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FUZZY
MODEL BASED PREDICTIVE CONTROL
OF
CHEMICAL PROCESSES

Sivasothy Kandiah

ABSTRACT

The past few years have witnessed a rapid growth in the use of fuzzy logic
controllers for the control of processes which are complex and ill-defined. These
control systems, inspired by the approximate reasoning capabilities of humans
under conditions of uncertainty and imprecision, consist of linguistic 'if-then' rules
which depend on fuzzy set theory for representation and evaluation using
computers. Even though the fuzzy rules can be built from purely heuristic
knowledge such as a human operator's control strategy, a number of difficulties
face the designer of such systems. For any reasonably complex chemical process,
the number of rules required to ensure adequate control in all operating regions
may be extremely large. Eliciting all of these rules and ensuring their consistency
and completeness can be a daunting task.

An alternative to modelling the operator's response is to model the process
and then to incorporate the process model into some sort of model-based control
scheme. The concept of Model Based Predictive Control (MBPC) has been
heralded as one of the most significant control developments in recent years. It is
now widely used in the chemical and petrochemical industry and it continues to
attract a considerable amount of research. Its popularity can be attributed to its
many remarkable features and its open methodology. The wide range of choice of
model structures, prediction horizon and optimisation criteria allows the control
designer to easily tailor MBPC to his application. Features sought from such
controllers include better performance, ease of tuning, greater robustness, ability
to handle process constraints, dead time compensation and the ability to control
nonminimum phase and open loop unstable processes. The concept of MBPC is
not restricted to single-input single-output (SISO) processes. Feedforward action
can be introduced easily for compensation of measurable disturbances and the use
of state-space model formulation allows the approach to be generalised easily to
multi-input multi-output (MIMO) systems. Although many different MBPC
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schemes have emerged, linear process models derived from input-output data are
often used either explicitly to predict future process behaviour and/or implicitly to
calculate the control action even though many chemical processes exhibit
nonlinear process behaviour. It is well-recognised that the inherent nonlinearity of
many chemical processes presents a challenging control problem, especially where
quality and/or economic performance are important demands.

In this thesis, MBPC is incorporated into a nonlinear fuzzy modelling
framework. Even though a control algorithm based on a 1-step ahead predictive
control strategy has initially been examined, subsequent studies focus on
determining the optimal controller output using a long-range predictive control
strategy. The fuzzy modelling method proposed by Takagi and Sugeno has been
used throughout the thesis. This modelling method uses fuzzy inference to
combine the outputs of a number of auto-regressive linear sub-models to construct
an overall nonlinear process model. The method provides a more compact model
(hence requiring less computations) than fuzzy modelling methods using relational
arrays. It also provides an improvement in modelling accuracy and effectively
overcomes the problems arising from incomplete models that characterise
relational fuzzy models.

Difficulties in using traditional cost function and optimisation techniques
with fuzzy models have led other researchers to use numerical search techniques
for determining the controller output. The emphasis in this thesis has been on
computationally efficient analytically derived control algorithms. The performance
of the proposed control system is examined using simulations of the liquid level in
a tank, a continuous stirred tank reactor (CSTR) system, a binary distillation
column and a forced circulation evaporator system. The results demonstrate the
ability of the proposed system to outperform more traditional control systems. The
results also show that inspite of the greatly reduced computational requirement of
our proposed controller, it is possible to equal or better the performance of some
of the other fuzzy model based control systems that have been proposed in the
literature.

It is also shown in this thesis that the proposed control algorithm can be
easily extended to address the requirements of time-varying processes and
processes requiring compensation for disturbance inputs and dead times. The
application of the control system to multivariable processes and the ability to
incorporate explicit constraints in the optimisation process are also demonstrated.
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Chapter 1

INTRODUCTION

1.1 Background

As a result of the universal drive for more consistent attainment of high
product quality, more efficient use of energy, and tighter safety and environmental
regulations, industrial processes have evolved over the past few decades into very
complex and highly integrated systems. Such stringent demands naturally create
more difficult and challenging control problems for today’s industrial process
control engineers - problems requiring more sopisticated solutions than can be
provided by traditional techniques alone. The search for effective solutions has
benefitted tremendously from the availability of powerful microprocessor-based
computers at a small fraction of the cost of comparable systems as recently as a
decade ago. Thus, of all factors influencing the current state of industrial process
control, perhaps none is as significant as the computer, either as a hardware
element for implementing advanced control systems, or as a computing device for
facilitating the analysis of process behaviour. This is evidenced by the fact that
virtually every modern manufacturing facility is now equipped with its own
network of dedicated process control computers.

The primary objective in the chemical process industries is to combine
chemical processing units (chemical reactors, distillation columns, extractors,
evaporators, heat exchangers, etc.) in a rational fashion into a “chemical process”
(or a “plant”) in order to transform raw materials and input energy into finished
products. The basic principles guiding the operation of these chemical processes
may be stated as follows:

e They must be operated safely.
e Specified production rates must be achieved.

e Product quality specifications must be met.
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Because chemical processes are by nature dynamic (i.e. their variables are
always changing with time) the process control system has the responsibility of
monitoring, and inducing change in, the appropriate variables related to safety,
production rate, and product quality.

Virtually all processes of commercial importance are multivariable, with
significant interaction between the input and output variables; they typically
exhibit nonlinear characteristics, and often suffer from time delays either as a
result of material transport through pipes, or as a result of measurement and
analysis delay. Of these processes, perhaps the most important (and definitely the
most common) are chemical reactors and distillation columns. The problems posed
by the control of these two processes continues to receive both industrial and
academic research attention, and as a result there is a growing body of literature
on techniques for solving them.

The fundamental premise of process control is that the natural response of
all dynamic processes can be modified by the influence of a controller. The
objective is therefore to design and implement the controller in such a way that the
dynamic response is modified appropriately, in a desired fashion. However, the
extent to which the natural response can be modified appropriately will usually be
determined by:

e The depth of our knowledge of the intrinsic process characteristics.

e The versatility of the hardware elements available for implementing the
controller.

e The nature of inherent process limitations.

Given that not much can be done about inherent process limitations (such
as the presence of time delays arising because of the finite time required for
material to flow from one processing unit to another); and given that the
traditional implementation limitations imposed by rigid analog controller hardware
elements has been all but eliminated with the advent of the digital computer;
observe therefore that the major challenge of industrial process control lies in the
fact that chemical processes are typically huge, complex and poorly understood.

This puts in perspective the current trend of increasing focus on
fundamental process understanding. With such process understanding, it will be
possible to develop more detailed and accurate process models which enable
rational analysis of dynamic process behaviour; these models, and the knowledge
obtained from their analyses, in turn facilitate the design of effective control
systems. The concept of process model based control is one of the most important
control techniques to have emerged in recent years.

Parallel to developments in process model based control is increasing
awareness of the benefits of using intelligent modelling and control techniques to
tackle difficult process control problems. The term "intelligent control” is usually



Introduction 3

taken to cover the application of both machine intelligence and control theory in
process control (White and Sofge, 1992). It attempts to understand and replicate,
using computers, the phenomena that we normally associate with "intelligence",
i.e. the generalised, flexible, learning and adaptive capability that we see in the
human brain. An intelligent control system is designed so that it can achieve a high
goal, while its components, control goals, plant models and control laws are not
completely defined (Antsaklis, 1994; Antsaklis, 1995; Harris et al., 1993).
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1.2 Some Current Problems and Needs

In spite of the significant strides in process control achieved in recent
years, effective control of industrial processes is still being hindered by some
important problems and needs. The most important of these are listed below.

On-Line Measurements

There are many processes for which critical process variables cannot be
measured on-line. This complicates “solvable” problems since it is significantly
more difficult to control (with confidence) what cannot be measured.

Severely Nonlinear Processes

Since most standard control techniques applied in industry are for linear
systems, the control of processes which exhibit severely nonlinear behaviour
remains a major problem. Standard linear control theory is inadequate; linear
MBPC provides poor performance; adaptive control has only limited success; and
nonlinear MBPC is still developing.

Modelling and Identification for Control System Design

A significant number of advanced control schemes are model-based; and it
is widely recognised that obtaining the process model is the single most time-
consuming task in the application of model-based control.

Modelling for Simulation and Operator Training

The development of high-fidelity, low-maintenance models for simulators
that can be used for control system evaluation as well as operator training is
crucial if more sophisticated control systems are to become a permenant part of
the chemical process of the future.

Process Monitoring and Diagnosis

The development of effective paradigms and tools for automatic
monitoring and diagnosis of the increasingly complex process operations is
important for continuous assessment of overall process and control system
performance. The early detection of sensor and/or actuator failure (or other
process operating faults), and an effective system for devicing and implementing
corrective actions rapidly and effectively, are inevitable if the current and
projected future safety and environmental regulations are to be met without
jeopardizing economical viability in the attempt.
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1.3 Control Techniques Applied in Industry

The proliferation in control literature does not seem to have a significant
impact on industrial process control practice. The majority of process control
loops are still based on the PID control strategy, and industry as a whole tends to
adopt a cautious attitude to any new technology that is proposed until it is proven
through extensive testing. As a result, the control techniques most commonly
applied on industrial processes today are:

e Classical PID Control
Both analog and digital versions.

Sometimes augmented with feedforward, cascade, ratio, Smith Predictor
schemes for enhanced performance, etc.

For multivariable systems, the relative gain array (RGA) methodology is
used to determine appropriate loop pairing.

e Statistical Quality Control
Techniques such as Shewart charts, CUSUM, etc.

Principal component analysis (PCA) techniques have recently been
introduced for multivariable process data analysis, with potential for
control decisions still being explored.

e Decoupling

Model Based Predictive Control (MBPC)

Intelligent Modelling and Control
Neural networks for modelling (and sometimes for control)
Fuzzy controllers

The last two techniques mentioned above, i.e. MBPC and intelligent
modelling and control, will be the focus of our research investigations and will
therefore be further explored in Sections 1.4 and 1.5.
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1.4 Model Based Predictive Control

1.4.1 General

Model Based Predictive Control (MBPC) was introduced simultaneously
by Richalet (1978) and Cutler and Ramaker (1980) in the late 1970s and early
1980s under the names of Model Algorithmic Control (MAC) and Dynamic
Matrix Control (DMC), respectively. Generalised Predictive Control (GPC)
popularised by Clarke (1987) and his co-workers a few years later is also
considered to be in the class of model based predictive controllers. Other
algorithmic variations include Extended Prediction Self-Adaptive Control
(EPSAC) (De Keyser and Van Cauwenberghe , 1985), Extended Horizon
Adaptive Control (EHAC) (Ydstie, 1984), and Unified Predictive Control (UPC)
(Soeterboek, 1991). While the details of these various algorithms differ, clearly
the main idea is very much the same: the concept of a moving or receding horizon.
MBPC has been heralded as one of the most significant control developments in
recent years (Deshpande, 1995). It is now widely used in the chemical and
petrochemical industries and it continues to attract a considerable amount of
research. Recent industrial applications of MBPC have been reviewed by Richalet
(1993). Its popularity can be attributed to its many remarkable features, which
include the following:

e Model based predictive controllers are relatively easy to tune. This makes
predictive controllers attractive to a wide class of control engineers and even
to people who are not control engineers.

o The concept of predictive control is not restricted to single-input single-output
(SISO) processes. Predictive controllers can be derived for multivariable
processes. Extending predictive controllers for SISO processes to
multivariable processes is straightforward.

e In contrast to other model based controllers such as linear quadratic (LQ) and
pole placement controllers, predictive controllers can also be derived using
nonlinear process models.

o Predictive control is the only methodology that can handle process constraints
in a systematic way during the design of the controller. Since in real life
process constraints are quite common, this feature in particular is believed to
be one of the most attractive aspects of predictive controller design.

o Predictive control is an open methodology. That is, within the framework of
predictive control there are many ways to design a predictive controller. As a
result, more than ten different predictive controllers, each with different
properties, have been proposed in the literature.



Introduction 7

o The concept of predictive control can be used to control a wide variety of
processes without the designer having to take special precautions. It can be
used to control "simple processes” as well as "difficult processes", such as
processes with large time delay, processes that are nonminimum phase and
processes that are open-loop unstable.

o Feed-forward action can be introduced in a natural way for compensation of
measurable disturbances.

e Because predictive controllers make use of predictions, pre-scheduled
reference trajectories (for example, used in robot control) or setpoints can be
dealt with.

Unavoidably, predictive controller design has some drawbacks. Since
predictive controllers belong to the class of model-based controller design
methods, a model of the process must be available. In general, in designing a
control system two phases can be distinguished: modelling and controller design.
Predictive control provides only a solution for the controller design part. A model
of the process must be obtained by other methods.

A second drawback is due to the fact that the predictive control concept is
an open methodology. It has already been mentioned that, as a result of this, many
different predictive controllers can be derived, each having different properties.
From the beginning, DMC and MAC were conceived to deal with multivariable
constrained problems, while GPC was proposed as an alternate approach for the
adaptive control of unconstrained single-input/single-output (SISO) systems. All
expositions of DMC and MAC employ a state space description, while the
presentations of GPC employ exclusively a transfer function description.
Soeterboek (1991) has analysed the similarities and differences between various
techniques in the SISO case employing a transfer function approach. Although, at
first glance, the differences between controllers seem rather small, these small
differences can yield very different behaviour in closed-loop systems. As a result,
it can be quite difficult to select which predictive controller is best for solving a
particular control problem.

1.4.2 The Predictive Control Concept

The way predictive controllers operate for a SISO system will now be

illustrated. To do this, it is first necessary to define the variables U, Y and W as
follows:

U =[u(0), - ut+H,-1)] (1.1)

P=[5+1, 50+ H)| (1.2)
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W=[w(e+ D, wit+H,)[ (1.3)

where u(?), y(t) and w(r) denote the controller output, the process output and the
desired process output at sampling instant ¢, respectively; H_ is the control

horizon; H, is the prediction horizon; and y(#+1) denotes the 1-step ahead

model prediction at time ¢.

The predictive controller calculates a future controller output sequence U

~

such that the predicted output of the process Y is as close to the desired process
output W as possible. The assumption is usually made that the value of the
controller output beyond u(t+H —1) is equal to u(t+H, —1). The desired

process output is often called the reference trajectory and is usually the setpoint.
However, the response of a first-order or second-order reference model can also
be used.

Rather than using the controller output sequence determined in the above
way to control the process over the next H, sampling intervals, only the first

element of this controller output sequence, u(t) is used. At the next sampling

instant, the whole procedure is repeated using the latest measured information.
This is called the receding horizon principle. The reason for using the receding
horizon approach is that it allows us to compensate for future disturbances or
modelling errors. For example, due to a disturbance or modelling error the
predicted process output y(r+1) at time time ¢ is not equal to the process output

y(t+1). Then, it is intuitively clear that at time #+1 it is better to start the
predictions from the measured process output rather than from the process output
predicted at the previous sample. The predicted process output is corrected for
disturbances and modelling errors by activating a feed-back mechanism. As a
result of the receding horizon approach, the horizon over which the process
output is predicted shifts one sample into the future at every sample instant.

The process output is predicted by using a model of the process to be
controlled. Any model that describes the relationship between the input and the
output of the process can be used. Models which have been used include transfer-
function models, impulse response models, step response models and nonlinear
models. Further, if the process is subject to disturbances, a disturbance or noise
model can be added to the process model, thus allowing the effect of disturbances
on the predicted process output to be taken into account.

In order to define how well the predicted process output tracks the desired
process output, a criterion (or objective) function is used. Typically such a

criterion function is a function of Y , Wand U. Probably the simplest criterion
function that can be used for predictive controller design is:

7= G+ —wit+)Y (1.4)
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A modified form which allows controller output weighting is also often
used:

H/’
J=Y G+ -w(t+i)) +pAu(t +i—1)’ (1.5)

where p is a weighting factor (p 20) and Au is the change in the controller
output.

The optimal controller output sequence U, over the control horizon

opt
which minimizes the future tracking error is obtained by minimization of J with
respect to U:
U,,,,, = arg n}/inJ (1.6)
When the process has a time delay of say, 2 samples, the approach is no
different, except that predicting y(z+1) and y(¢+2) does not make any sense

because these values cannot be influenced by the control actions at ¢ and r+1.
Then, the cost function (1.4) can be changed into:

7= G+ -w(t+D) (1.7)

Thus when there is time delay the optimal controller output sequence is
obtained by the minimization of (1.7) with respect to U.

Clearly, calculating the controller output sequence is an optimisation
problem or, more specifically, a minimisation problem. Usually, solving a
minimisation problem requires an iterative procedure. However, an analytical
solution is available when the criterion is quadratic, the model is linear and there
are no constraints. This is the reason why a quadratic criterion function is normally
used by predictive controllers. Note that the controller outputs calculated by the
minimisation of a criterion function with respect to U are not structured. That is,
when minimising the criterion function the controller outputs are not assumed to
be generated by a control law in contrast to most other control strategies.

Because in predictive controller design it is not a priori assumed that the
controller outputs are generated by a control law, constraints on the controller
output can be taken into account in a systematic way. For example, if the output
of the controller is limited between two values (which is the case in most practical
applications), the optimization problem can simply be formulated as:

U :argrr}jinJ (1.8)

opt
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with U, , subject to

opt
usu(t+i-1)<u, 1<i<H, (1.9)

where ¥ and u represent the lower and upper bound, respectively, on the

controller output. Now, the optimisation problem is a constrained optimization
problem for which an analytical solution is no longer available and, therefore, an
iterative optimization method must be used.

1.4.3 Linear Process Models

Without delving into the details of the control algorithms itself, we will
attempt to review the most important linear process models used, highlighting the
advantages and disadvantages of each approach.

One of the simplest models that can be used to predict the output of a
process is the impulse response model:

Y1) = 3 hyutt = j =) (1.10)

where h; is the jth element of the impulse response of the process. Note that an

infinite number of impulse response elements are required in this model.
Assuming, however, that the impulse response goes to zero asymptotically, the
impulse response may be truncated to some finite number of terms. Then equation
(1.10) becomes:

ny -l

y(k)= Y hu(t—j—1) (1.11)
=0

where n,, is the number of impulse response elements h; that are taken into

account. All other elements are assumed to be zero. The model is called the Finite
Impulse Response (FIR) model and is used in Model Algorithmic Control (MAC).
The main disadvantages of FIR models are that unstable processes cannot be
modelled and the FIR model requires many parameters to be known or estimated.
On the other hand, prediction of the process output is simple with no complex
calculations required, and no assumption needs to be made about the order of the
process.

Another process model that is often used in predictive controllers is the
Finite Step Response (FSR):

y(k):"isjAu(t—j—l) (1.12)
j=0
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where A is the differencing operator (A=1—q~' with g the backward shift
operator) and ng is the number of step response elements s; that are taken into

account. All other elements are assumed to be constant. In the case where the
process is not disturbed by noise, the coefficients of the FSR model can be
determined simply by applying a unit step to the input of the process. The FSR
model has the same advantages and disadvantages as the FIR model and is used in
Dynamic Matrix Control (DMC).

A process model that does not have the disadvantages of the above-
mentioned models is is the transfer-function model:

-d -1
q"Blq™)
y(k) = - u(t=1) (1.13)
Alg™)
where d is the time delay of the process in samples (d =0) and the polynomials A
and B are given by:

AlgH = 1+a,q_'+---+a“q""" (1.14)
B(g™") =b, +b1q'1+---+bn8q_"” (1.15)

where n, and n, are the degrees of the polynomials A and B, respectively. In

contrast to FIR and FSR models, equation (1.15) can also be used to model
unstable processes. Also, a minimal number of parameters are used to describe a
linear process. The main disadvantage is that an assumption about the order of the
process must be made. Also, prediction of the output of a process described by a
transfer function model is more complex than that of a process described by an
FIR or FSR model. Transfer function models are used by Generalised Predictive
Control (GPC) and Unified Predictive Control (UPC) algorithms.

1.4.4 Nonlinear Model Based Predictive Control

Several attempts have been made to extend MBPC techniques to nonlinear
systems. There are essentially three major approaches: i.e. scheduled linearisation
(Garcia, 1984), extended linear MBPC (Peterson et al., 1989) and explicit
nonlinear MBPC (Brengel and Seider, 1989; Li and Biegler, 1989; Sistu and
Bequette, 1990). In the last approach, the MBPC control algorithm is posed as a
nonlinear programming (NLP) problem, incorporating an explicit nonlinear model
and possibly nonlinear constraints.

Recently, the use of neural network and fuzzy models to represent
nonlinear process dynamics has become quite popular. Unlike linear process
models which are based on deviation variables, these new modelling approaches
allow the use of the absolute values of variables to achieve good representation of
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nonlinear process dynamics over a wide range. The use of absolute values often
introduces problems in the formulation of the controller making it necessary to
resort to techniques such as NLP.
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1.5 Intelligent Modelling and Control

1.5.1 General

The increased complexity and stringent demands of today’s chemical
process plants necessitates more sophisticated control systems capable of
delivering better and more flexible performance. Increasingly, control systems are
required to have high dynamical performance and robust behaviours, and yet be
able to cope with complex, uncertain and highly nonlinear process relationships
over wide operating envelopes. One approach being advocated for dealing with
such challenging process control problems is intelligent modelling and control.
Traditionally, intelligent control has embraced classical control theory, neural
networks, fuzzy logic, expert systems, and a wide variety of search techniques
(such as genetic algorithms and others). Expert systems or knowledge-based
systems are probably the best known, having been around for many years now.
Considerable attention in recent years is also being focussed in two other areas:
artificial neural networks and fuzzy logic. Artificial neural networks were
originally developed to emulate the human brain’s neuronal-synaptic mechanisms
that store, learn and retrieve information on a purely experiential basis, whereas
fuzzy logic was developed to emulate human reasoning using linguistic
expressions. Zadeh (1994) has coined the term ‘soft computing’ to differentiate
fuzzy logic, neural networks and probabilistic reasoning (includes genetic
algorithms, chaos theory and parts of learning theory) from ‘hard computing’
based on binary logic, crisp systems and numerical analysis. Hard computing has
the attributes of precision, and categoricity, whereas soft computing is based on
approximation and dispositionality. Although in hard computing, imprecision and
uncertainty are undesirable properties, in soft computing the tolerance for
imprecision and uncertainty is exploited to achieve an acceptable solution which is
low cost, tractable and has high machine intelligence quotient (MIQ).

Fuzzy logic is mainly concerned with imprecision and approximate
reasoning, neurocomputing mainly with learning and curve fitting, and
probabilistic reasoning with uncertainty and propagation of belief. These are
complementary rather than competitive. The experiences gained over the past
decade have indicated that it can be more effective to use them in a combined
manner, rather than exclusively. This moves us towards a new era where control
theory and AI will become far more compatible with each other. This allows
arrangements such as that shown in Figure 1.1 (White and Sofge, 1992), where
neural tools and fuzzy logic are used as two complementary technologies on one
common controller.

It is not our intention here to delve into the details of these emerging and
controversial technologies. Such an attempt can cover many volumes and still not
be complete. Our aim here is to draw attention to the most important trends and
highlight the process control applications, with particular emphasis on neural
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networks, fuzzy logic and expert systems. Genetic algorithms largely remain a
subject for research rather than practical implementation and will therefore not be
covered by this review.

Central to many advanced process control applications is the construction
of a model. As processes increase in complexity, they become less amenable to
direct mathematical modelling based on physical laws. Rather than utilise models
based on linear or physico-chemical relationships, intelligent controllers derive
predictive models based on experiential evidence, and use such models to design
control systems which can:

e Operate in an ill-defined, time-varying environment.

e Adapt to changes in the plant’s dynamics as well as the environmental effects.
e Learn significant information in a stable manner.

e Place few restrictions on the plant’s dynamics.

Human learning appears to embody elements of all of these properties, and
currently researchers are trying to endow machines with such human-like qualities
to enable them to operate autonomously with the minimum amount of
intervention.

words from
human

human expert

fuzzy tools

selected training
data
(real-time
or
offline)

neuro tools

nonlinear controller

Figure 1.1: A way to combine fuzzy and neural tools
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1.5.2 Artificial Neural Networks

The growing literature within the field of chemical engineering describing
the use of neural networks has evolved to a diverse range of applications. There
are several reasons for these developments. Firstly, recent advances in computer
technology and parallel processing have made the use of neural networks more
economically feasible than in the past. Second, little or no a priori knowledge of
the task is required; and thirdly, neural networks have the potential to solve
certain types of complex problems that have not been satisfactorily handled by
more traditional methods.

There are four principal architectures which can exploit the modelling
capabilities of neural networks: as a basic plant model, an inverse plant model, a
specialised inverse plant model and an operator model as shown in Figure 1.2
(Brown and Harris, 1994). For three of the four cases, the desired value of the
network’s output is directly available and any supervised learning rule can be used
to train the weight set of the network. The error in the specialised inverse plant
modelling algorithm is formed at the output of the plant, whereas the network’s
output forms the input to the plant. Therefore some method is required for feeding
back the plant output error, in order to train the inverse model. The application of
each type of model will now be discussed.

Soft Sensing

Plant models may be required for a variety of applications. Sensor
interpretation is an example of easy, first-generation application of neural
networks. Traditionally, the process industries have relied on simple measurements
such as flow, pressure and temperature; however to achieve a higher level of
efficiency, and to control more complex systems such as bioreactors, it is
important to measure parameters such as concentration as well. The fundamental
problem is that the key quality variables cannot be measured at a rate which
enables their effective regulation. This can be due to limited analyser cycle times
or a reliance upon off-line laboratory assays. An obvious solution to such
problems could be realised by the use of a model along with secondary process
measurements, to infer product quality variables (at the rate at which the
secondary variables are available) that are either costly or impossible to measure
on-line. Hence, if the relationship between quality measurements and on-line
process variables can be captured then the resulting model can be utilised within a
control scheme to enhance process regulation. The concept is called inferential
estimation or soft sensing and some promising results have been reported by
various researchers (Tham et al., 1991b; Willis, et al., 1991; Di Massimo et al.,
1991; McAvoy et al., 1989).
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Figure 1.2: Four learning modelling architectures incorporating neural networks.
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Control

The modelling of human operators as shown in Figure 1.2(d) can be very
useful with some processes (Gingrich et al., 1990). The difference between the
best human operators and the average operators is often worth large amounts of
money, because of differences in plant efficiency during plant change-over and the
like.

Whilst inferential estimation schemes operating in open-loop can be used
to assist operators with the availability of fast and accurate product quality
estimates, the possibility of closed loop inferential control is also very appealing.
The effective elimination of time delays caused by the use of an on-line analyser or
the need to perform off-line analysis affords the oppurtunity of tight product
control. A potential problem highlighted by Morris et al. (1994) is that the model
might have been identified using data collected from the plant which may have
some of its control loops still closed. The resulting model will then have been
identified with correlated data and will not be representative of the underlying
process behaviour.

