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Summary

Right-stochastic matrices are used in the modelling of discrete-time Markov pro-

cesses, with a property that the matrix elements are non-negative and each row

sums to one. If we consider the problem of estimating these probabilities from

a Bayesian standpoint, we are interested in constructing sensible probability dis-

tributions that can be used to encapsulate expert beliefs about such structures

before any data is observed. Through the process of expert elicitation, this un-

certainty can be represented in terms of probability distributions. In this thesis,

we explore multivariate distributions on the simplex support from the view of

expert elicitation. We explore properties and constraints of these distributions,

and ways to elicit expert judgement about their parameters. This is interesting

both mathematically and from a practical standpoint, particularly where there

are many such variables to explore, which can prove cognitively challenging and

tiring for the experts.

Similarly, data representing proportions of a whole can be unified into the com-

positional framework (Aitchison, 1986) with similar non-negativity and unit-sum

properties. This thesis also explores the study of compositional data analysis, its

problems and modern ways of approaching them. Application of these methods

is found in exploring how high resolution imagery obtained over rural areas could

be used in order to identify the distribution of tree species found in those areas

where monitoring is prohibited.
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Chapter 1

Introduction

A key step in Bayesian analysis is the identification and construction of a prior

probability distribution. Through the Bayes rule, the prior distribution is com-

bined with the likelihood function to form a posterior distribution, and the latter

encompasses the probability of some hypothesis after evidence has been observed.

A prior probability distribution is called non-informative if it gives equal consid-

eration (coverage) to all the regions of the probability space. A non-informative

prior distribution carries a lack of knowledge about an unknown quantity θ, as-

serting equal (or maximally equal) probability for the values θ can take. Though

one may argue that a truly non-informative prior is a deceitful concept in itself,

since the choice of the distribution reflects some prior knowledge and subjective

thought (Goldstein, 2006). If an non-informative prior distribution is used, the

Bayesian analysis is dominated by the likelihood, and any decisions based on the

analysis are be drawn from the evidence as it occurs. This outcome is equivalent

to the maximum likelihood estimation in frequentist statistics.

On the other hand, if a considerable body of knowledge is available for a choice

of the prior that can reflect uncertainty about θ, the statistician is faced with the

goal of specifying parameter values for this subjective prior distribution. This

is especially important when little evidence can be obtained for a novel scien-
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tific method without testing to destruction or unethical medical practices, for

example. Hence, a lot of emphasis would be placed on existing knowledge about

the uncertainty of the parameters of the data-generating process. The exercise

of translating someone’s beliefs and knowledge about an uncertain quantity into

a probability distribution is called elicitation. In different fields of application,

elicitation can be understood to mean knowledge extraction (Gavrilova and An-

dreeva, 2012), which is directed primarily towards qualitative insights on the

scientific question, or it can have a very structured and rigorous format, such as

the iterative consensus-seeking Sheffield Elicitation Framework (O’Hagan et al.,

2006).

In this thesis, one of the questions we address is the quantification of expert

knowledge. Three key parties play part in the process of elicitation: the experts

are the individuals with considerable insight about the scientific question under

investigation. The expert is of interest to the statistician, who is the facilitator

of the elicitation exercise. Finally, the decision maker relies on the experts’

knowledge and the facilitator’s analysis to influence a decision or a direction of

research (O’Hagan et al., 2006).

Elicitation possesses numerous nuances in decision-making and psychology. Ques-

tions like the choice of experts (Granger, 2014; O’Hagan, 2019a), whether the

elicitation should be conducted individually or a group consensus sought, not to

mention psychological phenomena of unconscious biases and anchoring (O’Hagan

et al., 2006) all require careful consideration and planning. The latter are the

responsibility of the facilitator and play a key part in ensuring that the exer-

cise is fair and the results obtained are a valid representation of the experts’

beliefs. Even though these particular topics are not considered in detail in this

thesis, a large body of work is available in statistics and psychology, most notably

Shanteau (1992b,a).

After the goal of an elicitation exercise has been specified and the appropriate
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experts identified, the facilitator is now presented with the task of quantifying

the experts’ beliefs into a model or identifying parameter values that would in-

form the prior distribution. In this thesis, we concentrate on prior distributions

in parametric form. During the elicitation exercise, the facilitator would quan-

tify beliefs elicited from the expert into summaries that would specify particular

parameter values for pre-specified distributions deemed most appropriate for the

problem. The task of expressing beliefs quantitatively has been approached by

cognitive psychology (Moody et al., 1996) and more often than not it is an un-

reliable and difficult process. Hence, the facilitator would not expect the expert

to confidently identify the summary statistics of their believed prior distribution,

such as the mean or the standard deviation, let alone talk about any possible

ranges of parameter values. It must be kept in mind that, even though the facili-

tator must have a sound understanding of statistics, the experts are assumed not

to. Expression of expert judgement through graphical means or addressing the

most frequent occurrence (mode) and the boundary values are often less strain-

ing for the expert, but run into issues with availability bias just as frequently

(O’Hagan et al., 2006). These methods seem especially popular in medicine and

health technology (Soares and Bojke, 2018) and constraints on the time and re-

sources available for an elicitation exercise drive the decision maker to conduct

individual interviews or an online-based study, the experts being unable to meet

face-to-face. Similar execution of an elicitation exercise can occur if the identified

group of experts becomes unmanageably large.

Already we may recognise that the fitting of a distribution to a set of expert

opinions is uncertain. Expression of uncertainty about each judgement is area

of research formalised as non-parametric prior specification (Gosling, 2008). Al-

ternatively we may look towards identifying a hyper-prior distribution to reflect

this uncertainty, as explored by Albert et al. (2012).

As mentioned, the goal of an elicitation exercise is to provide some plausible

parameter values that can be used to specify a prior probability distribution. The
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parameter values reflect experts’ knowledge about a particular scientific question.

The focus of this thesis is to explore multivariate prior distributions that express

uncertainty about a vector of non-negative proportions that must sum to one.

A simple example of this set-up in a Bayesian analysis is where the likelihood is

the multinomial count model, and the multivariate Beta distribution (Dirichlet

distribution) is the conjugate prior. In this situation, parameters of the Dirichlet

distribution are the target parameters to gain insight from the experts. The

Dirichlet distribution then expresses uncertainty about event probabilities in the

multinomial likelihood. The Dirichlet distribution is one of the possible prior

distributions for a multinomial count model, as is explored in Chapter 4.

Statistical analysis of vectors of non-negative proportions that sum to unity is an

area in statistics known as compositional data analysis (CoDA). Due to Aitchi-

son’s fundamental work in this area in the 1980s and increasing computing power,

CoDA has grown from a small topic when analysing geological data to gaining its

own place in the study of multivariate statistics. A further interest of this the-

sis is to combine the study and practice of expert elicitation with compositional

data. Hence, we consider constructing prior distributions that reflect uncertainty

about a set of proportions. Due to the underlying structure of compositional data

- the sum-one constraint and strict positivity of each element, we are faced with

eliciting multivariate distributions with an inherent negative correlation struc-

ture. This structure may not always be appropriate, for example, where spatial

dependencies hold, so we explore several recent developments which allow for flex-

ibility of specification of the prior distribution. This too comes with a shortfall,

since such distributions contain more parameters, and hence may require more

judgements to be elicited from the experts; a challenge with increasing number

of proportions considered. We review methods used to specify this covariance

structure as well as ways to elicit the multivariate priors.

Separate consideration of compositional data analysis is given through a collabo-

ration with Fera Science, UK. The use of non-standard techniques for regression
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modelling for compositional response data are to be considered through the use

of random forest regression, as well as parametric approaches of multivariate re-

gression using Aitchison’s log-ratio transformations. Further, we explore variable

importance and attempt to reduce dimensionality of the problem using a dimen-

sionality reduction technique called Principal Variables (Cumming and Wooff,

2007) that finds close relation to principal component analysis, but has simpler

interpretability. We inspect whether augmentation of proportions into classes has

an effect on the model’s predictive power and transferability to new data sets.

Similarly, we outline parallels in issues for modelling aggregated proportions and

elicitation of augmented classes of compositions.

The thesis is organised as follows: Chapter 2 presents a view into compositional

data analysis and the particulars important for this thesis. Chapter 3 describes

statistical modelling techniques of tree species in a rural environment, which

stems from collaboration with Fera Science, UK. This work can be summarised

by a multiple regression problem with compositional response and a set of con-

tinuous explanatory variables as predictors, and the use of principal variables is

conducted to highlight spatial structure in the data set and to reduce computa-

tional time. Hereinafter, the thesis concentrates on elicitation of prior distribu-

tions to describe uncertainty about a set of non-negative proportions summing to

unity. Chapter 4 describes families of multivariate distributions on this simplex

space, with particular focus on some of the recent developments of the Dirichlet,

as well as distributions suitable for modelling transformed compositional data

and graphical approaches, such as copulae. Chapter 5 follows on from this - we

explore discrete-time Markov chain transition matrices, which adhere to a sim-

ilar mathematical structure as compositional data. We look towards modelling

uncertainty about the elements of the transition matrix. Chapter 6 considers the

topic of expert elicitation as a general overview and to serve as an introduction

to Chapter 7, where we look at elicitation methods of prior distributions lying

in the simplex space. The thesis concludes with a study that explores suitabil-
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ity of an approach that attempts to fit a joint Dirichlet distribution to expert

judgements directly, without separating the exercise into explicitly questioning

the experts about marginal and conditional components of the distribution. This

is motivated by attempting to minimise the number of judgements gained from

the experts, without sacrificing the information presented in those judgements.
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Chapter 2

Compositional data analysis

The study of compositional data stems from the ideas of Ferrers (1886) and Pear-

son (1897) in the late nineteenth Century. Pearson’s work considered spurious

correlation due to the sum-to-unity constraint for a vector of non-negative ob-

servations. This nuance was previously disregarded in statistical practice and

resulted in unreliable inference. In the 1960s, geologist Felix Chayes urged that

spurious correlation and also interpretation of correlation between parts in a

geochemical composition is not described in an adequate sense (Chayes, 1960)

and this idea was further investigated by scholars in the 1970s (Darroch, 1969;

Darroch and Ratcliff, 1978; Miesch, 1969; Kork, 1977).

Aitchison formalised the approach of modelling compositional data in his famous

work The Statistical Analysis of Compositional Data (Aitchison, 1986). He urged

that the compositional components should be transformed using the log-ratio

approach, and then the logistic Gaussian distribution can be used to liberate this

constrained structure and improve modelling approaches that existed at the time.

Aitchison’s own definition of a compositional data set reads - D-part vectors,

describing quantitatively the parts of some whole, which carry exclusively relative

information between the parts (Aitchison, 1986).
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We can formalise this definition by defining a compositional vector of D parts,

x = (x1, x2, ..., xD) :

Definition 2.1. (Component) Vector x = (x1, . . . , xD) ∈ RD subject to the con-

straints xi ≥ 0 and
∑D

1 xi = 1 with each xi referred to as component; i = 1, ..., D.

Definition 2.2. (Simplex) The simplex ∆D is the sample space such that

∆D = {x = (x1, . . . , xD) ∈ RD subject to the constraints xi ≥ 0 and
∑D

1 xi = 1,

i=1,...,D}.

Compositional data sets can be found in fields such as economics (Fry et al.,

2000), geology (Aitchison, 1986) and the biological sciences (Li, 2015). A very

typical example can be observations of rock constitution in terms of percentages

of various chemical elements. Alternatively, we may represent a population’s

hair or eye colour in terms of proportions or percentages when varying survey

efforts take place, and yet some relative comparison is desired. Other instances

of compositional vectors can occur when arbitrary totals are imposed by physical

constraints, such as measuring instruments. One other example is the number of

hours in the day available for varying activities - work, sleep or leisure. Overall,

any data set comprising of some whole or falling into a finite number of categories

can be transformed into the compositional type through the process of normali-

sation (Aitchison, 1986), and can then be used to represent relative measures. In

a compositional data set, the term ‘whole’ can be understood to mean any fixed

constant that is consistent throughout the entire data set. For example, when

considering compositions expressed as percentages it would be 100%, or regard-

ing number of hours in the day available for differing activities - 24 to the nearest

hour. More often, however, the constant is equal to 1 and the components of the

compositional vector are expressed as fractions or finite decimals.

In wider mathematical context, probability (stochastic) vectors can also be de-

scribed as compositional, since they adhere to the same mathematical constraints.

We consider stochastic vectors and stochastic matrices in Chapter 5 of this thesis.
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Similarly, brief consideration is given to most current and yet incomplete research

areas in compositional data analysis, such as amalgamation of classes.

Compositional data can be presented through simplistic graphical tools such as

pie charts or composite bar charts. Usually, a separate colour or pattern repre-

sents a unique category; for instance, eye colour compositions for a population of

a particular country. More advanced graphical depictions of compositions, espe-

cially if the distribution of compositional parts is of interest, is known a ternary

plot (Aitchison, 1986). Also known as a simplex plot or a de Finetti diagram, it

is used to visualise three compositional parts in a two-dimensional diagram.

Example: eye colour

The following ternary diagram represents three-component compositions of eye

colour synthesised to come from a population of six anonymous countries. The

original data may have been count data that have been normalised for ease of

relative comparison. Here, data are shown as ready percentages for illustration

purposes. The data set consists of eye colours Blue, Brown and Other, where

Other is an aggregation of all the eye colour classes except Blue and Brown. This

choice was arbitrary to provide a simple example of a three-part composition that

can be represented with the ternary plot Figure 2.1.

The sum of the eye colour categories for each of the six countries, represented

by black dots, is given by unity or 100% as on the simplex plot. Each point

is positioned on the barycentric coordinates and the arrows show direction of

each of the three axes. The ternary plot allows us to visualise the distribution of

this data set and is a useful tool in visual depiction of compositional clustering

problems (Aitchison, 1986). Additional features of the ternary plot are presented

in this thesis in later chapters as needed.

As described, the two-dimensional ternary plot can be used as a tool for graphical

depiction of a three-part composition, since the dimension of the composition is
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Figure 2.1: Ternary diagram, eye colour example.

D − 1. Figure 2.2 shows how one may consider a composition with respect

to orthogonal axes, the latter representing distinct eye colours. All three-part

compositions for eye colours in a particular country are contained inside the two-

dimensional equilateral triangle, which joins (100,0,0), (0,100,0) and (0,0,100).

In instances where a composition’s dimension D > 3, one would now consider

simplices of higher D − 1 dimensions with D vertices. Figure 2.3 provides an

illustration of higher dimensional simplices.

Figure 2.2: 3-part composition plotted in three-dimensional Cartesian coordi-
nates (eye colour example).
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Figure 2.3: Simplices in dimensions 0 to 4.

The 3-simplex is commonly known as a tetrahedron, and the 4-simplex is called

a 5-cell. The face of a D-simplex is itself a simplex of dimension D−1. It may be

obvious to note that depiction of compositions in higher dimensions is of little use

to the human eye, although limited insight could be gained from distribution of

points in a tetrahedron, provided there are obvious clusters at the vertices or as

a central mass in the simplex. Thus, as in the eye colour example, it is common

practice to aggregate parts to reduce the dimensionality of the problem. Other

approaches akin to principal component analysis (PCA) exist with compositional

data (Greenacre, 2018) that tackle high-dimensional compositional data and rep-

resent parts as projections onto the Euclidean coordinate plane. The question of

representing compositional data is relevant to the topic of expert elicitation, as

was outlined in Chapter 1 and is further discussed in the later chapters of this

thesis.

In the rest of this chapter, however, we outline the most important concepts

in compositional data analysis (CoDA) relevant for this thesis, starting with the

work of Aitchison. We explore some mathematical properties and transformations

of the compositional structure, as well as higher dimensional representation of

the simplex.
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2.1. Principles of CoDA

2.1 Principles of CoDA

There are three basic principles of compositional data analysis that should be

adhered to: scale invariance, subcompositional coherence and permutation in-

variance.

Scale invariance states that compositional data carry only relative information,

so any change of the scale of the original data has no effect. If the original

data are multiplied by any scale factor S, for example, a change of units, then

the compositional data remain the same after the operation of closure (dividing

of raw data by its total to obtain compositional values, which are proportions

summing to 1).

Subcompositional coherence is the second principle of CoDA. It implies that any

results obtained for a subset of parts of a composition (subcomposition) remain

the same as in the composition. For instance, computing the means and variances

of parts of a composition does not adhere to this principle. Similar outcome is

seen when correlation between parts is computed (Aitchison, 1986).

Permutation invariance is the final principle. It means that results of an analysis

do not depend on the order that the parts appear in a composition. Even though

in a compositional data set the parts may appear in the same order for each

sample taken from this data set, permuting the columns of the data set should

be possible without affecting any results derived.

Both scale and permutation invariance appear trivial and accepted principles,

however, subcompositional coherence is a principle that often dominates the pro-

cess of analysing compositional data (Greenacre, 2018).

A fourth principle that has been considered is distributional invariance, which

is also one of the principles of correspondence analysis (Greenacre, 2002). This

principle relates to amalgamation of parts of a composition. For example, in

a chemical setting - the percentage of element A is always a fixed multiple of
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2.2. Vector space structure of the simplex

element B. Then A and B can be amalgamated, since they essentially contain

the same information and the data analysis should not be affected.

2.2 Vector space structure of the simplex

Through Aitchison’s work, we can configure the simplex ∆D as a vector space,

which in turn allows to define bases and straight lines. In order to do this,

compositional operations known as perturbation and powering of compositions

are defined:

Definition 2.3. (Perturbation) If x = [x1, . . . , xD],y = [y1, . . . , yD] ∈ ∆D their

perturbation is x⊕ y = C[x1y1, x2y2, ..., xDyD]

for some compositional vector C.

Perturbation adheres to the properties of a commutative group operation:

1. internal operation: x⊕ y ∈ ∆D

2. commutative: x⊕ y = y ⊕ x

3. identity element: n = C[1, 1, ..., 1] = [1/D, 1/D, ..., 1/D] such that x ⊕ n =

n⊕ x = x. n is unique.

4. inverse element: given x ∈ ∆D there exists an inverse	x = C[x1
−1, x2

−1..., xD
−1]

such that x⊕ (	x) = n.

The perturbation operation is equivalent to addition in the real vector space.

Next, let us consider the powering operation in ∆D which plays the same role as

multiplication by scalars in the real vector space.

Definition 2.4. (Powering) Let c be a scalar and x is a composition in ∆D.

Powering by c is defined by c� x = C[xc1, x
c
2, ..., x

c
D].

The main properties of the powering operation are:

1. c� x ∈ ∆D

2. identity element: 1 ∈ R satisfies 1� x = x

13



2.3. Higher dimensional simplices

3. distributive property: c� (x⊕ y) = (c� x)⊕ (c� y).

Powering by −1 can be used to define the inverse element: (−1) � x = 	x.

Together, powering and perturbation satisfy the properties for ∆D to have a

vector space structure.

Another important notion to aid with enumeration of the compositional elements

is that of affine independence:

Definition 2.5. (Affine independence) Points a1, a2, ..., ar ∈ Rr are affinely

independent if whenever λ1a1 + ... + λrar = 0 with λ1 + ... + λr = 0 then

λ1 = ... = λr = 0.

2.3 Higher dimensional simplices

The usual definition of the simplex ∆D can be regarded from a geometrical per-

spective to be the D-dimensional polytope which is the convex hull of its D + 1

vertices. Each D-simplex can be constructed by taking the convex hull of the

previous simplex and including one additional point in the D-space such that it

is affine-dependent with the preceding simplex. This procedure can be carried

out indefinitely, allowing us to define D-simplices for any D ∈ N.

The simplex is a generalisation of a polytope, which means that a simplex can

be decomposed into elements such as its edges, vertices, faces and cells. For

instance, an equilateral triangle (2-simplex) has 3 vertices, 3 edges and 1 face.

The tetrahedron has 4 vertices, 6 edges, 4 faces and 1 cell.

Definition 2.6. (d-element) The convex hull of any (d + 1) vertices of a D-

simplex is a d-element of the simplex. For d = 0, 1, 2, 3 the elements are called

vertices, edges, faces and cells respectively.

Lemma 2.1. A d-element of a standard D-simplex is itself a d-simplex.

Proof. A d-element has (d + 1) vertices which lie in the (d + 1)-dimensional
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2.3. Higher dimensional simplices

coordinate hyper plane H ⊂ RD+1. By omitting the coordinates which take only

zero value on the vertices, we can say that H = RD+1. Now, in H the d-element

is the standard d-simplex.

To proceed, let us define a number which encompasses the elements of the D-

simplex

Definition 2.7. For D, d ∈ N, let ∆(D, d) denote the number of d-elements in

the D-simplex.

From previous definition of d-elements, we can see that for a 3-simplex (tetra-

hedron), ∆(3, 0) = 4 for the number of vertices, ∆(3, 1) = 6 for the number of

edges, ∆(3, 2) = 4 for the number of faces and finally ∆(3, 3) = 1 for the number

of cells.

We can recognise that the pattern follows the values of Pascal’s triangle, and

generalises to

Theorem 2.2. 1. ∆(D, 0) = D + 1.

2. ∆(0, d) = 0, d ≥ 1.

3. ∆(D, d) = ∆(D − 1, d) + ∆(D − 1, d− 1).

Proof. 1. The D-simplex has D + 1 vertices, from the definition of the simplex.

2. The zero-simplex is a single point in space, so has zero elements of any dimen-

sion except the zero-dimension.

3. d-elements of the D-simplex include the d-elements ∈ ∆(D − 1, d) and the

d-elements which connect the vertex to each (d−1)-element of ∆(D−1, d−1).

The enumeration of d-elements is concluded with the following theorem

Theorem 2.3. ∆(D, d) =
(
D+1
d+1

)
Proof. A D-simplex has D + 1 vertices. By Definition 2.5 a d-element is the

convex hull of any of the d + 1 vertices. There exist
(
D+1
d+1

)
ways to choose these
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2.4. Variance-covariance structure

vertices and no two choices should have the same convex hull due to the points

being affine-independent.

2.4 Variance-covariance structure

From earlier remarks of Pearson (1897) and more formally through Aitchison

(1982), several issues arise when defining the covariance structure of a composi-

tion x = (x1, . . . , xD).

The sum constraint necessarily drives one of the covariances in each row of the

variance-covariance matrix to be negative (Aitchison, 1986). This is due to

cov(x1, . . . , xD) = 0, so then cov(x1, x2)+cov(x1, x3)+cov(x1, xD) = −var(x1), if

x1 is not a constant. This naturally has a restriction on the correlation coefficient.

For example, when D = 2 the correlation matrix is of the form

corr(x1, x2) =

 1 −1

−1 1

 .
The second issue, although it receives less attention in applications of CoDA,

comes from subcompositional analysis where x∗ = (x(1), . . . , x(k)) is a subvector

of k of D parts of x. The aim is for any analyis on subcompositions to give

a covariance structure that is relatable to the covariance structure of the full

composition x (Aitchison, 1986). This nuance too is important when considering

possible transformations of data lying in the simplex space onto the Euclidean

space in order to be able to employ standard multivariate modelling techniques.

2.5 Log-ratio transformations of compositions

For many practical aspects of compositional data analysis consideration of parts

of a whole in their original form can be restrictive in view of accommodating dif-

ferent distributional properties and adhering to assumptions made in modelling.
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2.5. Log-ratio transformations of compositions

The most obvious of such being the independence property, which is immedi-

ately violated by the unit-sum constraint. One other instance is the violation

of the Normality assumption in a linear regression problem with compositional

responses (Aitchison, 1986). Also, the principle of sub-compositional coherence

dictates that the results in a sub-composition must be the same as those when

considering the larger composition, which is not true if we consider solely the

original non-transformed parts. However, we find that ratios of parts do adhere

to this principle. For example, in two separate chemical studies it would be pos-

sible to compare ratios of components which are common to both studies. Usual

analysis and even hypothesis testing can be conducted on the ratio values where

normality is assumed (Greenacre, 2018). However, it is evident to see that a ratio

of non-negative parts cannot be negative, which could introduce problems if the

scientist is constructing a confidence interval for the mean, for instance.

In the question of regression analysis, compositional data can form the explana-

tory variable of interest, the response or both. In any case, as discovered by many

statisticians over the course of the last century, it is unwise to model this type of

data keeping in mind the usual Gaussian assumptions, such as independence of

errors (Aitchison, 1986). This holds even in the instance of multivariate analysis,

which relies on the assumption of multivariate normality. If a compositional data

set is made up of D components, we only need to know D− 1 of them to be able

to deduce the remaining component, giving some room for measurement error.

This brings about the idea of within-component correlation, as Pearson (1897)

pointed out in his work ‘On a form of spurious correlation which may arise when

indices are used in the measurement of organs’. Working in the usual classical

framework, we are assuming the Euclidean-geometric setting in real space, and

this is not so suitable for compositional data. To see this, it suffices to consider

about how a percentage change 1% to 2% carries different information than per-

centage change from 91% to 92% percent. In the first instance, as well as an

increase of 1%, the original proportion has doubled in size. The same cannot be
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2.5. Log-ratio transformations of compositions

said for the second percentage change. This example highlights the fact that the

Euclidean distance measure is an unsuitable metric for the compositional space.

For this, Aitchison recommended that compositional data is analysed in such

a way that scale invariance is preserved, such that any inference should not be

dependant on the scale at use. Secondly, subcompositional coherence is too to

be maintained - inference upon a component subset should not depend upon

any data outside of that subset. Finally, order of the components should not

influence the analysis. These three requisites, as defined above by the Principles

of Compositional Analysis, can be summarised as the Aitchison Geometry.

The first formal attempt by Aitchison to make the data more symmetric, the

ratios can be logarithmically transformed. For parts x1 and x2, the additive

log-ratio alr1,2 = log(x1/x2) that generalises to

Definition 2.8. alri,D : log
(
xi
xD

)
, i = 1, ..., D − 1.

The alr transformation relieves the unit-sum constraint and imposes normal-

ity following the multivariate Gaussian distribution, as argued by the author

(Aitchison, 1986). After carrying out usual regression modelling, it is possible

to back-transform the estimated coefficients, however the regression coefficients

would have limits in their intepretability. Therein lies also the choice of the

denominator in the log-ratio. In the above definition it was taken as the last

component xD, but may not necessarily be so. In fact, the denominator in the

alr transformation can often be determined by the experimental set-up or decided

according to another criterion, such as a reference variable.

A way to bypass the decision on the reference component can be explored through

centred log-ratio transformations, where the geometric mean of the parts is em-

ployed instead:

Definition 2.9. clri,D = log
(

xi
(
∏
i xi)

1/D

)
, i = 1, ..., D.

In this way, the log-transformed parts are centred with respect to their mean
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2.6. Box-Cox type transformation of compositions

across the parts. While the transformed parts themselves are not independent,

any subset of a clr set is linearly independent.

The log-transformation is known to convert ratio-scale data into interval-scale

data. The ratios are linearized and multiplicative differences become additive

on an interval scale. Most statistical methods utilise data on the interval scale,

exemplified through the use of means and variances. Hence, the log-transform

is the key to convert ratios into the appropriate additive scale for statistical

computations and to symmetrise their distribution, as well as reduce the effect

of outliers.

2.6 Box-Cox type transformation of compositions

The Box-Cox transformation is an example of a power transform family of trans-

formations suitable for removing compositional constraints and projecting the

original compositional data to the Euclidean space.

A general Box-Cox transformation with respect to a power parameter λ for a

positive vector y = (y1, . . . , yn), yi > 0 is given by Box and Cox (1964).

y
(λ)
i =


yλi −1

λ(
∏n
k=1 yi)

λ−1
n

if λ 6= 0,

(
∏n

k=1 yi)ln(yi) if λ = 0.

(2.1)

The parameter λ is estimated using maximum likelihood techniques so that the

vector of transformed variables is approximately multivariate Gaussian. Then

standard statistical modelling can be carried out on the set of transformed values.

It is trivial to note that the logarithmic transformations defined previously are

a special case of the Box-Cox transformations, in which case a small value for λ

would be selected with the ratios of compositional parts. As well as the log-ratio

approach, the Box-Cox transformation relies on the geometric mean value as a

measure of the central tendency of compositional data.
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2.6. Box-Cox type transformation of compositions

An alternative has been proposed by Sharp (2006) in cases where it is desirable

that the measure of central tendency lies directly inside the compositional data

set. Sharp highlights that the geometric mean is an unsuitable measure when the

compositions lie in a straight line. Instead, it is suggested that a multidimensional

extension to the median value is used as suggested by Small (1997) as it is more

consistent and intuitive with the compositional representation of variables on a

ternary diagram. This is deemed important for applications such as principal

component analysis on a compositional data set, and also to be used accordingly

with transformations.

The above Box-Cox transformation has a shortfall of being applicable in the

instances where yi > 0. In compositional data analysis this meets the issue of

essential zeros, where a component of x is exactly zero due to the absence of an

observation in a category. For illustration, in the eye colour example from earlier,

this could be the absence of people with eye colour other than Brown or Blue in

country c19 where c = (c1, ...., cN) is the set of all countries taking part in the

experiment. The strict-positivity constraint was first overcome by Aitchison and

augmented by the developments of Tsagris et al. (2011).

Originally, Aitchison (1986) defined the power transformation for compositional

vector x = (x1, . . . , xD) and α ∈ R:

S =

(
xα1∑D
i=1 x

α
i

, ...,
xαD∑D
i=1 x

α
i

)T

. (2.2)

Then the α-power transformation is defined by (Tsagris et al., 2011):

T =
1

α
H(JS − 1). (2.3)

with H being the Helmert sub-matrix (Lancaster, 1965) and J is a vector of ones

(length |J |).
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2.7. Log-contrast transformation on the simplex

The α-transformation is of further interest in modelling compositional data. It

can be used to form an alternative method of regression analysis for compositional

responses, especially useful when there exist essential zeros in the data set, so

log-ratio based transformations are problematic. This is further explored and

illustrated in Chapter 3 of this thesis.

2.7 Log-contrast transformation on the simplex

Another transformation of original compositional parts x = (x1, . . . , xD) pro-

posed by Aitchison (1986) is the log-contrast, which, as a linear combination,

can be mapped to the Euclidean space.

Definition 2.10. (Log-contrast) A log-contrast of a composition x = (x1, . . . , xD)

is a function f(x) =
∑D

i=1 αiln(xi), where
∑D

i=1 αi = 0; i = 1, ..., D.

A particularly attractive use for log-contrasts is found in chemistry (Grunsky

et al., 2008), for instance, in mass-preserving reactions
∑D

k=1 αk = 0 holds and α

values are known constants. When a chemical reaction reaches equilibrium state,

the log-contrast of a set of compositional parts and the α constants find suit-

able interpretation (Grunsky et al., 2008). Further, log-contrasts can be readily

used in linear regression analysis with compositional responses and explanatory

variables (Aitchison, 1986).

2.8 Amalgamation in CoDA

It is often observed that compositional data can fall into natural groupings,

whether based on physical properties of the data or considerations in the sta-

tistical analysis carried out, such as heirarchical clustering. For example, in

Chapter 3, we explore tree types found on a study site in Northern Yorkshire.

