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applications

by Ling Fang CAO

A new and novel GPU accelerated method has been developed for solving the Navier-
Stokes equations for bodies of arbitrary geometry in both 2D and 3D. The present
method utilises the vortex particles to discretize the governing equations in the La-
grangian frame. Those particles act as vorticity carriers which translate in accor-
dance with the local velocity field. Vorticity information is thus propagated from
the vorticity source to the rest of the flow domain in mimicking the advection and
diffusion processes of the real flow.

In the high-fidelity method, vorticity generation can take place around the bod-
ies. The no-slip condition produces a boundary flux which is subsequently diffused
to the neighbouring particles. The new method has been successfully validated by
simulating the flow field of an impulsively started cylinder. The calculated drag
curve matches well with the theoretical prediction and other numerical results in
the literature. To extend the applicability of the code to wind-turbine applications, a
simplified re-meshing strategy is adopted which is found to produce small numeri-
cal inaccuracies.

In the engineering method, a simplified hybrid approach has been developed
which decouples the advection and diffusion processes. The viscous effects are ig-
nored on the bodies and are recovered in the wake. For this purpose, the Laplace
equation that resulted from the irrotational assumption of the flow has been solved
using the boundary element method. The solution produces a dipole distribution
that is subsequently converted to viscous particles by employing the Hess’ equiva-
lence principle. In addition, an accurate interpolation scheme has been developed
to evaluate the dipole gradient across the distorted wake geometry.

To reduce the simulation time, the fast multipole method has been implemented
on the GPU in 2D and 3D. To parallelize the implementation, a novel data construc-
tion algorithm has been proposed. Furthermore, an analytical expression for the
velocity strain has been derived.

The new developed methods have been applied to problems involving aerofoils
and vertical axis wind turbines. Comparisons with experimental data have shown
that the new techniques are accurate and can be used with confidence for a wide
variety of wind turbine applications.
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Chapter 1

Introduction

1.1 The need for renewable energies

Energy is the most important ingredient in nature for life to flourish on Earth. Since
the creation of biology billions of years ago, organisms have thrived on it. The con-
cept of evolution, proposed by Darwin, effectively underpins how life depends on
the effective use of energy as a way of survival. This ideology persists till this day.
Since the early human settlers, the way how energy was harvested has changed con-
siderably. It is known since the discovery of fire, that human had sourced most of
their energy demand through solid fuel (dried up vegetation/coal), which provided
them with lighting, cooking and other tribal applications and kept them warm in the
coldest winters. The progressive development in technologies have allowed more
sophisticated approaches for harnessing energy from nature. The constant need
to innovate has always been the paramount trend in modern scientific researches;
driven by the very same principle that Darwin had advocated in his most celebrated
theory -the need for a specie to survive.

Throughout the century, breakthroughs were seen at several fronts in energy
research-the invention of atomic bombs gave rise to the possibility of generating
energy via the nuclear fission process, although it is perceived by many that nu-
clear power is the coming trend in energy production. However, doubts on nuclear
waste storage, cost overruns and safety assessments were among the primary rea-
sons that prevent such production technique from reaching mainstream. It is wildly
believed by the majority that unless there is a breakthrough in science which allows
for a controlled nuclear fusion, energy productions through nuclear fission would
remain controversial, not lest due to its extreme safety risk, but rather whether it can
provide the sustainable character that our society seeks.

The harvesting of chemical fuel from deceased prehistoric organisms (flora and
fauna) had proved revolutionary. The term fossil fuel was coined to refer to the com-
plex hydrocarbon chemicals of living creatures formed under the intense and per-
sistent heating and pressurised condition deep in the Earth’s crust for thousands
of millennia, which encompasses petroleum, natural gas and coal. The inception of
fossil fuel has since transformed much of the way of how society evolved in the
past decades. ’Fuelled’ by their high energy capacity per unit weight, this form of
chemical energy remains the unchallengeable source for energy production across
the whole spectrum of human activities. In its period of dominance, the oil in-
dustry 1 had saw a substantial gain in position in both the political and economic

1The use of the term oil industry refers to industries that produce fossil fuel.
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realm. Notably in the 18th century, which marked the beginning of a new era char-
acterised by high energy consumption and mechanical automation, an industrial rev-
olution was born in Britain. Unprecedented, society witnessed the enormous conve-
nience brought about by this new form of energy source; brewing at the same time
the capacity for economic and political dominance for countries that had monopoly
on these energy sources. But decades of reliance on burning fossil fuel come at a
cost insofar its position has come increasingly threatened. One of the by-product of
combusting carbon-based chemical is carbon dioxide (CO2), which is the result of a
chemical reaction between the chemicals and oxygen molecules (O2). It is believed
by the majority that this chemical compound is the primary culprit responsible for
degrading the efficiency of heat dissipation in the atmosphere, serving effectively as
a catalyst that breaks the radiative balance of Earth. According to many established
observational data collated and accumulated over the years and across the world, a
consistent correlation between CO2 concentration level and average temperature dif-
ference relative to the pre-industrial age was observed. Using extraction techniques
such as the ice-core drilling on ice glaciers around the world, a detailed reconstruc-
tion of CO2 mixing ratios, predating back to as far as 50,000 years ago, was possible
and provided important clues to the anthropogenic changes of greenhouse gasses in
the atmosphere over the course of the millennium. Unsurprisingly, as reported by
Etheridge et al. (1996), as much as 25% increase in CO2 concentration was observed
in the post-industrial era. These studies all point to a convergent theme; a need to
reduce the dependence on fossil fuel not primarily because of their limited supply
(this is certainly not the case since the extraction of shale gas at utility scale began
operation in 1821 in the United State), but because of the overwhelming evidence
that these anthropogenic changes in CO2 level and other by-product chemicals have
had a detrimental and irreversible effect on the global ecology.

At the turn of the 20th century, the unsustainable character of fossil fuel was
gradually being realised. Together with severe pollution events attributed to poorly
regulated emission of hazardous particulate matters from factories in the chemical
and steel sectors as well as from vehicle exhausts, the development and adaptation
of alternative forms of energy production were overwhelmingly in favour in the
public opinions. The term renewable energy is derived from the desire for an energy
source that is virtually limitless in supply (being able to self-replenish in the human
scale of time) and is able to avoid the costly environmental impacts that have come
to associate with burning fossil fuels. Many forms of renewable conversions have
developed and implemented at an accelerated rate around the globe. The most com-
mon forms of renewable energy are: solar, wind, tidal, wave, biofuel, hydroelectric
and geothermal. These constitute a family of energy supply chains whose position
in the global energy supply market is being increasingly dominant in past years. The
REN21 (2019) report highlighted this trend (see Figure (1.1)). With a rising installa-
tion base and strong initiatives in government policies to pursue greener economy,
it is seen as a matter of time before renewable could displace fossil fuel as the main
source of supply in the coming future.

