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Abstract

In this thesis, Compute-and-Forward is considered, where the system model consists of

multiple users and a single base station. Compute-and-Forward is a type of lattice net-

work coding which is deemed to avoid backhaul load and is therefore an important aspect

of modern wireless communications networks. Initially we propose an implementation of

construction D into Compute-and-Forward and investigate the implementation of multi-

layer lattice encoding and decoding strategies. Here we show that adopting a construction

D lattice we can implement a practical lattice decoder in Compute-and-Forward. During

this investigation and implementation of multilayer lattice encoding and decoding we dis-

cover an error �oor due to an interaction between code layers in the multilayer decoder.

We analyse and describe this interaction with mathematical expressions and give detail

using lemmas and proofs. Secondly, we demonstrate the BER performance of the system

model for unit valued channels, integer valued channels and complex integer valued chan-

nels. We show that using the derived expressions for interaction that the decoders on each

code layer are able to indeed decode. The BER results are demonstrated for two scenarios

using zero order and second order Reed-Muller codes and �rst and third order Reed-Muller

codes. Finally, we extend our system model using construction D and existing conventional

decoders to include coe�cient selection algorithms. We employ an exhaustive search algo-

rithm and analyse the throughput performance of the codes. Again, we extend this to both

our models. With the throughput of the codes we see that each layer can be successfully

decoded considering the interaction expressions. The purpose of the performance results

is to show decodability with the extension of using di�ering codes.



Contents

Abstract ii

Acknowledgements v

Authors Declaration vi

Glossary vii

List of symbols viii

List of Figures x

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Physical Layer Network Coding . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Principles of PNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Lattice Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Lattice Construction A . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Lattice Construction D . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Construction πA and Construction πD . . . . . . . . . . . . . . . . 12

2.3.4 Construction by Code Formula . . . . . . . . . . . . . . . . . . . . 14

2.4 Compute-and-Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



Contents iv

2.4.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 The Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Reed-Muller codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Soft decision decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Trellis decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.2 Viterbi decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.3 BCJR decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 Reed-Muller decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.5 Soft Decision Hamming Codes . . . . . . . . . . . . . . . . . . . . . 24

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Lattice Decoding of C&F using Construction D 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 C&F System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Multilayer Lattice Decoding of C&F . . . . . . . . . . . . . . . . . . . . . 29

3.4 Demonstration of error �oor for inner and outer layers . . . . . . . . . . . 30

3.5 Interaction between code layers . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Real only signals using unit valued channels . . . . . . . . . . . . . . . . . 35

3.7 Complex signals using unit valued channels . . . . . . . . . . . . . . . . . . 37

3.8 Integer valued channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Complex Integer valued channels . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 BER performance of C&F system model using Construction D 50

4.1 0 and 2nd order Reed Muller codes . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 1st and 3rd order Reed-Muller codes . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Encoding inner and middle layers . . . . . . . . . . . . . . . . . . . 52

4.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Two User - Unit valued channels . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 RM(0,4), RM(2,4) & uncoded layer BER results . . . . . . . . . . . 55

4.3.2 RM(1,3), RM(3,5) & uncoded layer BER results . . . . . . . . . . . 56



Contents v

4.4 Two user - Complex integer valued channels . . . . . . . . . . . . . . . . . 57

4.4.1 RM(0,4), RM(2,4) & uncoded layer BER results . . . . . . . . . . . 60

4.4.2 RM(1,5), RM(3,5) & uncoded layer BER results . . . . . . . . . . . 61

4.5 Three users - Complex integer valued channels . . . . . . . . . . . . . . . . 62

4.5.1 RM(0,4), RM(2,4) & uncoded layer BER results . . . . . . . . . . . 64

4.5.2 RM(1,3), RM(3,5) & uncoded layer BER results . . . . . . . . . . . 65

4.6 Decoding at the hub/CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Unit valued channels and real only signals . . . . . . . . . . . . . . 66

4.6.2 Integer valued channels and real only signals . . . . . . . . . . . . . 69

4.6.3 Complex integer valued channels and complex signals . . . . . . . . 72

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Lattice Decoding of C&F using Construction D and Low complexity Co-

e�cient Selection Algorithms 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Complex-Exhaustive-II algorithm and adaptation . . . . . . . . . . . . . . 84

5.3 Throughput performance results . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Static channel results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Fading channel results . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusion and future work 94

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography



Acknowledgements

I would like to sincerely thank my supervisor Prof. Alister Burr for his supervision, guid-

ance and support on my research and subsequent development.

I would like to thank colleagues in the communications research group for their support

and discussions throughout my project.

Finally, I would like to thank my Husband and parents for their unwavering love and

encouragement in times of need, especially throughout the pandemic.



Authors Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.



Glossary

Physical-layer Network Coding (PNC)

Lattice Network Coding (LNC)

Access Point (AP)

Central Processing Unit (CPU)

Network Coding (NC)

Multiple Access Channel (MAC)

Broad Cast (BC)

Log Likelihood Ratio (LLR)

Elementary Divisor Construction (EDC)

Principle Ideal Domain (PID)

Construction by Code Formula (CCF)

Reed Muller (RM)

Branch Metric (BM)

Bahl Cocke Jelinek Raviv (BCJR)

Signal to Noise Ratio (SNR)

Additive White Gaussian Noise (AWGN)

Bit Error Rate (BER)

Fast Walsh Hadamard Transform (FWHT)

Soft Decision Decoder (SDD)

Lenstra Lenstra Lovasz (LLL)

Frame Error Rate (FER)

Throughput (TP)

Quadrature Amplitude Modulation (QAM)

Multiple-Input Multiple-Output (MIMO)



List of symbols

B Number of Base Stations

J Number of sources

L Number of layers

w Dataword

x Lattice codeword

c Codeword
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Chapter 1

Introduction

1.1 Overview

Managing user capacity and interference on wireless communication networks are chal-

lenges to the design of wireless communication systems. Interference can be caused by

other users on the network where users have some in�uence on one another due to the

nature of the wireless network. This means that as numbers of users increases interference

on the network also increases. Noise and signals within the area also have an in�uence on

the network and therefore tackling this issue is still a key topic. The demand for capac-

ity has followed an exponentially increasing curve and continues in this way meaning the

need for algorithms to handle this interference whilst maintaining decoding performance

is prominent. Interference is generally inevitable in wireless environments and many algo-

rithms attempt to avoid this by removing the interference signals prior to decoding. These

techniques employ a signi�cant layer of complexity as avoidance of interference a�ects

performance rates as the network size increases. Thus, interference handling with large

capacity will remain a signi�cant challenge for wireless communication systems. Compute

and Forward (C&F) has been introduced as a strategy that exploits interference in order

to avoid diminishing rates between users on a network. An advantage of this strategy is

that the Access Points (APs) decode linear functions of transmitted messages and not the

messages themselves. Furthermore, in order to do so, C&F utilises the use of lattice codes

which, due to the algebraic structure, ensures that the integer combination of codewords

can be decoded. Lattice Network Coding (LNC) is a technique implemented in C&F to

avoid the large backhaul load of communications systems. Commonly, methods that im-

plement LNC employ nested lattice codes where the structure of the lattice ensures the
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linear combination of codewords is also a codeword itself. Each AP then transmits this

information to the destination for decoding of the messages. Disadvantages of the C&F

scheme become apparent from the use of Construction A lattice, as introduced in [2]. Con-

struction A is complex to decode and requires non-binary codes where this complexity is

stated in [3]. For practical use in wireless communications systems where code lengths are

typically large the construction requires a large �eld size and therefore encoding and in

particular decoding becomes extremely complex. Construction D allows the use of binary

codes, with a layered decoder that can use conventional (soft decision) binary decoders.

This work further investigates the use of construction D and implementation of multilayer

decoders.

1.2 Objectives

The work in this thesis will consider the challenges relevant to contributing to a more prac-

tical implementation of Compute-and-Forward. Potential signi�cant challenges considered

for this objective involve:

� C&F research thus far has not particularly concentrated on the practicalities for

implementation in industry. C&F was originally introduced in [2] with the imple-

mentation of lattice Construction A leading to complexities for decoding. The work

of [4] highlights that a construction D lattice can be generated using Construction

by Code Formula under certain conditions. Fortunately, this construction method is

less complex than construction A however implementation and design of the decoder

is key.

� A signi�cant challenge will be implementation of lattice decoder dependent on the

chosen codes. Implementation of a construction D lattice may be practical however

multilayer decoding may require di�ering decoders that are non-conventional in the

sense that they are not well known or established techniques in telecommunications

systems.

� Another signi�cant consideration of the C&F technique is coe�cient selection. Coe�-

cient selection has a signi�cant impact of the computation rate therefore the challenge

would be to implement an algorithm with low complexity within our practical model.

Much research has identi�ed the complexity of coe�cient selection and progressed to

produce algorithms with low complexity [5].
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1.3 Aims

The aim of this work is to overcome challenges of implementing a practical compute-

and-forward system using multilayer lattice constructions and existing multilayer decoding

strategies employed within wireless communications infrastructure. The aims are sum-

marised as follows:

� Choose practical codes, such as binary codes in order to derive a practical basis model

for C&F

� Introduce existing or currently employed encoding and in particular decoding al-

gorithms that can be readily adapted in telecommunications leading to an imple-

mentable C&F

� Solve the complexity problem of using lattice construction A by replacing this with

a low complexity method that generates lattice construction D

� Investigate multilayer lattice decoding algorithms and the e�ect of this on decoding

nested lattice codes

� Present low complexity coe�cient selection algorithm within the C&F model for

decoding random channels

� Extend the practical C&F system model to handle complex signals and complex

valued channels

� Analyse the suited topology of the system and recovery of data at CPU

In this thesis we investigate the practical requirements for a C&F scheme, namely, the

use of lattice construction A and subsequently the chosen codes and the design of the de-

coder. The overall objective for this work is to move closer to implementable C&F.

In order to move away from lattice construction A we further research lattice construction

D and the multilayer decoder. Through our investigations into implementing lattice con-

struction D we �nd that there is an interaction between layers of the multilayer decoder

which causes irreducible errors (an error �oor) if not properly taken into account where we

show that this derives from a "carry" term between the layers. We derive mathematical

expressions for the interaction and also determine additional criteria for the layer codes
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that avoids the irreducible errors. We evaluate performance with codes that ful�l these cri-

teria. We extend our work to employ coe�cient selection algorithm and apply the method

to fading channels.

1.4 Contributions

Based on the discussions above, the main novel contributions of this thesis are listed below:

� Implementation of construction D lattice into C&F based on binary codes which are

increasingly more practical for industry.

� Design of a multilayer decoder for Reed-Muller and Extended Hamming codes within

our practical system model, showing good performance results

� For the unit valued channel coe�cient, derivation of interaction signals between code

layers have been identi�ed during multilayer decoding. Full derivation and nature

of the signals are produced along with proofs and general expressions for multiple

layers.

� The conditions at which successful decoding can be achieved is also derived. This

is produced in the form of criteria that should be met such that successful decoding

can be achieved.

� For the real and complex valued case, we expand the derivation and highlight the

signi�cant increased complexities of decoding code layers due to this interaction. We

again detail the mathematical expressions for the general case of decoding multiple

layers. Theoretical analysis shows that the theoretical complexity of these signals

increases signi�cantly with increasing number of layers however the decodability of

the overall system does not due to implementation of the derived expressions and

operation of C&F. Numerical results show that each layer can be successfully decoded.

� We show that we can decode and recover the individual codewords and datawords at

the hub from a two source system model. This is detailed for unit valued channels,

integer valued channels and complex integer valued channels. We also show this for

real and complex signals.
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� We investigate [5] low complexity coe�cient selection algorithms and embed into our

model and show that random channels also achieve successful decodability in our

practical C&F system model.

Within this work we use plain letter, boldface lowercase letters and boldface uppercase

letters to denote scalars, vectors and matrices respectively. We denote the Gaussian integers

as Z[i], integers as Z and Eisenstein integers as Z[ω]. The �elds are denoted as Fp where p

denotes the �eld size.



Chapter 2

Background

2.1 Introduction

In this chapter, we cover the theory and fundamental techniques drawn upon throughout

the thesis. Initially we introduce the principles of Physical Layer Network Coding, a tech-

nique which avoids interference by decoding combinations of data messages, as mentioned

in chapter 1. We then introduce a summary and derivation of the physical layer network

coding technique Compute-and-Forward. We discuss lattice network coding and present

lattice constructions and their methods. We also describe existing decoding algorithms re-

searched for this work and present preliminaries in abstract algebra necessary for this work.

Furthermore, we cover multilayer coding schemes developed for compute-and-forward.

Research such as Soft Decision Decoders and Reed-Muller codes highlighted within this

chapter link directly to wireless communications due to their already prominent use. Their

use is only possible if a di�erent lattice construction that allows binary codes is imple-

mented, therefore recent research is shown in this chapter. The use of such decoders

and Reed-Muller codes in this work also means that implementation into a wireless com-

munications network is straight forward, showing that the contributions of this thesis is

advantageous to moving Compute-and-Forward closer to practical implementation.

2.2 Physical Layer Network Coding

Physical Layer Network Coding (PNC) is a technique used to reduce backhaul load in

order to achieve unambiguous transmission. The principle, originally introduced in [6], is
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to exploit the natural combinations of signals transmitted over the network.

2.2.1 Principles of PNC

In this Section we detail examples of PNC and Network Coding (NC) using the simple

two-way relay channel model. We de�ne S1 and S2 as source 1 and source 2 respectively

and denote the base station in Figures 2.1 (a) and (b) as R. Network coding was originally

introduced in [7] to increase network throughput. Within this technique base stations

transmit functions of data packets instead of individual data packets therefore reducing

the number of transmissions. Figure 2.1 (a) shows the operation of NC where the base

station transmits the exclusive or (XOR) of the signals x1 and x2 in the third time slot.

x2 can be recovered by source 1 by performing x1 ⊕ x1 ⊕ x2 using known information x1.

Similarly source 2 can recover x1 using the same method and known information x2.

(a) NC. (b) PNC.

Figure 2.1: PNC & NC transmission schemes in a two way relay channel

PNC is di�erent to NC, shown in Figure 2.1 (b), as this technique comprises two rather

than three separate stages, the multiple access channel (MAC) stage and broadcast (BC)

stage. During the MAC phase all users transmit their signals simultaneously to the base

station where the base station maps the signals to network coded symbols ready for the

BC stage. The network coded symbols can take many forms however the XOR operation

is a simple example of a linear mapping strategy.
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2.3 Lattice Constructions

Compute-and-Forward is underpinned by the lattice construction, thus we introduce some

essential construction methods and de�nitions used within this research.

N-Dimensional Lattice

The general expression to generate a lattice is:

Λ = {GΛd : d ∈ Zk} (2.1)

where GΛ = [g1,g2, . . . ,gK ] is the generator matrix for Λ containing basis vectors g ∈ RN

of GΛ and d de�nes the lattice vector. An N-dimensional real lattice is a �nite subset

of N-space R
N. A 1-dimensional lattice can be generated by applying a scalar α to the

integers Z, given as: Λ = {αZ : α ∈ R} [8] [9].

De�nition - Nested Lattice

A lattice Λ
′
is de�ned as being nested in another lattice Λ if Λ

′
is a sub-lattice of Λ. This is

termed Λ
′
in Λ, where Λ is the �ne lattice and Λ

′
the coarse lattice. The number of nested

lattices is not limited as we can de�ne a series of j lattices, Λ1,Λ2, . . . ,Λj. These lattices

are de�ned as nested if Λ1 ⊆ Λ2 ⊆ . . . ⊆ Λj. A quotient ring Λ/Λ
′
is de�ned as the lattice

partition [8]. An example of a quotient ring is when a ring E is in the integers Z and an

ideal of E, e, denoted as E/e is 2Z, meaning the quotient ring is Z2 = Z/2Z [10] [11]. The

ideal is de�ned as a special subset of the Ring's elements.

De�nition - Voronoi Region

The Voronoi region or shaping region V of a lattice is the set of all points in the reals that

are closest to the zero vector of the lattice. V = {λ : QΛ(λ) = 0} where λ is the lattice

points. Let Vol(V ) denote the volume of V [9].

De�nition - Nested Lattice Codes

A nested lattice code C is the set of all points of a �ne lattice Λ that are within the

fundamental Voronoi region V of a coarse lattice Λ
′
, the points within this region are
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known as coset leaders [9] [8]. These set of points are expressed as:

C = Λ modΛ
′
= {λmodΛ

′
, λ ∈ Λ} (2.2)

where mod denotes the modulo operation and when applied to a lattice is de�ned as:

xmodΛ
′
= x−QΛ(x) and Q is the quantiser de�ned in equation (2.13) in subsection 2.4.3.

The modulo operation over Λ
′
represents the modulo operation taken over the lattice in

the N-dimensional space. We can present the modulo operation for any scalar, say p,

where the identity is (pmodω)modω = pmodω [8]. Figure 2.2 shows an example of a �ne

Figure 2.2: Example of �ne and coarse lattice

and coarse lattice and thus the lattice partition. The �ne lattice is represented by the

blue dots and the coarse lattice represented by the red circles. The Voronoi region of

each lattice can be identi�ed and the shaping region Λ/Λ
′
shows that the �ne lattice Λ is

divided into 4 cosets due to the coarse lattice Λ
′
. This is because when lattice points lie

on the negative boundary in each dimension they are assigned to the region below leaving
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(0 + 0i), (0 + i), (1 + 0i) and (1 + i).

2.3.1 Lattice Construction A

Let C(k,N) be a linear code of length N and p be a prime number in F where the symbols

of C are in Fp [12]. The codebook can be expressed as:

C = {Gx : x ∈ FN
p } (2.3)

where x is the encoded message vector and G the generator matrix. The lattice Λ is formed

by projecting the codebook into the reals RN using a map, E . For the usual case where

Fp consists of the integers 0 to p − 1, then E just means converting the integer value to

the corresponding real value. If G is the generator matrix of C and letting I be the NxN

identity matrix, then:

GΛ =

[
G

pI

]
(2.4)

As shown the resulting lattice is a shifted form through multiples of p. This result generates

the points at the fundamental region of Λ and therefore shifted duplications of C can be

generated and distributed over the whole message space as shown in Figure 2.3. This

means that a copy of the points generated at the fundamental region are placed at every

integer vector within the message space. Construction A consists of the lattice tessellation

of the square between 0 and p−1 on each axis. Figure 2.3 shows the shifted duplications at

every integer of the lattice in the �eld F2, p = 2. The choice of p within this construction is

important as the minimum euclidean distance of the lattice is p, meaning that in order to

achieve a large Euclidean distance p must be large. As described, this construction method

requires a large �eld size to be employed in order to generate code lengths deemed practical

for industrial communications networks. For codes of a larger �eld size the complexity

becomes apparent, particularly in the decoder. For example, if we choose F13, there is the

probability of 13 symbol values which in turn generates at least 12 Log Likelihood Ratios

(LLRs), clearly increasing complexity compared to that of a binary decoder. Clearly, for

a binary decoder there are only 2 possible symbols, {0, 1} and 1 LLR. For this reason we

focus our attention to Construction D lattices which enable the use of binary codes and

decoders.



Lattice Constructions 11

Figure 2.3: Example of tessellation in message space

2.3.2 Lattice Construction D

Lattice construction D, as described in [12], generates nested lattices. From [12], let FN2 ⊃
CL−2 ⊇ CL−1 . . . ⊇ C0 be a set of binary linear codes, with Cl as a [kl, N, dl] linear block

code. Basis vectors g1, . . . ,gkl are chosen in F
N
2 which form the generator matrix Gl. The

matrix multiplication between Wl containing message vectors and generator matrix Gl is

performed to produce the binary linear codes. g1, . . . ,gkl are chosen such that they span

Cl for l = 0, . . . , L− 1. A map, El then projects the �nite �eld F
N
2 to the reals RN , where

El(x) = x× 2L−l, x ∈ Cl. As shown in [12], the formed lattice Λ contains all vectors of the

form:

Λ =
L−1∑
l=0

kl∑
j=1

α
(l)
j El(gj) + (2Z)N (2.5)

where α
(l)
j ∈ {0, 1}. The resulting lattice, provided the minimum Hamming distance is

dl ≥ 4l

γ
and γ = 2, Λ is an N-dimensional lattice with hypercubic shaping region. A group
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of binary codes that could adhere to these constraints would be Reed-Muller codes as they

consist of varying orders and code types.