Individual tree types fall into classes and families, and a natural question arises

about any benefits or shortfalls of modelling these families of trees, instead of the
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2.8. Amalgamation in CoDA

individual tree types.

In other instances, where compositional parts are numerous or contain many

essential zeros, it may be advisable to consider some amalgamation (summing)

of parts for computational ease or to bypass modelling of zeros, especially if the

question of inference on individual parts is not acute. Amalgamation can also be

an effective technique to achieve dimensionality reduction in a compositional data

set. Returning back to the eye colour example at the beginning of this chapter,

the class Other is indeed an amalgamation of eye colours such as green, hazel,

grey, red, amber, variants of heterchromia or ‘no response’. Aggregating these

categories into a separate class allowed us to represent the categories Brown, Blue

and Other on a ternary plot.

A transformation that exploits this grouping nature is known as the isometric

log-ratio transformation (ilr). The definition of the ilr is based on two subsets

(subcompositions) D1 and D2 of the compositional set (Egozcue et al., 2003). D1

and D2 are non-overlapping, such that D1

⋂
D2 = ∅.

Definition 2.11. ilrD1,D2 =
√

D1D2

D1+D2
log

(
(
∏
i∈D1

xi)
1/D1

(
∏
i∈D2

xi)1/D2

)
, where D1 and D2 are

the first and second non-overlapping subsets of compositional parts respectively.

An alternative specification for groupings of parts could be simple amalgamation

of ratios, as defined previously. These offer ease of interpretability compared to

the isometric log-ratio transform, provided adequate labelling. Comparison of

different ilr values is also problematic, as it depends on relative values of the

parts in the geometric means that form the transformation, and very differing

original compositions can give the same ilr values.

Thus, while interesting from a theoretical standpoint, practical use of isometric

log-ratio transformations is limited due to difficulties in their interpretability.

One other important feature is that amalgamation of components is not a linear

operation in the simplex space (Aitchison, 1986) and the result of this is Simpson’s
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2.8. Amalgamation in CoDA

paradox (Good and Mittal, 1987), which was earlier recognised by Pearson (1897)

and Yule (1903).

Outside of the application to compositional data sets, Simpson’s paradox deals

with contingency tables of success and failure rates in a population where an ex-

periment took place to determine the aforementioned rates. If the population is

divided into distinct classes and a contingency table is created for each separate

class, Simpson’s paradox can be seen when the performance (success/failure rates)

of non-overlapping classes contradict the original contingency table for the whole

population. Egozcue and Pawlowsky-Glahn (2008) discuss this phenomenon in

the compositional setting of amalgamations, as a natural extension of the con-

tingency table set-up. The authors make an assessment of existing methods to

analyse proportions in which Simpson’s paradox may occur, and address the ques-

tion of finding a representative measure of each sub-composition such that the

rates (success or failure, for example) can be compared across sub-compositions.

Egozcue and Pawlowsky-Glahn (2008) find that an alternative measure to analyse

is the geometric mean, rather than the non-linear amalgamation operation.

In contrast to earlier shortfalls of amalgamation of compositions, Greenacre

(2018) argues for the use of transformations to consider amalgamated compo-

sitional data, deeming it necessary in fields such as geochemistry. He states that

the acceptability of the use of a transformation technique should be guided by its

benefits to a research question, and not its mathematical properties, such as non-

linearity of amalgamations in the simplex, as long as the basic principles of scale

invariance and subcompositional coherence are satisfied. On a wider perspective,

such bespoke approaches to modelling may be justified on a case-by-case basis,

but their transferability to other situations is naturally questionable.
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2.9. Other transformations

2.9 Other transformations

One other transformation to consider for the purposes of this thesis is the square-

root transformation. The square root transforms the simplex space onto the

hypersphere, which is a contrast to earlier transformations onto the familiar Eu-

clidean space. Even though this would again deviate from the normality as-

sumption in classical multivariate modelling, the resulting set of variables can be

modelled using the Kent distribution and the von Mises distribution (Scealy and

Welsh, 2011; Stephens, 1982).

In the usual setting x = (x1, . . . , xD) ∈ RD subject to the constraints xi ≥ 0 and∑D
1 xi = 1, then

√
x = (

√
x1, . . . ,

√
xD) lie on a hypersphere of dimension D− 1:

SD−1 = {y ∈ RD : ||y|| = 1}.

√
x lies on the positive orthant of SD−1 and when

√
x is not on the boundary

of the orthant it can be modelled using the Kent distribution. It is due to the

unit-sum constraint of compositional data that this transformation and further

modelling is possible, since
√
x
T√
x = 1 as for directional data vectors that lie

on the hypersphere. This transformation similarly preserves essential zeros, and

the work of Scealy and Welsh (2011) use the transformation to further investi-

gate regression with a compositional response variable with the help of the Kent

distribution. The authors found that this approach to regression is difficult to

implement, and that the transformed components exhibit large variance and lie

close to the boundary of the orthant. The lines on the simplex (example Fig-

ure 2.1) are no longer equidistant on the hypersphere and points are stretched

further apart at the boundary. Combined with a large variance of transformed

components this can result in a phenomenon called folding. This may result in

difficulties of estimation of parameters of the Kent distribution and stability of

optimisation (Scealy and Welsh, 2014).

A final consideration of transformations of the simplex space is through a trun-

cation. Butler and Glasbey (2008); Dobigeon and Tourneret (2007) used a trun-
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2.10. Modelling of compositional data

cated Gaussian distribution to model the simplex space. In the former case Butler

and Glasbey (2008) employed a latent Gaussian model with the primary aim of

handling essential zeros - when a compositional component is exactly zero due to

the absence of an observation in a category. These latent variables are assumed

to follow the multivariate Gaussian distribution and lie on the unit hyperplane.

The transformation is a function that minimises the squared Euclidean distance

between the original composition parts and the latent variables, and from this un-

known parameters of the multivariate Gaussian distribution are estimated. This

approach faces shortfalls, namely the immediate violation of subcompositional

coherence and scale invariance, which are two of the main principles of CoDA.

Furthermore, estimation of parameters for D > 3 is deemed problematic. But-

ler and Glasbey (2008) thus express that this transformation should be applied

for exploratory analysis or diagnostic purposes, or when other transformations

are even less appropriate. More recently, other transformations have been ex-

plored through the works of Leininger et al. (2013); Tsagris and Stewart (2020)

and Scealy and Wood (2020) that use sophisticated folding and scale matching

techniques to overcome the modelling difficulties introduced by essential zeros.

2.10 Modelling of compositional data

In this chapter so far, we have addressed constraints on compositional vectors, the

effect these constraints may have on the variance structure and possible solutions

in the form of transformations. In statistical modelling, compositional structure

can be found when data are in the role of predictor variable set, the dependent

response set or both. Log-ratio transformed compositional parts are similarly

employed in the role of predictors and responses, as detailed in Aitchison’s work

(Aitchison, 1986). Compared to linear regression modelling, two key assumptions

are violated in the compositional framework - the Normality assumption and the

independence assumption. This is especially prevalent when compositional parts
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2.10. Modelling of compositional data

are considered as the response variable. However, compositional predictors also

would exhibit high multicollinearity, even when the data are transformed. For

example, the clr-transformed parts are still not independent. Similarly, if the

purpose of the analysis is prediction, problems may arise with predicted values

outside of the range [0, 1] or that they do not submit to the sum-one constraint.

Many approaches have been suggested to overcome these difficulties, and with in-

creasing computing power reliable inference has been possible for high-dimensional

compositional data as well, where the number of predictors exceeds the number

of data samples available.

The approaches to modelling compositional data can be split roughly into two.

The first relies on transformation of the original composition, as given in earlier

parts of the chapter. Then, any problems that arise therein, for example, high

multicollinearity of log-ratio transformed parts, are addressed with existing sta-

tistical methods. See Wang et al. (2010) for partial least squares approach, for

instance. The second view on compositional regression is to assume that the true

and underlying distribution for the responses is the Dirichlet, and similar gener-

alised linear models are built through a logit link function for the mean (Maier,

2014).

Application of Bayesian techniques in the compositional framework can be ex-

plored through the work of Iyengar and Dey (1998), who review methods such

as Box-Cox transformations for both parametric and non-parametric regression

models. Bayesian perspectives can allow to express the regression coefficients

in terms of probability distributions. The modeller can include any informa-

tion already known about the parameters through the prior distribution. The

Bayesian model can be applied directly and exactly to fewer samples also, as

it does not rely on asymptotic results for validity. Moreover, the issue of over-

fitting, where the selected model can fit the existing data extremely precisely

but may be completely unsuitable for a new data set at hand, can be dealt with
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2.11. Other considerations - multimodality

through the use of a prior distribution expressing a penalty term reflecting model

complexity. Bayesian regression of compositional data can also accommodate

high-dimensional models, where the number of predictors exceeds the number

of observed responses. A common choice for prior distributions in a Bayesian

regression setting are spike-and-slab priors (Andersen et al., 2014) and horseshoe

priors (Carvalho et al., 2012). For the former, regularisation approaches have

also been incorporated, as in the work Ročková and George (2018), who describe

the spike-and-slab approach combined with the penalisation LASSO.

Bayesian approaches to compositional regression modelling arguably have easier

interpretation, than those based on transformations due to the need to back-

transform - the meaning of the regression coefficients may not be intuitive in the

physical application, and may be difficult to communicate to scientists with lim-

ited statistical background. For example, the additive log-ratio transformations

is not symmetric with regards to which part is taken as the reference part in the

denominator, and interpretation of the estimated regression coefficients should

change if a different reference part is taken. Similarly, transformation-dependent

modelling relies heavily on the absence (or adequate accommodation) of essential

zeros. Careful consideration must be given to modelling compositions that con-

tain these zero values. This area of CoDA has been widely studied (Aitchison and

Kay, 2003; Stewart and Field, 2011), and is still of interest in modern statistics.

2.11 Other considerations - multimodality

The relative nature of parts of a composition can give rise to similar problems of

bimodality or multimodality as count data. This can be due to mixture of some

populations, or, as we will see in Chapter 4, high variances in the univariate Beta

distribution, for example, will drive its probability density function to have peaks

at the end-points of the [0, 1] interval. Similarly for data sets with high proportion

of essential zeros, we may observe modes in the distribution of data, and may look
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2.11. Other considerations - multimodality

to an amalgamation to constrain this phenomenon. A log-ratio transformation is

not feasible for a zero-part in a composition, however, we may look towards the

aforementioned isometric log-ratio transformation to work with amalgamations,

or to change the scale of the data set and allow for later modelling with the

multivariate Gaussian family. In the Bayesian framework for a likelihood-driven

analysis any non-informative prior on the simplex (for example, the Jeffreys prior

distribution) is hoped to capture multimodality in a sufficient manner. Alterna-

tively, if a-priori a multimodal structure is strongly believed to exist, we may

wish to construct an accommodating prior distribution. As already mentioned, a

candidate for such could be a high-variance Beta distribution, which generalises

to the Dirichlet distribution with high concentration parameter values. Other

distributions that can accommodate instances of multimodality are described in

Chapter 4. Similarly, we consider these in light of a prior elicitation exercise

in Chapter 7. Firstly, identification for the need of a multimodal distribution

must be established through discussion with the experts, and then this decision

leads to the selection of an appropriate prior distribution with parameters that

accommodate multimodality. Alternatively, should the experts give judgements

that imply existence of more than one mode in the consensus prior distribution,

this needs to be highlighted in the discussion that follows. All these nuances are

described in Chapters 6 and 7.
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Chapter 3

Modelling approaches for

identification of tree species

In this chapter, we illustrate the nuances of compositional data analysis in a

regression setting. The task presents itself as a set of continuous predictor vari-

ables and the response is a 10-part composition. We compare approaches after

conducting transformations in the log-ratio family with a regression approach

that assumes the underlying distribution is the Dirichlet. We also explore non-

parametric approaches to modelling the problem using random forest regression

and similarly seek to reduce computational time by extracting regressors that

explain most of the variance within the set of regressors using principle variable

method of Cumming and Wooff (2007). The practical motivation for this ap-

proach is to enhance an existing sub-pixel classification method that is used to

identify tree types in a woodland area in North Yorkshire, UK. This chapter stems

from collaboration with Fera Science, UK, and a part of this work has formed a

paper due for submission to the journal Remote Sensing of Environment. Any

work in this chapter not carried out by A. Frantsuzova is clearly indicated.
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3.1 Introduction

This chapter describes a joint project with Fera Science, UK, with the aim to

augment Fera’s existing research started in the “Pre-clasp pilot study – Earth

observation for the identification of tree species distributions using sub-pixel clas-

sification methods” from 2017. Fera Science is a UK-based research organisation

that focuses on plant sciences, environmental and agricultural conservation, and

food safety. The pilot study is part of a larger project to investigate dieback of

ash trees in the UK, interest also lies in investigating methods of detecting tree

types where only lower-quality satellite imagery is available. Particular focus is

with monitoring amenity woodlands, which comprise of private and agricultural

land, smaller publicly-owned blocks, as well as individual trees in peri-urban ar-

eas (DEFRA, 2018a). This is also of wider importance to the UK Tree Health

Resilience Strategy (DEFRA, 2018b) which highlights the importance of, and key

steps for, managing a healthy and resilient treescape. Therefore, there is a need

to enhance existing methodology to identify and monitor tree species in urban

and peri-urban areas.

In some instances, only lower-resolution land cover data from a satellite, such as

ESA Copernicus programme Sentinel 2 satellites, may be available for statistical

modelling. Another source of data are higher resolution Unmanned Aircraft

Systems (UAS) or ‘drones’. Drones provide a cost-effective and efficient way of

gaining high resolution imagery over a small area. However, the use of drones

in peri-urban and urban areas is subject to aviation regulations and their use

in highly populated areas may require specific permission. A potential solution

to enhance information that can be gained about tree species distribution from

lower-quality satellite data without resorting to the use of drones is to apply sub-

pixel classification algorithms trained on high-resolution drone imagery in rural

locations to lower resolution Sentinel 2 satellite imagery.

There exist several variants of sub-pixel classification algorithms, for instance,
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3.2. The data set and exploratory analysis

Sood and Gupta (2018) review the linear spectral mixture model, support vector

machine models, methods based on maximum likelihood classification, as well

as others. We concentrate on estimating the proportional composition of pixels

that have mixed spectral characteristics. Details of data collection and spectral

characteristics are described in the next section.

Fera’s pilot study used the method of random forest regression to classify tree

types in each mixed pixel. This was motivated by random forest’s non-parametric

property, allowing us to bypass the assumption of a particular underlying prob-

ability distribution. The random forest algorithm is also robust to any outliers

in the data, and has proven to be a well-established method in remote sensing

and land map modelling (Gislason et al., 2006; Rodriguez-Galiano et al., 2012;

Pelletier et al., 2016). In this collaboration, the role of A. Frantsuzova and J. P.

Gosling was to augment the modelling approach to increase prediction accuracy,

measured using root mean squared error (RMSE). Similarly, the link with compo-

sitional data analysis is evident, as the response variable is expressed as a 10-part

composition. It is interesting to also compare the random forest algorithm with

techniques arising from developments in CoDA.

3.2 The data set and exploratory analysis

The data set was collected and compiled by Fera Science, UK: Paul Brown carried

out drone imagery capture, image processing and high-resolution classification;

Lee Butler carried out drone imagery capture and image processing; and Simon

Conyers (University of Newcastle) was responsible for the species identification

for classification training of the drone imagery. Data collection was carried out

primarily for the pilot study (2017), and no further additions to the data set by

the above persons were made for the purposes of collaboration with A. Frantsu-

zova and J. P. Gosling.

Data was collected over an area of interest (AOI) presented in Figure 3.1 below
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3.2. The data set and exploratory analysis

located in North Yorkshire, UK. The area is classified as a small mixed woodland

sized 34.94 ha and contains natural and plantation woodland. A drone (UAS)

was used to collect imagery over the AOI for leaf-off (February 2016) and leaf-on

(August 2016) conditions. Details of the UAS specifics are omitted here, but one

camera captured near infra-red imagery also. Another data set was compiled by

Fera Science, UK and consisted of a ground survey of the AOI. A random forest

classifier was used on high-resolution drone data compared against data from the

ground survey. Overall classification accuracy of the UAS imagery was 68%, and

accuracy varied across species.

Lower resolution satellite imagery was then taken by Fera Science UK from the

Sentinel-2 satellite downloaded from the European Space Agency (ESA) Coper-

nicus Open Access Hub (Scihub 2017). The dates for data collection were 16th

April 2016, 19th July 2016 and 26th December 2016. This data has four 10 me-

tre spatial resolution bands for visible-NIR (VNIR; blue (490nm), green (560nm),

red (665nm), NIR (842nm)) and 20 metre spatial resolution for four bands dedi-

cated to the red edge (705nm, 740nm, 783nm, 865nm) and for two bands in the

short-wave infra-red (SWIR; 1610nm, 2190nm). 20m spatial resolution bands

were resampled to 10m in order to match the spatial support of the VNIR bands.

The data was further corrected and geo-referenced for alignment with UAS hard

classification.

The AOI tree classification was converted to a set of area fraction images (AFIs)

to be used to train the classification algorithm for the lower-quality Sentinel-2

data (Verbeiren et al., 2008; Heremans et al., 2011). The AFIs were created using

a 10m spatial resolution frame derived from the Sentinel-2 imagery for individual

grid cells in the AFI to match to a single pixel in the Sentinel-2 imagery. An AFI

was created for each tree species and for the area of shadow before being combined

into a single GIS layer describing the species composition for each pixel. Table

3.2 shows the mean proportion of each tree class for the entire data set. Grid

cells that contained non-classified area (i.e. areas which are not tree or shadow)
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3.2. The data set and exploratory analysis

Figure 3.1: Slingsby Bank AOI. Red outline shows the area of UAS imagery
classification. Source: “Pre-clasp pilot study – Earth observation for the identi-
fication of tree species distributions using sub-pixel classification methods”, Fera
Science, 2017.

were removed from the AFI data set, so that it only contains pure woodland cells,

where the AFI proportions in each cell sum to one. The 10m resolution data set

of 30 spectral bands was spatially joined to the AFI image and the combined

attribute data for each grid cell was extracted to produce the data set on which

the sub-pixel classification is performed.
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3.2. The data set and exploratory analysis

Band Wavelength (nm) Band type Spatial resolution (m)
B2 490 Blue 10
B3 560 Green 10
B4 665 Red 10
B8 842 NIR 10
B5 705 NIR 20
B6 740 NIR 20
B7 783 NIR 20
B8a 865 NIR 20
B11 1610 SWIR 20
B12 2190 SWIR 20

Table 3.1: Spectral bands of MSI sensor on-board Sentinel-2 satellite.

Tree Type Mean proportion
Ash 0.021
Beech 0.049
Larch 0.186
Oak 0.189
Scots Pine 0.052
Shadow 0.145
Silver Birch 0.092
Sitka Spruce 0.068
Sweet Chestnut 0.071
Sycamore 0.126

Table 3.2: Mean proportion of tree class for entire dataset.

The AOI tree types are: ash, beech, larch, oak, scots pine, silver birch, sitka

spruce, sweet chestnut, sycamore and a shadow class. Furthermore, the British

National Grid easting and northing for each grid cell was added to the predictor

data set, to allow for exploration of spatial patterns. The study site was dissected

into 4 quadrants according to midpoint of the eastings and northings of the

cells covering the woodland, as illustrated in Figure 3.2. The eastings for the

cells range between 468,906m and 469,756m, with the mid-point being 469,331m.

Similarly for northings, we have a range of 472,927m to 473,597m with the mid-

point being 473,262m. Random forests were created using training data from

three of the four quadrants and the accuracy of the regression calculated using

the cells in the remaining quadrant as the testing data set. This approach was

iterated until all the quadrants were used in the testing step.
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3.2. The data set and exploratory analysis

Figure 3.2: Study site quadrant dissection.

Tree Type % essential zeros
Ash 87.7
Beech 81.1
Larch 51.5
Oak 45.2
Scots Pine 75.3
Shadow 6.32
Silver Birch 64.0
Sitka Spruce 78.3
Sweet Chestnut 70.9
Sycamore 54.3

Table 3.3: Percentage of essential zeros recorded by tree type.

The data set contains 2153 records (rows), 10 tree species (including shadow class)

as the response variable, two easting and northing coordinates for each grid cell,

and the set of predictor variables comprises of 30 spectral bands (ten bands B2

to B12 repeated for each season: winter, spring and summer) as defined in Table

3.1. No missing values are contained in the data set. The 10-part compositional

response of tree types contains finite decimal places (to 2 d.p.) and a large

proportion of essential zero values. Table 3.3 summarises zero contributions to

individual tree types, and the overall proportion of essential zeros for the tree

types is 61.5% to three significant figures.

Spatial dependency was explored through pairwise correlation plots for pixel val-
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3.2. The data set and exploratory analysis

ues for individual seasons, found in Figures 3.3 to 3.8. Similarly, pairwise scatter

plots between the spectral bands for each season show a clear linear relationship

of varying strength. As an example, for the season Spring spectral bands B6,spr

and B7,spr exhibit an overall stronger linear relationship with the other bands

for this season than the band B2,spr. Furthermore, B6,spr and B7,spr are both

strongly linearly associated with B8A,spr which is a NIR band of a similar wave-

length. We can see that there is much more evident linear correlation between

individual spectral bands for the seasons of Spring and Summer, and the weakest

associations can be seen in the Winter-Summer plot. This hints at the temporal

component in the data set, with changing leaf colour by season. We can also de-

tect highly correlated spectral bands and account for this relationship in order to

help us reduce the number of dimensions in our set of explanatory variables. On

the other hand, this clearly suggests the existence of multicollinearity, which oc-

curs when one explanatory variable in a multiple regression model can be linearly

predicted using the other variables, which can lead to sensitivity of coefficients

in the model and, hence, predictions. This may also play a minor role when con-

ducting the random forest classification due to the number of correlated variables

present. We can see that there is consistent positive correlation between Bands

11 and 12, and where there was negative correlations for the Winter season in

Bands 6, 7 and 8, this correlation becomes positive for the seasons Spring and

Summer.
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3.2. The data set and exploratory analysis

Figure 3.3: Correlation plot for pixel values in seasons Spring and Summer.

Figure 3.4: Correlation plot for pixel values in seasons Spring and Winter.
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Figure 3.5: Correlation plot for pixel values in seasons Winter and Summer.
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3.2. The data set and exploratory analysis

Results from the hard UAS classification can be plotted to give an indication of

the spatial spread of each tree type over the area of interest, presented in Figure

3.9 and Figure 3.10. In the later plots, for example, we can see clear regions

(south Y coordinate) in both instances where clusters of Larch and Sitka Spruce

dominate the pixels. Similar regions are highlighted in the adjacent plots.

Proportion of Ash per pixel Proportion of Beech per pixel

Proportion of Oak per pixel Proportion of Shadow class per pixel

Figure 3.9: Scatter plot of proportion of tree type per pixel with coordinate
location. Clockwise: Ash, Beech, Shadow class and Oak.
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Proportion of Silver Birch per pixel Proportion of Sitka Spruce per pixel

Proportion of Sweet Chestnut per pixel Proportion of Sycamore per pixel

Proportion of Larch per pixel

Figure 3.10: Scatter plot of tree type with coordinate location. Clockwise: Silver
Birch, Sitka Spruce, Sycamore, Larch and Sweet Chestnut.
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3.3. Methodology and results

3.3 Methodology and results

This section presents the methodology employed for sub-pixel classification mod-

elling of tree types in a mixed pixel. Each subsection concerns a separate method,

starting with random forest (RF) regression, which was preferred by our collab-

orators at Fera. Then follow other approaches in compositional data analysis,

which were considered by A. Frantsuzova as being relevant to this problem. For

the purposes of coherence each subsection describes each method and presents

results driven by the method, and then an overall comparison is conducted in the

Discussion section of this chapter.

3.3.1 Regression tree and random forest regression for sub-

pixel classification

To perform the sub-pixel classification, a regression tree or random forest re-

gression for each of the nine tree species and the shadow class was constructed

(Huguenin et al., 1997). The intensity values of pixels in the 30 bands are treated

as predictors and the species composition in a pixel from the UAS classification

became the response variable of each regression tree or random forest regression.

Recall that each tree species (and the area of shadow) is constructed from an

area fraction image before being combined into a single GIS layer describing the

species composition for each pixel. The algorithm for building the regression

trees is shown in Figure 3.11.

Random forest (RF) due to Breiman (2001) is an process that augments multi-

ple decision trees to form a larger structure, and combines the bagging method

(Breiman, 1996) with random variable selection. For each decision tree of the RF

bagging sampling is used to binary split the data using different rules, depending

whether the problem is regression or classification. For our purposes to build a

non-parametric regression model using RF, the splitting criterion minimises the

sum of squares of mean deviations used for training each tree model.
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3.3. Methodology and results

Figure 3.11: Decision tree regression approach for the sub-pixel classification of
remote sensing data.
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As the proportion for each species is estimated independently, the species pro-

portions for each pixel were normalised according to Equation 3.1 so that they

sum to 1:

P (i) =
DT (i)∑
iDT (i)

. (3.1)

where DT (i) presents decision tree i, i = 1, ..., t, as in Figure 3.11.

The pixel data was split into training (80%) and testing (20%) data sets. Regres-

sion trees were created using the rpart package in R and random forest regression

was performed using the randomForest package in R with number of trees in the

random forest set at 250, 500 and 1000, 1500. Performing the analysis with ran-

dom forest size 500 gave no significant reduction in fit accuracy compared to using

forests of larger size 1000 or 1500. For both regression trees and random forest

regression the branches of the trees are split to maximise the between group sum

of squares, with the accuracy of the model defined by the root mean square error

as given in Equation 3.2.

RMSE =

√
Σn
t=1(ŷt − yt)2

n
. (3.2)

where ŷt is the predicted value of variable yt, and n is the sample size.

Additional testing was carried out to explore whether choosing the training data

geographically, rather than by randomly assigning training and testing points in

20-80 proportion, affected the performance of the random forest regression. To

achieve this, we dissected the study site into 4 quadrants according to midpoint

of the eastings and northings of the cells covering the woodland, as demonstrated

in Figure 3.2. Random forests were created using training data from three of the

four quadrants and the accuracy of the regression calculated using the cells in

the final quadrant as the testing data set.

Analogous to the random forest algorithm, classification and regression tree anal-

ysis (CART) is an algorithm based on building trees, however, only single trees
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Tree Type Random forest RMSE
Random forest RMSE

with spatial (coordinate)
explanatory variable

CART RMSE

Ash 0.080 0.084 0.096
Beech 0.120 0.121 0.168
Larch 0.196 0.186 0.312
Oak 0.216 0.208 0.295
Scots Pine 0.103 0.102 0.150
Shadow 0.101 0.110 0.176
Silver Birch 0.157 0.148 0.202
Sitka Spruce 0.115 0.115 0.200
Sweet Chestnut 0.138 0.135 0.169
Sycamore 0.176 0.170 0.253

Table 3.4: Random forest size 500 and 20 repeated simulations, with test data
set for prediction purposes.

are considered in the exercise. R’s version of this algorithm is named Recursive

Partitioning And Regression Trees (RPART) and has been implemented. It rests

on recursive splitting of the data set until a stopping criterion is reached. With

each movement, a split is performed based on the the explanatory variable which

gives the greatest reduction of the dependent variable. We also consider inclusion

of two further predictor variables, namely the X and Y coordinates of the pixel

location, as it is likely that there exists some spatial dependency, as has been

hinted by earlier exploratory plots.

Results from Table 3.4 indicate that the inclusion of a spatial (X-Y) variables

did not improve the RMSE scores for all the tree types equally. Using two-

sample t−tests with 50 repeated runs of the random forest models (mean RMSE

estimates were identical to those given above, to 3 significant figures) yielded

varied significance results for tree species using different random forest set-ups.

Compared to the base scenario with seasonal predictors only, adding the two

spatial variables showed a significant difference (at 5% level) in RMSE scores

for tree species Beech, Larch, Oak, Shadow class, Birch and Sycamore. In com-

parison, CART yielded significantly higher RMSE scores across all tree types.

Using variable importance plots from the random forest procedure can be found
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in Appendix A (9.1). However, it is clear that RF strongly outperforms CART

in terms of standard deviation of unexplained variation around the fitted model.

It is worth noting the ranges of RMSE scores for the individual tree types. Larch

and Sitka Spruce exhibit larger ranges of RMSE between the different approaches

(random forest and CART) than the broad-leaf species. This larger range, espe-

cially for the quadrant analysis may further suggest an underlying spatial struc-

ture, which is highlighted by the block-planting approach used for species such as

Larch and Sitka Spruce. Considering RMSE rank of the quadrants in each tree

species in Table 3.5 yields us a further indicator that the species are distributed

through the woodland - Quadrant IV has the highest mean rank of 2.88, followed

by Quadrant III (mean rank:2.44) and Quadrants I and II (mean rank: 2.33).

We can further relate RMSE scores with woodland composition. Table 3.2 pro-

vides the proportion of each tree type in the entire data set. For the purposes

of training and testing the random forest models, a model for each tree type

was simulated 20 times, and so the training and testing data sets were selected

20 times for each species. This resampling technique, akin to bootstapping, can

provide us with mean RMSE scores representative of those for the whole data

set. So a comparison of RMSE scores with the mean proportions in Table 3.4 are

reasonable, instead of tracking the proportions of each tree type 20 times each

model is trained. Thus, we can make relative comparison of RMSE scores across

the tree species - for example, the RMSE for Ash is approximately four times the

magnitude of the mean (0.02), whereas for Larch it is only just over one times

the magnitude of the mean (0.18). As previously, the differences between RMSE

scores between the quadrants for each tree type are significant at the 5% level

for all tree types considered.

We consider a similar exercise to the above using multiple response data (tree

type compositions), in contrast to performing random forest regression for each

tree type in turn and performing normalisation. Due to potential physical depen-

dencies between the tree types, we may gain further insight through simultaneous
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Tree Type Quadrant I Quadrant II Quadrant III Quadrant IV
Ash 0.078 0.101 0.088 0.102
Beech 0.146 0.088 0.169 0.130
Larch 0.197 0.178 0.267 0.302
Oak 0.276 0.283 0.238 0.230
Scots Pine 0.131 0.110 0.156 0.099
Shadow 0.132 0.179 0.119 0.115
Silver Birch 0.192 0.207 0.145 0.215
Sitka Spruce 0.120 0.061 0.188 0.139
Sweet Chestnut 0.154 0.208 0.131 0.155
Sycamore 0.247 0.188 0.162 0.210

Table 3.5: Random forest RMSE with spatial (coordinate) explanatory variable
for each respective quadrant used as the data set for prediction and RMSE cal-
culation.

analysis of the responses. In practical terms, similar to the random forest, here

we utilise bootstrapping and a set number of randomly selected explanatory vari-

ables at each split. Using the R package MultivariateRandomForest this is a

simple exercise, though computationally requires approximately half an hour for

one run. Results are presented in Table 3.6.

