^). As T  was assumed to be coherent, the sheaves Rli r are also 

c°herent, by [5, Théorème III.3.2.1]. Thus, for each point a £ X  we have a finite- 

dimensional complex vector space (iJ ! 7 r , f ) a , whose dimension may vary as a moves in 

W. There is a natural map //(a )  : (i?V*Jr )a —> Hl{Ca\ Xa), which may or may not be an 

lsomorphism.

Proposition 8.8.1. Let T  be a coherent sheaf of Oc -modules that is flat over X .

(a) Suppose that H l (Ca',̂ Fa) =  0 for all a. Then Rffn^T =  0, and n+X is a locally 
free sheaf, and the map fj?(a) : (ir*X)a —> H°(Ca]Ta) is an isomorphism for all 
a.

(b) Suppose instead that H°(Ca] Xa) =  0 for all a. Then =  0, and Rfir+F is a 
locally free sheaf and the map ffl(a) : (R frc^a  -> H 1{Ca\Jra) is an isomorphism 
for all a.

We quote the following fact from [12, Corollary II.5.3]:

T heorem 8.8.2, IfH l+1(Ca; Ta) =  0 for all a, then the maps /¿(a) are isomorphisms. □
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Proof of Proposition 8.8.1. For part (a), we certainly have H 2 (Ca-, Pa) =  0 for 

ah a, so fj}(a) : (i?17r*JF)a -> H 1{Ca\J:a) =  0 is an isomorphism, so R ^ P  =  0. Next, as 

fll(Ca;jra) =  0 we see that pP(a) is an isomorphism. Recall that the Euler characteristic

x{Fa) =  dimc H°(Ca; Pa) -  dimc H x(Ca\ Pa)

ls a locally constant function of a (this is also proved in [12, Section II.5]). In our case 

this means that dimc ((7r*JF)a) is locally constant. As 7r*jF is coherent and X  is locally 

htoetherian, this is enough to ensure that tx*J- is a locally free sheaf.

Part (b) is similar. We argue as before that pl (a) is an isomorphism, and thus (using 

the Euler characteristic) that R1tx*P  is locally free. Next, suppose we have an open set 

P C X  and a section s of T  over n~lU. If s maps to zero in H°(Ca;P a) for all a e  U, 

then it is easy to see that s =  0. This means that the maps (7r*.F)a- —► H0 (Ca]Pa) are 

hijective, but in our case H 0 (Ca',Pa) =  0, so ix+T =  0. □

Proposition 8.8.3. There is a morphism 4>s  : X  -*  PVS such that tps{o) =  0s{[C a,Xa\) 

f°r all a.

Proof. First, to give a morphism X  —► PVs of schemes is the same as to give a 

subsheaf C < Vs ®c Ox  such that the quotient (Vs <%>c Ox )/C is locally free of rank 

n -  2 (where n =  |JS'|). This statement can be recovered from [6, Theorem II.7.1], for 

Sample. As Vs =  Vs/As , it is equivalent to give a subsheaf M  < Vs <8>c Ox  such that 

<8 >c Ox  < M  and(R5 ®c Ox )/M  is locally free of rank n -  2. We obviously want 

the fibre M a to be the two-dimensional space M  — Ma in the definition of 0s([Ca,x a])-, 

°Ur problem is to fit these together into a sheaf. For this., we simply need to extend our 

0riginal definition and analysis of the map 6 s so that it works for families of curves.

let D0 and D be the images of {0 } x X  and S x X  under the closed inclusion 

1 : 5+ x I  -> C. Let Jo and J  be the ideal sheaves corresponding to D0 and D. As 

& II D0 is contained in the smooth part of C, we see that Wo and J  are invertible, so 

can define K, =  J  <g> and this is again invertible. As D0 and D are disjoint we 

have j*J J l =  j*Oc  = Od (where j  : D -> C is the inclusion). This gives a short exact 

sequence

K JQX j*Oo-

It is easy to see that the three sheaves here are flat over X , and that their restrictions to 

the curves Ca are the sheaves used (under the same names) in our analysis of the map <ps -
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Using Propositions 8.5.8 and 8.8.1, we see that Rlir*Oc =  (R^^U^Od ) =  =

=  0 and that 7v*Oc, ^*Jq X and Rln*K. are locally free sheaves of ranks 1, n,

2 and n - 2. In fact, there is an evident map Ox —> n*Oc ( “inclusion of constants” ) which 

ls easily seen to be an isomorphism. Moreover, using the isomorphism x : S x X  —> D 

We see that x*j*Oo =  ELes =  Vs 0 c  Ox . We write M  =  This is a locally

free sheaf of rank two over X , and the fibre M a is just H°(Ca', (J o 1)a) =  Ma. The short 

exa-Ct sequence displayed above gives a six-term sequence of sheaves over X , but half of 

the terms are zero and we are left with a short exact sequence

A4 —■y Vs 0 c  Ox  Rxtt*IC,

low ing that (Ps 0 C Ox)/M  is locally free of rank n — 2. The inclusion O c —> Jq X gives 

ari inclusion Ox  =  k*Oc —> n*JoX — M , showing that M  contains A s 0 C 0 X- This 

Sives the claimed map if) : X  —> PVs. □

Theorem 8.8.4. The map 9S : X s  —> PVs is a morphism of schemes.

P r o o f . It is the map ibs for the universal curve Cs over Xs . □

8.9. Contractions

C o n s t r u c t i o n  8.9.1. Now suppose we have a subset T c  S (with |Tj >  1). If (C,x) 

ls a generic 5-curve, it is clear that (C, t |t+) is a generic T-curve. We can thus define a 

^ap Xj, ; Xs > XT by nf[C, x] =  [C, x\T+\.

E x a m p l e  8.9.2. This illustrates the last construction with 2 points forgotten.

Next, the restriction map irf : Vs —> W , evidently induces an epimorphism 7rf : Us —)► UT- 
We have the partial map pf : PVs —> PVf which is defined unless Ms <  ker(7r|) thus we 

have an induced map pf. : PVs \ P  ker(7r|) —> PVt . It is easy to see that Us is contained 

in the domain of this map, and that the following diagram commutes



8.10. THE ISOMORPHISM FROM Xs TO M s 127

6 Z1
Us — —— ► Xs

Pt 7Ti

(hrU
UT — — — - XT

T h e o r e m  8.9.3. For any S and T as above, there is a unique morphism 7rfi : X s —> X T 
°f schemes extending the map 7r| : Xs XT described above. Moreover, when U C  T  C  S 

have Tty =  njj- o ttj-.

