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Summary

In this thesis I give a new description for the moduli space of stable n pointed curves of
genus zero and explicifly specify a natural isomorphism and inverse between them that
preserves many important properties. I also give a natural description for the universal
curve of this space. These descriptions are explicit and defined in a straight forward way.
I also compute the tangent bundle of this space. In the second part of the thesis I compute

the ordinary integral cohomology ring from the above description and specify a basis for it.
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CHAPTER 1

Introduction

‘The theory of moduli spaces is a well established tool in modern algebraic geometry. Here
we study the moduli space of n-pointed stable curves of genus zero denoted X, and give
a new very concrete description of it. A stable curve of genus zero is a complex algebraic
curve with some marked points, satisfying conditions to be described later. X, is the set
of isomorphism classves of stable curves with n marked points. It has a natural structure
as a smooth projective variety over C. It was introduced by Grothendieck and has been
widely studied. The cohomology of X, has been determined by Keel [9], but his answer is
not véry explicit. The point of the thesis is to introduce a new, more explicit model for Xn

‘and to deduce a new, more explicit description of its cohomology. There are many other
descriptions of X,,, however they are non-explicit and difficult to analyze. For example it
has been shown that X,, may be constructed as certain iterated blowups, see Keel [9] or
Kapranov [8], for exampie, who give two different such representations in this form. Keel
uses his description to compute its Chow ring, prove we have an homology isomorphism
and to give a recursive definition of its Poincaré series. We will show that our approach

is closer to Kapranov’s construction but be more explicit.

We will denote our space MG and define it as a subspace of a product of projective spaces
Mg C [I PVr where the product is taken over each T C S with |T| at least 2. Vr
is a complex vector space of dimension |T| — 1 . Thus our space comes equipped with
projections to each PVy. There are natural projection maps 75 : Vr — Vi whenever
Ucrcs which have a natural composition rule. We will use these to impose the
conditions on our subspace in a straightforward way. From this it will immediately follow
that Mg is a projective variety. We then proceed to analyze Mg and prove it is ‘the
stated space. We also calculate its cohomology ring‘ H *(mg,Z)“ whose presentation is
computationally easy to work with.’ in particular our work will give an independent proof
that it is finitely generated by its elements of degree 2 and free as an abelian group, the
rank of H 2(ﬂs) s —1—n— ﬂnz—'lz That is we have one generator for each subset

I’ of S of size at least 3, for subsets T' of size 2 PVr is just a point. These classes are



16 N ‘ 1. INTRODUCTION

“just the pullback of the standard generators of H*(PVr,Z) under the projection maps
imr 1 Mg — PVy. We also give a basis B[S] for this ring which uses the combinatorics of

| trees.

Let S be a finite set of size n at least 2 and write S, = S II {0}. By a generic S-curve
| we will mean a pair (C’ z) where C is an algebraic curve isomofphic to CP! and 7 is an |
'IIIJGCtlve map x: S.,. — C, see example 1 below for a pictorial representation of such a

‘ curve

‘:?We write [C, z] for the isomorphism class of the S-curve (C,z). In this situation two such
| curves (C,z) and (D,y) are isomorphic if there is an algebraic isomorphism 6 : C — D
| i;With 6 ox = y, that is the fixed points are sent to the fixed points and their order
15 preserved. For C=D= (C‘P1 we know any such map is a rational homogenous
Epolynomial of degree 1. We define Xs to be the set of isomorphism classes of all generic
‘S-curves It is straightforward to identify X's with a Zariski open dense subset of CP!51-2
that consists of the complement of a finite union of hyperplanes, all the diagonals.” In this
document we will study a certain compac‘mﬁcatlon X of Xs that was first constructed
‘iby Deligne and Mumford in the 1960’s. These spaces have been studied extensively and
‘ j;may be constructed in several ways, using geometric invariant theory, Chow quotients, or
;‘iterated blowups. They form an operad in the category of schemes, which is important in
quuantum cohomology and conformal ﬁeld theory. The complex points of X g parameterize
the isomorphism classes of stable S ~curves. Knudsen and Mumford proved in the late
1970 s that X'g is a projective varlety The proof was developed over 3 papers and relies

heavlly on the theory of sheaves. From our definition this will be immediate.

fAn important combinatorial invariant attached to any S-curve is that of its tree type. For
 ‘7\71-5 we will define the notion of a tree that is right for our construction. More gener‘ally
:iW? define a fofest on S as a collection F of subsets of Sv such that for every U,V € F
eithee UCVorVCU or U NV is empty and an S-tree 7 to be a forest on S with
' ‘jS € T.‘The combinatorics of these trees and forests will feature heavily throﬁghout this
?document in the structure of My and later in its cohomology riﬁg when we constiuct a

‘basis for it, although in a different context.
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| In chapter 2 we begin by deﬁnihg the veétor spaces Vr, one for each T' C S of complex
dimension |T'| — 1 and maps between them 7% : Vp — Vi which are required in our
| definition. We then define our space Mg as a subspace of [] PVr. It will be immediate
I from our definition that My is a projective variety. We then generalize our construction to
| a space ﬂc defined in aﬁ analogous way as a subspace of [[ PVr where L is a collection
| of subsets of S. It is again immediate that this is a projecfievﬁe variety. It is this approach
that is important for our analysis of Mg. Of particular importance to us is the study of
. the space M, When L is an S-tree 7. In this case we will show that M is the ’total space
of an iterated projective bundle. We will use this case, which is the easiest, to analyze
"more complicated examples by comparing them with the evident projection map onto

: these tree cases. In particular this approach will make it easy to prove that everything

- 'we consider is smooth and irreducible.

In chapter 3 we define and develop some simple combinatorial objects such as forests and
“trees and attach to them various numbers that we use throughout this thesis in both the
‘algebraic and topological aspects. A notion of particular use is that of the length of a
‘tree, this is equivalent to its usual combinatorial counterpart. We will use this inductively
‘ when studying the space M. Many of the results presented here are trivial and included
only for completeness. We also gather some one-off results that fit more neatly.into this

i chapter.

'In chapter 4 we will develop a catalogue of resuits that will form the basis for the un-
; derstanding of our space M. In particular to any S-tree 7 we define a space Mz as a
subset of H PVr with the pfoduct taken over 7, the Space M7 is a natural generalization
‘to that of Ms. Our analysis of this space is important for many later results. We also
| show that to study My when F is a forest easily reduces to the case of trees. We will
| show that M can be seen as the total space to a tower of projective bundles, this forms
gpart of a more general result regarding fibre bundles. From this it will immediately follow
 that M is a smooth irreducible projective variety of complex dimension |S| — 2. We will
then use the embedding i : My — [[ PVr to compute the tangent space of Mz as a
‘sub-bundle of T[] PVy = [[hom(My, Vr/Mr). This computation will easily generalize

- to more complicated collections other than trees and in particular we will be able to com-

i pute the tangent bundle of M. This we consider in chapter 6. Lastly in this chapter we

will show that ﬂ‘fcan also be obtained from the iterated blowup of PVs along certain

1‘;‘« projective subspaces and their strict transforms. This result will be easily obtained and
.‘j , .
.

|
I
[
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‘we will use it later to prove a more general result but in the same spirit. In particular we

will be able to establish the existence of an isomorphism from Xg to M.

| In chapter 5 we are mainly concerned with the computation of the cohomology ring of
| M for forests F , we will denote this by Rz. This ring will help us to simplify our picture
~of the cohomology ring éf M which we denote by Rg. We will use the iterated projective
| bundle description of My for trees 7 given in chaptér 4 to inductively construct the
fscohomology ring of —./\77, this calculation will be straightforward. We then deduce the
.1 general .case for forests F , this will jusf be -an application of the Kiinneth theorem. In
| particular we will show that Ry finitely generated by its elements of degree 2 and free as
| an abelian group, these genérators will be the Euler classes over pullbacks of tautologiéal
line bundles. The rank of RZ will be the number of elements of F of size at least 3. We
will compute two different bases for this ring, the second description will be explicit in its
v‘use of forests and will extend naturally to our ring Rg. To finish this section we specify
necessary and sufficient éonditions for a monomial x of R to be zero. In particular we |
E‘Wlll show that any monic monomial of maximum degree that is non-zero is equal to the
; top class, again we will see how to generahze these results to the ring Rg. By the end
:of this chapter we will have a good algebraic understanding of the ring Rz as well as a
‘topological impression. This will serve as a good model when we come to consider the

:irihg Rg in chapter 9.

In chapter 6 we examine the topological structure of the space M for a quite general class
:gof L. These sets we call thickets whose elements consists of subsets of S. The advantages
| of doing this is that we obtain many general results without much extra work and in
| particular we will be able to use & fesult by Kapranov [8] to prove that Xs and Mg are
‘:‘in fact isomorphic. Although this will not be as satisfactory as we would like, this we
explain in a moment. To start with we attach to every element M € M, a tree T, trees
Will encode the minimal amount of data that one requires to describe an element of M
from its image in My. Then under the prbjection map 7 : My — Mz we will be able
} to compare a Zariski open set of M with one of Mz, a space we are already familiar
%with, moreover the open set of M will be saturated. These open sets will cover M, and
jen‘able us to show that M is a smooth irreducible projective variety of dimension | S| —

| We will then proceed, agaﬁn using results developed in chapter 4, to compute the tangent

bundle of M. In particular all of these result apply to Mg. We will then prove that
the cohomology ring of M, denoted R, is well behaved, that is finitely generated by its
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~elements o‘f degree 2 and free as an abelian group. We will also compute the total degree

of our ring in a combinatorial way using forests. This we will use in the last chapter to
| compute a basis for Rg. The final section in this chapter is a generalization of the blowup
| descriptiori from chapter 4. More precisely we will show that the space M, may be seen
| as a blowup of PVs over linear spaces and their strict transforms. This in particular will
' enable us to prove that Xg and Mg are isomorphic, while this is good to know at this
stage it only stipulates the existence of an isomorphism without specifying it. This is of
| course not a satisfactory answer to our question but is‘useful in at least that it provides

limits to what form the functions intuitively may take. We will explain this at the end of

| this section. We give an explicit isomorphism in éhapter 8 where we apply a more careful

analysis to X'g and morphisms from it to the projective space PVs.

In chapter 7 we only consider the space Mg. We start by examining the various notions
of trees that can arise, we then explains how we consider these different representations
- equivalent by spécifying various bijections between them. These bijections will preserve
several imp‘ortant properties. There are well known stratifications of the space Xs by the
| combinatorics of trees. Several important results are known about these subspaces which
we state in the next chapter when we examine in more detail the space Xg. We will prove

the analogue of these results for our space here, this will mean considering subspaces of

: M that consists of elements of like tree type. We denote these spaces by Mg(T) and
also consider there closures Ms(T) where 7 is a tree. These results will be required in
chapter 8 to prove neatly that a certain morphism from Xg to Mg is bijective and thus
' an isomorphism as evérything is smooth and complete. However these results are useful

in their own right to understand the structure of the space Ms. In the last section of

this chapter we apply a more local analysis and consider the morphism 7 : WS-}- — Mg
 together with its structure sections. In particular we will show that the restricted map
(i (Mg) = Mg is a CP? bundle. We also explain in this section how to construct a

| ‘ A |
" map of sets from Mg to X, although we will not see that it is a morphism of varieties

1 helfe. This map it will turn out is the inverse to the morphism already mentioned.

In chapter 8 we consider in more detail the space Xg. Most of this chapter is already
f? well known. Our contribution will appear towards the end. Parts of chapter 8 are closely
related to unpublished notes by Professor N.P. Strickland. We begin by defining the points

- of X, that is we define what a stable S-curve is. Firstly we define the generic elements of

| our space, a representative of which is a S-marked copy of CP*. We then proceed to define
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the generai S-curve. Each irreducible component of this is a generic 7-curve for some
| collection T. We continue by defining the graph associated to each element [C,z] € Xg
~and prove that it is a tree and this is equivalent to having H*(C, O¢) = 0 which is part
| of the definition of an S-curve. After defining families of S-curves and stating Mumford’s
crucial theorem, that proves we have a moduli space which can be given the structure
. of a variety, we give a cétalogue of results that are already well established. We will
require these later. We Will define a regular map g : Xs — PV this will be analogous
~to a construction by Kapranov [7]. It is well known that maps into projective spaces
| are characterized by locally free sheaves of rank one over the domain scheme that are
generated by global sections. We use the universal properties of Xg to analyze this map.
*We will then use the contraction maps defined by Knudsen 73 : Xs — X1 to construct
| regular morphisms 05 : Xy — PVr given by 05 = Opmd which will then give us an
| induced regular morphism of varieties fg : Xs — [] PVr. We will prove that the image
i actually lies in Mg and that it is an isomorphism. Then we show that the projection map
S ! _/qu- — M is the universal curve whose indubed map ps : Mg — Xg specified by

ps(M) = m5(M) is the inverse for fg.

In chapter 9, the ﬁnal part of this thesis, we are concerned with the computation of
‘the integral cohomology ring of Mgs. We will define a ring Rgs as the quotient of the
| polynomial ring Zs over Z by a homogeneous ideal Is. Because Ms C [1 PVr there is
‘one generater yr for each T contained in ‘S with size |T'| > 2. When the size of T is 2
ithe space PVr is just a point. We will show that this gives us the rank of HZMg as
2" ~1~n—(3) where n = |S|. One of the relations in Is is then yl,qT I=1 — 0 inherited
from the cohomology of the space PVi. We have shown in chapter 6 that H 2(Ms) is
Igenerated by elements of degree two. These are the Euler classes of a natural collection
of line bundles, specifically the pullback of the tautoiogical vector bundles over PVr by
:the prOjGCtiOIlS-ﬂ' : Ms — PViy. We specify a natural ring map rs : Rg — H *(_Ms) and
prove this is an isomorphism after analyzing the ring Rg further. We also compute a basis
,‘F[S] for Rg that uses the combinatorics of forests and is a natural extension to the work
;of chapter 5. We next specify necessary and sufficient conditions for elements of Rg to
be zero, this requires us to further develop some combinatorial ideas that we started in
chapter 5. In the next section we define a smaller set of relatmns that defines an ideal Jg
and we will show that Js = Ig this result is of combmatorlal interest and easy to prove.

‘We then explicitly compute the natural map cl : A*(Ms) — H*(Ms) from the Chow
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ring to the cohomology ring that we proved in chapter 6 was an isomorphism. This result

- should be compared with Keel in [9] who also proves we have an homology isomorphism. -

In the final section of this chapter we offer an alternative approach to analyzing the ring

| Rs that does not require us to compare it with the cohomology ring H*(Myg) but we do

- not prove any of the claims. This is where we leave our analysis of the space M.

| We aim in this thesis to convince the reader that our approach to this moduli space is
" useful for geometric intuition and computation and hope that our description will be a

useful alternative to other representations.
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CHAPTER 2

The definition of My and generalizations

In this chapter we define the main objects that are required in the definition of Mg and

“ give some of the notation we will be using throughout this thesis.

- DEFINITION 2.0.1. Let n be an integer greater than 1 and S a finite set of size n. Then

; for any subset T of S whose size |T| is at least 1 we define the following spaces.

F(T,C) = {f:T— C|f afunction }
Cr _ { f € F(T,C)| f is constant }
Vr

F(T,C)/Cr

PVyr = associated projective space

|REMARK 2.0.2. For each subset T of S, F(T,C) is a complex vector space of dimension’
‘|T| and we give it the usual topology by identifying it with C/7! in the standard way. For
each T C S of size at least one Cr is a 1 dimensional subspace of F(T,C) consisting of

the constant functions. We write g7 : F(T,C) — Vr for the quotient map, Vr is then a

complex vector space of dimension |T'| — 1. Throughout this document we shall use the

‘notatxon < to denote “is a subspace of”

“DEFINITION 2.0.3. For any sets U - C T C S we have the natural pI‘OJGCthIl maps
JpU F(T,C) — F(U,C) gi\}en by pg( f) = flu- Since pf;(Cr) = Cy we then have maps
!”5 Vr — Vy given by 75 (f + Cr) = flv + Cy. These in turn induce partial maps
pU PVy --» PV given by pL(If + Cr]) = [nT(f + Cr)] where [z] :=spanc{z}. These
maps are undefined for elements [v] with v € ker(7rU). We will use the partial arrow --»

to denote a map being partial.

' l ' 13
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LEMMA 2.0.4. For every U CV C T we have 7§, = n); o ml and p% = p; o pl, whenever

| defined. | O

| Given our previous definitions we are now in a position to define our main object of
: interest, the space M.
DEFINITION 2.0.5. Mg is the subspace of [| PVr defined as follows. An element

TCS
IT|>1 .

}"M_ in [[ PVr lies in Mo if and only,if for every pair of sets U € T C S we have

TCS
ITi>1

Mr < (wg)_lMU where each My is the U component of M.

In set theoretic notation, this is

Ms=sMe [] PVr| Mr<(xf)Myforall USTCS

TCS
IT>1

EXAMPLE 2.0.6. For n = 0,1 Mg is empty. For n = 2, Mg is a point and for n =
"‘3 M is a copy of CPL. For n = 4, Mg is the blowup of PVs over the four special
‘marked points [0:0:0:1],[0:0:1:0],[0:1:0:0],[1:0:0:0]

; In‘ order to understand the topblogy of the space Mg it is natural to generalize the above
construction to more general collections £ of subsets of S. This we will do in the next defi-

nition. We shall then analyze these spaces to deduce information about our original space.

' DEFINITION 2.0.7. For any collection £ of subsets of S with |T'| > 1 for every T € £ we
define, ' '

M, = {M_ € H PVp ' Mp < (n8) My for all U,T € L with U C T } . :
Tec

j REMARK 2.0.8. It is clear ‘that for such collections £ of subsets of S, M, is a closed
- projective variety. Throughout this thesis whenever we specify a collection £ of subsets

of S we will implicitly assume that every element T' € £ has size at least 2.

|
i
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DEFINITION 2.0.9.
Lr = tautological vector bundle over PVr

yr = e(Lr) € H?PVy the Euler class of Lt

LEMmMA 2.0.10. Let V be a complez vector space of dimension d then H*(PV) = Z[y)/v*
| where y = e(L) and L is the tautological vector bundle over PV. : ' o

1

;‘ REMARK 2.0.11. Let £ be a collection of subsets of S with |T| > 1 for every T € L. We

W111 sometimes descnbe the space M, in a slightly different way usmg the partial maps

! pU : PV == PV for any U C T C S previously defined.

* M, = {M_ e [[ P ’ o5 (Mz) = My whenever pj;(Mr) is defined }
s TelL : ’

We have suppressed the notation U,7 € L with U C T. It is clear that both definitions

i .
f!s are precisely the same.

f DEFINITION 2.0.12. Define Us={f€F (S C) | f is injective }. This is naturally the
rconﬁguratlon space (CI l'{e. the complement of all dlagonals in CISI. We then define the

' space Usg = PSQS(US) where QS F(S, (C) — Vs and pg : Vg — PVgare the quotient maps.

;REMARK 2.0.13. The space Us C PV appears throughout this thesis. It is straightfor-
“ ward to check that Us is a Zariski open dense set. It is well known that, modulo the
ifaet we have not deﬁned them yet, the set of generic curves give a copy of Us. We also
13 note here that the restricted map 75 : 75 (Us) — Us gives us an isomorphism where

EWS : Mg — PVg. These facts will be proven later in chapter 6, section 2.

i
I
I

Here we state some cohventions that we will be applying throughout this thesis. Let R
:be a ring and r € R be a non zero element. In general whene we write r = > a;r; with
: i€l

a; € Z we suppose that ar;# Qandr; #ryforalli# g lfr= H r* we suppose n; > 0.

We may on occasion relax these conventions but this should be clear from the context.
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CHAPTER 3

Combinatorial results

An important Combinatorial invariant of an n-pointed stable curve of genus zero is that of

the associated tree. ‘Here we introduce a notion of trees, more generally forests that will
appear throughout this paper in the structure of Mg and its cohomology ring. In this
f chapter we gather some miscellaneous results about trees and other objects. Here we will
z; develop some simple comblnatorlal propertles of these objects. We will consider them in
more detall later, as they are requlred In particular we will show that the relationship
i‘ibetween the classical associated comblnatorlal tree and our trees are equlvalent The

sense in which they are equivalent W111 be explained later.

3.1. Forests and the length of a tree

;DEFINITION 3.1.1. A forest on S is a collection F of subsets of .S such that,

forall TeF |T|>1,
i if U,Te}'theheitherUﬂTisernp’CYOfUgTorT‘gU‘,

; i

An S — tree is a forest T on S vvl’ch SeT. We say that a forest F is proper if it is not a

;ltree.

w

f:REMARK 3.1.2. If a collection bf subsets F of S is a forest, then so is any subset of F.

: DEFINITIQN 3.1.3. Let F be a foresf and T' any element of F then we define the T-tree
Flr by Flr = { U€F|UCT} and call this set the restriction of F to T.

“DEFINITION 3.1.4. Let L be a collection of subsets of S then we define the sets Fy =
{FCL|Fisaforest } and Te = {7 C L| 7T is an S-tree }, that is the set of forests

;%respectlvely trees of L.
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| - We next iﬁtfoduoe the concept of the depth of an S- tree 7. This will be analogous to the
‘} ‘concept of the length of a rooted tree Wthh is defined as the length of longest path from
; the root to a termmal vertex without repetltlons Tt will turn out that this concept will
prov1de us with a nice mductlve way of studying the space MT, this is the subject of the

1 next chapter.

DEFINITION 3.1:5. Let 7 be an S-tree. A chain of 7 is a subset C of 7 such that for all
U,V € Ceither U CV or V C U. We write Cr er the set of all chains on 7 and define
| the depth of T denoted d(T) by d(T) = max{|C| | C € Cr }.

LEMMA 3.1.6. Let T be an S—tree and T C S an element ofT then TIT s a T-tree and
I d(Tlr) < d(T)

- PROOF. The proof of this is clear.

3.2. 'Partitions of forests

iThe power set P(S) of S has its usual natural order given by inclusion. For any collectlon
E of subsets of S we can use the order induced on it to give a natural decomposition of
QL‘ by sets Lr, one for each T € L given by, forany U € £, U € Lrifandonlyif U CT

and is maximal in T This decomposition, when applied to trees will actually turn out

to give us a natural partition of it. We shall later see that the combinatorics of such a

‘partition will turn up a lot. We next explain this notion more precisely.

g;ﬁDEFINITION 372.1. For any collection £ of subsets of S and for every V € L, we say V'
’, is ‘mazimal in £ if there is no T’ € £ such that V C T and write M (L) for the set of all
gmaximal elements, that is M(L)={V e L|V is maximal in £ }. We call this the set of
lma:m'mal elements of L. We eay V is minimal in £ if thereisno 7' € £ with T' C V.

;:Let UT € L, we say U is mazimal in £ under T if U C T and there isno V € £
'é:‘With UCVCT Let T € £ we write M(L,T)={U € L£|U is maximal in £ under T}

and call this the set of mazimal objects of L under T.
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LEMMA 3.2.2. For any collection of subsets L of S we have L= M(L)U |J M(L,T).
| | ' TEL

PROOF. Clearly we have M(L)U |J M(L,T) C L. Let U € L, then either U € M (L)
or U ¢ M(L). In the second case weT ?feed to show that U € M(L,T) for some T E‘ﬁT
Suppose for a contradiction that U ¢ M(L,T) for any T € L. Let T € L be a set of
| minimal size containing U, there must exist such a set since U & M(L). Then we know
| that Ug M(L,T)and U C T so there exists V € L such that U C V' C T, this contradicts

! the minimality of T .
: O

tLEMMA" 3.2.3. Let F be a collection of subsets of S, then F is a forest if and only if for
every T' € F the set M(F,T) is a collection of pairwise disjoint elements and M(F) is

i also a collection of pairwise disjoint elements.

PROOF. = Suppose that for some T' € F there are distinct elements U,V € M(F, T)
with UnVy non-empty. Then since F is a forest, we have that either U C V C T or
V CU C T. This contradicts maximality in F under T .

If S € F then M(F) = {S}, so we rhay suppose S & F. Then, we are required to show
“:that M (F) is disjoint. Suppose there are distinct elements U,V € M(F) with U NV non
‘empty. Then either U CV C SorVCUC S, contradicting maximality in 7

< We prove this inductively. Define

l R = M(F)
I .
Fan = RU|J MEFT)
TeF;
= /I [[ M(FT)
.‘, ‘ Tel;

‘Where U; = F; \ Fi—1. Then it is clear JF) is a forest and given F; is a forest then Fy; is
g“a forest. Clearly there is some n such that F = Fm for all m > n and we are done.
i o
LEMMA 3.2.4. For every forest F and for every distinct U,V € FM(F,U)NM(F,V)
zs empty and for every T € F  M(F)NM(F,T) is empty, that is all the sets are disjoint.
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PROOF. Suppose for a contradiction there are elements UV e F with M (f' ,U)n
M(F, V) not empty. Let W € M(F, U)NM(F,V) , then W c U and W C V therefore
1 UNYV is not empty. Since F is a forest we must have either U C Vor VCU IfU C |28
then W CcU C V. If | ge U then W c V' U. In both cases we have a contradiction. A

| similar result holds for the second case.

O

COROLLARY 3.2.5. For any forest F of S we have F = M(F) 1 11 M(F,T) 0
TeF .

| COROLLARY 3.2.6. For any forest F of S we have,

Yo IMF D) = |F - MF)
Te}' '

> X w= > WV
TeFUeM(FT) . . VEeF\M(F)

3.3. Numbers associated to forests

We next define some numbers associated to each forest F and develop some simple com-
binatorial properties of them. These number will appear throughout this document in

both the algebraic and topological aspects of our project.

'DEFINITION 3.3.1. For each forest F and for any T € F we define

mFT) = (TI-1)- Y (Ul-1)

UeM(FT)

ir-n- 3 (Ul-2

UeM(FT)

If

n(f,T)
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| LEMMA 3. 3.2, For each forest F and for any T € F we have,

SwEn) = (X m)- el

TeF , TeM(F)

S(FT) = (,Z 1T|)+|f|—21M(f>|

| TeF TeM(F) ,

PROOF. | ,
Y m(FT) = Z|T|—1 Z Z |U|—1

3 TeF - - TeF TeFUeM(F, T)
= (Zm)-A-E v+ el
| ’ NTeF 7 TeFUeM(FT) - TeF
f; - (3 m)-me

| To prove the first case we used corollary 3.2.6. To prove the second case we note that
Ln(]—" ,T) = m(F,T)+|M(F,T)| and again use corollary 3.2.6 together with the first case,
¢ ) ' : Do L__]

,!;CONSTRUCTION 3.3.3. Let T ‘be a subset of S and define S/T to befhe set of equivalence
e1asses of S under the eciuivalenee relation ~ given by u ~ v <= u=wvor u,v € T.
‘We then define ¢r : § — S/T to be the evident quotient map. Let £ be a collection of
subsets of Sand T an element of £, of minimal size. Then we write £ to be the set £
Evv1th T removed and put £ = qT(E) note that by the minimality of T every element of £
"has size at least two. It should also be noted that we do not display the dependance of £

on T as this av01ds extra notation and should cause no confusion.

gDEFINITION 3.3.4. Let £ be a collection of subsets of S and T a subset of S then we
deﬁne Forests(ﬁ T) = {Fe IFC | T € F }. We also write Forests(£) = F,

iLEMMA 3.3.5. Let 8, T, L, L be as in the previous construction then there is a bijective

éebrrespondence b: Forests(L,T) « Forests(L) such that
! o ‘
I
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m(b(F),U) if U#T

mFU) = { IT|-1 i U=T

| WOELT) F UATUAW
n(F,U) = { n®F),T)+1 if U=W
T|-1 o« U=T

where W 1is the minimal element of F with W D T' should 1t exust.

PROOF. Define the function b : Forests(£,T) — Forests(£) by b(T) = gr(7 \ {T})
and c : Forests(L) — Forests(£,T) by c(U) = g7 (U) 11 {T}. Then b is a bijection with
: inverse ¢. To prove the final part of the claim we only need to check elements U € T
‘Ewith T C U. First suppose T' C U and consider M(7T,U), since T € 7 and the size
of T is minimal there must be an element V € M(T,U) with T C V. If T C V then
‘V € £ and for any other W € M(T,U) |W| = |W| thus (U] -1) = (V| -1) =
(U= 7)) = (VI = IT]) = (U] = 1) = (V] = 1) and m(&(T),T) = m(T, V). £ V = T
then U] — 1= |U| - |T| = (|U| = 1) — (|T| — 1) and again m(b(7),U) = m(T,U). The
‘case when U = T is clear. The pr'oof of the second statement is similar.

d

DEFINITION 3.3.6. Let F be a forest and U C F then we define Py = [[ (m(U,T) — 1),
1 , TeU
Py=1and m(F)= 3 By We also define n(F) = [] n(F,T).

UCF TeF

“LEMMA 3.3.7. Let T be a tree and T € T, be an element of minimal size. Put T to be
31the set T, with T removed and T = gr(T) where gr : S — S/T is the collapsing map.
Let b : Forests(ﬁ,T) — Forests(T) be the bijection of lemma 3.3.5 then for any forest
F € Forests(T.,T) we have Pr = (|T| — 2) Pyx). ‘

I PROOF Using the construction in lemma 3.3.5 we see that b(F) = gr(U) where U =
.7—"\ {T}. Agaln by lemma 3.3.5 we see that for every U € U that m(F,U) = m(b(F), ).

ESmce the evident induced map gr : U— b(F) is a bijection we see that
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Pury = [ (m®(F).0)-1)
Ueb(F)

= J[meF),0)=-1)

Uelu

= [[mFv)-1)

Ueld

‘&Ild S0 P]: = (ITI — 2)Pb(f)
I 0

| Next we prove that m(7) = n(7) for any tree 7, more generally it is true for any forest

F. We require this fact but prove it more efficiently later.

LEMMA 3.3.8. Let T be an S-tree then m(T) = n(T)

| PROOF. To prove the claim we will show that both sides satisfy a certain recur-
érence relation with the same initial conditions. The particular relation is given by
oz, = ar + (|IT| — 2)az, ap = 1. First Let W € T be the set of minimal size con-

taining T then

Can = ar+ (T - 2ar

= [In@v)+(71-2) [[ T

UeT VeT

- [ Il ”(ﬁ,U))]n(T>W)+(ITI—2)[ 11 »n(ﬁ,U)](n(ﬁ,W)_l)
UEW U | U#UVLE/?;T

= [ I @ 0] [ w) + (712 + (11 - 2 w) )]

= [ I~z o)) -1, w)

UeTy
CU#W U#T

= H (74, U)

UeT,
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for the second numbers we have

ar + (|T| = 2)az

S pr+(T1-2) Y p7

FCT FCT

> pr+ > (T - 2pr

FET  FCT

Z pF -+ Z pr by lemma 3.3.7
FCT, 0 FCTy

TgFr TEF

Z br

FCT4

m(Z)

“clearly these formula agree on the initial terms and we have prbven our result. We will

|use this result to later see that the equality is also true for forests F.

O

| DEFINITION 3.3.9. For any finite set S we define a function from the power set P?(S) of
P(S) to P(S) called the support supp : P2(S) — P(S) by supp(L) = ULer: U.

LEMMA 3.3.10. supp(U U V) = supp(i) U supp(V)
)

|

PROOF. The proof is immediate from the definitions.



CHAPTER 4

The topology of M, for trees

i

j |

“In this chapter we consider the topology of the space M for the case when L is an S-tree
IT this case will be the easiest to consider. We will show that MT can be seen as the
total space of an 1terated projective bundle, we make this notion premse in what follows.
This will enable us to show that My is a smooth 1rreduc1ble projective variety and thus
‘ ;exlso a smooth complex manifold, its complex dimension is |S| — 2. This description will
then make it easy to compute its cohomology ring. We consider this in the next chapter.
‘!We will use the embedding 7 : My — [[ PVr to identify the tangent space of My as
- 'a sub-bundle of the tangent space of [] PVr. In the last section of this chapter we will
§§how that the space My can also be seen as an iterated blowup of PV over certain linear
eubspaces. This result will then be used to prove a more general result that we consider

later. The understanding of the spaces My will turn out to be both convenient and neat

for the understanding of the spaces M. for more general collections £, enabling us to
:deduce the respective analogous statements about them. This will be explained later in

éithe relevant chapters.