The ultimate aim of this thesis is to contribute the development of this trend in
significant way by concentrating on one particular aspect of the renewable wind
energy.
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FIGURE 1.1: Estimated renewable energy share in 2019 (REN21,
2019).

1.2 Wind energy

Wind energy refers to the potential energy conversion that uses the movement of air
in the atmosphere (kinetic) to convert to other useful forms of energy such as electri-
cal or mechanical. When different parts of the Earth are heated non-uniformly, some
regions of air expand and rise, separating distinct zones in space characterised by
regions of high pressure and low pressure. Air is transported by virtue of molecular
diffusion and pressure difference (high to low). It is this indirect correspondence be-
tween solar heating and air movement that merits the name "indirect solar energy".
Despite its abundance in nature, it is only recent that wind energy is recognised as
the main competitor in large-scale energy production. However the history of wind
in civil applications goes back as early as 5000 B.C, where people had learnt to har-
ness the power of wind to help propel boats and build "windmills" for pumping
water, grinding wheats and improving food production. At that stage, the use of
wind energy was still quite limited in the sense that they had been used in relatively
small tasks. It was only in the late 19th century, where people used windmill for
generating electricity. But the scope of this ingenuity still confined to localised and
often isolated communities.

At the turn of the 20th century, utility-scale wind farms began to popularise in
the United State. Being able to generate electricity at the same magnitude as that
of the conventional coal-powered station, wind energy was heralded as a serious
contender. But in 1940s, due to a combination of low oil prices and the lack of polit-
ical far-sight, most of the research and development (R& D) in wind turbines were
marginalised. This trend continued into the 1970s. Stimulated by the oil crisis in
1974, a renewed focus on renewable energy was imminent, which marked the offi-
cial re-entry into the energy sector by renewable energies. Although in recent years
investments in the wind energy sector have been relatively dwindled in the United
State, but elsewhere in Europe and Central Asia, especially in countries such as Ger-
many and China, interests in turbine technologies and wind-farm optimization re-
main relatively high as is evident in the REN21 report.
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FIGURE 1.2: Schematic of the operation of a drag device

1.3 Wind in civil applications

The earliest use of wind is in the propagation of ancient sailing boats. This is the
earliest example of what is known as the drag-device, which operates on the principle
that the device extracts/dissipates power from the wind by the velocity difference in
the windward/leeward direction. A typical drag-device is shown in Figure (1.2). To
facilitate the discussion, it is necessary to give the definition of the term drag. In this
thesis, the drag is referring to a force that is aligned parallel to the local flow velocity
as is seen from the frame of reference of the device. Therefore the term drag device
simply refers to a mechanism whereby power is generated/dissipated by this force.

The magnitude of power that can be extracted is dependent on the device’s pro-
jected surface area and the relative speed. In fact, if P is the extracted power, U∞
is the wind speed in some direction and U is the speed of the device translating in
the same direction as the wind, then a simple relationship exists between the state
variables:

P =
1
2

ρ (U∞ −U)2 ACDU, (1.3.1)

where ρ, A, CD are the fluid density, projected surface area and the coefficient of
drag, respectively. For this reason, early drag-devices tend to increase its projected
area in order to increase the power of extraction. A typical example for this design
philosophy is the Chinese Junk, which is an ancient Chinese sailing ship that has a
wide span of rectangular sail, which is designed to capture as much power as possi-
ble (see Figure (1.3a)). Whilst this design principle had existed for many years, but
drag-devices for power generations are generally considered inefficient, especially
when it comes to wind turbine technology. This is because in typical engineering ap-
plications the value of the drag coefficient CD can be quite small (especially in high
speed flow around streamlined body), whereby the device has to either increase its
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(A) Chinese
junk ship

(B) A Typhoon
deploying

parachute

FIGURE 1.3: Examples of drag devices.

projected area or increase its translational speed in order to compensate for it. But
adjusting to those changes would sometimes result in expensive engineering cost
and challenges. Notwithstanding the fact that U can only be increased to an opti-
mum value before maximum is reached. The maximum power for such device is
then limited to 14.8% for a given drag coefficient.

Despite their low efficiency in generating power, dissipative drag devices are
commonly deployed in applications such as sailing, parachuting and aerodynamic
braking as seen in high speed landing of aircrafts due to their simplicity in project-
ing a large surface area in a short span of time (Figure (1.3b)) and their favourable
dependence on speed. Using Eq.(1.3.1), for a dissipative drag-device translating at
speed U in a medium of stationary fluid with density ρ the rate of losing kinetic
energy is then:

Ploss = −2ρU3ACD. (1.3.2)

Clearly, for a simple dissipative drag-device, the power loss varies to the cube of
the speed, which amounts to an efficient way of reducing excess speed in conditions
where this reduction is required in short span of time as in the case of a high-speed
fighter aircraft needing short distance landing and recovery. Whilst this is good for
this type of applications, but for other applications where power is to be generated
(rather than dissipated), this mechanism is not sufficient.

In contrast, however, a lifting device uses the aerodynamic property of fluid to
generate a lift force, which, by definition, describes a force that is aligned in the di-
rection perpendicular to the local flow direction (see Figure (1.4)). Indeed, studies
into lifting-driven devices were the main contributions that gave rise to the aeronau-
tical industry (including fixed-wing and rotor-type aircraft) and many modern wind
turbines were indeed designed to be propelled by those lifting devices. A compar-
ison study by Wilson et al. (1976) suggests the efficiency of a lift device in power
generation can be as great as 300 times of that of a drag device for a given square
meter of area. Whence it is more common to find, for example, turbo-machineries
and utility-scaled wind turbines be mainly based on this kind of principle for power
extraction. However, realistic engineering systems seldom produce a single type of
force, but a combination of lift and drag.
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FIGURE 1.4: Schematic of the operation of a typical lifting-device. The
turning force is produced via a combination of lift and drag forces,
which are functions of the angle of attack (AoA). Typically, the lift
force produced by the lifting-device is a magnitude larger than the

generated drag force.