Willis et al. (1993) have shown that the use of nonlinear neural network
models for tuning PID controllers leads to better controller tuning than that
possible using linear models.

Considerable emphasis has been focussed on control strategies based on
the Internal Model Control (IMC) structure shown in Figure 1.3 (Hunt and
Sbarbaro, 1991; Hunt et al., 1993; Bhat and McAvoy, 1990; Psichogios and
Ungar, 1991; Nahas et al., 1992; Dayal et al., 1994). The IMC control structure
incorporates models of the plant dynamics and the corresponding inverse. As an
important property of IMC, it can be shown that given plant and controller which
are input-output stable and having a perfect model of the plant, the closed-loop
system will also be input-output stable (Garcia and Morari, 1982; Garcia, 1989;
Morari and Zafiriou, 1989). Unfortunately, the neural network model of the
inverse process dynamics (the controller) may not have a steady-state gain which
is the exact inverse of the steady-state gain of the neural network model of the
forward process dynamics. Thus, steady-state offset in the controlled variable
cannot be eliminated.

Psichogios and Ungar (1991) and Nahas et al. (1992) presented a slightly
different IMC control scheme in which the control move is computed by the on-
line numerical inversion of the neural network model of the forward process
dynamics. Nahas et al. (1992) used the predicted process outputs instead of the
actual errors as inputs to the neural network when they numerically inverted the
neural network model of the forward process dynamics. This modification allows
the controller to elimintate steady-state offset in the controlled variable. However,
this scheme has potential convergence problems during the on-line numerical
inversion of the nonlinear forward model neural network.
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Another important approach is that of model reference control. This
scheme has been widely used in the linear adaptive control field (Astrom and
Wittenmark, 1989), and is shown in Figure 1.4. The control objective is to adjust
the control signal in a stable manner so that the plant’s output asymptotically
tracks the reference model’s output (Narendera and Parthasarathy, 1990). The
performance of this algorithm depends on the choice of a suitable reference model
and the derivation of an appropriate learning mechanism.

Probably the most successful approach to-date (Saint-Donat et al., 1991;
Morris et al., 1994) is to use a dynamic nonlinear neural network process model,
instead of a dynamic linear process model, in an optimisation based multi-step
predictive control scheme. The concept of model based predictive control has
been presented in Section 1.4 and will therefore not be further elaborated here.
Optimisation using a nonlinear neural network model is generally more difficult to
solve than optimization involving a linear model. In fact, Psichogios and Ungar
(1991) found that the CPU time required to solve for the control action in multi-
step predictive control was 30 times greater than that required for an IMC control
scheme with an inverse model neural network controller.

Process Monitoring and Fault Detection

Recently, a number of papers have appeared on the application of neural
networks to qualitatively interpret process data and fault detection (Naidu et al.,
1990; Kramer and Leonard, 1990; Morris et al., 1994). Theoretically, neural
networks can be used to convert quantitative plant data into a qualitative
interpretation. For example, neural networks for pattern recognition have been
used to detect hot spots in the continuous casting of steel (Tanaka, 1991). In this
application, neural networks led to great increase in accuracy over more
expensive, conventional methods.

Researchers are still actively studying this application since the large
number of possible input patterns can present difficulties.

1.5.3 Fuzzy Logic

At present, there is hardly a topic that attracts more attention in the
industrial world and among the general public than fuzzy logic. Over the past
several years, fuzzy control has emerged as one of the most active areas of
research in control engineering. The pioneering research of Mamdani and his
colleagues (Mamdani and Assilan, 1975; Mamdani, 1976) on fuzzy control was
motivated by Zadeh's seminal papers on the linguistic approach and system
analysis based on the theory of fuzzy sets (Zadeh, 1965; Zadeh, 1973).
Applications of fuzzy control in such diverse areas as water quality control,
automatic train operation, automatic container crane operation, elevator control,
nuclear reactor control, automobile transmission control, etc., have pointed the
way for the utilisation of fuzzy control in the context of ill-defined processes that
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can be controlled by a skilled human operator without the knowledge of their
underlying dynamics (Lee, 1990; Ragot and Lamotte, 1993).

Fuzzy control applications in the chemical process industry have also been
growing rapidly in recent years, making it difficult to present a comprehensive
survey of the wide variety of applications. Notable successes seem to have been
achieved with highly nonlinear processes and multivariable processes. Some
applications cited in literature include warm water process (Kickert, 1976), water
purification process (Sugeno, 1985), continuous stirred tank reactor (King, 1977,
Chunyu, 1989; Preub, 1993), heat exchanger (Ostergaard, 1977), activated sludge
process (Tong et al., 1980), cement kilns (Umbers and King, 1980), box annealing
furnace (Yonekura, 1981), continuous casting plant (Bartolini et al., 1982), alloy-
charging process in steel making (Takagi and Sugeno, 1985), blast furnace (Hong,
1985) and pH neutralisation of chemical waste water (Wegmann and Mohr, 1993;
Galluzzo et al., 1991).

Although achieving many practical successes, the rule base of the most
common fuzzy logic controller is static and has to be developed by trial and error
until a good performance is achieved. A major difficulty is found to be the length
of time and amount of effort required to develop the rules, especially in the case of
nonlinear systems. Also, the rules of the simple fuzzy logic controller do not, in
general, contain a temporal component so they cannot cope with process changes
over time. In view of these limitations, a considerable amount of research is being
carried out into adaptive and model-based fuzzy controllers (model-based fuzzy
controllers will be discussed in considerable length in Chapters 2 and 3 of this
thesis).

Fuzzy controllers contain a number of sets of parameters that can be
altered to modify the controller performance:

» the scaling factors for each variable;
« the fuzzy set representing the meaning of linguistic variables;
o the if-then rules.

Adaptive fuzzy controllers that modify fuzzy set definitions or the scaling
factors are often called self-tuning controllers (Yamashita et al., 1988; Tanaka and
Sano, 1991; Nomura et al., 1991; Maeda et al., 1991; Batur and Kasparian,
1989). Altering these parameters essentially fine tunes an already working
controller. Adaptive fuzzy controllers that modify the rules are called self-
organising controllers (Procyk and Mamdani, 1979; Yamazaki and Mamdani,
1982; Daley and Gill, 1986; Linkens and Abbod, 1991; Linkens and Abbod, 1992;
Moore and Harris, 1992; Song and Park, 1993; Shah and Rajamani, 1991). They
can either modify an existing set of rules, in which case they are similar to self-
tuning controllers, or they can start with no rules at all and "learn" their control
strategy as they go. Direct self-organising fuzzy logic controllers use observations
of the system closed loop performance to directly manipulate the controller fuzzy
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rule base or relational matrix, without any intermediate process model being
produced. In contrast, the indirect self organising fuzzy logic controller (Moore
and Harris, 1992) generates a fuzzy relational matrix of the plant and then inverts
this model in order to find the control which realises the desired next state.

1.5.4 Knowledge-Based Systems

Knowledge-based systems or expert systems have been used quite
successfully for real-time trouble-shooting of complex control systems. Although
more difficult and time-consuming to develop than an off-line expert system
designed for repair of specific hardware, a real-time diagnostic expert system
could be cost-effective compared to the lost production time generally
encountered with control system outages. Process control system malfunctions
generally result in one of two conditions:

e The system fails and shuts down, resulting in unproductive labour costs and
lost revenue.

e The system experiences intermittent component failures that undermine its
integrity and leads to poor control, which could result in poor product quality
or even unsafe operating conditions.

Either scenario could justify the time and expense to build an expert
system to assist the engineer or on-site technician in diagnosing and repairing the
problem as quickly as posible. The cost involved in developing such systems can
be more easily justified if the system can be distributed to many similar operations
within the company.

Another application area is alarm analysis. An expert system can be
designed to monitor a process in real-time, interpret alarm conditions, and alert
the operator to possible corrective actions. This idea could be extended with a
real-time system designed to collect product data, calculate statistical trends, and
provide an interpretation. Such a system would enable proactive control of a
process - by alerting the operator to statistical trends in key process variables
before a system upset occurs. Many control system vendors are already enhancing
the operation of their systems with integrated software packages that allow real-
time tracking of SPC charts. With widespread implementation, SPC has proven
itself to be very valuable methodology for improving quality and reducing
manufacturing costs. The real value in capturing these data, however, is a timely
and accurate analysis. An expert system could provide constant vigilance and be a
valuable assistant to a busy control-room operator, thus bolstering SPC’s value
(Rock and Guerin, 1992).
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1.6 Motivations for the Current Research

The previous sections have reviewed some of the important contemporary
challenges of industrial process control, noting the fortunate circumstance of the
emergence of cheap and powerful computer systems just in time to facilitate the
implementation of the sophisticated control techniques required to take on these
challenges. The difficulty posed by severely nonlinear processes was highlighted as
was the emergence of MBPC and intelligent modelling and control techniques to
tackle difficult process control problems.

MBPC schemes derive some of their industrial appeal from their ability to
handle input and output constraints, time delays, non-minimum phase behaviour
and multivariable systems. Despite the success enjoyed by MBPCs in industry,
there are many processes which pose a challenge for the standard, linear model
based algorithms. For example, batch and semi-batch processes are carried out
over a wide dynamic range; hence the concept of operation around a steady state
becomes invalid. Also, there are some continuous processes which undergo
frequent transitions to permit the manufacture of several grades of a basic product.
Such processes operate at several steady state levels and may experience start-ups
and shutdowns on a daily basis. Lastly, there are some chemical processes (e.g.
some polymer reactors) which are so severely nonlinear that small-to-moderate
perturbations around the steady state can render a linear model based controller
inadequate or even unstable. Thus, there is an incentive to develop extensions of
MBPC to tackle nonlinear systems.

A distinguishing characteristic of fuzzy logic is its ability to exploit the
tolerance for imprecision and uncertainty to achieve tractability, robustness, and
low cost solution. It can be used to provide a computing paradigm for modelling
highly nonlinear chemical processes when a sufficiently accurate and yet not
unreasonably complex model of the process to be controlled is unavailable. The
modelling problem, instead of being posed within a strictly analytic framework, is
based on empirical acquired knowledge regarding the operation of the process.

The main objective of our research is, therefore, to incorporate MBPC into
a nonlinear fuzzy modelling framework. This fusion of ideas drawn from two
apparently distinct fields, i.e. MBPC and fuzzy logic, is hoped will lead to a
nonlinear MBPC with the same remarkable attributes as linear MBPC while also
offering the capability of being applied to highly nonlinear processes.
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1.7 Scope of this Work

The scope of the research carried out during the course of the PhD
programme and reported in this thesis covers the following:

Fuzzy Modelling

The use of the fuzzy modelling method proposed by Takagi and Sugeno
(1985) for modelling highly nonlinear chemical process systems has been
examined. This modelling method uses a model representation which is analogous
to that used by linear systems and deviates considerably from traditional fuzzy
modelling approaches.

System Identification

Many different methods have been proposed in the literature for the
identification of fuzzy process models, especially in the case of relational fuzzy
models. The use of the standard least squares algorithm as proposed by Takagi
and Sugeno (1985) provides a simple and highly efficient method for the
identification of the off-line fuzzy model. The effectiveness of this identification
method has been investigated in the context of highly nonlinear chemical process
systems.

Model Based Predictive Control

Modern control theory opens the door to computer-oriented control
strategies based on optimisation methods. The use of such methods with nonlinear
fuzzy process models has generally been quite difficult and it has been necessary to
resort to numerical approaches. We have attempted to make use of the fuzzy
model’s analogous structure to linear process models to design a computationally
efficient control algorithm.

Adaptive Control

The use of the recursive least squares algorithm for adaptive modelling has
been examined. This method may offer an advantage to the traditional approach of
rule replacement often used with fuzzy systems.

Dead Time Compensation

In many industrial processes, the phenomenon of dead time is quite
common. A method of enabling dead time compensation has therefore been
examined.

Multivariable Systems

An important limitation of many relational fuzzy modelling methods lies is
in the ability to be easily extended to multivariable systems, thereby facilitating
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feed forward and decoupling control. A significant portion of the research was
therefore focused on multivariable systems.

Constraints Handling

An important feature of MBPC is the ability to incorporate explicit
constraints on manipulated and controlled variables in the design of the control
algorithm. The use of the quadratic programming approach to enable constraint
handling capability in our proposed controller has therefore been examined.

Controller Robustness

It is important, especially in the context of ill-defined processes, that
controller robustness is not sacrificed to achieve better performance. The
performance of the controller has therefore been evaluated in the presence of noise
and under conditions quite different from that used for the identification of the
process model.

1.8 Thesis Overview

The twelve chapters of this thesis can be organised into the six sections
shown in Table 1.1. The structure of the thesis and the style used for presenting
the results of our research makes it unnecessary to read every preceeding chapter.
Section 1 provides a review based on published literature on topics related to our
research area. The aim of the review is to provide readers with a better
perspective of the issues affecting this research study, so that both the significance
of the study and the control methods we have used can be better appreciated.
Since most of the material presented in this section is of a general nature, it can be
skipped by readers familiar to concepts such as model based predictive control,
intelligent control and fuzzy modelling. Readers who wish to concentrate on the
details of our fuzzy modelling method and our proposed control algorithm can
proceed directly to Section 2 of the thesis.

The control methods presented in this thesis have been tested using
simulations of well-known chemical processes. Throughout this thesis, emphasis
has been given to evaluating the performance of controllers using setpoint
changes. This permits comparison of the performances of controllers over wide
operating ranges to gauge the improvement, if any, when used to control
processes which are significantly nonlinear. Although frequent setpoint changes
may be made to permit the manufacture of several grades of a basic product, most
chemical engineering control problems, however, involve regulation around a
setpoint. Emphasis has therefore also been given to evaluating the performance of
controllers using disturbance inputs.
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Comparison of the performances of different controllers has mostly been
based on the integral of absolute error (IAE). Where important, assessment has
also been based on visual observations such as rise time, peak overshoot, settling
time, oscillatory behaviour, etc.

A chapter-by-chapter overview of the contents of this thesis will now be
provided.

Chapter 1

This chapter provides background information on our research project and
examines the important contemporary challenges of industrial process control. The
concepts of model-based predictive control and intelligent modelling and control
are briefly introduced. The emphasis in the second case has been on drawing the
attention of the reader to the most important trends and to highlight the process
control applications, with particular emphasis to neural networks, fuzzy logic and
expert systems.

Chapter 2

Fuzzy modelling is a procedure for developing fuzzy membership functions
and fuzzy rules from a given data set. This chapter begins by introducing the basic
concepts and definitions involved in fuzzy modelling. These concepts are used to
examine various fuzzy modelling approaches that have been proposed in the
literature. The chapter finishes with a comparative evaluation of some of these
methods.

Chapter 3

The difficulties posed by the traditional approach of designing fuzzy
controllers are first examined before looking at the advantages of the model-based
control approach. Various fuzzy model based controllers that have been proposed
in the literature are then examined and compared.

Chapter 4

This chapter starts by describing the piecewise linear fuzzy modelling
proposed by Takagi and Sugeno and also used in this study. The method is then
applied to model nonlinear chemical processes using simulations of liquid level and
CSTR systems.

Chapter 5

This chapter emphasizes the development of the conceptual framework for
a fuzzy model based predictive control strategy based on the fuzzy modelling
approach presented in Chapter 4. The prediction horizon used by the controller
has been limited to 1-step and the optimal controller output is determined using an
analytical approach. It is shown how the nonlinear fuzzy model can be
transformed into a linear model to facilitate the design of the control algorithm.



Introduction 27

Chapter 6

Even though the 1-step ahead predictive controller has been shown to be
viable in Chapter 5, it has not sufficiently addressed the issue of controller
robustness. In Chapter 6, a significant step forward in this direction is made by
looking at a numerical approach of extending the prediction horizon. Various
important issues involved in using the fuzzy model to make multi-step predictions
are examined. These issues are important not only for the numerical approach
examined here but also for the analytical approach presented in the next chapter.

Chapter 7

In Chapter 6, the focus was on a numerical approach of designing a long-
range predictive control algorithm. This chapter, on the other hand, examines an
alternative analytical approach of extending the prediction and control horizons
used by the controller. The much lower computational requirements of the
analytical approach provides it with a distinct advantage over the numerical
approach. The question of fuzzy model linearisation, which was partially examined
in Chapter 6, is further examined in this chapter. The effectiveness of the
linearisation method is compared with the usual linearisation method used in
control engineering. An attempt is made to examine the performance of the
controller in the presence of noise and under process conditions quite different
from that used for the identification of the process model.

The fuzzy model used in all previous studies has been assumed to be a
fixed model identified from the open loop response of the process prior to the
implementation of the control system. The fuzzy modelling method as proposed by
Takagi and Sugeno (1985) also did not consider adaptive modelling. Appendix A
examines the use of the recursive least squares algorithm for on-line parameter
estimation and control based on the control algorithm presented in this chapter.

It is known that dead times make processes difficult to control. Designing
controllers to overcome dead time has always been a serious challenge to control
engineers. Appendix B examines how the control algorithm presented in this
chapter can be extended to enable dead time compensation.

Chapter 8

All of the previous studies have been based on single-input single-output
(SISO) fuzzy models using the manipulated variable as the input. In this chapter,
we attempt to extend the fuzzy model to include one or more disturbance inputs.
By doing this, it may be possible to achieve a feedforward effect in our controller
to the effect of these disturbances. Such a prospect makes multi-input single-
output (MISO) fuzzy model based controllers look particularly attractive.
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Chapter 9

Control of the distillation process is known to be particularly difficult
because of the significant nonlinearity and the severe interaction between process
variables. These problems are particularly important in the case of dual
composition control. The method used in Chapter 8 is extended in this chapter to
allow coupling of the control loops used for composition control.

Chapter 10

A number of the methods presented in earlier chapters are tested in this
chapter using a simulation of a forced circulation evaporator system. This is a
multivariable control problem consisting of three control loops.

Chapter 11

In all of our earlier research studies, it has been assumed that the only
constraints imposed on the control system are minimum and maximum values on
the controller output. In this chapter, we show how the presence of constraints
can lead to a significantly different output response from that provided by the
unconstrained controller. A method of explicitly including constraints in the
optimisation process is then examined.

Chapter 12

This chapter summarises the most important findings of this research
project and makes recommendations for further research work in the same area.



Chapter 2

FUZZY MODELLING

2.1 Introduction

An integral component of many advanced control strategies is a model.
The modelling of real world systems, however, often presents problems. As
processes increase in complexity, they become less amenable to direct
mathematical modelling based on physical laws, since they may be:

e Distributed, stochastic, nonlinear and time varying.
e Subject to large unpredictable environmental disturbances.

¢ Have variables that are difficult to measure, have unknown causal relationships,
or are too difficult or expensive to evaluate in real-time.

According to Zadeh's Principle of Incompatibility (Zadeh and Chang,
1972), the closer one looks at a real world problem, the fuzzier becomes the
solution. As the complexity of a system increases, our ability to make precise and
yet significant statements about its behaviour diminishes until a threshold beyond
which precision and significance (relevance) become almost mutually exclusive
characteristics. This throws light on the role fuzzy logic can play in the modelling
of real world systems. In general, a fuzzy logic system is a nonlinear mapping of
an input data (feature) vector into a scalar output (the vector output case
decomposes into a collection of independent multi-input/single-output systems).
The richness of fuzzy logic is that there are enormous numbers of possibilities that
lead to lots of different mappings. This richness can be used to provide a
computing paradigm for modelling highly nonlinear processes, especially when a
sufficiently accurate and yet not unreasonably complex model of the process to be
controlled is unavailable. The modelling problem, instead of being posed within a
strictly analytic framework, is based on empirical acquired knowledge regarding
the operation of the process. This knowledge, cast into linguistic or rule-based
form, constitutes the basis of a fuzzy model.
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Fuzzy modelling is a procedure for developing fuzzy membership functions
and fuzzy rules from a given set of data. This chapter begins by introducing basic
concepts and definitions involved in fuzzy modelling. These concepts are used to
examine various fuzzy modelling approaches that have been proposed in the
literature. The chapter finishes with a comparative evaluation of some of these
approaches.

2.2 Basic Concepts and Definitions

Fuzzy logic provides a computationally-oriented system of concepts and
techniques for dealing with modes of reasoning which are approximate rather than
exact. Approximate reasoning is essential for simulating human decision-making
behaviour in an environment of uncertainty and imprecision. By employing the
techniques of fuzzy set theory, approximate reasoning (with precise reasoning
viewed as a limiting case) can be studied in a formal way.

2.2.1 Fuzzy Set

The concept of a fuzzy set can be viewed as an extension of an ordinary
set. In a fuzzy set, an element can be a member of the set with a degree of
membership varying between O and 1. Thus, a fuzzy set F in a universe of
discourse U = {u,, i =1,---,n} is defined by its membership function:

u.:U—I0,1] (2.1

If we(w;) are 0 or 1, the fuzzy set is an ordinary set. When U is
continuous, a fuzzy set F can be written concisely as:

F:quF(u)/u (2.2)
When U is discrete, a fuzzy set F is represented as:

F=Y" ue(u)lu. (2.3)
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very slow slow modérate fast very fast

Grade of
Membership

30 40 50 60 70 speed (mph)

Figure 2.1: Diagrammatic Representation of Fuzzy Sets Used to Define Speed.

2.2.2 Linguistic Variable

A linguistic variable can be regarded either as a variable whose values are
fuzzy numbers (fuzzy sets which are normal and convex) or as a variable whose
values are defined in linguistic terms. To illustrate, if speed is interpreted as a
linguistic variable, then the linguistic values of speed might be:

T(speed) = {very slow, slow, moderate, fast, very fast} (2.4)

In a particular context, "very slow" may be interpreted as a speed below
about 30 mph, "slow" as a speed about 40 mph, "moderate" as a speed close to 50
mph, "fast" as a speed about 60 mph and " very fast" as a speed above about 70
mph. Figure 2.1 shows this interpretation in the framework of fuzzy sets.

2.2.3 Set-Theoretic Operation

The set-theoretic operations on fuzzy sets are defined via their membership
functions. More specifically, let A and B be two fuzzy sets in U with membership
functions p, and [, respectively.

DEFINITION 1. Union: the membership function W, , of the union AUB is
defined pointwise for all ue U by W, . (u) = max {u , (u),1, (u)}.

DEFINITION 2. Intersection: the membership function |\, _, of the intersection
AN B is defined pointwise for all ue U by W, , (u) = min{ QL , (), () }.

DEFINITION 3. Fuzzy relation: an n-ary fuzzy relation is a fuzzy set in
U, x---xU, and is expressed as {[(u,-,u,), uR(u,,---,un)]I(ul,---,un)e
U, x---xU, }.
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DEFINITION 4. Sup-star composition: if R and S are fuzzy relations in
UxVand VxW, respectively the sup-star composition of R and S is a fuzzy
relation denoted by RS and is defined by:

RoS ={[(u,w),sup(pg(u,v)*pus(v,w))l, ueUU,veV, we W} (2.5)

where * could be any operator in the class of triangular norms (t-norms), namely
minimum, algebraic product, bounded product or drastic product.

2.2.4 Approximate Reasoning

A forward data-driven inference, named generalized modus ponens
(GMP), plays an important role in approximate reasoning. An example of such
fuzzy inference involving fuzzy sets A, A’, B and B'is illustrated as follows:

Premise 1 : xisA’ (2.6)
Premise 2 : ifxisAthenyisB 2.7
Consequent: yis B’ 2.8)

This type of fuzzy inference is based on the compositional rule of
inference, given more specifically as follows:

DEFINITION 5. Sup-star compositional rule of inference: if R is a fuzzy relation
in UXV (as the premise 2), and x is a fuzzy set in U (as the premise 1), then the
sup-star compositional rule of inference asserts that the fuzzy sety in V induced
by x is given by:

y=xoR 2.9

where xoR is the sup-star composition of x and R. If the star represents the
minimum operator, this definition reduces to Zadeh's compositional rule of
inference.
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2.3 Fuzzy Logic System

Most of the fuzzy logic literature deals with mappings from fuzzy sets into
fuzzy sets. In many applications of fuzzy logic to engineering problems, we are
interested in mappings from numbers into numbers, and not sets into sets.
Consequently, our problem is more difficult than the usual fuzzy logic problem.
We have to add a front-end “fuzzifier” and a rear-end “defuzzifier” to the usual
fuzzy logic model. The result is a fuzzy logic system (FLS).

Figure 2.2 shows the basic configuration of a fuzzy logic system. The four
principal components of a fuzzy logic system are a fuzzifier, rule base, inference
engine and defuzzifier. The fuzzifier performs a scale mapping which translates the
range of values of input variables into corresponding universes of discourse, as
well as a function of fuzzification which converts input data into suitable linguistic
values. The fuzzy rule base comprises of a collection of fuzzy IF-THEN rules
which describes the relationship between input states and output states. The
decision-making logic, the inference engine of the system, emulates human
decision-making behaviour based on the principles of approximate reasoning. The
defuzzifier takes a fuzzy output from the inference engine and determines a crisp
output variable. Moreover, the defuzzifier performs a scale mapping, which
converts the range of values of output variables into the corresponding application
domain.

| Fuzzy Rule Base

x .
———|> Fuzzifier Defuzzifier ——>

Fuzzy Inference

| Engine |

Figure 2.2: Basic Configuration of a Fuzzy Logic System.
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2.3.1 Fuzzy Rule Base

The fuzzy rule base consists of a collection of fuzzy IF-THEN rules:
R" : IFx, is F and --+ and x, is F' THEN y is G' (2.10)

where x=(x,,--+,x,)" €Uandye Y are the real inputs and the real output of the
fuzzy logic system, respectively, F;' and G' are labels of fuzzy sets in X, and Y,
respectively, and [ =1,2,---, M. Each fuzzy IF-THEN rule of (2.10) defines a
fuzzy implication F'x---xF! — G', which is a fuzzy set defined in the product
space UXY. Based on generalizations of implications in multivalue logic, many
fuzzy implication rules have been proposed in the fuzzy logic literature. Four
commonly used fuzzy implication rules are:

e Minimum operation rule of fuzzy implication:

M ring (oY) =minfp (), 16 (3)] 2.11)

Product operation rule of fuzzy implication:

Mttt (x,y)= M et (x) Mg (») (2.12)

Arithmetic rule of fuzzy implication:

Mot eptn (Y)Y =minll, 1, ()41, ()] (2.13)

Max-min rule of fuzzy implication:
uFllx,,,anl_,Gl (x,y) = max{min [HF;X,,,XF; (l),llcz n)1- Hﬁ:x,_,x&: (0)} (2.14)

where it (x) is defined by:

Bt () = B () %% () (2.15)

Here the symbol "*" denotes the t-norm, which corresponds to the conjunction
"and" in (2.10). The most commonly used operations for the t-norm are:

min (u,v) fuzzy intersection
uxy = uv algebraic product (2.16)

max(0,u+v-1) bounded product
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2.3.2 Fuzzy Inference Engine

The fuzzy inference engine performs a mapping from fuzzy sets in U to
fuzzy sets in Y, based upon the fuzzy IF-THEN rules in the fuzzy rule base and
the compositional rule of inference. Let A be an arbitrary fuzzy set in U; then,

each R of (2.10) determines a fuzzy set A_oR™, in Y based on the following
sup-star compositional rule of inference:

By ) =SUPIR, (X)*R (X, 9)] (2.17)

where U F Fl G (x,y) is determined by the fuzzy implication rules of (2.11)-
(2.14).