Another approach used for comparison is kriging, which originates from the field

of geostatistics and can be regarded as a generalisation of a univariate (or mul-

tivariate) linear regression model as a method of interpolation. Kriging incor-

porates spatial correlation between the values taken as a sample, hence, no par-

ticular model of the spatial structure is presumed a-priori. Kriging is popular

in fitting smooth functions to data that is spatially or temporally correlated

(Matheron, 1963) For each value interpolated there corresponds also a level of

uncertainty about it. For our purposes, the R package DiceKriging was used

to perform a very similar analysis to the above techniques, with the inclusion of

spatial X and Y coordinates and default nugget size. RMSE values between the

predicted values and the test data set are given in Table 3.6. Compared to the

baseline random forest RMSE scores in Table 3.4, the results given by the mul-

tivariate random forest and kriging approaches yield significantly higher RMSE

scores at 5% level.
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Tree Type Multivariate random
forest RMSE

Simple kriging
RMSE

Ash 0.1053 0.0940
Beech 0.1503 0.1606
Larch 0.2465 0.3474
Oak 0.2619 0.3105
Scots Pine 0.1136 0.1573
Shadow 0.1356 0.1817
Silver Birch 0.2031 0.2228
Sitka Spruce 0.1375 0.2280
Sweet Chestnut 0.1471 0.1667
Sycamore 0.2121 0.2534

Table 3.6: Multivariate random forest and kriging RMSE scores, with test data
set for prediction purposes.

Model diagnostics were considered for the methods under consideration. The

random forest and kriging methods do not make distributional assumptions on

the residuals, but it is still worth to explore residual homoscedasticity. Figures

9.1-9.6 in Appendix A depict (raw) residual diagnostic plots for the primary

random forest approaches, with and without the inclusion of spatial variables.

Very similar patterns were found for the CART, kriging and when considering

individual quadrants for prediction purposes. Specifically for the residual-fitted

plots, we can observe behaviour characteristic of potential model-misspecification

for zero-inflated data. In our modelling of mixed pixels, this could prove an

important feature (see Table 3.3) due to high proportion of essential zeros in the

data set. Future work on this topic could consider the use of zero-inflated models

for compositional data to address this issue, see for example (Salter-Townshend

and Haslett, 2006).
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3.3.2 Tree type amalgamation

Further thought was given to the classes of tree types presented in the data

set. Considering that the spatial explanatory variables showed an improvement

in RMSE scores, we decided to adopt an amalgamation to the ten response tree

type categories into families of trees, in order to see whether there was any further

improvement. In order to accomplish this, we consulted the lists of tree genera,

freely available online (List of Latin Botanical Tree Names, Genus and Species,

2020). From this, two separate families were formed - the Beech Family consisting

of Beech, Oak and Sweet Chestnut; and the Oak Family which includes Larch,

Scots Pine and Sitka Spruce. The other four categories: Ash, Shadow, Silver

Birch and Sycamore remained solitary. The aggregated categories were obtained

by simply adding together the relative individual proportions. To follow, the

standard random forest approach from earlier, with the inclusion of spatial co-

ordinates, was performed. An issue was faced with retaining consistency with

previous results due to the reduction of the total number of data set columns

used. We thus adjusted the number of rows used also for this task, reducing the

total data set by around 100 rows, then splitting into training and testing data

sets in the ratio 80:20, as previously. The rows were selected using simple random

sampling without replacement, for each iteration of the random forest algorithm.

This procedure was repeated twenty times, thus yielding twenty size-adjusted

data sets to be split into training-testing data and then the classification was

performed. Results can be seen below in Table 3.7, which portray the arithmetic

mean of the twenty runs of the algorithm.

Even though we do see an improvement in RMSE scores for the categories left

solitary, limited meaningful comparison with previous results can be carried out

for the two families of trees, unless we state that the tree family RMSE score

spans across the individual tree types that make it up. Our reservations also

lie with whether selecting other arbitrary partitions, for example, grouping tree

types by alphabetical order, of the categories would yield a similar outcome.
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Tree Type Random Forest
RMSE

Ash 0.07988
Birch Family (Beech, Oak, Sweet Chestnut) 0.2341
Pine Family (Larch, Scots Pine, Sitka Spruce) 0.2165
Shadow 0.1068
Silver Birch 0.1492
Sycamore 0.1719

Table 3.7: Random forest RMSE for aggregated categories, with inclusion of
spatial coordinates.

It may also help us to investigate any clusters present in the compositional re-

sponse tree types. For this we portray a cluster dendrogram of the variables,

which portrays any hierarchical relationships in the data. Since the response tree

types are compositional and contain a significant proportion of essential zero val-

ues, the original data was transformed using the centred log-ratio transformation

as defined in Chapter 2, for comparative ease of interpretation with the additive

log-ratio transformation. Using the clr we have sustained all ten classes of the

composition, and this similarly eases interpretation of the hierarchical structure.

If we use an alr transformation with the Shadow class as the reference variable,

a similar dendrogram structure is produced and can be seen in Appendix A. In

this case the ilr transformation was not considered, since it rests on the choice of

subsets of the compositional vector, which in itself is determined by a clustering

procedure.

The transformation was also used to facilitate the Ward clustering algorithm used

in construction of the dendrogram (Pawlowsky-Glahn and Egozcue, 2011), and

to allow for the distance metric between the compositional parts to be Euclidean.

Unfortunately, however, the centered log-ratio transformation is not completely

free of inherent variance structure introduced by compositional closure. The ver-

tical axes represents the total within-cluster error sum of squares, and the clusters

are evaluated based on the sum of the squared Euclidean distances between the

variables. Compared to the previous naive method of clustering based on pheno-
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3.3. Methodology and results

Figure 3.12: Hierarchical cluster dendrogram of clr-transformed tree type com-
positions.

logical insights, the dendrogram’s branches do not split at a similar dissimilarity

value (height). Perhaps only Silver Birch and the cluster Larch and Shadow class

are comparable, however the former seems an outlier with the splits that follow.

There also seems no insight to why Larch would be associated with the Shadow

class (Figure 3.9 and Figure 3.10). Therefore, from insights into class amalga-

mations into tree families and more formal hierarchical cluster analysis of the

response compositions, there does not seem any motivation to model tree types

in groups.

3.3.3 Dimensionality reduction

Having seen no evidence to support dimensionality reduction in the compositional

responses, we may now turn towards the explanatory set of variables for the

same task. Previously, a strong inter-seasonal correlation was identified: this

hints at a temporal component in the data set, with changing leaf colour by

season. Alternatively, this could also suggest the existence of multicollinearity,

which occurs when one explanatory variable in a multiple regression model can

53



3.3. Methodology and results

be linearly predicted using the other variables, which can lead to sensitivity of the

model and, hence, predictions. To reduce the number of explanatory variables in

the regression and explore the strength of contribution of each spectral band in

this multivariate data set to the overall variance, the method of principal variables

(Cumming and Wooff, 2007) was implemented. This method can be compared

and contrasted with principal component analysis (PCA). The aim of both is to

reduce the set of predictor variables, while still maintaining the variability of the

data set. In their survey of image classification methods Lu and Weng (2007)

provide insight on other methods of dimensionality reduction, and highlight that

PCA is advantageous in preserving spectral integrity of the input data set.

In PCA, data points are mapped onto new coordinate axes constructed as orthog-

onal linear combinations of the predictor variables, and this can make post-hoc

interpretation difficult. For principal variables (PV) the sums of squared corre-

lations hj (for j = 1, ..., 30) between a variable of choice vj and the remaining

variables, are examined for each predictor variable in turn. The variable with the

highest hj is chosen and a partial correlation matrix for the remaining variables

is calculated, controlling for the contribution of the selected predictor to the cor-

relations between the remaining variables. This process of calculating the partial

correlation matrix and selecting the predictor variable with the highest hj is re-

peated until a threshold for the proportion of the total variance in the predictor

is reached. Akin to PCA, this threshold is selected by the analyst. Then, the

predictor variables retaining that cumulative threshold level are retained as the

reduced set of variables, and are fed into the random forest regression algorithm.

In the first instance, the analysis was performed on the entire set of spectral

bands for all the seasons, with B5,spr giving the largest variance contribution of

41 percent. From then onwards, as seen in Figure 3.13 the bands B6,win, B2,sum,

B7,spr, B6,sum, B2,win, B4,sum, B3,sum together explain 90 percent of the total

variance.
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3.3. Methodology and results

Figure 3.13: Principle variable analysis for entire set of spectral band variables.

For the individual seasons of Winter, Spring and Summer, very similar individual-

band contributions could be seen, so the simpler approach driven by Figure 3.13

was used. From Tables 3.8 and 3.9, it can be seen that the new reduced set of

variables performs sufficiently well in terms of RMSE, if contrasted with the full

data set, and the differences are not significant at 5% level.
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Tree Type
Random forest

coordinate RMSE
(PV 90%)

Random forest
RMSE

(PV 90 %)

Ash 0.085(0.001) 0.089(0.009)
Beech 0.121 0.124(0.004)
Larch 0.192(0.006) 0.212(0.017)
Oak 0.211(0.003) 0.228(0.002)
Scots Pine 0.102 0.110(0.007)
Shadow 0.107(-0.003) 0.112(0.011)
Silver Birch 0.155(0.007) 0.168(0.011)
Sitka Spruce 0.114(-0.001) 0.119(0.004)
Sweet Chestnut 0.137(0.002) 0.146(0.008)
Sycamore 0.175(0.005) 0.191(-0.062)

Table 3.8: 20 repeated simulations, with test data set for prediction purposes.
Numbers in brackets represent the increase (decrease indicated by minus sign) in
RMSE to 3 decimal places from the full set of predictors in Table 3.4 with the
inclusion of the spatial covariate, where indicated.

Tree Type RF co-ord RMSE
(PV 80%)

RF co-ord RMSE
(PV 85%)

RF co-ord RMSE
(PV 95%)

RF co-ord RMSE
(PV 99%)

Ash 0.082(-0.002) 0.080(-0.004) 0.085(0.001) 0.081(-0.003)
Beech 0.116(-0.005) 0.120(-0.001) 0.119(-0.002) 0.122(0.001)
Larch 0.188(0.002) 0.186 0.196(0.01) 0.192(0.006)
Oak 0.209(0.001) 0.211(0.003) 0.213(0.005) 0.214(0.006)
Scots Pine 0.102 0.103(0.001) 0.104(0.002) 0.104(0.002)
Shadow 0.109(-0.001) 0.109(-0.001) 0.106(-0.004) 0.107(-0.002)
Silver Birch 0.149(0.001) 0.151(0.003) 0.153(0.005) 0.155(0.007)
Sitka Spruce 0.115 0.116(0.001) 0.112(-0.003) 0.116(0.001)
Sweet Chestnut 0.142(0.007) 0.139(0.004) 0.138(0.003) 0.141(0.006)
Sycamore 0.172(0.002) 0.171(0.001) 0.175(0.005) 0.173(0.003)

Table 3.9: 20 repeated simulations, with test data set for prediction purposes.
Numbers in brackets represent the increase (decrease indicated by minus sign) in
RMSE to 3 decimal places from the full set of predictors in Table 3.4 with the
inclusion of the spatial covariate, where indicated.
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3.3.4 Multivariate regression on transformed response data

A classical approach to performing a regression analysis on compositional data

relies on transforming the appropriate compositional variables to lie on the Eu-

clidean space and not on the simplex space. This is done by performing one of the

log-ratio transformations on the data, of which there are the isometric log-ratio

(ilr), the additive log-ratio (alr) and centred log-ratio (clr), defined in Chapter

2. In basic analysis of compositional data the log-ratio transforms are taken to

follow the multivariate Gaussian distribution, and so we can proceed with the

multivariate regression (Aitchison, 1986).

A further challenge to tackle in this case before performing the log-ratio trans-

forms is the presence of essential zeros in the response variable (tree types), as

they constitute a large proportion of each variable, as presented in Table 3.3.

Those components are not zeros due to measurement error, but by absence of a

characteristic leaf colour in a certain pixel. For the moment we consider a naive

strategy of non-zero replacement, whereby we add a small quantity (0.005) to

each of entry of tree type response, and a similar replication exercise with a 80

percent training subset as in the above techniques.

One of the examples of Bayesian approaches to variable selection in a regression

setting can be the Bayesian Lasso (Ročková and George, 2018), which incorpo-

rates a penalisation factor in the regression specification with a Laplace prior

over the regression coefficients β. However, again therein lies a strong assump-

tion of the underlying Gaussian distribution, so a choice of transformation on the

compositional parts is required.

In any case, let us suppose that a log-ratio transformation has been carried out on

the original compositional responses. We can define the transformed variable YT

and assume that now the multivariate Gaussian assumptions behind regression

analysis hold

YT = XB + E. (3.3)

57



3.3. Methodology and results

whereX is the matrix of real-valued predictors, B = (β1, ...,βD) are the regres-

sion coefficients and E ∼ N(0, ID) is the residual matrix. As usual D denotes

the dimension of the problem, in this scenario D = 10 and the dimensionality

decreases by one unit when the alr transformation is performed. Tsagris (2015)

recognised that with the alr transformation the modelling problem above is re-

duced to a multivariate regression, where the first transformed component is like

an offset term with a β coefficient equal to 1. To note, the ilr transformation is

also a typical choice in regression problems with compositional response, however,

in this scenario it was deemed less appropriate due to lack of clear hierarchical

structure in the tree types, as explored in the previous sections.

Regression analysis was carried out subject to the alr transform of the compo-

sitional tree type responses, and the Shadow class used as the reference compo-

nent. This was done for several reasons: firstly, little information is carried in

the shadow class, apart from the absence of detection of any other tree type at

the AOI. Secondly, the Shadow category has the fewest essential zero values than

the other classes, which is advantageous to this transformation approach. Never-

theless, a zero enhancement was performed to the set of response tree types, as

described earlier. A multivariate Gaussian model fitted to the data dissected into

80-20 train-test ratio as previously and 20 runs of the model gave RMSE scores

in Table 3.10. Residual analysis (Appendix A, Figures 9.7-9.12) was also carried

out and did not find significant autocorrelation. The normality of alr-transformed

data and the resulting model errors (residuals) is also considered. It can be seen

that the transformed tree types are right-skewed, which is driven by the high

proportion of essential zeros in the original data. This effect is similarly seen in

the residual vs. fitted values plots, although there does not seem evidence for an

obvious lack of homoscedasticity in residuals. Also, very few of the estimated β

coefficients were deemed statistically significant at the 5% level. Hence, it is not

certain that the multivariate Gaussian fit to the tree proportion data including

the spatial X-Y coordinates is deemed a suitable parametric modelling approach,
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3.3. Methodology and results

and the RMSE scores are higher if compared with the random forest regression

for tree types like Ash.

Zhang and Shi (2020) found that random forest in conjunction with alr-transformed

compositional data outperformed other machine learning techniques, albeit their

compositional data-set was three-part and did not contain essential zero values.

Here we too performed an alr-transformation followed by random forest regres-

sion with spatial co-ordinate variables and all seasonal spectral bands, with results

found in Table 3.10. Again, compared with the original random forest set-up,

this approach did not show improvement in RMSE scores for several tree types.

This could be driven by the zero-imputation procedure to relieve the number of

essential zeros in the compositional parts.

3.3.5 α− k-nearest neighbours regression

Another transformation of interest for the application of tree type modelling is the

α-power transformation defined in Chapter 2, Section 6. We have seen that the

parametric models relying on log-ratio transformations and imputation of zero

values do not perform as well in terms of prediction, as non-parametric models

like random forest. Tsagris et al. (2021) link a further non-parametric regression

model, the k-nearest neighbours k-N N smoother due to Fix and Hodges (1951)

with the α-power transform that is accommodating to essential zeros in a com-

positional variable. Like random forests, the k-N N smoother can be applied to

both regression and classification tasks, with our interest lying in the former. The

algorithm works by again splitting the original data set into training and testing

samples, labelled XTR, XTEST, YTR and YTEST. Then, a distance measure is com-

puted between XTR, XTEST, usually the Euclidean or the Mahalanobis norm.

The k smallest distances are selected, and k is determined by cross-validation

procedure. These smallest distances are associated with XTR and corresponding

YTR values. Then, an average value of those k-smallest associated YTR values is

taken as a prediction for YTEST. The original k-N N rests on the sample mean as
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a measure of the average, whereas α − k-N N extends this to the Fréchet mean

(Tsagris et al., 2021) and this definition of the average measure works for the α-

power transformation. The Fréchet average stems from the Fréchet distribution

- one of the distribution choices used for modelling extreme values in the tails of

distributions. The Fréchet distribution has some associations with the simplex

space, and as the power α approaches zero, the Fréchet mean converges to the

geometric mean, a familiar measure in compositional data analysis. α − k-N N

regression exploits this relationship with compositional data and allows us to by-

pass log-ratio modelling of compositional parts. More details about α − k-N N

regression can be found in Tsagris et al. (2021).

A natural question may arise on the values of α and k that are needed for this

regression to reach peak performance for a particular data set. The specification

of α and k is done through a cross-validation procedure, where several candidate

values are compared and the ones driving the smallest error measure are selected.

In this applied example, analysis was carried out using the Compositional pack-

age in R, and the cross-validation procedure yielded k = 2 closest neighbours to

be considered, along with α = 1 which means that the original compositional tree

types are not power-transformed. RMSE scores for this non-parametric approach

can be found in Table 3.10. Compared to the other methods presented in Table

3.10, α-k-N N RMSE scores are significantly different at the 5% level, except

for Ash and Sweet Chestnut in comparison to clr-transformed MVN regression

RMSE. A plausible reason for this improvement is k-N N’s use of neighbour-

ing pixel points for prediction purposes, thus incorporating a spatial clustering

element, and tuning of the power transform α and k to yield smaller error.
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3.4 Discussion and conclusions

This work has demonstrated machine learning and compositional regression tech-

niques in the field of sub-pixel classification. Namely, the role of data set dimen-

sionality reduction through principal variables has become evident in order to

increase efficiency of the random forest algorithm and introduce a spatial element

into the analysis. Using spectral bands from different seasons aids in capturing

phenological differences between species and the bands chosen fit well with other

studies - Ottosen et al. (2020) selected bands 2, 3, 6, and 12 from Sentinel 2 for

mapping tree cover. A further extension to this work is to incorporate species

composition from multiple sources.

The results from comparison of parametric and non-parametric methodology on

compositional responses highlighted the problem of essential zero values, which

have been abundant in this data set. Zero-replacement did not show an improve-

ment of RMSE scores compared with non-parametric methods. Inference for the

multivariate Gaussian regression did not highlight particular pixel bands as sig-

nificant predictors of the responses, however, residual analysis did not highlight

any issues with the underlying Normality assumption. While performing random

forest on the full set of predictors took a notable amount of time, it was possible

to increase turnaround speed with the use of principal variables to reduce the

size of the explanatory variable set. Attempts at clustering of compositional tree

types was also performed and did not find an obvious pattern. This is also con-

firmed by spatial plots of the UAS classification, as some tree types (for example,

Larch) occupy significant regions of the southern Y-coordinate space and are not

met by an equal proportion of another tree type in the same pixels.

Overall, we have demonstrated that lower-resolution Sentinel-2 data can be used

in order to predict tree type based spectral band colours in mixed pixels, with

reasonable accuracy. Further attempts were made to construct a regression model

in the simplex space using the Dirichlet distribution - this approach is known
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as Dirichlet regression (Hijazi and Jernigan, 2009) and has been demonstrated

to be successful when the regression model contains compositional explanatory

variables and a univariate response vector. Further work is required in this area

for modelling multivariate compositional responses. The authors similarly note

that the training data is limited to one site only over five temporal measurements,

however the analysis conducted shows results close to that of the UAS hard

classification and illustrates the issues of sub-pixel classification using an area of

contiguous woodland. Further exploration on a more complex example involving

multiple woodlands across a larger extent in both geography and time periods

covered would be the next step in assessing the impact of spatial and statistical

properties of sub-pixel methods in prediction.
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Chapter 4

Multivariate distributions on the

simplex

4.1 Introduction

The aim of this chapter is to provide an overview of multivariate probability

distributions on the simplex support. These distributions are considered in light

of being used in an expert elicitation exercise, to yield possible parameters for

the construction of prior distributions in a Bayesian analysis. Hence, our interest

lies especially in highlighting the following areas: firstly, number of parameters

required for the definition of each distribution, since this is directly linked to the

complexity and length of the elicitation exercise and hence, and cognitive strain

on the experts. In Chapter 7, we discuss in more detail the balance between us-

ing a more flexible distribution in an elicitation exercise, which may carry more

parameters, and any possible improvement on reflecting the expert opinions. Sec-

ond, in this chapter, we specify marginal and conditional probability distributions

for each multivariate distribution we consider on the simplex, again, to lead up to

the task of elicitation exercise. Furthermore, we evaluate the ease of computation

of quantiles and measures of dispersion of these multivariate distributions.
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4.2 The Dirichlet family of distributions

The first family of distributions under consideration in this chapter is the Dirichlet

family - conjugate to multinomial likelihood, which makes it a straightforward

choice for modelling uncertainty about compositional data within a Bayesian

framework. Before Aitchison’s work in the 1980s, this class of distributions was

considered to be the sole appropriate way to model compositional data. Its main

drawback, however, is its inherent negative correlation structure, and further

generalisations of the Dirichlet distribution have been sought to accommodate

flexibility in expressing dependence between the random variables. Such distri-

butions are similarly presented in this section, starting from Connor and Mosi-

mann’s work, through to more recent developments that are useful in situations

where separate parts of the simplex need to be modelled.

4.2.1 Dirichlet distribution

The definition of the D−simplex ∆D allows us to consider the Dirichlet distribu-

tion, which is part of the exponential family of distributions and is conjugate to

multinomial likelihood. It is considered as a multivariate case of the continuous

Beta distribution and defined on the simplex support. The Dirichlet distribution

can be derived from two Gamma distributed variables, as follows:

Let two random variables Y1 and Y2 follow the Gamma distribution with a shared

scale parameter β : Y1 ∼ Gamma(α1, β), Y2 ∼ Gamma(α2, β). The probability

density function of Y1, for example, is f(y1;α1, β) =
y
α1−1
1 e−y1/β

βα1Γ(α1)
for y1 > 0 and

α1, β > 0, where Γ denotes the gamma function.

Then, setting X = Y1
Y1+Y2

yields that X ∼ Beta(α1, α2). To extend this further,

if we let Y1, ..., YD−1 be independent Gamma variables of the form above and

set Xi = Yi
Y1+...+YD−1

for i = 1, ..., D − 1, then, jointly, the vector X follows the
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probability density

π(xi) =
Γ(
∑D

i=1 αi)∏D
i=1 Γ(αi)

D∏
i=1

xαi−1
i . (4.1)

Conjugacy of the Dirichlet distribution to the multinomial likelihood can be seen

through the following:

Let n1, ..., nD be the frequencies for D distinct categories, where ni ∈ ZD+ and∑D
i=1 ni = N, i = 1, ..., D. Then let x1, ..., xD be the probabilities of obtaining

the respective categories, and xi ∈ [0, 1] and
∑D

1 xi = 1. It follows that the dis-

tribution of n1, ..., nD is multinomial with the following probability mass function

f(n1, ..., nD|x1, ..., xD, N) =
N !∏D
i=1 ni!

D∏
i=1

xnii ∝
D∏
i=1

xnii . (4.2)

In the multinomial distribution, xi is a probability for each class i the data can

be assigned to. If the prior distribution has Dirichlet kernel such that

π(X|α) ∝
∏D

i=1 X
αi−1
i , then the posterior distribution follows

π(X|N,α) ∝ P(N |X)π(X|α)

∝
D∏
i

Xαi+ni−1
i .

(4.3)

which we recognise as another Dirichlet kernel, so the posterior distribution

follows Dirichlet(α1 + n1, α2 + n2, ...αD + nD).

The parameter α = (α1, .., αD) > 0 is known as the concentration parameter.

Further, the sum of the parameters α0 =
∑D

i=1 αi is known as the standardised

Dirichlet precision factor and governs how concentrated the distribution is around

its mean vector. Hence, a high α0 value indicates a high peak of the distribution

centred around the mean vector and in the cases where αi < 1 the concentrations

would be found at the corners of the simplex. Generally, each αi determines

which regions of the D-simplex have the most probability mass, so the αi values

are relative to one another.
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Plots in Figure 4.1 depict a graphical representation of the Dirichlet distribution

over a simplex with varying values of α. Where values of αi are equal, we are

imposing that the three outcomes have equal probability of success, so should be

symmetric over the simplex. For α >> 1, the values of the distribution approach

the geometrical centre of the simplex. The last plots show a case of asymmetry,

weighted by the greater value of α.

If X ∼ Dirichlet(α), then

mode(X) =
αi − 1

α0 −D
,αi > 1. (4.4)

For the expected value ofX ∼ Dirichlet(α), let us show the derivation for E(X1),

which generalises to E(Xi) = αi
α0
, i = 1, ..., D.

E(X1) =

∫
...

∫
x1

Γ(
∑D

i=1 αi)∏D
i=1 Γ(αi)

D∏
i=1

xαi−1
i dx1...dxD

=

∫
...

∫
Γ(
∑D

i=1 αi)∏D
i=1 Γ(αi)

x1x
α1−1
1

D−1∏
i=2

xαi−1
i (1−

D−1∑
i=1

xi)
αD−1dx1...dxD−1

=
Γ(
∑D

i=1 αi)

Γ(α1)
∏D

i=2 Γ(αi)

Γ(α1 + 1)
∏D

i=2 Γ(αi)

Γ(
∑D

i=1 αi + 1)

=
Γ(
∑D

i=1 αi)

Γ(
∑D

i=1 αi + 1)

Γ(α1 + 1)

Γ(α1)

=
α1∑D
i=1 αi

=
α1

α0

. (4.5)
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Figure 4.1: Contours of the Dirichlet density for 3 variables and varying α pa-
rameter vectors.
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and through similar arguments and definition of the second moment is

E(X2
i ) =

αi(1 + αi)

(
∑D

i=1 αi + 1)
∑D

i=1 αi
, (4.6)

Var(Xi) =
αi
α0

(1− αi
α0

)

1 + α0

, (4.7)

Cov(Xi, Xj) =
−αiαj

α2
0(1 + α0)

; i 6= j, (4.8)

where α0 =
∑D

i=1 αi.

This is due to

E(XiXj) =
Γ(α0)

Γ(α0 + 2)

Γ(αi + 1)Γ(αj + 1)

Γ(αi)Γ(αj)
=

αiαj
(α0 + 1)α0

.

Since Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj), we obtain

Cov(Xi, Xj) =
αiαj

(α0 + 1)α0

− αiαj
α2

0

=
−αiαj

α2
0(1 + α0)

.

The marginal distribution can be derived by considering the joint density of

x1, ..., xD, yielding

f(x) = f1(x1)f2(x2|x1)...fD−1(xD−1|x1, ..., xD−2),

where f(·) is the Dirichlet density function.

Then marginally, Xi ∼ Beta(αi, α0−αi), and the summary statistics follow from

the standard Beta distribution. Otherwise, determining the median values for

the Dirichlet case is not a trivial matter, since symmetry does not seem to hold,

hence it is infeasible to consider intersection of the marginal hyperplanes (Small,

1997).

We could consider solely the vector of medians arising from the D marginal
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Beta distributions without the interplay into multivariate distributions. All these

nuances are again reflected in the process of expert elicitation, as is depicted in

Chapter 7, as we explore the idea of elicitation of multivariate distributions even

without the simplex constraints.

For the moment, however, let us reflect on the Dirichlet distribution. This distri-

bution has D parameters, and from the definitions above we see that the param-

eters are only constrained to R+. However, due to the unit-sum constraint on

proportions, the final parameter αD is deterministic. On the other hand, adher-

ing to principles of compositional data analysis, the order of compositions need

not be fixed, which, in the exercise of expert elicitation, would allow for some

degree of variability of the final parameters values.

The Dirichlet distribution has proven to be a classic choice for modelling on

the simplex, as seen in numerous works (Mateu-Figueras and Tolosana-Delgado,

2006; Ng et al., 2011). However, Aitchison criticised this choice, deeming it

“inadequate for the description of the variability of compositional data” due to the

Dirichlet’s implied independence structure between some compositional parts and

considered this distribution to struggle to accurately model compositions whose

components possess even weak forms of dependence. Aitchison advised towards

the use of log-transformations and the logistic Gaussian distribution, which has

more parameters for tuning the covariance structure between components.

Frigyik et al. (2010) introduce two further distributions closely related to the

Dirichlet, which are used to model subsets of the simplex. They motivate such

applications where the likelihood is only relevant to a particular region of the

simplex. An example could be the analysis of one of the categories which ex-

ceeds some threshold proportion, for instance, it is greater than the value of 0.5.

They consider a previous approach trialled by Nallapati, Ahmed, Cohen and Xing

(2007), which is achieved by a separate normalisation of the Dirichlet distribution

by restricting the support of the Dirichlet from the full simplex ∆ to a restricted
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simplex region ∆̃, and then the Dirichlet probability density is re-normalised over

∆̃. One problem arising from this is the computational cost of finding the nor-

malisation factor, and further, the summary statistics (mean, covariance, mode)

have no closed form, which makes them troublesome for modelling, let alone an

exercise such as expert elicitation. Similarly, the estimation of α parameters is

costly through the Maximum Likelihood approach.

4.2.2 Connor & Mosimann (generalised Dirichlet) distri-

bution

A more generalised version of the Dirichlet was introduced by Connor and Mosi-

mann (1969). It is equally known as the Connor-Mosimann distribution and can

be constructed in the following way:

Definition 4.1. (Generalised Dirichlet distribution) If we let Zj ∼ Beta(αj, βj)

for j = 1, ..., D−1 and for the remaining component ZD = 1, then for j = 2, ..., D:

P1 = Z1,

Pj = Zj

j−1∏
i=1

(1− Zi). (4.9)

and its probability density given by the following (Connor and Mosimann, 1969):

π(x1, ..., xD) =
D−1∏
i=1

[
Γ(αi + βi)

Γ(αi)Γ(βi)
xαi−1
i (

D∑
i=1

xj)
βi−1−αi−βi

]
x
βD−1−1
D . (4.10)

The covariance structure of the Connor-Mosimann distribution is more flexible

than that of the Dirichlet distribution, for which a negative correlation between

any pair of compositions is imposed. In the case of the Connor-Mosimann dis-

tribution, however, this is only true for pairing of the first composition with

any other one in the set X, X1 and Xj, where j = 2, ..., D. This holds due to

Cov(X1, Xj) =
E(Xj)

E(1−X1)
Var(X1) for j = 2, ..., D.

However, for other successive covariates, this correlation can be positive, and
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more generally sign(Corr(Xj, Xm))=sign(Cov(Xj, Xj+1)) for 1 < j < m ≤ D

(Connor and Mosimann, 1969).

