Numerical Methods in Lubrication

Modelling

by

Elyas Gulam Nurgat |

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds
School of Computer Studies
~ September 1997

The candidate confirms that the work submitted is his own and that appropriate
'~ credit has been given where reference has been made to the work of others.

-



Abstract

Over the past two decades, many numerical schemes have been developed
to solve elasto-hydrodynamic lubrication problems. New schemes are continuously
being sought with the aim of improving efficiency and robustness. The two main
issues of concern when solving these problems are large computational costs and
numerical instabilities. The multigrid method, first used by Lubrecht et al. [68]
when solving these problems, has proved to be very success_ful in dealing with the
issue of computational costs. Venner [97] took this work further and developed
a relaxation scheme which dealt with the issue of instability. However, Venner’s
scheme is not only difﬁcuit to understand because it is not presented in its entirety
but also difficult to implement due its complexity. Hence, a new easy to understand
and simple relaxation scheme will be developed and employed in this work, [74], to
solve elasto-hydrodynamic lubrication problemé. '

" The aim of this work is to present an efficient, robust and general purpose
numerical solver for isothermal (Newtonian) elasto-hydrodynamic lubrication cir—y
cular contact problems. The solver will be based on the FDMG Multigrid Software
[92] and the new relaxation scheme. Elasto-hydrodynamic lubrication problems are
very important in engineering applications and there is a need for general purpose
solvers for industrial applications.

The multigrid solver will be used to solve both steady-state and time-
- dependent (transient) problems. A wide range of steady-state problems will be
solved and the obtained solutions will be compared with those obtained using other
" numerical methods, [75]. Up to this date, transient problems are constantly being
solved using fixed time step methods where the step sizes are chosen arbitrarily.
© We will present solutions to both fixed and variable time step methods. The gov-
erning equations of transient problems will be written as a system of differential
‘algebraic equations and methods from this area will be employed in variable-step

time integration and convergence testing, [90].
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Chapter 1

INTRODUCTION

In 1966 [76] the word tribology was introduced and defined as the science and tech-
nology of interacting surfaces in relative motion and of the particles related thereto.

This can be interprated as the lubrication, friction and wear of moving or station-

ary objects. A lubricant [30, 40, 43] is any substance that is used to reduce friction

and wear of machine components. Besides this, it also provides smooth running -
and long life for the machine components. If a thin but continuous fluid film exists
between machine components to prevent them from coming into contact then this
_ is called fluid film lubrication. The applied load is carried by the pressure generated
within the lubricant and the frictional characteristics arise purely from the shearing
 of the viscous lubricant. The two forms of lubrication regimes which fall into this

¢ategory are hydrodynamic and elasto-hydrodynamic lubrication.

1.1 Hydrodynamic Lubrication

Hydrodynamic lubrication occurs when the lubricant film is sufficiently thick to
prevent the opposing solids from coming into contact. Hence, wear will be nearly
absent and the coefficient of friction will be small. Hydrodynamic lubrication is

normally associated with conformal contacts. This is where there is a high degree
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of geometrical conformity between the objects in contact. The behaviour of the
contact is governed by the physical properties of the lubricant and the applied load.
The applied‘ load is carried by the pressure generated within the lubricant. This
can be either due to the motion of the surfaces (squeeze film or sliding bearings) or
externally motivated (externally pressurised bearing). The shearing of the viscous
lubricant is responsible for the resistance to motion of the contacts. In hydrody-
namic lubrication, the film thickness is normally greater than 1 x 10~ m and the
magnitude of pressure developed is usually less than 5 M Pa which is not large

enough to affect the geometry of the surfaces. Hence, the surfaces are rigid.

1.2 Elasto-Hydrodynamic Lubrication

Elasto-Hydrodynamic Lubrication (EHL) is a form of hydrodynamic lubrication
where the elastic deformation of the contacts is no longer negligible and the pressure-
Viscosity effects are equally important. The magnitude of the generated pressure .
is typically between 0.5 and 4 GPa and the minimum film thickness may be less
than 0.1 x 1078 m. Due to the high pressure, the lubricant exhibits piezoviscous
properﬁies. It is well known that for most lubricants [41], the viscosity increases
rapidly with increasing pressure. Furthermore, the application of high contact loads.
can lead to substantial local deformation of the contacts, an effect which may dras-
tically change the geometry of the lubricating film. Since the shape of the lubricant
. film in turn determines the pressure distribution, it is apparent that a solution to
elasto-hydrodynamic lubrication problem must simultaneously satisfy the governing
elastic and lubrication equations.
| ‘Elasto-hydrodyna,mic lubrication is normally associated with non-conformal
“contacts. This is where the surface contacts do not geémetrically conform well to
each other. Such contacts touch nominally along a line (line contact) or at a point
(point contact). When studying elasto-hydrodynamic contacts, it is not necessary
to consider the often rather complex geometry of the contacting elements. Since the
film thickness and the contact width are generally small compared to the local radii

of curvature of the running surfaces, the geometry of the surfaces in the contact

-
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area can be accurately approximated locally by paraboloids. In general, two typés
of problems' are distinguished, the one dimensional line contact problem and the
more challenging two dimensional point contact problem considered here.

In a line contact problem, the contacting elements are assumed to be in-
finitely long in one of the principal directions. In an unloaded dry contact situation,
the surfaces touch along a straight line whereas in a loaded situation, a strip-shaped
contact is formed.

In a point contact problem, the contact width is very small in relation to
the radii of curvature of the contacts. Thus, the contact width can be approxi-
mated by two parabolically shaped surfaces. This approximétion allows a further
simplification of the contact geometry into a reduced form which is between a single
parabola with reduced radii of curvature and a flat surface. In an unloaded dry con-
tact situation, that is in the absence of a lubricant, both surfaces nominally touch
at a point whereas when a load is applied, the shape of the contact region depends
on the ratio of the reduced radii of curvature in the X and Y directions. In general, .
the contact region‘ is an ellipse and thus is called an elliptic contact. A special case
of an elliptic contact is the circular contact which occurs when the reduced radii of

curvature in both principal directions are equal.

1.3 EHL Review

.. One of the major developments in the field of tribology in the mid-twentieth cen-
tury must be a recognition and understanding of elasto-hydrodynamic lubrication.
It revealed the existence of a previously unsuspected regime of lubrication in highly
stressed and non-conformal machine elements. Much of the early interest was based
on hydrodynamic lubrication. The understanding of hyarodynamic lubrication be-
gan with the classical experiments of Tower (1885) [96] in which the existence of
a film was detected from measurements of pressure within the lubricant. This was
also the conclusion of Petrov (1883) [81] from his friction measurements. This work
was closely followed by Reynolds’ (1886) [86] celebrated analytical paper in which he

used a reduced form of Navier-Stokes equation to generate a second-order differen-

-
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tial equation, known as the Reynolds equation, for pressure in a narrow converging
gap between the bearing surfaces. Besides presenting the differential equation for
hydrodynamic lubrication, Reynolds also presented a comparison between his the-
oretical prediction and the experimental results of Tower [96].
| Following Reynolds’ theoretical contribution and the successful application
of his theory to journal and thrust bearings, Martin (1916) [71] began looking at the
more complicated problem of gear lubrication. Martin examined theoretically the
operation of gears almost without wear as observed in practice and the suggestion
thaf a hydrodynamic film separated the opposing teeth in gears: Martin considered
two rigid circular cylinders and an incompressible,_isoviscoxis lubricant. Martin’s
solution of the Reynolds equation for a lubricating vﬁlm between two rigid circular
cylinders presented a useful beginning to theoretical studies. The film thicknesses
predicted from Martin’s work were very small compared to the known surface ir-
regularities of gear teeth and this concluded that gears could not be lubricated by
hydrodynamic action. This discouraging result probably accounts for the long time
interval of about 20 years before the next significant flurry of theoretical work on
gear lubrication. Meldahl (1941) [72] considered the effect of local elastic distortion
on the predictions of hydrodynamic theory. Although his work failed to demonstrate
the full significance of elastic effects, he did point the way for future investigations. -
A major developrﬁent in the history of elasto-hydrodynamic lubrication
was reported theoretically by Grubin (1949) [41] who gave an excellent account of
- the physical mechanism of elasto-hydrodynamic lubrication. Grubin successfully
implemented the combined effects of high pressure on the lubricant and the solids
| forming the contact. By assuming that the shape of the elastically deformed solids
in a higﬁly loaded lubricated contact was the same as the shape produced in a
dry contact, Grubin was able to examine the generation of pressure in the inlet
region and to determine the required separation of the solids within the Hertzian
[51] contact zone. The analysis allowed for the effect of pressure upon viscosity as
prtl)posed by Barus (1893) [6]. The most valuable result from this analysis was the |
film thickness equation fqr highly loaded elastic contacts. This equation predicted

film thicknesses which were one or two orders of magnitude greater than Martin’s

-
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prediction for similar conditions and consistent with the formation of satisfactory

fluid films in gear contacts. Besides the analysis of the inlet region, Grubin con-

cluded that the pressure curve would exhibit a rather spectacular second maximum

near the outlet end of the Hertzian zone.
The characteristics of an elasto-hydrodynamic contact predicted by Gru;

bin were confirmed by Petrusevich (1951) [82] when he obtained solutions which
simultaneously satisfied the governing elastic and hydrodynamic equations. The
three main features of the solution are now recognised as general characteristics of

highly loaded elasto-hydrodynamic lubrication contacts. These features, shown in

figure (1.1), are as follows:
e An almost parallel oil film in the central region of the contact with a local
restriction near the outlet. h

o A near-Hertzian pressure curve over most of the contact region.
e A very local second pressure maximum of considerable height near the outlet

" "end of the contact region.

1.2 ¥ T T T T
Pressure ——
Film =

08 I

PandH
=3
=3

e —

02

Figure 1.1: Features of pressure and film thickness.

Following the pioneering work of Petrusevich, several numerical solutions

of isothermal elasto-hydfodynamic Jubrication contact problems have been pre-

sented. Weber and Saalfeld (1954) [103] presented solutions which considered both
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constant and pressure dependent viscosities but the solutions were limited to small
deformations and could not distinguish between the near Hertzian solutions which
occur in most real contacts.

A new approach to elasto-hydrodynamic lubrication theory was presented
by Dowson and Higginson [29] (1959).. By introducing the inverse method, lDow;
son and Higginson were able to solve elasto-hydrodynamic lubrication line contact
problems. The close agreement between the theoretical minimum film thickness
predictions and the experimental results obtained by Crook (1958) [27] and Sib-
ley (1961) [93], demonstrated that the gap between theory and experiment had
been largely closed. It was only in the 1970’s that complefe numerical solutions
to isothermal elasto-hydrodynamic lubrication pbint contact problems began to
emerge. Cheng (1970) [24] proposed a Grubin type inlet analysis for elliptical con-
tacts. Hamrock and Dowson (1974) [44] presented an elasticity model in which the
computational domain is divided into rectangles and a uniform pressure is assumed
to act dver each rectangle. They also presented extensive results on isothermal .
elasto-hydrodynamic lubrication point contact problems [45, 46, 47, 48]. In 1981
Evans and Snidle [35] employed the inverse method to solve highly loaded point
contact problems.

Alternative methods began to emerge in the 80’s. The first method to -
emerge was the Newton-Raphson method which was used by Okamura (1982) [79]
and Houpert and Hamrock (1986) [54]. The Newton-Raphson method was mainly
.. used to solve lightly loaded line contact problems. This was followed by the in-

troduction of the multigrid method. Lubrecht [65] used the Gauss-Seidel scheme
| together with the multigrid method to accelerate convergence. Lubrecht was able
to solve both line [67] and point [68] contact problems but still had difficulties in
“solving highly loaded problemé due to numerical instabilities. Further reduction in
computational times was achieved by Lubrecht and loannides [66] who made use of
the multilevel multi-integration scheme [15, 16] to evaluate the elastic deformation.
In 1989 Chang et al. developed an algorithm that combined the Newton-Raphson
and the multigrid method to solve line contact problems. '

A major contribution was made by Venner et al. in 1990 [101] when

-
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they developed a relaxation scheme for solving lightly to highly loaded elasto-
hydrodynamic line and point contact problems. They employed their relaxation
scheme together with the multigrid method and the multilevel multi-integration
method [15, 1‘6]. The problem of instability was no longer an issue and highly
loaded problems could now be solved routinely. Due to the pressure dependent vis-
cosity, which varies by several orders of magnitude over the computational domain,
the relaxation scheme they developed was based on the values of pressure. More
recently, this relaxation scheme was also employed by Ehret (1996) [33]. Other new
methods include that of Wang (1994) {102] who has developed a scheme based oh
the Newton method. A more recent method is the homotopy method [4] which is
used by Scales [75] to solve elasto-hydrodynamic lubrication problems.

Over the past decade, the interest in elast&hydrodynamic lubrication has
moved on from steady-state problems to time-dependent (oxj.tra,nsient) problems.
Much of the earlier work on transient problems was based on the line contact
problems [23, 21, 80, 100]. It is only over the last three to four years that the.
point contact problems have been considered [3, 2, 99] but this is still very limited.
However, experimental work studying the effects of surface features using optical
interferometry dates back to 1979 [104]. More recent experimental work includes

that of Kaneta [58] and Kaneta et al.[59, 60].

1.4 Overview of Contents

The aim of this work is to present an efficient, robust and general purpose numeri-
 cal solver for isothermal (Newtonian) steady-state and time-dependent (transient)
elasto-hydrodynamic lubrication circular contact problems. The solver for elasto-
“hydrodynamic lubrication problems will be based on the FDMG Multigrid Software
[92] and a new relaxation scheme which will be developed in this work. These prob-
lems are very important in engineering applications and by developing a general
purpose multigrid solver, mainly for industrial applications, engineers will be able
to solve a wide range of these problems under different operating conditions.

Having presented above an introduction to two regimes of lubrication and

-
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an overview of the developments in elasto-hydrodynamic lubrication in Sections 1.1,
1.2 and 1.3, we will now present an outline of the contents of the rest of this thesis.

Chapter 2 will describe the mathematical model of isothermal (Newtonian)
Elasto-Hydrodynamic Lubrication (EHL) circular contact problenis. The model is
highly non-linear consisting of coupled integro-differential equations. The governing
equations of the model will also be presented in their dimensionless and discretised
forms.

Chapter 3 will outline an overview of different iterative schemes used to
date to solve elasto-hydrodynamic lubrication problems. This will include the in-
verse method and the direct iteration methods, namely the Gauss-Seidel and the
Newton-Raphson methods. Also presented in this chapter will be the effective influ-
ence Newton method of Wang [102], the homotopy method which is used by Scales
[75] and the relaxation schemes of Venner [97] and Ehret [33]. Based on the analysis
of the governing Reynolds’ equation of the elasto-hydrodynamic lubrication model,
a new relaxation scheme for solving these problems will be presented in this chap-
ter. In order to show the efficiency of the new relaxation scheme, a local Fourier
analysis will also be presented. This chapter will be concluded with a test problem
solved on a single grid using different numerical methods.

Chapter 4 will give a general description of the multigrid method together
‘with an overview of its use in solving elasto-hydrodynamic lubrication problems.
Also presented in this chapter will be a multigrid solver for elasto-hydrodynamic
. - lubrication problems based on the FDMG Multigrid Software [92] and the new
relaxation scheme of the previous chapter.

Chapter 5 will present test problems on steady-state elasto-hydrodynamic
lubrication circular contact problems. The solutions obtained using the multi-
grid solver for elasto—hydrodynémic lubrication problemé, developed in the previous
chapter, will be compared with those obtained using other numerical methods which
will include the relaxation schemes of Venner [101] and Ehret [33], the effective in-
fluence Newton method of Wang [102] and the homotopy method [4] used by Scales
[75]. ‘ ‘

Chapter 6 will aeal with time-dependent (or transient) problems based

-
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on the backward Euler method and the governing equations will be presented as
a system of differential algebraic equations. Also presented will be the local error
estimates, ‘convergence criterion and time stepping associated with these problems.
The employed convergence criterion will be a novel concept when solving transient
elasto-hydrodynamic lubrication problems. This new technique is used to solve
differential algebraic equations and was originally developed by Shampine [90} for
ordinary differential equations. This chapter will be concluded with test problems
based on zero and reversal entrainments showing the effectiveness of the convergence
criterion. A comparison will also be made between solutions obtained using fixed
and variable time step methods.

Chapter 7 will draw this work to a close by making some conclusions

regarding the effectiveness of the approach adopted in this thesis.



Chapter 2

GOVERNING EQUATIONS
AND DISCRETISATION

This chapter describes the mathematical model of Elasto-Hydrodynamic Lubrica—
tion (EHL) [30, 40] employed in this work. This mathematical model [30, 97, 102],
describing the isothermal (Newtonian) elasto-hydrodynamic lubrication circular -
contact problem, is made up of three equations and is highly non-linear, consisting

of coupled integro-differential equations:

¢ The Reynolds equation, which relates the pressure in the lubricant film to the

geometry of the gap and the velocities of the running surfaces.

o The film thickness equation, which defines the elastic distortion of the surfaces

caused by the pressures in the film.

o The force balance equation, which makes sure that the integral over the pres-

sure balances the externally applied load.

In addition, the variation of viscosity and density with pressure must also
be taken into account due to the high' pressures in the lubricant film. Hence, the

relationships describing the variation of viscosity and density with pressure are also

10
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presented. The equations in the model are non-dimensionalised using the Moes [73]
and the Hertzian [51] parameters. For the sake of generality, the Hamrock-Dowson
[47] dimensionless parameters are also presented, together with their relationship
with the Moes parameters. .
| Since it is not possible to find exact analytic solutions of elasto—hydrodynarﬁic

lubrication problems, numerical methods must be employed in order to find-ap-
proximate solutions using a discretisation scheme. The widely used finite diﬂ'erencé
discretisation method is einployed in this work. This chapter is concluded by pre-
senting the governing equations in their discretised form as a non-linear system of

equations.

2.1 The Reynolds Equation

The differential equation governing the pressure distribution 1n fluid film lubrication
is known as the Reynolds equation. This equation was derived by Reynoldé in 1886
and it was presented in a paper [86] which contained not only the basic differential
equation of fluid (incompressible) film lubrication but also a comparison between
his theoretical prediction and the experimental results of Tower [96]. The Reynolds
equation allows the pressure distribution in the domain to be obtained according -
to the kinematics and the geometry of the surfaces and is of the form

0 ph3(9p> 0 ph38p> d(ph) - Ou, d(ph)
S I it Y Y s i L 2.1
3$(n oz +3y< n Oy A P +ooh G 125 (2.1)

where,
pis the pressure,
h is the film thickness,
n is the viscosity,
p is the density,
t is the time,
z and y are Cartesian coordinates

and u; = u; + ug denotes the sum of the velocities of the running surfaces as shown

in Figure (2.1).
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U,

) Direction\___//
of ———

Flow __—— —————0 .

u,

Figure 2.1: Fluid flow between two moving surfaces.

The two left hand side terms of equation (2.1) are the Poiseuille terms
and they describe the net flow rates due to the pressure gra;aients in the lubricant
film. The right hand side of equation (2.1) is made up of three terms and they
represent three different effects that account for the pressure generation in the
lubricant film. The first two terms are referred to as the Couette terms and they
describe the net entraining flow rates due to the surface velocities. The Couette
terms lead to two distincf effects: the wedge and the stretch effects. The wedge
effect is extremely important and is the main device for pressure generation. The
stretch effect considers the rate at which the surface velocity changes in the sliding “
direction. The third term on the right hand side of equation (2.1) represents the
squeeze effect which, describes the net flow rates due to the squeezing motion.

In this work, both steady state and time dependent (transient) problernsl H
will be considered. The stretch effect will not be taken into account in either
the steady state or the transient problems. However, when solving steady state
problems, the contribution from the squeeze effect will be zero.

The boundary conditions for the Reynolds equation (2.1) are p = 0 suffi-

ciently far upstream and on each side of the contact. In the outlet region, which is

a free boundary, p = g% =

2.1.1 Viscosity

When studying elasto-hydrodynamic lubrication, one of the effects that can not be
overlooked is the increase of viscosity with increasing pressure. One of the most

widely used viscosity-pressure relations is the Barus equation [6], which is given by

_n(p) = noexp(arp) (2.2)
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where, 1o is the viscosity at ambient pressure, « is the pressure viscosity coefficient
and p is the pressure.

Though equation (2.2) is a very simple relation, it is only accurate‘fér
low pressures. However, a more accurate viscosity-pressure relation is the Roelands

equation [87] which is given by

n(p) = ez {(ln(no) +9.67) [—1 + (1 + l%) ] } (2.3)

where, 1o is the viscosity at ambient pressure, po is a constant equal to 1.98 x 108,
zisa pressuré viscosity parameter and p is the pressure. |

If the pressure viscosity coefficient, «, is defined as .

1 877) “» .
=— {4 2.4
« n()(ap L | (2.4)

then, from equation (2.3), we get the following relationship

9[—59 = In(no) + 9.67, ' - (2.5)

which relates z to o and 79. When substituted into equation (2.3), equation (2.5) .

gives the following form of Roelands equation

n(p) = no exp {%’9 [—1 + (1 + }%) ]} . (2.6)

Throughout this work, we have used equation (2.6) to represent the viscosity-
pressure relationship. Although equation (2.5) defines a specific value of z based
upon a study of typical mineral lubricating oil, it is better in general to consider 2

as an independent parameter. The typical value z = 0.68 has been used throughout

this work unless stated otherwise.

2.1.2 Density

In the analysis of elasto-hydrodynamic lubrication, the compréssibility of the fluid

at high pressures can not be neglected. The change of density with pressure is given
by the Dowson and Higginson relation [30]

58 x1071%p
_ , 2.7

where, p is the pressure and pg is the density at ambient pressure. This was also

obtained from experimental measurements on typical mineral oils.
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2.1.3 Cavitation condition

Elasto-hydrodynamic lubrication is normally associated with non-conformal con-
tacts where the surface contacts have non-conforming geometry as described in.
Chapter 1. Hence, elasto-hydrodynamic lubrication contacts are open systems with
plenty of air in the surrounding area. This means that when the contact geometry
is diverging, the film breaks up resulting in viscous fingering of the oil and the
surrounding air fills in the space. This behaviour is commonly known as cavitation.
In elasto-hydrodynamic lubrication, this occurs in the outlet region of the contact
where the gap is widening. The Reynolds equation of our model is not designed
to Cope with this phenomenon. Hence, the Reynolds equation (2.1) of our model
is not valid over the entire computatioﬁai domain since cavitation is assumed to
take place at some point in the outlet region where the gap is widening. In these
regions, negative pressures are predicted by the Reynolds equation (2.1). In our
model, this is overcome by imposing a cavitation boundary condition p > 0, which
is a common practice [97]. Hence, at all points in the cavitation region, pressures
are set to zero during the iteration process. In some sense, the outlet boundary of
the pressurised region becomes a free boundary.

An alternative method of dealing with the cavitation condition is to employ

the penalty method [106].

2.1.3.1 Penalty method

The penalty method for the analysis of the free boundary in elasto-hydrodynamic
lubrication was introduced by Wu [106] who made use of the finite element method.
Wu was also able to show that the pressure gradients in elasto-hydrodynamic lubri-
cation problems are continuous even though there is a rapid change in the pressure
near the outlet of the contact region. The basic idea when using the penalty method

is to add on to the discrete Reynolds equation an extra term
1P (28)

whenever the pressure is negative. The parameter v is a large positive constant

which must be chosen in a heuristic way.

-
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2.2 The Film Thickness Equation

When studying elasto-hydrodynamic contacts, it is not necessary to consider the
often rather complex geometry of the contacting elements [40]. Since the size of the
contact width is small compared to the local radii of curvature of the surfaces, the
geometry of the curves, describing the undeformed surfaces close to and within the
boundary region of pressure, can be accurately approximated locally by paraboloids.
For a two dimensional elasto-hydrodynamic lubrication point contact, the lubricant

film geometry is of the form shown in Figure (2.2).

N

00
-

Figure 2.2: The representation of the lubricant film geometry.

The film thickness equation of such a point contact can be written as
h(.’L‘, y) = hOO + hu(iﬂ, y) + d(x’ y) ) | (29)

where the three right hand terms can be described as follows:

- The first term hqp is a constant representing the film thickness at the origin

had the surfaces been undeformed.

The second term h,(x,y) represents the geometry of the undeformed sur-

face. It is defined by paraboloids in both z and y directions and is given by

$2 y2
; hu(ﬂfay)=2R T3 (2.10)
T Y

where, R, is the reduced radius of curvature in the x-direction,
R;' = Ry + By, |
R, is the reduced radius of curvature in the y-direction,

R;'= Ry +R;).
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The reduced radii of curvature, R, is shown in Figure (2.3) which shows the contact

of two surfaces and their reduced geometries.

Two Surfaces

Reduced Geometry

Oil flow

Plane

Figure 2.3: Contact geometry of two surfaces and their reduced geometries.

The third and the final term is d(z,y) which represents the elastic de-
formation. The elastic deformation modifies the film geometry and hence plays a
major part in the formation of lubrication films in elasto-hydrodynamic lubrica-
tion. By considering that the elastic deformations are small compared to the radius
of curvature of the undeformed surfaces, we can assume that the surfaces in the
contact are elastic semi-infinite. The material of the surfaces in contact are also
assumed to be homogeneous (isotropic) and to obey linear elasticity theory. The
elastic deformation d(z,y) due to the pressures is obtained by summation of the

deformation of the two surfaces and is given by

dle,y) = wE/ / \/:v—:;y)dxydyy) ’ (211)

where, E is the reduced modulus of elasticity and is defined by
2 _1-v] ‘1-v
E - E, E, (212)

where, E; and F are the modulus of elasticities of the two surfaces in contact and

v; and vy are the Poisson coefficients of the two surfaces in contact.

- o
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2.3 The Force Balance Equation

- The applied contact load must be balanced by the pressures generated in the con-

tact. Hence, the integral over the pressures in the lubricant must equal the applied

load and is given by '
/ / p(z,y)dzdy = F | (2.13)

where F is the external load.