The final fuzzy set, A, o(R™,---,R™™’), determined by all the M rules in
the fuzzy rule base is obtained using fuzzy disjunction:

qun(R“)'...'R(M))(y) = “A,oR“’ ()’) +H'+“’A,ok‘”’ ()’) (2.18)

where + denotes the t-conorm. The most commonly used operations for + are:

max (u,v) fuzzy union
u+v=< u+v—uy algebraic sum (2.19)
min(l,u+v) bounded sum

2.3.3 Fuzzifier

The fuzzifier maps a crisp point x =(x,,-++,x,)" € U into a fuzzy set A_ in
U. There are (at least) two possible choices of this mapping:

e A is a fuzzy singleton with support x; ie., W, (x')=1forx'=x and

X

M, (x')=0 forall other x'e U with x'# x.
e U, (x)=land p A (x') decreases from 1 as x' moves away from x,
In the literature, it seems that only the singleton fuzzifier has been used.

However, the nonsingleton fuzzifier may be useful for inputs which are corrupted
by noise.
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2.3.4 Defuzzifier

The defuzzifier maps fuzzy sets in Y to a crisp set in Y. There are (at least)
two possible choices of this mapping:

e Maximum defuzzifier, defined as:
y= arygssvup[u,h &0 g0y (V)] (2.20)

where 1L, (RO, (y') is given by (2.18).

. R(M))

o Centre-average (or centroid) defuzzifier, defined as:

lAjl yl(“’A UR(D()"))
g 3 LT (2.21)
zh,(ll,,xokm(y )

where y' is the point in Y at which oo () achieves its maximum value and
Hy g0 (y) is given by (2.17).

Note that if we use the center-average defuzzifier, we do not need to
calculate the [ “_R(m)(y) of (2.18) (even though this is normally done); we

only need to calculate p Ao () of (2.17) in the fuzzy inference engine.

2.3.5 Some Specific Fuzzy Logic Systems

From our discussions about the four elements which comprise the FLS
shown in Figure 2.2, we see that there are many possibilities to choose from. We
must decide on the type of fuzzification (singleton or nonsingleton), functional
forms for membership functions (triangular, trapezoidal, Gaussian), parameters of
the membership functions (fixed ahead of time, tuned during a training procedure),
composition (max-min, max-product), inference (minimum, product), and
defuzzifier (maximum, centre-average). This demonstrates the richness of FLS’s
and there is no such thing as the FLS.

If we use the minimim operation in (2.11) and choose * in (2.15) and
(2.17) to be a fuzzy intersection, then the inference is called minimum inference.
Using the minimum inference, (2.17) becomes:

By opo (M) =sup{minfp, (x), 1 (x5l () 0 (9] (2.22)

Fuzzy logic systems with center-average defuzzifier, minimum inference
and singleton fuzzifier are of the following form:
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M
>y (minfit (), ()

!

y(x)= (2.23)

3 (minfi (1)t (5,0)

=1

where y' is the point at which p o achieves its maximum value, and we assume
that uG,(y’)z 1.

If we use the product operation (2.12) and choose * in (2.15) and (2.17)
to be an algebraic product, then the inference is called product inference. Using
product inference, (2.17) becomes:

uA,oR"’ (y) = SXE‘P[”AI (E)u,;ll (x| ) .ufj (xn)uc' (y)] (224)

Fuzzy logic systems with center-average defuzzifier, product inference and
singleton fuzzifier are of the following form:

5 5(Fg o)

=1

M n (225)
z[nuﬁ, (x,.>)

=1

y(x)=

where y’ is the point at which p o achieves its maximum value, and we assume
!
that p ,(y')=1.

We can refer to our FLS expressed in the form (2.23) or (2.25) as a fuzzy
basis function expansion. Doing this is very useful, because it places a FLS into
the more global perspective of function approximation.
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2.4 Relational Fuzzy Model

Relational fuzzy models preserve the qualitative characteristics of rule-
based models but avoid the need for labour-intensive rules development. The
following method of representing fuzzy rules is used:

RY :1Fx is F/ and --- and x, is F, THEN y is G' with possibility p' (2.26)

This method of representing fuzzy rules deviates slightly from the form
normally used by fuzzy logic systems given by (2.10). This modified rule form
allows the relationship between the input and output variables to be represented
using relational arrays rather than by a set of rules. The array contains a cell for
every possible combination of input and output variables. The content of each cell
is a number, with a value between zero and one, which represents the degree of
truth of that particular relationship. A value of one indicates that the relationship is
at its strongest, and a value of zero indicates that the relationship is at its weakest.

The values inserted in the relational array to produce a relational model is
arrived at by identification from i/o data using two general approaches: the
linguistic approach and the approach based on resolution of the fuzzy model.

By the linguistic approach, the fuzzy model is constructed from the
Cartesian product of i/o data. Linguistic model identification was first proposed by
Tong (1978a; 1978b; 1979; 1980) who used "logical examination" to determine
which rule best fits a particular data point. Thus, given a data point, the rule with
degree of fulfilment greater than some threshold is considered to be a valid rule.
Tong used this technique to construct a rule table. The rule table can be thought
of as giving the location of the entries in the relational array that equal 1, while all
other entries are assumed to equal zero. Tong's results show that a linguistic
model may give satisfactory results. Tong's method is, however, difficult to extend
to high-dimensional systems and is not suitable for on-line model adaptation.

Pedrycz (1984) proposed a new composition rule and the corresponding
fuzzy systems identification algorithm. Most of the relational modelling methods
discussed in this thesis are based on the method initially proposed by Pedrycz. To
obtain a more accurate model, relational modelling using the linguistic approach
normally allows on-line model adaptation.

Various methodologies for the resolution of fuzzy models have been
proposed (Czogala and Pedrycz, 1981; Pedrycz, 1983; Lee et al., 1994; Sanchez,
1976, Higashi and Klir, 1984). These approaches suffer from difficulties caused by
the fact that the solution is usually not unique and, sometimes, it even does not
exist. The computational requirements can also be very high. For these reasons,
although several techniques have been proposed, practical applications can hardly
be found.
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Some relational fuzzy modelling techniques that appear suitable for
practical application will now be examined.

2.4.1 Pedrycz Method

Let X, and Y denote the fuzzified values of each variable x, and y on
universes of discourses X, and Y respectively. Assume each universe of discourse
has the same number (=M) of reference fuzzy sets. Then X, and Y are given by:

X,(O={n llem), =12 nandm=12,:-,M 2.27)

Y ={p,Oliem} m=12---,m (2.28)

where X, and Y are vectors whose elements are the grades of membership of the
reference fuzzy sets in their respective universes of discourse.

The predicted output, Y’ by a single-output/multiple-input fuzzy relational
model using the Pedrycz (1984; 1993) method can be represented by the equation:

Y'=XoR (2.29)

where X =(X,,--,X,)” and R is a relational array representing the fuzzy
relationships between inputs and the output.

Identification of a fuzzy process model involves estimation of the fuzzy
relation, R, from process input-output data. For each set of i/o data a family of
relational arrays exists which will satisfy the relational equation. Pedrycz has
suggested the following scheme for determining R:

J
R, ={J(X,x+-xX,xY), where R, =0 (2.30)

j=0

where X represents the Cartesian product, which, for this algorithm, is calculated
using either the minimum or product compositional operator, and the fuzzy union
is interpreted as being the maximum grade of membership.

For prediction, the Cartesian product of the individual grades of
membership of the input fuzzy sets is used for max-min composition:

Y’(y) = max max---max min[ X, (a), X, (b),*-+, X, (2),R(a,b,---,z,7)] (2.31)

aem bem zem

where Y’(y)is the predicted grade of membership corresponding to the output
reference set v .
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2.4.2 Xu and Lu Method

Xu and Lu (1987; 1989) have modified Pedrycz's identification method to
suit their self-learning algorithm. The prediction method proposed does not
directly use the input-set grades of membership for prediction, but instead uses the
expression:

Y’(y) = max max---max {R[A, (@), A, (b),"+, 1, (2), 7]} (2.32)

where X,(a)ek,={1|X1(l)>q,lem)}, similarly for A,, etc., and g is a
predefined threshold.

Thus, the predicted output set memberships are determined solely by
values in the relational array and are not directly affected by the absolute values of
the input memberships. The threshold parameter g limits the relational array
entries for prediction to those whose corresponding input variable memberships
are larger than the threshold. The g parameter thus gives control of the overall
'fuzziness' of prediction, with low values of g implying high amounts of fuzziness.
If the Xu and Lu prediction is used with a g value of zero, every relational array
entry will be used for prediction and the predictions produced will be meaningless.
If very high values of g are used, prediction success cannot be quaranteed.

Xu and Lu took Pedrycz's identification technique a step further by
proposing an algorithm for self learning of the relational model. This self learning
was achieved, in an offline form, by making repeated passes through the i/o data
series and, within each pass, by modifying the relational array according to:

a,d,+(1-a)R_(a,b,-,z,¥) ifa=A],---,z=1,

Rj(a,b,---,z,'y)={ (2.33)

R, (a,b,:--,z,Y) otherwise

where A[, etc., are the indices to the relational array entries which affected the
prediction of the output value, and d; is defined as:

d, =Y(Y)* X, (a)*--* X, (2) (2.34)

where * represents minimum or product composition. The quantity d, is the

result Pedrycz's method would identify for the relational array for this particular
data subset.

The learning coefficient a, is defined to ensure that not only the magnitude

of the error in prediction is taken into account, but also the relative contribution to
this error from a particular relational cell. The definition used is:

a, =hp,e,] (2.35)
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where 4 is a tuning constant, B, (=Y ’(Y)?) is the relative contribution factor and
e;(=y,—y;) is the predictive error.

2.4.3 Graham and Newell Method

This method (Graham and Newell, 1989) is a modified version of the
Pedrycz method. Consider a first-order, single-input, single-output fuzzy system
which takes the following general form:

Y=Y, oU, R (2.36)

where the subscript k represents current time, k-1 one sampling time in the past
and k-d the dead time of d sampling periods in the past.

The relational matrix at each sampling instant, R’ is evaluated as follows:
R'=U,_, XY, XY, (2.37)

The overall relational matrix, R is then updated using the following
manner:

RU,j,k)y=a-R'(',j ,k)+(1-0)-R(’,j’,k) k=1,--N (2.38)
R(i, j,k)=max[R'(i, j,k), R(i, j,k)] forall i, j,k excepti=i’, j=j’ (2.39)

where i' and j' denote the positions of the maximum membership values in input
vectors U, _,and Y,_,, and o is a scalar constant between 0.5 (good noise
rejection) and 1.0 (fastest update). This algorithm can easily be adapted for on-line
model updating.

2.4.4 Ridley, Shaw and Kruger Method

Ridley, Shaw and Kruger (Ridley et al, 1988; Shaw and Kruger, 1992)
have also adapted Pedrycz's method to make it more suitable for identification in
the presence of noise. Given that the entry R(a,b,--+,z,Y) in the relational array
measures the possibility of obtaining an output in reference set Y(7y), and given
inputs in sets X,(a),---,X,(z), a particular array entry is calculated from the
equation:

Z fxl(ﬂ)x“-xX,‘(z) (k) : Yk (Y)

R(a,b,“',z,'Y) =
fol(a)»--xx,,(z)(k)
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where fy x..xx, (k) is the product of the possibilities that the individual inputs
belong to particular reference sets. This product Sx @x-xx,(k) can be

interpreted as the AND combination of a particular group of input reference sets
and represents the possibility that the actual input can be represented by this group
of sets. The summation is carried out over all of the identification observations.
The array Zf , which is used to weight the observations of the possibilities in the
output set, therefore represents a 'frequency' measure of how often, and how
strongly, a particular set of inputs have occured before. It is this feature which
gives this method its excellent resistance to identification noise.

For practical identification purposes, it is easier to create the relational
array using one sample of i/o data at a time. It is easy to show that this method
can be expressed in the following incremental form:

m-1
Fxi@exx, M LN +R, (a’b""’z"Y)ZfX.(a)x---xXn(z) (k)
k=1

Rm(a,b,--.,z,'y)z —
zfx.(a)X~-~xx,,(z)(k)
k=1

(2.41)

where R, and R,_, are the relational array based on m and (m-1) samples of
input/output data. This form of the algorithm is also suitable for continuous on-
line model identification.

2.4.5 Lee, Hwang and Shih Method

In this method, a two-stage identification procedure which combines the
linguistic approach and the approach of numerical resolution of fuzzy relational
equation is proposed. In the first stage, a linguistic approach with Pedrycz's
algorithm is used to get a fuzzy relation with moderate accuracy. This fuzzy
relation is then used as the initial estimate for the second stage in which a
recursive algorithm is used to numerically resolve the fuzzy relational equation to
obtain a more accurate fuzzy relation. The recursive identification algorithm is
based on minimizing a quadratic performance index based on prediction-error.
The procedure is particularly suitable for on-line application since all the formulae
for computing the fuzzy relation are given in recursive form. Details of this
method can be found in the paper by Lee et al. (1994).
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2.5 Piece-wise Linear Fuzzy Model

Takagi and Sugeno (1985) have proposed a type of fuzzy system where
the system output, instead of being a linguistic term, is a numerical function of the
input variables. In each of the fuzzy regions of the input space, a function of the
following form is used to represent the relationship between the input and output
variables:

R:if f(x/is A,,....,x, is A) then y=g(x,,....,x,) (2.42)

where y is the output, x, — x, are input variables and A, — A, are fuzzy sets with

linear membership functions representing a fuzzy subspace in which implication R
can be applied for reasoning.

If a linear model structure is assumed, the implications take the following
format:

R': ifx, is Aland---x, is A} then'y = p} + p\x,+...+ p} X,

- (2.43)
R": ifx isAland...x, is A] theny = p; + p/x,+...+p; x,
Then the output y for the input (x,,--+,x,) is obtained as:
D (A () O AL ())(Py + pix, +o+ Px,)
= (2.44)

> (Al(x) NN AL(x,)
where M is the conjunction operator.

Let B, be:

B, = (A(x)NNA(x,) (2.45)
LY (AN N AN(x)) ‘

Then,

Y=, Bi(py+pix, +-+pix,) (2.46)
or

Y= (PiBi+pix B+ + pxiB,) (2.47)

When a set of input-output data x,;,x,;,.....x,; = y;(j=1,....,m) is given, we can
obtain the consequence parameters py, p,,...., p,(i =1,....,n) by the least squares
method using the above equation.
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Let X (m x n(k+1) matrix), Y (m vector) and P (n(k+1) vector) be:

Bis By xByyrex By e XByy o X, By
X = : : : : (2.48)

Blm.“Bnm xlmB]m'"xlmBnm e kaBlm“'kaBnm

where:

Af(x,].)m---r\ A,’;(xkj)

i~ ; : (2.49)
2 (Al NN A(x,)
Y=[yeeeyn] (2.50)
1 nol n 1 n]7
P=[pyseccr Py Plreees P seces Phoees DL (2.51)
Then the parameter vector P is calculated by:
P=(X"X)'X"Y (2.52)
It is convenient to transform the matrix P into the following form
PPt B
P=l: i i (2.53)
Po Pi ot Py

which gives a more clear representation of the fuzzy model. Each row in the above
matrix gives the parameters of the linear equation in each fuzzy sub-space.

The method as proposed by Takagi and Sugeno involves an iterative
search to determine the best model structure, the optimum fuzzy partitioning, and
parameter estimation. The overall model fit is assessed using a performance index
such as the mean square of the prediction errors based on the test data.
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2.6 Comparison of Fuzzy Modelling Techniques

The measures used for comparing fuzzy modelling techniques will depend
on the intended application of the fuzzy modelling technique. Since, we are
primarily concerned with the use of fuzzy models for model based predictive
control, the important attributes are modelling accuracy, on-line learning capability
and computational requirements. Also important, is the ability to be easily
incorporated in the design of the controller.

The main criticism of rule-based fuzzy models is the amount of time and
effort required to develop the fuzzy rule base using just heuristic knowledge.
Some information may also be lost when humans express their knowledge using
linguistic rules. Wang and Mendel (1992) have suggested supplementing this
approach with sampled input-output pairs. An empirical approach is proposed for
generating fuzzy rules from numerical data, whereby each generated rule is
asigned a degree by an expert that represents his belief of its usefulness. In the
case of conflicting rules, i.e., rules that have the same IF part but a different
THEN part, only the rule with maximum degree is accepted. The mapping from
the input space to the output space of the combined rule base has been proved to
be capable of approximating any real continuous function on a compact set to
arbitrary accuracy.

Recent research seems to suggest that neural network learning algorithms
(Nie and Linkens, 1995; Wang, 1994) and clustering techniques (Kosko, 1992)
can be useful for developing the fuzzy rule base. In fact, these methods may be
preferred over relational modelling methods since it allows heuristic knowledge to
be utilised which is considered to be an important aspect of fuzzy modelling. We
are not aware, however, of any study carried out to compare neurofuzzy
modelling approaches with relational fuzzy modelling approaches.

A number of comparative studies have been published using the gas
furnace data from Box and Jenkins (1970). This data set consists of 296 pairs of
input-output observations where the input is the gas flow rate into the furnace and
the output is the concentration of carbon dioxide in the exhaust gas. Table 2.1
compares some of the methods discussed above from the point of view of
modelling accuracy based on this data set. The performance index used is the
mean square error in prediction. It can be observed that the piece-wise linear
modelling approach proposed by Takagi and Sugeno offers the best accuracy.

For applications where on-line model modification is essential, methods
based on relational models can be considered. A study to compare Pedrycz and
Xu and Lu methods has been carried out by Postlethwaite (1991a). The results
show that max-product composition produces better results than max-min
composition regardless of the identification method used. The results also show
that the best performances using both methods are very similar.
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Number of Mean
Method reference square
sets error
Tong (1978) 7 0.469
Xu and Lu (wihout learning) (Xu and Lu,1987; Xu , 5 0.456
1989)
Xu and Lu (with learning) (Xu and Lu,1987; Xu , 1989) 5 0.358
Pedrycz (1984) 9 0.320
Pedrycz (1984) 7 0.478
Pedrycz (1984) 5 0.776
Lee, Hwang and Shih (max-min method) (1994) 5 0.653
Lee, Hwang and Shih (max-prod method - 1 iteration) 5 0.407
(1994)
Lee, Hwang and Shih (max-prod method - 6 iterations) 5 0.211
(1994)
Ridley, Shaw and Kruger (1988) 5 0.289
Takagi and Sugeno (piece-wise linear model) (1985) 2 0.068

Table 2.1: Comparison of the accuracy of fuzzy modelling techniques applied to
Box and Jenkins (1970) process data.

Relational modelling approaches generally require  significant
computational effort, especially if the number of variables and number of reference
fuzzy sets used are great. Postlethwaite evaluated the Pedrycz method by using
the g-factor concept proposed by Xu and Lu. The g-factor which seemed to give
the best results with both methods was the largest tested (i.e. 0.5). This is
convenient in the sense that the larger the g-factor, the less the work the
prediction algorithm has to do. It also indicates that the trace effects at low grades
of membership can reduce the accuracy of the prediction algorithm. The Pedrycz
algorithm was also found to be more stable to changes in the g-factor.

Postlethwaite also evaluated a modified version of the Xu and Lu
algorithm for self-learning incorporating the Pedrycz method. His results showed
that the two approaches performed similarly at high values of q, but at low values
of the factor the Xu and Lu algorithm was noticeably inferior. This is likely to be a
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problem in practical applications since it adds an additional variable which must
be considered to develop a good quality model.

Other important observations from the Postlethwaite study are that a
relational model developed using self-learning from input/output data can equal
the performance of a rule-based model and that relational modelling approaches
showed excellent tolerance to noise up to 20 percent level.

The method proposed by Lee, Hwang and Shih (1994) showed a
significant improvement in accuracy from 0.407 to 0.211 when the number of
iterations using the training data set was increased from 1 to 6. This study also
confirms the superiority of max-product composition over max-min composition.

The method proposed by Ridley, Shaw and Kruger (1988) is able to
achieve an accuracy of 0.289 with just one iteration. Other tests carried out with
this method using data not used for training shows that it has good predictive
capability. The computational requirements are also not very great. For these
reasons, it appears superior to other relational methods for applications where on-
line model learning capability is desired.

Even though relational models are quite easily developed and modified on-
line, this advantage must be viewed in the context of their known limitations.
Firstly, their use is normally limited to systems with a small number of variables in
view of their large size and computing requirements. A first-order relational model
of a system consisting of 2-inputs and 1-output, where 7 reference sets are used by
each variable, will generate an array consisting of 2401 elements. Another problem
posed by relational models is that there is no simple approach for deriving the
controller output analytically, making it necessary to resort to numerical
approaches which add to the already large computing requirements of the model.
Also important are the controller problems that can arise as a result of incomplete
rule bases. These problems are further discussed in Chapter 3 after examining the
control strategies incorporating relational fuzzy models.

Since the piece-wise linear form of fuzzy rule representation proposed by
Takagi and Sugeno contains more information, the number of rules required will
typically be several orders of magnitude less than relational fuzzy models. A
complex high dimensional nonlinear modelling problem is decomposed into a set
of simpler linear models valid within certain operating regimes defined by fuzzy
boundaries. Fuzzy inference is then used to interpolate the outputs of the local
models in a smooth fashion to get a global model. The computation requirements
after identification are quite reasonable. Studies (Sugeno and Yasukawa, 1993)
carried out using the Box and Jenkins (1970) gas furnace data have also showed
this modelling approach to be generally more accurate than relational modelling
approaches. Another advantage of this model is that an output will always be
generated whatever the value of the inputs. Hence, it is also more suited for use in
controller design than are relational models.
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The above fuzzy model representation has more in common with
traditional models used in model-based control than fuzzy relational models. This
similarity makes it possible to consider adopting at least some model-based control
methods to work with the fuzzy model. Also, as demonstrated by Takagi and
Sugeno, standard identification techniques such as the method of least squares can
be quite easily applied for determining the model parameters. In its original
formulation it cannot be developed on-line. More recent studies by Johansen
(1994) and Wang and Langari (1994) have shown that recursive parameter
estimation techniques can be used for adaptive modelling. Jang (1993) has shown
that there is a functional equivalence between this model representation and radial
basis function neural networks making it possible for learning algorithms proposed
for neural networks to be also applied here.

The piece-wise linear modelling approach does not provide rules that can
be expressed linguistically. As such, it may be criticized that this technique would
be difficult to use interactively with a human in the loop, making it difficult to
update and modify using heuristic knowledge. Techniques based on relational
modelling approaches have a similar difficulty.



Chapter 3

FUZZY MODEL BASED CONTROL

3.1 Introduction

Automatic process control algorithms based on the theory of fuzzy sets
have been successfully developed over the last decade or so. These algorithms
consist of a set of linguistic 'what to do' rules which can be represented and
evaluated on a process control computer using fuzzy sets and the associated fuzzy
logic. The rationale behind this approach to process control is to be able to control
processes which are complex and ill-defined, and consequently for which an
accurate mathematical model does not exist. Fuzzy control algorithms can be built
from purely heuristic knowledge such as a human operator's control strategy.

A number of difficulties face the designer of any fuzzy control algorithm.
Firstly, for any reasonably complex process the number of rules required to ensure
adequate control in all operating regions may be extremely large. Simply eliciting
all these rules from a source such as an operator is a difficult task. Secondly, when
faced with an initial rule set containing anything up to a few thousand rules the
designer must ensure that the rules are consistent and complete. Consistency
means that no two rules are in conflict such that they have the same antecedents
but different consequents. A rule set is complete when every possible input state is
represented. Ensuring consistency and completeness is a daunting task for a large
rule set. These two problems are the most important in the design of a fuzzy
controller.

Two approaches to solving these problems have emerged: self-organising
controllers and process model-based controllers. The self-organising controller of
Procyk and Mamdani (1979) develops a guaranteed consistent rule set on-line that
will satisfy a pre-determined acceptable controller response. This self-organising
controller can be started with no rules at all and will quite quickly learn an
adequate rule set. However, the designer must specify the desired response in a
fashion that can identify a rule that violates the desired response, and then modify
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the rule so that it is more nearly correct. This requires at least a crude incremental
model of the process, and knowledge of the process dead times.

The alternative approach is to model the process rather than the operator
and then to incorporate the process model into some sort of model-based control
scheme. This approach has the following advantages:

e It is easier to obtain information on how a process responds to particular
inputs than it is to record how and why an operator responds to particular
situations.

e The modelling procedure and controller tuning are completely separated.

e The model-based control approach provides flexibility and the means to make
the controller goal seeking rather than simply responsive.

» The advantages of fuzzy reasoning are maintained.

Model based control has been used very widely in the chemical and
petrochemical industries. Because of the difficulties of using or obtaining first-
principles models, the usual procedure is to develop a linear model of the plant
based on empirical data, and to use that model within an optimisation routine. An
alternative approach is to use the same empirical data to develop an intelligent
model using neural network or fuzzy modelling techniques. A number of attempts
have been made to develop fuzzy model based controllers. Most are based on 1-
step ahead predictions using relational fuzzy models which enable on-line model
adaptation. A generic model based control strategy consists of the following steps,
which is repeated at every sampling instant:

e Measure the plant variables. These include manipulated variables that can be
varied to achieve the process goals, measured disturbances that affect the
operation of the process but cannot be regulated, and output variables for
which we have specified objectives (usually given in terms of set points or
inequality constraints).

e Use the measurements and a model of the process to estimate the current
process state.

o Calculate new settings of the manipulated variables that are optimal with
respect to specified objectives.