4.2.3 Modified Connor-Mosimann distribution

In the Dirichlet distribution, the number of parameters is the same as the num-

ber of dimensions. The Connor-Mosimann distribution has one fewer parameter,

each of which is composed of hyperparameters. When exposed to multinomial

likelihood this distribution is conjugate. Further work by Wilson (2017) pro-

poses a modification to the Connor-Mosimann to increase flexibility by utilising

scaled Beta distributions, which yields four times the previous number of hyper-

parameters. It is defined in a similar manner to the above, only now Zj has two

additional parameters in the scaled Beta distribution, Aj and Bj; j = 1, ..., D−1,

0 < Aj, Bj < 1. Formally, the probability density function of the scaled Beta

distribution is

π(xj) =
∣∣∣ 1

Bj − Aj

∣∣∣ Γ(αj + βj)

Γ(αj)Γ(βj)

( xj − Aj
Bj − Aj

)αj−1(
1− xj − Ai

Bj − Aj

)βj−1

;xi ∈ [Aj, Bj].

(4.11)

where | · | is the modulus function. The marginal distributions of the modi-

fied Connor-Mosimann distribution function follow the scaled Beta distribution,

which relates to the unscaled Beta as follows:

X ∼ ScaledBeta(α, β,A,B) = A+ (B − A)Beta(α, β); (4.12)

where parameters A,B ∈ R are used to re-scale the Beta distribution to the
interval [A,B]. This modified Connor Mosimann form is not conjugate when

exposed to the multinomial likelihood.
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This likelihood has the form as in Equation 4.2 and hence the posterior is pro-

portional to

(
xi − Ai
Bi − Ai

)αi−1xnii (1−
D∑
i=1

xi)
ni(1−

D∑
i=1

xi − Ai
Bi − Ai

)γi .

where γm = βi − αm+1 − βm+1 for m = 1, ..., D − 1 and γD = βD − 1.

4.2.4 Shifted-Scaled Dirichlet distribution

The scaled Dirichlet distribution is a further generalisation of the Dirichlet dis-

tribution and is due to Dickey (1968). It finds close relation to the multivariate

scaled Beta distribution as outlined in Equation 4.11. The probability density

function of the scaled Dirichlet distribution can again be achieved through nor-

malisation of appropriately scaled Gamma-distributed variables, but its analytic

form is given by

π(x1, ..., xD) =
Γ(α0)∏D
i=1 Γ(αi)

∏D
i=1 βi

αixi
αi−1

(
∑D

i=1 βixi)
α0

. (4.13)

where α0 =
∑D

i=1 αi. π(X1, ..., XD) as expressed above is denoted by authors

as X ∼ SDD(α,β). X can be reduced to the Dirichlet distribution if β =

(1, 1, ..., 1). The scaled Dirichlet distribution has 2D parameters and the authors

note that the scaled Dirichlet distribution is translation of the Dirichlet density

in the simplex space, and thus belongs to the same family of distributions. The

marginal distributions for X ∼ SDD(α,β) are defined in a similar sense, and

for a bivariate case D = 2 are given by

π(x) =
1

B(α1, α2)

βα1
1 xα1−1βα2

2 (1− x)α2−1

(β1x+ β2(1− x))α1+α2
. (4.14)

The scaled Dirichlet distribution is not conjugate with the multinomial likeli-

hood, similarly its covariance structure is not of closed form (Monti et al., 2011).
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There is also no closed form for mode(X), E(X) and expressions for cumula-

tive distribution function and quartiles with respect to the Lebesgue measure in

real space. Estimation of parameters (α, β) is completed through application

of the Expectation-Minimisation algorithm (Alsuroji, 2018) until convergence is

achieved. Monti et al. (2011) further investigate a distribution closely linked to

the aforementioned, but containing another vector of parameters that is used as

a scaling factor of the original Dirichlet distribution. Appropriately named the

shifted-scaled Dirichlet distribution, it involves applying the powering operation,

as well as the perturbation operation to a Dirichlet random composition.

Definition 4.2. A random vector X has a shifted-scaled Dirichlet distribution

X ∼ pSDD(α, p, a) with parameters α ∈ RD
+ ,p ∈ ∆D compositional vector

representing a shift parameter, and a ∈ R+, if its probability density function

takes the form

π(x1, ..., xD) =
Γ(α0)

aD−1
∏D

i=1 Γ(αi)

∏D
i=1 p

−αi/a
i x

−1+(αi/a)
i

(
∑D

i=1(xi
pi

)1/a)α0

,

where α0 =
∑D

i=1 αi.

The marginal distributions forX ∼ pSDD(α,β, a) are defined in a similar sense,

and for a bivariate case D = 2 are given by

π(x) =
1

aB(α1, α2)

x(α1/a)−1

p
α1/a
1

(1−x)(α2/a)−1

p
α2/a
2

((x1/p1)1/a + ((1− x)/p2)1/a)a0
. (4.15)

As for the scaled Dirichlet distribution, no closed form solution exists for E(X),

mode(X), nor the covariance structure. The authors instead suggest numerical

integration techniques. Similarly, it is not conjugate to the multinomial likeli-

hood and this is again due to the terms in the denominator of the probability

density function. The motivation for construction of these probability distri-

butions was to increase flexibility in modelling regions of the simplex, where a

classical Dirichlet distribution is not sufficient. This was achieved through using
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the known perturbation (translation) and powering (scaling) operations on the

simplex, as defined by Aitchison (1986). Even though joint and marginal proba-

bility density functions for these distributions can be expressed in the Lebesgue

measure, the moments and covariance structures require numerical integration.

No use of these distributions in a Bayesian setting has been reported, apart from

being included in a Dirichlet mixture model with application to Covid-19 data

(Bourouis et al., 2021).

4.2.5 Extended Flexible Dirichlet distribution

Another approach to generalise the Dirichlet distribution is done through a finite

mixture (linear combination) of Dirichlet-distributed variables. The probability

density function for the Flexible Dirichlet (FD) distribution can be expressed as

πFD(x;α, p, τ) =
Γ(α0 + τ)∏D
h=1 Γ(αh)

(
D∏
h=1

xαh−1
i )

D∑
i=1

pi
Γ(αi)

Γ(αi + τ)
xτi . (4.16)

where x ∈ ∆D, α0 =
∑D

i=1 αi,
∑D

i=1 pi = 1 and τ > 0. In the above, there are

two separate indices i and h due to the construction of the Flexible Dirichlet:

the basis of independent Gamma distributed random variables is normalised,

as in the Dirichlet case, and then the ith element chosen at random is assigned

one further independent Gamma variable. The above representation holds on the

Lebesgue measure if we set the final component xD = 1−x1− ...−xD−1. If we set

τ = 1 and pi = αi/α0 the original Dirichlet probability density is retrieved. The

variable τ can be seen to control the number of modes of the Flexible Dirichlet

density, in fact, any number of modes up to dimensionality D can be achieved.

Therein also lies a suitable choice for p and α. This distribution contains 2D+ 1
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parameters and the first moments of the Flexible Dirichlet are expressed as:

E(Xi) =
αi + piτ

α0 + τ
; (4.17)

Var(Xi) =
E(Xi)(1− E(Xi))

α0 + τ + 1
+

τ 2pi(1− pi)
(α0 + τ)(α0 + τ + 1)

; (4.18)

Cov(Xi, Xj) = −E(Xi)E(Xj)

α0 + τ + 1
− τ 2pipj

(α0 + τ)(α0 + τ + 1)
; i 6= j. (4.19)

Ongaro and Migliorati (2013) highlight that the Flexible Dirichlet distribution

has a more flexible dependence structure than the Dirichlet distribution, albeit

the covariance is still negative due to the sum-one constraint. Similarly, this

distribution allows for multimodality, which cannot be accommodated by the

Dirichlet. Contrary to the shifted-scaled Dirichlet distribution, the moments and

covariance structure of Flexible Dirichlet have closed form, so can prove useful in

an expert elicitation exercise. The Flexible Dirichlet distribution similarly allows

for inclusion of essential zeros in a compositional vector - this is achieved through

setting one of αi = 0, and this implies that pi now reflects the probability that

the ith component is strictly positive (Ongaro and Migliorati, 2013)

Ongaro and Migliorati follow to extend the Flexible Dirichlet distribution in

Ongaro and Migliorati (2014). The Extended FD distribution (EFD) is derived by

augmenting to the basis of FD, only now instead of the ith variable being assigned

a separate Gamma-distributed part, a Gamma-distributed random variable is

added to each component of the basis. The obvious difference between FD and

EFD is that for the former τ variable, expressed as a single positive real number,

the EFD includes τi, for i = 1, ..., D as an exponent for every xi. Analytically,

the probability density function for the EFD is seen below:

π(x;α, p, τ ) =
1∏D

h=1 Γ(αh)
(
D∏
h=1

xαh−1
h )

D∑
i=1

Γ(αi)Γ(α0 + τi)

Γ(αi + τi)
xτii pi. (4.20)

with h and α0 as defined previously.
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Similarly to FD, this distribution is conjugate with the multinomial likelihood

and its moments can be expressed in closed form:

E(Xi) = αi

D∑
h=1

ph
α0 + τh

+ τi
pi

α0 + τi
; i = 1, ..., D. (4.21)

The EFD is seen more favourable to the FD for reflecting clusters in composi-

tional data sets, and when it is also desired that the size of the composition is

considered. However, the authors recognise that more insight is required into the

precise properties of marginal and conditional distributions, and the covariance

structure (Ascari et al., 2017). Similarly, parameter estimation even via expecta-

tion–maximization (EM) algorithms is not stable due to the presence of multiple

local maxima, thus careful consideration needs to be given to the starting values

of the EM algorithm.

4.2.6 Shadow Dirichlet distribution

Thus far, generalisations of the Dirichlet distributions have addressed inclusion

of additional parameters in order to increase flexibility of the probability den-

sity function. The domain under consideration has remained the simplex ∆D.

However, this domain may not always be appropriate, if there is prior knowledge

from the application perspective. For instance, if the multinomial likelihood is

known to lie in a restricted subset of the simplex. Frigyik et al. (2010) recognise

examples in language processing where this is often the case. An interesting ex-

ample given by the authors that can be extended to further fields of application

is modelling probability of words from a dictionary that are related or are syn-

onyms. Frigyik et al. (2010) give an example of the words espresso and latte.

Given that one of these words is observed in a list of words from a dictionary,

the probability that the second word is observed is close to the probability of the

first, with some difference ε. This relationship between the two words would be

included in a specific bounded variation model, and is expressed as an ε-bound
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in the probability mass function (pmf) of the bounded variation model, and this

imposes a restriction on the domain of the mass function. Therefore, the pmf

is restricted on the domain of the prior probability space, ∆D in this instance.

Frigyik et al. (2010) construct an equivalent of the Dirichlet distribution on a

restricted simplex domain, and call this the Shadow Dirichlet distribution. One

simple approach to restrict ∆D to a subset ∆̃D. An illustration of this could be

∆̃3 = {x = (x1x2, x3) ∈R3 subject to the constraints x1 ≥ 0.5, x2 ≤ 0.5, x3 ≤ 0.5

and
∑3

1 xj = 1, j=1,2,3}. Then, one could define the usual Dirichlet distri-

bution over ∆̃D and re-normalise with respect to ∆̃D. A disadvantage of this

naive approach, as recognised by Nallapati, Minka and Robertson (2007) is that

the re-normalisation term is not analytically tractable and requires numerical

integration, which can become cumbersome with increasing D. Similarly, this

re-normalised form of the Dirichlet does not have closed-form moments or covari-

ance structure. Therefore, it is problematic outside of theoretical consideration of

the restricted simplex support. To accommodate a subset of the simplex Frigyik

et al. (2010) instead decompose the Dirichlet distribution into 2 parts: its gener-

ating Dirichlet distribution π̃(x) and a matrix M which is a continuous mapping

from ∆D to ∆̃D. The matrix M is left stochastic, full rank and invertible. The

probability density function for the Shadow Dirichlet distribution is as follows:

πsh(x;α,M) = Mπ̃(x;α). (4.22)

hence

πsh(x;α,M) =
Γ(α0)∏D

i=1 Γ(αi)det|M |

D∏
i=1

(M−1x)αi−1
i . (4.23)

where α0 =
∑D

i=1 αi are the usual Dirichlet precision terms and (M−1x)i is the

ith element of the product of inversed matrix M and x.

The Shadow Dirichlet is conjugate to the multinomial likelihood and its first

moments and covariance structure have closed form:
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E(Xi) =
Mαi
α0

, (4.24)

mode(X) =
M(αi − 1)

α0 −D
,αi > 1, (4.25)

Cov(Xi, Xj) = M
( −αiαj
α2

0(1 + α0)

)
MT . (4.26)

where MT is the transpose of matrix M and α0 =
∑D

i=1 αi.

The matrix M can, in theory, be estimated directly from the data, but is recog-

nised by the authors as a non-convex problem (Frigyik et al., 2010). Two approx-

imating solutions are offered - first, to use the standard Uniform distribution as

the support in approximating M , placing an upper bound on the size of the con-

vex hull of likelihood mass functions in the simplex. The second approximation

suggested is to use the empirical mean of the likelihood mass functions and spec-

ify one column of M as a convex combination of the same vertex on the standard

simplex ∆D and the empirical mean pmf. On the other hand, substantial prior

knowledge, if available for a specific application of the Shadow Dirichlet distri-

bution, can be included in the specification of M . The authors provide some

examples from machine learning that incorporate specific dependence structures

and these are useful in defining M , for example, if points on the boundary of the

full simplex ∆D are of interest to the restricted simplex ∆̃D. Frigyik et al. (2010)

further discuss what can be defined as a restricted simplex, and the effect of any

such constraints on M . In general they point out that M is required to be injec-

tive. Separate consideration is given to mapping the vertex points of ∆D to ∆̃D

using M , and also an explicit πsh(x) is defined if there needs to be a projection

from ∆D to ∆̃D, which results in dim|∆̃D| < dim|∆D|. This could prove useful

when one wishes to express uncertainty about a subset of a compositional vector

x on a restricted domain.
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4.2.7 Inverted Dirichlet distribution and Dirichlet Type II

distribution

In the univariate case if we wish to model the odds of success, as opposed to the

probability of success, we can turn towards an extension of the Beta distribution.

Due to Johnson and Kotz (1970) the following transformation holds:

If A ∼ Beta(α, β), then
A

1− A
∼ Beta*(α, β). (4.27)

Where Beta*(α, β) is known as the Beta prime distribution with probability

density function

f(x) =
xα−1(1 + x)−α−β

B(α, β)
; (4.28)

for x ∈ [0,∞);α, β ∈ (0,∞); and B(α, β) is the Beta function.

Tiao and Cuttman (1965) introduced a similar transformation for the multivariate

case, and this concerns the original Dirichlet distribution. IfX ∼ Dirichlet(α1, ..., αD)

then through the transformation Yi = Xi
XD

for i = 1, ..., D − 1, then

Y ∼ DirichletID(α1, ..., αD). (4.29)

Tiao and Cuttman (1965) state that it is also possible to define the Dirichlet

Type II distribution as a ratio of chi-squared distributed random variables in a

similar set-up as above. The probability density function of the Dirichlet Type

II distribution is given by

πID(y) =
Γ(α0)∏D
i=1 Γ(αi)

(D−1∏
i=1

yαi−1
i

)
(1 + y1 + ...,+yD−1)−α0 . (4.30)

where yi > 0; yi is a ratio of compositional terms as defined above and α0 =∑D
i=1 αi. This distribution is not conjugate to the multinomial likelihood, but
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instead to the negative multinomial distribution. The moments and covariance

structure of the Inverted Dirichlet distribution are not trivial to compute and

involve derivatives of products of gamma functions of dependent terms. The joint

moment generating function for the Inveted Dirichlet distribution is provided

in Tiao and Cuttman’s original work. Although this distribution is a popular

choice for Dirichlet mixture models (Bdiri and Bouguila, 2011) and applications

in clustering algorithms (Bdiri et al., 2014) the Inverted Dirichlet distribution

does not have straightforward implementation for the purposes of serving as a

prior distribution in an expert elicitation procedure.

4.2.8 Other generalisations of the Dirichlet distribution

In this section we have explored generalisations of the Dirichlet distribution and

applications to compositional data analysis since Aitchison’s contributions from

the 1980s onwards. Some other contributions to increase flexibility of the Dirich-

let have aimed towards modelling observations that could be categorised as any

of the possible compositional components - one example of this are missing re-

sponses or non-responses. For these purposes the Grouped Dirichlet (Ng et al.,

2008) and Nested Dirichlet distribution (Ng et al., 2009) have been developed.

Although advantageous over previous generalisations of the Dirichlet, especially

when modelling heirarchical structures, these advancements do not have moments

or covariance structure expressed in closed form, and any parameter estimation

relies on costly E-M algorithms. One final interesting consideration given here

to modelling uncertainty about compositional vectors is through the work of Tu

(2016). The author challenges the constraint that the concentration parameters

of the Dirichlet distribution must be strictly positive α > 0, and adjusts the prob-

ability density function in order to accommodate negative concentration terms

and avoid a divergent normalisation factor, which usually occurs when α ≤ 0.

Tu (2016) instead introduces a lower bound for each component of x, so that the

probability density function now takes the form
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πmD(x;α, ε) =


0 if ∃ε, xi < ε;
∏D
i=1 x

αi−1
i

Z(α,ε)
otherwise.

(4.31)

where Z(α, ε) is the normalisation factor, and an additional requirement imposed

is that 1
D
≥ ε > 0. The motivation for extension of the Dirichlet distribution to

accommodate negative concentration parameters arises from the need to model

sparsity about each variable in a composition. This can be achieved with the

usual Dirichlet distribution up to an extent when 0 < α < 1. As shown in

Figure 4.1 for 0 < α < 1 the mass of the distribution lies at the vertices of

the 3-simplex, however, the author deems this to be insufficient in expressing

strong sparsity such that in a Bayesian analysis the posterior is not easily dom-

inated by the likelihood when the prior is expressed as in the figures above. Tu

(2016) sees this as an especially important aspect when model size is consider-

ably smaller than the training data set, and the modeller wishes to portray a

balance between prior information in contrast to a large body of evidence. As

seen previously in this section, generalisations of the Dirichlet distribution are

often subject to moments and covariance structures that cannot be expressed in

closed form, and this modified sparse variant of the Dirichlet is no exception.

Although πmD is conjugate to the multinomial likelihood model. Still, the modi-

fied sparse Dirichlet distribution is an interesting theoretical contrast to the other

Dirichlet variants presented in this section, as an attempt to challenge underlying

constraints imposed by construction the distribution function.

82



4.3. Gaussian distribution

4.3 Gaussian distribution

In this section we explore applicability of the Normal family of distributions

to compositional data sets. The classical Gaussian distribution is not wholly

appropriate for compositional parts, as the parts cannot take values over the

entire R, however, the distribution may be applied post log-ratio transformation

on compositional data, as proposed by Aitchison. A remark made by Kieschnick

and McCullough (2003) was that the Normal distribution was used by researchers

when addressing the conditional distribution of a two-part composition, provided

that this model included a set of predictor variables. Outside of this specific case,

the use of the Gaussian distribution for compositional data is limited.

4.3.1 Truncated Gausssian distribution

In the setting of compositional data analysis, the Normal distribution can be

truncated at the endpoints [0, 1] (Dobigeon and Tourneret, 2007) in an attempt to

restrict the probability density function to a support smaller than [−∞,∞] . The

probability density function for the multivariate truncated Gaussian distribution

in the general interval [a, b] is expressed as follows:

πTN(x;µ,Σ, a, b) =
exp{−1

2
(x− µ)TΣ−1(x− µ)}∫ b

a
exp{−1

2
(x− µ)TΣ−1(x− µ)}dx

. (4.32)

where a,x, b ∈ R and a < x < b. The above probability density function

portrays a double truncation on the Normal distribution, as specified by the

inequality relationship a < x < b. The finite integral in the denominator term is

the D-dimensional normalisation constant, where D = |a| = |x| = |b| the lengths

of the respective vectors.

There also exist one-sided (single) truncations, as developed by Tallis (1961) and

are defined by specifying an upper bound or a lower bound on the domain of

x, for example, x < b. Further works by Tallis (1963, 1965) give extensions to
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4.3. Gaussian distribution

truncations through linear combinations of constraints and through the use of

planes. For the purposes of compositional data we retain a two-sided trunca-

tion on the interval [0, 1]. As with the usual multivariate Normal distribution,

parameter estimation needs to be carried out for µ and Σ. When the trunca-

tion points are known, frequentist methods to give estimates of µ and Σ rely

on Maximum-Likelihood or the method of Instrumental variables (Lee, 1979;

Amemiya, 1973). A highlight of an application of the Truncated Normal distri-

bution in modelling uncertainty about a set of proportions is through the work

of Ezbakhe and Pérez Foguet (2019). Modelling strategy consisted of utilising

the generalised additive model structure to include addition of non-linear smooth

terms. Albeit the application is univariate, as each part of the composition is

considered in separation from the others, it was found that the Truncated Nor-

mal distribution provides superior modelling of uncertainty, as contrasted with

the extended Beta distribution.

Some other general properties of the truncated Normal concern the form of the

marginal distributions, which are themselves not truncated Normal. This is con-

trasted with the unbounded multivariate Normal case, where marginal distribu-

tions are indeed also Normal. Cartinhour (1990) gives an analytic form of the

the marginal distribution:

πd(xd) =
exp(−(xd−µd)2

2σdd
)

p
√

2πσdd

∫ ad−1

bd−1

...

∫ a1

b1

exp(
−(x1−m(xd))TΣ−1

1 (x1−m(xd))

2
)√

(2π)d−1|Σ1|
dx1...dxd−1;

(4.33)

for bd ≤ xd ≤ ad, d = 1, ..., D and the density function is zero otherwise.
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In the above, p is the normalisation term,m(xd) = µ+ c(xd−µd)
σdd

, and the covariance

matrix Σ can be partitioned as follows:

Σ =

(
Σ1 c

cT σdd

)
.

Cartinhour (1990) expresses that the joint marginal distribution function for the

truncated Gaussian distribution is a product of a truncated Gaussian and a so-

called skewness function that adjusts the shape of N(µd, σdd).

Example

An illustration of the Truncated Gaussian distribution on the simplex could be

the following scenario: the lower limits are set to 0 and upper limits to 1; the mean

vector µ = (1/2, 1/2, 1/2) and the covariance matrix generated from realisations

of the uniform distribution, such that

Σ =


0.89 −0.73 −0.48

−0.73 1.97 1.41

−0.48 1.41 1.02


This defines a 3-dimensional truncated Gaussian variable, and we can represent

realisations from it on the simplex, as below.

Due to the choice of µ the density is concentrated at the centre of the simplex,

however, contrasted with earlier Dirichlet realisations we can see that this density

has less regular shape and is stretched out towards the edges of X2 and X3. We

can also see some local central contours closer to the edges, where the mass

becomes more concentrated.
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Figure 4.2: Ternary plot of contours of the Truncated Gaussian distribution

4.3.2 Logistic skew-Normal distribution

The lognormal distribution is the distribution of a positive-valued random vari-

able whose log-transformation follows the Gaussian distribution. This result is

first due to McAlister (1879) and popularity of this distribution increased in

the 20th century with developments in the area of analysis of variance. Still, in

a Bayesian context the lognormal distribution was used as a conjugate to the

multinomial likelihood as early as Lindley (1964). The link to compositional

data analysis was established by Aitchison and Shen (1980) through the log-ratio

transformation approaches as explored in Chapter 2. The additive logistic skew-

Normal distribution acts with respect to additive log-ratio (alr) transformation,

as defined in Chapter 2, assuming that the alr-transformed components can follow

a (D − 1) variate Normal distribution. This is referred to as the logistic Normal

model for logratio-transformed compositional parts. This is a suitable model in

many instances, but may fall short when transformed compositional data displays

skewness. To account for this, the logistic skew-Normal distribution relies on the
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4.4. Liouville family of distributions

existing multivariate skew-Normal distribution (Azzalini and Valle, 1996) for a

D−variate vector of values. Additional to the classical Gaussian distribution, the

skew-Normal contains an extra parameter ζ to control the shape of the distribu-

tion and determine its maximum skewness. Mateu-Figueras et al. (2005) then

augment the skew-Normal distribution to act on the set of alr-transformed com-

positional variables. Similar adjustments are proposed with the isometric logratio

transformation, and it is noted that centred logratio parameterisation will only

yield a constant (degenerate) distribution due to its dimensionality. However, in

applying the alr and ilr transformations, the key idea is that the skew-Normal

density is transformed using the inverse of each of the logratio transformations.

In the alr case, the new distribution has (D + 4)(D − 1)/2 parameters and the

moments of the additive logistic skew-Normal distribution are not analytically

tractable. The use of these distributions rely heavily on the assumption of skew-

Normality, and known tests such as Anderson-Darling or Cramer-von-Mises can

be used to assess the differences between the empirical and hypothesised distri-

bution functions. While this distribution is attractive in providing alternative

modelling techniques for compositional data that is significantly skewed post-

transformation, from the perspective of Bayesian prior elicitation the facilitator

may find difficulties in formulating questions about these types of distributions in

a way accessible to the experts. Similarly, there are (D+4)(D−1)/2 parameters

required for the specification of the additive logistic skew-Normal distribution,

and this may prove a lengthy and challenging exercise.

4.4 Liouville family of distributions

As we explored in Section 4.2 of this chapter, the Dirichlet family of distributions

can have restrictive dependence structure. It would be particularly challenging to

model compositional parts that display positive correlation. Aitchison attempted

to rid the statistical community of these restraints through the use of the log-ratio
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transformations and the Normal family. This brings about a reduction in dimen-

sionality of the problem, from D to D − 1. A disadvantage to this approach is

that now modelling independence between compositional parts Aitchison (1986)

is a challenge also. Rayens and Srinivasan (1994) aim to resolve this dilemma by

remaining in the simplex space and modelling nontrivial dependence structures

through the use of the Liouville family of distributions. The generalised Liouville

distribution contains the Dirichlet class of distributions, and finds practical use

in copula distributions, which are defined later in this chapter. The set-up for

the Liouville distribution on the simplex ∆D and compositional vector x are as

follows:

The vector xD−1 is defined to lie in an irregular right-angle simplex

∆∗ = {(x1, ..., xD−1) ∈ RD−1 :
∑D−1

i=1 xi ≤ 1, xi ≥ 0 ∀i}. Then, a kernel function

u : R+
D−1 → R+

1 such that

u(x1, ..., xD−1) = f{(x1/q1)β1 + ... + (xD−1/qD−1)βD−1)} and f(·) is a continuous

function f : R+
1 → R+

1.

Also βi, qi > 0,∀i values that need to be specified.

Then, the generalised family of Liouville distributions on ∆∗ is defined if the

probability density of xD−1 is

πLV (x;α) = A · u(x1, ..., xD−1) · xα1−1
1 · ... · xαD−1−1

D−1 for (x1, ..., xD−1) ∈ ∆∗ and 0

otherwise. A is a normalisation term.

The usual Dirichlet class is given in the above if we set qi = βi = 1,∀i; and the

function f(·) is taken as f(ξ) = (1− ξ)αD−1.

Rayens and Srinivasan (1994) go further to derive the covariance structure of

the generalised Liouville distributions, with references to the Dirichlet case. The

authors find that for the cases qi = βi = 1 expected values and covariance struc-

tures can be expressed in relatively compact form of a one-dimensional integral

of f(ξ). In the case, however, where qi = βi 6= 1 the authors recognise a need

88



4.5. Distributions on a sphere

for Monte Carlo integration. The basis for generating random Liouville vectors

is essential for the Monte Carlo integration, and the starting point is generation

of Dirichlet random variables - this once again highlights that the Liouville class

is a generalisation of the Dirichlet. Again, this can be a computationally-heavy

task if is no problem-specific or natural choice for f(·), and so the procedure of

specifying the richer covariance structure is weighed up against choosing the ap-

propriate f(·) - a task that can be paralleled with model selection in a statistical

analysis.

Applied techniques modelling compositional data with the Liouville functions

have been sparse, understandably so due to the necessary selection of f(·) and

similar calibration of qi and βi values. In the remaining sections of this chapter

we will meet copula functions, some of which do rely on the described Liouville

approach to specify a more exotic dependence structure than ones readily offered

by variants of Dirichlet or through Aitchison’s log-ratio transformation.

4.5 Distributions on a sphere

The square-root transformation of compositional D-part vector x presented in

Chapter 2 gives rise to data that can be modelled on a multi-dimensional sphere

of dimensionD−1: SD−1 (Scealy and Welsh, 2011). When
√
x lies on the positive

orthant of SD−1 and is not on the boundary of the orthant, it can be modelled

using the Kent distribution (Kent, 1982). Equally known as the Fisher–Bingham

distribution, it is a five-parameter distribution function.

The distribution function can be described as follows: for yi =
√
xi a point on the

unit sphere SD−1 the density function of the D-dimensional Kent distribution is

πKent(y;β, γ, κ) ∝ exp{κγT1 · y +
D∑
i=2

βi(γi
T · y)2}. (4.34)

where
∑D

i=2 βi = 0 and 0 ≤ 2|βi| < κ and γi orthonormal vector for i = 1, ..., D.

89



4.6. Uninformative distributions

In higher dimensions D − 1 > 3 the normalisation constant of the Kent dis-

tribution on the hypersphere is non-trivial to compute, so finds limited use in

compositional data analysis. Scealy and Welsh (2011) uses the Kent distribution

in the task of compositional regression, as it is deemed suitable for handling essen-

tial zero values in a compositional data set. Parameters of the Kent distribution

find similar interpretation to those in a Dirichlet distribution: κ > 0 is a param-

eter responsible for concentration of the distribution, like α > 0 in the Dirichlet

family. β is a parameter that governs ellipticity of the contours on the surface of

the hypersphere, and γi are the orthogonal direction vectors. Scealy and Welsh

(2011) exploit the idea of the direction vectors in a regression framework through

a mapping to linear functions of the predictor variables. Even though the Kent

distribution has easier interpretability of parameters than the classical Gaussian,

for example, Scealy and Welsh (2011) find that square root-transformed compo-

sitional data often lie on the boundary of the orthant of SD−1. A resolution to

this is to adjust the underlying spherical distribution to allow for folding (Scealy

and Welsh, 2014), however, these approaches to modelling compositional data

have not been popular in more applied areas, most probably due to the existence

of methods with easier implementation.

4.6 Uninformative distributions

In preceding sections we explored distribution families about a set of proportions

x summing to unity. Each distribution considered as a possible choice to model

uncertainty about x implies making that choice in favour of one over the others,

and deeming it appropriate to the scientific question. In this section we out-

line probability distributions on the simplex space that would reflect a maximal

lack of subjective knowledge about the distribution for the probability parameter

in a multinomial likelihood. We therefore seek to explore uninformative prior

distributions on the simplex, and start with the Jeffreys prior, which was the
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first formal and reproducible way of constructing a diffuse (uninformative) prior

distribution.

Remaining in the same set-up, such that the x = (x1, . . . , xD) ∈ RD subject to

the constraints xj ≥ 0 and
∑D

1 xj = 1 with each xj compositional component,

and in the instance of the multinomial distribution x takes on the role of the

event probabilities. Recall, the probability mass function for the multinomial

model is

f(y|x) =
N !

y1!...yD!
xy11 ...x

yD
D .

with
∑D

i=1 yi = N ; yi ∈ ZD+ and i = 1, ..., D.

