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Abstract

Over the past two decades, many numerical schemes have been developed 

to solve elasto-hydrodynamic lubrication problems. New schemes are continuously 

being sought with the aim of improving efficiency and robustness. The two main 

issues of concern when solving these problems are large computational costs and 

numerical instabilities. The multigrid method, first used by Lubrecht et al. [68] 

when solving these problems, has proved to be very successful in dealing with the 

issue of computational costs. Venner [97] took this work further and developed 

a relaxation scheme which dealt with the issue of instability. However, Venner’s 

scheme is not only difficult to understand because it is not presented in its entirety 

but also difficult to implement due its complexity. Hence, a new easy to understand 

and simple relaxation scheme will be developed and employed in this work, [74], to 

solve elasto-hydrodynamic lubrication problems.

The aim of this work is to present an efficient, robust and general purpose 

numerical solver for isothermal (Newtonian) elasto-hydrodynamic lubrication cir­

cular contact problems. The solver will be based on the FDMG Multigrid Software 

[92] and the new relaxation scheme. Elasto-hydrodynamic lubrication problems are 

very important in engineering applications and there is a need for general purpose 

solvers for industrial applications.

The multigrid solver will be used to solve both steady-state and time- 

dependent (transient) problems. A wide range of steady-state problems will be 

solved and the obtained solutions will be compared with those obtained using other 

numerical methods, [75]. Up to this date, transient problems are constantly being 

solved using fixed time step methods where the step sizes are chosen arbitrarily. 

We will present solutions to both fixed and variable time step methods. The gov­

erning equations of transient problems will be written as a system of differential 

algebraic equations and methods from this area will be employed in variable-step 

time integration and convergence testing, [90].
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Chapter 1

INTRODUCTION

In 1966 [76] the word tribology was introduced and defined as the science and tech­

nology of interacting surfaces in relative motion and of the particles related thereto. 

This can be interprated as the lubrication, friction and wear of moving or station­

ary objects. A lubricant [30, 40, 43] is any substance that is used to reduce friction 

and wear of machine components. Besides this, it also provides smooth running 

and long life for the machine components. If a thin but continuous fluid film exists 

between machine components to prevent them from coming into contact then this 

is called fluid film lubrication. The applied load is carried by the pressure generated 

within the lubricant and the frictional characteristics arise purely from the shearing 

of the viscous lubricant. The two forms of lubrication regimes which fall into this 

category are hydrodynamic and elasto-hydrodynamic lubrication.

1.1 Hydrodynamic Lubrication

Hydrodynamic lubrication occurs when the lubricant film is sufficiently thick to 

prevent the opposing solids from coming into contact. Hence, wear will be nearly 

absent and the coefficient of friction will be small. Hydrodynamic lubrication is 

normally associated with conformal contacts. This is where there is a high degree

1



Chapter 1 2

of geometrical conformity between the objects in contact. The behaviour of the 

contact is governed by the physical properties of the lubricant and the applied load. 

The applied load is carried by the pressure generated within the lubricant. This 

can be either due to the motion of the surfaces (squeeze film or sliding bearings) or 

externally motivated (externally pressurised bearing). The shearing of the viscous 

lubricant is responsible for the resistance to motion of the contacts. In hydrody­

namic lubrication, the film thickness is normally greater than 1 x 10_6m and the 

magnitude of pressure developed is usually less than 5 MPa which is not large 

enough to affect the geometry of the surfaces. Hence, the surfaces are rigid.

1.2 Elasto-Hydrodynamic Lubrication

Elasto-Hydrodynamic Lubrication (EHL) is a form of hydrodynamic lubrication 

where the elastic deformation of the contacts is no longer negligible and the pressure- 

viscosity effects are equally important. The magnitude of the generated pressure , 

is typically between 0.5 and AG Pa and the minimum film thickness may be less 

than 0.1 x 1CT6 m. Due to the high pressure, the lubricant exhibits piezoviscous 

properties. It is well known that for most lubricants [41], the viscosity increases 

rapidly with increasing pressure. Furthermore, the application of high contact loads 

can lead to substantial local deformation of the contacts, an effect which may dras­

tically change the geometry of the lubricating film. Since the shape of the lubricant 

film in turn determines the pressure distribution, it is apparent that a solution to 

elasto-hydrodynamic lubrication problem must simultaneously satisfy the governing 

elastic and lubrication equations.

Elasto-hydrodynamic lubrication is normally associated with non-conformal 

contacts. This is where the surface contacts do not geometrically conform well to 

each other. Such contacts touch nominally along a line (line contact) or at a point 

(point contact). When studying elasto-hydrodynamic contacts, it is not necessary 

to consider the often rather complex geometry of the contacting elements. Since the 

film thickness and the contact width are generally small compared to the local radii 

of curvature of the running surfaces, the geometry of the surfaces in the contact
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area can be accurately approximated locally by paraboloids. In general, two types 

of problems' are distinguished, the one dimensional line contact problem and the 

more challenging two dimensional point contact problem considered here.

In a line contact problem, the contacting elements are assumed to be in­

finitely long in one of the principal directions. In an unloaded dry contact situation, 

the surfaces touch along a straight line whereas in a loaded situation, a strip-shaped 

contact is formed.

In a point contact problem, the contact width is very small in relation to 

the radii of curvature of the contacts. Thus, the contact width can be approxi­

mated by two parabolically shaped surfaces. This approximation allows a further 

simplification of the contact geometry into a reduced form which is between a single 

parabola with reduced radii of curvature and a flat surface. In an unloaded dry con­

tact situation, that is in the absence of a lubricant, both surfaces nominally touch 

at a point whereas when a load is applied, the shape of the contact region depends 

on the ratio of the reduced radii of curvature in the X  and Y directions. In general, 

the contact region is an ellipse and thus is called an elliptic contact. A special case 

of an elliptic contact is the circular contact which occurs when the reduced radii of 

curvature in both principal directions are equal.

1.3 EHL Review

One of the major developments in the field of tribology in the mid-twentieth cen­

tury must be a recognition and understanding of elasto-hydrodynamic lubrication. 

It revealed the existence of a previously unsuspected regime of lubrication in highly 

stressed and non-conformal machine elements. Much of the early interest was based 

on hydrodynamic lubrication. The understanding of hydrodynamic lubrication be­

gan with the classical experiments of Tower (1885) [96] in which the existence of 

a film was detected from measurements of pressure within the lubricant. This was 

also the conclusion of Petrov (1883) [81] from his friction measurements. This work 

was closely followed by Reynolds’ (1886) [86] celebrated analytical paper in which he 

used a reduced form of Navier-Stokes equation to generate a second-order differen­
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tial equation, known as the Reynolds equation, for pressure in a narrow converging 

gap between the bearing surfaces. Besides presenting the differential equation for 

hydrodynamic lubrication, Reynolds also presented a comparison between his the­

oretical prediction and the experimental results of Tower [96].

Following Reynolds’ theoretical contribution and the successful application 

of his theory to journal and thrust bearings, Martin (1916) [71] began looking at the 

more complicated problem of gear lubrication. Martin examined theoretically the 

operation of gears almost without wear as observed in practice and the suggestion 

that a hydrodynamic film separated the opposing teeth in gears: Martin considered 

two rigid circular cylinders and an incompressible, .isoviscous lubricant. Martin’s 

solution of the Reynolds equation for a lubricating film between two rigid circular 

cylinders presented a useful beginning to theoretical studies. The film thicknesses 

predicted from Martin’s work were very small compared to the known surface ir­

regularities of gear teeth and this concluded that gears could not be lubricated by 

hydrodynamic action. This discouraging result probably accounts for the long time 

interval of about 20 years before the next significant flurry of theoretical work on 

gear lubrication. Meldahl (1941) [72] considered the effect of local elastic distortion 

on the predictions of hydrodynamic theory. Although his work failed to demonstrate 

the full significance of elastic effects, he did point the way for future investigations.

A major development in the history of elasto-hydrodynamic lubrication 

was reported theoretically by Grubin (1949) [41] who gave an excellent account of 

the physical mechanism of elasto-hydrodynamic lubrication. Grubin successfully 

implemented the combined effects of high pressure on the lubricant and the solids 

forming the contact. By assuming that the shape of the elastically deformed solids 

in a highly loaded lubricated contact was the same as the shape produced in a 

dry contact, Grubin was able to examine the generation of pressure in the inlet 

region and to determine the required separation of the solids within the Hertzian 

[51] contact zone. The analysis allowed for the effect of pressure upon viscosity as 

proposed by Barus (1893) [6]. The most valuable result from this analysis was the 

film thickness equation for highly loaded elastic contacts. This equation predicted 

film thicknesses which were one or two orders of magnitude greater than Martin’s
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prediction for similar conditions and consistent with the formation of satisfactory 

fluid films in gear contacts. Besides the analysis of the inlet region, Grubin con­

cluded that the pressure curve would exhibit a rather spectacular second maximum 

near the outlet end of the Hertzian zone.

The characteristics of an elasto-hydrodynamic contact predicted by Gru­

bin were confirmed by Petrusevich (1951) [82] when he obtained solutions which 

simultaneously satisfied the governing elastic and hydrodynamic equations. The 

three main features of the solution are now recognised as general characteristics of 

highly loaded elasto-hydrodynamic lubrication contacts. These features, shown in 

figure (1-1), are as follows: .

• An almost parallel oil film in the central region of the contact with a local 

restriction near the outlet.

• A near-Hertzian pressure curve over most of the contact region.

• A very local second pressure maximum of considerable height near the outlet

1 end of the contact region.

1.2

0.8

K
1 06 
c-

0.4

0.2

Figure 1.1: Features of pressure and film thickness.

Following the pioneering work of Petrusevich, several numerical solutions 

of isothermal elasto-hydrodynamic lubrication contact problems have been pre­

sented. Weber and Saalfeld (1954) [103] presented solutions which considered both
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constant and pressure dependent viscosities but the solutions were limited to small 

deformations and could not distinguish between the near Hertzian solutions which 

occur in most real contacts.

A new approach to elasto-hydrodynamic lubrication theory was presented 

by Dowson and Higginson [29] (1959). By introducing the inverse method, Dow- 

son and Higginson were able to solve elasto-hydrodynamic lubrication line contact 

problems. The close agreement between the theoretical minimum film thickness 

predictions and the experimental results obtained by Crook (1958) [27] and Sib­

ley (1961) [93], demonstrated that the gap between theory and experiment had 

been largely closed. It was only in the 1970’s that complete numerical solutions 

to isothermal elasto-hydrodynamic lubrication point contact problems began to 

emerge. Cheng (1970) [24] proposed a Grubin type inlet analysis for elliptical con­

tacts. Hamrock and Dowson (1974) [44] presented an elasticity model in which the 

computational domain is divided into rectangles and a uniform pressure is assumed 

to act over each rectangle. They also presented extensive results on isothermal 

elasto-hydrodynamic lubrication point contact problems [45, 46, 47, 48]. In 1981 

Evans and Snidle [35] employed the inverse method to solve highly loaded point 

contact problems.

Alternative methods began to emerge in the 80’s. The first method to 

emerge was the Newton-Raphson method which was used by Okamura (1982) [79] 

and Houpert and Hamrock (1986) [54]. The Newton-Raphson method was mainly 

used to solve lightly loaded line contact problems. This was followed by the in­

troduction of the multigrid method. Lubrecht [65] used the Gauss-Seidel scheme 

together with the multigrid method to accelerate convergence. Lubrecht was able 

to solve both line [67] and point [68] contact problems but still had difficulties in 

solving highly loaded problems due to numerical instabilities. Further reduction in 

computational times was achieved by Lubrecht and Ioannides [66] who made use of 

the multilevel multi-integration scheme [15, 16] to evaluate the elastic deformation. 

In 1989 Chang et al. developed an algorithm that combined the Newton-Raphson 

and the multigrid method to solve line contact problems.

A major contribution was made by Venner et al. in 1990 [101] when
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they developed a relaxation scheme for solving lightly to highly loaded elasto- 

hydrodynamic line and point contact problems. They employed their relaxation 

scheme together with the multigrid method and the multilevel multi-integration 

method [15, 16]. The problem of instability was no longer an issue and highly 

loaded problems could now be solved routinely. Due to the pressure dependent vis­

cosity, which varies by several orders of magnitude over the computational domain, 

the relaxation scheme they developed was based on the values of pressure. More 

recently, this relaxation scheme was also employed by Ehret (1996) [33]. Other new 

methods include that of Wang (1994) [102] who has developed a scheme based on 

the Newton method. A more recent method is the homotopy method [4] which is 

used by Scales [75] to solve elasto-hydrodynamic lubrication problems.

Over the past decade, the interest in elasto-hydrodynamic lubrication has 

moved on from steady-state problems to time-dependent (or transient) problems. 

Much of the earlier work on transient problems was based on the line contact 

problems [23, 21, 80, 100]. It is only over the last three to four years that the 

point contact problems have been considered [3, 2, 99] but this is still very limited. 

However, experimental work studying the effects of surface features using optical 

interferometry dates back to 1979 [104]. More recent experimental work includes 

that of Kaneta [58] and Kaneta et al.[59, 60].

1.4 Overview of Contents

The aim of this work is to present an efficient, robust and general purpose numeri­

cal solver for isothermal (Newtonian) steady-state and time-dependent (transient) 

elasto-hydrodynamic lubrication circular contact problems. The solver for elasto- 

hydrodynamic lubrication problems will be based on the FDMG Multigrid Software 

[92] and a new relaxation scheme which will be developed in this work. These prob­

lems are very important in engineering applications and by developing a general 

purpose multigrid solver, mainly for industrial applications, engineers will be able 

to solve a wide range of these problems under different operating conditions.

Having presented above an introduction to two regimes of lubrication and
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an overview of the developments in elasto-hydrodynamic lubrication in Sections 1.1, 

1.2 and 1.3, we will now present an outline of the contents of the rest of this thesis.

Chapter 2 will describe the mathematical model of isothermal (Newtonian) 

Elasto-Hydrodynamic Lubrication (EHL) circular contact problems. The model is 

highly non-linear consisting of coupled integro-differential equations. The governing 

equations of the model will also be presented in their dimensionless and discretised 

forms.

Chapter 3 will outline an overview of different iterative schemes used to 

date to solve elasto-hydrodynamic lubrication problems. This will include the in­

verse method and the direct iteration methods, namely the Gauss-Seidel and the 

Newton-Raphson methods. Also presented in this chapter will be the effective influ­

ence Newton method of Wang [102], the homotopy method which is used by Scales 

[75] and the relaxation schemes of Venner [97] and Ehret [33]. Based on the analysis 

of the governing Reynolds’ equation of the elasto-hydrodynamic lubrication model, 

a new relaxation scheme for solving these problems will be presented in this chap­

ter. In order to show the efficiency of the new relaxation scheme, a local Fourier 

analysis will also be presented. This chapter will be concluded with a test problem 

solved on a single grid using different numerical methods.

Chapter 4 will give a general description of the multigrid method together 

with an overview of its use in solving elasto-hydrodynamic lubrication problems. 

Also presented in this chapter will be a multigrid solver for elasto-hydrodynamic 

lubrication problems based on the FDMG Multigrid Software [92] and the new 

relaxation scheme of the previous chapter.

Chapter 5 will present test problems on steady-state elasto-hydrodynamic 

lubrication circular contact problems. The solutions obtained using the multi­

grid solver for elasto-hydrodynamic lubrication problems, developed in the previous 

chapter, will be compared with those obtained using other numerical methods which 

will include the relaxation schemes of Venner [101] and Ehret [33], the effective in­

fluence Newton method of Wang [102] and the homotopy method [4] used by Scales

Chapter 6 will deal with time-dependent (or transient) problems based

[75].
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on the backward Euler method and the governing equations will be presented as 

a system of differential algebraic equations. Also presented will be the local error 

estimates, convergence criterion and time stepping associated with these problems. 

The employed convergence criterion will be a novel concept when solving transient 

elasto-hydrodynamic lubrication problems. This new technique is used to solve 

differential algebraic equations and was originally developed by Shampine [90] for 

ordinary differential equations. This chapter will be concluded with test problems 

based on zero and reversal entrainments showing the effectiveness of the convergence 

criterion. A comparison will also be made between solutions obtained using fixed 

and variable time step methods.

Chapter 7 will draw this work to a close by making some conclusions 

regarding the effectiveness of the approach adopted in this thesis.



Chapter 2

GOVERNING EQUATIONS 

AND DISCRETISATION

This chapter describes the mathematical model of Elasto-Hydrodynamic Lubrica­

tion (EHL) [30, 40] employed in this work. This mathematical model [30, 97, 102], 

describing the isothermal (Newtonian) elasto-hydrodynamic lubrication circular 

contact problem, is made up of three equations and is highly non-linear, consisting 

of coupled integro-differential equations:

• The Reynolds equation, which relates the pressure in the lubricant film to the 

geometry of the gap and the velocities of the running surfaces.

• The film thickness equation, which defines the elastic distortion of the surfaces 

caused by the pressures in the film.

• The force balance equation, which makes sure that the integral over the pres­

sure balances the externally applied load.

In addition, the variation of viscosity and density with pressure must also 

be taken into account due to the high pressures in the lubricant film. Hence, the 

relationships describing the variation of viscosity and density with pressure are also

10
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presented. The equations in the model are non-dimensionalised using the Moes [73] 

and the Hertzian [51] parameters. For the sake of generality, the Hamrock-Dowson 

[47] dimensionless parameters are also presented, together with their relationship 

with the Moes parameters.

Since it is not possible to find exact analytic solutions of elasto-hydrodynamic 

lubrication problems, numerical methods must be employed in order to find-ap­

proximate solutions using a discretisation scheme. The widely used finite difference 

discretisation method is employed in this work. This chapter is concluded by pre­

senting the governing equations in their discretised form as a non-linear system of 

equations.

2.1 The Reynolds Equation

The differential equation governing the pressure distribution in fluid film lubrication 

is known as the Reynolds equation. This equation was derived by Reynolds in 1886 

and it was presented in a paper [86] which contained not only the basic differential 

equation of fluid (incompressible) film lubrication but also a comparison between 

his theoretical prediction and the experimental results of Tower [96]. The Reynolds 

equation allows the pressure distribution in the domain to be obtained according 

to the kinematics and the geometry of the surfaces and is of the form

d fp h 3 dp\ d 
dx  \ r) d x )  dy

ph3 dp 
p dy

6u. ^  +  6 p h p
dx dx

+ 12d ( p h )
dt

(2 .1)

where,

p is the pressure, 

h is the film thickness, 

r) is the viscosity, 

p is the density, 

t is the time,

x and y are Cartesian coordinates

and us =  Ui +  u2 denotes the sum of the velocities of the running surfaces as shown 

in Figure (2.1).
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Direction
o f --------
Flow

Figure 2.1: Fluid flow between two moving surfaces.

The two left hand side terms of equation (2.1) are the Poiseuille terms 

and they describe the net flow rates due to the pressure gradients in the lubricant 

film. The right hand side of equation (2.1) is made up of three terms and they 

represent three different effects that account for the pressure generation in the 

lubricant film. The first two terms are referred to as the Couette terms and they 

describe the net entraining flow rates due to the surface velocities. The Couette 

terms lead to two distinct effects: the wedge and the stretch effects. The wedge 

effect is extremely important and is the main device for pressure generation. The 

stretch effect considers the rate at which the surface velocity changes in the sliding 

direction. The third term on the right hand side of equation (2.1) represents the 

squeeze effect which, describes the net flow rates due to the squeezing motion.

In this work, both steady state and time dependent (transient) problems 

will be considered. The stretch effect will not be taken into account in either 

the steady state or the transient problems. However, when solving steady state 

problems, the contribution from the squeeze effect will be zero.

The boundary conditions for the Reynolds equation (2.1) are p =  0 suffi­

ciently far upstream and on each side of the contact. In the outlet region, which is 

a free boundary, p — =  0.

2.1.1 Viscosity

When studying elasto-hydrodynamic lubrication, one of the effects that can not be 

overlooked is the increase of viscosity with increasing pressure. One of the most 

widely used viscosity-pressure relations is the Barus equation [6], which is given by

rj(p) =  rjo exp(ap) (2.2)
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where, po is the viscosity at ambient pressure, a is the pressure viscosity coefficient 

and p is the pressure.

Though equation (2.2) is a very simple relation, it is only accurate for 

low pressures. However, a more accurate viscosity-pressure relation is the Roelands 

equation [87] which is given by

p{p) = Po exp < (ln(vo) +  9-67) -1 +  U  +  * -Po
(2.3)

where, po is the viscosity at ambient pressure, po is a constant equal to 1.98 x 108, 

z is a pressure viscosity parameter and p is the pressure.

If the pressure viscosity coefficient, a, is defined as

1 (d pa =
Vo \dp,  p=0

then, from equation (2.3), we get the following relationship

ap0 = ln(r]o) +  9.67,

(2.4)

(2.5)

which relates z to a and p0. When substituted into equation (2.3), equation (2.5) 

gives the following form of Roelands equation

V (p) =  Vo exp
ap0

- 1 + 1  + P_
Po

(2.6)

Throughout this work, we have used equation (2.6) to represent the viscosity- 

pressure relationship. Although equation (2.5) defines a specific value of z based 

upon a study of typical mineral lubricating oil, it is better in general to consider z 

as an independent parameter. The typical value z — 0.68 has been used throughout 

this work unless stated otherwise.

2.1.2 Density

In the analysis of elasto-hydrodynamic lubrication, the compressibility of the fluid 

at high pressures can not be neglected. The change of density with pressure is given 

by the Dowson and Higginson relation [30]

p(p) =  Po
5.8 x 10~lop 

+  1 +  1.7 x 1 0 ->
(2.7)

where, p is the pressure and po is the density at ambient pressure. This was also 

obtained from experimental measurements on typical mineral oils.
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2.1.3 Cavitation condition

Elasto-hydrodynamic lubrication is normally associated with non-conformal con­

tacts where the surface contacts have non-conforming geometry as described in 

Chapter 1. Hence, elasto-hydrodynamic lubrication contacts are open systems with 

plenty of air in the surrounding area. This means that when the contact geometry 

is diverging, the film breaks up resulting in viscous fingering of the oil and the 

surrounding air fills in the space. This behaviour is commonly known as cavitation. 

In elasto-hydrodynamic lubrication, this occurs in the outlet region of the contact 

where the gap is widening. The Reynolds equation of our model is not designed 

to cope with this phenomenon. Hence, the Reynolds equation (2.1) of our model 

is not valid over the entire computational domain since cavitation is assumed to 

take place at some point in the outlet region where the gap is widening. In these 

regions, negative pressures are predicted by the Reynolds equation (2.1). In our 

model, this is overcome by imposing a cavitation boundary condition p >  0, which 

is a common practice [97]. Hence, at all points in the cavitation region, pressures 

are set to zero during the iteration process. In some sense, the outlet boundary of 

the pressurised region becomes a free boundary.

An alternative method of dealing with the cavitation condition is to employ 

the penalty method [106].

2.1.3.1 Penalty method

The penalty method for the analysis of the free boundary in elasto-hydrodynamic 

lubrication was introduced by Wu [106] who made use of the finite element method. 

Wu was also able to show that the pressure gradients in elasto-hydrodynamic lubri­

cation problems are continuous even though there is a rapid change in the pressure 

near the outlet of the contact region. The basic idea when using the penalty method 

is to add on to the discrete Reynolds equation an extra term

IP  J2.8)

whenever the pressure is negative. The parameter 7 is a large positive constant 

which must be chosen in a heuristic way.
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2.2 The Film Thickness Equation

When studying elasto-hydrodynamic contacts, it is not necessary to consider the 

often rather complex geometry of the contacting elements [40]. Since the size of the 

contact width is small compared to the local radii of curvature of the surfaces, the 

geometry of the curves, describing the undeformed surfaces close to and within the 

boundary region of pressure, can be accurately approximated locally by paraboloids. 

For a two dimensional elasto-hydrodynamic lubrication point contact, the lubricant 

film geometry is of the form shown in Figure (2.2).

The film thickness equation of such a point contact can be written as

h(x,y) =  h00 + hu(x,y) +  d(x,y) , (2.9)

where the three right hand terms can be described as follows:

The first term h0o is a constant representing the film thickness at the origin 

had the surfaces been undeformed.

The second term hu(x ,y ) represents the geometry of the undeformed sur­

face. It is defined by paraboloids in both x and y directions and is given by

(2.10)hu(x,y) =  r y r  +  TT-
-ILg ¿* i t u

where, Rx is the reduced radius of curvature in the x-direction,

'&x 1 =  ^lx +  &2X 5

Ry is the reduced radius of curvature in the y-direction,
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The reduced radii of curvature, Rx, is shown in Figure (2.3) which shows the contact 

of two surfaces and their reduced geometries.
Two Surfaces

Reduced Geometry

Figure 2.3: Contact geometry of two surfaces and their reduced geometries.

The third and the final term is d(x,y) which represents the elastic de­

formation. The elastic deformation modifies the film geometry and hence plays a 

major part in the formation of lubrication films in elasto-hydrodynamic lubrica­

tion. By considering that the elastic deformations are small compared to the radius 

of curvature of the undeformed surfaces, we can assume that the surfaces in the 

contact are elastic semi-infinite. The material of the surfaces in contact are also 

assumed to be homogeneous (isotropic) and to obey linear elasticity theory. The 

elastic deformation d(x, y) due to the pressures is obtained by summation of the 

deformation of the two surfaces and is given by
p(x' ,y')dx' dy9 f°° r°

d(-x ' v ) = ^ w L L
(2.11)

where, É  is the reduced modulus of elasticity and is defined by

2 1 — v\ 1 — v\
~ ¥ = Ei +  E2

where, Ei and E2 are the modulus of elasticities of the two surfaces in contact and 

«1 and v2 are the Poisson coefficients of the two surfaces in contact.

(2 .12)
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2.3 The Force Balance Equation

The applied contact load must be balanced by the pressures generated in the con­

tact. Hence, the integral over the pressures in the lubricant must equal the applied 

load and is given by

p(x, y) dxdy = F

where F is the external load.

(2.13)

2.4 Non-Dimensionalisation

The governing equations of our mathematical model are non-dimensionalised using 

Hertz’s theory [51] which gives the pressure profile, the geometry of the contact 

region and the elastic deformation of the surfaces in contact. This is for the case 

of a loaded contact between two parabolically shaped elastic bodies. For circular 

contact problems, the Hertzian pressure profile is given by

p(x,y)
ph y/l -  (xfa)2 -  (y/a)2 if x2 + y2 < a2 
0 otherwise

where, pn is the maximum Hertzian pressure given by

Ph =
3 F

27T a2

(2.14)

(2.15)

and a is the radius of the Hertzian contact circle given by

a =
3FRX\ 3 
2 E‘ ) (2.16)

where, F  is the external contact force, Rx is the reduced radius of curvature in the 

x-direction and E' is the reduced elastic modulus of the contacting bodies.