P r o o f . We know from [1] that Xs  is irreducible and has the same dimension as 

%s, and that ~XT is separated. It follows that any two maps X s - »  X T that agree on 

are in fact equal. This shows that 7rf is unique if it exists. It follows from [10, 

Proposition 2.1] that 7r| exists when \S\T\ =  1. For the general case, just choose a chain 

T =  T0 c  Ti C  . . .  C  Tr =  S with |% \ 7i_x| =  1 and compose the corresponding 7r’s to 

Set a map X s  X T , showing that 7rf exists. The composition rule tt§  =  o 7rf follows 

^mediately from uniqueness. □

8 .10. The isom orphism  from  X s to  M s

this section we define a map 9s '■ X s M s  and will prove that this is actually 

Rfi isomorphism of varieties. This result relies on the construction of the regular map 

Os : X s  —> PVs from section 8.5. This map should be compared with Kapranov’s map 

Ps : X s —> PVs in [7]. Later we will show that the inverse to this is induced from the 

Riap 7r : M s+ -> M s and its structure section a : S+ x M s  —> M s+ in the usual way. 

Prom this it will then follow that 7r : M s+ —* M s  is the universal curve of M s- The con­

struction of our map 9s will be geometrically simple to understand. In order to construct 

the morphism 9s we will need to use the results regarding the maps 7r̂  : X s —» X T for 

any T contained in S that we considered earlier.

C o n s t r u c t i o n  8 .1 0 .1 .  Here we construct a map 9s : X s —*■ M s- For any finite set 

S let 9s : X s  —> PVs be the map of construction 8.5.5 and for any subset T C S
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define a map 6% : ~Xs —► PVt by where 7r| : X s ->• X T is the usual

Morphism. Then define 9s '■ X s —* II -Phr by 9s =  II 9j~. We first need to check
TCS

biat im a g ed ) C M s- From the commutative diagram of the last section it is easy 

to see that 9S(XS) =  M s, thus taking closures in the classical topology we see that 

®s(Xs) =  05(cLTs) =  clfls^ s) =  c l ^ s )  =  M s, so that 9S : X s —»■ M s  and the map is 

Slarjective.

Lemma 8.10.2. Let [D,x] £ X s and, put T  to be the corresponding S-tree. Let T £ T  

and put Mt =  9§-([D, x\) then it]jMt =  0 if and only ifU  C W  £ M (T, T).

P r o o f . We prove this for T =  S the general case then easily follows because restrict­

ing the curve [D, x] in Xt is particulary simple for each T G T. Let [D, x] £ Xs be an 

isomorphism class of a stable 5 -curve with tree type t say and /  £ M(D, x). Let D0 be 

the irreducible component of D containing x(0) and write [D0, y] for the corresponding 

generic curve whose marked point are the special points of D that intersect Do- Write 

% for the internal vertex of t corresponding to D0 , /  =  CVQ and y : I+ —> D0 for the 

Corresponding markings. For each internal vertex v of t that lies in /  let Dv be the curve 

oorresponding to the disconnection of D at the singular points y(v), that is the component 

not containing a;(0). For each such v consider /  restricted to Dv. Then /  is regular on 

because x(0) ^ Dv and each irreducible component of Dv is a copy of C P 1. Thus /  

ls constant on each of these components. But Dv is connected because D is so that /  

is constant on Dv. Clearly this construction is reversible. By lemmas 8.5.6 and 8.2.3 we 

see that the restricted map 9i : Xj —> Uj is an isomorphism where Uj consists of the 

’injective functions’. Thus consider the map 9s : Xs —* PVs put T  to be the 5-tree 

corresponding to t and Ms =  9s([D, x]) then we have shown that 7rf (M's) =  0 if and only 

if T C W  £ M (T, 5) as the elements of M (T , 5) are of the form Tv for each intersection 

Point v where Tv — {  elements of 5  below v away from 0 }

□
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Corollary 8.10.3. Let Os '■ X$ M s  be the map of the last construction then the 

following diagram commutes.

X s
Os

M s

type type

UsUs ------- -— - Ts

P r o o f . Let [C,x] £ X s , t the corresponding combinatorial tree, M  =  0s {[C,x]) and 

•L the corresponding tree in T5. Let T  £ T  and U C T then by the last lemma we have 

shown that 7tJ}Mt =  0 if and only if U C W  £ M (T , T). This is enough to show that 

7" =  type(M)

' □

Lemma 8.10.4. We have the following commutative diagram of isomorphisms,

Lemma 8.10.5. Let 0S : Xs {t) —»• M s(T ) be the restricted map. Then 0S is a bijection 

such that the following commutes.

r i - v . — ~ Y [ m Ci

xs(t)------- M S(T)

P r o o f . T o prove the claim it will be sufficient to show that the elements MT agree for 

each T £ T  because then there is only a unique element M  in M s  with these values. Let 

[Ds , xs] be an element of Xs(t) represented by the curve (Ds, xs). For each T G T  write
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t-̂ r, xT\ for the image of [Ds, £s] under the map 7r| : X s  —► Wr and let v be the unique 

eternal .vertex of t with Tv =  T. Let Ov the irreducible component of DT containing the 

Marked point corresponding to 0. We consider Ov as a marked curve in the evident way 

and write [Ov,yv] for the isomorphism class of this component in XCv. It is clear that 

induced marked curve of Ov in Dr is the same as that of Dg. The marked points 

correspond to the set (Cv)+ and a non constant function /  G M (D t , xt) restricts 

to a non constant function g G M(Ov,yv). Then by construction yv(u) =  xT{u) for each 

u € (T n  Cv)+ and each other y{u) G Ov corresponds to the evident intersection points 

s° that f (y v{u)) =  g(xT(j )) for all j  G Tu with u G Cv. Write MCv =  0Cv{[Ov,yv\) and 

Using the isomorphism of PVcv with PVcT induced from evident bijection b : Cv —> CT 
Put MCt to be the image of MCv- Finally put MT =  6T([DT, xT]) then under the map 

lT : PVcT —> PVT we have MT =  ir{M cT) thus the diagram commutes. To finish the 

Proof we must also show that the map is bijective but this is clear since the other 3 are 

hijective. □

C o r o l l a r y  8.10.6. The map 9s ■ %s M s  is a bijective morphism of varieties.

P r o o f . We have X s =  and M s  =  U  M s{T )  and under the bijection U3 :

Ts we have the restricted map $s : X(t) —>■ M s(T\  which is a bijection by the last 

result. This proves the claim.

□

! next claim that the map 9S : X,s —> M s  is actually an isomorphism of varieties this will 

he immediate from the following proposition. This is a standard result amongst algebraic 

geometers however I could find no reference so we prove it here for completeness.