The method of multilayer decoding with construction D relies on the assumptions that

the previous layer(s) has been decoded correctly and by subtracting these code estimates,

previous layers can be discarded cancelling out any interference. For example at layer l
′
we

subtract the previous layer estimate of the codeword ĉl′−1 from the previous layer scaled

received signal y
′

l′−1
and divide by 2 to form y

′

l′
, which we then take modulo Λ and decode

to �nd ĉl′ . Modulo Λ operation is implemented at each layer such that posterior layers are

discarded. This means that next layers do not contribute any interference to the current

layer. The operation performed by the decoder at each layer is:

ĉl = argmin
Λ/Λ′

L∑
l=1

( 1

2l−1
y(l) − ĉl−1

)
modΛ (2.6)

Lifted Construction D

The work of [1] extends construction D to the complex case, introducing `Lifted Construc-

tion D'. Lifted Construction D is given by Λ = ΛD + iΛD where ΛD is a construction D

lattice. For a nested Z[i] lattice, �ne lattice Λ and coarse lattice Λ
′
lifting achieves ΛD+iΛD

and Λ
′
D + iΛ

′
D respectively. The encoding and decoding process shown in [1] is e�ectively

split into two separate entities representing the complex components, In-phase and Quadra-

ture, wI ∈ Wr and wQ ∈ WI , where W = Wr + WI . The separate but identical encoders

then use a map E : W → R
N to project the message to the reals producing the complete

complex coded symbol output x = xI + ixQ. Furthermore, as nested codes are applied,

the encoders are split into layers. Let L = 1, 2, . . . , l with nested codes C1 ⊆ C2, . . . ,⊆ Cl

where layer l is encoded according to nested code Cl. A similar principle is employed for

the decoders, using multilayer decoding with I and Q split into separate identical entities.

2.3.3 Construction πA and Construction πD

Construction πA

Construction πA extends construction A to generate multilayer codes over rings. Within

this construction each code is generated using a prime sized �nite �eld where it is necessary

for each layer to use a di�erent �eld size. The main di�erence between Construction πA and
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construction A is multilayer coding and due to this the �eld size on each layer is smaller

than that in construction A. A reduction in �eld size has an e�ect on decoding complexity

as for each code layer the decoder has a smaller �eld size to decode. The complexity

of decoding a larger sized �eld is brie�y discussed in subsection 2.3.1. Complexity of

construction A however is determined by the size of the �eld Fp which is usually very

large. Construction D however is more straight forward to decode due to the use of F2.

The authors of [13] expand their work on construction πA to reduce this complexity and

proposed a new method, Construction πD.

Construction πD (Elementary Divisor Construction)

Construction πD, also known as Elementary Divisor Construction (EDC), introduced in [14]

can be used to generate multilayer lattices. This construction is a generalisation of the

construction πA lattice construction which as described in [14] is a special case. The

generalisation provides more scope to the choice of codes used on the code layers. The

construction generates some distinct primes p1, p2, . . . , pl and corresponding linear codes

C0, C1, . . . , Cl. In order to generate more code �exibility, the same �eld size is permitted

on multiple code layers if the code layers are nested and that the modulo sum is applied

to the codes. This e�ect solves the problem of the necessity of di�ering distinct primes on

each code layer. However, choosing the �eld F2 on each layer results in Construction D

as a special case and we employ this special case as decoding is more straight forward in F2.

As described in [14] Construction πA and πD in general is de�ned over any Principle Ideal

Domain (PID), however for this work and for practical purposes we will only be using the

Gaussian integers Z[i] and therefore give some properties of this PID.

De�nition - Properties of Z[i]

The integers Z[i] is closed under addition, subtraction and multiplication such that the

product, subtraction and sum of any two elements is also an integer. Z[i] is not closed

under division since if we divide an integer by another integer say 1 divided by 2 the result

is not another integer. We can also say that Z[i] is not a �eld. We detail below the main

5 properties of Z[i] for addition and multiplication [10]. The 4 properties of table 2.4

show that the Gaussian integers form a commutative ring. The Gaussian integers also can

demonstrate if x × y = 0 and x = 0 or y = 0 then there are no zero divisors. From this

property it is also shown that the Gaussian integers form an integral domain.
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Addition Multiplication
Closure x+y x×y

Associativity x+(y+z) = (x+y)+z x × (y × z) = (x × y) × z
Commutativity x + y = y + x x × y = y × x
Distributivity x × (y + z) = (x × y) + (x × z) (x + y) × z = (x × z) + (y × z)

Figure 2.4: Properties of the Gaussian integers Z[i]

2.3.4 Construction by Code Formula

Construction by Code Formula, detailed in [4], describes a general technique that can

produce a construction D lattice under certain conditions. Constraints of this method are

subject to the chosen codes where [4] applies rules for the codes such that construction D

and Construction by Code Formula both produce construction D lattices. The de�nition

of Construction by Code Formula is given below. As in Construction D, we de�ne a set of

nested codes:

F
2
N ⊃ CL−1 ⊇ C2 . . . ⊇ C0 (2.7)

with Cl as a [kl, N, dl] linear block code. CCF is de�ned as the set of codewords such that:

Cccf = ψ0(c0) + ψ1(c1) + . . .+ ψL−1(cL−1) (2.8)

where ψ(.) is a map from the �nite �eld FN2 to the reals RN . The resulting codes from using

CCF are called linear lattice codes. The advantages of this scheme become apparent, as

shown in [4], due to the scheme allowing the use of conventional decoders. The only main

constraint to this scheme is the constraints regarding choice of codes on each layer in order

to guarantee the construction of lattice construction D. The constraints are described in

subsection 2.3.2 and use of the formula to construct the lattice, guaranteeing the correct

formation of lattice points. A Construction D lattice is generated by CCF with these

constraints. However, without these constraints the formula of CCF alone does not generate

a Construction D lattice as shown in [4]. For a multilayer decoder we need to consider

these constraints throughout the design and choice of codes on each layer which satisfy the

minimum Hamming distance di�erence.
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2.4 Compute-and-Forward

We assume that a system consists of J sources and B base stations, with each having

a single antenna. We employ complex valued channels and describe the process of the

Compute-and-forward technique over four stages, encoding, the channel, decoding and

recovery.

2.4.1 Encoding

As in [2] each user j = (1, . . . , J) draws an original message vector over a �nite �eld,

described as wj ∈ F
kj
p . The encoder then uses a mapping function E to map the message

vector to the codeword, denoted as xj = E(wj). For C&F we assume xj lies on a lattice

Λ(xj = E(wj),xj ∈ modΛ
′
) and therefore the resulting codes are called lattice codes. The

general expression for the generation of linear lattice codes is given as: xj = [wj×G]modΛ
′

where G is the generator matrix and modΛ
′
represents the modulo operation taken over Λ

′
.

When this is applied to xj it is de�ned as: xjmodΛ
′

= xj −Q(xj) where the quantiser is

de�ned as (2.13) in subsection 2.4.3. Λ
′
and Λ de�ne the coarse and �ne lattice respectively

and can be obtained by employing lattice construction A as introduced in [2] and expressed

in subsection 2.3.1. It is important to note that for a given lattice the generator matrix is

not speci�c and therefore the design of the lattice can di�er at each encoder. The message

rate of a single user is de�ned as:

R =
kj
N
log2(p) (2.9)

per complex dimension, where kj denotes the length of the message from user j.

2.4.2 The Channel

Due to the nature of the wireless communications network system the base station receives a

noisy combination of the transmitted signals from the users through the channel, expressed

as: yb =
∑J

j=1 hbjxj + z, where yb, z and xj ∈ C
N . During the process of decoding for an

integer combination of lattice points the base station has to handle two sources of noise.

1. Channel noise: Gaussian noise due to the channel and the scaling factor αb

2. Self-noise: Due to the scaled channel coe�cients not being exactly equal to the integer

coe�cients
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The channel coe�cients are de�ned as: hb = [hb1, . . . , hbJ ] where hbj is the channel gain

between user j and base station b and z as Gaussian noise. The received signal is initially

scaled by a factor αb ∈ C.

y
′
= (αbyb)modΛ =

( J∑
j=1

(αbhbjxbj) + αbz
)

modΛ (2.10)

The base station then chooses an integer linear combination of the transmitted codewords

to represent an estimate of the scaled received signal. This can be written as:

y
′
=
( J∑
j=1

abjxj + z
′
)

modΛ (2.11)

where z
′
is expressed as:

z
′
= z +

J∑
j=1

(αbhbj − ab)xj (2.12)

and the integer coe�cients ab are chosen to minimise E[||z′ ||2]. Let ab = [ab1, ab2, . . . , abJ ]

denote the coe�cient vector of the linear combination. The scaling factor αb aims to move

the scaled channel αbhb as close as possible to the integer coe�cient vector ab. In order

to uniformly distribute the input signals xl, a random dither vector dj ∈ CmodΛ may be

employed, written as xj = (xj +dj)modΛ. The dither vector is known by both transmitter

and receiver and is removed at the base stations. As the dither vector was introduced

in [2] to prove the computation rate achieved and since we are more interested in the

lattice structure of C&F, the dither process is omitted in this work.

2.4.3 Decoding

The base station decodes an integer combination of the scaled received signal αmyb, which

is a lattice point in Λ. In order to do so it applies a quantiser Q, which quantises (αbyb)

to the closest lattice point and can be generally expressed as:

QΛ(y) , argmin
λ∈Λ

||y − λ|| (2.13)

hence the integer combination
∑J

j=1 abjxj is also a lattice point and abj are the integer

coe�cients.
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The base station then maps this combination to a codeword ub in Λ/Λ
′
. This can also be

expressed as:

ub = ⊕Jj=1qbjwj (2.14)

where this is evaluated over the �nite �eld Fp. The channel operates over the complex and

the �nite �eld coe�cients are mapped back to the reals, R. The de�nition of the map is

expressed as qbj = g−1([abj]) where ab = [ab1, ab2, . . . , abJ ] are the integer coe�cients vectors

and g−1 is a map that takes elements in the reals to the �nite �eld.

2.4.4 Recovery

Finally, the Central Processing Unit (CPU), also known as the hub, recovers the individual

data messageswj using the B linear equations from the B base stations. The data messages

from all J users can be recovered if and only if the coe�cient matrix is full rank, Rank(Q) =

J . Let Q = [q1,q2, . . . ,qb] be the coe�cient matrix where qb = [qb1, qb2, . . . , qbJ ] is the

coe�cient vector for base station b and qb1, . . . , qbJ are the coe�cients taking values in

F2. When B < J , it is equivalent to say that Q is singular and not all data from all

sources cannot be recovered. The two-way relay channel is an example of this where we

demonstrate in chapter 4 potential errors due to Q being singular. Decoding is carried out

by multiplying the data messages by the inverse or the pseudo-inverse of Q. The matrix

will be non-singular if B ≥ J and all vectors qb are linearly independent.

2.5 Reed-Muller codes

Reed-Muller codes are linear block codes and error-correcting codes usually used in wireless

communications systems. The process of encoding these codes can be described in several

ways, within this work we construct a generator matrix G. A generator matrix for a Reed-

Muller RM(r,m) code of length N = 2m and order r can be generated by calculating the

element-wise product, denoted as ∧, of g0, . . . , gn with permutations up to order r. For

example the generator matrix of the RM(0,4) code contains the length 16 all 1's vector

denoted as:

g0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (2.15)

If we now choose the RM(1,4) code the vectors also include g1, g2, g3, g4, which can be gener-

ated by �lling a 4 x 16 array with columns of the form (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), . . . , (1, 1, 1, 1)
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the rows of the array then form g1 to g4 as shown in 2.16.

g0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

g1 = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

g2 = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)

g3 = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)

g4 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)

(2.16)

Extending to the RM(2,4) code where m = 4 and r = 2 for N = 16 we use (2.16) and

element-wise product to generate the rows of the matrix. The vectors are made up of 0, 1st

and 2nd order expressions due to r = 2 therefore the rows of the generator matrix are

(g0, g1, g2, g3, g4, g1 ∧ g2, g1 ∧ g3, g1 ∧ g4, g2 ∧ g3, g2 ∧ g4, g3 ∧ g4). Therefore the generator

matrix for this particular code GRM(2,4) generating the (16,11,4) code is given as:

GRM(2,4) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0



(2.17)

RM(r,m) codes are linear codes over F2 with code length N and minimum distance

2m−r. RM(m-2,m) codes, described as (2m, 2m −m − 1, 4) de�ne the family of extended

Hamming codes with minimum distance dmin = 4. RM(0,m) codes described as (2m, 1, 2m)

are grouped into the de�nition of repetition codes with a minimum distance of dmin = 2m.

The general description of RM codes is (2m, k, 2m−r) where k =
∑r

i=0

(
m

i

)
. The use of

these codes within this work is ideal as the constraints of minimum distance is always a

factor of 4 between di�erent codes. This means that the requirements for the minimum

distance between code layers for generating construction D lattice can be ful�lled. The
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family of Reed-Muller codes also creates a set of nested codes which is also a requirement

of construction D.

2.6 Soft decision decoders

2.6.1 Trellis decoding

The trellis decoder is a decoding method that uses a trellis structure to examine the received

code sequence of a given length and usually results in an estimate of the given codeword

or dataword. Figure 2.5 shows a typical trellis diagram with states S0, . . . , S4 and the

Figure 2.5: Example trellis diagram

estimated dataword corresponding to each state given as w0, . . . ,w4. The branches that

transition from one state to another denote a transition of value 1 or 0. The dotted lines

denote value 1 and solid line value 0. In order to determine the path at which the state

will transition to a branch metric is calculated. The branch metric is determined usually

by the chosen decoder i.e. soft or hard decision however in general this metric determines

the probability of the state transition given the received sequence and the value of the next

state. The solid circles are labelled to show the bit value.

2.6.2 Viterbi decoder

The Viterbi decoder implements the maximum likelihood Viterbi algorithm introduced

by [15] for decoding codes encoded using a convolutional encoder by a trellis structure. The
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Viterbi algorithm operates by calculating the maximum a posteriori probability estimate

of the most likely path or sequence of states. The basic steps of the Viterbi algorithm are

as follows:

� De�ne the trellis and calculate the branch metrics in order to determine the weight

of the branches - the branch metric is calculated by using equation 2.18, the result

of which increases as the probability of the branch decreases, therefore the lowest

weight has the highest probability.

� At each state i calculate the minimum weight path to the current state i − 1 and

keep a record of the minimum weight steps of the path - compare the weights of the

previous branches and select lower weight branch (highest probability) and add that

previous branch weight to the current branch weight.

� Identify the complete path of minimum weights (highest probabilities)

� Identify the estimate of the code

For state transitions through the trellis the branch metrics for hard decision are determined

quite straight forwardly, i.e. if the received code bit is 0.55555 and another is 0.99999, both

bits are deemed to be 1 even though the second bit is much closer than the �rst. For the soft

decision Viterbi decoder, the branch metrics are calculated by the square of the di�erence

between the received value and the expected value. For example, if the expected value are

given as ni and the received bits are given as ci the branch metric BM is:

BM =
N∑
i=1

(ni − ci)
2 (2.18)

The Viterbi algorithm can be implemented for soft or hard decision decoding. Even though

we do not implement this algorithm in this project we look at the description of soft

decision decoding as soft decision decoding is used in industry and is also our approach for

the multilayer decoder.

2.6.3 BCJR decoder

The work of [16] originally introduced the BCJR algorithm which is a maximum a posteriori

algorithm that aims to minimize the probability of bit error. The algorithm is based on

trellises and is sometimes known as the forward-backward algorithm due to calculating the
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forward probabilities α and backward probabilities β. The algorithm uses the trellis to

return the log-likelihood ratios of the decoded data. In order to do so, at a given section

the algorithm calculates the probabilities of the next state ss (all nodes to the right of the

current section) given the received signal. This is denoted as α(i+1):

αi+1,ss = αi(s1)γi(s1, ss) + αi(s0)γi(s0, ss) (2.19)

where i denotes the trellis section, s denotes the starting branch of the current state and ss

denotes the branch ending at the next state. The decoder then calculates the probabilities

of the paths to the left of the branch nodes, given by:

βi(s) = βi+1(ss1)γi(s, ss1) + βi(ss0)γi(s, ss0) (2.20)

where

γi(s, ssw) = P (bri(s, ssw)|{s,yi}) (2.21)

is the a posteriori probability of the branch bri(s, ss) given the received signal yi for the

trellis section i. The likelihood ratio of the data corresponding to the particular trellis

Figure 2.6: Example section of trellis highlighting branches starting with current state s
and ending in next state ss

section is given by:

LR(wi) =

∑n−1
k=0 αi(s)γi(s, ss1)βi(ss1)∑n−1
k=0 αi(s)γi(s, ss0)βi(ss0)

(2.22)
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Where (2.22) denotes the sum of the probabilities of all paths through the trellis.

In conventional decoding there is no a priori information as both the probability of the

bit values {0, 1} are equally likely. Our work in Section 3.4 employs the BCJR algorithm

for a particular scenario and speci�c encoding pattern where we do indeed have extrinsic

information at particular code bits which is passed on from the previous decoder. The use

of this information helps to reduce the error probability of decoding those codes bits on that

layer, where this will be further described in Section 3.4. Usually the a priori information

is calculated by a likelihood ratio which for a Gaussian channel can be calculated by:

P (yi|bri(s, ssw) = e(−δ2(s,ssw)/2σ2) (2.23)

where δi(s, ssw) denotes the Euclidean distance between the received signal and the trans-

mitted signal. The complexity of this algorithm is much greater than that of Viterbi and

requires in-depth knowledge of Signal to Noise Ratio (SNR) however the Viterbi algorithm

does not. The use of convolutional codes and subsequently the use of the BCJR decoder

shown in our work in Section 3.4 detailed the error �oor and the potential performance of

the codes. Subsequently, in later sections the implementation of codes with higher Ham-

ming distances have been introduced into the system model in order to demonstrate a

higher performance.

2.6.4 Reed-Muller decoder

As with encoding, there are several approaches to decoding Reed-Muller codes. The work

of [17] originally introduces a general trellis decoder for Reed-Muller codes, the diagrams

shown in Figure 10 of [17] show code lengths up to and including 32. The method uses

the iterated squaring construction in order to generate the codes and in turn uses trellis

decoding. The squaring construction is represented by the trellis diagram in Figure 2.7,

taken from [17], where the trellis is used in its traditional sense to encode the dataword

and consists of m̃ sections joined at m̃ states. The branches correspond to particular codes

that are joined at a singular state however the states now represent a Cartesian product

of the codeword. This produces a chain of nested codes and as shown in [17].
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Figure 2.7: Squaring construction trellis representation

The author of [17] highlights that the binary RM codes, with length N = 2m, can be

represented as trellises and hence can be soft decision decoded using the Viterbi or MAP

algorithm. The use of conventional and well established decoding algorithms such as these

is advantageous as their use in industry is prominent. Figure 2.8, taken from [17], shows a

trellis for the RM(8,1) code. The horizontal lines of the trellis contain two trellis sections

as the branches are pairs of branches representing 2 bits. The number of bits on each path

is 8 representing the code length 8. There are only two paths through the trellis in this

case and therefore this only sends one bit per codeword, this is a repetition code.

Figure 2.8: Four section trellis diagram for Reed-Muller code RM(8,1) of length 8

Figure 2.9: Four section trellis diagram of Reed-Muller (8,4) code

Figure 2.9, taken from [17], demonstrates the trellis of the RM(8,4) code. Again, each

branch represents two bits. There are 16 paths through the trellis where this corresponds

to 4 information bits.
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2.6.5 Soft Decision Hamming Codes

The work of [18] introduces a low complexity soft decision Hamming decoder that decodes

by detecting error patterns belonging to the same syndrome. The error patterns are given

in matrix E which is tabulated in advance for each possible syndrome. To calculate a

syndrome we examine the received signal y and the codeword c. For the syndrome-based

soft decision decoding algorithm a 7,4 Hamming code is generated and encoded, in order

to produce c, given by:

c = wG (2.24)

The signal is then modulated and subject to additive white Gaussian noise (AWGN),

denoted as z. The received signal is given as:

y = x + z (2.25)

where x = E(c) and E is an encoding map taking the codeword from the �nite �eld F
N
2

to the reals. The di�erence between these two vectors is the error pattern vector e which

we can write the received signal as: y = c + e where e denotes the error caused by noise.

To obtain the syndrome we need to hard decision decode the received signal to give a

logical result. We denote this as yhd = chd + ehd where + denotes modulo two sum and

chd and ehd denote the hard decision components of yhd. If the parity check matrix is H

then HyThd = H(chd + ehd)
T = HcThd + HeThd = HeThd as HcThd = 0 for the codeword and

HyThd is called the syndrome of yhd. If the syndrome is 0 then no errors have occurred. To

determine the correct error pattern we calculate this by multiplying the absolute values of

LLR's of the received signal with each row of the matrix E. The resulting row vector is

then added together, where the vector with the lowest sum of L-values indicates the error

pattern with highest probability of correct decoding. For a syndrome-based technique,

Log-likelihood ratios (LLR) of the received signal y are calculated.