2.4 Non-Dimensionalisation

The governing equations of our mathematical model are non-dimensionalised using
Hertz’s theory [51] which gives the pressure profile, the geometry of the contact
region and the elastic deformation of the surfaces in contact. This is for the case
of a loaded contact between two parabolically shai)ed elastic bodies. For circular

contact problems, the Hertzian pressure profile is given by

ph/T= @l = (W]aP if o+ < a*
plz,y) = _ (2.14)
‘ 0 otherwise
where, p; is the maximum Hertzian pressure given by
- 3F
Pr=5—3 (2.15)

and a is the radius of the Hertzian contact circle given by
_ (3FR,\*
a= 2E1 (2.16)

where, F' is the external contact force, R, is the reduced radius of curvature in the

x-direction and E is the reduced elastic modulus of the contacting bodies.
The dimensional Reynolds equation of a two dimensional time-dependent
circular contact problem without the stretch effect is given by

9 ph"’a_p) i(a’i@) (ph) _1,0(ph) ‘
53(77 dz) 0Oy \ n Oy ~ Uy 12 ot =0 (2.17)

with p = 0 on the boundaries and p > 0 on the entire computational domain.

o
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Equation (2.17) is made dimensionless using the following set of variables:

X:.a.:_, Y:y., P:.E, Hzi
a a Pr hy’
/_o_:_p_’ ﬁ=l7— and T_tu3
£o Mo 2a

where, pr and a are as defined by equations (2.15) and (2.16) respectively and hy,

is the maximum Hertzian deformation which is given by
hp = —. (2.18)

Hence, the dimensionless Reynolds equation is of the form

o_(pH*OP\ . 0 (FHOP\ | 0(H) ,0GH) _,
ox\ 7 ox) oY\ 7 ay 9X oT

(2.19)

with P = 0 on the boundaries and P > 0 on the entire computational domain. The
dimensionless parameter A is given by

a3 Ph

A= (2.20)

The dimensionless viscosity 77 and density 7 are obtained from equations

(2.6) and (2.7) respectively. The dimensional film thickness equation is of the form

z,y)dz' dy

h(x,y)zhoo-!-ZR 2R + / / \/:c—a:)2 CETIE (2.21)

which can be written in non-dimensional form by substituting the dimensionless pa-

rameters used in non-dimensionalising the Reynolds equation (2.17). The resulting

non-dimensional film thickness equation is of the form

Xy Y')dX'dy'
H(X,Y) = Ho + 5+ 5 / / \/X X)2 v (2.22)

The dimensional force balance equation is given by

/_ : /_ : p(z,y)dzdy = F (2.23)

which in non-dimensional form is

/ / P(X,Y)dX dY = ?31 (2.24)
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The minimum film thickness is
b =min(h(z,y)) o (2.25)
which in non-dimensional form is given by

H,, = min(H(X,Y)). | (2.26)

2.4.1 Moes and Hertzian dimensionless parameters

The above dimensionless analysis shows that if the lubricant is assumed to be com-
pressible and if the Barus equation (2.2) is used to represent the viscosity pressure
relationship, then the elasto-hydrodynamic lubrication model is characterised as a

two parameter problem. All the solutions can be characterised in terms of & and A

which are given by

a=ap (2.27)
and
_ bnou, B2
A= (2.28)

These two parameters are related to the Moes [73] load parameter M and

the materials parameter L as follows:

L (3M\'?
a=— (-2—) (2.29)

and

dn (2 \'°
Azﬁ(?]&{?) : (2.30)

The non-dimensional minimum film thickness, Hn, given by equation (2.26) is re-

lated to the Moes dimensionless minimum film thickness parameter, H,,;,, as follows

6

Although all the numerical solutions obtained in this work are based on the Roeiands

equation (2.6) to represent the viscosity-pressure relationship, the above character-

isation is still valid. However, besides the pressure viscosity coefficient «, either

v
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the viscosity at ambient pressure 7o or the pressure viscosity parameter z, which
are parameters required in the Roelands equation (2.6), must also be given. For
" lubricants that are mineral oils, the parameters o and z do not vary too much.
The pressure viscosity coefficient a is normally of the order 10~® and the pressure
viscosity parameter z normally lies in the range 0.5 < -2 < 0.8. Unless stated

otherwise, z = 0.68 is employed throughout this work.

2.4.2 Hamrock-Dowson’s dimensionless parameters

Hamrock and Dowson [47] defined the following set of three dimensionless param-

eters to describe circular contact problems:

F

W = EIR?: ? (2-32)
G=aE . (2.33)
and
_ Thous

where W, U and G are the load, material and speed parameters respectively. The

Hamrock-Dowson’s dimensionless minimum film thickness is defined as

b
Hyl= 2 (2.35)
2.4.3 Relationship between Moes and Hamrock-Dowson’s

parameters

The Moes parameters M and L can be expressed in terms of the Hamrock-Dowson’s

parameters W, G and U by taking U to be a free parameter. This relationship is
of the form

M =W (20)™/ (2.36)

and

L =GU). (2.37)
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The relationship between the Moes dimensionless film thickness, H,,, and the

Hamrock-Dowson’s minimum film thickness, H!? is of the form

Throughout this work, we have used either the Moes or the Haml‘ock—Dowson’s

dimensionless parameters. However, both forms will be presented on every occasion.

2.5 Discretisation

The use of mathematical models to simulate and analyse complicated systems in
engineering and science reduces the need for expensive and time consuming experi-
mental tests. The equations associated Wltl’l the mathematical model take the form
of dif‘ferential and integral equations and in general it is not possible to find their
exact analytic solutions. Hence, numerical methods must be employed in order to
find their approximate solutions. This involves using methods such as finite dlffer-
ence, finite element, finite volume, spectral and boundary elements [55, 57, 85, 105]
in order to find the numerlcal solutions of the governing equatlons The basic idea
- in any numerical method is to discretise the continuous problem to obtain a dis-
crete problem with many degrees of freedom often representing physical quantities
at points in space.

To thls date, the finite difference [53, 105] and finite element [57, 85]
methods have been used to solve elasto-hydrodynamic lubrication problems with
greater emphasis on the use of the finite diffefence approach perhaps due to its ease
of coding.
| The finite element method is a numerical technique for obtaining approxi-
mate solutions to a wide variety of boundary value problems.‘ The main concept of
this method is that the computational domain can be approximated by replacing
it with chscrete elements which can be arranged in a varlety of ways and used to
represent any complex shapes. The finite element discretisation reduces the prob-
lem to one of a finite number of unknowns by dividing the domain into sl;atial
elements and then expressing the unknown field variables within each element in

terms of spatial basis functions. The elements are inter-connected at g finjte num-
-
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ber of points called nodes or nodal points. These nodes normally lie on the element
boundary where adjacent elements are connected. The interpolation functions are
" defined in terms of the field variables at each nodal point. Fof any element, the
nodal values and their corresponding basis functions define the behaviour of the
field variables within the element. Basis functions are normally chbsen such that
the field variables and their derivatives are continuous across adjoining element
boundaries. Very few authors [94, 78] have used the finite element rhethod to solve
elasto-hydrodynamic lubrication problems. One important exception is that of Wu
and Oden [107, 108] who have done extensive analysis in using the finite element
method to solve elasto-hydrodynamic problems.

The main concept of finite difference schemes [55, 105] is to approximate
the derivatives at a point by replacing the derivatives with linear combinations of
discrete function values. The two most common finite difference operators are the

forward and the backward difference [55] operators. These two operators are defined

as follows:

‘Suppose a one dimensional computational domain is defined by
G={z e R:z=2,=jh;,j=0,1,...,n, he =1/n}
then the forward difference operator is given by

s —
Auj = —H—2 (2.39)

and the backward difference operator is given by

U; — Uj-1

VUjZ h

(2.40)

where, u; is the function value at the point z; and h, is the mesh spacing.

2.6 Finite Difference Discretisation of Governing
Equations \

The governing equations (the Reynolds equation, the film thickness equation and

the force balance equation) of a Newtonian steady state isothermal elasto-hydrodynamic
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lubrication circular contact problem are discretised on a regular mesh over the com-

putational domain
(X, Y) e R : X, <X <X, and =Y, <Y <Y,}.

The governing equations are discretised with the direction of flow in the
X-direction and mesh spacings h, and A, in the X and Y directions respectively
Due to symmetry, only half the domain is used in the Y-direction.

The dimensionless Reynolds equation (2.19), without the squeeze term, is
b

of the form

oX \ 0X oY \ 0Y 0X
which, when discretised at each non—bouﬁdary mesh point (¢, 7), [(1—1)h,+ X, (-

9 (60P>+ o (651’)'_5(7’[{)=o | (2.41)

1)hy + Y], using the central and the first order backward difference scheme gives

the equation

L= hj(ei—l,j(Pz‘—u — Pij)+ €i+l,j(Pi+1,j = Pij)) + b (o1 (Pijer —
» 2 . Y g i
Pij) + €4t ( it — Pug)) = he' (BijHig = picy i Hicr3) = 0 (2.42)

where, €15, €175 €+l and ezj__,(z=2... my;—1573=2,...,n,—1),

denote the values of € = "_If\ at the intermediate locations midway between the mesh

points and m, and n, are the maximum number of points in X and Y directions

respectively. As an example

€= €, +2€i-1,j
where,
o PPy Hi
] -ﬁ(R,]) )\ t (243)

Alternatively, a harmonic average [105] can be used, that is

o eigEioy
1~ 5, *
2V €1t 6

As mentioned above, the density p is given by the Dowson and Higginson
relation [30] which is given by

5.8 x 1070 py, P ;
p(Py) =1 7
p(Pi;) + 1+17x10°p, P,;°’

(2.44)
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the viscosity 7 is given by the Roelands equation [87] which is given by

n(P,J)—ewp{ [ 1+ (H@]%j_)z]} ' | (2.45)

where pp = 1.98 x 10% and z = 0.68 and

o dm (2 ) snU 2\
M \3M T W 3W :

The dimensionless film thickness equation (2.22)
X? Y? P
H(X,Y) = Hoo+—+——+-—/ / (X Y)dX v (2.46)
VX -XP+ T -7p

discretised at a point (z,7) is given by

'2 2

Hij; = Hoo + —5= 2 +'—’J+d,3 (2.47)

where, Hyo is a constant and d; ; is the discretised elastic deformation of the magterial

due to the pressures in the film. The discretisation of the elastic deformation will

be explained in detail in Section 2.6.1.

Finally, the dimensionless force balance equation (2.24)
/ / P(X,Y)dX dY = 332 (2.48)

in discretised form is given by

my Ty
2
hy Y ) Py =0 (2.49)
=1 j=1
where m, and n, are the maximum number of points in X and ¥ directions respec-

tively.
When solving elasto-hydrodynamic lubrication problems, the force balance

equation (2.49) is used to update the film thickness constant Hyp in the following

way:

Hyo = Hgp — ¢ ( ~hg hy Zz Z Pz]) (2.50)

=1 j=1

where, ¢ is a damping factor.
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2.6.1 Elastic deformation

Tlie elastic deformation at any point (X,Y) on a surface subjected to a pressure

distribution is based on Boussinesq’s solution [95]

| 2 [* [ PX.,Y)dX dY’

There are two difficulties associated with equation (2.51). The first is the

issue of singularity at the points z = z and y = y'. The second is the amount of
work required in evaluating the numerical integral of equation (2.51). The amount
of work required is an issue because when the elastic deformation is evaluated at
any point, the entire computational domain must be integrated. This problem
becomes more apparent when the numerical solution of elasto-hydrodynamic lubri-
cation problem is obtained vby means of an iterative scheme. Hence, the deformation
at every node of the computational domain must be evaluated for each iteration
and this can be very expensive computationally. |

These two difficulties are overcome by approximating the pressure distri-
bution using a polynomial function [28] which enables the deformation integral to
be obtained analytically. Dowson and Hamrock [28] divided the pressure distri-
bution into equidistant rectangular grids and assumed the pressure on each grid
to be of a constant value and at the centre of the grid. A similar scheme is also
employed by Chang [20] who divided the domain into non-equidistant rectangular
grids. Like Dowson and Hamrock [28], Chang [20] assumed that the pressure is of
a constant value but this value is the mean of the pressure values at the four corner
points of the grid. For both these methods, rectangular blocks of uniform pressure
are used to approximate the pressure distribution. Other schemes include that of
Ranger et al.‘ [84] who divided the contact area into non-equidistant rectangular
grids and replaced the pressure by overlapping pressure pyramids where the pres-
sure is assumed to be linear in both the X and Y directions and Biswas and Snidle
[11] who i)foposed a scheme where a biquadratic polynomial is used to approximate
the pressure for elements with singularity and the Simpson’s rule is employzd to
approximate the pressure for elements without singularity. Other methods include

that of Hou et al. [53], Jen et al. [56] and Liu et al. [69] who respectively employed

" o
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biquadratic polynomial, paraboloidal polynomial and elliptic paraboloid surface to
approximate the pressure function.

The scheme devised by Dowson and Hamrock [28] is emﬁloyed throughout
this work and based on the observation that the elastic deformation at a point

(X,Y), as shown in Figure (2.4), due to a uniform preSsuré P over the rectangular

area 2a X 2b is given by

2P Xmle |
dX,Y)= / T g (2.52)

A

(X, Y)
v 9]
Yl
2
L >
1|<—
2b

Figure 2.4: Elastic deformation at a point (X,Y’) due to pressure at (X, Y1).

If the entire computational domain is divided into equal rectangular areas,
then from Dowson and Hamrock [28], the discretisation of the elastic deformation

d;; at a point (¢,7) due to the contribution of all rectangular areas of uniform

pressure is given by

2 & |
'=§r_§4; Kk Bei (2.53)

where, m, and ny are the maximum number of mesh points in the X and Y direc-
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tions respectively. The coeflicient K ;1 is given by

Kot = [X/In (Y+\/(—X__?TY“_ ¥/ X+\/—~—_~
CHENCALY A I ATl

ille (Yq " eoE (W) + v, [ St V(B £ (Xp)°
Yo+ v/(Xo)? + (¥)? PN X, + VLR (X, (2.54)

which can be rewritten as

Y, ¥ \?
i Loy 1+(X,,)2 - B+ (3)
e @) e )
Y, ¥ )? X »
1X,|1n % 1+(Xq) +|Y;|1n n H(%)E (2.55)

where,

Y,=Y;-Yi+% and Y, =Y;-Yi-3}

One advantage of a regular mesh is that the m, X n, coeflicients need' only be
calculated once and stored. In contrast, on an irregular mesh it is necessary to
store the my X ny coefficients for each mesh point. Hence, for a domain with n x n
mesh points, the total storage cost for n? coefficients on regular and irregular meshes
are respectively of the order n? and n*. However, the complexity of evaluating the

clastic deformation on the entire domain, for both regular and irregular meshes
?

using equation (2.53) is of the order n*.

2.7 Conclusion

~

The mathematical model describing the isothermal steady state elasto-hydrodynamic

lubrication circular contact problem is made up of three non-dimensional equations
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with a pressure dependent density and viscosity. The three governing equations are

the Reynolds equation
0 (OP\, 0 (3P\ 4(H) |
X (eax) Ty (ea—y) ox 0 (2.56)

p(Fij) H
€j = ——t2t,
n(Pig) A

wheré
(2.57)

the film thickness equation

2 2 y .
H(X,Y) = H00+:’£.+’_/_+_/ / P(X',Y')dX'dy -
| VX -XPrY -y

and the force balance equation

/ / P(XYdXdY—23 o (2.59)

The density 7 is assumed to depend on the pressure according to the Dowson and

Higginson relation

B 5.8 x 1071 p, P, ;
p(F;)=1+ 1+1.7x10"%p, P;;

(2.60)

and the viscosity 7 is given by the Roelands equation

n(P”)—ewp{ zpo[ 1+<1+£%Dﬁ)z]} (2.61)

where, po = 1.98 x 10® and z = 0.68 unless stated otherwise..

The governing equations of the elasto-hydrodynamic lubrication mode]
are highly non-linear consisting of a complex system of coupled integro-differential
equations with a cavitation boundary condition P > 0. Hence, it is not possible
to obtain solutions analytically and a numerical method must be employed. This
can be achieved by discretising the governing equations at every point on the com-
putational domain. Throughout this work, a finite difference discretisation scheme
is employed on a rectangular computational domain. For a steady state isothermal
elasto-hydrodynamic lubrication circular contact problem, the discretised equations

employed in this work include the discretised Reynolds equation .

Lij = hg* (i1 i (Pimrg = Fig) + €1 (Pivny — Pig)) + B2 (¢ €ij-1(Prjoy —
Pij) + €£,j+%(Pi,j+1 ~Pij)) = b (P i Hig = Pioy jHiiy ;) = 0 (2.62)
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the discretised film thickness equation
?

Y Mg
2 ’j T V Z Kikji Py (2.63)

kll—

Hij; = Hoo + —*

where the kernel K k,j1 is given by equation (2.54) and the discretised force balance

equation ' )
ha by ZZPw ”“=0- (2.64)

o, =1 4=l o

Having created a system of discretised equations representing all the grid
points on the computational domain, it must now be solved using an iterative
scheme. On a computational domain with n x n mesh points, the complexity of
evaluating the elastic deformation at any mesh point on the computational domajn is
of the order n?. Hence, the overall comple:kity of evaluating the elastic deformation
at every point on the computational domain is of the order n*. When discretising
the Reynolds equation, this must be taken into account since the Couette term of
the Reynolds equation involves the differential of the film thickness. Thig implies
that for a large n, which is essential especially when solving highly loaded problems
(the maximum Hertzian pressure py is large) found in practice, the computational
costs can be very large. This means that obtaining solutions using iterative schemes
is the only means of getting efficient solutions. The next chapter will describe dif-

ferent iterative schemes employed to date to solve elasto-hydrodynamic lubrication

problems.
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SINGLE GRID ITERATIVE
METHODS

Due to the extreme complexity of the equations associated with elasto-hydrodynamic
lubrication problems, as outlined in the previous chapter, it is not possible to obtain
their solutions analytically. Hence, numerical methods must be employed. Up to
this date, various numerical methods have been used to solve elasto-hydrodynamic
lubrication problems with greater emphasis on the use of single grid iterative meth-
ods [25, 36, 45, 84]. This chapter gives an overview of the different numerical
schemes employed to solve elasto-hydrodynamic lubrication problems. This includes
the inverse method, which was the earliest successful method employed by Dowson
and Higginson [30] to obtain solutions to the elasto-hydrodynamic lubrication line
contact problem, and the direct iteration methods, which includes the Gauss-Seidel
and the Newton-Raphson methods [53, 105]. These methods were mainly used to
solve line contact and lightly loaded problems due to the computational costs and
numerical instabilities associated with point contact and highly loaded problems
[97] found in practice. The point contact problems, which are two dimensfonal,

are not easy to solve mainly due to the elastic deformation integral. However, new

30



Chapter 3 a1

methods are constantly being developed in order to solve these problems more effi-
ciently and overcome the huge computational costs. These new methods include the
effective influence Newton method [102] of Wang, the homotopy method [4] which
is employed by Scales [75] and the multigrid method [13, 18, 105] which is used by
[33, 64, 97]. The multigrid method greatly reduces the computational costs as is
shown by Lubrecht [68]. The multigrid method increases the rate of convergence
and problems which were previously unsolvable can now be solved routinely without
any large computational costs.

Besides the issue of the computational costs, the issue of instability is an
important entity when solving elasto-hydrodynamic lubrication‘ problems. Most of
the numerical schemes can not cope with heavily loaded point contact problems
because the employed relaxation schemes can not deal with the heavy load due to
the sensitivity of viscosity to pressure which may lead to instability [101]. This
problem of instability can be looked into by analysing the governing equations of
elasto-hydrodynamic lubrication problems and then developing a relaxation scheﬁle
that will be able to cope with a wide range of loads. Hence, an analysis of the
coefficients of the Reynolds equation is presented in this chapter and based on this
aﬁalysis a new relaxation scheme developed in this work is presented together with
the relaxation schemes of Venner [97] and Ehret [33]. The relaxation schemes of
Venner and Ehret are also developed from the analysis of the Reynolds equation of
the elasto-hydrodynamic lubrication model. This chapter is concluded by presenting

a test problem solved on a single grid using different numerical methods.

3.1 Iterative Methods

The mathematical model of Elasto-Hydrodynamic Lubrication (EHL) employed in
this work as described in Chapter 2 consists of three equations: the Reynolds equa-
tion (2.19), the film thickness equation (2.22) and the force balance equation (2.24).
The solution for the pressure () and the film thickness (H) must simultaneously
satisfy the three equations. Besides this, all the pressures in the lubricant should

be greater than or equal to zero. This is referred to as the cavitation condition
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30, 40] and is described in detail in Section (2.1.3) of Chapter 2. Since the model is
highly non-linear and is made up of a complex system of integro-differential equa-
tions, numerical methods must be used to obtain solutions. HoWever, the solution
of elasto-hydrodynamic lubrication problems can be difficult to calculate due to nu-
merical instability of the numerical schemes employed and computational intensity
arising from the calculation of the elastic deformation integral. This is especially
true for transient and highly loaded problems found in practice. Since the late
1960’s, many researchers have been engaged in developing more effective numerical
algorithms. The overall effectweness of numerical algorithms for solving elasto-
hydrodynamic lubrication problems can be evaluated based on numerical stability,
accuracy, efficiency, robustness and programmability. These numerical algorithms

can be classified into the following three categories:

¢ Inverse method: Dowson and Higginson [29], Evans and Snidle (35, 37] and
Kweh [61]. |

o Direct-iteration methods: Hamrock and Dowson [45], Ranger [84], Evans and

Snidle [36], Chittenden [25], Zhu and Chang [109] and Wang [102].

e Multigri‘d‘method: Ai [1], Cheng [22], Ehret [33], Lubrecht [68] and Venner
[97].

The inverse method, the earliest method used, and the direct-iteration
methods, which are the most straightforward methods for solving elasto-hydrodynamic
}ubrication problems will be considered in the next few sections. The two most
common direct-iteration methods employed to solve these problems are the Gauss-
Seidel and the Newton-Raphson schemes. The multigrid method, which was first

employed to solve elasto-hydrodynamic lubrication problems in the late 1980’s, will

be covered in the next chapter.

3.1.1 Inverse method

-

This, the earliest successful method, was introduced by Ertel [34] and used by Dow-

son and Higginson [29] to obtain solutions of the elasto—hydrodynamic lubrication
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line contact problem. Dowson and Higginson obtained solutions for a wide range
df‘ loads, speeds and material properties and derived a formula for predicting the
" minimum film thickness [30, 47] which is widely used up to this date. Following
Dowson and Higginson’s work, Evans and Snidle [35, 37] used the inverse method
to solve point contact problems.

In the inverse method, the Reynolds equation of the elasto-hydrodynamic
lubrication model is used to solve for the film profile, say HI, corresponding to
a given pressure distribution, say P, that balances the applied load. H1 is then
compared with the film proﬁle?‘ say H2, obtained by solving the elasticity equation
with the given pressure distribution P. The differences between these two film
profiles are then used to adjust the pressure profile, P. r‘I‘his sequence is repeated
until the discrepancy between H1 and H 2 is sufficiently small.

Although this method can produce a solution through a small number
of pressure adjustments and can solve problems with relatively heavy loads, an
accurate solution is difﬁcult t‘o obtain due to the relatiye insen.sitivity of the ﬁlm
profile to pressure variations [22]. Furthermore, since the procedure of pressure

adjustments relies on experience, the algorithm can not be easily automated.

3.1.2 Gauss-Seidel method

A Gauss-Seidel scheme [53, 105] may be employed to solve for the pressure Ifrom the
Reynolds equation of the elasto-hydrodynamic lubrication model. The idea is to
treat the discretised Reynolds equation as a linear equation for pressures. The first
step is to compute the film profile and the lubricant viscosity and density corre-
sponding to a given pressure distribution. Then the linearised Reynolds equation is
used to solve for the new pressure distribution. With the new pressure distribution,
the film thickness constant is adjusted using the force balance equation as shown by
éﬁuation (2.50). This is repeated until the pressure distribution and the film profile
have reached a desired accuracy. This method has been used to obtain solutions to
both point [25, 43, 109] and line [50] contact problems. It is easy to implement and
use but it is unstable for highly loaded problems due to the sensitivity of viscosity

to pressure [65, 97]. For the large number of mesh points required for point contact

-
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problems, this scheme is expensive in terms of the computational time. However, it
is not expensive in terms of the computational storage and the implementation of
- the cavitation condition is straightforward. For a system with n gﬁd points, at least
O(n) relaxations are required to obtain a converged solution and the eValuation of
the elastic deformation requires O(n?) operations [97]. Hence, the complexity of

this scheme is at least O(h3).

3.1.3 Newton-Raphson method

The use of this method to solve elasto-hydrodynamic lubrication problems was
first presented in a paper by Okamura [79]. Based on the algorithm presented by
Okamura, Houpert and Hamrock [54] employed the Newton-Raphson method to
solve a line contact problem.

Houpert and Hamrock [54] used the Newton-Raphson method to solve si-
multaneously the discretised forms of the Reynolds, film thickness (which includes
the elasticity equation) and force balance_ equations. These discretised equations
are linearised, which involves the computation of a full Jacobian ma,trix’ which is
made up of the derivatives of all the discrete equations with respect to the variable
pressure. When solving the elasto-hydrodynamic lubrication problems, a full Jaco-
bian matrix is required because the elastic deformation at one point is determined
by the pressure distribution over the entire grid. For a mesh of m, x ny points, this
results in an often prohibitively large dense system of m,n, equations. Hence, it
is essential to seek computationally less expensive methods. Having obtained the
Jacobian matrix, it is inverted and then used to obtain a new approximation to
the solution. This process is repeated until the solution simultaneously satisfies the
three governing equations.

Besides being expensive both in terms of the computational time and
storage, especially for point contact problems, this method is not very efficient
in dealing with the cavitation condition [65, 97]. Since the governing equations
are solved simultaneously and the free boundary cavitation region is not known in
advance, the implementation of the cavitation condition is not easy especially for

point contact problems [68, 65, 97]. This is why this method is mainly used to solve

LI
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line contact problems [26, 64]. Due to the elastic deformation, the inversion of the
full Jacobian matrix requires O(n®) operations and the overall complexity of the
Newton-Raphson method is also O(n?) [65, 97] where n represehts the number of
mesh points in the X and Y directions. One big advantage of this method is that
the convergence close to the solution is very rapid and it is achieved in only a few
iterations [40, 97].

In general, the Newton-Raphson method can be descrlbed as follows:
Suppose _E 1s an approximation to the true solution P, then at a point (%, j),
Lij=L(Fy;)#0and L;; = L(Pi,j) = 0. Taylor’s theorem gives

Ty ma:.

Ly=lis+Y. 32 ”APm+0<(AP)> | 3.1)

I=1 k=1

where, L; ; 1s the dlscretxsed Reynolds equation at the pomt (X:, Y;) and m, and
n, are the number of mesh points in the X and Y directions respectively.

In recent years, modifications have been made to N ewton’s method in order
to overcome some of ‘the above difficulties. Nowadays, the system of equations is
solved using Gaussian elimination or an iterative scheme. Gaussian elimination
may be used in order to solve a system of linearised equations if the dimension of
the coefficient matrix (Jacobian matrix) of the linear system is sufficiently small,
e.g., in line contact problems. Chang et al. [22] reduced the complexity to O(n?)
by ignoring most of the terms that reflect the relation between the flm thickness
and the pressure in the elastic deformation. This resulted in a tridiagonal Jacobian
matrix instead of the original full matrix. Some other modified schemes have been
presented by Oh [77], Houpert and Hamrock [54] and Wang {102]. One example of
a more recent modified scheme is the Effective Influence Newton Method (EINM)

of Wang [102].

3.1.3.1 Effective influence Newton method

The effective influence Newton method, developed by Wang [102] to solve elasto.
hydrodynamic lubrication problems, uses a variant of Newton’s method for solving
non-linear equations. The method employs the notion of an effectjve influence

region to determine the contribution from the elastic deformation in the solution
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of a set of approximate linear equations used in the Newton formulation of elasto- -
hydrodynamic lubrication problems. The elastic deformation at a point (4, ) is,
and must be, determined by the pressure distribution over the entlre computational
domain, though the contribution decreases radially outwards [102]. However, when
obtaining the solution of the linearised Reynolds equation, Wang’s Newton method
ignores pressures not close to the point (¢,7).