» Send the calculated settings to the plant and wait for the beginning of the next
cycle. It is assumed that a zero-order hold latches the manipulated variables at
these values for the duration of the sampling period.

The internal model serves a dual purpose: it estimates the current state of
the process and predicts future plant outputs as a function of past and future
(anticipated) inputs and outputs. There are no a priori restrictions on the form of
this model. Difficulties in using traditional cost function and optimisation search
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techniques with some types of fuzzy models have led to some unique controller
formulations.

This chapter examines some fuzzy model based control approaches that
have been proposed in the literature, with particular emphasis to chemical
processes. An attempt is also made to compare some of these approaches.

3.2 Graham and Newell Method

Figure 3.1 shows the general structure of the fuzzy model-based controller
used by Graham and Newell (1988; 1989). There is a fixed set of possible control
actions from which to choose. The fuzzy model is used to predict what the output
would be for each of these actions. A decision maker then selects the most
favourable action to take, for example the one that results in the smallest error.
The selected control action is then applied to the process and the whole procedure
repeats itself each sampling interval. The set of possible control actions must be
selected to give sufficient, yet fine enough control.

Control Action Output
Decision Maker Process —
-
Model
Performance Possible Control
Measure Actions

Figure 3.1: Fuzzy Model based Controller Based on Graham and Newell Method
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Graham and Newell have used this technique for liquid level control using
a simulation as well as a laboratory liquid level rig. For fuzzy modelling, they
have tried both rule-based and relational models. Rule-based models were
generated using a method similar to that proposed by Tong (1980). The relational
fuzzy modelling method used here has been presented in Section 2.4.3. It was
observed that relational models tended to perform better than rule-based models.
To achieve high resolution in their model for their liquid level rig application, they
have used a large number of reference fuzzy sets to describe the process inputs
and output. Due to problems with model size, they were forced to resort to hybrid
fuzzy/conventional models.

3.3 Postlethwaite Method

Postlethwaite (1991b; 1994; 1996) has used the standard Internal Model
Controller (IMC) structure (Figure 1.3). For an open loop stable process and an
open loop stable controller, Garcia and Morari (1982; 1989) have shown that the
nominal closed-loop system performance of the IMC structure is guaranteed to be
stable. Fuzzy model identification and self-learning has been carried out using the
method proposed by Ridley, Shaw and Kruger (1988). The use of relational fuzzy
models using the IMC structure creates problems in that it is difficult to invert
fuzzy models to obtain a controller equation. The controller has therefore been
formulated using a cost function and a numerical optimiser. The optimiser uses a
direct numerical optimisation search technique called Fibonacci search to minimise
the cost function. A method for handling fed-back model error wherein future
predictions are adjusted by adding a time-filtered error term has been proposed.
The correction mechanism increases the initial rate of rise and eliminates the
steady-state error, although this is achieved at the cost of a slightly more
oscillatory response.

In a subsequent paper, Sing and Poslethwaite (1996) have used
multivariable optimisation methods such as simulated annealing (SA), threshold
accepting (TA) and iterative improvement to achieve better modelling accuracy as
compared to Ridley, Shaw and Kruger’s method. The main limitation of these new
methods was found to be the significantly greater computational effort.

3.4 Skrjanc and Matko Method

Skrjanc and Matko (1993) have proposed a fuzzy predictive controller
with adaptive gain which uses the piece-wise linear fuzzy modelling approach
proposed by Takagi and Sugeno. The information provided by the predictions is
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used to calculate the value of a multi-step penalty function, J, at sampling instant
k:

K

J=2h‘[w(k+i)—)3(k+i)]2 3.1

i=N,

where J is the predicted output, w is the reference signal, and N, and N, are the
minimum and maximum values of the prediction horizon. An alternative
formulation to minimise variations in the in the controller output has also been
proposed:

7= 3wk +i) - 5k +D1 + 3 pAuck +i—1)? (3.2)

i=N, i=1
where N_ is the control horizon and p is a weighting constant.

Information about the actual value of the error e(k)=w(k)— y(k) is
added to the penalty function. According to the value of e(k), the penalty function
is modified as follows:

ife(k)=20thenJ=1J 3.3)
ife(k)<O0thenJ=—-J (3.4)

The value of the control signal that would attempt to bring J to zero at the
next sampling instant is then determined using fuzzy logic. The fuzzy rules for
determining the control signal are based on J and AJ and have been expressed in
the form of the familiar rule table.

An adaptive mechanism to vary the fuzzy controller output scaling factor
based on the sum of the past errors has also been considered.

Even though a multistep fuzzy predictive controller has been proposed
using the simplifying assumption that the controller output remains constant over
the entire prediction horizon, simulation experiments have been limited to
prediction and control horizons of one. The results show that the predictive
controller produces a less oscillatory response than a comparable fuzzy logic
controller.
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3.5 Other Fuzzy Model Based Controllers

A multi-objective predictive fuzzy control scheme that uses a collection of
fuzzy rules based on a skilled human operator's experience is described by
Yasunobu and Miyamoto (1985). The controller selects the most likely control
command based on predictions of control results and direct evaluations of the
control objectives. This scheme has been applied to automatic train operation
(ATO) systems which control trains by evaluating safety, riding comfort, accuracy
of stop gap, running time and energy consumption. Simulation results have
revealed significant improvements over conventional PID-based ATO systems and
field tests have shown that the controller can operate trains as skilfully as a human
expert.

Yamazaki (1993; 1994) has proposed a fuzzy model learning predictive
controller by applying a fuzzy inverse relation for deriving desirable control
actions along with a model rule learning algorithm for tuning the process model.
The process model is represented by a set of fuzzy rules which define explicitly
the relationship between control actions and their future process responses. Due to
this rule representation, the design of the controller is re-defined as an inverse
problem of fuzzy relational equations with one unknown fuzzy variable, i.e. the
control action, if the desirable future process response is given in the form of a
reference trajectory.

The indirect self-organising controller proposed by Moore and Harris
(1992) also involves a process model. The relational fuzzy process model is
identified on-line and then inverted to determine the controller rules using a
different approach to Yamazaki.

Wang (1994) has examined various approaches including the feedback
linearising control strategy and the use of Lyapunov synthesis approach to design
direct and indirect adaptive controllers.

Johansen (1994) has proposed an adaptive multivariable controller using
the feedback linearisation concept and the piece-wise linear fuzzy modelling
method proposed by Takagi and Sugeno.. In this controller, the fuzzy model is
numerically inverted and used as the inner level controller. The outer level
controller consists of simple integrators. A major drawback of feedback
linearisation as compared to long-range predictive control is that it is less suitable
for systems with significant nonminimum phase effects.

Nakamori (1991; 1994) has suggested transforming the linear auto-
regressive with exogenous inputs (ARX) model structure used by the piece-wise
linear fuzzy model into an impulse response form to facilitate the design of a long-
range predictive controller.

Braake et al. (1994) describe the application of a model based predictive
control scheme (MBPC) using fuzzy and neural network models to control the
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pressure in a laboratory-scale fermenter. The controller uses standard numerical
optimisation methods such as the Nelder-Mead algorithm and the piece-wise linear
fuzzy modelling approach. It is shown that the process output response of a PI
controller is slower than their proposed MBPC scheme, especially for large
setpoint changes. Tuning the PI controller was also found to be generally more
difficult.

3.6 Comparison of Some Fuzzy Model Based
Controllers

Various fuzzy model based controllers have so far been examined. Of
particular interest to us are those proposed by Graham and Newell, Postlethwaite,
and Skrjanc and Matko. Each one is based on a different fuzzy model
identification technique and has used a different approach for determining the
controller output based on the predictions from the fuzzy model. It is interesting
to try and make a comparison of these three approaches.

Postlethwaite's controller shows a significant performance improvement
to the controller proposed by Graham and Newell when used used to control level
using a similar simulation. It is not totally clear if the improvement is due to the
differences in the control approach only. A major difference is that Graham and
Newell have expressed their model in terms of deviation variables (i.e., the fuzzy
model relates the current change in error and current change in control action to
the change in error at the next sample time) whereas Postlethwaite has used the
actual values of the process variables. Graham and Newell's reasons for doing this
are to increase the model resolution and thereby have a smaller number of
reference fuzzy sets. However, this method of modelling means that if the
operating conditions change, the relationship between deviation variables may
change markedly as a result of the nonlinear process behaviour. To compensate
for this loss of accuracy, on-line model adaptation is essential. Postlethwaite's
results show that it is not necessary to define a large number of reference sets to
achieve good quality control.

Both Postlethwaite and Graham and Newell have emphasized on-line
model building and adaptation using relational fuzzy models. If the identification
does not cover a particular combination of inputs, relational models will be
completely unable to make any prediction. The problem of model completeness is
a major problem with relational model-based controllers. This problem is
exacerbated if a large number of reference sets are used to achieve a high
resolution in fuzzification. Also, the optimisation method used by Postlethwaite
initially searches towards the boundaries of the manipulation, which may be
outside the normal operating envelope of the process and thus not included in the
input/output data used for identification. The effect of this inability to predict is to
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render the controller unable to make any sensible controller output choice. There
are two ways out of this problem. The first is to ensure that the relational model
that the controller uses is complete - but this is not realistic for complex systems.
The second is to include additional logic in the controller to allow it to generate a
reasonable output when it runs into a problem. This is the approach used by
Graham and Newell.

Both studies show that fuzzy model-based controllers perform well in
noisy environments. Studies by Graham and Newell show that the non-adaptive
controller to be particularly robust to noise. Model adaptation improved the
response of the controller when there is no noise, but the controller generally
performed worse under noisy conditions especially when the learning rate was set
close to 1. This was due to many contradictory and incorrect rules being
identified. The policy of completely replacing old rules with new rules leads to a
constantly changing model that may contain many incorrect rules. Good control
was generally maintained when the learning rate o in equation (2.38) was below
0.5.

In the study on the liquid level rig conducted by Graham and Newell and
the study on the laboratory heat exchanger conducted by Postlethwaite, one of the
inputs to the fuzzy process model was a disturbance. It is shown in both cases that
the fuzzy model-based controller is able to outperform a feedforward/feedback PI
controller, especially in noisy environments. By including a disturbance as an input
to the fuzzy model, it is possible to compensate for the effect of the disturbance.

The Skrjanc and Matko method has used the piece-wise linear modelling
approach proposed by Takagi and Sugeno. The advantages of this modelling
approach over relational modelling approaches has been discussed in Section 2.6
and will therefore not be repeated here.

The controller formulations used in each of the above three controllers is
different. The aim of each controller is to minimize the error over the next
sampling interval. Each controller uses a slightly different approach to achieve
this.

A problem posed by relational fuzzy models is that there is no simple
approach for deriving the optimal controller output directly from the model.
Graham and Newell have used a set of nine possible changes to the control
action. Each of these are tested using the process model, and the change that gives
the mimimum predicted error in the process output is chosen as the current
change in control output. An obvious disadvantage of this approach is that the
controller may be severely restricted in its ability to provide fine control.
Postlethwaite has used a numerical optimisation technique working in conjunction
with the process model to determine the control output that will give the minimum
predicted error. While this method seems to be an improvement on the method
proposed by Graham and Newell, numerical optimisation techniques rely on the
objective function being unimodal (i.e. having a single maximum or minimum). In
reality, it is rather difficult to guarantee this with nonlinear process models. The
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problem with multi-modal cost functions is that the optimum the optimiser finds
will depend on the direction of approach. It is conceivable therefore that the
controller could converge on different optimum responses at each sampling
instant, resulting in considerable oscillation in the manipulated variable. It is also
necessary to appreciate the increased computational requirement of the
Postlethwaite method. At each sampling instant, 20 optimisation experiments
using the relational process model have to be carried out before the controller
output can be determined. This may lead to a lower rate of sampling, restricting its
use to slow processes only.

Skrjanc and Matko have not attempted to capitalise on the analogous
structure of the fuzzy model to linear process models in the design of their
controller. Instead, their controller is an extension of the commonly used fuzzy
logic controller (FLC). The process model is first used to make predictions. In the
next step, the control signal is selected which brings the predicted process output
signal back to the reference signal in a way to minimise the area between the
reference and output signals. Even though, multi-step versions have been
proposed, Skrjanc and Matko have evaluated their controller concept using only a
prediction horizon of 1-step. Since this controller's performance has not been
evaluated using a similar control application as the other two controllers, it is not
possible to comment on its comparative performance. It should be noted,
however, that unlike the other controllers, the calculations required at each
sampling instant is very minimal. The main problems with this controller are that
controller tuning is not likely to be any easier than a normal fuzzy controller; and
steady-state errors are likely since the controller structure does not take into
account modelling errors. It is also felt that extending the concept to a multi-step
prediction horizon is not likely to be easy.



Chapter 4

IDENTIFICATION OF FUZZY
PROCESS MODEL

4.1 Introduction

Before a fuzzy model based controller can be designed, it is first necessary
to decide on the fuzzy modelling approach to be used. The discussion in Chapter 2
has highlighted two main fuzzy modelling approaches based on the method used
to represent the fuzzy rules. Fuzzy models are most commonly expressed using
collections of fuzzy IF-THEN rules of the following form:

IFx, isB'and... andx, is B" THEN y is C 4.1

where §=(x,,...,xn)r and y are the input and output linguistic variables

respectively, and B' and C are linguistic values characterised using membership
functions. It is claimed that this fuzzy rule representation provides a convenient
framework to incorporate human experts' knowledge. Systems consisting of many
rules are more conveniently expressed using relational arrays.

Another form of expressing fuzzy rules has been proposed by Takagi and
Sugeno (1985) and has fuzzy sets only in the premise part and a linear model as
the conclusion:

IFx, isB'and ... and x, is B" THEN y =c, +c,x,+ -+ X, 4.2)

where x= (x,,...,x,l )T, y and B' are similarly defined as above, and c, are real-

valued parameters. Since this form of rule representation contains more
information, the number of rules required will typically be several orders of
magnitude less than fuzzy relational models. A complex high dimensional
nonlinear modelling problem is decomposed into a set of simpler linear models
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valid within certain operating regimes defined by fuzzy boundaries. Fuzzy
inference is then used to interpolate the outputs of the local models in a smooth
fashion to get a global model. The advantages of this fuzzy model over relational
fuzzy models have been pointed out in Chapter 2. The similarity to the traditional
linear models used in control engineering makes it particularly attractive, since it
may be possible to adopt control strategies based on linear models to work with
this model without too much difficulty.

In this chapter we will examine the application of the above fuzzy
modelling method to model nonlinear chemical processes using simulations of the
level of liquid in a tank and a continuous stirred tank reactor (CSTR) system.

4.2 Fuzzy Process Model

Consider a single-input single-output system which can be modelled using
the Takagi-Sugeno modelling approach. Although this modelling approach can
accommodate input space partitioning based on more than one variable (i.e.,
multiple premise variables), we shall limit its usage here to systems where input
space partitioning is based on just the current value of the output. It is assumed
that the input space is partitioned using p fuzzy partitions and that the system can
be represented by fuzzy implications (one in each fuzzy sub-space) of the
following form:

L:IF y(t) is B' THEN Yy, (t+1)= afy(t)+---+a§y(t—j+ 1) 43)
+biu(t)+-+biu(t -1 +1) +k, '

where y(f) and u(f) are the process and controller outputs at time ¢, y, (¢ +1) is the

1-step ahead model prediction at time t, B’ is a fuzzy set representing the fuzzy

sub-space in which implication L can be applied for reasoning, and i =1,...,p. The
fuzzy model parameters can be expressed in the following matrix form:

al-al blebl K,
o=| : : (4.4)

Poc.g? BP...pP
al---a? bl---bl k

] r

When a set of input-output data is given, the model parameters can be
calculated using the method of least squares as explained in Chapter 2. The
method as proposed by Takagi and Sugeno involves an iterative search to
determine the best model structure, the optimum fuzzy partitioning and parameter
estimation. The overall model fit is assessed using a performance index such as the
mean square error (MSE) of the prediction errors based on the test data. Details
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of the modelling approach are available from the paper by Takagi and Sugeno
(1985).

The search to determine the optimum fuzzy partitioning points can be
initiated by dividing the input space uniformly. Changes are then made and the
knowledge acquired from earlier changes used to guide subsequent changes,
emphasizing changes which reduce the MSE. When the fuzzy partitioning is close
to the optimum, small changes in the fuzzy partitioning points should not lead to
significant changes in the fuzzy model parameters or the MSE. The fuzzy model
parameters can be verified using a second input/output data set.

It is possible to express the overall fuzzy model output in the following

form:
Yot +1) =BOX(2) (4.5)

where,
X0 =[y@y-yt—j+) u(ty-ut-1+1) 1] (4.6)
=[[31"'Bi"'[3,,] 4.7)
and B, =20 38)

P

Y B[y()]

i=]

B'[y(1)] is the grade of membership of y(f) in B'and P is a vector of the
weights assigned to each of the p implications at each sampling instant.
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4.3 Liquid Level System

4.3.1 Mathematical Model

The system being modelled consists of the level of liquid in a tank with a
manipulated inflow, and an outflow which is dependent on the square root of the
level in the tank (Figure 4.1). The dynamic model of this process is just a single,
non-linear, differential equation:

A%+ BVh=F, (4.9)

where,

h = liquid level in the tank (the controlled variable)

A = cross-sectional area of the tank (constant and equal to 107 m?)
B = aflow coefficient (equal to 1)
F

= the inlet flowrate (the manipulated variable).

The open loop response of the liquid level to changes in inlet flowrate
introduced 100 seconds after the start of simulation (Figure 4.2) shows clearly the
effects of nonlinearity over the range from 0 to 100 cm. By linearising equation
(4.9) around the steady-state, and taking deviation variables, the following first-
order equation is obtained:

<4 -cross-sectionalarea=A- »

Figure 4.1: Liquid level system.
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Figure 4.2: Open loop response of the liquid level to step changes in inlet flowrate.

an'

Tt =K, F] (4.10)
where,
7, =24h, [B (4.11)
K,=2n /B (4.12)

and the primed variables are deviation variables; A, is the steady-state height; 7, is
the time constant; and K, is the process gain. The time constant varies from a

value of 63.25 seconds at a height of 10 cm. to 194.94 seconds at a height of 95
cm. The corresponding values of the process gain are 6.32 and 19.49.
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4.3.2 Identification of Fuzzy Process Model

In this section, we will examine the application of the fuzzy modelling
technique presented in Section 4.2 using a simulation of the liquid level system in
Section 4.3.1.

Data for modelling was generated by applying 25 random step changes,
each lasting 1000 seconds, in the inlet flowrate as shown in Figure 4.3 while
maintaining the level in the tank approximately between 0 and 100 cm. It will be
observed in Figure 4.3 that the level in the tank often reaches steady-state
conditions, thus ensuring that the low frequency range is sufficiently stimulated.
Sampling was carried out at 10 second intervals. A total of 2500 data points were
used for identification.

Since the system being studied is approximately a first-order system, the
following fuzzy model structure has been assumed:

L:ifh(t) is A then h, (t + ) =a'h(t) +b F,(t) +k,, i=1,...,p  (4.13)

where h(t) and F,(t) are the level and inlet flowrate at time ¢, respectively; and it
has been assumed that the input space can be partitioned using p fuzzy partitions.
The model parameters all,...,al” , b,' ,...,bl and kl,...,kp can be represented by the

matrix:

a bk
o= : (4.14)
al b’ k,
Table 4.1 examines different methods of fuzzy partitioning the input space
into 3 as shown in Figure 4.4. The constant term, k; in equations (4.13) has been
assumed to be zero. The model parameters were calculated using the input/output
data used for plotting Figure 4.3. It can be observed that for this particular data

set, the third partitioning method in Table 4.1 provides the smallest mean square
error (MSE).

Tables 4.2 and 4.3 compare the modelling accuracy of the linear model
with the fuzzy models derived using different numbers of fuzzy partitions as
shown in Figure 4.5. Also indicated in Figure 4.5 are the important fuzzy
partitioning points used by the models. It can be seen that, both with and without
the constant term, the fuzzy models provide significantly better modelling
accuracy than the linear model. The MSE generally decreases as the number of
fuzzy partitions is increased. A point to note, however, is that it is considerably
more difficult to experiment with different methods of fuzzy partitioning of the
input space with 5-partition models than it is with 2 or 3-partition models.
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Comparison of the MSE values in Tables 4.2 and 4.3 shows that there is
quite a big improvement in the modelling accuracy when the constant term is
included. The improvement is most significant in the case of the linear model and
least significant in the case of the S5-partition fuzzy model. As a result, the
difference between the lowest and the highest MSE values narrows considerably if
the constant term is included.

Figures 4.6 and 4.7 show plots of the prediction error versus time for the
linear and 5-partition fuzzy models in Table 4.3 based on the input/output data set
used for identification. In both cases the error reaches a maximum immediately
after the introduction of a step change. The generally smaller prediction errors
with the 5-partition fuzzy model are clearly obvious.
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Figure 4.3: Input/output data set utilised in process model identification case

study.
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A A? Al

Grade of
Membership

X y z

Figure 4.4: Fuzzy partitioning of the input space (i.e. liquid level) used for fuzzy
process modelling in Table 4.1.

No. Fuzzy partitioning of input space* Model parameters Mean square
error

X y z a: bli

0.8870 | 0.5187
1 25 50 75 0.8384 | 1.1591 0.1292
0.9280 | 0.6690

0.8504 | 0.5242
2 10 50 90 0.8509 | 1.0871 0.0642
0.9061 | 0.9206

0.8394 | 0.4481
3 0 50 100 0.8594 | 1.0323 0.0587
0.8944 | 1.0706

0.8394 | 0.4489
4 0 50 110 0.8598 | 1.0290 0.0594
0.9005 | 1.0847

0.8394 | 0.4489
5 0 50 120 0.8598 | 1.0290 0.0594
0.9073 | 1.0939

+ refer to Figure 4.4

Table 4.1: Effect of fuzzy partitioning of the input space on model parameters and
the modelling accuracy (k, =0).
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A 1 A 2
1
Grade of
Membership
(0]
0 100
2-partition fuzzy model
A' A? A®
1
Grade of
Membership
0
0 50 100
3-partition fuzzy model
A 1 A 2 A 3 A 4 A 5
1
Grade of
Membership
0
0 25 50 75 100

5-partition fuzzy model

Figure 4.5: Fuzzy partitioning of the input space used for deriving the models in
Tables 4.2 and 4.3.
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No. Model parameters
Type of model MSE
a, b
1 linear model 0.9735 | 0.2194 0.4704
2 2-partition fuzzy model 0.8888 | 0.3320 0.0856
0.8554 | 1.4549
3 3-partition fuzzy model 0.8394 | 0.4481 0.0587
0.8594 | 1.0323
0.8944 | 1.0706
4 | 5-partition fuzzy model 0.7755 | 0.4415 0.0358
0.8082 | 0.9951
0.8640 | 0.9790
0.8900 | 0.9581
0.9005 | 0.9953

Table 4.2: Effect of the number of fuzzy partitions of the input space on the model

parameters and the modelling accuracy (k; =0).

No. Model parameters
Type of mode! MSE
a b g

1 linear model 0.9437 | 0.7032 | -1.8780 0.1824

2 | 2-partition fuzzy model 0.5772 | 0.7029 | -1.0819 0.0439
0.5917 | 1.1831 | 29.1866

3 3-partition fuzzy model 0.7182 | 0.8293 | -0.9896 0.0280
0.7649 | 0.9982 | 4.7612
0.7834 | 0.9593 | 12.1092

4 5-partition fuzzy model 0.7290 | 0.8729 | -0.8549 0.0243
0.7902 | 0.9623 | 0.4566
0.8066 | 0.9637 | 2.8614
0.8146 | 0.9726 | 5.4825
0.8206 | 0.9757 | 8.1966

Table 4.3: Effect of the number of fuzzy partitions of the input space on the model

parameters and the modelling accuracy (k; #0).
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Figure 4.6: Prediction error versus time of the linear model (&, #0).
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Figure 4.7: Prediction error versus time of the 5-partition fuzzy model (&, #0).
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4.4 Continuous Stirred Tank Reactor System

4.4.1 Mathematical Model

A common type of reactor consists of a vessel into which the reactants
flow and from which the products are taken. It is stirred to keep the contents as
uniform as possible in composition and temperature. Often it is provided with an
internal or external means of heat exchange. A schematic diagram of the
continuous stirred tank reactor (CSTR) system is shown in Figure 4.8. A single
irreversible exothermic reaction (A — B) is assumed to occur in the reactor. To

remove the heat of reaction, a cooling jacket surrounds the reactor.

The process model, derived using mass and energy balances, consists of
two nonlinear ordinary differential equations:

Mass balance:

d;A _ % (C, —C)—k,e 7 .C, (4.15)
Energy balance:

E:E(Z-Tﬁﬂ-koe‘ﬂm-q— Q (4.16)

dt VvV c,p c,pV

CAl TI
( N\
P
T C.

Coolant

T C.
e

Figure 4.8: The continuous stirred tank reactor system.
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where,

E%l’u& O 0m s

E]

T A NN
Il

volume of reactor (1.36 m*)
inlet flowrate (1.133 m’-h™)
concentration of A in inlet stream (8008 moles-m™)

concentration of A in reactor (393.3 moles-m™)
specific heat (3140 J-kg™ -K™)

activation energy (£/R = 8375 K)

gas constant

reaction heat (-69,775 J-mole™)

heat removed from the CSTR (1.055x10* J-h™)
reactor temperature (546.7 K)
temperature of inlet stream (373.3 K)

reaction rate constant (7.080x10” h™)
density (800.8 kg-m?)

The nominal operating values and constants for this example are given in
brackets. A simulation model based on these equations was used in our study. The
open loop response of the concentration of A in the reactor to changes in heat
removal rate (Figure 4.9) shows that the relationship between these two variables

is highly nonlinear.
900
ka0 percerg
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//
—_ /
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Figure 4.9: Open loop response of the concentration of A in the reactor to step

changes in the rate of heat removal.
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The process time constant varies from about 1.25 hours for a -25 percent
step change in the rate of heat removal from normal steady-state operating
conditions, to about 1.75 hours for a +25 percent step change. The process gain to
a +25 percent step change is approximately 1.75 times that for a -25 percent step
change.

4.4.2 Identification of Fuzzy Process Model

In this section, we examine the application of the fuzzy modelling method
presented in Section 4.2 using a simulation of the CSTR system in Section 4.4.1.
Data for modelling was generated by applying 50 random step changes, each
lasting 6 hours, in the rate of heat removal such that the concentration of A in the
reactor remained approximately within 250 and 650 moles per cubic metre (Figure
4.10). Sampling was carried out at 0.1 hour intervals. A total of 3000 data points
were used for identification.