4.1. The projective bundle description for Mz

Here we prove the projective bundle description for M. Specifically if we remove S
from 7, we are left with a forest F, which can be written as a disjoint union of trees,

}.7: = ]I Tlr. It is clear from the definitions that Mz = ] Mz, There is an
| TeM(F) TeM(F)

jevident projection map 7 : Mg — Mz and we will show that this lifts to an isomorphism
MT = PWy for some vector bundle Wy over M. This fact will then enable us to deduce
a number of results about M7, inductively, on the depth of the tree T, which we defined
‘;m the previous chapter. Later these will be used to obtain general result about M. We
%will exhibit the vector bundle Wr over My directly as the pullback over an algebraic
! o , .

map of the tautological bundle of a certain grassmann space.

25
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‘LEMMA 411, Suppose F 1is a forest then M}‘ = ] )M}'|T and each F|r 1s a tree.
TeM(F

. PROOF. It is clear that F = [I Fl|r and each F|r is a T-tree. The proof is then
I; TeM(F) : a
«clear from the definitions. u

%REMARK 4.1.2. The lést lemma tells us that to study Mz for forests F it is enough to
understand the cases for trees 7. We next define a map of vector spaces whose importance
' lwﬂl be seen in the following lemma. We will then use this map to prove our claim that

M is the total space of a prOJectlve bundle over Mr.

DEFINITION 4.1.3. Let F be a forest and for any U,T € F with U C T let 7r5 Vr— VU'
be the usual restriction map. Sﬁpposé M(F,T) is non-empty then define the map

mEriVe— @ Whbymer= [] 7F.
’ UeM(F,T) UeM(F,T)

LEMMA 4.1.4. Suppose T is an S-tree and d(T) > 1. Put F to be T with S removed then,

Mz ={ M € Mr x PVs | Ms < n7’s(@My) }

<
k‘
I

{Me I Pve ‘ My < (x5) My for all U, T € T with U C T}
TeT

My< () (a7 (My)

TeM(T,S)

= {Me ( H —M—TJT> x PVg

TeM(T,S)

= {M € Mz x PV i Ms < m75(&My) }

ﬁThe second step requires some comment. First the inclusion C is clear. We now prove
;the reverse inclusion. Let M be an element of the second set. Then to prove M Me My
1t is enough to prove that for every U € T we have Mg < (7§)*My. Let U € T, the
SClalm is clear if U = § so ‘we suppose otherwise. Now we can factor U C S with some
T € M(7,S). Thatis U € T C S and U, T € T|r. Thus we have Mg < (n7)* Mr and
MT < (nf) My thus Mg < (73) " Hr ) My = (n5) "I My. This proves the claim. [
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| Next, given N € My we put Wr ﬂ = 174 (@Ny). If we can assemble these vector spaces
into a vector bundle Wy over My, the above lemma will show that Mz = PWr and

Ithus My is a projective sub-bundle of Mz x PVs. In what follows we will explain how

to do this assembly.

'LEMMA 4.1.5. Let F be a forest and T € F such that M (f T) is non- empty Then the

|map mrr Ve — @ Vy is surjective, the dimension of the kernel is m(F,T) and
UeM(F,T)

ldlm(ﬂ-}' (®&My)) = n(]: T). These numbers are deﬁned in definition 3.3.1

PROOF. For any g€ € Vy and any U € M(F,T) let Jy € Vu be the U com-
UeM(F,T)

‘ponent and yy : U — C be a representative for g yU Next put W = T\ U U and
y , : UeM(F,T)

define x: T — C by

8 if teU
2(t) = yu (1)
L 0 if teW

This construction is well defined since the sets U € M(F,T) are disjoint. Then 7 € Vr

and 7(Z) = 7 thus mrr is surjective. The dimension of the kernel is now clear using the

rank nullity formula for linear transformations.

|

‘Next put Wepy = W}IT(@MU) then the restricted map 71 : Wry — . ]E(B}_ . My is
€

surjectlve and clearly has the same kernel as the unrestricted map. We then apply the

rank nullity formula again, the prevmus calculation tells us the dimension of the kernel

0

’\DEFINITION 4.16. Let T be an S-tree with d(7) > 1. Then we have the surjective map

7mrs: Ve — @ Vi. We define the induced map 77,5 : [[PVr — Grass(Vs, k) by
| TeM(T,S) : '

Trs(M) = n7%(M), where k = n(T,5). It is clear that this map is a morphism of

\varieties.

'PROPOSITION 4.1.7. Suppose T is an S-tree with d(T) > 1 then there is o smooth al-
gebraic vector sub-bundle Wy C Mz x Vg of dimension n(T,S) over My such that
My = PWy, the projective bundle of Wr. Ifd(T) = 1 then My = PVs.
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| PROOf. Let L be the k dimensional tautological vector bundle over Grass(Vs, k) where
k = n(T,S). We have by the previous definition the map 7Trs : [[ PVr — Grass(Vs, k)
?Lnd define the smooth vector bundle Vi over [] PVr to be the pullback of L over 7r s.
Define 77 : Mz — [[ PV to be the projection where the product is taken over M(F).
Next define the vector bundle Wz over M to be the pullback of Vi over w7 : Mz —
[T PVr. Then it is clear that this is the required Vector bundle. To see that Wy is smooth
vvve use induction on the depth of the tree 7. For any S-tree T with d(T) = 2 we have
,’Fhat Wr = Vr which we all ready know is smooth. Suppose the result is true for“ any

S-tree T with d(7) < n—1. Let 7 be any S-tree with d(7)) = n then we know Wr is

@he pullback of the smooth vector bundle V7 over the algebraic map 77 : Mz — [[ PVr.
:For each T € M(J—') we have Tz is a T-tree and d(T|7) < d(7). If d(7|r) > 1 then
by induction each MTIT is the prOJect1V1zat10n of a smooth algebralc bundle and so is
smooth. If d(T|7) = 1 then MTIT = PVr which is smooth. Thus Mz = HMTIT

smooth. Therefore we have that Wy is the pullback of an algebraic vector bundle with

smooth base over an algebraic map and so is a smooth algebraic vector bundle.

O

DEFINITION 4.1.8. Let F be a forest and & C F then we say that U is closed downwards
if for every U € Y and V € F with V C U we have V € U. '

I
1

QOROLLARY 4.1.9. Let F be a forest and U C F be closed downwards. Then the projec-

tion 1 : Mzr—Myisa fibre bundle map. O
fDEFINITION 4.1.10. Let 7 be an S-tree and for each T € T let Ly be the tautological
"\:/ector bundle over P Vr and 7p : Mz — PVr be the projection map. Then we define
‘it‘he vector bundle Nr to be the pullback of Ly over mp. Suppose d(7°) > 1 then let Vr
be the m(T, S)-dimensional trivial vector bundle over Mz whose fibre is ker(r7 s) where

mrs:Vs— €@ Vg is the usual map.
I TeM(T,S)

LEMMA 4.1.11. Let T be an S-tree with d(T) > 1 then we have the smooth isomorphism

gbf vector bundles Wr = Vr & X1 where Xr= @ Nr.
TeM(T,S)
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PROOF For each N € My we have the short exact sequence on the fibres of the

:vector bundles

ker(7r7— ,5') — 7('7— S(EBNT) —T—S—> @NT

ker(nz 5) Vs TS ®Vr

This induces a short exact sequence of vector bundles V7 — Wy — Xr and a choice of

‘smooth inner product on the vector space Vg glves us the splitting W = Vr @ VT We

then use the map 77 5 to give us the isomorphism of the perpendicular bundle V3 with

XT Thus we obtain the splitting WT ~Vrd Xr. ‘ 0

4.2. The irreducibility and dimension of My

Here we will prove that Mz is a smooth irreducible algebraic manifold of dimension
|S| — 2. In particular this will mean that any non-empty Zariski open set is dense in the

Zariski topology and moreover in the classical topology.

LEMMA 4.2.1. Let T be an S-tree then My is a smooth irreducible projective vamety of

dzmenszon IS —2.

;*j PROOF. Since M; = P(Wz) and Wr is a smooth algebraic vector bundle it is clear
that M7 is a smooth projective variety. To show My is irreducible and compute its
‘dimension we use induction on the depth of the tree 7. The cases when d(7) =1 are well
known. Assume the cases to be true for d(T) < n—1,thenford(7) =nand forevery T €
M(F) each T|r is a T-tree and d(7 |r) < d(7'). We first show that M7 is irreducible. By

\induction each —M—TIT is irreducible, thus Mz = [] HTIT is irreducible, therefore My
TeM(F)

1s the pro Ject1v1zat10n of a smooth algebraic vector bundle whose base M is irreducible.

Thus M7 is irreducible. We next compute the dimension. By the above description of

M we see inductively that the dimension of M is > |T| — 2. Now the dimension
TeM(F)
of the projective bundle follows from proposition 4.1.7 and is n(7, S) — 1, thus we have
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Am(Mr) = w(T,8)-1+ 3 (T|-2)

TeM(F)
= |8]-2~ > (TI-2)+ Z (ITI—2
TeM(T,S) TeM(F)

= |S| -2 since M(T,S) = M(F)

- 4.3. The tangent space to —/WT

‘We next compute the tangent bundle of the space M. Using the embedding of M7 in
H PVr we identify it as a sub-bundle of the tangent bundle T[] PVr = HTPVT This
,result will then enable us to calculate the tangent bundle for more general collections
L of subsets of S, this we consider later. In particular we will be able to compute the
_fangent space of Mg. Before we can begin our computations we will need to introduce
some definitions. These definitions will be generalized in later sections and are important
throughout this thesis. Here we also prove special cases df more general results as they

are particularly easy and serve as a warmup for later results.

DEFINITION 4.3.1. Let 7 be an S-tree and M € Mz. We define the type of M denoted
»type(M ) as,

‘tYPe(M)={U€T| foral TOU with T € T = 75(Mr)=0}

'REMARK 4.3.2. It is clear that type(M) is an S-tree.

DEFINITION 4.3.3. Let 7 and U C 7T be S-trees then we define a function root : 7 —
i

by root(U) =T Where T € U is the element of minimal size containing U. We say T is
the root of Uinif.,

'REMARK 4.3.4. Let T and U C T be S-trees. Let U € T then root(U) = U in U if and
jonly if U € U. Further if U C V then root(U) C root(V). On occasion we may extend
this definition to elements T' C S other than those in 7.
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LeMmg 4.3f5- Let T be an S-tree and M € My an element of tree type U. Let U € T
M put T = root(U) in U then T My = My.

Proop, Suppose for a contradlc’mon 7L Mr = 0. Then clearly U ¢ U for otherwise
T ‘
= I00t(U) = U and 7 My = My. Let V € T with V D U then since T is minimal

y | ice.
2T>y and Ty My = nfmh My < 75 Mr =0 thus U € Y a contradiction. O

LEMMA 4.3.6. LetV be a finite dimensional complex vector space, L the tautological vector
bundge over PV and M € PV. Define inc(M, V) to be the subset of hom(M V) consisting
% the non zero functions. We then define the algebraic map h : inc(M,V) — PV by
h(o‘) = a(M) and gy : V — V/M to be the quotient map then

(1) The map h is locally a product projection in the Zariski topology

() The derivative dn : hom(M, V) — Ty PV is surjective at every point.
(3) The kernel of the derivative dh of h is hom(M, N).

(4) TPV = hom(L, V/L)

(5) The derz'vatlve dh : hom(M,V) - hom(M, V/M) is dh(f) = qu o f

e Proop, We first prove that the map h is locally a product projection. The fibre of
bun;rllap Is h~ ( ) = inc(M, N). It is clear that we can form the smooth algebraic vector
e W over PV w1th fibre Wy = hom(M, N). Write 7 : W — PV for the projection
Letritl:‘m and let U be a Zariski open set containing /V so that 7~ (U ) = U x C is trivial.
= {(N,v) € W |v # 0} and write 7% : WX — PV for the evident morphism.
estricting C to C* we obtain the smooth isomorphism 7*~}(U) ~ U x C* with fibre
“* N being 4=1(V), this show us that h is locally trivial. Since A : ine(M, V) — PV
I8 5 Product projection near N € PV with h(g) = N where g : M — V we see that
dlfferentlal dh at g : M — V is surjective. Thus we then have the surjective map
lthls (:Om(M V) — TyPV. We have Wy = hom(M, N) is a subspace of hom(M, V) and
far h sends W = inc(M, N) to a point and g € W} thus taking the derivative we

. e:;lat the kernel of the map contains Wy, but the kernel of the map is one dimensional
ker(dh) at g. When N = M we have dh : hom(M,V)/Wy — TMPV is

1 lsom0rph1sm The former space may be identified with hom(M,V/M), we can do
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this lOCaHy for each M € PV. Let U be an open set containing M. If we put ker(hy)
for the vector bundle corresponding to the kernel of the derivative we obtain the local
SOmorphlsrns dhy : hom(M, V) / ker(hy) — T|y(PV), we may then glue these to obtain
the tangent bundle. Then the tangent space at each point M € PV is represented
by bom(py, V/M). Now the spaces hom(M, V/M) fit together over PV to form a smooth |
Vector bundle and the evident quotient map into the tangent space is an isomorphism. One
then Sees that we may then take the derivative map dh : hom(M,V) — hom(M,V/M)
bydh(f)=qMof. ) : - ' X a

D
| EFINITION 4.3, 7. Let 7 be an S-tree and M a point in MT then for any U and T in
T

With U C T we have the usual map 75 : Vp — V. Then 7§, (Mr) < My, so we have
i
Ndyceq maps 7l : My — MU and 75 : Vp/Mr — Vy/My. We then define a complex

Vectop Space oy by

o ' ) . ,
T = {g € H hom(Mr, Vo /Mp) | Thar = ayng forall U CT with U, T € T }
TeT ,

W | |
€ then define or = [ o7 um- Note that the condition in the braces is just the requirement

that ¢}, M -
- the following diagram is commutative for all U,T' € 7 with U C T.

MT "—9[1* VT/MT

5 .
EFINITION 4. 3 8. Let M e Mg with tree type Y and T € U. Suppose MU,T) is

lop.

-empty thenlet myr: Vr — @ Wy be the usual map. Then we define the vector
Sp UeMU,T)

e Wy p = m; (@ My). It M(U, T) is empty we define Wiy = V.

Co ' R—
NSTRUCTION 4.3.9. Let 7 be an S-tree and M € My, Put U = type(M). Let
& T and put T = root(U) in U then we define the surjective restriction maps

T
v hOm(MT,VT/MT) — hom(My, Vy/My) as follows. Since T' = root(U) we have

. Al
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T
"oMr = My and thus the restricted map 7§ : My — My is an isomorphism. We also
h

¢ the induced quotient maps 7L Vp/Mr — Vy/My. Then given an element oy €
h

Om(MT,VT/MT) we may define the element 6% (ar) € hom(My, Vi/My) by 05 (ar) =

7TUO‘T(WU) . We then define a map 6 : [[ hom(Mr, Vz/Mr) — H hom(My, Vy/My)
Teu

byg
= H 9{})Ot(U).
Uer

R
:MARK 4.3.10. We observe here that 6% = dp¥; where p¥ : PVr \ ker(r%) — PV;; and
: '/TU

Vr W is the usual map. That is over the part where pU PVy --» PVU is regular

. _ .
‘ EMMA 4.3, 11. Let T be an S-tree and M € Myz. PutU = type(M) and write N for the
Mmage of M in My then | ‘

(1) The pro]ectzon Tio0T.M ™ OUN 1S an zsomorphzsm Of vector spaces
2) MN = H hom(MU,WM U/MU)
3) dim(gy, N) 5] =

) T.

4) The map 0 'restrzcts tof:oun — oT.M whzch 18 tnverse to T

(
(
(

T
he Proof of this is deferred to lemma 6.3.4 where we give the statement in greater

L
My 4, 3.12. Let U, W C S withU € W and put T to be the tree {U,W}. Then the

tan
9ent bundle 1o My is o7

ProoF, Let M € Mgz and foreach T € T let inc(Mr, Vr) be the subset of hom(Mr, Vr)
zonsisting of the non zero functions and define a map hr : inc(Mr,Vr) — PVr by
T(O‘T) = ar(Mr). Define Yr to be the variety hom(My, My) x []inc(Mz, V) and Xr
®be the closed subvarlety of Yr given by X7 = { (v, ow,av) € Yr | 7l aw = oy} }

th
8 is the followmg diagram commutes.
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N . —
Xt consider the following commutative diagram where ¢ : X7 — My is given by

q(%g) = (hw(aw), hy(ay)). and r : inc(My, Viy) x inc(My, Viy) — PViy x PVy is given

yr= Py x hy, p is the projection and j the inclusion.

Xr —-I—)’ il’lC(Mw, Vw) X inc(MU, Vu)

My —2 PViy x PVy

Ui claim that this algebraically is a pullback. Let Z7 be the pullback and p : X7 — Zr
b the Comparison map. We produce an inverse s : Zr — X7 as follows. Let (N, aw, ay)
be Point of Z7 then by definition N = (aw(Mw), ay(My)), so that the restricted
| 4Ds with the same names onto their images give us the isomorphism of vector spaces
‘ “w My — Ny and ay : My — Ny. We also have 7¥¥ Ny < Ny. Now we need to
Ci{l}lstruct a linear mép %‘}’ : My — My so that nf¥ aw = ayv}/. Then it is clear that
W mug, be the unique map defined by 7 = aj'mlf aw, so we define s : Zr — Xz by
S(N, Aw,ay) = (a(}lmv}’ aw, aw, ay). This gives us the desired inverse morphism. Next
V lempg 4.3.6 r is locally a product projection. Thus we see that the derivative dr is

1 SUriane: —_— .
1 lective at every point and since M7 is smooth we see that the pullback Z7 is a smooth

al . ‘
8ebrajc variety thus X7 is a smooth algebraic subvariety of Y7.

Ne ’" \
: Xasris g product projection and the diagram is a pullback we see that ¢ is a prod-

Ut 1ypoig e . C . .
Projectionr: Thus the differential of ¢ is surjective at every point. In particular we

haye (. _
® (7, inc, inc) € X7 where 7 = mY/ and the differential is surjective at this point.

® Drove oy claim we are required to show that dj(TyMr) C ap or equivalently that
d(jq)(T(w,inc,inc) Xr) C op. Let (z,yw,yu) € Tir,inciine) X7 then we can choose a smooth
SZEE P:R - X-’T,given by p(t) = (7(t), aw(t), au(t)) such that p(0) = (r,inc,inc) and
) = (%, yw, yr) where dp(t) = (’y’(t),a’W@),a}](t)). Since p(t) € X7 then we have

v Caw(t) = ay(t)oy(t). We then take derivatives with respect to ¢ using a Leibniz argu-
j:;nt and evaluate at t = 0 to see that Ty Od{,v(O) = ay;(0) 07(0) + oy (0) 0+ (0) therefore
t}i}e .wa = yy omy +incox. Now the differential of the map hr : Inc(Mr, V) — PVr at
Nelusion jne : Mr — VT.is the map dhp © hom(Mrz, Vr) — hom(Mr, Vr/Mr) induced

fl‘o '
M the quotient map gr : Vi — Vp/Mr and we have qumll. = Tf¥ qw and gyoinc = 0 thus
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o
Mposing with gy we have QUWU oyw = quyu © 7TU that is ﬂrU o (qwyw) = (quyv) © W(va

] le
- ™ Ve have the following commutative diagram

My W Vg LA Vw /Mw

=W
it Ty

My bu .V qu VU/MU

if W,
€ put Ow = qwyw and oy = guyy then we have a € TMMT and T o aT = aU orl

th
erefore TMMT < 0'7— M and a dlmensmn check gives us an equahty

0
o ‘ o . .
OROLLARY 4.3.13. Let T be an S-tree then the tangent bundle of My is o7.

Proor, Let M € My and U,T €7 withUCT. Put V= { U, T} and consider the

ollowing diagram.

|

<

T""“?':"’ HPVT
TeT

n
iy

Kl

—J, HPVT

TeV

wh B
®T¢ 1 and J are the inclusions. Let o € di{Tu wMr) then by taking the differential of
is
diagram and using the previous lemma on the space M, we have that aly € opy

Wh
y Iere N = 7( M;) for each such pair U and T Thus o € o7 ». Now the dimension of o7 y
s8] - v -

2 by lemma 4.3.11 thus we may take the tangent space TMHT tobeorpy. 0O

4.4. The blowup description for My

- ,

his section we Wﬂl show that for any S- tree 7 the space My is an iterated blowup

N he Projective space PVy taken over certain linear subspaces. We will use this to later
Tov

* a more general result about blowups over linear subspaces of PVy without much

ther effort Let inc : MT — Mz X PV be the inclusion, m : Mz x PVg — M5 be
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the Projection onto the first factor and 7y : Mz x PVg — PVs the projection onto the
*¢ond. Then section 4.1 told us the composition m o inc : My — My is a projective
bundle, Here we prove that the composition 73 o inc : My — PVg is an iterated blowup.
] We reduce this calculation to the most basic case of a tree of depth 2. This case is easily

| Compyeq

ietlf be a variety, Y a subvariety and write 7 : BlyX — X for the blowup of X over
Dartlcular for a blowup we have (1) the restricted map 7 : 77} (X \Y) - X \Y

S an 1Somorphism and (2) the fibre of the map over Y is a projective ‘space of dimen-

Sion codim (X, Y) — 1. In the case when X and Y are smooth 7~}(Y) may be identified
With the Projective normal bundle of Y in X. It is stated in [4, page.604 remark 4] that

ndltlons (1) and (2) characterize the blowup in the smooth case. This would greatly

o mphfy our situation. However no proof of this is supplied and I cannot prove it so we
Proceeq dlfferently In our situation everything is smooth, this simplifies our analysis.
U the Category of smooth complex manifolds there is a local approach to the process of

lo
Wing up. We give a reference to [4] for more details on this approach.

:eE:ZT/.\ 4.4.1. Let i : W — V be an injective 'n_:Lap of vector spaces and i : PW — PV
“duced embedding. Let N € PW , M =i(N) and write i : N — M for restricted
T}‘Zjnzt::hzch is then an isomorphism , j : W/N — V/M for the induced quotient map.
N e derivative di : hom(N W/N) — hom(M,V/M) is given by di(f) = jfi~* and
€ image of di is hom(M, W /M) where W = i(W). Further let Ly be the tautological
Vectop bmdle over PW then N (i) = hom(Lw, V/W) where N(3) is the normal bundle.

) ' , : . .
ROOF. Consider the following commutative diagram,

]

PW PV

inc(N, W) —ﬁ inc(M, V)

ek inc(N,W) — inc(M,V) is given by k(f) = ifi~'. Then k(inc(NV,N)) =
(M M) and taking derivatives we obtain the desired result. The results on the image

anq
Normal bundle are then clear. ' -0
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I

U particylar given T C S we define an equivalence relation on S by u ~ v if and only
if
“=vor u,v € T and write S/T for the equlvalence classes. We will then define a
Hetura] embedding of PVgp into PVs. This embedding, which we define next, will appear

1 hrough()llt the thesis.

CQNSTRUCTION 4.4.2. Let T C S and qr : S — S/T be the usual quotient map. For each
u S S we write U = qf(U Yand qy : U — U for the restricted quotient map. Then we
defing Maps a ry : PV — PVy as follows We first define a map 7y : :F(U,C)—>F (U, C).
.FOr any fo ¢ F(U C) we define fU € F(U,C) by fu = onqU Now 7y sends constants to
“hstants o we can define the induced injective map 7y : Vo — Wy and in turn an injec-
tve Map 7y, PV — PVy, this is the ﬁrst of our desired maps. One readily verifies that

e have 5 ghort exact sequence Vi — VU — Vprw and we define Vi = ker(ﬂTnU) We then

efine the isomorphisms sy : Vy — Vi by the short exact sequence and sy : PVU — PV

‘ o be the induced map This is the second of our de51red maps.

Ly
MMA 4.4.3. Let T C S and gr : S — S/T the quotzent map. Then with the nota-

tlo
" as abO’Ue we have maps Ty - PVU — PVU O,'H/d Sy PVU - PV We also ’lU’I"ZtC
.
PVU — PV to be the restricted map of Ty onto its image. Then ry and sy are in-

Vep, ‘
%€ for each other. Let U CW C S then we have the following commutative diagrams,

W — ¥ Sw
W w w w
7T—U~ 7TU 7I'U 7T—U~
Ty = Su
VU VU VU VU

In oy —
| Particular 4f |U| = 1 then we obtain 7}frw =0

Dy
N FNtTio 4, 4.4. We say that (7,5,T) is compatzble if 7 is an S-tree, T C S and for
Ve
YU eT with T NU non-empty we have T' C U. Then T II {T'} is an S-tree. We then
Writ
e 7, for the tree 7 11 {T} and T is a minimal element of 7.
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CONSTRUCTION 4.4.5. Let (T S,T) compatible and write T = qr(T) where gr : S —

| S/T 18 the collapsing map. Then we define a map jr : My — My as follows. Given
‘1 Ne M‘ and U € 7 we define My = ry(Ng). This clearly gives an injective map
Jr: M‘ - [I PVy . We must show that its image lies in M. leen U W € T with

UeT
u SW we have U C W and it is then clear from the first commutative diagram of the

;‘ last lemmg that we have a map jr : M7 — My and we have the followmg lemma.

LEMMA 44.6. Let (7,5,T) be compatzble then the map jr : Mz — My is mjectzve and

i
5 Zmage is the closed variety

2T, T)={MeMy;| foralUeT withU >T = n%My =0}

PROOF_ The inciﬁsion image(jr) C Z ("T ,T) is immediate since for every U D T we
haye the short exact sequence Vyr — Vu — Vr. Let M € Z(7,T) then by definition
7F¥MU =0 for every U © T with U € T thus My € PVy. We have the map sy : PVy —
PVU/T and write Ny for the image of My then by the second commutative diagram of
the lagt lemma we immediately see that N € Mz and jr(N) = M thus the image is as

cl
“aimeq, It is clearly Zariski closed from the definition.
g

E)NSTRUCTION 4.4.7. Let (T,8,T) be compatiblé. We then define a map i7 : PV x

T Hﬁ by ir(Mr, M) = (Mr, jr(M)). Because T has minimal size we see by the

ag e .
tlemm, that this does indeed lie in Mz,

Ly, | _ |
EMMA 4.4.8. Let (T,8,T) be compatible then the following diagram is a pullback.
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Lema 4.4.9. Let (T,S,T) be compatible and U = root(T) in T. Let 7y : My — PVy

b the brojection map and ry : PVU/T — PV be the usual embedding then ny th ry.

PROOF- We begin by working out the images of the respective tangent maps. Then
Ve roceed to work out their sum. In this proof we will be making extensive use of lemma

4.
LS to work out the dimensions of the various vector spaces we consider. This should be

ol
“ear from tpe context and will not be explicitly stated when used.

Let Me Mrand N e PVyr such that 7y (M) = ry(N). Then it is clear by lemma, 4.4.1
‘ hat the ; Image of the tangent space of k is hom(My, W/My) where W = ker(7¥) and
VU — Vr is the usual restriction map. Next put i = type(M) and W = root(U) in U.

% Compuyte the j image of the tangent space of 7y at M we need to compute the image of the
| br OJectlon map 7 : o7 gy — hom(My, Vy/My). By lemma 4.3.11 we have the isomorphism
| Uy — o7 5y where N is the image of M in My and OuN = [ hom(My, Wa,u/My).
’91:/18“ We see that we must compute the image of hom(MW, WAUJGVL;/ My) under the map
U - hom(My,, Viy /Myy) — hom(My, Vy/My). Equivalently let ¥ : Viy — Viy be the
Usyg) Projection map then the image of hom(My, Warw/Mw) under 6% is the space
| hom(MU T (Wagw)/My). Define A(U) = {V € MU, W) |V C U }. If A(U) is empty

€ Whole claim is trivial since 7 (Wy,w) = Vi so we suppose otherwise. Then we have

fOHOVVIHg commutative diagram where all the maps are surjective.

w
T
VW v VU
Tu,w tU
D wl O w
XeMUw) - YeAU)

By
Wz < tg! (@My) then we prove that the image of the tangent space of ny at M is

My, Z/My). The diagram induces the map ¥ : ow (®Mx) — 75 (©My) where
Yw = Taw(@®Mx), 77 is the restricted map of 7% and we are using the same limits

Bbove, We need to prove that this is surJectlve Put B(U) to be the complemen‘c of

th
© Se A(U) in MU, W) and write ¢ : Vig — Vu @ 69 Vx for the evident map. This
XeB(U)

Ingy
WD 18 surjective as Y N U i is empty for each Y € B(U). One then sees that the kernel of
’y = . . . ’
s "oy @ € My). Given this we have the following dimensions,
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dim(ker(y}/)) = [BU)|+|W|-1- > ([Y]-1)-(U|-1)

: | YeB(U)
dim(Z) = [U]-1- Y (IX|-2)
XeA(U)
dm(r7}, (@Mx)) = Wi-1- 5 (X|-2)
‘ XeMU,W)

B l

0 ‘ o
e then readily checks using the observation A(U) Il B(U) = M (U, W) that we have

dim(m;; 3y (®Mx)) = dim(ker(y7))) + dim(Z)

h. "
| S then shows us that the image of the projection map 7 : o7y — hom(My, Vi /My)
i

8 hOrl'l(MU, Z/MU)

}I:z;?;ansverse intersection we mﬁst ‘show that hom(My, Z/My) + hom(My, W/ My) =
U,VT/MU) or equivalently Z4+ W = V. Now let p : Vy - Vr & @ Vi be.
Si:C:V;jdént map then this map is surjective because Y N T is empty for evezl';/e ;fgjé AU)
18 the minimal element containing T and we know the dimension of the kernel.

Oreq
Cover the space ZN'W is p~}(0r & @ Mx) thus we have the following dimensions,
( sp

dim(Z) = [Ul—-1- Y |X|-2
XeAlU) )

 dim(W) = U]~ 7] |
dmEZAW) = [AQ)+U-1- ¥ (X]-1)~ (7]~ 1)

XeA(U)

h
1S we obtain -

dim(Z + W) = dim(Z) + dim(W) — dim(Z N W) = |U] — 1

a.nd
Wi .
©are done, . . » , - 0O
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L
EMM4 4, 4 10. Let X be a smooth variety and Y, Z smooth subvarieties. Suppose Y and
7
tntersect transversely and put W =Y N Z. Write m : Bly X — X fOT the blowup of X
al
(tong y then the restmcted map 7 7~ (Z) — Z is the blowup of Z along W.

For . ‘
'8 Dproof see for example [13, page T4]

Lg
" MMA 44, 11. Let 7 : Bly X — X be the blowup of X along Y and Z be any variety
enwxld BlyXxZeXszstheblowupofXxZalonngZ ‘ : - d

Ly |

MMA 4, 4.12. LetV be a complex vector space, W a subspace of V andw V — V/W the
qu

Otzent ‘™Map then the blowup of PV along PW is the proyectzon p B(V,W) — PV where

B(V, W‘)’ = {(L,M) € PV N P(V/W)|L<n (M)}

ROOF. We have PW = { M € PV | n(M) = 0} thus

Bloy Py - {(M,N) € PV x P(V/W) | M € PV\ PW, N = (M) ’}

< BWV,W)

Ne gagite -
easﬂy Sees this is the closure as B(V, W) is irreducible and we are done.
O

e ,
ORo
iy, LLARY 4.4, 13 Let S be a ﬁmte set and T CS. Letrg: PVS/T — PVS be the em-
i
"9 of COnstructzon 4.4.2 then the blowup of PVS over PVS/T is m: My, T} = PVs.

thROOF Consider the short exact sequence Vs/r — Vs — V. The last lemma tells
8 the blowup of PVy along PVS/T is B(VS,VS/T) Write 7 : Vs — Vs/Vgr for
quotlent map and Ty : Vs/Vsyr — Vr for the 1nduced isomorphism where 7% :

T Vot the standard map. Then we have 5 = Tym. Consider the isomorphism
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g . ,
PVsx p (Vs/Vs/r) — PVg x PVyp induced by T3 which is the identity on the first.
fa : ‘ — .
Ct()rf Then ¢ restricts to an isomorphism 6 : B(Vs, Vsyr) = Msmy that commutes with

Project;
- “H0Jections tq PVs. Thus the claim is proven. ’ O

Lg ’ o — e
‘ M\MA 4.4.14. Let (T,5,T) be compatible then the blowup of Mt along M is given by -
T MT+ _ mq_., ‘ '

: Proop, Let U = root(T) in T and put V to be the set 7 with U removed. Consider
t ) : ,
¢ fOllowmg commutative diagram where jz is the map of construction 4.4.5 and ko7 is

t ion
he Obvioys factoring.