The dimensional Reynolds equation of a two dimensional time-dependent 

circular contact problem without the stretch effect is given by

d f p h 3dPsd_ ( phz dps 
dx  \ + 0r] dxJ d y \ r ]  d y j  dx dt

with p =  0 on the boundaries and p >  0 on the entire computational domain

(2.17)
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Equation (2.17) is made dimensionless using the following set of variables:

X  =  i . Y = ~ , P = — i
^1II¡SI

a a Ph hn

P = — , -  V V =  — and j-i _ tus
Po 7o 2 a

where, pn and a are as defined by equations (2.15) and (2.16) respectively and hh 
is the maximum Hertzian deformation which is given by

cl2

Hence, the dimensionless Reynolds equation is of the form

d ( p H z dP\  d ( p H z dP\  , d( pH) , d ( p H )  
d X  V rj dx) + d Y \  rj d Y ) d X  dT (2.19)

with P =  0 on the boundaries and P >  0 on the entire computational domain. The 

dimensionless parameter A is given by

A 6 rjp us R2X 
a3Ph

(2.20)

The dimensionless viscosity p and density p are obtained from equations 

(2.6) and (2.7) respectively. The dimensional film thickness equation is of the form

x“ y~ 2 
h(x, y) = hoo +  tt;— b tv;— h

2 f°° f°°
^ E 7 J_2 Rx 2 Rv 7r E

, y ) dx  dy
(2.21)

CO J  — CO yj(x  -  x')2 +  (y -  y'Y 

which can be written in non-dimensional form by substituting the dimensionless pa­

rameters used in non-dimensionalising the Reynolds equation (2.17). The resulting 

non-dimensional film thickness equation is of the form

y-2 y  2 2  f°° P
h (x , k ) = ffoo+ T + T + 7  /

P (X ',Y ')dX ' dY'
y/{x-xy + (Y-Yy

The dimensional force balance equation is given by

/ o o  /»oo

/  p(x, y) dxdy =  F 
•OO J — o o

which in non-dimensional form is

. (2.22)

(2.23)

/ OO P 00
/  P( X, Y) dXdY  

•CO J —CO
2ir
T (2.24)
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The minimum film thickness is

hm = min(h(x, y)) (2.25)

which in non-dimensional form is given by

Hm = min(H(X,  F ) ) . (2.26)

2.4.1 Moes and Hertzian dimensionless parameters

The above dimensionless analysis shows that if the lubricant is assumed to be com­

pressible and if the Barus equation (2.2) is used to represent the viscosity pressure 

relationship, then the elasto-hydrodynamic lubrication model is characterised as a 

two parameter problem. All the solutions can be characterised in terms of a  and A 

which are given by

a = aph (2.27)

and

A =
6rj0usRl

a 3Ph
(2.28)

These two parameters are related to the Moes [73] load parameter M  and 

the materials parameter L as follows:
1/3

(2.29)a - i ( “ )
and

a W 4 _ Y / 3 . (2.30)
M  \3M J  v 1

The non-dimensional minimum film thickness, given by equation (2.26) is re­

lated to the Moes dimensionless minimum film thickness parameter, as follows

(2.31) 
*

Although all the numerical solutions obtained in this work are based on the Roelands 

equation (2.6) to represent the viscosity-pressure relationship, the above character­

isation is still valid. However, besides the pressure viscosity coefficient a, either
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the viscosity at ambient pressure i]0 or the pressure viscosity parameter z, which 

are parameters required in the Roelands equation (2.6), must also be given. For 

lubricants that are mineral oils, the parameters a and z do not vary too much. 

The pressure viscosity coefficient a is normally of the order 10~8 and the pressure 

viscosity parameter z normally lies in the range 0.5 < -z  <  0.8. Unless stated 

otherwise, z =  0.68 is employed throughout this work.

2.4.2 Hamrock-Dowson’s dimensionless parameters

Hamrock and Dowson [47] defined the following set of three dimensionless param­

eters to describe circular contact problems:

F
W =

E'Rl ’ (2.32)

G =  a }■' (2.33)

rr ho Us
2E'RX (2.34)

where W, U and G are the load, material and speed parameters respectively. The 

Hamrock-Dowson’s dimensionless minimum film thickness is defined as

rrhd m̂,
m ~ Rx ' (2-35)

2.4.3 Relationship between Moes and Hamrock-Dowson’s 

parameters

The Moes parameters M and L can be expressed in terms of the Hamrock-Dowson’s 

parameters W, G and U by taking U to be a free parameter. This relationship is 

of the form

M =  W (2U )~^  (2.36)
>

and

L =  G(2U)^ 4 . (2.37)
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The relationship between the Moes dimensionless film thickness, Hm, and the 

Hamrock-Dowson’s minimum film thickness, Hff is of the form

Hmin = H^(2U) lj/2. (2.38)

Throughout this work, we have used either the Moes or the Hamrock-Dowson’s 

dimensionless parameters. However, both forms will be presented on every occasion

2.5 Discretisation

The use of mathematical models to simulate and analyse complicated systems in 

engineering and science reduces the need for expensive and time consuming experi­

mental tests. The equations associated with the mathematical model take the form 

of differential and integral equations and in general it is not possible to find their 

exact analytic solutions. Hence, numerical methods must be employed in order to 

find their approximate solutions. This involves using methods such as finite differ­

ence, finite element, finite volume, spectral and boundary elements [55, 57, 85, 105] 

in order to find the numerical solutions of the governing equations. The basic idea 

in any numerical method is to discretise the continuous problem to obtain a dis­

crete problem with many degrees of freedom often representing physical quantities 

at points in space.

To this date, the finite difference [55, 105] and finite element [57, 85] 

methods have been used to solve elasto-hydrodynamic lubrication problems with 

greater emphasis on the use of the finite difference approach perhaps due to its ease 

of coding.

The finite element method is a numerical technique for obtaining approxi­

mate solutions to a wide variety of boundary value problems. The main concept of 

this method is that the computational domain can be approximated by replacing 

it with discrete elements which can be arranged in a variety of ways and used to 

represent any complex shapes. The finite element discretisation reduces the prob­

lem to one of a finite number of unknowns by dividing the domain into spatial 

elements and then expressing the unknown field variables within each element in 

terms of spatial basis functions. The elements are inter-connected at a finite num­

Chapter 2
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ber of points called nodes or nodal points. These nodes normally lie on the element 

boundary where adjacent elements are connected. The interpolation functions are 

defined in terms of the field variables at each nodal point. For any element, the 

nodal values and their corresponding basis functions define the behaviour of the 

field variables within the element. Basis functions are normally chosen such that 

the field variables and their derivatives are continuous across adjoining element 

boundaries. Very few authors [94, 78] have used the finite element method to solve 

elasto-hydrodynamic lubrication problems. One important exception is that of Wu 

and Oden [107, 108] who have done extensive analysis in using the finite element 

method to solve elasto-hydrodynamic problems.

The main concept of finite difference schemes [55, 105] is to approximate 

the derivatives at a point by replacing the derivatives with linear combinations of 

discrete function values. The two most common finite difference operators are the 

forward and the backward difference [55] operators. These two operators are defined 

as follows:
Suppose a one dimensional computational domain is defined by 

G — ^x £ U : r  — Xj =  jhx  ̂j  — 0 ,1 ,... , n, hx \jn}  

then the forward difference operator is given by

A uj = ui+1 Uj
Hre (2.39)

and the backward difference operator is given by

uj uj - lV Uj = (2.40)

where, Uj is the function value at the point Xj and hx is the mesh spacing.

2.6 Finite Difference Discretisation of Governing 

Equations

The governing equations (the Reynolds equation, the film thickness equation and 

the force balance equation) of a Newtonian steady state isothermal elasto-hydrodynar
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lubrication circular contact problem are discretised on a regular mesh over the com­

putational domain

{(X ,F )  e n 2 : X a < X  < X b and - Y a < Y < Ya} .

The governing equations are discretised with the direction of flow in the 

AT-direction and mesh spacings hx and hy in the X  and Y  directions respectively. 

Due to symmetry, only half the domain is used in the F-direction.

The dimensionless Reynolds equation (2.19), without the squeeze term, is 

of the form

d (  dP\ d f  dP\  , d(pH ) 
d X  V d X j  + dY  V d Y j  d X

which, when discretised at each non-boundary mesh point (i,j), [(z — 1)/^  +  ̂ ,  ( j — 

1 )hy +  K], using the central and the first order backward difference scheme gives 

the equation

pi,j =  K 2(ei -y (P i - i j  ~ Pi>j) +  ei+ y {pi+h3 ~ Pi,])) +  hy (etJ_l (Pt,j--l —

pi,j) +  +J+i(Pi,j+i — Pi,j)) — hx ( ~ Pi-1,jPi-hj) =  0 (2.42)

where, c + jj  j c - y  > ei,j+1 and ei,j-1 ’ (* =  2> •... , mx -  1 ; j  =  2, . . • , ny — 1),

denote the values of e =  e=j- at the intermediate locations midway between the mesh 

points and mx and ny are the maximum number of points in X  and Y  directions 

respectively. As an example

_  ~h

where,

m , j )  Hfj

Alternatively, a harmonic average [105] can be used, that is

(2.43)

2e t' , j Q - i , j  

ei-lJ +  ei,j

As mentioned above, the density p is given by the Dowson and Higginson 

relation [30] which is given by

5 .8 x 1 0 - 10j>hPij
p(Pij)  =  1 + 1 +  1.7 x 10S p hPi*,3

(2.44)
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the viscosity rj is given by the Roelands equation [87] which is given by

V { P i j ) =  e x P
apo

'I +  ( 1 + Ph Pih3
Po

(2.45)

where po =  1.98 x 10s and z =  0.68 and

A = 4w f  2 \ 1 /3

M  V3M )
8txU 1 /3

W  V 3 W ,

The dimensionless film thickness equation (2.22)

TTfv^  rr , X 2 , Y 2 , 2 r  r  P {X \Y ')dX ' dY'
H(X, Y) =  Bu +  t  +  t  +  ^ J ^  J_x  —  _  x y >+ {Y  (2.46)

discretised at a point (i,j)  is given by

Hi,i =  -Hoo + ^  +  Y- f  +  d,hi (2.47)

where, Hoo is a constant and j  is the discretised elastic deformation of the material 

due to the pressures in the film. The discretisation of the elastic deformation will 

be explained in detail in Section 2.6.1.

Finally, the dimensionless force balance equation (2.24)

P(X, Y) dX dY 2 7r
T

in discretised form is given by

mx ny

hX hy PiJ
¿=1 j = l

(2.48)

(2.49)

where mx and ny are the maximum number of points in X  and Y  directions respec­

tively.

When solving elasto-hydrodynamic lubrication problems, the force balance 

equation (2.49) is used to update the film thickness constant H00 in the following 

way:

Hoo = H
2ir mx ny

00 hx hy ^ 2
«'=i j=i

(2.50)

where, c is a damping factor.
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2.6.1 Elastic deformation

Tlie elastic deformation at any point (X, Y) on a surface subjected to a pressure 

distribution is based on Boussinesq’s solution [95]

d(X,Y) =
7T

P{X \Y ')dX ' dY'
y/{x -xy  + {y - y 'y (2.51)

There are two difficulties associated with equation (2.51). The first is the 

issue of singularity at the points x = x and y — y . The second is the amount of 

work required in evaluating the numerical integral of equation (2.51). The amount 

of work required is an issue because when the elastic deformation is evaluated at 

any point, the entire computational domain must be integrated. This problem 

becomes more apparent when the numerical solution of elasto-hydrodynamic lubri­

cation problem is obtained by means of an iterative scheme. Hence, the deformation 

at every node of the computational domain must be evaluated for each iteration 

and this can be very expensive computationally.

These two difficulties are overcome by approximating the pressure distri­

bution using a polynomial function [28] which enables the deformation integral to 

be obtained analytically. Dowson and Hamrock [28] divided the pressure distri­

bution into equidistant rectangular grids and assumed the pressure on each grid 

to be of a constant value and at the centre of the grid. A similar scheme is also 

employed by Chang [20] who divided the domain into non-equidistant rectangular 

grids. Like Dowson and Hamrock [28], Chang [20] assumed that the pressure is of 

a constant value but this value is the mean of the pressure values at the four corner 

points of the grid. For both these methods, rectangular blocks of uniform pressure 

are used to approximate the pressure distribution. Other schemes include that of 

Ranger et al. [84] who divided the contact area into non-equidistant rectangular 

grids and replaced the pressure by overlapping pressure pyramids where the pres­

sure is assumed to be linear in both the X  and Y  directions and Biswas and Snidle 

[11] who proposed a scheme where a biquadratic polynomial is used to approximate 

the pressure for elements with singularity and the Simpson’s rule is employed to 

approximate the pressure for elements without singularity. Other methods include 

that of Hou et al. [53], Jen et al. [56] and Liu et al. [69] who respectively employed
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biquadratic polynomial, paraboloidal polynomial and elliptic paraboloid surface to 
approximate the pressure function.

The scheme devised by Dowson and Hamrock [28] is employed throughout 

this work and based on the observation that the elastic deformation at a point 

(X, Y ), as shown in Figure (2.4), due to a uniform pressure P  over the rectangular 

area 2a X 2b is given by

2 P
d(X ,Y ) =  — ________dXi dY\________

(2.52)

Y

Figure 2.4: Elastic deformation at a point (X , Y) due to pressure at (X l5 Yi).

If the entire computational domain is divided into equal rectangular areas, 

then from Dowson and Hamrock [28], the discretisation of the elastic deformation 

dij at a point ( i j )  due to the contribution of all rectangular areas of uniform 

pressure is given by

mx

did ~  n2 X ^  X /  Pk,i
k=l 1=1

(2.53)

where, mx and ny are the maximum number of mesh points in the X  and Y direc-
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tions respectively. The coefficient is given by
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(2.55)

Xr> =  Xj — Xk +  f  5 X q — Xi Xk 2 >

K  =  y , - y  +  | and Yq = Y j -Y l 2 •

One advantage of a regular mesh is that the mx x nv coefficients need only be 

calculated once and stored. In contrast, on an irregular mesh it is necessary to 

store the mx x ny coefficients for each mesh point. Hence, for a domain with n x n 

mesh points, the total storage cost for n2 coefficients on regular and irregular meshes 

are respectively of the order n2 and n4. However, the complexity of evaluating the 

elastic deformation on the entire domain, for both regular and irregular meshes, 

using equation (2.53) is of the order n4.

2.7 Conclusion
%

The mathematical model describing the isothermal steady state elasto-hydrodynamic 

lubrication circular contact problem is made up of three non-dimensional equations
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with a pressure dependent density and viscosity. The three governing equations are 
the Reynolds equation

9 ( dp\ + J L i  dP
d X \ ed x J  + 8 Y \ edY

d(pH )
d X =  0 (2.56)

where

m , i )  A ’ (2-V )
the film thickness equation

X 2 Y2H(X, Y) =  HX + —  + —

and the force balance equation

_L —  f°° r  P j X '^ d X 'd Y '  ^  

+  J-oo 7-00 y/ {x  ~  x y T  (y  -  v y  [ }

P (X ,Y )d X d Y 2 7r
T ' (2.59)

The density p is assumed to depend on the pressure according to the Dowson and 
Higginson relation

p ( P i j )  =  1 +  -5 '8 X l °  PhPi’j  
■ '3j 1 +  1.7 x 10~9p/, p

and the viscosity rj is given by the Roelands equation

(2.60)

T](Pitj) = exp

where, p0 =  1-98 x 10s and z =  0.68 unless stated otherwise..

The governing equations of the elasto-hydrodynamic lubrication model 

are highly non-linear consisting of a complex system of coupled integro-differential 

equations with a cavitation boundary condition P >  0. Hence, it is not possible 

to obtain solutions analytically and a numerical method must be employed. This 

can be achieved by discretising the governing equations at every point on the com­

putational domain. Throughout this work, a finite difference discretisation scheme 

is employed on a rectangular computational domain. For a steady state isothermal 

elasto-hydrodynamic lubrication circular contact problem, the discretised equations 

employed in this work include the discretised Reynolds equation

-1 _[_ ( 1 —j—Ph Pihj
Po )ll (2.61)

=  hx2{ e i_ ^ {P i -u  ~  Pi’i)  +  ei+^Api+ld -  Pij))  +  -

Pij) +  tij+i(Pi,j+i ~ Phj)) ~ ~ Pi-i, — 0 , (2.62)
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the discretised film thickness equation

X h Y?{
HiJ  =  +  ^  +  ^  +  K .tJi Ptj

k=1 /=!
(2.63)

where the kernel is given by equation (2.54) and the discretised force balance 
equation

Pi’j ~ =  0 • (2-64)¿=1 3 = 1

Having created a system of discretised equations representing all the grid 

points on the computational domain, it must now be solved using an iterative 

scheme. On a computational domain with n x n mesh points, the complexity of 

evaluating the elastic deformation at any mesh point on the computational domain is 

of the order re2. Hence, the overall complexity of evaluating the elastic deformation 

at every point on the computational domain is of the order re4. When discretising 

the Reynolds equation, this must be taken into account since the Couette term of 

the Reynolds equation involves the differential of the film thickness. This implies 

that for a large re, which is essential especially when solving highly loaded problems 

(the maximum Hertzian pressure ph is large) found in practice, the computational 

costs can be very large. This means that obtaining solutions using iterative schemes 

is the only means of getting efficient solutions. The next chapter will describe dif­

ferent iterative schemes employed to date to solve elasto-hydrodynamic lubrication 

problems.
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SINGLE GRID ITERATIVE  

METHODS

Due to the extreme complexity of the equations associated with elasto-hydrodynamic 

lubrication problems, as outlined in the previous chapter, it is not possible to obtain 

their solutions analytically. Hence, numerical methods must be employed. Up to 

this date, various numerical methods have been used to solve elasto-hydrodynamic 

lubrication problems with greater emphasis on the use of single grid iterative meth­

ods [25, 36, 45, 84]. This chapter gives an overview of the different numerical 

schemes employed to solve elasto-hydrodynamic lubrication problems. This includes 

the inverse method, which was the earliest successful method employed by Dowson 

and Higginson [30] to obtain solutions to the elasto-hydrodynamic lubrication line 

contact problem, and the direct iteration methods, which includes the Gauss-Seidel 

and the Newton-Raphson methods [55, 105]. These methods were mainly used to 

solve line contact and lightly loaded problems due to the computational costs and 

numerical instabilities associated with point contact and highly loaded problems

[97] found in practice. The point contact problems, which are two dimensional, 

are not easy to solve mainly due to the elastic deformation integral. However, new

30
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methods are constantly being developed in order to solve these problems more effi­

ciently and overcome the huge computational costs. These new methods include the 

effective influence Newton method [102] of Wang, the homotopy method [4] which 

is employed by Scales [75] and the multigrid method [13, 18, 105] which is used by 

[33, 64, 97]- The multigrid method greatly reduces the computational costs as is 

shown by Lubrecht [68]. The multigrid method increases the rate of convergence 

and problems which were previously unsolvable can now be solved routinely without 
any large computational costs.

Besides the issue of the computational costs, the issue of instability is an 

important entity when solving elasto-hydrodynamic lubrication problems. Most of 

the numerical schemes can not cope with heavily loaded point contact problems 

because the employed relaxation schemes can not deal with the heavy load due to 

the sensitivity of viscosity to pressure which may lead to instability [101]. This 

problem of instability can be looked into by analysing the governing equations of 

elasto-hydrodynamic lubrication problems and then developing a relaxation scheme 

that will be able to cope with a wide range of loads. Hence, an analysis of the 

coefficients of the Reynolds equation is presented in this chapter and based on this 

analysis a new relaxation scheme developed in this work is presented together with 

the relaxation schemes of Venner [97] and Ehret [33]. The relaxation schemes of 

Venner and Ehret are also developed from the analysis of the Reynolds equation of 

the elasto-hydrodynamic lubrication model. This chapter is concluded by presenting 

a test problem solved on a single grid using different numerical methods.

3.1 Iterative Methods

The mathematical model of Elasto-Hydrodynamic Lubrication (EHL) employed in 

this work as described in Chapter 2 consists of three equations: the Reynolds equa­

tion (2.19), the film thickness equation (2.22) and the force balance equation (2.24).

The solution for the pressure (P ) and the film thickness (H) must simultaneously
%satisfy the three equations. Besides this, all the pressures in the lubricant should 

be greater than or equal to zero. This is referred to as the cavitation condition
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[30, 40] and is described in detail in Section (2.1.3) of Chapter 2. Since the model is 

highly non-linear and is made up of a complex system of integro-differential equa­

tions, numerical methods must be used to obtain solutions. However, the solution 

of elasto-hydrodynamic lubrication problems can be difficult to calculate due to nu­

merical instability of the numerical schemes employed and computational intensity 

arising from the calculation of the elastic deformation integral. This is especially 

true for transient and highly loaded problems found in practice. Since the late 

1960’s, many researchers have been engaged in developing more effective numerical 

algorithms. The overall effectiveness of numerical algorithms for solving elasto- 

hydrodynamic lubrication problems can be evaluated based on numerical stability, 

accuracy, efficiency, robustness and programmability. These numerical algorithms 

can be classified into the following three categories:

• Inverse method: Dowson and Higginson [29], Evans and Snidle [35, 37] and 

Kweh [61].

• Direct-iteration methods: Hamrock and Dowson [45], Ranger [84], Evans and 

Snidle [36], Chittenden [25], Zhu and Chang [109] and Wang [102].

• Multigrid method: Ai [1], Cheng [22], Ehret [33], Lubrecht [68] and Venner

[97]-

The inverse method, the earliest method used, and the direct-iteration 

methods, which are the most straightforward methods for solving elasto-hydrodynamic 

lubrication problems will be considered in the next few sections. The two most 

common direct-iteration methods employed to solve these problems are the Gauss- 

Seidel and the Newton-Raphson schemes. The multigrid method, which was first 

employed to solve elasto-hydrodynamic lubrication problems in the late 1980’s, will 

be covered in the next chapter.

3.1.1 Inverse method

This, the earliest successful method, was introduced by Ertel [34] and used by Dow­

son and Higginson [29] to obtain solutions of the elasto-hydrodynamic lubrication
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line contact problem. Dowson and Higginson obtained solutions for a wide range 

of loads, speeds and material properties and derived a formula for predicting the 

minimum film thickness [30, 47] which is widely used up to this date. Following 

Dowson and Higginson’s work, Evans and Snidle [35, 37] used the inverse method 

to solve point contact problems.

In the inverse method, the Reynolds equation of the elasto-hydrodynamic
lubrication model is used to solve for the film profile, say Hi, corresponding to 

a given pressure distribution, say P, that balances the applied load. HI is then 

compared with the film profile, say H2, obtained by solving the elasticity equation 

with the given pressure distribution P. The differences between these two film 

profiles are then used to adjust the pressure profile, P. This sequence is repeated 

until the discrepancy between Hi and H2 is sufficiently small.

Although this method can produce a solution through a small number 

of pressure adjustments and can solve problems with relatively heavy loads an 

accurate solution is difficult to obtain due to the relative insensitivity of the film 

profile to pressure variations [22]. Furthermore, since the procedure of pressure 

adjustments relies on experience, the algorithm can not be easily automated

3.1.2 Gauss-Seidel method

A Gauss-Seidel scheme [55, 105] may be employed to solve for the pressure from the 

Reynolds equation of the elasto-hydrodynamic lubrication model. The idea is to 

treat the discretised Reynolds equation as a linear equation for pressures. The first 

step is to compute the film profile and the lubricant viscosity and density corre­

sponding to a given pressure distribution. Then the linearised Reynolds equation is 

used to solve for the new pressure distribution. With the new pressure distribution 

the film thickness constant is adjusted using the force balance equation as shown by 

equation (2.50). This is repeated until the pressure distribution and the film profile 

have reached a desired accuracy. This method has been used to obtain solutions to 

both point [25, 45, 109] and line [50] contact problems. It is easy to implement and 

use but it is unstable for highly loaded problems due to the sensitivity of viscosity 

to pressure [65, 97]. For the large number of mesh points required for point contact
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problems, this scheme is expensive in terms of the computational time. However, it 

is not expensive in terms of the computational storage and the implementation of 

the cavitation condition is straightforward. For a system with n grid points, at least 

0(n) relaxations are required to obtain a converged solution and the evaluation of 

the elastic deformation requires 0{n2) operations [97]. Hence, the complexity of 
this scheme is at least 0(n3).

3.1.3 Newton-Raphson method

The use of this method to solve elasto-hydrodynamic lubrication problems was 

first presented in a paper by Okamura [79]. Based on the algorithm presented by 

Okamura, Houpert and Hamrock [54] employed the Newton-Raphson method to 

solve a line contact problem.

Houpert and Hamrock [54] used the Newton-Raphson method to solve si­

multaneously the discretised forms of the Reynolds, film thickness (which includes 

the elasticity equation) and force balance equations. These discretised equations 

are linearised, which involves the computation of a full Jacobian matrix which is 

made up of the derivatives of all the discrete equations with respect to the variable 

pressure. When solving the elasto-hydrodynamic lubrication problems, a full Jaco­

bian matrix is required because the elastic deformation at one point is determined 

by the pressure distribution over the entire grid. For a mesh o f mx x ny points, this 

results in an often prohibitively large dense system of mxny equations. Hence, it 

is essential to seek computationally less expensive methods. Having obtained the 

Jacobian matrix, it is inverted and then used to obtain a new approximation to 

the solution This process is repeated until the solution simultaneously satisfies the 

three governing equations.

Besides being expensive both in terms of the computational time and 

storage, especially for point contact problems, this method is not very efficient 

in dealing with the cavitation condition [65, 97]. Since the governing equations 

are solved simultaneously and the free boundary cavitation region is not known in 

advance, the implementation of the cavitation condition is not easy especially for 

point contact problems [68, 65, 97]. This is why this method is mainly used to solve
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line contact problems [26, 64], Due to the elastic deformation, the inversion of the 

full Jacobian matrix requires 0 (n 3) operations and the overall complexity of the 

Newton-Raphson method is also 0(n3) [65, 97] where n represents the number of 

mesh points in the X  and Y  directions. One big advantage of this method is that 

the convergence close to the solution is very rapid and it is achieved in only a few 
iterations [40, 97].

In general, the Newton-Raphson method can be described as follows: 

Suppose P. is an approximation to the true solution P, then at a point (¿ ,j), 

U j  =  L{Pitj) 0 and Litj =  L(Pt>j) =  0. Taylor’s theorem gives

: ny mx f) f

lu = h, + EE + 0((AP)2) (X1)
i=l 1 urk’1

where, is the discretised Reynolds equation at the point (W , Yff and mx and 

n are the number of mesh points in the X  and Y  directions respectively.

In recent years, modifications have been made to Newton’s method in order 

to overcome some of the above difficulties. Nowadays, the system of equations is 

solved using Gaussian elimination or an iterative scheme. Gaussian elimination 

may be used in order to solve a system of linearised equations if the dimension of 

the coefficient matrix (Jacobian matrix) of the linear system is sufficiently small, 

e.g., in line contact problems. Chang et al. [22] reduced the complexity to 0(n 2) 

by ignoring most of the terms that reflect the relation between the film thickness 

and the pressure in the elastic deformation. This resulted in a tridiagonal Jacobian 

matrix instead of the original full matrix. Some other modified schemes have been 

presented by Oh [77], Houpert and Hamrock [54] and Wang [102]. One example of 

a more recent modified scheme is the Effective Influence Newton Method (EINM) 

of Wang [102].

3 1.3.1 Effective influence Newton method

The effective influence Newton method, developed by Wang [102] to solve elasto- 

hydrodynamic lubrication problems, uses a variant of Newton’s method for solving 

non-linear equations. The method employs the notion of an effective influence 

region to determine the contribution from the elastic deformation in the solution
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of a set of approximate linear equations used in the Newton formulation of elasto- 

hydrodynamic lubrication problems. The elastic deformation at a point (i ,j)  is, 

and must be, determined by the pressure distribution over the entire computational 

domain, though the contribution decreases radially outwards [102]. However, when 

obtaining the solution of the linearised Reynolds equation, Wang’s Newton method 

ignores pressures not close to the point (¿, j) .

The elastic deformation at a point (i,j)  due to a rectangular area of uni­

form pressure at some point k,l is strongly influenced by the distance between the 

two points, as can be seen from equation (2.54). This enables us to define an effec­

tive influence region such that only the pressures within this region are considered 

when solving the approximate linearised Reynolds equation and this results in a 

banded instead of a full Jacobian matrix. Thus, the number of elements and the 

computational costs involved in the elasto-hydrodynamic lubrication calculations 

are greatly reduced. The effective influence Newton method can be described as 

follows:
If (mi) and (rij) are the number of effective points from the point (i ,j)  in 

the X  and Y  directions respectively, then the effective influence Newton’s formula

is of the form
j+nj i+rrn ß jr

E E
ftj

to
. dPkt.