L(x|y) = ln
P (x = +1|y)

P (x = −1|y)
(2.26)

which subsequently leads to

L(x|y) = ln
exp(−Eb

No
(y − 1)2)

exp(−Eb

No
(y + 1)2)

=
4Eb
No

y (2.27)
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where the assumption is that logical zero and one have equal probability. For this work an

adaptation of this decoder has been developed in order to implement unipolar codes for a

single frame. The complexity of this algorithm is signi�cantly lower compared to existing

decoding algorithms such as exhaustive maximum likelihood and Trellis-based due to its

approximation of maximum-likelihood.

2.7 Summary

As brie�y described in the introduction chapter Compute-and-Forward was originally in-

troduced using lattice construction A. In this chapter the complexity of this construction

has been explained along with an alternative lattice construction, namely lattice construc-

tion D which allows the use of binary codes. Generation of a construction D lattice has

previously been researched in [4] and described as CCF, hence this thesis demonstrates

the implementation of the construction in C&F. Through the use of CCF binary codes

are now able to be employed, which aligns with standard practice in wireless communica-

tions networks. Furthermore by implementing a construction D lattice the choice of codes

employed becomes more �exible and in turn the choice of decoder. This is in contrast

to lattice construction A. Codes such as convolutional and Reed-Muller codes have been

researched and therefore implemented into this work to highlight this aspect.



Chapter 3

Lattice Decoding of C&F using

Construction D

3.1 Introduction

As highlighted in the introduction, original research introducing C&F uses Construction A

lattices for encoding and decoding [2] [12]. The impracticality of employing this construc-

tion is described in subsection 2.3.1 and highlights the reasoning of the approach taken to

this work. In addition to this the use of binary codes is also deemed practical due to their

use within telecommunication standards. As mentioned previously, in order to implement

binary codes we generate a construction D lattice using CCF as described in subsection

2.3.4. The advantages for decoding and multilayer decoding are also highlighted in this

subsection.

Within this chapter we detail the design of the successive layered decoder and provide gen-

eral expressions for decoding L layers. During the course of this work we have uncovered

an issue that complicates the multilayer decoding process, in that inter-layer interaction

occurs between layers, where a carry signal from the codes on one layer a�ects the decod-

ing of the next layer. The e�ects of this have not previously been documented within this

research �eld. We detail and derive mathematical expressions which describe the output of

each layer decoder and that each layer can indeed be successfully decoded following these

expressions for the inter-layer interaction. The main contributions for this chapter are as

follows:
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� We describe and implement Construction D multilayer encoder and decoder in a C&F

system model.

� We derive mathematical expressions which represent the inter-layer interaction, and

evaluate the output of each layer decoder. We provide expressions based on the

general case meaning that they can be employed for multiple users and any number

of layers.

� We determine the e�ects the inter-layer interaction has on the codes and detail ad-

ditional requirements on the codes of each layer.

� We evaluate the C&F system and demonstrate that we can successfully decode mul-

tiple layers using multiple users with the derived expressions.

We begin the chapter by providing a description of the system model and describing the

operation of the encoder(s) and multilayer decoder. Examples demonstrating the interac-

tion signals occurring between layers are provided detailing this for a two and three user

system.

3.2 C&F System Model

We consider a multi-user j = (1, . . . , J), C&F system model with single AP. Each terminal

is transmitting Construction D nested lattice codeword(s), xl ∈ R
N . Description of con-

struction D can be found in subsection 2.3.2. Figure 3.1 details the CCF encoding process

for a multi-layer construction from a single source for complex message(s). The user draws

a binary message vector over a �nite �eld w ∈ F k
2 where k = 2

∑L−1
i=l ki and ki is the mes-

sage vector length for the ith layer. The encoder is split into separate and identical encoders

for In-phase (I) and Quadrature (Q), wI and wQ, which in turn are broken down into layer

encoders (E{I,Q}0 , . . . , E{I,Q}L−1 ). As shown in the diagram, the output of each component is

then summed producing the resultant lattice codes x{I,Q} = 2L−1c
{I,Q}
L +. . .+2c

{I,Q}
1 +c

{I,Q}
0

using equation (2.8). Subsequently, the �nal output of the encoding process for j terminal

is:

xj =
L−1∑
l=0

2lc
{I,Q}
lj (3.1)
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Figure 3.1: Multilayer encoding process for complex signals

where c
{I,Q}
lj is the codeword from code Cl for layer l from the jth terminal. The received

signal:

y = (h1x1+, . . . ,+hJxJ) + z (3.2)

The noise vector z v N (0, IJσ
2) and the channel coe�cients h1, . . . , hJ . The received

signal is then multiplied by a factor α and then modulo-2L operation applied to the result,

where the modulo operation is denoted as mod:

y
′
= (αy)mod2L = (αh1x1+, . . . ,+αhJxJ + αz)mod2L

= (a1x1+, . . . ,+aJxJ + z
′
)mod2L

(3.3)

where z
′
= z + (αh1 − (a1)mod2L)x1+, . . . ,+(αhJ − aJ)xJ . We can show (a1x1+, . . . ,+

aJxJ)mod2L = ((a1)mod2L(x1)mod2L+, . . . ,+(aJ)mod2L(xJ)mod2L)mod2L, which means

that we can replace aj by ajmod2L. Hence the integer channel coe�cients may be treated

as positive and also between 0 and 2l−1. aj are integers chosen to minimise E[‖z′‖2]. In

this chapter we assume that the channel coe�cients hJ are Gaussian integers due to im-

plementation of Gaussian integer lattice and hence α can be set to 1 and aJ are equal to
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hJ , so z = z
′
.

3.3 Multilayer Lattice Decoding of C&F

Due to the multi-layer construction of CCF and Construction D the approach to decoding

nested lattice codes is successive layer decoding, meaning each layer is decoded in turn

from layer 0 (inner most layer) to layer L-1 (outer most layer). As in [4] [14], this approach

produces good performance for lattice decoding using lattice construction D.

As shown in Figure 3.1 the operation of the decoder shows that at layer 0 (the innermost

layer) we take y
′
modulo 2, and decode the result to generate ĉ0. At layer 1 we subtract

ĉ0 from y
′
then divide by 2 to generate y

′
1. We then take this modulo 2 and decode to

generate ĉ1. For the general case, at layer l
′
we subtract the previous layer estimate of the

codeword ĉl′−1 from the previous layer scaled received signal y
′

l′−1
and divide by 2 to form

y
′

l′
, which we then take modulo 2 and decode to �nd ĉl′ . Note that this decoder is preceded

by a modulo 2L operation. By subtracting the estimate of the code on the previous layer

we are assuming it has been decoded correctly, cancelling out any previous layer interfer-

ence. The modulo operation provides a cancellation of codes on outer layers and due to the

use of binary codes we apply modulo 2. While this is e�ective for a single user decoding

Figure 3.2: Multilayer decoding process
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of a construction D lattice, it results in an interaction between layers when applied to C&F.

Initially, within this chapter we demonstrate the error �oor presented when the inter-

action signals are omitted from consideration at the decoder and present an example of a

three layer scheme for a single user using a speci�c codeword and detail the condition at

which the decoder can perfectly decode layer l
′
. As will be described the inner layer does

not have any preceding layers and therefore the decoder only considers the codewords of

its own l
′th layer. Outer layers are a�ected by this `interaction' occurring between layers

which we address through examination of the codewords of each layer. The second part of

this chapter gives a description regarding the interaction signal e�ect on each layer where

we consider the unit and complex integer valued channels. Detailed derivations are given

on how the decoded output may be predicted. Furthermore, it is shown that the e�ect

imposes additional requirements on the codes used on each layer in order to ensure de-

codability. These additional requirements are given in the form of theorems followed by

corresponding proofs. An example of a three layer scheme is given under each channel

condition and performance results discussed.

3.4 Demonstration of error �oor for inner and outer lay-

ers

As will be demonstrated in Sections (3.6 - 3.9) the interaction signals are generated during

multilayer decoding of C&F. The investigation of these interaction signals led to many

simulations and testing to determine the exact nature of the signal, why the inner layer

is not e�ected and the remaining outer layers are. For this investigation a two user two

layer nested binary code is implemented, as in [4], where we employ convolutional codes

for both layers. User 1 and 2 generate a length 150 message vector w which is split into

a length 10 data vector w0{1,2} and a length 140 data vector w1{1,2}. Each are convo-

lutionally encoded using a 1
2
rate convolutional encoder. In order to ensure that each

dataword is encoded to the same length we add padding to each. For w1{1,2} we pad

with 0 in positions (1,16,31,46,61,76,91,106,121,136). For layer 0 we use repetition vec-

tors r1 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0] and r2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] to

replace each data bit 1 and 0 in w0{1,2} respectively. The padded datawords are then en-

coded using a half rate convolutional encoder, where equation (2.8) is employed in order to

construct the lattice codes x1 and x0. The received signal is generated using equation (2.8)
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where h1 = h2 = 1. Decoding is carried out successively as described in Section 3.3 using

a BCJR decoder for each layer. We incorporate the work of [19] for the BCJR decoder

however adapting slightly for a priori information. We incorporate a priori information due

to the nature of the repetition codes used which will be advantageous for those particular

code bits when entering the decoder. The estimated decoded output on each layer is the

exclusive OR (XOR) combination of the data. We present the results of this in the form

of BER performance in Figure 3.3. Figure 3.3 details the result when decoding two layers,

layer 0 and layer 1 without the consideration of the interaction signal. The inner layer

(layer 0) has been successfully decoded however the outer layer presents an error �oor

which for the moment cannot be overcome. The error �oor starts to show at fairly low

SNR which, when we compare this to layer 0, is approximately 9dB. This provides the

evidence that there is an interaction happening between code layers which has not been

accounted for.

Figure 3.3: Example of error �oor on outer layer code (layer 1)
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3.5 Interaction between code layers

For this section we consider a two user and a three layer l = {0, 1, 2} C&F scheme. We

assume that the channel coe�cients are unit valued, h1 = h2 = 1, and the codewords cl1

and cl2 are real. Due to the choice of channel coe�cients we are able to omit them from

the received signal. The simplest form of channel coe�cients is employed as it is su�cient

for our initial demonstration of this interaction, we also omit the presence of noise as this

is not the focus of our demonstration. The codes used for this scenario will be Reed-Muller

codes, 1st order RM(1,5) code for the inner layer, 3rd order RM(3,5) for the middle layer

and the outer layer is left uncoded.

In order to demonstrate the interaction discovered to occur between code layers we in-

troduce a particular codeword for each layer. The data generated from each source S1 and

S2 for all layers is given below, along with the associated codeword.

For layer 0:

w01 = [1, 1, 1, 1, 0, 1] (3.4)

w02 = [0, 1, 0, 1, 0, 1] (3.5)

c01 = [1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1] (3.6)

c02 = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0] (3.7)

For layer 1:

w11 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] (3.8)

w12 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] (3.9)

c11 = [1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0] (3.10)

c12 = [1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] (3.11)

Layer 2 is uncoded and therefore the codewords are also the datawords.

w21 = [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1] (3.12)

w22 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1] (3.13)

c21 = [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1] (3.14)
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c22 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1] (3.15)

Using (2.8) the construction D lattice is generated, for user 1 S1 and user 2 S2:

S1 = 4c21 + 2c11 + c01

= [3, 2, 7, 2, 6, 1, 4, 1, 6, 1, 0, 1, 5, 2, 3, 4, 4, 1, 0, 3, 5, 6, 3, 4, 1, 2, 7, 0, 6, 1, 4, 5]
(3.16)

S2 = 4c22 + 2c12 + c02

= [3, 0, 1, 2, 2, 7, 6, 5, 7, 2, 3, 0, 0, 5, 4, 5, 2, 1, 0, 5, 5, 4, 1, 0, 0, 1, 0, 5, 1, 4, 5, 6]
(3.17)

Thus, the received signal, ignoring noise and interference is:

y = S1 + S2

= [6, 2, 8, 4, 8, 8, 10, 6, 13, 3, 3, 1, 5, 7, 7, 9, 6, 2, 0, 8, 10, 10, 4, 4, 1, 3, 7, 5, 7, 5, 9, 11]
(3.18)

We now apply a modulo 8 operation to the received signal.

y
′
= (y)mod8

= [6, 2, 0, 4, 0, 0, 2, 6, 5, 3, 3, 1, 5, 7, 7, 1, 6, 2, 0, 0, 2, 2, 4, 4, 1, 3, 7, 5, 7, 5, 1, 3]
(3.19)

Finally, the modulo 2 operation is applied generating the scaled received signal y
′

mod2.

y
′

mod2 = (y
′
)mod2

= [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
(3.20)

This result is passed to the inner layer decoder which in this case without the presence of

noise and the channel coe�cients being unit valued, the codeword is the same as the scaled

received signal for the inner layer. As we will see this applies to all layers.

ĉ0 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1] (3.21)

where ĉ0 denotes the estimate of the codeword on that layer. We can see that ĉ0 is the

XOR combination of c01 and c02. It also follows that the result is therefore a codeword of

the inner code and that the resulting data is also the XOR of the input data on layer 0.

This is what was expected as the decoded output on this layer.

As detailed in Section 3.3 and shown in Figure 3.2 the estimate of the decoded code-
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word ĉ0 is subtracted from the scaled received signal y
′
to produce y

′

1′
such that we can

begin decoding the middle layer.

y
′

1′
=

y
′ − ĉ0

2
= [3, 1, 4, 2, 0, 4, 1, 3, 2, 1, 1, 0, 2, 3, 3, 0, 3, 1, 0, 0, 1, 1, 2, 2, 0, 1, 3, 2, 3, 2, 0, 1]

(3.22)

y
′

1′
mod2 = [1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1] (3.23)

Again, (3.23) is subject to the middle layer decoder where the decoded result produces:

ĉ1 = [1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1] (3.24)

By looking at c11 and c12 it can be shown that ĉ1 is not the XOR combination of the

codewords on this layer. This also proves that again, under these circumstances that we

again demonstrate the interaction occurring between the inner and middle layer. In order

to establish the nature of the interaction on the middle layer we look at the scaled received

signal and the codewords on the middle layer as well as the inner layer. We know through

our analysis so far that there is evidence for an interaction between the inner and middle

layers. We could also predict that the interaction is in addition to the XOR combination

of the middle layer codewords. Using this prediction we focus our attention on the inner

layer codewords establish if a combination of the inner layer codes c01 and c02 appear on

the middle layer. In order to do so we examine equation (3.18) and see that at positions

(1, 2) and (7, 8) when we subtract ĉ0 and divide by two the resulting bits are 1. If this

was just the XOR of the middle layer codewords this would not be true. If we analyse

the inner layer codewords we see that if we take the AND combinations of the inner layer

codewords with the XOR of the middle layer codewords the resulting bits for positions

(1, 2) and (7, 8) are 1 and indeed the result is equal to ĉ1.

From this observation and our analysis of this particular scenario we can de�nitively say

that the decoded output (3.24) is the XOR combination of the codewords from both sources

on the middle layer, (3.10) and (3.11), XOR'ed with the AND combinations on the inner

layer, (3.6) and (3.7). This means that we have now shown the presence of a carry or

interaction term generated between layers during multilayer decoding.
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For the outer layer we subtract the decoded codeword of the middle layer (3.24) from

y
′

1′
and apply the modulo 2 to produce the decoded codeword of the outer layer. As this

layer is not encoded then the remaining codeword should be the codeword of the outer

layer. If we apply the knowledge of the interaction term from the inner to the middle layer

we can analyse what is happening on the outer layer. The decoded output is:

ĉ2 = [1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0] (3.25)

Again we see the XOR combination of the outer and middle layer as well as the AND

combinations of the middle and inner layers. The XOR operation is applied to these terms

and results in (3.25). We expand on this analysis in the next Section, where the following

chapter details the equations on each layer in terms of logical expressions.

Prior to this analysis the estimated expected result on each layer would be the XOR

combination of the codewords on the same layer and previous and outer layers would not

cause any such interaction. As demonstrated previous layers do indeed have an impact on

the outer layers and this needs to be taken into account for decoding. As we will see, the

following sections describe and derive expressions for this interaction for multiple layers

and users.

3.6 Real only signals using unit valued channels

For this section we assume a multi-user system, unit valued real only channels with xJ ∈ R
and cLJ ∈ R and F2. We ignore z

′
and self-interference as self-interference is zero and here

we focus on decodability not error rate. Then:

y
′
= (a1x1+, . . . ,+aJxJ)mod2L = (a1mod2Lx1+, . . . ,+aJmod2LxJ)mod2L (3.26)

Note that the mod2L operation means that y
′
is positive. As we assume that the channel

coe�cients h1, . . . , hJ are unit valued the integer coe�cients a1, . . . , aJ can be omitted from

the expressions.

y
′
= (x1+, . . . ,+xJ)mod2L (3.27)
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Following the operation of the multilayer decoder, shown in Figure 3.2 the received signal

can be expressed as:

y
′

l
′ =

y
′

l′−1
− ĉl′−1

2
=

y
′

l′−2
− ĉl′−2

4
−

ĉl′−1

2
=

1

2l
′

(
y

′ −
l
′−1∑
l=0

2lcl

)
=

1

2l
′

( L−1∑
l=0

2ly
′
[l]−

l
′−1∑
l=0

2lĉl

) (3.28)

where [l] denotes the lth bit of the binary representation of y
′
, with [0] being the least

signi�cant bit. In Section 3.8 we provide an analysis of this statement by introducing

Lemma 1 and subsequently theorem 1 for integer valued channels. We then take y
′

l′
modulo-

2 and decode to �nd ĉl′ .

ĉl′ = y
′

l
′mod2 =

⌊(
1

2l
′

( L−1∑
l=0

2ly
′
[l]−

l
′−1∑
l=0

2lĉl

))⌋
mod2 (3.29)

The decoded codeword for layer l
′
is therefore given by the l

′
th bit of the vector y

′
. Hence:

ĉl′ = y
′
[l

′
] (3.30)

for all positive integer l
′
. With exception of layer 0 which has no preceding layers:

ĉ0 = y
′
mod2 =

⌊( L−1∑
l=0

2ly
′
[l]

)⌋
mod2 = y

′
[0] (3.31)

Using (3.29), this then leads to the result:

ĉl′ =

⌊ l
′∑

l=0

2l−l
′

(cl1+, . . . ,+clJ)

⌋
mod2 (3.32)

which de�nes the output codeword in terms of the input codewords, where the �oor function

arises from the general result that y[l] =
⌊

y
2l

⌋
mod2. This can also be written as:

ĉl′ = (cl′1+, . . . ,+cl′J)mod2 +

⌊ l
′−1∑
l=0

2l−l
′

(cl1+, . . . ,+clJ)

⌋
mod2 (3.33)

which we can then write as:
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ĉl′ = (sl′ + kl′−1)mod2 (3.34)

The term sl′ = (cl1+, . . . ,+clJ)mod2 is the term one may expect to �nd in the estimated

codeword on this layer (the modulo-2 sum of the codewords from that layer). The kl′−1 is

an interaction term occurring between the layers, where this is essentially the `carry' term

from the sum on the previous layer. This term must be taken into account when decoding

ĉl′ and when considering the expected output at the decoder. Now we can further expand:

kl′−1 =

⌊ l
′−1∑
l′=0

2l−l
′

(cl1+, . . . ,+clJ)

⌋
=

⌊
1

2
(
l
′−1∑
l=0

(cl1+, . . . ,+clJ) +
l
′−2∑
l′=0

2l−l
′−1(cl1+, . . . ,+clJ)

⌋
=

⌊
1

2
(sl′−1 + kl′−2)

⌋
mod2

(3.35)

This section highlights the special case of unit valued channels and real only signals.

For the general case, this is investigated in Section 3.8 and 3.9 for real valued channels and

complex valued channels respectively.