Then the Jeffreys prior for the multinomial distribution with respect to the pa-

rameter x is

πJ(x) ∝
√
I(x) =

√
E
[( d

dx
logf(y|x)

)2]
. (4.35)

From the above, the information matrix I(x) is diagonal with entry values being
E(Yi)

x2i
= n/xi for i = 1, ..., D. Thus, the Jeffreys prior for x follows the Dirichlet

distribution with all concentration parameters equal to 1/2, and this is a proper

prior distribution.

Zellner (1977, 1996); Zellner and Min (1992) built upon the idea of a structured

way to produce a diffuse prior distribution. The Maximal Data Information Prior

Density (MDIPD) due to Zellner are derived through maximising the difference

between the average information in the data and the information in the prior

density (Zellner, 1996), and the MDIP prior emphasises the information in the

likelihood function, in this case the multinomial. For the multinomial likelihood

with the same set-up as above, derivation of the MDIPD involves working with

the following negative entropy of the multinomial pmf:

ID(x1, ..., xD−1) = x1ln(x1) + x2ln(x2) + ...+ (1−
D−1∑
i=1

xi)ln(1−
D−1∑
i=1

xi). (4.36)
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Then it is necessary to maximise

∫
...

∫
ID(x1, ..., xD−1)π(x1, ..., xD−1)dx1...dxD−1−∫

...

∫
π(x1, ..., xD−1)lnπ(x1, ..., xD−1)dx1...dxD−1.

(4.37)

The resulting MDIPD is a proper distribution function taking the form

πMDIP (x1, ..., xD−1) ∝ xx11 x
x2
2 ...x

xD−1

D−1

(
1−

D−1∑
i=1

xi

)1−
∑D−1
i=1 xi

. (4.38)

4.7 Uniformity over the simplex

In this short section we explore how uniform prior distributions can be repre-

sented on the simplex, and any change that occurs from transitions between the

Euclidean space.

For ease of representation on a ternary plot let us consider the case where dimen-

sion D = 3 and generate a random uniform sequence U [0, 1] and then normalise

it by dividing each element by the row sum. The ternary plot in Figure 4.3

depicts clear lack of uniformity when the points are projected onto the simplex.

To overcome the centre-clustering of points, we can follow Rubin (1981) and

in the first step draw D − 1 points from the standard uniform distribution,

then order them by size and further add to the list values of 0 and 1 to ob-

tain {0, u1, u2, ..., uD, 1}. Then take differences between consecutive numbers in

the list. This procedure drives the results in Figure 4.4, and we can be more

convinced that uniformity over the simplex is satisfied in this instance, at least

graphically. In both cases 500 data points were generated.

We can see that mere normalisation of uniformly distributed variables does not

imply that the spread of points on the simplex space is also even. The ordered

difference method allowed us to correct central clustering of points, as seen in
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Figures 4.3 and 4.4.

Figure 4.3: Uniformly generated elements, normalised.

Figure 4.4: Uniformly generated elements, ordered difference method.
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4.8 Other considerations

In this section, we give consideration to other mathematical constructions that

can express uncertainty about compositional data, but fall outside the topic

realms mentioned previously in this chapter. In describing multivariate distri-

butions on the simplex we have settled on accepting the covariance structure as

governed by the distributional form. For example, for the Dirichlet in Section

4.2.1 we saw that all parts of a composition have a common variance parameter

(since this depends on the overall concentration parameter α0), yet each variable

has its own expected value. Similarly, the variables are deemed mutually inde-

pendent, given that the sum-to-unity constrained is considered which drives a

negative correlation (Mosimann, 1962). Hence, the covariance between at least

two distinct compositional parts is negative, should it be assumed they come

from a Dirichlet distribution. In practical applications this may not always be

representative of any natural processes that influence the “true” data-generating

process.

With the Connor Mosimann distribution and other flavours of the Dirichlet we

explored how these can accommodate for positive correlation between compo-

sitional parts, and even the scenario where more than one mode can occur in

compositional vectors. Unfortunately, many of these distributions are costly to

sample from, and do not have analytically-expressed moment functions.

4.8.1 Dirichlet-tree distribution

Dennis III (1991) and Minka (1999) provide a different outlook on the above

problems by introducing a tree-structure approach to modelling dependence be-

tween compositional parts through the Dirichlet-tree distribution. The difference

with previous methods lies in the parametrisation approach adopted by Den-

nis III (1991) - the vector p of event probabilities in the multinomial sample is

now regarded as a finite stochastic process, as illustrated in Figure 4.5.
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Figure 4.5: General tree structure for finite stochastic process (Dennis III, 1991;
Minka, 1999).

Under this parametrisation, the tree above consists of nodes indexed by i, branches

indexed by j, branch probabilities represented by bij and leaf probabilities pd, for

i = {1, 2, 3}, j = {1, 2, 3} and d = {1, 2, 3, 4, 5} for this example. The probability

of a leaf is the product of probabilities of the branches that make a path to that

leaf. For instance, p1 = b11b21 and p3 = b12.

Dennis III (1991) then uses the tree structure T as a basis for the Dirichlet-tree

distribution, with an explicit probability density function given by:

π(p;α, T ) =
∏
d

p
αparentd−1

d

∏
i

Γ(
∑

j αij)∏
j Γ(αij)

(∑
dj

δij(d)pd

)βi
. (4.39)

where αparenti is the usual Dirichlet concentration parameter α for the branch that

leads up to node i. βi = αparenti −
∑

j αij if i is not the root node, while βi = 0

if i is the root node. Finally, δij(d) = 1 if branch ij leads to d and δij(d) = 0

otherwise.

Through this parametrisation we can see that at each node the Dirichlet-tree

distribution is assigned a separate concentration parameter αij and this means

that the variance at each node can be different across the nodes. Hence, for each

pd the variance is independent of variances of the remaining leaf probabilities.

The Dirichlet tree structure also allows us to model dependent subcompositions,

since by the above set-up the leaves in a sub-tree are correlated, because they

depend on the shared branches of that sub-tree. The Dirichlet-tree distribution
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can be reduced to the classical Dirichlet distribution (tree of depth 1) by setting

bi = 0,∀i. Minka (1999) also notes that the same effect can be achieved through

a specific choice of α values, if one doesn’t want to disrupt an existing tree

structure. The Dirichlet-tree distribution also holds the convenient conjugate

property with the multinomial likelihood and has moments that are expressed

analytically (Dennis III, 1991). Indeed, this reparametrisation has found uses

in compositional regression and clustering problems, for example Mao and Ma

(2020). Another interesting application has been by Liu et al. (2014) through the

use of the Dirichlet tree as a basis for random forest classification in the task of

facial recognition. The tree-structure approach has not been yet reported in the

exercise of expert elicitation, although similar structures have been explored, as

we see through the use of copula vines in due course.

4.8.2 Copulae functions

In similar regard, the notion of copulae is deemed useful for describing dependence

between random variables. A copula function (copula) is a special type of a

general multivariate distribution on the hypercube, which can be constructed

to accommodate different desired relationships between random variables. A

copula represents a multivariate cumulative density function (CDF) and this

CDF can be decomposed into one-dimensional marginal CDFs, which can be

written separately from a dependence structure for the multivariate CDF.

Definition 4.3. (Copula) A multivariate copula is the joint distribution of several

random variables X1,...,Xn, with each Xi following some marginal distribution.

A common choice for such can be the Uniform(0,1).

A fundamental idea in the theory of copulae is Sklar’s Theorem (Sklar, 1973),

which allows us to describe the joint distribution of X1, ..., Xn by their marginal

distributions and a copula, C:

Theorem 4.1. (Sklar’s Theorem) For random variables X1, ..., Xn with cumu-
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lative distribution functions (CDF) F (x1, ..., xn) = P(X1 ≤ x1, ..., Xn ≤ xn)

and marginal CDF Fi(x) = P(Xi ≤ x) for i = 1, ..., n, there exists a copula

C : [0, 1]n → [0, 1], such that F (x1, ..., xn) = C[F1(x1), ..., Fn(xn)]. C is unique if

each Fi(x) is continuous.

There exist several classes of copulae, for modelling dependence under different

conditions and aims sought. Nelsen (2007) gives an introduction to the topic of

copulae. However, for the purposes of modelling compositional data the Gaussian

copula is a popular choice for F () as defined above. Similarly, if one wishes to

model uncertainty about extreme events, one is interested in the tails of a distri-

bution function. An appropriate copula for this instance would be the Gumbel

or the Fréchet. Generally, if two random variables Y and Z have well-defined

marginal distribution functions, such that Y ∼ f1 and Z ∼ f2 for probability

densities f1 and f2 and cumulative densities F1 and F2, then a copula C(Y, Z) is

the distribution of (F1(Y ), F2(Z)).

For Y ⊥⊥ Z we have C(Y, Z) =
∏
yz = yz and the density function

c(y, z) = δ
δy

δ
δz
C(Y, Z) = δ

δy
δ
δz
yz = 1 on [0, 1]2, for two random variables Y and

Z.

Similarly, for a vector X = (X1, ..., XD) a Gaussian copula defined at a point

(x1, ..., xD) is C[F1(x1), ..., FD(xD)] = ΦD,R

{
Φ−1(F1(x1)), ...,Φ−1(FD(xD))

}
, where

ΦD,R is the cumulative density function of a D-variate Gaussian distribution

with correlation structure R. ΦD,R also has zero-mean and unit variance for

each (F1(x1), ..., FD(xD)). R reflects a chosen dependence structure. Φ−1 is

the inverse of the (marginal) univariate standard Gaussian CDF, and as before,

Fi(xi), i = {1, ..., D} are chosen marginal cumulative density functions. Clemen

and Reilly (1999) go on to differentiate

C[F1(x1), ..., FD(xD)], δ
δx1
... δ
δxD

C[F1(x1), ..., FD(xD)] = c[x1, ..., xD] as above, to

obtain:
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c[x1, ..., xD] = f(x1, ..., xD;R)

=

∏D
j=1 fj(xj)

|R|1/2
exp
{
− 1

2
[Φ−1(F1(x1)), ...,Φ−1(FD(xD))]T (R−1 − IdD)

[Φ−1(F1(x1)), ...,Φ−1(FD(xD))]
}
.

(4.40)
For IdD identity matrix of order D, fj(·) being the density function of Fi(·) and

i = {1, ..., D}.

For the multinomial likelihood, the copula function could serve as a prior dis-

tribution, and a starting point could be the specification of fi(xi) which could

be the Beta distribution for x1, ..., xD > 0 and
∑D

i=1 xi = 1. However, to satisfy

compositional constraints, namely that the means of the marginal distributions

sum to unity, and that there are also no redundant variables that can lead to a

singular Gaussian distribution (Elfadaly and Garthwaite, 2017), it is necessary

to reparameterise xi. The following parametrisation is suggested:

Z1 = x1, for the first component. The last component is ZD = 1 and the

remaining components in-between are Zi = xi
1−

∑i−1
j=1 xj

, i = 2, ..., D − 1.

Then Zi is assigned a marginal Beta distribution, which now restrict Zi to [0, 1].

A Gaussian copula density for (Z1, ..., ZD) dependence structure is defined as in

Equation 4.41. Connor and Mosimann (1969) reduced the copula to the Gener-

alised Dirichlet distribution in the instance of Z1, ..., ZD−1 being independent.

Vine copulae

Copulae can be combined into a tree-like structure, which builds on the idea

of the Dirichlet-tree distribution. In the example above C(Y, Z) is a copula of

two random variables Y and Z - such copulae are known as bivariate. A vine

copula rests on the idea of decomposing a multivariate distribution function into

a (finite) set of bivariate copulae (Kurowicka and Joe, 2010). A tree-like structure

is then obtained and the decomposition of the multivariate distribution can be

formed from -
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1) The marginal (prior) distributions, such as fi(xi) above;

2) Unconditional copulae ci,i+1;

3) Conditional copulae ci,i+j|(i+1,...,i+j−1).

As an illustration, for three random variables X1, X2, X3, the following decom-

position into bivariate copulae is possible:

f(x1, x2, x3) = f(x1) · f(x2) · f(x3) · c13(F1(x1), F3(x3))

· c23(F2(x2), F3(x3)) · c12|3(F1|3(x1|x3), F2|3(x2|x3));

(4.41)

with fi(xi), Fi(xi) and c(·) defined as above.

Bedford and Cooke (2002) recognised the connection between vines and graph

structure. In the example above, the vine can be represented as:

Figure 4.6: Vine copula structure for three random variables.

The tree structure in Figure 4.6 has three layers, the top level governing inde-

pendent marginal distributions, the second layer - the unconditional copulae, and

the final bottom layer - the conditional copula function. Including more variables

would drive a tree structure with more layers. However, each layer must adhere

to conditions that the first layer has D nodes with D − 1 edges (branches) and

all nodes must be connected; and secondly, every edge contributes to the joint

density in the next layer down. Hence, each layer in a vine copula adheres to

a certain structure. Generally, every vine copula has a Regular Vine (R-vine)

structure, as in example above. The R-vine can be decomposed into two further

classes: when a layer contains a central component with a star-like structure with
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edges to the other nodes in the layer, this is known as Canonical Vine (C-vine).

Similarly, another class of R-vines is the Drawable Vine (D-vine) and here every

node is connected to at most two edge in a layer, i.e. each tree has a path.

There is a great body of literature about copula functions in general, and the

specific vine structures as briefly outlined in this section. Applications of copulae

functions are similarly abundant, from financial modelling (Rodriguez, 2007) to

risk assessment (Bedford et al., 2016). Ortego and Egozcue (2013) discuss ap-

plications of copulae to model dependence relationships within a compositional

data set. They also contrast association measures such as Spearman’s correlation

ρ and Kendall’s τ rank correlation with the spurious Pearson correlation. It was

found that subcompositional coherence criterion is not met by the Spearman’s,

Kendall’s and the copula approach, and that the dependence structure modelled

through copulae (seven common types were selected for the exercise) is also spu-

rious. For the purposes of this thesis, copula methods have found use in expert

elicitation of multivariate probability densities over the simplex space, serving to

challenge existing approaches that rely on the restrictive Dirichlet distribution.

These modern approaches are explored in more detail in Chapter 7.
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Chapter 5

Uncertainty modelling of Markov

chains

In this chapter, we explore parallels between compositional data and transi-

tion matrices stemming from a discrete-time Markov chain. After introducing

discrete-time Markov models, we look towards modelling uncertainty about the

row elements of the transition matrix. Later, we consider long-term behaviour

of the chain’s row-wise uncertainty through the stationary distribution. We also

present current insights into doubly-constrained matrices and confusion matrices

with examples.

5.1 Discrete-time Markov chains

A stochastic process {Xt, t ∈ T} is a collection of random variables Xt, indexed

by a set T . This process is defined on the sample space Ω and equipped with

a σ-algebra F and a base probability measure P . When T is a set of times,

the stochastic process is known as a temporal stochastic process, which is our

interest here. Conversely, for example if T is the set of spatial coordinates, then

the process is called a spatial process. Let us consider the first scenario where a

point t ∈ T is a single time point. Hence, Xt is a random variable that depicts the
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5.1. Discrete-time Markov chains

value observed at time t. This can be equally represented by {Xt, t = 0, 1, 2, 3...}.

The discrete-time stochastic process takes values in a measurable state space S

that is also equipped with some appropriate σ-algebra. The values taken by Xt

are known as states of the process xt ∈ S, and they may be discrete values or

continuous values. An essential idea in the construction of Markov chains is the

Markov Property:

Definition 5.1. Let X(t) be a stochastic process in discrete time T and dis-

crete state space S. Then Xt has the Markov Property if ∀t ∈ T and states

x0, x1, ..., xt, xt+1 ∈ S the following holds: P(Xt+1 = xt+1|Xt = xt, Xt−1 =

xt−1, ..., X0 = x0) = P(Xt+1 = xt+1|Xt = xt)

The Markov Property leads us to consider the transition probability in a discrete-

time Markov process. The transition probability conditions on the current state

of the process and gives the probability of the random variable at the next time

point:

pij = P(Xt+1 = j|Xt = i) where i, j ∈ S. In the situation where these transition

probabilities stay constant as time progresses, this type of discrete-time Markov

process is called time-homogeneous. Such a time-homogeneous Markov process is

known as a Markov chain. Formally, a Markov chain is defined by its transition

probabilities and the initial distribution of its states:

Definition 5.2. The initial distribution of a Markov chain is a probability dis-

tribution (π0) on a sample space S with π0(i) = P(X0 = i), such that the Markov

chain starts in state i, ∀i ∈ S. Also,
∑

i∈S π0(i) = 1.

Generally, we can denote the distribution of the chain at time t by πt(i) = P(Xt =

i). For a finite state space S, we can organise the transition probabilities into a

square N × N transition matrix P where each (i, j)th element of this matrix is

given by pi,j. Since
∑

j pij = 1 the sum of each row of the square matrix P now

sums to unity and such matrices are known as right-stochastic. In the situation

where P is symmetric, its columns will also sum to unity, allowing us to call it
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5.1. Discrete-time Markov chains

it left-stochastic. A matrix that has each row and each column adding to unity

is known as doubly stochastic. An elementary example of a doubly stochastic

matrix is a matrix with strict diagonal elements equal to one.

Definition 5.3. A square matrix P = (pij) is doubly stochastic if
∑

i pij =∑
j pij = 1, where pij ≥ 0.

A less trivial definition of a non-square doubly stochastic matrix is provided by

Caron et al. (1996):

Definition 5.4. An N ×M matrix P = (pij) is doubly stochastic with uniform

marginals of size N ×M if
∑M

j=1 pij = M for i = 1, 2, ..., N and
∑N

i=1 pij = M

for j = 1, 2, ...,M , where pij ≥ 0 for i = 1, 2, ..., N and j = 1, 2, ...,M .

Applications of doubly stochastic matrices are sparse in statistics, let alone in the

realm of Bayesian analysis. Some consideration has been given by Huang et al.

(2014) in the analysis of cancer transition rates. Nevertheless, these types of

matrices make for interesting objects in the study of graphs (Wang et al., 2016)

and simplex geometry (Fiedler, 2011).

Returning to the previously considered right-stochastic transition matrices P

for a discrete Markov chain and finite state space S = {0, 1, 2, ..., N}, we can

construct the distribution of the chain at time t+ 1 :

πt+1(j) = P(Xt+1 = j) =
N∑
i=1

P(Xt = i)P(Xt+1 = j|Xt = i) =
N∑
i=1

πt(i)pij. (5.1)

The above equation can be written in matrix form simply as πt+1 = πtP and

describes the distribution of the chain at step t+ 1. By induction, we can arrive

at the distribution of the chain at step t using the initial distribution and the

transition matrix P, and this is given by πt = π0P
t.

Definition 5.5. Let i and j be two states of a Markov chain. j is accessible

from i if, having started in state i the chain can visit state j with non-zero prob-

ability. States i and j are defined to communicate if i is accessible from j and
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j is accessible from i. A Markov chain is irreducible if all pairs of its states

communicate.

Definition 5.6. For a Markov chain {X0, X1, ...}, the period of a state i is the

greatest common divisor di = gcd{n : Pt(i, i) > 0}. An irreducible Markov chain

is known to be aperiodic if its period is 1.

From a statistical viewpoint we may be interested in estimating the transition

probabilities pij for a given physical phenomenon. Let now S = 1, 2, ..., D be the

discrete state space, and observe c successive transitions of the Markov chain and

the last transition is defined by Xc = xc. The likelihood function for a transition

matrix P is given by

l(P|x) =
D∏
i=1

D∏
j=1

p
nij
ij . (5.2)

where nij is the number of observed transitions from state i to state j, and the

total number of transitions is c. We can estimate P by its maximum likelihood

estimate P̂ where each element of the matrix is given by

p̂ij =
nij∑D
j=1 nij

. (5.3)

This frequentist approach considers only the aleatory uncertainty - the uncer-

tainty due to the probabilistic variability of observed moves of the Markov chain.

If we were interested further in uncertainty surrounding the transition probabil-

ities themselves, the epistemic uncertainty, we would need to adopt a Bayesian

approach to the problem. In the frequentist framework, this could be akin to

modelling random transition matrices Takahashi (1969). Due to the Markov

property, the transition matrix P can be decomposed into its individual rows

with non-negative entries and unit sum. This may remind us of the composi-

tional framework explored in earlier chapters, and we explore this topic later in

the chapter.
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5.2. Stationary distribution of a discrete-time Markov chain

5.2 Stationary distribution of a discrete-time Markov

chain

If it is the case that the distribution of the chain at every next time step is

identical to its distribution at the previous time step, then π is called the sta-

tionary distribution of the Markov chain. Formally, it is π such that the following

relationship is satisfied:

π(j) =
∑
i∈S

π(i)pij,∀i ∈ S. (5.4)

The concept of the stationary distribution is essential in the following Basic Limit

Theorem:

Theorem 5.1. Suppose X0, X1, X2, ... is an irreducible and aperiodic Markov

Chain with a stationary distribution π(·) with arbitrary initial distribution π0.

Then limt→+∞ πt(i) = π(i),∀i ∈ S

If such a stationary distribution π exists for a specified Markov chain, then it is

the unique solution to

π = πP. (5.5)

For example, for a 2-state discrete-time Markov chain with transition matrix

defined by

P =

 p11 1− p11

1− p22 p22


the stationary distribution π of the chain remaining in each state is given by the

balance equations (5.5):

π1 =
1− p22

2− p11 − p22

, π2 =
1− p11

2− p22 − p11

, since π1 + π2 = 1.
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In the setting of row-stochastic matrices P, we would like to analyse how incor-

porating uncertainty into the matrix elements by the use of uniformly generated

random numbers (other distributions will also be considered) affects the station-

ary distribution π. Such a stationary distribution satisfies Equation 5.5. In

higher D dimensions -

P =


p11 p12 ... 1−

∑D−1
j=1 p1j

...
... . . . ...

pD1 pD2 ... 1−
∑D−1

j=1 pDj

 .

In order to gauge stationary behaviour of a D-dimensional transition matrix we

may again solve Equation 5.5. However, asD increases computational approaches

may be sought. A naive way to understand long-term behaviour of the chain,

provided all elements pij are known, we can examine the limiting distribution

π = lim
N→∞

PN and if the result satisfies Equation 5.5 then π is the stationary

distribution. Alternatively, eigendecomposition of the transition matrix P can

be carried out as a way to identify the stationary distribution.

Returning to the 2-dimensional example, to find the eigenvalues of P , we evaluate

for λ the following determinant

det

[ p11 1− p11

1− p22 p22

− λ
1 0

0 1

] !
= 0. (5.6)

and the solutions to the characteristic equations stand at λ1 = 1, λ2 = p11 − p22.

Next, we seek the eigenvectors v = (v1, ..., vD) associated with the found values

for λ, in the usual sense:

Pv = λv. (5.7)

However, our interest lies in the stationary distribution π, which can be de-

rived from the normalised eigenvector associated with λ1 above. This can be
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done either analytically or computationally. As already discussed, we can also

investigate the limiting distribution by raising P to a high power, and observing

whether any convergence occurs.

We can go further and diagonalise our transition matrix to take the following

form through eigendecomposition

P = MDM−1, (5.8)

with M being the invertible matrix of its eigenvectors, and D is a diagonal

matrix with elements being the eigenvalues of P . Then, if we were to raise P to

a high power, it holds that

PN = MDNM−1. (5.9)

In theory, this eases any calculations since DN is simply its diagonal elements

raised to the needed power.

5.2.1 Example

Maximum wind speed measurements have been taken at the Leeds Bradford

Airport weather station during the month of February 2021. 28 wind speeds

have been recorded during the month (1/02/2021 until 28/02/2021 inclusive) in

miles per hour (m.p.h). Wind speeds have been classified into three states on

each given day: Class 1 denotes wind speeds less than 10 m.p.h; Class 2 denotes

speeds strictly between 10 and 20 m.p.h; finally Class 3 denotes speeds greater

than 20 m.p.h on a given day.

A sequence of wind speed classes are given in the following:

1 1 1 2 1 2 3 2 2 2 2 3 2 3 2 2 2 2 3 2 2 2 3 3 2 2 1 1

The above can be interpreted as follows, if we consider the initial state 1 - over
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the month of February 2021, on three day-pairs the maximum wind speed did

not exceed 10 m.p.h, then on two occurrences the wind speed changed class from

1 to 2, and finally on no day the maximum wind speed increased from Class 1

to Class 3. Similar reasoning for the remaining classes can lead to estimate a

transition matrix:

W =


w11 w12 w13

w21 w22 w23

w31 w32 w33

 =


3/5 2/5 0

1/8 9/16 5/16

0 5/6 1/6


In all instances, the stationary distribution is found to be πW = (0.185, 0.593, 0.222)

to 3 d.p. which means that if the transition matrix probabilities were to be a true

reflection of wind speeds beyond February 2021, the speeds would in the class 10

m.p.h to 20 m.p.h almost 60% of the time, in the range 20 m.p.h or greater 22%

of the time, and remained under 10 m.p.h 18.5% of the time.

So far, we have assumed the elements of P are deterministic. However, we may

also wish to incorporate some uncertainty in the matrix elements. This can also

aid in estimating the transition matrix P from a Bayesian perspective. We would

look towards the most probable matrices P - those transition matrices that, in

the context of Bayesian analysis, have the highest posterior probability. For

this, a prior distribution needs to be chosen, and a popular choice is a conjugate

family, such as the Dirichlet. Before any movements of the Markov chain are

observed, the statistician may wish to reflect ignorance in the prior distribution,

as to reduce the bias brought in, especially if there is no reason to make the prior

subjective. This choice drives the posterior probability (and hence, estimation of

the transition matrix P ) to be driven by the observed movements of the Markov

chain. This Bayesian approach has the advantages of introducing greater numeri-

cal stability to estimating P , as well as adhering to any physical constraints of the

problem. Similarly, the Bayesian approach provides an estimate of uncertainty
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about P when the number of movements between states is small.

Let Pi denote the ith row of the transition matrix P. Then, a multivariate

distribution of a Dirichlet type can be assigned to each Pi. For the moment, let

us assume the simplest conjugate Dirichlet distribution:

Pi ∼ Dir(αi);αi = (αi1, αi2, ..., αiD), i = 1, 2, ..., D.

The multinomial likelihood in this scenario would be the observed transitions X

assumed to be independently distributed, and by conjugate analysis, the posterior

uncertainty in each row of transitions of the Markov chain can be expressed by:

Pi|x ∼ Dir(αi + ni) (5.10)

.

where ni are the counts of the observed transitions in state i.

For such right-stochastic transition matrices, we can use the families of distri-

butions described in Chapter 4 in order to accommodate for uncertainty in a

Markov chain’s transition between states. If we have little prior information

about the possible moves of the Markov chain, we may wish to adopt a Jeffreys’

prior, such that Pi ∼ Dir(0.5, 0.5, ..., 0.5) or a uniformly flat prior on the sim-

plex Pi ∼ Dir(1, 1, ..., 1). The resulting posterior distribution is also conjugately

Dirichlet, however driven by the observed transitions X.

Another improper prior for this case could be when the concentration parameter

α of the Dirichlet distribution approaches zero, which yields:

P(Pi) ∝
D∏
j=1

1

pij
;∀i, j = 1, 2, ..., D.

The posterior distribution is thus Pi|x ∼ Dir(ni1, ..., niD). This is an interesting
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case, as the posterior mean here is exactly the maximum likelihood estimate:

E(pij|x) =
nij
ni

= p̂.

There may be situations of scarce yet important a-priori information, for example

that transitions between certain states are not possible. For example, as consid-

ered for a discrete time birth-death Markov chain. Alternatively, it can be that

the probability of remaining in the same state is zero, hence pii = 0,∀i = 1, ..., D.

Thus, the marginal prior distribution should be restricted solely to those states

where transitions are possible, and the other transition probabilities be made

zero. For example, in the instance of the Dirichlet:

P(pij) =


p
αi−1
ij (1−pij)βi−1

B(α,β)
, if i 6= j, α, β > 0;

0, if i=j.
(5.11)

As an alternative, it is possible to set up a hierarchical prior structure on the

transition probabilities for a discrete-time Markov chain, if it is known that spe-

cific chain transitions are not possible due to physical constraints of a particular

problem. In the example of the Dirichlet, we may impose a distribution on the

concentration parameters α to lie in a certain range, such as αij ∼ Uniform[1, 5].

This choice excludes distributional mass lying close to the edges of the simplex.

Next, if we were to express each element of the transition matrix as a probability

distribution, we may equally construct the problem row-wise or element-wise.

Each row Pi of transition matrix P may follow some multivariate distribution,

such as the familiar Dirichlet(αi). The transition matrix may then be written

as:

P =


Dir(αi)

...

Dir(αD)


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Equally, element-wise we can express marginal uncertainties:

P =


Beta(α11,

∑D
j=2 α1j) ... Beta(α1D,

∑
j 6=D

α1j))

... ... ...

Beta(αD1,
∑D

j=2 αDj) ... Beta(αDD,
∑
j 6=D

αDj))


.

provided that marginal distributions exist. We may be interested in stationary

long-term behaviour of a Markov chain defined by the above transition matrix.

When transition elements are deterministic, or based on estimates through ob-

served movements of the Markov chain, the stationary distribution is yielded

through solving the detailed balance equation, or by carrying out eigendecom-

position. Similarly, it may occur that the limiting distribution of the chain is

also the stationary, as was described earlier in the section. Now when elements

of P are expressed as probability distributions, it may be difficult to obtain an

analytic closed-form for the stationary distribution. Consider a simple example

when P represents a 2× 2 matrix, such that the Markov chain moves solely be-

tween two states. In the above set-up expressing elements of P as marginal Beta

distributions it holds that:

P =

Beta(α11, α12) Beta(α12, α11)

Beta(α21, α22) Beta(α22, α21)


Carrying out eigendecomposition or solving the detailed balance equations for a

reversible P from Equation 5.5 would involve (in the simplest case) division of one

probability function by another, and convolution of probability distributions in

order to find the determinant. This process may not even be analytically feasible

for D > 2 and is made even more complicated by the fact that the elements in

each row are not independent of each other.

A more practical way of understanding the stationary distribution is through con-
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structing random matrices by drawing from the Dirichlet distribution row-wise,

then observing limiting behaviour of the chain through matrix multiplication. At-

tempt at analytic solution would again involve convolutions of dependent random

variables, if P were taken as defined immediately above.

5.2.2 Example

The following cases represent three-state Markov chains with row-wise uncer-

tainty following the Dirichlet distribution with varying concentration parameters

α. Simulations are taken from each transition matrix and limiting behaviour

is observed through iterative matrix multiplication. In total 100,000 transition

matrices are simulated for each scenario. Contour plots on the simplex represent

the row-wise distribution of the stationary vector, and are used instead of scat-

ter plots on the simplex for illustration of the distribution. The colour of each

contour plot represents the density of the stationary distribution in that region,

and the vertices of the simplex P (j) denote the corresponding element in the

stationary distribution, j = (1, 2, 3).

Suppose a 3-state Markov chain has the following transition matrix

P1 =


Dir(0.5, 0.5, 0.5)

Dir(0.5, 0.5, 0.5)

Dir(0.5, 0.5, 0.5)


In a Bayesian analysis this case can represent the uninformative Jeffreys’ prior

distribution over each row of P1, and the stationary behaviour of P1 can be

observed in Figure 5.1.