_ ne —

Mz, My x My
H‘T ine PVy x My,
it | - |k
M i; PViyr x My

Bt laiy that image(k) "My = image(jr). Let M € image(k) N My then 7§ (My) = 0.
F;Z\;et V be‘ any element containing 7' then since ’T is a tree we have V'_I_) U and
| v) < My and therefore 7% My = 0 thus by lemma 4.4.6 we have M = j(IN) for
.4.f3u§ique N e M. Thé ofzher inclﬁéior; is auﬁ)_matiéally true. 'Iil—l_en using lemmas
#1d 4.4.11 we see that the blowup of PVy x My along PVy;r x My is given by the
t :szsm [Tt is easy‘to‘ seé By Emma 4.4.9 that k& rhkinc then using lél’il:l_’la 4.4.1_0_we see
€ blOWup of M7 along Mz is the restricted morphism 1/ : Y Mz) —» Mz We
¢ Tequireq tq prove that Mz, = [~1(Mz). The inclusion C is clear by the commutative
*8ram, see the reverse inclusion let M € [7'(My) then for any V 2 T with V € T |

wil] : : ;

be €nough to prove that mh My < Mr. Because U is the smallest element of 7
thy,
Th

di
it
Co
8T wehave T C U C V. By construction we have 78 My < My and nfy My < My
SV . ’ o 0

r My = niny My < 7% My < My, This proves M € My, and we have the equality.

en : — _—
Cleaﬂy we have 7 : Mz, — Mz is the desired blowup, as claimed. ’ g

N
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Co — —
b ROLLARY 4.4.15. Let (7,5,T) be compatible and jr : Mz — Mg be the usual em-
edd; '
ding. Thep, the normal bundle is hom(Ny,r, Vr) where U = root(T) in T. The projec-

bty gt _
"ation of the normal bundle is the trivial bundle Mz x PVr.

P _— > o : .
ROOF. Consider the following commutative diagram where V is 7 with U removed -

an
dall the maps are embeddings

MT PVU X -M_V
JT k
—MT PVU/T X X/t—v

l;ie:;:?.have.an induced »map N(jr) — N(k) and a transverse intefsection tells us that
i, r: is su.rjective on fibres. The dimension of the fibres are both |T'|—1 thus the map ig
the Shor(;rphlsm on fibres. Clearly N(k) %’ N(ry) where ry : PVy;r — PVy and we have

€Xact sequence Vy/r — Vy — Vz. Thus by lemma 4.4.1 N(k) = hom(Ly,r, Vr).
PiiUZU/ ; be the pullback of ‘the tautological bundle Ly r over the projection 7 : _M—T —
triVial -b hen We.see that the normal bundle is hom(NU/T, Vr) where we write Vr for the -
st Clenundle with the same fibre. This can also be written a—s— N /r ® Vi where the
anSWer Otes the dual bundle. This gives the projectivization as Mz x PVr the expected

O

DEF b
1 . —_—
o NITION 4.4.16. Let Ug be the usual open set of PVs and m : M; — PVs be the
Oje : ‘
A Ction Mmap. Then we have proven that 7 is a composition of blowups and is there-
e Sypi. .. .
"lective. We then define the non-empty Zariski open set Mgz = 7~ }(Us). Then

TC AT . -
=My 1s dense in the classical topology since My is smooth and irreducible.

CON . :
S )
TRUCTION 4.4.17. Given an S-tree 7 we fix an order on it as follows. We define

1=
S and T, = {S}. Suppose T3, ..., T, and 75, ..., 7, are defined then we define Try1 €

T

7,
ang t0 be an element of maximal size and 7,4y = 7, U {T,41}. Then T, ={T;|j <i}
A d .
. “fine 57 — P(ker(n$)), By = PVs and B, = BlgrB; where T = T}.,; and write
‘l+1 : s —_ 1 .
Tis1 — My, for the projection map. Then for any U € T we define qu = strict

sf
°m of SU in B,
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LEMMA 4.4.18. Let T bean S- tree and T; be an order as above then B; = My, and given
Vet with U = Ty, we have SY = ju(Mz) for every i < k and is zero otherwise where

we QuOtzent mqy:S— S/U and write jy = jz, in particular By, = Mz where m = |T|.

PROOF We prove the claim by an induction on 4. The case when ¢ =1 is clear from
the deﬁnltlons Put T = T;v1 then mductlvely B; = MT and ST = JT(MT )- Then by
e 4.4.14 we see that the blowup of B; along S7 is By = Mg,,,. We are left to
Prove the claim for the strict transforms. Choose i + 1 < k and put U="T % then define
W = 57\ ST where 1nduct1vely SY = ju(Mz,) then we need to calculate cl(7 35 (WY)).

©first prove that ”

Mz, ) E ;ll(WU)uJ'U(W—' )

We prove the left hand mclusmn ﬁrst Let, N € MT and put M= jU(N ). Then by
tung 4.4.6 we see that for every V € Tiy with V O U we have Ty My = 0. Put L to

© the ; IMage of M under Tig1. Then again by lemma 4.4.6 we see that Lesy. Because
u Tey by choice of order we see T2 Ms # 0 50 that L ¢ ST thus M € ; +1(WU) and the

hand 1nclus1on is true

NeXt let M e ; +1(W.U ) and put L to be its image under ;4. Consider WU - MT )
Sange Lgsr by lemma 4.4.6 we can find a V € 7; containing 7' such that my My = My.
“Cause Le SY we deduce that 7y WMy = 0 for all W € 7; with W D U. In particular

t ' 13 .
i then tells us that 77 Mr = 0 if T D U. This proves the right hand inclusion.
The

. o taklng the closure of both 31des and recalling that jy is a proper map and M= ~
s

 tense iy Mz, we see that SF, = cl( Q+1(WT)) = JU(MT .+2)- This completes the
Nductio, \

O



CHAPTER 5

The cohomology of M, for forests

In g, —
b 18 chapter we compute the cohomology of the space M for any forest F. We begin
Y defin; : ‘ e

eﬁnlng a ring Ry and showing that it has a natural decomposition into a tensor

odet o lings R (@ Ry|, where each F|r is a T-tree. For the case of an S-tree
T the result of propositfjfilfi 7 represents M as the total space of a tower of projective
bundles, Effoct; , .. . ' N . .
i Ry ¢ : eC’glvely, this will enable us to compute its cohomology‘rmg and pio—ve it
710 the tree case. We then prove more generally that the cohomology of My is
ri; ':fhismis just the Kiinneth theorem. This will help us to gnderstand the cohomology
$» which is the main subject of chapter 9. In particular we will show that the
a:lo:;logy ring of My is finitely generatéd by its elements of degree two and free as an
— ngOup, there is a natural choice for these generators, and the rank of R% is the
o by, riO elements in F whose sizes. |T| are at least three. We also compute the rank |
1g. This will enable us to produce two different descriptions of a basis for it.

uzdi‘St T(\i;scription will be the natural one associated to the éohomology of a-projective
ing Of.A\/t § second basis will providg some ingigh‘c into the structure of the cohomology
Secong . s fmd will be formulated in the language of trees. Later we will see that the
esc?}ption extends naturally to rings of greater generality. We will also specify
:Z::z?ry and sufficient condition for a monomial z in Ry to be zero, this result will
» and developed further when we later examine the zeros of more general rings

&nd

in . -
" Particular the cohomology ring of Mg. We recall here that we will be using the

WVentiong ;
10ns n chapter 2 regarding rings.

5.1. The cohomology ring Rr

13 sapt w L —_—
. Section we will compute the ordinary integral cohomology ring of the space M,
Pro , : : : -
Of presented here relies on the previous chapter for the description of Mz as the

total
8 . C
of g Pace of an iterated projective bundle. We then proceed inductively (on the depth
& -
tree T) to compute its cohomology ring using a general result that relates the
45
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Co '
hOmOIOgY of a projective bundle to that of it base space and the Chern polynomial of

the
Underly Ing vector bundle a notlon we define next as this is non standard terminology.

DE |
FINITION 5.1.1. Let 7 : V — X be an n dimensional complex vector bundle over X

fnd (V) e o 2"‘(X ) be the mth Chern class of V then we define the Chern polynomzal .
t *
"0 by fult) = Sy

e
lext remmd the reader of some standard results about Chern polynomials, these fol-
N llnmeChately from the properties of Chern classes. We then state a result that relates
&
cohomOlogy of X with the cohomology of P(V), the prOJectlve bundle of V over X

gether Wlth the Chern polynomial of V. For the proofs see any standard texts on char-

Cte
tistics classes [11] for exarmple.

Prg
l PC)SITION 5.1.2. LetV and W be vector bundles over a base space X then the Chem
Do
ynomml of the vector bundle U=V & W s fVeBW foW
O
RO | '
POSITION 5.1. 3 Let V be a tmmal comple:c vector bundle over X of dimension d then

fv(t) <

O

Ro | B | ‘
of PosITIoN 5.1.4. Let V bea complea: line bundle over X then the Chern polynomzal
Vis fV(t) =t- e(V) where e(V) is the euler class of V.
‘ I ‘ -

OREM 5.1.5, let V be ann dzmenszonal vector bundle over X and fy(t) € H*(X)[t] be

€q
S$0ciated Chern polynomial then H *(PV)=H*(X)[t]/ fv(t) where the identification
Qtuml

H*(X Moreover { 1,t,...,t»* } form a basis making H*(PV) free of rank n over

O

N .
TRUCTION 5.1.6. Let 7 be an S tree with d(T ) > 1 and for every T € T define

T to
Let be the tautological line bundle over PVr and yr = e(L7), the Euler class of L.

7 e the set 7 with S removed. For every T € M (F) let mp : Mz — PVp be

the
€ pr
*OJection map and put z7 = WT(yT) We define the polynomlal fr € H(M#)[t] by
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fT(t) = ¢m(T,S) I (t—z0).
TEM(T,S)

L

EMMA 517, Let T be an S-tree with d(7T) > 1 then fr is the Chern polynomial of the
v

ccior bundle W where Wy is the vector bundle of Proposition 4.1.7.

Proo, Lemma 4.1.11 gives us the splitting Wz = VTGBXT where X7 = @ Nr.
TeM(T,S)

Th
®1l using the previously discussed results on Chern polynomials we have

Jw = fvr H fNT .

TeM(T,S)

= T8 [ (t-e(Np))

TeM(T,S)

#(T,S) H (t —zr)

TeM(T,S)
O

Dy '
EFINITION 5.1.8. For any forest F of S let Ir be the ideal in the polynomial ring

Ly 7| m(F,T) _
Yr | T € F ] generated by elements of the form y II1 (yr — yv) where
UeM(F,T)

S an element of F. Note that when M (F,T) is empty i.e. T is a minimal in F we take

y
COn\fentlon the relation to be ym(}— T = yi11~2 We then define Sy = Zz/I7.

“MA5.1.9. Let F be a forest then Sr = Q@  Srip O
. ’ TeEM(F)

PR n ‘ ‘ -
OIDOSITION 5.1.10. Let F be a forest then Sr is the cohomology ring of Mx and is free
in abelzan group with finite rank. The identification sends Yr to zp = wh(zr) where

M.r — PVp and zr 1is the standard generator of H*(PV7).

PROOF We prove this for the case of an S-tree first. We proceed by an induction
gument on the depth of the tree 7. If d(7) = 1 then we have that M; = PV thus the

Um g clear in this case. Assume the result is true for a tree of depth d(7) < n—1 then

0 —_— —
_ Usider any tree of depth d(7) = n. We have by proposition 4.1.7 that = : My — M

San. . : ‘
* Projective bundle where F is the set 7 with S removed and we now apply theorem
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3.1, ,
5 to Compute its cohomology. Then,

H'(M7) = il (I}A(/tt)ﬂq‘)[t] by proposition 5.1.5
T .
= [® H;Aé)TlT)] i inductively by the Kiinneth theorem
T .
[® STlT] [t] . .
e t
[0 by induc 1gn
SF(t]
= —— by lemma 5.1.9
fre) ™
~ L1
= 1
= Sr

hy, > - '
. SWesee Sy s finitely generated and free as an abelian group and S7 is the cohomology
n — . '
; (g of M. Note that by a slight abuse of notation we have not identified the various
7(t)

Under egch isomorphiém to avoid extra notation. This should not lead to any -

COnf . . S -
Usion, The arbitrary case of M then follows from the description given in lemma

1.1 . :
the Kiinneth theorem and the previous tree case. -
Cog | P S t
OLLARY 5.1.11. Let T be an S-tree with d(7) > 1 then St & [®f ZI;)'][ ] O
| T
H

avi -

i 18 Droven Sz is the cohomology ring of Mz we now proceed to describe a different
Ig .

Ry that is naturally isomorphic to Sz, in fact they are equal but this is not immedi-

e fy : :
it oM the definitions. This ring will be in a more natural form to enable us to compare

Wit - —_—
b the cohomology ring of Mg which we consider in chapter 9.

Dgg : -
I .
NITi0N 5.1.12. For any forest F of S let Jr be the ideal in the polynomial ring

F o= :
2y, | T € 7] generated by elements of the form 3" [I (yr — yv) where
SF, ‘ , UeM(T,T)
on 0d T C Fis a T-tree of depth 2 or less. Note that in the case that 7 has depth
€ w, )
| © have the special relation yp D y'TT =2 corresponding to the fact that M (T,T)
fm "
Pty. We define Ry = Zz/Jr and write B for the standard monomial basis of Zg.
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, REMARK’ ‘5 1.13. More explicitly let T, Uy, ..., U, € F with the U; C T and disjoint then
We have the relat1on ym H(yT yy,) = 0 where m = [T| -1 — Z(lel ; 1). The ideal I
elates to the case when {Ul, ey Up} = M (F,T). Z ”

REMARK 5.1. 14. 1t is 1mmed1ate that we have I F C J}- and that for every U C F we

‘ have the followmg commutative diagram where 7 : M F N ,/\/lu and s is 1nduced from the
nClumon

*

H (My) 2o H* (M)

Su

Sr

® will lext show that thls 1nc1u51on of 1deals is actually an equahty so that R = Sz.

pOIOgICaHy from the above diagram this W111 be easy to prove, since we may put I to 5

be ¢ the 7.

tree associated to the relation we WlSh to prove. Then the equwalent relation

Wil

1 hold In *(M ), we obtain the result by applying 7*. However it would be better if
We
uld Hnderstand this rmg from a purely algebraic v1ewp01nt

Le . RPN ‘
M 9.1.15. Let F be a forest then Ry = Sy

[® S511,]lt]

fr(t)

PROOF We prove this for S—trees first. We use the descrlptlon of S; ag =i
W
here the broduct is taken over M (T S) to prove 1nduct1vely on the depth of the tree

thag Sz and Ry are equal. When d(T ) = 1 this case is clear. Assume the result

to Rt

be true for ‘any S-tree with d(7) < n—1 then we have St [® ij(W;]H and so
| " any T-tree 14 of depth 2 or less where T # S we obtain the desired relation. We
alsg

* Bave ¢ relation y7”  [I (ys— yr). Now let V be an S-tree contained in
(T TeM(T,S)
S)u {S} then we use a downward induction on the size of V to prove that we have

EIatlon m(V S) H (ys — yr). Put m = |M(7,S)| + 1 then when |V| = m the
Cly; TeM(V,S)
s Immediately true. Suppose the claim is true for some V of size [ + 1 < m and

let
be an S-tree contained in M (7, S) U {S} of size . Then extend W to a set V by
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addj . |
, ding one disjoint element W of M(7,S). Then by induction we have the relation.

mv,s) |
CUS". H (zg—z1r) = 0

TeM(V,S)
m(V,s : P ’ ‘ .
%s Hl H (zs —z7) = zwzg m(:5) H (zs — z7) expanding (zs — zw) -
(s TeM(W,s) . TeM(W,S) | a
Tg W1 I - LWL mms) "
(zs —z1) = zy ' g H (xs — xr) iterating
TEM(W,S) ~ . TeMW,$)
m(w’s i E
zg ) H (zs —zr) = 0 as inductively xW )
TeM(W,S) ‘ '

Thus by lnductlon we obtain the result. " Next given any other S tree U of depth 2
" p;OVe that the equlvalent relation holds in our ring. For each T € M(T,S) put

{Ueu|u C T} and Ur = M(T) U{T}. First observe that the depth of Uy is
688 tha,n or equal to 2. Next put o o N “ -

W = {TEM(T S)IM( )1snon-empty}
W"“—-z.‘{TEWHUT\:Q}
W' = {TeW|[Url #2}

thep : ' '
W=wp W". Put ¥V = W' U {S} so that W' = M(V, S) and we have

MU, S) = ]_[ ML{T,T)HM(V S)
S Tew!

01' e . ‘ ‘ S
%h T ey ‘we have by induction the relation xm(uT’T) [T (zr—zy) =0.
Pyt : UeM(Ur,T)

RTT to be the quotlent of the ring Ry by the 1dea1 (zg — z7) then we obtain

Q)m(L{T. T)

N EMH (zg — a:U) =01in RTT thus xm(uT’T) [T (zs—2y)= fT(xs —z7).
ext Ur,T) UeMUr,T)

U Ws = wu {S} and multiply the above equations for each T' € W' together

With
s ~ xT) for each T € M(V,8)=W"to ‘obtain

g3 [ (@s—=zv) = f H (zs—zv)

UeMU,S) _UeM(Ws,S)

w59 I (@s-azv) = f25"9 [ (es—aw)=0

UeMU,S) : UeM(Ws,5)
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Whepe .
Sorem = TZ m(Ur, T') and we need to show that m +m(Ws, S) = m(U, S)
enr . :

MWs,8) +m = m(Ws, 8) + > m(Ur, T)

Tew'
= SI-1=3 (T -+ S [(T-n- 3 (UI-1)]
Tew , Tew! . UeMUyp,T)
= Isl-1-S(T-n-% 3 (ul-v
W L Tew UeM{Ur,T)
= [S|-1- Y (T|-1)
: TeMU,S) ‘

= m(U,S)

his is ' . ‘ ‘
Completeg the induction. Hence we have proven that Iy = Jr thus S+ = R7. Now

Ong
ider an arbltrary forest F then we have each ]-' IT is a T-tree and

= Q) Srr= Q Rrr = Rs

TEM(J‘-‘) TeM(F)
COmDOSItlon of these maps s : S — Ry is 1nduced from the identity map on Zg.

en g
ce thls composition is an isomorphism we see that Ir = Jr and Sr = Ryr

O

By : ,
ARK 5.1 16, The next lemma which is now immediate from corollary 5.1.11 is the key

Dllrely algebralc understanding of the ring RT we shall use this description to that end.

EM ‘ ’
Ma S.1.17. Let T be a S-tree with d(T) > 1 then Ry = [®fR?t|§][ ]
, T

tak
o N oyer M(T S) and R}' = ®RT|T Moreover {1 t. td‘l} form a basis for R
er |
" Ry where d= n(T S) ‘ | =
Co o o |

where the product

RO . | . | »
LLARY 5.1.18. Let .7-" be a forest then the rank of Ry is n(F) = [[ n(F,T)
| . , TeF

p
tiq o Roop, We first prove this for the case of an S-tree 7. We proceed by an induc-
. °R the depth of the tree 7. For d(T ) = 1 the claim is clear. Assume the case

S T wity d(T) < n—1 then for d(7)) = n we see by the previous lemma that

[® By, ]{1,¢,...,t471} as freé modules where d = deg(fr) = n(T, S). Put U to be



52
5. THE COHOMOLOGY OF M, FOR FORESTS

the : ‘
Set T with S removed then, -

rank(Rr) = n(7,S) H raﬂk(RTlT)
TeM{U)

- n(T,S) H H (T |7, U) by induction

TeMU) UeT|p

= n(T,5) [[nT, 1)

TeU .

= I ~(7,7)

TeT

The |
® third line ; is valid because for each U € TIT we haveM (TIT, U) = (T U) so that

T
I, U) = n(T,U) and we also have Y = [[ 7lr. This completes the induction.
TeM(U)

NOW L .
let 7 be any forest. We have Rr = & Rg|,. Thus
TeM(F)

renR(Rf) = H n(Flr)

TeM(F)

= II II ~#lr0)

TeM(F)UeF|r

= Hn(]:,T)

TeF

5.2. A basis for Rr

- Omplee our description of the ring Rz by spec:1fy1ng basis A[F] and B[F] for it. The

I

N A[}‘ ] will naturally follow from the projective bundle description of My for trees T
Ve wil) see that the set B[F] uses the combinatorics of forests. Later we will see how

(] Set
BlF ] can be used more generally to produce a basis for the cohomology ring of M.

Dy

FINy
TIoN 5.2.1, Let B be the monomial ba81s for Zr. For any monomlal yv= [ v7*
TeU

Ve define functions called the shape, shape : B — P?(S) and called the support, supp :
P(s) by shape(y) = U and supp(y) = U T-
Teu
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Dg
FINITION 5.2.2. For any monomial y with y = [ y77 so that shape(y) = U/ and for
Teu »

an : ‘
TV U we write y|y = [] yy¥ and call y|y the restriction of y to V.
Vey

Dg
FINITION 5.2.3. Let F be a forest then for each U C F we define,

AlF] = {Hy;T]OSnT<n(]:,T)foreveryTEf}
TeF ' o ‘
A[F] = q¢r(A[F]) where qr : Zr — Ry is the quotient map .

ang

B[Flu] = { Hy;”T |1 <mp <m(U,T) for every T € U }
: TeU :

BlF] = [] BIFU
ucrF

B[F] = ¢z(B[F)
The
Mmberg n(F,T) and m(F,T) are defined in 3.3.1

LEM ' U .
- MA 5.2.4, Let T be an S-tree with A(T) > 1, F a forest and U C F then in natural
atiOn : o

AT = (I AT {L - u8 ) where d = (T, 5)

"TEM(T,S)
ARl = T AlFl
, . TeM(F)
Blf] = [ BIFl]

TeM(F):
BlU]*C B[F]

Ly : ‘ :
MMA 5.2.5. Let F be a forest F then n(F) = |A[F]|,m(F) = | B[F]| and n(F) = m(F).
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Proor, Let 7 be a forest. From the previous lemma we deduce that n(F) = |A[F]|
and ‘

1t i clear from the definitions that m(F) = | B[F]| where these numbers are defined
ing

3.6. For the case when 7 is an S-tree lemma 3.3.8 tells us that m(T) = n(T). We

Now
" Use the previous lemma to see that

A =1aF =[] 1AFl = ] I1BFlll = BIF) = m(F)

TeM(F) TeM(¥F)

LEM : —
MA 5.26. For any forest F we have that A[F] is a basis for Rr.

b ‘ ‘
ROOF We begln by proving it for an S-tree 7. We proceed by induction on the
depty
4T) of the tree 7. I d(7) = 1 then we are reduced to the case of the cohomology
Vs whiot ‘
§ WhICh is well known. Suppose the case is true for d(7) < n for some n > 1 then

f()r d :
(T) = =7 lemma 5.1.17 to tells us that Rr = [@Q Rz ]{ 1,t,...,t%1 } as free modules

Wher

- le d= n(7,S). Inductlvely we see that A[T,T] is a basis for RTIT and one can check by
P

. dy the above correspondence that in natural notation AlT) = H AlT|7){1,zs, .. }

®duce our result. To complete the proof let F be a forest then Rr= & R}-,T and
We , . TeM(F)

Use
the tree case to deduce our result.

0

LEM ' ' o
MA 527, Let F be a forest and y = [] yp™ € B[F] then
TelU

. ‘

) TE mr < 3 (|T| —2) with equality <= U = M(F) and mr = |T| — 2 for
U TeM(F) ‘ ‘
each T € M(F).

) .
®) For each U € U we have Y. mg < |U| -2 with equality < U|y = {U} and

Telly -
My = |U| -2 .
3
®) In particular if F is an S-tree Y, mr < |S]—2 with equalzty &> U=1{S} and
Teu
Mms = |5| - 2. '

We
ﬁ[‘s
t Prove the special case when F is an S-tree.
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Proop.

domr < Y (m,T)-1)

Teu Teu

= Y mU,T) -

. Teu

= > 7|~ |MU)] - U] by lemma 3.3.2
TeM(U) '

= | II 71-1m@nl-u
TeMU)

< 1S =2as [MU)], U =1

It i
ow clear that we have equality if and only if i = {S} and mg = |S| — 2. To prove

g ~ '
8enera) cage we observe that we have the partition 7 = [[ Fl|r where each Flr

5g. b . | TeM(F)
e and apply the special case. B : O

5.3. A filtration for Rr

_enext define g weight function on Rz which we use to give us a filtration. We will use
10 shoy that the set B[F] spans Ry. Since we have shown that the size of B[F] is
a:j::lz of the ring Ry, which is a finite free module, this then shows us that B[F]is a

Rz We do not provide many of the proofs in this section as they are particulary

Ple and unilluminating.

IN
. ITION 5.3.1. Let By be the monomial basis for Zr and y € Br so that y = [] yz7
Y. TeF
We define a function wt : By — N called the weight by wt(y) = > ng|T|. In

pa'rticular o ‘ . TeF
this gives the monomial yr weight |T|. We also put deg : R — N to be the

C()ho

Mol .

Ologica] degree function, so that deg(y) =2 ) nr
TeF

Ly ”
|suDD(A 5.3.2. wt(zy) = wt(z) + wt(y) and deg(z) < wt(z) < Fdeg(z) where n =

F)| ‘ _
| ‘ O
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Dr k '
“FINITION 9.3.3. We define filtrations on Zx by

FZrs = span{ y € Br | wt(y) > k }

GxZLr = span{y € Br| deg(y) > k }

LEM | | ' ’
" MA 534, Put H = F or G then HyZt is a convergent decreasing filtration of Z].-,
at gs

ZJ—' = H()Z]-‘ D le]: :_) HzZ].' 2. Jcmd n Hka = {O}
: ‘ k>0 “

O

1 ‘ . : . ,
NITION 5.3.5. We define a function wt : Zz — N U{oo} called the weight as follows.
very IlOIl—zero Yy € Zr we know by the prev1ous Iemma that there exists a largest k

Such
that y FZx but y & Fy11Zr. We define wt(y) = k and wt(0) =
: MA 5.3.6. The weight function has the following properties

®) If'y Zaly1 with y; € B}' and a # 0 then wt(y) = min{ wt(y;) |: € I }
= _ ‘

(2)> Wt(xy) Wt(é:) + wt(y).

O

By
NITION 5.3.7. We deﬁne ﬁltratlons on Rr by Fka = gr(FxZs) and GyRr =

(@,
#Zy) Where ¢ : Zy — Ry is the quotient map.

thag :3.8. Put H = F or G then HxRx 1s o convergent decreasing filtration of Rr, -
i, : : ' '

R]-‘ = HOR}' D) H]_R]: 2 HQR]: 2. and ﬂ HkR]: = {0}

k>0
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P,
, : OOF. The firgt part is clear. By lemma 5.3.2 it is clear that FyZyr C Gi/Zy where
= 2k ;
/7] and la] is the integer part of a thus FxRr = gr(Filr) C 97(Gils) = GiRr.

Th*eref ‘
ore QFka CNGRs= {0} as Rr is graded by degree.
Y ,
' a

DEFI‘
Ny .
o TION 5.3.9. We next define a function wt : Rr — N U {oo} called the weight as
Ows, )
For €Very non-zero z € Ry we know by the previous lemma that there exists a

lergegt
% € N such that z € FyRr, but & ¢ Fy41Ry. We define wt(z) = k£ and wt(0) = oo.

5.3.10. The Junction wt has the following properties.

W fra - 2 ai; with v; € Ry then wt(z) > min{ Wt(asij liel}
(2) There é;f’cm m € N such that wt(z) < m for all non-zero x
3) Wi(zy) > wt(z) + wt(y) |
(4) W3(9x(2)) > wi(z) |

O

DEF1 ' :
N
BB Moy 5.3.11. We define F,B[F] = {z € B[F]}|wt(z) = k } and the induced set

Drp

IN ‘

inag I'TION 9.3.12. Let y € Zr be a monomial. We say y is admissible if y € B[F] and
Ussible if Y & B[F]. We also say y € Zz is minimally inadmissible if it has one of

) ?Ollowing formg

a ‘
) Yr™T.T) IT yv with 7 a T-tree of depth 2 and m(7, T') is as defined in 3.3.1
(2) 71 UeM(T,T)

Yr' " for some T € F.

M
A 5.3.13. Let z € Zr be a non-zero monomial, then z s inadmissible if and only if

Y with o minimally inadmissible. -

LEM
M
4 5.3.14. If y € Zx is mindinally inadmissible then wt(gr(y)) > wt(y).
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5, THE COHOMOLOGY or
: We have by a relation that gp’}‘”m (zu — z7) = O Upon expansion
of thi : geM(T.T ;
. ?‘l’ .
r =TT Ty = ze(i)x’{f“mi ;
- yeM(TD i=1
enZi C (T, T \Tl =

Whe\:e
€ I""’{:\ﬂ} andmf—m(’f ). put L=
ider an element I

T\ -1 -
i and for every U € T, we have \U\ <

Sum then

thus | :
We have wt(gr(y)) Z ™

GOR

zg;‘M&Y =315, Let z € LF
J’:
17 we have wt(q;:(z)) > wi(2):

0]
F. Let z € 7.r be an madmxssxble ele

mlmm
ally admlssxble thus we have
= wt{gr (zy))

t(CIf(T»)CIf(y))
(x)) + W (ar (?m

W’“(qf(Z))

> wilgr
4 and 5.3.14

wt(m) 4 wh(y) bY € lernma - 3.10 part

= wt(my)

— wt(?) .
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Lg
MMA 5.3.16. R, — spanB|F]

P

" Roor. The proof will follow from a downward induction on the weight w of the
at

s flent thay, for every ke N F,Ry = spanF,B[F). For k > 0 we know by lemmas

i 10 part, 2 and 5.2.7 that F.Ry = 0 = spanFy B[F|. Suppose it is true for all ¥ > w.
et

T € F,Ry — 97 (FyZr), then z = qr(y) where y = Y ay; € FyZy and y; €-Br

thus - ‘ iel .
t(yi) > w. So it is enough to show that for every ¢ € I, ar(y;) € spanFy, B[F].

fq,. ‘ ,
“en [~7:] then this holds so we may assume that y; & B[F]. In this case we know

at . =
Wt(%(yi)) > wt(y;) > w and so by induction qr(y;) € Fr11Rr = spanFy B[F| C

SPanp B ( _ — .
kB[F), Therefore Ry — FyRy = spanFyB|F] = spanB[F] and we are done.

O

Ley, -
MAB.3.17. For each forest F the set B[F)] forms a basis for Ry. Putzr = LI(I) zp'”
Te

ang :
o Sn deg(xf) then we have R2n = Z[zs] and R =0 fori > 2n. In particular if F is
tree then n = 'Sl 2 and R2(15| -2) Z[ Igl 2].

p ‘ —
ROOF, Ty previous lemma shows us that Rr = spanB[F] and lemma, 5.2.5 shows

that sp 5
tan), 'B[]:“ = rank(Rg). Thus |B[F]| = rank(Rr) _<_ |B[F]| < |B[F]| so that |B[F]| =
(Rr Since Tr € B[F] we see that zr is non-zero and by lemma 5.2.7 part 1 the

®8re .
v ot ay s maximal and is the only element of maximal degree. This completes the

Dl"()
of, | O

LEMi
e Ma 5.3.18, Let F be a forest andUd C F. Let i : Zy — Zg be the inclusion map. We
Ve
€ tnelusion of ideal J; C Jr and an induced map ¢ : Ry — Ry. Then the map ¢
ZTL]ethve

p ‘
RQOF- The proof is trivial since we have an inclusion of basis B (U] C B[F]
a

Co '
- LLARy 5.3.19. Let y € Zy with shape(y) = V say and put z = qr(y) where

T = Rz is the usual qiiotz’ent map. ‘ Suppose there exists a subset U of V such

th
at eg(ylu) 2 2(|supp(U)| = 1) then z = 0.
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Pra o
a ROOF. Put T = supp(Uf) and put W to be the T-tree UU{T}- by considering zlu as
1 gl .
ment in Ry, we see by the previous result that Ty = 0 in Rw . Let ¢: Rw— Ry

be the v:
€ ring map induced by the inclusion 7 : Zw — Z# then since Ty 18 zero in Bw we

B

see that | .
T = : .
| zly - 7' is zero in Ry

5.4. The zero condition for monomials of Rr

. Later we

will '
8ee . :
how to use this to deduce which monomials are zero in more general rings. In

Parti ‘ . s
cular for the cohomology ring of Ms. The last corollary gives us sufficient conditions

for
n : ‘ .
Onomials of Rs to be zero. We next prove that they are also necessary. In this

Sectio
N w : . .
& will be using the ordinary degree of a monomial.