Lemma 8.10.7. Let f  : X  -+ F be a bijective morphism of complete smooth varieties then 
f  is an isomorphism.

P r o o f . Consider a point x G X  and put y =  f(x ). Choose an open affine subscheme 

^  =  spec(B) such that y G V; and an affine open subscheme U =  spec(yl) such that 

*  G U and f(U ) is contained in V. We then have a ring map f * : B —>A.  Let m be 

the maximal ideal of A that is the ideal of functions that vanish at x, and let n be the
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Maximal ideal of B that is the ideal of functions that vanish at f(x ). To prove our claim 

 ̂will be sufficient to check that the induced cotangent map f* : n/n2 —> m/m2 is an 

lsomorphism. For this it will be enough to show that the completion A of A  at m maps 

lsomorphically to the completion B of B at n. Next consider U D f~ l {y }  =  spec(A/nA) 

as schemes. As x is the only point of this scheme we have spec(A/nA) =  spec(A/m) 

as sets. By the nullstellensatz, we have m1 < nA < m for some ¿. This means that the 

completion of A at m is the same as the completion of A  at nA. Thus, it will be enough 

t° show that B maps isomorphically to the completion of A at nA. Next, as explained 

111 the proof of Hartshorne’s Corollary 7/7.11.4, we have f*(Ox ) =  Oy. We now apply 

theorem 777.11.1 ( The theorem on formal functions ) with T  =  Ox  and i =  0. The left 

W d  side is just Oy completed at y, or equivalently B  completed at n. The right hand 

side is mv\imkH °(Xk, 0 Xk)- Here Xk =  spec(A/(myA)k). Thus, the right hand side is the 

c°mpletion of A at nA. The theorem therefore tells us that the two completions are the 

Same, as required.

□

P r o p o s i t i o n  8 .1 0 .8 .  Let tx : M s+ —> M s be the projection and a : S+x M s  -+ M s+ be 
the structure sections of construction 7.5.2 then we have an induced map W : M s  —> Xs  

and this is the inverse for 9s :■ X s M s, moreover the pair (it, a) is canonically the 
Universal curve.

P r o o f . Since all varieties are separated and by theorem 8.9.3 the restricted map onto 

^ e  usual open dense sets commutes we have the following commutative diagram

X s+ M s+

IT 7T

X s
9s

M s

x s+ - A ± _  M s+

X

S+ x X s  _ * S+ x M s  
Os.

such that the induced diagram on section commutes. This proves our claim.

□





CHAPTER 9

The cohomology ring of Ms

fo this chapter we are going to construct a ring Rs that will turn out to be the coho­

mology ring of M s- The ring Rs will be defined as the quotient of a polynomial ring by 

certain homogenous relations. These relations will reflect some of the combinatorics of 

forests that we have already studied and some new combinatorics, that of connected sets, 

this we explain more precisely further in this chapter. The polynomial ring will contain 

°ne generator in degree 2 for each T C S whose size is at least 3 thus giving rank 

-  n -  1 -  (” ), where n — |5j. We compute an additive basis B[S] for our ring that uses 

the combinatorics of forests and restrictions imposed on the exponents that we developed 

earlier, this basis should be compared with its counterpart in chapter 5. The techniques 

we use in this section will be mainly developed from those of chapter 5. We also state 

Necessary and sufficient conditions for an element x of Rs to be zero and describe Rg in 

ari equivalent form. In the last part of this chapter we will exhibit an isomorphism from 

Rs to the Chow ring A*(Ms)- We recall here that we will be using the conventions in 

adapter 2 regarding rings.

9 .1. Natural classes for H*Ms

We first introduce certain characteristic classes that will turn out to generate H*(Ms)- 

This will be proven later in this chapter. We also fix some notation for the various vector 

bundles that we will need later.

Definition 9.1.1. We have natural projections ttt  : M s  —> PVT given by i t t ( M )  =  MT. 

Let 7t£ : H*(PVt) —> H*(Ais) be the usual induced ring homomorphism. We put 

Lt =  the tautological line bundle over PVT and yT =  e(LT) e  H 2(PVr), where e is 

the Euler class. We then put >Nt =  7rf (LT), the pullback of Lt over M s  and define 

xT =  e(NT) =  7r^(j/r) £ H2(M s). It is well known that H*{PVt) =  Z[yT] /y ^ _1.

133
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9.2. Relations for Rs

this section we define a ring R,s as the quotient of a polynomial ring by an ideal gen- 

erated by homogenous elements. We then show these relations hold in the cohomology 

rhig of M s- This will then gives us a ring map (f>s : Rs —► H*(Ms)- It will turn out that 

this will be an isomorphism. To explain one of the relations we will need to introduce one 

definition, that of a connected collection of sets. This name will become apparent after 

Siving the definition. .

Definition 9.2.1. Let £  be a collection of subsets of S and put T =  supp(£) we say £  

ls connected if there does not exists a splitting T — VJJW  of T  such that for all U G £  

either U C V  or U C W.

Definition 9.2.2. Let Zs be the graded polynomial algebra over Z with one generator 

Vt € Z| for each T C S with |Tj >  2, that is we define Zs =  Z[ yT | T  C S and |T| > 2 ].

Let I s  be the ideal generated by the following relations

(1) Let T C S then y^ ~ l =  0

(2) Let T C S and T  a T-tree of depth 2 then y™(-T,T'> (yT  -  yv ) =  o
U e M (T ,T )

(3) Let £  be a connected set then (yr — yu) =  0 where T — supp(£)
U €C

then we define the ring R s  by R s  =  % s/ Is

Proposition 9.2.3. Let <fis : Zs —> H *(M s) be the map given by <j>(yr) =  xT, then 
4>{Is) =  0 and so there is an induced ring map 4>s : Rs —> H *(M s)■

Remark 9.2.4. If T C S then.we have an inclusion of ideals IT C Is and the inclusion 

map i : ZT —> Zs induces a map r f  : RT - »  Rs such that the following diagram com­

mutes. We will see later that this map is injective.
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H *(M t) —  H *(M S)

4>t 4>s

I
FLt ------ z—  Rs

Here we prove relations 1, 2 and 3 are satisfied by our ring. We note here that relation 1 
Can be considered as a special case of relation 2 by relaxing the condition on the depth of 

the tree T  to d (T) <  2. Then relation 1 corresponds to the tree T  =  {T }  as M (T ,T ) is 

e®pty and m(T, T ) =  |T| — 1. For the proof of relations 1 and 2 we use results obtained 

hi chapter 5.

Lemma 9.2.5. Relations 1 and 2 hold in the ring H*(Ms).