112



5.2. Stationary distribution of a discrete-time Markov chain

Figure 5.1: Stationary distribution over row-wise uncertainty of P1.

We can see that the long-term behaviour of the chain with the Jeffreys’ transition

matrix shows moderately equal spread across the entire simplex space with a

central mass. Similar behaviour is also the case for a deterministic transition

matrix with equal probabilities of movements to other states.

As alluded to in Chapter 2, if we express uncertainty using the Uniform distri-

bution but on the simplex, this is the case of Dirichlet concentration parameters

αij = 1. It is interesting to contrast this scenario, depicted in transition matrix

P2, with the previous Jeffreys’ transition matrix.

P2 =


Dir(1, 1, 1)

Dir(1, 1, 1)

Dir(1, 1, 1)


In Figure 5.2 we can see that in the central region of the simplex there is consid-

erably more mass than in Figure 5.1, as seen by the higher density curve levels
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Figure 5.2: Stationary distribution over row-wise uncertainty of P2.

and also the spread of the density, which is lacking at the edges of the simplex

in Figure 5.2.

Now, let us move towards examining the stationary behaviour of P3, in which

uncertainty in the second row is expressed by driving the mass of the Dirichlet

distribution away from the centre and towards the edges of the simplex. This is

expressed by α = (0.1, 0.1, 0.1). The stationary distribution of this set-up can be

seen in Figure 5.3.

P3 =


Dir(1, 1, 1)

Dir(0.1, 0.1, 0.1)

Dir(1, 1, 1)


We can see that the behaviour of the stationary vector is rather unusual - there

is a high distributional mass towards the vertex P (3), as well as other regions of

mass in the simplex in Figure 5.3 being as concentrated as those in Figure 5.4
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Figure 5.3: Stationary distribution over row-wise uncertainty of P3.

Figure 5.4: Stationary distribution over row-wise uncertainty of P3.
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(note different scales of distributional mass). We may suspect that the stationary

distribution is not stable, and this is indeed the case if we consider a different

starting point (seed) for the matrix simulations. Figure 5.4 shows another in-

stance of limiting behaviour of P3. We can now see a very different depiction

to Figure 5.3, and it finds more similarity to the stationary distribution of the

Jeffreys’ transition matrix above. Further investigation allows us to conclude

that the stationary distribution of P3 is highly sensitive towards the matrices

generated from row-wise Dirichlet distributions, and the stationary distribution

varies between the two scenarios depicted in Figure 5.3 and Figure 5.4. To see

this, we can consider marginal distributions of Dirichlet(0.1,0.1,0.1), which would

be Beta(0.1,0.2), and compare them to marginal distribution of the last row of

P3, being Beta(1,2), as seen in Figure 5.5. We can see that for each draw from

Dirichlet(0.1,0.1,0.1) and Dirichlet(1,1,1) the probability of obtaining a random

transition close to the value of 1 is quite different. Thus, over time it is possible

to see clusters of distributional mass at one of the corners or close to the edges

of the simplex, where parameter α values are less than 1. Moreover, if there is a

high probability that an element of P3 is in the interval [0, 0.2], this may result

in imprecision from a computational standpoint after repeated matrix multipli-

cation. Note that this sensitivity is not reflected in P1, P2 and neither in the

cases that follow, and presents one of the issues when parameter values of the

Dirichlet distribution are drawn close to the edges of the simplex (α < 1).
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Figure 5.5: Frequency of random draws for each row of P3

Next, let us consider P4 where we express a high preference to vertex 3 in the

first row of the transition matrix, which is a situation found often in applications

of compositional data. The stationary behaviour of P4 can be seen in Figure 5.6.

P4 =


Dir(1, 1, 10)

Dir(1, 1, 1)

Dir(1, 1, 1)


If we only consider the random variable that follows Dir(1, 1, 10), the ternary

plot of this would show a mass concentrated at the third vertex P (3). However,

in Figure 5.6 the stationary mass has been pulled away from P (3) and some

distribution mass is found in the centre of the simplex, while the peak of the

distribution is on the tertile boundary, where P (3) is around 0.6, while P (1) and

P (2) are close to 0.3. This shows that the long-term uncertainty is projected to

average between the row-wise uncertainties in P4, and this behaviour is stable

unlike what was seen with P3.

To follow from this, let us portray a scenario where significant probability mass

is assigned to the first vertex in the last row of the transition matrix P5
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5.2. Stationary distribution of a discrete-time Markov chain

Figure 5.6: Stationary distribution over row-wise uncertainty of P4.

P5 =


Dir(1, 1, 10)

Dir(1, 1, 1)

Dir(10, 1, 1)


Stationary behaviour can be observed in Figure 5.7. Again, we see that the sta-

tionary distribution is highly concentrated (regardless of the simulation starting

seed). The stationary mass is also found halfway between vertices P (1) and P (3)

on the simplex, and this follows from how P5 was defined.

Finally, let us investigate the Wind Speed example from earlier in this chapter.

Suppose that instead of the transition matrix W defined previously from daily

wind speed changes, we define an uncertain transition matrix expressed as P6

P6 =


Dir(3, 2, 0.01)

Dir(2, 9, 5)

Dir(0.01, 5, 1)


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5.2. Stationary distribution of a discrete-time Markov chain

Figure 5.7: Stationary distribution over row-wise uncertainty of P5.

Estimates for concentration parameters α of the Dirichlet distribution are indeed

taken from the data, but realisations of these Dirichlet vectors will follow those

exact values expressed in W with very small probability. Again, if we simulate

100,000 transition matrices from P6, the long-term behaviour can be seen in

Figure 5.8. Very small α value was assigned to transitions from class 3 to class

1, and vice-versa. This is to reflect the estimatedW , but also to include a small

chance of those transitions taking place.

Resulting stationary behaviour is in line with πW = (0.185, 0.593, 0.222) to 3 d.p,

as seen when elements of W are deterministic and estimated from the observed

wind speeds in February 2021. The mass of the density in Figure 5.8 reaches

its peak when P (1) is around the value 0.2, and for P (2) and P (3) it is around

0.7 and 0.2 respectively. This is coherent with πW as above, yet in this case

we are able to demonstrate sensitivity of stationary behaviour with respect to

uncertainty around the elements of the transition matrix W . In this applied

example we have conditioned on the fact that on February 1 2021 the maximum
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5.2. Stationary distribution of a discrete-time Markov chain

Figure 5.8: Stationary distribution over row-wise uncertainty of P6.

wind speed was in class 1, and have not included any uncertainty about the initial

state of the Markov chain. The same assumption was made about P1 through to

P6. The initial distribution is not seen to have an effect on the limiting behaviour

due to the Markov property, and so its influence is negligible in the long term.

However, should we wish to explicitly define a distribution for the initial state

P 0, it could be the multinomial distribution, such that P(P 0 = p0) = θP0 for

θd ∈ (0, 1) and
∑D

d=1 θd = 1. Then, for a conjugate analysis θd can again follow

the Dirichlet distribution, and Bayesian inference for P can be conducted as

previously with observed transitions of the Markov chain.

In all the above, we have assumed that transitions are possible between all states

of the Markov chain that we have defined, even with a small probability. The set-

up of the simulation exercise has also assumed that no other states are possible,

and the observed states are all that exist. However, with increasing dimensional-

ity of the transition matrix, or increasing complexity of the relationships between

states, the considerations above can become of critical importance. Especially if
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there is suspicion that more states occur than can be currently observed, a way to

approach this is through Hidden Markov Models (HMMs). These can be thought

as an extension to a two-layer Markov model - the top layer is unobserved and

is represented as a Markov chain (discrete and continuous-time extensions are

possible), and the bottom observed layer is dependent on the states of the layer

above. This thesis does not consider treatment of Hidden Markov models, which

is a separate area of study. Introduction to HMMs can be found in the work of

Dymarski (2011), and they are exceedingly popular in modelling financial pro-

cesses (Mamon and Elliott, 2007) and animal movement models (Zucchini and

MacDonald, 2009), for example.

5.3 Other considerations

In this chapter, we have solely considered right-stochastic matrices, whose rows

adhere to the sum-one constraint. Column-wise, we have assumed independence,

making parallels with compositional data analysis explored in earlier chapters of

this thesis. In this section, we deviate from the row-sum constraints and illus-

trate applications of Bayesian modelling to other types of constrained matrices.

The first such example deals with confusion matrices. A confusion matrix C is a

square matrix that is used to examine the accuracy of a model or an algorithm in

comparison with some ground truth. Rows of the confusion matrix usually repre-

sent true states (classes) in an experiment, and the columns represent predicted

states (classes) as driven by the model or the algorithm. The smallest confusion

matrix C1 is simply an accuracy score, or the outcome of a statistical test. The

next more complex confusion matrix has size (2× 2) and can occur for a binary

(classification) problem:

C2 =

cTP cFN

cFP cTN



121



5.3. Other considerations

where subscript TP stands for the number of true positives; FN represents false

negative, FP is the number of false positives, and TN is true negative. Caelen

(2017) examines the (2× 2) confusion matrix from a Bayesian standpoint, treat-

ing the elements in C2 as realisations of the familiar multinomial distribution.

Caelen then assigns a conjugate Dirichlet prior distribution to the probabilities

that drive each element of C2 above, and posterior distribution as described in

Equation 5.10 thus follows. This conjugate analysis is used for comparison be-

tween two competing models (and thus, two realisations of C2) to the author’s

interest. The key motivation in Caelen’s work is to investigate a scenario where

no training or testing data set is available for a scientist to conduct a bootstrap-

like approach to compare between two competing models. Instead, the only

information the scientist has access to is the confusion matrix C. Caelen finds

that the Bayesian approach with the conjugate Dirichlet distribution yields the

same summary statistics as the bootstrap method. However, the former also

includes uncertainty about the unknown probability vector in the multinomial

distribution, which is expressed as counts in the confusion matrix. As with the

numerical investigation of stationary behaviour of a Markov chain in this chap-

ter, Caelen notes that injecting prior knowledge into the Dirichlet prior in the

form of specified concentration parameters, lowers the variance of the posterior

distribution. A distinct difference between Caelen’s modelling approach to what

has been considered in this chapter, is that Caelen does not treat the rows of the

confusion matrix as independent. Instead of the previously-defined

P =

Dir(α11, α12)

Dir(α21, α22)


for a (2× 2) matrix of uncertain probabilities, Caelen defines

P∗ ∼ Dir(α11, α12, α21, α22),
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because there is no constraint on each row of C2. This relaxation of constraints

allows for dependence modelling between columns of C2, as well as the rows.

In a completely opposite scenario, we may wish to constrain the columns of our

transition matrix P as well as the rows. Such matrices have been defined earlier

in this chapter as doubly stochastic (bistochastic). Let us refer to a bistochastic

matrix as P B and its elements pBij for i, j = 1, ..., D. The set of doubly stochastic

matrices is known as a Birkhoff polytope (Fiedler, 2011) and has dimension (D−

1)2 and can be represented as a convex polyhedron in R(D−1)2 . Doubly stochastic

matrices find use in modelling physical processes (Louck, 1997) and in machine

learning applications, for example, in spectral clustering problems and affinity

matrices, where reducing a matrix to be doubly stochastic can make a data set

more easily used with clustering algorithms (Zass and Shashua, 2006).

The most simple bistochastic matrix has value 1 for its diagonal elements, and

zeros elsewhere. Other examples are given by

PB =

1− pB pB

pB 1− pB

 ,

for some pB ∈ [0, 1];

PB =



1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4


,

or from a different viewpoint

P B =


1/pBij if i 6= j, i=j=1,...,D;

0, otherwise.
(5.12)

The general structure above can be extended to form larger doubly-stochastic
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matrices of several blocks of P B on the diagonal, and zero values elsewhere. A

doubly stochastic matrix can be generated from a D × D matrix through iter-

ative normalisation of rows and columns of the original matrix. Several works

have also considered uncertainty about the elements in bistochastic matrices -

Guillotte and Perron (2012) has shown the existence of a Jeffreys’ prior distri-

bution over P B, and some results have been obtained that reflect probability

distributions over the Birkhoff polytope, although applications are sparse. Cap-

pellini et al. (2009) give rise to a method to define a probability distribution over

the matrix P B based on assuming a Dirichlet distribution over the columns of

P B, then a sophisticated normalisation algorithm is employed. This algorithm

is based on Sinkhorn’s (Sinkhorn, 1964) iterative procedure that normalises the

rows and columns of a square matrix until it is bistochastic up to a certain ac-

curacy. Cappellini et al. (2009) note that this approach can be extended to

base distributions other than the Dirichlet. For example, a Gaussian-type distri-

bution and a Uniform-type distribution, however, throughout the work there is

explicit statement of either necessary independence between the columns of P B

or necessary correlation between columns of P B for construction of the matrix

distributions.
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Chapter 6

Expert elicitation for Bayesian

prior specification

6.1 Introduction to expert elicitation

Expert elicitation is an information-gathering exercise carried out to construct

an informative prior probability distribution, which plays a key role in Bayesian

analysis. Expert elicitation has found ever-increasing uses where data is sparse

or the scientific question is not well researched. For instance, we can account for

statistical likelihoods of extreme events in civil engineering (Lamb et al., 2017)

or risk assessment in financial investments (Katsis et al., 2003). Approaching

the problem from a frequentist point of view or using an uninformative flat prior

would make Bayesian posterior distributions heavily data-driven. In cases where

data is obtained through destruction of an object or where repeat experiments

are not possible without significant losses to the client or ethical conflicts, expert

elicitation brings about a sensible alternative to formalise and quantify current

scientific understanding.

Expert elicitation has been adhered to standardisation and structuring over the

last half-century, and the outcomes of the exercise often drive stakeholder deci-
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sions. Expert elicitation is part of the wider expert knowledge elicitation (EKE)

framework (O’Hagan et al., 2006). The aim of general knowledge elicitation is

to extract information about a question of interest to the experts and the stake-

holders through an interview or a discussion. Depending on the subject domain

and the overall aim of the knowledge elicitation exercise the interview can be free

of structure, or be a focused discussion using pre-designed questions.

The first scientific inquiry into expert elicitation was performed by the U.S Nu-

clear Regulatory Commission in 1975, who exposed substantial differences in

the experts’ judgements (Frye Jr, 2012). Since then, the statistical community

has seen development of elicitation exercises focused on participation of only

one expert (Morris et al., 2014) and similarly, elicitation that relies on consen-

sus decision of a group of experts (O’Hagan et al., 2006). With the increase

in computing power Bayesian analysis has become a popular approach to drive

decision-making processes, and expert elicitation has proven especially popular

in describing uncertainty about parameters of prior distributions in public pol-

icy decision-making (Morgan, 2014). The use of expert elicitation may similarly

be preferred in instances when evidence for more than one statistical model is

conflicting, or to consolidate multiple sources of data stemming from different

specialisations in a field of science. The development in elicitation techniques

and its popularity implies that the exercise should be treated as rigorously as the

process of acquiring empirical data.

On the contrary, one may seek other tactics to expert elicitation when there is a

high degree of belief that empirical evidence is sufficient to quantify uncertainty

about a given quantity. Also, if there is a shortage of financial resources or there

exist time constraints to conduct a thorough interview to explore the experts’

insights, or upon discovery that the experts’ knowledge is not entirely relevant to

quantify beliefs. More importantly, if one or more of the experts has significant

difficulty in quantitatively expressing their beliefs during the training stage of

the elicitation exercise, the exercise should not go forward(O’Hagan et al., 2006).
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In this chapter, we investigate past and current approaches to eliciting parametric

distributions, and then in Chapter 7 progress to elicitation in the context where

uncertainty is modelled about a set of proportions.

6.2 Elicitation of individual judgements

Before proceeding to specific ways to construct probability distributions given a

set of expert judgements about a quantity of interest θ, we note the differences

between elicitation exercises conducted on an individual and group level.

Since the focus of this thesis lies with parametric probability distributions, let θ be

the parameter in focus of the elicitation exercise. Denote θ to be a scalar quantity

as the parameter value in a univariate probability distribution and θ is a vector

in a multivariate probability distribution. Also, assume that the appropriate

panel of experts is available, has been selected in a fair manner and possesses

substantial knowledge about the parameter in question for the construction of a

probability distribution. See O’Hagan et al. (2006); Bolger (2018) for discussion

on selection of experts.

In the scenario where one expert is available, the elicitation exercise usually

commences with a brief to the scientific scenario and may follow with a training

exercise about quantities unrelated to the main question. For instance, a popular

training question focuses on expressing uncertainty of distance between two cities

or populations of countries. After this, the expert is asked carefully constructed

questions about the parameter of interest θ. The facilitator must avoid asking

directly about summary statistics, for instance, the mean and variance of the

probability distribution to build up a plausible quantitative description of θ.

Cognitively, quantities like these are very hard to express without the expert

succumbing to biases and heuristics (Baddeley et al., 2004).

By setting hard constraints on θ the facilitator may ask the expert for instance,

“What is your probability that θ is larger or equal to 5?” or “What is your
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probability that θ is between 4 and 5?”. If θ can be any value on the real line, in

this instance the facilitator has introduced anchors by stating the values “4” and

“5”, which can influence the expert’s judgement on θ. However, if previously the

expert has been explicitly asked to provide an interval of values where θ is likely

to lie, the above questions would not be unreasonable for one of the intervals in

the given range that the expert expressed. Elicitation of quantile judgements is

a very popular method of constructing univariate and multivariate distributions.

Though, for the multivariate case elicitation of quantile judgements is used to

express uncertainty about marginal distributions and more information is later

sought about the covariance structure.

Popular approaches to construct a probability distribution around θ involve elicit-

ing at least three judgements from the expert, which can help determine a unique

distribution or a small set of plausible distributions that reasonably reflect the

expert’s knowledge about the uncertainty of θ. Typically, interest lies in the most

likely value of θ and a measure of spread of the distribution.

In the quantile approach a popular measure of central tendency of the univariate

distribution is the median M . To determine the median, the facilitator could

pose the following question - “For which value M would the true value of θ have

equal chance of being greater or less than M ?”. To understand the spread of the

distribution about θ upper and lower quartiles are used. For example, for the

lower quartile L a question posed by the facilitator could be - “For which value L

does the true value of θ have the same probability being below L and between L

and M, given that θ is less than M ?”. This framework is often extended to pose

questions about the tertiles of a distribution or percentiles to gain insight into

the tails of a distribution (O’Hagan, 2019b), alongside a judgement for the mode

as the measure of central tendency.

Given the set-up that θ ∼ f(·), the probability distribution f(·) would itself

be dependent on some hyperparameters, for example f(·) could be N(µ, σ2) or
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Beta(α, β). In this case f(·) depends on two parameters, a minimum of two

judgements are sought from the expert (O’Hagan et al., 2006) and this is enough

to determine sets of parameter values of f(·) that can equally well fit the expert

judgements. For instance, in the above setting and given that the target distri-

bution is θ ∼ Beta(α, β) the expert could be questioned about the median and

the lower quartile uncertainty for θ as their probabilistic judgements.

Once the expert gives probabilistic judgements about θ the facilitator can ask

whether they seem a reasonable representation of the expert’s knowledge about

θ. If so, the facilitator follows with fitting a probability distribution θ ∼ f(·)

to the given judgements, having previously determined one or more probability

density functions that may be appropriate for the scientific investigation. Then

follows a stage of feedback, where the expert is presented the fitted distribution,

often in the form of a graphical plot of the density and summary statistics relevant

to the scientific question. The facilitator may prompt the expert to think about

whether the peak of the density function reflects the expert’s view on the location

for the most probable value for θ. Similarly for the tails of the distribution,

the expert may be asked to think whether those captured probabilities reflect

the expert’s knowledge about less likely values of θ. If the expert disagrees

with the fitted distribution, the facilitator needs to determine which aspect was

not captured well by previous questioning, refine the expert judgements, fit the

distribution and reflect on any changes with the expert. Following the fitting

procedure is the feedback loop, the expert may be presented the distribution

and asked to judge whether the fit reflects their initial beliefs well. Winkler

(1967) discusses existence of such a “satisficing” prior distribution that reflects

the expert’s judgement during an elicitation exercise. If a satisfactory fit is not

achieved, the expert would return to the previous stage and provide judgements

about a slightly differing set of quantiles. Similarly, the facilitator may not show

the fitted distribution, and instead ask for other quantile assessments as a form

of a validation of the judgements. There are also advantages to eliciting more
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judgements than the minimum number required to fit a distribution - practice

known as overfitting. (O’Hagan et al., 2006) supports that overfitting allows for

expression of uncertainty about the expert judgements without the facilitator’s

input on the feedback discussion, which may introduce anchoring effect. However,

attempting to fit a probability distribution to many elicited judgements may be

more challenging, since this also rests on the choice of distance metric (O’Hagan

et al., 2006). Garthwaite et al. (2005) discuss the advantages of questioning

the experts about equal odds, rather than eliciting judgements about probability

percentiles. Similarly, using this method avoids any anchoring of particular length

values.

If there are any inconsistencies of the judgements and the state space of θ, they

may too be addressed. For example, as we see in Chapter 7, this could be the

case where resultant expected values of the Dirichlet variables do not adhere to

the sum-unity constraint. An alternative outcome of the elicitation exercise is

that the expert gives reason that the underlying distribution function (or the set

of plausible functions) is unsuitable for expressing their uncertainty about θ.

There exist practised alternatives to the bisection method. A graphical interface

is often a helpful tool in an elicitation exercise, as it may help alleviate experts’

decision fatigue and accelerate the feedback procedure (Goldstein and Rothschild,

2014). One such example of a graphical procedure is the trial roulette method.

The sample space for θ is divided into b equally-spaced bins and the expert

is provided with n chips which need to be allocated in a way to reflect the

expert’s judgement about θ. For example, placing two chips in a certain sub-

interval reflects twice as much confidence as placing one chip in the same interval.

As a result, the expert is able to see an image resembling a histogram, from

which the parameter θ is estimated by software such as the MATCH Uncertainty

Elicitation Tool (Morris et al., 2014). A particular distribution may be specified

by the facilitator, or a best fit from several candidate distributions is selected by

the software. In instances where it is not as obvious to structure questions to
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express uncertainty about θ that would have reasonable meaning to an expert,

the roulette method may be of more use.

In the scenario where a more flexible distribution is needed, the facilitator may

look into eliciting judgements about a distribution with more than one mode.

This could occur if there are two or more strongly influencing factors in the sci-

entific question, for example, if event A occurs then θ is expected to increase, but

if event B occurs then the trend is reversed. The facilitator could pose questions

about conditional statements for both A and B and yield a fitted mixture dis-

tribution based on these statements. Alternatively, a graphical method such as

MATCH’s roulette could be used, but for good practice this should be reinforced

with the above conditional judgements.

Figure 6.1: MATCH elicitation tool: roulette method with 20 chips, bimodal
distribution (Morris et al., 2014).

Individual elicitation may be carried out as part of a group exercise where it is

impossible to unify the group of experts for discussion due to inability to travel or

scheduling difficulties. The scenario where only one expert is available for ques-

tioning is most susceptible to biases and inconsistencies, especially if the expert

shows overconfidence or if an inexperienced facilitator is not familiar with the

nuances of the scientific question. Overconfidence can lead to distributions with

a lower variance, compared to those given by a conservative expert or through a
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group consensus. Another frequently occurring difficulty can be the availability

heuristic or hindsight bias. This is the situation where the expert draws upon the

most memorable event relating to θ, which, in reality, may be the most extreme

and unlikely. In the case of hindsight bias, it is drawing upon the most recent

events that would drive the expert’s judgement on θ (Evans, 1988).

6.3 Elicitation of group judgements

When the outcome of an elicitation exercise bears significant weight upon a de-

cision or when multiple experts are competent and willing to take part in the

exercise, a group elicitation is preferred. Moreover, if the facilitator would like

to gain insight on uncertainty of the entire elicitation procedure, asking for mul-

tiple distinct judgements has fewer opportunities for bias than asking one single

expert about differing judgements, or repeating the exercise at a different point

in time. O’Hagan et al. (2006) provides a review where multiple experts are

consulted. This can be summarised from two directions: consensus-seeking and

mathematical aggregation. In the first instance, the experts may be gathered to-

gether over several hours or days and the facilitator would aim to reach a group

consensus about uncertainty of a parameter through open discussion and feed-

back loops. In the second case, the experts sustain their beliefs and an aggregate

distribution function is derived through appropriate weights being allocated to

each judgement.

6.3.1 Mathematical aggregation

In a work by French (1983) we can observe a difficulty of distinguishing between

the experts and the task of who should assign the weights and in which manner.

Also, it would make sense to question at which point in the elicitation exercise

the weights are assigned, and whether this would have impact upon the experts’

confidence, hence reflecting on the judgements given (or refined). An approach
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deemed most democratic to all members of the expert panel was outlined by

Stone (1961). Given the scenario of a linear pool for N experts, each is assigned

a weight wi, i ∈ [1, N ],
∑N

1 wi = 1. Then a consensus distribution f(θ) for θ is

obtained through a weighted average of individual distributions as provided by

the experts:

f(θ) =
N∑
i=1

wif(θi).

Alternatively, a logarithmic weighting can be used, such that for some normalising

constant C:

f(θ) ∝ C
N∏
i=1

f(θi)
wi .

For example, suppose we have obtained the following judgements from three

experts:

Expert 1 : θ ∼ N(0.6, 1),

Expert 2 : θ ∼ N(5, 2),

Expert 3 : θ ∼ N(3, 4). (6.1)

Also, the experts have been assigned respective weights: w1 = 0.5, w2 = 0.2, w3 =

0.3. A consensus distribution f(θ) through a linear pooling approach is depicted

in Figure 6.2 .
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Figure 6.2: Three prior distributions f1 = N(0.6, 1), f2 = N(5, 2), f3 = N(3, 4)
with respective weights w1 = 0.5, w2 = 0.2, w3 = 0.3. Blue lines in plots show
consensus distribution f(θ) from a linear pool and log-weighted pool for three
experts respectively.

134



6.3. Elicitation of group judgements

As recognised by Dallow et al. (2018), the linear pooling method includes a range

of differing opinions, whereas the logarithmic pool seeks to illustrate a compro-

mise distribution. Moreover, assignment of wi may prove a challenging task.

The facilitator could consider expertise of each participant and assign weights

through a ranking. Unfortunately, as seen from CoDA, an increase from 0.25 to

0.5 is not the same as an increase of 0.3 to 0.6 as a reflection one person being

“twice as experienced” as the other. Therein lies even more cognitive biases, but

now from the side of the facilitator. A more rigorous way to ease this task could

be through the first training stage of elicitation, and ranking the experts given

how well they are able to express their judgements about arbitrary quantities

such as distance between cities. However, these seed questions often have little

relation to the scientific problem, and the entire pooled analysis could be judged

unfair by the decision maker. Finally, expert knowledge can be tied together, as

suggested by Lindley (1985) through a multivariate Gaussian distribution that

would incorporate experts’ differing judgements.

6.3.2 Delphi method

An elicitation procedure that combines individual and group judgement is the

Delphi Framework (Brown, 1968). In this protocol, in order to avoid group

confrontations and provide equal opportunity for group members to voice their

opinions, irrespective of their status and experience, the facilitator takes on the

role of a mediator. The members of the expert panel are granted anonymity and

express their judgements through the facilitator, who also has an active role in the

feedback loop as they communicate judgements and respective reasons between

the experts. Each expert is given an opportunity to review their judgements

based on the reasoning given by other experts. The aim of Delphi is to maximise

the sharing of knowledge between members of the expert panel and to reduce

the chance of more conservative experts being stifled by overconfident ones. A

distribution is fitted to aggregated results, with equal weightings given to all
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participant experts after the final feedback iteration. In an attempt to regularise

group discussion to avoid psychological biases, any fruitful ideas arising from

initial counter-arguments may be lost, which is an evident drawback of Delphi.

However, given that the suggested number of experts per panel has ranged from

eight people (Hodgetts, 1977) to hundreds (Hejblum et al., 2008) in a web-based

setting, summarising of discussion points by the facilitator, let alone reaching a

consensus appears to be a very difficult task to carry out successfully.

6.3.3 Sheffield Elicitation Framework

Sheffield Elicitation Framework (SHELF) developed by Oakley and O’Hagan

(2010) is a procedure to reach a judgement about the quantity of interest at

group consensus level, alongside a structured feedback and consolidation routine.

This consensus-seeking approach is likewise referred to as behavioural aggrega-

tion. The procedure is described in Figure 6.3. Alike the process of individual

elicitation described earlier, SHELF commences with specification of the task, ex-

pert selection and exposing the experts to probabilistic thinking about uncertain

quantities. In phase 4 the experts discuss any evidence relevant to the scien-

tific investigation from their expert knowledge and practice. Then the experts

provide individual judgements about the unknown quantity or parameter θ in

a similar way as discussed previously for one expert, and individual probability

distributions are fitted to these judgements. Phase 7 follows on with comparison

of the fitted distributions and justification with the use of expert insights and ev-

idence. The fitted probability distribution is then revised in order to reflect this

augmented body of evidence, and a feedback loop is carried out until a consensus

is reached within the expert cohort.

SHELF has proven to be very popular and reasonably robust given an experi-

enced facilitator. The shortfalls here could be loss of anonymity of the experts,

the potential of oppressive group dynamics leading to biased judgements in favour

of the more extroverted expert in more senior position outside of the elicitation
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setting. In some instances, the Chatham House Rule of confidentiality can be

used during the elicitation exercise, in order to facilitate openness in the discus-

sion. Similarly, the exercise is conducted at the pace of the facilitator, who is

responsible for accommodating the comfort of several people at once.

Figure 6.3: SHELF Framework (Oakley and O’Hagan, 2010).
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6.3.4 Elicitation of multivariate distributions

When the elicitation exercise seeks insight into about uncertainty of several vari-

ables θ = (θ1, ..., θD) is now a vector or matrix. This implies that the questions

asked by the facilitator must be more complex and numerous in order to con-

struct a joint (or multivariate) distribution that can express uncertainty about θ.

A common technique to address this task is to dissect a multivariate distribution

into its marginal and conditional components O’Hagan et al. (2006). If there is

evidence to judge variables θ independent, the joint distribution is expressed as

a product of marginal distributions θi ∼ fi(·) for i = 1, ..., D. Discussion about

independent and dependent variables with the expert is done through consider-

ation of the scientific question of the elicitation exercise; whether or not gaining

new information about θi would change the expert’s beliefs about θj, i 6= j. If in-

dependence between variables has been established, the facilitator would progress

to establish a univariate distribution capturing uncertainty about each θi, using

techniques previously described.

From a practical viewpoint, Garthwaite et al. (2005) noted that judgements about

univariate distributions are conveninent for this application, since the concept of

independence is straightforward to understand. This is confirmed by Bar-Hillel

(1973), who discovered that the probability of conjunctive events - occurrences

that must happen in conjunction with one another - is overestimated, and the

opposite trend is seen for disjunctive events, due to the phenomenon of anchoring.