The following second order model structure has been assumed:
L:IF C,(t) is B'THEN C,,(t+1)=a,C,(t) +a,C,(t = 1) + b Q(t) +biO(t — 1) + k,
fori=1,....p (4.17)

where C,(f) and Q(¢) are the concentration of A in the reactor and the rate of
heat removal at time ¢, respectively.

Tables 4.4 and 4.5 compare the modelling accuracy of the linear model
with the fuzzy models derived using different numbers of fuzzy partitions as
shown in Figure 4.11. Also indicated in Figure 4.11 are the important fuzzy
partitioning points used by the models. It can be observed that, both with and
without the constant term, the fuzzy models have a significantly better modelling
accuracy than the linear model. As in the case of the level system, the MSE
generally decreases as the number of fuzzy partitions is increased.

Comparison of the MSE values in Tables 4.4 and 4.5 shows that unlike the
level system, the improvement achieved by including the constant term is quite
marginal. The most significant improvement seems to be with the 2-partition fuzzy
model. The difference in the MSE values in the case of the linear model and the 5-
partition fuzzy model is quite small. Table 4.6 shows the model parameters
derived using a second input/output data set. In this case only the 2-partition and
5-partition fuzzy model parameters were derived. The constant term seems to
have a similar effect on the MSE values as observed earlier.

Comparison of the model parameters in Tables 4.4, 4.5 and 4.6 will reveal
that the model parameters derived without the constant term tend to be more
consistent than the model parameters derived with the constant term. This is
particularly evident in the case of the values of k. It will be observed that the
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values of k; for the 5-partition fuzzy model computed using the second data set are
about two times the values computed using the first data set.

Figures 4.12 to 4.15 show plots of the prediction error over the first 150
minutes for the models in Table 4.4 based on the first input/output data set used
for identification. Very little steady-state error is observed in the case of the 5-
partition fuzzy model.
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case study.
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A 1 A 2
1
Grade of
Membership
0
250 650
2-partition fuzzy model
Al AZ A®
9
Grade of
Membership
0
250 400 650
3-partition fuzzy model
A Al A® Al A®
1
Grade of
Membership
0
250 300 400 500 650

5-partition fuzzy model

Figure 4.11: Fuzzy partitioning of the input space used for deriving the models in
Tables 4.4 to 4.6.
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Figure 4.12: Prediction error versus time of the linear model (£, =0).
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Figure 4.13: Prediction error versus time of the 2-partition fuzzy model (£, =0).
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Figure 4.14: Prediction error versus time of the 3-partition fuzzy model (&, =0).
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Figure 4.15: Prediction error versus time of the 5-partition fuzzy model (&, =0).
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4.5 Conclusions

In both the examples examined in this chapter, it has been shown that the
fuzzy process model provides better modelling accuracy than a single linear
process model for representing the dynamics of nonlinear processes. Fuzzy models
with up to 5 partitions were examined in our studies. As a general rule, modelling
accuracy improves with the number of fuzzy partitions used, but the results seem
to show that there is little benefit to be gained by using too many partitions.

The inclusion of the constant term has been shown to lead to better
modelling accuracy in the case of the level system. Even though a reduction in
MSE values was also noticed in the case of the CSTR system, the improvement in
modelling accuracy is questionable since more consistent model parameters were
observed if the constant term was not included.

In the next few chapters, we will attempt to design model based controllers
which capitalise on the better modelling accuracy of the fuzzy process models
investigated in this chapter to also provide better controller performance.



Chapter 5

ONE-STEP AHEAD PREDICTIVE
CONTROLLER

5.1 Introduction

This chapter emphasizes the development of the conceptual framework
for a fuzzy model based predictive control strategy based on the piecewise linear
fuzzy modelling approach proposed by Takagi and Sugeno. To minimise the
development effort, the prediction horizon used by the controller is limited to one-
step only. The control strategy is based on determining the optimal controller
output using an analytical approach. This approach leads to a fuzzy control
algorithm which is much more computationally efficient than the numerically
based control algorithms proposed by other researchers. The performance of the
proposed fuzzy control algorithm is examined using simulations of the level of
liquid in a tank and the continuous stirred tank reactor (CSTR) system described
in Chapter 4. An attempt is also made to compare the performance with some
other fuzzy model-based controllers proposed in the literature as well as the more
traditional PID controller.

Chapters 6 and 7 attempt to generalize the controller concept developed
in this chapter to multi-step prediction and control horizons.
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5.2 Transformation of Nonlinear Fuzzy Process
Model into Linear Model

It was shown in Section 4.2 that the overall model output of the single-
input single-output system can be expressed in the following form:

Ya(t+1) =POX(1) (5.1
where,
X0 =[y@)y-yt-j+0) w@y-u-1+1) 1] (5.2)
al--al bl K,
D= : : : (5.3)
al---a] bl---bl k,
B =[B,BiB, ] (5.4)
md  p = 2DOL (5.5)

14

Y B [y(1)]

i=1

The product of B and @ provides the weighted model parameters at each
sampling instant:

@ =[af--a] b--b] k'] (5.6)

=B P (5.7)

and the overall model output can be expressed in terms of the weighted model
parameters:

Yu(E+1)=D7X (1) (5.8)

Note that the 1-step ahead model predictions using either the weighted
model parameters (equation (5.8)) or the complete fuzzy model (equation (5.1))
will be exactly identical. If the fuzzy model parameters, @, have been determined
as illustrated in Chapter 4, then advantage can be taken of the ability to represent
the 1-step ahead behaviour of the complete fuzzy model at each sampling instant
using ®’, essentially transforming the nonlinear fuzzy model into a linear model,
to facilitate the design of the controller as discussed in the next section. The
linearisation method is discussed further in Section 5.3 after deriving the control
algorithm.
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5.3 Controller Formulation

¥(t)

Yult+1)
Model

u(t)
__%.

Figure 5.1: Block diagram of model predictions using a first-order model.

Consider 1-step ahead model predictions based on our fuzzy model
representation. This is shown in block diagram form in Figure 5.1 in the case of a
first-order system without loss of generality. The control strategy that we wish to
implement here is to determine, at each sampling instant, the value of controller
output, u(z) which will minimize the variance between the predicted process
output, y.(t+1) and the setpoint. This is called the minimum variance control
strategy.

We will now attempt to mathematically formulate the above control
strategy. The variance in the output of the system calculated using the weighted
model parameters at each sampling instant is given by:

J= {[ Ya(t+ D) +err()]-y,, }2

= {[a{}’(’)"" cta) y(t—m+1)+bu(t)+-+bu(t —n+1)+ k" +err(t)]- Yo }2

5.9
where y_, is the setpoint and err(z) is an estimate of the modelling error.
A necessary condition for minimum J is;
dJ
= =0 5.10
o (5.10)

Differentiating the expression for J and using the above condition leads to
the following expression for the control signal which minimises the variance in the
output of the system:
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Figure 5.2: Proposed fuzzy model-based predictive controller structure.

u(t) = é{yw —[ary+--aly(t —m+ D)+ bju(t — D +bu(t —n+ D)+ &’ +err(n)]}
1

(5.11)

Note that in our fuzzy model representation, B is only dependent on the
process output, y(#) and is not affected by the value of u(#) in Figure 5.1. The
weighted model parameters, ®’, calculated using only the value of y(z), can
therefore be used for representing the nonlinear model using a linear model at

every sampling instant. Linearisation in this manner makes it possible to determine
the optimal controller output using an analytical approach. If B had been

assumed to be a function of both y(t) and u(t), then it will not be possible to

linearise as discussed above, and the only way to determine the 1-step ahead
optimal controller output would be by using a numerical approach. It is necessary
to make this point clear to highlight the fact that our proposed control strategy is
only applicable to the special case of Takagi-Sugeno fuzzy modelling approach
where input space partitioning is not dependent on the value of u(z).

Figure 5.2 shows our implementation of the above control scheme. It
includes a feedback mechanism to eliminate steady-state errors. The internal
model is used to estimate the discrepancy between model and process outputs,
error(t) at each sampling instant:

error(t) = y(t) - ym(t) (5.12)
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where y,.(?) is the 1-step ahead model prediction at time (z-1). The estimate of the
error is then filtered to produce err(f) to minimise the instability introduced by
modelling error feedback. The concept of a filter to stabilise the closed-loop
system against plant-model mismatches follows that proposed by Garcia and
Morari (1982) for Internal Model Control. Figure 5.2 also includes a second filter
which serves as a reference trajectory for setpoint changes. The action of each
filter is given by:

Y, () =(1-K;)y,(t =D+ K,y () (5.13)

where y, (¢)is the output from the filter and y,(¢) is the input to the filter at time ¢,
and K, is the feedback filter gain. K, and K, are the feedback filter gains of

Filters 1 and 2 respectively. Upper and lower bounds are imposed on the
controller output to ensure that it does not stray beyond physically realizable
values.

5.4 Application to Control of Liquid Level

5.4.1 Simulation Results

In this section, we examine the application of our proposed control
strategy using a simulation of the liquid level system presented in Section 4.3.1.
Identification of the fuzzy process model has been discussed in Section 4.3.2. The
control problem investigated here is setpoint changes over two ranges: the first
between 10 and 15 cm, and the second between 90 and 95 cm. The overall output
from the controller was limited to the range O to 12 gm/sec.

The following first-order model structure was assumed for the liquid level
system in Section 4.3.2:

L:ifh(t) is A’ then h (¢t +1)=ah(t)+bF,(t) +k, (5.14)

The control signal which minimises the output variance based on the
above process model is given by:

F(t)= bi,'{h"’ ~ [ +k’ +err(n]} (5.15)

Table 5.1 shows the modelling accuracies of the process models used here
based on the studies carried out in Chapter 4. Table 5.2 compares the performance
of controllers based on the integral of absolute error (IAE) calculated over a time
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period of 1000 seconds starting from 1500 seconds from the start of a simulation
run. The gain of Filter 1 (K, ) was standardised to 1. The value of the gain of

Filter 2 (K, ) of 0.05 used in our studies corresponds to filter time constant of 190

seconds. As a general rule, lower MSE values in Table 5.1 corresponds with lower
IAE values in Table 5.2. The best all-round performance seems to be achieved by
the controller using the 5-partition fuzzy model with the constant term.

All subsequent studies carried out on the liquid level system in this thesis
are based on models where the constant term is assumed to be non-zero.

Figures 5.3 to 5.10 provide graphical illustration of the performance of the
proposed control system when using different process models. The generally
better performance of controllers using fuzzy process models as compared to the
controller using the linear process model is clearly evident.

Process model MSE without k; MSE with k;
linear 0.4704 0.1824
2-partition fuzzy 0.0856 0.0439
3-partition fuzzy 0.0587 0.0280
5-partition fuzzy 0.0358 0.0243

Table 5.1: Comparison of modelling accuracies with and without the constant term.

IAE between 10 and 15 cm. IAE between 90 and 95 cm.
Process model
without k; with k; without k; with k;
linear 2109.1 267.9 1633.5 218.6
2-partition fuzzy 606.4 203.5 264.9 217.7
3-patrtition fuzzy 2181 173.2 219.2 198.4
5-partition fuzzy 194.7 189.1 192.2 191.8

Table 5.2: Comparison of 1-step ahead predictive controller performance with
and without the constant term.



Chapter 5: One-Step Ahead Predictive Controller 88

16

. —— T

14

-t

10 \VAH

8
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
Time (seconds)

Figure 5.3: Process output response to setpoint changes between 10 and 15 cm.
when using controller with linear model.
(K, =1 K, =005; k,#0)

10 i i

8
1500 1600 1700 1800 1800 2000 2100 2200 2300 2400 2500
Time (seconds)

Figure 5.4: Process output response to setpoint changes between 10 and 15 cm.
when using controller with 2-partition fuzzy model.
(K, =1 K, =005k #0)
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Figure 5.5: Process output response to setpoint changes between 10 and 15 cm.
when using controller with 3-partition fuzzy model.
(K, =1 K, =005k, #0)
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Figure 5.6: Process output response to setpoint changes between 10 and 15 cm.
when using controller with 5-partition fuzzy model.
(K, =1, K, =005k #0)
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Figure 5.7: Process output response to setpoint changes between 90 and 95 cm.
when using controller with linear model.
(K,=L K, = 005;k,#0)
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Figure 5.8: Process output response to setpoint changes between 90 and 95 cm.
when using controller with 2-partition fuzzy model.
(K, =1, K, =005,k #0)
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Figure 5.9: Process output response to setpoint changes between 90 and 95 cm.
when using controller with 3-partition fuzzy model.
(K, =1 K, =005k =0)
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Figure 5.10: Process output response to setpoint changes between 90 and 95 cm.
when using controller with 5-partition fuzzy model.
(K, =1 K, =005,k #0)
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5.4.2 Comparison of Fuzzy Model Based Controllers

Table 5.3 compares the optimal performance of our controller with other
fuzzy model based controllers that have been proposed in the literature for the
same level control application, i.e. a series of setpoint changes between 10 and 15
cm. and 90 and 95 cm. It will be observed that the best overall performance is
obtained from our proposed controller. It should also be noted that the
computational requirements of our proposed controller should be much less than
fuzzy model based controllers using relational fuzzy models.

Table 5.3 also shows that the performance of our proposed controller is
better than a PI controller.

IAE IAE
Method (bottom of (top of
tank) tank)
Graham & Newell (1989) 969 907
Postlethwaite (with feedback) (1991; 1994) 524 349
P1 control (Postlethwaite, 1994) 426 300
1-step ahead predictive controller
(5-partition fuzzy model, K. =1,K, =005, k, #0) 189.1 191.8

Table 5.3: Comparison of IAE values of various liquid level controllers.
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5.5 Application to Control of CSTR

In this section, we examine the application of our proposed control
strategy using a simulation of the CSTR system presented in Section 4.4.1.
Identification of the fuzzy process model has been discussed in Section 4.4.2. The
control problem investigated here is setpoint changes in the concentration of A in
the reactor of 150 moles.m™ on either side of normal steady-state operation and
feed flowrate and feed concentration changes (i.e., load changes) of 20 percent
and 5 percent, respectively. The output from the controller was limited to the

range 0 to 2.0x10% J-h™.

The following second-order model structure was assumed for the CSTR
system in Section 4.4.2:

L: IF C,(¢) is B THEN Con@+ D) =0a,C, (1) +a,C,(t—1)+b/Q(1) +B;0(t — 1) +k,
fori=1,...,p (5.16)

The control signal which minimises the output variance based on the
above process model is given by:

) =${% —[aiC, () +a;C,(t=1)+b;Q(t —1) +k'+err(t)]} (5.17)

Table 5.4 shows the modelling accuracies of the process models used here
based on the studies carried out in Chapter 4. Table 5.5 compares the performance
of controllers based on the integral of absolute error (IAE) calculated over a time
period of 10 hours starting from 10 hours after the start of a simulation run. As a
general rule, lower MSE values in Table 5.4 corresponds with lower IAE values in
Table 5.5. An exception to this rule seems to be the 5-partition fuzzy model. It
will be observed that the improvement in performance by including the constant
term in the process model is generally not as significant as in the case of the level
system, and deterioration is observed in the case of the S-partition fuzzy model.
Figures 5.11 to 5.14 allow visual comparison of the effect of the constant term on
the controller’s performance in the case of 3-partition and S5-partition fuzzy
models. The best all-round performance is achieved by the controller using the 5-
partition fuzzy model without the constant term.

Also evident from Table 5.5 is the generally better performance of
controllers using fuzzy process models as compared to the controller using the
linear process model.

All subsequent studies carried out on the CSTR system in this thesis are
based on models where the constant term is assumed to be zero.

Figures 5.15 and 5.16 show that the output response from the controller
using the 5-partition model is good over the whole range of K, values even
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though it is slightly oscillatory at higher values. In Figures 5.17 and 5.18, a small
steady-state error is noticed in the response to disturbance changes in the absence
of modelling error feedback which can be eliminated at the expense of a slightly
more oscillatory response by setting K, to a low value of about 0.1. This

corresponds to a filter time constant of 0.9 hours. The observations on the effect
of K, and K are typical of controllers based on IMC and MBPC.

Process model MSE without k; MSE with k;
linear 0.4650 0.4492
2-partition fuzzy 0.2101 0.0936
3-partition fuzzy 0.1268 0.0877
5-partition fuzzy 0.0904 0.0860

Table 5.4: Comparison of modelling accuracies with and without the constant term.

IAE to +150 moles.m-3 IAE to -150 moles.m-3
setpoint change setpoint change
Process model

without k; with k; without k; with k;

linear 293.99 284.53 195.19 182.15
2-partition fuzzy 241.94 43.52 166.86 161.46
3-partition fuzzy 53.43 43.93 167.42 61.34
5-partition fuzzy 4455 44.02 46.43 252.45

Table 5.5: Comparison of 1-step ahead predictive controller performance with and
without the constant term.
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moles-m™ setpoint change when using proposed controller with 5-partition fuzzy
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5.6 Conclusions

Even though the Takagi-Sugeno fuzzy modelling approach can
accommodate input space partitioning based on more than one variable, the two
examples examined in Chapter 4 have shown that input space partitioning based
on just the current value of the process output can provide significantly better
modelling accuracy than a single linear model for representing the nonlinear
system dynamics over a wide range. In this chapter, an analytical approach for
determining the optimal controller output using the fuzzy modelling approach has
also been shown to result in improved controller performance over a similar
controller using a single linear process model as well as other fuzzy model-based
controllers that have been proposed in literature. The question may be asked, if it
is necessary to consider input space partitioning based on more than one variable
(for example, the current values of process and controller outputs) to achieve
better modelling accuracy and better controller performance. This has not been
attempted here mainly because of the problems that will be encountered when
attempting to design a control algorithm using an analytical approach for reasons
pointed out in Section 5.3. Hence, in all of the examples studied in this thesis,
input space partitioning has been based on just the current value of the process
output.

The emphasis in this chapter has been on the one-step ahead predictive
controller structure. It is a well-known fact that one-step ahead predictive
controllers are susceptible to robustness problems. A solution to this problem is to
use a multi-step prediction horizon. The issue of robustness is therefore discussed
in Chapter 7 after examining two methods of extending the controller to multi-step
prediction and control horizons.



Chapter 6

LONG-RANGE PREDICTIVE
CONTROL: NUMERICAL
APPROACH

6.1 Introduction

In the last chapter, the emphasis was on the development of the conceptual
framework for a model based predictive control strategy based on the special case
of the piecewise linear fuzzy modelling approach presented in Chapter 4. Even
though the controller has been shown to work, it has not sufficiently addressed the
issue of controller robustness. One obvious solution to this problem is to extend
the prediction horizon used by the controller. This chapter will focus on a
numerical approach for achieving this. The Fibonacci search optimisation method
used here limits the control horizon to just 1-step. There is, however, no reason
why the method cannot be extended to a multi-step control horizon, or permit
explicit handling of constraints, if a more advanced optimisation technique is used.
The main limitation is the considerable computation capability required.

In Chapter 7, we will present an analytical approach for extending the
prediction and control horizons. The much lower computational requirements of
the analytical approach provides it with a distinct advantage over the numerical
approach. Nevertheless, in the case of high order systems and systems containing
dead times, etc. the numerical approach may be easier to implement. The main
aims of this chapter are to demonstrate the numerical approach and to allow
comparisons to be made between the numerical and analytical approaches. These
objectives are sufficiently met by implementing the control strategy using the
Fibonacci search optimisation method to the tank liquid level control problem
examined in Chapter 5. Some important issues involved in making multi-step
predictions using the fuzzy model are examined in this chapter. These issues are
important not only for the numerical approach but also for the analytical approach.
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6.2 Making Multi-Step Predictions Using the
Fuzzy Process Model
Figure 6.1 shows how predictions can be made in a step-by-step manner

using a second-order model when a multi-step prediction horizon and a control
horizon of 1-step are used. The predicted output from the first-step is given by:

Yt +1) =BOX (1) (6.1)
where,
X(t)= [y(t)---y(t—j+1) u(t)--u(t—I1+1) I]T (6.2)
a,'---a;. b)---b| K,
o= : : (6.3)
al---al bf--bl k,
and P, =—01 B'[y (’)] 6.5)

Equation (6.1) can be generalised to enable multi-step predictions as
follows:

v, (t+i)=BPX(+i-1) (6.6)

where X(t+i-1) is the input vector to the ith prediction step. When attempting to
use of this formula to make predictions in the second and subsequent steps, we are
faced with a dilemna. The model we are using is a 1-step ahead prediction
algorithm which uses of the current value of the process output to determine [ .

Adaptation is needed to allow this algorithm to be used for making multi-step
predictions. We considered the following two options (refer to Figure 6.1):

1. Calculate B for each prediction step using the y, value from the previous

step.

2. Use the value of B calculated in the first step over the entire prediction
horizon.
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The first option appears better, but unfortunately, the model predictions
may not be sufficiently accurate to allow estimation of B in the second and

subsequent prediction steps. If the y, values are inaccurate, then the calculated
values will also be inaccurate. It should be noted that model predictions can be
highly inaccurate immediately after the introduction of a setpoint change or a load

change. Also, the more distant the prediction, the more susceptible it is to
modelling inaccuracies. We believe that calculating B using inaccurate y, values

can have a magnifying effect on modelling errors.

The second option (i.e. setting [ constant) reduces the amount of
computations needed, since it is not necessary to calculate [ separately for each

prediction step. It also implies that a single linear model can be used for making
predictions over the entire prediction horizon. This method of linearization is
explored further in Chapter 7.

Experiments carried out using both approaches showed that the second
approach leads to better controller peformance.
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Figure 6.2: Proposed fuzzy model-based predictive controller structure.

6.3 Controller Formulation

Figure 6.2 shows the controller structure that is to be implemented here.
Even though it is similar to the 1-step ahead predictive controller structure used in
Chapter 5, it is reproduced here to make the description of the controller
presented in this chapter complete. The main difference between the two
controllers lies in the approach used to determine the optimal controller output.
The objective here is to select a set of future control moves (control horizon) in
order to minimize a function based on a desired output trajectory over a prediction
horizon. A general mathematical formulation is:

4 (1Yo (14 H 1)

min  J= i[ y,t+i)—w(t +)f (6.7)

subject to:
u(t+i)=u(t+H_ —1) forall i>t+H_ -1 (6.8)
Yinin S Y, (T 1) S Yy (6.9)
U <u(+i)<u, (6.10)

|ue +i) —u(t +i-1D)| < Auyy, (6.11)
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where u(t), y(t) and w(f) denote the controller output, process output and the
setpoint at sampling instant ¢, respectively; H. is the control horizon; H, is the
prediction horizon; and y,(t+i) denotes the ith-step ahead model prediction at time
t. The objective function is the sum of squares of the residuals between the model
predicted outputs and the setpoint values over the prediction horizon of H, time
steps. The optimisation decision variables are the control actions H, time steps
into the future; beyond H. time steps it is assumed that the control action is
constant.

The formulation also incorporates upper and lower bounds on the output
and input (second and third set of constraints, respectively) and bounds on the
allowed control action change between successive sampling intervals (fourth set of
constraints). Other operating constraints, unique to the system being controlled,
may also be included. Note that both the absolute and velocity constraints on the
controller output are explicitly included in the above formulation. Velocity
constraints can alternatively be accommodated by including them in the objective
function formulation:

min  J= i[yp(t+i)—w(t+i)]2 +Zx[u(: +i)—u(t+i—DP (6.12)

u(t)ou(t+H,—1)

where A is a weighting factor in the interval (0,1) which penalises excessive
changes in the controller output.

Predictions of the controlled output are made explicitly using the process
model. Predictions over the entire prediction horizon of H, time steps is achieved
iteratively using earlier predictions where necessary.

To ensure good setpoint tracking, a mechanism for estimation and
feedback of the modelling error similar to that used in the 1-step ahead predictive
controller is also required here. The filtered estimate of the error, err(f), is used to
correct the predictions obtained from the model:

y,(t+i)=y,(+i)+err(t), i=1,..,R (6.13)

The correction is carried out immediately after each prediction, and it is
the corrrected predictions which are then used for further predictions using the
iterative process discussed above. An assumption is made that err(f) is constant
over the entire prediction horizon. The sequence of corrected predictions is also
used in the cost function minimisation.

Even though the control action can be calculated for a number of sampling
times into the future, only the first one is actually implemented; the whole
procedure is repeated again at the next sampling interval using the latest measured
information. This is called the receding horizon principle. Using this approach, the
horizon over which the process output is predicted shifts one sample into the
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future at every sample instant. This allows us to compensate for future
disturbances or modelling errors.

There are a number of methods available to minimize the cost function, J.
An efficient and accurate solution to this problem is not only dependent on the
size of the problem in terms of the number of constraints and decision variables
but also on characteristics of the objective function and constraints. Most
algorithms employ some form of search technique to scan the feasible space of the
objective function until an extremum point is located. The search is generally
guided by calculations on the objective function and/or the derivatives of this
function. A method which has been used for solving the multi-dimensional
optimisation problem involving a nonlinear objective function and multiple
constraints as presented above is successive quadratic programming (SQP).

The above discussion provides the conceptual framework for a numerical
optimisation based multi-step predictive controller irrespective of the type of
model used for prediction. To evaluate this control strategy using the fuzzy
process model, we shall limit the control horizon to 1-step, i.e., the control signal
is assumed to be constant over the entire prediction horizon. It is also assumed
that the only important constraints are the upper and lower bounds on the
controller output. Making these assumptions allows us to reduce the optimisation
problem from a multi-dimensional search to a one-dimensional search which can
be easily handled using the Fibonacci search method presented in the next section.

Figure 6.3 shows the steps involved in determining the optimal controller
output at each sampling instant for the proposed fuzzy model-based controller.
The figure incorporates the optimisation search procedure to be discussed in the
next section. The number of iterations used by the optimisation search procedure
(i.e. k in Figure 6.3) was standardised to 20.
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6.4 Numerical Optimisation Using Fibonacci
Search

The discussion here will focus on finding a solution to a one-dimensional
optimisation problem which can be represented by:

y =fix) (6.14)
subject to
x, <x<x, (6.15)

where y is the value of the objective function, x is the independent variable, and
x, £ x < x, is the constrained range of x for the problem.