Proof. Let T  be a T-tree of depth 2 or less and 7r : M s  —» M r  be the projection 

map. Then we claim £™(r’T) (x t ~ x u ) =  0 in H*(Ms)- Then by lemma 5.1.10 we
ueM(T,T) __  __

have the equivalent relation in the ring H *(M r ) thus applying the map n* : H *(M r ) —► 

(M s) we obtain the required relation.

□

Before we can prove relation 3 we need a lemma regarding connected sets. To prove this

relation we then show that there is an injective map of vector bundles Nr —> ©  Ny.
uec

Lemma 9.2.6. Let C be a collection of subsets of S and put T  =  supp(£), then the map

nc '• VT 0  Vy is injective if and only if C is connected, 
uec

■ Proof. Suppose £  is connected and let x  E  kerfac) then x\u is constant for each 

U E £. Choose U E £  and put c =  x (u ) for any u E  U. Put T0 =  {  t E T \ x{t) =  c }  and 

=  { t E T | x(t) ±  c }  then T =  To II Ti and for every W  E £  either W  C  T0 or W  C  7\ 

therefore by connectivity either To =  0 or Ti =  0. But U C  T0 therefore T\ =  0, T0 =  T 

and x  =  c thus x  =  0 and ns is injective. Next suppose £  is not connected and let 

T =  T0 II Ti be such a splitting. Consider the map n : VT -* VTo © VTl then one readily 

see that ker(7r) C  ker(7r,c) and by lemma 4.1.5 we see dim(ker(7r;c)) > 0 . □



136 9. THE COHOMOLOGY RING OF M s

Lemma 9.2.7. Let C be a connected set and T =  supp(£) then f ]  (x t  ~ %u) =  0 in the
uec

c°homology ring of M s-

P r o o f . Let M  be an element of M s  then by definition MT <  f j  {nf) 1MU =
uec

nc 1{ ©  Mu) and we have the following diagram.
Uec

% 7J"r
M r  ,-------- -► tt2 1 ( ® M u ) •--------*• ® M u  ■

'

i

i 'i * 71*/*
Mt —-----------------------------► Vt  *--------------------------------®Vu

^here 7xc is injective. Thus

{®Mu) >-»
uec

Mt >—> Mu
uec

Nt >—► Nu as vector bundles
uec

C[l] ^ Q ){N f  <g) Nu) where <C[1] is trivial 
uec

0 = e (^ (iV J  <S> Nu)) on taking the Euler class 
uec

=
uec

— J1 (x T -X u )  
uec

9.3. C onstruction o f  a basis for Rs

Our next problem is to understand in more detail the structure of the ring Rs. Using cer­

tain combinatorial conditions, we will describe a set B[S] of monomials in the generators 

xt , which will turn out to be a basis for Rs over Z.
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Definition 9.3.1. We put Bs =  {  monomial basis for Z s } and say that a monomial

i = n vtt is f°rest - like if ? is a forest-Tef

Definition 9.3.2. For any monomial y -  Ü  Vt  e B s  we define functions called the
Tec

shape, shape : Bs -* P 2{S) and support, supp : Bs -»■ P(S) by shape(y) =  Ç and 

suppC )̂ =  (J T.
Tec

Remark 9.3.3. Clearly a monomial is forest-like if and only if its shape is a forest. .

Definition 9.3.4. For any monomial y with y =  Y[Vtt so fhat shape(y) — C and for
TeC

any U C £  we write y\u — II  Vaj called the restriction of y to U.
ueu "

Remark 9.3.5. The numbers m(F, T) defined in chapter 3 will turn out to give us condi­

tions on the exponents of generators of forest-like monomials x which will give us a basis 

for Rs . These numbers come naturally from condition 2 in definition 9.2.2. We next give 

a precise description of a basis B[S] of Rs ■

D e f i n i t i o n  9 .3 .6 . For each forest J- of S we define

m m  = { n yrT 11 < nT <  m (F,T) for all T  e T  }
k TeF

■ b [s \ =  n
fo r es tsT

J5[5] =  qs(B[S]) where qs : Zs —> Rs is the quotient map. 

R emark  9.3.7. For any T  C S it is clear that B[T] C B[S]

Lemma 9.3.8. I f y =  U  Vtt ^ B ls ] then
Tern

(1) For each U e  F  we have nr <\U\-2 with equality if and only if F\v =  {17}
Tem\u •

and nxj =  \U\ — 2.
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(2) In particular nT <  |<S1 -  2 with equality if and only if T  =  { £ }  and ns =  
TeT

|S|-2.

9. THE COHOMOLOGY RING OF M s

Proof. We prove the second case. The first then follows by considering T \ v  and 

aPplying the second case and observing =  {U } for each U € T.

T e r  T er

=  '± 2 r n ( f ,T ) - m
T er

=  |T| — \M(IF)\ — \R\ by lemma 3.3.2
TeM(r)

=  i n  n - m n - m
TeM(r)

< Î J — 2 as \M(R)\,\R\ >  1

P is now clear that we have equality if and only if T  =  { 5 }  and ns — ¡S'! — 2 □

9 .4 . A  filtration for Rs

We will next introduce the concept of the weight of a monomial which will induce a fil­

tration on Rg that will enable us to show that the set S[5] does indeed span Rs . Most 

°f these constructions will be analogous to those in section 3 of chapter 5 so we do not 

repeat proofs of those statements here.

Definition 9.4.1. Let y e Bs, so y =  Vt t  saY- We define a function wt : Bs —> N
Tec

called the weight by wt(y) =  nr\T\. In particular this gives a monomial yr weight |T|
' Tec

We also put deg : Rs —> N to be the cohomological degree function, so deg(yT) =  2.

Lemma 9.4.2. wt(xy) =  wt(x) +  wt(y) and deg(:r) <  wt(x) <  | deg(x) □
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Definition 9.4.3. We define filtration’s on Zs by

Fk Zs =  span{ y e  Bs | wt (y) > k }

GkZs =  span{ y 6 Bs | deg(y) > k }

Lemma 9.4.4. Put H  =  F or G then HkZs is a convergent decreasing filtration of Zs , 

that is,

Zs =  H0ZS 2  H{ZS 2  H2ZS 2 ,... and f ]  HkZs =  {0 }
k> 0

□

Definition 9.4.5. We define a function wt : Zs -+ N U {oo } called the weight that ex­

tends the last function as follows. For every non-zero y G Zs we know by the previous 

Jemma that there exists a largest k such that y € FkZs but y ^ Fk+{Zs- We put wt(y) =  k 

aRd define wt(0) =  oo.