A P u  +  Li a =  0 (3.2)

The simplest form of the effective influence Newton’s method make use of five adja­

cent nodal points in linearising the original Reynolds equation. This is the method 

employed by Dowson and Wang [31] in solving elasto-hydrodynamic lubrication 

problems. The resulting equation is of the form

dL,1,3
dPi_

dL; d L;

i-1,3 dP
'-A P ij  +  A ^ A P t+u
h3 dP*+l ,3

~ L i , j  dPij-1
dLip ” ™  w XJl,J a  

i’J‘ 1 dPtu i,j+1h3+1
(3.3)

For a constant j ,  equation (3.3) results in a tridiagonal system of equations 

which is solved simultaneously using I-line relaxation, provided that and

AP°ld are known. On every iteration the correction term A Pitj is evaluated on 

the entire grid. Having obtained A P , a new approximation P  to P  is computed at
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every point on the entire grid using

(3.4)

where w is a damping factor.
After a complete sweep, the new values of pressure are used to recalculate 

the elastic deformation and the pressure dependent viscosity and density. Results 

obtained on a single grid using the effective influence Newton method will be pre­

sented at the end of this chapter in Section (3.3).

3.1.4 Homotopy method

The concept of a homotopy method is simple in that one problem is deformed into 

another by the continuous variation of a single parameter. This parameter maybe 

part of the problem specification and therefore have some physical significance or 

it maybe artificial. The key point here is that one of the problems will be easy 

to solve, and this will be continuously deformed into one that is hard to solve In 

practice, the deformation process must be discretised and a sequence of intermediate 

problems solved. However, by allowing the changes to be sufficiently small at each 

stage, it can always be arranged that the solution of one intermediate problem will 

lie within the domain of convergence of some locally convergent algorithm for the 

next. In this way, solving a series of locally convergent problems can provide a route 

to global convergence. This process is termed continuation [4].

Consider the problem of finding a root q* of the non-linear equation system

given by

A homotopy function S{q, (3) is a function for which ¡3 € [0,1] such that the following

The function S(q, (3) (assumed to be continuous though not necessarily differentiable 

with respect to (3) represents a continuous deformation of Q(q) int0 F(q) as (3 varies

£(<?) =  0 . (3.5)

conditions hold:

s(q, o) =  Q{q) and S(q, 1) =  F(q) . (3.6)

LEEDS UNIVERSITY LIBRARY
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(not necessarily monotonically) from 0 to 1. If the problem of finding satisfying

9 k o ) = £ ( S o ’ °). =  G (3T)

is one that can be solved, and a continuous solution path exists connecting (q ,̂ 0) 

to (q*, 1) along which S_(q,(3) =  0, then continuously tracking the solution path is 

a globally convergent method for solving the system (3.5) [4].

Artificially parametrised homotopy functions can be constructed in many 

ways, but those most usually encountered are convex linear homotopies of the form

£(£,/?) =  /?£(£) +  (! ~ 0 )Q (l) ,  (3-8)

such as the fixed point homotopy

Ss{q,P) =  m 4 )  + ^ ~ P ) ( l - % )  (3.9)

where q̂  can be viewed as an initial estimate of q*.

Consider the problem of finding a root of

£ (£ ,0 ) =  O (3.10)

for p  _  i where q represents the basic independent variables of the problem and one 

or more parameters a* are defined in terms of (3 by (usually linear) relationships of 

the form a* =  tpi(0)- The problem is assumed to have been easily solved for the root 

q corresponding to /3 =  0 (e.g. using a Newton-type method). The parametrised 

problem form is in the homotopy form but the dependence upon (3 is no longer 

necessarily linear.

An efficient homotopy technique for the robust, simultaneous solution of 

elasto-hydrodynamic lubrication point contact equations is one based upon physi­

cal parametrisation, using the pressure coefficient of viscosity a  as the underlying 

parameter:

a =  o.Q +  (3{cx — an) - (3.11)

When (3 =  0, a  =  o 0 (typically 5 x 10-9, representing a near isoviscous case) 

and when =  1, a  =  a* (the desired value for the oil in question is typically 

2 X 10-8 or more). Non-dimensionalisation of the governing equations is carried out
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once and for all using the final value of ph (maximum Hertzian pressure) which is 

computed from the final value of a. Viscosity and density are computed from the 

local continuation values of alpha and ph. This enables the continuation process 

to be carried out without changing the size of the domain, but the intermediate 

problems do not correspond obviously to meaningful physical problems. The initial 

problem is easy to solve using a Newton type method, and working with a  has the 

added advantage that the same mesh can be used throughout (the computational 

domain size does not have to change as it would were load used as a parameter, for 

example).

The kinds of numerical algorithm that can be used to solve this problem 

are surveyed in reference [4]. Points satisfying equation (3.10) map out a curve in 

(q /?)-space, the zero curve, as ¡3 varies. The predictor-corrector algorithm starts 

from one point on this curve and takes a predictor step along the tangent there. 

The step size is adaptive, and the algorithm tries to maintain it as large as possible. 

The step direction is also chosen to make doubling back along the path impossible. 

A series of corrector steps is then taken with the intention of converging to a point 

further along the zero curve. Failing that, a new predictor with a reduced step size 

is undertaken. A purely locally convergent projected Newton method is used for 

the corrector steps. It should be noted that the Jacobian matrix is full and so a 

dense linear equation solver is used. To save on Jacobian evaluations, the Jacobian 

is only updated at points on the zero curve. In practice, the zero curve does not 

have to be tracked with high accuracy, since accumulation of discretisation errors 

such as occurs, for example, in the integration of ODE systems, does not arise here 

[4]. This algorithm allows the tracking of zero curves with rapid changes of arc 

length and non-monotonicity with respect to (3. Such situations cause the failure 

of simple continuation techniques where the ¡3 values are explicitly prescribed and 

monotonic.
For methods such as that just outlined, cavitation is often perceived as

difficult to handle because it is not possible to arbitrarily set components of the
%

pressure to zero without compromising convergence by introducing discontinuities. 

Penalty functions [106] can be used to resolve the cavitation problem. The basic
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idea is to add on to the discrete Reynolds equation a term

^(P) — 7-P2 (3.12)

for some positive constant 7 , wherever the pressure is negative. In this way, the 

equation can not be satisfied unless negative pressures are driven towards zero 

(squaring the pressure keeps the problem continuous in first derivatives). The larger 

7 is, the more this will be the case, but also the more sudden will be changes in 

curvature of the problem functions. For this reason we achieve greater robustness 

by deriving 7 continually from the homotopy parameter according to

7 =  (3.13)

where 7* is the target value (typically 1000).

In order to be able to cater for the very hardest problems, the 7 contin­

uation is sometimes carried out as a separate phase following completion of the a  

continuation. For many problems, though, the two can be merged quite satisfacto­

rily.
The homotopy method is very robust and can be used to solve both lightly 

and highly loaded point contact problems but at the expense of large computational 

times. However, the CPU times can be reduced by using iterative methods for the 

linear equation solution rather than the Gaussian elimination methods employed at 

this stage. This is an area of present research [89], Solutions obtained using this 

method will be presented in Chapter 5 where they will be compared with those 

obtained using other methods.

3.2 Single Grid Relaxation Schemes

As described above, various numerical relaxation schemes have been used in order to 

solve elasto-hydrodynamic lubrication line and point contact problems, but these 

schemes are restrictive in one form or another. This includes the limitations in 

solving highly loaded point contact problems found in practice and the limitations 

in the use of a large number of mesh points due to large CPU times. In order to 

understand why these schemes may not be very robust or flexible, an analysis of



the governing equations of the elasto-hydrodynamic lubrication model described in 

Chapter 2 is necessary.
Consider the Reynolds equation (2.41) of a steady state elasto-hydrodynamic 

lubrication model. For convenience, this equation is of the form

dP \  , d f d P \  d (p H )_ Q
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d
dX

+()X J ' d Y  y d ? )  d X  

which is highly non-linear and the coefficient e is given by

- . p(p ) H3

(3.14)

(3.15)
v(P)  A

The coefficient c varies several orders of magnitude over the computational
• in the contact region, the coefficient e is extremely

domain as shown m Figure (o. )■ _
u ! n-w for highly loaded problems. In this region, the film thicknesssmall, as small as 10 lor nign j

H is small the viscosity r? is large and lies in the range 10 to 10 as shown m

Figure (3 à  and the density ?  is greater than one. In the non-contact region (inlet
. , > >  ! and is of the order 104. In this region,

and outlet regions), the c ,  . ,
the Him thickness H is large and the viscceity fj and the densrty ,  are close to

one. In general, the minimum viscosity and density is one and this occurs when the

pressure is zero.

Figure 3
1- Profile of the coefficient e along the X  axis.
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Figure 3.2: Profile of viscosity rj along the X  axis

The coefficient e can be summarised as follows: In both the inlet and the
n n- o1 rlrvmain the coefficient e > >  1 whereas in the outlet regions of the computational domam, tne

contact region, the coefficient e is very close t .
. When the coefficient e is small, the Reynolds equation (3.14) described in

Chapter 2 is approximated by the Couette term

£ i Z 4 i « 0  (3 -1 6 )
d x

, . . y  direction only. Consequently, when discretised, therewhich is a relation in the X-direction oiuy •
• via oressure between adjacent grid points in the F-direction.is no direct coupling via pressux

When the coefficient e is large, the Couette term m the Reynolds

equation (3.14) is small compared to the remaining terms. Thus the Reynolds 

equation (3 14) has the form of a 2-d Poisson-tyPe equation and is approximated

by the Poiseuille terms

d
ÔX

8P_
ed x

d (  dP_ 
+ d Y V d Y

0 . (3.17)

The above analysis of the Reynolds equation (3.14) gives an insight into the nature 

of this equation which depends very much on the coefficient e. Due to the extreme 

values of the coefficient e over the computational domain, the character of the 

problem changes. «This means that whichever relaxation scheme is employed to
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error

ever,

solve elasto-hydrodynamic lubrication problems, it must be able to cope with both 

large and small values of the coefficient e. Hence, the coefficient e plays an important 

role in deciding which relaxation process to employ in order to obtain the solution 

pressure P  of the discretised Reynolds equation (2.42). The relaxation process 

employed must be a stable error smoother over the entire domain and must be 

able to cope with the extreme values of the coefficient e which is highly non-linear 

and depends on pressure. The general approach taken in the relaxation schemes 

employed by Venner [97] and Ehret [33] and also in the new relaxation scheme 

developed in this work is to make the choice of the relaxation scheme dependent on

the coefficient e.
When the coefficient e of the Reynolds equation (3.14) is large, (a Poisson- 

type problem), a point Gauss-Seidel [13, 55, 105] relaxation scheme provides good 

smoothing and stability as is shown by Lubrecht [65] and Venner [97]. How- 

___ 5 the performance of the point Gauss-Seidel relaxation scheme begins to dete­

riorate as the coefficient t decreases [97]. Firstly the relaxation becomes unstable - 

low frequency error components are amplified and the relaxation process diverges. 

Secondly, due to the loss of coupling in the V-direction, the relaxation becomes 

ineffective in reducing high frequency error components in the K-direction [97],

From the above analysis of the Reynolds equation, the problem of instabil­

ity can be overcome by using a relaxation scheme that can cope with the extreme 

values of the coefficient e, which is smaller in the contact region than the non- 

contact region of the computational domain. The variation in the values of the 

coefficient t is more evident in the highly loaded problems, which are normally not 

easy to solve as discussed above is Section 3.1. Hence, the problem of instability 

be resolved by using different relaxation schemes in the different regions of the 

putational domain. This means that the relaxation schemes employed in the 

contact and non-contact regions of the computational domain must be different. 

This concept is employed by Venner [97], Ehret [33] and Nurgat and Berzins [74] 

in their respective relaxation schemes for solving elasto-hydrodynamic lubrication 

point contact problems. The relaxation schemes employed by Venner and Ehret 

and the new relaxation scheme employed by Nurgat and Berzins will be presented

can

com
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later in th is  ch ap ter.

The problem of loss of coupling can be overcome by making use of a line 

relaxation scheme [1 3 , 5 5 , 105) instead of a point relaxation scheme. This implies 

that instead of visiting the grid points one by one in some order, e.g. lexicographic 

order and solving the discrete equation at each grid point, a system of drscrete 

equations on a line of points is solved simultaneously. This must be done on a line

which is in the direction of strong coupling.
For elasto-hydrodynamic lubrication point contact problems, there is strong

coupling in the X-direction. Hence, a line relaxation scheme in the X-direction,
r r • ,'o employed as shown in Figure ( 3 .3 ) ,  th a t  iscommonly known as I-Lme relaxation is em p loy

t w here n  is th e  m a x im u m  n u m b e r  o f  p o in ts  in  th e  
on  a lin e  Y =  j  {3  — • • • ’ ' *// ’

r ^ . c v m m e trv  only  h a lf th e  d o m a in  is u se d  as sh o w n  in  
F -d ir e c tio n . H ow ever, due to  sy m m e try , ui y

Figure (3.3).

1 +(Uy- 1 )/2

F ig u re  3.3: R ep resen tation  of d o m a in  for I-lin e  relaxation.

3.2.1 Relaxation schemes of Venner and Ehret

The relaxation schemes employed by both Venner [97] and Ehret [33] are very sim­

ilar except for the order in which the pressures £  and the film thicknesses H  are 

calculated. Venner solves for the solutions pressure £  and film thickness H  simul­

taneously using the Reynolds and the film thickness equations. Ehret first solves 

for £  using the Reynolds equation and then the new obtained pressures are used 

to update the film thickness H_. As mentioned in the previous section, they have
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employed a relaxation scheme which depends on the coefficient e of the Reynolds 

equation and different relaxation schemes are employed on the computational d o  

main. The relaxation scheme employed by both Venner [97] and Ehret [33] make 

use of the point Gauss-Seidel relaxation, the Gauss-Seidel line relaxation and the 

Jacobi distributive line relaxation schemes depending on the value of pressure on 

the computational domain. In a standard Gauss-Seidel relaxation scheme, the new 

updated solution gets used immediately in relaxing subsequent equations whereas 

in a standard Jacobi relaxation, the new updated solution replaces the old one at 

the end of a complete sweep. The relaxation scheme of Venner and Ehret can be de­

scribed as follows: The point Gauss-Seidel scheme is employed in the regions around 

the cavitation boundary whereas in the regions of the computational domain where 

the pressure is small, the Gauss-Seidel line relaxation scheme is employed. In the 

regions where the pressure is small, the coefficient e of the Reynolds equation (3.14) 

is large and the Reynolds equation (3.14) is approximated by the Poiseuille terms (a
ui \ t Iua Tacobi d istrib u tive  line  re la x a tio n  sc h e m e  is e m p lo y e d  

P o isso n -ty p e  p r o b le m ). T h e  JacoDi m s

in the remaining parts of the domain where the pressure is large. Hence, the coef­

ficient c is small and the Reynolds equation (3.14) is approximated by the Couette 

term which is dominated by the elastic considerations.

3.2.1.1 Point Gauss-Seidel relaxation scheme

A point relaxation scheme implies visiting grid points one by one in some order, 

e g lexicographic order, and solving the discrete equation at each grid point on the 

computational domain. A point Gauss-Seidel relaxation scheme employed around 

the cavitation boundary region by Venner [97] and Ehret [33] can be described as 

follows: Given an approximation P,j and the associated approximation H<j to the 

pressure Pu  and the film thickness H,j respectively at a point a new pressure

approximation T ,j  is computed using

P u = h i  +
d l

dPi.i 7 ij (3.18)
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where, Litj = L(Pitj ) is given by equation (2.42), | ^ - is given by

dLjj
dPij

= -h (eH - + ei+l,j +  %j- i  +  e

7T2 h
(P i , jP i ,i , j , j  P i -1 , ?

xy
(3.19)

hxy denotes the mesh spacings in the X  and Y  directions with hx =  hv and r- ■* ?
the residual at the point (¿, j )  , is given by

r i,j — h x y (P i , jH i , j  P i - 1 ,j H i - l , j )  h xy ¿ ( P i - 1 , j  Pi,j) +

ei+§-j(^*'+iJ — A j)  + — Pi,j) +  e4ij+i(A j+ i — Pi,jŸj +  S H . (3.20)

The correction term SH in equation (3.20) is approximated by

¿+1 j+l i J+l
SH =

ir2hxy

(  «+ 1  3 + i  8 \

Pi j y  ̂ y ' Ki,k,j,iSPk,i -  pi-i,j y  ̂ y i p-t-i,k,j,iSPk,i j (3.21)
, ’ fc= i-2 l= j-l J

where,

Pk,i -  Pk,i if ((l < i )  or {(k < i) and (l =  j)))

0 otherwise. (3.22)

In general, it is very expensive to update the film thickness at every point 

on the computational domain during the relaxation process due to the elastic de­

formation. However, an improved approximation of the film thickness , denoted by 

SH, is used when evaluating the residual r4ij as can be seen from equation (3.20). 

At any point (i , j ), an improved approximation of the film thickness SH is com­

puted using the correction terms SP which are close to the point (i , j ) as shown in 

equation (3.21). Wang [102] has shown that it is not necessary to obtain the exact 

representation of the film thickness at a point (i, j )  since the kernel K decreases 

with the distance \i — k\. After a complete sweep, the film thickness at any point 

on the computational domain where the point Gauss-Seidel relaxation scheme is 

employed is computed using the new solution pressure.

3.2.1.2 Gauss-Seidel line relaxation scheme

The Gauss-Seidel line relaxation scheme employed by Venner [97] in the regions of 

the computational domain where the values of pressure are small (the coefficient e is
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large) can be described as follows: Given an old and a new pressure approximation 

Pij and T ij respectively to Pitj, then the correction terms A Pitj and the new 

film thickness Hitj on the line Y =  j  are solved simultaneously using a system of 

equations which involves two equations per grid point i and only points (i , j ) where 

the coefficient e is large are considered. The two equations at the grid point (i , j ) 

are of the form

__ 2 Kr" 1
Hij j  ^  ̂ p i,k,j,jA p k,j — fi,j +  Wi,j (3.23)

n k=i „

and

Ky {  (P i-ij +  +  c + y  (f i+ ij +  Api+i,j) +

G j+ i^ -j+1 +  %3-iPiJ- 1 +  +  G j+i +

(Pi,j +  APi,ĵ J | — hXy =  0 (3.24)

where, Wij denotes the discretised elastic deformation, /¿ j  denotes the right hand 

side and hxy denotes the mesh spacings in the X  and Y  directions with hx =  hy.

Having computed the correction terms A P .j and Hitj on the line Y =  j  

and before moving on to the line Y  =  j  +  1, the new pressure approximation T iyi 

is computed using

■Pij =  pi,i p  A Phi ■ (3.25)

An alternative Gauss-Seidel line relaxation scheme is employed by Ehret 

[33]. Instead of computing A  £  and H_ simultaneously, the correction terms A  Pitj 

on the line Y  =  j ,  but only at the grid points where the coefficient e is large, are 

first computed using the following system of equations

ai - l , jj A p i - i , j +  A p ,j +  ai+i,j  A p i+i,j  — r i,j

where,

is given by (3.20),

is ;G -± ,i  + 2 _T,
Pi-1,j  P - i - h i - l j j  >

Xhj ~  hly C + ± ,j  ei,j~5 P  ei , j+ ^ ) 7T2 hXy and

(3.26)
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^  1 , 3  —  h l y  e * + | . i  '
On the line Y  =  j , equation (3.26) results m a tndiagonal system of 

equations which is solved simultaneously for the correction terms A Py. Having ‘ 

computed the correction terms Afly on the line Y  =  jmrd before moving on 

to the line Y  =  j  +  1, ‘ he new pressure approximation Py is computed using

equation (3.25). *
After a complete sweep, that is when all thehnes Y  =  j  <J =  1 , . . . .  % )

M e,Tur.rnvimation P obtained using the Gauss- have been visited, the new pressure approximation _  6 _
, n Qiarl fn recalculate the new film thickness H_.Seidel line relaxation scheme is used to recaicuia

3.2 1.3 Jacobi distributive line relaxation scheme

The distributive relaxation scheme was introduced by Brandt and Dinar [!4] and 

was first employed by Lubrecht and loannides [66] to solve elasto-hydrodynamic

lubrication problems. Lubrecht and loannides showed that the stability of elasto-
Cl ;« imnroved if the employed relaxation scheme hydrodynamic lubrication problems is improved

1 u. .1 1- nt nrcsqure variations. The distributive relaxation is a is based on the distribution of pressur
• n j  r Como-inp- the approximation at only one point, changes scheme where instead of changing PF

also applied to one or more adjacent points.
T h e Jacobi distributive line relaxation scheme employed by Venner [97]

and Ehret [33] works on the principle that the pressure at a point fry) depends 

on the variation of pressures in the neighbourhood of the point (i, j). This scheme 

is only employed in the regions of the computational domain where the pressure is 

large Hence the value of the coefficient e is small and the solution is dominated 

by the Couette term of the Reynolds equation (3.14). The Jacobi distributive 

line relaxation employed by Venner [97] can be described as follows: Given an 

approximation fly and the associated approximation fly  to the pressure Py and 

the film thickness fly  respectively at a point (i,i), a new pressure approximation 

p, . is computed at the end of a complete sweep, that is after all the interior lines 

Y — j  ( j  =  1,.. • , ny) have been visited, using

are

P- , = R +  SPi.i (3.27)
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where,

S P i j  =  A Pi,j — ^ ( A P i - i j  +  A P ¿+ ij +  A P i j - i  +  A P (',i+ i) • (3 .28)

The correction terms A P i j  and the new film thickness H iyi on the line 

Y = j  are solved simultaneously using a system of equations that involves two 

equations per grid point (i,j)  and only points where the coefficient C is small are 

considered. The two equations per grid point (i,j)  are of the form

2
Hij — ^ 2  A k itk,j,jAPk,j =  fi,j +  wij (3.29)

and

h- 2
xy

e.-, i

e*,j+| ( ^ +1

P»+l,j 

AP%

AP,i-2,j + APi~i,j

A P j + APj+ij

+
M. .■ «J-l

A P-j
4

APi+2,j

A Pi,3

+

+

( e*'d-2 +  e - i + i .+  ci + i j  +  ei- P

4
A P i-u

A P j  ~  ~  =  0 (3.30)

where, to, j denotes the discretised elastic deformation, denotes the right hand 

side, hxy denotes the mesh spacings in the A  and Y  directions with hx — hy and

AKi,k,j,j — A K itk,j,j — | {AKitk-i,j,j +  AI<itk+i,j,j +  A K i^ jj-i  +  A K i^jj+ i) ■
Since AKitkjj decreases with increasing distance [i -  k\ [97, 102], only 

the three largest terms of the summation in equation (3.29) are employed when 

computing A P ij and Ip j  using equations (3.29) and (3.30). These terms include 

AKi,i-iM , A K i^ j  and AKi,i+ij,j • After a complete sweep, that is after all the 

interior lines (j =  1 , ny) have been visited, the new pressure approximation P  in 

the regions of the computational domain where the Jacobi distributive line relax­

ation scheme has been employed is obtained using the correction terms A P , which 

are applied distributively, as can be seen from equation (3.27).

An alternative Jacobi distributive line relaxation scheme is employed by 

Ehret [33]. As before, a new pressure approximated P ^  at a point ( i ,j)  is obtained
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using equation (3 .27). However, instead of computing A P « j  and Hi,j simultane­

ously, the correction terms A Pid on the line Y — j,  but only at the grid points 

where the coefficient e is small, are first computed using the following system of

equations

«¿_2,j APi-2,j +  &i-l,j A f i j - l j  +  ai,j &Pi,j +

G i+ ij  A P j+ iy  4" ai+2,j ^ P i + 2 ,j r id (3 .31)

where,
Lij =  L(Pi,j) is given by equation (3.30)

■ A/7i,i-2,j,i iOj—2,j uxy

ai~l3 =  717 e*

4A|y A -i.i “  ^hxy > .
i-|,j “b 5717 "b '̂+1-7 ~b e*h-£ "b A ^i,i-i,j,j ,

'v  2 A ry

a*J
- 5

4 ( £i-|d
k  ( €i- y  + £{+ y  + + v+0 ~ ,

¿,j+|) *2 h-
2_A K -  ■■ ■i,hj,3 i

h\y £i+|b +  4fcl3i+l,j

“¿+2j  =  - j f c  ei+ y  -  tA -  »J 4/i|j, ir* h x y ........ .
— P id  K i ,k j , l  ~  P i-1 ,3  ~  4 ( ( A J  K * ,k -1 ,3,1 ~  P i-1 , j  K i - l , k - l , j j )  +

Pi,j K i ,k + l ,j ,l -  Pi_l J AVl.fc+lJ,/) +  (Aj 1 -  P i -1 ,j  K i - l , k , j , l - l )  +

Pi,j P i,k ,j,l-fl ~  P i - l , i  K t - l ,k , j , l + l ) )

,nd n j ,  the residual at the point (i,j), is given by equation (3.20).
After a complete sweep, that is when all the lines Y  — j  ( j  — 1, . . .  , ny) 

Lave been visited, the new pressure approximation P  in the regions of the com- 

mtational domain where the Jacobi distributive line relaxation scheme has been 

:mployed is obtained using equation (3.27). The new pressure approximation P 

ihen used to recalculate the new film thickness H_.

is

3.2.2 A  new relaxation scheme

A new relaxation scheme has been developed and employed in this work in order to 

solve elasto-hydrodynamic lubrication point contact problems. The main aim of this 

work is to derive a scheme that is simple and easy to understand and implement. 

It differs from the scheme of Venner in the sense that, though Venner’s scheme 

has proved to be very effective, it is difficult to understand due to its complexity. 

Besides this, it is also quite difficult for others to implement because it has not been



Chapter 3 51

described in its entirety [97], The new relaxation scheme developed and employed 

in this work employs the same general philosophy used by Venner [97] and Ehret 

[33] in that either the Gauss-Seidel or the Jacobi line relaxation schemes axe used 

in the different regions of the computational domain. The choice of the relaxation 

scheme depends very much on the coefficient e of the Reynolds equation (3.14).

The coefficient c is very close to zero in the contact region whereas in the non- 

contact region of the computational domain the coefficient e »  1. Hence, in this 

new relaxation scheme, the Jacobi and the Gauss-Seidel line relaxation schemes are 

respectively employed in the contact and non-contact regions of the computational 

domain. This new relaxation scheme can be described as follows:

The discretised Reynolds equation (2.42) of asteady stateelastrvhydrodynamic 

lubrication point contact problem can be rewritten

U j = -  P »)  + i i+ib («+ b i -  pu )  +  hl -

Pi,,) +  c , jH ( P u +i -  p u ) )  -  h , ( A i H u  -  h - i j H i - u )  =  0 (3 .32)

where, ei+i  ̂ > eij+| anc  ̂ > (* — 2, • • • , mx — 1 ; j  =  2, . . .  , n„—1), denote

the values of t  at the intermediate locations midway between the mesh points and 

hx and hy are mesh spacings in the X  and Y  directions respectively. The coefficient 

e is given by equation (2.43) and the density p is given by equation (2.44).

The scope of the new relaxation scheme involves employing both the 

Gauss-Seidel and the Jacobi line relaxation schemes on the same grid, but without

any overlap, depending on the position of the grid point {i ,j)  on the computational 

domain. The two relaxation schemes are employed as follows:

Given an approximation Piti and the associated approximation Hitj to the 

pressure Ptj  and the film thickness Hij respectively, a new approximation P¿j is

computed using

Pi,i =  h i + w A pih (3.33)

where w is a damping factor, which is critical to ensure convergence of the method.

On the line Y  =  j ,  the correction terms A Pitj (* =  1, —  , mx) are solved 

simultaneously using a system of equations created at each grid point (i,j). 