We begin by making the assumption that the objectivé function is unimodal
over the bounded range of the independent variable. A unimodal function is shown
in Figure 6.4 where there is a single minimum in the bounded range (x,,x,). Two

points x, and x, are chosen within this interval such that:
X, <X, <X, <X, (6.16)

Since the function has been assumed to be unimodal in the interval
(x,,x,), we deduce that if f(x,)2> f(x,), then the minimum lies in the interval

(x3,x,), whilst if f(x,)< f(x,), the minimum lies in the interval (x,x,). The
second of these situations is illustrated in Figure 6.4.

v

Figure 6.4: Example of a unimodal function.
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Further reduction of the interval containing the minimum can only be
achieved if more information, in the form of additional function-values is obtained.
This process can then be continued until the interval containing the minimum has
been reduced to a specified size.

Many plausible ways of selecting the points x, and x, have been proposed
such as 2-point equal interval search and method of bisecting or dichotomous
search. They are normally based on symmetric selection of these two points in
order to obtain the same interval reduction factor regardless of which of the two
possible sub-intervals is found to contain the minimum. In the 2-point equal
interval search, x, and x, are chosen as the points of trisection of the interval
(x,,x,). This procedure could then be repeated with the resulting reduced
interval. It will be noted that the function has already been evaluated at the mid-
point of this reduced interval, but this function evaluation is of no use in reducing
the interval further by trisection. A more efficient search scheme would be to place
x, and x, in positions such that the one enclosed within the reduced interval
would constitute one of the two experiments within that interval. The method
known as Fibonacci search is such a search scheme.

The Fibonacci search method is so-named on account of the use made of
the sequence of positive integers known as the Fibonacci numbers. These are
defined by the relations:

F,=F =1 (6.17)
F =F_+F_, n>2, (6.18)

and therefore the sequence begins 1, 1, 2, 3, 5, 8, 13, 21, 34,... If N is the total
number of function evaluations to be performed, the test points for the ith iteration
are:

i FN

xp =M () — Xy + x] (6.19)
FN+l—i

and x;= L(x; —x})+x| (6.20)
FN+1—i

for i=1,2,...,N-1, where (x/,x,) is the initial interval.

However, the use of these rules makes the last two test points coincident
at the midpoint of the interval (x,"',x,”™"). Therefore in order to determine in
which half of the range (xlN -l ,x;' 1) the minimum actually lies, we displace one of

these final test points by an arbitrarily small amount ¢ .



Chapter 6: L.ong-Range Predictive Control: Numerical Approach 110

It can easily be shown that the ith iteration reduces the interval containing
the minimum by a factor (F,_/Fy,,,), and from this it follows that after N

function evaluations ( that is, N-1 iterations), the length of the final interval is:

F, F
HA B oyre=doox)se (6.21)
F, F, F, Fy

at most.

Hence, if the minimum is required to an accuracy of &, then N must be
chosen so that:

>F,, (6.22)

Table 6.1 shows the number of function evaluations needed to achieve a
certain accuracy using the Fibonacci search method. Accuracy is defined as the
ratio of the size of the final interval to the size of the initial interval. An important
property of this method is that this accuracy will be attained in N function
evaluations for any unimodal function, and so in a sense Fibonacci search is the
most efficient one-dimensional search procedure, since no other method can
guarantee an interval reduction factor as large as F,, in N function evaluations.
However many other methods, whilst not guaranteeing this accuracy, have been
found in practice to be more efficient.

To complete this discussion of the Fibonacci search procedure, it remains
to demonstrate that each iteration, except the first, requires just one function
evaluation (versus 2 in equal interval and dichotomous search). This can be readily
seen by supposing for example that for the ith iteration, the interval containing the

minimum is (x;,x;). Then for the (i+1)th iteration:

X" = x| (6.23)
ut =x] (6.24)
and from Equations (6.19) and (6.20):

X = (6.25)

A parallel argument covers the case when the sub-interval containing the
minimum at the ith iteration is (x},x}).

The final output of this numerical search is an interval in which the
minimum lies. It is assumed that the optimal value lies at the mid-point of this
interval.
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Number of
Accuracy .
experiments
0.1 6
0.01 11
0.001 16
0.0001 20

Table 6.1: Number of iterations required to achieve a given accuracy using the
Fibonacci search.

6.5 Application to Control of Liquid Level

In this section, we will examine the application of the proposed control
system to a simulation of the liquid level system presented in Section 4.3.1 and
used in Section 5.4.1 to evaluate the 1-step ahead predictive controller. In the
process models used here, the value of the constant term in equation (5.14) has
been assumed to be a non-zero value. The control problem investigated here is
exactly identical to Section 5.4.1. The gain of Filter 1 (K ) has been standardised

to 1 to prevent interference with the effect of the prediction horizon on the
performance of the controller.

Figures 6.5 to 6.8 show the effect of the prediction horizon on the
performance of controllers using linear and S-partition fuzzy process models. It
will be observed that the output response becomes less oscillatory and more
sluggish as the number of steps in the prediction horizon is increased.
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Figure 6.5: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 10 and 15 cm. when using proposed
controller with linear model (K, =1, K, =005,k #0).
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Figure 6.6: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 10 and 15 cm. when using proposed
controller with S-partition fuzzy model (K, =1, K, =0.05;k, #0).
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Figure 6.7: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed
controller with linear model (K, =1, K, =005k, #0).
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Figure 6.8: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed
controller with 5-partition fuzzy model (K, =1, K, =0.05;k, #0).
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6.6 Conclusions

It has been shown in this chapter that a multi-step predictive controller can
be designed based on the fuzzy process model presented in Chapter 4.
Investigations carried out using the tank level simulation shows that the output
response becomes less oscillatory and more sluggish as the number of steps in the
prediction horizon is increased.

A detailed analysis of the performance of the controller has been deferred
until after the analytically-based multi-step predictive controller is presented in
Chapter 7.



Chapter 7

LONG-RANGE PREDICTIVE
CONTROL: ANALYTICAL
APPROACH

7.1 Introduction

Although the long-range predictive controller described in Chapter 6 has
been shown to work quite well with the optimal controller output determined
numerically using the Fibonacci search method, the computation time can be quite
considerable, especially if the prediction horizon is very long. Also, trying to
determine the optimal controller output for a control horizon of greater than 1-
step will involve a multivariable search technique such as successive quadratic
programming (SQP). In this chapter, we will examine an alternative analytical
approach for deriving the optimal controller output in the multi-step predictive
controller. To facilitate the design of the controller, it is necessary to linearise the
fuzzy model at every sampling instant by the weighting method discussed in
Chapter 5. Section 7.2 compares the effectiveness of this linearisation method with
the usual linearisation method used in control engineering.

The performances of controllers using analytical and numerical approaches
will be compared. An attempt will also be made to examine the performance of the
controller in the presence of noise and when there are changes in process
conditions (i.e., robustness tests).
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7.2 Linearisation By Weighting Fuzzy Model
Parameters

Even though the fuzzy model consists of a number of linear sub-models,
the overall model output is non-linear. To facilitate the design of a multi-step
predictive controller using an analytical approach, we will now examine a simple
method of linearising the fuzzy model about the current operating point.

It has been shown in Chapter 6 that the value of B calculated for the first

prediction step can be used over the entire prediction horizon. This is convenient
since it implies that the linear model determined by weighting the fuzzy model
parameters at each sampling instant can be used to represent the fuzzy model for
making predictions over the entire prediction horizon. Recall from Chapter 5, that
the weighted model parameters are given by:

@' =[af-a] blb] K| (7.1)

J
=B (7.2)

where @’ denotes the weighted model parameters, and ® denotes the matrix
providing the fuzzy model parameters.

Assume that the fuzzy partitioning of the input space shown in Figure 7.1
is used for deriving the fuzzy model. At point x,, the model output is given

exactly by the fuzzy implication used in sub-space A%, and at point x,, the model

output is given exactly by the fuzzy implication used in sub-space A*. Let us
represent the model outputs at x, and x, as y, and y,, respectively. Assume that

the nonlinear fuzzy model output is monotonically increasing over the region x,-
x,. We wish to approximate the behaviour of the nonlinear model over x,-x,
using a linear model.

Grade of
Membership

X4 X2

5-partition fuzzy model

Figure 7.1: Fuzzy partitioning of the input space used for deriving fuzzy model.
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The output, y, of the linear model derived at any point, x, in the region
x,-x, by weighting the parameters of the fuzzy implications in A3 and A4 will
satisfy the following relationship:

NEVSY, (7.3)

This establishes the upper and lower limits of the output of the linear
model at any point x,. Also, if the linear model derived at x, is used with any

other value of x in the region x,- x, , the above relationship should still hold.

One way to improve the accuracy of the linear model in the region around
x, is to reduce the interval x,-x, by increasing the number of fuzzy partitions.

This will also reduce the interval (y, —y,).

To compare this method of linearisation with the traditional method of
linearisation, we consider first a simple 2-partition fuzzy model described by the
following two rules:

IF xis B' THEN y = 2x (7.4)
IF x is B> THEN y = 4x

where B' and B* denote the fuzzy partitions shown in Figure 7.2. The overall non-
linear model from x = 0 to x = 10 is given by:

10—x X
y"( 10 )'ZH(E)'“ (1.5)

=02x2+2x

Since the non-linear model is available, it is possible to linearize by
determining the gradient. Linearisation at the point x = 5 leads to,

—154[ D) (oo
Y, _15+(dx),,=5(x 5) (7.6)

=4x-5

Linearisation by weighting the model parameters at x = 5 as described
above leads to,

y; = 05(2x) + 05(4x)

=3x

1.7)

From Figure 7.3 which shows plots of the 3 models, it will be noticed that
the 2 linearised models can provide quite different results.
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Grade of
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2-partition fuzzy model

Figure 7.2: Fuzzy partitioning of the input space used by the fuzzy model.
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Figure 7.3: Plot of nonlinear model and linearised models at x =5.
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Consider instead the 5-partition fuzzy model described by the following
fuzzy rules:

IF x is B' THEN y = 2x

IF x is B THEN y = 2.5x

IF x is B> THEN y = 3x (7.8)
IF x is B* THEN y = 3.5x

IF xis B> THEN y = 4x

where B' to B® denote the fuzzy partitions shown in Figure 7.4. The overall model
from x = 0 to x = 2.5 and the two linearised models at x = 1.25 are:

y, =02x" +2x (7.9)
y, =25x-03125 (7.10)
y, =2.25x (7.11)

Figure 7.5 shows plots of these 3 models. In this case, there is only a small
difference between the 2 linearised models. Also, it will be noticed that the linear
models approximate the non-linear model quite closely. Increasing the number of
fuzzy partitions will lead to a more gradual transition in fuzzy model parameters
between adjacent fuzzy partitions. Hence, by increasing the number of fuzzy
partitions, the difference between the two linearisation methods can be made
negligible and good local approximation of the nonlinear model can be achieved by
using either of the two linear models.

It has been shown above that better linearised modelling accuracy by
weighting the fuzzy model parameters can be achieved by increasing the number
of fuzzy partitions. This improvement in accuracy should be reflected in better
performance by the controller designed using the linearised model. In practice, it is
found that the controller’s performance tends to converge as the number of fuzzy
partitions is increased, and there is little benefit to be gained by using too many
fuzzy partitions. In our experiments, it was generally not necessary to go beyond 5
fuzzy partitions.
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Figure 7.4: Fuzzy partitioning of the input space used by the fuzzy model.
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Figure 7.5: Plot of nonlinear model and linearised models at x =125.
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7.3 Controller Formulation

Some unique problems need to be addressed when attempting to develop a
MBPC strategy incorporating the above fuzzy process model. MBPC strategies
such as Dynamic Matrix Control (DMC) (Cutler and Ramaker, 1978) and
Generalised Predictive Control (GPC) (Clarke et al., 1987) are based on models
which linearize processes locally. Even though the fuzzy model is essentially a
nonlinear model, it is also possible to linearise as shown in Section 7.2. There are,
however, some important differences. Linear models are normally used with
deviation variables in control loops, whereas the fuzzy model requires the absolute
values of variables. Also, MBPC strategies such as GPC use the incremental form
of model representation to enable an integrating action to overcome the offset
problem due to modelling inaccuracies. A method of expressing the fuzzy model in
incremental form was not readily obvious. Hence, an MBPC strategy which works
with the linear ARX model structure where the absolute values of variables can be
used and which incorporates a feedback mechanism to overcome the offset due to
modelling inaccuracies is needed. A control strategy satisfying these requirements
based on analytical derivation of the 1-step ahead optimal controller output was
proposed in Chapter 5. The controller to be described below extends this concept
using a long-range predictive control strategy. The approach used to derive our
control strategy follows that used for GPC by Clarke et al. (1987) because of the
similarities between the fuzzy process model and the transfer function process
model used in GPC.

Consider a single-input single-output discrete time linear system described
by the general ARX model structure. The model predictions over a prediction
horizon of n time steps is given by:

y,(t+)=a,y()+..4a;y(t+ 1= j) +bu(t)+.. +bu(t +1-1) + k +err(t)

y,+2)=a,y(t+D+.+a;y(t+2- D+bu(t+D)+..+bu(t+2-1)+k +err(t)

y,(t+n)=a,y(t +n=D+..4a,y(t+n—j)+bu(t +n—D+.. +bu(t +n—10)+k +err(t)
(7.12)

where err(f) is an estimate of the modelling error and y,(t+1) to y,(t+n) are

the model predictions after corrections for modelling error at time ¢. It has been
assumed that the modelling error is constant over the entire prediction horizon. If
the control horizon is m, the values of u(t) following u(z+m-1) can be assumed to
be constant and equal to u(t+m-1).

Using the above equations, predictions over the entire prediction horizon
are achieved iteratively using earlier predictions where required. Alternatively, the
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above equations can be transformed into the following form using back-
substitutions:

Y, (E+D)=py@O)+. . +p,;yt+1-j)+ Pyt =D+ Dy +H1=1)
+q,,u(t) +rnk +rerr(t)

Y, (t+2)= p YO+ 4P, Yt +1= )+ py oyt =D A py oy yu(t +1-1)
+q,,u(t) + g u(t + 1)+ rnk +rerr(t)

y,(t+m)=p, y(O)+..+p, y(t+1= )+ p,aut =D+ 4p, o ut+1-1)
+q u(t)+.. +q, u(t+m—1)+r.k+r,err(t)

Yy (t+n)=p,y()+.. Ap,yE+1-j)+ Pn(jﬂ)“(t - 1)+---+Pn(j+l—|)“(t +1-10)
+q, u(t)+.. +q, u(t+m—=10)+rk+rerr(t)

(7.13)
or,
Y(t)=PX()+QU (1) +R[k +err(t)] (7.14)
where,
YO =[yp(t+1) - ypt+m)] (7.15)

X(=[y@®) yt-1) - ye+1-j) ut=1) - u+1-0] (7.16)
U@ty=[u@®) - ut+m-1] (7.17)
Pu ot Py

P=| : : (7.18)
P " Pagiw-y
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(g, 0 0 0 0]
49n 4 0 -+ 0
o= - - - (7.19)
qml qm2 qm3 e qmm
_qnl qn2 qn3 ot qnm ]
R=[r, - rJ (7.20)

Y(z) denotes the model predictions over the prediction horizon, X(¢) is a
vector of past plant and controller outputs and U(?) is a vector of future controller
outputs. If the coefficients of P, Q and R can be determined then the
transformation can be completed. The number of columns in P is determined by
the ARX model structure used to represent the system whereas the number of
columns in Q is determined by the length of the control horizon. If the control
horizon is 1-step, then Q will consist of only one column. The number of rows is
fixed by the length of the prediction horizon. The calculation of the coefficients of
P, Q and R for first-order and second-order systems for a control horizon of 1-
step are discussed later on in this chapter.

In order to define how well the predicted process output tracks the
setpoint, the following cost function is used:

7= [y, (t+i)—wit + D (7.21)

=[x -wn ] [r@)-w)] (7.22)

=[PX()+QU ) +R(k +err(t)) =W ()] [PX (£) + QU (1) + R(k +err(t)) = W(1)]
(7.23)

where,
W) =[wt+1) - wt+n)] (7.24)

W(?) is a vector of the setpoints over the prediction horizon. The optimal
controller output sequence can be found by minimising the above cost function.
An analytical solution is available if the cost function is quadratic, the model is
linear and there are no constraints. A necessary condition for minimum J is:

3 _,

= - 7.25
YT, (7.25)
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Figure 7.6: Proposed fuzzy model-based predictive controller structure.

Differentiating the expression for J and using the above condition leads to
the following optimal solution:

U@ =[Q"QI"QT[W()-PX(t)-R(k +err())] (7.26)

Adopting the above control strategy to work with the fuzzy model only

requires substituting the normal linear ARX model parameters with the weighted
model parameters determined at each sampling instant from the fuzzy model using
the method proposed above. Hence, the overall control strategy consists of the
following 3 steps carried out in succession at each sampling instant:

1. Calculate the weighted model parameters vector, ®’ using the fuzzy
process model and the current value of the process output.

2. Calculate the coefficients of P, Q and R matrices using @’ .

3. Calculate the optimal controller output sequence, U(f) using equation
(7.26).

Even though the control sequence over the entire control horizon will have
been calculated, only the first one is actually implemented; the whole procedure is
repeated again at the next sampling interval using the latest measured information.
This is called the receding horizon principle. Using this approach, the horizon over
which the process output is predicted shifts one sample into the future at every
sampling instant.
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Implementation of the above control scheme uses a similar approach to the
one-step ahead predictive controller (Figure 7.6) and will therefore not be further
elaborated here.

7.3.1 First-Order System

A first-order system can be described by the following ARX model
structure:

y,(t+1)=a,y(t)+bu(t)+k+err(z) (7.27)

Model predictions over a prediction horizon of n-steps based on a control
horizon of 1-step is given by the equation:

Y(1) =PX () + QU (t) + R[k +err(t)] (7.28)
where,
Y@y =[y,a+D) -~ y,a+n] (7.29)
X(1)=[y1)] (7.30)
U(t) =[u()] (7.31)
P=[p, - »p] (7.32)
Q=[s, - 4] (7.33)
R=[ - ] | (7.34)

Back-substitution during model transformation leads to the following
recursive formulae for determining the coefficients of P, Q and R:

hh=aq (1.35)
pi=a,-p,_, fori=2,...,n '
“=h (7.36)
q,=a,-q,_,+b,fori=2,....n
n=1

(7.37)

r,=a,-r_+1, fori=2,...,n
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7.3.2 Second-Order System

A second-order system can be described by the following ARX model
structure:

y,(t+D)=a,y(t)+a,y(t - D) +bu(t) +bu(t-1)+k+err(t) (7.38)

Model predictions over a prediction horizon of n-steps based on a control
horizon of 1-step is given by the equation:

Y(£)=PX(t)+QU () +R[k +err(t)] (7.39)
where,

Y0 =[y,a+) - y,e+m] (7.40)

X = ye-1) we-1] (7.41)

U(t) =[u(r)] (7.42)
Pu Pu P

p=| @ (7.43)
Pu P P

Q=[z, - 4] (7.44)

R=[r - r] (7.45)

Back-substitution during model transformation leads to the following
recursive formulae for determining the coefficients of P, Q and R:

P =4q P =40, pis=b,

Py =4, p, ta, P =4, Py P33 =4, Py

Pa =41 Dy T APay Pia =4 Py T P2y, Pis =4 Py YA PGayss
fori=3,...,n (7.46)

g =b

q,=a,-q,+b +b, (7.47)

4, =a,"qu_yta, q;_, b +b,, fori=3,....n

n=1
r,=a,+1 (7.48)

c=a, r_ta, r_,+1 fori=3,...,n
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Hence, the coefficients of P, Q and R can be determined quite easily for
any length of prediction horizon in the case of first-order and second-order
systems.

7.4 Application to Control of Liquid Level

The gain of Filter 1 (K ) has been standardised to 1 so that the effect of

the prediction horizon on the performance of the controller could be studied free
of the influence of this parameter. The gain of Filter 2 ( K fz) was set to the value

0.05 based on studies carried out on the 1-step ahead predictive controller in
Chapter 5 which showed that this value of K, leads to close to optimum

performance. The control horizon has been standardised to 1-step; and the process
models have included the constant term, k; since studies in Chapter 5 have shown
that this leads to better controller performance.

Analysis of the IAE values in Tables 7.1 and 7.2 and Figures 7.7 to 7.14
will reveal all-round good performance from the controller using the S-partition
fuzzy model when the prediction horizon is about 2-steps. The IAE achievable
with this controller is close to the minimum achievable IAE at both levels under
noisy conditions. The performance when using the 2-partition and 3-partition
fuzzy models is only marginally worse than the 5-partition fuzzy model.

It is also clearly evident that fuzzy model based controllers generally
perform better than the controller using the linear model. A considerable amount
of time is needed to reach the steady-state level at the lower level when using the
linear model.

Two important general observations can be made from this application
study. Firstly, it will be noticed that the output response becomes less oscillatory
and more sluggish as the number of steps in the prediction horizon increases.
Secondly, the difference in the performance of controllers using fuzzy process
models seems to more significant when the prediction horizon is small. These
observations are discussed further in Section 7.5.

It will be observed in Figure 7.10 that a considerable amount of time is
needed for the steady-state offset correction. Even though better modelling
accuracy is achieved with the 5-partition fuzzy model, there may be slight
variations in modelling accuracy over the range from 10 to 15 cm., especially
under steady-state operating conditions. Variations in the modelling accuracy are
probably smaller near the top of the tank. The time needed for offset correction
can be reduced by increasing the value of K .
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Figure 7.7: Effect of number of steps in prediction horizon on process output

response to setpoint changes between 10 and 15 cm. when using proposed
controller with linear model (K, =1, K, =005k, #0).
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Figure 7.8: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 10 and 15 cm. when using proposed
controller with 2-partition fuzzy model (K, =1, K, =005,k #0).
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Figure 7.9: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 10 and 15 cm. when using proposed
controller with 3-partition fuzzy model (K, =1, K, =005,k #0).
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Figure 7.10: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 10 and 15 cm. when using proposed
controller with 5-partition fuzzy model (K, =1, K, =005k, #0).
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Figure 7.11: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed
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controller with linear model (K, =1, K, =0.05 k, #0).
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Figure 7.12: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed

controller with 2-partition fuzzy model (K, =1, K, =005k, #0).
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Figure 7.13: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed
controller with 3-partition fuzzy model (X, =1, K, =005k, #0).
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Figure 7.14: Effect of number of steps in prediction horizon on process output
response to setpoint changes between 90 and 95 cm. when using proposed
controller with 5-partition fuzzy model (K, =1, K, =005k, #0).
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7.5 Application to Control of CSTR

The gain of Filter | (K f|) has been standardised to 1 so that the effect of

the prediction horizon on the performance of the controller could be studied free
of the influence of this parameter. The control horizon has been standardised to 1-
step; and the value of the constant term, k; used by the process models has been
assumed to be zero, since studies in Chapter 4 and 5 have showed that this is
sufficient. To examine the effect of noise on the performance of the controller,
uniformly distributed noise in the range between -20 and +20 moles.m™ was added
to the output from the simulation before being used by the controller.

Analysis of the IAE values in Tables 7.3 and 7.4 and Figures 7.15 to 7.20
will reveal that the controller using the S-partition model provides the best
performance to both +150 and -150 moles-m™ setpoint changes. It will also be
observed that the controller using the 3-partition model performs better than
controller using the 2-partition model which in turn performs better than the
controller using the linear model. Figure 7.21 shows the process output response
when this controller is used.

As in the case of the liquid level controller, increasing the prediction
horizon leads to a less oscillatory and more sluggish response. The optimum
performance under noisy conditions is achieved in this case with a prediction
horizon of about 5-steps.

It will also be observed that the controller using the 5-partition fuzzy
model performs significantly better than other controllers when the prediction
horizon is small, but the difference in the performance of the controllers gets less
when the length of the prediction horizon is greater. In fact, using the 3-partition
model leads to only marginally worse performance if the prediction horizon is
more than I-step. This observation leads to two important conclusions. Firstly, the
use of a more accurate model, achieved by increasing the number of fuzzy
partitions, reduces the prediction horizon needed for optimal performance. The
shorter rise times (i.e., quicker response to setpoint changes) with smaller
prediction horizons generates lower IAE values. Secondly, the improvement in
controller performance achieved by increasing the number of fuzzy partitions
beyond a certain amount, 3 in the case of the CSTR model, is quite marginal.
Similar observations were made when the controller was used in the level control
application in Section 7.4. These observations reflect the relationship between the
number of fuzzy partitions and modelling accuracy in Tables 4.2 and 4.5.

Tables 7.3 and 7.4 also reveal that the performance of the controller using
a single linear model is generally very poor, reflecting its poor representation
accuracy of nonlinear systems over a wide range.

Increasing the number of steps in the prediction horizon also introduces
greater sluggishness in the response to load changes as observed from Figures
7.22 and 7.23.
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Figure 7.15: Effect of number of steps in prediction horizon on CSTR output
response to +150 moles.m™ setpoint change when using proposed controller with
2-partition fuzzy model (K, =1,K, =0.1; k,=0).
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Figure 7.16: Effect of number of steps in prediction horizon on CSTR output
response to -150 moles.m™ setpoint change when using proposed controller with
2-partition fuzzy model (K, =1,K, =0.1; £, =0).
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Figure 7.17: Effect of number of steps in prediction horizon on CSTR output
response to +150 moles.m™ setpoint change when using proposed controller with
3-partition fuzzy model (K, =1,K, =0.1; &, =0).
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Figure 7.18: Effect of number of steps in prediction horizon on CSTR output
response to -150 moles.m™ setpoint change when using proposed controller with
3-partition fuzzy model (K, =1,K, =0.1; k, =0).
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Figure 7.19: Effect of number of steps in prediction horizon on CSTR output
response to +150 moles.m™ setpoint change when using proposed controller with
5-partition fuzzy model (K, =1,K, =0.1; £, =0).
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Figure 7.20: Effect of number of steps in prediction horizon on CSTR output
response to -150 moles.m™ setpoint change when using proposed controller with
5-partition fuzzy model (K, =1,K, =0.1; £, =0).
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Figure 7.21: Process output response to +150 moles.m™ setpoint change when
using S-steps ahead predictive controller with 5-partition fuzzy model in the
presence of noise (K, =1,K, =0.1; k, =0).
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Figure 7.22: Effect of number of steps in prediction horizon on CSTR output
response to +20 percent change in feed flowrate disturbance when using proposed
controller with 5-partition fuzzy model (K, =1,K, =0.1; k, =0).
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Figure 7.23: Effect of number of steps in prediction horizon on CSTR output
response to -20 percent change in feed flowrate disturbance when using proposed
controller with 5-partition fuzzy model (K, =1,K, =0.1; k, =0).
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7.6 Numerical Approach versus Analytical
Approach

Comparison of Figures 6.5 to 6.8 with Figures 7.7, 7.10, 7.11 and 7.14
shows that the process output responses using both approaches are almost
identical. This is despite the fact that the computation time required by the
analytical approach is significantly less than the numerical approach. Table 7.5
gives an indication of the approximate time required to run a typical simulation of
the tank liquid level control problem on a 66 MHz 80486 microcomputer system
when the controllers use the 5-partition fuzzy model.