The elastic deformation at a point (7, 7) due to a rectangular area of uni-
form pressure at some point k, [ is strongly influenced by the distance between the
two points, as can be seen from equation (2.54). This enables us to define an effec-
tive influence region such that enly the pressures within this region are considered
when solving the approximate linearised Reynolds equation and this results in a
banded instead of a full Jacobian matrix. Thus, the number of elements and the
computational costs involved in the elasto-hydrodynamic lubrication calculations
are greatly reduced. The effective influence Newton method can be described as
follows: | | "

If (m;) and (n;) are the number of effective points from the point (%, 5) in
the X end Y ’direction’s respectively, _then the effective inﬂuence Newton’s formula

is of the form

.7+n_7 t+mq

Z Z ’JAPkl'i-L”——O 32

[=j—-n; k:z—m‘

The simplest form of the effective influence Newton’s method make use of five adja-
cent nodal points in linearising the original Reynolds equation. This is the method
employed by Dowson and Wang [31] in solving elasto-hydrodynamic lubrication

problems. The resulting equation is of the form

6P-1 .7 " a‘P’-J aR""l,]
- dLi; 4 i; |
"‘Li L — _ 1,] AP:Le'Li/ - 1,] N AP old )
J 8P -1 . i1 f.5+1 (3.3)

For a constant j, equation (3.3) results in a tridiagonal system of equations
which is solved simultaneously using I-line relaxation, provided that A Pnewl and
AP"M+1 are known On every iteration the correction term AP, ; is evaluated on

the entire grid. Having obtained AP, a new approximation P to P is computed at

.o
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every point on the entire grid using
Pij=Pj—wAPy; ‘ (3.4)

where w is a damping factor.

After a complete sweep, the new values of pressure are used to recalculate
the elastic deformation and the pressure dependent viscosity and density. Results
obtained on a single grid using the effective influence Newton method will be pre-

sented at the end of this chapter in Section (3.3).

3.1.4 Homotopy method

The concept of a homotopy method is simf)le in that one problem is deformed into
another by vthe continuous variation of a single parameter. This parameter maybe
part of the problem specification and therefore have some physical significance, or
it maybe artificial. The key point here is that one of the problems will be eaéy
to solve, and this will be continuonsly deformed into one that is hard to solve. In

practice, the deformation process must be discretised and a sequence of intermediate

problems solved. However, by allowing the changes to be sufficiently small at each

stage, it can always be arranged that the solution of one intermediate problem will

lie within the domain of convergence of some locally convergent algorithm for the
next. In this way, solving a series of locally convergent problems can provide a route

to global convergence. This process is termed continuation [4].

Consider the problem of finding a root ¢ of the non-linear equation system

given by

_F_(__) =0. (3.5)

A homotopy function S(g, 8) is a function for which 8 € [0, 1] such that the following

conditions hold:

5(g,0) = Q(g) and S(g,1) = £(q) - (3.6)

The function S(g, 5) (assumed to be continuous though not necessarily differentiable

with respect to 8) represents a continuous deformation of Q(q) into F(q) as 3 varies

LEEDS UNWERS"'Y uB -
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(not necessarily monotonically) from 0 to 1. If the problem of finding ¢ safisfying
20

Qg) =5(g,,0)=0 ~ (3.7

i§ one that can be solved, and a continuous solution path exists connecting (20’ 0)
to (¢*,1) along which 5(g,8) = 0, then continuously tracking the solution path is
a globally convergent method for solving the system (3.5) [4].

Artificially parametrised homotopy functions can be constructed in many

ways, but those most usually encoﬁntered are convex linear homotopies of the form
S(¢,8) = BE(Q +(1-8)Q(a), (3.8)

such as the fixed point homotopy
S4(¢:8) = PE(@) + (1~ B)g—q,) . (39

where g can be viewed as an initial estimate of ¢*.

Consider the problem of finding a root of
S(g,6)=20 (3.10)

for 3 = 1, where g represents the basic independent variables of the problem and one
or more parameters a; are defined in terms of 8 by (usually linear) relationships of
the form a; = ¢;(3). The problem is assumed to have been easily solved for the root
9% corresponding to 3 = 0 (e.g. using a Newton-type method). The parametrised
problem form is in the homotopy form but the dependence upon 3 is no longer
necessarily linear.

An efficient homotopy technique for the robust, simultaneous solution of
elasto-hydrodynamic lubrication point contact equations is one based upon physi-

cal parametrisation, using the pressure coeflicient of viscosity o as the underlying
parameter:

o=ay+ B — ag). (3.11)
When 8 = 0, a = ao (typically 5 X 107°, representing a near isoviscous case)

and when 8 = 1, & = o (the desired value for the oil in question is typically

2 % 10~8 or more). Non-dimensionalisation of the governing equations i :
g equations is carried out
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once and for all using the final value of p; (maximum Hertzian pressure) which is
cqmputed from the final value of a. Viscosity and density are computed from the
local continuation values of alpha and p,. This enables the continuation process
to be carried out without changing the size of the domain, but the intermediate
problems do not correspond bbviously to meaningfql physical problems. The initial
problem is easy to solve using a Newton type method, and working with « has the
added advantage that the same mesh can be used throughout (the computational
domain size does not have to change as it would were load used as a parameter, for
example).

The kinds of numerical algorithm that can be used to solve this problem
are surveyed in reference [4]. Points satisfying equation (3.10) map out a curve in
(g, 3)-space, the zero curve, as B varies. The predictor-corrector algorithm starts
from one point on this curve and takes a predictor step along the tangent there.
The step size is adaptive, and the algorithm tries to maintain it as large as possible.
The step direction is also chosen to make doubling back along the path impossible.
A series of corrector steps is then taken with the intention of converging to a point
furthér along the zero curve. Failing that, a new predictor with a reduced step size
is undertaken. A purely locally convergent projected Newton method is used for
the corrector steps. It should be noted that the Jacobian matrix is full and so a
dense linear equation solver is used. To save on Jacobian evaluations, the Jacobian
is only updated at points on the zero curve. In practice, the zero curve does not
have to be tracked with high accuracy, since accumulation of discretisation errors
such as occurs, for example, in the integration of ODE systems, does not arise here
[4]. This algorithm allows the tracking of zero curves with rapid changes of arc
length and non-monotonicity with respect to 8. Such situations cause the failure
of simple continuation techniques where the 3 values are explicitly prescribed and
monotonic.

For methods such as that just outlined, cavitation is often perceived as
difficult to handle because it is not possible to arbitrarily set components of the
pressure to zero without compromising convergence by introducing discontinuities.

Penalty functions [106] can be used to resolve the cavitation problem. The basic
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idea is to add on to the discrete Reynolds equation a term
Y(P) =P . (3.12)

for some positive constant v, wherever the pressure is negative. In this way, the
equation can not be satisfied unless negative pressures are driven towards zero
(squaring the pressure keeps the problem continuous in first derivatives). The larger
~ is, the more this will be the case, but also the more sudden will be changes in
curvature of the problem functions. For this reason we échieve greater robustness

by deriving v continually from the homotopy parameter according to ‘
=6 (3.13)

where v* is the target value (typically 1000).

In order to be able to cater for the very hardest problems, the v contin-
uation is éometimes carried out as a separate phase following completion of the o
continuation. For many problems, though, the two can be merged quite satisfacto-
rily. ‘
The homotopy method is very yobust and can be used to solve both lightly
and highly loaded f)oint contéct problems but at the expense of large computational
times. However, the CPU times can be reduced by using iterative methods for the
linear eqﬁation solution rather than the Gaussian elimination methods employed at
this stage. This is an area of present research [89]. Solutions obtained using this

method will be presented in Chapter 5 where they will be compared with those

obtained using other methods.

3.2 Single Grid Relaxation Schemes

As described above, various numerical relaxation schemes have been used in order to
solve elasto-hydrodynamic lubrication line and point contact problems, but these
schemes are restrictive in one form or another. This includes the limitations in
solving highly loaded point contact problems found in practice and the limitations
in the use of a large number of mesh points due to large CPU times. In order to

understand why these schemes may not be very robust or flexible, an analysis of

LIRS
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the governing equations of the elasto-hydrodynamic lubrication model described in
Chapter 2 is necessary. |
Consider the Reynolds equation (2.41) of a steady state elasto-hydrodynamic

lubrication model. For convenience, this equation is of the form

o ( 9P\, 0 (4P)_0GH) _ \
?97(653?>+8Y(60Y) ox 0 (3.14)

which is highly non-linear and the coefficient € is given by

p(p) B
AP A (3.15)

€ =

The coefficient € varies several orders of magnitude over the computational
domain as shown in Figure (3. 1). In the contact region, the coefficient € is extremely
small, as small as 10~ for highly loaded problems. In this region, the film thickness
H is small, the viscosity 7 is large and lies in the range 10 to 10%° as shown in
Figute (3.2 and the density p is greater than one. In the non-contact region (lnlet
and outlet regions), the coefficient € >> 1 and is of the order 10*. In this region,
the film thickness H is large and the viscostty 7 and the density p are close to

one. In general, the minimum viscosity and density is one and this occurs when the

pressure is zero.

1+10 r____,'_,_———r————l—_—' T T
Epsilon -~
-
'r \ / i
g i
2 {
= !
© i
i
1
\
\
I
\ ;
1e-10 | \ / |
AN
. ‘ ’ \\/
. 2 1 0 . 3
-3 4 3 " ‘

Figure 3.1; Profile of the coefficient € along the X axis.
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Figure 3.2: Profile of viscosity 7 along the X axis.
" The coefficient € can be summarised as follows: In both the inlet and the
the coeficient € >> 1 whereas in the

outlet regions of the computational do

the coeflicient € is very clos

main,

e to zero.

contact region, :
When the coeflicient € is small, the Reynolds equation (3.14) described in

Chapter 2 is approximated by the Couette term
a(pH
P8 ~0 ~ (3.16)

—%
Consequently, when discretised, there

he X-direction only.
ssure between adjacent grid points in the Y-direction.

which is a relation in t
is large, the Couette term Q—g—}%{l in the Reynolds

is no direct coupling via pre
When the coefficient €
to the remaining terms. Thus the Reynolds

equation (3.14) is small compared
sson-type equation and is approximated

equation (3.14) has the form of a 2-d Poi

s (2P, 2 (20 |
X (65’)?) T Y (an ~ 0. (3.17)
he Reynolds equation (3.14) gives an insight into the nat.ure

nds very much on the coefficient €. Due to the extreme

by the Poiseuille terms

The above analysis of t

of this equation which depe
the computational domain, the character of the

values of the coefficient € over
ichever relaxation scheme is employed to

problem changes. .This means that wh
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solve elasto-hydrodynamic lubrication problems, it must be able to cope with both
large and small values of the coefficient €. Hence, the coefficient € plays an important
role in deciding which relaxation process to employ in order to obtain the solution "

pressure P of the discretised Reynolds equation (2.42). The relaxation process

employed must be a stable error smoother over the entire domain and must be

able to cope with the extreme values of the coefficient € which is highly non-linear

and depends on pressure. The general approach taken in the relaxation schemes

employed by Venner [97] and Ehret [33] and also in the new relaxation scheme
developed in this work is to make the choice of the relaxation scheme dependent on
the coefficient €. ,

When the coefficient ¢ of the Rey;lOIdS equation (3.14) is large, (a Poisson-
| -Seidel [13, 55, 105] relaxation scheme provides good
wn by Lubrecht [65] and Venner [97]. How-

type problem), a point Gauss

error smoothmg and stability as is sho

ever, the performance of the point Gauss-Seidel relaxation scheme begins to dete-

riorate as the coefficient € decreases [97]. Firstly the relaxation becomes unstable -

Jow frequency error components are amplified and the relaxation process diverges.

Secondly, due to the loss of coupling in the Y-direction, the relaxation becomes

ineffective in reducing high frequency errot components in the Y-direction {97].

From the above analysis of the Reynolds equation, the problem of instabil-

ity can be overcome by using a relaxation scheme that can cope with the extreme

values of the coefficient ¢, which is smaller in the contact region than the non-

contact region of the computational domain. The variation in the values of the

coefficient ¢ is more evident in the highly loaded problems, which are normally not

easy to solve as discussed above is Section 3.1. Hence, the problem of instability

~ can be resolved by using different relaxation schemes in the different regions of the
computatlonal domain. This means that the relaxation schemes employed in the
contact reg1ons of the computatlonal domain must be different.

ployed by Venner [97], Ehret [33] and Nurgat and Berzins [74]

contact and non-
This concept is em

in their respective relaxation schemes for solving elasto-hydrodynamic lubrication

point contact problems. The relaxation schemes employed by Venner and Ehret

and the new relaxation scheme employed by Nurgat and Berzins will be presented

-
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later in this chapter.

The problem of loss of coupling can be overcome by making use of a line
relazation scheme [13, 55, 105) instead of a point relaxation scheme. This implies “

that instead of visiting the grid points one by one in some order, e.g. lexicographic

order, and solving the discrete equation at each grid point, a system of discrete

equations on a line of points s solved simultaneously. This must be done on a line

Wthh is in the direction of strong coupling.

For elasto-hydrodynamic lubrication point contact problems, there is strong
coupling in the X-direction. Hence, a line relaxation scheme in the A—dlrectlon,
commonly known as I-Line relazation is employed as shown in Figure (3.3), that is

onalneY=30=1-..> ny)s where ny is the maximum number of points in the

V-direction. However, due to symmetry, only half the domain is used as shown in

Figure (3.3).

1+(ny-1)/2

T
Yu\i

i

Figure 3.3: Representation of domain for I-line relaxation.

3.2.1 Relaxation schemes of Venner and Ehret

The relaxation schemes employed by both Venner [97] and Ehret [33] are very sim-

ilar except for the order in which the pressures P and the film thicknesses H are

calculated. Venner solves for the solutions pressure £ P and film thickness H simul-

taneously using the Reynolds and the film thickness equations. Ehret ﬁrst solves

for P using the Reynolds equation and then the new obtained pressures are used

to update the film thickness H. As mentioned in the previous section, they have
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employed a relaxation scheme which depends on the coefficient € of the Reynolds
equation and different relaxation schemes are employed on the computational do-

main. The relaxation scheme employed by both Venner [97] and Ehret {33] make "

use of the poinf Gauss-Seidel relaxation, the Gauss-Seidel line relaxation and the

Jacobi distributive line relaxation schemes depending on the value of pressure on

the computational domain. In a standard Gauss-Seidel relaxation scheme, the new

updated solution gets used :mmediately in relaxing subsequent equations whereas

in a standard Jacobi relaxation, the new updated solution replaces the old one at

the end of a complete sweep. The relaxation scheme of Venner and Ehret can be de-

scribed as follows: The point Gauss—Seldel scheme is employed in the reglons around

the cavitation boundary whereas in the reglons of the computational domain where

the pressure is small, the Gauss-Seidel line relaxation scheme is employed. In the

regions where the pressure is small the coefficient € of the Reynolds equation (3.14)

is large and the Reynolds equation (3. 14) is approximated by the Poiseuille terms (a

Poisson-type problem). The Jacobi distributive line relaxation scheme is employed

in the remaining parts o
ficient € is small and the Reynolds equation (3.14) is approximated by the Couette

f the domain where the pressure is large. Hence, the coef-

term which is dominated by the elastic considerations.

3.2.1.1 Point Gauss-Seidel relaxation scheme
A point relaxation scheme implies visiting grid points one by one in some order,

e.g. lexicographic order, and solvmg the discrete equation at each grid point on the

Seidel relaxation scheme employed around

[97] and Ehret [33] can be described as

computational domain. A pomt Gauss-

the cavitation boundary region by Venner

follows: Given an approximation P, ; and the associated approximation H; ; to the

pressure P;; and the film thickness H;; respectively at a point (Z, 7), a new pressure
approximation P;is computed using

~ -1
~ 8L;,j '
Pij =i +(5‘]§2:) " (3.18)
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where, L; ; = L(P; ;) is given by equation (2. 42), aP is given by

8[2,-; -2
2 —
7r2 /'ny (p‘t j‘[X“J] pé—l,jKi_lvi:jyj) ? . (3.19)

- hzy denotes the mesh spacings in the X and Y directions with h, = hy and r;;
the residual at the point (z,7), is given by '

rig = hoy (B Hig = PicyHiors) = by (ei—%,j(Fi—l»j — Fij)+

€i+%,j(Pi+1,; P i)+ ij-—(P Gj~1 P'iyj) + 6i,j+§—(‘5i,j+1 - Pi,j)) +d0H. (3.20)
The correction term d H in equation (3.20) is approximated by

i+l j41 C i J+1
60H = 7r2h (IOZ,] Z Z sz]lépkl_pz 1,7 Z Z K—lk,J,IJPkl) (3 21)

k=i—1l=j5-1 k=i—2 =51

. where,
Py - Bey if (I < 4)or ((k < i) and (I = j)))

0 otherwise.

6P = (3.22)

In general, it is very expensive to update the film thickness at every point
on the computational domain during the relaxation process due to the elastic de-
formation. However, an improved approximation of the film thickness , dehoted by
§H, is used when evaluating the residual r;; as can be seen from equation (3.20).
At any point (i,5), an improved approximation of the film thickness § H is com-
puted using the correction terms 6P which are close to the point (4, j) as shown in
equation (3.21). Wang [102] has shown that it is not necessary to obtain the exact
- representation of the film thigkness at a point (7, 7) since the kernel K decreases
with the distance [i — k|. After a complete sweep, the film thickness at any point

on the computational domain where the point Gauss-Seidel relaxatlon scheme is

employed is computed using the new solutlon pressure.

3.2.1.2 Gauss-Seidel line relaxation scheme

The Gauss-Seidel line relaxation scheme employed by Venner [97] in the regions of

the computational domain where the values of pressure are smal] (the coefficient € is
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large) can be described as follows: Given an old and a new pressure approximation
P”‘- and P, ; respectively to F;;, then the correction terms AP,J and the new
film thickness ;; on the line Y = 7 are solved simultaneously using a system of
equations Which involves two equations per grid point 7 and only points (4, j) where

the coefficient ¢ is large are considered. The two equations at the \grid point (¢, 5)

are of the form

2 Ngp—1

Hii— = Y K k,J,]APk,j fig + i (3.23)
' k=1" : : '

and

h;2 { €L (155-1,3' + APi—lj) + ety (15i+1,j + AP j) +
”.,_1Pm+1 + Cu—leJ 1+ (613-- + g+l TEpl; e 1,

(P,-,j + APi,j) } - hzy (Pi,jHi,j “ Pi—1,j i-—l,j) = 0 (3.24)

: Where W; d denotes the 'discretised elastic deformation, J fi; denotes the right hand
‘51de and hmy denotes the mesh spacings in the X and Y directions with h, = h,,.
Havmg computed the Correctlon terms AP, ; and H; 4 on the line Y = j

and before moving on to the line Y = j + 1, the new pressure approx1mat10n P,-,]-
is computed ﬁsing |

Pij=Fij+AP;. | (3.25)

An élternative Gaﬁss—Seidel line relaxation scheme is employed by Ehret
[33] Instead of computing AP and H simultaneously, the correction terms AP;;

" on the line Y = 7, but only at the grid points where the coefficient ¢ is large, are

first computed using the following system of equations

Gioy jAPic1j + aij AP+ @iy j APy =1y (3.26)

where,

r;; is given by (3.20),
N SR

Ai-1,5 = RZ, €i-1,j + Zhy h,y Pi-1,j Kio1i-147 5

= 1 . . —_ 2 5 K
Gij = TRz, (6i~%,j Feipy T T 6”3'"'2') ey Piilliii and
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ait1,j = T{é;ei-y%,j .
On the line Y = j, equation (3.26) results in a tridiagonal system of

equations which is solved simultaneously for the correction terms AP ;. Ha,ving "

computed the correction terms AF;; on the line Y = j and before moving on

to the line Y = 7+ 1, the new pressure approxima,tion Fi’j is computed using

equation (3.25). . i
After a complete sweep, that is when all the lnesY =3 (J=1,...,n,)

have been visited, the new pressure approximation P obtained using the Gauss-

Seidel line relaxation scheme is used to recalculate the new film thickness H.

3.2.1.3 Jacobi distributive line relaxation scheme

The distributive relaxation scheme was introduced by Brandt and Dinar [14] and

was first employed by Lubrecht and Toannides [66] to solve elasto-hydrodynamic

~ lubrication problems. Lubrecht and loannides showed that the stability of elasto-

hydrodynamic lubrication problems is improved if the employed relaxation scheme

is based on the distribution of pressure variations. The distributive relaxation is a

scheme where instead of changing the approximation at only one point, changes are

also applied to one or more adjacent points.

The Jacobi distributive line relaxation scheme employed by Venner [97]

and Ehret [33] works on the principle that the pressure at a point (i,7) depends

on the variation of pressures in the neighbourhood of the point (z,7). This scheme

is only employed in the regions of the computational domain where the pressure is

large. Hence, the value of the coefficient € is small and the solution is dominated

by the Couette term of the Reynolds equation (3.14). The Jacobi distributive

line relaxation employed by Venner [97) can be described as follows: Given an

approximation P, ; and the associated approximation H;; to the pressure P;; and
the film thickness Hi,; respectively at a point (2, ), a new pressure approximation

P, ; is computed at the end of a complete sweep, that is after all the interior lines

Y=j(=1,...,ny) have been visited, using

P;j=Pij+8Pi (3.27)
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where,

1 .

§Pi; = APij— 7 (APiyi+ AP+ AP;j1 + APij) . (3.28) .
The correction terms AP;; and the new film thickness H;; on the line

Y = j are solved simultaneously using a system of equations that involves two
equations per grid point (%, 4) and only points where the coeflicient € is small are

considered. The two equations per grid point (i,7) are of the form

Hij- %HZZ—: AKi g iAPr; = fij + Wi (3.29)
and )
€irl,j (ﬁiﬂ,j - é—%’i + APy, — APZLZ’j ) +
€+t (Pi,j+1 - é—%) + €51 (E,J’—l - Af:”) -
(Q,j-% +epy TGk T %i—%—,j) (15” - é—%:’—l—l-(—
AP ; - é%tl‘l) } —hzy (pijHis — PioyjHi-1) =0 (3.30)

where, @;,; denotes the discretised elastic deformation, fi; denotes the right hand
side, hqy denotes the mesh spacings 111 the X é,nd Y directions with A, :V hy,and
AKips; = AKipsi — 3 (AKi-1d + AKigt1i + ADKipgi-1 + AKig41) -

| Since AK;j; decreases with increasing distance |i — k| [97, 102], only
the three largest terms of the summation in equation (3.29) are employed when
cémputing AP;; and H;; using equations (3.29) and (3.30). These terms include
CAKiivigy AR and AKiit1,4- After a complete sweep, that is after all the
interior lines (j = 1, n,) have been visited, the new pressure approximation Pin
the regions of the computational domain where the Jacobi distributive line relax-

ation scheme has been employed is obtained using the correction terms AP, which

are applied distributively, as can be seen from equation (3.27).

“An alternative Jacobi distributive line relaxation scheme is employed by

Ehret [33]. As before, a new pressure approximated E; at a point (1, 7) is obtained
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using equation (3.27). However, instead of computing AP;; and H;; simultane-

‘ously, the correction terms AP;; on the line Y = 7, but only at the grid points

where the coefficient € is small, are first computed using the following system of l

equations

iz APz + 8i-1,; APi-1; T dij AP;; +
Gi1, APiyi + Givag DPi2; = Tig . (3.31)

where,
Lij= L(B;;) is given by equation (3.30) ,
L= T&;;A[(i,ifz,j,j o

2,5 = —Z%?y' €;_ -1 |

Gio1j = gz 6 (ez’—%,j +eqyy T3 T "—i,j+§-) e AKiio1;
;= 4“772; (ez'——%,j + €i+%,j + €54 + 6i,j+§) - ;Ti“,; AKisji

Givrs = B Gtk T TR, (%%,j LICTER L %‘+§) T N
o A4

- Git2,j = _ZTIZ— €+l w2k
AK; g0 = 0 Kikjl = Pi-1, Ki-1k1— i ((@'j Kik-1,1 — Pie1,j Kiz1-1,51)+
(P ; i K k1,50 — Pio1,j Ki- k1) + (Pig Kipji-1 = Pict,j Kimtkgi-1)+
(Pm Az,k,g,l+1 Pi-1,5 Kz‘—l,k,j,1+1))
and r; ;, the residual at the point (%, 4), is given by equation (3.20).

After a complete sweep, that is when all the lines Y =3 (1 =1,... ,n,)
f;é?e been visited, the new pressure approximation P in the regions of the com-
ional domain where the Jacobi distributive line relaxation scheme has been

putat

employed is obtained using equation (3.27). The new pressure approximation Pis

then used to recalculate the new film thickness H.

3.2.2 A new relaxation scheme

A new relaxation scheme has been developed and employed in this work in order to

solve elasto—hydrbdynamic lubrication point contact problems. The main aim of this
work is to derive a scheme that is simple and easy to understand and implemént,
It differs from the scheme of Venner in the sense that, though Venner's scﬁeme
has proved to be very effective, it is difficult to anderstand due to its complexity.

Besides this, it is also quite difficult for others to implement because it has not been
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described in its entirety [97]. The new relaxation scheme developed and employed

in this work employs the same general philosophy used by Venner [97] and Ehret

[33] in that either the Gauss-Seidel or the Jacobi line relaxation schemes are used l
in the diﬁ‘erentv regions of the computational domain. The choice of the relaxation

scheme depends very much on the coefficient € of the Reynolds equation (3.14).

The coefficient € is very close to zero in the contact region whereas in the non-

contact region of the computational domain the coefficient € >> 1. Hence, in this

new relaxation scheme, the Jacobi and the Gauss-Seidel line relaxation schemes are
respectively employed in the contact and non-contact regions of the computational
domain. This new relaxation scheme can be described as follows:

The discretised Reynolds equation (2.42) of & steady state elastp—hydrodynamic

lubrication point contact problem can be rewritten as

Lij=¢€_1;(Pi-15 — P ;) + 6,~+%,J—(Pz‘+1,j — Pi;) + h: hz:/_z(ei,j-%(Pi,j-—l -

Pij) + €y (Pt — Pig)) = hePigHhis = Pica Hi1j) =0 (3.32)

(i=2,...,ma=1;5=2,... ,Ny—1), denote

where, €1 ;5 €151 €iitd and €51,

the values of € at the intermediate locations midway between the mesh points and

h, and h,, are mesh spacings in the X and Y directions respectively. The coefficient

¢ is given by equation (2.43) and the density P is given by equation (2.44).

The scope of the new relaxation scheme involves employing both the

Causs-Seidel and the Jacobi line relaxation schemes on the same grid, but without

any overlap, depending on the position of the grid point (¢,7) on the computational

domain. The two relaxation schemes are employed as follows:

Given an approximation f’w and the associated approximation I?Ii,,- to the

pressure P;; and the film thickness H; ; respectively, a new approximation P;;is

~ computed using

Pij= Pij +wAPi; | (3.33)
where w is a damping factor, which is critical to ensure convergence of the method.

On the line Y = j, the correction terms AP;; (1 =1,...,m;,) are solved

simultaneously using a system of equations created at each grid point (¢, 7).