On the other hand, if the expert has reason to judge that there is a dependence

relationship between θi and θj, i 6= j, depending on the scientific question the

facilitator may attempt to change the structure of the variables and express the

problem through conditional independence (O’Hagan et al., 2006). This may be

an attractive direction to pursue when then one of the variables corresponds to

some baseline or placebo quantity in a scientific experiment. O’Hagan (1998)

provides further details on this approach.
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Still, if the dependence structure cannot be overcome in the above manner, it

remains for the facilitator to gain insight about the multivariate probability dis-

tribution that encompasses the expert’s uncertainty in θ. As well as questioning

the expert about the marginal quantities θi, i = 1, ..., D, there is a need to deter-

mine a dependence structure between the variables.

The concept of dependence in an expert elicitation exercise is first established in

the training process (Figure 6.3), and then coherently implemented in the stages

that follow Information Sharing. The idea of dependence can be communicated

to the experts as the association between two quantities such that, when inform-

ing uncertainty about one quantity, light is shed on uncertainty about another

quantity (or several quantities). As an example, if the distribution of expert

beliefs about a quantity X does not change after judgement is given about the

distribution of another quantity Y , then these X and Y can be regarded as in-

dependent. In the case where this statement cannot hold, we say that there is

dependence between X and Y . Lad (1996) notes that this concept of dependence

may or need not be shared across the experts, for it to be held valid within one

expert’s judgement contribution to the elicitation exercise. This is because ex-

perts may possess different levels of knowledge, and all this needs to be discussed

and validated in the consensus-seeking elicitation framework such as SHELF.

Dependence-modelling can be achieved through an association measure like the

Pearson correlation coefficient between the variables, which is an easier cognitive

judgement than covariance between random variables, for instance Kadane and

Wolfson (1998). Effective elicitation of correlation could be achieved by using

graphical aids, such as asking the expert to plot a linear relationship between

two variables.

O’Hagan et al. (2006) highlights that for the exercise of multivariate elicitation

it is the expert’s beliefs in strength of association between pairs of variables that

are sought. Similarly, some correlation measures only have interpretation for
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repeatable variables (O’Hagan et al., 2006), thus may not be appropriate when

gaining insight upon epistemic uncertainty.

6.3.5 Example: Gaussian distribution

In this example we highlight differences in elicitation questioning between elici-

tation for parameters of the univariate Gaussian distribution and its multivariate

analogue.

Let X ∼ N(µ, σ) be a univariate random variable following the Gaussian distri-

bution, which serves as a prior for some underlying data. For an uninformative

(or flat) prior distribution, it is common to set the parameters µ = 0 and σ = 106

(or of similar order). This yields the Normal distribution centred around zero

with (relatively) little concentration around the mean. For the construction of a

subjective prior distribution, we require expert judgements about the Gaussian

parameters of interest µ and σ. The structure of the univariate Gaussian dis-

tribution facilitates the difficulty of asking experts about judgements about the

mean (or average), since in this case its median, mode and mean are all equal.

However, we are adhering to the strong assumption that the Gaussian distribu-

tion is indeed the correct and appropriate distribution for the scientific question

under exploration, which, in this example, is abstract. To give some structure to

the scientific scenario, let us suppose that we are interested in the body length L

(metres) of dogs at an animal rescue centre in Leeds. To elicit judgements around

the average body length, we are able to question the experts equally about the

mode (the most frequently occurring body length) or the median body length

of the animals. In this case, L ∼ N(µL, σL) For the former mode we may pose

questions such as

Consider a very large sample of dogs at the shelter. What would be your estimate

for the most common length of a dog’s body?

Alternatively, questions about the interval of most common animal lengths could
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be elicited, and later calibrated with other experts’ judgements. To gain insight

about the median body length, questions such as

Can you determine a value such that the body length of a typical dog at the shelter

is equally likely to be greater than and less than this point?.

To follow, to gain insight upon the spread of the data around µ, we may reflect

on the previously elicited location parameters and pose questions like

Suppose that the actual body length is below your stated median - can you deter-

mine a new value, such that the actual body length is equally likely to be less than

and greater than this point?

this would provide a judgement about the lower quartile of the distribution. Sim-

ilarly for the upper quartile -

Suppose that the actual body length is above your stated median - can you deter-

mine a new value, such that the actual body length is equally likely to be less than

and greater than this point?.

When expert opinion is required about two or more unknown variables, the ques-

tions to gain insight about marginal and joint distributions become more nu-

merous and complex. We have previously discussed the important notion of

independence in this case, and from now on, let us assume that some depen-

dence relationship exists between the two variables. Let us extend the existing

scenario to eliciting judgements about two variables: weight W and body length

L of dogs at an animal rescue centre in Leeds. Now, a new random variable is

introduced W ∼ N(µW , σW ). We may gain insight on the animal weight through

similar questioning as was done for the body lengths. On the other hand, we may

attempt to model the two variables jointly, introducing a dependence structure

through covW,L. Through conditioning on a realisation from L, we ask the expert

on an assessment of W , for example -

Given that the length of the dog is more than 1 metre, what is your assessment

of the lowest weight it can be?
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More advanced questioning methodology, such as direct assessment of correlation

between L andW (Garthwaite et al., 2005), can be used to inform the covariance

structure. One other approach, where pairwise comparisons are applicable, such

as this example, it is feasible to represent association between variables in the

form of a regression, which is related to correlation. Garthwaite et al. (2005)

suggest eliciting the function m(l) = E(W |L = l) for this scenario, assuming

the expert accepts a linear form of association between weight and body length.

Then it would suffice to elicit two points, or more than two points for an overfit

to assess accuracy of the straight line fit.
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Chapter 7

Elicitation methods about a set of

proportions

This chapter concerns advancements in the practice of expert elicitation to con-

struct parametric multivariate probability distributions about a set of propor-

tions. Building on general considerations of expert elicitation in Chapter 6, this

chapter specialises in exploring situations where several uncertainties with an

inherent dependence structure are modelled simultaneously. As in the case of

eliciting judgements for a univariate probability distribution, where the experts

may be indirectly questioned about the covariance structure in order to justify

suitability of previous judgements, expert elicitation in a multivariate domain is a

challenging process from the point of view of biases and misunderstanding of the

concept of conditional probability by the experts. We overview elicitation proto-

cols and techniques used for this task, and consider them from a practical nuance

of elicitation, such as expert fatigue. Another aim of this chapter is to explore

elicitation methods to reduce the number of statements provided by the experts

for the feasible mathematical construction of a multivariate distribution on the

simplex. For this purpose the Dirichlet distribution serves as leading example,

but we also provide suggestions for extension to the distributions considered in
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Chapter 4, if such do not already exist in the literature. This stems from the

challenges currently recognised with increasing number of proportions (the size of

the vector α in Dirichlet(α)) for full specification of the prior distribution where

at least 3D judgements are required.

7.1 Literature review

O’Hagan et al. (2006) introduces the task of expert elicitation about a set of

proportions by first reviewing such an exercise for a single proportion (p) in a Bi-

nomial model. The conjugate prior distribution is the Beta, p ∼ Beta(α, β), and

the elicitation exercise focuses on gaining judgement to determine the parameters

α, β. O’Hagan et al. (2006) reviews methods of assessing this prior distribution

driven by indirect techniques - the hypothetical future sample method (HFS)

and the equivalent prior sample (EPS) as studied by Winkler (1967). Both these

methods directly question the expert about the value of p; then through the EPS

the expert is asked for the sample size estimate n on which the expert’s assess-

ment of p is based. These judgements yield estimates for the Beta distribution

parameters by exploiting the binomial moments, thus α̂ = np and β̂ = n(1− p).

Similarly for the HFS the expert is asked to think about the proportion estimate

in light of a possible sample from a population of interest, and to update their

initial estimate of p. The HFS and the EPS methods do not expose the expert

to any direct distributional assessments of the prior density, and instead focus on

the sampling distribution.

Winkler (1967) also explores more direct ways of conducting the elicitation ex-

ercise by informing the expert of an existence of the (prior) probability density

function and the cumulative density function, respectively called the PDF and

the CDF methods. For the latter, similar assessments are made as described in

Chapter 6 - namely, the expert is asked for an estimate of the median value of

p and at least one of the quantiles necessary for unique determination of α, β of
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the prior distribution. Given the quantile judgements, a curve is fitted - either

the parametric Beta distribution, or a non-parametric depiction. After the fitting

process follows the feedback loop, where the expert is presented other features of

the prior distribution, such as quantiles not previously assessed.

Likewise, the PDF method by Winkler (1967) aims to build the probability den-

sity function, as opposed to being structured through quantile judgements about

the distribution of p. For this, the expert is similarly asked about the location of

the central probability mass, by means of the mode, for example; followed by a

judgements about location of values smaller or greater than the central measure.

After a parametric Beta distribution or a non-parametric curve is fitted to these

judgements, a similar feedback procedure follows to allow the expert to reflect on

adequacy of earlier judgements. Weiler (1965); Duran and Booker (1988); Hughes

and Madden (2002) also consider the elicitation exercise from the viewpoint of

obtaining some central measure of the distribution mass, followed by quantile or

percentile assessments for p, or an interval containing p.

Indirect and direct questioning of the expert may be combined for judgement

refinement or consolidation, however Winkler noted that the indirect methods

may give probability densities with a higher precision (smaller variance) than

direct methods. This could be explained by the expert being conservative or not

confident with assessing probability statements. Alternatively, the hypothetical

future sample method may give rise to the availability heuristic and mis-reflecting

the given sample size to their current knowledge. This effect was also explored

by Schaefer and Borcherding (1973) and throughout the years it was found that

training the experts in probabilistic assessments before the elicitation exercise

has a positive effect in reducing precision of the elicited distributions.

A variant on assessing the spread of p was provided by Pham-Gia and Turkkan

(1992) and may be more challenging on the expert cognitively. It asks about

expert judgement about the mean (or median) of the Beta distribution, followed
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by the average absolute deviation about the mean (median). As with previous

methods, only two judgements are required and O’Hagan et al. (2006) states that

this number may not be sufficient for identification of unusual judgements or to

ensure that the elicitation has been performed robustly. León et al. (2003) bypass

assessment of spread of the prior distribution and instead focus on two location

judgements - the mean and the mode. Again, as recognised by O’Hagan et al.

(2006) this approach is sensitive to individual psychology and extent of probabilis-

tic reasoning. Not only is the procedure extremely sensitive to communication

between the facilitator and the expert about differences between the mode and

the mean, if those two judgements are very close together the expert may draw

upon more extreme cases to ‘balance’ the mean to some seemingly reasonable

distance away from the mode. In estimation of prior parameters α and β such

judgements too can pose sensitivity problems. These issues can be also extended

to questioning the expert about other location measure of the distribution (me-

dian) alongside the mean or the mode, as the only judgements elicited. Above

all else, it is important to recognise that each method may be appropriate for a

specific application and the given financial or time constraints on the elicitation

exercise. Since the work of O’Hagan et al. (2006) some subject-specific compar-

isons of elicitation techniques with the Beta distribution have been carried out,

for example in Grigore et al. (2016), but focus rather on expert-weighing and

aggregation approaches, rather than different questioning strategies. O’Hagan

et al. (2006) also recognises lack of empirical study to compare aforementioned

techniques for the study of elicitation of uncertainty about a single proportion.

In instances where several possible outcomes are possible, as described in Chapter

2 and Chapter 4, the likelihood is the multinomial distribution and the conjugate

distribution to convey uncertainty about the parameter that describes multino-

mial event probabilities p = (p1, ..., pD) can be one from the family of Dirichlet

distributions. Equally, distributions described in Chapter 4 can quantify un-

certainty about compositional data or transition probabilities in a discrete-time
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Markov chain. Elicitation in this scenario is again focused on establishing pa-

rameters of the prior (Dirichlet) distribution. Bunn (1978) remarked that fractile

assessment as carried out for the Beta distribution may be cognitively straining

on the experts, and direct elicitation of the Dirichlet parameters is made more

complicated by the unit-sum constraint implying more conditional judgements.

The HFS approach was deemed preferable by statisticians before the widespread

use of computers to aid in the elicitation exercises for the tasks of interactive

expert questioning (roulette method) and distribution fitting.

A similar scenario was later addressed by Chaloner and Duncan (1987). This work

is a natural extension of the authors’ earlier work to elicit uncertainty about a

single proportion p, and rests on questioning about the mode of each proportion,

assuming that the underlying prior distribution is Dirichlet(α). Dickey (1983)

build on Winkler’s work with the hypothetical future sample approach. The

expert is questioned about the probability of each event i = 1, ..., D taking place,

and from this a mean vector is formed µ̂ to estimate the mean of the Dirichlet

distribution. Additional judgement is required about a weight parameter n, which

in the Dirichlet distribution is described by the overall concentration parameter

α0 =
∑D

i=1 αi. The expert is asked for probabilities of all the outcomes of the

multinomial distribution, conditional on a hypothetical future sample provided

by the facilitator.

Let us illustrate this technique using the eye colour example from Chapter 2.

Suppose a simplified scenario where there exist three categories for the eye colour:

Blue, Brown and Other. In a HFS the expert may be told that data from five

more individuals was collected: one person was recorded to have blue eyes, three

people had brown eyes and three people fell in the last category. Conditional on

this information, the expert would be asked to provide further statements about

probabilities of each of the eye colours being observed in a population. Dickey

(1983) then determine the weight parameter n through the Bayes’ theorem given

the above conditional judgements, and determine how much the updated expert
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probabilities differ. However, as recognised by O’Hagan et al. (2006), Dickey

(1983) do not provide a structure of selecting the HFS based on which updated

expert judgements are given, and this remains an outstanding problem.

Over the last decade there has been increased interest in quantifying expert

judgement about a set of proportions, as well as developments to the Dirich-

let distribution outlined in Chapter 4 to allow for more flexible modelling. A

popular application has been in the medical sciences, especially modelling dis-

ease progression - Wilson et al. (2018); Rossi et al. (2019). The latter study

bypasses the typical SHELF consensus-seeking approach and uses elicitation on

seventeen individual participants either face-to-face or via telephone. Several dis-

tributions are fitted using a random search algorithm and employ the Dirichlet,

Connor-Mosimann and the modified Connor-Mosimann distributions as chosen

distributions. Remote participation and lack of need for the group to come to a

consensus allowed the authors to also employ several approaches to elicit judge-

ment: roulette approach, quantile assessment and HFS. It is unclear whether

all the experts provided judgements using all three methods, or whether subsets

of experts were selected for each method, and then the results aggregated. It

was found that the graphical roulette method faced the known limitation that

the experts were more focused on the shape of the approximated histogram, and

some experts lacked exposure to probabilistic reasoning to confidently state their

judgements using the quantile method. In the absence of suitable experts, Gupta

and Upadhyay (2019) suggest using past data to inform hyperparameters of the

Dirichlet distribution.

Wilson (2017) explored elicitation the modified Connor-Mosimann (mCM) dis-

tribution, as defined in Chapter 4. The Connor-Mosimann distribution contains

2(D−1) parameters (Connor and Mosimann, 1969), D−2 more than the Dirich-

let distribution, which allows for increased flexibility and the mCM distribution

has 4(D−1) parameters. Elicitation for the CM distribution is carried out based

on the assumption that the multivariate density can be expressed in terms of
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independent Beta-distributed variables defined by Zj in Chapter 4. The mCM

distribution rests on the definition of the scaled Beta distribution rescaled with

respect to lower and upper limits. In our case, these would be the [0, 1] interval.

Wilson argues against the use of the roulette method to elicit uncertainty about

each event probability for a multinomial likelihood, because a separate diagram

would be required for each pi. Instead, a quantile approach is employed for each

marginal distribution of pi, and at least three points are elicited, deemed by

O’Hagan et al. (2006) to convey overfitting. It is similarly possible to question

the experts in terms of odds or bets, for example, the lower quartile would be

the value at which the expert would place a 1:3 bet. Parameter estimates for the

distributions are obtained by minimising the sum of squares with respect to the

target theoretical equivalent. Wilson compares fit of the three distribution to a

proportion of size three and finds that the mCM distribution has the smallest

difference with the target distribution, and individual proportions show closest

marginal fit to the target, but marginally, the CM distribution has the largest

interquartile range.

Zapata-Vázquez et al. (2014) also explore ways to elicit uncertainty through the

Dirichlet distribution by incorporating assessment of suitability of the Dirichlet

distribution to the question of interest. Zapata-Vázquez et al. (2014) make use

of overfitting to reflect expert imprecision in their given judgements, and also to

allow for information retention in case the Dirichlet is found to be an unsuitable

distribution. SHELF is used as the elicitation protocol of choice. After the

experts have been selected and prepared, marginal Beta distributions are elicited

for each pi using existing SHELF software and the quantile approach. Following

on from this, Beta distributions are fitted for p1, ..., pD and adjusted according

to constraints, for example, the means of the marginal distributions have to sum

to 1. Then pi ∼ Beta(α̂i, β̂i) is assumed to be a reflection of expert judgement

that corresponds to the mean constraint. With D Beta distributions obtained,

the Dirichlet distribution can be constructed if α̂i, β̂i are equal for all i. This
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scenario is possible but unlikely, and for practicality purposes compromise values

of α̂i, β̂i are needed to be shared across all marginal Beta distributions that have

been obtained through the elicitation exercise. Zapata-Vázquez et al. (2014)

denote α̂i, β̂i = ni which can be thought to contain partial information on the

concentration parameter α0 of the Dirichlet distribution. At most D different ni

values can be obtained for the random variables under question, so a compromise

n∗ is sought. This compromise value of ni can lie between the minimum ni

obtained nmin and the maximum respectively nmax. For instance, n∗ can be the

midpoint defined as nmid = (nmin + nmax)/2, the mean or the median of the set

of ni values. Zapata-Vázquez et al. (2014) further develop an optimal value for

n through minimising an objective function through consideration of variance

of the Beta distribution. Finally, a conservative approach is suggested, where

n∗ = nmin in the situation where no more knowledge is desired to be expressed

about the distribution fit than was already elicited. In this case, the Dirichlet

fit is deemed not as an accurate representation of expert judgements, but rather

done for convenience and a judgement-refining step is not seemed to provide any

more information. When the expert is presented the fitted Dirichlet distribution

and if they remain confident in their beliefs even though the Dirichlet distribution

does not provide quantile judgements sufficiently close to the expert judgements

(this is judged by the expert during the Feedback stage), then the facilitator

concludes that the Dirichlet distribution is not suitable. Otherwise, the fitted

distribution is accepted, or original judgements are refined.

An alternative approach is proposed by Evans et al. (2017) for eliciting a Dirichlet

distribution to convey uncertainty about a set of proportions. Similarly, marginal

Beta priors are elicited, however, not through the means of questioning the ex-

perts about percentiles, but through determining the most likely value for each

category and then constructing an interval, which contains the modal value with

“virtual certainty”. This expression of confidence can be quantified by a prob-

ability of the interval containing the modal value being close to 1. Thus, for
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each composition three values are obtained from the expert: the mode ξ, and the

interval [l, u] containing ξ with probability γ = 0.99, as suggested by the authors.

Then, estimates for parameters of each Beta distribution are obtained through

an iterative bisection algorithm until a solution is below some specified tolerance

level. The procedure is extended to the multivariate Dirichlet realm by repeat-

ing the above set-up for D compositional random variables, thus 3D judgements

are obtained from the expert without consideration of γ and the tolerance level.

Specifying the lower and upper bounds for each modal value leads the authors to

implicitly consider dependence structure between the random variables, and to

determine a subset of the simplex, where the resulting Dirichlet density will lie.

One restriction placed on this method is that the resulting α̂ parameter estimates

of the Dirichlet distribution are constrained to α̂i > 1 for i = 1, ..., D in order

to avoid singularities near the edges of the simplex. However, in practice and

as illustrated later in this chapter, this setting may prove problematic to reflect

expert judgement about a very small composition, in which case α̂i < 1 would be

more suitable. Despite this method being simple to implement for the experts,

the authors highlight that the Dirichlet distribution may still prove restrictive

for many applications.

In work reviewed thus far, elicitation has been performed to gain information

about marginal prior distributions, which are later combined through reparametri-

sation or iterative approaches to the multivariate Dirichlet family. For approaches

to elicit general multivariate densities see Daneshkhah and Oakley (2010). At

the end of Chapter 4 we considered multivariate copula and vine functions, which

can allow for independent specification of marginal distribution family and any

dependence structure between the random variables. In application to a set

of proportions, the marginal distribution and the copula have to adhere to the

same constraints on the simplex: the covariance structure must be on the sim-

plex space and the multinomial probabilities are still subject to the sum-one

constraint. Elfadaly and Garthwaite (2017) conduct examination of graphical
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elicitation methods for a Gaussian copula function. The original compositional

probabilities p1, ..., pD are parametrised such that

θ1 = p1, θD = 1; and θi =
pi

1−
∑i−1

j=1 pj
for i = 2, ..., D − 1. (7.1)

A prior distribution is then assumed to hold over θi, and marginally θi ∼ Beta(ai, bi).

From Section 4.8.2 we have seen that for the construction of a copula we require

G(·) and in this case G(·) is the cumulative density function of Beta(ai, bi). Then,

the copula is defined through its CDF ΦD−1,R(φ−1[G1(θ1)], ..., φ−1[GD−1(θD−1)])

for a correlation matrix R.

From a practical perspective, an elicitation exercise for the copula takes similar

form as seen previously. Elfadaly and Garthwaite (2017) employ interactive bar

charts for the expert to provide their judgement. For each one of D categories,

a judgement is given about the median value. The second step of the exercise

is to assume that the median for the first category is treated as an uncondi-

tional value. The expert is asked to assume that a hypothetical observation does

not fall in the first category and is questioned about the median of the second

category given this information. This procedure is repeated iteratively for the

hypothetical observations not falling into previous accumulated categories. This

step is performed to assess consistency of the expert (Elfadaly and Garthwaite,

2017). Finally, the expert gives lower and upper quartiles for the first (uncondi-

tional) category, and repeated iterative judgements are then given for the upper

and lower quartiles of the remaining categories, conditional that a hypothetical

observation does not fall in the previous i − 1 categories. In total, for marginal

specification of the prior distribution 4(D − 1) judgements are elicited.

For full specification of the copula, judgements on the correlation matrix R need

to be also provided. Elfadaly and Garthwaite (2017) illustrate their method

with the Gaussian copula, thus R has to satisfy requirements of the multivariate
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normal density, namely that R has to be positive-definite. To achieve this, the

authors modify previous work by Kadane et al. (1980) to ensure that elicited val-

ues yield a positive-definite R. Details of the elicitation structure can be found

in the original paper, but the difference with earlier marginal elicited judgements

now lies with questioning the expert about conditional assessments. Again, quar-

tile values for category i are assessed conditional that earlier judgements that

p1, ..., pi−1 are given by the corresponding assessed median values. Finally, for

the category where the conditional median does not approximately equal the as-

sessed median given earlier, the expert is asked to adjust their judgement. In

the example given in the original paper for 4 categories it seems that discrepancy

of larger than 0.05 warrants an adjustment. Another remark in this approach is

that ordering of the categories is important, and ordering deemed most appro-

priate by the expert needs to be facilitated for easier assessment of conditional

judgements. The multinomial quartiles can be then transformed to the Gaus-

sian copula quartiles (Kadane et al., 1980; Elfadaly and Garthwaite, 2017) due

to monotonic nature of the Gaussian copula function. The authors deem this

transformation a simpler alternative transforming explicit correlation structure,

such as the product-moment correlations for Gaussian random variables.

Vine copula functions also introduced in Chapter 4, and their judgement elicita-

tion procedure closely follows that of the copula function. Wilson (2018) illus-

trates vine copula elicitation for a D-vine. The underlying approach is obtaining

judgements to specify a marginal distribution for each compositional variable,

an unconditional structure to represent unconditional relationships between the

variables, as illustrated in Section 4.8.2, and, finally, conditional relationships

between the variables. For specification of the marginal distributions the same

method with parametrised θi as above (Elfadaly and Garthwaite, 2017) is used.

Alternatively, Wilson (2018) calculates exact parameter values of the Beta distri-

butions through eliciting judgements about quantiles. Expert confidence can also

be expressed in this way, through specifying a weight wi (the weights also adhere
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to sum-unity) and adjusting the assessed mean and variance by the weights to

yield summaries for each θi.

Iterative conditional statements are again utilised for the specification of the

bivariate copula, assuming some ordering of categories p1, ..., pD−1. The bivariate

copula represents the bivariate relationship θ1, θi|θ2, ..., θi−1. The expert is asked

to suppose that the medians for categories p1, ..., pi−1 hold as those specified in

the marginal elicitation step, then is asked to confirm that the median for pi is

still as assessed previously. Then, assessments are made about lower and upper

quartiles of pi, again conditional on previously specified (marginal) medians for

p1, ..., pi−1. Given that there is structural dependence between p1, ..., pi−1 and

pi the last step is carried out to reduce the expert’s uncertainty about the pi.

Wilson (2018) explores several candidate copula structures, and least-squares

method is used to determine the best-fit to the elicited judgements. One possible

drawback of the vine approach is that there is an assumption that the marginal

distributions are invertible and continuous functions. While holding true with

the Beta distribution, these assumptions may need further investigation if used

with marginal distributions as specified in Chapter 4.

Werner et al. (2018) adopt non-parametric techniques for elicitation of condi-

tional relationships in the process of constructing a copula function. The authors

address ways to reduce cognitive strain on the experts through the use of net-

works to illustrate conditional relationships between variables. In cases where

expert assessment are contradicting to previously given statements or mathe-

matical constraints, Werner et al. (2018) suggest eliciting single conditioning sets

of judgements and possible ranges for such judgements are provided by an algo-

rithm. On the contrary, if there is a shortfall of information to uniquely specify

a probability density, it is suggested that the final probability densities are mod-

elled as minimally informative.
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7.2 Study: elicitation using simplex dissection

In the previous review of elicitation methods to quantify expert uncertainty about

a set of proportions, a common direction to conduct the elicitation exercise is to

assess judgement about marginal distributions. This approach is systematic, as

in most cases it allows for the expert to consider a similar (if not the same) set

of judgements for each proportion in turn. Similarly, questioning about more

than the minimally required number of points can be done (overfitting) to vali-

date the expert assessments. However, with increasing number of compositions

some of the elicitation methods require as many as 4D judgements, which can be

time-consuming and cognitively challenging for the experts not only in the initial

questioning and fitting steps of the elicitation exercise, but also in the feedback

and discussion steps. Moreover, in considering marginal distribution assessments,

the parameters of fitted (Beta) distributions are transformed in order to adhere

to mathematical constraints of the multivariate Dirichlet distribution. This ap-

proach may compromise one or more of the original judgements given by the

experts, in the extreme to an extent that the Dirichlet (or other target distribu-

tion) is deemed an unsuitable fit to describe expert uncertainty. For example,

dependency of compositional variables implies that the mode of the Dirichlet

distribution does not correspond to the marginal Beta modes, which the expert

may feel very strongly about.

Some graphical approaches have been discussed for specification of upper and

lower bounds on the modal probability of each compositional category. In order

to fit a unique probability distribution, or to locate a set of plausible distributions

that fit to a set of expert judgements, the number of judgements required is at

least the number of unknown parameters of the prior distribution. As discussed

previously, for the Beta distribution with two unknown shape and scale parame-

ters, at least two judgements are sought. This is mathematically coherent, since

at least two points are needed to determine a line fit. In this case, this is not

155



7.2. Study: elicitation using simplex dissection

a straight line, but the assumed underlying beta density. To extend this, for

specification of a plane in 3 dimensions, three points should be sufficient, given

that they are not collinear. Similarly, 4 points are enough to determine a hyper-

plane, provided that the points do not all lie in the same 2-dimensional plane.

Generally, the points require affine independence and this reflects with proper-

ties of the simplex ∆D as explored in Chapter 2. There are further mathematical

restrictions, such as the means of the marginal distributions have to sum to 1.

Further complexity is seen through constraints on the quartiles: for example, for

two categories the lower quartile of category 1 and the upper quartile of category

2 also have to sum to 1. Additional constraints on the quartiles is seen in higher

dimensions as well.

In this section we propose and study suitability of a diagrammatic approach,

which relies on dissection of the simplex to elicit a multivariate distribution about

a set of proportions. This approach is motivated by aiming to reduce the num-

ber of judgements elicited from the experts and not rely on transformation of

corresponding elicited marginal densities to drive insight on parameters of the

Dirichlet distribution.

The partitioning (or simplex-dissection) approach relies on visual representation

of the simplex and its decomposition into regions of certain area or volume. The

experts could as well be asked to assign weights onto these regions, reconciling

confidence in their earlier judgements when presented with marginal distributions

at the feedback stage. Through the use of an RShiny app, the facilitator would

guide the experts through the process of providing cumulative and comparative

judgements about a set of proportions.

We aim to fit a three parameter Dirichlet distribution to some quantiles given by

an elicitation procedure. These parameters α ∈ R3
+ each represent a concentra-

tion of the distribution in regions of the simplex for a random variable X with

xi ∈ [0, 1] and
∑D

i=1 xi = 1, i ∈ [1, D]. For three proportions the simplex is the
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two-dimensional equilateral triangle.

For a scenario with three random variables X, Y, Z constituting a composition,

the experts would give a judgements on the following three quantities:

P(X < X1),P(Y < Y1), and P(Z < Z1) for some quantile values

X1, Y1, Z1 ∈ (0, 1).

Figure 7.1: R Shiny snapshot for simplex dissection based elicitation exercise.

Additionally, two further comparative judgements P(X < Y ) and P(Y < Z)

would be made. Graphically, for the 3-dimensional case, this could be seen as

triangle dissection through each vertex onto the middle point of the opposite

edge.

We would like to fit these values simultaneously to theoretical Dirichlet quan-

tiles, with a corresponding error. Hence, for three parameters of interest, we

obtain 5 judgements. This generalises to 2D − 1 judgements for D categories

or proportions. With the previously-met quartile method there are at least 3D

judgements needed for each Xi and for D > 3 this can become time-consuming

and cognitively straining on the experts. From a practical perspective, it may be

possible to aggregate categories into bigger classes in order to reduce elicitation

exhaustion. However, decomposing the aggregated obtained parameter values

into separate instances for the individual categories may not be possible for more
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complicated distributions of the Dirichlet family.

The initial fitting procedure is composed of two parts - fitting marginal judge-

ments to each compositional variable, and considering pairs of variables with

fitting the Dirichlet using the comparative judgements. Thus, the approach is

similar as for marginal quartile judgements, only now solely one judgement is

reserved for each marginal distribution. However, instead of seeking separate

estimates for parameters of Beta(ai, bi) and re-scaling the parameters at the fit-

ting stage of elicitation, we assume that each compositional random variable is

distributed with Beta(ai, a0− ai), where a0 is akin to α0 the precision parameter

of the Dirichlet distribution.

The aim was to explore whether including comparative judgements provided

enough information for a unique (or set of plausible) probability distribution

on ∆D. Through simple application of synthesised judgements about three pro-

portions it was found that this specification of the problem lacks identifiability

and many optimisation algorithms surveyed did not offer convergence. Surface

plots of the loss function (sum of squared errors) can be seen in Appendix B (9.2),

however the most distinct feature of these plots are numerous minimal troughs

occurring when the estimated α̂i value is close to 0, which is not reflective of syn-

thetic judgements. Imposing a constraint on α̂i did not provide improved fit in

terms of sensitivity to starting values or the values of parameter constraints, and

can also be viewed not suitable in certain practical situations, where an expert

judges a proportion to have negligible probability.