3.7 Complex signals using unit valued channels

We can now straightforwardly expand to the complex case where xl is complex, expressed

as: xl = xR + xI, and the channel coe�cients h1, . . . , hJ remain unit valued. In order to

generate complex lattice codes cl we apply `Lifted Construction D' from [1], introduced in

subsection 2.3.2. For the coarse lattice Λ
′
lifting achieves Λ

′
= Λ

′
C+ iΛ

′
C and the �ne lattice

Λ = ΛF + iΛF . This results in a nested Z[i] lattice. This means we can express the real

and imaginary parts as codewords C: cI ,cQ ∈ C. Then, again ignoring noise, interference

and omitting unit valued integer coe�cients, the received signal:

y
′
= (x1+, . . . ,+xJ)mod2L =

((
(xR

1 + ixI
1)mod2L+, . . . ,+(xR

J + ixI
J)
)

mod2L
)

mod2L

(3.36)
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We therefore may rewrite:

y
′

l′
=

y
′

l′−1
− ĉl′−1

2
=

1

2l
′

(
y

′ −
l
′−1∑
l=0

2lĉl

)

=
1

2l
′

((
y

′R + iy
′I
)
−

l
′−1∑
l=0

2l
(
ĉIl + iĉQl

))

=
1

2l
′

( L−1∑
l=0

2l
(
y

′R[l] + iy
′I[l]
)
−

l
′−1∑
l=0

2l
(
ĉIl + iĉQl

))
(3.37)

writing y
′{R,I} =

∑L−1
l=0

(
2ly

′{R,I}[l]
)
. Then:

ĉ
{R,I}
l′

= y
′{R,I}[l

′
] (3.38)

With the exception of layer 0, as demonstrated in the previous subsection and expanded

to:

ĉ0 = (y
′R + iy

′I)mod2 =

( L−1∑
l=0

2l(y
′R[l] + iy

′I[l]

)
= y

′R[0] + iy
′I[0] (3.39)

As in the real only case neglecting noise and interference:

ĉl′ = ĉI
l′

+ iĉQ
l′

=

⌊ l
′∑

l=0

2l−l
′(

(cIl1 + icQl1)+, . . . ,+(cIlJ + iclJ)
)⌋

mod2 (3.40)

which can also be written as:

ĉl′ =
(

(cI
l′1

+ icQ
l′1

)+, . . . ,+(cI
l′J

+ icQ
l′J

)
)

mod2 +

⌊ l
′−1∑
l=0

2l−l
′

(cIl1 + icQl1)+, . . . ,+(cIlJ + icQlJ)

⌋
mod2

(3.41)

as in (3.34), then:

ĉl′ = (sl′ + kl′−1)mod2 (3.42)
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where the `carry' term can be given as:

kl′−1 =

⌊ l
′−1∑
l′=0

2l−l
′(

(cIl1 + icQl1)+, . . . ,+(cIlJ + icQlJ)
)⌋

=

⌊
1

2

(
l
′−1∑
l=0

(
(cIl1 + icQl1)+, . . . ,+(cIlJ + icQlJ)

)

+
l
′−2∑
l′=0

2l−l
′−1
(

(cIl1 + icQl1)+, . . . ,+(cIlJ + icQlJ)
))⌋

=

⌊
1

2
(sl′−1 + kl′−2)

⌋
mod2

(3.43)

As in the previous section we demonstrate a special case of the expected decoded code

on each layer, deriving the mathematical expression of the interaction term. In the next

section we move to the general case.

3.8 Integer valued channels

We now progress to describe layered decoding for the general case using integer valued

channels and binary codes. Then the received signal is:

y
′
= (a1x1+, . . . ,+aJxJ)mod2L = (a1mod2Lx1+, . . . ,+aJmod2LxJ)mod2L (3.44)

We now seek to relate the estimated codewords on each layer of the decoder to the trans-

mitted codewords on each layer. We consider the e�ects of integer channels within this

and therefore introduce our �rst main result by means of Lemma 1. This is in a sense a

statement of the obvious: the code word output on the l
′
th layer is bit l

′
of the scaled

version of the received signal.

Lemma 1. Neglecting the e�ect of noise and interference, the decoded codeword for layer

l
′
is given by the l

′th bit of the vector y
′
, that is:

ĉ
′

l = y
′
[l

′
] (3.45)

Proof. By induction, if we assume that ĉl′ = y
′
[l],∀l < l

′
, then:

ĉl′ =

(
1

2l
′

( L−1∑
l=0

2ly
′
[l]

))
mod2 =

( L−1∑
l=l′

2l−l
′

y
′
[l]

)
mod2 = y

′
[l

′
] (3.46)

however, as stated previously, with exception to layer 0 which has no preceding layers. ĉ0
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is therefore again expressed as (3.31) and hence by induction, ĉl′ = y
′
[l

′
] for all positive

integer l
′
. This then leads to the �rst main result, which de�nes the output codeword in

terms of the input codewords based on the integer valued channel coe�cients.

Theorem 1. Again neglecting the e�ect of noise and interference:

ĉl′ =

⌊ l
′∑

m′=0

2m
′−l′

m
′∑

l=0

(
(a1[m

′ − l]cl1)+, . . . ,+(aJ [m
′ − l]clJ)

)⌋
mod2 (3.47)

Proof.

y
′
=

L−1∑
l=0

(a12lcl1)+, . . . ,+(aJ2lclJ) =
L−1∑
l=0

(
L−1∑
m=0

2ma1[m]2lcl1+, . . . ,+
L−1∑
m=0

2maJ [m]2lclJ)

=
L−1∑
l=0

(
L−1∑
m=0

a1[m]2l+mcl1+, . . . ,+
L−1∑
m=0

aJ [m]2l+mclJ)

=
L−1∑
m′=0

2m
′
m

′∑
l=0

(a1[m
′ − l]cl1+, . . . ,+aJ [m

′ − l]clJ)

(3.48)

To �nd the l
′
th bit p[l

′
] of a positive integer p take

⌊
p

2l
′

⌋
mod2. Then:

y
′
[l

′
] = ĉl′ =

⌊y′

2l
′

⌋
mod2 =

⌊ l
′∑

m′=0

2m
′−l′

m
′∑

l=0

(a1[m
′ − l]cl1+, . . . ,+aJ [m

′ − l]clJ)
⌋
mod2

(3.49)

As with the unit valued case we can also restate this result as:

ĉl′ =

(
l
′∑

l=0

(a1[l
′ − l]cl1+, . . . ,+aJ [l

′ − l]clJ)

+

⌊
l
′−1∑
m′=0

2m
′−l′

m
′∑

l=0

(a1[m
′ − l]cl1+, . . . ,+aJ [m

′ − l]clJ)

⌋)
mod2

(3.50)

which we can then re-write as:

ĉl′ = (sl′ + kl′−1)mod2 (3.51)
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The term sl′ is now the modulo-2 sum of the codewords from that layer weighted by the

corresponding bits from the binary representation of the integer channel coe�cients. As

in (3.34) kl′−1 remains as a `carry' term occurring between the layers. This must be taken

into account both when decoding cl′ and when considering the expected output of the

decoder. Now we can further expand the `carry' term:

kl′−1 =

⌊ l
′−1∑
m′=0

2m
′−l′

m
′∑

l=0

(a1[m
′ − l]cl1+, . . . ,+aJ [m

′ − l]clJ)

⌋

=

⌊
1

2
(
l
′−1∑
l=0

(a1[l
′ − 1− l]cl1+, . . . ,+aJ [l

′ − 1− l]clJ)

+
l
′−2∑
m′=0

2m
′−l′−1

m
′∑

l=0

(a1[m
′ − l]cl1+, . . . ,+aJ [m

′ − l]clJ))

⌋
=
⌊1

2
(sl′−1 + kl′−2)

⌋
(3.52)

To understand the implications of this we �rst de�ne Lemma 2:

Lemma 2. Suppose that q1, q2, . . . , qJ are binary variables, i.e. q1, q2, . . . , qJ ∈ 0, 1 Then:

⌊
1

2

j∑
i=1

qi

⌋
mod2 =

( j∑
i=2

i−1∑
f=1

qi · qf
)

mod2 (3.53)

where · denotes product, which for binary variables is the same as the logical AND

operation on Boolean variables. In other words, the �oor taken modulo 2 of half the sum

of the variables is the modulo 2 sum of all distinct pairwise products of the variables, that

is it is the XOR combination of all AND combinations of the variables.

Proof. Let the number of 1's among the qi's be p. The result on the left hand side (lhs) of

the equation is the integer quotient of p/2 taken modulo 2: quot(p/2)mod2 The result on

the right hand side (rhs) is the number of combinations containing 2 1's out of the p taken

modulo 2 i.e.
p

C
2

mod2 =

(
p(p−1)

2

)
mod2. Now, p(p−1)

2
is even provided p/2 or (p − 1)/2 is

even, i.e if p is a multiple of 4 or one more than a multiple of 4, and odd otherwise. The

same applies to quot(p/2) which veri�es the Lemma.

This leads to our second, and most important main result which arises because the

operation of the layered decoder requires that ĉl′ is a codeword of Cl so that the decoder

for that layer can decode it.
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Theorem 2. The layered decoder can decode a multilayer lattice using Construction by

Code Formula based on binary codes if and only if:

1. The codes used on all layers Cl, l = 0 . . . L− 1 are linear;

2. The codes are nested: that is, codes on inner layers are subcodes of those on outer

layers: Cl ⊆ Cl′ , l 6 l
′
;

3. The pairwise AND combinations of all codewords of Cl must be codewords of the code

on the next layer, Cl+1.

Proof. To establish (1) as a necessary condition for decodability consider equation (3.50).

The expression for ĉl′ is a modulo 2 sum which contains the term
∑l

′

l=0(a1[l
′−l]cl1+, . . . ,+aJ [l

′−
l]clJ)mod2. This in in turn contains the modulo-2 sum of aJ [0]cl′J , in which aJ [0] ∈ [0, 1].

Since it is possible that all the other terms in (3.50) are zero, for decodability in all cases

this term must be a codeword. By de�nition it is a codeword of Cl′ if and only if Cl′ is linear.

To establish (2) as a necessary condition, note that the expression for ĉl′ also contains

terms a1[m]c(l′−m)1+, . . . ,+aJ [m]c(l′−m)J ,m = 1 . . . l and again aJ [m] ∈ [0, 1],m = 1 . . . l.

Again these are necessarily codewords of Cl′ if and only if all codewords of Cl′−m,m = 1 . . . l
′

are also codewords of Cl and these codes also are linear.

To establish (3) as a necessary condition, consider (3.51). This contains kl′−1, which

therefore must be a codeword of Cl′ . Then from (3.52) kl′−1 = 1
2
(sl′−1 + kl′−2) it is clear

that for decodability on layer l
′ − 1, kl′−2 must also be a codeword of Cl′−1. Thus from

Lemma 2 the AND combination of two codewords of Cl′−1 must be a codeword of Cl′ ,

and indeed this applies to any two codewords of Cl′−1. To establish these as su�cient

conditions, start on layer 0, where the conditions certainly ensure decodability. On layer

1 we have that ĉ1 = (s1 + k0)mod2, and k0 = b s0
2
c. Then condition (3) ensures that k0

is a codeword of C1, and conditions (1) and (2) ensure that ĉ1 also is. This process can

be continued up to layer l
′
, hence showing that the conditions ensure decodability at any

layer.

Note that conditions (1) and (2) are already required for the codes used on each layer

in Construction D. Theorem 2 shows that if the layered decoder is to be used, condition (3)

of the theorem must be added to these. It is not in fact a particularly onerous condition,

since in the example scheme in Section 3.9 the outer layer is left uncoded, and of course all
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possible words are thus codewords. Also a repetition code is employed on layer 0, and the

condition requires only that the all 1s codeword is included in the layer 1 code which is also

required as a result of condition (2). We demonstrate an example scheme in Section 4.4

with three layers as in practice it would be rare to use more than 3 layers in a Construction

D scheme.

3.9 Complex Integer valued channels

Finally, we extend the results of the previous subsection to complex integer coe�cient

channels and assume that xJ and cJ are complex and binary. As described in Section 3.2,

the received signal y is multiplied by α and then taken modulo-2L to achieve (3.3). In this

Section we consider h1, . . . , hJ and α to be complex therefore: aJ = aRJ + iaIJ and we can

rewrite y
′
as:

y
′
=(a1x1+, . . . ,+aJxJ)mod2L =

((
(aR1 + iaI1)(xR

1 + ixI
1)
)

mod2L

+, . . . ,+
(

(aRJ + iaIJ)(xR
J + ixI

J)
)

mod2L
)

mod2L

=

((
(aR1 x

R
1 − aI1xI

1) + i(aI1x
R
1 + aR1 x

I
1)
)

mod2L

+, . . . ,+
(

(aRJ x
R
J − aIJxI

J) + i(aIJx
R
J + aRJ x

I
J)
)

mod2L
)

mod2L

=

(
(aR1 mod2L)xR

1 +
(

(−aI1)mod2L
)
xI

1

+, . . . ,+(aRJ mod2L)xR
J +

(
(−aIJ)mod2L

)
xI
J

)
mod2L + i

(
(aI1mod2L)xR

1

+ (aR1 mod2L)xI
1+, . . . ,+(aIJmod2L)xR

J + (aRJ mod2L)xI
J

)
mod2L

(3.54)

For notational convenience we will write (−aIJ) as a−IJ from this point forward. we may

re-write:

y
′

l′
=

y
′

l′−1
− ˆcl′−1

2
=

1

2l
′

(
y

′ −
l
′−1∑
l=0

2lĉl

)
=

1

2l
′

(
(y

′R + iy
′I)−

l
′−1∑
l=0

2l(ĉIl + iĉQl )

)

=
1

2l
′

( L−1∑
l=0

2l(y
′R[l] + iy

′I[l])−
l
′−1∑
l=0

2l(ĉIl + iĉQl )

) (3.55)
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where we can write y
′{R,I} =

∑L−1
l=0

(
2ly

′{R,I}[l]
)

Lemma 3. As in the real case, neglecting noise and interference, the decoded codeword for

layer l
′
is given by the l

′th bit of the vector y
′
. In the complex case the decoded codeword

for layer l
′
is given by the l

′th bit of the real and imaginary parts of y
′
. Denoted as:

ĉ
{R,I}
l′

= y
′{R,I}[l

′
] (3.56)

Proof. Using the above equation:

y
′R
l′

+ iy
′I
l′

=
1

2l
′

( L−1∑
l=0

2l(y
′R[l] + iy

′I[l])−
l
′−1∑
l=0

2l(ĉIl + iĉQl )

)
(3.57)

Extracting real and imaginary parts leads to:

y
′{R,I}
l′

=
1

2l
′

( L−1∑
l=0

2ly
′{R,I}[l]−

l
′−1∑
l=0

2lĉ
{I,Q}
l

)
(3.58)

Then the result follows by following Lemma 1, treating the real and imaginary parts sep-

arately.

Theorem 3. As in theorem 1 neglecting noise and interference:

ĉl′ = ĉI
l′

+ iĉQ
l′

=

⌊ l
′∑

m′=0

2m
′−l′

m
′∑

l=0

(
(aR1 [m

′ − l]cIl1 + a−I1 [m
′ − l]cQl1+, . . . ,+aRJ [m

′ − l]cIlJ

+ a−IJ [m
′ − l]cQlJ) + i(aR1 [m

′ − l]cQl1 + aI1[m
′ − l]cIl1

+, . . . ,+aRJ [m
′ − l]cQlJ + aIJ [m

′ − l]cIlJ)
)⌋

mod2

(3.59)

where a
{R,I}
J [m] denotes the mth bit binary representation of the corresponding integer chan-

nel coe�cient.
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Proof. Generalising the proof of Theorem 1.

y
′
[l

′
] = ĉl′ = ĉI

l′
+ iĉQ

l′
=

⌊
y

′

2l
′

⌋
mod2

=

⌊
1

2l
′

(
(aR1 mod2L)xR

1 + (a−I1 mod2L)xI
1+, . . . ,+(aRJ mod2L)xR

J

+
(

(a−IJ )mod2L
)
xI
J

)
mod2L + i

(
(aI1mod2L)xR

1

+ (aR1 mod2L)xI
1+, . . . ,+(aIJmod2L)xR

J + (aRJ mod2L)xI
J

)
mod2L

⌋
mod2

(3.60)

Now writing a
{R,I}
{1,...,J} =

∑L−1
m=0 2ma

{R,I}
{1,...,J}[m] terms of the form (a

{R,I}
{1,...,J}mod2L)x

{R,I}
{1,...,J} can

be written:

(
a
{R,I}
{1,...,J}mod2L

)
x
{R,I}
{1,...,J} =

L−1∑
m=0

2ma
{R,I}
{1,...,J}[m]

L−1∑
l=0

2lc
{I,Q}
l{1,...,J}

=
L−1∑
m=0

L−1∑
l=0

2l+ma
{R,I}
{1,...,J}[m]c

{I,Q}
l{1,...,J} =

L−1∑
m′=0

2m
′
m

′∑
l=0

a
{R,I}
{1,...,J}[m

′ − l]c{I,Q}l{1,...,J}

(3.61)

and similarly: (
(a−IJ )mod2L

)
xI
{1,...,J} =

L−1∑
m′=0

2m
′
m

′∑
l=0

aIJ [m
′ − l]cQlJ (3.62)

substituting these terms into the above expression gives the result.
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ĉl′ = ĉI
l′

+ iĉQ
l′

=

(( l
′∑

l=0

(aR1 [l
′ − l]cIl1 + a−I1 [l

′ − l]cQl1+, . . . ,+aRJ [l
′ − l]cIlJ + a−IJ [l

′ − l]cQlJ)
)

mod2

+

⌊
1

2

l
′−1∑
l=0

(aR1 [l
′ − 1− l]cIl1 + a−I1 [l

′ − 1− l]cQl1+, . . . ,+aRJ [l
′ − 1− l]cIlJ + a−IJ [l

′ − 1− l]cQlJ)

+
1

4

l
′−2∑
l=0

(aR1 [l
′ − 2− l]cIl1 + a−I1 [l

′ − 2− l]cQl1+, . . . ,+aRJ [l
′ − 2− l]cIlJ + a−IJ [l

′ − 2− l]cQlJ) + . . .

1

2l
′ (aR1 [0]cIl1 + a−I1 [0]cQl1+, . . . ,+aRJ [0]cIlJ + a−IJ [0]cQlJ)

⌋
mod2

)
mod2

+ i

(( l
′∑

l=0

(aR1 [l
′ − l]cQl1 + aI1[l

′ − l]cIl1+, . . . ,+aRJ [l
′ − l]cQlJ + aIJ [l

′ − l]cIlJ)
)

mod2

+

⌊
1

2

l
′−1∑
l=0

(aR1 [l
′ − 1− l]cQl1 + aI1[l

′ − 1− l]cIl1+, . . . ,+aRJ [l
′ − 1− l]cQlJ + aIJ [l

′ − 1− l]cIlJ)

+
1

4

l
′−2∑
l=0

(aR1 [l
′ − 2− l]cQl1 + aI1[l

′ − 2− l]cIl1+, . . . ,+aRJ [l
′ − 2− l]cQlJ + aIJ [l

′ − 2− l]cIlJ) + . . .

1

2l
′ (aR1 [0]cQl1 + aI1[0]cIl1+, . . . ,+aRJ [0]cQlJ + aIJ [0]cIlJ)

⌋
mod2

)
mod2

(3.63)

It is straightforward to show that Theorem 2 must also apply to the codes used for the

in-phase and quadrature components.

The diagrams shown in Figures 3.4 and 3.5 visualise the process of determining the occur-

rence of the `carry' term for each code layer, shown for two users and three code layers.

This is detailed for the In-phase and Quadrature component where āj[{0, 1, 2}]i denotes
the two's complement of the integer coe�cient of each signi�cant bit. As can be observed

from our analysis in this chapter, for each layer the number of `carry' term(s) increase

meaning that the complexity of this signal increases with the number of code layers. In

practice we would not see the number of code layers be higher than three and therefore

evaluate the expression up to three layers.
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3.10 Summary

This chapter has derived the mathematical expressions which describe the scaled received

signal y
′

l′
at each layer, the expected decoded output ĉl′ at each code layer including the

interaction term found to occur between layers. In Section 3.1 the chapter was introduced

and in Section 3.2 an outline of the C&F system model was provided. The structure

of multilayer decoding was described in Section 3.3 followed by a demonstration of error

�oor between layers when the interaction signal is not considered in Section 3.4. The

interaction between code layers is given in Section 3.5. The special case implementing

unit valued channels and real signals is given in Section 3.6 before expanding this work

to complex signals in Section 3.7. In Section 3.8 derived expressions using integer channel

coe�cients are given where this is expanded to using complex signals in Section 3.9. This

work progresses to describe the general case and can be implemented for any integer valued

channel using complex or real signals for multiple layers and users.
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Figure 3.4: Full adder - In-phase component for complex signals and complex integer
coe�cients
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Figure 3.5: Full adder - Quadrature component for complex signals and complex integer
coe�cients



Chapter 4

BER performance of C&F system model

using Construction D

We now present the expected output results of the layered decoder based on particular

channel values using our derived expressions in chapter 3 and subsequently demonstrate

the BER performance results for the corresponding system model. We initially choose a

two user system with three layers, detailing the decoder expected output results for each

layer for unit valued channels and complex integer valued channels before extending the

system model to incorporate three users. For the evaluation of BER performance we as-

sume the signals transmitted from all users are complex binary. For the three user case

we only employ complex integer valued channels as the two user case using unit valued

channels can be straight-forwardly extended. BER results are evaluated for two scenar-

ios. Initially we demonstrate results using a repetition code on the inner layer, extended

Hamming code on the middle layer and leave the outer layer uncoded. For the second sce-

nario we extend the length of the code and employ a Hadamard code for the inner layer,

extended Hamming code for the middle layer and again leave the outer layer uncoded. We

then analyse how to recover the individual codes and data messages at the hub for unit

valued channels, integer value channels and complex integers valued channels whilst also

demonstrating how this can evaluated for real and complex signals.