Time required to complete simulation
(seconds)
Prediction horizon
(number of steps) Numerically derived | Analytically derived
controller output controller output
Tank level simulation (no control) 10 10
1 110 25
2 133 26
5 207 28
10 317 31
20 558 38

Table 7.5: Comparison of the times required to complete typical simulation runs
over 2500 seconds on a 66 Mhz 80486 microcomputer.
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7.7 Robustness Analysis

In order for a control system to function properly, it should not be unduly
sensitive to small changes in the process or to inaccuracies in the process model if
a model is used to design the control system. A control system that satisfies this
requirement is said to be robust or to exhibit a satisfactory degree of robustness.

Although changes in real processes can be attributed to a multitude of
causes, we shall limit our analysis of the robustness of the controller used for the
CSTR system to changes in just one variable. In the development of the
mathematical model, an assumption was made that the volume of the reactor (V)
remained constant at 1.36 m’. Accumulations of solids in the reactor, changes in
level, etc., can cause variations in the volume. In this study, we have therefore
focused on the effect of variations in the volume of the reactor on the performance
of the controller. The value of V in the mathematical model of the CSTR system
was varied from 1.088 to 1.632 m’ and the performance of the controller
evaluated using the 5-partition fuzzy model that was generated when V was 1.36

3
m.

Table 7.6 shows that sudden and significant performance deterioration of
the one-step ahead predictive controller can take place especially when V is below
the normal value. A very small change in V can lead to poor controller
performance in the case of feed flowrate changes.

It will be observed from Tables 7.7 to 7.9 that the robustness of the
controller improves when the prediction horizon is greater than 1 and is able to
cope with the significant changes (more than what is usually encountered in
practice) in the volume of the reactor investigated in this study. It will also be
observed that there is little change in the IAE to feed concentration changes
(Table 7.7) and a gradual change in the IAE to feed flowrate changes (Table 7.8)
and setpoint changes (Table 7.9) if the prediction horizon is greater than I-step.
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7.8 Conclusions

This chapter has focussed on the development of an analytical approach
for determining the long-range predictive controller output. It has been shown to
result in a significant reduction in computational requirements over the numerical
approach presented in Chapter 6. The use of multi-step prediction horizon has
been shown to lead to a more robust control strategy. The length of the prediction
horizon needed for optimum performance is comparable to that required in GPC.
In the two examples, increasing the number of fuzzy partitions generally led to
better modelling accuracy and better controller performance even though the
improvement achieved by increasing the number of fuzzy partitions beyond 3 was
marginal.

Even though the controller has been shown to perform well when used to
control nonlinear processes, the emphasis in this chapter has been on time-
invariant single-input single-output (SISO) processes. More and more, control
systems are expected to be able to address the requirements of time-varying
proceses, multivariable processes and processes with dead times. The ability to
explicitly handle constraints on process inputs and outputs is also considered
important. Appendices A and B show how the control algorithm presented in this
chapter can be extended to enable adaptive control and deadtime compensation,
while the remaining chapters of this thesis focus on the control of multivariable
processes and explicit handling of constraints. It is shown that extensions to the
basic algorithm presented in this chapter can be quite easily handled.



Chapter 8

CONTROL OF MULTI-INPUT
SINGLE-OUTPUT SYSTEMS

8.1 Introduction

All previous studies were based on single-input single-output process
models using the manipulated variable as the only input. In this chapter, we will
attempt to extend the process model to include one or more disturbance inputs.
By doing this, it may be possible to achieve a feedforward control effect in our
controller to these disturbances. Such a prospect makes the use of multi-input
single-output (MISO) process model based controllers appear attractive (Tham et
al., 1989; Montague et al., 1991; Vagi et al., 1991; Tham et al., 1991a; Montague
et al., 1992; Postlethwaite, 1994). Modifications to the control algorithm
proposed in Chapter 7 to allow use with MISO process models is first examined.
A comparative evaluation of the performance of the proposed controller using
SISO and MISO models is then attempted. The work in this chapter also
constitutes a first step in the development of a controller for MIMO systems
which will be presented in Chapters 9 and 10.

All derivations in this section are based on 2-inputs 1-output process
models. Extension to process models consisting of more inputs can, however, be
quite easily achieved. It has also been assumed that the disturbance input remains
constant over the entire prediction horizon.
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8.2 Model Predictions Using MISO Models

8.2.1 First-Order MISO System

A first-order system with one disturbance input can be described by the
following ARX model structure:

y,(t+ ) =a,y(@)+bu)+cv(t)+k+err(r) (8.1)

where:
y(f) = process output at time ¢.

yp(t+1)=  one-step ahead model prediction at time ¢.

u(f) = manipulated variable at time .
v(t) = disturbance variable at time ¢.
err(t) = estimate of the modelling error at time ¢.

Model predictions over a prediction horizon of n-steps based on a control
horizon of 1-step is given by the equation:

Y(£) =PX(1)+QU (1) +R[k +err(1)] (8.2)
where,

Y@y =[y,a+) - y,a+n] (8.3)

X =0 vof (8.4)

U(t) = [u(1)] (8.5)
Pn P

P=| i (8.6)
P P

Q=[g, - q.] 8.7)

R=[r - ] (8.8)
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The coefficients of P, Q and R are given by:

Pu=a ©9)
P =a; Py, fori=2,...n :
P2=6G 5.10)
Pi» =4y Py 1€ fori=2,...,n :
q,=b

8.11
qg,=a,-q,_,+b, fori=2,...,n ( )
n=1

(8.12)

rr=a,-r_+1 fori=2,...,n

8.2.2 Second-Order MISO System

A second-order system with 1 disturbance input can be described by the
following ARX model structure:

yp(t + 1) =a,y()+a,y(t =) +bu(t)+bu(t =) +cv(t)+c,v(t=1)+k +err(t)
(8.13)

Model predictions over a prediction horizon of n-steps based on a control
horizon of 1-step is given by the equation:

Y()=PX()+QU(t) +R[k +err(t)] (8.14)
where,
T
Y(O)=[y,(t+]) - y,(t+n)] (8.15)
X =y ye-1 u@-1) v@) vir-1] (8.16)
U(t) =[u(n)] (8.17)

Pu P P33 P Pis
P=| : : : : : (8.18)

pnl pn2 pn3 pn4 an

Q=[q, - a.] (8.19)
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R=[r -~ rJ (8.20)

The coefficients of P, Q and R are given by:

Pu=q P =4, P =b,
Pa=a, p,ta, P2 =04, D Py =4y Py

Pa =4\ Doy T AP ay Pia =Py, YA PGayy Pis =Py Ty Doy

fori=3,...,n (8.21)

P =6 Pis =G

Pu=a,"Ptctc Pys =4y Dis

Pis = A\ Pinya T3P0y TC G, Pis =4, Pi_ys + AP a5, fOri=3,...n
(8.22)

q, :bl

q,=a,-q,+b +b, (8.23)

g, =a,-q_,ta,-q,_,+b +b,, fori=3,....n

n=1

r,=a,+1 (8.24)

rr=a,-r_+a, r_,+1 fori=3,....n

8.3 Controller Formulation

The optimal controller output is similarly derived as for SISO systems and
can be shown to be given by the following equation:

U =[QQI"Q"[W()-PX (1) -R(k +err(1))] (8.29)

The performance of the above control scheme will now be examined using
a simulation example.
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8.4 Application to Control of CSTR

8.4.1 Identification of MISO Process Models

Figures 8.1 to 8.3 show the open loop response of the product
concentration to step changes in some important disturbances. In every case, it is
clear that the relationship between the two variables is nonlinear. In Figures 8.2
and 8.3, it will be noticed that the initial response is in a direction opposite to the
final response (i.e., inverse response). Such behaviour is the nett result of two
opposing effects. A second order model structure with respect to all inputs will be
assumed. Since the open loop response between product concentration and feed
flowrate will be poorly represented by second order system dynamics, we will only
examine MISO models incorporating feed temperature and feed concentration as
disturbance inputs.

For process model identification, 50 random step changes, each lasting 6
hours, were applied to each of the inputs to be used in the model. Only the 5-
partition fuzzy model was evaluated and fuzzy partitioning of the input space for
the MISO model was maintained the same as for the SISO model. Figures 8.4 and
8.5 show the input/output data sets used to identify the MISO process models
which incorporate feed temperature and feed concentration, respectively.

The following second-order MISO model incorporating feed temperature
was used:

L:IF C,(t)isB' THEN C,,,(t+1)=a[C,(t)+a,C,(t=1) +b/Q(t) +biQ(t - 1)
+o T () +cT(t=1), fori=1,...,p.

(8.26)

where C, (), Q(t) and T.(¢) are the concentration of A in the reactor, the rate of

heat removal and the feed temperature at time ¢, respectively. As with the SISO
case, the value of the constant term, k; was assumed to be zero. The model
parameters were:

(14677 +02463 115018 202810 -04476 —0.0901]
18916 -0.1567 153678 82796 -04188 —0.2246
®,,,=|19908 -02587 225238 79216 -0.6424 -02291 (8.27)

20558 -03276 280754 107149 -0.7976 -0.3053
[2.3317 —0.6004 322693 54443 -09643 -04514]
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The MISO model incorporating feed concentration was assumed to take
the following form:

L' IF C,(t) is B' THEN C,, (t +1) = a'C, (1) +a@C,(t - 1)+ BO(f) + B,O(t ~ 1)
+¢,C, () +¢,C, (t-1), fori=1,...,p.

(8.28)

where C,(7), Q(r) and C, (¢) are the concentration of A in the reactor, the rate

of heat removal and the feed concentration at time #, respectively. The model
parameters were:

(08476 +04579 128899 233445 00319 —00446]
14514 -01190 157681 90652 00202 -00352
@, =|15815 -02497 225863 82536 00111 —00318 (8.29)

16557 -03273 281708 105341 00097 00361
(19618 -06337 319225 37432 00043 —00373
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Figure 8.1: Open loop response of the concentration of A in the reactor to step
changes in feed temperature.
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Figure 8.2: Open loop response of the concentration of A in the reactor to step
changes in feed flowrate.
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8.4.2 MISO Process Model Based Controllers

The values of the gains of Filters 1 and 2 were set to 1 and 0.1, which
earlier studies using the SISO model have shown to result in good one-step ahead
predictive controller performance.

Figures 8.6 to 8.9 compare the output responses of the one-step ahead
predictive controller using 2-input MISO models with the controller using the
SISO model to step changes in the disturbance included in the model. The better
performance with the MISO models is clearly obvious.

Figures 8.10 to 8.13 show the performance of the multi-step predictive
controller to the disturbances included in the MISO model. The generally better
performance from the controllers using MISO models is once again clearly
obvious.

It was difficult to get good controller performance when more than 1
disturbance input was included in the MISO model. This may be due to the inverse
response between product concentration and feed concentration (Figure 8.3).

8.5 Conclusions

The long-range predictive control algorithm presented in Chapter 7 has
been extended in this chapter to cover MISO systems. By using the CSTR system
as an example, it has also been shown that it is possible to extend the fuzzy model
to include an additional process input, where the additional input is one of the
significant process disturbances. Doing this, results in a significant improvement in
the output response to the effect of this disturbance, both with the one-step ahead
predictive controller as well as the long-range predictive controller.

Most industrial processes have a number of disturbances. If it is possible to
develop a good dynamic model based on more than one disturbance, then the
approach used in this chapter can be extended to multiple disturbances. Also, even
though we have focused our attention non-adaptive process models, it is probably
worthwhile investigating the use of adaptive MISO models to achieve even better
performance.

Subsequent chapters will focus on extending the approach used in this
chapter to multi-input multi-output (MIMO) systems.



Chapter 9

CONTROL OF MULTIVARIABLE
SYSTEMS: BINARY
DISTILLATION COLUMN

9.1 Introduction

Next to the CSTR, the distillation column is probably the most important
process studied in chemical engineering literature. It is estimated that there are
about 40,000 distillation columns in the U.S. consuming about 3 percent of the
total U.S. energy usage. Distillation is used in many chemical processes for
separating feed streams and for purification of final and intermediate product
streams. Figure 9.1 is a schematic representation of a binary distillation column.
Feed is separated into an overhead product or “distillate” and a bottoms product
or “bottoms”. Heat is transferred into the process in the reboiler (typically a tube-
and-shell heat exchanger) to vapourise some of the liquid from the base of the
column. The vapour coming from the top of the column is liquified in another
tube-and-shell heat exchanger called the condenser and liquid from the condenser
drops into the reflux drum. The distillate is removed from this drum. In addition,
some liquid, called “reflux”, is fed back to the top of the column.

The column itself consists of a number of stages (usually trays) which
promote mass transfer of light components into the vapour flowing up the column
and of heavy components into the liquid flowing down the column. When the
liquid reflux stream enters the column, it is vapourised by the vapour it contacts.
Because it gives up heat to boil the reflux stream, a portion of the vapour is
condensed. This condensate falls to the tray below, where a portion of it is
revapourised by vapour rising from that stage. This process continues down the
column. Increasing the flow of the external reflux increases the internal reflux, i.e.,
the flow of liquid down the column. Similarly, increasing the boilup rate increases
the flow of vapour up the column. The liquid reflux and the vapour boil-up are
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required to achieve the separation or “fractionation” of chemical components. The
energy needed to make the separation is approximately the heat added to the
reboiler.

A mathematical model of a 20-tray binary distillation column is provided in
the text by Luyben (1990). A simplified version of this model which neglects the
dynamics introduced by tray fluid mechanics is presented in Section 9.2. This
model was used in all of our studies.

Vy (V)

N L » Condenser

l_.—
N-1
L Reflux
Reflux Drum
. Distilate
Feed D, x,
F,
ZF 3
i
. .2_ |4
MB
Reboiler Steam
Bottoms Product

B, xy

Figure 9.1: A binary distillation column.
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9.2 Mathematical Model of Binary Distillation
Column

The column is shown in Figure 9.1. The variable names, descriptions,
steady-state values, and the engineering units used in deriving the mathematical
model are given in Tables 9.1, 9.2 and 9.3. The distillation stages are numbered
with the reboiler as Stage 1 and the condenser as Stage 22.

The following assumptions have been made to facilitate deriving the
mathematical model:

e binary mixture

e constant pressure

e constant relative volatility

» no vapour holdup (immediate vapour response, dV, =dV,)

 constant liquid holdup M, on all trays (immediate liquid response, dL, =dL;)

» vapour and liquid at equilibrium and perfect mixing on all stages

Material balances for change in holdup of light component on each tray,
i=2,....NG#N, i#N_+1):

M, %‘ =L, XtV Yy —Lx, =V, 9.1)
Above feed location, i =N, +1:
dxi
M, 'Z‘ =L, %tV Yo —Lx,-Vy +Fy; (9.2)
Below feed location, i = N :
dxi
M, I =L x,+V Y, —Lx,-Vy +Fx; (9.3)
Reboiler, i =1:
dx.
M,—=L_ x, +Vy —Bx,, x5=x 9.4)

B dt T+17i+1
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Total condenser, i=N+1:

de
dt

M, =V Y- Lx,—Dx,, x,=x,, 9.5)

Vapour-liquid equilibrium on each tray (i =1,...,N) based on constant relative
volatility:

Olx.
=N 9.6
Y T+ (-, (9-6)

Flow rates assuming constant molar flows:

i>N_. (abovefeed): L =L, V,=V+F, 9.7
iSN, (belowfeed): L =L+F,, V.=V (9.8)
F, =q,F, F,=F-F, 9.9)
D=V,-L=V+F,~-L (constant condenser holdup) (9.10)
B=L,-V,=L+F, -V (constant reboiler holdup) (9.11)

Compositions x, and y, in the liquid and vapour phase of the feed are obtained
by solving the flash equations:

Fep=F xp +Fyp (9.12)



Chapter 9: Control of Binary Distillation Column 167
Variable Description Value Units
N Number of equilibrium (theoretical) stages 21 -
N-1 Number of trays 20 -
N+1 Total number of stages including condenser 22 -
Ng Feed stage location 11 -
F Feed rate 1 kmol/min
2F Mole fraction of light component in feed 0.5 -
qr Mole fraction of liquid in feed 1 -
D Distillate flow 0.5 kmol/min
1% Boilup 1.7801 kmol/min
|7 Vapour flow from the th stage - kmol/min
L Reflux flow 1.2801 kmol/min
L; Liquid flow from the th stage - kmol/min
B Bottom flow 0.5 kmol/min
M, Tray hold-up 0.5 kmol
My Condenser hold-up 0.5 kmol
My Reboiler hold-up 0.5 kmol
x Mole fraction of light component in liquid - -
y Mole fraction of light component in vapour - -
Xp Distillate composition 0.98 -
Xgp Bottoms composition 0.02 -
o Relative volatility 2 -

Table 9.1: Distillation column variables and operating conditions during steady-

state.
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Table 9.2: Subscripts used in modelling distillation process

Subscript Description
i Distillation stage number
F Feed
D Distillate
B Bottom
T Top
| % Vapour phase
L Liquid phase

Stage Stage X;
1 0.02000 12 0.51526
2 0.03500 13 0.56295
3 0.05719 14 0.61896
4 0.08885 15 0.68052
5 0.13180 16 0.74345
6 0.18622 17 0.80319
7 0.24951 18 0.85603
8 0.31618 19 0.89995
9 0.37948 20 0.93458
10 0.43391 21 0.96079
11 0.47688 22 0.98000

Table 9.3: Distillation stage compositions under steady-state conditions.



Chapter 9: Control of Binary Distillation Column 169

9.3 Control Problem

Figure 9.2 shows the important feedback loops of a binary distillation
column. Acceptable operation of a binary distillation column normally requires the
following control objectives:

¢ Control of the composition of the distillate

e Control of the composition of the bottoms product

e Control of the liquid hold-up in the reflux drum

e Control of the liquid hold-up at the base of the column

The first two control objectives characterise the two product streams,
whereas the other two objectives are required for operational feasibility ( i.e., to
prevent flooding and drying up of the reflux drum and the base of the column).
The dynamic responses of Control Loops 3 and 4 in Figure 9.2 are usually much
faster than the dynamic responses of Control Loops 1 and 2. In the development
of our mathematical model, the dynamics introduced by Control Loops 3 and 4
have therefore been neglected and the hold-up of liquid in the reflux drum and the
base of the column has been assumed to be constant.

A\ Condenser

Reflux

(©) [t

— % Loop 1 é Distillate

Feed
Controller |- - - -

Controller | - @—

. Loop 4
: Reboiler
X o

Bottoms
Product Loop 2

Figure 9.2: Control of a binary distillation column.

Steam
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Distillation control is known to be difficult because of the following
characteristics:

e The inherent nonlinearity of columns particularly for producing high-
purity products.

e The severe coupling present for dual composition control.
e The variation in process gains due to process and operating changes.
e Large disturbances in feed flow rate and feed composition.

These problems are particularly important for dual composition control.
When single-ended control is used, coupling is eliminated and the resulting control
problem is greatly simplified. Unfortunately, single-ended control results in
suboptimal operation in many cases due to issues of energy usage and product
recovery.

In Figure 9.2, the quality of the distillate is controlled by manipulating the
reflux rate, whereas the bottom product quality is controlled by manipulating the
boilup rate. Control of the boilup rate is normally exercised by varying the steam
flowrate to the reboiler. In our mathematical model, we have neglected the
dynamics of the heat transfer processes in the condenser and the reboiler. In
commercial-scale columns, the dynamic response of these heat exchangers is
usually much faster than the response of the column itself. In some systems,
however, the dynamics of these peripheral equipment are important and must be
included in the model. The open loop response of the output variables to both
manipulated variables is shown in Figures 9.3 to 9.6. It will be noticed that there is
significant interaction and the time constants and the steady-state gains are
variable, all of which make control particularly difficult.

The control problem investigated here will be setpoint changes in both
distillate and bottoms composition as well as 10 percent step changes in feed
composition and feed flowrate. Our primary aim here is to demonstrate the
application of our controller to a difficult-to-control multivariable system where
process nonlinearity and interaction are important considerations.

In the past few years, we have witnessed a proliferation of advanced
multivariable control systems for the distillation process. Linear process model-
based predictive controllers such as Dynamic Matrix Control (DMC) (Cutler and
Ramaker, 1980) appear to be the most widely accepted methods for industrial
application because of the relative ease of developing linear process models.
Benefits reported include improved product qualities, yields and energy savings.
These strategies can perform satisfactorily on nonlinear processes when the
processes operate in the vicinity of the desired steady-state operating conditions.
However, when a wide range of process operations with tight specifications on
product purities is required, the nonlinearities become more critical and these
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controllers often need to be detuned to compensate for process/model mismatch
and control performance is sacrificed.

The controller used in all of our investigations is the fuzzy model-based
multi-step predictive controller with the control horizon set to 1-step. Before
proceeding to design the multivariable controller itself, we will initially examine
SISO model-based control of distillate and bottoms composition. Distillate
composition has been paired with reflux flowrate, while bottoms composition has
been paired with the boilup rate as illustrated in Figure 9.2. When designing each
SISO model-based controller, it will be assumed that the other control loop is left
open and the manipulated variable of that loop held constant at its normal steady-
state value. In the next stage, these single loop controllers will be coupled to form
a multivariable controller. This is done by expanding the process model used by
each loop to include the manipulated variable of the other loop as a model input,
essentially transforming the SISO process models to MISO process models.
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9.4 SISO Distillate Composition Control

9.4.1 Identification of SISO Process Model

Data for modelling were generated by applying 40 uniformly distributed
random step changes, each lasting 50 minutes, in the reflux rate (L) as shown in
Figure 9.7 while maintaining the distillate composition approximately between
0.92 and 1 mole fraction of lighter component. The model was updated at 0.1
minute intervals using the Runge-Kutta third order numerical integration method.
Sampling for control was carried out at 2-minute intervals and the output from the
controller was maintained constant over the sampling interval using a zero-order
hold. A total of 1000 data points were used for identification.

Since the open-loop response between distillate composition and reflux
flowrate (Figure 9.3) can be approximated by a first-order system, the following
model structure has been assumed:

R': ifx,(t) is A thenxD(t+1):afxD(t)+b:L(t)+ki, i=1...,p (9.13)

where x,(¢) and L(t) are the distillate composition and the reflux flowrate at time
t, respectively.

Different methods of fuzzy partitioning the input space as shown in Figure
9.8 were examined. Table 9.4 shows the model parameters calculated using the
input/output data shown in Figure 9.7. It will be observed that the fuzzy process
models provide an improvement in modelling accuracy over the linear process
model.

9.4.2 SISO controller

Studies showed very little difference in performance of controllers using
different fuzzy models reflecting the small difference in their modelling
accuracies in Table 9.4. A comparison of Figures 9.9 and 9.10 shows, however,
that there is a significant difference between the performances of controllers
using linear and 3-partition fuzzy models when examined over the range of 0.93
to 0.99 mole fraction of lighter component. The output response to the controller
using the linear model ranges from over-damped to under-damped whereas the
output response to the controller using the fuzzy model is quite consistent.
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No. Model parameters
Type of model MSE
ali b: k,‘
1 linear model 0.9621 0.0396 | -0.0138 | 54.142x10°®
2 2-partition fuzzy model 0.8899 | 0.1249 | -0.0541 2.548 x 10°®

0.9383 | 0.0072 | 0.0517

3 3-partition fuzzy model 0.9092 | 0.1147 | -0.0590 1.834x 10
0.9349 | 0.0684 | -0.0240
0.9558 | 0.0041 | 0.0384

4 5-partition fuzzy model 0.9274 | 0.1034 | -0.0616 1.287 x 10°®
0.9560 | 0.1016 | -0.0861
0.9580 | 0.0667 | -0.0441
0.9762 | 0.0299 | -0.0149
0.9685 | 0.0074 | 0.0213

Table 9.4: Effect of the number of fuzzy partitions of the input space on the model
parameters and the modelling accuracy of SISO process model used for distillate
composition control.
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Figure 9.8: Fuzzy partitioning of the input space used for deriving the SISO
process models in Table 9.4.
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9.5 SISO Bottom Composition Control

9.5.1 Identification of SISO Process Model

The approach used was quite similar to that used for SISO distillate
composition control as described above. Data for modelling were generated by
applying 40 uniformly distributed random step changes, each lasting 50 minutes, in
the boilup rate (V) as shown in Figure 9.11 while maintaining the bottoms
composition approximately between 0 and 0.08 mole fraction of lighter
component. Sampling for control was once again carried out at 2-minute intervals
and a total of 1000 data points were used for identification.

Since the open-loop response between bottoms product composition and
boilup rate (Figure 9.6) can be approximated by a first-order system, the following
model structure has been assumed:

R':ifx,(t)is A  thenxy,(t+1)=ajx, (1) +bV()+k,, i=1...,p (9.14)

where x,(t) and V(¢) are the bottoms composition and the boilup rate at time ¢,
respectively.

Different methods of fuzzy partitioning the input space as shown in Figure
9.12 were examined. Table 9.5 shows the model parameters calculated using the
input/output data shown in Figure 9.11. Once again, it will be observed that the
fuzzy process models provide an improvement in modelling accuracy over the
linear process model.