Lemma 9.4.6. The weight function has the following properties

(1) Ify =  E  aiVi with Vi e Bs then» wtO) = min( wt(&) M ^ /}
i&I

(2) wt(xy) =  wt(rc) +  wt(y)

Definition 9.4.7. We define filtration’s on Rs by FkRs =  qs (FkZs) and GkRs =  

%{GkZs) where qs : Zs Rs is the quotient map.

Lemma 9.4.8. Put H =  F  or G then HkRs is a convergent decreasing filtration of Rs , 

that is,

Rs  =  H0Rs 2  HiRs 2  H2Rs 2 , -  and p | HkRs =  { 0}
fc>0

□
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PROOF. The first part of the claim is clear. By lemma 9.4.2 it is clear that FkZs C

L';ZS where l =  [2k/n] and [a] is the integer part of a thus FkRs =  qs {FkZs) C

F{GiZs) =  GiRs . Therefore (~)FkRs C f]  GiRs =  {0 } as Rs is graded by degree.
k i □

Definition 9.4.9. We next define a function wt : Rs —*■ N U {oo } called the weight as 

follows. For every non-zero x E Rs we know by the previous lemma that there exists 

a largest k E N such that x E FkRs , but x £ Fk+1RS. We put wt(x) =  k and define 

wt(0) =  oo.

Lemma 9.4.10. The function wt has the following properties.

(1) I fx  =  £  aiXi with Xi E Rs then wt(x) >  min{ wt(a;i) | * €  / }
iei

(2) There is an m e  N such that wt(x) < m for all non zero x E Rs.

(3) wt(xy) > wt(x) +  wt(y)

(4) wt(qs (x)) >  wt(x)

□

Definition 9.4.11. We define FkB[S] =  {  x E £[£] | wt(x) >  k }  and the induced set 

FkB[S] =  qs (FkB[S}).

Definition 9.4.12. Let y E Zs be a monomial. We say y is admissible if y e 5[5] and 

inadmissible if y $ B[S\. We also say y E Zs is minimally inadmissible if it has the form

(1) yrVu with T fl U non-empty, T ffU and U %T
(2) yTm(T’T) JJ yv with T  a T-tree of depth 2 .

U e M ( T ,T )

(3) y*P~l for some T  Ç S.

Lemma 9.4.13. Let z E Z s  be a non-zero monomial, then z is inadmissible if and only if 
z =  xy with x minimally inadmissible.

P r o o f . The result is immediate from the definitions. □
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Lemma 9.4.14. I f y £  Zs is minimally inadmissible then wt(qs(y)) >  wt(y).

Proof. In case one we have sets T and U with T  D U non-empty T <£U and U %T. 

Tut W  =  U U V, then by relation 3 we have (xw ~ xT){xw  -  %u) =  0 and so xTxv =  
xwxT -(- xwXu — x^r therefore using lemma 9.4.10 we see that „

wt (qsiyryu)) =  w t(xT Xu)

= wt(qs(ywyT 4" ywyu — yw))

=  wt(qsiywyr) + qs(ywyu) -  qsivw))

>  min{ wt(qs(ywyr)), ^(qs(ywyu)),^(qs(yw))}
>  min{wt(ywyT), ^t(ywyu), w t(y^) }

=  mm{\TUU\ +  \T\,\TuU\ +  \U\,2\TUU\}

> \T\ +  \U\

=  wt (yTyu)

The second and third case are essentially lemma 5.3.14 of chapter 5 .

□

Corollary 9.4.15. Let y e Z s  be a monomial. Then if y is inadmissible that is y g  FfS1] . 

have wt(qs(y)) > wt(y).

Proof. The proof is essentially that of lemma 5.3.15 so we do not prove it again.

□

Lemma 9.4.16. R s  =  spani?[<S]

Proof. The proof will follow from a downward induction on the weight w of the

statement that for every k £ N FkRs =  Spanish?[S'], For fc >  0 we know by lemmas

9.4.10 part 2 and 9.3.8 that FkRs =  0 — spanFfc.BfS']. Suppose it is true for k > w. Let

* € FWRS =  qs (FwZs), then x s= qs {y) where y =  OiVi € FWZS thus wt(y{) > w. So it is
iei _

enough to show that for every i £ I we have qsijji) € spanFwF[5]. If yt £ F[5] then we are 

ok so we may assume that yi $ B [S']. In this case we know that wt(qs(yi)) > wt(yi) > w
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and so by induction qs(yi) G Fk+iRs =  spanF*.+i-B[5'] C spaniel? [S']. Therefore Rs — 

RqRs =  spanFoFfF] =  span#[S'] and we are done.

□

Corollary 9.4.17. For every i > \S\ — 2 we have R f  =  0 and =  I\x^~2}

Proof. For every i > |>S| — 2 we know by lemma 9.3.8 that B 2l[S) =  0. Therefore 

R2s =  spanF2*^] =  0. We have shown by lemma 6.4.18 part 7 that i72(ls l-2)(.A/fs) =  

^M^~2] thus the claim follows by lemma 9.3.8 using the map f>s : Rs —> H *(M s)•- ’

□

Corollary 9.4.18. Let y e  Zs with shape(y) =  V say and put x =  qs (y) where 

fe : Zs —> Rs is the usual quotient map. Suppose there exists a subset U of V such 

that deg(a;|w) >  2(|supp(77)| — 1) then x =  0.

Proof. Put T =  supp(7/) by considering x\u as an element in RT we see by the 

Previous result that x\u =  0 in RT ■ Let r f  : RT —> Rs be the ring map induced by the 

inclusion i : ZT —> Zs then we see that xu is zero in Rs . Therefore x =  x\u ■ x' is zero in 

%

□

Lemma 9.4.19. 2? [S'] is a basis for Rs and <ps : Rs —» H *{M s) is an isomorphism.

Proof. We have shown in lemma 6.4.18 part 5 that H*(Ms) is generated by H2(Ms)- 
Part 3 tells us that : R2S -+ H2(Ms) is a surjection. Thus the map is surjective. 

We have also shown in lemma 6.4.18 that H*(Ms) is a finite free module of rank d where 

d ~ Ps(l) and P$ is the Poincare series of Ms  constructed in definition 6.4.15. It is then 

clear by the construction of F[5'j that |F[S']| =  d. By lemma 9.4.16 we have that FfS'] 

spans Rs and we have the map 4>s : Rs —> H*(Ms) is surjective. Thus </>5(23[S']) spans 

Then d <  |0(F[S])| <  \B[S}\ <  |B[S]| =  d. Thus |0(B[S])| =  rank(F*(A?5)) 

and 0 (1? [S']) is a basis. Therefore I?[S'] is a basis for Rs and the map <ps : Rs —> H*(MS) 

is an isomorphism.

□
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Lemma 9.4.20. The map r f  : Rt —>■ Rs is injective.