Drpyy y
INITION 5.4.1, Let  be a forest. We define N{F] to be the set of monomials of the

fOrm ,
= Tl;If?J?‘T such that for every T € F we have 5 ong < T - 2. We then define
~ verF .

NiF) < ver
wr(NIF 1) where g7 : Zr — BF is the quotient map-

LEM . .
. tz,{MA 5.42. Let T be an S-tree. Lety = 11 yaT be an clement of N[T] and V be the
e : o . Teu

with S removed. Suppose that M(V) i non-empty then M+ degly) —ns S 1S1=2

“’here
mes-1- 5 (7=

P
,ROOF' We have,

m 4+ deg(y) —ns = m+2n}

TeV
= m+ Y S nw
TeM{V)UeVir
< m+ Y (IT} — 2) by definition 5.4.1
‘ TeM(V)
= |8|-17 M)

< |8|-2as M) 21
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A
54.3. Let 1 be an element of Ry and y € Zx with z = qr(y) then

(a)

27 (y) =0 if and only if y ¢ N[F].
N T2

Ify € N[F] and shape(y) s a T-tree of mazimal degree |7 — 2 then z = Tp

Pro
OF. We first prove the special case for S-trees 7. We have already proven in

lemp,
a
5.3.19 that if y ¢ N[T] then z = ¢7(y) = 0 so it remains to prove the other

II‘ectl B
: 0 We prove that for any « € N[T] we have zi >~ dee(@)y = z517%. From this
m
ediately follows that z £ 0. Let y = [] yg” be an element of N[T], we may

Y lemma, 5.3.17 that U {S} Put V to be the set U with S removed and

S|~
-1 2 (V|- 1) then we have the relation

VeM( V)
o7 [] (@s—av)=0
veM(V)
x? H(l‘s —-xv) =0
. vev
xSHa:""l (zv —zs) =0
Vev VeV
S|-2—deg(z)+n . ny—1y __
x!gl g(x) SH(xgv_mSva )=0
vey
S|-2—d ny—1
x'S‘ eg(z)xgs H(xv —zgzy ) = 0
vey

or the
fourth step we use lemma 5. 4.2 to see that n = [S, = 2+ns—m —deg(z) > 0

Inul
tiply by Zs. Then expanding the last equatlon we see that,

ng'I—2—deg(x)x _ Z (i) xlSSI—z—deg(m)xi

iel

t | " '
h&Ve hhe Ti properly divide z. Therefore the ; lie in N N[T] and deg(z;) < deg (z). We also
a

a
tI‘u

be:1 {£1} and Z ¢(i) = 1. To prove the claim we now apply an induction
e
1t on the degree of z. For deg(z) = 0 the claim is clear, then assume the claim is

¢ for
81y monomials & with deg(z) < n then for deg(z) = n we have
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xgs‘}—Z—deg(m)m - Z E(i)l_‘fgi"?—deg(xi)xi
iel

= Z e(i)xfj-z

i€l

S|-2 .
Y )
1134

52

8 ¢o -
Mpletes the induction. Since we know by lemma 5.3.17 that zg 51-2 i5 non-zero we

r
- "¢ Proven the first part of the claim. The second claim is now immediate. We now
Ve

et
Nix he claim for an arbitrary forest F. One first checks that in the natural notatlon

T GAI;I]:) N(F|r) and then apply lemma 5.1.9 to deduce our result.
' O

5.5. Summary of results

M
Noag ARY 5, 5 1. Here we summarize the results of thxs chapter Let F be a forest, for
e
%S we Suppose that every T' € F has |T}| > 2. Clearly if |T| = 2 we have 27 = 0.

0

é ) Sr < Rz and the specified relations of I  are minimal with |F| generators.
1)

2)

The cohomology ring of M is Rr.

Bris g finite free module generated by its elements of degree 2.

) The rank of R% is | 7).
) By ® Rz, and each Flr is a T-tree.
)

The . JEME)
he rank of R is n(F)=]] n(F,T) and n(F) = m(F).

TeF

6) B ~ | | ‘
) Rr @-J;@-?(:g—]—[ﬂ where fr is defined in construction 5.1.6.
om > T , ;
™) 27 ang B[] form basis for Ry.

8

g ) For any U C F the evident map ¢ : Ry — Ry is injective.
N * : ' '
)N [~7:} are the non zero elements of R}-.

) Put zr = J] «77? and n = deg(zs) then RY = Zlzz] and Ry = 0 for
TeM(F) . .



CHAPTER 6

The topology of M/ for non tree sets
We | |

Shall nex consider the space M for certain collections £ of subsets of S other than
Olest, The Testrictions we will impose on these sets will be mild for our purposes but
necessary for oyr approach. For such sets £ this will enable us to introduce the notion of
th '

¢ ® type of an element M ¢ M . This will be an S-tree whose elements are members of
I =

| b is thig construction that will enable us to compare the spaces M with M. The
att

% Space has alréady been studied in some detail in chapter 4 and the map between

therr « . o | -

! ‘hem SJUst the evident projection map. By the end of this chapter we will prove that M,

is ' - ,

. a\SInooth irreduciple projective variety of dimension |S| —2 and we use the embedding

2 —_ .

th M~ 1Pyt compute the tangent bundle of M. Given a result from chapter 4
s ‘

S leduceg to Computing the dimension of a certain vector space. We also gather in thls‘ ,
th o — . :
| pter 4 Mumber of regylts concerning the cohomology of M. These will be required

in . —_— .
“Hapter 9 where we give a presentation for the cohomology ring of Mg. We will prove

8 for ®ach permitteq L its cohomology ring is a finite free module generated by certain
y . )

aracteristic classes in degree two and the rank of H2(My) is the number Qf elements in

With Size

|T| at least three. The same techniques will allow us to analyze the Chow ring.
1 partiCUIa

T this all works for M. For the final section of this chapter we prove using a,

Wi ATgument, that Mg and Xg are in fact isomorphic, however this only implies the
e i .
XIStence of such 5 morphism between them. The approach relies on a paper by Kapranov

"nd also Provides some motivation for the construction of an isomorphism.

6.1. The associated tree to elements of M,

fe Dexy, define the notion of the type of an element M € M, which for a large collection

0 . .

s g Will be a tree. The point of this definition is that it encodes the minimal amount
infOrm

an ) 4 —_

. d aHOWS' Us to compare the space M with the various tree spaces Mz under the pro-

Jectio

ation that one requires to reproduce elements of M, with the specified tree type

i " Maps. Fop the space 7\.75 we will later see that this notion of the type of an element

equiVaIent to the ordinary notion of the tree attached to an S—curye. We will explain

. 63
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thi . . .

® *quivalence Precisely in the relevant chapter. First we define the notion of a thicket £
Which :
Ichis 5 collection of subsets of 5. We will see in a moment that the notion of a thicket

Drec1sely the COIldlthIl requlred to ensure that the type of every element in M5 1s a tree.

. D : ’ ) . o
HEFINITION 6.1.1. We say that a collection of subsets £ of S is a thicket if S € L and for
)
Ter 7] > 1 and for any U,V € £ with UNV non-empty we have W =UUV € L.

Ly : :
. .MMA 6.1.2. e UW CSandput T = UUW then the map m : Vo — Viy @ Vi is

Wectiye
: Zvve if and only if UNW s non-empty. O

Dgp | ‘
NITION 6.1.3. Let £ be a thicket and M € M then we define the type of M denoted
yDe(M) N
s,

type(as) < {Uecl| foral TOU withT € £ = 7;(Mr) =0}

Ley | | o
MA 6.1.4, Let L be a thicket and M € M, then type(M) is an S-tree.

P .
foop SuDpose for a contradiction that type(df) is not a forest. Then there are

efn
€ntg S U v € type(M) such that U € V V € U and UNYV is non-empty. Put

Th§ Vias Cig a thicket W € £ and W D U,V therefore W(I}VMW = 0 and m}/ My = 0.
by e

el

is Mma 6.1.2 we see that My = 0 a contradiction since My, € PViy, thus type(M)
3 f
Orest, It i also clear that S € type(M) therefore type(M) is an S-tree.
O

Ly
M : _
YA 6.15. Let ¢ be a thicket and M € My with T = type(M). Suppose

Q)TGT

Q)UECMMUCT

5 :
) ForallVeﬁwzthUcVCTwehcweﬁ}j’MV—O
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PROOF. Choose any V € £ with V ~ UJ, we caust shoW that Ty MU =
fether V C T or T SV 0 Suppose peither V ¢ T no¥ T
VAT DU and so W € £ since [ is o thicket also W 2 T,V thus 24
Then by lemma 6.1.2 we ust have TV WMy = Mv T and V intetsect nOT trivially

. Mw € PViy. Thus '"UMV = ﬂu"fv MW — WI}/MW = Ty™T Mw ﬁu(OT) y o
eT.

D - | | : _
EFINITION 6.1.6. For any thicket £ of S we define Tz = ,{T cL |7 is 82 § —tree ki

D S TN
EFINITION 6.1.7. Let L e 2 thicket and T € Ty then we define function root : £ T

by e
Y 1oot(U) = T where TeTis the clement of mint

the
root of U in 7. This always exists pecause 5€ T.

EMMA 6.1.8. Let L be o thicket, M. € c 1 PW and T € e Te Further if we define.
T ] P ‘ - UeL
UeL Vo — 1 PVu to be the projectio™ m

the ver
following are eqmmlent

A

ap an nd suppos® that ar(M) € Moy then

1
1) M eM; and type(M) & cT i :
(2) FO’[‘ €’Uefry T c T and U c K, ‘w%tl T rOOt(U) we ha've WUMT

m()lr ‘ - . .
cover M is the uniqué element with respect 10 the second pmperty.

PROOF. = Suppose for a (;Qn'(;(a,dict'lo ‘Gha\] there is & Ue L Wlt»h T = root(U)

S . .

 that WT My = 0. Then clearly U ¢ deﬁne JCU (Ve £ Uc Ve T} Since
a T then by the previoﬁs Jernma there exists ap clement V € LT with Ty v My = Mu
nd clearly V' 5 T. Choose such an clement \4 whOSe size 15 maximal with respect t0 this

b
TOperty, then for all W € LT we have ﬂ/VM — 0 and again bY the previous lemma
E ' «
T and root(U) € vecT, s contradiction (s oM = My-
0
' the converse let U @ and V be clements of L with ycV put T = fOOt(U) and

W
root(V) then T & w and by condition 2 We nave My =TV W Mw > My =Tu T My and
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™ M ;
T MW < : e
< My by the assumption chat mr(M) € Mr- Therefore
W‘é Mv = WU7TV W Mw
— ay Mw

== WUﬂ'T MW

A

iy Mr

thus M
€ M. Now given U e £\ 7T pub T= root(U) then T ~ U and ayMr = My

thus U
the ¢ tYpe(M } therefore type(M) C T.The umqueness igsue I8 clear,
proof,” "

; | ; ' O

LEM ’
MA (— )
©6.1.9. The map type . MC - Tr 48 S?],Tjecti’l)e- .

PRO . .
0O . . - .
F. To prove this it suffices to prove the Specml case that type * Mg — Ts 18

choose an elem ment M € Mg with type(M) =

T.\,
ef,
e Ms — M C e the pro;ectlon map and pub N = ﬂL(M) Then 1 claim

“lat t ,
ype(N) = T It is clear from the definitions that type(ﬂ) o T. Suppose for a

Surject;
e,
Theﬂ given any T ¢ T we can

- Confrag; ‘
iction that we can ﬁnd Ue c\7T with U € type( ) th hat is 1O say My = 0

fDr I
Ve
1ty V € L strictly contammg, U. Because U ¢ gype(M) W€ e can find W C S with

W ¢
L. .
strictly contammg U such that 7V M A Then put T = 100t (W) € TCL

30 t’ha,
t b
¥ the previous lemma 7L Mr = MW Thus ayMr = i 7L Mr =TU W My # 0 2

Oﬂtl‘a di
iction, Thus type() = _ 7 and the map 18 gurjective: We will prove the special

Q&Se ‘
n lemma 7.2.3 O

Let ) :
Ly .
] e a thicket on S. 10 this gection W€  show that Mppis 2 smooth 1rreduc'1b1e pro-

Jeetiy
e .
variety of dirnension | g|—2 In particulal ghis will mean that every pon-empty

lskl
open set, is dense in the c‘lassmal topology: Lemma 6.1 Q tells us that the data

Q“Qg q
ed . . —
' by T = type(l\i) enables US o aniquely determine & point Me M from its

W,
e N e ™A
hig N ¢ My under the pro jection ap 7T
su :
ggests that the following definitions will aid 1B the anderstanding of these spaces:
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D
EFINITION 6.2.1. Let £ be a thicket and 7 € T then we define, .

Ne(T) = {MeM,|type(M)C T}
NT) = {NeFyr| forall U € L we have 15 Neoer(w) 7# 0}

LEMMA 6.2.2. Let L be o thicket, T € T¢ and T + Mg — M be the usual proyectzon
Map then

(1) & 5('2’) = WT(N,Q(T)) and Ne(T) = o7 (Nz(T))
@) Ne(T ) and N "(T) are non-empty Zariski open
3; NelD DN @) = Ne(T 2ty

(
S U NL( ) Me and Nc(T);;NC(S)

TeT,

PROOF Th1s result is essentially lemma 6.1.8. Let IV € N(7) and define an element
Ugc VW by My = 7 Ny where T = root(U) for each U € L. This makes sense since
“OnStructioy each My, is non-zero. Furthermore My = Nr for each T' € 7. Now apply-

In :
ng(lemma 6.1.8 we see that M € M and type(M) € 7 thus M € N(T). Then since
T M)

the = N we see that N e (N (T)). To see the reverse inclusion let N € ng (N.(T)) N
Ly -

= m7(M) for some M € Ny(T). That is to say type(M) & 7. Thus applying
ong 16.18 again, we see immediately that N € N7.(7) and we have an equality. The sec-
PATt of the first statement is now immediate from the last part of lemma 6.1.8. 'To see

e —
th 00 claing for each U € £ define Gy = {IV € Mz | 7§ Nr = 0 where T = root(U) }
en i

lmm

U3 clearly Zariski closed and

N(T) = (N eMys| for all U € £ we have 7rrU°°f(U) Nroot(uy # 0 }
Mr\ ][] Cv

vel

]

s T, — My is a morphism of varieties and
o(T) is Zariski open. Now since 77 : Mg — Mg is a morphism ol varieties an

N

lec < -Tr;l( NL(T)) we see that Nz(7) is also Zariski open. They are non-empty by
m ‘ -

a 6.1.9. The third and fourth parts of the claim are clear from the definitions.

O



68
6. THE TOPOLOGY OF A, FOR NON TREE SETS

LE’VIMA 6.2, 3. Let Lbeg thicket, T € T and 77 : M - MT be the usual projection

e ski open
P then he restricted map wy : Np(T) — N&(T) is a isomorphism of Zari P
W?‘zetzeg ‘ '

Progp, We fist construct an injective map O : NA(T) = My which is inverse
077 as Sets. We will then proceed further in the argument to prove it is a morphism
of Varietieg. Given N e N\T) and any U € L put T = root(U) in 7 then we may
dEﬁne M, ¢ PVy by My = pl(My) where gf, : PVp --+ PVy is the usual partial

> Now puy M = T] My, then by the lemma 6.1.8 we have that M € NM(7) and
Tobr =

Put Iy
they

inc. I claim that 6 is the inverse for the restricted map of 77. For brevity Mwe
£= NE(T) and Vp = NL(T) then it suffices to prove that r7 (V) = 67 (ch), as
Ne (T) S (V,) = 07(V.) C Nz(T) thus 67(Ve) = Ne(T). Let M € np (V)
N &= =77(M) € V, then by lemma 6.1.8 there is only one element M € M with
this 1, Toperty, Damely M = §7(N) thus M € 07(V.), the other inclusion is automatic.
st check that br :Vy; — U is a morph1sm of varieties. For any T.€ T let
Ve PVr be the projection map and put X7 = j7(V;). Then for any U € £ with
root(U )=7p define 57 .V, — PVy by 5T = pE 47 where pf; : PVr --» PVy is the usual

Pargs —
Hal oy ap, thep 97 11 j”"“w) restricted to V.. For each U € £ with root(U)

T
st Shov that X7 i conLt;aned in the regular part of py; that is pf; : PVT\ker(ﬂU) = PV

T
et 1 OE Voo V is the usual map. Clearly by lemma 6.1.8 we have X T C PVr\ker(n]) |

ang ;1 ) ' ‘
%= Ph vI” thus 7 is a morphism of varieties as required.
| 0

DE | _ _
W NITION 6.24, Let £Lbea thicket then we define M = 5" (Us) and Ug = ms(N(S))

erg
Ts Mc — PVs is the usual map.

thEMARK 6.2.5. For every thxcl%et L we sée; that Us € Uy and by the last lemma we know

3 NGE NC(S) — Uz is an isomorphism with Ne(S) = m5'(Ur) so that Mg C N(S)

n .

le M Us is an isomorphism. In the case when £ is all subsets W C S with
>

Ve see that Ay = N¢(8) which consists of the generic curves and Ug = Uy.

Bxy

I AMpy.
N
Ql/Sl

~

LE 6 2.6. One can easily verify that we have a’homotopy eqmvalence Mg o~

1
N Where we take S to be the set of complex number with length 1 and take S* to
et

1 IS
multlphcamon Again one checks that we then get Mg x 8* =~ Cj



1
i
{
i

LEMM 0 { | top0 0 a
A ‘ ‘p
2.7, Let X be [ l g’LC L

thot X =
\JU; , each Ui is irreduct

iel

Pro
0
¥. Suppose for & contra

X =
B for some proper bR ey

then since Uis

Of %)
ur cover, U say,

Contay .
ned in B. Without loss ofg

¥

‘ thus V‘
C (V) =a(l) ¢ Aand

thig
Provi
vides a contradiction thu

Co
ROLLARY 62.8. Le
vari

zety of dimension |5 \

topol
09
Y. In partzcular this

PRO |
OF. For any thicket

.).S 3
smy 3
o ooth irreducible Pro
$
ubset and thus wTe

V .
Aieties 1 i —_—
T Mpg— Mr

Nt
o M) is a Zariski open I
cand (| Ne(T) = Nt

Tele

Smno
th of dimension \S |-

final part of the claim

topo
logy but since Me

We
nex
% proceed £o compute th

“»SE
the embedding @ *

T
uiip
Vr = ﬂhom(MT,VT/

ble an dﬂ

diction that

vial closed 8

enel ality W

eleme
A\
V of our cover then 1 claim

0'pen 1 .
1 the irreducible seb U weh

t L‘, be @ thick
_9 and Mz is @

ducib&e )

space and SUPPOS@

is nob 'meducib\e.

subse els Aan

also 1rreducxb&e we mus
c A Now

we may Suppose

Vs a)so ©

ave ci{ N
the clai® is true Then X=

us our claim is true.

r Ms-

true fo

L and
3ecti\?e yarie dimension
Now

(S) therefore y

2 as this 18 true

as M ig IrY

oo’sh we S€€

cducible we
P that it is de

e tan gent

e — 1)
EL

contat ined in
put also € U
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hOW]
ng t ) .
§ that the dimension of a certain vector space which is a natural extension to that

ﬁned i
143, Tis|S] — 2. This space we define below.

Depyy
IT
ION 6.3.1. Let M € M, with tree type 7 and T € 7. Suppose M(T T) is

lon-gp, i
Pty then 1et Trr:Vr— @  Vy be the usual map. Then we define the vector

SPace by W UeM(T,T)
= W‘l 7(®My). If M(T,T) is empty we define WMT =Vr.

NI _— !
TION 6.3.9. Let M be a point in M, and #; : Vo — Vi be the usual map. Then

7(-T(
U ]‘47- < T
) MD? 80 we have induced maps 7y - M']‘ — luU and Ty s [T/‘ZM:Z iU/]wU

UCM Q
€ TH hom(Mr, Vr/Mr) | Tar = aur] for all U C Twith U,T € £
el

€ they,
define O = H oc,.um. Note that the condition in the braces is just the requirement

that 1
e followlng dlagram is commutative. For all U CTwithU,T €L

MT ——————-> VT/MT‘

Co

LtN RUCTION 6.3.3. Let £ be a thicket on S and M e Mg Put T = type(M).
o € L anq put T = root(U ) in 7 then we define the surjective restriction maps
”51\/[ _ om( Ay, Vo/Mp) — hom(My, Viy/My) as follows. Smce T = root(U) we have
hay My and thus the restricted map nf; : My — My is an isomorphism. We also
hOIII(M: tduced quotient maps 75 : Vi/My — Vy/My. Then given an element ap €
X7 T/My) we may deﬁne the element 67 (ar) € hom(My, Vi;/My) by 0% (ar) =

UQ/T(,”.T
by9 u) - We then define a map 6 : 11 hom(MT,VT/MT) — H hom(My, Vi;/My)
TeT
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LEMMA 6.3.4. Let L be a thicket and M € M. Put T = type(M) and write N to be the
tmage of M in My then

3 dim(ag— N) ,SI —2

PROOF. It is clear that oM is a vector subspace of [] hom(Mry; Vr/Mr). We next
.. TeL
€xamine how the commutative dlagrams restricts the functions ay,ar for U CT that we

are interested in.

Let M e Mgand U, T € £ with U €T C S. Then by construction either 7 (Mr) = My
or 7?5(MT)“= 0. In the first case we have that Wg : My — My is an isomorphism and
%0 given ay € hom(Mr, VT/MT) there exists a.unique ay € hom(My, Viy/My) with the
fequired property, namely ay = 7har(nh) ™! = 6% (ar). In the second case for any ay €
hom(MU Vir/My) we have aynf; = 0 and so by the commutative diagram we must have
Thar =0 that is we require im(az) < ker(75). It is clear that ker(7) = K /Mr where
Kf < (7&)~Y(My) and so for any ay € hom(My,Vy/My) and or € hom(MT,VT/MT)
the required diagram commutes if and only if ar € hom(Mr, KE /Mr) where we are usmg
the obvious notation. |

Let MeM,withT = type(M), then givenany T € 7 and U € £ with U C T it is clear
Fhat 75 (Mr) = 0 if and only if U € W for some W € M(T, T). Put ny = |M(7,T)]
ad suppose nr > 0, then given ar € hom(Mr, Vr/Mr) we must have that ar €
hom(MT,‘(ﬂg)‘lMg/MT) for all U € M(T,T). That is to say ar € hom(Mr, Wy,r/Mr)

Where Wyr= [\ @F) My < Vr. If ny = 0 then we take Wy 7 = V. Next put
UeM(T,T)
TN = [1 hom(Mr, W r/Mr), this proves we have a projection map 7 : o pr — oT N-

TET
We r hext construct the inverse. For any T' € 7 let ar € hom(My, Wy r/Mr). Let U € L

With T = root(U) then by construction 75 (Mr) = My and we define ay to be the only

hoice possible from this commutative diagram, that is oy = Thar(rg)™! = HT(aT).

Le UCV C Sand put T = root(U),W = root(V), then T C W and we have
7rl];(MT) = My, 7W My = My. First suppose that T' = W then given a linear map

We first need to check that the (;onstructed in this way does indeed lie in og m.
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% we are forced to take ay and oy to be the unique function satisfying the conditions

that o7 7 = whar and ayny, = Thar. We are required to prove that, ayny, = Tay.

We have that 7r§§MT = My, nyn% = n%; and the map 7% is invertible so 7 = n5(axL)™?
also WU =7V VL. We then have,
14 T/ T\-1
aymy . = aymy(Ty)
—T T\-1
= Tyor(my)

= myryar(my)”

= fgav

Now Suppose T' C W then we can find an X € M(7,W) with 7 € X. From this we
S¢¢ that 7% My, = 0 and therefore 7y aw = 0. Now ay is the unique function satisfying

ayaW _ — . . : _
YTy =TV aw and since my My = 0 we are required to prove that T},ay = 0

Tay = mEaw(r)

L= 7rU aW(va) !
= (@Y aw) () )

= 0

This Proves that a is a point 1n 05 o, thus we have the injective map 0 : o7 y — o, um.
This ig clearly the inverse map. Next put Hr = hom(Mr, Wy, r/My) and dr = dimc(Hr).
We are required to prove that dimc(ogp) = > dr =|S|—2. Foreach T € 7, dp =

TeT

dlmc WMT - 1. If nT > 0 let 7r7—T :Vr — @ Vy be the usual map, ‘then we
UeM(T,T)

have Wyr = WTT(G)MT) and by corollary 4.1.5 we have dim¢ Wy r = n(7,T) and SO
dr < n{T,T)—1.If ny = 0 we see that Wy = Vr and so in all cases dr = n(7,T) — 1.

Therefore

dimg(ocp) = Y (n(T,T)-1).

TeT _
= |5| -2 by lemma 3.3.2

Next we have the prOJectlon map 7 : oz — or,n and the map 0 : o7y — oy thus

Omposmg we see that O'T N Sory. ltis ‘also clear from our calculations that we have the
Projection p:or,Ny — ory. This shows ory C 07y thus o7y = 07 5 and our claims

q, .
'€ proven. . ) O
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Lemug 6.3.5. Let L be a thicket then the tangent bundle of My is o

ProoF. For |£] < 2 we see that £ is an S-tree and we have already proven this claim
I lemma 4.3.12 s0 we may suppose |L| > 2. Let M € Mz and U,T € L withU C T. Put

U< {v, T } and consider the following commutative diagram,

M, ————?-* HPVT

TeLl

m| - lp

HM—J; HPVT

Teud

Pug N to be the i image of M in Mu Then the tancrent space TNMu = oy n thus we may
ldentlfy the tangent space TMM[; < ocp but dim(Ty M) = |S| — 2 = dim(ozum) by

the Previous lemma thus T'™M L=0¢.
O

COROLLARY 6.3.6. For any finite set S, Mg is a smooth irreducible projective variety of

dimension |S| — 2 with tangent bundle og.

6.4. Results on the cohomology ring of M,

In this section we will produce a certain pullback diagram that will give rise to a Mayer
VietOfiS type sequence. This diagram will be one useful way of deducing many pleasant -
fesults about the cohomology rings of M, émd in particular Mg. In the following section
Ve will use the same approach to analyze the Chow ring. This diagram will also turn out

t . . . . .
© have other nice properties that we discuss in the last section.

DEFINITION 6.4.1. Let £ be a thicket on S. Then for each T € £ we define the elements
RS H2*(M,) by zr = W}(yr) where 77 : My — PVr is the projection map and yr is
the Standard generator of H2(PVr), that is yr = e(Lr) where Ly is the tautological line

bungje over PVy.
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DerinrrioN 6.4.2. We say a triple (£,S,T) is admissible if L C P(S), L is a thicket,
T'C S and there is no U € £ with U C T. Further if £, = LII{T'} is a thicket we call

the admissible triple an admissible thicket.

CONSTRUCTION 6.4.3. Let T' C S and ~ be an equivalence relation on 7. Write T ‘for
the set of equivalence classes of T and let g : T — T be the quofient map then we
define 4 map rr : PV — PVp as follows. We first define a map ry : F(T,C) — F(T,C).
For any f= € F(T,C) we define fr € F(T, (C) by fr = fT o gr. Then rr send constants
fo tonstants so we can define the induced injective map rr : VT — Vp and in turn an
11“1.1630‘51\16 map rr : PV — PVp, this is the first of our desired maps. One readily checks

e have a short exact sequence V& — V¢ — @ Vi and we define Vr = ker(7rT) Thus
UeT
We have isomorphisms sy : Vr — V& induced from this sequence and sp : PV — PV

The latter is the second of our desired maps.

LEMMA 6.4.4. Let T C S and ~ be a equivalence relation on T. Then with the noia—
tion 4 above we have maps Tr : PVz — PVr and sy : PV — PVy. We .also write
‘TT P Vs — PV to be the restmcted map of rr onto its image. Then ro and st are in-
verSes for each other. Let U be a subset of T and give U the induced equivalence relation

then, we have the following commutative diagrams,

: T — = ST
Vi Vo Vo Ve
T T T T
e T Ty Ty 7T-U— |
Ty — — Sy
Vﬁ VU VU Vﬁ

I , -
" particular if U | =1 then we obtain thrr =0

PROOF. The proofs of these claims are clear.
O

DEFINITION 6.4.5. Let T' C S.Then in this section we make extensive use of the equiva-

lence relation on S by T defined by u ~ v if and only if u = v or u,v € T. We write S/T



6.4. RESULTS ON THE COHOMOLOGY RING OF M, : 75

for the equivalence classes and ¢gs : S — S/T for the quotient map. Let U C S and put -
U= 4s(U) then we write gy : U — U for the induced quotient map on U.

CONSTRUC“TION 6.4.6. Let (L, S,T) be admissible then we define a map j. : Mz — M,
% follows. Given any set U € £ we write U = qr(U) where gr : S — S/T is the quotiént
Map then [T > 1 because U Z T. We define My = ru(Ny) and jo(N) = [Try(Ng). To
S¢e that the image of j. lies in M, we observe that by the last lemma we have the follow-

ing Commutative diagram. Let U, W € £ with U C W and U, W be their images in £ then,

Vip — Y Vi .

LBMMA 6.4.7. Let (£,8,T) be admissible then

J'c(ﬂz) ={M e M| foralU € L withUNT non-empty = 75rMy =0}

PROOF. Let M € M, and U € £ with UNT non-empty. Then because 75y My = 0.
" see that My € P(Vy). Then given U € £ we may define an element Ny € PV by
,Nﬁ = su(My). We must check this is well defined. Let W € £ be another element with
©w) < gr(U). Then by the first part we readily deduce that root(U) = root(W) in
type(M) so that we are well defined. Put IV = [[ Ny then it is clear from the commuting

diagram below of 6.4.4 that N € —M_z and M = j-(N)

— S T

Vr Vi
T T
— S U '

Vv Vi

The Teverse inclusion is clear as we have the short exact sequence V7 - Vu = Vyar. O
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C\ONSTRUCTION 6.4.8. Let (£,S5,T) be admissible. We then define a map iz : PV X
Me > ﬂ£+ by i (Mr, M) = (Mg, jc(M)). Because T has minimal size we see by the

last lemma that this does indeed lie in M,

The following lemma is a refinement of the previous one that works for admissible thickets

(C’ S,T). This will be important for several results we will require later.

LEna 6.4.9. Let (£, S,T) be an admissible thicket then

Ge(Mp) = {M e M| for iU €L withU DT = 7¥My =0}

Proor, Suppose we héve M € Mg andforall U € £ with U D T we have 7% My = 0.
trhen for each U € £ with UNT non-empty. Put V = UUT D> T and W = UNT then as £,
| S a thicket, we have V € £ and 7¥. My = 0. Then by lemma 6.1.2 we must have n}f My =
My as U and T have non-trivial intersection. Then 74, My = s, n My = 7}, My = 0
becayse W C T and m¥ My = 0. Let qr : S — S/T be the usual quotient map. For
» fach U ¢ ¢ put U = ¢p(U) then because My € PVy we may define Ny = sy(My) and
X< [T Ny, to see this is well defined let W € £ with ¢r(U) = gr(W) then by the first .
Part we deduce that root(U) = root(W) and we are well defined. Next I claim N € Mz, .

thig :c
his i Immediate from the previous commutative diagram of lemma 6.4.4

T
hen it i clear je(N) = M therefore M € j(Mz). The reverse inclusion of this result

is
clear because of the short exact sequence Vy/r — Vi — V7.
‘ O

b ‘
ROPOSITION 6.4.10. Let (L, S, T) be an admissible thicket. Then we have the followmg
Pullbgc, diagram,
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i and Jc are injective closed maps and . (ﬂ£+, Ap) — (Mg, Be) is a relative isomor-
Phism where A, = ic(Mz x PVy) and By = j.(Mg) are Zariski closed moreover the

Map 7 s surjective and the square is a pushout.

PROOF. The commutativity of this diagram is clear from the definitions of the various
Maps. We next prove that the map j. : Mz — M is injective. Suppose we are given
Ny e Mz with j.(N) = L = jz(M), then for any U € £ we have Ly = ry(Ng) =
"u(Mz). Since ry is injective we must have My = Ny and therefore N = M. From th1s

it follows that the map i, is also injective.