1.4 Wind mills and wind turbines

In order to provide clarity to the concept of wind turbine, it is necessary to distinguish
the difference between a wind mill and a wind turbine. The central difference lies in
the applications of which these machines are intended for. Traditionally, wind mills
are placed in the agricultural context in which they are to be used for grinding food
crops, pumping water and perhaps small-scale electricity generation. Wind turbine,
on the other hand, is exclusively used for electricity generation. Whilst sometimes
these two terms are used interchangeably, but it is important to bear in mind that
such difference exists.

All wind turbines operate on two separate principles from which kinetic energies
of air molecules are extracted. They can be broadly classified as lift-based, or drag-
based. A very common wind turbine topology is what is known as the horizontal
axis wind turbine (hereafter abbreviate as HAWT). These consist of finite number of
blades attached to a rotor, which is mounted to a tower. The rotor shaft is connected
to either a gearbox or the generator. The rotor shaft is placed in a horizontal plane
relative to the blades, thus explaining the rationale of the name. HAWTs extract en-
ergy by converting the mechanical torque impacted by the air particles on the blades
to drive the shaft, which turns the generator to produce an electrical current, which
can then be stored in batteries or distributed to the national grid. The induced me-
chanical torque is mainly derived from the lift force generated by the fluid flow (see
Figure (1.4)). In order to capture a stronger wind, taken account of the natural atmo-
spheric boundary layer of wind speed variation, the central unit encompassing the
rotor and the generator housed in the nacelle (also known as the hub) is normally
placed at a height which scales in accordance to the rated power output, so for ex-
ample, the DOE/NASA Mod-5B prototype built in 1988 has a rotor span 97.5 m at hub
height 61 m which operated at a power rating 3.2 MW. Clearly, higher wind speed
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could be achieved by placing the hub at a higher elevation, but this would entail ad-
ditional engineering costs. Thus, most utility-scale HAWTs seem to compromise at a
certain height (see Table 1.1 for the different HAWTs in commercial use) - optimising
the cost function that balances the cost of operation/installation capitals versus the
power generation.

Name of turbine hub height (m) rotor span (m) rated power (kW)
DOE/NASA MOD-5B (HAWT) 61 97.5 3200

GE 1.5s (HAWT) 64.7 70.5 1500
DOE/SNL (VAWT) 34 17.4a 500

TABLE 1.1: Some examples of utility-scale HAWTs and VAWTs.

aThe rotor span of the VAWT is calculated by the formula
√

S/π, where S is the sweep area.

HAWTs have been the subject of intense interest in the engineering community.
Indeed, since the inception of wind mills, this form of turbine topology has existed
long before other wind turbine designs had emerged, as both types of machines
essentially share the same principle. Whilst this topology has found commercial
success, but it is hard to ignore some of its most severe limitations. First of all, it
is well known that the biggest disadvantage of such a machine is the requirement
of land and its inability to scale. Specifically, in order to operate at a nominal level
and to provide enough power, the rotor radius of a HAWT ranges in a typical length
scale comparable to the hub height. During a single passage of the blades, the swept
area of the rotor can reach more than 11309.7 m2. Additionally, in compensating
for wake losses, downstream turbines are typically placed between 7 to 10 rotor di-
ameters apart, which signals a significant amount of land requirement. Any effort
to scale down HAWTs will prove futile as doing so could quickly lead to a signif-
icant loss in power efficiency and not to mention the logistical and environmental
difficulties (blockage of birds’ migration route, noise, electromagnetic interferences
in communication stations) in installing one in an urban setting as well as the com-
plex engineering challenges to optimise the turbine configuration for adapting to
the complex free-stream profile such as the inclusion of yawn control, variable-pitch
mechanism, etc. As a result, it is necessary to construct wind farm away from urban
areas, where the demand for land is less restrictive and environmental problems can
be relatively easy to overcome. However, it should be noted that this might not al-
ways be the optimal solution as it is rather expensive to reconnect new grid lines if
the location of the wind farm happens to be outside of the vicinity of the national grid
network.

Little is known in the public domain that there is another type of wind turbine,
which goes by the acronym VAWT (Vertical Axis Wind Turbine). Similar to HAWT,
these machines use the same physics to extract energy but differ in the geometric
orientation of the rotor shaft. Instead of placing in a horizontal plane relative to
the blade, the shaft of a VAWT is fixed permanently in a vertical position. Thus, all
electricity-generating components are located at ground level; offering the unpar-
alleled advantage of accessing the service units more easily compared to HAWTs
whereby service-men would have to conduct maintenance work inside the nacelle.
Despite the fact that the concept of a vertical-axis wind mill, from which VAWTs are
derived, have been in existence equally as long as the horizontal ones, interests in
utility-scale VAWT have only been recent compared to the long history of Horizon-
tal wind turbines. Partly, this is because these machines are perceived by many that
their efficiencies are far inferior to their horizontal counterpart. But as Paraschivoiu
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(A) GE 1.5 MW 1.5s
HAWT

(B) Main components of a
wind turbine

FIGURE 1.5: (A) shows the GE (General Electric) 1.5 MW HAWT. (B)
illustrates the major components constituting a wind turbine.

(2002) has noted, this is not quite the argument as he continues to argue that the
reason that propelled HAWT to where it is now is because of the immerse volume of
researches that have dedicated for the subject. The same can not be said regarding
VAWTs. However, with the emergence of new technologies and state of the art re-
searches on their aerodynamics, VAWTs have shown that they too can compare and
even exceed some aspects of HAWTs in certain areas, which make them especially
attractive.