We begin by describing the operation of the speci�c encoders and decoders for each code

layer, in each scenario, and detail how the chosen codes ful�l the construction D and

theorem 2 requirements for the multilayer decoder.
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4.1 0 and 2nd order Reed Muller codes

Initially we implement 0 and 2nd order Reed-Muller codes for the inner layer and middle

layers respectively. Speci�cally, we implement the (16,1,16) RM(0,4) code for the inner

layer, (16,11,4) RM(2,4) code for the middle layer and leave the outer layer uncoded. As

stated by the construction D constraints we separate the minimum euclidean distance

between the code layers by a multiple of 4, giving the inner layer dmin = 16 and middle

layer dmin = 4. The outer layer also ful�ls the constraints needed for decoding even though

it doesn't need decoding as the AND combinations of the middle and inner layers are

indeed a codeword. The structure and design of the inner and middle layer encoder(s) and

decoder(s) within the multilayer decoder is given in the next subsections.

4.1.1 Encoding

Inner layer As highlighted in Section 2.5, the inner layer RM(0,4) code sits within a

group of repetition codes. Each user generates a length k = 1 binary message, where a

repetition map, given as rep16(·), is used to repeat the message to a length N = 16 code

vector.

Middle layer For the middle layer we encode using a generator matrix of standard form

G = [I, P ]. We ensure that the AND combinations of codewords of the inner layer are

codewords of the middle layer. Due to the inner layer being a repetition code we know

that the all zeros codeword and all ones codeword are codewords of that layer. This means

that we know that the chosen codes ful�l the theorem 2 constraints.

4.1.2 Decoding

Inner layer Decoding the inner layer can be approached in several ways. The approach

taken in this scheme is to evaluate the average value of the scaled received signal y
′
0 and

use this soft value to determine the output of the decoder. Once the average value has

been calculated the map rep16(·) is applied in order reconstruct the codeword.

Middle layer Decoding of the middle layer for the (16,11,4) code allows the application of

the work in [18] described in subsection 2.6.5. The work of [18] applies the near-maximum-

likelihood Hamming decoder algorithm for multiple frames to decode, in this work we are

implementing a single frame and therefore Nframes = 1. During encoding we construct
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the generator matrix in standard form. The work of [18] applies a soft decision decoder

(SDD) by calculating the LLRs and syndrome of the errors, therefore the form G = [I, P ] is

important for this decoding method. Once the SDD has been applied the decoder returns

the decoded codeword. The decoder can return the perfectly decoded codeword given

that the AND combinations of the inner layer are present in the middle layer. This also

means that the form of the generator matrix has an e�ect on the decodability through the

construction of the codeword itself on the middle layer.

4.2 1st and 3rd order Reed-Muller codes

In order to demonstrate successful decoding and improved performance of the overall sys-

tem we implement 1st and 3rd order Reed-Muller codes on the inner and middle layer

respectively. We choose Reed-Muller codes again that satisfy the construction D con-

straints and those constraints identi�ed with the multilayer decoder, introduced in chapter

3. For the inner layer we implement a (32,6,16) RM(1,5) code generating a length 32 code

using 6 data bits of minimum distance dmin = 16. According to theorem 2, for decodability

the AND combination of two codewords of Cl′−1 must be a codeword of Cl′ . To adhere to

this condition and construction D constraints of the minimum euclidean distance between

layers being a minimum di�erence of a multiple of 4, we employ a (32,26,4) RM(3,5) code,

code length 32, data length 26 and minimum distance dmin = 4. The operation of the

individual decoders within the multilayer decoder is shown in Figure 4.1.

4.2.1 Encoding inner and middle layers

Inner layer

In order to encode the inner layer data we generate the Hadamard matrix in polar form

and select the 1st, 2nd, 4th, 8th, 16th and 32nd rows of the matrix and switch back to unipolar

form, this results in the generator matrix for layer 0, G0. G0 is then matrix multiplied by

the inner layer data in order to produce the codewords of C0.

Middle layer

As the middle layer (l = 1) has the inner layer as a preceding layer we ensure that the

AND combinations of codewords of the inner layer are also codewords of the middle layer.

In order for this to be true we employ the non-standard form generator matrix G1. This is
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achieved by applying the wedge product operations between basis vectors g up to order r

for ga where 1 ≤ a ≤ m
(
g0, g1, . . . , gm, . . . , (ga1 ∧ ga2), . . . , (ga1 ∧ ga2, . . . ,∧gar)

)
. For this

particular case we have permutations of (g0, g1, g2, g3, g4, g5) resulting in a 26x32 generator

matrix G1. The standard form generator matrix G1sf = [I, P ] is not employed in this case

as it does not contain all possible AND combinations of codewords of the inner layer. For

this reason we adapt the decoder of [18] for successful decoding, where this is described in

the next subsection.

4.2.2 Decoding

Inner layer

As shown in Figure 4.1, the inner layer decoder incorporates the Fast Walsh-Hadamard

Transform (FWHT) as the RM(1,5) code is a Hadamard code. The de�nition given to

codes that identify within this group of codes is RM(1,m) where (2m,m+ 1, 2m−1).

The process of decoding this layer begins with applying the inverse Fast Walsh-Hadamard

Transform and selecting the largest absolute value of this output as an index of the code-

word. The inverse transform is then able to be recreated and �nally the FWHT applied

to the recreated inverse transform of the codeword to obtain the resulting codeword.

Middle layer

Due to the implementation of the non-standard form of the Generator matrix on this layer

and the algorithm of [18] requiring a standard form generator matrix, it is necessary to

adapt the work of [18]. Therefore, we apply permutations on the vectors of the Generator

matrix, which we name G1 for this layer, such that it is transformed to standard form,

G1sf = [I, P ]. This is then input into the algorithm of [18]. The decoding process for

the middle layer, as shown in Figure 4.1, is to apply the same permutations on y
′
1 prior to

inputting the result through the soft-decision decoder. This means that the code can be

decoded. The output of this transform is given as y
′

1sf . Next, the Log-Likelihood ratios

are calculated and input into Soft-decision decoder (SDD). Finally, the decoded output

codeword has the inverse permutations applied such that the codeword is returned to the

original order.

We obviously omit a description of the outer layer decoder due to the data remaining
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uncoded.

Figure 4.1: Multilayer decoder structure for RM(1,5) and RM(3,5) codes on inner layer
and middle layer respectively - outer layer remains uncoded

4.3 Two User - Unit valued channels

We demonstrate two examples of decoding using the same channels but di�erent codes. As

shown, both scenarios use RM codes and adhere to construction D constraints and that of

theorem 2. We begin by demonstrating a simple example using a two user system model

and expressing the expected decoded output using the expressions calculated in chapter 3.

We choose a three layer scheme and assume the real only unit valued case for the channels

h{1,2} = 1, and subsequently a{1,2} = 1. For complex codes, the decoder is split into two

separate entities for the real and imaginary parts. Using (3.39), for layer 0 we may write:

ĉ0 = ĉI0 + iĉQ0 = cI01 ⊕ cI02 + i(cQ01 ⊕ cQ02) (4.1)

which details the expected result of the inner layer decoder which is a modulo two sum

of the codewords on layer 0. Given that c01 and c02 are binary (4.1) is in fact the logical

XOR of the codewords and indeed the XOR of the data words on that layer. We denote

⊕ as the logical XOR operation.

Using (3.41) and (3.43) for layer 1 we may write:

ĉ1 =

(
cI11 ⊕ cI12 ⊕

(
cI01 · cI02

))
+ i

(
cQ11 ⊕ cQ12 ⊕

(
cQ01 · c

Q
02

))
(4.2)
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During decoding and as expected for the middle layer we can see that the expression (4.2)

includes codewords from the middle and inner layers from both sources. The expression

can be shown to result in the logical XOR of the codewords on the middle layer plus the

logical AND of the codewords on the previous layer, l = 0. We denote the logical AND

operation as (·).

Again using equations (3.41) and (3.43) for layer 2 we may write:

ĉ2 =
(
cI21 ⊕ cI22

)
⊕
((

cI11 · cI12

)
⊕
(
cI11 ⊕ cI12

)
·
(
cI01 · cI02

))
+ i

(
cQ21 ⊕ cQ22

)
⊕
((

cQ11 · c
Q
12

)
⊕
(
cQ11 ⊕ cQ12

)
·
(
cQ01 · c

Q
02

)) (4.3)

As can be expected from our analysis in chapter 3, the number of terms in the expressions

of expected output of the decoder at each layer increases with higher number of layers.

We see that (4.3) shows that the expression for the expected output on layer 2 is the

logical XOR of the layer 2 codewords and the logical XOR of ANDs of the codewords on

all previous layers. In this case this is the logical AND combinations of layers 0 and 1 and

XOR of layer 1.

4.3.1 RM(0,4), RM(2,4) & uncoded layer BER results

The evaluated BER performance of this scheme is given in Figure 4.2. The results show that

the scheme can be successfully decoded when considering the interaction term. The overall

BER is given along with the individual performance of the layers. As shown, there is a

mismatch in performance between the layers even though the e�ective minimum Euclidean

distance on each layer is the same. The focus of the results is the successful decoding of

each layer however, the mismatch of performance occurs due to di�ering e�ective numbers

of neighbours between the layers. Notice that the middle layer is a sub-optimum maximum

likelihood algorithm therefore the di�erence in performance between the inner layer and

middle layer is large.
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Figure 4.2: Two-user, three layer system model, h1 = h2 = 1 Inner layer (16,1,16) repetition
code, middle layer (16,11,4) Extended Hamming code, outer layer uncoded

4.3.2 RM(1,3), RM(3,5) & uncoded layer BER results

We now implement RM(1,3) code for layer 0 (inner layer), RM(3,5) for layer 1 (middle

layer) and again layer 2 (outer layer) remains uncoded.

The BER performance of this proposed scheme, shown in Figure 4.3, shows that the overall

performance of the system is consistent for all three layers however the inner layer, as ex-

pected, lags behind the middle and outer layer in terms of performance. The performance

between the layers is now closer together in contrast to Figure 4.2 due to the decoders

implemented. The decodability again is demonstrated and due to the derived expressions

of Section 3.7 successful decoding can be carried out.
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Figure 4.3: Two-user, three layer system model, h1 = h2 = 1, Inner layer (32,6,16)
Hadamard code, middle layer (32,26,4) Extended Hamming code, outer layer uncoded

4.4 Two user - Complex integer valued channels

We extend the previous subsection to complex integer valued channels using the three

layer scheme described and detail the expressions for the codewords for each layer. We

choose h1 = −3 + 5i and h2 = 2 + 7i. It is easy to see that α is 1 as the channel coe�-

cients are integers and therefore do not need to be moved towards an integer, consequently

a1 = −3 + 5i, a2 = 2 + 7i. As we are assuming x{1,2} and a{1,2} are complex we can treat

the real and imaginary parts separately.

Real part of received signal, neglecting noise and interference: aR{1,2}[{0, 1, 2}]cIl{1,2} and
a−I{1,2}[{0, 1, 2}]c

Q
l{1,2}; imaginary part: aR{1,2}[{0, 1, 2}]c

Q
l{1,2} and a

I
{1,2}[{0, 1, 2}]cIl{1,2}.

For this particular case we evaluate a−Ij for each user integer coe�cient value in order to

take into consideration the minus sign due to the imaginary components. For a1 = −3 + 5i

and l
′

= 0, 1, 2, a
{R,I}
1 [{0, 1, 2}] = {1, 0, 1} and a−I1 = {1, 1, 0}: this is -5mod8 = 3 in

binary. For a2 = 2 + 7i and l
′
= 0, 1, 2, a

{R,I}
2 [{0, 1, 2}] = {1, 1, 1} and a−I2 = {1, 0, 0}: this



Two user - Complex integer valued channels 58

is -7mod8 = 1 in binary. As we begin to accumulate more terms due to complex codes

and complex integer channels we introduce a function that describes the combinations of

terms within the expression for the logical AND and XOR operation. For a term q this is

given as:

andxor2(q1, . . . , qj, . . . , qJ) ,
⊕

j,j′∈1,...,J,j∈j′
qj · qj′ (4.4)

Using equation (3.63), for layer 0 we may write:

ĉ0 = ĉI0 + iĉQ0 =
(
aR1 [0] · cI01 ⊕ a−I1 [0] · cQ01 ⊕ aR2 [0] · cI02 ⊕ a−I2 [0] · cQ02

)
+ i

(
aR1 [0] · cQ01 ⊕ aI1[0] · cI01 ⊕ aR2 [0] · cQ02 ⊕ aI2[0] · cI02

) (4.5)

For layer 1 we split the real and imaginary parts of the expression:

ĉI1 =
(
aR1 [1] · cI01 ⊕ a−I1 [1] · cQ01 ⊕ aR2 [1] · cI02 ⊕ a−I2 [1] · cQ02

⊕ aR1 [0] · cI11 ⊕ a−I1 [0] · cQ11 ⊕ aR2 [0] · cI12 ⊕ a−I2 [0] · cQ12

)
⊕ andxor2

(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02

) (4.6)

ĉQ1 =
(
aR1 [1] · cQ01 ⊕ aI1[1] · cI01 ⊕ aR2 [1] · cQ02 ⊕ aI2[1] · cI02

⊕ aR1 [0] · cQ11 ⊕ aI1[0] · cI11 ⊕ aR2 [0] · cQ12 ⊕ aI2[0] · cI12

)
⊕ andxor2

(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02

) (4.7)

As in layer 0 and layer 1 we use (3.63) and generate and expression for layer 2:

ĉI2 =
(
aR1 [2] · cI01 ⊕ a−I1 [2] · cQ01 ⊕ aR2 [2] · cI02 ⊕ a−I2 [2] · cQ02

⊕ aR1 [1] · cI11 ⊕ a−I1 [1] · cQ11 ⊕ aR2 [1] · cI12 ⊕ a−I2 [1] · cQ12

⊕ aR1 [0] · cI21 ⊕ a−I1 [0] · cQ21 ⊕ aR2 [0] · cI22 ⊕ a−I2 [0] · cQ22

) (4.8)

⊕ andxor2
(
aR1 [0] · cI11, a

−I
1 [0] · cQ11, a

R
2 [0] · cI12, a

−I
2 [0] · cQ12,

aR1 [1] · cI01, a
−I
1 [1] · cQ01, a

R
2 [1] · cI02, a

−I
2 [1] · cQ02

)
⊕ andxor2

(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02

)
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ĉQ2 =
(
aR1 [2] · cQ01 ⊕ aI1[2] · cI01 ⊕ aR2 [2] · cQ02 ⊕ aI2[2] · cI02

⊕ aR1 [1] · cQ11 ⊕ aI1[1] · cI11 ⊕ aR2 [1] · cQ12 ⊕ aI2[1] · cI12

⊕ aR1 [0] · cQ21 ⊕ aI1[0] · cI21 ⊕ aR2 [0] · cQ22 ⊕ aI2[0] · cI22

)
⊕ andxor2

(
aR1 [0] · cQ11, a

I
1[0] · cI11, a

R
2 [0] · cQ12, a

I
2[0] · cI12,

aR1 [1] · cQ01, a
I
1[1] · cI01, a

R
2 [1] · cQ02, a

I
2[1] · cI02

)
⊕ andxor2

(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02

)
(4.9)

Equations (4.5-4.9) are the derived mathematical expressions implemented for success-

ful decoding, where the complexity increases from inner to outermost layers. For this

example we highlight the `carry' term kl′ for layer 1 and layer 2, where layer 0 does not

have one due to no previous layers.

Layer 1 - In-phase:

kI1 = andxor2
(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02

)
(4.10)

Quadrature:

kQ1 = andxor2
(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02

)
(4.11)

As per the unit valued case in Section 4.2, k
{I,Q}
1 is shown mathematically to be the log-

ical AND combinations of codewords on layer 0 and layer 1 but now extended to include

In-phase and Quadrature components.

Layer 2 - In-phase:

kI2 = andxor2
(
aR1 [0] · cI11, a

−I
1 [0] · cQ11, a

R
2 [0] · cI12, a

−I
2 [0] · cQ12,

aR1 [1] · cI01, a
−I
1 [1] · cQ01, a

R
2 [1] · cI02, a

−I
2 [1] · cQ02

)
⊕ andxor2

(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02

) (4.12)
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Quadrature:

kQ2 = andxor2
(
aR1 [0] · cQ11, a

I
1[0] · cI11, a

R
2 [0] · cQ12, a

I
2[0] · cI12,

aR1 [1] · cQ01, a
I
1[1] · cI01, a

R
2 [1] · cQ02, a

I
2[1] · cI02

)
⊕ andxor2

(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02

) (4.13)

Finally, (4.12) and (4.13) demonstrate that the �rst term is the logical AND combinations

of layer 0 and layer 1 components and the second term is the logical AND combinations of

layer 0 combinations where these combinations are combined using the XOR operation.

4.4.1 RM(0,4), RM(2,4) & uncoded layer BER results

The BER performance of this system using RM(0,4), RM(2,4) and uncoded for layers 0,1,2

respectively demonstrates successful decoding of the three layer system using the derived

mathematical expressions (4.5 - 4.9). Figure 4.4 shows that the same trend of each layer

follows that shown in the unit valued channel case which is what we expect.

Figure 4.4: Two user, three layer system model - h1 = −3 + 5i, h2 = 2 + 7i, Inner layer
(16,1,16) repetition code, middle layer (16,11,4) Extended Hamming code, outer layer
uncoded
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4.4.2 RM(1,5), RM(3,5) & uncoded layer BER results

As in the unit valued channel case the codes chosen to evaluate these derived expressions

for the expected output are the (32,6,16) Hadamard code for layer 0 (inner layer), (32,26,4)

Extended Hamming code for layer 1 (middle layer) and again layer 2 (outer layer) remains

uncoded. Clearly, as with the previous subsection, Figure 4.5 demonstrates successful

decoding of all three layers for both In-phase and Quadrature components using the derived

expressions for this particular complex channel case. By observing Figure 4.5 we see that

each layer and indeed the overall BER performance of the system when comparing to

Figure 4.3 follows the same trend for all three layers.

Figure 4.5: Two user, three layer system model - h1 = −3 + 5i, h2 = 2 + 7i, Inner layer
(32,6,16) Hadamard code, middle layer (32,26,4) Extended Hamming code, outer layer
uncoded
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4.5 Three users - Complex integer valued channels

We extend the two user case to consider three users within our complex signal, complex

integer channel, system model. We apply the same equations as in the previous Section and

show that the derived expressions can be used to show the successful decoding of each layer.

We begin by extending the results of the previous subsection and assume that again x{1,2,3}

and c{1,2,3} are complex and binary. We now consider the channels h1, h2, h3, where these

channels are also deemed to be complex integers and therefore: a{1,2,3} = aR{1,2,3}+ iaI{1,2,3}.

We choose the complex integer channels h1 = 1 + 2i, h2 = −3 + i and h3 = 2 + 2i at

random. Again, we take into consideration the minus sign before the integer value for each

channel value and determine the appropriate bit value for each layer. For h1 = 1 + 2i and

l
′

= 0, 1, 2, a
{R,I}
1 [{0, 1, 2}] = {0, 1, 0} and a−I1 = {0, 1, 1}: this is -2mod8 = 6 in binary.

For a2 = −3 + i and l
′

= 0, 1, 2, a
{R,I}
2 [{0, 1, 2}] = {1, 0, 0} and a−I2 = {1, 1, 1}: this is

-1mod8 = 7 in binary. For a3 = 2 + 2i and l
′

= 0, 1, 2, again, a
{R,I}
3 [{0, 1, 2}] = {0, 1, 0}

and a−I3 = {0, 1, 1}.