We next prove that the map of pairs 7 : (Mg, ,Az) — (Mg, Be) is a relative isomor-

Phism. For this the following result will be useful. We have that,

[T (M)| =1 <= there exists U € £ with U D T such that 7% My # 0

To see the first direction suppose there is no such U then by lemma 6.4.9 we see M €
image(jc), and by the commutativity of the diagram 7~!(M) contains a copy of PVT
therefore |7=Y(M)| = co. To see the converse choose a set U O T of minimal size with
7rTMU # 0. Write My = n¥My. Let V' € L be any element with V D T then we need
% shoy that WVMV <Mp. Pt W=UUV then UNV D T therefore W € L as L is
% thicket, Clearly we can’t have both m}y My = 0 and #{/ My, = 0. First suppose that
7r“;VMW # 0, then m}¥ My = My. Because ¥ My = Mr we have that ¥ My = Mr.
Therefore W My = My as V D T and 7§k My = n¥nl My = 7% My = Mr. Next
SUppose W My = 0 then ¥ My = 0as T C U and ny My = My and therefore

% ‘
™My = 7Y W My, = 7 My = 0. Then in all cases we have 7% My < Mr.

By the previous lemma we have for any M € M then M € jc(Mz) if and only if for
.ev\ery U € £ with U D T we have 7¥ My = 0. Thus this proves our map 7 : (Mg, , A¢) —
(M£>Bc) is a bijection. We now construct the inverse over our relative spaces for the
functioll m. Write Az‘for the complement of A. in M, and B¢ for the complement of
5 In Hg Then as M, is a complete variety for every £ we see that Ay and B, are
Zarisyi closed. Next put Uy = {Ue€L|UD>DT} and define a function pr : BS — PVp

b
Y k(L) = U 7¥%(My) . We then define 6 : BS — AS by 6(N) = (N, ur(N)).
Uel
Thls is clearly th:: inverse map, we must show that pr is a morphism of varieties. Fozj
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®ach tree 77 ¢ T, put Oﬁ( ) = N(T) N BS. Then each Of(7) is Zariski open and

Bt = U Oc(T). For each T € T put U = root(T) in 7. Then I claim the partial map
TeT c -
pT p VU --3 PVT is defined at M. Note that this is not a consequence of lemma 6.1.8

8T ¢ L and we are extending the definition of the root function for this case (in the
®Vident natural way) to the element 7. For suppose otherwise that 7% My = 0. Let V € £
vith D T then root(V') 2 root(T) = U. Put W = root(V) so that 7y WMy = My thus

MV = ¥m My = n¥ My = 7¥%nl{ My < 7% My = 0 contrary to the assumption
that M e B¢. Thus the restricted map of pr to Og(7) is given by pr(M) = p%(My)

Where U i PV \ P(ker7¥) — PVr and is therefore a regular morphism of varieties.

Flnaﬂy we prove that the diagram is a pushout. Let W be the pushout of this diagram
Andp W, — M be the evident map. Then since W, is compact and M, is Hausdorph
't will e enough to prove that p is a bijection. This is then clear since j is injective =

S Swjective and 7 : (Me,,Az) — (M, Bz) is a relative bijection.
' ‘ O

PROPOSITION 6.4.11. Let (£,S,T) be an admissible thicket, then we have the long exact

e‘]UenCB

N
S
3
<
P
S
3
il
X
)
g
3
*
<
o

H* (M) ﬁ» H*(

U}h' * % * * :'* *
‘ e fr = (42, 7™) and gr =i —p

Proor. To prove this claim it will be enough to show that the diagram of Proposition

6
410 55 a homotopy pushout Since i is an embedding of smooth compact manifolds we
See it ig a cofibration and by lemma 6.4.10 the diagram is a pushout thus the diagram is

hqutopy push out and we obtain the specified Mayer-Vietoris type sequence.
d

REMARK 6.4.12. We will see later that the odd cohomology is zero and all the modules

ar
® free: Therefore the exact sequence decouples and we will obtain a series of split exact

quenCes in even degrees.
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Lemna 6.4.13. Let is : 7\72 x PVp — '/\_/l[;+ and jr : ./\_/l-z — M, be the maps of
Proposition, 6.4.10, then for any U € L we have i5(zy) = 25 ® 1,  ji(zy) = =g and

e(ar) =1 ® :vT Note the slight abuse of notation, this should cause no problems.

Proor. We prove this for j, the other case being similar. It is clear from the defini-

tion of Jc that we have the following commutative diagram. .

My —LE— M,

PV — Y+ PVy

Now It is easy to check that v = r5;(yu) thus by definition we see that zg7 = I (zy).
O

EEMARK 6.4.14. Before we prove é list of results ‘concerning the cohomology ring of
M, we need one definition and a lemma so that we may compute the Poincaré series. .
We also recall a result from chapter 3 that we need. Let £ be a thicket and T C §
With qr : S — S/T the usual collaps‘ing map. Recall in chapter 3 we defined a map
: Fol”eSts(,C, T) — Forests(£) which we proved in lemma 3.3.5 was a bijection with the
Droperty of préserving the numbers m(F,T). We will use this to give a (rather crude) .
COmbinatorial description of the Poincaré series of our cohomology ring. This description .
"Il be in the right form to later allow us to Compare the rings and work out a basis for
fach cohomology ring. This is coﬁsidered in the final chapter. We will write PS(H*X)
for the Poincaré series of the cqhomology ring of X and in the case of X = M, we may
abbreVi&Ltevﬁhis to PS¢.
DEFINITION 6.(4.1?. For any thicket L of S and for any forest F € F, let U € F and
m(F,U)~1

Wrj ;
lite Pry = Z; t and PF = UH]_-p]:’U' We then define P, = f; DPF
i== € c

REMARK 6.4.16. It is possibie'that pry and so pr can be zero. This can happen if and
Only if there is an element U € F of size 2 and corresponds to the fact that zy = 0 or
M(]:’ U) = {W} and |W| = |U]| — 1 this will corresponds to the relation zy(zy — zw)

% .
& we have in this case.
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LEMMa 6.4, 17. Let (£, S,T) be an admissible thicket and b : Forests(L,T) — Forests(L)

b
¢ the b'&]ectzon of lemma 3.3.5 where L= qT([,) then for any forest F € Forests(L,,T)

T|-2

w
¢ have Pr = pyr)pr where pr = A
=1

Proor. Using the construction in lemma 3.3.5 we see that b(F) = gr(U) where U =

r
‘ \{T} Again by lemma 3.3.5 we see that for every U € U that m(F,U)

= m(b(F),U)

th . . . . —
USpry = Do(7) T Since the evident induced map gr : U — b(F) is a bijection we see that

Dyr)y =

. |
1 50 pe = Py(F)DT-

H Dyr)o U

Teb(F)

H Pb(}),ﬁ

Uel

H bru

Ueld

P
ROPIOSITION 6.4.18. For any finite set S and thicket L of S we have the following.

H™ M, =0

H™M, is a finite free module

H*M; =Z{zr|T€L, |T|>2}
rank(HZM¢) I{TEL'HTI > 2}

H*M, i generated as a ring by HzML
PS(H*M;) =P
HAS-OR, = Z(zlf™)

H™M, =0 form > 2(|S| — 2)

Proop, We use an induction argument to prove our claims. For |S| = 3 the claims

are to. . ‘
trivial to check for any thicket £ of S'. Suppose the claims are true for |S| = n—1 for
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any thické’c L of S. Then for sets S of size |S| = n let £ be any thicket. We use induction
on the gjze |£|. For |£] = 1 the results are again clear. Suppose the result is true for some
thicket, £ of § of size |£] = m — 1. Then for any thicket £, of S with [£4] = m, m > 1
Put £ to be the sevt L, with T removed where T is an element in £, of minimal size.
Then it is clear that £ is a thicket and |£| = m — 1. We first suppose |T| = 2 in this case
It s clear that M Ly~ ~ M, and zr = 0 thus by induction all of our claims hold. Next we

SUPpose IT| > 2 then in this case L is a thicket of S/T and |S/T| < |S].

We first prove that H M, is generated in degree 2 by {z7|T € L}. Let w € H*M_, + then
i\nduc.ti‘/ely i%(w) is a polynomial in H*(Mz)®H?PVr which is generated by {2z, z7|U €

|3 Choose a section sp: L — L ie grsy = id and.put w' to be the obvious same
Polynomial in {zy@)s 21} C H*M,, so that if(w) = i%(w'). Now consider the long
®Xact sequence from proposition 6.4.11 .Then (0,w —w’) € ker(g}) = im(f}) and so there
S Some u € H*M, with w — w’ = 7*(u) but H*M_ is generated by degree 2 and thus

Usw g *(u) where u is a polynomial in degree 2 elements. From this it immediately

f

Ollows that there is no odd cohomology.

We hext prove that H*M, is a finite free module. Since the odd cohomology is zero
the ®Xact sequence of proposition 6.4.11 decouples and inductively both H 2q(/\/t ) and

i "Mz z X PVr) are finite free modules thus the short exact sequence splits and we obtain

that gy "M, ) is a finite free module. By considering the H? term of our sequence we

2lso obtain that

rank(H’Mg,) = 1+ rank(H? M)
= 1+|{Uel]||Ul>2}

I

{U e L;||U|> 2} because |T| > 2

Next We prove that the 1nclu51on k:Z|zr|T € L, |T| > 2] — H*M_ is an isomorphism.
The Map % is surjectlve by the first part and by the prev1ous part we deduced that the

fanks are equal so k is an isomorphism.

Fo , ' _ —

°F the Poincaré series we have by the split exact sequence that PS(Mg, )+ PS(Mz) =
Po~— - T2
S(Mc) + PS(Mz)PS(PVr)-and PS(PVr) = Z t* thus rearranging we find that

b
SC+ = PS. + PS- CPT thus inductively we find that



8 ' _
2 6. THE TOPOLOGY OF #; FOR NON TREE SETS

PS£+ = PSL:“I"PSZPT

= Pr+ Z B Pr
UL «
= ZP7'+ Z Pr bylemma6417
TCL TeTCLy
- S Ay oA
TETCLy TeTCLy
= Z Pr
TCLy

Here We prove the final two parts of the claim. The spaces M, and PVg are compact and
have the same dimension. Consider the map 7s : M, — PVg which is an isomorphism
8 M - Us, Mg =n534Us). Put d = dim(Mp) = 2(|S] — 2) then Poincaré duality
tells g that H4(M) = Zu and H3(PVs) = Zv. Therefore n%(v) = ku where k = deg(ns).
Sine T: -1, — U, is an isomorphism we see that deg(n) = +1. Because 7 is analytic
Ve seq deg(7) = 1. Thus 7¢ : H4(PVs) — H%M_) is an isomorphism. We know u = yo?

3
1 myy # 0 for every non-zero m € Z so we deduce mz% 2 = m§(mu) # 0. The last part

I

REMARK 6.4.19. In particular let i : My — [[ PVz be the inclusion map then we have
§ — . ‘

hown that the map * : H*([] PVy) — H*(M) is surjective and in degree 2 an isomor-
Phigpy, Then H*(M,) is a quotient of Z[zr |T € £ and |T| > 2] and the kernel contains

t
he ldeal generated by the zi .

6.5. Comparisons with the Chow ring

W ,
1 this section we consider the natural map cl : A*(My) — H*(M,) [3, Chapter 19
an
d prOVe it is an isomorphism for thickets £. In particular we will show that Mg is a
mOIOgy isomorphism. This will be easy given our current results. We then given an

ex
Plicit description for this map in chapter 9 for the case of M.
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Lenng 6.5.1. Let £ be a thicket then the natural map cl : A,(Mg) — Hou(M;) is an

Somorphism. In particular every analogous result to proposition 6.4.18 holds for A.(Ms).

PROOF. Consider the following commutative diagram where the bottom row is short

®Xact and the top row is right exact by [3, Example 1.8.1]
A.(Mz x PVr) — A(Mz) ® A(Me,) — A.(Mp)
cl © el cl

Hyu (Mg X PVy) — Hy(Mz) @ Hyu(Mp,) — Hau(My)

Then it is well knbwn that cl : A.(PV) — Hy(PV) is an isomorphism because for
Hample PV has a cellular 'decomposition. Thus we may use an induction argument
% in Iv)ryo‘position 6.4.18 to suppose that the outside maps are isomorphisms and then
e g simple diagram chase to deduce that the mlddle map is an isomorphism and thus

cl: 4
*(MC) — Ho, (M) is an isomorphism. We leave the details to the interested reader

Previous calculations are similar. a

. .
EMma g, 5.2. Let L be a thicket then the natuml map cl : A*(M;) — H>*(M;) is an

Omorphzsm

- Proop. Consider the following commutative diagram

A Pvr) — A* (M)
cl | cl
H*([] PVe) — H> (M)

they, | |
®0 the left hand vertical map is an isomorphism and the bottom horizontal map is

SUpie .. — _
Yective thus the map cl: A*(My) — H** (M) is surjective. We deduce using the last



84 , —
6. THE TOPOLOGY OF M, FOR NON TREE SETS

]
Mma that both are finite free modules and have the same rank. Thus the map is an

i )
Somorphigm, - O

6.6. The blowup description for M,

I the fina] section of this chapter we extend the result of chapter 4 section 3 by provmg
that the commutative diagram of section 4 is actually a blowup diagram and that the
*Pace A4 Ms may be seen as an iterated blowup of projective space. This should be com-
Dared witp Kapranov’s approach [8]. It will also become clear that the order in which the
blowup 1s obtained is not of great importance although some care is required. Although
this Section answers the question of whether the two spaces Xg and Mg are the same in
the a“fﬁrmatlve 1t‘ does not provide us with an actual 1sornorph1sm between the two so as
.Such Is not, 4 satisfactory answer to this question. We will provide a more careful analysis
™ later Chap’cers to produce an explicit isbmorphisin.

We first introduce an order on the set P7*(S), this is the subset of P(S) whose elemeﬁfs
r have IT| > 1. This is the order introduced by Kapranov in [8]. We will use this to
Prove that X'y the moduli space of stable n + 1 pointed curves of genus zero and Mg are
o morphlt by blowing up the same initial space along the same subspaces in the same

or
der, Here whenever S is a finite set with |S| = n we take S = {1,2,..,n}.

D ’ :
FFINITION 6.6.1. Let S be a finite set with |S| = n and put Sy, = { 1,2,...,n —m } for

0<
=™ < n then we define

={TC8n|IT|=|Sm|—6,n—meT}

Dg :
FIN ITION 6.6.2. Let S be a finite set of size n with the evident order then we define the

bin \ \
81y ordering < on P+(S) by U <V < > 2¥ < > 2% For any T''C S we have the
In ‘ uelU veV
:p 9 : S — S/T and give S/T the induced order under the injection gr : S\ T — S/T
Wh
*Te we use 7 = maxT for the equivalence class T'
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DEFINITION 6.6.3. We define a total ordering < on P*(S) by

U<V < maxV < maxU or
maxV = maxU and |[V| <|U]| or

maxV = maxU and [V|{=|UlandU <V

T, for this order where m = 2" — 1 — n.

........

REMARK 6.6.4. Let U,V € P*(95) then U € P, and v € Pm ; then the above ordering is

*Qivalent, ¢ to the following,

UV <= m<l or
m=10 andj<ior

m=1] andj=iandU<V

"MMA 6.6.5. [fU C T then T < U. - | O

R
EMARK 6.6.6. The last result tells us that if for each U CSwepuwt Ly ={T CS|IT<xU}

t
hen Ly is 3 thicket.

R .
‘ EMARK 6.6.7. Here we state the following fact, the proof is unilluminating so we do not

Off
®T one. Define the followmg recurrence relation
Vnn_l = n-— 1

Vila = Vi +Z —-1-9(vay o

th _
VP = dim(H*(Ms)) where n = ||
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LEana 6.6.8. Let (£,S,T) be an admissible thicket and put T(T) = {7 € T, | T 11

{7} s a tree } then for any tree T € T(T') we have the following commutative diagram

— T —
M[; ___1_. MT
jc jr.
. T —_—
MZ_2“’ Mz

17 (Mz) NNL(T) = §o(Mz) NNL(T)
U M@ 2 M)

Telz (T)

PROOF. Let M e nitjr(M7) ONL(T) then M € N(T)and N = m(z) € jT(—./\_/IT)ﬂ
NE(T) since N¢(T) is a saturated set. Because jr is injective there is a unique L € Mz
Tﬁith Jr(L) = N. We prove that L € NL(T). We first observe that the map qr: T — T
S Surjective, Now let U € £ and put T' = root(U ) in 7. Then T = root(TU) in 7. As
Yeu 2(T) then by definition 7 Ny # 0. By the déﬁnition of jr we see that Ny = ro(L7) \
nd Ny = Ty (Lg). Thus we may apply lemma 6.4.4 to deduce that WgN'T‘ +£ 0 and so
Loy 2(T). Now n71(IN) = M and there is a unique K € N5(T) with mp(K) = L and
herefOYG M = j:(K). Thus 77 jr(Mz) N Ne(T) C 52(Mz) NNz (T) and the reverse

Ine
lusiop jg automatically true.

Ne
Xt given M € jc(Mz) put T = type(M). Let U € £ with U N T non-empty and
Q T. By the minimality of T' we have U Z T. It follows that W = UUT D T and
€ Las £+ is a thicket. Then since by lemma 6.4. 9 we have ¥ (Mw) = 0 we must

h
e T (My) = My thus U ¢ T. Therefore 7T 11 {T} is an S-tree.
7 | a

Q _ ,
OROLLARY 6.6.9. Let (L, S, T be an admissible thicket then the following diagram is a
p J— —_ — _
Ulbac, and m: Mg, — M, is the blowup of My along Mz.
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P ROOF Let b : BlyX — X to be the blowup of X alongY Where X = M, and
Ys M Let w : M, . M be the standard projection. Then to prove 7 is the
bIOWuP of X along Y it will be enough to cover M, by Zariski open sets {U}ier so ‘that
~(U:) and b=Y(U;) are isomorphic by a morphism (necessarily unique) that commutes
With Projection onto U;. Let 7 be an element of 7z(T") and consider the following com-

mut&t1Ve dlagram

— 7T3 ——
Mg, Mo,
m Ty
ot
M, "2 . Mr
Jc JT
—_— i —_—
Mz ——— My

By lemma 6.2.3 o maps N¢(T) isomorphically onto N7(7). By the previous lemma
"2 Mapg ][,(mﬁ) N Nz(T) isomorphically onto jr(Mz) N N4(T) as saturated sets and
y lemmy 4, 4.14 my : My, — Mg is the blowup of Mz along Mz. Thus we have
(NC( T)) is isomorphic to m; *(N.(7)) commuting through the restricted map of
0 theiy respective bases. Now put Ur = 7=} N(T)) and Vr = n7 (N(L)) then it is
Ough to show that the map s : Ur — Vi is an isomorphism. This is clear since T is an

el
"®Ient of minimal size. Thus we obtain 7 Y (NZ(T)) is isomorphic to b= (N(7)) with

Ont,

Pr
“lectiong commuting through N:(7) € M_. By the previous lemma we have that

U Ne(T) 2 (M)

TeT(T)
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a :
"d on each of these open sets N;:(7) we have shown that 7~ 1(N.(7)) is isomorphic- to
b1 . ‘

(NC(T)) With projections commuting through N(7). Now by lemma 6.4.10 we see
t —
bt 7 . s Mg, - M, is an 1somorphlsm away from j;(Mz) thus we see that 7 is the

b
Hlowgp o M ¢ along My .

O

C | ’ =
OROLLARY 6, 6.10. Let (L£,S,T) be an admissible thicket and jo : Mz — M, be the
mbeddmg Then the normal bundle s hom(W[;, Vr) and the projectivization of the nor-

m
al bundle ;s the trivial bundle Mz z X PVT We define W, below.

PROOF. Consider the following commutative diagra£n where T € T.(T)

m

My ——— My
jz’ ,j’f
My —2— M7

tL}i?I.na 6.6.8 essentially tells us that over N%(T) the normal bundle N (4c) is N(j7) and
18 hOrn(NU/T, Vr) where U = root(T') in 7. Doing this for each tree in £ we obtain
Oc‘al description for the normal bundle. One can check that the Ny, are compatible over -
Pairwige intersection in our cover and glue to obtain the vector bundle W, thus we may -
‘ta,ke N(je) = hom(Wp, Vr). This can also be written as W} ® Vr where the star denotes

¢ dual bynde, This gives the projectivization as ﬂz x PVr the expected answer.
O

ZONSTRUCTION 6.6.11. Given a thicket £ we define an order on it as follows. We define
=S and £; = {S}. Suppose Ty, ..., T, and Ly,..., L, are defined. Then we define
1:: € L\ L, to be an element of maximal size and £r+i = L, I {T1}. ’fhen it is
T that the (L£;, S, Tiv1) form a sequence of admissible thickets and £; = {T;15 <4}

® then define a sequence of spaces B;, SY by By = Mg, = PVs, SV = P(ker(n$))
:d glv\en B; and S{J are deﬁned. We define By = Bls;l"Bi where T' = T;;; and write
R Me,,, — Mg, for the projection map. Then for any U € L we define S}, = strick

tr
Wsform of SV in B

g
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LEMMA 6.6.12. Let L be a thicket and L; an associated sequence of thickets then we have

2 . ‘ . .
he followmg sequence of commutative diagrams

Then B; = = M, and given U € L with U = Ty we have SY = JU(.ME ) for every i < k

Ind 4 zero otherwise where we quotient in quy 1 S — S/ U and we write Ju =Jz,

Proor. Wwe prove the claim by an induction on 7. The case when ¢ = 1 is clear from
the definitions. Put T = T;41 then inductively B; = M, and ST = jr(Mgz,). Then
| by lemma 6.6.9 we see that the blowup of B; along ST is Biy; = Mc,,,. We are left to

Prove the claim for the strict transforms. Choose ¢ + 1 < k and put U = T} then define
=gU \ ST where inductively Sff = Ju (M_Zi) then we need to calculate cl(ﬁijl_ll([/viU ). .
® first prove that ‘

jU(MZi—)-l) — 'l:l"ll(WU) (_M—Z.H,l)
W ‘ | |
\ ® Prove the left hand inclusion first. Let N € Mz .y, @nd put M = jy(N). Then by
ljmma 6.4.7 we see that for every V € L1 with VNU non—empty we have 7y~ My = 0.
. WL to be the image of M under m;4;. Then again by lemma, 6.4. 7 we see that L € SY.
*ause T' ¢ U/ by choice of order we see 75 Mg # 0 so that L ¢ ST thus M € =, (WF)

an
d the left hand inclusion is true.

IZTSX‘“ let M € W;rll(m[j) and pﬁt L to be its image under 7;4;. Consider WY C M_,. Now
" and L1 are both thickets and L ¢ S7. Thus by lemma 6.4.9 we can find a V € £;
Tltammg T such that m% My = Mr. Because L € SV we deduce that ml¥-, My = 0 for
i € £; such that WNU is non-empty. In particular this then tells us that w%., Mz = 0

if
Tn U is non—empty This proves the right hand inclusion.

hen taking the closure of both sides and recalhng that Ju is a proper map and Mgz, "

deIlse in ML . We see that: SEy = |( z-Jrl(WT)) = JU(MLHJ)' This completes the
duCtl()n ‘ ‘ i O
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C = — . : . :
ORQLLARY 6.6.13. The spaces Xg and Mg are isomorphic as projective varieties . .

PROOF. Here we take £ = P*(S) and use the order from definition 6.6.3. We then

Pply the previous result. ‘ H

Ag
f a result of the previous corollary and glven the uniqueness of blowups we have the
ol
IOWm" commutative diagram where g : Xg — Mg (necessarily unique) is an isomor-
Dhj _— '
B, og: X s — PVg is Kapranov s regular map deﬁned in [7] and 7g : Mg — PVs is

th
¢ standard prOJGCthn map.

s Ts

PVs

Cle

8ly the restricted map og : Xg — Ug is an isomorphism. Suppose for each T' C S we
¥ —_ _—

Uld shoy that the following diagram is commutative where 75 : X — X'r is a natural

Map discussed in [9]

- [ -
Xg 5 . Ms
ey ,W?
_ o -
Xy — M

*0 it i easy to see that the map fg is given by HO’TTI'T This is not an unreasonable
pectatlon given that to prove this diagram commutes we would only have to restrict
Urse}f to the isomorphisms oy : X, — Uy and intuitively it is clear what form this
Map Must have. However we do not explicitly analyze this map over the spaces Xy . In
* later chapter we will describe an equivalent map ( ie dlffermg by an isomorphism )
S X s — PVg that is a natural extensmn for the usual identification of Xs with Us.

hi
) 'S will have the desired properties and w111 give us an explicit isomorphism as described
boye



CHAPTER 7
The topology of Mg

I this Section we turn our attention back to the main object of interest, the space Ms.
We Will introduce various notions of trees and compare them by constructing natural
leeCthHS between them. We will then consider the different representations equivalent
?theSe correspondences. We also prove a number of analogous results from the‘theo_ry of
s associated to subspaces Mg(T) of Mg that consists of elements of tree type 7. These
, Spaces are of particular importance for the study of Mg and we have already used similar
Constlﬂlctions in chapter 6. The results we prove will highlight the tree structures of our
"ace. We will need these later when we compare in more detail the spaces Mg with Xs.
A detalilt%d proof of some of the results in this chapter would be unilluminating so we do
Not Supply them. Instéad we give (carefully chosen) examples that should highlight the

Main ideas. These results are self contained and will not be mentioned elsewhere.

7.1. The combinatorial structure of Mg

b this section we examine in more detail the combinatorial structure of Mg. In particﬁlar ‘
Ve wil) define a space Pg that is constructed in the same spirit as Mg modulo some natural |
COmbinatorial structure. This should be thought of as a universal way of assigning to
Cle *Wentg of M the structure of a tree. We then consider the combinatorial notlon of
 tree and our original definition in 3.1.1 and explain the way that we consider them

qu“’alent, that is produce natural bijections between them.

D :
EFINITION 7.1.1. For every T C S with |T'| > 1 we define,

Qr = { partitions of T into at least 2 blocks }

. :
d 6. . PVp — Qr by @ ~ppmp) 7 in T <= m(i) = m(j) for all m € ¢;'(Mr) where
wF (T,C) — V4 is the quotient map.

91
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REMARK 7.1.2. Equivalently we may define the previous map as follows. Given an element
My ¢ PVr and U C T we define the image 07(Myr) by U € 0r(Mr) < 5 (Mr) =0
“nd for any other set V D U we have 75 Mr # 0, that is U is maximal with respect to
thig pfOperty

LEMMA 7.1.3. For every U C T C S the restriction of partitions gives partzal maps
b - Qr --» Qy defined by p5 (V) = V. NU compatible with Or that is, the following
dagmm commutes whenever it is defined. T hz's happens if and only if pL(Mr) is deﬁned

eqmvalently if ph(w) is defined where w = Op(My). The latter Just means U is not

co
MMained i q single block of the partition w of T.

Pvr Qr
N2 o
! 0 ¥
PVy Y L Qy

Proop, This is clear given the last remark.

D ‘
EPINITION 7.1.4.

)

H QT Pu (wT) =wy for all U C T C S whenever p(wr) is defined

TCS
(T[>1

S o= { S-trees 7'}

Uy - isomorphisms classes of rooted trees, all vertices of valence at least 3,
- leaves labelled bijectively with S -

In '
the lag, definition we assume that 0 € S and call the root 0.
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COI\‘STRUCTION 7.1.5. Here we construct a map 8s : Mg — Pg that we will later see is
SWiective, Given M € Ms we define wr € Qr by wr = 6r(Mr). Then by the partially
.commUting diagram of lemma 7.1.3 and remark 2.0.11 it is easily seen that w = [Jwr € Ps.

DEFINITION 7.1.6. Let t € Ug then for each internal vertex-v of £ we put T to be the set

o leaveg of ¢ lying below v away from the root 0.

0OI\’STRUCTION 7.1.7. Here we produce natural maps T} : Ug — Pg, Ty : P — Tg and

B Ts - Us. We will then explain why these are bijections.

We first construct the map T} ’: Us — Ps. Given t € Ug and U € S with |U]| > 1
lt % be the subtree of ¢ that spans U, that is the (rooted) subtree whose leaves are on U,
v the root of ¢y and w(t)y the partition of T' by components of tr \ {rr}. Equivalently
lep ¢ be g tree of Ug and write Vz(¢) for the set of internal vertices of ¢. Then for each
nternal vertex v in Vi(¢t) let T, be as above.. Then T}, is a subset of S and it is clear
tha T {Ty|v 1s an mternal vertex of ¢ } is an S-tree. Now given U C S with Ul > 1
but root(U) in 7 then we define w(t)y to be the induced partition on U from the
Dartition of T' defined by u ~ v if and only if u = v or u,v € W for some W € M (7,7).
Put Y= w(t). Then to see w lies in IP’S we observe that given U C V' C S then pf(wy) is

ﬁned if an only if root(U ) = root(V') in 7 and when this is the case we see p}; (wy) = Wy

EXAMPLE 7.1.8.

Yt t is the first tree and ¥ = {5 9,10,13,15} then root(Y) = U , U is partitioned as
s}, {9},{10,11,12,13,14,15, 16}} then w(t)y = {{9}, {5}, {10,13,15}}
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We ext construct a map T : Pg — Tg. Given w € Pg define,
Tg(ﬁ) ={UC SI {U| > 1 and for every UCT C S = py(wr) is undefined }

I

Claim tp;g gives us an element in Tg. Suppose for a contradiction that 7 = Tp(w) is
10t 5 forest. Then we may choose elements U,V € T with U-€ V,V € U and UNV
IlOn‘erllpty Put T=UUV then wr € Qr is a partition of T into at least 2 blocks. Since
pg(wT) and pT(wr) are undefined the induced partitions of wy restricted to U and V are
Just {U} and {V'} but then we can choose elements X,Y € wr with U C X and V C Y
thus x NY contains UN V' and so is non-empty, as wr is a partition we have X =Y and
herefOre wyp = {T'}. This contradicts the fact that wr has at least 2 blocks. Thus 7 is a

fo
Orest and it is clear that S € T sothat T € Ts.

® Now construct a map T3 : Ts — Ug. Given an S-tree 7 € Ts we define an eie-
Ment ¢ € Ug as follows. We define the set of internal vertices of t by V;(t). = T and
the got of external vertices by Ve(t) = S 1L {0}. For every U,V € V;(t) we then connect
Uto v by an edge if and only if U € M(7,V) or V € M(T,U). For every T € T we

Write Ur=T\ [ U then observe |[ Ur = S. We connect every external vertex

sey : UeM(T,T) TeT
T to the internal vertex 7. The vertex 0 is the root of the tree and is connected to

the «
he Wterna] vertex S. We then take the isomorphism class of this tree.

Here Wwe p_foduce the inverse for the bijection 73 : Tg — Ug as we will need it explicitly
I&ter' We ﬁrét construct a map Us : Us — Ts. Let ¢ be a tree of Ug and write V;(¢) for
he et of internal vertices of ¢. Then for each internal vertex v in V;(t) let T, be the set
o lea"eS of t lying below v away from the root 0. Then T, 1s a subset of S and it is clear
hat 7= {7, | v is an internal vertex of ¢ } is an S-tree. It is easy to see that this map

K}
U inverse for 75, moreover U = T o T1.

L .
EI\’“\’IA 7.1.9. The maps Ty, Ty and T3 are natural bijections Pg ~ Ug ~ Tg such that we

Q ' .
ve the following commutative diagram.



7.2. THE ASSOCIATED TREE TO ELEMENTS OF Ms | 95

T,
P «——— Us
| Ts

Ts

7.2. The associated tree to elements of Mg

‘In this section we define the tree type attached to each element M in Mg and consider
N mope detail the combinatorial notion of trees in Usg. We'will then introduce a pértial
derlng on the sets Tg and Ug. The ordermg on Ug will be the standard one which is
ed in thq study of X's. We will show that the bijection Us : Ug — Tg will respect several
1otur) properties including the partial ordermcrs and in particular we will construct in a

lat
ter chapter an 1somorphlsm of Xg with Mg such that the induced maps onto trees are

Pr
®Served by our bijection.

D . —
EFIN‘ITION 7.2.1. Recall from chapter 6 that we constructed the map type : Mg — Ts.

e . . —
Use this map to define the combinatorial tree type (_)f an element M of Mg.

Ry '
MARK 7.2.2. It is useful be kept in mind that any of the previous constructions of trees

&I‘e .
®Quivalent to the above definition in the obvious sense.
Ly __ ,
MMA 7.2.3. The map type : Mg — Tg 1s surjective.
PROOF. The proof of this may be seen from proposition 7.3.6 part 2.