VAWTs come in various forms. Unlike their horizontal brethren, VAWTs can be
propelled either by a drag-device or a lift-device. For cases in which utility-scale is
sought, most VAWTs were lift-based. Perhaps the earliest and most studied VAWT
is of the Savonius type (see Figure (1.6a) and Figure (1.6b)). Due to their simplicity in
the manufacturing process, which can be made by cutting a barrel in half and invert-
ing the other half and welding them together, this design is popular in areas where
access to electricity is difficult. Unfortunately, being predominantly a drag-based
turbine, its efficiency is severely inhibited - rendering it rather limited in terms of
power output. Other VAWTs designs tried to mitigate this shortcoming by propos-
ing a lift-based mechanism. These designs made uses of the fully developed theory
of lift-based aerofoils whose performance characteristics had been fully understood
both theoretically and experimentally. Perhaps, the most interesting example of a
lift-based turbine is what is known as the curved-blade Darrieus turbine (Figure
(1.6c)). The blade of these machines is necessarily curved and arranged in config-
uration known as the ideal Troposkien curve, which is a curve formed naturally by
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(A) Savonius ro-
tor

(B) Schematic of
the Savonius ro-

tor

(C) Sandia 17m
Darrieus rotor

(D) 4Navitas
5-bladed
H-type rotor

FIGURE 1.6: Various VAWT designs in the market.

an inextensible string rotating at constant angular velocity. Thus at any given in-
stance of time, the shape of the blade is found by balancing the gravitational force,
centrifugal force and the tension in the string in the normal and its perpendicular di-
rection. Paraschivoiu (2002) gave an explicit derivation of the equation for the blade
shape. Initially, this curve was chosen for its structural properties (minimum struc-
tural stress) but because it bears close resemblance to the parabola or the catenary2,
it is found more practical, in terms of the manufacturing process and aerodynamic
analysis to approximate the ideal Troposkien curve by means of a parabola, catenary
or a combination of straight/circular arc.

As the concept of VAWT becomes more mainstream, many researchers have

2a catenary is a curve formed naturally by a piece of flexible string whose ends are fixed at two points
on the same horizontal plane. It can be found by solving the force balance between the gravitational
force and the intrinsic tension
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come up with ingenious designs which hope to improve the general performance
of a vertically axis wind turbines. But from a business point of view, those designs
are yet to prove successful as they tend to be overly complicated to be implemented
at a commercial level for various reasons. Thus a more simplified solution is to be
sought. A general trend is observed in recent years which seems to congregate focus
to straight-bladed Darrieus rotors known by various name such as the Giromill and
H-type. Those carry the concept of the original curved-bladed Darrieus rotor, but
the blades are now being replaced by straight vertical sections that consist of a sin-
gle type of aerofoil supported by spreaders. One such example is the 4Navitas’ new
55-kW straight-bladed Darrieus with a range of configurations suited for various
wind speed conditions (Figure (1.6d)). The biggest advantage of this design which
holds over its curved-bladed variant is its simplicity in production and aerodynamic
simulations as it avoids the complicated structure of having tapered section of the
blade with different aerofoil cross sectionals. However, it should be noted that since
this design deviates from the ideal Troposkien curve, there is a tendency for a con-
centrated centrifugal stress to be built up in the blade as it rotates. This problem is
partially resolved by using new material and structural design solution.

1.5 Wind turbine parameters

Studies into turbine designs have revealed several important parameters that de-
scribe the general characteristics of their performance. Depending on the specific
role that the turbine is designed for, the trend is to optimize certain cost function
which chiefly scales on those primary variables. Spera (2009) has shown that the
most important cost function to maximize is the annual energy output, which is de-
termined from the energy of the wind and the efficiency of its working components.
Thus, by defining the coefficient of energy CE as:

CE =

∫
year PO dt∫

A

∫
year PW dt dA

, (1.5.1)

where

CE = coefficient of energy,
PO = system output power (W),
PW = wind power density (W/m2),

A = projected swept area of turbine rotor in the vertical plane (m2),
t = time (h).

Efforts should be made to optimize the quantities PO and PW which intrinsically
relate to turbine design specification and site selection, respectively. For a compre-
hensive review of the importance of these variables, the reader is referred to the book
by Spera (2009).

Typically, the site selection determines the various parameters existing in the
term PW . The term PO, however, is determined from the turbine itself, which relates
to key primary variables such as the type of aerofoil employed in the cross section of
the wings, the nominal tip-speed ratio, the blade solidity, swept area of the turbine,
Reynolds number cetera. The definitions of some of these terms will be discussed in
this section as well as their important roles in the determination of the annual energy
production.
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Perhaps, the most important parameter in determining the performance of a par-
ticular turbine is its power coefficient, CP, which specifies the amount of power that
can be extracted from wind source. Since the power coefficient is a function of the
tip-speed ratio (TSR), the performance gauge of a particular turbine often expresses
in terms of the power-versus-TSR curve or simply as power curve.

For a H-type Darrieus VAWT operating at a constant angular velocity, the tip-
speed-ratio TSR is found by:

TSR =
RΩ
|u⃗∞|

(1.5.2)

where R, Ω, u⃗∞ are the rotor radius, angular velocity and free-stream velocity respec-
tively. In addition, the solidity of the rotor also affects the performance characteristic
of the turbine, and it is defined in this thesis as

σ =
Bc
R

(1.5.3)

where B, c, R are the number of blades, chord length and rotor radius respectively.
Many experimental and theoretical investigations have been done in the past to

examine the effects of varying the said parameters. Although there is no univer-
sal consensus that the turbine is to be built in one optimal configuration, there is a
large variation in the number of design parameters that could influence their specific
choice. Paraschivoiu (2002) outlined a common dilemma faced by turbine designers.
At a given σ, the power coefficient obtains a maximum as the tip-speed-ratio varies,
which implies the turbine should ideally be configured to work within this range of
tip-speed-ratios. However, in reality, due to various reasons such as in low wind or
structural limitation, it is not always the case that this operating condition can be
achieved. In those circumstances it is a matter of urgency to inspect how the power
curve behaves in regions that are outside of the local maximum. It can be shown
that a compromise has to be made whether manufacturers favour a σ that produces
the best maximum power coefficient but quickly decreases as TSR deviates from the
local maximum or should they adopt a σ that maintains a relatively constant value
throughout a relatively large range of TSR; thereby extending the range of optimal
operating conditions. It is no simple matter to answer this sort of questions as it
also depends on the choice of site on which the turbine is to be built and the me-
teorological profile of the location as well as other environmental and engineering
considerations.