As in the two user case we use (3.63) to determine an expression for the expected de-

coded output at each layer. For layer 0 we may write:

ĉ0 = ĉI0 + iĉQ0 =
(
aR1 [0] · cI01 ⊕ a−I1 [0] · cQ01 ⊕ aR2 [0] · cI02 ⊕ a−I2 [0] · cQ02 ⊕ aR3 [0] · cI03 ⊕ a−I3 [0] · cQ03

)
+ i

(
aR1 [0] · cQ01 ⊕ aI1[0] · cI01 ⊕ aR2 [0] · cQ02 ⊕ aI2[0] · cI02 ⊕ aR3 [0] · cQ03 ⊕ aI3[0] · cI03

)
(4.14)

For layer 1 we split the real and imaginary parts of the expression:

ĉI1 =
(
aR1 [1] · cI01 ⊕ a−I1 [1] · cQ01 ⊕ aR2 [1] · cI02 ⊕ a−I2 [1] · cQ02 ⊕ aR3 [1] · cI03 ⊕ a−I3 [1]cQ03

⊕ aR1 [0] · cI11 ⊕ a−I1 [0] · cQ11 ⊕ aR2 [0] · cI12 ⊕ a−I2 [0] · cQ12 ⊕ aR3 [0] · cI13 ⊕ a−I3 [0] · cQ13

)
⊕ andxor2

(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02, a

R
3 [0] · cI03, a

−I
3 [0] · cQ03

)
(4.15)



Three users - Complex integer valued channels 63

ĉQ1 =
(
aR1 [1] · cQ01 ⊕ aI1[1] · cI01 ⊕ aR2 [1] · cQ02 ⊕ aI2[1] · cI02 ⊕ aR3 [1] · cQ03 ⊕ aI3[1] · cI03

⊕ aR1 [0] · cQ11 ⊕ aI1[0] · cI11 ⊕ aR2 [0] · cQ12 ⊕ aI2[0] · cI12 ⊕ aR3 [0] · cQ13 ⊕ aI3[0] · cI13

)
⊕ andxor2

(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02, a

R
3 [0] · cQ03, a

I
3[0] · cI03

) (4.16)

For layer 2:

ĉI2 =
(
aR1 [2] · cI01 ⊕ a−I1 [2] · cQ01 ⊕ aR2 [2] · cI02 ⊕ a−I2 [2] · cQ02 ⊕ aR3 [2] · cI03 ⊕ a−I3 [2] · cQ03

⊕ aR1 [1] · cI11 ⊕ a−I1 [1] · cQ11 ⊕ aR2 [1] · cI12 ⊕ a−I2 [1] · cQ12 ⊕ aR3 [1] · cI13 ⊕ a−I3 [1] · cQ13

⊕ aR1 [0] · cI21 ⊕ a−I1 [0] · cQ21 ⊕ aR2 [0] · cI22 ⊕ a−I2 [0] · cQ22 ⊕ aR3 [0] · cI23 ⊕ a−I3 [0] · cQ23

) (4.17)

⊕ andxor2
(
aR1 [0] · cI11, a

−I
1 [0] · cQ11, a

R
2 [0] · cI12, a

−I
2 [0] · cQ12, a

R
3 [0] · cI13, a

−I
3 [0] · cQ13,

aR1 [1] · cI01, a
−I
1 [1] · cQ01, a

R
2 [1] · cI02, a

−I
2 [1] · cQ02, a

R
3 [1] · cI03, a

−I
3 [1]cQ03

)
⊕ andxor2

(
aR1 [0] · cI01, a

−I
1 [0] · cQ01, a

R
2 [0] · cI02, a

−I
2 [0] · cQ02, a

R
3 [0] · cI03, a

−I
3 [0] · cQ03

)

ĉQ2 =
(
aR1 [2] · cQ01 ⊕ aI1[2] · cI01 ⊕ aR2 [2] · cQ02 ⊕ aI2[2] · cI02 ⊕ aR3 [2] · cQ03 ⊕ aI3[2] · cI03

⊕ aR1 [1] · cQ11 ⊕ aI1[1] · cI11 ⊕ aR2 [1] · cQ12 ⊕ aI2[1] · cI12 ⊕ aR3 [1] · cQ13 ⊕ aI3[1] · cI13

⊕ aR1 [0] · cQ21 ⊕ aI1[0] · cI21 ⊕ aR2 [0] · cQ22 ⊕ aI2[0] · cI22 ⊕ aR3 [0] · cQ23 ⊕ aI3[0] · cI23

)
⊕ andxor2

(
aR1 [0] · cQ11, a

I
1[0] · cI11, a

R
2 [0] · cQ12, a

I
2[0] · cI12, a

R
3 [0] · cQ13, a

I
3[0] · cI13,

aR1 [1] · cQ01, a
I
1[1] · cI01, a

R
2 [1] · cQ02, a

I
2[1] · cI02, a

R
3 [1] · cQ03, a

I
3[1] · cI03

)
⊕ andxor2

(
aR1 [0] · cQ01, a

I
1[0] · cI01, a

R
2 [0] · cQ02, a

I
2[0] · cI02, a

R
3 [0] · cQ03, a

I
3[0] · cI03

)
(4.18)

As in the previous subsection these equations are used to evaluate decoding in our simu-

lation and calculate BER performance.
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4.5.1 RM(0,4), RM(2,4) & uncoded layer BER results

The BER performance of the system demonstrates that successful decoding can straight-

forwardly be expanded to the three user case and that our derived expressions and im-

plementation for complex signals and channels in this particular case, are versatile and

can be used for multiple users and nested lattice layers. If we compare Figure 4.4 (two

users) and Figure 4.6 (three users) we see that the performance is extremely similar for

each layer. We can therefore demonstrate that for our example scheme we can successfully

decode with increasing numbers of users and the performance not be degraded. We chose

random complex integer channel values for the two-user and three-user case such that we

can demonstrate that the derived expressions are suitable for varying complex integer val-

ues. As expected the performance of the inner layer, both In-phase and Quadrature, is

greater than that of the middle and outer layers.

Figure 4.6: Three user, three layer system model - h1 = 1+2i, h2 = −3+i, h3 = 2+2i, Inner
layer (16,1,16) repetition code, middle layer (16,11,4) Extended Hamming code, outer layer
uncoded



Three users - Complex integer valued channels 65

4.5.2 RM(1,3), RM(3,5) & uncoded layer BER results

Again, the same RM(1,3), RM(3,5) and uncoded layer codes are evaluated to determine

successful decoding and show the performance of the system using the same channel coe�-

cients as the RM(0,4),RM(2,4) and uncoded layer scenario. As with the RM(0,4), RM(2,4)

scheme Figure 4.7 shows the successful decodability of a three user system model and val-

idation of the derived expressions of the expected output at each code layer.

With comparison to Figure 4.5 the BER results demonstrate the same performance with

the three user case in Figure 4.7 which is expected and shows that with the increase of a

user the performance has not degraded. The main result from this is that the decodability

of the derived expressions and design of the decoders provide decoding structure that is

feasible for C&F.

Figure 4.7: Three user, three layer system model - h1 = 1 + 2i, h2 = −3 + i, h3 = 2 + 2i,
Inner layer (32,6,16) Hadamard code, middle layer (32,26,4) Extended Hamming code,
outer layer uncoded
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4.6 Decoding at the hub/CPU

The compute-and-forward scheme describes base stations as decoding for equations of mes-

sages. For this section we focus on decoding at the hub and in particular uncovering the

individual codewords and datawords at each source. We consider a two-way relay channel

model and detail the transmitted signals to the hub and highlight known information at

each user i.e. the users know their own codewords for all layers. We also determine that

the carry term is known for each layer and therefore can be used to recover the combination

of codewords. We assume that the hub also shares knowledge of both integer coe�cients

to both sources. We demonstrate this using a two-way relay channel as shown in Figure

2.1 (b). The transmission of this two way relay channel is described as full-duplex as both

sources can transmit at the same time, as opposed to Figure 2.1 (a) which is half-duplex.

As mentioned in subsection 2.4.4 this con�guration means that Q maybe singular under

some circumstances and therefore potentially not all messages can be recovered. In the

case where Q is singular it may be possible to choose di�erent coe�cients which allow all

the data to be recovered.

For this work we base our analysis on the two user, three layer system model as in the

previous sections. Discussion is presented for the case of repetition code for the inner layer,

extended Hamming code for the middle layer and leave the outer layer uncoded. Discussion

is also presented for general codes and their nature to decode the individual data messages.

4.6.1 Unit valued channels and real only signals

We begin by using the real unit valued case where the codewords are in the reals RN and

the channel coe�cients are unit valued. We know that the expected decoded output of

the inner layer is the XOR of the inner layer codewords by using (3.33). By employing the

two-way relay channel model we assume that each source knows its own information, for

example S1 knows c{0,1,2}1 and S2 knows c{0,1,2}2. If we apply this knowledge we can decode

the individual codewords from each source on the inner layer. For source 1 we apply:

(c01 ⊕ c02)⊕ c01 (4.19)

which leaves c02.
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For source 2:

(c01 ⊕ c02)⊕ c02 (4.20)

which leaves c01. From the XOR of the codewords we can determine that this also gives

the XOR of the datawords.

w01 ⊕w02 (4.21)

In general we could also determine the datawords by applying the inner layer decoder to

(4.19) and (4.20), however for the repetition code it is straight forward to determine the

data bit from the decoded individual codes c01 and c02. The data messages can then be

encoded using the inner layer encoder to generate the code words and be used as informa-

tion at the next layer.

We now examine this for the middle layer. We know that the expected decoded output

can be determined by (3.33) and also now know additional information of the codewords,

c01 and c02. In order to decode the individual codewords of the middle layer we would like

to remove the AND combination of c01 and c02 which is the carry term expressed using

(3.35). In order to do so we apply the XOR operation of this carry term on the decoded

output.

(c11 ⊕ c12 ⊕ (c01 · c02))⊕ (c01 · c02) (4.22)

This leaves,

c11 ⊕ c12 (4.23)

where we can again use known information of the codewords on the middle layer from both

source 1 and source 2 to decode for the individual codewords. We apply the XOR between

the known codeword of source 1 and (4.23) to decode for the codeword of source 2.

(c11 ⊕ c12)⊕ c11 (4.24)

leaving c12. Equally we can apply the same and decode for the codeword c11 at source 2.

(c11 ⊕ c12)⊕ c12 (4.25)

leaving c11. We again can determine that the XOR of the codewords also gives the XOR

of the datawords and can employ the same process for layer 1 as in layer 0 to decode the
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individual data messages.

w11 ⊕w12 (4.26)

Speci�cally, the use of the (16,11,4) extended Hamming code means that we can decode

the dataword for both sources. The dataword for both source 1 and 2 is given by the �rst

11 bits of c11 and c12. For general codes we can determine that if they are of systematic

form then the data bits can be recovered where the remaining bits are classed as parity

bits. It can also be shown that once the data bits have been recovered the parity bits can

be added to the data in order to regenerate the codeword which can be passed on as known

information used for decoding the next layer.

For the outer layer we apply the use of the known codewords and the known interac-

tion terms using the inner layer codewords c01, c02 and middle layer codewords c11, c12.

The decoded output using (3.33) is:

(c21 ⊕ c22)⊕ ((c11 · c12)⊕ (c11 ⊕ c12) · (c01 · c02)) (4.27)

We apply the XOR operation with interaction term to the decoded output and the result

shows the XOR of c21 and c22.(
(c21 ⊕ c22)⊕

(
(c11 · c12)⊕ (c11 ⊕ c12) · (c01 · c02)

))
⊕
(

(c11 · c12)⊕ (c11 ⊕ c12) · (c01 · c02)
)

= c21 ⊕ c22

(4.28)

As in the previous layers we can apply the known information for each of the sources. For

source 2:

(c21 ⊕ c22)⊕ c22 = c21 (4.29)

For source 1:

(c21 ⊕ c22)⊕ c21 = c22 (4.30)

As the outer layer has been left uncoded the codewords c22 and c21 are also the datawords.

We can simply extend the work of this subsection to incorporate complex signals if we

split the real and imaginary parts and analyse the complex components separately. We

can therefore follow the same process using equation (3.41) but treating the complex com-

ponents separately. For this reason we do not explicitly detail these steps however we will
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extend this work in the next subsection and choose an integer valued channel and real only

signals as another demonstration for recovering the codewords and datawords from each

source.

4.6.2 Integer valued channels and real only signals

We now extend the work in the previous subsection to incorporate integer valued channels

using the equations highlighting the expected decoded output at each layer established in

chapter 3. Again, we assume that each source knows its own information and also has

knowledge of channel information, where this is used in order to decode for the individual

codewords and datawords from each source. We begin with the inner layer. Using equation

(3.50) we can establish the output at layer 0 as:

(a1[0] · c01)⊕ (a2[0] · c02) (4.31)

and as in subsection 4.6.1, to decode for the codeword from source 1 we can apply the

XOR of the known information of source 2:

(a1[0] · c01)⊕ (a2[0] · c02)⊕ (a2[0] · c02) = a1[0] · c01 (4.32)

where this reveals the AND combination of the integer coe�cient value with the codeword

a1[0]c01. We can apply the same concept to decode for the combination of the integer

coe�cient and codeword originally generated at source 2.

(a1[0] · c01)⊕ (a2[0] · c02)⊕ (a1[0] · c01) = a2[0] · c02 (4.33)

Again, we can determine that the XOR of the codewords also gives us the XOR of the

datawords, however now including the integer coe�cients a{1,2}[0]. Depending on the inte-

ger a{1,2} values determines whether the individual codewords or indeed datawords can be

decoded. For example in equations (4.32) and (4.33) respectively, if a1[0] = 0 and a2[0] = 0

then both c01 and c02 cannot be decoded. If both integer coe�cients are 1 then both code-

words c0{1,2} can be decoded. If we either 1 of the integer coe�cients from either source

is 1 then only the codeword corresponding to that integer coe�cient can be decoded. We

see that this will have an e�ect on decoding at outer layers.

Once the data has been decoded (if possible) then we can re-establish the codeword by



Decoding at the hub/CPU 70

putting the dataword back through the original encoder and pass the information to the

next layer.

For the middle layer we again use the equation (3.50) to establish the expected output

from the decoder on that layer. We can establish that the decoded output is:

(a1[0] · c11) ⊕ (a2[0] · c12) ⊕ (a1[1] · c01) ⊕ (a2[1] · c02) ⊕ (a1[0] · c01) · (a2[0] · c02) (4.34)

Following the same process as in subsection 4.6.1 and using known information of the carry

term we can decode the combination of codewords from both sources on layer 1.(
(a1[0] · c11) ⊕ (a2[0] · c12) ⊕ (a1[1] · c01) ⊕ (a2[1] · c02) ⊕ (a1[0] · c01) · (a2[0] · c02)

)
⊕
(

(a1[0] · c01) · (a2[0] · c02)
)

(4.35)

This leaves: (
(a1[0] · c11) ⊕ (a2[0] · c12) ⊕ (a1[1] · c01) ⊕ (a2[1] · c02)

)
(4.36)

Therefore we again apply the XOR of a1[1] ·c01 and a2[1] ·c02. However this is only possible

if c0{1,2} have both been decoded on the previous layer i.e. if a{1,2}[0] are not 0. If decoding

was possible then:

(a1[0] ·c11) ⊕ (a2[0] ·c12) ⊕ (a1[1] ·c01) ⊕ (a2[1] ·c02) ⊕ (a1[1] ·c01) ⊕ (a2[1] ·c02) (4.37)

Which now leaves:

(a1[0] · c11)⊕ (a2[0] · c12) (4.38)

At this point we are left with the combination of codewords on layer 1. To decode a1[0] ·c11

and a2[0]·c12 then we apply the known information of the codewords and integer coe�cients

at each source. At source 1:

(a1[0] · c11)⊕ (a2[0] · c12)⊕ (a1[0] · c11) = a2[0] · c12 (4.39)

At source 2:

(a1[0] · c11)⊕ (a2[0] · c12)⊕ (a2[0] · c12) = a1[0] · c11 (4.40)
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As shown for layer 0 decoding for the individual codewords can only be performed if either

a{1,2}[0] is equal to 1. If decoding for either codeword is possible then we can decode for

the data. As in subsection 4.6.1 the data can be recovered from the code and for general

codes if in systematic form. Knowledge of the parity check bits can be removed from the

code to reveal the data. This also means that we can add the parity bits to generate the

codeword for use at layer 2.

For layer 2, the outer layer, we demonstrate the expected decoded output using (3.50):

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[1] · c11)⊕ (a2[1] · c12)⊕ (a1[2] · c01)⊕ (a2[2] · c02)

⊕ andxor2 ((a1[0] · c11), (a2[0] · c12), (a1[1] · c01), (a2[1] · c02)⊕
(

(a1[0] · c01) · (a2[0] · c02)
)

(4.41)

By applying the XOR of the carry term (second line of eq. 4.41) with equation (4.41) we

can uncover the XOR combination of codewords from all three layers with corresponding

signi�cant bit.

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[1] · c11)⊕ (a2[1] · c12)⊕ (a1[2] · c01)⊕ (a2[2] · c02)

⊕ andxor2
(

(a1[0] · c11), (a2[0] · c12), (a1[1] · c01), (a2[1] · c02)
)
⊕
(

(a1[0] · c01) · (a2[0] · c02)
)

⊕ andxor2
(

(a1[0] · c11), (a2[0] · c12), (a1[1] · c01), (a2[1] · c02)
)
⊕
(

(a1[0] · c01) · (a2[0] · c02)
)

(4.42)

This leaves:

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[1] · c11)⊕ (a2[1] · c12)⊕ (a1[2] · c01)⊕ (a2[2] · c02) (4.43)

In certain circumstances we may not be able to continue to decode any further than this.

For example if we were not able to decode for layer 0 individual codewords and subsequently

layer 1 codewords due to integer coe�cient bit 0 of either a{1,2}[0] being of value 0 then

layer 2 individual codewords would not be able to be decoded. We see this propagation

throughout the layers. If we are able to decode then we can now use the known information

of the codewords from layer 0 and layer 1 and signi�cant bits of the integer coe�cients to
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decode for the XOR combination of the codewords on layer 2.

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[1] · c11)⊕ (a2[1] · c12)⊕ (a1[2] · c01)⊕ (a2[2] · c02)

⊕
(

(a1[1] · c11)⊕ (a2[1] · c12)⊕ (a1[2] · c01)⊕ (a2[2] · c02)
)

= (a1[0] · c21)⊕ (a2[0] · c22)

(4.44)

To decode for a2[0] · c22 and a1[0] · c12 we apply the known information at each source. At

source 1:

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[0] · c21) = a2[0] · c22 (4.45)

At source 2:

(a1[0] · c21)⊕ (a2[0] · c22)⊕ (a1[0] · c22) = a1[0] · c21 (4.46)

Again, if a1[0] = 0 then we are unable to decode for c21 and likewise if a2[0] = 0 then

we cannot decode for c22. We can again determine that the XOR of the codewords are

the XOR of the datawords. For layer 2 we assume that it is uncoded and therefore the

codeword is also the dataword.

The work in this subsection can be straight forwardly extended to integer channels and

complex signals by splitting the In-phase and Quadrature components therefore we omit

this explanation and move to complex integer valued channels and complex signals.