P r o o f . Topologically this is clear since we have maps M r  —*► M s  —► M r  such that 

composition is the identity. To see this algebraically we have an inclusion of sets 

R[T] C  B[S] in the evident way.

• □

9.5. The zero conditions for monomials of Rs

The aim of this section is to compute precisely the set of non-zero monomials of Rs . This 

set is given in the next definition. Corollary 9.4.18 gives us a condition for a monomial 

to be zero. We will show that this is condition is also necessary. In this section we will 

he using the ordinary degree of a monomial.

D e f i n i t i o n  9.5.1. We define IVjS'] to be the set of monomials of the form y =  Vtt
Tec

where £  is any collection of subsets of S such that for every U £ £  we have nv >  1 and 

tor every T C S we have nu <  |P| _  2- We also write NF[S] for the subset of N[S]
uec
U C T

consisting of the monomials whose shapes are forests. We then define N[S] =  qs (N[S]) 

and Nf [S\ =  qs (NF[S]) where qs :Z S Rs is the quotient map.

Lemma 9.5.2. N F[S] is precisely the set of non zero monomials whose shapes are forests 
moreover for any x £ AV[<S'] we have 2 deg(x)x _  x\s\ 2

P r o o f , let y be a monomial in A^[5] with shape J- say. Put x — qs(y), then we can 

consider s  as a monomial in RF in the obvious way. Let i : ZF —► Zs be the inclusion 

map. Then IF C Is so that we have an induced ring map r : RF —> Rs . One then readily 

verifies that B ^ ]  C 5[5] so that the map is injective. Then as x G iVjJ7] it is non-zero 

in Rt  by lemma 5.4.3. Then applying r we see that x is non-zero in Rs. In particular 
a,̂ ,|-2-deg(x)2; _  x l5'l-2 applying r again we obtain our result.

□
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De f in it io n  9.5.3. Let £  be a collection of subsets of S. A chain in £  is a subset 

 ̂ =  {7 i , . . . ,r n}  of £  such that £  £  £ + i, £ + i % £  and £  fl £ + i is non-empty. A 

sub -  chain £  of a chain £  is a subset of £  that is itself a chain. Note that any chain is 

a connected set.

De f in it io n  9.5.4. Let £  be a collection of subsets of S, we define an equivalence relation 

~ on £  as follows. Given U and V in £  we say U ~  V  if and only if U =  V or there is 

a chain (£ , . . . ,  Tn) of £  with U =  £  and V =  Tn. Note we allow repetition in our chain. 

We write U for the equivalence class of U E £  and it is clear that t/ is itself a chain. It 

ls the maximal chain containing U.

Definition 9.5.5. Let £  be a collection of subsets of S. We define the set

£* =  {  supp(W) | U C £  and U is a chain }

and call this the completion of £. Note that any singleton is a chain, so £  C £*

Lemma 9.5.6. Lef C be a collection of subsets of S and C,T> be chains of £  that are 

subsets of different equivalence classes. Put T =  supp(C) and W  =  supp{T>) then {T, W } 
is a forest.

Proof. Suppose for a contradiction that {T, W } is not a forest. Then we can find 

C £ C and D e  V  with C f l f i  non-empty. Now the pair {C,D}  must be a tree for 

otherwise C and V  would belong to the same equivalence class. We may suppose then 

without loss of generality that C C D. Now not every E mC can be contained in D else 

{T, W }  would be a tree, thus there is some E E C not contained in D. Because C,E £ C 
there must be a chain {Ci, ..., Cr} with C\ =  C and Cr =  E. We have Ci C D and Cr % D 
so for some k we must have C* C D and Ck+i % D. One then checks that { £ fc+1, D} is a 

chain and therefore C^+i ~  Dr contrary to the assumption on C and V. This completes 

our proof.

□
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Co r o l l a r y  9.5.7. Let C be a collection of subsets ofS and U, V be elements of C that are 

not related under ~  . Let U be a forest on (U)* and V be a forest on (V)* then T  =  U U V 

ls a forest.

Proof. The proof is immediate given the last lemma.

□

Corollary 9.5.8. For any collections U, V of subsets of S we have U C U*, U** =  U*

>U* U V* C  {U U V)* and ifU Q V  then U* C  V*.

P r o o f . Only the second part requires some comment. We already know that £* C  

£** so it suffices to prove the reverse inclusion. Let W  G C** then W  =  supp{Vi,..., Vm}  

for some chain {V i,..., Vm}  of C*. We then have each V* =  supp(Cj) for some chain Ct of 

L. Now consider the pair Cj,Cj+i for some j  and put Vj =  Cj U Cj+i. Then apply the 

relation ~  to Vj. Either there union form a chain or each is a separate equivalence class. 

But the latter case cannot happen since then by lemma 9.5.6 we would have {Vj,Vj+1} 
forming a tree. Thus V  =  C* is a chain on C and W  =  supp(X>).

□

D e f in it io n  9.5.9. Given two collections of elements U, V of S we say U <  V if U C  V* 

L em m a  9.5.10. The above relation is reflexive and transitive.

P r o o f . Clearly U < U as U C  U*.Ii U <  V and V <  W  then U C  V* and V C  W* 
thus V* C  W** =  W* and U C  W* therefore U < W .

□

D e f in it io n  9.5.11. Let x ,y  e N[S] with x =  n  Vuu anci V =  II  Vvv tlien we saY
ueu vev

% <  y if U < V and for each T Q S we have Yh nu < mu
ueu vev
U C T  V C T

L em m a  9.5.12. The above relation is a reflexive and transitive ordering on monomials x 

of N[S] and if x < y  and x' <  y' and yy' G N[S] then xx' <  yy'
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Proof. The proofs of these statements are clear though long and tedious so we do 

11°t supply any proofs.

□

Definition 9.5.13. Let y =  f ]  Vtt be a monomial in N[S] we say y is a proper mono-
uec

Oliai if we can write x =  qs(y) as x =  J2 c(i)xi with xt =  qs{yi) for some monomials y* in
iei

Nf [S\ such that e(i) =  ±1 , e00 =  1 and each y* <  y
iei

Lemma 9.5.14. I f y is a proper monomial then x =  qs(y) is non-zero.

Proof. Since y is proper we may write x =  e(i)xi with the Xi =  qs{yf) and yt
iei

monomials in NF[S] such that e(i) =  ±1, e(0 =  1 and each Xi < x then
iei

x|S|—2—deg(x) _  |S|-2-deg(x)
X =  X't Yle(̂ Xi

iei
\ |S|-2-deg(x)

=  E ^ * ? '
iei

=  by lemma 9.5.2
iei

=  x |S|-2

iei

x |5|-2

□

Lemma 9.5.15. Let C  be a collection of subsets of S , y =  yl]3 In -^[5] be a proper
uec

monomial and T D supp(£). Suppose that nT +  deg(y) <  |T| -  2 then yfFy is a proper 
monomial.