The Reynolds number Re, though not shown explicitly, is critical in aerodynamic
prediction models. It is important for two reasons. First, it governs the physics
foundation on which the prediction models are based on. It can be argued that any
assumptions made in the model need to be consistent with the physics, otherwise
it will quickly lose its predictive value. Secondly, the Reynolds number plays a role
in marking the critical point at which physical processes might undergo transition
which is very common in aerodynamic. The transition from laminar and turbulence
has deep implication to the validity of certain flow prediction methods. Early simple
prediction methods completely avoided this transition, resulted in a limited scope of
applicability (i.e. based on steady assumption and avoided spatial turbulence mod-
elling). However, as will be shown later, large-scale unsteady turbulence structures
are important in resolving a detailed aerodynamic picture of the flow field, which
also determine the aerodynamic performance of not just the turbine unit but also the
wind-farm performance in realistic operational conditions.
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1.6 Recent research into VAWT wind-farms

It has been recently identified that VAWT wind-farms could potentially offer a sub-
stantial improvement to the power density (per unit of land surface area) for a
counter-rotating turbine array (Dabiri, 2011) compared to HAWT wind farm. This
result motivates the needs to study the aerodynamic properties of the mutual inter-
action between turbines as a function of the separation distance. Several computa-
tional studies have been done in the past on the effect of pair-wise placement of the
VAWT rotors (Feng et al., 2014; Parneix et al., 2016; Zanforlin and Nishino, 2016).
The collective efforts of the past works have indicated the positive effect of placing
the VAWT rotors close together and thus taking advantages of the increased flow
speed in the blockage region. A range of approaches with varying degrees of reso-
lution have been developed for this purpose. For example, Feng et al. (2014) used a
combination of free-vortex model and the Jensen wake model to simulate the effect
of multiple rotors in a farm. The Jensen wake model is an empirical simplification
to the turbine wake that models the effect of interacting turbines via a simple super-
position law based on momentum conservation (Jensen, 1983). The expansion of the
wake is empirically modelled by a linear rate, which results in the limited applica-
bility of the method to study the detailed wake structure. On the other hand, Zan-
forlin and Nishino (2016) applied a computational fluid dynamic (CFD) approach to
study the detailed interaction for a range of wind incident angles for a pair of closely
packed VAWTs. Their results show, at certain incident angles, enhancement to the
power outputs is achieved owing to the wake suppression of the upstream rotor. For
a lateral placement of the rotors, the study of Parneix et al. (2016) points to a similar
trend.

Although the CFD is the most accurate approach to date, but the expensive na-
ture of the method prevents it from being used as a fast design tool due to the com-
plicated requirement of setting up the problems and the large amount of computing
resources to obtain a converged solution (typically requiring a high performance
computing (HPC) platform). Similarly, other engineering methods in the literature
are mostly limited to small scale problems in which the quadratic scaling is still
tractable. However, when extending to large problems, those methods proved to be
too inefficient to be a viable alternative. In this context, one resolution is to develop
a more efficient algorithm that takes advantage of the recent computing trend. The
aim of this thesis is to develop an engineering approach coupled with the use of
general purpose graphics processing units (GPGPU) to accelerate the calculation so
as to achieve a fast solution time obtainable via a local workstation. In this way, the
technique developed can be used in optimization problems in a wide range of wind
turbine applications. Specifically, the use of a fast technique is an absolute necessity
if one is to optimize the wind-farm configuration by exploring the large parametric
space. The developed codes in this thesis aims to fulfil these requirements.
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Chapter 2

Literature review

2.1 Turbine aerodynamic performance prediction methods

2.1.1 The classical Blade-Element-Momentum theory

In aerodynamic load analysis of wind turbines, one popular strategy is the Blade El-
ement Momentum theory developed by Glauert (1947). The approach approximates
the rotor of a HAWT as a semi-permeable surface whose role is to induce an aerody-
namic force to the fluid flow passing the rotor plane. As a result, the axial velocity of
the free-stream is slowed down in the near wake. Power is thus extracted by virtue
of momentum conservation. A key question is then to address how much the fluid
has to slow down near the rotor plane in order to account for the correct physics?

The induction factor (a) is defined as the normalized axial velocity difference
between the upstream and downstream part of the rotor. Assuming a is fixed, it is
found that the power coefficient is related to the induction factor as follows (Hansen,
2008):

CP =
P

1
2 ρ|U⃗∞|3A

= 4a (1− a)2 . (2.1.1)

By differentiating with respect to the axial induction factor a, it is easy to see that
this occurs at a = 1/3, with which the maximum value of CP is obtained at 16/27
- corresponding to the classical Betz limit. Classical blade-element momentum the-
ory draws on the assumption that the rotor is approximated by a rotor disk which
contains the assertion that it is consisting of infinite number of blades, whilst this
assumption is valid in the range of value of a for which a < 0.4, but it is far from
what is observed in experiments. The discrepancies can be attributed to two causes:
firstly, since the blade is modelled as a form of an actuator disk, a correction has to
be applied in order to account for finite number of blades. Prandtl’s tip-loss factor
correctly accounts for this deficiency. Secondly, because the integrated force on the
porous rotor surface scales with the axial induction factor and that the axial wake
lost increases as a increases (corresponding to heavily loaded blades), this creates a
distinct shear layer on the boundary of the stream-tube for which fluid outside the
tube is inevitably transported to the wake by physical processes such as turbulent
eddy mixing and momentum diffusion, which are strong unsteady effects. Exten-
sive data fitting with experimental results allows an empirical correction to be made
in regards to this unsteady effect. While the unsteady correction is empirical in na-
ture, but for many practical applications and especially in turbine design space, it is
deemed sufficient to yield a reasonable solution. Typically, the blade element mo-
mentum approach precedes an iterative scheme. Discussed by Hansen (2008), the
axial and circumferential induction factors (a & a′ respectively) are first estimated,



14 Chapter 2. Literature review

from which the angle of attack is determined. Proceeded by the normal and tan-
gent force coefficients, the corrected axial and circumferential induction factors are
obtained by the momentum conservation equations. i.e.

a =
1

4F sin2 ϕ
σCn

+ 1
, (2.1.2)

and
a′ =

1
4F sin ϕ cos ϕ

σCt
− 1

(2.1.3)

where F, ϕ, Cn and Ct are the Prandtl’s tip-loss factor, the angle of the relative ve-
locity with respect to the axis of translation, coefficient of the normal force and the
coefficient of the tangent force, respectively.