Dy ,
FINITION 7.2.4. For every T' C S we define a map 7r:;5~ : Ts — Tr by,

m2(T) = {V(‘lT|V€Tand|VﬂT|>1}
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We also define a map W% : Ug — Ur as follows. Given a rooted tree ¢ € Ug we define the
tree thy = 72(t) € Ur to be the restriction of the leaves S of ¢ to the set T subject to the
Onstrajnt that if some vertex has valency 2 after restricting we remove that vertex and
Make that edge I‘lo'ld We call thls process stably forgettmcr the set S\ 7. See below for

an examp1

EXamprp 79.5.

he Second tree is the restriction of the first to the set {1,2,3,7,8} and the third tree is

he '
ontraction of vertex z to w

L
EMa 7 2.6. Let U C T C S then for each of the maps w5 above we have the composition

My
e T = TEms and we have the following commutative diagram

U’ i
Us 2 Ty
g T
U
Ur S Ty

O

D ' .
EFINITION 7. 2 7. Here we define orderings on Tg and Ug. For Tg we define 7T < U <
Su. For Us we definet <u <= tis obtained from u by contracting some internal

&d
8es., See 7.2.5 for an example.

L
EMMA728 Lett,u € Us and put T = Us(t), U = Us(u) then t <u <= T < U that

S the orders are equivalent under this bijection. See 7.2.9 for an example (]
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Examprg 7,99

T
b firgt tree in set form is U = {S,T,U,V,W} the second tree is 7 = {S,T, U} and
TCUso that T <ut '

Re
MARKk 7.9, 10. From now on we will use whichever deﬁmtlon of trees that is the most

nvenlent and the choice should be clear from the context.

D .
EFINITION 7.2.11. For every S-tree T € Ts we define,

Ms(T) = type™(T)
Ms(T) = J[ Ms)

us:T

Ms = type ({S})

R | : , ‘ , L
MARK 7.2.12. The space Mg(7) is non-empty because the map type : Mg — Ty is
Sur;
Jecthe Recall from chapter 6 that we deﬁned the Zariski open subvariety Us of PVg
g Proved that the map 7 : Mg — PVg restrlcted to Mg gives us an isomorphism

7r
MS — Uy that classifies generic curves.

7.3. Tree isomorphisms

0 th; . ' ' . —
the hi section we produce analogous results to those already known about X's regarding
® Structure of the spaces MS(T) and Ms(T). We will require these results in the next

hy apt,
er when we analyze the space X'g in more detall
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DEFII\HTION 7.3.1. For any S-tree 7 and given an element T' € 7 we define Cr to be the set

of ®quivalence classes of T' under the relation u ~ v <= u = v or u,v €W e M(T,T).

We Call Cr the children of the vertex T on the tree 7. This should be compared with its

“mbinatoria] counterpart. Observe the map gr : T\ L}T T) W — Cr\M(T,T)is a
WeM(T,

leection where gp : T — Cr is the quotient map.

ExavpLg 7.3.2.

For the first tree Cy = {{5}, {6}, T} and for second tree C, = {5,6,w}

REMARK 7.3.3. For each tree ¢ € Ug and corresponding S-tree 7 let v be an internal
Yertey with T = T, then there is a natural bljectlon b:C, — Cr sending i € S NC, to

{i

}andutoT

QONSTF’xUCTION 7.3.4. Let T be an S-tree and ¢r : T — Cr be the usual quotient

ap, We construct a map 7 : [] T, — Ts by r([177) = ]_[qu(’I}) In more detail a
TeT

Point of [1Te, consists of a system of trees 70 C P(Cr), one for each T € 7. We let

Ty Cr be the usual quotient map and define ¢z WIr) = {¢'(U)|U € TT} so each

(7}) C P(T) is a T-tree. We then put r([[7r) = HqT (7r).

LEMMA 7.3.5. The mapr: [[ Tep — Ts is myectwe and the image is the set of S—trees
TeT _
“Ontaining T
Proor. 1t is clear thaf the map is injective and r([][7r) is an S-tree. For every
T -since Cr € Tr we see that T € ¢7(77) and so 7 C r([] 7r). Given any S—tree I
Iltalnlng TletTeT,put Uy = { U €U |root(U) =T in T} then we have an induced

tr
= qr(Ur) and T(H Tr) = ‘ L D
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PROPOSITION 7.3.6. We have the first equality and let T be an S-tree then we also have,

Ms = [[ Ms(T)

TeTg
Ms(T) = ] Me,

TGT
Ms(T) = [[ Mo,

TeT

A(Ms(T)) = Ms(T)

The Second isomorphism is an extension of the first and type(¢([] M, )) = r(I] type(M,))

W .
here ¢ is the inverse morphism to the second map.

The Proofs will be given at the end of this section. We observe here that in pr1nc1ple the
tlo Bures coyld be different in the Zariski topology and the classical topology. However as’

Our Varieties are smooth and irreducible this result is valid in both topologies.

DEFINITION 7.3.7. For any finite set S we deﬁne P+(S) {UCS||U|>1} tobe the

"luceq power set of S.

LEMMA 7.3.8. Thev space Ms(T) = [] Ms(U) is a Zariski closed subvariety of Mg
‘ usT

PROOF. The proof of this is easy since

Ms(T) = T Ms)

uxT

= Ms\ | Ns(V)

V2T

a ‘ .
" each Ns(V) is Zariski open by lemma 6.2.2 part 2.
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CONSTRUCTION 7.3.9. Let 7 an S-tree and U C S any subset with |U| > 1. For each
e T we have the quotient map gr : T — Cr. Suppose U C T then we define
@ < 4r(U), we then have CY C Cp. If T = root(U) in 7, that is the smallest ele-
fent of - containing U then by construction |C¥| > 1. This construction then gives us
map 5, P*(8) — ]I P*(Cr) defined by 5(U) = Grooty(U) € P+(Croot(U)) It is easily

een th TeT
at this map is surjective and has the following propertles

(1) s(U) = (V) <= root(U) = T = root(V) and gr(U) = gr(V).
(2) Let 7 € 7 then for all U C T we have root(U) =T <= |gr(U)| > 1.
3) s(U) € P*(Cr) <= root(U) = '

O each T € T and U C T with |U|] > 1 and associated set C¥ we define the induced

Wotiep map ¢¥ U — C}]‘ by ¢¢ = gr|v where gr is the quotient map ¢r : T — Cr

L .
EMMA 7.3.10. For any U C W with T = root(W) then we have the following commuta-
dmgmms where the vertical maps are the usual projections. The image of rw is Vw

ng
4 the maps rw : Ve — Vi onto its image and sy : Viy — Vew are inverses.

ST

. rw } .
VC'%V ‘ VW VW VC:IW
Tu Ty Ty U
Ty : £y Sy '
Vog VU VU V0¥

P ‘ ~ \ .
Particular if root(U) # T then |CY| = 1 and we have mllryw =0

PROOF, This is a particular case of lemma, 6.4.4 ‘

| O

C ' : _— —
ONSTRUCTION 7.3.11. For any S-tree 7 we define an injective map ¢ : [[ Mg, — Mg

W , TeT

hose image is contained in Mg(7) and type(d([] Mz)) = r([] type(My)).



7.3. TREE ISOMORPHISMS 101
Let C S, |Ul >1and T = root(U) we define My = ry(Mcy). We then define
== I;I MU- I claim this gives us an element of Ms. For any T € T define

Lor = {UCS||U|>1androot(U) =T in T}

T T e SR S AT,

= H Lsr

TeT

No for every U C V C § with |U| > 1 we have U € Lsr and V € Lgw where
Ts Loot(U), W = root(V) and T C W. Suppose first that T = W then lemma 7.3.10
ell Us that MV < (nf)"'My. If T C W then again using lemma 7.3.10 we see that
(Mv) = 0 because in this case |C%| = 1. Thus we have M € Ms. The construction
thls Inap can be viewed more clearly by the followmg commutative diagram, the top

Ing,
aps are projections.

H—M_CT - —Mcroot(U) P‘/S(U)

Ty

g

PVy

® Next prove that type(¢([1 Mc,)) = r([1type(Mc,)). For each T € T put Uy =

B’pe(MC ) and use themap r : [ Te, — Ts to define an S-tree U. Put M = ¢([] M), ‘
f TeT
*Ter and choose U € ¢7'(Ur) C U. Then root(U) = T in 7 and to prove U €

tyDe(M) we need to show that nfMy =0foral U CV C S. Since U C V we have that
¢ Lsw where W = root(V) in 7 and T C W. First suppbse T C W then as in the first
D&ragraph Ty My = 0. Next suppose that T' = W, since U C V' we see that c¥ c CY. |
Cause [/ ¢ g7 (Ur) we see C¥ € Ur and that U is the maximal set with ¢r(U) = C¥.
US we see that CY c C¥. Now put' X = C¥ and Y = CX then as X € Ur we see
XMY 0. Thus by the first diagram of lemma 7.3.10 we have 7 My = 0. We have
Droven the condition for each V' D U thus U € type(M) and U C type(M ).
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Next choose a set I/ C S so that U is not in any g;; (Uw) and put T = root(U) in T
“that 7 ¢ Lsir. 1 CF ¢ Uy then we can find U C V C T with Gf C C, such that
e Dllt X = CY and Y = CY then nxMy = Mx. Thus by lemma 7.3.10 we see that
7rUMV = My and so U ¢ type(M). If C¥ € Ur put V = ¢7 (C¥) then as V is the
Taxima] got with ¢p(V) = C¥ and ¢r(V) = ¢r(U) we see that V D U. As U ¢ g7 (7r)
Ve See that V > U thus applylng lemma 7.3.10 using the fact that C¥ = CX we find that
UMV = My and U ¢ type(M) therefore r([[Ur) = type(M) as claimed. The injectivity
°f this map is clear. It is now immediate from lemma 7.3.5 that type( ) D7, Thus the

i
8ge of the map is contained in Ms( ) as required.

G ,
I\ISTRUCTION 7.3.12. For any S-tree 7 we construct amap : Mg(T) — THTMCT
€

Oonsider a point M € Mg(T). For each T' € 7, we must define an element M, € :A_/l—CT'
ith the previous notation we have PY(S) = [[ Lsr. Fix T € T, I first claim that for
ety € Lsp and M € Mg(T) we have WVVKT:VT(MW) = 0 for each V € M(7,T) with
‘IWQ V|> 1 and therefore My, € PVy. To see this put U = type(M) and X = root(W)
. Then as i« D7 wehave VC X CT, W()/(VMX = My and 7if Mx = 0. One then
educes the result. Then by construction we may use the second diagram of lemma 7.3.10
deﬁne the following map. Let M € Ms(7) and fix T € T then for each U € Lgr we
e My € PV, and define Mcu = s7(My). We need to check this is well defined. Put
= oot (U ) in U and choose another V' € Lgr with ¢r(V) = C¥. Then as Cf =0Cyp

it
¢ "adily deduces that root(V) = W. From this we see our construction is well defined.

thh 1 for every such T thls define a element M. | =1] MC¥- We are required to prove
o MCT € MCT This is now clear from the second diagram in lemma. 7.3.10. Repeating

thig
S for every T € T then gives as an element [[ My € [[ Mc,. This completes the -

StrUthn It is a simple fact to verify that this is injective. One also readily verifies

% over MS( ) the map reduces on each component to



7.3. TREE ISOMORPHISMS - 103

Ms (T) — Ucr, Moy

PVp

3¢ now in a position to prove proposition 7.3.6.

Proor. It is clear that Mg = ]] Ms(T). We next prove that Ms(T) = [ Me,.
TeTs TeT

B
Y the Previous constructions we have the map ¢ : [] MCT — Mg and the map
TeT

0.5

Ms(T 7) - H Mo, with the image of ¢ contained in Mg(7). Now by lemma 7.3.10
it

8 clear that these maps are inverses to each other. Thus the third clalm is true. To

Prove that M s(T) = [[ Mg, we observe that the restricted map ¢ : Tg Me, — Mg
TeT T

B its Image in Mg(7T) and 8 : Ms(7T) — [] Mc,. Finally we prove the last part of the
TeCr

!
Uaim, that cl(MS( 1)) = Mg(T). By the previous part the map ¢ : H Me, — Ms(T)

Tg

Strictg to a map ¢ : [[ Mg, = Ms(T ). By lemma 6.2.8 MCT is an open dense
s TeCr _

Bheet of MCT thus [[ Mg, is an open dense subset of |] Mc, and by lemma 7.3.8
the _— TeCr TeT
SPace AMg(T) is Zariski closed and by definition contains Mg(7) thus,

Ms(T) 2 l(Ms(T)) = d(g( [ Mc,)

TeCr

2 ¢lel( [T Mex)

TeCr

= ¢(H —MCT)

TeT

= Ms (7)

¢ last argument works equally well in the Zarlskl or classical topology. ThlS completes
" Tesults,
O
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7.4. The natural maps from Mg to My

H B .
e We deﬁne natural projection maps 73 : Ms — M. These will be analogous to the

Iy
s 7rT Xs— X r that we consider later and are important in the study of X' 5.

D

EFINITION 7.4.1. let T'C S then we define the natural prOJectlon map 7y : Ms — My
a

follows, For every U C T we define n2(M)y = My

L :
RO 7.4.2. For every U C T C S we have that the following diagram commutes

4 — 7TS

Mg —L— Mr .

T
Ty
3
My
Proor, The proof of this is clear from the definitions. O

L
dEMMA 7.4.3. The map 7TT Ts — Tr of definition 7.2.4 commutes in the following
mg?‘am

type

Ms Ts
7 J o
My Tr
type

Proop. Let M € Mg put N = n5(M) and U = 73(T) where T = type(M). Let
SUand V € T so that W = V N T. Then we must show that Ty Mx = 0 for every
S X C T. For this it suffices to prove that in 7 we have Y = root(X) D V. Then
MY = My and 7 My =0 because V € T thus we deduce that ¥ Mx = 0 so that
S type(V). Because W C X there is some z € X\W. As X C T weseethat x ¢ S\T. |
hu833 EWIU =V for some U C S\T,iez € X\V sothat X Z V. Put ¥ = root(X)
then as W is non-empty and W = VNT C X CY we see that Y NV is non-empty.
“ause 7 ; is a tree either Y G Vor V C Y. In the former case we wouldhave X CY CV
" that X CV a contradiction, thus we deduce V CY = root(X ).
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L
“W C T with (W] > 1 and W ¢ U. Put Y = root(W) in T then My = My

th
heref()re if we put Z =Y NT we see that Z D W so that Z € U. Then as W &€ U we see
w2z O W therefore we have My = = 7} My and we deduce that 7% Mz = My therefore

W
g type( N) thus we have shown that type(N) = U and the diagram commutes.

O

S
flEFINITION 7.4.4. Let T be an S-tree then for each T € 7 and ¢ € S we define the
oll :

MWing S+ trees where S+ = S 11 {+}.

AT,1) = {U+|Ue_TandUQT}H{V[VETand'V?LT}
BT,y = a1y |
C(T,i) = {U+‘|UeTandz’eU}H{VlVéTandi¢V}H{{i,+}}

o
then d{eﬁne the set of trees

E(T) = J[{A(T,T) }H [[{B(T,1)} n]_[{c T z)}

TeT TeT €S

EX‘\MPLE 7.4.5.

%

Pleft is T, top right A(T,T), bottom left B(T, T) and bottom right C(T, i)
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L

EMMA 7.4.6. For any finite set S and any T € Tg let 7rg§+ : Tsy — Ts be the usual map
i :

en (”§+)‘1(T) = E(T) and [(n3")"HT)| = |E(T)| = 2|T| + S|

PROOF. Suppose we can prove that (7r§+)“1(T ) = E(T) then the second part of the
Clair, - ’
M s clear, To prove the first claim is not difficult but unilluminating. Instead we refer

the '
Teader to the diagram above for a picture of the process.
O

D ‘ ' .
EFINITION 7.4.7. We introduce a grading on the set of trees Tg by
B ={T eTs||T| =i}

an :
4 defipg h, = 3 |EP|t, where n = |S|. Then h,(1) = |Ts| and by the last lemma we
dve th . >0

€ following result.

1P A .
Mo 7.4.8. hny1(t) = 2R (t) + th,(t) + ntha(t) and he =t

ly s
Mg 7.4.9. For every T C S and for any tree T € Ty

@D Me@) = [ Ms@h)
‘ Ue(x2)~1(T)
(72) ' Mp(T)) = U Ms(U)

Ue(rz)=1(T)
Proo, The first equality is immediate from lemma 7.4.3 and the second from the

L7 S —
USing the description of Mr(T). 0

7.5. The projection from Mg, to Mg

Iy

thic o . - A
~ his Section we will investigate the local structure of the projection map 7 : Mg, —

S Over Mg and construct universal structure sections o : Sy x Mg — Mg, where
'S8 I1{0}. We will see later that the geometric fibre of this map 7~} (M) together with
: image of it structure sections at M is a stable S-curve and this will be an example
o famﬂy of S-curves over Myg. These notions ére defined precisely in sections 3 and

of : —
the pext chapter. In particular it is the universal curve for our moduli space. Xg
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Wil

fbe the space of isomorphism classes of S-curves and we will have the induced map

T
MS - X s This will turn out to give us an isomorphism of varieties. We prove this

UI‘
ther in the document

L .
il 7.5.1, Let 7 : Mg, — Mg be the usual projection map ‘then the restricted map
T

B 1(/\’ls) — Mg is a CP?! bundle. 7' (Msg) = P(Ns ® C) where abusively we write

S for the restriction of the usual bundle Ng over Mg to the open set Mg.-

PROOF- Consider the following commutative diagram

_ s

My ——— Ms
p p

— ™
Msy,sy — PVs

they

U we know 7 : M{s+ s} — PVs is the projectivization of a 2-dimensional algebraic
Ctor bundle so it is a CP! bundle and by lemma 6.2.3 the restricted map p: Mg — Ug
o | Somorphism with Mg = p~!(Us). Next put X5 = 771(Msg) and Ws = n71(Us)
rn:;l p\l(Ws) Xg and to prove the claim it will be sufficient to show that the restricted
P: Xg — Wy is an isomorphism. That is we need to construct an inverse for the |
;St leted map p : Xg — Wy, Let Nsx Noy € W and T C S with [T| > 2. Then it is clear
Inay define MS = p3Ng as Ng € Us and Mr, = pT+Mg+ For any set U C S+ with
= 2 there is only one point in PVy so that My is umquely defined. We then define

by <
T

s |

h H M. We see that this defines an injective map r : Wg — X and by construction
Ulage () is the unique point in Mg determined by N which is inverse to p. This

Dletes the proof. |
. O

Co
I\ISTRUCTION 7.5.2. Let 7 : M5+ — Mg be the usual projection map then we define

egt
ong ¢ . Sy x Mg — Meg,. For each i € S, we define a section o; : Mg — M,

%t
Olows, For ; € § consider the tree T; = {S+, {5, +}}. Prop031t10n 7.3.6 tells us that



o 7. THE TOPOLOGY OF Ms
M&x(?}) = Me,, X ’j(/(‘{i’ 4y = Mg x pt = Mg where the second isomorphism is iQQ
| duceq from the bijection b : S — Csy given by b(j) = j. This gives us an isomorphism
al ~JWS«;F( T;) — Mg. One readily checks that the map implicit in this is just the inclu-
flon j; Mo (T) = Msy composed with the projection 7 : Mgy — M. Thus we may
1 For i = 0 we define the tree 7o = {S+,S5}. Then agam by

~ Mg x-j_\—/{—cﬂ o Mg x pt = Mg. This gives us the

deﬁﬂe a section by cn- = jioog

Proposition 7.3.6 we obtain Mgy (7o) &
SOmOrphls,m ag : Mg (%) — M 5. Again one checks o = 7jo thus we define a section

%= Jooag®. This completes our constructions and gives us a map o : Sy X Mg — Mgy
REMARK 7.5.3. We will later see that the pair 7 : Mgy — Mgand g: S x Mg — Mgy

fo . )
I the yniversal curve for our moduli space.



CHAPTER 8
Definitions and properties of the space Xs

In this chapter we introduce the moduli space X g and using certain established results we
“onsider the structure of this space. The most important of these will be Mumford’s main
theorem and the natural morphisms 7 : 711'—54. — Xg constructed“ by Deligne and Mum-
ford. we begin by defining a generic point of Xg and put-Xs to be the Zariski open yspace
- Consisting of all the generic points. We will then show that phere is a natural isomorphism
Ps : Xs — Ug. Next we proceed to introduce the non generic elements of our space. We
then explain the construction of the tree associated to a stable S-curve and use this to
Stratify the space Xg. This is the approach we used on M in chapter 7. After introducing
the notion of a family of S-curves ovér a scheme X we state Mumford’s main theorem
8.6.3. W‘e‘ will then use this to construct a regular morphism of varieties fs : Xg — PVg
that is a birational equivalence. In particular the restricted map s : Xg — Us will be
&N isomorphism of varieties that agrees with ¢s. In the last section of this chapter we
cOnsfruct an iSofnorphism fg: Xg — M induced from the maps 07 : X7 — PVy. This
Will preserve certain natural properties such as the tree types as specified by the bijections
Under which we consider the various notions of trees equivalent. Parts of this chapter are

CIOéely related to unpublished notes by Professor N.P. Strickland. In this chapter we will
Write Vg for the vector space F(S,C) for brevity, S+ = S1I {pt} and S, = SII1{0}.

8.1. Introduction to moduli spaces

A moduli spaces typically consists of two pieces of data, a class of objects and a notion
of an algebraic family of these objects over a scheme. Let C be a class of objects and for
any base scheme B let S(B) be the set of all families over B. Let ~ be an equivalence
Telation 6n S(B) and consider the functor F from the category of schemes to the category
of sets given by F(B) = S (B)/ ~ . F is called the moduli functor of our moduli problem.
SIlppose F is representable by a scheme M then we say the scheme is a fine moduli space h

for the moduli problem F.
109
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2. Generic S-curves

DEFINITION 8.2.1. A generic S-curve is a pair (C,z) where C is an algebraic curve
iSOmOrphic to CP! and z : S; — C is an injective map. We consider two generic S-
CWrves (C,z) and (D, y) isomorphic if there is a algebraic isomorphism s : C — D such
that 50 7 = y, that is the distinguished marked points of (' are sent to those of D under
the isomorphism s with their order preserved. This is clearly an equivalence relation and
We write [C, z] for the isomorphism type of a generic S-curve (C, z) under our equivalence.

We define Xs to be the set of isomorphism classes of generic S-curves.

EXAMPLE 8.2.2. This is a generic curve with 5 marked points.

We next need to show how to glve Xs the structure of a variety. We will do this by
1deﬂt1fymg it with a Zariski open subset of PVg. This identification will be 1mportant for

Our understandlng of X which we consider later. Recall in 2.0.12 that we defined the

Zariski open subset Ug of PVy consisting of the ¢ 1nJect1ve functions’.

b ROPOSITION 8.2.3. There is a natural bijection ¢g : Xs — Us.

..PROOF. Let [C, z] € Xs be a generic S-curve and (D,u) be a representative for this
“quivalence clasé. Then we can ciloose an isomorphism f : D — CP! where we consider
Cp: = CU{oo} such that f(u(0)) = co. Since u : S; — D is injective and by construction
f(u(z)) € C. Then we may define a function z : S — C by 2(3) = f(u(Z)). We observe
that this function is injective and so we have an induced element 7 € Us. We must
check that this construction is well defined. Let (E,v) be another representative of [C,z]
and g : E — CP! be another isomorphism with g(v(0)) = co. Define an injective map
W: S — C in the same way, that is for each i € § w(i) = 9(v(i)). We can choose an
iSomorphism « : £ — D with u — qov and put A = fag™!, this is a map h : CP! — CP!
With h(00) = oo thus A =‘az + b-for some (a,b) € C* x C. Then for each i € S we have
(i) = fu(i) = fou(i) = hgv(i) = hw(i) = aw(d) + b thusZ =@ in Us and our map is

Well defined. There is an inverse for this map and so ¢s is a bijection as claimed. O
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Given the bijective map @g : Xs — Ugs there is evidently a umque way in which to regard

X5 as a variety for wh1ch ¢s is an isomorphism.

8.3. Stable S-curves

Here we define the compactification X s of Xs. To do this we need a more general marked

C‘HVe this we define next.

DEriNrTION 8.3.1. A stable S-curve is a pair (C,z), where C is a (possibly singular)
algebraic curve over C and z : S, — C is an injective m&;p, such that certain conditions
are satisfied. To formulate these, we say that a point in C' is marked if it is in the image

of 2, and special if it is either singular or marked. The conditions are as follows.

(a) C is reduced and connected, and any singular points are ordinary double points.
‘Eq‘uivalently, the completion of the local ring at any point is isomorphic either
to C[z] (for a smooth point) or Clz,y]/zy (for a singular point).

(b) All the marked points are nonsingular.

(¢) Each irreducible component of C is isomorphic to CP', and contains at least
three special points.

‘ (d) HI(C; Oc¢) =0.

We. consider two S-curves (C,z) and (D,y) to be isomorphic if there is an algebraic
i'SOInorphism s : C — D such that s oz = y, that is s send marked points to marked

DOiht;,s and preserves the order and define Xs to be the set of isomorphisms classes of

Stable S—cﬁrves, observe Xs C Xg. -

EXAMPLE 8.3.2. This is a non—generic‘curve with 12 marked points
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"8.4. The tree associated to elements of X'g

There is a natural way to partition the set X's that reflects the combinatorics of an S-
Curve (C, z). This is the notion of the tree type associated to a curve and is an important

Construction for the study of X 5. We next discus how to construct the associated tree,

this wil] require several intermediate results.

LEMMA 8.4.1. Let (C, z) be a stable S-curve. Then every global reqular function on C' s
Constant, so H°(C; O¢) = C. ” ‘

PROOF. This is well-known for CP?, and every irreducible éomponent of C is a copy

of CP!, 50 every regular function on C is constant on irreducible' components and thus

takes only finitely many values. As C is connected, the claim follows.
| O

LEMMA 8.4.2. Let s be the number of singular points in C. Then HY(C;0¢) =0 if and

only if there are precisely s + 1 irreducible components.

PROOF. Let Cy,...,C; be the irreducible components of C, so the claim is that ¢ =
¥ 1 if and only if H(C,0¢) = 0. Put & = [T'_,C; ~ [I'_,CP!, and let ¢ : & — C
bﬁ? the obvious map from the disjoint union to the actual union. Now let D C C be the
finite set of singular points, and let 4 : D — C be the inclusion. Each point d € D has
two pfeimages in C; we choose one and call it 09(d), and then we call the other one o (d).
Given an open set U C C and a regular function f on ¢~1U, we define § (f): DNU — Chby
S(f )(d) = f(oo(d)) — f(o1(d)). This construction gives a map 6 : ¢,Oz — i,C of sheaves
On C, which is easily seen to be an epimorphism with kernel Ogz. As H 1(5; Op) =0 we

have the following four term exact sequence,
H(C; 06) — HY(C;4.0z) — H°(C;i,C) - H'(C; Oc),
Or equivalently

H(C; O¢g) — H*(C;05) — H°(D;C) - H\(C; O¢),
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that jg -

t |
C—PC—-PC— H(C;0c)

i=1 deD

then counting dimensions we see dim H}(C;O¢) = 1 —t + s. Thus dim H*(C,O¢) =

0 &= t=5+1as required.
O

We next define a graph G = G[C, z], more precisely an isomorphism class of a simplicial
Complex whose geometric realization is the associated graph to an isomorphism class of
& S-curve (C,z). We then proceed to prove that this graph is in fact a tree. Of-course

our construction is equivalent to the ordinary graph associated to an S-curve that is well

known to be a tree. Here we clarify this fact.

CONSTRUCTION 8.‘4.3. We define a graph G = G(C, z) as follows. We let V; be the set
of marked points (so z gives a bijection S; = V;) and we let V; be the set of irreducible
COmpor‘lents of C. The vertex set of our graph is V. = V4 II V4. The vertices in V, are
Called external, and those in V; are called internal. For each marked point we' have a cor-
Tesponding external vertex, and also an‘ internal vertex corresponding to the component
f C containing the marked point. The graph has an edge joining these two vertices; these
are called egternal edges. Next, every singular point is a double point and so lies in the
Intersection of two irreducible components. We give the graph an edge joining the two
Corresponding internal vertices. (In principle, this could lead to multiple edges between
the same two vertices. )

Note that we have one edge for each special point. If Cy is an i‘rreducible component, then
the edges incident on the corresponding internal vertex biject with the special points in
Co, s0 the valence is at least three. _

The combinatorial graph associated to the curve [C,z] € X is then defined to be the

isomorphism class of the graph G. It is clear that this construction is well defined modulo

1Somorphism classes. .
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Exampre 8.4.4. This example shows how we construct the graph.

o

PropPOSITION 8.4.5. The graph G(C,z) is a tree (and thus has no multiple edges).

-

)

PrROOF. Let |G| be the geometric realization of G; obtained by taking a copy of the
Unit interval ‘f‘or each edge and making the obvious gluings. We first claim that |G|
I8 connected. If not, choose a disconnection |G| = Xo Il X; and let E; be the set of
®mponents of C' such that the corresponding internal edges lie in X;. Now let C; be the
Union of the components in E;, and observe that C; # fand C=Co I C ) contradicting
the connectedness of C. | , | |
NQW put n— S| and let s be the number of singular points, so there are s+ 1 irreducible
Components. There are then 7 + 1 external vertices, n +1 external edges, s + 1 internal
Vertices, énd s internal edges. The Euler characteristic of |G| is thus x(|G|) = (n + 1 +

S+1)~(n +1+ s) = 1, which impiies that |G| is contractible and thus that G is a tree.
. ‘ O

8.5. The regular map 05 : Xg — PVy

We have already shown that thére is an isomorphism ¢g : Xs — Us. In order to continue
Our .énalysis of X5 we wish to extend ¢s to a map 0g : X — PV of all of Xg. Clearly
should such a map éxists it must be unique as PVy is separated and Xg has the samé
diInensio;a as Xg. Here we define 5 as a map of sets. Later we will give a more care-
ful construction that works for i)'arameterized families of curves and thus gives a map of

schemes. This map should be compared with Kapranov’s construction in [7].
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DEFINITION 8.5.1 Let (C,z) be an S-curve. We define M = M(C, z) to be the set of

rathnal functions on C’ with at worst a simple pole at z(0), and no poles elsewhere.

REMARK 8.5.2. This is clearly a vector space containing the set C of constant functions.

We will need two lemmas about M, the proofs are given later in this section.
LEMMA 8.5.3. For each S-curve (C, z) we have dim¢(M(C,z)) = 2

LEmma 8.5. 4. Let (C,z) be a stable S-curve. Suppose that f € M(C,z) and f vanishes
% all marked points other than z(0). Then f = 0.

ConsTrRUCTION 8.5.5. Let [C, z] be a stable S-curve and (D, u) be a representative. Then
We define a linear map o : M (D, w) ——>‘F(S, C) as follows. For any f € M(D,u)andi € S
define O'( F)(@) = f(u(7)), this makes sense as u is injective and f has a pole only at z(0).
By lemma 8.5.4 this map is injective and sends constants to constants, and thus induces
AN injective linear map 7 : M(C,z) — Vs with image L € PVs say. We need to check
that this construction is Wéll defined. Let (E,v) be any other representative and given
9 € M(E,v) define o(g)(i) = g(v(i)). Let h: D — E be an isomorphism with hou = v
then clearly the map A* : M (E,v)‘ — M(D,u) defined by h*(g) = gh is an isomorphism
of vector spaces. Then‘put f = h*(9) then o(f)(@) = ghu(i) = gv(i) = o(g)(i). This
Shows that the i images of the vector spaces M (D u) and M(FE,v) under o are the same

thus oy map is well defined. We now define a map g : Xs — PVs by 0s([C, z]) = L.

ProposiTION 8.5.6. If[C, z] is a generic S-curve, then the above construction is the same

s in proposition 8.2.3.

PRrOOF. Let (C,z) be a representative for [C, z] and choose an isomorphism f : C' —
CP with £ (2(0)) = oo as in Proposition 8.2.3. As f is an isomorphism, we see that
it is regular away from z(0) and has a simple pole at z(0) thus {1, f} is a basis for
M= M(C;z). It follows that if we put g = f oz and g to be the image in PVg then {g}
is a basis for L = (M ), and the claim follows directly. : o
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We now prove the two deferred lemmas. We will make some detours alqrig the way, to

Dick up results t'hat will be useful later.