Depending on the-position of the grid point (7,7), either the Gauss-Seidel or the
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Jacobi schemes are employed. If the grid point (7, ) lies in the non-contact region

of the computational domain, then the Gauss-Seidel scheme is employed and the

équation at this grid is given by

552«- oL;;
aL’J APi1j+ =5 —F AP+ o AP"‘H,] - (3.34)

Py i 0Pt s

~ where,
f/i,j = L(P”) is given by equation (3.32) ,

8L ; 2h, [— — .
I E . z LK .. — D . 1ii—
aAP,’_l’]‘ - 61:—%1.7. 2 (pzﬂ K"v"_le:J _pz"l,J Kz 1z VI’J’J) ?
8L;; ' h2 2he (5. — .
4o ) . N Pz , . -2l (5. K. —F K. ...
SAP,',]‘ = (6,&'_%,] + 61_*_%,]) h321 (61,1—% + 6,,].{.%—) 2 (pz,] {2721.71.7 pz—l,.] Ih—l,z,_m) s
al.;.',z'
8AFi11,

and r; ;, the residual at the point (1, 7), is given by

_ bz (= Ko oo T Kt i i
=Cipl; T (i Kiitr5 = Pict Ki1i4145)

i =€y i(Pory = Pig) + € 3,5(Prni = i)+ hohg(e; 3 (Pijos —
Bij) + €541 (Pt — Big)) = ha(PiHig = Pica jHievg). (3.35)

However, if the grid point (7, ) lies in the contact region of the computa-
tional domain, then the Jacobi scheme is employed and the equation at this grid

point is as given by equation (3.34) except for the residual r; ; which is now of the

form

~

rig = €i-p (Pt = Pj)+ fz‘+lj(pi+1vi —Fij) +h: by (€ (Piga =
B;) T €+t L(Prjr — J)) b (p; ; Hi “/72'—1,jﬁi—1,j)- (3.36)

For a constant 4, that is on the line Y = j, equation (3.34) results in a
tridiagonal system of equations which is solved simultaneously for the correction
term AP. Having obtained AP using I-Line relaxation on the line ¥ = j and
before moving on to the line Y = j + 1, at every point on the line Y = 5 which lies
1n the non-contact region, as shown in Figure (3.4), a new approximation F,-J- to
' 13” is computed using equation (3.33) with the damping factor w lying in the range
0.3 to 0.9. Besides this, all the correction terms AP in the contact region on the
line Y = j are saved in order to update the solution in the contact region affer a

complete sweep, that is after all the linesY =3 ( =1,...,n,) have been visited.

-
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B8 Contact region
[T Non-contact region

Y=jtl
Y=
Y=l

Y=l

Figure 3.4: Contact and non-contact regions of the computational domain.

After all interior lines § (7 = 1, ,ny) have been visited, that is after a
complete sweep, a new approximation Pi; to 15,, is computed on the entire grid
at every point which lies only in the contact region of the computational domain.
This new approximation P;;is computed using eqyation (3.33) but this time the

~ damping factor w is chosen to be 0.1. Thus the saved values of the corrections
AP for the portions of each of the lines in the contact region of the computational
domain, shown as shaded region in Figure (3.4), are added en-masse at the end of
the ‘i‘teration. Having updated all the pressure values on the entire grid, the elastic
deformation and the pressure dependent viscosity and density at every point on the
entire grid are recalculated using the new pressure values.

The choice of the damping factor w in the non-contact region of the com-

putational domain is critical and depends very much on the load of the problem.

For highly loaded problems, 2 value close to 0.3 is recommended, whereas for lightly
loaded problems, any value in the range 0.3 to 0.8 is suitable but in order to achieve

a faster rate of convergence, & value close to 0.8 is better. However, if the problem

is highly loaded and a large damping factor close to 0.8 is used, then the solution

will diverge.

3.2.3 Differences between Venner’s relaxation scheme and
the new relaxation scheme

Venner’s relaxation scheme differs in many ways from the new relaxation scheme

developed in this work. We will now describe the differences between these two
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relaxation schemes.

Venner’s relaxation scheme employs respectively the Jacobi distributive
and the Gauss-Seidel line relaxation schemes in the contact and non-contact regions
of the computé,tional domain whereas the new relaxation scheme makes use of the
Jacobi and the Gauss-Seidel line relaxatwn schemes in the contact and non-contact

reglons of the computational domam respectively. Be51des this, Venner’s relaxation
scheme also makes use of the point Gauss~Se1del scheme in and around the cavita-

tion region. In Venner’s relaxation scheme, regions of the domain where the Jacobi

distributive line relaxation scheme is employed, the correction terms at the points

(5,7), (£ 1,7) and (3,7 £1) are used to‘update the solution at the point (1,7) as

shown in equation (3.27) whereas in the remaining parts of the domain, where the

Gauss-Seidel line relaxation and the point Gauss-Seidel schemes are employed, the

method used to update the solution is similar to the one used in the new relaxation

scheme. The solution, P, at a point (, j) in the new relaxation scheme is updated

using the correction term AP;; as shown in equation (3. 33). The correction terms

in the new relaxation scheme are obtained by solving a tridiagonal system of equa-

tions as can be seen from equation (3.34) whereas in Venner’s relaxation scheme,

regions of domain where the Jacobi distributive line relaxation scheme is employed,

the system of equations is pentadiagonal as can be seen from equation (3.30). How-

ever, in the regions where the Gauss-Seidel line relaxation scheme is employed, a

tridiagonal system of equations 18 used. In Venner’s relaxation scheme, the film

thickness equation gets updated during the relaxation process as can be seen from
equations (3.23) and (3.29). This is not the case in the new relaxation scheme.
The main difference between the Venner’s relaxation scheme and the new
relaxation scheme is in the contact region of the computational domain. This is
where the Jacobi distributive line relaxation scheme is employed by the Venner’s
relaxation scheme and the Jacobi line relaxation scheme is employed by the new
relaxation scheme. The system of equations solved in order to obtain the correction

terms and the way pressures are updated at a point (i, j) are also different in the

two schemes as can be seen from equations (3.27) and (3.33).
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3.3 Test Problem

T};is test problem, which appears in Wang [102], is solved on @ domain {(X,Y) :
35 < X <15,-20 < Y < 2.0} using the Effective Influence Newton method
(EINM) {102}, the New Relaxation Scheme (NRS), the homotopy method used by
Scales [75] and the relaxation scheme of Ehret [33], which is very similar to that
of Venner, on a single 63 X 65 grid. Howevet, due to symmetry, only the nodes
in the positive Y-direction are employed when solving using the effective influence
Newton method and the new relaxation scheme. For this highly loaded problem,
the Hamrock and Dowson’s dimensionless pareimeters with the speed parameter U
fixed at 56102 x 1011 are W = 3.4125-x 107 and G = 4865. The equivalent
— 99 and L = 16. This in turn gives A =

Moes dimensionless parameters are M

923975 x 10~2. The pressure viscosity index o = 2.2056 x 1072 and the maximum

Hertzian pressure, ps, at this load is 1.21 GPa. Hence, the value of @ = ax p, = 21.

ensionless parameter @ indicate the

the higher the load.

" The maximum Hertzian pressure ph and the dim

load of the problem and the higher their values,

3.3.1 Discussion

Tables (3.1), (3.2), (3:3) and (3.4) show respectively how the numerical solution
obtained using the effective influence Newton method, the new relaxation scheme,
‘ (75] and the relaxation scheme of Ehret [33]

labelled Its. The results obtained using the

the homotopy method used by Scales

changes with the number of iterations,

homotopy method used by Geales and the relaxation scheme of Ehret were commu-
mcated to us. The central, labelled Hcent, and the minimum,‘labelled Hmin, film
thicknesses obtained using the four schemes indicate that the new relaxation scheme
and the relaxation scheme of Ehret are more efficient than the effective influence
Newton method. The discrepancy in the minimum and central film thicknesses ob-
tained using the four methods is very small. However, the values obtained by Scales
[75] using the homotopy method as shown in Table (3.3) are somewhat different.
The discrepancies in the values obtained using the other three methods as shown.

in Tables (3.1), (3.2) and  (3.4) are gegligible and comparing these values with

.
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the homotopy method, the discrepancies are more apparent but still compara,ble
The reason for this is not very clear. The number of 1terat10ns carried out when
using the effective influence Newton method is much higher than the other three
methods. The homotopy method, which is very robust and powerful, has the least '
qumber of iterations but this is at the expense of large computational time.

Also shown in Tables (3.1), (3.2), (3.3) and (3.4) are the Root Mean
Square Residuals, labelled RMSRES, which represents the Ly-norm, that is

mx Py

Z D RESY, | (3.37)

RMSRES = J
where, m, and n, are respectively the maximum number of points in the X and Y
directions and RES;; is the residual at the point (¢,7). In terms of efficiency, the

new relaxation scheme and the relaxation scheme of Ehret are very comparable and

there is very little to choose between the two methods. The homotopy method has

. the smallest root mean square residual compared to the other methods.

Its Hcent . Hmin RMSRES AP,
100 0.1230 0.0684 9.162E-3 4.785E-3
500 0.1829 0.1030 5.293E-3 4.352E-5
1000 0.1882 0.1052 2.529E-3 1.011E-5
1500 0.1897 0.1057 1.097E-3 3.513E-6
2000 10.1902 0.1058 4.588E-4 1.355E-6
2900 0.1905 0.1059 9.990E-5 2.447E-7

Table 3.1: Results obtained using the effective influence Newton method. ”

Its Hcent Hmin RMSRES AP,

100 0.1795 0.0956 4211E-3 3.181E-3
300 0.1903 0.1059 3.149E-4 8.986E-6
1400 £ 0.1905 0.1059 - T.081E-5 | 2.129E-6
500 0.1906 0.1059 1.563E-5 4.659E-7
600 10.1906 0.1059 3.447E-6 1.022E-7
680 .0.1906 , 0.1059 9.968E-7 2.952E-8

Table 3.2: Results obtained using the new relaxation scheme.
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Its Hcent Hmin RMSRES AP,

10 0.0882 0.0481 1.672E-3 7.600E-6
15 0.0895 O 0.0486 1.662E-3 1.268E-3 |
30 0.1442 0.0746 1.111E-3 4.364E-3
40 0.1723 0.0912 6.355E-4  4.319E3
50 0.1968 0.1087 1.155E-4 . 4.496E-3
53 0.2020 0.1124 2.535E-7 7.327E-4
54 0.2020 0.1124 ~ 1.701E-9 1.099E-5

Table 3.3: Results obtained using the Homotopy method.

Its ' Heent ~ " Hmin RMSRES
50 0.1836 . 0.1043 2.425E-1
300 0.1896 0.1060 1.538E-4
400 0.1896 | 0.1060 8.036E-6
oo | 0.1896 0.1060 4.209E-7
600 0.1896 | - 0.1060 3.269E-8

Table 3.4: Results obtained using the relaxation scheme of Ehret.

The last columns, Jabelled A P, where the subscript s indicates that it is

on a single grid, in Tables (3.1) (32) and (3.3) show the changes in the solution

pressure from one iteration to the next and it is computed using

:inlpé}fj‘lai’ffl
AP, = k | (3.38)
PE.

where k indicates the k" jteration. Though the change in the solution, A P,, is

commonly used [102] as a means for testing the accuracy and convergence criterion,

it is really not a good practice since it can be misleading as it only indicates the

change in the solution pressure at each iteration. It is possible to get very small

changes and the solution might be diverging from the true solution.
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3.4 Smoothing Analysis

[

The convergence behaviour of any numerical solver depends strongly on the relax-.

ation scheme being employed. The employed relaxation scheme must have a good

smoothing property. However, the convergence behaviour in itself does not say

anything about the actual smoothing efficiency. The smoothing efficiency can be

analysed using a local mode Fourier analysis [12, 105].

In order to analyse the new relaxation scheme described above in Sec-

tion 3.2.2 for solving elasto—hydrodynamic lubrication problems, we need to consider

the Reynolds equation (2.41) of Chapter 2. For convenience, it is of the form

o (0P o (oP\_09(pH) _
57(65’55)%7(631/) ox " - (339)

where, the first two terms are the Poiseuille terms and the third term is the Cou-

ette term. As described above In Section 3.2, the coefficient € of the Reynolds

" equation (3.39) varies several orders of magnitude over the computational domain.

In the contact region, € is very close to zero whereas in both the inlet and outlet

regions of the computational domain, € >> 1. When € is very close to zero (contact

region), the Reynolds equation (3.39) is approximated by the Couette term, that is

d(pH) _
%~ 0 . (3.40)

and when ¢ >> 1 (remaining pats of the domain), the Couette term 2 is small

ation (3.39) is approximated by the Poiseuille terms, that is

o (OPY, 0 (P |
5—)-(—(6—8——)—(->+6Y(68Y ~ 0. | (3.41)

In order to carry out a local Fourier analysis of the new relaxation scheme,

and the Reynolds equ

which depends on the coefficient €, the two approximations of the Reynolds equa-
tion (3.39), that is equations (3.40) and (3.41), must be considered. The new

relaxation scheme uses the Jacobi and Gauss-Seidel line relaxation schemes on the

same grid depending on the value of €. The Jacobi and Gauss-Seidel line rélax—

ation schemes are respectively employed in the contact and non-contact regions of

the computational domain. This means that the Jacobi line relaxation scheme is

employed to solve equation (3.40) and the Gauss-Seidel line relaxation scheme is
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employed to solve equation (3.41). Due to the complexity of equation (3.40), we

~will only consider the local Fourier analysis of the new relaxation scheme using

équation (3.41).
3.4.1 Fourier analysis of the Poiseuille terms

Consider the simpler case of when € >> 1. Assuming that ¢ is constant, then

equation (3.41) can be rewritten as

?P(X,Y) 9P, Y) F(X,Y :
—-——53(7"4' —5yz F( ) (3.42)

which, as described in Chapter 2, is dlscretlsed using central differencing at each

non-boundary mesh point ({,m), (({ = 1)h:ny + Xa, (m = 1hgy + Y2) where XY €

[Xa, Xs] % [Y,, ;] and hgy is the grid mesh spacing in the X and Y directions.

Equation (3.42) in discretised form can be written as
h 2 (P + Prasm + Pymir + Pum-1 = 4Pm) = Fim - (343)
the X and Y directions.

where hgy is the grid mesh spacing in

In the new relaxation scheme, when € >> 1, the Reynolds equation (3.39),

when discretised, is approximated by equation (3.43) which is solved using the

Gauss-Seidel line relaxatlon scheme. In aline relaxation scheme, instead of scanning

the grid points one by one in some order e.g. lexicographic order, and solvmg the

discrete equation at each grid pomt a system of discrete equations on a line of

points are solved simultaneously. This is normally done in the direction of strong

coupling. Hence, for elasto-hydrodynamic lubrication problems, I-Line relaxation

scheme is employed and all the points ({,m) on the horizontal line ¥ = m are

con31dered
If Pis an approx1mat10n to P, then the new approximation P must simul-

taneously satisfy all the equations (3.43) on the line Y = m. Hence, Py, satisfies
h72 (Pi- 1m+P1+1m+sz+1+P1m—1-—-4P1m)—Fz,m (3.44)

The error at the point (/,m) before and after a relaxation is respectively gwen by

Bim and Uy m, where

'51'711, = B,m - pl,m anld Ul,m = Pl,m - _P-l,m . (345)
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Generally, iterative schemes have the property of reducing the non-smooth

(high frequency) part of the error at a much faster rate than that of the smooth part.

This fact is exploited by the multigrid method where coarser grids are employed in
order to deal with the smooth part of the error. When using multigrids, the role of

relaxation is not to reduce the error but to smooth it out. One way of understanding

the smoothing properties of grid functions is by means of Fourier anz}lysis [12, 105].

This is a local process and is & very good technique for analysing the true behaviour

of modes with high frequencies which represents the non-smooth part of the error.

However, this technique is inaccurate for modes with smaller frequencies but this can
be ignored when using the multigrid method because modes with smaller frequencies
can be represented on coarser grids. ‘

Since smoothing is a local process, it can be analysed locally on a particular

grid by representing the errors in terms of Fourier series. Hence, the Fourier series

representation of ¢ and T is of the form:

Vpym = Z 1‘1(91, 02)ei(9“+62m) - and -’I-J—I’m = ZZ(GI’ 62)ei(911+92m) ) (346)
where, {8 = (61,62) : —7 < 9 < 7). Subtracting equation (3.44) from equa-
tion (3.43) gives

‘70—1-1,m + Tit1,m + Otmtt T Um—1 ~ 401 = 0 : (347)

which, using equation (3.46), can be rewritten as

(e + M + e - 4)A(6:,62) + € A61,62) = 0, (3.48)

which shows the relation between the amplitudes of a Fourier component before

and after relaxation. Consequently, the amplification factor () of the 8 = (6,,6;)

component is

O
u(60,02) = 135, 9] ~ A 2eosh — ]

(3.49)

Figure (3.5) shows the amplification factor as a function of § = (61,6,) for the
Gauss-Seidel line relaxation scheme which is employed when the coefficient € >> 1.
Since 11(8) < 1, the schemeis stable for all values of §. We can also see that u(8) — 1

as 0 — 0 which means that the low frequency (smooth) error components are not
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reduced by the relaxation as effectively as the high frequency (non-smooth) error
components. Since we are only interested in the smoothing effect, the reduction of
‘the high frequency components of the error can be measured by a quantity called’
the smoothing factor, T, {12, 105] which is defined as the maximum amplification

factor for the error components that can be represented on a grid with coarser mesh,

that is
7(0) = maz p(01,92) (3.50)

where, {0 = (61,0,) : 0: € [-m, =3 U (2, 7] with the subscript t =1,2}. The

smoothing factor g for this problem is 0.%4.
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Figure 3.5: Amplification factor p(f1,02) for Gauss-Seidel line relaxation.

3.5 Conclusion

The inverse method [29, 33, 37, 61] and the direct iterative methods [25, 36, 45, 84]

were the earliest methods employed to solve elasto-hydrodynamic lubrication prob-

lems. However, these methods are not ideal for solving practical problems found in
. )

industrial applications due to computational costs and numerical instabilities, espe-

cially when solving highly loaded problems [68, 97]. Solving highly loaded problems

requires a lérge number of mesh points in order to obtain realistic solutions but, due

to large CPU times, these methods are not ideal for solving these problems. Hence,
?

these schemes are mainly used to solve line contact and lightly loaded problems.
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However, new schemes have emerged recently, but they are still restrictive. One

cuch method is Wang’s [29] effective influence Newton method which is suitable for
.solvmg point contact problems, but the use of finer meshes is restricted due to large "

CPU times. This method seems to work as it is shown by Wang [102] but it is not

as efficient as the new relaxation scheme which is developed in this work. Another

method is the homotopy method [75] which is very robust but at the expense of

large CPU times.
A big breakthrough in reducing CPU times was achieved by Lubrecht [68]

who introduced the multigrid method in solving elasto—hydrodynamic lubrication

problems. Hence, problems with a large number of mesh points could now be solved

routinely. Since Lubrecht made use of ‘the Gauss-Seidel relaxation scheme, the

problem of instability was still an issue. This problem arises due to the nature of the

Reynolds equation of the elasto-hydrodynamic lubrication model. The coefficient €

of the Reynolds equation varies several orders of magnitude over the computational

domain. In the contact region, it is extremely small and it can be as small as 1015

whereas in the non-contact region, € >> 1 and it lies in the range 10 to 105. Due to

the extreme values of the coefficient € over the computational domain, the character

of the problem changes. This means that whichever relaxation scheme is employed

to solve elasto-hydrodynamic lubrication problems, it must be able to cope with

the extreme values of the coefficient €. Hence, the coefficient € plays an important

role in deciding which relaxation scheme to use when solving these problems.
Following Lubrecht’s work, Venner [97] employed the multigrid method

and developed a relaxation scheme dependent on the coefficient e. Hence, Venner

was able to solve point contact problems that were previously unsolvable. More

recent work involving the use of the multigrid method includes that of Ehret [33]

who has also employed a relaxation scheme which is very similar to that of Venner.
The new relaxation scheme developed in this chapter also depends on the
coefficient e. The idea is to use different relaxation schemes on the same computa-

tional domain depending on the coefficient €. In the contact region, the coefficient

¢ is very close to zero whereas in the non-contact region of the computational do-

main, the coefficient € >> 1. Hence, in the new relaxation scheme, the Jacobi and

-
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the Gauss-Seidel line relaxation schemes are respectively employed in the contact
and non-contact regions of the computational domain. The new relaxation scheme
is very simple and easy to implement and understand compared to the relaxation
schemes of Venner and Ehret. In the next chapter, we will present a multigrid solver

for elasto-hydrodynamic lubrication problems based on the new relaxation scheme.
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DEVELOPING AN EHL
SOLVER USING MULTIGRID

The multigrid method has been extensively used to solve various boundary value

problems [12]. However, its use for solving Elasto-Hydrodynamic Lubrication (EHL)

problems is relatively new. The multigrid method was introduced into the field of

tribology by Lubrecht [68] who through his extensive work [65] has made it a very

efficient method for solving elasto-hydrodynamic lubrication line and point contact
problems. The use of the multigrid method makes it computationally less expensive
to solve elasto-hydrodynamic lubrication problems using a large number of mesh

points. In order to obtain better efficiency, the use of a large number of mesh

points is crucial especially for highly loaded problems. The use of iterative schemes

to solve highly loaded problems is very expensive ,computationally. Generally, the

use of inappropriate iterative schemes for solving system of equations arising from

the discretisation of partial or integro—diﬂeréntial boundary value problems may

result in stalling, [13, 53], where the computational time taken to achieve a émall :
physical effect is large. For example the error reduces by 2 small amount from one

iteration to the next. Hence, computationally this can be very expensive.

-

64
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The aim of this work is to develop a fast, robust and general purpose

numerical solver for elasto-hydrodynamic lubrication point contact problems using

the multigrid method. Hence, this chapter begins with a general description of

the multigrid fnethod. This includes both the Correction Scheme and the Full Ap-

proximation Scheme (FAS). The correction scheme is employed when solving linear

problems and since elasto-hydrodynamic lubrication problems are non-linear the

correction scheme cannot be employed and a full approximation scheme must be

used. The inter-grid operators, namely the restriction and the prolongation oper-

ators, used to transfer the residuals and the corrections from one grid to another

are also described. An account of diffe:ent multigrid cycles, namely V and W cy-

cles, is given together with the full—multigrid scheme. The full-multigrid scheme

which instead of using coarser grids only to accelerate convergence, also uses them

to generate accurate first approximations on the finest grid. Also presented in this

chapter will be a general overview of the use of the multigrid method to solve elasto-

hydrodynamié lubrication problems. This chapter will conclude with a description

of how a multigrid solver for elasto—hydrodynamic lubrication problems (multigrid

solver) employed in this work is developed. This is achieved by making use of the

new relaxation scheme described in Section 3.2.2 of the previous chapter and the

FDMG Multigrid Software [92].
menting the multigrid method in the multi

this chapter. The FDMG multigrid software is a simple general purpose solver, and,

The latter is used as a starting point for imple-

grid solver and will be described later in

in order to solve elasto-hydrodynamic lubrication point contact problems, additions

and modifications are made to the FDMG multigrid software in order to deal with

the complexity of the elasto-hydrodynamic lubrication model.

4.1 Multigrid Method

In general, when using the multigrid method, the governing equations are discretised

on several grid levels and are approximated at each level by a system of equations.
The residuals of these equations are calculated on the finer grid level and then

transferred down to the coarser level where correction terms are computed. The

»
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corrections from the coarser grid level are then used to obtain the corrections on

the finer grid level. This is repeated until the residuals on the ﬁnest grid level are

‘sufﬁmently small.
In order to understand the principle of multigrid fast solvers, an insight

into the nature of the algebraic errors associated with the conventional iterative

schemes is required. Besides this, an understanding of how these schemes reduce the

errors is also required. Generally, iterative schemes have the property of reducing

the non-smooth (high frequency) part of the error at a much faster rate than that of

the smooth part which is associéted‘ with low frequencies. When using multigrids,
the role of relaxation is not to reduce the error but to smooth it out. This is achieved

by making use of a sequence of coarser grlds In a multilevel solver, which makes use

of a series of coarser grids, each high frequency component of the error, which has

a wavelength of the order of the mesh size, i8 reduced on one grid until it becomes

smooth when the same procedure is applied on a coarser grid. The smooth part of

the error, which is associated with lower {requency, can be adequately represented

on a coarser grid. A good {llustration of this is provided in the multigrid guide of

Brandt [13] and the tutorial by Briggs [18].

In order to understand the multigrid method, consider the simplest case

of a two grid method and consider the following problem

Lu=f on § ‘ (4.1)

where, L is the differential operator, v is the solution and f is the source term (rhs).

" Discretisation of equation (4.1) on a uniform grid with mesh size h gives

b= ‘ 42)

Let @" be an approximation to the true solution y_f‘, then the error is given by

§.h y'.h - ﬁh | : (43)

il

' and the residual or defect is given by |
h_ rhoh |
= -Ue “(4.4)
Using L*ut = f*, equation (4.4) can be rewritten as

ot = Lt — L (4.5)
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If L* is a linear operator, then equation (4.5), using equation (4.3), reduces to

Lheh — zh . (46)

and is called the Correction Scheme (CS).
At this point the error e* is evaluated using equation (4.6) but after a few

iterations or ’relaxations’ it will be smooth compared to the mesh size. Hence, using

the approximation L of L* on a coarser grid with mesh size H, where i = 2h,

the correction term v¥ is calculated from
L = Iir! . (4.7)

where, I is a restriction operator that restricts r”* to a coarser grid. The restriction

operator is called the fine to coarse grid operator.

Using the obtained solution #” which is an approximation of v" the

approximation %" on the fine grid is corrected using
gt =i+ I5" | (4.8)

where I 1 is a prolongation operator. It is known as the coarse to fine grid operator

or the interpolation operator.
In elasto-hydrodynamic lubrication problems, since L” is a nonlinear op-

erator, the correction scheme given by equation (4.6) is not applicable. Hence, an

alternative coarse grid equation for the solution of the error must be derived. This

can be achieved by rewriting equation (4.5) using equation (4.3) to get

h Lhyh _ Lh@h — Lh(@h—f-gh) _ thh : (49)

r’ =

which can Be rewritten as
LMah + ety = Lrah + b | (4.10)

Equation (4.10) is usually referred to as the Full Approximation Scheme
(FAS) and is used to obtain an approximation of the error on the coarse grid_ The
FAS coarse grid representation of equation (4.10) is given by

R H
L7" = f (4.11)
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where ©77 is a coarse grid variable given by

@ = Iflit + e’ | (4.12)

and f" is the FAS right hand side which is given by

1= PP + 1

where {1 is a restriction operator.

Suppose @ is an approximation to the solution 4 of equation (4.11),

then the coarse grid approximation &¥ of the error e/ is given by

et =g = Iffa". (4.13)

Using equation (4.13), the fine grid solution &" is improved using
@t =gt + IhE" - 1) | (4.14)

where 7 is a restriction operator from grid h to H and [ hisa prolongation operator

from grid H to A.

4.1.1 Restriction operator

The restriction operator, also known as the fine to coarse operator, is defined as
follows: If u" is a fine grid function, then using a restriction operator I a coarse
grid function is given by I u*. The most straightforward and simplest restric-
tion operator is straight injection. This is where the value on a coarse grid point
simply takes the value from the corresponding fine grid point, that is I7 y* = b,
This can be seen from Figure (4. 1) where the fine grid points are represented by

F;,i=1,...,9, and the coarse gmd points are represented by C; , i =1, ... 4.
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F .C F F.C
4 4 8 33
F F F
7 5 6
F.C F F.,C
1 1 9 2 2

F : Fine grid points
C : Coarse grid points

Figure 4.1: Restriction operator - Injection: C;=F,,i=1,...,4

As an alternative, the value on a non-boundary coarse grid point coinciding

with the fine grid point can- be obtained by taking the weighted average of the

values of the fine grid point and some points adjacent to it. This can be seen from

Figure (4.2), where the coarse grid point C can be represented as a weighted average

of the fine grid point Fs, which coincides with the coarse grid point C, and the eight

fine grid points surrounding it.