Depending on the-position of the grid point (i ,j) , either the Gauss-Seidel or the
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Jacobi schemes are employed. If the grid point (i , j ) lies in the non-contact region 

of the computational domain, then the Gauss-Seidel scheme is employed and the 

equation at t1 ‘ ~ :J

(3.34)

where,

Lij =  L(Pij) is given by equation (3.32) ,

and ritj, the residual at the point is given by

However, if the grid point (i,j)  lies in the contact region of the computa­

tional domain, then the Jacobi scheme is employed and the equation at this grid 

point is as given by equation (3.34) except for the residual r*j which is now of the

For a constant j ,  that is on the line Y =  j ,  equation (3.34) results in a 

tridiagonal system of equations which is solved simultaneously for the correction 

term A P. Having obtained A P using I-Line relaxation on the line Y =  j  and 

before moving on to the line Y  =  j  +  1, at every point on the line Y — j  which lies 

in the non-contact region, as shown in Figure (3.4), a new approximation Pitj to 

'p is computed using equation (3.33) with the damping factor w lying in the range 

0.3 to 0.9. Besides this, all the correction terms A P in the contact region on the 

line Y  -  j  are saved in order to update the solution in the contact region after a 

complete sweep, that is after all the lines Y  = j  (j =  l , . . .  ,ny) have been visited.

form
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Y

Figure 3.4: Contact and non-contact regions of the computational domain.

,, . , . v • _  i n„) have been visited, that is after aAfter all interior lines j  [j -  b  v  • ’ nv>
complete sweep, a new approximation to is computed on the entire grid 

at every point which lies only in the contact region of the computational domain.
,. ■ -h rnmnuted using equation (3.33) but this time theThis new approximation is computed b h \

, , n 1 Thus the saved values of the correctionsdamping factor w is chosen to be U.i. mus
r hiocs Dries in the contact region of the computationalA P for the portions of each ot the lines m

, , i pirrnre iS.db are added en-masse at the end ofdomain, shown as shaded region m figure W-To
. . tt «do+prl all the pressure values on the entire grid, the elasticthe iteration. Having updated all P

deformation and the pressure dependent viscosity and density at every point on the

entire grid are recalculated using the new pressure values.
The choice of the damping factor w in the non-contact region of the com­

putational domain is critical and depends very much on the load of the problem. 

For highly loaded problems, a value close to 0.3 is recommended, whereas for lightly 

loaded problems, any value in the range 0.3 to 0.8 is suitable but in order to achieve 

a faster rate of convergence, a value close to 0.8 is better. However, if the problem 

is highly loaded and a large damping factor close to 0.8 is used, then the solution

will diverge.

3.2.3 Differences between Venner’s relaxation scheme and 

the new relaxation scheme

Venner’s relaxation scheme differs in many ways from the new relaxation scheme 

developed in this work. We will now describe the differences between these two
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relaxation schemes.
Venner’s relaxation scheme employs respectively the Jacobi distributive 

and the Gauss-Seidel line relaxation schemes in the contact and non-contact regions 

of the computational domain whereas the new relaxation scheme makes use of the 

Jacobi and the Gauss-Seidel line relaxation schemes in the contact and non-contact 

regions of the computational domain respectively. Besides this, Venner’s relaxation 

scheme also makes use of the point Gauss-Seidel scheme in and around the cavita­

tion region. In Venner’s relaxation scheme, regions of the domain where the Jacobi 

distributive line relaxation scheme is employed, the correction terms at the points 

(*, j ) ,  (* i  1 ,J) and (i , j  A 1) are used to update the solution at the point (*, j )  as 

shown in equation (3.27) whereas in the remaining parts of the domain, where the 

Gauss-Seidel line relaxation and the point Gauss-Seidel schemes are employed, the 

method used to update the solution is similar to the one used in the new relaxation 

scheme. The solution, P, at a point (i,j) m the new relaxation scheme is updated 

using the correction term A a s  shown in equation (3.33). The correction terms 

in the new relaxation scheme are obtained by solving a tridiagonal system of equa­

tions as can be seen from equation (3.34) whereas in Venner s relaxation scheme, 

regions of domain where the Jacobi distributive line relaxation scheme is employed, 

the system of equations is pentadiagonal as can be seen from equation (3.30). How­

ever, in the regions where the Gauss-Seidel line relaxation scheme is employed, a 

tridiagonal system of equations is used. In Venner s relaxation scheme, the film 

thickness equation gets updated during the relaxation process as can be seen from 

equations (3.23) and (3.29). This is not the case in the new relaxation scheme.

The main difference between the Venner’s relaxation scheme and the new 

relaxation scheme is in the contact region of the computational domain. This is 

where the Jacobi distributive line relaxation scheme is employed by the Venner’s 

relaxation scheme and the Jacobi line relaxation scheme is employed by the new 

relaxation scheme. The system of equations solved in order to obtain the correction 

terms and the way pressures are updated at a point (i ,j)  are also different in the 

two schemes as can be seen from equations (3.27) and (3.33).
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3.3 Test Problem

i • -L in Wane [102], is solved on a domain {{X ,Y ) :This test problem, which appears m vvang
_ 3 5 <  x  <  i .5 -2 .0  < Y  < 2.0} using the Effective Influence Newton method

(EINM) [IO2} ,  thè New Relaxation Scheme (NRS), the homotopy method used by

Scales [75] and the relaxation scheme of Ehret [33], which is very similar to that 

of Venner, on a single 65 X 65 grid. However, due to symmetry, only the nodes 

in the positive E-direction are employed when solving using the effective influence 

Newton method and the new relaxation scheme. For this highly loaded problem, 

the Hamrock and Dowson’s dimensionless parameters with the speed parameter U
„  ̂ in_i. „ w  -  3 4125-x 10"6 and G =  4865. The equivalentfixed at 5.6102 x 10~u are W  -  ¿-41/0

, , „  ,,.0 m  _  99 and L — 16. This in turn gives A =Moes dimensionless parameters are
„ _  index a =  2.2056 x 10~8 and the maximum2.3975 x 10~2. The pressure viscosity mae.

r tKU lnad is 1 21 GPa. Hence, the value of a =  a  x ph =  27. Hertzian pressure, ph, ut this load i ■
The maximum Hertzian pressure pa and the dimensionless parameter Jf indicate the 

load of the problem and the higher their values, the higher the load.

3.3.1 Discussion

Tables (3.1), (3.2), ( 3.3) and (3.4) show respectively how the numerical solution 

obtained using the effective influence Newton method, the new relaxation scheme, 

the homotopy method used by Scales [75] and the relaxation scheme of Ehret [33] 

changes with the number of iterations, labelled Its. The results obtained using the 

homotopy method used by Scales and the relaxation scheme of Ehret were commu­

nicated to us. The central, labelled Hcent, and the minimum, labelled Hmin, film 

thicknesses obtained using the four schemes indicate that the new relaxation scheme 

and the relaxation scheme of Ehret are more efficient than the effective influence 

Newton method. The discrepancy in the minimum and central film thicknesses ob­

tained using the four methods is very small. However, the values obtained by Scales 

[75] using the homotopy method as shown in Table (3.3) are somewhat different. 

The discrepancies in the values obtained using the other three methods as shown 

in Tables (3.1), (3-2) and (3.4) are negligible and comparing these values with
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the homotopy method, the discrepancies are more apparent but still comparable. 

The reason for this is not very clear. The number of iterations carried out when 

using the effective influence Newton method is much higher than the other three 

methods. The homotopy method, which is very robust and powerful, has the least 

number of iterations but this is at the expense of large computational time.

Also shown in Tables (3.1), (3.2), (3.3) and (3.4) are the Root Mean 

Square Residuals, labelled RMSRES, which represents the h2-norm, that is

RMSRES =
m.r nv

\ m*ny j=i
E E RESh (3.37)

»here, m , and n, are respectively the maximum number of points in the X  and Y  

directions and RESlJ is the residual at the point (* ,» .  In terms of efficiency, the 

new relaxation scheme and the relaxation scheme of Ehret are very comparable and 

there is very little to choose between the two methods. The homotopy method has 

the smallest root mean square residual compared to the other methods.

Its Hcent Hmin RMSRES A Ps

100 0.1230 0.0684 9.162E-3 4.785E-3

500 0.1829 0.1030 5.293E-3 4.352E-5

1000 0.1882 0.1052 2.529E-3 1.011E-5

1500 0.1897 0.1057 1.097E-3 3.513E-6

2000 0.1902 0.1058 4.588E-4 1.355E-6

2900 0.1905 0.1059 9.990E-5 2.447E-7

Table 3.1: Results obtained using the effective influence Newton method.

Its Hcent Hmin RMSRES A  Ps

100 0.1795 0.0956 4.211E-3 3.181E-3

300 0.1903 0.1059 3.149E-4 8.986E-6

400 0.1905 0.1059 7.081E-5 2.129E-6

500 0.1906 0.1059 1.565E-5 4.659E-7

600 0.1906 0.1059 3.447E-6 1.022E-7

680 0.1906 0.1059 9.968E-7 2.952E-8

Table 3.2: Results obtained using the new relaxation scheme.
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Its Hcent Hmin RMSRES A  Ps

10 0.0882 0.0481 1.672E-3 7.600E-6

15 0.0895 0.0486 1.662E-3 1.268E-3

30 0.1442 0.0746 1.111E-3 4.364E-3

40 0.1723 0.0912 6.355E-4 4.319E-3

50 0.1968 0.1087 , 1.155E-4 4.496E-3

53 0.2020 0.1124 2.535E-7 7.327E-4

54 0.2020 0.1124 1.701E-9 1.099E-5

Table 3.3: Results obtained using the Homotopy method.

Its Hcent Hmin RMSRES

50 0.1836 0.1043 2.425E-1

300 0.1896 0.1060 1.538E-4

400 0.1896 0.1060 8.036E-6

500 0.1896 0.1060 4.299E-7

600 0.1896 0.1060 3.269E-8

Table 3.4: Results obtained using the relaxation scheme of Ehret.

The last columns, labelled A  Ps where the subscript s indicates that it is

on a single grid, in Tables (3.1) (3.2) and (3.3) show the changes in the solution 

pressure from one iteration to the next and it is computed using

mx ny

A Ps 771X ny

Pk-i

^ 1 4 = 1

(3.38)

where k indicates the ki!l iteration. Though the change in the solution, A  Ps, is 

commonly used [102] as a means for testing the accuracy and convergence criterion, 

it is really not a good practice since it can be misleading as it only indicates the 

change in the solution pressure at each iteration. It is possible to get very small 

changes and the solution might be diverging from the true solution.
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3.4 Smoothing Analysis

The convergence behaviour of any numerical solver depends strongly on the relax- . 

ation scheme being employed. The employed relaxation scheme must have a good 

smoothing property. However, the convergence behaviour in itself does not say 

anything about the actual smoothing efficiency. The smoothing efficiency can be

analysed using a local mode Fourier analysis [12, 105].
In order to analyse the new relaxation scheme described above in Sec­

tion 3.2.2 for solving elasto-hydrodynamic lubrication problems, we need to consider 

the Reynolds equation (2.41) of Chapter 2. For convenience, it is of the form

d
dx + dY  l ea r

d (  QP\ d (pH). . .
ld x d X

=  0 (3.39)

,1 0 Pni<5Piiille terms and the third term is the Cou- where, the first two terms are the hoiseume tex
, n so in 8prtion 3.2, the coefficient e of the Reynolds ette term. As described above m bection

i nf magnitude over the computational domain,equation (3.39) vanes several orders ot magm
„W p in 7,ero whereas in both the inlet and outlet In the contact region, e is very close to zero

• i j  f > >  1 When e is very close to zero (contactregions of the computational domain, e »
.. fey oq\ approximated by the Coiiette term, that is region), the Reynolds equation (3.39) is approx

d(pH)
dx

(3.40)

and when c »  1 (remaining parts of the domain), the Couette term is small

and the Reynolds equation (3.39) is approximated by the Poiseuille terms, that is

9 dP\ + JL(la-L
I +  QY I dY

(3.41)
a x V ' d x j :  d Y \ ô Y j

In order to carry out a local Fourier analysis of the new relaxation scheme, 

which depends on the coefficient c, the two approximations of the Reynolds equa­

tion (3.39), that is equations (3.40) and (3.41), must be considered. The new
, ,. , Ta robi and Gauss-Seidel line relaxation schemes on therelaxation scheme uses the J acorn ouu

same grid depending on the value of £. The Jacobi and Gauss-Seidel line relax­

ation schemes axe respectively employed in the contact and non-contact regions of 

the computational domain.' This means that the Jacobi line relaxation scheme is 

employed to solves equation (3.40) and the Gauss-Seidel line relaxation scheme is
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employed to solve equation (3.41). Due to the complexity of equation (3.40), we 

will only consider the local Fourier analysis of the new relaxation scheme using

equation (3.41).

3.4.1 Fourier analysis of the Poiseuille terms

Consider the simpler case of when e > >  1. Assuming that t is constant, then

equation (3.41) can be rewritten as

d2 P(X lX1  +  d2p(X ’X l  =  F(X, Y) (3 42)
d X 2 d Y 2 V K ^Z)

which, as described in Chapter 2, is discretised using central differencing at each

non-boundary mesh point (l,m ), ((l — 1 )hxy +  X a, (m — l)hxy +  Ya) where X ,Y  £

[.Xa,X b] x [Ya,Yb] and hxy is the grid mesh spacing in the X  and Y  directions.

Equation (3.42) in discretised form can be written as

h~y {Pi-1,m +  Pl+l,m +  Pi,m+1 +  Pl,m- 1 — 4P/,m) =  P/,m (3.43)

where hxy is the grid mesh spacing in the X  and Y  directions.
In the new relaxation scheme, when e »  1, the Reynolds equation (3.39), 

when discretised, is approximated by equation (3.43) which is solved using the 

Gauss-Seidel line relaxation scheme. In a line relaxation scheme, instead of scanning 

the grid points one by one in some order, e.g. lexicographic order, and solving the 

discrete equation at each grid point, a system of discrete equations on a line of 

points are solved simultaneously. This is normally done in the direction of strong 

coupling. Hence, for elasto-hydrodynamic lubrication problems, I-Line relaxation 

scheme is employed and all the points (/, m) on the horizontal line Y — m are

considered.
If P is an approximation to P., then the new approximation P  must simul­

taneously satisfy all the equations (3.43) on the line Y  — m. Hence, P l m satisfies

K y{P i-i^  d" Fi+l,m +  Pl,m+1 +  Pl,m- 1 ~  4Pl,m) =  Fl,m ■ (3.44)

The error at the point (/, m) before and after a relaxation is respectively given by 

vi,m and where

Vi,m =  Pl,m ~~ Pl,m an<̂  vtm — Pl,m ~ Pl,m • (3.45)
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Generally, iterative schemes have the property of reducing the non-smooth 

(high frequency) part of the error at a much faster rate than that of the smooth part. 

This fact is exploited hy the multigrid method where coarser grids are employed in ' 

order to deal with the smooth part of the error. When using multigrids, the role of 

relaxation is not to reduce the error but to smooth it out. One way of understanding 

the smoothing properties of grid functions is by means of Fourier analysis [12, 105], 

This is a local process and is a very good technique for analysing the true behaviour 

of modes with high frequencies which represents the non-smooth part of the error. 

However, this technique is inaccurate for modes with smaller frequencies but this can 

be ignored when using the multigrid method because modes with smaller frequencies

can be represented on coarser grids.
Since smoothing is a local process, it can be analysed locally on a particular

,, „ • f „rrno of Fourier series. Hence, the Fourier seriesgrid by representing the errors m terms oi rouu

representation of v and v is of the form.

=  Y Â { e u e2)e**»+*«) and =  (3-46)

where, {9  =  {9u h )  : - tt < 9 <  tt}. Subtracting equation (3.44) from equa­

tion (3.43) gives

Vl— l,m +  *>1+1, +  Vl,m+1 +  vi,m-1 4iq,m 0 (3.47)

which, using equation (3.46), can be rewritten a

etfi +  e~i02 -  4)A (9 i ,02) +  e.ie2A {9 i,9 2) =  0 ,  (3 .48)

w h ich  show s th e  re lation  b etw een  th e  amplitudes o f  a Fourier c o m p o n e n t b efore  

an d  a fter  re la x a tio n . C o n seq u en tly , th e  a m p lifica tio n  factor „ (* ) <* » =  (»>.»>)

component is
W i , « i  =  _

i4

¿02 I
2cos9\ ~i02 I (3 .49)

Figure (3.5) shows the amplification factor as a function of 6 =  (9U92) for the 

Gauss-Seidel line relaxation scheme which is employed when the coefficient e »  1. 

Since n(6) <  1, the scheme is stable for all values of 9. We can also see that p{9) - »  1 

as 9 -> 0 which means that the low frequency (smooth) error components are not
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reduced by the relaxation as effectively as the high frequency (non-smooth) error 

components. Since we are only interested in the smoothing effect, the reduction of 

the high frequency components of the error can be measured by a quantity called 

the smoothing factor, p, [12, 105] which is defined as the maximum amplification 

factor for the error components that can be represented on a grid with coarser mesh,

that is

¿7(0) =  max p{6i,&2) (3.50)

where, { 6  =  {6U62) : 6{ <E [ - * ,  - f ]  U [ f , *] with the subscript i =  1,2} .  The 

smoothing factor p for this problem is 0.24.

Figure 3.5: Amplification factor p{0i,62) for Gauss-Seidel line relaxation.

3.5 Conclusion

The inverse method [29, 35, 37, 61] and the direct iterative methods [25, 36, 45, 84] 

were the earliest methods employed to solve elasto-hydrodynamic lubrication prob­

lems. However, these methods are not ideal for solving practical problems found in 

industrial applications due to computational costs and numerical instabilities, espe­

cially when solving highly loaded problems [68, 97]. Solving highly loaded problems 

requires a large number of mesh points in order to obtain realistic solutions but, due 

to large CPU times, these methods are not ideal for solving these problems. Hence, 

these schemes are mainly used to solve line contact and lightly loaded problems.
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However, new schemes have emerged recently, but they are still restrictive. One 

such method is Wang’s [29] effective influence Newton method which is suitable for 

solving point contact problems, but the use of finer meshes is restricted due to large 

CPU times. This method seems to work as it is shown by Wang [102] but it is not 

as efficient as the new relaxation scheme which is developed in this work. Another 

method is the homotopy method [75] which is very robust but at the expense of

large CPU times.
A big breakthrough in reducing CPU times was achieved by Lubrecht [68] 

who introduced the multigrid method in solving elasto-hydrodynamic lubrication 

problems. Hence, problems with a large number of mesh points could now be solved 

routinely. Since Lubrecht made use of the Gauss-Seidel relaxation scheme, the 

problem of instability was still an issue. This problem arises due to the nature of the 

Reynolds equation of the elasto-hydrodynamic lubrication model. The coefficient e 

of the Reynolds equation varies several orders of magnitude over the computational 

domain. In the contact region, it is extremely small and it can be as small as 10~15 

whereas in the non-contact region, e > >  1 snd R hes the range 10 to 105. Due to 

the extreme values of the coefficient e over the computational domain, the character 

of the problem changes. This means that whichever relaxation scheme is employed 

to solve elasto-hydrodynamic lubrication problems, it must be able to cope with 

the extreme values of the coefficient e. Hence, the coefficient e plays an important 

role in deciding which relaxation scheme to use when solving these problems.

Following Lubrecht’s work, Venner [97] employed the multigrid method 

and developed a relaxation scheme dependent on the coefficient e. Hence, Venner 

was able to solve point contact problems that were previously unsolvable. More 

recent work involving the use of the multigrid method includes that of Ehret [33] 

who has also employed a relaxation scheme which is very similar to that of Venner.

The new relaxation scheme developed in this chapter also depends on the 

coefficient e. The idea is to use different relaxation schemes on the same computa­

tional domain depending on the coefficient e. In the contact region, the coefficient 

e is very close to zero whereas in the non-contact region of the computational do­

main, the coefficient e > >  1. Hence, in the new relaxation scheme, the Jacobi and
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the Gauss-Seidel line relaxation schemes are respectively employed in the contact 

and non-contact regions of the computational domain. The new relaxation scheme 

is very simple and easy to implement and understand compared to the relaxation' 

schemes of Venner and Ehret. In the next chapter, we will present a multigrid solver 

for elasto-hydrodynamic lubrication problems based on the new relaxation scheme.
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DEVELOPING A N  EHL 

SOLVER USING MULTIGRID

The multigrid method has been extensively used to solve various boundary value 

problems [12]. However, its use for solving Elasto-Hydrodynamic Lubrication (EHL) 

problems is relatively new. The multigrid method was introduced into the field of 

tribology by Lubrecht [68] who through his extensive work [65] has made it a very 

cicut method for solving elasto-hydrodynamic lubrication line and point contact 

problems. The use of the multigrid method makes it computationally less expensive 

to solve elasto-hydrodynamic lubrication problems using a large number of mesh 

points. In order to obtain better efficiency, the use of a large number of mesh 

points is crucial especially for highly loaded problems. The use of iterative schemes 

to solve highly loaded problems is very expensive computationally. Generally, the 

use of inappropriate iterative schemes for solving system of equations arising from 

the discretisation of partial or integro-differential boundary value problems may 

result in stalling, [13, 55], where the computational time taken to achieve a small . 

physical effect is large. For example the error reduces by a small amount from one 

iteration to the next. Hence, computationally this can be very expensive.

64
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The aim of this work is to develop a fast, robust, and general purpose 

numerical solver for elasto-hydrodynamic lubrication point contact problems using 

the multigrid method. Hence, this chapter begins with a general description of 

the multigrid method. This includes both the Correction Scheme and the Full Ap­

proximation Scheme (FAS). The correction scheme is employed when solving linear 

problems and since elasto-hydrodynamic lubrication problems are non-linear the 

correction scheme cannot be employed and a full approximation scheme must be 

used. The inter-grid operators, namely the restriction and the prolongation oper­

ators, used to transfer the residuals and the corrections from one grid to another 

are also described. An account of different multigrid cycles, namely V  and W cy­

cles, is given together with the full-multigrid scheme. The full-multigrid scheme 

which instead of using coarser grids only to accelerate convergence, also uses them 

to generate accurate first approximations on the finest grid. Also presented in this 

chapter will be a general overview of the use of the multigrid method to solve elasto- 

hydrodynamic lubrication problems. This chapter will conclude with a description 

of how a multigrid solver for elasto-hydrodynamic lubrication problems (multigrid
, . . . . r • aWploned This is achieved by making use of thesolver) employed m this work is developed.

new  re la xa tion  sch em e described in Section 3.2.2 o f  th e  p reviou s c h a p ter  and the 

FDMG Multigrid Softw are  [92). The la tte r  is used as a sta rtin g  p o in t for imp]*-
, . . . . s i  iT1 thp multigrid solver and will be described later inmenting the multigrid method m the muiugr

this chapter. The FDMG multigrid software is a simple general purpose solver, and, 

in order to solve elasto-hydrodynamic lubrication point contact problems, additions 

and modifications are made to the FDMG multigrid software in order to deal with 

the complexity of the elasto-hydrodynamic lubrication model.

4.1 Multigrid Method

In general, when using the multigrid method, the governing equations are discretised 

on several grid levels and are approximated at each level by a system of equations. 

The residuals of these equations are calculated on the finer grid level and then 

transferred down to the coarser level where correction terms are computed. The



corrections from the coarser grid level axe then used to obtain the corrections on 

the finer grid level. This is repeated until the residuals on the finest grid level are

sufficiently small.
In order to understand the principle of multigrid fast solvers, an insight 

into the nature of the algebraic errors associated with the conventional iterative 

schemes is required. Besides this, an understanding of how these schemes reduce the 

errors is also required. Generally, iterative schemes have the property o f reducing 

the non-smooth (high frequency) part of the error at a much faster rate than that of

the smooth part which is associated with low frequencies. When using multigrids,
„ , ,. . . . „ the error but to smooth it out. This is achievedthe role of relaxation is not to reduce tne error u

by making use of a sequence of coarser grids. In a multilevel solver, which makes use 

of a series of coarser grids, each high frequency component of the error, which has 

a wavelength of the order of the mesh sice, is reduced on one grid until it becomes 

smooth when the same procedure is applied on a coarser grid. The smooth part of

the error, which is associated with lower frequency, can be adequately represented
, a j  Ml nf this is provided in the multigrid guide ofon a coarser grid. A good illustration ot tms is P

Brandt [13] and the tutorial by Briggs [18].
In order to understand the multigrid method, consider the simplest case

of a two grid method and consider the following problem

L u  =  f  o n  f t  ( 4 -1 )

where L is the differential operator, u is the solution and /  is the source term (rhs).

D iscre tisa tio n  o f  eq u ation  (4 .1 )  o n  a  u n iform  grid w ith  m e sh  size  h  g iv es

L hu h = t -  ( 4 -2 )

66
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Let u} b e  an  a p p ro x im a tio n  to  th e  tru e  so lu tion  u \  th e n  th e  error is g iv e n  b y

eh s u k (4.3)

and the residual or defect is given by

rh = f h ~ L huh.

Using Lhuh =  f h, equation (4.4) can be rewritten as

r h _  £  V  -  Lhuh .

(4.4)

(4.5)
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If Lh is a linear operator, then equation (4.5), using equation (4.3), reduces to

Lheh = rh (4.6)

and is called the Correction Scheme (CS).

At this point the error eh is evaluated using equation (4.6) but after a few 

iterations or ’relaxations’ it will be smooth compared to the mesh size. Hence, using 

the approximation L^ of Lh on a coarser grid with mesh size H, where H — 2h, 
the correction term vH is calculated from

ff„,ff _  TH r h 
■ l h L.Lhv (4.7)

where, If? is a restriction operator that restricts rh to a coarser grid. The restriction 

operator is called the fine to coarse grid operator.

Using the obtained solution vH which is an approximation of v_H, the 

approximation uh on the fine grid is corrected using

uh = uh +  Iffh;h ~H
(4.8)

where Ih is a prolongation operator. It is known as the coarse to fine grid operator

or the interpolation operator.

In elaato-hydrodynamic lubrication problems, since Lh is a nonlinear op­

erator, the correction scheme given by equation (4.6) is not applicable. Hence, an 

alternative coarse grid equation for the solution of the error must be derived. This 

can be achieved by rewriting equation (4.5) using equation (4.3) to get

r? =  Lhuh — Lhuh =  Lh(uh +  eh) — Lhuh 

which can be rewritten as

(4.9)

Lh(uh + eh) =  Lhuh +  rh . (4.10)

Equation (4.10) is usually referred to as the Full Approximation Scheme 

(FAS) and is used to obtain an approximation of the error on the coarse grid Th 

FAS coarse grid representation of equation (4.10) is given by

LHuH =  /iff (4.11)
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where uH is a coarse grid variable given by

uH ^ lf!n h +  eH (4.12)

and /  is the FAS right hand side which is given by

f  =  LH(I»uh) + /jfrh

where 1̂  is a restriction operator.
Suppose u”  is an approximation to the solution uH of equation (4.11), 

then the coarse grid approximation f  of the error eH is given by

e «  =  uH Jj?u* • (4.13)

Using equation (4.13), the fine grid solution &'> is improved using

fit = uh +  m H (4.14)

where i f  is a restriction operator from grid h to H  and /¡) is a prolongation operator

from grid H to h.

4.1.1 Restriction operator

The restriction operator, also known as the fine to coarse operator, is defined as

follows: If fit is a fine grid fnnction, then using a restriction operator l ’h’  a coarse
, th ,,h The most straightforward and simplest restric- grid function is given by Ih 2. • ine mub 6

tion operator is straight injection. This is where the value on a coarse grid point

simply takes the value from the corresponding fine grid point, that is i f f i 1' =  uK

F; (4.1), where the fine grid points are represented by This can be seen from tigme
#  , * =  1, . . .  , 9, and the coarse grid points are represented by C{ , * =  1, . . .  , 4.
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F ,C 
4 4

F
8

F ,C 
3 3

F F F
7 5 6

F ,C 
1 1

F
9

F ,C 
2 2

F : Fine grid points
C : Coarse grid points

Figure 4.1: Restriction operator - Injection: Ci — Ff , i — 1, . . .  ,4.