LEMmA 85.7. Let f be a rational function on CP* = CU {oo} with at worst a simple

Pole at 0o and no poles elsewhere. Suppose also that f vanishes at two distinct points in

C. Then f =o0.

- Proor. As f(2) is rational with no poles in C, it must be polynomial. As it has at
Worst a simple pole at infinity, it must have degree at most one. The claim follows easily.
| O

Proor or LEMMA 8.5.4. Let G be the tree defined in Construction 8.4.3, and let
- % be the external vertex cbrresponding to z(0). Let Cp be the irreducible com’ponent in
C containing z(0), and let ey be the corresponding exferrial edge.. Let v; be the internal
Vertex corresponding to Cp, so €p joins vp to v. Every ’edge e # eg corresponds to a
vspecial point in C \ {z(0)}, and we write f(e) for the value of f at that point. Every
external vertex v # vy corresponds to a marked point different from z(0), so f(v) = 0.
EVery internal vertex v # v cbrresponds to a component on which f is regular and
thug constant, with value f(v) say. If an edge e and a vertex v are incident, it is clear
‘ th@t f(e) = f(v). Using the fact that G is a tree, and working inwards from the external
Vef‘tices, we see that f(e) = 0 for all e # e and f(v) = 0 for all v € {vo, v1}. In particular,
We see that/ f vanishes at all special points other than z(0). By assumption, there are at

least two such points in the component Cy, and it follows from Lemma 8.5.7 that f = 0

on Cy as well.
O

Now let D be the set of marked points other than z(0) (so :c gives a bijection S — D)
and let 5 : D — C be the inclusion. Let Jy be the ideal sheaf of functions vanishing at
2(0), let J be the ideal sheaf of functions vanishing on D,andput K=T ® J5t. Thus
Js! is the sheaf of functions with at worst a simple pole at z(0), and regular elsewhere,
'S0 M = H%C; J; ). Moreover; K is the subsheaf of such functions that vanish on D.
Lemma 8.5.3 says that dim(M) = dim(H°(C; J5")) = 2, so it is part. of the following

Tesult



8.6. FAMILIES OF STABLE S-CURVES ‘ 117

PROPOSITION 8.5.8. If we write hi(F) = dime(H(C; F)), then

# 1 ' hl((’)c) =

K(O) 0

h(.0p) = n h'(j.O0p) = 0

RO(ITYH = 2 ‘ P{ITYH =0
W(K) = 0 RU(K) = n—2.

PROOF. Lemma 8.4.1 says that h%(O¢) = 1, and we are given that h'(Og) = 0.
As j,0p is a skyscraper sheaf, it is standard that H%(C;5.0p) = @uepC = Vs and
HI(C;j*C’)D) =0, so h*(j,Op) is as described. Next, put N = ,.70_“1/00. This is another
Skyscraper sheaf, with a one-dimensional stalk at z(0), 50 RO(N) = 1 and A} (N) = 0.

The short exact sequence O¢ — j{l — N gives a six-term sequence

C = M — HY(C;N) = 0 = HY(C; 51 — 0,

Showing that A'(J; ') = 0 and dim(M) = hO(J;") = h%(Oc) + RO(N) = 2. Finally,
Lemma 8,5,4 tells us that h%(K) = 0. There is a short exact sequence K — j{l — 7.0p,

givil’lg a six-term sequence

It follows that h!(K) = dim(Vs) — dim(M) = n — 2.

8.6. Families of étable S-curves

To make Xg into a variety, the key point is to decide what we mean by an algebraically
Vafying family of stable S-curves, parameterized by a scheme X. We should certainly

have a stable curve (C,, z,) for each point a € X. Given these, we can form a set
C ={(a,c)| a € X and c € C,}.

We then have a map 7 : C — X given by n(a,c) = a, and a map. z:8y x X — C given
by z(i,a) = (a,z4(i)), so that 7(z(3,a)) = a. It is certainly natural to require that C
should be a scheme, and that the functions 7 and z should be maps of schemes. One

also needs some other technical conditions to make the theory work smoothly. The full

definition is as follows.



118 8. DEFINITIONS AND PROPERTIES OF THE SPACE X

DEFINITION 8.6.1. Let X be a locally Noetherian scheme over C. A stable S-curve over

X is a scheme C equipped with maps Sy x X = C' 5 X of schemes such that

(a) 7 is flat and proper
(b) z is a closed inclusion
(¢) 7o z is just the projection Sy x X — X (so for each a € X we have a fibre

C, = n~'{a} and a map z, : Sy — Ca)

(d) each pair (C,, z,) is a stable S-curve.

For any stable S-curve C over X, we can define a function y¢ : X — Xg by

vc(a) = the isomorphism class of (Cg, a:q) € Xs.

A morphism of stable S-families (C, X, 7, z) and (D,Y,n,y) is defined to be morphisms

9:C— D and ‘h : X — Y such that the following diagrams commute.

c—2 -p c—L—p
T ol T xr Yy
X h Y S+><XTS+XY

‘ A, morphism is an isomorphism if g and h are. A morphism of families over the same base

isa morphism of families with X =Y and A : X — Y is the identity map.

The Noetherian hypothesis is not essential, but is included for technical convenience.

EXAMPLE 8.6.2. Take § = {1,2,3} and X = C\ {1} = spec(Cla][(a — 1)]). Put
C={(ar:y:2]) € X x CP?| zy = az?}

and 7(a, [z : y : 2]) = a. In other words, the fibre C, over a point a € X is the projective
closure of the hyperbola zy = a. As C is a closed subscheme of X x CP?, the projection
Is certainly proper. We can rewrite the defining equatibn in terms of the variable u = z—y
a8 2+ uy — a2? = 0, showing that the homogeneous coordinate ring of C'is a free module

over O x[u, 2] with basis {1, y}; it follows easily that = is also flat.
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We thenv define p: Sy x X — S by

0,a) = (a,[1:0:0])

»(

p(1,a) = (a,[0:1:0])
(
(

2,a) = (a,[a:1:1])

p(3,a) = (a,[1:a:1)).

p

We removed the point ¢ = 1 from X to ensure that p(2, a) is never equal to p(3,a). Given
this, one can check that p is injective and that it gives an isomorphism of Sy x X with
the closed subscheme given by the equation (z +y — (14 a)z)z = 0. Thus, p is a closed
i_n(‘lusion. It is clear that mop : Sy X X — X is just the projection. For a # 0 we can
define an isomorphism CP! — C, by [s: t] — [s? : at?: st]; so C, is a generic S-curve. In
the case ¢ = 0 the curve Cp is {lz:y:z] € CP?|zy=0}. The irreducible components
e Cl={[z:0:2]|[z:2]€CP}and Co ={[0:y:2]|[y:2] € CP'}, both of which
are isomorphic to CP!. The components intersect only at the point ¢ = [0: 0 : 1]. The
Part of C’o where z = 1 is an affine openAneighborhood of ¢, with equation zy = 0 in C2.
The completed local ring is thus C[z,y]/zy, so we have an ordinary double point. This

Shows that G is a stable S-curve, so C is a stable S-curve over X.

Results of Deligne and Mumford can be summarized as follows:

THEOREM 8.6.3. One can make the set Xs into a variety, and construct a universal stable

S-curve Cs over Xg, such that

(a) The classifying map g : X5 — X is just the identity.
: (b) For any locally Noetherian scheme X over C, and 'any stable S-curve C over X,
there is a unique map Jo : X — Xg of schemes such that ¥Cs is isomorphic to
C. Moreover:
(i) The mduced map of complez points is just Yo as defined previously.

(i) The isomorphism &Cs =~ C 1is unique. - O

As far as possible, we will use the universal property stated above, rather than any of the

Various constructions of X'g. The first exercise is to prove the following result:
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PROPOSITION 8.6.4. The inclusion Xs — Xs is actually a morphism of varieties.

PRrROOF. We have by lemma 4.1.7 that 7 : m{er,S} — PVy is the projectivization
of a Zariski locally trivial vector bundle of rank 2. We need to construct an S-curve
over Ug. Put Cs = n~'(Us) and write 7 : Cs — Us for the restricted projection map.
This is clearly flat and proper. We next define sections z : Sy X Us — Cgs as follows.
Let i ¢ § and ¢; : S+ — S be the quotient map deﬁned by ¢:(j) = j if j # + and
%(+) = i. Then the map ¢; induces a map 7 : PVg — PVgy in the usual way. We also

define ro : PVs — PVgy by mo(N ) = L where L = ker(n : Vs — Vs). This defines us

an injective map = : S+ x Ug — Cs such that moz = 1d. It is clear that the fiber of

T (g — Us is a copy of CP* thus 7 : Cs — Us together with z : Sy x Us — Cs is a

Stable family of S-curves over Us. There is thus a morphism 4 : Us — X g of schemes with

Y'Cg Cyg, whose effect on complex points is just the map «¢- Each fibre of Cs is clearly
& generic S-curve, S0 Ycs is a map from US to Xs. We claim that ¢syc, = id as a map from
Us to itself. In other words, we claim that for a point N € Ug, the corresponding fibre
(ON,Q)N) of Cy satisfies ¢s([Cn,zn]) = N. We can define a map h : Cy — CU {o0} by
MN, L) = —(—“;)l—){T(ll)l r;vhere f € L and we have h(z(0, N)) = co. Next define g : S — C by
9(i) = hz(i, N) we need to prove the image of g in PVg is N this is clear by construction,
30 ¢5([C,zn]) = N as claimed. Since g is a bijection we have yos = ¢5* and therefore -

the inclusion 7 : Xg — X can be written as 4 o ¢s s0 is a morphism of schemes. This -

should be compared with 7.5.1.
O

8.7. A catalogue of results on X

In this section we discuss a number of results regarding the space X's that will be required
in our analysis. We recall the results here and refer the reader to standard references for
more details on these matters. We will discuss a map 7 : X gyt — X5 that together with
Certain structure sections z : S X Xs - X, form the universal curve for our moduli

Space. We will also discuss the structure of the tree partition Xg = HXS( ) and the
structure of the spaces X s(t) = chg(t) that are important in the study of Xs.
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ConsTRUCTION 8.7.1. Here we describe a process which acts on the isomorphism classes
of stable S-curve known as stably forgetting. Given any element [C, z] € X'g; we form the
ew curve of genus zero [D, y] € Xs as follows. We first forget the marked point z(+).
This new curve may be unstable. This can happen if and only if the component C+ of
C containing the marked point z(+) contains only one other marked point z(j) say for
Some j € 5. We then form the new S-curve D by shrinking this component to a point and
feplacing the marked point z(5) to be this new point, the corresponding singular point of
C. This proceés then forms the stable S-curve [D,y] € Xg and the process is known as

Stably forgetting the marked point +.

EXAMPLE 8.7.2. This illustrates the last construction

THEOREM 8.7.3. There is a canonical morphism T : Xs. — Xg which acts on the -
Somorphism classes of stable S+-curves by stably forgetting the point +. This morphism -
is ”cOmpatz'ble with restriction to trees.

Xsy Us,

Xs Us

a

ConsTRUCTION 8.7.4. Let [D,z] € Xs be a stable S-curve with combinatorial tree type
t. Then we may disconnect D into its irreducible components one for each internal vertex
VU of ¢. Each of these is a copy of CP'. To each such component D, of D we can consider it

a3 a stable curve with its markings induced from [D, ;E] together with the points where D,
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Itersected the curve D. For each internal vertex v, together these marked points are C,
the children of the vertex v we write [D,, z,] for each such curve. It is clear that each of
these is a generic curve in the moduli space Xg, and that the original curve [D, z] can be
Teconstructed from the [D,, z,] by gluing them along the intersection points, see 8.7.5 for
a1 example. This construction then gives us a bijective map 6; : Xg(t) — [] Xcv. Given
3 little more work it also turns out there is a bijection extending the previoﬁ)s map which
We also (abusively) call 6 ‘given by 6, : Xs(t) — [[ Xc,, this construction is analogous in
, v

3 reasonable sense to the first construction, where Xs(t) = [ Xs(u). We will not need
u<t : .

the second map in our analysis.

EXA’MPLE 8.7.5. An illustration of the previous construction

THEOREM 8.7.6. Let t be a tree then we have the following results |

(1) Xs(t) = cls(t)
(2) The map 6, : Xs(t) — [] Xc, ts an isomorphism.

(3) The map 6, : Xs(t) = [[ X, is an isomorphism extending the previous map.
v .

CONSTRUCTION 8.7.7. Here we construct sections z : S, X ;?S — X g, that will endow
the map 7 : X, — Xg with the structure of a stable family. Let [C,y] € Xs be a
étable curve and ¢ be its combinatorial tree type. For each j € S, let ¢; be the tree ¢
With an éxtra edge attached to the middle of the edge whose external vertex is j and
label the vertex of this new edge +. Clearly t; is a tree on Sy and we define z(j, [C, %))
to be the unique curve [D,z] with 7([D,z2]) = [C,y] Equivalently D is the curve C
With an extra sphere connected to the marked point y(5) and the markings 2 of D are

induced from those of y with the exception that the marked point for the labels j and
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+ are attached to the new sphere. We note that there is only one isomorphism type of
3 sphere with 3 marked points thus this construction uniquely define the isomorphism
type of [D, z]. To be explicit let ¢ be the smallest tree, that is the tree associated to a
g‘eneric‘curve and for each i € S let #; be the tree associated to t as above and u, v the
Internal vertices with v such that C,, = {i,+}. Then as before consider the spaée Xs(t;).
Then /'Ts(t,-) =~ X, X X, = Xp, X pt = X, = Xg. The last isomorphism is induced
from the bijection b : S — C, given by b(j) = j is j # 7 and b(i) = v. This gives us
the isomorphism a; : Xs(t;) — Xs. One can check that the map implicit in ‘this is the
inclusion j; : Xg(t;) —»‘_fs+ composed with the projection 7 : Xgy — Xs. So we have a
Section o; = j; o o *. This is the same aé the previous definition since they agree on Xs.

One can also do a similar construction with the tree #,.

THEOREM 8.7 8. The map 7 : Xgy — —X_S_ together with its sections © : Sy X Xg — Xy
Makes this pair a stable family of S-curves moreover this is canonically the universal curve

for X,

8.8. Functors of coherent sheaves

We will need to show that the function s : X5 — PVs is actually a morphism of vari-
eties. It is well known that morphism to projective spaces are characterized by invertible
Sheaves over the domain schemé, or in other words line bundles, that are generated by
global sections. Qur definition and analysis of fs involved cohomology of sheaves. Thus,
to' define A for families of stable curves, we need cohomology of families of sheaves, or

In other words, push-forward functors and their derivatives. In this section, we recall the

basic facts about these functors.

Let (C,z) be a stable S-curve over a locally Noetherian scheme X. Recall that a
sheaf F of Oc-modules is coherent if locally on C one can find a right-exact sequence
Oc® — O™ —» F for some m and n. Given such a sheaf F , we can restrict to get a
coherent sheaf F, over C, for each a € X, and then compute the cohomology groups
"0, }'a) We write hi(F,) for the dimensions of these groups over C (which are always
ﬁnite). These numbers can jum;') discontinuously as @ moves, but the Euler characteristic

x(Fa) = ho(}—a) - hl(]:a)
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IS constant on each connected component of X. If it happens that hi(F,) is constant,
then we would like to assemble the vector spaces H Y(Cy; Fu) into a vector bundle over
X. Equivalently, we would like to construct a locally free sheaf G of Ox-modules with

o= H {(Cy; F,) for all a. We next explain the obvious candidate for G.

We define a sheaf 7.F of Ox-modules by
(mF)U) = F(x~'U)

for any open subset U C X. This functor is left exact but not rlght exact in general

HOWever as our map 7 is proper and flat of relative d1mens1on one, there is only one

hlgher derlved functor denoted by Rl7. (see [6, Corollary II1.11.2]). Thus, a short exact
Sequence '

Fo—F1—F
of sheaves on C gives a six-term exact sequence
1 , pl 1
Ty — TuF1 — MFe = RmJg — RmJ — Rn.J,

(ang RO, F = W*f)- As F was assumed to be coherent, the sheaves R'm,F are also
Coherent, by [5, Théoréme I11.3.2.1. Thus, for each point a € X we have a finite-
dimensional complex vector space (Rivr*f )a; whose dimension may vary as @ moves in .

X. There is a natural map p'(a) : (&' T F o — Hz(Ca, Fa), Wthh may or may not be an
iS‘6morphism.

P ROPOSITION 8.8.1. Let F be a coherent sheaf of Oc-modules that is flat over X.
(a) Suppose that H(Cy; F,) = 0 for all a. Then R'mF = 0, and 7.F is a locally

free sheaf, and the map p(a) : (m.F), — HO(Ca;vfa) is an isomorphism for all
X , _

"(.b) Suppose instead that H°(Cy; Fo) =0 for all a. Then 7, F = 0, and R'n,F is a
locally free sheaf, and the map p*(a) : (R'm,F), — HY(Cy; Fy) is an isomorphism,

for all a.

We quote the following fact from [12, Corollary I1.5.3]:

THEOREM 8.8.2, If H+Y(C,; F,) = 0 for all a, then the maps pi(a) are isomorphisms. 1
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PROOF OF PROPOSITION 8.8.1. For part (a), we certainly have H*(Cy; F,) = 0 for

il a, s0 pl(a) : (R'myF)g — H(Cy; F,) = 0 is an isomorphism, so R'm,F = 0. Next, as

c,; Fa) =0 we see that 4°(a) is an isomorphism. Recall that the Euler characteristic
x(Fo) = dimg H(C,; F) — dime H(C,; Fo)

g locally constant function of a (this is also proved in [12, Section IL5]). In our case
this means that dimc((m.F),) is locally constant. As m,F is coherent and X is locally

NOetherian, this is enough to ensure that 7, is a locally free sheaf.

Part (b) is similar. We argue as before that p'(a) is an isomorphism, and thus (using
the Euler characteristic) that R'm.JF is locally free. Next, suppose we have an open set
U C X and a section s of F over 71U. If s maps to zero in H(C,; F,) for all a € U,
then it is easy to see that s = 0. This means that the maps (7, F)g — H 0(C,; F,) are

Wjective, but in our case H(Cy; Fa) = 0, 50 mF = 0. n

PROPOSITION 8.8.3. There is a morphism s : X — PVs such that ¥s(a) = 05([C,, Z4))

for a1 4.

PRroOOF. First, to give a morphism X — PVs of schemes is the same as to give a
Subsheaf £ < Vs ®c Ox such that the quotient (Vs ®c Ox)/L is locally free of rank
N~ 2 (where n = |S]). This statement can be recovered from [6, Theorem I1.7.1], for
€xample. As Vg = 17'5/ Ag, it is equivalent to give a subsheaf M < Vs ®c Ox such that -
, AS ®c Ox < M and(IN/S ®c Ox)/M is locally free of rank n — 2. We obviously want -
the fibre M, to be the two-dimensional space M = M, in the definition of 05([Ca, za));
our problem is to fit these together into a sheaf. For this, we simply need to extend our

Original definition and analysis of the map @ so that it works for families of curves.

We let Dy and D be the images of {0} x X and S x X under the closed inclusion
Z:8,xX — C. Let Jp and J be the ideal sheaves corresponding to Dy and D. As
D1I D, is contained in the smooth part of C, we see that Jp and J are invertible, so
we can define K = J ® J; !, and this is again invertible. As Dy and D are disjoint we
have j* 7571 = 7*Oc = Op (where j : D — C'is the inclusion). This gives a short exact
Sequence , |
K— J5t — 4.0p.
It is easy to see that the three sheaves here are flat over X, and that their restrictions to

the curves C, are the sheaves used (under the same names) in our analysis of the map ¢g.
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Using Pro'position's 8.5.8 and 8.8.1, we see that R'm.O¢ = (R'm.)(j«Op) = R'nJ; ! =
K = 0 and tha;c 1.0¢, mj«Op, meJy ' and Rlm, K are locally free sheaves of ranks 1, n,
2and n—2. In fact,‘there is an evident map Ox — 7.O¢ (“inclusion of constants”) which
Is easily seen to be an isomorphism. Moreover, using the isomorphism z : S X X — D
We see that 7,5,0p = HseS Ox = 175 Q¢ Ox. We write M = W*jo_l. This ié a locally
free sheaf of rank two over X , and the fibre M, is just H%(C,; (T3 Y)e) = M,. The'short
®xact sequence displayed above gives a six-term sequence of sheaves over X, but half of

the térms are zero and we are left with a short exact sequence
M — ‘75' ®c OX - RIT‘-*IC)

Showing that (175 ®c Ox)/M is locally free of rank n — 2. The inclusion O¢ — J; ! gives
a0 inclusion Ox = 1.0 — mjo_l = M, showing that M contains Ag ®c Ox. This

8ives the claimed map ¢ : X — PVs. 0
THEOREM 8.8.4. The map Os : Xg — PVs is a morphism of schemes.
PROOF. It is the map % for the universal curve Cg over Xs. a

8.9. Contractions

~ ConsTrRUCTION 8.9.1. Now suppose we have a subset T C S (with |T| > 1). If (C,z)

18 a generic S-curve, it is clear that (C,z|r,) is a generic T-curve. We can thus define a

Map 7r§ 1 Xg ——?“XT by m2[C,z] = [C, |z, ].

EXAMPLE 8.9.2. This illustrates the last construction with 2 points forgotten.

Next, the restriction map 73 : Vg — Vr, evidently induces an epimorphism 73 Us — Ur.
We have the partial map p : PVs — PVy which is defined unless Mg < ker(n5) thus we
have an induced map p : PVs\ Pker(n) — PVy. It is easy to see that Us is contained

in the domain of this map, and that the following diagram commutes
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-1
Us bs Xs
03 T
-1
Up —LX— Xr

THEOREM 8.9.3. For any S and T as above, there is a unique morphism 5 Xg — X
of schemes extending the map 75 : Xg — Xr described above. Moreover, whenU CT C S

We have 1§, = 1F o 75,

Proor. We know from [1] that Xg is irreducible and has the same dimension as
A3, and that Xr is separated. It follows that any two maps :?s — X7 that agree on
Xs are in fact equal.  This shows fhat ﬂ% is unique if it exists. It follows from [10,
Proposi;gﬁion 2.1] that 73 exists when |S \T| = 1. For the general case, just choose a chain
T= ToC T, C...CT. =8 with [T; \ T;-1] = 1 and compose the corresponding 7’s to
8et a map Xg — X7, showing that 72 exists. The composition rule j) = 75 o w5 follows

o

mmediately from uniqueness. -
8.10. The isomorphism from Xg to Mg

In fhjs Sé(j\ﬁ()ﬂ» we define a map fs : Xs — Mg and will prove that this is actually
an isomorphism of varieties. This result relies on the construction of the regular map
fs : X3 — PVs from section 8.5. This ﬁlap should be compafed with Kapranov’s map
Ps: Xg — PVs in [7]. Later we will show that the inverse to this is induced from the
rIlétp T ﬂs+ — M and its structure section o : Sy X Ms — _M—5+ in the usual way.
From this it will then follow that 7 : —./\—/l_s+ — Mg is the universal curve of M. The con-
S’Cr'u‘ction of our map 6 will be geometricélly simple to understand. In order to construct
the morphism s we will need to use the results regarding the maps 75 : Xg — Xp for

any T contained in S that we considered earlier.

-

ConsTrUCTION 8.10.1. Here we construct a map fs : Xg — Ms. For any finite set

S let s : Xy — PVs be the map of construction 8.5.5 and for any subset T' C S
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define & map 65+ Xg — PVp by 05 = Opnf where 7§ : Xs — Xr is the usual

Morphjsm. Then define fs : Xg — [[PVr by 0s = J] 65. We first need to check
‘ ‘ TCS

that image(fs) € Msg. From the commutative diagram of the last section it is easy
fo see that 0s(Xs) = Ms, thus taking closures in the classical topology we see that
65(?3) = O5(clXs) = clfs(Xs) = cl(Ms) = M, so that 0g : Xg — Mg and the map is

Surjective.

LEMma 8.10.2. Let [D,z] € Xs and put T to be the corresponding S-tree. Let T € T
and put My = 03([D, z]) then 7 Myr =0 if and only if U CW € M(7,T).

Proor. We pfbve this for T'= S the genéral case then easily follows because restrict-
Ing the curve [D, 2] in X7 is particulary simple for each 7' € 7. Let [D,z] € X be an
iSOmorphism class of a stable S-curve with tree type ¢ say and f € M(D,z). Let Dy be
the irreducible component of D containing z(0) and write [Dy, ] for the corresponding
8eneric curve whose marked point are the special points of D that intersect Dy. Write
g for the internal vertex of ¢ corresponding to Dy ,I = Cy and y : I, — D, for the
Corresponding markings. For each internal vertex v of ¢ that lies in I let D, be the curve
Corresponding to the disconnection of D at the singular points y(v), that is the component
lot, containing z(0). For each such v consider f restricted to D,. Then f is regular on
D, because z(0) € D, and each irreducible component of D, is a copy of CP!. Thus f
Is constant on each of these components. But D, is connected because D is so that f
Is constant on D,. Clearly this construction is reversible. _By lemmas 8.5.6 and 8.2.3 we
See that the restricted map 6y : A7 — Ur is an iSomorphism where U; consists of the
'Injective functions’f Thus consider the map g : X5 — PV put 7 to be the S-tree
corresponding to ¢ and Mg = 05([D, z]) then we have shown that 75(Mg) = 0 if and only
T CW e M(T,S) as the elements of M (7, S) are of the form T, for each intersection

boint v where T, = { elements of S below v away from 0 }
-
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CoroLLARY 8.10.3. Let fs : Xg — Mg be the map of the last construction then the

following diagrdm commutes.

P— S —

.)(5 MS
type type
. o

Us P Ty

PRrROOF. Let [C, z] ‘e Xs, t the corresponding combinatorial tfee, M = 05([C, z]) and
T the corresponding tree in Tg. Let T € 7 and U C T’ then by the last lemma we have

Shown that 75 Mr = 0 if and only if U C WeM (7,T). This is enough to show that

T = type(M)
O
- LEmMMmA 8.10.4. We have the following commutative diagram of isomorphisms,
a9
XS 2 MS
95 . s
O

LEMMA 8.10.5. Let O : Xs(t) - Ms(T) be the restricted map. Then Os is a bijection

Such that the following commutes.

[Txe. — [[Mor

Xg(t) _— MS(T)

ProoF. To prove the claim it will be sufficient to show that the elements My agree for
each T € T because then there is only a unique element M in Mg with these values. Let

[Ds, zs] be an element of Xs(t) represented by the curve (Dg, zs). For each T' € T write
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[DT, z7] for the image of [Dg, zg] under the map W? : Xg — Xp and let v be the unique
Internal vertex 6ft with T, = T Let O, the irreducible component of Dy containing the
Marked point correéponding to 0. We consider O, as a marked curve in the evidpnt way
and write [O,,y,] for the isomorphism class of this component in Xc,. It is clear that
the induced marked curve of O, in Dy is the same as that of Dg. The marked points
of O, correspond to the set (Cy)+ and a non constant function f € M(Dr,zr) restricts
% a non constant function g € M(Oy,%). Then by construction y,(u) = xT(u) for each
U € (T'NC,); and each other y(u) € O, corresponds to the evident intersection points
%0 that f(y(w)) = g(zr(5)) for all j € T, with u € C,. Write Mg, = 0, ([Oy, %]) -and
Using the isomorphism of PVg, with PV, induced from evidént bijection b : C, — Cr
Put M. to be the image“of Mg,. Finally put M7 = 6r([Dr,zr]) then under the map
ip . PVe, — PVr we have Mr = ir(Mc,) thus the diagram commutes. To finish the

Proof we must also show that the map is bijective but this is clear since the other 3 are
O

bijective.

COROLLARY 8.10.6. The map Og : Xs — Mg 18 a bijective morphism of varieties.

PrROOF. We have X5 = [] Xg(t) and Ms = [[Ms(T) and under the bijection Us :
Us - Ts we have the restricted map s : X () — MS(T). which is a bijection by the last
Tesult., This proves the claim.

0
I'next claim that the map s : X5 — Ms is actually an isomorphism of varieties this will

be immediate from the following prdposition. This is a standard result amongst algebraic

geometers however I could find no reference so we prove it here for completeness.

LEMMA 8.10.7. Let fi:X— Y bea bijective morphism of complete smooth varieties then

[ is an isomorphism.

~ ProoF. Consider a point z € X and put y = f(z). Choose an open affine subscheme
V' = spec(B) such that y € V; and an affine open subscheme U = spec(A) such that
T € U and f(U) is contained in V. We then have a ring map f* : B — A. Let m be

the maximal ideal of A that is the ideal of functions that vanish at z, and let n be the
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Maximal ideal of B that is the ideal of functions that vanish at f(z). To prove our claim
it will be sufficient to check that the induced cotangent map f* : n/n? — m/m? is an
iSOmorphism. For this it will be enough to show that the completion Aof Aatm maps
iSOInorphicablly to the completion B of B at n. Next consider U N f~*{y} = spec(4/nA)
3 schemes. As z is the only point of this sche’me we have spec(A/nA) = spec(A/m)
3 sets. By the nullstellensatz, we have m* < nA < m for some t.  This means that the
Completion of A at m is the same as the completion of A at nA. Thus, it will be enough
to show that B maps isomorphically té the completion of A at nA. Next, as explained
in the proof of Hartshorne’s Corollary 111 .11.4, we have f, (Ox) = Oy. We now apply
Theorem I77.11.1 ( The theorem on formal functions ) with F = Ox and i = 0. The left
hang side is just Oy completed at y, or equivalently B completed at n. The right hand
Side is invlimg HO( X, Ox, ). Here X}, = spec(A/(myA)*). Thus, the right hand side is the

Completion of A at nA. The theorem therefore tells us that the two completions are the

- Same, as required.
O

PROPOSITION 8.10.8. Let 7 : Mgy — Mg be the projection and o : Sy x Mg — Mg, be
the structure sections of construction 7.5.2 then we have an induced map T : Mg — Xg
nd this is the inverse for Og : Xg — Mg, moreover the pair (r,¢) is canonically the

Universal curve.

- PROOF. Since all varieties are separated and by theorem 8.9.3 the restricted map onto -

the usual open dense sets commutes we have the following commutative diagram

— 9 — - 9 —

Xgy — o My Xy — S+ .

s ™ z o

_/?g — —Ms S+ X-)C'_s—_—*S_,_ X—Ms
s Os.

Such that the induced diagram on section commutes. This proves our claim.’






CHAPTER 9

The cohomology rihg of Mg

In this chapter we are going to construct a ring Rg that will turn out to be the coho-
Mology ring of Mg. The ring Rg will be defined as the quotient. of a(polynomial ring by
Certain homogenous relations. These relations will reflect some of the combinatorics of
f0rests‘that we have already studied and some new combinatorics, that of connected ~sets,
this we explain more precisely further in this chapter. The polynomial ring will contain
One generator in degree 2 for each T C S whose size is at least 3 thus giving R% rank
! 1 (%), where n = | S|. We compute an additive basis B[S] for our ring that uses
the combinatori'cs of forests and restrictions imposed on the expoﬁents that we developed
€arlier, this basis should be comparéd with its counterpart in chapter 5. The techniques
We use in this section will be mainly developed from those of chapter 5. We also state
Necessary and sufﬁcient conditions for an element z of Rg to be zero and describe Rg in
1 equivalent form. In the last part of this chapter we will exhibit an isomorphism from

R to the Chow ring A*(T/l_s). We recall here that we will be using the conventions in

chapter 2 regarding rings.

9.1. Natural classes for H*Mg

We first introduce certain characteristic classes that will turn out to generate H*(Ms).

This will be proven later in this chapter. We also fix some notation for the various vector

bundles that we will need later.

DEFINITION 9.1.1. We have natural projections 7r : Mg — PVr given by 77(M) = Mr.
Let 73 : H*(PVy) — H*(Ms) be the usual induced ring homomorphism. We put
Ly = the tautological line bundle over PVr and yr = e(Ly) € H?*(PVr), where e is
the Euler class. We then put .Ny = m3(Lr), the'pullback of Ly over Mg and define

o = e(Nr) = mh(yr) € H*(Ms). It is well known that H*(PVr) = Zfy7] /i~

133
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9.2. Relations for Rg

In this section we define a ring RS as the quotient of a polynomial ring by an ideal gen-
trated by homogenous elements. We then show these relations hold in the cohgmology
ting of M. This will then gives us a ring map 55 : Rg — H*(Ms). It will turn out that
this will be an isbmorphism. To explain one of the relations we will need to introduce one

deﬁnition, that of a connected collection of sets. This name will become apparent after

8iving the definition.

DEFINITION 9.2.1. Let £ be a collection of subsets of S and put T = supp(L) we say L
IS connected if there does not exists a splitting T =V [[W Qf T such that for all U €

Cither U C V or U C W.

DEFINITION 9.2.2. Let Zs be the gr‘aded polynomial algebra over Z with one generator

Yr € Z3 for each T C S with |T| > 2, that is we define Zs = Z[yr | T C S and [T| > 2].