4.6.3 Complex integer valued channels and complex signals

We now extend the work to incorporate complex integer valued channels and complex

signals, employing the same system model of three layers and two users. Known information

of the individual codes for each layer and integer coe�cients for each layer is again assumed

to be available. By using equation (3.63) we can determine the expected output at the

decoder on layer 0.(
(aR1 [0] · cI01)⊕ (a−I1 [0] · cQ01)⊕ (aR2 [0] · cI02)⊕ (a−I2 [0] · cQ02)

)
+ i

(
(aR1 [0] · cQ01)⊕ (aI1[0] · cI01)⊕ (aR2 [0] · cQ02)⊕ (aI2[0] · cI02)

) (4.47)

We split the real and imaginary components and analyse these separately. For the In-phase

component we can apply the XOR of the real parts of layer 0 using known information
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from each source. At source 2 we use source 2 information and decode:(
(aR1 [0] · cI01) ⊕ (a−I1 [0] · cQ01) ⊕ (aR2 [0] · cI02) ⊕ (a−I2 [0] · cQ02)

)
⊕
(

(aR2 [0] · cI02) ⊕ (a−I2 [0] · cQ02)
)

= (aR1 [0] · cI01) ⊕ (a−I1 [0] · cQ01)

(4.48)

At source 1 we use source 1 information and decode:(
(aR1 [0] · cI01) ⊕ (a−I1 [0] · cQ01) ⊕ (aR2 [0] · cI02) ⊕ (a−I2 [0] · cQ02)

)
⊕
(

(aR1 [0] · cI01) ⊕ (a−I1 [0] · cQ01)
)

= (aR2 [0] · cI02) ⊕ (a−I2 [0] · cQ02)

(4.49)

For the Quadrature components:(
(aR1 [0] · cQ01) ⊕ (aI1[0] · cI01) ⊕ (aR2 [0] · cQ02) ⊕ (aI2[0] · cI02)

)
⊕
(

(aR2 [0] · cQ02) ⊕ (aI2[0] · cI02)
)

= (aR1 [0] · cQ01)⊕ (aI1[0] · cI01)

(4.50)

(
(aR1 [0] · cQ01) ⊕ (aI1[0] · cI01) ⊕ (aR2 [0] · cQ02) ⊕ (aI2[0] · cI02)

)
⊕
(

(aR1 [0] · cQ01) ⊕ (aI1[0] · cI01)
)

= (aR2 [0] · cQ02) ⊕ (aI2[0] · cI02)

(4.51)

Each source knows information of the integer coe�cients where this can be used to decode

for the individual complex components of the codewords in equations (4.48 - 4.51). For

example at source 1, using the resulting expression (4.51), if we know that aR2 [0] = 0 and

aI2[0] = 1 then we can determine cI02. If we apply aI2[0] = 0 and aR2 [0] = 1 then we can

determine cQ02. We also see that there is common information of aR
2 [0] in both (4.49) and

(4.51) and common information of aR
1 [0] in (4.48) and (4.50) which if aR

{1,2}[0] = 0 and

components a−I2 [0] = 1 and aI
1[0] = 1 then we can successfully decode for c

{I,Q}
0{1,2}. However,

at each source, if more than one component of a
{−I,I,R}
{1,2} [0] is 0 then both components of

the codewords cannot be decoded, unless aR
{1,2}[0] = 1 because of common information.

As in the real case the combination of codewords also determines the combination of
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datawords, therefore the same process can be applied to:

(aR1 [0] ·wI
01) ⊕ (a−I1 [0] ·wQ

01) (4.52)

(aR2 [0] ·wI
02) ⊕ (a−I2 [0] ·wQ

02) (4.53)

(aR1 [0] ·wQ
01) ⊕ (aI1[0] ·wI

01) (4.54)

(aR2 [0] ·wQ
02) ⊕ (aI2[0] ·wI

02) (4.55)

With the information regarding the data recovered it is straight forward to subject this to

the original encoder and integer coe�cient to generate the codewords again.

For layer 1 the expected decoded output using (3.63) for the In-phase component is:(
(aR1 [1] · cI01)⊕ (a−I1 [1] · cQ01)⊕ (aR2 [1] · cI02)⊕ (a−I2 [1] · cQ02)

⊕ (aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
) (4.56)

if we apply the XOR of the carry term:(
(aR1 [1] · cI01)⊕ (a−I1 [1] · cQ01)⊕ (aR2 [1] · cI02)⊕ (a−I2 [1] · cQ02)

⊕ (aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
)

(4.57)

This leaves: (
(aR1 [1] · cI01)⊕ (a−I1 [1] · cQ01)⊕ (aR2 [1] · cI02)⊕ (a−I2 [1] · cQ02)

⊕ (aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)
) (4.58)

where we can apply the XOR of codewords from layer 0 and known information of the

integer coe�cients to decode for the codes from source 1 and 2. This is only possible if
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both complex components of c01 and c02 have been decoded at the previous layer.(
(aR1 [1] · cI01)⊕ (a−I1 [1] · cQ01)⊕ (aR2 [1] · cI02)⊕ (a−I2 [1] · cQ02)

⊕ (aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)
)

⊕
(

(aR1 [1] · cI01)⊕ (a−I1 [1] · cQ01)⊕ (aR2 [1] · cI02)⊕ (a−I2 [1] · cQ02)
) (4.59)

leaving: (
(aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)

)
(4.60)

where the codewords can be recovered using the sources known information of the code-

words. At source 2:(
(aR1 [0] · cI11) ⊕ (a−I1 [0] · cQ11) ⊕ (aR2 [0] · cI12) ⊕ (a−I2 [0] · cQ12)

)
⊕
(

(aR2 [0] · cI12) ⊕ (a−I2 [0] · cQ12)
)

= (aR1 [0] · cI11) ⊕ (a−I1 [0] · cQ11)
(4.61)

At source 1: (
(aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)⊕ (aR2 [0] · cI12)⊕ (a−I2 [0] · cQ12)

)
⊕
(

(aR1 [0] · cI11)⊕ (a−I1 [0] · cQ11)
)

= (aR2 [0] · cI12) ⊕ (a−I2 [0] · cQ12)
(4.62)

For the Quadrature component the decoded output is:(
(aR1 [1] · cQ01)⊕ (aI1[1] · cI01)⊕ (aR2 [1] · cQ02)⊕ (aI2[1] · cI02)

⊕ (aR1 [0] · cQ11)⊕ (aI1[0] · cI11)⊕ (aR2 [0] · cQ12)⊕ (aI2[0] · cI12)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
) (4.63)

We proceed with similar steps to that of the In-phase component and apply the XOR of

the carry term.(
(aR1 [1] · cQ01)⊕ (aI1[1] · cI01)⊕ (aR2 [1] · cQ02)⊕ (aI2[1] · cI02)

⊕ (aR1 [0] · cQ11)⊕ (aI1[0] · cI11)⊕ (aR2 [0] · cQ12)⊕ (aI2[0] · cI12)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
)

(4.64)
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leaving: (
(aR1 [1] · cQ01)⊕ (aI1[1] · cI01)⊕ (aR2 [1] · cQ02)⊕ (aI2[1] · cI02)

⊕ (aR1 [0] · cQ11)⊕ (aI1[0] · cI11)⊕ (aR2 [0] · cQ12)⊕ (aI2[0] · cI12)
) (4.65)

where again we can apply the XOR of the known information from layer 0 to decode for

the Quadrature components of the codewords on layer 1. Again, this is only possible if

both complex components from both sources on layer 0 have been successfully decoded.(
(aR1 [1] · cQ01)⊕ (aI1[1] · cI01)⊕ (aR2 [1] · cQ02)⊕ (aI2[1] · cI02)

⊕ (aR1 [0] · cQ11)⊕ (aI1[0] · cI11)⊕ (aR2 [0] · cQ12)⊕ (aI2[0] · cI12)
)

⊕
(

(aR1 [1] · cQ01)⊕ (aI1[1] · cI01)⊕ (aR2 [1] · cQ02)⊕ (aI2[1] · cI02)
) (4.66)

leaving: (
(aR1 [0] · cQ11)⊕ (aI1[0] · cI11)⊕ (aR2 [0] · cQ12)⊕ (aI2[0] · cI12)

)
(4.67)

Again, we can apply the XOR of the known information from each source to decode the

codewords and their complex components.

At source 2: (
(aR1 [0] · cQ11) ⊕ (aI1[0] · cI11) ⊕ (aR2 [0] · cQ12) ⊕ (aI2[0] · cI12)

)
⊕
(

(aR2 [0] · cQ12) ⊕ (aI2[0] · cI12)
)

= (aR1 [0] · cQ11) ⊕ (aI1[0] · cI11)
(4.68)

At source 1: (
(aR1 [0] · cQ11) ⊕ (aI1[0] · cI11) ⊕ (aR2 [0] · cQ12) ⊕ (aI2[0] · cI12)

)
⊕
(

(aR1 [0] · cQ11) ⊕ (aI1[0] · cI11)
)

= (aR2 [0] · cQ12) ⊕ (aI2[0] · cI12)
(4.69)

The individual components can be decoded using known information at each source. The

decoding process can therefore also be carried out on the combination of data messages

to decode the individual components of the data. This can then be encoded again to be

passed to layer 2. As shown at layer 0 we can only decode for the individual codewords

and their complex components under certain conditions. The same applies to this layer

using (4.61), (4.62), (4.68) and (4.69).
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For layer 2 we begin with the expected decoded output using (3.63) for the In-phase

component: (
(aR1 [2] · cI01)⊕ (a−I1 [2] · cQ01)⊕ (aR2 [2] · cI02)⊕ (a−I2 [2] · cQ02)

⊕ (aR1 [1] · cI11)⊕ (a−I1 [1] · cQ11)⊕ (aR2 [1] · cI12)⊕ (a−I2 [1] · cQ12)

⊕ (aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)⊕ (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22)
) (4.70)

⊕ andxor2
(

(aR1 [0] · cI11), (a−I1 [0] · cQ11), (aR2 [0] · cI12), (a−I2 [0] · cQ12),

(aR1 [1] · cI01), (a−I1 [1] · cQ01), (aR2 [1] · cI02), (a−I2 [1] · cQ02)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
)

We can apply the XOR of the carry terms to decode the XOR of the combination of

codewords on all three layers.(
(aR1 [2] · cI01)⊕ (a−I1 [2] · cQ01)⊕ (aR2 [2] · cI02)⊕ (a−I2 [2] · cQ02)

⊕ (aR1 [1] · cI11)⊕ (a−I1 [1] · cQ11)⊕ (aR2 [1] · cI12)⊕ (a−I2 [1] · cQ12)

⊕ (aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)⊕ (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22)
)

⊕ andxor2
(

(aR1 [0] · cI11), (a−I1 [0] · cQ11), (aR2 [0] · cI12), (a−I2 [0] · cQ12),

(aR1 [1] · cI01), (a−I1 [1] · cQ01), (aR2 [1] · cI02), (a−I2 [1] · cQ02)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
)

⊕ andxor2
(

(aR1 [0] · cI11), (a−I1 [0] · cQ11), (aR2 [0] · cI12), (a−I2 [0] · cQ12),

(aR1 [1] · cI01), (a−I1 [1] · cQ01), (aR2 [1] · cI02), (a−I2 [1] · cQ02)
)

⊕ andxor2
(

(aR1 [0] · cI01), (a−I1 [0] · cQ01), (aR2 [0] · cI02), (a−I2 [0] · cQ02)
)

(4.71)

which leaves: (
(aR1 [2] · cI01)⊕ (a−I1 [2] · cQ01)⊕ (aR2 [2] · cI02)⊕ (a−I2 [2] · cQ02)

⊕ (aR1 [1] · cI11)⊕ (a−I1 [1] · cQ11)⊕ (aR2 [1] · cI12)⊕ (a−I2 [1] · cQ12)

⊕ (aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)⊕ (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22)
) (4.72)
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where successfully decoded and therefore known information from layer 0 and layer 1 has

been passed on and we can perform the XOR operation of those with the above result.

If the previous layers have not been successfully decoded then the codewords of layer 2

cannot be decoded.(
(aR1 [2] · cI01)⊕ (a−I1 [2] · cQ01)⊕ (aR2 [2] · cI02)⊕ (a−I2 [2] · cQ02)

⊕ (aR1 [1] · cI11)⊕ (a−I1 [1] · cQ11)⊕ (aR2 [1] · cI12)⊕ (a−I2 [1] · cQ12)

⊕ (aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)⊕ (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22)
)

⊕
(

(aR1 [2] · cI01)⊕ (a−I1 [2] · cQ01)⊕ (aR2 [2] · cI02)⊕ (a−I2 [2] · cQ02)

⊕ (aR1 [1] · cI11)⊕ (a−I1 [1] · cQ11)⊕ (aR2 [1] · cI12)⊕ (a−I2 [1] · cQ12)
)

(4.73)

This leaves:

(aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)⊕ (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22) (4.74)

where the combination of the codewords can be decoded by the following.

At source 2:

(aR1 [0] · cI21) ⊕ (a−I1 [0] · cQ21) ⊕ (aR2 [0] · cI22) ⊕ (a−I2 [0] · cQ22)

⊕
(

(aR2 [0] · cI22) ⊕ (a−I2 [0] · cQ22)
)

= (aR1 [0] · cI21)⊕ (a−I1 [0] · cQ21)
(4.75)

At source 1:

(aR1 [0] · cI21) ⊕ (a−I1 [0] · cQ21) ⊕ (aR2 [0] · cI22) ⊕ (a−I2 [0] · cQ22)

⊕
(

(aR1 [0] · cI21) ⊕ (a−I1 [0] · cQ21)
)

= (aR2 [0] · cI22)⊕ (a−I2 [0] · cQ22)
(4.76)

Again we can determine that the XOR of the codewords is also the XOR of the datawords,

however in this case the outer layer is uncoded and therefore the codewords are also the

datawords. We now complete the same process for the Quadrature component. Starting
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with the expected decoded output on this layer.(
(aR1 [2] · cQ01)⊕ (aI1[2] · cI01)⊕ (aR2 [2] · cQ02)⊕ (aI2[2] · cI02)

⊕ (aR1 [1] · cQ11)⊕ (aI1[1] · cI11)⊕ (aR2 [1] · cQ12)⊕ (aI2[1] · cI12)

⊕ (aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
)

⊕ andxor2
(

(aR1 [0] · cQ11), (aI1[0] · cI11), (aR2 [0] · cQ12), (aI2[0] · cI12),

(aR1 [1] · cQ01), (aI1[1] · cI01), (aR2 [1] · cQ02), (aI2[1] · cI02)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
)

(4.77)

We can apply the XOR of the carry term:(
(aR1 [2] · cQ01)⊕ (aI1[2] · cI01)⊕ (aR2 [2] · cQ02)⊕ (aI2[2] · cI02)

⊕ (aR1 [1] · cQ11)⊕ (aI1[1] · cI11)⊕ (aR2 [1] · cQ12)⊕ (aI2[1] · cI12)

⊕ (aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
)

⊕ andxor2
(

(aR1 [0] · cQ11), (aI1[0] · cI11), (aR2 [0] · cQ12), (aI2[0] · cI12),

(aR1 [1] · cQ01), (aI1[1] · cI01), (aR2 [1] · cQ02), (aI2[1] · cI02)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
)

⊕ andxor2
(

(aR1 [0] · cQ11), (aI1[0] · cI11), (aR2 [0] · cQ12), (aI2[0] · cI12),

(aR1 [1] · cQ01), (aI1[1] · cI01), (aR2 [1] · cQ02), (aI2[1] · cI02)
)

⊕ andxor2
(

(aR1 [0] · cQ01), (aI1[0] · cI01), (aR2 [0] · cQ02), (aI2[0] · cI02)
)

(4.78)

where this leaves the XOR of the codewords on each layer, given as:(
(aR1 [2] · cQ01)⊕ (aI1[2] · cI01)⊕ (aR2 [2] · cQ02)⊕ (aI2[2] · cI02)

⊕ (aR1 [1] · cQ11)⊕ (aI1[1] · cI11)⊕ (aR2 [1] · cQ12)⊕ (aI2[1] · cI12)

⊕ (aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
) (4.79)
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We can only now apply the XOR of the known information from the lower layers (layer 0

and layer 1) to decode for the XOR combination of codewords on layer 2:(
(aR1 [2] · cQ01)⊕ (aI1[2] · cI01)⊕ (aR2 [2] · cQ02)⊕ (aI2[2] · cI02)

⊕ (aR1 [1] · cQ11)⊕ (aI1[1] · cI11)⊕ (aR2 [1] · cQ12)⊕ (aI2[1] · cI12)

⊕ (aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
)

⊕
(

(aR1 [2] · cQ01)⊕ (aI1[2] · cI01)⊕ (aR2 [2] · cQ02)⊕ (aI2[2] · cI02)

⊕ (aR1 [1] · cQ11)⊕ (aI1[1] · cI11)⊕ (aR2 [1] · cQ12)⊕)aI2[1] · cI12)
)

(4.80)

This can only be carried out if the previous individual complex components of the code-

words have been successfully decoded. This leaves:(
(aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)

)
(4.81)

Finally, the complex components of the codewords from both sources can be decoded by

applying the XOR of the known information from one source to recover the other.

At source 2: (
(aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)

)
⊕
(

(aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
)

= (aR1 [0] · cQ21)⊕ (aI1[0] · cI21)
(4.82)

At source 1: (
(aR1 [0] · cQ21)⊕ (aI1[0] · cI21)⊕ (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)

)
⊕
(

(aR1 [0] · cQ21)⊕ (aI1[0] · cI21)
)

= (aR2 [0] · cQ22)⊕ (aI2[0] · cI22)
(4.83)

With the outer layer being left uncoded the complex components of the outer layer are

also the datawords of the complex components. For the general case once the codewords

have been decoded for each source the decoder for that layer can be used to recover the

datawords. Again equations (4.75), (4.76), (4.82) and (4.83) are in the same format as

shown for layer 0 where we described the conditions at which successful decoding of the

individual components of the codewords can take place.
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4.7 Summary

Within this chapter we demonstrate successful decoding for two code models using Reed-

Muller codes. Detail regarding the encoder(s) and decoder(s) of each scenario and the codes

implemented on each code layer are detailed in Section 4.1 and 4.2. Successful decoding is

demonstrated in the form of BER performance results, where this demonstrates versatility

of the derived expressions as we expand from the two user case in Section 4.4 to three user

case in Section 4.5. In Section 4.6 demonstration of decoding at the hub in the form of

a two-way relay channel to highlight decoding the individual codewords and datawords is

explored. We see that unsuccessful decoding on the inner layer (layer 0) has a propagation

e�ect to the outer layers when the integer coe�cients are not unit valued. The result

of this becomes even more signi�cant and increasingly complex when integer coe�cients

are complex and complex signals are employed. In this particular case clearly there are

limitations to the practicality in this topology. The two-way relay channel model is explored

as an introductory topology, further topologies that allow base station cooperation could

be investigated to improve results.



Chapter 5

Lattice Decoding of C&F using

Construction D and Low complexity

Coe�cient Selection Algorithms

5.1 Introduction

C&F has been reviewed as a promising technique for handling increasing capacity and in-

terference [2]. However, we have stated that impracticality can arise from 1) the proposed

implementation of construction A lattice and 2) coe�cient selection algorithms. Whilst

we have taken a construction D approach to point 1 in chapter 3 it is still necessary to

investigate point 2. We extend our system model with two code scenarios to non-integer

static channels and Rayleigh fading channels. We address point 2 by employing a coe�-

cient selection algorithm from recent work of [5] where throughput results are presented.

We draw comparison on each of these results for both code scenarios and also draw atten-

tion to the work of [1] and detail the di�erences between code choices between this work

and theirs. We also show that we can decode using varying decoders within the multilayer

decoder and have employed the derived expressions to account for the interaction terms at

each layer.

Coe�cient selection is a technique employed to evaluate the most appropriate integer

coe�cient vector in order to estimate the equation of messages ûb. This means that the

complexity becomes dependent on encoding and decoding techniques. There are two main

approaches to coe�cient selection, local selection and global selection:
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� local selection: Each base station selects the integer coe�cient vector to maximise

its local computation rate Rb(hb, ab).

� global selection: Each base station chooses the integer coe�cient vector such that

they form a matrix whose rank is equal to the number of users. This is in order to

recover the data of all the individual users.

For global selection the most common method is to transmit multiple linear equations to

the hub. The full rank matrix is then chosen to optimise globally and then passed to the

base stations for decoding. This relies on the selected matrix being of full rank in order to

successfully decode for all users. Other approaches of this technique require known infor-

mation in order to reduce the probability of rank de�ciency. The work of [20] proposes two

global coe�cient selection algorithms, 'Blind C&F' and 'Partially Coordinated C&F'. This

work focuses on non-cooperation of base station nodes and partial-cooperation respectively

where theQ matrix is not singular in contrast to research [21] [22] whose algorithms require

all base stations to have full cooperation. The original C&F paper [2] introduces a local

selection approach where each base station obtains the optimal solution by performing an

exhaustive search. Other research such as [23] has introduced the topic as a shortest vector

problem where many examples of such algorithms are lattice reduction based such as [24].

The work of [5] states that algorithms such as this have disadvantages as with increasing

number of users performance degrades. For this reason we look at recent research such

as [5] which demonstrate lower complexity. For this work we focus on a single base station

and therefore investigate local selection.

The latest research for low complexity coe�cient selection based on local selection is pro-

posed in [5]. The work of [5] explores low complexity algorithms to aid decoding and

introduces two low complexity algorithms for both the real and complex scenarios. The

author of [5] shows that the algorithms outperform LLL and achieve the same computation

rate as exhaustive search. The work of [5] explores the complexities of these algorithms

and shows that the complexity is signi�cantly reduced when compared to exhaustive search

and lower in complexity to LLL except at very high SNR. The complex exhaustive-II is

shown to be an optimal algorithm as such selecting the best integer coe�cient vector for

both Z[i] and Z[ω] lattices. For this work we only focus on the integers Z[i].