As an alternative, the value on anon-boundary coarse grid point coinciding 

with the fine grid point can be obtained by taking the weighted average of the 

values of the fine grid point and some points adjacent to it. This can be seen from 

Figure (4.2), where the coarse grid point C can be represented as a weighted average 

of the fine grid point f t ,  which coincides with the coarse grid point C, and the eight

fine grid points surrounding it.

F : Fine grid points 

C : Coarse grid points

Figure 4.2: Weighted restriction operator.

A more commonly used form of a weighted restriction operator I f  is known as the
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full weighting. In a 2-d stencil notation, it is of the form

rH -ih —

j_  i _l  
16 8  16

1 1 
4 8

i  1 i
16 8 16 J

(4.15)

whereas in a 1-d stencil notation, it is given by

jH _  
Jh

(4.16)

4.1.2 Prolongation operator

The prolongation or interpolation operator, also known as the coarse to fine opera­

tor, is defined as follows: If is a coarse grid function, then using a prolongation 

operator Ifj a fine grid function is given by Ijj u ■ The most popular prolongation 

operator is simple linear interpolation on a regular mesh. This is where values of 

all the fine grid points not coincident with the coarse grid points are obtained by 

taking averages of the coarse grid points. When two points are coincident, then the 

value on the fine grid point simply takes the value from the corresponding coarse

grid point as can be seen from Figure (4.3).
c' F C

F : Fine grid points 

C : Coarse grid points

Figure 4.3: Prolongation operator - Linear Interpolation.

In Figure (4.3), the fine grid point F5 is obtained using the average of
• j C, Co Co and C4 whereas the intermediate fine grid.e four coarse grid points O i, c 2 , ^ 3“ “  &

>ints F6 F7, F9and F9 are obtained by taking the average of their respective two
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adjacent coarse grid points. For example F, =  §( f t  + f t ) .  The fine grid points 

coinciding with the coarse grid points take on the values of the corresponding coarse 

grid points. For example, F, =  f t .  The fine grid points F . , F2 , F3 and Ft are not

shown in Figure (4.3).

4.1.3 Coarse grid correction cycle

If the number of nodes on a fine grid is large, then the number of nodes on a coarser 

grid with H  =  2h may still be considerable. Hence, the error on this coarse grid 

may still be smooth and can be represented more accurately on an even coarser grid 

with mesh size 2H. Obviously this idea can be applied recursively until the coarsest
,, ,i ru. cvrio-inal finest grid and the equations on this coarsest grid is much smaller than the original nnesi gn
, . , .i_, The sunerscript k is now used to indicate thegrid can be solved almost exactly, the supeisc P

■i • -Uvrsal h is given by 2k +  1 and k — l indicates the grid level. The mesh size on level k is given uy
, , foe o Toarse-Grid Correction [13] is as follows:coarsest grid. The algorithm for a Coarse-uria

• Using the approximate solution compute the residual on the fine grid

• Restrict the residual on to the coarse grid.

• Solve for the correction on the coarse grid.

• Prolong the correction on to the fine grid.

• Compute the new approximation to the solution.

A single  re laxation  m a y  n o t b e  sufficient to  re d u ce  th e  n o n -s m o o th  c o m ­

p o n en ts  o f  th e  error. M a n y  re laxation  sch em es act as g o o d  s m o o th in g  o p e ra to rs  

w h ere  th e  a m p litu d e s  o f  n o n -sm o o th  (h igh  fre q u en cy ) c o m p o n e n ts  are re d u ce d  b y  

large factors on  each iteration . H e n c e , th e  m u ltig r id  m e th o d  is a  c o m b in a tio n  o f  

re la x a tio n  sch em es an d  C o a rse -G rid  C o rrectio n . A tw o  grid  ite ra tio n  is o f  th e  fo rm

• P r e -sm o o th in g : P erfo rm  Vi  re laxation  sw eep s to  o b ta in  a  n ew  a p p r o x im a te  

so lu tio n .

• C o a rse -G rid  C o rrectio n : A lg o r ith m  g iven  a b o v e .
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• P o st-sm o o th in g : P e rfo rm  v 2 re la xa tion  sw eeps to  c o m p u te  a  n e w  a p p ro x im a ­

tio n  to  th e  so lu tion .

Using the above two grid iteration method, a multigrid method is easily 

obtained. Instead of solving the correction on the coarse grid, an approximate solu­

tion of the correction is obtained by introducing an even coarser grid and employing 

the two grid iteration method. This process can be repeated recursively down to 

the coarsest grid where the correction is computed exactly.

v0 , v, , v2 and v3 denotes number o f relaxation sweeps 

' \  Denotes restriction

f  Denotes prolongation

Finest grid

Level

3

Coarsest grid

1 CGC (V-cycle)
2 CGC (W-cycle)

F igu re  4 .4 : S tru ctu re  o f  m u ltig r id  cyc les .

One iteration of the multigrid method is called a cycle which starts from 

the finest grid to the coarsest grid and back to the finest grid. The structure of a 

cycle depends on the number, 7 , o ft™0 8lid method itoilt'on!i at each intermediate
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stage. A V-cycle and a W-cycle are obtained when 7 =  1 and 7 -  2 respectively as 

shown in Figure (4.4). The pre-smoothing and post-smoothing relaxations, that is 

ti, and !■-_> respectively, are normally of the order between 2 and 4.

4.1 .4  Full-multigrid

In general, when using multigrids, coarser grids are used to accelerate convergence. 

However, if computations are started on the finest grid using an initial approxima­

tion, then it is possible that the algorithm might diverge due to an unfortunate 

choice of the initial approximation. This is unlikely to happen and the efficiency 

can be improved if coarser grids are used to generate an initial approximation on 

the finest grid. This is known as the ¡nll-mnlti9n i  method which is also known as 

nested-iteration [13, 105). Hence, instead of starting with an arbitrary initial ap­

proximation on the finest grid, the first approximation is obtained by prolongation 

from a coarse grid solution, u «  =  i f  This process can be applied recursively 

starting from the coarsest grid as shown in Figure (4.5).

4.2 Overview of the Multigrid Method for Solv­

ing EHL Problems

The computational cost of using direct linear equation solvers for elasto-hydrodynamic 

lubrication problems, as outlined in Chapter 3, restricts their use to small num­

bers of mesh points. This makes it difficult to solve problems which require larger 

meshes to be used to obtain a good solution. However, the use of multigrid tech­

Level

Finest grid 4

3

2

Coarsest grid

F igure 4.5: F u ll-m u ltigrid  w ith  on e  V cycle.
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niques [13, 18, 105] together with good relaxation schemes does help in resolving 

the complexity of the iteration schemes.

The multigrid method has been used extensively to solve a very wide range 

of boundary value problems [12] and has shown itself to be a very computation­

ally efficient solver. This property of the multigrid methods has been exploited on 

various problems [13] from simple to complicated non-linear systems. This method 

is used extensively in the field of Computational Fluid Dynamics. This includes 

potential equations, Euler equations and Navier-Stokes equations with and without 

turbulence models. Multigrid methods are also used in conjunction with efficient 

grid adaptation schemes where different scales of mesh spacing are neeeded in dif­

ferent parts of the domain.
When solving elasto-hydrodynamic lubrication problems, Lubrecht [68, 65] 

developed a scheme based on the multigrid method to solve both line and point 

contact problems. A simple Gauss-Seidel relaxation scheme [55, 105] is used in 

solving the Reynolds equation of the elasto-hydrodynamic lubrication model with 

the multigrid method being incorporated in order to accelerate the convergence. 

Lubrecht [65] showed that the computing time is greatly reduced when solving line 

and point contact problems on a relatively large number of nodes using the multigrid 

method. Since Lubrecht employed the Gauss-Seidel scheme, highly loaded problems 

could not be solved due to the sensitivity of viscosity to pressure which may lead 

to instability [101]. However, by making use of the multigrid method, Lubrecht 

solved previously unsolvable problems due to excessive computational times, using 

a large number of mesh points in limited computational times and on computers 

with reasonable power. The multigrid method is now regarded as one of the most 

efficient methods for solving elasto-hydrodynamic lubrication problems.

An efficient multilevel solver requires a relaxation scheme that reduces the 

high frequency error components. For lightly to moderately loaded problems, a 

Gauss-Seidel relaxation scheme is sufficient as is shown by Lubrecht [65]. How­

ever, instability problems do arise when solving highly loaded problems using the 

Gauss-Seidel relaxation scheme. Following Lubrecht’s work, Venner [97] used the 

multigrid method and developed a relaxation scheme for solving lightly to highly
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loaded line and point contact problems. Hence, the problem of instability associ­

ated with highly loaded problems found in practice was no longer an issue. This 

relaxation scheme was later used and extended slightly by Ehret [33]. The problem 

of instability can also be overcome by employing the new relaxation scheme. The 

relaxation scheme of Venner and the new relaxation scheme are both described in 

detail in Chapter 3.
The multigrid solver for elasto-hydrodynamic lubrication problems makes 

use of the new relaxation scheme and the FDMG Multigrid Software [92]. The latter 

is used as a starting point for implementing the multigrid method into the multigrid 

solver. However, additions and modifications are made to the FDMG multigrid 

software due to the complexity of elasto-hydrodynamic lubrication problems. The 

multigrid solver for elasto-hydrodynamic lubrication problems (multigrid solver) 

will be described later in this chapter but we will now look at the FDMG multigrid 

software.

4.3 FDM G Multigrid Software

The FDMG Multigrid Software of Shaw [92] is a Full Approximation Scheme (FAS) 

multigrid solver for non-linear systems of partial differential equations on a finite 

difference mesh. It is a simple general purpose solver written in Fortran and mainly 

used as a teaching and research program. The software allows the user to experiment 

with different tools which includes the option of different relaxation schemes, re­

striction procedures (Injection and Full weighting) and cycling strategies (V and Ml 

cycles). The relaxation schemes include the Jacobi and the Gauss-Seidel schemes 

and they can be implemented either as point or line relaxation schemes. These 

relaxation schemes are described in detail in Chapter 3 whereas the restriction pro­

cedures and the cycling strategies of the multigrid method are described above in 

Section 4.1. The structure of the FDMG Multigrid Software can be divided into 

two parts, the Initialisation Process and the Multigrid Driver.

The Initialisation Process deals with the initialisation of the global argu­

ments and the checking of the input parameters to see if they are sensible. The ini­
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tialisation of the global arguments involves the setting up of various global switches 

which are defined using common blocks. This is achieved by analysing the chosen 

smoothing (relaxation) method, defining a sequence of coarser grids from the given 

finer grid, initialising the initial solution and setting up of all the grid geometries 

together with their mesh coordinates. The process of checking the input parameters 

involves making sure that the sequence of grids are suitable for multigrid, checking 

that the chosen smoothing (relaxation) method is compatible with the damping fac­

tor chosen by the user and making sure that the arrays are dimensioned sufficiently 

large to cope with the number of points being used to solve the elasto-hydrodynamic 

lubrication problem.
The Multigrid Driver is the main body of the FDMG multigrid software 

and its function is to carry out the multigrid cycles (iterations) which can either be a 

V-cycle or a W-cycle. These cycles are described above in Section 4.1.3. The struc­

ture of the Multigrid Driver is made up of Pre-smoothing, Coarsest Grid Solution 

and Post-smoothing as shown in Figure (4.6). The restriction and the prolonga­

tion inter-grid operators are employed respectively in between Pre-smoothing and 

Coarsest Grid Solution and Coarsest Grid Solution and Post-smoothing as can be 

seen from Figure (4.6). The concepts of pre-smoothing, coarsest grid solution, post­

smoothing, restriction and prolongation are associated with the multigrid method 

and are described above in Section 4.1. The main subroutine calls made from the 

Multigrid Driver, as shown in Figure (4.6), are to the subroutines SMOOTH, CRHS 

and PROL which are part of the FDMG multigrid software. A description of these 

three subroutines will now be outlined starting with the subroutine SMOOTH which 

will be followed by the subroutines CRHS and PROL.
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Figure 4.6: Structure of Multigrid Driver of the original FDMG multigrid software. 

• Subroutine SMOOTH

This subroutine organises the smoothing (relaxation) method by making a subrou­

tine call to either POINTS, ILINES, JLINES or KLINES depending on the users 

choice of the smoothing (relaxation) method. The subroutine POINTS is used 

to implement a standard point relaxation scheme [13, 55, 105]. The subroutines 

ILINES, JLINES and KLINES are used to implement respectively the I-line, J-Iine 

and K-line relaxation schemes. The concept of all these three relaxation schemes 

is to solve simultaneously a system of discrete equations on a line of points in



Chapter 4
78

the direction of strong coupling. For example, if there is strong coupling in the 

A'-d ¡ruction then the I-Line relaxation scheme must be used by calling the subrou­

tine ¡LINES. Similarly, if there is strong coupling in the Y and Z directions then 

the Mine and K-line relaxation schemes must be employed respectively by calling 

the subroutines JUNES and KLINES. The structure of the subroutines ¡LINES, 

JUNES and KLINES are exactly the same except for the order in which the relax­

ations are carried out. This can either be on the line o f points in the X-direction 

for ¡LINES, Y -direction for JUNES or 2 -direction for KLINES. In all these three 

subroutines’, a system of block tridiagonal equations on any line of points is solved 

by calling the subroutine THOMAS which employs the widely-used Thomas’ algo­

rithm [5] (LU decomposition) to solve a block tridiagonal system of linear equations 

using the Gaussian elimination with partial pivoting.

• Subroutine CRHS

This routine is used to calculate the Full Approximation Scheme (FAS) coarse grid 

right hand side by restricting the fine grid solution and residual to the coarse grid. 

This process is described above in Section 4.1.

• Subroutine PROL

This routine is used to prolong from a coarser to a finer grid by adding the coarse 

grid correction to the fine grid solution. This is done by finding the coarse grid 

correction and adding it to the fine grid solution. This process is also described

above in Section 4.1.
The ease of using the FDMG Multigrid Software [92] made it a good start­

ing point for developing the multigrid solver for elasto-hydrodynamic lubrication

circular contact problems.

4.4 Multigrid Solver for EHL Problems

The multigrid solver for elasto-hydrodynamic lubrication problems (multigrid solver) 

uses the new relaxation scheme of Chapter 3 and the above FDMG Multigrid Soft­

ware [92]. The latter is used as a starting point for developing the multigrid solver.
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The complexity of the elasto-hydrodynamic lubrication model, which is described 

in Chapter 2, means that many modifications had to be made to the FDMG multi­

grid software to produce the multigrid solver. The structure of the multigrid solver 

for elasto-hydrodynamic lubrication problems is made up of the Driver Program, 

Modified FDMG and EEL Routines. The aim is to let the user drive the multigrid 

solver by calling Modified FDMG from the Driver Program. Modified FDMG then 

interacts with the EHL Routines until convergence or the requested number o f iter­

ations have been completed. The convergence criterion used can be based on either 

the root mean square residual which is described in Chapter 3 (and will also be 

covered in Chapter 5) or the change in the pressure solution on the finest grid and 

the coarser grid just below it. The latter concept of checking convergence is more 

commonly used and will be described in Chapter 5. We will now give an outline of 

the Driver Program, Modified FDMG and EHL Routines of the multigrid solver for 

elasto-hydrodynamic lubrication problems (multigrid solver).

4.4.1 Driver Program

This routine is provided by the user of the multigrid solver. All the input param­

eters of the elasto-hydrodynamic lubrication problem to be solved must be defined 

in this routine. This includes the number of mesh points to be used, the computa­

tional domain on which to solve the problem, the parameters needed to define the 

elasto-hydrodynamic lubrication problem and the parameters required to drive the 

Modified FDMG.

4.4.2 Modified FD M G

This represents the modified version of the original FDMG Multigrid Software [92] 

which is described above in Section 4.3. The structure of the Modified FDMG is 

now made up of the Initialisation Process, Full-multigrid and Multigrid Driver.

The Initialisation Process is the same as before but now it also covers 

the initialisation of the arguments associated with elasto-hydrodynamic lubrication 

problems. This includes the classification of elasto-hydrodynamic lubrication prob­

lem and the calculation of the coefficient matrix K  which is used to evaluate the
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elastic deformation and is described in detail in Chapter 2. The coefficient matrix

K  is calculated and stored once on every grid.

The purpose of iVJ-mdugni is to implement the full-multigrid scheme

which is described above in Section 4.1.4. Since the full-multigrid scheme is not

available in the original FDMG multigrid software, it is added into the original

FDMG m ultigrid  software. The FvU-muttignd is used after the Initialisation Process

but prior to the application of the Multigrii Driver. The effectiveness o f using the

full-multigrid scheme will be shown below in Section 4.6 by means o f an example.

The Mnltigrii Driver has an overall structure similar to that of the original

FDMG multigrid software. However, extra subroutine calls are embedded into the

Multigrii Driver in order to deal with elastmhydrodynamic lubrication problems.

owes ryari- nf EHL Routines which will be described in All these extra subroutines are part oi nnu

the next section. Modifications are also made to the subroutines CRUS, PROD, 

and IUNES which are called from the Multigrii Driver and are part of the original 

FDMG multigrid software. These modifications are necessary in order to deal with 

the complexity of elasto-hydrodynamic lubrication problems and will be presented

below in Section 4.5.

4.4.3 EHL Routines

, . 1 ..„pH anecificallv to deal with elasto-hydrodynamicThese are the routines which are used specmcauy
14 t ,-  deludes the routine for evaluating the elastic defor-lubrication problems, inis n

matlon, the viscosity and density and the root mean square residual using respec- 
’ . . .  n r  A r c  EVALUATEVD and EVALUATERES. These sub-tively the subroutines nLAhve,

routine calls are made from the Mnltigrii Driver after every call to the subroutine 

SMOOTH. The calls to the subroutines HCALCand EVALUATEVD are also made 

after every call to the subroutines COTS and PROL. Figure (4.7) shows how the 

subroutines HCALC, EVALUATEVD and EVALUATERES are embedded into the 

Multigrid Driver of Modified FDMG.
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f  Pre-sm oothing: call SMOOTH 
call HCLAC 
call EVALUATEVD 
call HVALUATERES

Restrict from fine to coarse: call CRHS 
call HCALC 
call EVALU ATEVD

NO Coarsest Grid

A y e s

Coarsest Grid Solution: call SMOOTH 
call HCLAC 
call EVALUATEVD 
call EVALUATERES

Prolong from  coarse to fine: call PROL 
call HCALC 
call EVALUATEVD

Post-smoothing: call SM OOTH 
call HCLAC 
call EVALUATEVD 
call EVALUATERES

NO Finest Grid

] YES

e ~ ~
Terminate C ycle v....... ......  ......*

Figure 4.7: Structure of Multigrid Driver of the Modified FDMG.

Other optional subroutine calls to the EHL Routines from the Multigrid 

driver at various stages o f the computational run include OUT which is used to 

lonitor the solution, HMINCENT which is used to calculate the minimum and 

jntral film thicknesses and UERRMG which is used to calculate the change in the 

ressure solution on the finest grid and the coarser grid just below it. This con- 

spt of checking the change in the pressure solution will be described in Chapter 5. 

V'hen solving elasto-hydrodynamic lubrication problems, due to the strong coupling
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in the X-direction, the subroutine ¡LINES is called from the subroutine SMOOTH. 

Hence, other subroutine calls to the EHL Routines are also made from the subrou­

tine ¡LINES. This includes the call to the subroutines RESID and SWITCH The 

subroutine RESID is the most widely used routine and it is employed to linearise 

the non-linear equations o f the elastmhydrodynamic lubrication model by discretis- 

ing the governing equations at each grid point using the finite difference scheme as 

described in Chapter 2. It evaluates the residual at each grid point together with 

the entries for the system of discrete equations which is then fed into the subroutine 

THOMAS which is part of the original FDMG multigrid software and is described 

above in Section 4.3. The subroutine SWITCH is used to incorporate the cavitation 

condition and the new relaxation scheme to solve elasto-hydrodynamic lubrication 

problems. The subroutine SWITCH m i  the manner in which it handles the cavita­

tion condition and the new relaxation scheme will be presented in the next section. 

The following pseudo code for the subroutine ILINES show how the subroutine 

calls to RESID, SWITCH and THOMAS are embedded into the structure of the 

subroutine ILINES■



Chapter 4 83

subroutine ILINES

for j = 1,jmax do
C Apply nnew local Newton iterations 

for inew=l,nnew do 
for i = ljimax do

C Assemble a tridiagonal system of equations for each line 
call RESID

C Solve the tridiagonal system of equations 
call THOMAS
for i=l,imax do

C Update solution if Gauss-Seidel scheme 
call SWITCH
{Apply Gauss-Seidel scheme and Cavitation Condition}

for j=l,jmax do 
for i=l,imax do

C Update solution if Jacobi scheme 
call SWITCH
{Apply Jacobi scheme and Cavitation Condition}

return
end
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4.5 Modifications Made to the Original FDM G  

Multigrid Software

The complexity of the governing equations of the Elasto-Hydrodynamic Lubrication 

(EHL) model of Chapter 2 has made it necessary to modify the original FDMG 

Multigrid Software [92]. The implementation of the new relaxation scheme, de­

scribed in Chapter 3, and the cavitation condition, described in Chapter 2, creates 

complications which are tackled by modifying the subroutines CRHS, PROL and 

I  LINES of the original FDMG multigrid software. We will now discuss these mod­

ifications in the remainder of this section.

4.5.1 Modifications made due to the new relaxation scheme

The new relaxation scheme which is developed and employed in this work to solve 

elasto-hydrodynamic lubrication problems employs the Gauss-Seidel and Jacobi line 

relaxation schemes on the same computational domain but without any overlap. 

The type of relaxation scheme to be employed at any point depends very much on its 

position on the computational domain. As described in Chapter 3, the Gauss-Seidel 

and the Jacobi line relaxation schemes are respectively employed in the non-contact 

and contact regions of the computational domain. The new relaxation scheme is 

implemented in the original FDMG multigrid software by modifying the subroutine 

ILINES. This is achieved by making use of the new subroutine SWITCH to switch 

between the two relaxation schemes depending on the operating conditions. The 

relaxation factors associated with the two relaxation schemes are also changed dur­

ing this process. The conditions required for switching between the two relaxation 

schemes are described in detail in Chapter 3. The pseudo code for the subroutine 

ILINES presented above in Section 4.4.3 shows how the subroutine SWITCH is 

incorporated into the subroutine ILINES.

4.5.2 Modifications made due to cavitation condition '

One of the key features of the elasto-hydrodynamic lubrication model is the cavi­

tation condition »which is described in Section 2.1.3 of Chapter 2. In the cavitation
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region, where negative pressures may be computed by the solver, the Reynolds 

equation (2.19) of the elasto-hydrodynamic lubrication model is not valid and the 

computed negative pressure must be set to zero. Hence, in the original FDMG 

multigrid software, the subroutine ¡LINESis modified in order to take the cavitation 

condition into consideration. This is done by assigning all the negative pressures 

to zero either after every line relaxation or after a complete sweep depending on 

which relaxation scheme is being employed. This uses the concept of the new relax­

ation scheme which employs the Gauss-Seidel and Jacobi line relaxation schemes on 

the same computational domain. As described in the previous section, the subrou­

tine SWITCH is used to switch between the two relaxation schemes. If a negative 

pressure is computed at a grid point which lies in a region where the Gauss-Seidel 

line relaxation scheme is being employed, then the negative pressure is set to zero. 

However, if the grid point lies in a region where the Jacobi line relaxation is be­

ing employed, then the computed negative pressure is set to zero at the end of a 

complete sweep.

The other feature associated with the cavitation region is that the values 

of pressure in the regions of the domain adjacent to the cavitation region are very 

large. Hence, in the cavitation region there is a sharp drop and steep gradient in 

the pressure from positive values to zero. Because of this sudden sharp drop in the 

pressure, the cavitation boundary region must be treated as a special case when 

transferring the residuals from a finer grid on to a coarser grid. Hence, the injection 

inter-grid operator, described above in Section4.1.1, is employed in and around the 

regions of the cavitation when transferring the residual on to a coarser grid. In 

the remaining parts of the domain, the full weighting inter-grid operator, which is 

also described above in Section 4.1.1, is employed. This concept is implemented 

in the original FDMG multigrid software by modifying the subroutine CRHS. This 

is done by flagging all the grid points on all the sequence of grids into cavitation 

and non-cavitation regions. The flagged points are then used to choose which 

restriction operator to use. It is also important to make sure that the cavitation 

region on a particular grid does not change during a multigrid cycle. Hence, the 

cavitation region during restriction, also known as the fine to coarse operator, and
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prolongation, also known as the coarse to fine operator, must not be altered. This 

means that during prolongation, when the coarse grid corrections are added to the 

fine grid solutions, the cavitation region must be taken into account by considering 

only the fine grid points which lie in the non-cavitation region. Hence, the coarse 

grid correction terms are only added to the fine grid points which lie in the non 

cavitation region. This concept is implemented in the original FDMG multigrid 

software by modifying the subroutine PROL. This is achieved by making use o f the 

flags assigned in the subroutine CRUS to indicate the cavitation and non-cavitation 

regions.
The cavitation condition also affects the evaluation of the root mean square 

residual. Since the Reynolds equation (2.19) of the elasto-hydrodynamic lubrication 

model, which is described in Chapter 2, is not valid in the cavitation region the 

evaluation of the root mean square residual, which is given by equation (3 37) 

must exclude the regions of the domain where the Reynolds equation (2 19) js 

not valid. This is achieved by calling the subroutine EVALXJATERES, which is 

part o f the EHL Routines, after every call to the subroutine SMOOTH. In the 

original FDMG multigrid software, the root mean square residual of L2-norm is 

evaluated during the relaxation process in the subroutine IL1NES. When solving 

elasto-hydrodynamic lubrication problems, this is not a good practice as the new 

relaxation scheme described in Chapter 3 make use of the Gauss-Seidel and Jacobi 

line relaxation schemes on the same computational domain. The Jacobi scheme 

updates the solution after a complete sweep of the whole region and the root mean 

square residual is evaluated at the end of the complete sweep, i.e. after every call 

to the subroutine SMOOTH.

4.6 Example Showing the Effectiveness of the Full- 

Multigrid Scheme

The implementation of the full-multigrid scheme is described above in Section 4 4 2 

The main aim of this section is to illustrate how powerful the full-multigrid scheme is 

compared with the standard multigrid approach when solving elasto-hydrodynamic
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lubrication problems. The problem used in this illustration will be described and 

solved in full using the multigrid solver for elasto-hydrodynamic lubrication prob­

lems in Section 5.1 of Chapter 5. The only difference between the full-multigrid 

scheme and the standard multigrid approach is that the latter does not employ the 

full-multigrid option. In order to compare the efficiency of the full-multigrid scheme 

with the standard multigrid approach, consider the following two listings.

The listing shown below is the partial output for this problem from the 

multigrid solver which employs the full-multigrid scheme. The Root Mean Square 

Residual, labelled RMS RES, represents the L2-norm and is given by equation (3.37). 

The listing shows the RMSRES for one complete V-cycle.