9.5.2 SISO controller

As in the case of distillate composition control, it was found that there is
very little difference in the performances of controllers using 3 and S-partition
fuzzy models reflecting the small difference in the modelling accuracies of these
two models. The performance of the controller when using the 2-partition fuzzy
model is only slightly worse. A comparison of Figures 9.13 and 9.14 show that
there is a significant difference between the performance of the controllers using
linear and 3-partition fuzzy models when examined over the wider range of 0.01
to 0.07 mole fraction of lighter component. In fact, setpoint change to 0.07 mole
fraction using the linear model was found to lead to instability and has not been
shown in Figure 9.13. The output response to the controller using the linear
model in Figure 9.13 varies from from over-damped to under-damped whereas the
output response to the controller using the fuzzy model in Figure 9.14 is quite
consistent inspite of the wider range examined.
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No. Model parameters
Type of model MSE
a,i bll k,‘
1 linear model 0.9510 | -0.0496 | 0.0897 85.441 x 10°®
2 2-partition fuzzy model 0.8858 | -0.0089 | 0.0168 2176 x 10°®

0.8116 | -0.1622 | 0.2976

3 3-partition fuzzy model 0.9227 | -0.0105 | 0.0197 1.938 x 10°®
0.9038 | -0.0795 | 0.1442
0.8492 | -0.1629 | 0.2956

4 5-partition fuzzy model 0.9142 | -0.0140 | 0.0262 1.741 x 10
0.9499 | -0.0376 | 0.0679
0.9395 | -0.0827 | 0.1483
0.9136 | -0.1166 | 0.2096
0.8654 | -0.1669 | 0.3012

Table 9.5: Effect of the number of fuzzy partitions of the input space on the model
parameters and the modelling accuracy of SISO process model used for bottoms
composition control.
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Figure 9.12: Fuzzy partitioning of the input space used for deriving the SISO
process models in Table 9.5.
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9.6 MIMO Control of Distillate and Bottoms
Composition

9.6.1 Identification of MISO Process Model for Distillate
Composition Control

Data for modelling were generated by applying 40 uniformly distributed
random step changes, each lasting 50 minutes, in the reflux rate (L) and the boilup
rate (V) as shown in Figure 9.15 while maintaining the distillate composition
approximately between 0.92 and 1 mole fraction of lighter component. It will be
observed that the magnitude of the step changes applied to the reflux flowrate
were much bigger than the changes applied to the boilup rate. Sampling for
control was once again carried out at 2-minute intervals and a total of 1000 data
points were used for identification.

Since the open-loop response of the distillate composition to changes in
the reflux rate and the boilup rate (Figures 9.3 and 9.5) can be approximated by
first-order systems, the following MISO model structure has been assumed:

R':ifx,(t) is A’ thenx,(t+ D) =ajx, (1) +b L(t)+ V() +k,, i=1,...,p (9.15)

where x,(¢), L(t) and V() are the distillate composition, the reflux flowrate
and the boilup rate at time ¢, respectively.

Fuzzy partitioning of the input space was maintained the same as in Figure
9.8. Table 9.6 shows the model parameters calculated using the input/output data
shown in Figure 9.15. Here again, it will be observed that the fuzzy process
models provide a significant improvement in modelling accuracy over the linear
process model.

9.6.2 Identification of MISO Process Model for Bottoms
Composition Control

Data for modelling were generated by applying 40 uniformly distributed
random step changes, each lasting 50 minutes, in both the boilup rate (V) and the
reflux flowrate (L) as shown in Figure 9.16 while maintaining the bottoms
composition approximately between 0 and 0.08 mole fraction of lighter
component. It will be observed that the magnitude of the step changes applied in
the boilup rate were much bigger than the changes applied to the reflux rate.
Sampling for control was once again carried out at 2-minute intervals and a total
of 1000 data points were used for identification.
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Since the open-loop response of the bottoms composition to changes in
the boilup rate and the reflux rate (Figures 9.6 and 9.4) can be approximated by
first-order systems, the following MISO model structure has been assumed:

R": ifx,(t) is A’ then xB(t+1)=afxB(t)+bfV(!)+c:L(t)+ki, i=1...,p (9.16)

where x,(¢), L(t) and V(¢) are the bottoms composition, the reflux flowrate and
the boilup rate at time ¢, respectively.

Fuzzy partitioning of the input space was maintained the same as in Figure
9.12. Table 9.7 shows the model parameters calculated using the input/output data
shown in Figure 9.16. It will be observed here again that the fuzzy process models
provide a significant improvement in modelling accuracy over the linear process
model.

9.6.3 MIMO Controller

Even though the design of a MIMO controller can be approached by using
a single objective function covering all the control loops, this will not be attempted
here because it requires the use of large matrices to manage the computations. We
will instead use the alternative approach of decomposing a MIMO model based
controller into MISO model based controllers and computing the optimal
controller output of each MISO controller using separate objective functions. The
design of a fuzzy model based multi-step predictive controller for MISO systems
has been presented in Chapter 8 and will therefore not be repeated here. By
including the manipulated variables of the other control loops as model inputs, it
may be possible to achieve a feed-forward control effect to changes in these
variables. The concept involved is similar to compensation of disturbance inputs
discussed in Chapter 8. Doing this with both loops in the case of the distillation
control problem will minimize the interaction between the loops.

Figures 9.17 to 9.20 show the process output responses to setpoint
changes in the distillate composition. The prediction horizon used by the MISO
controllers for distillate composition and bottoms composition was set to 7-steps
and 5-steps, respectively. The plot of bottoms composition has been displaced
upwards (i.e., plot shows x,+09) to allow plotting alongside with distillate
composition. As in the case of the SISO controller, it will be observed that the
response of the distillate composition to setpoint changes varies from over-
damped to under-damped when a linear model is used. Better performance is
achieved with fuzzy process models.

Similar observations can also be made regarding setpoint changes in the
bottoms composition (Figures 9.21 to 9.24). In this case the plot of distillate
composition has been displaced downwards (i.e., plot shows x, -09) to allow

plotting alongside with bottoms composition.
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An interesting observation is the generally poorer response with 5-partition
fuzzy process models to setpoint changes in distillate composition in the range
0.92 to 0.94 and to setpoint changes in the bottoms composition in the range 0.06
to 0.08. This can probably be attributed to the fact that identification of the 5-
partition fuzzy models was based on very few sample points in these regions (refer
to Figures 9.15 and 9.16). The 2-partition and 3-partition fuzzy models probably
provide better modelling accuracy than the 5-partition fuzzy model in these
regions.

Figure 9.25 shows that the performance of a controller using the 3-
partition fuzzy model is generally better to feed composition changes than a
comparable controller using a linear process model. The plot of bottoms
composition has been displaced upwards (i.e., plot shows x,+095) to allow

plotting alongside with distillate composition. Similar observations to the above
can be made from Figure 9.26 in the case of feed flowrate changes.
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No. Model parameters
Type of model MSE
a b] c! k,
1 linear model 0.9676 | 0.0365 | -0.0327 | 0.0431 48.632 x

10°®

2 2-partition fuzzy model | 0.9553 | 0.1265 | -0.1217 | 0.1004 2.734 x
1.0097 | 0.0063 | -0.0040 | -0.0109 10°®

3 3-partition fuzzy model | 0.9501 0.1216 | -0.1199 | 0.1080 2.484 x
0.9661 | 0.0646 | -0.0585 | 0.0548 10°®
0.9758 | 0.0055 | -0.0042 | 0.0241

4 | 5-partition fuzzy model | 0.9331 | 0.1108 | -0.1103 | 0.1200 2.134 x
0.9142 | 0.1024 | -0.1014 | 0.1328 108

0.9298 | 0.0634 | -0.0572 | 0.0889
0.9428 | 0.0296 | -0.0266 | 0.0655
0.9285 | 0.0081 | -0.0046 | 0.0684

Table 9.6: Effect of the number of fuzzy partitions of the input space on the model
parameters and the modelling accuracy of MISO process model used for distillate
composition control.

No. Model Parameters
Type of Model MSE
a b c| k,
1 linear model 0.9486 | -0.0481 | 0.0434 | 0.0314 99.282 x

108

2 | 2-partition fuzzy model | 0.8913 | -0.0090 | 0.0071 0.0081 3.106 x
0.8256 | -0.1618 | 0.1468 | 0.1080 10°®

3 | 3-partition fuzzy model { 0.8712 | -0.0106 | 0.0092 | 0.0083 2.909 x
0.8600 | -0.0787 | 0.0688 | 0.0564 10°®
0.8299 ([ -0.1632 | 0.1545 | 0.1002

4 | 5-partition fuzzy model | 0.8440 | -0.0163 | 0.0107 | 0.0171 2.492 x
0.8874 | -0.0354 | 0.0321 0.0241 10°®

0.8713 | -0.0831 | 0.0738 | 0.0574
0.8573 | -0.1174 | 0.1013 | 0.0845
0.8337 | -0.1643 | 0.1679 | 0.0845

Table 9.7: Effect of the number of fuzzy partitions of the input space on the model
parameters and the modelling accuracy of MISO process model used for bottoms
composition control.
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9.7 Conclusions

The modelling accuracy of fuzzy process models was found to be much
better than linear process models. The preliminary studies carried out using SISO
process models showed that the fuzzy model-based controller is able to cope quite
well with the significant nonlinearities of distillate composition control and
bottoms composition control over wide ranges. In both applications, the fuzzy
model-based controllers outperformed comparable controllers using linear process
models. It was also found that there was little difference in the performance of the
fuzzy model-based controllers.

This study has also shown that the design of a 2-input 2-output MIMO
fuzzy model-based predictive controller can be approached by decomposing it into
two MISO fuzzy model-based controllers and computing the optimal controller
outputs of the MISO fuzzy model-based controllers sequentially using separate
objective functions. The resulting controller has been shown to be able to cope
with process nonlinearities and interaction between loops. Here again, the
performance of fuzzy model-based controllers has been shown to be superior to
comparable controllers using linear process models.

In the design of our controller, we have not considered the measurement
delays which can range from about 3-minutes in the case of binary distillation
columns, to about 20-minutes in the case of multi-component distillation columns.
Such delays can probably be better handled by using the dead time compensation
scheme presented in Appendix B.
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CONTROL OF MULTIVARIABLE
SYSTEMS: FORCED
CIRCULATION EVAPORATOR
SYSTEM

10.1 Introduction

An often used evaporator, known as the forced circulation evaporator, is
shown in Figure 10.1. In this evaporator feed is mixed with a high volumetric
flowrate of recirculating liquor and is pumped into a vertical heat exchanger. The
heat exchanger is heated with steam which condenses on the outside of the tube
walls. The liquor which passes up the inside of the tubes, boils and then passes to
a separation vessel. In this vessel, liquid and vapour are separated. The liquid is
recirculated with some being drawn off as product. The vapour is condensed by
cooling using water as the coolant. Newell and Lee (1989) have derived a
mathematical model of the forced circulation evaporator described above (Section
10.2). A simulation based on this mathematical model was used in all of our
studies. The model was updated at 1-minute intervals using the Runge-Kutta
third-order numerical integration method.
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10.2 Mathematical Model of Evaporator System

A forced circulation evaporator system is shown in Figure 10.1. This unit
process, a common operation in many plants, represents a difficult control
problem. The simulation as described below has been used in a number of other
investigations (Newell and Lee, 1989; Lee and Sullivan, 1988; Wang and
Cameron, 1994)

The variable names, descriptions, standard steady-state values, and
engineering units are shown in Table 10.1 and Figure 10.1.

Process Liquid Mass Balance

A mass balance on the total process liquid (solvent and solute) in the
system yields:

% (R-F-F)/p (0.1

where p is the liquid density and A is the cross-sectional area of the separator.
The product pA is assumed to be constant at 20 kg/metre.

Process Liquid Solute Mass Balance

A mass balance on the solute in the process liquid phase yields:

dx,
dt

=(FX,-FX,)/M (10.2)
where M is the amount of liquid in the evaporator and is assumed to be constant at
20 kg.

Process Vapour Mass Balance

A mass balance on the process vapour in the evaporator will express the
total mass of the water vapour in terms of the pressure that exists in the system:

& - (R-FIC (103)

where C is a constant that converts the mass of vapour into an equivalent pressure
and is assumed to have a value of 4 kg/kPa. This constant can be derived from the
ideal gas law.

Process Liquid Energy Balance

The process liquid is assumed to always exist at its boiling point and to be
perfectly mixed (assisted by the high circulation rate). The liquid temperature is:
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T,=0.5616P, +0.3126 X, +48.43 (10.4)

which is a linearization of the saturated liquid line for water about the standard
steady-state value and includes a term to approximate boiling point elevation due
to the presence of the solute.

The vapour temperature is:

T, = 0.507 P, +55.0 (10.5)

which is a linearization of the saturated liquid line for water about the standard
steady-state value.

The dynamics of the energy balance are assumed to be very fast so that:

F, = Qo — F,C,(T, = T)) /A (10.6)

where C, is the heat capacity of the liquor and is assumed constant at a value of

0.07 kW/K(kg/min) and A is the latent heat of vapourization of the liquor and is
assumed to have a constant value of 38.5 kW/(kg/min).

The sensible heat change between 7, and T, for F, is considered small
compared to the latent heat. It is assumed that there are no heat losses to the
environment or heat gains from the energy input of the pump.

Heater Steam Jacket

Steam pressure P, is a manipulated variable which determines steam
temperature under assumed saturated conditions. An equation relating steam
temperature to steam pressure can be obtained by approximating the saturated
steam temperature-pressure relationship by local linearization about the steady-
state value:

T, =0.5138 P, +90.0 (10.7)
The rate of heat transfer to the boiling process liquid is given by:
Qo =UA (T = T)) (10.8)

where UA4, is the overall heat transfer coefficient times the heat transfer area and is
a function of the total flowrate through the tubes in the evaporator:

UA, =0.16(F, + F,) (10.9)
The steam flowrate is calculated from:

Foo =00/ M, (10.10)
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where A, is the latent heat of steam at the saturated conditions, assumed constant
at a value of 36.6 kW/(kg/min).

The dynamics within the steam jacket have been assumed to be very fast.
Condenser

The cooling water flowrate F,,, is a manipulated variable and the inlet
temperature 7,, is a disturbance variable. The cooling water energy balance
yields:

O =UA,(T; - 0.5(Tp + Ty,)) (10.11)

where UA, is the overall heat transfer coefficient times the heat transfer area,
which is assumed constant with a value of 6.84 kW/K.

These two equations can be combined to eliminate T, to give explicitly:

UA,(T; — T )

Qo T [1+UA, / 2C, Fyp)] (10.12)
It follows that:

T =T + Qoo / (Fiy C,) (10.13)
The condensate flowrate is:

F=0,,/A (10.14)

where A is the latent heat of vapourization of water assumed constant at 38.5
kW/K(kg/min).

The dynamics within the condenser have been assumed to be very fast.
Slave Controllers

It has been assumed that controllers have been used to regulate the flow of
the manipulated variables. The setpoints of these flow controllers is provided by
the controllers shown in Figure 10.1. The dynamics introduced by these slave
controllers on the manipulated variables F,, P, and F,, have been approximated

by first-order lags with time constants of 1.2 minutes.
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Variable Description Value Units
F Feed flowrate 10.0 kg/min
F, Product flowrate 2.0 kg/min
F, Circulating flowrate 50.0 kg/min
F, Vapour flowrate 8.0 kg/min
F; Condensate flowrate 8.0 kg/min
X, Feed composition 5.0 percent
X, Product composition 25.0 percent
T Feed temperature 40.0 degC
T, Product temperature 84.6 degC
T, Vapour temperature 80.6 degC
L, Separator level 1.0 metres
P, Operating pressure 50.5 kPa
) OF Steam flowrate 9.3 kg/min
T Steam temperature 119.9 degC
By Steam pressure 194.7 kPa
Qo Heater duty 339.0 kW
) D99 Cooling water flowrate 208.0 kg/min
Ty Cooling water inlet temperature 25.0 degC
T, Cooling water outlet temperature 46.1 degC
O Condenser duty 307.9 kW

Table 10.1: Evaporator Variables
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10.3 Control Problem

Figure 10.1 shows the important feedback loops of a forced circulation
evaporator system. Pressure and level are controlled by manipulating the cooling
water flowrate and product discharge rate respectively. Product composition is
controlled by manipulating the steam pressure. To allow open loop tests to be
carried out on the system, it is first necessary to control the level in the separation
vessel. This is to ensure that the remainder of the evaporator system is open-loop
bounded. A PID controller was therefore used for Loop 3 in Figure 10.1.

The open loop response of product composition and operating pressure to
step changes in steam pressure and cooling water flowrate introduced 50 minutes
after the start of a simulation is shown in Figures 10.2 to 10.5. It can be seen that
the relationship between input and output variables is generally nonlinear and there
is interaction between variables. Figure 10.6 shows the open loop response
between product composition and steam pressure with a second PID controller
used for Loop 2.

It is important that the product composition is maintained as close as
possible to the desired value. The problem is investigated here using setpoint
changes in the product composition in the range between 15 and 35 percent and
feed flowrate changes (i.e. load changes) of 10 percent. Good performance is also
desired from the controllers used for level and operating pressure. These
secondary controllers should be able to cope with the above-mentioned changes
taking into account the process nonlinarities and interaction between loops
highlighted above.

The controller that will be emphasized in our investigations is the fuzzy
model-based multi-step predictive controller with the control horizon set to 1-
step. SISO model-based control of all three loops mentioned above will first be
attempted. Next, we will attempt to extend the SISO model used for product
composition control to include feed flowrate as an additional input and then
evaluate the controller based on this MISO process model using feed flowrate
changes to gauge the extent of improvement possible through feed-forward
compensation of disturbance inputs. In the third stage, we will attempt to design a
2-input 2-output multivariable controller for product composition and operating
pressure which allows coupling of control loops to improve performance.
Coupling will be achieved by expanding the SISO process models used by each
loop to include the the manipulated variable of the other loop as a model input.
The optimal controller output of the two MISO process model-based controllers
will be computed sequentially using separate objective functions. Close
examination of Figures 10.2, 10.4 and 10.6 provides visible evidence of dead time
which is likely to introduce problems in the control of product composition. In the
final stage, we will therefore examine the improvement that is possible through
dead time compensation.
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10.4 Identification of SISO Process Models

10.4.1 SISO Model for Product Composition Control

Data for modelling was generated by applying 50 random step changes,
each lasting 20 minutes, in the steam pressure such that the product composition
remained approximately within 15 and 35 percent (Figure 10.8). Sampling was
carried out at 1-minute intervals. A total of 1000 data points were used for the
identification.

An assumption has been made that the input/output relationship between
product composition and steam pressure can be approximated by the following
second-order model structure:

R:ifX,(t)is A then X,(t+1)=a, X, () +a, X, (t-1)

_ _ (10.15)
+b By (1) + 5, P (1 -V +k,, i=1....p

where X, (f) and P, (¢) are the product composition and steam pressure at time
t, respectively.
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Table 10.2 compares the modelling accuracy of the linear model with fuzzy
models derived using different numbers of fuzzy partitions as shown in Figure
10.7. Figure 10.7 also shows the fuzzy partitioning points used by the models. It
will be noticed from Table 10.2 that the inclusion of a constant term leads to
considerable improvement in the modelling acuracy of the linear process model,
but little improvement is achieved in the case of the fuzzy process models. Also
evident from Table 10.2 is the slightly better modelling accuracy of the fuzzy
process models over the linear process model which includes the constant term,
and the small difference between the modelling accuracies of fuzzy process
models. This is probably attributable to the fact that the system being modelled is
not highly nonlinear as is evident from the open-loop response (Figure 10.6).

A A?
1
Grade of
Membership
0
18 34
2-partition fuzzy model
A' A? A’
9
Grade of
Membership
0
18 25 34

3-partition fuzzy model

Figure 10.7: Fuzzy partitioning of the input space used for deriving the SISO
process models in Table 10.2.
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Figure 10.8: Input/output data utilised for identification of the SISO process

model for product composition control loop.
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10.4.2 SISO Model for Operating Pressure Control

Data for modelling was generated by applying 50 random step changes,
each lasting 20 minutes, in the water flowrate such that the operating pressure
remained approximately within 45 and 55 kPa (Figure 10.9) and sampling was
carried out at 1-minute intervals. A total of 1000 data points were used for
identification.

Since the open-loop response between operating pressure and water
flowrate (Figure 10.5) can be approximated by a first-order system, the following
model structure has been assumed:

R': if P,(t) is A' then P,(t +1)=a' B,(t) + b} Fyo (t) +k;, i=1,...,p (10.16)

where P,(t) and F,,(t) are the operating pressure and water flowrate at time ¢,
respectively.

Table 10.3 compares the modelling accuracy of the linear model with fuzzy
models derived using different numbers of fuzzy partitions as shown in Figure
10.10. Figure 10.10 also shows the fuzzy partitioning points used by the models.
The performance of the different models appears to follow similar trends to the
SISO models used for product composition earlier, and therefore needs no further
elaboration here.
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Figure 10.9: Input/output data utilised for identification of the SISO process
model for operating pressure control loop.
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A’ A?
1
Grade of
Membership
0
47 54
2-partition fuzzy model
A’ A? A?

1
Grade of

Membership

0
47 50 54

3-partition fuzzy model

Figure 10.10: Fuzzy partitioning of the input space used for deriving the SISO
process models in Table 10.3.

Model parameters

No. Type of model MSE

a b k,

1 linear 1.0052 | -0.0012 - 0.00150

2 linear (with constant term) | 0.9858 | -0.0015 | 1.0473 0.00043

3 | 2-partition fuzzy 1.0068 | -0.0012 - 0.00037
1.0062 | -0.0018 -

4 | 2-partition fuzzy (with 0.9981 | -0.0012 | 0.4018 0.00037

constant term) 0.9960 | -0.0018 | 0.5517
5 3-partition fuzzy 1.0056 | -0.0010 - 0.00036

1.0070 | -0.0016 -
1.0059 | -0.0017 -

6 3-partition fuzzy (with 0.9729 | -0.0010 | 1.5187 0.00035
constant term) 0.9702 | -0.0016 | 1.8477
0.9824 | -0.0017 | 1.2778

Table 10.3: Effect of number of fuzzy partitions on model parameters and
modelling accuracy of SISO process model used for operating pressure control.
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10.4.3 SISO Model for Separator Level Control

Identification of the process model for separator level control presents
some special problems. The liquid level control loop is not self-regulatory and
therefore open loop tests cannot be carried out to determine the process model as
in the previous two cases. The following first-order model structure has been
assumed (i.e., no constant term was included):

R:ifL,(t)isA then L,(t+1)=a]L,(t)+b/F,(t), i=1,...,p (10.17)

where L,(t) and F,(¢) are the separator level and product flowrate at time ¢,
respectively.

The problem of identifying the model parameters has been approached by
first implementing a PID controller for this control loop. A series of random step
changes were introduced while ensuring that the level in the tank remained in the
range O to 2 metres, and input/output data was collected from the closed loop
response at 1-minute intervals. The setpoint changes were introduced sufficiently
frequently to prevent the system spending too much time at steady-state
conditions. The data was used for identification of a crude 3-partition fuzzy
process model. Figure 10.11 shows the fuzzy partitioning points used by the
model. This crude process model was then used to implement an adaptive fuzzy
model-based predictive controller which used the recursive least squares algorithm
for fine-tuning the model parameters. Details of this method are presented in
Appendix A and will therefore not be elaborated further here. Random step
changes in the range O to 2 m were once again used during the fine-tuning.
Adaptation was stopped when the controller’s performance was considered to be
sufficiently good. The final model parameters were as follows:

12750 -0.0748
®=|10867 -00470 (10.18)
10542 -0.0550



Chapter 10: Control of Evaporator System 213

A A? A®

Grade of
Membership
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3-partition fuzzy model

Figure 10.11: Fuzzy partitioning of the input space used for deriving the SISO
process model for level control loop.

10.5 SISO Controllers

All studies in this section are based on fuzzy process models without the
constant term since better controller performance seemed to be achieved without
including this term.

Figures 10.12 to 10.15 examine the performance of the controllers to a
series of setpoint changes in the product composition on both sides of the steady-
state level. The number of steps in the prediction horizon of the controllers, #,, is

indicated in brackets together with the values of the feedback filter gain of Filter 2,
K PR The subscript, i, is used to indicate the loop number as shown in Figure

10.1. The prediction horizon of the controllers have been set to approximately the
optimum values identified from earlier studies on individual loops. The big
prediction horizon needed is quite characteristic of systems with dead time. The
plot of operating pressure has been displaced downwards (i.e., plot shows
P, —205) and the plot of separator level has been displaced upwards (i.e., plot

shows L, +19) to allow plotting alongside with product composition.

There is only a slight difference between the performances of controllers
using 2-partition and 3-partition fuzzy models. Close examination reveals that the
performance may be slightly better with the 2-partition fuzzy model when the
product composition is about 25 percent and higher. Figure 10.14 shows very
poor performance when using the linear model without the constant term for
Loops 1 and 2. The process model used by Loop 3 was still the same 3-partition
fuzzy model. Figure 10.15 shows that considerable improvement can be achieved
by using the linear model with the constant term included. It is obvious, however,
that the output response below 25 percent is quite sluggish and the time required
for the steady-state offset correction can be quite considerable.
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Figure 10.12: Process output responses to setpoint changes in product
composition when using 2-partition fuzzy SISO process models
(m =10;n, =10,n, =7,K, =0025K,  =005K, =005).
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Figure 10.13: Process output responses to setpoint changes in product
composition when using 3-partition fuzzy SISO process models
(m =10,n, =10,n, = 7,K, =0025K, =005 K, =005).
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Figure 10.14: Process output responses to setpoint changes in product
composition when using linear SISO models without constant for Loops 1 & 2
(m =10,n, =10,n, = 7,K, =0025K, =005K, =005).
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Figure 10.15: Process output responses to setpoint changes in product
composition when using linear SISO models with constant for Loops 1 & 2
(m =10,n, =10,n, =7,K, =0025K, =005K, =005).



Chapter 10: Control of Evaporator System 216

10.6 MISO Controller for Compensation of Feed
Flowrate Disturbance

10.6.1 Identification of MISO Process Model

We next address the development of a MISO process model-based
controller for compensation of disturbance inputs by extending the SISO process
model used for product composition control.

Data for modelling was generated by applying 50 random step changes,
each lasting 20 minutes, in the steam pressure and feed flowrate as shown in
Figure 10.16 such that the product composition remained approximately within 15
and 35 percent. The fluctuations allowed in feed flowrate had a comparatively
smaller effect on the product concentration as compared to the fluctuations in
steam pressure. Sampling was carried out at 1-minute intervals. A total of 1000
data points were used for the identification.

It was assumed that the input/output response can be approximated by the
following second-order model structure:

R:ifX,(t)isA thenX,(t+1)=a] X, (1) +a;X,(t = 1) +b Py, (1) + by Poy (£ = 1)
+c F(t)+cyF(t-1), i=1,...,p
(10.19)

where X, (1), P (¢) and F|(¢) are the product composition, steam pressure and
feed flowrate at time ¢, respectively. Only the 3-partition fuzzy process model was
examined and the fuzzy partitioning was maintained the same as for the SISO
process model (Figure 10.7). The model parameters were:

17910 -0.7622 -0.0006 0.0092 -0.0350 -0.1452
®=|18079 -0.7947 +0.0027 00105 -0.0325 -02567| (10.20)
17974 -08118 -0.0010 00155 -0.0594 -0.2391

10.6.2 MISO Process Model-Based Controller

The performance of the controller using the process model identified above
was examined to gauge the improvement, if any, to feed flowrate changes. The
controller parameters were maintained the same as for the SISO model-based
controller. Comparison of Figures 10.17 and 10.18 shows considerable
improvement by 