F F F
4 8 3
E C,E F
7 5 6
F F E
1 9 2

F : Fine grid points
~C: Coarse grid points

Figure 4.2: Weighted restriction operator.

A more commonly used form of a weighted restriction operator I, H is known as the
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full weighting. In a 2-d stencil notation, it is of the form

1 1 L
16 8 16
H_| 1 1 1 '
=135 1 s (4.15)
1 1 L
16 8 16
whereas in a 1-d stencil notation, it is given by
H__ {1 1 1
I = [ 7 2 1 ] . (4.16)

4.1.2 Prolongation operator
The prolongation or interpolation operator, also known as the coarse to fine opera-

tor, is defined as follows: If u!! is a coarse grid function, then using a prolongation

operator I} a fine grid function is given by Ifyu. The most popular prolongation

operator is simple linear interpolation on a regular mesh. This is where values of

all the fine grid points not coincident with the coarse grid points are obtained by

taking averages of the coarse grid points. When two points are coincident, then the

value on the fine grid point simply takes the value from the corresponding coarse

grid point as can be seen from Figure (4.3)-

C F C
4 8 3
F 13 F
7 5 6
C F C
1 9 2

F : Fine grid points
C : Coarse grid points

Figure 4.3: Prolongation operator - Linear Interpolation.

In Figure (4.3), the fine grid point Fs is obtained using the aver;ge of

the four coarse grid points Cy, Ca, Caand Cy whereas the intermediate fine grid

points Fa, Fr, Fs and Fy are obtained by taking the average of their respective two
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adjacent coarse grid points. For example Fr = (Cy 4 C4). The fine grid points
coinciding with the coarse grid points take on the values of the corresponding coarse

| grid points. For example, F1 = ¢,. The fine grid points Fy, F2, F5 and F) are not’

shown in Figﬁre (4.3).

4.1.3 Coarse grid correction cycle

If the number of nodes on a fine grid is large, then the number of nodes on a coarser .
grid with H = 2h may still be considerable. Hence, the error on this coarse grid

may still be smooth and can be represented more accurately on an even coarser grid

with mesh size 2H. Obviously this idea can be applied recursively until the coarsest

grid is much smaller than the original ﬁpest grid and the equations on this coarsest

grid can be solved almost exactly. The superscript k is now used to indicate the

grid level. The mesh size on level k is given by 2¥ +1 and k = 1 indicates the

coarsest grid. The algorithm for Coarse-Grid Correction [13] is as follows:

o Using the approximate solution compute the residual on the fine grid.

e Restrict the residual on to the coarse grid.

Qolve for the correction on the coarse grid.

tion on to the fine grid.

Prolong the correc

Compute the new approzimation to the solution.

A single relaxation may not be sufficient to reduce the non-smooth com-

ponents of the error. Many relaxation schemes act as good smoothing operators

where the amplitudes of non-smooth (high frequency) components are reduced by

Jarge factors on each iteration. Hence, the multigrid method is a combination of

relaxation schemes and Coarse-Grid Correction. A two grid iteration is of the form

e Pre-smoothing: Perform v1 relaxation sweeps to obtain a new approximate -

solution.

e Coarse-Grid Correction: Algorithm given above.
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e Post-smoothing: Perform vz relaxation sweeps to compute a new approxima-

' tion to the solution.

Using the above two grid iteration method, a multigrid method is easily
obtained. Instead 5f solving the correction on the coarse grid, an approximate solu-
t1on of the correction is obtained by introducing an even coarser grid and employing
the two grid iteration method. This process can be repeated recursively down to

the coarsest grid where the correction is computed exactly.

Level

Finer grid K /

Coarser grid 1

Y%, Y Hand % denotes number of relaxation sweeps

\ Denotes restriction

/ Denotes prolongation

Finest grid GK | /@ Le;el % | | /@
A @
R/ ®\/®\/

Coarsest grid 1

1 CGC (V-cycle) 2 CGC (W-cycle)
Level
Finest grid x x
W

Coarsest grid

1 CGC (V-cycle) <2 CGC (W-cycle)

Figure 4.4: Structure of multigrid cycles.

One 1terat10n of the multigrid method is called a cycle which starts from .

the finest grid to the coarsest grid and back to the finest grid. The structure of a

cycle depends on the number, 7, of two grid method iterations at each intermediate
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stage. A V-cycle and a W-cycle are obtained when v = 1 and v = 2 respectively as
shown in Figure (4.4). The pre-smoothing and post-smoothing relaxations, that is

"v; and vy respectively, are normally of the order between 2 and 4.

4.1.4 Full-multigrid

In general, when using multigrids, coarser grids a,re‘used to accelerate convergence.
However, if computations are started on the finest grid using an initial approxima-
tion, then it is possible that the algorithm might diverge hdue to an unfortunate
choice of the initial approximdtion. This is unlikely to happen and vthe efficiency
can be improved if coarser grids are used to generate an initial approximation on
the finest grid. This is known as the full-multigrid method which is also known as
nested-iteration [13, 105]. Hence, instead of starting with an arbitrary initial ap-
i)roximation on the finest grid, the first apPI‘OXim?tiOﬁ is obtained by Prolongatibn
from a coarse grid solution, u**! = I FARETIS This process can be applied recursively

starting from the coarsest grid as shown in Figure (4.5).

Level

®

o

o9
3 | (%) d( |
O @/@/ @/ |
Coarsestgrid 1 ) ® / |

Figure 4.5: Full-multigrid with one V cycle.

Finest grid 4

4.2 Overview of the Multigrid Method for Solv-
ing EHL Problems

The computational cost of using direct linear equation solvers for elasto—hydrodynamic,
lubrication problems, as outlined in Chapter 3, restricts their use to small num-
bers of mesh points. This makes it difficult to solve problems which require larger

meshes to be used to obtain a good solution. However, the use of multigrid tech-
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niques [13, 18, 105] together with good relaxation schemes does help in resolving
the complexity of the iteration schemes. |

The multigrid method has been used extensively to solve a very wide range’
of boundary value problems [12] and has shown itself to be a very computation-
ally efficient solver. This propeity of the multigrid methods has been exploited on
various problems [13] from simple to complicated non-linear systems. This method
is used extensively in the field of Computational Fluid Dynamics.’ This includes
potential equations, Euler equations and Navier-Stokes equations with and without |
turbulence models. Multigrid methods are also used in conjunction with efficient
grid adaptation schemes where different scales of mesh spacing are neeeded in dif-
ferent parts of the domain. ‘

When solving elasto-hydrodynamic lubrication problems, Lubrecht [68, 65]
developed a scheme based on the multigrid method to solve both line and point
contact problems. A simple Gauss-Seidel relaxation scheme [55, 105] is used in
solving the Reynolds equation of the elasto-hydrodynamic lubrication model with
the multigrid method being incorpqrated in order to accelerate the convergence.
Lubrecht [65] showed that the cbmputing time is greatly reduced when solving line
and point contact problems on a relatively large number of nodes using the multigrid
method. Since Lubrecht employed the Gauss-Seidel scheme, highly loaded problems
could not be solved due to the sensitivity of viscosity to pressure WhichA may lead
to instability [101]. However, by making use of the multigrid method, Lubrecht
solved previously unsolvable problems due to excessive computational times, using
a large number of mesh points in limited computational times and on computers
with reasonable power. The multigrid method is now regarded as one of the most
efficient methods for solving elasto-hydrodynamic lubrication problems.

An efficient multilevel solver requires a relaxation scheme that reduces the
high frequency error components. For lightly to moderately loaded problems, a
Gauss-Seidel relaxation scheme is sufficient as is shown by Lubrecht [65]. How-
ever, instability problems do arise when solving highly loaded problems usiné the -
Gauss-Seidel relaxation scheme. Following Lubrecht’s work, Venner [97] used the

multigrid method and developed a relaxation scheme for solving lightly to highly

-
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1oaded line and point contact problems. Hénce, the problem of instability associ-
ated with highly loaded problems found in practice was no longer an issue. This

' :relaxation scheme was later used and exten‘ded slightly by Ehret [33]. The problem
of instability can also be overcome by employing the new relaxation scheme. The
relaxation scheme of Venner and the new relaxation scheme are both described in
detail in Chapter 3.

The multigrid solver for elasto-hydrodynamic lubrication [;roblems makes
use of the new relaxation scheme and the FDMG Multigrid Software [92]. The latter ”
is used as a starting point for implementing the multigrid method into the multigrid
solver. However, additions and modiﬁgations are made to the FDMG multigrid
software due to the complexity of elasto:hydrodynamic lubrication problems. The
multigrid éolver for elasto-hydrodynamic lubrication problems (multigrid solver)

will be described later in this chapter but we will now look at the FDMG multigrid

software.

4.3 FDMG Multigrid Software

The FDMG Multigrid Software of Shaw [92] is a Full Approximation Scheme (FAS)
multigrid solver for non-linear systems of partial differential equations on a finite
" difference mesh. It is a simple general purpose solver written in Fortran and mainly
used as a teaching and research programn. The software allows the user to experiment
with different tools which includes the option of different relaxation schemes, re-
striction procedures (Injection and Full weighting) and cycling strategies (V and W
cycles). The relaxation schemes include the Jacobi and the Gauss-Seidel schemes
and they can be implemented either as point or line relaxation schefnes. These
relaxation schemes are described in detail in Chapter 3 whereas the restriction pro-
cedures and the cycling strategies of the multigrid method are described above in
Section 4.1. The structure of the FDMG Multigrid Software can be divided into
two parts, the Initialisation Process and the Multigrid Driver. ‘

The Initialisation Process deals with the initialigation of the global argu-

ments and the checking of the input parameters to see if they are sensible. The ini-

-
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tialisation of the global arguments involves the setting up of various global switches
which are defined using common blocks. This is achieved by a,r_lalysing the chosen
“smoothing (relaxation) method, defining a sequence of coarser grids from the given
finer grid, initialising the initial solution and setting up of all the grid geometries
together with their mesh coordinates. The process of checking the input para,rheters
involves making sure that the sequence of grids are suitable for multigrid, checking
that the chosen smoothing (relaxation) method is compatible with t};e damping fac-
tor chosen by the user and making sure that the arrays are dimensioned sufficiently
large to cope with the number of points being used to solve the elasto-hydrodynamic
lubrication problem. |
The Multigrid Driver is the main body of the FDMG multigrid software
and its function is to carry out the multigrid cycles (iterations) which can either be a
V-cycle or a W-cycle. These cycles are described above in Section 4.1.3. The struc-
ture of the Multigrid Driver is made up of Pre-smoothing, Coarsest Grid Solution
and Post-smoothing as shown in Figure (4.6). The restriction and the prolonga-
tion inter-grid operators are employed respectively in between Pre-smoothing and
Coarsest Grid Solution and Codrsest Grid Solution and Post-smoothing as can be
seen from Figure (4.6). The concepts of pre-smoothing, coarsest grid solution, post-
smoothing, restriction and prolongation are associated with the multigrid method
and are described above in Section 4.1. The main subroutine calls madé from the
Multigrid Driver, as shown in Figure (4.6), are to the subroutines SMOOTH, CRHS
‘and PROL which are part of the FDMG multigrid software. A description of these
three subroutines will now be outlined starting with the subroutine SMOOTH which

will be followed by the subroutines CRHS and PROL.
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—————2> | Pre-smoothing: call SMOOTH}

Coarsest Grid

| % YES

[Coarsest Grid Solution: call SMOOTH]

K

NO : Finest Grid

YES

[ Terminate Cycle —J

Figure 4.6: Structure of Multigrid Driver of the original FDMG multigrid software.

e Subroutine SMOOTH

This subroutine organises the smoothing (relaxa,ti‘on) method by making a subroy-
tine call to either POINTS, ILINES, JLINES or KLINES depending on the users
Hchoice of the émoothing (relaxation) method. The subroutine POINT S is used
to implement a standard point relaxation scheme [13, 55, 105]. The subroutines

ILINES, JLINES and KLINES are used to implement respectively the I—h’ne,\ J-line |
and K-line relaxation schemes. The concept of all these three relaxation schemes

is to solve simultaneously a system of discrete equations on a line of points in
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the direction of strong coupling. For example, if there is strong coupling in the
Y -direction then the I-Line relaxation scheme must be used by calling the subrou-
“tine ILINES. Similarly, if there is strong coupling in the Y and Z directions then
the J-line and K-line relaxation schemes must be employed respectively by calling

JLINES and KLINES. The structure of the subroutines ILINES,

the subroutines
JLINES and KLINES are exactly the same except for the order in Whlch the relax-

ations are carried out. This can either be on the line of points in the X-direction

for ILINES, Y-direction for JLINES or Z—dlrectlon for KLINES. In all these three

subroutines, a system of block tridiagonal equatlons on any line of points is solved

by calling the subroutine T HOMAS which employs the widely-used Thomas’ algo-

rithm [5] (LU decomposition) to solve a block tridiagonal system of linear equations

using the Gaussian climination with partial pivoting.

¢ Subroutine CRHS

This routine is used to calculate the Full Apprommatlon Scheme (FAS) coarse gnd

right hand side by restricting the fine grid solution and residual to the coarse gnd

This process is described above in Section 4.1.

o Subroutine PROL

This routine is used to prolong from a coarser to a finer grid by adding the coarse

grid correction to the fine grid solution. This is done by finding the coarse grid

correction and adding it to the fine grid solution. This process is also described

above in Section 4.1.
The ease of using the FDMG Multigrid Software [92] made it a good start-

ing point for developing the multigrid solver for elasto-hydrodynamic lubrication

circular contact problems.

4. 4 ‘Multigrid Solver for EHL Problems

The multlgmd solver for elasto-hydrodynamlc lubrication problems (multigrid solver)
uses the new relaxation scheme of Chapter 3 and the above FDMG Multigrid Soft-

ware [92]. The lafter is used as a starting point for developing the multigrid solver.
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The complexity of the elasto-hydrodynamic lubrication model, which is described
in Chapter 2, means that many modifications had to be made to the FDMQG multi-
~ grid software to produce the multigrid solver. The structure of the multigrid solver
for elasto-hydrodynamic lubrication problems is made up of the Driver Program,
Modified FDMG and EHL Routines. The aim is to let the user drive the multigrid
solvér by calling Modified FDM G from the Driver Program. Modified FDMG fhén
interacts with the EHL Routines until convergence or the requestedw number of iter-
ations have been completed. The convergence criterion used can be based on either
the root mean square residual which is described in Chapter 3 (and will also be
covered in Chapter 5) or the change in the pressure solution on the finest grid and
the coarser grid just below it. The latter concept of checking convergence is more
commonly used and will be described in Chapter 5. We will now give an outline of

the Driver Program, Modified FDM G and EHL Routines of the multigrid solver for

elasto-hydrodynamic lubrication prbblems (multigrid solver).

4.4.1 Driver Program

T}iis routine is provided by the user of the multigrid solver. All the input param-
eters of the elasto-hydrodynamic lubrication problem to be solved must be defined
in this routine. This includes the number of mesh points to be used, the computa-
tional domain on which to solve the problem, the parameters needed to define the

elasto-hydrodynamic lubrication problem and the parameters required to drive the

Modified FDMG.

4.4.2 Modified FDMG

This fépresenfs the modified version of the origiriajl FDMG Multigrid Software [92]
which is described above in Section 4.3. The structure of the Modified FDMG@ is
now made up oi" the Initialisation Process, Full-multigrid and Multigrid Driver.
The Initialisation Process is the same as before but now it also covers
the initialisation of the arguments associated with elasto-hydrodynamic lubriéation
problems. This includes the classification of elasto—hydrodynamic lubrication prob-

lem and the calculation of the coefficient matrix K which is used to evaluate the
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elastic deformation and is described in detail in Chapter 2. The coefficient matrix
K is calculated and stored once on every grid. |

The purpose of Full-multigrid is to implement the full-multigrid scheme
| which is described above in Section 4.1.4. Since the full—mﬁltigrid scheme is not
available in the original FDMG multigrid software, it is added into the original
FDMG multigrid software. The Full-multigrid is used after the Initialisation Process
but prior to the application of the Multigrid Driver. The eﬁ"ectiver;éss of using the
full-multigrid scheme will be shown below in Section 4.6 by means of an example. |

The Multigrid Driverhas an overall stru"cture similar to that of the original
FDMG multigrid software. HoWever, extra subroutine calls are embedded into the
Multigrid Driver in order to deal with élé,sto-hydrodynamic lubrication problems.
All these éxtra subroutines are part of EHL‘ Routines which will be described in
the next section. Modifications are also made to the subroutines CRHS, PROL,
and ILINES which are called from the Multigrid Driver and are part of the original
FDMG multigrid software. These modifications are necessary in order to deal with

the complexity of elasto-hydrodynamic lubrication problems and will be presented

below in Section 4.5.

4.4.3 EHL Routines

These are the routines which are used specifically to deal with elasto-hydrodynamic

lubrication problems. This includes the routine for evaluating the elastic defor-
mation, the viscosity and density and the root mean square residual using respec-
tively the subroutines HCALC, EVAL UATEVD and EVALUATERES. These sub-
routine calls are made from the Multigrid Driver after every call to the subroutine
SMOQTH. The calls to the subroutines HCALC and EVALUATEVD are also made
after every call to the subroutines CRHS and PROL. Figure (4.7) shows how the

‘subroutines HCALC, EVALUATEVD and EVAL UATERES are embedded into the
Multigrid Driver of Modified FDM G. '
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}

Pre-smoothing;: call SMOOTH
call HCLAC

B
call EVALUATEVD
call EVALUATERES

__________________ .

E Restrict from fine to coarse: call CRHS
! call HCALC
' call EVALUATEVD

Coarsest Grid Solution: calt SMOOTH
o call HCLAC
call EVALUATEVD
call EVALUATERES

| Prolong from coarse to fine: call PROL :

1

I call HCALC ¢
call EVALUATEVD |

s

Post-smoothing: call SMOOTH

call HCLAC

call EVALUATEVD
call EVALUATERES

Terminate Cycle

Figure 4.7: Structure of Multigrid Driver of the Modified FDMG.

Other optional subroutine calls to the EHL Routines from the Multigrid

Driver at various stages of the computatidnal run include OUT which is used to

monitor the solution, HMIN CENT which iS‘USGd to calculate the minimum and

central film thicknesses and UERRMG which is used to calculate the change in the

pressure solution on the finest grid and the coarser grid just below it. This con-

cept of checking the change in the

When solving elasto-hydrodynamic lubric

»

pressure solution will be described in Chapter 5.

ation problems, due to the strong coupling
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in the X-direction, the subroutine /LINES is called from the subroutine SMOOTH.
Hence, other subroutine calls to the EHL Routines are also made from the subrou-
"tine ILINES. This includes the call to the subroutines RESID and SWITCH. The
subroutine RESID is the most widely used routine and it is employed to linearise
the non-linear equations of the elasto—hydrodynamic lubrication model by discretis-
ing the governing equations at each grid point using the finite difference scheme as
described in Chapter 2. It evaluates the residual at each grid poirit together with
the entries for the system of discrete equations which is then fed into the subroutine
THOMAS which is part of the original FDMG Iﬁultigrid software and is described
above in Section 4.3. The subrbutine SWITCH is used to incorporate the cavitation
“condition and the new relaxation schenfe to solve elasto-hydrodynamic lubrication
problems. ‘The subroutine SWITCH and the manner in which it handles the cavita-
tion condition and the new relaxation scheme will be presented in the next section.
The following pseudo code for the subroutine ILINES show how the subroutine
calls to RESID, SWITCH and T. HOMAS are embedded into the structure of the

subroutine ILINES.
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subroutine ILINES

for j = 1,jmax do
C Apply nnew local Newton iterations
for inew=1,nnew do
for i = 1,imax do
C Assemble a tridiagonal system of equations for each line
| call RESID |
C Solve the tridiagonal system of'equations
call THOMAS
for i=1,imax do
C Update solution if Gauss-Seidel scheme -
call SWITCH

{Apply Gauss-Seidel scheme and Cavitation Condition}

for j=1,jmax do
for i=1,imax do
C UPdate solution if Jacobi scheme
| call SWITCH

{Apply Jacobi scheme and Cavitation Condition}

return

end

83
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4.5 Modifications Made to the Original FDMG
Multigrid Software

The complexi‘ty of the governing equations of the Elasto-Hydrodynamic Lubrication
(EHL) model of Chapter 2 has made it necessary to modify the original FDMG
Multigrid Software [92]. The implementation of the new relaxation scheme, de-
scribed in Chapter 3, and the cavitation condition, described in C};apter 2, creates
complications which are tackled by modifying the subroutines CRHS, PROL and
ILINES of the original FDMG multigrid software. We will now discuss these mod-

ifications in the remainder of this section.

4.5.1 Modiﬂcations made due to the new relaxation scheme

The new relé,xatidn scheme Which is developed agd employed in this work to solve
elasto-hydrodynamic lubrication problems employs the Gauss-Seidel and Jacobi line
relaxation schemes on the same computational domain but without any overlap.
The type of relaxation scheme to be employed at any point depends very much on its
pésition on the computational domain. As described in Chapter 3, the Gauss-Seidel
and the Jacobi line relaxation schemes are respectively employed in the non-contact
and contact regions of the computational domain. The new relaxation scheme is
implemented in the original FDMG multigrid software by modifying the subroutine
}LINE’S. This is achieved by making use of the new subroutine SWITCH to switch
between the two relaxation schemes depending on the operating conditions. The
relaxation factors associated with the two relaxation schemes are also changed duz-
ing this process. The conditions required for switching between the two relaxation

schemes are described in detail in Chapter 3. The pseudo code for the subroutine

ILINES presented above in Section 4.4.3 Shows how the subroutine SWITCH is

incorporated into the subroutine JLINES.

4.5.2 Modiﬁéations made due to cavitation condition®

One of the key features of the elasto-hydrodynamic lubrication model is the cavi-

tation condition which is described in Section 2.1.3 of Chapter 2. In the cavitation
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region, where negative pressures may be computed by the solver, the Reynolds
equation (2.19) of the elasto-hydrodynamic lubrication model is not valid and the
' icomputed negative pressure must be set to zero. Hence, in the original FDMQG
multigrid software, the subroutine ILINES is modified in order to take the cavitation
condition into consideration. This is done by assigning all the negative pressures
to zero either after every line relaxation or after a complete sweep depending on
which relaxation scheme is being employed. This uses the concept éf the new relax-
ation scheme which employs the Gauss-Seidel and Jacobi line relaxation schemes on
the same computational domain. As described in the previous section, the subroy-
tine SWITCH is used to switch between the two relaxation schemes. If a negative
pressure is computed at a grid point which lies in a region where the Gauss-Seidel
line relaxa’fv;ion scheme is being employed, then the negative pressure is get to zero.
However, if the grid point lies in a region where the Jacobi line relaxation is be-

ing employed, then the computed negative pressure is set to zero at the end of a

complete sweep. _
The other feature associated with the cavitation region is that the values

of pressure in the regions of the domain adjacent to the cavitation region are very
large. Hence, in the cavitation region there is a sharp drop and steep gradient in
the pressure from positive values to zero. Because of this sudden sharp drop in the
pressure, the cavitation boundary region must be treated as a special éase when
transferring the residuals from a finer grid on to a coarser grid. Hence, the injection
inter-grid operator, described above in Section4.1.1, is employed in and around the
regions of the cavitation when transferring the residual on to a coarser grid. In
the remaining parts of the domain, the full weighting inter-grid operator, which is
also described above in Section 4.1.1, is employed. This concept is implemented
in the original FDMG multigrid software by modifying the subroutine CRHS, This
~.is done by flagging all the grid points on all the sequence of grids into‘cavitation
and non-cavitation regions. The flagged pbints are then used to chooge which
restriction operator to use. It is also important to make sure that the cavitation
region on a particular grid does not change during a multigrid cycle. Hence, the

cavitation region during restriction, also known as the fine to coarse operator, and

-
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prolongation, also known as the coarse to fine operator, must not be altered. This
means that during prolongation, when the coarse grid corrections are added to the
~ fine grid solutions, the cavitation region must be taken into account by considering
only the fine grid points which lie in the non-cavitation region. Hence, the coarse
grid correction terms are only added to the fine grid points which lie in the non-
cavitation region. This concept is implemented in the original FDMG multigrid
software by modifying the subroutine PROL. This is achieved by rﬁaking use of the
flags assigned in the subroutine CRHS to indicate the cavitation and non-cavitation
regions. ”

The cavitation condition also affects the evaluation of the root mean square
residual. Since the Reynolds equation (219) of the ela‘sto—hydrodynamic lubrication
model, W};ich is described in Chapter 2, is not valid in the cavitation region, the
évaluation of the root mean square residual, which is given by equation (3.37),
must exclude the regions of the domain where the Reynolds equation (2.19) is
not valid. This is achieved by calling the subroutine EVALUATERES, which is
part of the EHL Routines, after every call to the subroutine SMOOTH. In the

original FDMG multigrid software, the root mean square residual of L,-norm is
evaluated during the relaxation process in the subroutine ILINES. When solving
éiasto-hydrodynamic lubrication problems, this is not a good practice as the new

relaxation scheme described in Chapter 3 make use of the Gauss-Seidel and Jacobi

line relaxation schemes on the same computational domain. The Jacobi scheme
updates the solution after 2 complete sweep of the whole region and the root mean

square residual is evaluated at the end of the complete sweep, i.e. after every call

'to the subroutine SMOOTH.

4.6 Example Showing the Effectiveness of the Full-

Multigrid Scheme

The implementatiOﬁ of the full-multigrid scheme is described above in Section 4.4.9.
The main aim of this section is to illustrate how powerful the full-multigrid scheme is

compared with the standard multigrid approach when solving elasto-hydrodynamic

-
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lubrication problems. The problem used in this illustration will be described and
solved in full using the multigrid solver for elasto-hydrodynamic lubrication prob-
~ lems in Section 5.1 of Chapter 5. The only difference betvveén the full-multigrid
scheme and the standard multigrid approach is that the latter does not employ the
full-multigrid option. In order to compare the efficiency of the full-multigrid scheme

with the standard multigrid approach, consider the following two listings.

The listing shown below is the partial output for this pfoblem from the
multigrid solver which employs the full-multigrid scheme. The Root Mean Square
Residual, labelled RMSRES, represents the Lz—nérm and is given by equation (3.37).
The listing shows the RMSRES for one complete V-cycle.

F ULL-MULTIGRID SCHEME

GRID 8 RMSRES 5.312979E-8
GRID 4 RMSRES 7.321600E-4
GRID 3 RMSRES 2.992205E-4
GRID | RMSRES 4.163896E-5

V-CYCLE NUMBER : 1

RMSRES - 6.310523E-4

GRID 5
GRID | RMSRES 3.567165E-4
GRID $ RMSRES 6.211190E-6
GRID | RMSRES 2.593017E-4
GRID 5 RMSRES 3.677663E-4

The listing shown below is the partial output for this problem from the
multigrid solver but, this time employing the standard multigrid approach. The
Root Mean Square Residual, labelled RMSRES, represents the Lg-normxgnd is .
given by equation (3.37). The listing shows the RMSRES for one complete V-cycle.
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STANDARD MULTIGRID APPROACH

V-CYCLE NUMBER : 1

GRID 5 RMSRES 2.507337E-2
"GRID 4 RMSRES 2.074723E-2
GRID = 8 RMSRES 4.580757E-4
GRID 4 RMSRES 2.006{75E-2
GRID- 5 RMSRES ~ 2.57T7595E-2

After one V-cycle, the Root ‘Mean Square Residual, labelled RMSRES,
obtained with the full-multigrid scheme and the standard multigrid approach are
respectively of the order 10-* and 1072, An interesting point to notice is that
when the full-multigrid scheme is employed, the residual on the finest grid prior to
the beginning of the V-cycle is of the order 107%. This is much smaller thaﬁ the
root mean square residual obtained after one V-cycle when the standard multigrid
approach is employed. Hence, the initial approximation of the solution on the finest

grid is more accurate when the full-multigrid scheme is employed.