The blade-element momentum method has been similarly developed for the
VAWT. The implementation of the approach for any degree of practical use, how-
ever, is a lot more difficult thanks in part to the increased complexity of the flow
field past such rotor. As a first approximation, Glauert’s element theory can be ap-
plied to a single stream-tube past the entirety of the rotor plane. The induced ve-
locity is thus assumed constant and emerges as part of the solution. This method
subjects the same limitation as in the case of the classical blade element applied to
HAWT. Therefore, it is not unusual to find that the theoretical result from the early
single-streamtube approach to deviate quite substantially from test data. However,
such method is not to be discredited as it has shown time over time the capacity to
correctly predict the maximum power coefficient for a given σ. Strickland (1975) de-
veloped the idea further by splitting the rotor plane into a collection of streamtubes;
each with a different induction velocities. This results a stream-wise velocity dis-
tribution with respect to the two spatial coordinates. The approach, coined multiple
streamtube, is similar in nature to the blade-element momentum theory in that the ax-
ial induction factor is calculated iteratively for each streamtube. The DART computer
program, developed from Strickland’s multiple streamtube approach, significantly
improves the predication performance over the single stream tube approach. How-
ever, care should be exercised in applications where detailed flow field is sought.
The method relies on the time-average formulation of the momentum equation and
therefore the instantaneous information of the flow field are lost during the force
computations as Strickland noted himself, namely:

While this approach is somewhat elegant in its simplicity and predicts
overall performance rather well for lightly loaded blades, it is incapable
of adequately predicting information which requires a more precise knowl-
edge of wind velocity variations across the rotor (Strickland, 1975).

2.1.2 Double Multiple Streamtube

The close match between experimental data and the streamtube model, together
with a substantial reduction in execution time compared to CFD, has made the ap-
proach quite favourable. A unique challenge that is present to all aerodynamic mod-
elling of VAWT is the complex interaction between the wake and its blades during
the downstream passage, early multiple streamtube models were unable to take into
account of this effect as they tend to assume a constancy of the induced velocity
throughout the interior of the rotor. Although experimental data show good agree-
ment for low tip-speed ratio, those methods generally break down for a substantial
range of tip-speed ratios.
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A natural progression from the multiple-streamtube is to model the VAWT as
two actuator disks in tandem. Coined double multiple streamtube (DMST), this type
of approach, developed by Paraschivoiu (2002), has shown improvements in per-
formance predication. Moreover, the code CARDAAV based on the double stream-
tube model has acquired the capacity to predict the load in different flow condi-
tions including, shear flow, dynamic stalling, tower shadowing, etc. The original
CARDAAV has since evolved to many forms such as CARDAAX and CARDAAS-1D/-3D

(Paraschivoiu et al., 2009).
Although CARDAAV is computationally inexpensive, but it suffers the same draw-

back like many of the streamtube methods discussed earlier. Much of the criticism
has been focused in the non-expansiveness of the streamtube geometry. Although
the conventional DMST agrees well with experimental data as a whole, but agree-
ment is limited to certain part of the azimuthal. A detailed description, drawing
from the insights gained from experiment and other more accurate measures, re-
veals that the wake does expand as fluid flowing past the rotor plane due to the dif-
fusion effect. Further, Madsen (1982) has warned of the inherent limitation in model-
ing VAWT as actuator disks. This modelling assumption of which most streamtube
method are based on does not allow the wake to deform. As such, Ferreira (2009) has
attributed the deficiency of such assumption to the lack of expansion of the stream-
tube. A more refined streamtube method is then to model an interference factor
that is aligned in the perpendicular direction of the flow, this is relevant particularly
when significant misalignments are observed between the free-stream and the wake
velocity in the near wake region. Madsen (1982) formulated the expansion in the
form of the an actuator cylinder, in which the geometry of the rotor is modelled as a
porous surface formed in the shape of a circle. The purpose of the porous cylinder
is to exert a radial force to the fluid. The method however requires the implementa-
tion of CFD simulation, therefore the method outlined by Madsen does not strictly
fit in with the description of the streamtube class. Ferreira (2009) proposed the cross
stream interference factor be formulated in terms of the doublet source whose role
is to induce a velocity potential given by:

ϕdoublet = −
µ⃗ · r⃗
4πr3 (2.1.4)

where µ⃗ is the doublet strength vector and r = |⃗r| is the radial length between the
source and the point of interest. The cross-stream interference factor a⊥ is deter-
mined from the induction velocity of the doublet-source panels (Katz and Plotkin,
2001). With this coupling between the conventional DMST and panel approach, Fer-
reira has seen a substantial gain in accuracy in terms of the azimuthal variation of
the normal and tangential force distributions. However, this empirical correction,
whilst accurate in predicting the variations of the turbine parameters, suffers the
same deficiency as other streamtubes. Therefore, it is incapable of predicting the
wake characteristics.

2.2 Computational fluid dynamics (CFD)

As the advent of more computational prowess promised by the Moores’ law, high
fidelity simulations now seem within grasp using mainstream workstations with
moderate computing set-up. One of the key convenience brought about by this
exponential increase in computing power is the possibility of simulating the fluid
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dynamic directly from the governing equations. This section reviews some of the
methodologies that are currently being employed in most commercial CFD codes.

2.2.1 The governing equations

The governing equations of fluid dynamics exist in various forms. Depending on the
significance of the various physical processes that take place in the actual problem,
the governing equations of fluid dynamics change accordingly. In low speed dy-
namic, a concept that will be made clear in subsequent discussion, the most prevail-
ing form of the governing equations is based on the infinitesimal balance between
inertial and internal stresses, which could be interpreted as a particular case of New-
ton’s 2nd law. Since it is never the intention of this thesis to provide a comprehensive
detail on the mathematics, the reader is referred to the book by Batchelor (1967) for
detail. The full set of equations are described relative to a Cartesian frame as follows:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= − 1
ρ

∂p
∂x

+ fx +
2
ρ

e⃗x · ∇ · τ, (2.2.1a)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= − 1
ρ

∂p
∂y

+ fy +
2
ρ

e⃗y · ∇ · τ, (2.2.1b)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= − 1
ρ

∂p
∂z

+ fx +
2
ρ

e⃗z · ∇ · τ, (2.2.1c)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (2.2.1d)

Here, Eq.(2.2.1a), Eq.(2.2.1b), Eq.(2.2.1c) are referred to as the momentum equations
and Eq.(2.2.1d) is the continuity equation from which the variables u, v, w, p com-
pletely characterize the solution of the flow problem, and fi, e⃗i, i = x, y, z are the
volume force in the 3 directions and the unit vectors in each of the direction respec-
tively. ∇, τ are the typical Laplacian operator and the tangent stress tensor. Here,
the assumption of low speed is particularly important for the fact that the density ρ is
assumed constant and that any thermodynamic processes are essentially in equilib-
rium. This ensures the microscopic mean path of molecules is much larger compared
to the length-scale of thermal diffusivity, hence heat exchange between layers of fluid
molecules can be essentially ignored. It should be noted that at high-speed applica-
tions (Mach number of the flow approaches unity or above) or situations in which
heat-exchanges are dominant, the assumption of constant density and the equilib-
rium nature of thermal exchange breaks down. This is evident in the shock-wave
produced on an aircraft undergoing supersonic transition as the shock-wave serves
to alter the density across the shock line quite dramatically and induce a significant
heat production or the simple observation of the induced fluid current generated in
a boiler.