PROOF. A s y is proper we may write qs (y) =  Jf, e(*)?s(2/i) with Y l  e(*) =  1 and y* <  y
iei iei

Ten

qs{yrTy) =  '%2e{i)qs(yrryi)
iei



because T D supp(£) and nr +  deg(y) <  |T| — 2 it is clear that y fTy G N [S] and each 

G Afp [S]. We also see that yfhy{ <  V^V-, thus y fTy is proper.

□
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Lemma 9.5.16. Let C be a collection of subsets of S and y G iV[S] a monomial on C.

Suppose qs(y) =  J2e(^)Qs(yi) with e(i) =  ±1 and ]T)e(z) =  1- Then if each yi is proper 
iei iei

and yi < y  then y is proper.

Proof. As each y{ is proper then we may write qs{yf) =  J2  K h  j)Qs(Ui,j) with
• jeit

o  e(L j )  =  1 and y i j  <  yi then

qs(y) =
iei jeii

then since each yiti <  y{ and yi < y we have y ĵ < y and

iei jeh iei jeii

= X lê
iei 

=  1

thus y is proper

□

Lemma 9.5.17. Suppose x and y in N[S] are proper so that qs(x) =  J2e(i)qs(xi) and
iei

Qs(y) =  £  e(j)qs (yj ) and for each i e i ,  j  e J  shape{xiyj ) is a tree then if xy G MSI 
jeJ

We have that xy is proper.

Proof.

qsM  =  X X eW e0 ’) ^ ( ^ % )
iei jeJ
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as Xi < x and yi < y then by lemma 9.5.12 we have xtyj < xy and s h a p e ly ,)  being a 

tree is given thus it remains to prove the epsilon condition

¿6 / jeJ j’e*r

=  1 x 1

=  1

□

Lemma 9.5.18. Let £  be a collection of subsets of S and y =  y^u be a monomial in
uec

N[S\. Put C(£) to be the set of equivalence classes of C and for each C G C(£) let y{C) be 

the restriction of the monomial y to C then if for every C G C{£) the elements y(C) are 
Proper monomials associated to C then y is a proper monomial associated to £.

P roof . We first note that as £  =  U  C we have y =  n  y(C). We are given
cec(c) cec(c).

that each y(C) is a proper monomial of C, we may then use corollary 9.5.7 and apply the 

obvious extension of lemma 9.5.17 to deduce our result.

□

Lemma 9.5.19. Let £  be a collection of subsets of S and C =  {T i,...,T n} be a chain on

£■ Consider the monomial y =  f ]  Vtt then if y G N[S] it is proper so that x =  qs (y) =
recn

^  e(i)xi and the top of each tree is T =  supp(C).
*=i

P r o o f . First put T =  supp(C) =  (J U and n =  deg(y). We know that
uec

-  xT) =  0
uec

~ xt) =  Q
uec uec 

uec
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x =  qs (y) =  €^)xt dezhji)VsiVi) clearly e(i) =  ±1 and ^  e(z) =  1
i€l *C/

Put Ci =  shape(z/j) then we observe that Ci C C is a possibly disjoint union of chains', y* is 

a proper divisor of y thus deg(y,) < deg(y) and y* <  y. Thus by induction we may suppose 

the claim is true for each equivalence class of Ci and by lemma 9.5.18 we can deduce that 

Vi is a proper monomial associated to Ci. It now remains to check that y^ C ^ ^ yi .is a 

Proper monomial and y fC ^ ^ V i  <  y , because T  =  supp(C) applying lemma 9.5.15 we 

see this is clear and then apply lemma 9.5.16 to obtain the result. □

Corollary 9.5.20. Every monomial y e  IV[5] is a proper monomial.

Proof. The proof is immediate from lemma 9.5.18 then 9.5.19.

■ □

Lemma 9.5.21. Let C be a collection of subsets of S and consider the monomial x =  

II x'fF then x — 0 if and only if x g  IV[5] further if x is non zero and deg(z) =  |Tj — 2

that is has maximal degree then x =  2 where T =  supp(W).

P roof . If y g  IV[S'] we have already seen that x =  qs (y) =  0. Given any y G N[S] 

We have show that y is proper and thus x =  qs(y) is non-zero. As N[S] =  qs(N[S]) we 

see our claim is true.

□

9.6. M inim al relations

In this short section we consider the relations for connected sets and explain how these 

can be deduced from a minimal set. We will prove this explicitly, however this can already 

be seen from the work we have done.

D e f i n i t i o n  9.6.1. Let Z 5 be the graded polynomial algebra over Z  with one generator 

Vt  G Z| for each P C S  with |T| > 2, that is we define Z 5 =  Z[ yr | T C S and |T| > 2 ].
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bet ,JS be the ideal generated by the following relations

(1) Let T C S then ¿ T|_1 =  0

(2) Let T C S and T  a T-tree of depth 2 then y™(T,r) II (Vt ~  Vu) =  O'
UeM(T,T)

(3) For all U, V  C S with U fi V  non-empty we have (yuuv -  yu)(yu\jv -  yv) =  0 

*Len we define the ring Q s^ yQ s — ^s/Js

Remark 9.6.2. Clearly we have the inclusion of ideals Js  Ç Is- By considering our anal­

ysis of the filtration in section 9.4 in particular the admissability of monomials we easily 

see that Qs is also the cohomology ring of M s -  Thus R s =  Qs  as claimed. It would be 

better to see this algebraically. This we do next as it is straightforward.

Lemma 9.6.3. LetC be a connected set then (zT — xu) =  0 in Qs where T =  supp(£).
uec

Proof. The proof is by induction on C. Clearly we may suppose that £  is not a

forest. When \C\ =  2 the claim is immediate. Suppose the case is true for \C\ =  n. Let £

be connected with |£| =  n +  1. Then we can find U,V G £  with {U, V }  not a forest. Put

W =  UUV so that (xw -x u )(x w -x v )  =  0. This implies (xT-x u )(x T- x v ) =  f { x T- x w).

Put Cl to be £  with U, V  removed and W  added. Then JJ (xt — Xu) =  /  (xt — %v) ,
Uec v ec

\C'\ =  n and clearly C  is connected, supp(£/) =  T thus inductively we obtain our relation 

from the last equation. □

Corollary 9.6.4. Let S be a finite set then we have an equality Rs =  Qs □ '

9.7. A n  isom orphism  from  A * (M s )  to  H *(M s) -

In this section we consider the natural map cl : A*(A4s) —» H * (M s )  that we proved in 

chapter 6 was an isomorphism. We will state a presentation for A* (.Ms) given by Keel in 

[9] and compute explicitly this map and also its inverse.