FULL-MULTIGRID SCHEME

GRID 3 RMSRES 5.312979E-3

GRID 4 RMSRES 7.321600E-4

GRID 3 RMSRES 2.992205E-4

GRID 4 RMSRES 4.163396E-5

V-CYCLE NUMBER : 1

GRID 5 RMSRES 6.310523E-4

GRID 4 RMSRES 3.567165E-4

GRID 3 RMSRES 6.2U190E-6

GRID 4 RMSRES 2.593017E-4

GRID 5 RMSRES 3.677663E-4

The listing shown below is the partial output for this problem from the 

multigrid solver but, this time employing the standard multigrid approach. The 

Root Mean Square Residual, labelled RMSRES, represents the L2-n o r la n d  is 

given by equation (3.37). The listing shows the RMSRES for one complete V-cycle.
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STANDARD MULTIGRID APPROACH 

V-CYCLE NUMBER : 1

GRID 5 RMSRES 2.507337E-2

GRID 4 RMSRES 2.074723E-2

GRID 3 RMSRES 4.580757E-4

GRID 4 RMSRES 2.006475E-2

GRID 5 RMSRES 2.577595E-2

After one V-cycle, the Root Mean Square Residual, labelled RMSRES, 

obtained with the full-multigrid scheme and the standard multigrid approach are 

respectively of the order KT4 and 1(T2. An interesting point to notice is that 

when the full-multigrid scheme is employed, the residual on the finest grid prior to 

the beginning of the V-cycle is of the order 10 . This is much smaller than the

root mean square residual obtained after one V-cycle when the standard multigrid 

approach is employed. Hence, the initial approximation of the solution on the finest 

grid is more accurate when the full-multigrid scheme is employed.

4.7 Conclusion

At present, although many numerical methods have been used to solve elasto-

hydrodynamic lubrication point contact problems, there has been greater emphasis

on the single grid iterative methods. An overview of the different iterative schemes

is presented in the previous chapter. One feature of these iterative schemes is that

they reduce the non-smooth part of the error at a much faster rate than that of

the smooth part which is associated with low frequencies. This feature is exploited

by the multigrid method where coarser grids are employed in order to deal with

the smooth part of the error. When using multigrids, the role of relaxation is not
\

to reduce the error but to smooth it out. This is achieved by making use of a 

sequence of coarser grids. In a multigrid method, each high frequency component



Chapter 4
89

of the error, which has a wavelength of the order of the mesh size, is reduced on 

one grid until it becomes smooth when the same procedure is applied on a coarser 

grid. The smooth part of the error, which is associated with lower frequency, can

be adequately represented on a coarser grid.
A major drawback of using single grid iterative methods for solving elasto-

, . f rwnfact problems is the need for a large number ofhydrodynamic lubrication point contact prooie
, c)v CPU times. This occurs when using a large num-

iterations and consequently larg
her of mesh points or when solving transient problems. In order to obtain realistic

solutions, the use of a large number of mesh points is essential especially when so.v-
, .  £ i rtrartice The computational costs associateding highly loaded problems found m practice.

, , i ,  rwpiTome by making use of the multigrid method,with single grid methods can be overcome uy
. , . flop rate of convergence and elasto-hydrodynamicThe multigrid method increases the rate

^.pviouslv unsolvable can now be solved routinely, lubrication problems which were previously u
, . . ,  has proved to be very successful m solving elasto-Hence, the multigrid method has p

. n- Kiwmci and we have developed in this chapter a multi- hydrodynamic lubrication problems and we
Vi Tf ran be used to solve both steady state and

grid solver for these problems, it can
i nroblems. Solutions to steady state problems willtime-dependent circular contact problems

be presented and compared with those obtained using other numerical methods in 

the next chapter whereas solutions to time-dependent problems w.U be presented

in Chapter 6.
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NUMERICAL EXPERIMENTS 

USING A MULTIGRID SOLVER 

BASED ON FDMG

In this chapter, the numerical solutions of steady-state elasto-hydrodynamic lubri­

cation circular contact problems obtained using the multigrid solver with the new 

relaxation scheme described in the previous chapter are compared with the solutions 

obtained using other numerical methods. The other numerical methods, which are 

described in Chapter 3, include the relaxation schemes of Venner [971 and Ehret [33], 

the homotopy method [4] which is used by Scales [75] and the effective influence 

Newton method of Wang [102]. Four cases of steady-state elasto-hydrodynamic 

lubrication circular contact problems are considered.

5.1 Case One
\

This test problem, which appears in Venner [97], is solved on a domain {(X , Y) :

q  ̂ < Y  < 3-5} using the New Relaxation Scheme on a Single —5.0 ^  X  ^  "D.o — — .
Grid (NES-S-Grid) and MultiGrid (NRS-M-Grid) and the Homotopy method [4],

90
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which is used by Scales [75], on a Single Grid (H-S-Grid). A 65 x 65 grid is employed 

when the problem is solved on a single grid using the new relaxation scheme and 

the homotopy method. Finest 65 by 65 and coarsest 17 by 17 grids are used when 

the problem is solved using the multigrid method. However, due to symmetry, only 

the nodes in the positive V-direction are used when the problem is solved using the 

new relaxation scheme on a single grid and multigrid. For this moderately loaded 

problem, the parameters describing the problem are shown in Table (5.1).

Parameters Values

Pressure viscosity index a [Pa ] 1.7 X  HT8

Maximum Hertzian pressure ph [GP.a] 0.5818

10a — otph
Material parameter G 4729

Load parameter W 1.8915 x 10-7

Speed parameter U 1.0 x 10-n

Moes parameter M 20

Moes parameter L 10

Table 5.1: Input parameters for the problem in Case One.

5.1.1 Results and discussion

The numerical solutions and the convergence histories associated with the New 

Relaxation Scheme on a Single Grid (NRS-S-Grid) and MultiGrid (NRS-M-Grid) 

and the Homotopy method on a Single Grid (H-S-Grid) are respectively shown in

Tables (5.2), (5.3) and (5.4).
If the convergence criterion is based on the Root Mean Square Residual, 

labelled RMSRES, then the solutions obtained using the new relaxation scheme on 

a single grid and multigrid and the homotopy method on a single grid are of the 

order 10~6, HT5 and HT11 respectively. The root mean square residual is defined

by

mx ny

E E RESh
¿=1 j—i

RMSRES m.
(5.1)
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where mx and ny are the maximum number of points in the X  and Y  directions 

respectively and RESij is the residual at the point (i,j).

The discrepancy in the root mean square residual (RMSRES) obtained 

using the new relaxation scheme on a single grid and multigrid can be attributed 

to the cavitation region (see Section 2.1.3) and the nature of the Reynolds equa­

tion (2.19). In the cavitation region, the Reynolds equation is not valid and prob­

lems arise when transferring the residuals and the corrections between the grids 

when using the multigrid method as described in Section 4.5.2.

On a single grid, it is a common practice e.g. [102] to check the change 

in the pressure solution from one iteration to the next as a means for testing the 

convergence criterion. This is labelled as A  Ps in Tables (5.2) and (5.4) and the 

subscript s indicates that it is on a single grid. Thus, the change in the pressure 

solution on the kth iteration is given by

mx ny

A P .=
EEl ' f c - ' f c»=1 j = l

m, ny

E E  4

- i  I

(5.2)

i=l j=1

where mx and ny are the maximum number of points in the X  and Y  directions 

respectively.

A more commonly [97] used form for checking the convergence criterion 

when using the multigrid method is to compare the pressure solution on the finest 

grid and the coarser grid just below it with mesh sizes h and H =  2h respectively. 

This is labelled as A Pm in Table (5.3) and the subscript m indicates that multigrid 

was being used. When the iteration has converged, we would expect to see no 

change in this value. This change in the pressure solution when using the multigrid 

method is obtained using
mx ny

A  Pm ~ hxhy EE
¿=1 j = i

! p h -  rH Ph yi,j 1h *i,j (5 .3 )

where, hx and hy are respectively the mesh spacings in the X  and Y  directions, mx 

and ny are the maximum number of points in the X  and V  directions respectively 

and is the restriction operator which is described in detail in Chapter 4.
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Convergence based on A Ps when using a single grid method and A  Pm 

when using the multigrid method suggest that the solution obtained using the new 

relaxation scheme on a single grid might have an accuracy of the order 10~8 as 

can be seen from Table (5.2). This value is much smaller than that obtained using 

the other two methods which are of the order 10-4 and 10-6 as can be seen from 

Tables (5.3) and (5.4) respectively. Though it is a common practice to base the 

convergence criterion on A Ps and A Pm, this can be misleading. A  Ps only indicates 

the change in the solution at each iteration and it is not a good practice to use it as a 

means for testing accuracy or convergence criterion. It is possible to get very small 

changes and the solution might be very far from the true solution. This reasoning 

can also apply to A  Pm. The convergence criterion based on the root mean square 

residual seems to be more appropriate but it is rarely used in elasto-hydrodynamic 

lubrication problems.

Also shown in Tables (5.2), (5.3) and (5.4) are the central, labelled Hcent, 

and minimum, labelled Hmin, film thicknesses obtained using the new relaxation 

scheme on a single grid (NRS-S-Grid) and multigrid (NRS-M-Grid) and the homo- 

topy method on a single grid (H-S-Grid).

Its Hcent Hmin RMSRES SumP A  Pa

100 0.4322 0.2914 1.1204E-02 2.0594 1.311E-03

300 0.4513 0.3048 1.9066E-03 2.0979 6.537E-05

500 0.4524 0.3054 2.5793E-04 2.0947 7.447E-06

700 0.4525 0.3054 3.3917E-05 2.0944 9.621E-07

1000 , 0.4525 0.3055 1.6112E-06 2.0943 4.561E-08

Table 5.2: NRS-S-Grid for M=20 & L=10.
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Its Hcent Hmin RMSRES SumP A Pm

1 0.4612 0.3076 1.3773E-02 2.0842 1.377E-02

5 0.4529 0.3057 1.6256E-04 2.0909 8.322E-04

10 0.4526 0.3054 7.3911E-05 2.0904 2.452E-04

15 0.4525 0.3053 4.3010E-05 2.0905 2.251E-04

20 0.4525 0.3053 3.6674E-05 2.0905 2.236E-04

25 0.4525 0.3053 3.6051E-05 2.0905 2.234E-04

Table 5.3: NRS-M-Grid for M= 20 k  L=10.

Its Hcent Hmin RMSRES SumP A P , alpha

1 0.6478 0.6468 4.302E-01 • 2.0944 1.0000E+00 5.000E-09

7 0.2466 0.1765 1.371E-02 2.0944 4.9562E-05 5.000E-09

8 0.2468 0.1765 1.369E-02 2.0944 2.3835E-04 5.000E-09

14 0.3600 0.2440 8.178E-03 2.0944 5.6744E-02 1.096E-08

20 0.4411 0.2953 2.023E-03 2.0944 3.8711E-03 1.773E-08

23 0.4477 0.2998 1.349E-03 2.0944 4.5581E-03 1.652E-08

24 0.4372 0.2927 2.333E-03 2.0944 1.7103E-02 1.576E-08

31 0.4530 0.3034 7.721E-04 2.0944 7.2105E-03 1.733E-08

37 0.4604 0.3086 2.533E-07 2.0944 3.7252E-04 1.700E-08

38 0.4604 0.3086 9.132E-09 2.0944 2.9120E-06 1.700E-08

44 0.4605 0.3130 1.282E-07 2.0944 2.7799E-03 1.700E-08

45 0.4605 0.3130 2.762E-11 2.0944 3.3570E-06 1.700E-08

Table 5.4: H-S-Grid for M=20 & L=10.

The final values of central (Hcent) and minimum (Hmin) film thicknesses 

obtained using the NRS-S-Grid, the NRS-M-Grid and the H-S-Grid are summarised 

in Table (5.5) Also shown in Table (5.5) are the values obtained by Venner [97] and 

Ehret [33] who have used the multigrid method using a relaxation scheme which is 

described in Chapter 3. On a 65 x 65 domain, the discrepancy between the values 

of Hcent and Hmin obtained using the NRS-S-Grid, the NRS-M-Grid and the H- 

S-Grid is minimal. However, the discrepancy in these values compared to those 

obtained by Venner [97] is between 6% and 16%. Table (5.5) also shows the results 

obtained using the new relaxation scheme (NRS-M-Grid), the relaxation scheme of
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Venner [97] and the relaxation scheme of Ehret [33]. These three schemes, that is 

NRS-M-Grid, Venner and Ehret, employ the multigrid method with a 257 x 257 

finest grid using the domain {(X , Y) : —4.5 <  X  <  1.5,—3.0 <  Y  <  3.0}. 

These results show that the discrepancy between the results obtained using the 

new relaxation scheme and the relaxation scheme of Ehret is minimal while the 

results of Venner are some what more distant, though still comparable.

Method Hcent Hmin Mesh X-domain V-domain

NRS-S-Grid 0.453 0.306 65 x 65 [-5,1.2] [-3.5,3.5]

NRS-M-Grid 0.453 0.305 65 x 65 [-5,1-2] [-3.5,3.5]

H-S-Grid 0.460 0.313 • 65 x 65 [-5,1.2] [-3.5,3.5]

Venner 0.489 0.355 65 x 65 [-4.5,1.5] [-3.0,3.0]

NRS-M-Grid 0.443 0.304 257 x 257 [-4.5,1.5] [-3.0,3.0]

Venner 0.498 0.345 257 x 257 [-4.5,1.5] [-3.0,3.0]

Ehret 0.431 0.295 257 x 257 [-4.5,1.5] [-3.0,3.0]

Table 5.5: Summary of Hcent and Hmin for M=20 & L=10.

Table (5.6) shows the effect of varying the computational domain on the 

central and minimum film thicknesses obtained using the NRS-M-Grid method on 

a 129 x 129 mesh. The domain is modified by changing the inlet boundary and 

as can be seen from Table (5.6), the size of the domain does have an effect on the 

solution.

Method Hcent Hmin Mesh V-domain V-domain

NRS-M-Grid 0.408 0.291 129 X 129 [-2.0,2.0] [-3.0,3.0]

NRS-M-Grid 0.432 0.296 129 X 129 [-3.0,2.0] [-3.0,3.0]

NRS-M-Grid 0.451 0.308 129 X 129 [-4.0,2.0] [-3.0,3.0]

NRS-M-Grid 0.469 0.319 129 X 129 [-5.0,2.0] [-3.0,3.0]

NRS-M-Grid 0.486 0.331 129 X 129 [-6.0,2.0] [-3.0,3.0]

NRS-M-Grid 0.492 0.335 129 X 129 [-7.0,2.0] [-3.0,3.0]

Table 5.6: Summary of Hcent and Hmin for M=20 & L=10 on different domains.
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5.1.2 Remarks

A point to note is that when using the homotopy method, the force balance equa­

tion, labelled SumP in Table (5.4), is satisfied on every iteration but this is not the 

case when the new relaxation scheme is employed on a single grid or multigrid.

An interesting feature about the homotopy method is in the behaviour of 

the the Root Mean Square Residual (RMSRES). It does not only.decrease mono- 

tonically but also has a feature of a sudden sharp drop as can be seen more clearly 

from Table (5.4). This may be attributed to the quadratic rate of convergence of 

the homotopy method close to the root. A sudden sharp decrease in A  Ps can also 

be noticed in Table (5.4).

From Table (5.6), we can conclude that the solution is sensitive to the size 

of the computational domain. On a unifrom mesh, the number of mesh points are 

evenly distributed. The smaller the size of the domain, the larger the number of 

mesh points in the contact region and the vice versa is true on a larger domain. This 

might be the reason for the sensitivity of the solution to the size of the computational 

domain as the solution changes rapidly in the contact region. One way of overcoming 

this problem might be to use a non-uniform mesh where the majority of the mesh 

points are distributed in the contact region.

The Homotopy method is very robust but at expense of large computa­

tional time. Hence, it was not possible to use a finer mesh than 65 x 65. The times 

taken to achieve the results using the NRS-S-Grid, the NRS-M-Grid and the H-S- 

Grid were 13.5 minutes, 2.9 minutes and 5.73 hours respectively. An SGI R8000 

was used for solutions obtained using the new relaxation scheme whereas an R10000 

processor was used for the homotopy method.

5.2 CPU Times

For all the test problems to follow in this chapter, the CPU times on an SGI 

R8000 for solutions obtained using the new relaxation scheme on a multigrid are 

as follows: 1 and 15 minutes for each multigrid iteration (V-cycle) on a 129 x 129 

and 257 x 257 meshes respectively. Depending on the load, the solution to each test
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problem takes between 8 and 15 multigrid iterations. The CPU times for solutions 

obtained using the other methods were not available to the author and hence have 

not been specified unless stated otherwise.

5.3 Case Two

Numerical solutions of three sets of five problems are obtained using the New Re­

laxation Scheme (NRS) on a multigrid and the obtained minimum and central film 

thicknesses are compared with those obtained by Wang [102] and Ehret [33], who 

have respectively employed the Effective Influence Newton method (EIN) and the 

Multigrid Multi-Integration method (MIM). The relaxation scheme employed by 

Ehret is very similar to that used by Venner [97] and is described in Chapter 3. 

The input parameters describing these problems are shown in Table (5.7).

Parameters Set 1 Set 2 Set 3

Viscosity index a [Pa-1] [ 2.20866 X 10-8 to 2.24787 x 10~8]

Hertzian pressure ph [GPa] [0.44 to 3.68]

a = a ph [10 to 82]

Material parameter G [ 4869 ' ]
Load parameter W [0.173 x 10-6 to 98.19 x 10-6]

Speed parameter U 0.089 x lO "10 0.343 x 10-10 5.707 x lO"10

Moes parameter M [20 to 500]

Moes parameter L 10 14 28 ,

Table 5.7: Input parameters for the problems in Case Two.

The results obtained by Wang [102] using the effective influence Newton 

method are obtained on a single 151 x 81 grid with the following domains:

[M =  20 (—6 < X  <  1.5) and (—4 < Y  <  4)],

[M =  50 =4- ( - 5  < X  <  1.5) and(—2.5 <  Y  <  2.5)],

[M =  100 => ( - 4  <  X  <  1.5) and (-2 .5  < Y  <  2.5)],

[M =  200 =>■ ( - 3  < X  <  1.5) and ( - 2  <  F  <  2)],

[M =  500 (-2 .5  < X  <  1.25) and (-1 .8  <  F  <  1.8)].

The solutions obtained by Ehret [33] using the multigrid multi-integration method
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employs a finest 513x513 grid and a coarsest 17x17 grid with the domain dependent 

on the Moes parameter M. The domains are given by

[M < 10 =* ( - 7  <  X  <  2) and (-4 .5  <  Y <  4.5)],

[10 < M  < 50 =» ( - 5  <  X  <  2) and (—3.5 < Y <  3.5)] and 

[50 <  M <  500 =» (-4 .5  < X  <  1.5) and( -3  <  Y  <  3)].

When the solutions are obtained using the new relaxation scheme on a multigrid, 

different domains and mesh points are used. When the Moes parameter L is fixed 

at 10 and 28, a finest grid of 129 x 129 and a coarsest grid of 17 x 17 with a domain 

—4.5 < X  <  1.5 and - 3  <  Y <  3 is used. However, when L — 14, a finest grid 

with 257 x 257 mesh points and a coarsest 17 x 17 grid is used and the domain 

employed is the same as that used by Ehret [33] in his multigrid multi-integration 

method.

5.3.1 Results

The minimum and central film thicknesses obtained using the three methods, the 

Effective Influence Newton method (EIN), the Multigrid Multi-Integration method 

(MIM) and the New Relaxation Scheme (NRS), are compared and the results are 

presented in Tables (5.9), (5.10), (5.11), (5.12), (5.13) and (5.14). A graphical 

representation is also shown in Figures (5.1), (5.2) and (5.3), where the Moes 

parameter M  is plotted against the minimum and central film thicknesses using 

a logarithmic scale on both axes. Also shown in these tables and figures are the 

minimum and central film thicknesses predicted using the Hamrock and Dowson 

relationship (H-D) [47] which is given by

Hmin = 1.79U0S8W-°-073G0A9 (5.4)

and

Hcen = IM U 0,67 W~0'067 G0'53 . (5.5)

Table (5.8) shows a summary of the notation used in the Tables (5.9, 5.10, 

5.11, 5.12, 5.13 and 5.14) and Figures (5.1, 5.2, 5.3, 5.4, 5.5 and 5.6).
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Notation Meaning

H-D Hamrock and Dowson

EIN Effective Influence Newton Method of Wang [102]

MIM Multi-Integration Method of Ehret [33]

NRS New Relaxation Scheme [74, 75]

Hm Minimum film thickness

He Central film thickness

P_M20 Pressure profile for M=20

H_M20 Film thickness profile for M=20

Table 5.8: Summary of notation used in the Tables and Figures to follow.

M W Ph H-D EIN MIM NRS

xlO-6 GPa ( xlO-6 )
20 0.173 0.44 10.96 11.90 12.08 12.31

50 0.433 0.60 10.25 10.06 10.26 10.64

100 0.867 0.76 9.71 8.53 8.88 8.99

200 1.733 0.96 9.26 7.21 7.43 7.40

500 4.333 1.30 8.66 5.44 5.82 5.03

Table 5.9: Minimum film thicknesses for L = 10, U =  0.089 x 10~10 and G =  4869.

M W Ph H-D EIN MIM NRS

xlO-6 GPa ( xlO-6 )
20 0.173 0.44 19.17 17.58 17.79 18.27

50 0.433 0.60 18.02 16.88 17.17 18.02

100 0.867 0.76 17.21 16.09 16.59 17.24

200 1.733 0.96 16.43 15.28 15.66 16.59

500 4.333 1.30 15.45 14.11 14.77 15.64

Table 5.10: Central film thicknesses for L =  10, U =  0.089 x 10 10 and G — 4869.
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Figure 5.1: Minimum and central film thicknesses for L =  10.

M W Ph H-D EIN MIM NRS

xlO“6 GPa ( xlO“6 )
20 0.477 0.62 25.41 28.39 28.98 28.55

50 1.191 0.85 23.77 24.40 25.02 25.28

100 2.384 1.07 22.60 20.95 21.87 21.82

200 4.767 1.35 21.48 17.79 18.73 18.71

500 11.92 1.82 20.09 13.63 14.63 14.54

Table 5.11 : Minimum film thicknesses for L = 14, U =  0.343 x IO“10 and G =  4869.

M W Ph H-D EIN MIM NRS

xlO“6 GPa ( xlO“6 )
20 0.477 0.62 44.13 40.86 41.54 41.03

50 1.191 0.85 41.51 39.48 40.30 41.01

100 2.384 1.07 39.62 37.77 39.13 39.25

200 4.767 1.35 37.82 36.06 37.71 38.16

500 11.92 1.82 35.57 33.47 35.19 36.82

Table 5.12: Central film thicknesses for L =  14, U =  0.343 x IO“ 10 and G =  4869.
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Figure 5.2: Minimum and central film thicknesses for L =  14.

M W Ph H-D EIN MIM NRS

xlO "6 GPa ( xlO-6 )
20 3.927 1.26 147.49 184.21 185.57 190.83

50 9.818 1.72 137.73 160.17 166.12 176.87

100 19.64 2.15 131.14 144.00 148.49 148.19

200 39.27 2.71 124.67 124.16 129.87 125.93

500 98.19 3.68 116.61 98.19 104.02 95.17

Table 5.13: Minimum film thicknesses for L =  28, U =  5.707 x IO"10 and G =  4869.

M W Ph H-D EIN MIM NRS

x 10-6 GPa ( xlO-6 )
20 3.927 1.26 252.19 247.05 247.82 252.94

50 9.818 1.72 236.81 242.89 245.02 255.99

100 19.64 2.15 226.41 233.52 239.56 245.61

200 39.27 2.71 216.14 225.07 233.76 241.44

500 98.19 3.68 203.27 212.93 220.54 231.18

Table 5.14: Central film thicknesses for L =  28, U =  5.707 x 10~10 and G =  4869.
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Figure 5.3: Minimum and central film thicknesses for L =  28.

5.3.2 Discussion

The discrepancy in the minimum and central film thicknesses predicted using the 

Hamrock and Dowson relationship is large when compared with the values ob­

tained using the other three methods. This is more evident in the minimum film 

thicknesses. This can be attributed to the fact that the Hamrock and Dowson re­

lationship [47] was derived not only using solutions where the maximum Hertzian 

pressure was less than 1 GPa but also using a smaller number of grid points. The 

minimum and central film thicknesses obtained by Ehret [33] using the multigrid 

multi-integration method are sandwiched between the values obtained by Wang 

[102] who used the effective influence Newton method and the new relaxation scheme 

which is developed and used in this work. The discrepancies in the minimum and 

the central film thicknesses obtained using the three methods can be attributed 

to the use of different mesh domains and number of mesh points. When L =  14, 

the discrepancy in the minimum and central film thicknesses obtained using the 

new relaxation scheme is minimal when compared with those obtained by Ehret 

[33] using the multigrid multi-integration method. For this problem, that is when
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L =  14, the number of mesh points employed on the finest grid when using the new 

relaxation scheme is 257 x 257 whereas for the problems when L =  10 and L — 28 

a finest grid of 129 x 129 is used.

From the obtained results, we can conclude that the Hamrock and Dow- 

son’s load parameter W  or the Moes parameter M  have an effect on the elasto- 

hydrodynamic lubrication problems. This is more evident from the profiles of pres­

sure and film thickness along the X  axis. These profiles, that is for L =  10, L =  14 

and L =  28, are respectively shown in Figures (5.4), (5.5) and (5.6). When the load 

parameter W  or the parameter M  is large, the pressure spike is nearer the exit zone 

and is smaller in magnitude and the pressure distribution approaches the Hertzian 

pressure profile. This is consistent with the steady state elasto-hydrodynamic lu­

brication analysis of Sadeghi and Sui [88]. However, when the load parameter W  or 

the parameter M  is small, the pressure spike is larger in magnitude and its position 

is away from the exit zone and closer to the central contact region. The pressure 

profile in the inlet zone decreases as the load parameter W  or the parameter M  

increases. With regards to the film thicknesses, we can conclude that as the load 

parameter W  or the parameter M  increases, the minimum film thickness is affected 

more than the central film thickness and the minimum film thickness moves away 

from the central contact region and moves towards the exit zone.
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Figure 5.4: Pressure and film profiles for L =  10 along the X  axis.

x

Figure 5.5: Pressure and film profiles for L =  14 along the X  axis.
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x

Figure 5.6: Pressure and film profiles for L =  28 along the X  axis.

5.4 Case Th re e

Numerical solutions of three sets of five problems are obtained using the New Re­

laxation Scheme (NRS) on a multigrid and the obtained minimum and central film 

thicknesses are compared with those obtained by Wang [102] who has employed the 

Effective Influence Newton (EIN) method on a single 151 x 81 grid with a domain 

—8 <  X  < 1 and —4 <  Y  <  4. The solutions obtained using the New Relaxation 

Scheme (NRS) employs the multigrid method where a finest grid of 129 x 129 and 

a coarsest grid of 17 x 17 and a domain -4 .5  < X  <  1.5 and - 3  < Y < 3 is used. 

The input parameters describing these problems are shown in Table (5.15).
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Parameters Set 1 Set 2 Set 3

Viscosity index a [Pa-1] 2.22503 x 10~8 2.21977 x 10-® 2.20618 x 10~8

Hertzian pressure ph [GPa] 0.72 1.05 1.21

a =  aph 16 23 27

Material parameter G [ 4865 ]
Load parameter W 0.7381 x 10~6 2.273 x 10~6 , 3.415 x 10~6

Speed parameter U [0.094 x 10~10 to 1.87 x 10~10]

Moes parameter M [9 to 378]

Moes parameter L [10 to 21]

Table 5.15: Input parameters for the problems in Case Three.

5.4.1 Results

The minimum and central film thicknesses obtained by Wang [102] using the Effec­

tive Influence Newton method (EIN) and the New Relaxation Scheme (NRS) which 

is developed and employed in this work are presented in Tables (5.17), (5.18),

(5.19), (5.20), (5.21) and (5.22). A graphical representation is also shown in 

Figures (5.7), (5.8) and (5.9) where the speed parameter U is plotted against the 

minimum and central film thicknesses using a logarithmic scale on both axes. Also 

shown in these Tables and Figures are the minimum and central film thicknesses 

predicted using the Hamrock and Dowson relationship (H-D) [47] which is given by 

equations (5.4) and (5.5) respectively. The discrepancy in the minimum and central 

film thicknesses obtained using Effective Influence Newton method (EIN) of Wang 

[102] and the New Relaxation Scheme (NRS) which is developed and employed in 

this work increases as the speed increases and this is more evident in the minimum 

film thicknesses. The discrepancies can be attributed to the use of different mesh 

domains and number of mesh points.