When the fluid is Newtonian, a simple law exists between the stress and the
strain. By assuming that the stress is a linear function of the strain, τ then becomes:

τ =
µ

2

(
∇u⃗ +∇T u⃗

)
, (2.2.2)

where µ is the dynamic viscosity. Substituting Eq.(2.2.2) to Eq.(2.2.1) and utiliz-
ing the continuity equation Eq.(2.2.1d), the Navier-Stokes equations are recovered,
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namely
∂u⃗
∂t

+ u⃗ · ∇u⃗ = −1
ρ
∇p + f⃗ + ν∇2u⃗. (2.2.3)

Eq.(2.2.3) and Eq.(2.2.1d) form the basis for many fluid problems. Furthermore, by
changing each physical variable to its non-dimensionalized equivalence, the Navier-
Stokes equations can be reformulated as:(

L
TU

)
∂u⃗∗

∂t∗
+ u⃗∗ · ∇∗u⃗∗ = −

(
p0

ρU2

)
∇∗p∗ +

(
L f0

U2

)
f⃗ ∗ +

( ν

UL

)
∇∗2u⃗∗. (2.2.4)

where L, T, U, p0, f0 are the characteristic values of the flow variables x⃗, t, u⃗, p, f⃗ , re-
spectively. The importance of this formulation is its ability to inform modelers the
relative magnitude of the terms in the equation. For example

St =
ωL
U

, (2.2.5)

with ω = 1/T, is the Strouhal number, which is used to indicate the strength of time
dependent phenomena. Perhaps, the most important quantity that merits special
attention is the Reynolds number defined by:

Re =
UL
ν

, (2.2.6)

which quantifies the importance of viscous effect on the fluid. In engineering appli-
cations where advection is typically the dominant process, it is possible to neglect
the viscous diffusion term altogether - resulting in the Euler’s equations. Although
viscosity tends to be unimportant in the majority of the fluid domain, but it does
impact on the accuracy of the solution in regions close to solid walls. Part of the
difficulty is that by neglecting the viscous term, the ’no-slip’ boundary conditions
cannot be satisfied by the Euler solution. One way to resolve this matter is to em-
ploy an analytical technique, which matches the solutions asymptotically at each
regions (Wolles, 1968).

2.2.2 Direct numerical simulation (DNS)

As a first attempt, one might incline to solve Eq.(2.2.1) by brute force. Together
with the ’no-slip’ boundary conditions and initial condition, a numerical solution,
subjecting to those constraints, is theoretically possible to obtain. Direct Numerical
Simulation (DNS) is the most accurate method to date, which attempts to resolve all
of the length-scales and time-scale existing in the fluid-flow by producing an ade-
quate mesh fit for those requirements. The Kolmogorov scale is the smallest relevant
spatial scale with which the mesh needs to resolve. Defined as

η =

(
ν3

ϵ

)1/4

, (2.2.7)

this serves as the spatial range in which the dissipation of turbulence kinetic energy
(representing by the term ϵ) is balanced by the viscous diffusion. If the mesh resolu-
tion is to be characterized by a spatial step-length h, then h ≤ η in order to simulate
this dissipation phenomenon. Furthermore, if the number of nodal points N along a
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mesh dimension scales with 1/h, it can be shown that N scales with

N ∝ Re3/4. (2.2.8)

For a 3-dimensional DNS simulation, a minimum number of grid nodes then propor-
tionates with Re9/4 for each time-step (Pope, 2000). Although it requires no empiri-
cal model for turbulence modelling, but the expensive dependence on the Reynolds
number of the grid nodes hinders it from any practical use in the wind industry.
A direct DNS approach is yet to be carried out by researchers working in the wind
energy and it will probably remain to be untouchable in the near future for its ex-
pensive cost.

2.2.3 Turbulence modelling

The unfortunate case of a DNS simulation necessitates the means to reduce the costly
dependence on the Reynolds number while at the same time produce solutions with
reasonable accuracy. Through experimental observations, one of the principal char-
acteristic associated with turbulent flow is the inherent unpredictability of the flow
field both in the temporal and spatial domain, which seemed to produce small scale
stochastic fluctuations that quickly average to zero. It is a question of the modellers
whether those temporal or spatial fluctuations are of particular importance. In most
engineering applications, these small-scale fluctuations tend to play a smaller but
still significant role. Therefore efforts were expended in the past to pursue an under-
standing of how such fluctuations affect the solution. This pursuit has given birth
to several well-known turbulence models, all of which are empirical in nature. They
can be broadly classified into two groups - RANS and LES.

The acronym RANS is derived from the Reynolds averaging process of the Navier
Stokes equations. This is formulated by decoupling the flow velocity u⃗ into an aver-
aged component u⃗avg and a fluctuating component u⃗′, i.e.

u⃗ = u⃗avg + u⃗′. (2.2.9)

The Reynolds averaging has the property that ⟨u⃗′⟩ = 0, where ⟨·⟩ denotes the Reynolds
averaging operation. Upon applying the averaging operation to Eq.(2.2.1), the RANS
equations are derived:

∂u⃗avg

∂t
+ u⃗avg · ∇u⃗avg +

〈
u⃗′ · ∇u⃗′

〉
= −1

ρ
∇ ⟨p⟩+

〈
f⃗
〉
+∇2u⃗avg, (2.2.10)

where the linearity and commutativity of the averaging operator have been implic-
itly assumed. It should be stressed that the fluctuation of the flow field is regarded
as random and chaotic, therefore it is not necessary to derive information about u⃗′,
but to analyse the effects of fluctuation have on the mean flow field u⃗avg. This is
captured by the terms ⟨u⃗′ · ∇u⃗′⟩. The essence of turbulence modelling using RANS
is to effectively model such terms. Moreover, by applying the vector identity:

Aj∂j Ai = ∂j
(

Aj Ai
)
− Ai∂j

(
Aj
)

,

with A = u⃗′, together with the incompressibility of Eq.(2.2.1d), it is possible to ex-
press 〈

u⃗′ · u⃗′
〉
= ∇ · R,
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where R is a 2nd order tensor, which is known as the Reynold’s stress tensor
whose component is given by Rij =

〈
u⃗fluc,iu⃗fluc,j

〉
. The subsequent subsections set

out to explore the different physical rationales in modelling the Reynold stress tensor
R.