D e f i n i t i o n  9.7.1. Let S be a finite set with |5| =  n and T C S then for any i , j  e  T 

Mth i V j  we define the following spaces.
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F^(T ,C ) =  { f : T ^ C \ f ( i ) = f ( j ) }

Vj.J =  F i j (T, C)/CT .

PVpj C PVT

We have the maps 7r| : M s —► PVr and define X%? =* (7r|)_1(PV£’J) C M s . For any 

■D C S' we also define the divisors DT C Ads by DT =  Ad{s,r}-

Remark 9.7.2. Note that these are all codimension 1 subspaces of their respective sets 

and Keel proves that the D u generate the Chow ring.

Lemma 9.7.3. =  ]C { D u \ U D { L i }  and U ¿5 T } .

Proof. Choose a set F  C S with i , j  G U and U 2  T. Let M  G D u and put 

T  =  type(M). so type(M) D Put V =  root(T) then U C V  since type(M) is

a tree, U D V  is non-empty and U ^ T. Then {i, j }  C T f) U C U and 7Tj.nuMT =  

nTru7rTMv =  nTnuMv =  0 thus MT G X%?. Now suppose M  G X^j , put T  =  type(M) 

and V  =  root(T) then there exists a U £ M (T , V) with i , j  G U and we must have U 

for otherwise U D T  and root(T) C U a contradiction. Next put U =  {S, U} then T  DU  

and M  G D u. This proves the claim.

□

Definition 9.7.4. Let L t  be the tautological line bundle over PVT. Put NT =  (7rf)*(LT) 

and the dual bundle over Ads where 7rf : M s  —> PVr is the usual map. Then 

given a "linear map a G hom(Vx,C) we write sa for the induced section on given by 

sn(M) =  q\m t  G hom(MT, C). -The zero set of this section is clearly given by the space
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Lemma 9.7.5. For every T C S and any i , j  G T with i ±  j, there is an algebraic section 

ST of the usual line bundle N f over M s  whose zero set is X lf 3.

Proof . Let NT be the usual bundle over M s  and N f be the dual bundle. Define 

: M s >-> E N f as follows. Define a : F(T, C) -> C by a (f) =  f ( i ) -  f ( j )  and. the 

induced map a : Vt —*► C by a ( f  +  Ct) =  « ( / )  then clearly,

sa(M) — 0 •<=>■ M r <  Vf’3 — ker(a)

<$=>> m t e  P V }3 

^  M e  {-k% )-\ p v ,i 3) =  x ^ 3 v

. □

Corollary 9.7.6. The cohomology class [ X f 3] G H2(M S) is independent o f i j  G T 

with i ^  j  and is xT =  -e (N f)  the euler class of N f

Corollary 9.7.7. We have the following equations

E D°
TCUCS

E D°
{i,j}cucs

E M ) 'V/U'xv
ucvcs

P roof . Put Eu =  Y  ( - l ) |v,/t/|£v- First note that D s is not a divisor,but we 
• ucvcs

can make the arbitrary definition Ds :=  Es =  —xs without affecting the following sum. 

Then by lemma 9.7.3 have shown that x t  =  Y  D u — Y  D u , we first show that
{iJ}QUCS TCUCS

xT =  Y  Eu — Y  EU ■ Let W  C S, then we consider the number of occurrences of
{hjKUCS TCUCS

xw in the sum Y  EU■ That is, we require the number of sets U such that T C U C W.
TCUCS

If T % W  then there are no such occurrences otherwise there are 2\W\T\ sets of this type. 

This is even if W  ^  T and takes the value 1 otherwise. Because the xw  alternate in ’

x s - xt =  

xs =  

Du =



Slgn we see that there is no total contribution of xw in the sum if W  ^  T and a total 

contribution of — xt in the case W  =  T. We next prove that the sum V  Eu is zero.
. {i,j}QUCS
bet W  Ç S, then as before we consider the number of occurrences of xw in the second 

sUm. That is, we require the number of sets U such that { i , j }  Ç  U Ç  W. There are 

110 such occurrences if { i , j }  $7 W  and 2 ^ ~ 2 such sets otherwise. Because Xw =  0 if 

^  =  { h i }  we may suppose \W\ > 2. But then the number of occurrences of xw is even 

and thus the total contribution of xw is zero by there alternating sum. Thus we have 

Proven that the only contribution is by Xt and the sum is as claimed.

Next put QT =  DT — ET and subtract the equations

{i,j}QUÇS TÇUÇS

•T . v  i f -  £  i f
{ij}ÇUÇS TÇUÇS .
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then we obtain ]£  Qu =  QU t°r T and all { i , j }  C  T. Putting T = S we
TC.UCS {i,j}CUCS

obtain Qu =  0 because Qs =  0 thus substituting this back we obtain Qu =
{i,j}QUCS TCUCS

0 for all T. We now use a downward induction on \T\ to deduce that QT =  0 for all T. 

Nor |T| =  n =  (¿>1 the claim is clear. Assume the claim is true for m > k for some k < n 

then for a set T with \T\ =  k we see immediately from Qu =  0 that QT =  0 thus
TCUCS

DT =  ET and ^  Du =  0 as claimed.
{i,j}CUCS

□

D e f i n i t i o n  9.7.8. Let Zs be the polynomial ring Z[ D u | U C  S ] and Is the ideal 
generated by

DU ^  DU for every i,j, k,l
{i,j}QUCS {k,l}CUCS

DtD u =  0 unless T C U, U C T, T  C Uc, U C Tc

then we define Ts =  ZS/Is and we have the following theorem due to Keel [9]

T heorem 9.7.9. For each finite set S the Chow ring of M s  is Ts
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| 9.8. The ring Rc

: Having computed the cohomology ring of M s  we observe in this section that in practice 

everything we have done for M s  could equally well have been applied to the space M e  

f for a thicket C. We could define in the evident way the ring Rc  and prove that Rc  is the 

: cohomology ring of M e ,  should one be interested in such an object. We also observe that 

given our approach in section 4 of chapter 6 we could without much further effort deduce 

] Hie following commutative diagram in even degrees

j ■
I R c+ ------► ® R{t}

ii
p
j:

j R c ------------- Rz
ij .

and presumably one could deduce the following short exact sequence in even degrees

Rc —* Rc+ © Rc * Rc ® R{t}

This would offer an alternative approach to the analysis of Rs  and in particular would 

enable us to deduce most of our results without comparing them to the cohomology ring.
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