Let I5 be the ideal generated by the following relations

(1) Let T C S then y'f“l =0

(2) Let T C S and T a T-tree of depth 2 then y7"") ] (yr —yu) =0
UeM(T,T)

(3) Let £ be a connected set then [] (yr — yv) = 0 where T = supp(L)
_ ver

then we define the ring Rg by Rs = Zs/Is |

PROPOSITION 9.2.3. Let ¢s : Zs — H*(Ms) be the map given by ¢(yr) = zp, then
$(Is) = 0 and so there is an induced ring map ¢g: Rg — H*(Ms).

REMARK 9.2.4. If T C S then.we have an inclusidﬁ of ideals Ir C Is and the inclusion
Map ¢ : Zr — Zg induces a map r5 : Ry — Rg such that the following diagram com-

Mmutes. We will see later that this map is injective.
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H*(M7p) — H*(Ms)
o7 bs
S
Rr —ZL R

Here we prove relations 1,2 and 3 are satisfied by our ring. We note here that relation 1
€an be considered as a special case of relation 2 by relaxing the condition on the depth of
the tree 7 to d(7) < 2. rl‘“hen relation 1 corresponds to the tree 7 = {T'} as M(7,T) is
fmpty and m(7,T) = |T| — 1. For the proof of relations 1 and 2 we use results obtained

in chapter 5.

LEMMA 9.2.5. Relations 1 and 2 hold in the ring H*(ﬂs).

PROOF. Let T be a T-tree of depth 2 or less and 7 : Mg — My be the projection

™TT) [l (er—zv) =0in H*(Ms). Then by lemma 5.1.10 we
UeM(T,T) _ o
have the equivalent relation in the ring H* (Mz) thus applying the map 7* : H*(M7) —

Map. Then we claim x

i (MS) we obtain the required relation.
O

Before we can prove relation 3 we need a lemma regarding connected sets. To prove this

relation we then show that there is an injective map of vector bundles Ny »— h Ny.
: Uel

LEMMA 9;2.6. Let L be a collection of subsets of S and put T = supp(L), then the map

T Vo — @ Vi is injective if and only if L is connected.
veL '

- PROOF. Suppose L is connected and let T € ker(n) then z|y is constétnt’for each
U e £. Choose Ue L and put ¢ = z(u) for any u € U. Pu‘p Thy={teT|z(t)=c} and
T = {teT|z@) #c} then T =To I T; and for every W € L either WCThorWCT
therefore by connectivity either 7o = @ or 71 = . But U C T therefore Ty =0, Ty = T
and z = ¢ thus T = 0 and 7z is injective. Next éuppose L is not connected and let
T = Ty 11 T} be such a splitting. Consider the map 7 : Vi — Vr, ® Vr, then one readily

see that ker(m) C ker(mz) and by lemma 4.1.5 we see dim(ker(n.)) > 0. O
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LEMMA 9.2.7. Let £ be a connected set and T = supp(L) then [] (zr — zy) = 0 in the
o - UeL

tohomology ring of M.

PROOF. Let M be an element of Mg then by definition My < () (a5)" My =
vec

T:'(@ My) and we have the following diagram.
UeL

1 T

Mr — Vr , @VU
Where 7, is injective. Thus

T (OMy) — @MU
Uel

MT b d @ MU
vel

‘NT — @ Ny as vector bundles
vel :

C[1] » @(N} ® Ny) where C[1] is trivial
vec v

0 = e(@(N} ® Ny)) on taking the Euler class
UeL '

= TIewn) - e®y)

Uel

= H(.Z‘T - .’Z?U)

Uel

9.3. Construction of a basis for Rs

Our next problem is to understand in more detail the structure of the ring Rs. Using cer-
tain combinatorial conditions, we will describe a set B[S] of monomials in the generators

Zr, which will turn out to be a basis for Rg over Z.
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DEFINITION 9.3.1. We put Bs = { monomial basis for Zs} and say that a monomial

T= 11 yf¥ is fbrest — like if F is a forest.
TeF ‘ . ‘

DEFINITION 9.3.2. For any monomial y = [] y7* € Bs we define functions called the

S TeL
shape, shape : Bg — P?(S) and support, supp : Bgs — P(S) by shape(y) = £ and
Supp(y) = U T. |
' réc

REMARK 9.3.3. Clearly a monomial is fqrest—like if and only if its shape is a forest. .

DErINITION 9.3.4. For any monomial y with ¥ = [1 ¥2© so that shape(y) = £ and for
TeL '

any U C £ we write yly = [] vi° called the restriction of y toU.
ved ‘ ’ :

REMARK 9.3.5. The numbers m(F,T) defined in chapter 3 will turn out to give us condi-
tions on the exponents of generators of forest-like monomials z which will give us a basis

for Rg. These numbers come naturally from condition 2 in definition 9.2.2. We next give

& precise description of a basis B[S] of Rs .
DEerINITION 9.3.6. For each forest F of S we define

B{S|lF] = { Hy§T|1§nT<m(]:,T) for allTe.’F}
' TeF .
Bl = ][ BSIA
forests F
B[S] = gs(B[S]) where gs: Zs — Rgs is the quotient map.

REMARK 9.3.7. For any T C S it is clear that B[T] C B[S]

LEmMA 9.3.8. Ify = [] y7* € B[S] then
| TEF . ,
(1) For each U € F we have S np < |U|-2 with equality if and only if Fly = {U}
TeF|ly . .
and ny = |U| = 2. )
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(2) In pamcular 3 nr < |S| — 2 with equality if and only sz = {S} and ng =
. TeF
S| - 2.

PROOF. We prove the second case. The first then follows by considering F |l and

applying the second case and observing M (F|y) = {U} for each U € F.

ZnT < Z(m(f,T)—l)

TeF TeF

= S mFD) - IF|

. TeF :
= > |T|=|M(F)|—|F]| by lemma 3.3.2
TeM(F) '

= | ] TI-1MF)|-]|7|
o _TGM(}')

< [S]=2as [M(F),|F =21

It is now clear that we have equality if and only if 7 = {S} and ng = |5} -2 O

9.4. A filtration for Rg

We will next introduce the concept of the weight of a monomial which will induce a fil-
tration on Rg that will enable us to show that the set F[S] does indeed span Rg. Most

of these constructions will be analogous to those in section 3 of chapter 5 so we do not

repeat proofs of those statements here.

DEFINITION 9.4.1. Let y € Bg, so y = [] y7% say. We define a function wt : Bg — N
TeL

called the weight by wt(y) = > nr|T|. In particular this gives a monomial yr weight |T|
T TeL « ‘ ,
We also put deg : Rg — N to be the cohomological degree function, so deg(yr) = 2.

LE’MMA 9.4.2. wt(zy) = wt(z) + wt(y) and deg(x) < wt(z) < 2 deg(z) O
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DEFINITION 9.4.3. We define filtration’s on Zs by

F.Zs = span{y€ Bs|wt(y) >k}

G Zs = span{y € Bs| deg(y) >k}

LEMMA 9.4.4. Put H = F or G then HiZs is a convergent decreasing filtration of Zg,

that 4s,

Zg = HoZs 2 H\Zg 2 HyZgs 2, ... and ﬂ H.Zg = {O}

k>0

!

DEFINITION 9.4.5. We define a function wt : Zg — N U {oo} called the weight that ex-
tends the last functlon as follows. For every non-zero y € Zs we know by the prev1ous

lemma that there exlsts a largest k such that y € FyZsbuty & Fy11Zs. We put wt(y) =k
and define Wt( )=o00.

LEMMA 9.4.6. The weight function has the following properties

1) Ify= .Zjaiyi with y; € Bg then, wt(y) = min{ wt(y;) | 4 el}
0 (2) wi(zy) = wi(z) +wi(y) - | 0

DEFINITION 9.4.7. We define fltration's on Rg by FyRs = qs(FiyZs) and GiRs =
9s(GrZs) where gs : Zg — Rsg is the quotient map.

LEMMA 9.4.8. Put H — F or G then HyRs 1s a convergent decreasing filtration of Rg,

that s,

Rs = HyRg D HiRs D HyRs 2,... and [ | HxRs={0}

k>0
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ProOF. The first part of the claim is clear. By lemma 9.4.2 it is clear that F}Zs C
G\Zs where | = [2k/n] and [a] is the integer part of a thus FiRs = gs(FvZs) C

Is (GIZS) = G, Rs. Therefore N FxRs C () GiRs = {0} as Ry is graded by degree.
Ck ! ,
_ : -

DEFINITION 9.4.9. We next define a function wt : Ry — NU {oo} called the weight as
follows. For every non-zero z € Rs we know by the previous lemma that there exists

a largest k € N such that z € FyRs, but 2 ¢ Fry1Rs. We put wt(z) = k and define

wt(0) = co.
- LEmma 9.4.10. The function wt has the following properties.

(1) If £ = ¥ asz; with z; € R then wt(z) > min{ wt(z;) | i € I}

(2) The're :glan m € N such that wt(z) < m for allvnon zero T € Rg.
(3) wt(zy) = wt(z) + wt(y)

(4) wt(gs(z)) = wt(z)

a

DEFINITION 9.4.11. We define FiB[S] = { z € B[S] | wt(z) > k } and the induced set
FiB[S] = ¢s(FB[S ]) ‘

DEFINITION 9.4.12. Let y € Zg be a monom1a1 We say vy is adm1s31ble if y € B[S] and
Hladmlss1ble if y & B[S]. We also say y € Zg is minimally inadmissible if it has the form

(1) yryy with TN U non-empty, T €U and U € T

(2) yr™TT) I[1 wv with T a T-tree of depth 2 .
: UeM(T,T) )

(3) yiF-? for’some TCS.

LEMMA 9.4.13. Let z € Zg be a non-zero monomial, then z is madmzsszble if and only zf

2 =gy with x mzmmally inadmissible.

PROOF. The result is immediate ‘from the definitions. “ O
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LEMMA 9.4.14. Ify € Zg is minimally inadmissible then wt(gs(y)) > wt(y).

PROOF. In case one we have sets 7" and U with TN U non-empty T Z U and» UgT.
Put w =y u V. then by relation 3 we have (zw — zr)(zw — zy) = 0 and so zrzy =

Twer + Twiy — z¥ therefore using lemma 9.4.10 we see that

wt(gs(yryw)) = wt(zrzv)

= wt(gs(ywyr + ywyv — Vi)

wt(gs(ywyr) + as(uwiw) = as(viv))

min{ wt(¢s(ywyr)), wt(as(wyo)), w(as(vir)) }

>
> min{ wt(ywyr), wt(ywyw), wt(y) }

= min{ |TUU|+|T|, [TUU|+|U}|, 2]TUU|}
> |T|+1U]

= wt(yryv) |

The second and third case are essentially lemma 5.3.14 of chapter 5 .
a

COROLLARY 9.4.15. Let y € Zs be a monomial. Then if y is inadmissible that is y & B[S]

?U’e have wt(gs(y)) > Wt(y)f

PROOF. The proof is essentially that of lemma 5.3.15 so we do not prove it again.
| O

LEMMA 9.4.16. Rg = spanB[9]

PROOF. The proof will follow from a downward induction on the weight w of the
Statement that for every k €N FyRs = spanF, B[S]. Fof k > 0 we know by lemmas
9.4.10 part 2 and 9.3.8 that FkRs = 0 = spanF} B[S]. Suppose it is 'trﬁe for k > w. Let
T € FyRs = qs(FuZs), then:ﬁ = gs(y) where y = Z a;y; € FyyZg thus wt(y;) > w. So it is
enough to show that for every ¢ € I we have gs(y;) 1le,paLnFu,E[S]. If y; € B[S] then we are
ok so we may assume that y; ¢ B[S]. In this case we know that wt(gs(y;)) > wt(y:) > w
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and so by induction gs(y;) € Fri1Rs = spanFi41B[S] C spaan [S]. Therefore Rg =
BRg = spanFoB[S] = spanB[S] and we are done.
0

COROLLARY 9.4.17. For every i > |S| — 2 we have R% =10 and Ré(lsl'm =7ZJ L?ql d

PROOF. For every i > |S| — 2 we know by lemma 9.3.8 that B*[S] = (). Therefore
R¥ = spanB%[S] = 0. We have shown by lemma 6.4.18 part 7 that H*IS-2(Mg) =

Z[T«gg'—Q] thus the claim follows by lemma 9.3.8 using the map bs: Rs — H*(Mg).-
. . -

CoROLLARY 9.4.18. Let y € Zg with shape(y) = V say and put z. = gs(y) where

s : Zg — Rg is the usual quotient map. Suppose there ezists a subset U of V such

that, deg(al) 2 2(jsupp()| - 1) then © = 0.

PROOF. Put T' = supp(U) by considering z[y as an element in Rr we see by the
Previous result that z|; = 0 in Rr . Let r2 . Rr — Rs be the ring map induced by the
inclusion 3 : ZT — Zg then we see that xy is zero in Rg. Therefore z = 2|y, - 2’ is zero in
Rs. | -

-

LEMMA 9.4.19. B[S] is a basis for Rs and bs : Rg — H*(Ms) is an isomorphism.

PRrOOF. We have shown in lemma 6.4.18 part 5 that H*(Ms) is generated by H2(Ms).
Part 3 tells us that bs : R% — H*(My) is a surjection. Thus the map @ is surjective.
We have also shown in lemma 6.4.18 that H* (7\71‘5) is a finite free module of rank d where
d = Pg(1) and Ps is the Poincaré series of Mg constructed in definition 6.4.15. it is then
Clegr by the construction of B[S] that |B[S]| =d. By lemma 9.4.16 we have that B[S] |
spans Rg and we have the map ¢ : Rs — H *(Mg) is surjective. Thus 65(BI[S)]) spans |
H*(Mj). Then d < [¢(B[S])] < |BI[S]| < |B[S]| = d. Thus [¢(B[S])| = rank(H*(Ms))
and ¢(B[9)) is a basis. Therefore B[S] is a basis for Rg and the map ¢g : Rg — H*(Ms)

Is an isomorphism.

0
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LEMMA 9.4.20. The map 75 : Rp — Rg is injective.

ProoF. Topologically this is clear since we have maps Mp — Mg — My such that
the composition is the identity. To see this algebraically we have an inclusion of sets

Bric B [S] in the evident way.
| O

9.5. The zero conditions for monomials of Rg

The aim of this section is to compute precisely the set of non-zero monomials of Rs. This
Set is given in the next definition. Corollary 9.4.18 gives us a condition for a monomial

to be zero. We will show that this is condition is also neéessary. In this section we will

be using the ordinary degree of a monomial.

DEFINITION 9.5.1. We define N [S] to be the set of monomials of the form y = [] y77
TeL
Where £ is any collection of subsets of S Such that for every U '€ L we have ny 2 > 1 and

for every T C § we have 3 ny < |T| — 2. We also write Ng[S] for the subset of N[S]

UeL
UcT

‘Consisting of the monomials whose shapes are forests. We then define N[S] = ¢s(N[S])

and Np[S] = qs(Ng[S]) where gs : Zs — Rg is the quotient map.

LEMMA 9.5.2. Np[9] is precisely the set of non zero monomials whose shapes are forests

Inoreover for any z € Np[S] we have g > %@ = z171-2

PROOF. let y be a monomial in N F[S] with shape F say. Put z = gs(y), then we can
Consider z as a monomial in R}' in the obv1ous way. Let ¢ : Zr — Zs be the inclusion
Map. Then Ir C Ig so that we have an mduced ring map 7 : R — Rg. One then readily
verifies that B[F] c B[] so that the map is injective. Then as z € N[F] it is non-zero
in Rz by lemma 5. 4.3. Then applying r we see that z is non-zero in '‘Rg. In particular

'SI 2rdegla)y ' =2 in Ry thus applying r agaln we obtain our result.
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DeriniTION 9.5.3. Let £ be a collection of subsets of S. A chain in L is a subset
C = {Tl,...,Tn} of £ such that T; € Tiy1, Tiv1 € T; and T; N T34 is non-empty. A

sub — chain L' of a chain L is a subset of £ that is itself a chain. Note that any chain is

4 connected set.

DEFINiTION 9.5.4. Let £ be a collection of subsets of S, we define an equivalence relation
~on L as follows. Given U and V in £ we say U ~ V if and o_nly if U = V or there is
a chain (T, ..., Ty,) of £ with U = T; and V' = T,. Note we allow repetition in our chain.

We write U for the equivalence class of U € £ and it is clear that U is itself a chain. It

Is the maximal chain containing U.
DEFINITION 9.5.5. Let £ be a collection of subsets of S. We define the set

L* = {suppd) |[UC Land U is a chain }

and call this the completion of L. Note that any singleton is a chain, so £ C £*

LEMMA 9.5.6. Zet L be a collection 0f subsets of S and C,D be chains of L that are
n?ybséts of dz’jj‘ereht equivalence classes. Put T = supp(C) and W = supp(D) then {T, W}

is a forest.

PROOf. Suppose for a contradiction that {T', W} is not a forés’c. Then we can find
C € C and D € D with C N D non-empty. Now the pair {C,D} must be a tree for
otherwise C and D would belong to the same equivalence class. We may suppose then
without loss of generality that C C D. Now not every E in C can be contained 4in D else
{T, W} would be a tree, thus there is some E € C not contained in D. Because C,EecC
there must be a chain {C}, ...,C,} with C; = C and C, = E. We have C1 C Dand C,. £ D
so for some k we must have Cr € D and Cy11 € D. One then checks that {Cyyy, D} is a

chain and therefore Cy; ~ D, contrary to the assuinption on C and D. This completes

our proof.
O
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CoroLLARY 9.5.7. Let £ be a collection of subsets of S and U,V be elements of L that are
N0t related under ~ . Let U be a forest on (U)* and V be a forest on (V)* then F = UUY

is q forest.

PrOOF. The proof is immediate given the last lemma.
d

CoroLLARY 9.5.8. For any collections U,V of subéets of S we haved CU*, U =U*
S U UV C (UU V) and if U CV then U™ C V. :

ProOF. Only the second part requires some comment. We already know that £* C
L* 50 it suffices to prove the reverse inclusion. Let W € L** then W = supp{Vl, Vin}

for some chain {1, ..., Vi } of £*. We then have each M = supp(C;) for some chain C; of
L. Now consider the pair Cj,Cj41 for some j and put Dj = C; UCj41. Then apply the
relation ~ to D;. Either there union form a chain or each is a separate equivalence class.
But the latter case cannot happen since then by lemma 9.5.6 we would have {V},V;;}

forming a tree. Thus D = |J,C; is a chain on £ and W = supp(D).
O

DEFINITION 9.5.9. Given two collections of elements U,V of S we say U < V if Y C V*

LEMMA 9.5.10. The above relation is reflezive and transitive.

PRrROOF. Clearly Y <U asU CU* IfU <V and V < W then Y C V* and V C W*

thus V* C W™ = W* and Y C W* therefore U < W.
R 0

DeriNiTION 9.5.11. Let z,y € N[S] with z = J] y{¥ and y = [] /¥ then we say
Ueld Vey

Q?<y1fu<VandforeachTCSwehave S oy < ZmU

Ueu Vey
UcT veT

LEMMA 9.5.12. The above relation is a reflexive and transitive ordering on monomials x

of N[S] and if z <y and 2’ <y’ and yy' € N[S] then zz’ < yy’
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- PrROOF. The proofs of these statements are clear though long and tedious so we do
10t supply any proofs.
‘ O

DEFINITION 9.5.13. Let y = J] v~ be a monomial in N [S] we say y is a propef mono-

. veL
Wial if we can write = = qs(y) as z = Y, €(¢)z; with z; = ¢s(y;) for some monomials y; in
iet
Np[S] such that €(i) = +1, Y. e(i) =1 and each y; <y
icl _

LEmMma 9.5.14. Ify is a proper monomial then x = qs(y) is non-zero.

PRrROOF. Since y is proper we may write z = S €(d)z; with the z; = gs(y:) and y;
i€l

Monomials in Nr[S] such that €(i) = £1, ) €(i) =1 and each z; < z then
icl . ,

plsl-emdoste)y . glSi-csa) S (i),

' iel

- T ey,
iel

= Ze(i)xlssl'z by lemma 9.5.2
iel
S|-2 .

= gl Ze(z)

iel

151-2
= zg

LEMMA 9.5.15. Let £ be a collection of subsets of S , y = IT yi¥ in N[S] be a proper
. UeL
monomial and T 2 supp(L). Suppose that nr + deg(y) < |T'| — 2 then y}Ty is a proper

monomial .

PROOF. Asy is proper we may write gs(y) = > €(i)gs(y;) with >"e(i) = land y; < y

el iel
then

as(yr™y) = Y e(D)as(upTy:)

iel
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Because T 2 supp(£) and nr + deg(y) < |T| — 2 it is clear that y7"y € N[S] and each

YTy € N, #[S]. We also see that y27y; < y2Ty, thus y#Ty is proper.
| | O

LEMMA 9.5.16. Let £ be a collection of subsets of S and y € N[S] a monomial on L.

Suppose qs(y) = S e(d)qs(yi) with e(i) = £1 and Y. (i) = 1. Then if each y; is proper
i€l iel

ind y; <y then y is proper.

PROOF. As each y; is proper then we may write gs(y;) = Z; €(3,5)qs(vi;) with
’ J€L;

Z €(4,7) = 1 and y;; < y; then
€T,

as(y) = Y D e(D)e(i, 7)as(yis)

i€l jeI;

then since each vij < v and y; <y we have y;; < y and

S cli)elid) = D€l elind)

icl jel el el
= E Lle()
i€l
= 1

thus y is proper
O

LemMA 9.5.17. Suppose z and y in N[S] are proper so that gs(z) = Y e(i)qs(z;) and
i€l

os(y) = 3" e(5)qs(y;) and for eachi € I, j € J  shape(z:y;) is a tree then if zy € N[S]
, €T
we have that zy is proper.

PROOF.

as(on) = 3 3 el)e(i)as(z)

il jeJ
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88 7; < 7 and y; < y then by lemma 9.5.12 we have z;y; < zy and shape(z;y;) being a

tree is given thus it remains to prove the epsilon condition

S S i) = e el)

iel jeJ il jedJ
= 1x1.

=1

O

LEMma 9.5. 18 Let £ be a collection of subsets of S and y= ]I y U be a monomial in
UeL :

N[S). Put C(L) to be the set of equivalence classes of L and for each C € C(L) let y(C) be
the restriction of the monomial y to C then if for every C € C (L) the elements y(C) are

Proper monomials assoctated to C then y 1s a proper monomial associated to L.

PRrOOF. We first note that as £ = II Cwehavey = ][] (C) We are given
CeC(L) cec(L) .

that each y(C) is a proper monomial of C, we may then use corollary 9.5.7 and apply the

obvious extension of lemma 9.5.17 to deduce our result.

LEMMA 9.5.19. Let £ be a collection of subsets of S and C = {T1,...,T,.} be a chain on’

L. Consider the monomial y = [] yi™ then if y € NI[S] it is proper so that x = qs(y) =
,‘ TEC .

"l

> e(i)z; and the top of each tree is T = supp(C).

1=]

PROOF. First put T' = supp(C) = U U and n = deg(y). We know that

UeC
H(xU —z7)=0
UeC

UE? UGC

[[ - 2rayr=) =0

UeC
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S0 on expanding this we get

z=qs(y) = Z e(i)x;_deg(yi)qs(yi) clearly €(i) = +1 and }: e(i) =1
i€l iel \
Put ¢, = shape(yi) then we observe that ’Ci C C is a possibly disjoiht union of chains’, y; is
- &proper divisor of y thus deg(y:) < deg(y) and y; < y. Thus by induction we may suppose

| the claim is true for each equivalence class of C; and by lemma 9.5.18 we can deduce that
n—deg(y;)

Ui is a proper monomial associated to C;. It now remains to chgck that yp Y;.is a
Proper monomial and‘y;"deg(yi)yi <y, because T' = supp(C) applying lemma 9.5.15 we
See this is clear and then épply lemma 9.5.16 to obtain the result. O
COROLLARY 9.5.20. Every monomial y € N[S] is a proper monomial.
PROOF. The proof is immediate from lemma 9.5.18 then 9.5.19.
O

LEMMA 9.5.21. Let £ be a collection of subsets of S and consider, the monomial z =
TH 3T then x = 0 if and only if x & N|[S] further if z is non zero and deg(z) = |T| — 2
ec ‘

|T|-2

that is has mazimal degree then x =z’ ~ where T = supp(U).

" Proor. If y € N|[S] we have already seen that z = gs(y) = 0. Given any y € N[S] |
Wwe have show that y is proper and thus z = gs(y) is non-zero. As N[] = gs(N[S]) we

See our claim is true.
O

- 9.6. Minimal relations

In'this short section we consider the relations for connected sets and explain how these
can be deduced from a minimal set. We will prove this explicitly, however this can already

be seen from the work we have done.

DEFINITION 9.6.1. Let Zg be the graded polynomiél algebra over Z with one generator

Yr € Z% for each T C S with |T'| > 2, that is we define Zg = Z[yr |T C S and |T| > 2].
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Let Jg be the ideal generated by the following relations

(1) Let T C S then /7" =0

(2) Let T € S and 7 a T-tree of depth 2 then ym(T’T) 1 (wr—yu)=0
UeM(T,T)

(3) For all U V C S with U NV non-empty we have (yuvov — yu)(yvov —yv) =0

then we define the ring Qs by Qs = Zg/Js

REMARK 9.6.2. Clearly we have the inclusion of ideals Js C Is. By considering our anal-
" ysis of the filtration in section 9.4 in particular the admissability of monomials we easily
See that Qg is also the cohomology ring of Ms. Thus Rg = Qg as claimed. It would be

better to see this algebraically. This we dp next as it is straightforward.

LEMMA 9.6.3. Let L be a connected set then H (zr—zy) =0 in QS where T' = supp(L).
Uec

PRrROOF. The proof is by induction on L. Clearly we may suppose that £ is not a
forest, When |£]| = 2 the claim‘is immediate. Suppose the case is true for |£| = n. Let L
be connected with |£] =n+ 1. Then we can find U,V € £ with {U,V} not a forest. Put -
W UUV so that (xw—zy )(zw—2zv) = 0. This implies (zr—zy)(zr—zv) = f(zr—2w). -
Put L' to be £ with U, V removed and W added. Then H (zr—zy)=f [ (zr—2zv),

Vel
IC'| = n and clearly £’ is connected, supp(L’) = T thus 1nduct1vely we obtain our relation

O

from the last equation.

COROLLARY 9.6.4. Let S be a finite set then we have an equality Rs = Qs O

9.7. An isomorphism from A*(Mjs) to H*(Ms).

In this section we consider the natural map cl : A*(Mg) — H*(Ms) that we proved in
chapter 6 was an isomorphism. We will state a presentation for A*(Ms) given by Keel in

[9] and compute explicitly this map and also its inverse.
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DEFINITION 9.7.1; Let S be a finite set with |S| = n and T C S then for any i,j € T

With 5 4 j we define the following spaces.

F(T,C) = {f:T—-C|f()=/()}

Vi = FY(T,C)/Cr

PV C PVp

We have the maps 75 : Mg — PVy and define X3 = (n§)~}(PVz?) € Ms. For any
Tcs §Ne also define the divisors DT C Mg by DT = —M{S,T}.

REMARK 9.7.2. Note that these are all codimension 1 subspaces of their respective sets

and Keel proves that the DV generate the Chow ring.
LEMMA 9.7.3. X = Y { DY |U 2 {i,j} and U 2 T }.

‘PROOF. Choose a set U € S with 4,5 € Uand U 2 T. Let M € DY and put -
7T = type(_M_), s0 type(M) D {S,U}. Put V = root(T) then U C V since type(M) is -
a tree, U NV is non-empty and U 2 T. Then {4,5} C TNU C U and 7k, My =
W%HUW,}{MV = TfoyMy = 0 thus Mt € X;lj. Now suppose M € X,_f:j, put 7 = type(M)
and V = root(T) then there exists a U € M(7,V) with i,j € U and we must have U 2 T
for otherwise U D T and root(T") C U a contradiction. Next put i = {S,U} then T D U

and M € DVY. This proves the claim.
' O

DEFINITION 9.7.4. Let Ly be the tautological line bundle over PVy. Put Ny = (m$)*(Lt)
and N1 the dual bundle over Mg where 753 : Mg — PVr is the usual map. Then
given a linear map o € hom(Vr,C) we write s, for the induced section on N3 given by

Sa(M) = o|p, € hom(Mr, C). The zero set of this section is clearly given by the space
{M e Ms | My < ker(a) }
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LEMMA 9.7.5. For every T C S and any i, € T with i # j, there is an algebraic section

iv j . - . i7 ] )
S of the usual line bundle N} over Mg whose zero set is Xy7.

Proor. Let Nr be the usual bundle over Mg and N} be the dual bundle. Define
Sa 1 Mg — ENj as follows. Define a : F(T,C) — C by a(f) = f(i) — f(j) and, the
Induced map @ : Vo — C by a(f +Cr) = a(f) then clearly,

so(M)=0 <= Mr< Vil = ker(@)
| - e MpePVy
= Me @) (PVF) =X

O

COROLLARY 9.7.6. The cohomology class [X37] € H?(Ms) is independent of i,j € T
With i # § and is 7 = —e(N}) the euler class of NT

COROLLARY 9.7.7. We have the following equations

Tg— T = Z DY

TCUCS
s = Z DU
{i.g}cucs
DV = Z (=1)IV/Ulg,,
vcves
PROOF. Put BV = > (- 1)V/Vzy,. First note that D5 is not a divisor but we
. UCVCS .
can make the arbitrary definition DS := E® = —zg without affecting the following sum.
Then by lemma 9.7.3 have shown that zz = Y, DY — 5" DY we first show that
- {6.5)CUCS TCUCS
Tr= > EY- %} EY.Let W C S, then we consider the number of occurrences of
{i.5)CUCS TCUCS
Ty in the sum ) EY. That is, we require the number of sets U such that 7’ C U C W.

TCUCS _
If T ¢ W then there are no such occurrences otherwise there are 2" \7l sets of this type.

This is even if W. # T and takes the value 1 otherwise. Because the zy alternate in
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Sign we see that there is no total contribution of zy, in the sum if W s T and a total

| Contribution of —zr in the case W = T. We next prove that the sum > EV is zero.
| | {iJ}CUCS

Let W C S, then as before we consider the number of occurrences of zy in the second

; Sum. That is, we require the number of sets U such that {i,5} € U C W. There are

| 10 such occurrences if {i,j} € W and 2/"1-2 such sets otherwise. Because zy = 0 if
1‘ W = {i, ]} we may suppose | W| > 2. But then the number of occurrences of Ty, is even
- and thus the total contribution of Zw is zero by there alternating sum. Thus we have

Proven that the only contribution is by zr and the sum is as claimed.

| Next put QT = DT — ET and subtract the equations

' v ar = », EV- Y E

ijycucs  TCUCS
g = Y, DU- > DY
{i,j}CUCS TCUCS

then we obtain 5> QU= Y QU for all T and all {45} C T. Putting T = S we
TGS {i.j}cucs

| Obtain 5 QU = 0 because Q5 = 0 thus substituting this back we obtain QU=

{ig}cucs | TCUCS
0 for all 7. We now use a downward induction on |T| to deduce that QT = 0 for all T'.

For [T| = n =|S| the claim is clear. Assume the claim is true for m > k for some k < n

then for a set T with |T| = k we see immediately from >> QY =0 that Q7T = 0 thus
' TCUCS :

DT=ETand Y DU =0 as claimed.

{ijreues
_ O

DEFINITION 9.7.8. Let Zg be the polynomial ring Z[DYV |U c S| and Ig the ideal

generated by

Z DY = Z DY for every i, j,k,1
{i.g}cvcs {kiycucs
D'DY =0unlessTCU,UCT, TCU® UCT®

then we define Ts = Zg/Is and we have the following theorem due to Keel [9]

*

THEOREM 9.7.9. For eac\hﬂ finite set S the ‘Chow‘ ring of Mg is Ts -
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9.8. The ring B,

Having computed the cohomology ring of Mg we observe in this section that in practice

tverything we have done for M could equally well have been applied to the space M,

» for a thicket £. We could define in the evident way the ririg R, and prove that R, is the

tohomology ring of M, should one be interested in such an object. We also observe that

8iven our approach in section 4 of chapter 6 we could without much further effort deduce

' the following commutative diagram in even degrees

E
[
i
;‘
’
};
i

Re, — Rz ® Rry

|

i
@
4

Rz

: o , RE

and presumably one could deduce the foliowing short exact sequence in even degrees

R, — Re, @Rz—* RZ(X)R{T}

3 ’This would offer an alternative apprbach to the analysis of Rg and in particular would

€nable us to deduce most of our results without comparing them to the cohomology ring.
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