Considering the task without comparative judgements and simultaneous fit of

D marginal distributions where Xi ∼ Beta(ai, a0 − ai), a0 as above did not run

into difficulties with determining a set of values for ai. The Newton-Raphson

algorithm for multiple roots or the L-BFGS-B algorithm with a lower bound

on ai > 0 have been found suitable for lower quartile judgements and in some

cases - the median. It was found that the upper quartile judgements did not
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reach convergence, and exploring surface plots suggested that this could be due

to there being no crossing troughs in the error surface, which do appear for the

lower percentile judgements. However, employing a stochastic global optimisation

algorithm did yield better results. Accuracy of this fit compared with some

existing methods for Dirichlet and Connor-Mosimann elicitation is explored in

the final section of this chapter (Section 7.4) through an example.

7.3 Other considerations

In this section we explore further considerations to elicitation of distributions on

the simplex as were defined in Chapter 4. Instead of asking the expert to give

their uncertainty judgement about compositional proportions, the problem could

be viewed from the perspective of asking the expert about ratios of proportions.

This is motivated by Aitchison’s approach to log-ratio transformations in CoDA.

Elfadaly and Garthwaite (2016) consider the additive log-ratio (alr) transforma-

tion as the focus of the elicitation procedure, due to its interpretability. As seen in

Chapters 2 and 3, the additive log-ratio transformation requires a reference cate-

gory, which choice is often problem-driven - it can be the most common category,

alternatively, a category that carries little importance to the expert (Other class,

for example), and can be essentially overlooked in analysis. Nevertheless, since

the alr is permutation invariant, the following distribution functions will hold for

a different choice of reference category. For compositional parts p = (p1, ..., pD)

Elfadaly and Garthwaite (2016) refer to p1 as the reference category, selected

for consistency and ease of notation. Then, through the alr transformation they

define a variable Yi = log(pi/p1) = log(pi/1−p2− ...−pD) for i = 1, ..., D. Then,

p has the logistic Gaussian distribution, if the transformed variable Y has the

multivariate Normal distribution: YD−1 ∼MVN(µD−1,ΣD−1). The distribution

assumes that the covariance matrix ΣD−1 is non-singular (Elfadaly and Garth-

waite, 2016). For the last transformed component YD the authors assume that
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it follows a multivariate Gaussian distribution also, but the covariance matrix

is singular in this case. This is driven by the sum-one contraint on the p vari-

ables. In order to bypass the singularity, the authors set that deleting the ith

row and ith column of ΣD for any i would yield a positive-definite covariance ma-

trix. Otherwise, Elfadaly and Garthwaite (2016) rely on conditional properties

of the singular Gaussian distribution by replacing the inverse of the covariance

matrix by the generalised inverse, which is an alternative parametrisation of the

Gaussian distribution (Embrechts, 1983).

Elfadaly and Garthwaite (2017) first proposed a way to elicit hyperparameters

µD−1 through assessment of median values about each pi. Through the monotonic

alr transformation, insight can then be gained about medians of YD, and if needed,

the judgements are normalised to sum-unity. In a more recent work Elfadaly and

Garthwaite (2020) the expert is asked questions about the ratio of pi/p1 - relative

parts of relative measures. Through similar reasoning and the log-ratio function,

each element of the mean vector is given by µi = E(Yi) = log(m∗i ), where m∗i is

the assessed median of ratio pi/p1. Hence, for assessing the mean vector for the

MVN distribution, D − 1 assessments are sought.

Elfadaly and Garthwaite’s earlier work to elicit judgements about hyperparam-

eters ΣD−1 relied again on assessment of upper and lower quartiles about each

proportion pi conditional on given median assessments for the categories that

preceed pi. A final step here is to assess conditional median judgements. The

expert is asked to consider that a previous median judgement, say m1,0 for p1

has changed to a new value of m1,1, and given this fact, the expert is asked to

change their previous medians for p2, ..., pD to new values m2,1, ...,m2,D. This is

motivated by Gaussian quartiles being expressed through the interquartile range

(Kadane et al., 1980) for the minimum number of judgements to elicit ΣD−1. In

Elfadaly and Garthwaite (2020) ratios of proportions are considered, similar lower

and upper quartile judgements are sought instead about pj/p1 for j = 2, ..., D.

After the distributions have been fitted, the feedback stage follows similarly with
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presenting the expert the fitted unconditional median and quartile values, which

are revised until the expert is satisfied that the fit reflects their judgements.

Relating to the log-ratio Normal distribution, Chapter 4 similarly explored the

truncated Gaussian as a plausible distribution to describe uncertainty on the

simplex. While no reported applications have been trialled with this distribution

for compositional random variables, Albert et al. (2012) consider the truncated

Gaussian as one of the candidates for a heirarchical model for interactions between

several experts. Similarly, Donovan et al. (2016) consider the truncated normal on

[0,1] support as one of the candidate models for the effects of permanent hearing

threshold shift on aquatic mammals due to disturbances caused by renewable

energy developments.

In Chapter 4 we have seen some interesting geometric properties of the Shadow

Dirichlet distribution, which restricts the domain ∆D, and no literature has thus

far addressed this distribution from an elicitation standpoint. An advantage of

the Shadow Dirichlet over simply re-normalising the classical Dirichlet over a

sub-simplex support is that in the latter case the normalisation term is not ana-

lytically tractable, and numerical integration becomes challenging as D increases.

Moreover, the Shadow Dirichlet does allow for conjugacy with the multinomial

likelihood and for the moments to be expressed in closed form, unlike the re-

normalised Dirichlet. A potential difficulty of estimating an additional term in

the Shadow Dirichlet - the matrix M - is addressed in Chapter 4, and does not

seem an immediate hindrance to an elicitation exercise.

In addressing the (Extended) Flexible Dirichlet distribution in Chapter 4 from

the practical elicitation perspective, we need to consider existing methods for elic-

itation of mixed distributions. Dalal and Hall (1983) and Diaconis and Ylvisaker

(1985) explored flexibility obtained through mixtures of general conjugate prior

distributions, although no practical applications have been reported, apart from

problems concerning variable selection (Garthwaite and Dickey, 1992, 1996). The
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Flexible Dirichlet distribution could provide an alternative way to mathemati-

cal aggregation of expert judgements by means of a finite mixture of Dirichlet-

distributed variables from each expert.

7.4 Application: misclassification of publication

ratings

In this example we unite the ideas on stochastic matrices explored in Chapter 5

and expert elicitation. We consider misclassification of publication ratings, where

an academic is asked to rate a paper they authored on the discrete scale of 1 to

4, 1 being the lowest rating and 4 the highest. This given rating is then con-

trasted with a similar rating given by a different academic. A misclassification

occurs when the two judgements differ. Let us denote T to be a 4 × 4 matrix

of misclassifications. We shall first carry out the task of eliciting (gaining expert

opinion) on the distribution of the information about the chances of misclassifi-

cation. Matrix T data is the augmented (observed) counts of misclassifications of

the ratings, and each row is to be assumed to follow the multinomial distribution.

The elements on the diagonal of T data correspond to an agreement between the

two judgements.

T data =



1 3 0 0

0 16 4 0

0 10 18 2

0 2 10 5


(7.2)

From the data we can see a central cluster of misclassifications with zero occur-

rence of “extreme” disagreements between the author and the external academic,

for instance, where one rates a paper “4” while the other a “1”. In terms of

proportions, this can be rewritten as
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T data.prop =



0.25 0.75 0 0

0 0.80 0.20 0

0 0.33 0.60 0.066

0 0.012 0.59 0.29


In this example, we explore fits of the Dirichlet, the Connor-Mosimann and the

modified Connor-Mosimann distributions, technical details of which can be found

in Chapter 4.

7.4.1 Obtaining the prior

The form of the prior distribution is obtained through the process of expert elic-

itation. Due to limited resources available at the time of the elicitation, one

expert (J. P. Gosling) took part in the study and the facilitator was A. Frantsu-

zova. The exercise was conducted in coherence with the Sheffield Elicitation

Framework. The misclassification matrix consists of four categories and sixteen

elements. For example, let us consider the first row of T data: the first element

informs that one paper was judged to fall into rating 1 by both the author and

the external academic. This represents an agreement. Also, three papers were

judged to fall into rating 1 by the authors, yet were rated 2 by the external aca-

demic. The second element of the first row can thus express some pessimism or

under-confidence by the authors. On the contrary, if we look at the third row of

T data, these ratings express a good paper rating as judged by the authors. We

see that no external academics judged the paper to fall into category 1; in 10

cases the author thought that their paper would be rated 3, whereas the external

academic judged the papers to have a lower rating of 2. The third element of that

row depicts that there were 18 cases of agreement between the authors and the

external academic. Finally, 2 papers were judged less confidently by the authors

themselves, and yet were given the top rating by the external academic. Hence,

the final two rows of T data can be seen to express authors’ confidence in their
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work.

For the task of expert elicitation, we assumed that the rows of T are independent

of each other, so it is reasonable to treat each row as a 4-part composition. Since

there are sixteen possible author-external ratings, we performed our analysis row-

wise; that is we elicit four row-wise independent Dirichlet distributions - one per

author rating.

For each row of T quartile judgements about each element were collected from

the expert - the lower quartile, the median and the upper quartile. Let us denote

T e1r as the first row of elicited judgements for T , that is, an author judges their

paper to have rating 1 and the external academic judges the paper on rating r,

r = 1, 2, 3, 4.

The following were the quartile judgements elicited during the exercise for row 1

of T :
T e

11 = (0.12, 0.2, 0.3); (7.3)

T e
12 = (0.5, 0.6, 0.7); (7.4)

T e
13 = (0.15, 0.2, 0.25); (7.5)

T e
14 = (0, 0.0001, 0.005). (7.6)

Similar judgements correspond to the remaining rows of T :

T e
21 = (0.01, 0.02, 0.04); (7.7)

T e
22 = (0.57, 0.7, 0.8); (7.8)

T e
23 = (0.18, 0.24, 0.32); (7.9)

T e
24 = (0.02, 0.03, 0.06); (7.10)

T e
31 = (0, 0.01, 0.02); (7.11)

T e
32 = (0.08, 0.12, 0.18); (7.12)
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T e
33 = (0.7, 0.8, 0.87); (7.13)

T e
34 = (0.05, 0.07, 0.1); (7.14)

T e
41 = (0, 0.0001, 0.005); (7.15)

T e
42 = (0.07, 0.1, 0.14); (7.16)

T e
43 = (0.25, 0.3, 0.4); (7.17)

T e
44 = (0.5, 0.6, 0.7). (7.18)

7.4.2 Fitting a Dirichlet distribution

Using the SHELF package in R to fit a Dirichlet distribution to the above judge-

ments, the following row-wise α estimates are obtained (2 d.p):

α̂1 = (2.78, 7.52, 2.59, 0.15); (7.19)

α̂2 = (0.35, 8.44, 3.14, 0.52); (7.20)

α̂3 = (0.23, 2.28, 13.20, 1.31); (7.21)

α̂4 = (0.18, 1.60, 4.71, 8.78). (7.22)

From these values, we can deduce a similar matrix of proportions. Elements of

T prior represent expected proportions yielded under the Dirichlet prior distribu-

tion with parameter estimates as given in Equations 7.19 to 7.22:

T prior =



0.21 0.58 0.20 0.01

0.03 0.68 0.25 0.04

0.01 0.13 0.78 0.08

0.01 0.10 0.31 0.58


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The standard deviations of a general proportion Xi are given by

sd(Xi) =

√√√√ α̂i(−α̂i +
∑4

j=1 α̂j)

(
∑4

j=1 α̂j)
2(1 +

∑4
j=1 α̂j)

,

which, for us, yields

T prior.sd =



0.11 0.13 0.11 0.03

0.04 0.13 0.12 0.05

0.03 0.08 0.1 0.06

0.03 0.08 0.11 0.12



The subjective judgement of the expert in this case gives a matrix of proportions

quite similar to the observed values in T data (the expert was not exposed to

the data in the process of elicitation), with a similar central cluster and very

low probability of occurrence of an extreme disagreement. When questioned

separately about his overall uncertainty in any of the misclassifications, it was

stated that judgements in row 3 have least of his confidence, partly due to the

potential presence of bias when an author rates their own work. However, this

was not reflected in the overall variance computed, which indicates row 1 to be

the most uncertain. The biggest difference to be noted from these judgements

is the last row corresponding to the highest rating of 4. Through the elicitation

process we obtained a higher proportion of 4-to-4 ratings than shown by the data,

and a ten-fold difference between the expected proportion of an author ranking

their paper as 4 and the external academic giving a classification of 2. The expert

also judged there to be a similar proportion between 1-to-1 and 1-to-3 ratings,

with a greater uncertainty around the former. No dependency structure has been

incorporated into eliciting the parameters, which is not wholly representative of

the problem at hand. In this study, we are assuming that there is no dependence

between the individual rows (authors’ own ratings), and that the data-driving
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process is homogeneous. The expert was informed that his median values have

to sum up to 1.

Furthermore, we elicited quartile (lower quartile, median and upper quartile)

beliefs about overall proportions of author and external ratings:

T e
1,auth = (0.003, 0.004, 0.005); (7.23)

T e
2,auth = (0.23, 0.27, 0.31); (7.24)

T e
3,auth = (0.35, 0.40, 0.47); (7.25)

T e
4,auth = (0.21, 0.27, 0.31); (7.26)

T e
1,ext = (0, 0.0001, 0.0002); (7.27)

T e
2,ext = (0.25, 0.31, 0.36); (7.28)

T e
3,ext = (0.45, 0.49, 0.56); (7.29)

T e
4,ext = (0.19, 0.24, 0.28). (7.30)

The above judgements yielded the following α estimates for the Dirichlet distri-
bution for the overall proportions of author and external ratings:

αauth = (1.77, 11.2, 16.9, 11.1) (7.31)

P auth = (0.04, 0.27, 0.41, 0.27) (7.32)

αext = (0.005, 10.7, 17.4, 8.33) (7.33)

P ext = (0.0001, 0.29, 0.48, 0.23) (7.34)

This part of elicitation was carried out before extracting judgements between
pairs of ratings and was done to rectify any inconsistencies. This can be verified

by observing that
D = P ext − P authT prior, (7.35)

and this stands atD = (−0.026,−0.00023,−0.0032, 0.029) to 2 significant figures.
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Z1 Z2 Z3

âCM
1 1.75 17.19 10.18
b̂CM

1 6.43 5.79 0
âCM

2 0.62 5.94 20
b̂CM

2 19.97 2.54 3.17
âCM

3 0.26 1.59 20
b̂CM

3 18.96 10.10 1.93
âCM

4 0 2.42 4.06
b̂CM

4 20 20 7.66

Table 7.1: Estimated parameters of the Connor-Mosimann distribution.

7.4.3 Fitting a Connor-Mosimann distribution

In this application we also explored the more flexible Connor-Mosimann distribu-

tion and the related modified Connor Mosimann distribution. Technical details

on these distributions can be found in Chapter 4. The fitting procedure followed

Wilson (2017) for both distributions using the modcmfitr package in R. Marginal

distributions of the modified Connor-Mosimann distribution follow the Scaled

Beta distribution with four parameters: shape and scale parameters a and b and

two parameters A and B that re-scale the standard Beta distribution. Using

judgements as given in judgements (7.3) to (7.18), we again employed row-wise

fitting of the paper ratings.

For the Connor-Mosimann distribution, the following parameter estimates for

row 1 of T are illustrated by âCM
1 and b̂CM

1 , and similar notation is taken for the

other rows 2, 3 and 4 of T .

The above parameter estimates of the Connor-Mosimann and the modified Connor-

Mosimann distributions are given to two decimal places, unless higher precision

is required to illustrate that an upper bound is not a true zero, for example. Fit-

ting was carried out with 100,000 iterations of the algorithm and 5,000 searches

- the function default is 100, and Wilson suggests increasing this parameter. In

considering the modified Connor Mosimann fits, it appeared that the parame-

ter values have been restrained to take the maximum value of 10 as a possible

way to regulate the algorithm, yet this may not always be a true reflection of
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Z1 Z2 Z3

âmCM
1 5.38 8.20 0.14
b̂mCM

1 20 2.82 0
L 0.00001 00001 0.99
U 0.99 0.99 1
âmCM

2 0.05 16.40 20
b̂mCM

2 0.33 6.62 0
L 0.00001 0.00001 0
U 0.86 0.99 0.89
âmCM

3 0 0.93 20
b̂mCM

3 18.47 7.24 3.20
L 0.0031 0.039 0.34
U 0.41 1 0.99
âmCM

4 0 0.0003 10.67
b̂mCM

4 0.80 0.0073 19.98
L 0.00004 0.094 0.000093
U 0.094 0.48 0.99

Table 7.2: Estimated parameters of the modified Connor-Mosimann
distribution.

the underlying distribution. Alternatively, the Connor-Mosimann likelihood sur-

face may bear resemblance to the one met in investigating the simplex-partition

elicitation method at the beginning of this chapter, and the algorithm finds satis-

factory solutions close to, or at, its starting values. Adjustements were made by

A.Frantsuzova to the default upper limit on aCM and bCM from 10, as originally

set by Wilson, to 20. This change was carried out in order explore convergence

near these boundaries and sensitivity to algorithm runs. Overall, increasing the

upper bound on aCM and bCM gave fewer instances of convergence at exactly the

upper limits.

In fitting the Connor-Mosimann distribution, we are able to estimate Beta distri-

bution quantiles to compare with quantile judgements elicited from the expert.

The elicited distributions yielded quantile values within 16% of those elicited from

the expert in (7.3) to (7.18). In majority of instances, the estimated quantiles

were identical to the expert judgement’s precision level. For the modified Connor

Mosimann distribution, elicited distributions yielded quantile values within 13%

of those elicited from the expert in (7.3) to (7.18).
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7.4.4 Fitting a Dirichlet distribution using simplex dissec-

tion

Using judgements obtained in (7.3) to (7.18) we can explore a Dirichlet distribu-

tion fit using the method as described in Section 7.2. Due to the smaller number

of judgements required for this fitting procedure, we are faced with selecting a

scenario - fitting using the lower quartiles (LQ) for each misclassification, the

medians or the upper quartiles (UQ). Results for parameter estimates are shown

in Table 7.3. The optimisation procedure used for finding parameter estimates

was simulated annealing due to (Bélisle, 1992).

Parameter LQ fit Median fit UQ fit
α̂1 (7.4, 0.02, 6.9, 8.4) (3.9, 0.08, 0.01, 5.2) (1.7, 0.5, 1.6, 20.3)
α̂2 (5.5, 0.06, 4.8, 4.7) (3.1, 0.01, 0.2, 3.7) (16.7, 0.3, 2.3, 0.2)
α̂3 (7.3, 6.5, 0.2, 6.4) (4.9, 0.1, 0.009, 4.2) (20.4, 1.3, 0.1, 0.7)
α̂4 (8.4, 7.9, 6.8, 0.4) (2.1, 1.7, 0.2, 0.1) (9.8, 0.07, 0.1, 0.8)

Table 7.3: Parameter estimates using simplex dissection fit.

Let us now compare the fit of distributions obtained using the simplex-partition

method, contrasted with the SHELF approach. In the former cases the marginal

distribution of the Dirichlet is the Beta distribution. Below plots depict uncer-

tainty about elements of the first row of T - if we solely consider the scenario

where an author considers their work to be of rating 1, and this is contrasted to

the rating given by a different academic. Similar plots for the other ratings can

be found in Appendix B (9.2).

For the simplex-partition method, we have considered results yielded by judge-

ments given from both considerations of the lower quartile judgements, the me-

dian and the upper quartile judgements. From the plots it can be seen that

the LQ partition approach exhibits similar variance to the results yielded from

SHELF. In the last scenario where the expert gave very small probability judge-

ments for T e
14, the simplex partition method did not reflect this well, and the

two methods give distinctly different marginal distributions. From similar plots
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in Appendix B, we can observe that distinction between the two methods arises

when one of the α estimates is less than one. This again reflects on earlier nu-

ances in this thesis, which are driven by Dirichlet parameter values close to the

boundary of the simplex. This emphasises importance of the feedback loop in an

elicitation protocol, in order for the expert to refine their judgements, if they feel

that the resulting distribution is not suitable.
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7.4.5 Discussion

In this section we have explored several techniques to fit a distribution over

the simplex to a set of judgements about misclassifications of ratings. For the

SHELF approach, the expert was required to provide at least 48 judgements

for a 4-dimensional distribution. The method of Evans et al. (2017) was also

approached by providing a lower bound for each element of T , however, this

was often not consistent with expert judgement on the upper bound and those

suggested by the software.

All throughout structuring the problem and the elicitation exercise, we have

assumed a somewhat simplified scenario with no inter-row dependence. Similarly,

we have not considered measures of confidence (or modesty) of each author, which

could have been elicited from the expert for further work. However, here arises a

question whether this judgement should be elicited from the authors themselves.

The expert gave an informal judgement that the probability that an author’s own

rating is lower than that given by a different academic - the expert believes there

to be a 3 out of 4 chance that there is an agreement in rating between the two

parties. This is an overestimate of any prior approximations (diagonal elements

of T prior) to this overall proportion.

Conjugacy of the Dirichlet distribution allows us to easily consider posterior

uncertainty about ratings misclassifications after data are observed. We can also

compare the elicited distributions with non-informative flat distributions on the

simplex, as those described in Chapter 4. When united with a non-informative

prior, posterior proportions are, as expected, driven almost wholly by the data

and do not incorporate any knowledge of the practical setting. In both cases of

the non-informative prior and the elicited distributions, row 1 had the greatest

overall proportion variance, followed by row 2. Row 3 had the smallest such

variance. Under these priors, a transition 1-to-1 or 1-to-4 ratings is equally likely

a-priori, which may not have be a reasonable assumption. Under this scenario,
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out of 100 ratings, we may expect nine to be judged 1 by the author and 4 by a

different academic; whereas, under the subjective prior, we would expect fewer

than one such disagreement on average. The uninformative priors, hence, inflate

the extreme cases of over-confidence or modesty on the authors’ behalf.
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Chapter 8

Discussion

8.1 Conclusions

In this thesis, we have studied modern approaches to compositional data analysis

and Bayesian prior elicitation. We then united the two fields and investigated

approaches to elicitation of uncertainty for random variables lying on the simplex

space.

In the first part of the thesis, we gave attention to compositional data analy-

sis and concentrated on multivariate regression in the simplex. We illustrated

parametric and non-parametric regression methods during sub-pixel modelling

of tree species distributions in collaboration with Fera Science, UK. Regression

was carried out from the angle of compositional data analysis with the use of

log-ratio transformations, as well as the Box-Cox power transformation in a mul-

tivariate regression setting. Furthermore, we employed a non-parametric random

forest fitting strategy to contrast predictive performance with existing paramet-

ric approaches. As well as demonstrating the importance for inclusion of spatial

variables in the regression problem, where available, this work highlighted current

and prevalent issues in compositional data analysis – that of modelling essential

zeros in a compositional data set, and approaches to dimensionality reduction. In
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relation with the latter, we also implemented the technique of principal variables

by Cumming and Wooff (2007) on the set of explanatory spectral band values,

and this drew out the variables which drove the most variability in the set of

predictors. Using the reduced set of variables, prediction error remained compa-

rable to that of the original set-up, while a reduction in computational time was

achieved.

The thesis followed with a thorough review of parametric probability distribu-

tions used for modelling a set of proportions summing to unity. We considered

recent developments of the classical Dirichlet distribution and any remaining in-

flexibilities of this distribution for modelling compositional data. The issues still

prevalent are accommodation of essential zeros, as well as a restrictive covari-

ance structure, although this is addressed by the more flexible Connor-Mosimann

distribution, and other variants of the Dirichlet, such as the Extended Flexi-

ble Dirichlet distribution. There also exist distributions constructed for specific

application purposes, for example, when compositional parts fall into natural

groupings, or modelling hierarchical relationships, or only specific subsets of the

simplex. In many instances, these distributions do not have probability den-

sity functions or moments expressed in closed form, and so rely on costly E-M

algorithms for fitting.

Further distributions from the Gaussian and the Kent family were also explored,

alongside their application to modelling compositional data either on the simplex,

or after proportional data have been appropriately transformed. Additional con-

sideration of modelling covariance structure between compositional parts was ex-

plored through the Dirichlet-tree distribution and copulae functions. The latter

have found recent popularity in expert elicitation exercises to yield a more flexi-

ble covariance structure than that offered by the Dirichlet distribution. Following

on from general compositional data, we focused on modelling uncertainty about

a discrete-time Markov transition matrix, in particular stationary behaviour of

a Markov chain. Illustrated using the classical Dirichlet distribution, long-term
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behaviour of uncertainty following distributions explored in Chapter 4 is easily

modelled, provided that a random sample from the distribution is obtainable.

For the Dirichlet scenario, we observed that the form of the stationary distri-

bution is highly unstable if row-wise uncertainty is expressed with parameters

α < 1. This can be crucial in applications, where Bayesian posterior is driven

strongly by the prior distribution in presence of little evidence. Stepping away

from right-stochastic matrices, we gave further consideration of current modelling

approaches used for contingency tables and found that application is still heavily

reliant on the Dirichlet distribution, although the dependency structure is more

flexible due to relaxation of sum-unity constraints on rows of contingency tables.

Next, we advanced to the task of expert elicitation for specification of a prior

distribution over the simplex support. It was found that present methods are fo-

cused on fitting the Dirichlet distribution, the (modified) Connor-Mosimann and

a copula distribution, when seen in light of describing uncertainty about a set of

proportions. Methods are either based on eliciting marginal Beta distributions,

followed by reparametrisation of elicited parameters to satisfy distributional con-

straints, or introducing the expert to hypothetical future samples. In the former

approach, judgements about the location and spread of the distributions are

made, often in the form of quartile judgements, or a modal value alongside tail

percentiles. Efforts are made to ease cognitive fatigue using software, for example,

interactive bar charts. Some implementations in the medical literature utilised a

hybrid approach, a choice often driven by practical nuances of expert elicitation,

such as availability of experts and their training in probabilistic reasoning.

We investigated an approach that bypasses eliciting judgements about individual

compositional parts and aim to fit a joint distribution using one set of judge-

ments. The motivation for this is that we wish to reduce the number of judge-

ments required from the experts to avoid fitting distributions that contradict

original statements, and to also address expert fatigue and duration of the elic-

itation exercise. This issue becomes especially prevalent with the more flexible
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developments of the Dirichlet distribution, some of which can require at least 4D

judgements. We proposed a fitting procedure where the simplex is partitioned,

and the experts are asked to assign probabilities to these parts of the simplex.

Similarly, comparative judgements between pairs of compositional variables could

be elicited, in order to guide a covariance structure for a more complex distri-

bution on the simplex. The application at the end of this thesis united ideas

explored with right-stochastic matrices and expert elicitation. We conducted an

elicitation exercise to convey uncertainty about elements of a 4 × 4 matrix of

ratings misclassifications. Comparison was made between an existing SHELF

procedure for the Dirichlet distribution, the (modified) Connor-Mosimann distri-

butions and the simplex-partition method proposed previously. While the two

Dirichlet approaches proved stable, the SHELF method exhibited closer judge-

ment fit than the simplex-partition method, and the latter also did not reflect

the expert judgement where probabilities were deemed very small.

8.2 Future directions

In the first chapters of this thesis, we met many currently-tackled problems of

modelling compositional data – occurrence of essential zeros and a restrictive

covariance structure implied by the classical Dirichlet distribution. In modelling

tree species distribution, we have demonstrated that lower resolution satellite

data can be effectively used for prediction of spectral bands in mixed pixels.

Further work in this area could be aimed at extending the temporal and geo-

graphical scale of the application to confirm transferability of methods explored,

or to highlight previously unseen relationships between spectral bands.

From a statistical viewpoint, it would be interesting to extend the method of prin-

cipal variables to achieve dimensionality reduction in compositional data. This

would be a contribution to existing approaches to principal component analysis

on compositional parts (Aitchison, 1986). An outstanding question, however,
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is the quantification of partial correlation between compositional parts – some

very recent exploration has been conducted by Erb (2020) that relies on alr or

clr-transformed compositions. Modelling inter-correlation between compositional

parts also has attractive application in modelling uncertainty about Markov ma-

trices, and may allow us to drop the row-independence assumption, which find

direct application with doubly stochastic matrices currently sparsely considered

in applied statistics.

From the standpoint of expert elicitation, the simplex-dissection approach for

modelling a joint multivariate distribution requires further refinement. Even

though solutions fitted to expert judgements by a stochastic global optimisation

routine are stable, some parameter estimates appear may be far from reflecting

expert judgement. These conclusions are based on comparison of marginal fits

with the SHELF approach. Of course, one may ask whether comparing marginal

fits is the only plausible way of judging suitability of an elicited distribution

to expert judgement. To advance the front-end part of the simplex-dissection

method, thought needs to be given to how the simplex is depicted in dimensions

D > 3. When D = 4 the expert would be presented with a tetrahedron, and this

is the last dimension that is visually plausible. Perhaps, pairwise plots of com-

positional parts with a third part being the augmented parts that remain (Other

category, as in examples throughout this thesis), would allow us to maintain

a simple graphical interface. However, which pairwise compositional variables

should then be selected is a separate question, but this could be incorporated

into earlier stages of the elicitation exercise.

A more general question in expert elicitation fitting and feedback stage can be

considering what is more important – the scale of parameter estimates fitted,

or whether the resulting distribution is deemed to reflect the expert judgements

well. In the former case, if we take an example of the Dirichlet, a fitted distribu-

tion with very large estimates for α may be deemed by the expert to fit as well

as another Dirichlet distribution with smaller α estimates. However, the latter
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would have lower variance and any further Bayesian analysis would be heav-

ily prior-driven. Perhaps, as discussed in Oakley and O’Hagan (2004); Gosling

(2008), incorporating uncertainty in expert judgements themselves (where, if J is

the expert judgement, questioning the expert if judgement J± ε is equally likely)

can be a way forward to choose between potential candidate distributions.
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Chapter 9

Appendices

9.1 Appendix A

Figures 9.1 through to 9.12 present diagnostic plots for models considered for

compositional tree species regression approaches in Chapter 3.
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9.1. Appendix A

Figure 9.13: Cluster dendrogram for alr-transformed tree species data.
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Figure 9.14: Random forest variable importance plots by tree type.
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9.2 Appendix B

The following plots illustrate error functions of the simplex-partition (simplex

dissection) fitting procedure to elicited statements in Chapter 7, Section 7.2.

The graphs depict scenarios in a 3-dimensional setting, with 3-part compositional

data. However, for visualisation purposes, one of the parameters of the Dirichlet

distribution has been fixed (below plots depict α3 = 1, but others have too been

trialled with similar results). Two axis represent values of α1 and α2, where a

fitting to elicitation judgements is sought, and the vertical axis represents error

fit. The colour scale on the right-hand side represents size of the error.
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