4.7 Conclusion

At present, although many numerical methods have been used to solve elasto-
hydrodynamic lubrication point contact problems, there has been greater emphasis
"on the single grid iterative methods. An overview of the different iterative schemes
is presented in the previous chapter. One feature of these iterative schemes is that
they reduce the non-smooth part of the error at a much faster rate than that of
the smooth part which is associated with low frequencies. This feature is exploited
by the multigrid method where coarser grids are employed in order to deal with
the smooth part of the error. When using multigrids, the role of relaxation is not
to reduce the error but to smooth it out. This is achieved by making 1\1se of a

sequence of coarser grids. In a multigrid method, each ’high frequency component

-



Chapter 4 89

of the error, which has 2 wavelength of the order of the mesh size, is reduced on

one grid until it becomes smooth when the same procedure is applied on a coarser

~ grid. The smooth part of the error, which is associated with lower frequency, can

be adequately represented on a coarser grid.

A major drawback of using single grid iterative methods for solving elasto-

hydrodynamic lubrication point contact problems is the need for a large number of

iterations and consequently large CPU times. This occurs when using a large num-

ber of mesh points or when solving transient problems. In order to obtain realistic

solutions, the use of a large number of mesh points is essential espeCIaﬂy when solv-

ing hlghly loaded problems found in practlce. The computational costs associated

with single grid methods can be overcome by making use of the multigrid method.

The multigrid method increases the rate of convergence and elasto-hydrodynamic

lubrication problems which were previously unsolvable can now be solved routinely.

Hence, the multigrid method has proved to be very successful in solving elasto-

hydrodynamlc Iubncatlon problems and we have developed in this chapter a multi-

grid solver for these problems It can be used to solve both steady state and

time-dependent circular conbact problems. Solutions to steady state problems will

be presented and compared with those obtained using other numerical methods in

the next chapter whereas solutions to time-dependent problems will be presented

in Chapter 6.
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NUMERICAL EXPERIMENTS
USING A MULTIGRID SOLVER.

BASED ON FDMG

In this chapter, the pumerical solutions of steady-state elasto-hydrodynamic lubri-

cation circular contact problems obtained using the multigrid solver with the new

relaxation scheme described in the previous chapter are compared with the solutions

obtained using other numerical methods. The other numerical methods, which are

described in Chapter 3, include the relaxation schemes of Venner [97] and Ehret [33],

the homotopy method [4] which is used by Scales [75] and the effective influence

Newton method of Wang [102]. Four cases of steady-state elasto-hydrodynamic

lubrication circular contact problems are considered.

5.1 Case One

A}

This test problem, which appears in Venner [97], is solved on a domain {{X,Y) :

50 < X <12,
Grid (NRS-S-Grid

_35 <Y < 3.5} using the New Relaxation Scheme on a Single
) and MultiGrid (NRS-M-Grid) and the Homotopy method [4],

90
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which is used by Scales [75], on a Single Grid (H-S-Grid). A 65 x 65 grid is employed
when the problem is solved on a single grid using the new relaxation scheme and
the homotopy method. Finest 65 by 65 and coarsest 17 by 17“ grids are used when
the problem is solved using the multigrid method. However, due to symmetry, only
the nodes in the positive Y-direction are used when the problem is solved using the
new relaxation scheme on a single grid and multigrid. For this moderately loaded

problem, the parameters describing the problem are shown in Table (5.1).

Parameters B Values
Pressure viscosity index a [Pa™"] ' ‘ 1.7x1078
Maximum Hertzian pressure pn [GPa] 0.5818
Gz ope | 10
Material parameter G : 4729
Load parameter W : B 1.8915 x 10~7
Speed parameter U . 1.0 x 10712
Moes parameter M : ' 20
Moes parameter L | C | 10

Table 5.1: Input parameters for the problem in Case One.

5.1.1 Results and discussion

Tﬁe numerical solutions and the convergence histories associated with the New
Relaxation Scheme on a Single Grid (NRS-S-Grid) and MultiGrid (NRS-M-Grid)
and the Homotopy method on a Single Grid (H-S-Grid) are respectively shown in
Tables (5.2), (5.3) and (5.4).

If the convergence criterion is based on the Root Mean Square Residual,
1él$elled RMSRES, then the solutions obtained using the new relaxation scheme on
a single grid and multigrid and the homotopy method on a single grid are of the

order 1076, 10~% and 107" respectively. The root mean square residual is defined

by

1 mg Ty

—— Y. D RESY (5.1)

i=1 j=1

RMSRES =
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where m, and n, are the maximum number of points in the X and Y ’directions
respectively and RES; ; is the residual at the point (7,7).

The discrepancy in the root mean square residual (RMSRES) obtained
using the new relaxation scheme on a single grid and multigrid can be attributed
to the cavitation region (see Section 2.1.3) and the nature of the Reynolds equa-
‘tion (2.19). In the cavitation region, the Reynolds equation is not valid and prob-
lems arise when transferring the residuals and the corrections between the grids
when using the multigrid method as described in Section 4.5.2. i

On a single grid, it is a common prac;;ice e.g. [102] to check the change
in the pressure solution from one iteration to the next as a means for testing the -
convergence criterion. This is labelled as A P in Tables (5.2) and  (5.4) and the
subscript s indicates that it is on a single grid. Thus, the change in the pressure

solution on the k** iteration is given by

5 S51es - -
AR =T - - (52)
Sy

i=1 j=1

Where m, and n, are the maximum number of points in the X and Y directions
respectively.

'A more commonly [97] used form for checking the convergence criterion
when using the multigrid method is to compare the pressure solution on ’the finest
grid and the coarser grid just below it with mesh sizes A and H = 2h respectively.
This is labelled as A P, in Table (5.3) and the subscript m indicates that muitigrid
was being used. When the iteration has converged we would expect to see no
change in this value. ThlS change in the pressure solution when using the multigrid

- method is obtained using

ma

AP,

(53)

i=1 j=1
_Where h, and h, are respectively the mesh spacings in the X and Y directions, m,
and n, are the maximum number of points in the X and Y directions respectively

and I¥ is the restrlctlon operator which is described in detail in Chapter 4.
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Convergence based on A P; when using a single grid method ”and APm
when using the multigrid method suggest that the solution obtained uéirig the new
" relaxation scheme on a single grid might have an accuracy of the order 108 as
can be seen from Table (5.2). This value is much smaller than that obtained using
the other two methods which are of the order 10~* and 107° as can be seen from .
Tables (5.3) and (5.4) respectively. Though it is a common practice to base the
| eonvergence criterionon A P; and A Pm’, this can be misleading. A }33 only indiCates
the change in the solution at each iteration and it is not a good practice to use it as a |
means for testing accuracy or convergence criter.iorL It is possible to get very small
changes and the solution might be very far from the true solution. This reasoning
can also apply to A P,. The convergence criterion based on the root mean square‘
residual seems to be more appropriate but it 1s rarely used in elasto—hydrodynamlc’
lubrlcafclon problems. | v‘ :

Also shown in Tables (5.2).’; (5.3) and (5.4) are the central, labelled Hcent,
and minimufn labelled Hmin, film thicknesses obtained using the new reiaxation

scheme on a single grld (NRS S Grid) and multigrid (NRS M- Grld) and the homo-
‘ topy method on a smgle grid (H S Gud) v

Its Heent ~  Hmin RMSRES SumP AP,
100 04322 - 02914 - LI204E-02 2.0594 1.311E-03
300 04513 03048 1.9066E-03 2.0979 6.537E-05
500 04524 03054 2.5793E-04 2.0947 7.447E-06
ko0 04525 . 0.3054 . 3.3917E-05 2.0944 9.621E-07
1000 . 0.4525 0.3055 1.6112E-06 2.0043  4.561E-08

~Table 5.2: NRS-S-Grid for M=20 & L=10.
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Its - Hcent Hmin RMSRES - SumP AP,

1 0.4612 0.3076 1.3773E-02 2.0842 '1.377E-02
B 0.4529 0.3057  1.6256E-04 2.0909 8.322E-04
10 0.4526 0.3054 7.3911E-05 2.0904 2.452F-04
15 ©0.4525 03053 4.3010E-05 2.0905 2.251E-04
20 04525 0.3053 3.6674E-05 2.0905  2.236E-04
5 0.4525 0.3053  3.6051E-05 2.0905  2.234E-04
Table 5.3: NRS-M-Grid for M=20 & L=10.

Its Hecent Hmin RMSRES ~ SumP AP alpha

1 0.6478  0.6468  4.302E-01  2.0944  1.0000E+00  5.000E-09
7 0.2466 01765  1.371E-02 - 2.0944  4.9562E-05  5.000E-09
8 02468 0.1765  1.369E-02  2.0944  2.3835E-04 5.000E-09
14 0.3600  0.2440  8.178E-03  2.0944  5.6744E-02  1.096E-08
b0 04411  0.2953  2.023E-03  2.0944  3.8711E-03  1.773E-08
23 04477  0.2098  1349E-03  2.0944  45581E-03  1.652E-08
04 04372 02027  2.333E-03  2.0944  1.7103E-02  1.576E-08
31 04530 03034  7.721E-04  2.0944  7.2105E-03  1.733E-08
37 0.4604 03086  2.533E-07  2.0944  3.7252E-04  1.700E-08
B8 0.4604 03086  9.132E-09  2.0944  29120E-06  1.700E-08
44 0.4605  0.3130  1.282E-07 20944  2.7799E-03  1.700E-08
45 0.4605  0.3130  2.762E-11  2.0944  3.3570E-06  1.700E-08

Table 5.4: H-S-Grid for M=20 & L=10.

|  The final values of central (Heent) and minimum (Hmin) film fhicknesses
obtained using the NRS-S-Grid, the NRS-M-Grid and the H-S-Grid are summarised

“in Table (5.5) Also shown in Table (5.5) are the values obtained by Venner [97] and
Ehret [33] who have used the fnultigrid method using a relaxation scheme which is
deécribed in ‘Chaptc‘e'r 3. On a 65 x 65 domain, the discrepancy Between the values
of Hcent aﬁd Hmiﬁ obfained using the NRS—S—Grid, the NRS-M-Grid and ‘fhe H-
SQGrid ’is' nﬁnimal. However, the discrepancy in these yvalues' compared to those
obtained by Venner [97] is between 6% and 16%. Table (5.5) also shows the results

obtained using the new relaxation scheme (NRS-M-Grid), the relaxation scheme of
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Venner [97] and the relaxation scheme of Ehret [33]. These three schemes, that is
NRS-M-Grid, Venner and Ehret, employ the multigrid method with a 257 x 257
 finest grid using the domain {(X,Y) : -45 < X < 1.5,-3.0 < Y < 3.0}.
These results show that the discrepancy between the results obtained using the
ﬁew relaxation scheme and the relaxation scheme of Ehret is minimal while the

results of Venner are some what more distant, though still comparable.

Method Hcent Hmin Mesh X-domain Y-domain
NRS-S-Grid ~ 0.453 0306  65x65 [5,1.2] -3.5,3.5]
NRS-M-Grid ~ 0.453  0.305 65 x 65 [5,12] . [3.53.5]
H-S-Grid 0460 0313 -65x65  [512] [-3.5,3.5]
Venner 0489 0355  65x65 [-4.5,1.5] -3.0,3.0]
NRS-M-Grid ~ 0.443  0.304 257 x 257  [-4.5,1.5] -3.0,3.0]
Venner 0498  0.345 257 x 257  [-4.51.5] [3.0,3.0]
Ehret 0431 0205  257x257  [4515  [3.0,3.0]

Table 5.5: Summary of Hcent and Hmin for M=20 & L=10.
Table (5.6) shows the effect of varying the computati;)nal domain on the
central and minimum film thicknesses obtained using the NRS-M-Grid method on
a 129 x 129 mésh. The domain is modified by changing the inlet boundary and

as can be seen from Table (5.6), the size of the domain does have an effect on the

solution.

Method Hcent Hmin Mesh X-domain ' Y-domain
NRS-M-Grid 0.408 0.291 129 x 129 (-2.0,2.0] [-3.0,3.0]
NRS-M-Grid 0.432 - 0.296 129 x 129 [-3.0,2.0] [-3.0,3.0]
INRS-M-Grid 0.451 0.308 129 x 129 [-4.0,2.0] [-3.0,3.0]

- INRS-M-Grid -~ 0.469 0.319 129 x 129 [-5.0,2.0] [-3.0,3.0]
H\TRS-M-Grid 0.486 0.331 129 x 129 [-6.0,2.0] [-3.0,3.0]
NRS-M-Grid 0.492 0.335 129 x 129 [-7.0,2.0] [-3.0,3.0]

Table 5.6: Summary of Hecent and Hmin for M=20 & L=10 on different domains.

-
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5.1.2 Remarks

A point to note is that when using the homotopy method, the force balance equa-
tion, labelled SumP in Table (5.4), is satisfied on every iteration but this is not th(;
case when the new relaxation scheme is employed on a single grid or multigrid.

An interesting feature about the homotopy method is iﬁ the behaviour of
‘the the Root Mean Square Residual (RMSRES). It does not only.decrease mono-
tbnicaﬂy but also has a feature of a sudden sharp drop’ as can be seen more clearly
from Table (5.4). This may be attributed to the quadratic rate of convergence of
the homotopy method close to the root. A sudden sharp decrease in A P, can also
be noticed in Table (5.4).

From Table (5.6), we can con'clude‘ that the solution is sensitive to the size
of the computational domain. On a unifiém mesh, the number of mesh points are
evenly distributed. The smaller the size of the domain, the larger the number of
mesh points in the contact region and the vice veréa is true on a larger domain. This
might be the reason for the sensitivity of the solution to the size of the computational
domain as the solution changes rapidly in the contact region. One way of overcoming
this problem might be to use a non-uniform mesh where the majority of the mesh
points are distributed in the contact region.

The Homotopy method is very robust but at expense of large computa-
tional time. Hence, it was not possible to use a finer mesh than 65 x 65. The times
taken to achieve the results using the NRS-S-Grid, the NRS-M-Grid and the H-S-
Grid were 13.5 minutes, 2.9 minutes and 5.73 hours respectively. An SGI R8000

was used for solutions obtained using the new relaxation scheme whereas an R10000

processor was used for the homotopy method.

5.2 CPU Times

For all the test problems to follow in this chapter, the CPU times on an SGI
R8000 for solutions obtained using the new relaxation scheme on a multigrid are"
as follows: 1 and 15 minutes for each multigrid iteration (V-cycle) on a 129 x 129

and 257 x 257 meshes respectively. Depending on the load, the solution to each test

-
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problem takes between 8 and 15 multigrid iterations. The CPU times for solutions
obtained using the other methods were not available to the author and hence have

" not been specified unless stated otherwise.

5.3 Case Two

‘Numerical solutions of three sets of ﬁvé problems are obtained us{ng the New Re-
laxation Scheme (NRS) on a multigrid and the obtained minimum and central film
thicknesses are compared with those obtained by Wang (102] and Ehret [33], who
have respectively employed the Effective Influence Newton method {(EIN) and the
Multigrid Multi-Integration method (MIM). The relaxation scheme employed by
Ehret is very similar to that used by Venner [97] and is described in Chapter 3.

The input parameters describing these problems are shown in Table (5.7).

Parameters ‘ Set 1 ‘Set 2 : Set 3
Viscosity index o [Pa™!] [ 2.20866 x 1078 “to 2.24787 x 1078]
Hertzian pressure p, [GPa] -+ [0.44 : to - 3.68

BE=am ) [10 to 87

Material parameter G [ 4869 R
Load parameter W ' [0.173 x 107 to 98.19 x 107¢]
Speed parameter U~ 0.089 x1071%  0.343 x 10~1° - 5.707 x 10~10
Moes parameter M 20 < to 500]
Moes parameter L ‘ 10 4 - 28

Table’5.7: Input parameters for the problems in Case Two.

The results obtained by Wang [102] using the effective influence Newton
method are obtained on a si"ngle 151 x 81 grid with the following domains:
| (M =20 = (=6 < X < 15)and(—4 < ¥ <4)],
IM=50 = (—5< X <15)and(-25 <Y <25,
M=100 = (-4 <X <15)and(-2.5 <Y <2.5)],
 [M=200 = (-3< X <15)and(-2<Y < 2)],

[M =500 = (-2.5< X <1.25)and(~1.8 <Y < 1.8)].

The solutions obtained by Ehret [33] 'using the multigrid multi-integration method
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employs a finest 513 x513 grid and a coarsest 17x17 grid with the domain dependent
on the Moes parameter M. The domains are given by _

[M <10 = (-7<X <2)and(—4.5 <Y <4.5)],

[10< M <50 = (-5 <X <2)and(-3.5 <Y < 3.5)] and‘

[50 < M <500 = (-4.5< X <1.5)and(-3 <Y < 3)].
When the solutions are obtained using the new relaxation scheme on a multigrid,
different domains and mesh points are ﬁsed. When the Moes para;neter L is fixed
at 10 and 28, a finest grid of 129 x 129 and a coarsest grid of 17 x 17 wifh a domain |
—45 <X <15and -3 <Y < 3 is used. Ho;zveyer, when L = 14, a finest grid
with 257 x 257 mesh points and a coa,vrsest 17 x 17 grid is used and the domain

employed is the same as that used by Ehret [33] in his multigrid multi-integration
method. S '

5.3.1 Results

The minimum and central film thicknesses obtained using the three methods, the
Effective Influence Newton method (EIN), the Multigrid Multi-Integration method
(MIM) and the New Relaxation Scheme (NRS), are compared and the results are

presented in Tables (5.9), (5.10), (5.11), (5.12), (5.13) and (5.14). A graphical
representation is also shown in Figures (5.1), (5.2) and (5.3), where the Moes
parameter M is plotted against the minimum and central film thicknesses using
a logarithmic scale on both axes. Also shown in these tables and figures are the

minimum ahd central film thicknesses predicted using the Hamrock and Dowson

relationship (H-D) [47] which is given by

Hiin = 1.79 U058 17 =0.073 G049 6
and |

H.., = 1.80U%% W—0.067 (7053 | (5.5)

Table (5.8) shows a summary of the notation used in the Tables (5.9, 5.10, |
: 5.11,‘5.12, 5.13 and 5.14) and Figures (5.1, 5.2, 5.3, 5.4, 5.5 and 5.6).

-
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Notation Meaning
" H-D Hamrock and Dowson
EIN Effective Inﬁﬁence Newton Method of Wang [102] |
MIM Multi-Integration Method of Ehret [33] - |
NRS ’ New Relaxation Scheme [74, 75]
Hm Minimum film thickness
Hc Central film thickness
P_M20 | Pressure profile for M=20”
H_M20 ' Fihﬁ thickness profile for M=20

Table 5.8: Summary of notation used in the Tables and Figures to follow.

M W P HD  EIN MIM  NRS
. %106 GPa (  x107° )
20 0173 0.44 1096 1190 1208  12.31
50 0433 060 1025 10.06 10.26 10.64
100 0867 076 9.71 8.53 888  8.99
200 1.733 0.96  9.26 721 7.43 7.40
500 4.333 130 8.66 544 582 5.03

" Table 5.9: Minimum film thicknesses for L = 10, U = 0.089 x 10-1° and G = 4869.

M W Ph HD  EIN MIM ~ NRS

| X106 GPa ( x107¢ " ‘ )
RO 0173 0.44 19.17 17.58 17.79 18.27
50 0.433 0.60 18.02 1688 1717 18.02
100 0.867 0.76 17.21 1609 1659 . 17.24
200 1.733 0.96 16.43 . 15.28 15.66 16.59
00 4.333 1.30 15.45 14.11 14.77 15.64

Table 5.10: Central film thicknesses for L = le, U =0.089 x 1071° and G = 4869.
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Figure 5.1: Minimum and central film thicknesses for L = 10.

M W o H-D EIN MIM NRS
x10“6 GPa ( x10“6 )

20 0.477 0.62 25.41 28.39 28.98 28.55
50 1.191 0.85 23.77 24.40 25.02 25.28
100 2.384 1.07 22.60 20.95 21.87 21.82
200 4.767 135 21.48 17.79 18.73 18.71
500 11.92 1.82 20.09 13.63 14.63 14.54

Table 5.11: Minimum film thicknesses for L = 14, U = 0.343 x IO“10and G = 48609.

M W Ph H-D EIN MIM NRS

x10%6 GPa ( x10“6 )
20 0.477 0.62 44.13 40.86 41.54 41.03
50 1101 0.85 4151 39.48 40.30 41.01
100 2.384 1.07 39.62 37.77 39.13 39.25
200 4.767 1.35 37.82 36.06 37.71 38.16
500 11.92 1.82 35.57 33.47 35.19 36.82

Table 5.12: Central film thicknesses for L = 14, U = 0.343 x 1010 and G = 48609.
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20
50
100
200
500

Figure 5.2: Minimum and central film thicknesses for L = 14.

w
x10"6
3.927
9.818
19.64
39.27
98.19

10

Ph

GPa
1.26
1.72
2.15
271
3.68

H-D
(

147.49
137.73
131.14
124.67
116.61

100

EIN
x10-6
184.21
160.17
144.00
124.16
98.19

1000

MIM

185.57
166.12
148.49
129.87
104.02

101

NRS

)
190.83
176.87
148.19
125.93
95.17

Table 5.13: Minimum film thicknesses for L = 28, U = 5.707 x 10"10 and G = 4869.

M

20
50
100
200
500

W

X 10-6
3.927
9.818
19.64
39.27

98.19

Ph

GPa
1.26
1.72
2.15
2.71
3.68

H-D
(

252.19
236.81
226.41
216.14

203.27

EIN

x10-6
247.05
242.89
233.52
225.07
212.93

MIM

247.82
245.02
239.56
233.76

220.54

NRS

)
252.94
255.99
24561
241.44
231.18

Table 5.14: Central film thicknesses for L = 28, U = 5.707 x 10~10 and G = 4869.
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Figure 5.3: Minimum and central film thicknesses for L = 28.

5.3.2 Discussion

The discrepancy in the minimum and central film thicknesses predicted using the
Hamrock and Dowson relationship is large when compared with the values ob-
tained using the other three methods. This is more evident in the minimum film
thicknesses. This can be attributed to the fact that the Hamrock and Dowson re-
lationship [47] was derived not only using solutions where the maximum Hertzian
pressure was less than 1GPa but also using a smaller number of grid points. The
minimum and central film thicknesses obtained by Ehret [33] using the multigrid
multi-integration method are sandwiched between the values obtained by Wang
[102] who used the effective influence Newton method and the new relaxation scheme
which is developed and used in this work. The discrepancies in the minimum and
the central film thicknesses obtained using the three methods can be attributed
to the use of different mesh domains and number of mesh points. When L = 14,
the discrepancy in the minimum and central film thicknesses obtained using the
new relaxation scheme is minimal when compared with those obtained by Ehret

[33] using the multigrid multi-integration method. For this problem, that is when
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L = 14, the number of mesh points employed on the finest grid when using the new
relaxation scheme is 257 x 257 whereas for the problems when L = 10 and L = 28
a finest grid of 129 x 129 is used. |
From the obtained results, we can conclude that the Hamrock and Dow-
son’s load parameter W or the Moes parameter M have an effect on the eIésto—
hydrodynamic lubrication problems. This is more evident from the profiles of pres-
“sure and film thickness along the X axis. These profiles, that is f01: L=10,L =14
and L = 28, are respecti.vely shown in Figures (5 4), (5.5) and (5.6). When the load
parameter W or the parameter M is large, the pressure spike is nearer the exit zone
and is smaller in magnitude and the pressure dlsfrlbutlon approaches the Hertzian
pressure profile. This is consistent w1th the steady state elasto-hydrodynamic lu- |
brication analysis of Sadeghi and Sui [88]. However, when the load parameter W or
fhe parameter M is small, the pressure spike is larger in magnitude and its position
is away from the exit zone and closer to the central contact region. The pressure
profile in the inlet zone decreases as the load parameter W or the parameter M
increases. With regards to the film thiéknesses, we can conclude that as the load
parameter W or the parametef M increases, the minimum film thickness is affected
more than‘ the central film thickness and the minimum film thickness mox}es away

from the central contact region and moves towards the exit zone.
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Figure 5.4: Pressure and film profiles for L = 10 along the X axis.

Figure 5.5: Pressure and film profiles for L = 14 along the X axis.
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Figure 5.6: Pressure and film profiles for L = 28 along the X axis.

54 Case Three

Numerical solutions of three sets of five problems are obtained using the New Re-
laxation Scheme (NRS) on a multigrid and the obtained minimum and central film
thicknesses are compared with those obtained by Wang [102] who has employed the
Effective Influence Newton (EIN) method on a single 151 x 81 grid with a domain
—8< X < land 4 < Y < 4. The solutions obtained using the New Relaxation
Scheme (NRS) employs the multigrid method where a finest grid of 129 x 129 and
a coarsest grid of 17 X 17 and a domain -4.5 < X < 15 and -3 < Y < 3 is used.

The input parameters describing these problems are shown in Table (5.15).
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Parameters Set 1 Set 2 ~ Set 3
Viscosity index o [Pa™"] 2.22503 x 1078 2.21977 x 10~  2.20618 x 10~#
' [Hertzian pressure p, |GPa] 0.72 1.05 1.21 u
o = aph 16 23 27
Material parameter G [ 4865 ]
Load paramefer W 0.7381 x 107° 2.273 x 107®  3.415 x 108
| Speed para,mefer u [0.094 x 10~1° to 1.87 x 10719]
Moes parameter M v to 378]
Moes parameter L . [10 . to 21]

Table 5.15: Input parameters for the problems in Case Three.

5.4.1 Results

The minimum and central film thicknesses obtained by Wang [102] using the Effec-
tive Influence Newton method (EIN) and the New Relaxation Scheme (NRS) which
is developed and employed in this wofk are presented in Tables (5.17), (5.18),
(5.19), (5.20), (5.21) and (5.22). A graphical representation is also shown in
Figures (5.'7), (5.8) and (5.9) where the speed parameter U is’. plotted against the
minimum and central film thicknesses using a logarithmic scale on both axes. Also
shown in these Tables and Figures are the minimum and central film thicknesses
predicted using the Hamrock and Dowson relationship (H-D) [47] which is given by
equations (5.4) and (5.5) respectively. The discrepancy in the minimum and central
film thicknesses obtained using Effective Influence Newton method (EIN) of Wang
[102] and the New Relaxation Scheme (NRS) which is developed and employed in
this work increases as the speed increases and this is more evident in the minimum
ﬁlm thicknesses. The discrepancies can be attributed to the use of different mesh
domains and number of mesh points.