Table (5.16) shows a summary of the notation used in the Tables (5.17, 

5.18, 5.19, 5.20, 5.21 and 5.22) and Figures (5.7, 5.8, 5.9, 5.10, 5.11 and 5.12).
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Notation Meaning

H-D Hamrock and Dowson

EIN Effective Influence Newton Method of Wang [102]

NRS New Relaxation Scheme [74, 75]

Hm Minimum film thickness

He Central film thickness

P:U=1.87E-10 Pressure profile when U=1.87E-10

H:U=1.87E-10 Film thickness profile when U=1.87E-10

Table 5.16: Summary of notation used in the Tables and Figures to follow.

M L U ’ H-D EIN NRS
o1o1—1X

' ( xlO-6 )
82 10 0.094 09.23 10.18 10.16

49 12 0.187 16.33 16.31 18.06

25 15 0.468 33.92 30.40 36.03

15 18 0.935 56.91 49.70 59.35

9 21 1.870 95.88 75.29 91.09

Table 5.17: Minimum film thicknesses for W  =  0.7381 x 10~6 and ph =  0.72 GPa.

M L U H-D EIN NRS

oI-!1oX

( x l0~6 )
82 10 0.094 16.78 17.95 18.54

49 12 0.187 26.90 28.56 29.84

25 15 0.468 49.58 52.77 52.96

15 18 0.935 77.64 83.95 81.19

9 21 1.870 122.66 128.51 116.61

Table 5.18: Central film thicknesses for W  =  0.7381 x 10~6 and ph =  0.72GPa.
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Figure 5.7: Minimum and central film thicknesses for ph =  0.72GPa.

M L U

xlO~10

H-D

(

EIN

xlO-6

NRS

)
252 10 0.094 06.99 09.37 07.06

150 12 0.187 12.74 15.02 14.03

76 15 0.468 27.28 28.01 30.19

45 18 0.935 48.34 44.88 53.98

27 21 1.870 83.91 71.90 90.02

Table 5.19: Minimum film thicknesses for W  =  2.273 x 10-6 and ph =  1.05GPa.
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M L U

xlO-10

H-D

(

EIN

xlO-6

NRS

)

252 10 0.094 15.46 16.64 16.83

150 12 0.187 25.03 26.48 28.03

76 15 0.468 46.65 48.95 52.06

45 18 0.935 74.79 77.88 84.59

27 21 1.870 119.67 123.90 129.10

Table 5.20: Central film thicknesses for W =  2.273 x 10 6 and ph =  1.05GPa.

Figure 5.8: Minimum and central film thicknesses for ph =  1.05GPa.
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M L U H-D EIN NRS

xlO-10 ( xl0~6 )

378 10 0.094 06.21 09.10 6.10

226 12 0.187 11.49 14.58 11.51

113 15 0.468 25.04 27.18 27.47

68 18 0.935 44.01 43.55 47.23

40 21 1.870 78.11 69.77 86.02

Table 5.21: Minimum film thicknesses for W  =  3.415 x 10 6 and ph =  1.21 GPa.

M L U H-D EIN NRS

xlO-10 ( xlO-6 )

378 10 0.094 14.94 16.20 16.54

226 12 0.187 24.29 25.77 26.05

113 15 0.468 45.40 47.62 50.49

68 18 0.935 72.77 75.76 77.82

40 21 1.870 117.03 120.54 129.75

Table 5.22: Central film thicknesses for W  =  3.415 x 10 6 and ph =  1.21GPa.

Figure 5.9: Minimum and central film thicknesses for ph =  1.2lGPa.
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5.4.2 Discussion

From the above results, we can conclude that the Hamrock and Dowson’s speed 

parameter U has a strong effect on the elasto-hydrodynamic lubrication problems. 

This is more evident from the profiles of pressure and film thickness along the X  

axis. These profiles, that is for ph =  0.72 GPa, pk =  1.05 GPa and ph — 1.21 GPa, 

are respectively shown in Figures (5.10), (5.11) and (5.12). At low speeds, the 

pressure profile is very close to the Hertzian pressure profile and the pressure spike 

is close to the outlet region. However, at high speeds, the pressure profile distorts 

from the Hertzian form and the spike grows in magnitude with a sharp pointed peak 

which is close to the central contact region and away from the outlet region. The 

pressure profile in the inlet region increases gradually with speed. With regards to 

the film thickness, we can conclude that as the speed parameter U increases, the film 

thickness increases and the portion of the contact area where the two surfaces are 

almost parallel decreases. All these observations have been confirmed by Hamrock 

and Dowson [49] and also by Wang [102].

x

Figure 5.10: Pressure and film profiles for ph =  0.72 GPa along the X  axis.
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X

Figure 5.11: Pressure and film profiles for ph =  1.05 GPa along the X  axis.

x

Figure 5.12: Pressure and film profiles for ph =  1.21 GPa along the X  axis.
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Some of these features can also be seen in the contour and surface plots of 

him thickness and pressure for test problems where the maximum Hertzian pressure, 

Ph, is equal to 1.05 GPa. Figures (5.13), (5.14) and (5.15) show respectively the 

him thickness contour, pressure contour and pressure surface plot for when the 

speed parameter U is equal to U =  0.468 x 10-1° and Figures (5.16), (5.17) and 

(5.18) show respectively the him thickness contour, pressure contour and pressure 

surface plot for when the speed parameter U is equal to U =  1.87 x 10-10.

Figure 5.13: Film thickness contour: ph — 1.05 GPa and U =  0.468 x 10-1°.



Chapter 5 114

Figure 5.14: Pressure contour: ph = 1.05 GPa and U =  0.468 x lO-10.

Figure 5.15: Pressure surface plot: ph =  1.05 GPa and U =  0.468 x 10-1°
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Figure 5.16: Film thickness contour: pu =  1.05 GPa and U =  1.87 x 10 10.

Figure 5.17: Pressure contour: ph — 1.05 GPa and U =  1.87 x 10 10.
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Figure 5.18: Pressure surface plot: ph =  1.05 GPa and U =  1.87 x 10~10.

5.5 Case F o u r

Numerical solutions of three sets of four problems are obtained using the New 

Relaxation Scheme (NRS) on a multigrid and the obtained minimum and central 

film thicknesses are compared with those obtained by Wang [102] who has employed 

the Effective Influence Newton (EIN) method on a single 151 x 81 grid with a domain 

- 8  <  X  < 1 and - 4  < Y < 4 . The solutions obtained using the New Relaxation 

Scheme (NRS) employs the multigrid method where a finest grid of 129 x 129 and 

a coarsest grid of 17 x 17 and a domain —4.5 <  A' < 1.5 and —3 < Y < 3 is used. 

The input parameters describing these problems are shown in Table (5.23).
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Parameters Set 1 Set 2 Set 3

Viscosity index a [Pa-1] [0.50155 x 10~8 to 3.51433 x 10~8]

Hertzian pressure ph [GPa] 0.72 1.23 1.95

a = aph [4 to 69]

Material parameter G [1136 to 7954]

Load parameter W 0.664 x 10~6 3.311 x 10~6 13.22 x 10~6

Speed parameter U [ 1.344 x 10~10 ]
Moes parameter M 10 50 199

Moes parameter L [5 to 32]

Table 5.23: Input parameters for the problems in Case Four.

5.5.1 Results and Discussion

The minimum and central film thicknesses obtained by Wang [102] using the Effec­

tive Influence Newton method (EIN) and the New Relaxation Scheme (NRS) which 

is developed and employed in this work are presented in Tables (5.25), (5.26),

(5.27), (5-28), (5.29) and (5.30). A graphical representation is also shown in Fig­

ures (5.19), (5.20) and (5.21) where the material parameter G is plotted against the 

minimum and central film thicknesses using a logarithmic scale on both axes. Also 

shown in these Tables and Figures are the minimum and central film thicknesses 

predicted using the Hamrock and Dowson relationship (H-D) [47] which is given 

by equations (5.4) and (5.5) respectively. The discrepancy in the minimum and 

central film thicknesses obtained using Effective Influence Newton method (EIN) 

of Wang [102] and the New Relaxation Scheme (NRS) which is developed and em­

ployed in this work is minimal. The profiles of the pressure and the film thickness 

along the X-axis for the three problems are shown in Figures (5.22), (5.23) and 

(5.24). Generally, the type of material used determines the regime of lubrication 

which can either be elasto-hydrodynamic lubrication or purely hydrodynamic.

Table (5.16) shows a summary of the notation used in the Tables (5.25, 

5.26, 5.27, 5.28, 5.29 and 5.30) and Figures (5.19, 5.20, 5.21, 5.22, 5.23 and 5.24).
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Notation Meaning

H-D Hamrock and Dowson

EIN Effective Influence Newton Method of Wang [102]

NRS New Relaxation Scheme [74, 75]

Hm Minimum film thickness

He Central film thickness

P:G=7954 Pressure profile when G=7954

H:G=7954 Film thickness profile when G=7954

Table 5.24: Summary of notation used in the Tables and Figures to follow.

L M G • H-D EIN NRS

( xl0~6 )
5 10 1136 30.80 36.37 35.59

11 10 2727 47.30 55.41 55.45

20 10 4931 63.23 78.64 79.91

32 10 7954 79.92 105.15 108.89

Table 5.25: Minimum film thicknesses for W  == 0.664 x 10~6 and ph =  0.72 GPa.

L M G H-D EIN NRS

( xl0~6 )
5 10 1136 49.87 46.96 ' 45.42

11 10 2727 79.33 73.57 73.73

20 10 4931 108.59 102.52 104.77

32 10 7954 139.90 135.25 138.87

Table 5.26 Central film thicknesses for W  = 0.664 x 10~6 and ph == 0.72GPa.



Chapter 5 119

Figure 5.19: Minimum and central film thicknesses for ph =  0.72GPa

L M G H-D EIN NRS
( xlO-6 )

5 50 1136 27.39 26.46 26.76
11 50 2727 42.07 42.61 42.97
20 50 4931 56.23 63.45 66.82
32 50 7954 71.08 89.22 98.71

Table 5.27: Minimum film thicknesses for W =  3.311 x 10~6 and ph =  1.23 GPa.

L M G H-D EIN NRS
( xlO“ 6 )

5 50 1136 44.78 43.97 42.96
11 50 2727 71.23 69.63 70.69
20 50 4931 97.50 98.44 104.67
32 50 7954 125.63 131.67 146.67

Table 5.28: Central film thicknesses for W  =  3.311 x 10~6 and ph =  l.23GPa
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Figure 5.20: Minimum and central film thicknesses for ph =  1.23GPa

L M G H-D EIN NRS
( xlO-6 )

5 199 1136 24.76 18.27 17.94
11 199 2727 38.02 30.29 29.49
20 199 4931 50.83 47.59 46.81
32 199 7954 64.25 68.38 69.83

Table 5.29: Minimum film thicknesses for W = 13.22 x 10“ 6 and ph =  1.95G7M.

L M G H-D EIN NRS
( xlO-6 )

5 199 1136 40.82 39.53 39.97
11 199 2727 64.92 63.61 64.76
20 199 4931 88.87 90.13 93.14
32 199 7954 114.50 122.91 127.35

Table 5.30: Central film thicknesses for W  =  13.22 x 10~6 and ph = 1.95GPa.
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G

Figure 5.21: Minimum and central film thicknesses for ph =  1.95GPa.

x

Figure 5.22: Pressure and film profiles for ph =  0.72GPa along the X  axis.
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x

Figure 5.23: Pressure and film profiles for ph =  1.23GPa along the X  axis.

X

Figure 5.24: Pressure and film profiles for ph =  l.% G Pa  along the X  axis.
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5.6 Conclusion

The main intention in this chapter was to show the effectiveness of the multigrid 

solver for elasto-hydrodynamic lubrication problems which was described in the 

previous chapter. Numerical solutions of steady state elasto-hydrodynamic lubri­

cation circular contact problems obtained using the multigrid solver are compared 

with those obtained using other numerical methods. The other numerical methods 

include the relaxation schemes of Venner [97] and Ehret [33], the homotopy method

[4] which is used by Scales [75] and the effective influence Newton method of Wang

[102].

A wide range of elasto-hydrodynamic lubrication problems have been solved 

with the maximum Hertzian pressure ph lying in the range 0.44GPa and 3.68GPa 

The dimensionless parameter a  varies between a =  4 and a  =  82. The maximum 

Hertzian pressure ph and the dimensionless parameter a indicate the load of the 

problem and the higher their values, the higher the load. The numerical solutions 

obtained using the multigrid solver are comparable with those obtained using other 

numerical schemes. Though some discrepancies do exist, these are mainly due to 

the use of different number of mesh points or computational domains and to the it­

erative methods used. The problems solved indicate that the multigrid solver is not 

only capable of solving highly loaded problems found in industrial applications but 

also the obtained numerical solutions are consistent with respect to the effects Ham- 

rock and Dowson parameters have on the elasto-hydrodynamic lubrication circular 

contact problems.

Having solved a wide range of problems, we can conclude that the multigrid 

solver is a fast, robust and reliable solver for elasto-hydrodynamic lubrication cir­

cular contact problems. It can not only be employed to solve both lightly to highly 

loaded circular contact problems but also has many industrial applications and it 

has already been used at the Shell Research and Technology Centre at Thornton

The next chapter deals with the extension of the approach used here for 

steady problems to time dependent (transient) problems and since there are no 

available bench mark test problems, the wide range of steady state problems solved 

in this chapter will be used as a guideline for the solutions of transient problems.
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TRANSIENT PROBLEMS

Over the past decade, the interest in elasto-hydrodynamic lubrication has moved 

on from steady state to time-dependent (or transient) problems. In practice, the 

need for a time-dependent approach is essential since, in general, the surfaces in 

contact are in relative motion and the load, the speed and the film thickness vary 

with time. The earlier numerical work on elasto-hydrodynamic lubrication was all 

based on steady state problems. The large computational costs and the complex­

ities associated with these problems are the reasons why there has been a lack of 

development in the direction of transient problems.

Most of the recent work on transient problems [98] [32] is still concerned 

with studying surface features, especially surface roughness, but mainly looking at 

the line contact problems. Work on the point contact problems is still very limited. 

Up to this date, all the work done on the transient elasto-hydrodynamic lubrication 

problems makes use of fixed time steps. The time steps are usually chosen in an 

arbitrary way and no published work on variable time step methods or local error 

control is known to the author. Also of great importance is the issue o f keeping 

computational costs to a minimum. This can be achieved by using an efficient 

convergence criterion which must give a true picture of the solution. Though the 

existing methods are commonly used, they can sometimes give misleading results

124
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as described in Chapter 5.

This chapter will look at transient elasto-hydrodynamic lubrication prob­

lems by presenting the governing equations as differential algebraic equations. We 

will consider solutions to transient problems with fixed and variable time steps 

and also present a new convergence testing criterion when solving transient elasto- 

hydrodynamic lubrication problems. The new technique is used when solving dif­

ferential algebraic equations and was originally developed by Shampine [90] for 

ordinary differential equations. This chapter will be concluded by presenting de­

manding test problems where the speeds of the two surfaces in contact are varied 

with time with the aim of zero and reversal entrainments. This is where the speeds 

of the two surfaces in contact are driven down to zero and then introducing a reversal 

entrainment, that is reversing the direction of flow using negative speeds. In gen­

eral, when solving elasto-hydrodynamic lubrication problems, the oil entrainment 

is usually assumed to be in the positive X-direction.

6.1 Governing Equations

The governing equations (the Reynolds equation (2.19), the film thickness equa­

tion (2.22) and the force balance equation (2.24)) of elasto-hydrodynamic lubri­

cation circular contact problems are introduced in Chapter 2. The only difference 

between the equations of steady state and transient elasto-hydrodynamic lubrication 

problems is in the Reynolds equation. In steady state elasto-hydrodynamic lubrica­

tion problems, the contribution from the squeeze term which describes the

net flow rates due to the squeezing motion, in the Reynolds equation (2.41) is zero. 

However, when solving transient problems, the squeeze term must be introduced 
into the Reynolds equation.

Besides the squeeze term, the dimensionless Reynolds equation of transient 

problems is slightly different from that of steady state problems. However, this 

does not in any way affect the elasto-hydrodynamic lubrication model presented in 

Chapter 2 and has an added advantage of being flexible in the sense that it can also 

be used to solve steady state problems. A reference speed urej is introduced into
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the model and is equal to the sum of the speeds at time t =  0 of the two surfaces 

in contact. As described in Chapter 2, the speeds of the two surfaces in contact are 

given by u\ and u2 and at time t, the sum us of the two speeds is given by

us(t) =  ui(t) +  u2( t ) . (6.1)

Hence, the reference speed uref  is given by

U ref =  u*(0). (6.2)

The non-dimensional Reynolds equation for a transient elasto-hydrodynamic 
lubrication circular contact problem is of the form

d (  dP '
+

d {  dP
d X  y d X j  ' d Y  \^dY 

where, as in a steady state problem,

M S ) d (PH) 9 (pH)
uWef d X dT 0

ei,j —
p(P i j ) H f j

(6.3)

(6.4)

and us(t) and urej  are respectively defined above by equations (6.1) and (6.2). 

The reference speed ure/  prevents the solver from breaking down during zero en­

trainment, that is when the speeds of the two surfaces in contact are zero. The 

non-dimensional density p and viscosity r} are obtained respectively, as in a steady 

state problem, using the Dowson and Higginson relation [30] and the Roelands 

equation and are given by equations (2.44) and (2.45). The constant A, as in a 

steady state problem, is given by A =  ( ~ ) 1/3 where, as described in Chapter 2,

the Hamrock and Dowson’s load W  and speed U parameters are respectively given 

by W  =  e'r JT and U = ¥ r  ̂ where’ Ue is tiie entrainment speed. In general, the 

entrainment speed is the average of Uj and u2, but when solving transient problems, 

at every time step, it is the average of the two speeds at time t =  0, that is

«.(0)— (6.5)

where us(t) is defined by equation (6.1).

The non-dimensional film thickness and force balance equations o f tran­

sient problems are the same as in steady state problems. For completeness, as 

described in Chapter 2, they are respectively of the form

X 2 Y 2 t 2 f OO
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and

/
oo foo n

/  P (X ,Y )d X d Y  =  ~ .  (6.7)

The method employed to discrétisé the governing equations of transient 

elasto-hydrodynamic lubrication problems is the same as that used in steady state 

elasto-hydrodynamic lubrication circular contact problems as described in Chap­

ter 2. However, when solving transient problems, the squeeze term ~ X 1  in the 

Reynolds equation (6.3) must be taken into consideration.

As in steady state problems, the governing equations are discretised on a 

regular mesh over the computational domain

{(X ,Y ) e  U2 : X a < X  < X b and —Ya < Y <  Ya} ,

with the oil entrainment in the positive X-direction and mesh spacings hx and hy 

in the X  and Y  directions respectively. At each non-boundary mesh point 

[(* -  1 )hx +  X 0, ( j  -  1 )hy +  Ya], the discretised Reynolds equation (6.3) is given by

K 2(ei - y ( pi - ' j  ~ p d) +  C + i/ Pi+h3 ~ pi,j)) +  

hy2(£i,j-%(P*,}-l ~ Pij) "b etj+|(-f«0 + l — Pi,j)) ~~

U si^K 1 r- u  . -  tr. . .\---~ Pi-ljH*-!,}) firp — U (6.8)'¿ref U -L

where, the discretised form of the squeeze term - will be described below in

Section 6.2.1. For convenience, as described in Chapter (2), the discretised forms of 

the film thickness equation (6.6) and force balance equation (6.7) are respectively 

of the form

x 2 y.2
Hij =  HM + -±L + -jL + d, (6.9)

and
%  ny ' ~

hx hy ^ 2  '^2 0~ — 0 .
*=1 j=l 0

(6.10)



Chapter 6 128

6.2 Differential Algebraic Equations and the Back 

ward Euler Method

When dealing with transient elasto-hydrodynamic lubrication problems, the dis- 

cretised equations (6.8) and (6.9) can be represented as a system of Differential 

Algebraic Equations (DAE) [17]. Equation (6.8) can be written as

G ( P , H , K )  =  0 (6.11)

where, [H]k. =  [Pk Hk\-> & ~  (* ~  1) ^ 3 an(  ̂Tl\ — Hi,j for (* =  1 , . . .  , mx ; j  =

1,. . .  , ny) where mx and ny are respectively the maximum number of mesh points 

in X  and Y  directions and equation (6.9) can be written as

£ ( £ , # )  =  0. (6.12)

In order to understand differential algebraic equations, a property known 

as the index (or nilpotency) [17] is normally employed to classify the structure 

and analyse the behaviour of differential algebraic equations. This property is 

important because it gives an indication of numerical difficulties that might be 

encountered when solving a system of differential algebraic equations. In order 

to obtain the index of a system of differential algebraic equations, all or part of 

differential algebraic equations must be differentiated until they are converted into 

a system of ordinary differential equations. The number of differentiation steps 

required in this procedure is known as the index which can be defined as follows 

[17]: The index of a differential algebraic equation S(t,y,y') =  0 is defined as the 

minimum number of times that all or part of S( t ,y ,y)  =  0 must be differentiated 

with respect to t in order to determine y as a continuous function o fy , t. In general 

standard Ordinary Differential Equations (ODE), |f =  f( t ,y) ,  has index zero and 

Differential Algebraic Equations (DAE) with index zero and one are easier to solve 

numerically than those with index greater than one.

In order to obtain the index of transient elasto-hydrodynamic lubrication 

problems, consider the differential algebraic equations (6.11) and (6.12). Equa­

tion (6.11) can also be written as

K=G{P, H) (6.13)
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and, if we differentiate equation (6.12) with respect to time t, we get

0dP dH (6.14)

which, when multiplied through by ( f f ) - 1 gives, together with equation (6.13), 

a system of implicit ordinary differential equations. Hence, the index o f transient 

problems in elasto-hydrodynamic lubrication is one. § j  appears to be non-singular - 

its inverse being computed when solving elasto-hydrodynamic lubrication problems 

using the Newton-Raphson method [54, 68, 79] - but there is no proof o f this.

When it comes to solving differential algebraic equations, many authors 

have done extensive work in developing solvers to deal with differential algebraic 

equations of the form S ( W )  =  0,, e.g. SPRINT [8, 9], DASSL [17, 83] and 

LSODI [52] Most of these solvers are based on the Backward Differentiation For­

mulas (BDF) which were introduced by Gear [39]. The concept of the backward 

differentiation formulas is that the derivative y'(t) is approximated by a linear com­

bination of the solution y(t) at the current and previous mesh points. The simplest 

method for solving differential algebraic equations is to use the first order backward 

differentiation formula (or the backward Euler method) which will now be covered 

in the next section.

6.2.1 Backward Euler method

The backward Euler method is the simplest form of backward differentiation for­

mulas [38, 42, 62] and is widely used to obtain solutions to differential algebraic 

equations of the form

S{i,y>y) =  0> (6.15)

which is an initial-value [19, 38, 70] ordinary differential equation with a solution 

y(t) over the interval t0 < t < tf and y(t0) =  yQ is known.

If the backward Euler method is used to obtain a solution to the differ- 

ential algebraic equation (6.15), then the derivative y ( tn+x) at time tn+x must be 

approximated by a first order backward difference of y(t), and the resulting system 

of non-linear equations is then solved for y(fn+1). That is,

y (¿n+l)
y(tn+1) -  y(tn)

At (6.16)
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which, when substituted into the differential algebraic equation (6.15) gives

C if v(4 \  y(tn+l) ~ y(tn)\ n^ [ W i  > y\tn+i ) , ------- — ---------- I =  0 (6.17)

where At = tn+i —tn.

When solving transient elasto-hydrodynamic lubrication problems, the dis- 

cretised form of the squeeze term d{p' ^ i'3) shown in the Reynolds equation (6 8) 

is given by

^  / / — TT \ / — rr \ \
d t  1 [Pij (6.18)

where, the subscript t, j  denotes the grid point and the subscript n denotes time 

tn. This means that the solution at the previous time step is required when solving 

transient elasto-hydrodynamic lubrication problems.

6.3 Local Error Estimates, Convergence Test and 

Time Stepping

The numerical solutions of transient elasto-hydrodynamic lubrication problems are 

obtained using the multigrid solver for elasto-hydrodynamic lubrication problems 

which is described in Chapter 4. When solving transient problems, extra operations 

which were ignored in steady state problems, must be taken into consideration 

This includes the evaluation of the local error estimates, the issue of when to stop 

the multigrid iterations (V-cycles) during each time step cycle and the issue of 

time stepping. The evaluation o f the local error estimates is based on obtaining 

an approximation to the solution using a predictor. We will now outline these 

operations in turn and describe how they fit into the multigrid solver for elasto- 

hydrodynamic lubrication problems.

6.3.1 Local error estimates

The concept of local error estimates of a system of differential algebraic equations 

of the form

Ay = By +  g(t) (6.19)
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is explained in detail by Petzold [83] and Brenan et al. [17]. They have shown that 

the local errors associated with these equations are of the form

(-  ̂ At i?) §ioca[ =  A le  (6.20)

where, At =  tn+i — tn and le is the local truncation error given for the backward 

Euler method by

-  = 2 (-"+i “  & +1) (6.21)

where, |E+1 is the predicted, denoted by superscript p, solution of y at time tn+1 
and it is given by

VP — u I At f~ n+1 -n\yn+i ~ y n+i + A t ^ [  Atn ) ■  (6.22)

The local errors, ew , are usually calculated by forward and backward substitution 

using LU factorisation of [A — A i 13], [83].

If we employ this strategy in transient elasto-hydrodynamic lubrication 

problems, then the differential algebraic equations (6.11) and (6.12) can respectively 

be rewritten as

G(H_, P) -  H. = 0  (6.23)

where, \H]k = [pk Hk], k =  ( i ~ l )  x mx + j  and Hk = Hitj for (* =  1 , . . .  ,mx ; j  =

1, • • • , ny) where mx and ny are respectively the maximum number of mesh points 

in X  and Y  directions and

K - K P - c  =  0 (6.24)

where, the coefficient matrix K  is used to evaluate the elastic deformation as de­

scribed in Chapter 2.

The local errors associated with transient elasto-hydrodynamic lubrication 

problems can be obtained by formulating an equivalent system of equations to 

(6.20). The LU decomposition of [A -  At B] or its equivalent is not available and 

so the multigrid solver for elasto-hydrodynamic lubrication problems described in 

Chapter 4 is used to calculate the local errors associated with transient problems 

by solving equations (6.23) and (6.24). This is done at the end of each multigrid
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cycle using the following algorithm: The equations for obtaining the local errors at 

the i , j  th mesh point are of the form, [17],

_1 - A t ^  - A°  dH dP
-At A t K

leH -1 0 1
leP 0 0 2

-  MUi
(6.25)

where, the subscript n indicates time fn, leH and leP are respectively the local 

errors in film thickness H_ and pressure P and iPn+1 and P£+1 are respectively the 

predicted, denoted by superscript p, solutions of H_n+i and Pn+1. In general, the 
predicted solution of P (in+i) at time tn+i is given by

pp _ p£-n+1 — —n+1 -f- At71+1
—77+1

A  U (6.26)

Let us consider the two equations of (6.25) more closely. First consider the 

second equation, which is simpler of the two equations and represents a relationship 

between the local errors in H_ and P, that is

leH =  K  leP . (6.27)

which implies that we can solve for local errors in either H_ or P. Since when solving 

elasto-hydrodynamic lubrication problems, the multigrid solver is employed to solve 

for P, which is then used to evaluate H_, we calculate the local errors in P. Now 

consider the first equation which, using equation (6.24), can be rewritten as

A . leH d G 1TT d G ,  n 
-At  I —ri—I---- ~  leH 4~ A-- leP

At dH dP
K P n+l-I<P ?n+l

(6.28)

which must be rewritten in a different format because a multigrid solver is employed 

throughout this work to solve elasto-hydrodynamic lubrication problems and the 

Jacobian matrix of derivatives is not evaluated at any stage of the solution process. 