In this chapter we focus on the Complex Exhaustive-II algorithm for Z[i] lattices only.

We consider the complex scenario only to demonstrate the system for static and Rayleigh
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fading channels. The derived expressions from the previous chapter are employed in order

to decode successfully and therefore show decodability. The main contributions of this

chapter are as follows:

� Introduce complex Exhaustive-II from [5] into the C&F system model applying the

selected integer coe�cient vector into the multi layer structure.

� We implement RM(0,4) and RM(2,4) codes of length 16 in our C&F system model,

the inner layer RM(0,4) code and RM(2,4) code for the middle layer, outer layer

remains uncoded.

� We also implement Reed-Müller codes of length 32 in our C&F system model. We

employ RM(1,5) code for the inner layer, RM(3,5) code for the middle layer and leave

the outer layer uncoded.

� As in chapter 4 we adapt and employ soft decision decoder [18] for decoding the mid-

dle layer RM(3,5) code and implement our own decoder using Fast Walsh Hadamard

Transform (FWHT) for the inner layer RM(1,5) code.

� We evaluate the system by presenting throughput results for static channels and

fading channels, giving further validation of our derived expressions for decoding

each code layer. We draw comparison of the throughput performance of the two

schemes and also discuss the di�erences between codes in [1] with Figure 1.a and 1.b

in the same work.

As with the previous chapters we choose the lattices to be de�ned over the integers Z[i]

and therefore adapt Complex-Exhaustive-II algorithm of [5] to this use only. Where this

is shown in algorithm 1. We begin by brie�y describing the operation of Exhaustive-II for

the complex scenario only, as this is the basis as to which we demonstrate our results.

5.2 Complex-Exhaustive-II algorithm and adaptation

The aim of the complex exhaustive-II algorithm is to select the optimum value of α that

moves the channel coe�cients as close as possible to the nearest integers, hence selecting

the optimum integer coe�cient vector. The search area over α is determined by the Voronoi

regions of the lattice(s) Vj, given by each user, and the upper bound α <
√
SNR as de�ned

in [5]. The Voronoi regions of this area are de�ned by the vertices of the lattices and their
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crossing points. The author of [5] establishes two di�erent subsets for calculating the

vertices and crossing points of the edges, given as S − I and S − II. S − I assumes that

when calculating the crossing points in Vj,aj , which we denote as cp1 and cp2, the edges

belong to the same set Ψj. This is outlined in lines 5-11 in Algorithm 1. S − II outlines

that the calculation is between an intersection of two sets of parallel lines. This is the

case where cp1 and cp2 belong to di�erent Ψj. Both subsets S − I and S − II are adopted

in this algorithm in order to evaluate the complete Va for all a. Once the vertices and

crossing points are calculated the edges of Va are established. The work of [5] employs a

'full-direction' quantiser such that all regions are visited by considering all possible α. It

is not satisfactory to only quantise in a certain direction(s) for all vertices as the number

of vertices of each region is unknown, therefore taking this approach could miss potential

Va. In order to prevent this, the 'full-direction' quantiser calculates in all directions for

all vertices. In this particular scenario we employ two users for Z[i] lattices. For each

user there are multiple numbers of vertices, as we consider the crossing points of the edges

as well as the vertices of the Voronoi region of each lattice, all of which the quantiser

would return 4 equally likely a. The optimum a is then evaluated by searching over α and

calculating the computation rate, given hj, a and snr where snr = P/σ2 and is de�ned as

signal to noise ratio. αmmse is given by:

αmmse(aj) =
snrhHj aj

1 + snr‖hj‖2
(5.1)

and computation rate is shown in Algorithm 1 - Phase 2, line 5.
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Algorithm 1 Algorithm 1 - Complex Exhaustive-II

Input: channel vector h = [h1, h2, . . . , hJ ] ∈ C
j, SNR, integer domain A[Z[i] with Basis

Z[i]
Output optimal coe�cient vector aopt

Phase 1: Obtain the representatives of α, stored in set S. The initial set S = ∅
1: According to proposition 1 in [5], calculate the range of α : Φ̃
2: for j = 1 : J do
3: Generate Λj according to Λj , {λ : λ =

aj
hj
∈ A}. Find {λ : λ ∈ Λj ∩ Φ̃}, and store

these λ into Ωj = {α∗j,1, α∗j,2, . . . , α∗j,vj}
4: Sj = ∅,Ψj = ∅
5: for v = 1 : Vj do
6: al = α∗j,vjhj
7: Find the vertices of the corresponding Vj,aj , calculated by α∗j,v + 1

hj

z0
2
, where

z0 = ±1± i

8: Store these vertices in set Sj
9: Calculate the linear equation of the edge of Vj,aj , add them into set Ψj

10: end for
11: S = S ∪ Sj̄
12: end for
13: for j̄ = 1 : J − 1 do
14: for ĵ = j̄ + 1 : J do
15: Find all combinations of {cp1, cp2}, with cp1 ∈ Ψn̄ and cp2 ∈ Ψĵ. Calculate

the crossing point of cp1 and cp2: the crossing points which are not in Φ̃ should be
discarded. Store the remaining set in Sj̄,ĵ

16: Sj̄ = Sj̄ ∪ Sj̄,ĵ
17: end for
18: S = S ∪ Sj̄
19: end for

Phase 2: Obtain the candidate set I and select aopt

1: for all representative α ∈ S do
2: a = Q∗

A
(αh), discard the repeated a, take the remaining a as the candidate set I

3: end for
4: for all a ∈ I do
5: Calculate R(h, a) = maxlog+

(
P

α2
jσ

2+P‖αjhj−aj‖2

)
6: end for
7: Return aopt = argmaxa∈IR(h, a)
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Algorithm 1 has been adapted from [5] for our particular scenario, using Z[i], and as an

Exhaustive search algorithm it completes a search over a wide range of values, limited only

by an upper bound described in [5] as α <
√
SNR, to determine the best integer coe�cient

vector. In order to calculate the computation rate and select the maximum rate for the

best a vector we detail the calculation for average power P . As we implement unipolar

codes and employ CCF using equation (2.8) for three layers, the code values are in the

positive reals therefore the Average power is evaluated as:

P = 17.5 =
02 + 12 + 22 + 32 + 42 + 52 + 62 + 72

8
(5.2)

Usually codes wouldn't reach a real value of 7 as bipolar codes would be cancel each other

out however due to our use of unipolar codes our work could be easily adapted by applying

an o�set to the codes.

5.3 Throughput performance results

Within this section the throughput performance of each code scenario is evaluated. The

throughput is calculated based on the frame error rate as the frame error rate alone is

not suitable for codes that have varying e�ective rates. The throughput is de�ned as the

complement of the frame error rate (FER) multiplied by the codes message rate Rmes.

Rmes = (2/N) ∗
∑
kl and Throughput(TP ) = Rmes(1− FER).

5.3.1 Static channel results

Throughput results of RM(0,4), RM(2,4) and uncoded codes using static chan-

nels We begin this subsection with results for the static channels h1 = 1.17 + 2.15i and

h2 = 1.25− 1.63i using repetition code on the inner layer, extended Hamming code on the

middle layer and the outer layer remaining uncoded. As in previous chapters we use codes

of length N = 16 complex symbols per In-phase and Quadrature component.

The performance of the system employing this choice of codes is shown in Figure 5.1.

Following the blue triangles in Figure 5.1 we see that at 16dB the throughput begins to

increase quickly compared with the lower SNR, and by 23dB the maximum throughput has

been reached. It can also be observed that there is an initial small increase in throughput

from 5dB to 14dB where the codes are not able to overcome the noise and interference.
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The throughput curve shows that for our system model using multilayer decoding and the

derived expressions at each layer successful decoding can be achieved. In order to draw

Figure 5.1: Throughput performance of a two user, three layer system model using RM(0,4)
RM(2,4) codes, results from [1] for a two user, two layer system model

comparison to the work of [1], results shown in green triangles in Figure 5.1, an explana-

tion is given on their work and the code model implemented. The work of [1] implements

multilayer decoding using lifted construction D. The author demonstrates the throughput

of the chosen codes for static channels where they employ the same channel coe�cients

h1 = 1.17 + 2.15i and h2 = 1.25− 1.63i. Their work aims to demonstrate the performance

di�erence between choices of codes at each layer. They employ a one, two and three layer

scheme and consistently employ a 1
2
rate convolutional code on the inner layer. The com-

parison between the three scenarios shows how the choice of codes can impact performance.

For the �rst scenario they employ:

� A single code - 1
2
rate convolutional code of length 200 complex symbols per In-phase

and Quadrature.

� A two layer scheme using the same 1
2
rate convolutional code from the �rst scenario

and the second layer is uncoded. This leaves the e�ective rate of 2.94b/cdim. The
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codes are also 200 complex symbols.

� A three layer scheme that again uses the convolutional code of the �rst layer, the

remaining layers, 1 and 2, are uncoded and therefore the e�ective rate of this scheme

is 4.94b/cdim. The codes are again 200 complex symbols.

We compare our throughput results with the two layer scheme as they have similar e�ective

rates to this scheme of 3.5b/cdim. The work of [1] shows that the maximum rate is achieved

at a much faster rate even though it is lower than our proposed scheme, and at lower SNR.

This di�erence is a�ected by the implementation of two layers oppose to three and the use

of much longer codes.

Throughput results for RM(1,5), RM(3,5) and uncoded codes using static chan-

nels

The codes employed are the (32,6,16) Hadamard code for the inner layer, (32,26,4) ex-

tended Hamming code on the middle layer and the outer layer remaining uncoded. To

calculate the throughput we now evaluate this using the new code length N = 32. By ob-

serving Figure 5.2 we can see that the introduction of Reed-Muller RM(1,3) and RM(3,5)

codes into our system model can demonstrate performance improvement oppose to the

implementation of the repetition code and Extended Hamming code shown in Figure 5.1.

The maximum throughput reached for this system is 4b/cdim. Figure 5.2 has a sharper

increase in throughput rate at 16dB compared with Figure 5.1, which has a slower incline

to maximum throughput. The maximum throughput when implementing this choice of

codes is 4 which from Figure 5.2 this is shown to be achieved at 23dB.

We now observe and compare the performance of the three layer scheme of [1] as that

is the most relevant to our work. As stated this scheme employs a 1
2
rate convolutional

code on the inner layer and leaves the two remaining layers uncoded. This means that

from the middle to the outer layer the construction D constraint is not ful�lled and from

the inner to the middle layer it is where the minimum Hamming distance of 4 is always

achieved in this case. E�ectively this implementation is just CCF without adhering to the

rules to generate a Construction D lattice and therefore not Construction D.

The result of [1], shown as the dark blue triangles in Figure 5.2, shows that the maxi-

mum throughput using this scheme is 5b/cdim which is higher than what is achieved in
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Figure 5.1 and Figure 5.2. This is due to the increased length of the codewords employed,

where we employ length 16 and 32 complex symbols respectively, compared to 200 com-

plex symbols and the increased di�erence in Hamming distance that can be achieved when

employing uncoded codes for both outer layers. We also see that the dark blue triangle line

crosses our results shown in lighter blue triangles at approximately 25dB where our sys-

tem model had achieved maximum throughput at approximately 23dB. On the one hand

the Construction D constraints could improve BER performance however because [1] have

employed much longer codes their performance is better.

Figure 5.2: Throughput performance of a two user, three layer system model using
RM(1,5), RM(3,5) codes, results from [1] using a two user, three layer system model

5.3.2 Fading channel results

For the fading channels we employ the same system model with two users and three layers.

We show the results for both scenarios as we have done in subsection 5.3.1.
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0 and 1st order Reed-Muller codes

Again, we employ the (16,1,16) repetition code for the inner layer and (16,11,4) extended

Hamming code for the middle layer, leaving the outer layer uncoded. By employing the

coe�cient selection algorithm of [5] we can predict from Figure 5.3 that the system can

approach the maximum throughput of 3.5 bits per complex dimension at approximately

35dB. This is predicted due to the simulation needing longer to complete. The performance

of Rayleigh fading channels is naturally going to be degraded compared to static channels

however the coe�cient selection algorithm has been able to choose suitable integer coef-

�cients and α values such that the C&F scheme is able to successfully decode at higher

SNR. Gradually as the SNR increases and the channel is not completely overcome with

noise the throughput increases showing that at 29dB the system can achieve throughput

of 3.32 bits per complex dimension. Figure 5.3 also shows that with the use of the derived

mathematical expressions for the expected decoded output on each layer, successful decod-

ing in the multilayer decoder is achieved with Rayleigh fading channels in our system model.

Due to our use of a repetition code and extended Hamming code on the inner and middle

layers respectively and leaving the outer layer uncoded the curve for our scenario carries the

same shape as shown in Figure 1(b) of [1] for the three layer system model however it does

not achieve the same maximum throughput at a particular SNR. This is because with the

use of the repetition code and Extended Hamming code the minimum euclidean distance

is smaller than the distance between the layers used in [1]. The maximum throughput of

5b/cdim in [1] can't be achieved in this scenario however we show that good performance

and successful decoding can be achieved within the C&F system based on construction D.
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Figure 5.3: Throughput performance of two user, three layer system with channels subject
to Rayleigh fading. Layers are l = 0, 1, 2 RM(0,4), RM(2,4) and uncoded respectively

1st and 3rd order Reed-Muller codes

We continue with our second code scenario and employ the (32,6,16) Hadamard code for

the inner layer and the (32,26,4) extended Hamming code for the middle layer, leaving the

outer layer uncoded. The maximum throughput of this code scenario is 4 bits per complex

dimension. We can observe Figure 5.4 to see that at 30dB the throughput is at 3.7 bits

per complex dimension. The slope does not reach maximum throughput as the simulation

has not run for long enough. However, we predict that the maximum throughput of 4 bits

per complex dimension will be reached by between 35dB-40dB. The slope of the curve is

fairly shallow when compared to the static channel case shown in Figure 5.2. The nature

of the fading channels and the coe�cient selection algorithm selecting a new α and integer

coe�cient vector at every trial run through the simulation the self-interference and capac-

ity to overcome it becomes much more di�cult.

If we draw comparison to the work of [1] in Figure 1b we can see that the maximum

throughput of the three layer 64-QAM system is 5b/cdim which is 1b/cdim greater than
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Figure 5.4: Throughput performance of two user, three layer system with channels subject
to Rayleigh fading. Layers are l = 0, 1, 2 RM(1,5), RM(3,5) and uncoded respectively

our system model. With our prediction of maximum throughput of this system model be-

ing more closely approached at approximately 35dB-40dB we can say that the performance

will be shifted to the right by some dB. Figure 5.4 demonstrates the successful implemen-

tation of multilayer decoding under construction D constraints whilst introducing more

complex codes than that shown in [1] using Rayleigh fading channels.

5.4 Summary

In this chapter successful decoding within our C&F system model has been explored and

the work from chapter 3, speci�cally two user case, extended to employ static non-integer

channel coe�cients and Rayleigh fading channels. Through investigation of low complexity

coe�cient selection algorithms the implementation of the Complex-exhaustive-II algorithm

has been implemented into our system model in order to determine the best α and integer

coe�cients at various SNR. As with previous chapters this work considers the Gaussian

integer lattice Z[i].
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Conclusion and future work

6.1 Summary

In this thesis we have investigated the use of construction D in a C&F system model in

order to move away from the originally introduced construction A and introduce the use of

binary codes. We �rst demonstrated the discovery of an error �oor which highlighted that

an interaction between code layers was happening within the multilayer decoder. This

initial analysis was based on the BCJR decoder and convolutional codes. Even though

the BER performance of this two layer model was not the focus we notice that the BER

performance could be improved and therefore following this evaluation better performing

codes were investigated and implemented further on in this work. In order to implement

construction D we employed a multilayer decoder and demonstrated the occurrence of

an interaction between code layers, producing derived expressions to describe the signals

mathematically. We evaluated the BER performance of the system for two instances of

Reed-Muller codes, namely 2nd order extended Hamming code, Repetition code and 3rd

order extended Hamming code, highlighting that with the expressions we are able to suc-

cessfully decode. We demonstrate the operation of this system model for unit valued,

complex integer and fading channels.

The aims introduced at the beginning of this thesis highlighted the approach to this work.

Here, we describe how these aims have been met:

1) Choose practical codes, such as binary codes in order to derive a practical basis model

for C&F
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For the unit valued channel, integer, complex integer and fading channel scenario we have

presented two di�erent forms and orders of Reed-Muller codes that satisfy the construction

D constraints.

2) Introduce existing encoding and in particular decoding algorithms that are employed

within industrial applications leading to an implementable C&F

Initially we employed the 1
2
rate convolutional encoder and BCJR algorithm for decoding

a two layer model where this model demonstrated the error �oor.

We then employed di�ering types of encoder(s) and decoder(s) for two scenarios, the �rst

scenario: for the inner layer we use a (16,1,16) repetition code and the middle layer a

(16,11,4) extended Hamming code, leaving the outer layer uncoded. We detail the adap-

tations of [18] regarding the decoder in chapter 4. The second scenario: the inner layer we

employ the (32,6,16) Hadamard code, the middle layer we employ the (32,26,4) extended

Hamming code and leave the outer layer uncoded. We detail the adaptation for this sce-

nario of the work of [18]. All encoders and decoders are existing algorithms which have

been well established.

3) Solve the problem of using lattice construction A by replacing this with a low com-

plexity method that generates lattice construction D.

We investigated the implementation of Construction D methods to generate the lattice.

The work of [4] demonstrated that there are di�erences in the application of methods in

order to construct the correct lattice. Through investigating this research we employed

Construction by Code Formula (CCF) for its properties that enable the use of conven-

tional encoders and decoders.

4) Extend the practical C&F system model to handle complex signals and complex valued

channels.

We extend the C&F system model such that it can manage complex signals and complex

integer valued channels where the main challenge for this part of the work was determining

the e�ect of the interaction signal between decoding layers. We present derived expressions

through lemmas and proofs to evaluate the nature of the channels on the expected decoded

output.

5) Investigate multilayer lattice decoding algorithms and the e�ect of this on decoding
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nested lattice codes.

During the investigation of multilayer lattice decoding we uncovered the error �oor and

subsequent interaction between layers in the multilayer decoder. With the extension to

complex signals we investigated the progression from construction D to Lifted construction

D which applies the construction to the complex plane. This could have altered the opera-

tion of the decoder however during our research we discover that the complex components

can be treated as separate and identical encoders and decoders. We implemented this into

our system model whilst incorporating the knowledge of the interaction terms and demon-

strated successful decoding.

6) Present low complexity coe�cient selection algorithms within the C&F model for de-

coding random channels.

We incorporate the work of [5] complex exhaustive-II algorithm such that we extend our

C&F system model to fading channels. We demonstrate the successful decoding of both

scenarios of Reed-Muller codes within our system model by generating throughput results

and also show that with higher order codes we can achieve higher performance.

7) Analyse the suited topology of the system and recovery of data at CPU.

We analysed the recovery of data at the hub or CPU through the two-way relay channel.

We describe the process of recovery for both the real and complex signal case as well as

unit, integer and complex integer channels and express the stages of recovery for each layer

using logical expressions such as AND and XOR.

6.2 Future Work

Future work extending this research is given as follows:

� The investigation of lattice constructions focuses on those that can produce binary

lattice codes for multilayer codes. The investigation into the use of other codes and

their complexities for decoding may be considered.

� The system model within this work employed a single base station. Compute-and-

Forward originally introduced in [2] describes multiple base stations. An area of

exploration could be to extend this work to multiple base stations and their cooper-

ation. A topic such as massive MIMO could be considered.
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� Studies such as [25] have shown that Eisenstein integers Z[ω] are employed within

PNC due to their good coding qualities and packing structures. The best packing

lattice structure is the hexagon. The low complexity coe�cient selection algorithms

of [5] do indeed extend to Z[ω] and therefore the performance di�erences may be

analyzed for Z[ω] and Z[i].

� Reed-Muller codes are chosen in order to adhere to the construction D constraints

of the multilayer construction. Implications on the codes stem from the minimum

distance between code layers having a di�erence of multiple of 4. In the work of [1]

these constraints have been avoided due the middle and outer layers being left un-

coded. This could be considered such that the �exibility on the choice of codes could

be increased and in turn performance of the system. Evaluation of the performance

for both adhering and not adhering to constraints could be analyzed.

� The lowest complexity algorithm of [5] namely Linear Search, will be implemented

and the throughput performance di�erence analysed against the implementation of

Complex Exhaustive-II.

� Complexity analysis of construction D and employed decoding strategies will be stud-

ied.
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