Table (5.16) shows a summary of the notation used in the Tables (5.17,
5.18, 5.19, 5.20, 5.21 and 5.22) and Figures (5.7, 5.8, 5.9, 5.10, 5.11 and 5.12).
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Notation Meaning
H-D Hamrock and Dowson
EIN Effective Influence Newton Method of Wang [102]”
'NRS New Relaxation Scheme [74, 75]
Hm Minimum film thickness
He Central film thickness )
P:U=1.87E-10 Pressure profile when U=1.87E-10
H:U=1.87E-10 Film thickness profile when U=1.87E-10

Table 5.16: Summary of notation used in the Tables and Figures to follow.

M L U H-D EIN NRS
x 10710 - ( x107° )

32 10 0.094 09.23 10.18 10.16
49 12 0.187 16.33 16.31 18.06
25 15 0.468 33.92 30.40 36.03
15 18 0.935 56.91 49.70 59.35
9 21 1.870 95.88 75.29 91.09

Table 5.17: Minimum film thicknesses for W = 0.7381 x 10~ and p; = 0.72G Pa.

M L U H-D EIN NRS

x10-1° ( x10~6 )
82 10 0.094 16.78 17.95 18.54
49 12 0.187 26.90 28.56 29.84
05 15 0.468 49.58 52.77 52.96
15 18 0.935 77.64 83.95 81.19
0 21 1.870 122.66 128.51 116.61

Table 5.18: Central film thicknesses for W = 0.7381 x 10~ and p, = 0.72GPa.
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252
150
76
45
27

Figure 5.7: Minimum and central film thicknesses for ph = 0.72GPa.

10
12
15
18
21

le-11

U
x10~10
0.094
0.187
0.468
0.935
1.870

H-D
(

06.99
12.74
27.28
48.34
83.91

le-10

EIN
x10-6
09.37
15.02
28.01
44.88
71.90

108

NRS

)
07.06
14.03
30.19
53.98
90.02

Table 5.19: Minimum film thicknesses for W = 2.273 x 10-6 and ph = 1.05GPa.
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252
150
76
45
27

10
12
15
18
21

U
x10-10
0.094
0.187
0.468
0.935
1.870

H-D
(

15.46
25.03
46.65
74.79
119.67

EIN
x10-6
16.64
26.48
48.95
77.88
123.90

109

NRS

16.83
28.03
52.06
84.59
129.10

Table 5.20: Central film thicknesses for W = 2.273 x 10 6 and ph = 1.05GPa.

Figure 5.8: Minimum and central film thicknesses for ph = 1.05GPa.
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M L
378 10
226 12
113 15
68 18
40 21

U
x10-10
0.094
0.187
0.468
0.935
1.870

H-D
(

06.21
11.49
25.04
44.01
78.11

EIN
x10~6
09.10
1458
27.18
43.55
69.77

110

NRS
)
6.10
1151
27.47
47.23
86.02

Table 5.21: Minimum film thicknesses for W = 3.415 x 10 6 and ph = 1.21GPa.

M

378
226
113
68
40

10
12
15
18
21

U
x10-10
0.094
0.187
0.468
0.935
1.870

H-D
(
14.94
24.29
45.40
72.77
117.03

EIN
x10-6
16.20
25.77
47.62
75.76
120.54

NRS

)
16.54
26.05
50.49
77.82
129.75

Table 5.22: Central film thicknesses for W = 3.415 x 10 6 and ph = 1.21GPa.

Figure 5.9: Minimum and central film thicknesses for ph = 1.2IGPa.
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5.4.2 Discussion

From the above results, we can conclude that the Hamrock and Dowson’s speed
parameter U has a strong effect on the elasto-hydrodynamic lubrication problems.
This is more evident from the profiles of pressure and film thickness along the X
axis. These profiles, that is for ph = 0.72 GPa, pk = 1.05 GPa and ph —1.21 GPa,
are respectively shown in Figures (5.10), (5.11) and (5.12). At low speeds, the
pressure profile is very close to the Hertzian pressure profile and the pressure spike
is close to the outlet region. However, at high speeds, the pressure profile distorts
from the Hertzian form and the spike grows in magnitude with a sharp pointed peak
which is close to the central contact region and away from the outlet region. The
pressure profile in the inlet region increases gradually with speed. With regards to
the film thickness, we can conclude that as the speed parameter U increases, the film
thickness increases and the portion of the contact area where the two surfaces are
almost parallel decreases. All these observations have been confirmed by Hamrock

and Dowson [49] and also by Wang [102].

Figure 5.10: Pressure and film profiles for ph = 0.72 GPa along the X axis.
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S B

Figure 5.11: Pressure and film profiles for ph = 1.05 GPa along the X axis.

Figure 5.12: Pressure and film profiles for ph = 1.21 GPa along the X axis.
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Some of these features can also be seen in the contour and surface plots of
him thickness and pressure for test problems where the maximum Hertzian pressure,
Ph, is equal to 1.05 GPa. Figures (5.13), (5.14) and (5.15) show respectively the
him thickness contour, pressure contour and pressure surface plot for when the
speed parameter U is equal to U = 0.468 x 10-1° and Figures (5.16), (5.17) and
(5.18) show respectively the him thickness contour, pressure contour and pressure

surface plot for when the speed parameter U is equal to U = 1.87 x 10-10.

Figure 5.13: Film thickness contour: ph—1.05GPa and U = 0.468 x 10-1°.
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Figure 5.14: Pressure contour: ph = 1.05 GPa and U = 0.468 x 10-10.

Figure 5.15: Pressure surface plot: ph= 1.05 GPa and U = 0.468 x 10-1°
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Figure 5.16: Film thickness contour: pu = 1.05 GPa and U = 1.87 x 10 10.

Figure 5.17: Pressure contour: ph —1.05GPa and U = 1.87 x 10 10.
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Figure 5.18: Pressure surface plot: ph = 1.05 GPa and U = 1.87 x 10~10.

55 Case Four

Numerical solutions of three sets of four problems are obtained using the New
Relaxation Scheme (NRS) on a multigrid and the obtained minimum and central
film thicknesses are compared with those obtained by Wang [102] who has employed
the Effective Influence Newton (EIN) method on a single 151 x 81 grid with a domain
-8 < X < 1land -4 <Y <4. The solutions obtained using the New Relaxation
Scheme (NRS) employs the multigrid method where a finest grid of 129 x 129 and
a coarsest grid of 17 x 17 and a domain —4.5 < A' < 15and —3 < Y < 3 is used.

The input parameters describing these problems are shown in Table (5.23).
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Parameters Set 1 Set 2 . Set 3
Viscosity index a [Pa™!] [0.50155 x 1078 to  3.51433 x 1078
Hertzian pressure p, [GPa] 0.72 1.23 - 1.95
G=ap, [4 to 69]
Material parameter G (1136 to 7954]
Load parameter W 0.664 x 10~ 3.311 x 1078 13.22 x 108
Speed parameter U : [ 1.344 x 10~1° ~‘ ]

Moes parameter M 10 50 199
Moes parameter L : [5 | to 32]

Table 5.23: Input parameters for the problems in Case Four.

5.5.1 Results and Discussion

The minimum and central film thicknesses obtained by Wang [102] using the Effec-
tive Influence Newton method (EIN) and the New Relaxation Scheme (NRS) :which
is developed and employed in this work are presented in Tables (5.25), (5.26),
(5.27), (5.28), (5.29) and (5.30). A graphical representation is also shown in Fig-
ures (5.19), (5.20) and (5.21) where the material parameter G is plotted against the
minimum and central film thicknesses using a logarithmic scale on both axes. Also
shown in these Tables and Figures are the minimum and central film thicknesses
predicted using the Hamrock and Dowson relationship (H-D) [47] which is given
by equations (5.4) and (5.5) respectively. The discrepancy in the minimum and
central film thicknesses obtained using Effective Influence Newton method (EIN)
of Wang [102] and the New Relaxation Scheme (NRS) which is developed and em-
ployed in this work is minimal. The profiles of the pressure and the film thickness
along the X-axis for the three problems are shown in Figures (5.22), (5.23) and
(5.24). Generally, the type of material used determines the regime of lubrication
which can either be elasto-hydrodynamic lubrication or purely hydrodynamic.
Table (5.16) shows a summary of the notation used in the Tables (5.25,
5.26, 5.27, 5.28, 5.29 and 5.30) and Figures (5.19, 5.20, 5.21, 5.22, 5.23 and 5.24).
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Notation Meaning
H-D Hamrock and Dowson |
EIN Effective Influence Newton Method of Wang [102]
NRS New Relaxation Scheme [74, 75]
Hm Minimum film thickness
Hc Central film thickness
P:G=7954 Pressure profile when G=7954
H:G=7954 Film thickness profile when G=7954

Table 5.24: Summary of notation used in the Tables and Figures to follow.

[ M G H-D EIN NRS

( x1076 )
5 10 1136 30.80 36.37 35.59
11 10 2797 47.30. 55.41 55.45
b0 10 4931 63.23 78.64 79.91
32 10 7954 79.92 105.15 108.89

Table 5.25: Minimum film thicknesses for W = 0.664 x 10=® and p;, = 0.72G Pa.

L M G H-D EIN NRS
( : x10~6 : )

5 10 1136 49.87 46.96 © 4542

11 10 2727 79.33 73.57 73.73
() 10 4931 108.59 102.52 104.77
32 10 7954 139.90 135.25 138.87

Table 5.26: Central film thicknesses for W = 0.664 x 10~% and p, = 0.72G Pa.



Chapter 5
Figure 5.19:
L M
5 50
11 50
20 50
32 50

119

Minimum and central film thicknesses for ph= 0.72GPa

1136
2727
4931
7954

H-D
(

27.39
42.07
56.23
71.08

EIN
x10-6
26.46
42.61
63.45
89.22

NRS
)
26.76
42.97
66.82
98.71

Table 5.27: Minimum film thicknesses for W = 3.311 x 10~6 and ph= 123GPa

L

5

n
20
32

M

50
50
50
50

G

1136
2727
4931
7954

H-D
(
44.78
71.23
97.50
125.63

EIN
x10“6
43.97
69.63
98.44
131.67

NRS
)
42.96
70.69
104.67
146.67

Table 5.28: Central film thicknesses for W = 3.311 x 10~6 and ph = 1.23GPa
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Figure 5.20: Minimum and central film thicknesses for ph= 1.23GPa

ol

20
32

Table 5.29:

&)

n
20
32

199
199
199
199

1136
2727
4931
7954

H-D
(

24.76
38.02
50.83
64.25

EIN
x10-6
18.27
30.29
47.59
68.38

120

NRS

)
17.94
29.49
46.81
69.83

Minimum film thicknesses for W = 1322 x 106 and ph = 1.95G7M

M

199
199
199
199

G

1136
2727
4931
7954

H-D
(
40.82
64.92
88.87
114.50

EIN
x10-6
39.53
63.61
90.13
122.91

NRS
)
39.97
64.76
93.14
127.35

Table 5.30: Central film thicknesses for W = 13.22 x 10~6 and ph = 1 g5Gpa.
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Figure 5.21: Minimum and central film thicknesses for ph= 1.95GPa.

Figure 5.22: Pressure and film profiles for ph = 0.72GPa along the X axis.

121
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Figure 5.23: Pressure and film profiles for ph= 1.23GPa along the X axis.

Figure 5.24: Pressure and film profiles for ph = 1.%GPa along the X axis.
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5.6 Conclusion

"The main intention in this chapter was to show the effectiveness of the multigrid
solver for elasto-hydrodynamic lubrication problems which was described in t‘he
previous chapter. Numerical solutions of steady state elasto-hydrodynamlc lubri-
cation circular contact problems obtained usmg the multigrid solver are compared
with those obtained using other numerical methods. The other numerical methods
include the relaxation schemes of Venner [97] and Ehret [33], the homotopy method
[4] which is used by Scales [75) and the effective influence Newton method of Wang
[102].

A wide range of elasto—hydrodyna,mic lubrication problems.have been solved
with the maximum Hertzian pressure py, lying in the range 0.44GPa and 3.68G Pa.
The dimensionless parameter & varies between @ = 4 and @ = 82. The maximum
Hertzian pressure ps and the dimensionless parameter & indicate the load of the
problem zmd the higher their values, the highef the load. The numerical solutions
obtained using the multigrid solver are comparable with those obtained using other
numerical schemes. Though some discrepancies do exist, these are mainly due to
the use of different number of mesh points or computational domains and to the it
erative methods used. The problems solved indicate that the multigrid solver is not
only capable of solving highly loaded problems found in industrial applications but
also the obtained numerical solutions are consistent with respect to the effects Ham-
rock and Dowson parameters have on the elasto-hydrodynamic lubrication circular
contact problems.

Having solved a wide range of problems, we can conclude that the multigrid
solver is a fast, robust and reliable solver for elasto-hydrodynamic lubripation cir-
cular contact problems. It can not only be employed to solve both lightly to highly
loaded circular contact problems but also has many industrial applications and it
has already been used at the Shell Research and Technology Centre at Thornton.

The next chapter deals with the extension of the approach used here for
steady problems to time dependent (transiegt) problems and since there are no
available benéh mark t?St problems, the wide range of steady state problems solved

in this chapter will be used as a guideline for the solutions of transient problems.

-
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TRANSIENT PROBLEMS

Over the past decade, the interest in elasto-hydrodynamic lubrication has moved
on from steady state to time- dependent (or transient) problems. In practice, the
need for a time- dependent approach is essential since, in general the surfaces in
contact are in relative motion and the load, the speed and the film thickness vary
w1th time. The earlier numerical work on elasto-hydrodynamic lubrication was all
based on steady state problems. The large computational costs and the complex-
ities aesociated with these problems are the reasons why there has been a lack of
development in the direction of transient problems. |
: Most of the recent work on transient problems [98] [32] is still concerned
&ith studying surface features, especially surface roughness, but mainly looking at
the line contact problems. Work on the point contact problems is still very limited.
Up to this date, all the work done on the transient elasto-hydrodynamic lubrication
pro’blems‘ inakes use of fixed time steps. The fime steps are usually chosen in an
arbitrary way and no published work on variable time step methods or local error
control is known to the author Also of great importance is the issue of keeplng
computamonal costs to a minimum. This can be achieved by using an efficient
convergence criterion which must give a true picture of the solution. Though the

existing methods are commonly used, they can sometimes give misleading results

124
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as described in Chapter 5. A
This chapter will look at transient elasto-hydrodynamic lubrication prob-
lems by presenting the governing equations as differential algebraic equations. We
will consider solutions to transient problems with fixed and variable time steps
and also present a new convergence testing criterion when solving transient elésto—
hydrodynamic lubrication problems. The new technique is used when solving dif-
ferential algebraic equations and was originally developed by Shampine [90] for
ordinary differential equations. This chapter will be concluded by presenting de-
manding test problems where the speeds of the two surfaces in contact are varied
with time with the aim of zero and reversal entrainments. This is where the speeds .
of the two surfaces in contact are drivert down to zero and ‘then introducing a reversal
entrainment, that is reversing the direction of flow using negative speeds. In gen-
eral, when solving elasto-hydrodynamic lubrication problems, the oil entrainment

is usually assumed to be in the positive X-direction.

6.1 Governing Equatibns

The governing equations (the Reynolds equation (2.19), the film thickness equa-
tion (2.22) and the force balance equation (2.24)) of elasto-hydrodynamic lubri-
cation circular contact problems are introduced in Chapter 2. The only difference
between the equations of steady state and transient elasto—hydrddynamic lubrication
problems is in the Reynolds equation. In steady state elasto-hydrodynamic lubrica-
tion problems, the contribution from the squeeze term g’,ﬁ), which describes the
net flow rates due to the squeezing motion, in the Reynolds equation (2.41) is zero.
However, when solving transient problems, the squeeze term must be introduced
mto the Reynolds equation.
Besides the squeeze term, the d1mens1onless Reynolds equation of transient
roblems is slightly different from that of steady state problems. However, this
does not in any way affect the elasto-hydrodynamic lubrication model presented i in
Chapter 2 and has an added advantage of being flexible in the sense that it can also

be used to solve steady state problems. A reference speed Ures 15 introduced into

-
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the model and is equal to the sum of the speeds at time ¢ = 0 of the two surfaces
~in contact. As described in Chapter 2, the speeds of the two surfaces in contact are

given by u; and u; and at time ¢, the sum u, of the two speeds is given by
us(t) = wi () + u2(t) (6.1)
Hence, the reference speed u,.y is given by
Uref = us(o) . ) ‘ (62)

The non-dimensional Reynolds equation for a transient elasto—hydrodynaﬁlic

lubrication circular contact problem is of the form

ai( (eg)];) + a{i ( 35) (Z(?) aéﬁf - angH)“ =0 (6.3)

where, as in a steady state problem,
p(Pij) H;
€ = ——ed
TP ,J)/\
and u,(t) and Upef aTE respectlvely defined above by equations (6.1) and (6.2).

(6.4)

The reference speed u,.; prevents the solver from breaking down during zero en-
trainment, that is when the speeds of the two surfaces in contact are zero. The
non-dimensional density p and viscosity 7 are obtained respectively, as in a steady
state problem, using the Dowson and Higginson relation {30] and the Roelands
. equation and are given by equations (2.44) and (2.45). The constant A, as in a
81rU ( 2

steady state problem, is given by A = =) 1o where, as described in Chapter 2,

the Hamrock and Dowson’s load W and speed U parameters are respectively given

by W = E_,Ii_R_ and U = g"}‘; where, u, is the entrainment speed. In general, the

entrainment speed is the average of u; and ug, but when solving transient problems
K

at every time step, it is the average of the two speeds at time ¢ = 0, that is

us(0)
2 1.

(6.5)

6:

where u,(t) is defined by equation (6.1). |
) The non-dimensional film thickness and force balance equations of tran-
31ent problems are the same as in steady state problems. For completeness, as
described in Chapter 2, they are respectively of the form
H(X, Y) H00+-)§+£2 __/ / P(X',Y')dX' dy'
o V(X = XP+(Y-Y')

(6.6)




Chapter 6 127

and
./ / mxgmudY=%L | (6.7)

The method employed to discretise the governing equations of transient
elasto-hydrodynamic lubrication problems is the same as that used in steady state
elasto-hydrodynamic lubrication circular contact problems as described in Chap-
ter 2. However, when solving transient problems, the squeeze term %%l in the
Reynolds equation (6.3) must be taken into consideration.

As in steady state problems, the govérning equations are discretised on a

regular mesh over the computational domain
{(X,Y)eR: X, <X <X and ~Y, <Y <V},

with the oil entrainment in the positive X-direction and mesh spacings A, and h
z y
in the X and Y directions respectively. At each non-boundary mesh point (2,7)

[(i — V)hs + Xa, (§ — 1)hy + Ya], the discretised Reynolds equation (6.3) is given by

hi?(eioy i(Piess = Pij) + €1 j(Piyay — Pij)) +

hgz(ei,j—%(g,j—l - Pi,j) + 6z‘,j+§(Pi,j+1 - -Pi,j)) -

us(V) ht _ 9 (p;,; Hi;
—2 (P Hij ~ Pioy i Hior5) — —BJ—TL) =0 | (6.8)

Uref

. . 3(pi,; Hij) .
where, the discretised form of the squeeze term L'g;[—”) will be described below in
Section 6.2.1. For convenience, as described in Chapter (2), the discretised forms of

the film thickness equation (6.6) and force balance equation (6.7) are respectively

of the form
| X2 Y2
H;; = Hoo + -—2-‘1- + —51 + d;; (6.9)
and
2  2n
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6.2 Differential Algebraic Equations and the Back-
ward Euler Method |

When dealing Wlth transient elasto—hydrodynamm lubrication problems the chs-
cretised equatlons (6 8) and (6.9) can be represented as a system of D1ﬁ"erent1al

Algebralc Equatlons (DAE) [17] Equatlon (6 8) can be ertten as

whese, []x = (5 Hely k= (= 1) xme + j and By = Hyy for (i =1,... s j =
1,...,n,) where mg and ny are respectively the maximum number of mesh points

in X and Y directions and equation {6.9) can be written as
F(P,H)=0. | (6.12)

In order to understand differential algebraic equations, a property known
as the indez (or nilpotency) [17] is normally employed to classify the structure
and‘ ana,lyse the behaviour of differential algebraic equations. This property is
important because it gives an indication of numerical difficulties that might be
encountered When solving a system of differential algebraic equations. In order
to obtain the index of a system of differential algebraic equations, all or part of
differentia,l algebraic equations must be differentiated until they are converted into
a system of ordmary differential equations. The number of dlfferentlatlon steps
requlred in thls procedure is known as the index which can be defined as follows
[17]. The zndex of a differential algebraic equation S(t,y,y') =0 is defined as the
mzmmum number of times that all or part of S(t,y,y') =0 muet be dzﬁeeentiated
with respect to t in order to determz’ney' as & continuous function ofy,t. In general,
standard Ordinary Differential Equations (ODE), % = f(t,y), has index zero and
Differential Algebraic Equations (DAE) with index zero and one are easier to solve
numerically than those with index greater than one.

In order to obtain the index of transient elasto-hydrodynamic lubrication
problems, consider the differential algebraic equations (6.11) and (6.12). Equa-

tion (6.11) can also be written as

H =GP A) (6.13)
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and, if we differentiate equation (6.12) with respect to time ¢, we get

oF oF
gpl tagl =0 ,. (6.14)

which, when multiplied through by (——)‘1 gives, together with equation (6. 13)
a system of implicit ordinary differential equations. Hence, the index of transient
problems in elasto-hydrodynamic IUbUC&tlQH 1s one. a 55 appears to be non-singular -
its inverse being computed when solving elasto—hydrodynamlc lubrication problems
using the Newton-Raphson method [54, 68, 79] - but there is no proof of this.
When it comes to solving differential algebraic equations, many authors
have done extensive work in developing solvers to deal with differential algebraic
equations of the form S(t,4,y') = 0, e.g. SPRINT [3, 9], DASSL [17, 83] and
LSODI [52]. Most of these solvers are based on the Backward Differentiation For-
mulas (BDF) which were introduced by Gear [39]. The concept of the backward
differentiation formulas is that the derivative y'(¢) is approximated by a linear com-
bination of the solution y(t) gt the current and previous mesh points. The simplest
method for solving differential algebraic equations is to use the first order bdckward

dlfferentlatlon formula (or the backward Euler method) which will now be covered

n the next sectlon

621 Backward Euler method

The backward Euler method is the simplest form of backward differentiation for-

mulas [38, 42, 62] and is widely used to obtain solutions to differential algebraic

equations of the form
Sty.y) =0, (6.15)
which is an initial-value [19, 38, 70] ordinary differential equation with a solution

y(t) over the interval #p < ¢ < ¢ and y(¢9) = yo is known.

If the backward Euler method i is used to obtain a solution to the differ-
gntial algebraic equation (6.15), then the derivative y'(tn.,.l) at time ¢,4; must be
approximated by a first order backward diﬁergnce of y(t), and the resulting system

of non-linear equations is then solved for y(t,4,). That is,

! tn 1) n
Y (tr1) ~ Ylns Lt y{ta) (6.16)
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which, when substituted into the differential algebraic equation (6.15) gives-

S <tn+1 y y(tn+1)7 y(tn-HLt_ y(tn)> =0 ) (617)

where At = tpq1 — tn.

When solving transient elasto-hydrodynamic lubrication problems, the dis-

cretised form of the squeeze term %ﬁi”) shown in the Reynolds equation (6.8),

is given by

0 Hig) 1, D, s
____81T_._J__ = X7 ((pw Hi,j)n:{»l - (Pz‘,j Hi»j)n) (6‘18)

where, the subscript ¢,j denotes the grid point and the subscript n denotes time

t,. This means that the solution at the previous time step is required when solving

transient elasto-hydrodynamic lubrication problems.

6.3 Local Error Estimates, Convergence Test and
Time Stepping
The numerical solutions of transient elasto-hydrodynamic lubrication problems are
obtained using the multigrid solver for elasto—hydrodynamic'lubrication problems
which is described in Chapter 4. When solving transient problems, extra operations,
which were ignored in steady state problems, must be taken into consideration.
This includes the evaluation of the local error estimates, the issue of when to stop
the multigrid iterations (V-cycles) during each time step cycle and the issue of
time stepping. The evaluation of the local error estimates is based on obtaining
an approxvimation to the solution using a predictor. We will now outline these
operations in turn and describe how they fit into the multigrid solver for elasto-

hydrodynamic lubrication problems.

6.3.1 Local error estimates

The concept of local error estimates of a system of differential algebraic équations

of the form

Ay =By +g(t) (6.19)
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is explained in detail by Petzold [83] and Brenan et al. [17]. They have shown that

- the local errors associated with these equations are of the form
(A — At B) Elocal = Al_e : : (620)

Where, At = tu41 — tx and [e is the local truncation error given for the backward
Euler method by ' ‘ T

le= % (Qn.l.l - }Zﬁﬂ) | (6.21)

b . i i
where, Y. s the predicted, denoted by superscript p, solution of Y41 2t timet,

and it is given by

. Yy |
P — Zn+1 Zn
Yoss =Ygy T Blnia (T) . (6.22)

The local errors, €,.,;, are usually calculated by forward and backward substitution
using LU factorisation of [A — At B], [83].

| If we employ this strategy in transient elasto-hydrodynamic lubrication
problems, then the differential algebraic equations (6.11) and (6.12) can respectively

be rewritten as

A !

where, [H]; = [px Hi], k = (i—1) x m; + j and Hy=H;;jfor (i =1,... yMg 3 § =

1,...,ny) where m; and n, are respectively the maximum number of mesh points

in X and Y directions and

H-KP-c=0 | (6.24)

where, the coeflicient matrix K is used to evaluate the elastic deformation ag de-
scribed in Chapter 2.

The local errors associated with transiént elasto-hydrodynamic lubrication
problems can be obtained by formulating an equivalent system of equations to
(6.20). The LU decompositiqn of [A — At B] or its equivalent is not available and
so the multigrid solver for elasto-hydrodynamic lubrication problemé described i‘n
Chapter 4 is used to calculate the local errors associated with transient problems

by solving eqqations (6.23) and (6.24). This is done at the end of each multigrid
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cycle using the following algorithm: The equations for obtaining the local errors at

 the 7, 7 th mesh point are of the form, [17],

8G’ cJe ' |
-1- At A 5% leH _ -1 0 1 H.,~ H,
——At AtK leP 0 0|2 £n+1 - £ﬁ+1 (6.25)

where, the subscript n indicates time ¢,, leH and leP are respectively the local

errors in film thickness H and pressure P and HY., and PP +1 are respectively the

predicted, denoted by superscript p, solutions of H, t1and P In general, the
predicted solution of P(f,41) at time #,4, is given by

Proa=P.,+ 4tn+1 (%{‘&) : ) (6.26)

- Let us consider the two equations of (6.25) more closely. First consider the

 second equation, which is simpler of the two equafions and represents a relationship

between the local errors in H and P, that is
leH = K eP, (6.27)

which implies that we can solve for local errors in either H or P. Since Whén solving
elasto-hydrodynamic lubrication problems, the multigrid solver is employed to solve
for P, which is then used to evaluate H, we calculate the local errors in P, Now

consider the first equation which, using equation (6.24), can be rewritten as

_At<£gji Le; Lle. ) _KP,,, -KP?

5 , o (6.28)

which must be rewritten in a different format because a multigrid solver is employed
throughout this work to solve elasto-hydrodynamic lubrication problems and the

Jacobian matrix of derivatives is not evaluated at any stage of the solution process.