Consider the Taylor’s theorem for 2 variables, that is

dC1 dC
G(H +  k R ,P  +  l eP)K G(H, P) +  ~  [eH +  leP +  h.o.t. (6.29)

dP

where, G(H_,E.) represents the residual. Assuming that the residual is zero and 

using equation (6.23), equation (6.28) can be written in a different form as

G(Kn+i+ k K , P n+i + k P ) - Kn+l P M L - î in  K
At 2 At (P.n+1-PZ+i) (6.30)
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where, the subscript n indicates time tn and [A]* =  [p(Pk) Hk], k =  (i — 1) x mx +  j  

and Hk = HtJ for (i =  1 , . . .  ,mx ; j  =  1 , . . .  , ny) where mx and ny are respectively 

the maximum number of mesh points in X  and Y  directions.

Using equation (6.27), equation (6.30) can be rewritten as

£ ( & * „ £ * » )  -  =  ¿ ( £ » + 1  -  E l « ) , ( 6 .3 1 )

where, H_n+1 =  Hn+1 +  K le£  and £ „ +1 =  P_n+1 +  leP_, Equation (6.31) must be 

solved together with

i L +1 “  KE.n+1 ~ c =  0 (6.32)

in order to obtain the local error in £ ,  leP_, at any i , j  th mesh point. The local 

error in H_ may then be calculated using equation (6.27).

For a constant j ,  that is on the line Y  =  j ,  equation (6.31) is used to 

formulate a system of equations that is then solved simultaneously for A  This 

concept is described in detail in Chapter 4. Having obtained the solution P  on 

the entire computational domain, it is then used to evaluate the new film thickness 

A , viscosities and densities on the entire computational domain. It is also used to 

calculate the local error in pressure using

l|A£IU -  ll£n+i ~ Ai+ill (6.33)

where, a weighted root mean square Z2-norm is used, i.e.

WkEWu, (6.34)

where, mx and ny are respectively the maximum number of grid points in the X  

and Y  directions and at the i , j  th mesh point, the weight depends on the absolute 

(atol) and relative (rtol) errors and the initial value of P at each time step, that is

Wij =  atol +  P9j rtol (6.35)

where, atol and rtol are respectively the absolute and relative error tolerances. 

These tolerances can be specified by the user but for the solver to use the correct 

temporal accuracy, the spatial error [63, 7] must dominate the temporal error. This
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concept is described in detail by Lawson et al. [63] and Berzins [7], Hence, atol and 

rtol must be chosen so that the spatial error dominates and this can be achieved by 

controlling the local error in time so that it is a fraction of the local growth in the 

spatial error. However, since the spatial error may vary with time, the tolerances 

may also need to vary with time so that the spatial error stays in dominance at 

each time step. As an alternative, the tolerances can be chosen so that the local 

errors in time are an order of magnitude smaller than the spatial error, that is

\\le\\ < e\\spatial error|| (6 36)

where, £ is a small fraction, say less than 0.01. Hence, at each time step, the spatial 

error is computed and used to obtain the tolerances. We make use of this latter 

approach when solving transient elasto-hydrodynamic lubrication problems. This 

is achieved by taking a fraction of root mean square T2-norm of the spatial error 

so that the L2-n.orm of the local error in pressure, given by equation (6.33), is less 

than one, that is

Ili^Pllu, < 1.0. (6.37)

The root mean square i^-norm of the spatial error is given by

¡¡spatial error|| =  jjP5 — / / P SJ] (g.38)

where, I f  is a restriction operator, described in Section 4.1.1, that restricts P3 to 

a coarser grid with mesh size S and S =  2s.

6.3.2 Convergence test

When solving transient elasto-hydrodynamic lubrication problems using the multi­

grid solver, we need to employ a strategy to decide when to terminate the multigrid 

iterations (V-cycles) during each time step. This strategy needs to be employed 

after each multigrid iteration in order to avoid doing extra work and improve the 

efficiency of the multigrid solver. Though the existing methods are commonly used, 

they can sometimes give misleading results as described in Chapter 5. Hence, a 

new convergence criterion for transient elasto-hydrodynamic lubrication problems
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will be presented and employed in this work. It, referred here as convergence test, 

. is similar to the one described by Brenan et al. [17] who employed it in DASSL 

[17, 83] and is based on the well-known result [90], that

Q\\y* vm+1 <  y vj _
i - e

\\ym-f-l
(6.39)

where, y* is the exact solution, g is an estimate of the rate of convergence of the 

iteration, w is a weight factor used when evaluating the norm and the superscript 

m is the iteration number. The iterations are continued until

,m,+l < T (6.40)

which is a convergence test developed by Shampine [90] and in DASSL r  =  0 33 

The reason for choosing 0.33 is that the error due to terminating the iteration does 

not affect the local error which is less than 1.0. According to Shampine [90] the 

choice of r  varies a great deal but, a very small tolerance r does not necessarily 

improve the solution. The rate of convergence g is given by

e  V II»1 - » ” 11» )  <6-41)

and according to Brenan et ah, if g > 0.9, the iteration is considered to have failed 

The norms used in equations (6.40) and (6.41) are weighted root mean square 

^2-norms as defined by equation (6.34).

When solving transient elasto-hydrodynamic lubrication problems, the 

convergence test employed in the multigrid solver is based on the solution pres­

sure P. This is the case because the multigrid solver is first employed to solve for P 

which is then used to evaluate the film thickness tf. The convergence test is carried 

out at the end of each multigrid cycle using equation (6.40), but y is replaced by P  

The tolerance r in equation (6.40) is chosen to be 0.1 and with this choice, at every 

time step besides zero, between 2 to 3 multigrid iterations (V-cycles) are carried 
out by the multigrid solver.

6.3.3 Time stepping

A key feature associated with time-dependent (or transient) elasto-hydrodynamic 

lubrication problems is the concept of time stepping. When solving transient prob-
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lems using the multigrid solver for elasto-hydrodynamic lubrication problems, a 

time step size must be assigned in order to drive the problem. The step size can 

be either chosen arbitrarily or evaluated within the solver using the local error es­

timates. If the step size is chosen arbitrarily by the user, then it is done once prior 

to solving the problem. However, if it is evaluated using the local error estimates, 

then it is done at the end of each time step.

The concept used to implement the variable time step method is to use 

the local error to only double or halve the step size as was done by Berzins and 

Furzland [10]. It is also important for variable step methods not to change the step 

size too frequently unless a decrease is called for. For this reason a step size increase 

is only considered after three successful steps.

An alternative method is that described by Brenan et al. [17j. They have 

based their strategy on the concept used by Shampine and Gordon [91], The new 

step size is given by rAtn+i where

r =  (2||fc£|U -W +1) (642)

where, k represents the order of the method. For the backward Euler method k =  1 

According to Shampine et al. [91], even if r is reliable, some limits must be imposed 

on the new step size. The step size can either increase by a factor of two or decrease 

However, if these two operations are not possible, then the step size is kept constant 

The step size is increased if r is greater than or equal to two. If a decrease in the 

step size is required, then it is decreased by at least r =  0.9 and at most r =  0 5 

The step size is decreased if r is less than or equal to one. A point to note is that 

when the step size is to be decreased, the estimate for r is taken at the face value 

whereas when it is to be increased, the estimate for r is not used in the evaluation 

of the new step size. .

Solutions using both fixed and variable time step methods will be presented 

in this chapter. The next section will show the effectiveness of the new convergence 

criterion for solutions obtained using a fixed time step method.
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6.4 Testing Convergence Criterion using a Fixed 

Time Step Method

The multigrid solver described in Chapter 4 is employed to solve a transient elasto- 

hydrodynamic lubrication circular contact problem using a fixed time step method. 

In order to show the effectiveness of the new convergence test, a comparison will be 

presented for solutions obtained with and without the convergence test described 

above. The main feature of this test problem is to study the effect of varying the 

speeds of the two surfaces in contact with time on the pressure and film thickness. 

The speeds of the two surfaces in contact are varied with time with the aim of zero 

and reversal entrainments. This is where the speeds are driven from a positive value 

down to zero (zero entrainment) and then introducing negative speeds (reversal 

entrainment). During the entire cycle of driving the problem from positive speeds 

down to zero and reversal entrainments, all the other input parameters defining the 

problem are left unchanged. Hence, the load of the problem remains the same at 

every time step. The input parameters of this test problem are shown in Table (6.1).

Parameters Symbols Values Units

Reduced radius of curvature R 1.27 x 10~2 m

Reduced modulus of elasticity É 1.41 x 10n Pa

Load w 14.96 N

Pressure viscosity index a 2.1 x 10~8 Pa- 1

Maximum Hertzian pressure Ph 0.4468 GPa

Viscosity at ambient pressure Vo 0.525 Pas

Speed of surface 1 til 5.0 x IO"2 ms~l

Speed of surface 2 u2 5.0 x IO"2 m s-1

Table 6.1: Input parameters

The dimensionless Hamrock and Dowson parameters G, W  and U and the 

corresponding dimensionless Moes parameters M  and L to the nearest integer are 

presented in Table (6.2).



Chapter 6 138

Parameters Values
Material parameter G 2961
Load parameter W 6.5782 x 10“ 7
Speed parameter U 1.4659 x n r 11

Moes parameter M 52
Moes parameter L 7

Table 6.2: Dimensionless parameters

This transient problem is solved on a domain —3.0 <  X  <  3.0, —3.0 <

Y  <  3.0 with 65 by 65 and 17 by 17 finest and coarsest grids respectively. The 

solutions are obtained for time t =  0 to t =  3.0 with reversal entrainment at time 

t — 1.5. At each time step, the speeds of the two surfaces in contact are reduced 

by 5.0 x 10-4 and the step size is kept constant at 0.01538. This problem is solved 

with and without the new convergence test. When the problem is solved using the 

new convergence test, the tolerance t is set to 0.1 whereas when the solution is 

obtained without the new convergence test, 15 multigrid iterations (V-cycles) are 

carried out at every time step. The latter uses 15 V-cycles because that is what we 

would normally use in steady state problems.

6.4.1 Results and discussion

The central and minimum and film thicknesses obtained with and without the 

convergence test are respectively shown in Tables (6.3) and (6.4). There is little 

discernible difference in the values of central and minimum film thicknesses obtained 

with and without the new convergence test but, the times taken to obtain these 

results on an SGI R8000 were respectively 1.7 and 12.3 hours. Hence, by using the 

convergence test, the amount of work done is greatly reduced without affecting the 

accuracy of the solution.
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Step Time t Hcent Hmin

0 0.0000 1.9466E-05 1.1099E-05

40 0.6154 1.9614E-05 1.0805E-05

80 1.2308 1.9749E-05 9.6057E-06

100 1.5385 1.9900E-05 8.9634E-06
120 1.8462 2.0210E-05 8.5518E-06

160 2.4615 2.0624E-05 7.9192E-06
200 3.0769 1.6071E-05 8.0084E-06

Table 6.3: Central and minimum film thicknesses (ConvergenceTest).

Step Time t Hcent Hmin

0 0.0000 1.9466E-05 1.1099E-05

40 0.6154 1.9611E-05 1.0809E-05

80 1.2308 1.9764E-05 9.6168E-06

100 1.5385 1.9936E-05 8.9863E-06

120 1.8462 2.0273E-05 8.6166E-06
. 160 2.4615 2.0689E-05 7.9356E-06

200 3.0769 1.5988E-05 8.0861E-06

Table 6.4: Central and minimum film thicknesses (No ConvergenceTest).

Figures (6.1) and (6.3) show respectively the profiles of pressure and film 

thickness along the X-axis for solutions obtained with the convergence test whereas 

Figures (6.2) and (6.4) show the same profiles but for solutions obtained without the 

convergence test. Figures (6.1) and (6.2) shows the effect on the pressure profiles 

of switching from positive to negative entrainments. During positive entrainment, 

a pressure spike is seen on the outlet region (+ve .Y-axis) and it moves gradually 

with time towards the central contact region. At reversal, which represents negative 

entrainment, a pressure spike begins to appear on the new outlet region (-ve X - 

axis). The effect of negative entrainment can also be seen from the profiles of film 

thickness shown in Figures (6.3) and (6.4). During the time cycle from positive 

to negative entrainments, not only does the constriction in the outlet region (+ve 

X-axis) gradually move with time towards the central contact region but also a
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second constriction develops in the inlet region (-ve X-axis).

Figure 6.1: Pressure profiles along the X-axis (ConvergenceTest).

- 3 - 2 - 1 0 1 2 3
X

Figure 6.2: Pressure profiles along the X-axis (No ConvergenceTest).
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Film thickness profiles along the X-axis (ConvergenceTest).

Figure 6.4: Film thickness profiles along the A'-axis (No ConvergenceTest).
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The effect of reversal entrainment can be seen more clearly from the con­

tour and surface plots of pressure and film thickness. Figures (6.5), (6.6), (6.7), 

(6.8), (6.9) and (6.10) shows contour and surface plots of pressure and Fig­

ures (6.11), (6.12) and (6.13) shows contour plots film thickness at times t =  0, 

t =  1.5 and t =  3.0. All these profiles were obtained using the multigrid solver 

which employed the new convergence test.

Figure 6.5: Pressure contour at time t =  0.
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Figure 6.6: Pressure surface plot at time t =  0.

Figure 6.7: Pressure contour at time t =  1.5.
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Figure 6.9: Pressure contour at time t =  3.0
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Figure 6.10: Pressure surface plot at time t =  3.0.

Figure 6.11: Film thickness contour at time t =  0
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Figure 6.12: Film thickness contour at time t =  1.5.

Figure 6.13: Film thickness contour at time t =  3.0.
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6.5 Comparison of Fixed and Variable Time Step 

Methods

The multigrid solver described in Chapter 4 is employed to solve a transient elasto- 

hydrodynamic lubrication circular contact problem using both fixed and variable 

time step methods. The features of this test problem are similar to those described 

above in Section 6.4. The input and the dimensionless parameters of this test 

problem are the same as before and are respectively shown above in Tables (6.1) 

and (6.2). We will consider two cases where case one will use a 65 by 65 finest grid 

whereas case two will employ a 129 by 129 finest grid.

6.5.1 Case one

This problem is solved on a domain -3 .0  <  X  < 3.0, —3.0 <  Y  <  3 0 with 65 

by 65 and 17 by 17 finest and coarsest grids respectively. This problem is solved for 

time t =  0 to t =  0.76 with reversal entrainment at time t =  0.38. During the time 

cycle, the speeds of the two surfaces in contact are reduced by a fixed function of 

the simulation time t, that is

ui(t) =  «i(0) ( 1
t

treversa l
and U2(t) =  « 2(0) ^1 — t

trev ersa l
(6.43)

where treversal is the time where reversal occurs. When the solution is obtained using 

the fixed time step method, the employed step size is equal to 1.0 x 10~3 whereas 

when using the variable time step method, the minimum and maximum step sizes 

are respectively equal to 1.0472 x 10 and 7.7519 x 10 3. The times taken to obtain 

the two solutions using fixed and variable' time step methods were respectively 7 

and 5.4 hours and the number time steps taken are 750 and 670 respectively.

6.5.1.1 Results

The central and minimum film thicknesses obtained using fixed and variable time 

step methods are respectively shown in Tables (6.5) and (6.6). The discrepancy 

in the central and minimum film thicknesses obtained using the two methods is 

minimal and is approximately 5%. A point to note is that the step size in the fixed
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time step method is approximately equal to the minimum step size in the variable 

step size method. Hence, the minimal discrepancies in the central and minimum 

film thicknesses obtained using the two methods.

Step Time t Hcent Hmin

0 0.0000 1.9466E-05 1.1099E-05

200 0.2000 2.1236E-05 1.2423E-05

300 0.3000 2.2750E-05 1.3416E-05

400 0.4000 2.5687E-05 1.5510E-05

600 0.6000 3.6033E-05 2.2777E-05

700 0.7000 3.9775E-05 2.4361E-05

750 0.7500 4.1035E-05 2.4541E-05

Table 6.5: Central and minimum film thicknesses (65by65:Fixed TimeStep).

Step Time t Hcent Hmin

0 0.0000 1.9466E-05 1.1099E-05

150 0.2162 2.0687E-05 1T932E-05

250 0.3209 2.1968E-05 1.2723E-05

350 0.4256 2.4646E-05 1.4574E-05

550 0.6350 3.4214E-05 2.1303E-05

650 0.7398 3.7968E-05 2.3078E-05

670
------------------------------------------- —

0.7607 3.8573E-05 2.3292E-05

Table 6.6: Central and minimum film thicknesses (65by65:Variable TimeStep).

The profiles of pressure and film thickness along the X-axis obtained using 

the fixed time step method are respectively shown in Figures (6.14) and (6 16) 

whereas Figures (6.15) and (6.17) show the same profiles obtained using the variable 

time step method. The features described above in Section 6.4.1 are also observed 

in these figures.
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x

: Pressure profiles along the X-axis (65by65:Fixed TimeStep).

x

Figure 6.15: Pressure profiles along the X-axis (65by65:Variable TimeStep)
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Figure 6.16: Film thickness profiles along the A'-axis (65by65:Fixed TimeStep).

Figure 6.17: Film thickness profiles along the A-axis (65by65:Variable TimeStep).
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6.5.2 Case two

This problem is solved on a domain —3.5 <  X  < 3.5, —3.5 <  Y  <  3.5 with 

129 by 129 and 17 by 17 finest and coarsest grids respectively. For this case, the 

problem is solved for time t =  0 to t =  0.2 with reversal entrainment at time 

t =  0.09. During the time cycle, the speeds of the two surfaces in contact are 

reduced by a fixed function of the simulation time t as given by equation (6.43). A 

step size of 1.5 x 10-3 is employed when the solution is obtained using the fixed time 

step method whereas when using the variable time step method, the minimum and 

maximum step sizes are respectively equal to 9.6899 x 10~4 and 7.7519 x 10~3. The 

times taken to obtain the two solutions using fixed and variable time step methods 

were respectively 16 and 7.6 hours and the number o f time steps taken are 134 and 

66 respectively.

6.5.2.1 Results

The central and minimum film thicknesses obtained using fixed and variable time 

step methods are respectively shown in Tables (6.7) and (6.8).

Step Time t Hcent Hmin
0 0.0000 1.9229E-05 1.1038E-05
30 0.0450 2.1376E-05 1.2860E-05
50 0.0750 2.2722E-05 1.3937E-05
60 0.0900 2.3484E-05 1.4538E-05
80 0.1200 2.5275E-05 1.5947E-05

100 0.1500 2.6796E-05 1.7093E-05
120 0.1800 2.7777E-05 1.7690E-05
134 0.2010 2.8142E-05 1.7813E-05

Table 6.7: Central and minimum film thicknesses (129byl29:Fixed TimeStep)
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Step Time t Hcent Hmin

0 0.0000 1.9229E-05 1.1038E-05

10 0.0446 1.9774E-05 1.1468E-05

20 0.0736 2.0375E-05 1.1922E-05

30 0.0959 2.1119E-05 1.2516E-05

40 0.1231 2.1864E-05 1.3073E-05

50 0.1521 2.2494E-05 1.3538E-05

60 0.1831 2.2929E-05 1.3785E-05

66 0.2006 2.3113E-05 1.3882E-05

Table 6.8: Central and minimum film thicknesses (129byl29:Variable TimeStep).

The profiles of pressure along the X-axis obtained using the fixed time 

step and variable time step methods are shown in Figure (6.18). The two profiles 

at various times between t =  0 and t =  0.2 are displayed side by side in order 

to compare their differences. Similarly, the profiles of film thickness are shown in

Figure (6.19).
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Figure 6.18: Pressure profiles along the X-axis (129byl29).
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Figure 6.19: Film thickness profiles along the X-axis (129byl29)

A graphical representation of the step sizes employed in the fixed and 

variable time step methods are shown in Figure (6.20). A logarithmic scale is used 

on both axes to plot time ’t ’ against the step sizes ’Step Size’ of the two methods. 

In the fixed time step method, the step size is constant and is shown as a straight 

line parallel to the X-axis which represents time t. The plot for the variable time 

step methodjtarts off as a constant value and then begins to fluctuate between
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3.8760 x 10-3 and 1.938 x 10"3 until it approaches reversal. At reversal the step 

size dips to a minimum value of 9.6899 x 10~4. Just after reversal, the step size 
repeats the fluctuation pattern.

VaryingStepSize -----
FixedStepSize-----

\
\

0.001 0.01 ~  qJ ' “

Time t

Figure 6.20: Graphical representation of fixed and variable step sizes.

6.5.3 Discussion

We will now analyse the solutions obtained using fixed and variable time step meth­

ods in the above two cases. For convenience, the solution in case one was obtained 

using a 65 by 65 finest grid whereas a 129 by 129 finest grid was employed in case 

two. In case one, there is not much to choose between the solutions obtained using 

the two methods and as expected, since the minimum step size in the fixed time 

step method is approximately equal to the minimum step size in the variable time 

step method, the discrepancy in the minimum and central film thicknesses obtained 

using the two methods is minimal. On a reasonably large mesh, as in case two, the 

variable time step method is much faster than the fixed time step method.' However, 

though the discrepancy in the minimum and central film thicknesses obtained using 

the two methods is relatively large, their respective profiles of pressure and film
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thickness are very similar. Since these problems are highly non-linear and due to 
the complexity of the problem being considered, that is zero and reversal entrain­
ments, the variable time step method is quite sensitive to the step size when the 
time cycle approaches the zero and reversal entrainments. Hence, special measures 
need to be considered during zero and reversal entrainments; Besides this, the issue 
of discontinuity in the discretisation during reversal also needs to be addressed.

The combination of the multigrid method, differential algebraic equa­
tions and variable time steps is a novel approach for solving transient elasto- 
hydrodynamic lubrication problems. The results obtained using this approach are 
very encouraging and appear to be a step in the right direction although more work 
is needed.

6.6 Conclusion

The main concept of this chapter was to solve transient elasto-hydrodynamic lubri­

cation problems using the multigrid solver of Chapter 4. This has been illustrated 

by solving very demanding test problems using fixed and variable time step meth­

ods. It is demanding in the sense that the problem undergoes a rapid change from 

positive to negative entrainments, that is the speeds of the two surfaces in contact 

are driven down to zero and then a reversal entrainment is introduced by reversing 
the direction of flow.

We have illustrated in this chapter the effectiveness of the new conver­

gence criterion when solving transient elasto-hydrodynamic lubrication problems. 

By introducing the new concept for testing the convergence criterion, the amount 

of work done is reduced without affecting the accuracy of the solution. We have 

also illustrated that the variable time step method can be used to solve transient 

elasto-hydrodynamic lubrication problems and that this is a promising approach 

with regard to reducing the computational cost in solving such problems.

From the obtained fixed and variable time step solutions, we can conclude 

that the multigrid solver developed in Chapter 4 is very robust and capable of 

solving highly demanding elasto-hydrodynamic lubrication problems.
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CONCLUSION

The main object of the work presented in this thesis was to develop an efficient, ro­

bust and general purpose numerical solver for steady-state and time-dependent (or 

transient) elasto-hydrodynamic lubrication circular contact problems. The solver is 

based on the FDMG Multigrid Software [92] and a new relaxation scheme which is 

developed in this work. These problems are very important in engineering applica­

tions and by developing a general purpose numerical solver, mainly for industrial 

applications, engineers will be able to solve a wide range of these problems under 

different operating conditions.

The mathematical model describing isothermal (Newtonian) elasto- 

hydrodynamic lubrication circular contact problems is highly non-linear consisting 

of a complex system of coupled integro-differential equations. The model is made 

up of three equations with a pressure dependent viscosity and density. The three 

equations are the Reynolds equation, the film thickness equation and the force 

balance equation and the main feature of the model is the cavitation boundary 

condition P > 0. Due to the complexity of these problems, solutions can not be 

obtained analytically and numerical methods must be used. This is achieved by 

discretising the governing equations at every point on the computational domain 

using a finite difference scheme.
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Over the years, dating back to the 1970’s, many numerical schemes have 

been developed to solve elasto-hydrodynamic lubrication problems. Most of these 

schemes are based on the direct iterative methods which are not only expensive 

computationally but are also restrictive under severe operating conditions, such as 

high loads. Hence, most of the earlier work on elasto-hydrodynamic lubrication 

problems was based on line contact and lightly loaded point contact problems. 

However, new methods are emerging but they are still restrictive in one form or 

another. Examples o f these new methods include the effective influence Newton 

method of Wang [102] and homotopy method [4] used by Scales [75].

A major breakthrough was achieved by Lubrecht [68] who introduced the 

multigrid method in solving elasto-hydrodynamic lubrication problems. The use of 

the multigrid method tackled the problem of large CPU times but the problem of 

instability associated with highly loaded point contact problems was still an issue 

Following Lubrecht’s work, Venner [97] developed a relaxation scheme which was 

used with the multigrid method to solve elasto-hydrodynamic lubrication problems 

This enabled Venner to solve highly loaded point contact problems using a large 

number of mesh points. Hence, the issue of instability was resolved and problems 

that were previously unsolvable could now be solved routinely. However, the relax­

ation scheme of Venner is not only difficult to understand because it is not presented 

in its entirety but also difficult to implement due to its complexity.

A new relaxation scheme to solve elasto-hydrodynamic lubrication prob­

lems is presented in this work which uses the same principle as Venner in that 

different relaxation schemes are employed on the same computational domain. The 

manner in which the new relaxation has been developed is based on the behaviour 

of the Reynolds equation of the elasto-hydrodynamic lubrication model. The coef­

ficient e of the Reynolds equation varies several orders of magnitude over the com­

putational domain and is the main cause for numerical instabilities when solving 

highly loaded problems. This means that whichever relaxation scheme is employed 

to solve these problems, it must be able to cope with extreme values o f the coeffi­

cient e of the Reynolds equation. This then leads to a stable error smoother over the 

entire domain. Based on this concept, the new relaxation scheme for solving elasto-
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hydrodynamic lubrication problems makes use respectively of the Jacobi and the 

Gauss-Seidel hne relaxation schemes in the contact and non-contact regions o f the 

computational domain. The main concept of the new relaxation scheme developed 

in this work is that it is very simple and easy to implement and understand.

The new relaxation scheme is used with the FDMG Multigrid Software 

[92] to develop a multigrid solver for elasto-hydrodynamic lubrication problems 

(multigrid solver). However, due to the complexity of the elasto-hydrodynamic lu­

brication model, substantial modifications have been made to the original FDMG 

multigrid software. A wide range of steady-state problems have been solved using 

the multigrid solver and the obtained solutions are comparable with those obtained 

using other numerical methods. The maximum Hertzian pressure of steady-state 

problems solved in this work varied between 0.44GPa and 3.68GPa and the dimen­

sionless parameter a varied between a =  4 and a =  82. The maximum Hertzian 

pressure ph and the dimensionless parameter a indicate the load of the problem 

The higher the value of ph and a, the higher the load of the problem.

Besides solving steady-state problems, the multigrid solver is also em­

ployed to solve transient problems. Fixed and variable time step methods are used 

to solve demanding transient problems. A new convergence testing criterion, based 

on [90], for transient problems has also been presented which reduces the amount 

of work done to solve these problems without affecting the accuracy.

Having solved a range of demanding steady-state and transient problems, 

we can conclude that the multigrid solver for elasto-hydrodynamic lubrication prob­

lems developed in this work is a fast, robust and general purpose solver for elasto- 

hydrodynamic lubrication circular contact problems. It is capable o f solving both 

lightly to highly loaded problems found in industrial applications. The multigrid 

solver has many industrial applications and it has already been used at the Shell 

Research and Technology Centre at Thornton.
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