Con31der the Taylor’s theorem for 2 variables, that is

. s, 2 G le;
P l ~ — —_
G(H+leH,P +eP) ~ G(H, P)+8 leH + 3P leP + h.o.t. (6.29)

where, G(H, P) represents the residual. Assuming that the residual is zero and

using equation (6.23), equation (6.28) can be written in a different form as

H, . +leH — H K
G(H +1 +leH P +16P) At 2At (—n+1 EZ+1) (6.30)
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where, the subscript n indicates time ¢, and [H]x = [p(P;) Hy], k = (t—=1)xm, + §
cand Hy = H;j for (i =1,...,mz; 7 =1,... ,n,) where m, and ny are respectively
the maximum number of mesh points in X and YV directions.

Using equation (6.27), equation (6.30) can be rewritten as

E 5 En = En K -
Q(_Iin+l7£n+1) - +Zt ‘: 2At (Pn+1 ——z+1)a (631)

where, E’nﬂ = H,H_1 + KleP and Pn+1 =P, +1eP. Equatlon (6.31) must be

solved together with
En+1 - I{En-i—l —c=0 ' (6.32)

in order to obtain the local error in E, leP, at any i, jth mesh poiht. The local
error in _fi may then be calculated using equation (6.27).

“ For a constant j, that is on the line Y = j, equation (6.31) is used to
formulqte a system of equations that is then solved simultaneously for P. This
concept is described in detail in Chapter 4. Having obtained the solution P on
the entire computational domain, it is ‘then used to evaluate the new film thickness

H v1scosn;1es and densities on the entire computational domain. It is also used to

calculate the local error in pressure using
“l—e—‘EHw = ”Bn-}-l - ._B_n-}-l”'w (633)

where, a weighted root mean square Ly-norm is used, i.e.

_ o2 leP; ;
L e ZZ < ) - (6.34)

i=1 j=1

where, m, and n, are respectively the maximum number of grid points in the X
and Y directions and at the 7, j th mesh point, the weight depends on the absolute

(atol) and relative (rtol) errors and the initial value of P at each time step, that is
w;; = atol + P{; rtol (6.35)

where, atol and rtol are respectively the absolute and relative error toleranceé.
These tolerances can be specified by the user but for the solver to use the correct

temporal accuracy, the spatial error [63, 7] must dominate the temporal error. This
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concept is described in detail by Lawson et al. [63] and Berzins [7]. Hence, atol and
- rtol must be chosen so that the spatial error dominates and this can be achieved by
controlling the local error in time so that it is a fraction of the local growth in the
spatial error. However, since the spatial error may vary with time, the tolerances
may also need to vary with time so that the spatial error stays in dominance at
each time step. As an alternative, the tolerances can be chosen so that the local

errors in time are an order of magnitude smaller than the spatial error, that is
|lle]| < el|spatial error|| (6.36)

where, ¢ is a small fraction, say less than 0.01. Hénce, at each time step, the spatial
error is computed and used to obtain the tolerances. We make use of this latter
approach when solving transient elasto-hydrodynamic lubrication problems. This
is achleved by takmg a fractlon of root mean square Ly-norm of the spatial error

so that the Ly-norm of the local error in pressure, given by equation (6.33), is less
b

than one, that is

|llePl., < 1.0. (6.37)
The root mean square Lo-norm of the spatial error is given by
||spatial error|| = ||P° — I? P?|| (6.38)

where, I? is a restriction operator, described in Section 4.i.1, that restricts P* to

a coarser grid with mesh size S and S = 2s.

6.3.2 Convergence test

When solving transient elasto-hydrodynamic lubrication problems using the multi-
grid solver, we need to employ a strategy to decide when to terminate the multigrid
iterations (V-cycles) during each time step. This strategy needs to be employed
after each‘ multigrid iteration in order to avoid doing extra work and improve the
efficiency of the multigrid solver. Though the existing methods are commonly used,
they can sometimes give misleading results as described in Chapter 5. Hence, a

new convergence criterion for transient elasto-hydrodynamic lubrication problems

-
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will be presented and employed in this work. It, referred here as convergence test
- is similar to the one described by Brenan et al. [17] who employed’ it in DASSL
[17, 83] and is based on the well-known result [90], that |

I =™ S T -yt (e

where, y* is the exact solution, ¢ is an estimate of the rate of con\}ergence of the
iteration, w is a weight factor used when evaluating the norm and the superscript

m is the iteration number. The iterations are continued until
__.___”y'm+l m”w < T : : . (640)

which is a convergence test developeq by Shampine [90] end iﬁ DASSL r - 0.33.
The reason for choosing 0.33 is that the error due to terminating the iteration does
, not affect the local error Wthh is less than 1.0. According to Shampine [90] the
ch01ce of T Varles a great deal but, a very small tolerance 7 does not necessarlly |
improve the solutlon The rate of convergence g is given by

el SN

A\ = ¢l ) (6.41)

and according to Brenan et al., if p > 0.9, the iteration is considered to have failed

The ri‘orm’s used in equations (6.40) and (6.41) are weighted root mean square
Lo-norms as defined by equation (6.34).

| When ‘selving transient elasto»hydrodynafnic lubrication problems, the
convergence test employed in the multigrid solver is based on the selutioh pres-
~sure P. This is the case because the multigrid solver is first employed to solve for P
Wthh is then used to evaluate the film thickness /. The convergence test is carried
out at the end of eech 1nu1t1gr1d cycIe usmg equation (6.40), but Y is replaced by P.
The tolerance 7 in equation (6.40) is chosen to be 0.1 and with this choice, at every

time step besides zero, between 2 to 3 multigrid iterations (V—cycles) are carried

out by the multigrid solver.

6.3.3 Time stepping |

A key feature associated with time—dependenf (or traﬁsient) elasto-hydrodynamic

lubrication prgblems is the concept of time stepping. When solving transient prob-
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lems using the multigrid solver for elasto-hydrodynamic lubrication problems, a
_ time step size must be assigned in order to drive the problem The step size can
1?e either chosen arbitrarily or evaluated within the solver using the local error es-
timates. If the step size is chosen arbitrarily by the user, then it is done once prior
to solving the problem. However, if it is evaluated using the local error estimates,
then it is done at the end of each time step.

The concept used to implement the variable time step method is to use
the local error to only double or halve rhe step size as was done by Berzins and
Furzland [10]. It is also important for variable step methods not to change the step
size too frequently unless a decrease is called for. For this reason a step size increase
is only considered after three successful steps.

~ An alternative method is that ‘described by Brenan et al. [17]. They have
based their strategy on the concept used’by Shampine and Gordon [91]. The new

step size is given by rAt,4; where
= ~1/(k+1) - |
r=(2 l|{eP]].) ‘ ‘ (6_42)

where, k represents the order of the method For the backward Euler method E=1.
Accordmg to Shampme et al. [91], even if r is reliable, some limits must be imposed
on the new step size. The step size can either increase by a factor of two or decrease.
However, if these two operations are not possible, then the step size is kept constant.
The step s1ze is increased if r is greater than or equal to two. If a decrease in the
step size is required then it is decreased by at least r = 0.9 and at most r = 0.5.
T he step size is decreased if r is less than or equal to one. A pomt to note is that
When the step srze is to be decreased, the estimate for » is taken at the face value
whereas when it is to be increased, the estimate for r is not used in the evaluatlon
of the new step size.

Solutions using both fixed and variable time step methods will be presented
in this chapter. The next section will show the effectiveness of the new convergence

criterion for solutions obtained using a fixed time step method.
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6.4 Testing Convergence Criterion using a Fixed

Time Step Method

The multigrid solver described in Chapter 4 is employed to solve a transient elasto-
hydrodynamic lubrication circular contact problem using a fixed time step method.
In order to show the effectiveness of the new convergence test, a comparlson will be
presented for solutions obtained with and without the convergence test described
above. The main feature of this test problem is to study the effect of varying the
speeds of the two surfaces 1 in contact with tlme on the pressure and ﬁlm thlckness
The speeds of the two surfaces in contact are varied with time with the aim of zero
and reversal entrainments. This is Where the speeds are driven from a positive Value
down to zero (zero entrainment) and theg introducing negative speeds (reversal
: entrainment). ‘During the entire cycle of driving thé pfoiolem from positive speeds
down to zero and reversal entrainments, all the other input pa.rameters defining the
problem are left unchanged. Hence, the load of the problem remains the same at

every time step. The input parameters of this test problem are shown in Table {6.1).

Parameters Symbols Values Units
Reduced radius of curvature R 1.27 x 10~2 m
Reduced modulus of elasticity -~ E' 1.41 x 10* Pa
Load w 14.96 N
Pressure viscosity index : a 2.1 x 10-8 Pa-l
Maximum Hertzian pressure D ‘ 0.4468 GPa
Viscosity at ambient pressure o 0.525 Pas
Speed of surface 1 ul 5.0 x 10~2 m s=1
Speed of surface 2 " u2 5.0 x 1072 S

Table 6.1: Input parameters

The dimensionless Hamrock and Dowson parameters G, W and U and the

cqrresponding dimensionless Moes parameters M and L to the nearest intéger are

presented in Table (6.2).
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Parameters ' Values
" Material parameter G _ 2961
Load parameter W 6.5782 x 10~7
Speed parameter U 1.4659 x 10~
Moes parameter M ‘ 52
Moes parameter L | 7

Table 6.2: Dimensionless parameters

This transient problem is solved on a domain —3.0 < X < 3.0, =3.0 <
Y < 3.0 with 65 by 65 and 17 by 17 finest and coarsest grids rgspectively. Th_e
solutions are obtained for time ¢ = 0 to ¢ = 3.0 with reversal entrainment at time
t = 1.5. At each time step, the speeds of the two surfaces in contact are reduced
by 5.0 x 10~* and the step size is kept constant at 0.01538. This problem is solved
with and without the new convergence test. When the problem is solved using the
new convergence test, the tolerance 7 is set to 0.1 whereas when the solution is
obtained without the new convergence test, 15 multigrid iterations (V-cycles) are

carried out at every time step. The latter uses 15 V-cycles because that is what we

would normally use in steady state problems.

6.4.1 Results and discussion

The central and minimum and film thicknesses obtained with and without the
convergence test are respectively shown in Tables (6.3) and (6.4). There is little
discernible difference in the values of central and minimum film thicknesses obtained
with and without the new convergence test but, the times taken to 6btain these
results on an SGI R8000 were respectively 1.7 and 12.3 hours. Hence, by using the

convergence test, the amount of work done is greatly reduced without affecting the

accuracy of the solution.
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Step Time ¢ Hcent Hmin
0 0.0000 1.9466E-05 1.1099E-05
40 0.6154 1.9614E-05 1.0805E-05
80 1.2308 1.9749E-05 " 9.6057E-06
100 1.5385 1.9900E-05 8.9634E-06
120 1.8462 2.0210E-05 8.5518E-06
160 2.4615 2.0624E-05 7.9192E-06
200 3.0769 1.6071E-05 8.0084E-06

Table 6.3: Central and minimum film thicknesses (ConvergenceTest).

Step Time . Hcent Hmin
0 0.0000 1.9466E-05 1.1099E-05
40 0.6154 1.9611E-05 1.0809E-05
80 1.2308 1.9764E-05 9.6168E-06
100 1.5385 1.9936E-05 8.9863E-06
120 18462 2.0273E-05 8.6166E-06
160 2.4615 2.0689E-05 7.9356E-06
200 3.0769 1.5988E-05 8.0861E-06

Table 6.4: Central and minimum film thicknesses (No ConvergenceTest).

Figures (6.1) and (6.3) show respectively the profiles of pressure and film
thickness along the X-axis for solutions obtained with the convergence test whereas
Figures (6.2) and (6.4) show the same profiles but for solutions obtained without the
convergence test. Figures (6.1) and (6.2) shows the effect on the pressure’ profiles
of switching from positive to negative entrainments. During positive entrainment,
a pressure spike is seen on the outlet region (+ve X-axis) and it moves gradually
with time towards the central contact region. At reversal, which represents negative
entrainment, a pressure spike begins to appear on the new outlet region (-ve X-
axis). The effect of negative entrainment can also be seen from the profiles of film
thickness shown in Figures (6.3) and (6.4). During the time cycle from positive
to negative entrainments, not only does the constriction in the outlet region (+ve

X-axis) gradually move with time towards the central contact region but also a

-
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second constriction develops in the inlet region (-ve X-axis).

Figure 6.1: Pressure profiles along the X-axis (ConvergenceTest).

Figure 6.2: Pressure profiles along the X-axis (No ConvergenceTest).

140



Chapter 6

Film Thickness H

g Film thickness profiles along the X-axis (ConvergenceTest).

Film Thickness H

Figure 6.4: Film thickness profiles along the A'-axis (No ConvergenceTest).
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The effect of reversal entrainment can be seen more clearly from the con-
tour and surface plots of pressure and film thickness. Figures (6.5), (6.6), (6.7),
(6.8), (6.9) and (6.10) shows contour and surface plots of pressure and Fig-
ures (6.11), (6.12) and (6.13) shows contour plots film thickness at times t = O,

t = 15 and t = 3.0. All these profiles were obtained using the multigrid solver

which employed the new convergence test.

Figure 6.5: Pressure contour at time t = 0.
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Figure 6.6: Pressure surface plot at time t = 0.

Figure 6.7: Pressure contour at time t = 1.5.
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Figure 6.9: Pressure contour at time t = 3.0
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Figure 6.10: Pressure surface plot at time t = 3.0.

Figure 6.11. Film thickness contour at time t = 0
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Figure 6.12: Film thickness contour at time t = 1.5.

Figure 6.13: Film thickness contour at time t = 3.0.
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6.5 Comparison of Fixed and Variable Time Step
Methods |

" The multigrid solver described in Chapter 4 is employed to solve a transient elasto-
hydrodynamic lubrication circular contact problem using both fixed and variable
time step methods. The features of this test problem are snmlar to those described
above in Section 6.4. The input and the dimensionless parameters of this test
problem are the same as before and are respectlvely shown above in Tables (6.1)
and (6.2). We will consider two cases where case one will use a 65 by 65 finest grid

whereas case two will employ a 129 by 129 finest grid.

6.5.1 Case one

This problem is solved on a domain —3.0 < X < 3.0, —=3.0 < Y < 3.0 with 65
by 65 and 17 by 17 finest and coarsest grids respectively. This problem is solved for
time ¢ = 0 to ¢ = 0.76 with reversal entrainment at time ¢ = 0.38. During the time

cycle, the speeds of the two surfaces in contact are reduced by a fixed function of

the simulation time t, that is

ur(t) = u(0) (1 — ) and us(t) = u,(0) (1 - ) ,  (6.43)

where tepersal 15 the time where reversal occurs. When the solution is obtained using

reversal reversal

the fixed time step method, the employed step size is equal to 1.0 x 10~3 whereas
when using the variable time step method, the minimum and maximum step sizes
are respectively equal to 1.0472x 1072 and 7.7519 X 10~3. The times taken to obtain
the two solutions using fixed and variable time step methods were respectively 7

and 5.4 hours and the number time steps taken are 750 and 670 respectively.

6.5.1.1 Results

The central and minimum film thicknesses obtained using fixed and variable time
step methods are respectively shown in Tables (6.5) and (6.6). The diécrepanéy
in the central and minimum film thicknesses obtained using the two methods is

minimal and i_S approximately 5%. A point to note is that the step size in the fixed
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time step method is approximately equal to the minimum step size in the variable

step size method. Hence, the minimal discrepancies in the central and minimum

film thicknesses obtained using the two methods.

Step Time ¢t Hcent Hmin

0 0.0000 1.9466E-05 1.1099E-05
200 0.2000 2.1236E-05 1.2423E-05
300 ©0.3000 2.2750E-05 1.3416E-05
400 0.4000 2.5687E-05 1.5510E-05
600 0.6000 3.6033E-05 2.2777E-05
700 0.7000 3.9775E-05 2.4361E-05
750 0.7500 4.1035E-05 2.4541E-05

Table 6.5: Central and minimum film thicknesses (65by65:Fixed TimeStep).

Step Time ¢ Hcent Hmin
0 0.0000 1.9466E-05 1.1099E-05
150 0.2162 2.0687E-05 1.1932E-05
250 0.3209 2.1968E-05 1.2723E-05
350 0.4256 2.4646E-05 1.4574E-05
550 0.6350 3.4214E-05 2.1303E-05
650 0.7398 3.7968E-05 2.3078E-05
670 0.7607 3.8573E-05 2.3292E-05

Table 6.6: Central and minimum film thicknesses (65by65:Variable TimeStep).
The profiles of pressure and film thickness along the X-axis obtained using
the fixed time step method are respectively shown in Figures (6.14) and (6.16)
whereas Figures (6.15) and (6.17) show the same profiles obtained using the variable

time step method. The features described above in Section 6.4.1 are also observed

in these figures.
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Pressure P

. Pressure profiles along the X-axis (65by65:Fixed TimeStep).

Pressure P

Figure 6.15: Pressure profiles along the X-axis (65by65:Variable TimeStep)
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Figure 6.16: Film thickness profiles along the A'-axis (65by65:Fixed TimeStep).

Figure 6.17: Film thickness profiles along the A-axis (65by65:Variable TimeStep).



Chapter 6 151

6.5.2 Case two

This problem is solved on a domain —3.5 < X < 3.5, =35 < Y < 3.5 with .
129 by 129 and 17 by 17 finest and coarsest grids respectively. For this casé, the
| problem is solved for time ¢ = 0 to ¢ = 0.2 with reversal entrainment at time
t = 0.09. During the time cycle, the speeds of the two sw;lrfa,ces in contact are
reduced by a fixed function of the simulation time ¢ as given by equation (6.43). A
step size of 1.5 x 1072 is employed when the solution is obtained using the fixed time
step method whereas when using the variable time step method, the minimum and
maximum step sizes are respectively equal to 9.6899 x 10~* and 7.7519 x 10~3, The
times taken to obtain the two solutipns using fixed and ‘variable ‘time step methods

were respectively 16 and 7.6 hours and ‘the number of time steps taken are 134 and

66 respectively.

6.5.2,1 Results

The central and minimum film thicknesses obtained using fixed and variable time

step methods are respectively shown in Tables (6.7) and (6.8).

Step Time ¢ Hcent Hmin

0 0.0000 1.9229E-05 1.1038E-05
30 0.0450 2.1376E-05 1.2860E-05
50 0.0750 2.2722F-05 1.3937E.05
60 0.0900 2.3484E-05 1.4538E.05
80 0.1200 2.5275E-05 1.5947E-05
100 0.1500 2.6796E-05 1.7093E-05
120 0.1800 2.7777TE-05 1.7690E-05
134 0.2010 2.8142E-05 1.7813E-05

Table 6.7: Central and minimum film thicknesses (129by129:Fixed TimeStep).
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Step Time ¢ Hcent Hmin

0 0.0000 1.9229E-05 1.1038E-05
10 0.0446 1.9774E-05 1.1468E-05
20 0.0736 2.0375E-05 1.1922E-05
30 0.0959 2.1119E-05 1.2516E-05
40 0.1231 2.1864E-05 1.3073E-05
50 0.1521 2.2494E-05 1.3538E-05
60 0.1831 2.2029E-05 1.3785E-05
66 0.2006 2.3113E-05 1.3882E-05

Table 6.8: Central and minimum film thicknesses (129by129:Vafiable TimeStep).

The profiles of pressure .along the X-axis obtained using the fixed time

‘step and variable time step methods are shown in Figure (6.18). The two profiles

at various times between ¢ = 0 and ¢ = 0.2 are displayed side by side in order

to compare their differences. Similarly, the profiles of film thickness are shown in

Figure (6.19).
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Figure 6.19: Film thickness profiles along the X-axis (129by129).

A graphical representation of the step sizes employed in the fixed and
variable time step methods are shown in Figure (6.20). A logarlthmlc scale is used
on both axes to plot time ’t’ against the step sizes "Step Size’ of the two methods.
In the fixed time step method, the step size is constant and is shown as a straight
hne parallel to the X-axis which represents time ¢. The plot for the variable time

step method starts off as a constant value and then begins to fluctuate between
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3.8760 x 107% and 1.938 x 1073 until it approaches reversal. At reversal the step
size dips to a minimum value of 9.6899 x 10~4. Just after reversal, the step size

repeats the fluctuation pattern.
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Figure 6.20: Graphical representation of fixed and variable step sizes.

6.5.3 Discussion

We will now analyse the solutions obtained using fixed and variable time step meth-
ods in the above two cases. For convenience, the solution in case one was obtained
using a 65 by 65 finest grid whereas a 129 by 129 finest grid was employed in case
two. In case one, there is not much to choose between the solutions obtained using
the two methods and as expected, since the minimum step size in the fixed time
step method is approximately equal to the minimum step size in the variable time
step method, the discrepancy in the minimum and central film thicknesses obtained
using the two methods is minimal. On a reasonably large mesh, as in case two, the
variable time step method is much faster than the fixed time step method. However,
though the discrepancy in the minimum and central ﬁlm thicknesses obtained using

the two methods is relatively large, their respective profiles of pressure and film
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thickness are very similar. Since these problems are highly non-linear and due to
the complexity of the problem being considered, that is zero and reversal entrain-
ments, the variable time step method is quite sensitive to the step size when the “
time cycle approaches the zero and reversal entrainments. Hence, special measures
need to be considered during zero and reversal entrainments. Besides this, the issue
of discontinuity in the discretisation during reversal also needs to be addressed.
The combination of the multigrid method, dlfferentlal algebraic equa-
tions and variable time steps is a novel approach for solving transient elasto-
hydrodynamic lubrication problems. The results obtained using this approach are

very encouraging and appear to be a step in the right direction although more work

is needed.

6.6 Conclusion

The main concept of this chapter was to solve transient elasto-hydrodynamic Iubri-
cla,tion problems using the multigrid solver of Chapter 4. This has been illustrated
by solving very demanding test problems using fixed and variable time step meth-
ods. It is demanding in the sense that the problem undergoes a rapid change from
positive to negative entrainments, that is the speeds of the two surfaces in contact
are driven down to zero and then a reversal entrainment is introduced by reversing
the direction of flow.

We have illustrated in this chapter the effectiveness of the new conver-
gence criterion when solving transient elasto-hydrodynamic lubrication problems.
By introducing the new concept for testing the convergehce criterion, the amount
of work done is reduced without affecting the accuracy of the solution. We have
also illustrated that the variable time step method can be used to solve transient
elasto-hydrodynamic lubrication problems and that this is a, promising approach
with regard to reducing the computational cost in solving such problems

From the obtained fixed and variable time step solutions, we can conclude
that the multigrid solver developed in Chapter 4 i 1s very robust and capable of

solvmg highly demanding elasto—hydrodynamlc lubrication problems.

-
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CONCLUSION

The main object of the work presented in this thesis was to develop an eﬂiéient, ro-
bust and general purpose numerical solver for steady-state and time-dependent (or
~ transient) elasto-hydrodynamic lubrication circular contact problems. The solver is

based on the FDMG Multigrid Software [92] and a new relaxation scheme which is
developed in this work. These problems are very important in engineering applica-
tions and by developing a general purpose numerical solver, mainly for industrial
applications, engineers will be able to solve a wide range of these problems under
different operating conditions. |

The mathematical model describing isothermal (Newtonian) elasto-

hydrodynamic lubrication circular contact problems is highly non-linear consisting
of a complex system of coupled integro-differential equations. The model is made
up of three equations with a pressure dependc_ent viscosity and density. The three
equations are the Reynolds equation, the film thickness equation and the force
balance equation and the main feature of the model is the cavitation boundary
condition P > 0. Due to the complexity of these problems, solutions can not be

obtained analytically and numerical methods must be used. This is achieved by

discretising the governing equations at every point on the computational domain

using a finite difference scheme.
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Over the years, dating back to the 1970’s, many numerical schemes have
been developed to solve elasto-hydrodynamic lubrication problems. Most of these
schemes are based on the direct iterative methods which are not only expensive
computationally but are also restrictive under severe operating conditions, such as
high loads. Hence, most of the earlier work on elasto-hydrodynamic lubrication
problems was based on line contact and lightly loéded‘ point contact problems.
However, new methods are emerging but they are still restrictive in one form or
another. Examples of these new methods include the effective influence Ne\&ton
method of Wang [102] and homotopy metH@d [4] used by Scales [75].

A major breakthrough was achieved by Lubrecht [68] who introduced the
multigrid method in solving elasto-hydrodynamic lubrication problems. The use of
the ‘multigrid method tackled the problem of large CPU times but the problem of
instability associated with highly loaded point contact problems was still an issue.
Following Lubrecht’s work, Venner [97] developed a relaxation scheme which was
used with the multigrid method to solve elasto-hydrodynamic lubrication problems.
This enabled Venner to solve highly loaded point contact problems using a large
number of mesh points. Hence, the issue of instability was resolved and problems
that were previously unsolvable could now be solved routinely. However, the relax-
ation scheme of Venner is not only difficult to understand because it is not presented
in its entirety but also difficult to implement due to its complexity.'

A new relaxation scheme to solve elasto-hydrodynamic lubrication prob-
lems is presented in this work which uses the same principle as Venner in that
different relaxation schemes are employed on the same computational domain. The
manner in which the new relaxation has been developed is based on the behaviour
of the Reynolds equation of the elasto-hydrodynamic lubrication model. The coef-
ficient € of the Reynoldé equation varies several orders of magnitude over the com-
putational domain and is the main cause for numerical instabilities when solving
highly loaded problems. This means that whichever relaxatién scheme is employed
to solve these problems, it must be able to cope with extreme values of fhe coefli-
‘cient ¢ of the Reynolds equation. This then leads to a stable error smoother over the

entire domain. Based on this concept, the new relaxation scheme for solving elasto-

-
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hydrodynamic lubrication problems makes use respectively of the Jacobi and the
Gauss-Seidel line relaxation schemes in the contact and non-contact regions of the
computational domain. The main concept of the new reléxation scheme developed
in this work is that it is very simple and easy to implement and understand.

The new relaxation scheme is used with the FDMG Multlgmd Software
[92] to develop a multigrid solver for elasto—hydrodynamlc lubrication problems
(multigrid solver). However, due to the complexity of the ela,sto-hydrodynamic lu-
brication model, substantial modifications have been made to the original FDMG
multigrid software. A wide range of steady—state problems have been solved using
the multigrid solver and the obtained solutions are comparable with those obtained
using other numerical methods. The maximum Hertzian pressure of steady-state
problems soived in this work varied between 0.44G Pa and 3.68GPa and the dimen-
sionless parameter @ varied between & = 4and @ = 82. The maximum Hertzian
pressure py and the dimensionless parameter @ indicate the load of the problem.
The higher the value of p, and @, the higher the load of the problem.

. Besides solving steady—staﬁe problems, the multigrid solver is also em-
ployed to solve transient pro‘blems. Fixed and variable time step methods are used
to solve demanding transient problems. A new convergence testing criterion, based
on [90], for transient problems has also been presented which reduces the amount
of work done to solve these problems without affecting the accuracy.

Having solved a range of demanding steady-state and transiént problems,
we can conclude that the multigrid solver for elasto-hydrodynamic lubrvication prob-
lems developed in this work is a fast, robust and general purpose solver for elasto-
hydrodynamic lubrication circular contact ‘problems. It is capable of solving both
ligiqtly to highly loaded problems found in industrial applications. The multigrid

solver has many industrial applications and it has already been used at the Shel]

Research and Technology Centre at Thornton.
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