Turbulence models with the implementation of the RANS assumption are sub-
divided by the number of additional closure equations in the modelling process.
In addition, the nature of the turbulence is unknown a priori and therefore must
be assumed in the problem. Drawing from the similarity between the stress and
the strain rate tensor, a common practice in turbulence modelling is to employ the
Boussinesq hypothesis which assumes an explicit dependence of the deviatoric part
of the Reynolds stress on the mean-strain of the flow field u⃗avg (Pope, 2000), namely

R− 2
3

kI = −νt

(
∇u⃗avg +∇T u⃗avg

)
(2.2.11)

where νt is termed the turbulent eddy viscosity. It is crucial to state that the Boussinesq
assumption is valid if the statistical character of the turbulence is invariant under
the action of rotation - a condition referred to as isotropic. Not all turbulent flows are
isotropic. The experimental investigation of an isotropic turbulence flow undergo-
ing a contraction showed significant anisotropic characteristics. For this reason, the
implementation of the RANS models, which are predominately based on the crucial
specification of the Boussinesq hypothesis, need to be scrutinized case-by-case. But
having said that, it can be shown that the assumption has had found great success
in a large number of applications in the industry.

Together with Eq.(2.2.11), a solution for the mean-flow field u⃗avg is only possi-
ble if νt can be prescribed. The specification of νt constitutes what is known as the
closure problem. The simplest approach, the so called 0-equation closure, uses the
Prandtl mixing-length methods. These models assume that there is some length
scale, called the mixing length, where the fluid parcel undergoes transfer of momen-
tum by turbulent diffusion and maintains its ”identity” before being absorbed/mixed
into the surrounding fluid. On dimensional grounds, the eddy-viscosity has the unit
of l2t−1, where l is some small turbulent eddy length and t is some time-scale associ-
ated with these small eddies. As such it is customary to define the characteristic tur-
bulent speed, say uT, and an eddy length lm such that νt = uT lm where lm is known
as the mixing length. In his original postulation, νt has dimensional dependencies
expressible in terms of the mean strain rate as follows

νt = l2
m

∣∣∣∣∂uavg

∂y

∣∣∣∣
This model is relevant for flows where the dominant velocity gradient is ∂yuavg, such
as in mixing layers, jets, wake axisymmetric jets, boundary layers and pipes and
channels (Versteeg and Malalasekera, 1995). Since turbulence is a function of the
flow, the mixing length, in general, cannot be assumed to be constant but as a func-
tion of space. Additionally, the mixing length theory implies zero eddy-viscosity
whenever the strain rate varnishes, which is not physically possible and tenable.
Several alterations to the original formulation had been proposed (Doshi and Gill,
1970).

Although the 0-equation closure scheme was the earliest attempt to solve the
eddy-viscosity problem posed by Boussinesq. It is now known to possess several
weaknesses that limit its applicability in the wider general-purpose CFD commu-
nity. Typically, it limits the types of flows that the postulation is valid and it has not
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the ability to model separation or recirculating flows (Versteeg and Malalasekera,
1995). However, it does lend itself useful in near wall boundary treatment where
the velocity in the boundary is characterised by large strains in the normal direction.
Thus this is used in more sophisticated CFD codes where wall-treatment is required
(ANSYS, 2013).

A more well-known class of modelling approach is based on the k− ϵ two equa-
tion closure (Launder and Spalding, 1974). This approach examines the dynamic
behaviour of turbulence and attempts to bridge the limitation of the algebraic ap-
proaches such as the mixing-length models. It consists of solving two additional
partial differential equations (PDE) relating to the production and destruction of
turbulent kinetic energy and energy dissipation. The total kinetic energy of a fluid
parcel under the Reynolds decomposition law contains contributions from the mean
flow and its fluctuation. If k is defined as the kinetic energy per unit mass of the
fluid due to the fluctuating field, one could derive the exact equation for k from the
NS equations, i.e.

∂ρk
∂t

+ ∂i
(
ρkuavg,i

)
= ∂i

(
−
〈

p′u′i
〉
+ 2ρν

〈
u′jS
′
ij

〉
− 1

2
ρ
〈

u′ju
′
ju
′
i

〉)
− 2ρν

〈
S′ijS

′
ij

〉
− ρ

〈
u′iu
′
jSij

〉
.

where the primed variables correspond to the fluctuating variables and Sij is the
component of the averaged strain-rate tensor. The other modelling quantity, the so
called energy dissipation per unit volume of fluid ϵ, is defined by the term 2ν <
S′ijS

′
ij >. The exact equation satisfied by ϵ is too cumbersome to list here but may be

found in Pope (2000). Because of the primed variables, they give rise to terms that,
in general, cannot be measured or calculated. Specifically, Launder and Spalding
(1974) assumed that all third order terms, e.g. ∂i < u′i(−p′ + u′ju

′
j/2) >, are likely to

contribute to the transport of turbulent kinetic energy in a manner that depends on
the gradient of the transport quantity. With this assumption, the empirical equations
are then given by:

∂tk + ∂i
(
kuavg,i

)
= ∂i

(
νt

σk
∂ik
)
+ 2νtSijSij − ϵ, (2.2.12)

∂tϵ + ∂i
(
ϵuavg,i

)
= ∂i

(
νt

σϵ
∂iϵ

)
+ 2C1ϵ

ϵ

k
νtSijSij − C2ϵ

ϵ2

k
, (2.2.13)

νt = Cµ
k2

ϵ
. (2.2.14)

Here the k − ϵ model is controlled by 5 adjustable constants: σk, σϵ, C1ϵ, C2ϵ and
Cµ (Launder and Spalding, 1974; Versteeg and Malalasekera, 1995). RANS with
Eq.(2.2.12)-Eq.(2.2.14) is referred to as the standard k− ϵ model and it has been the
subject of extensive validations over the course of its inception. In particular, strong
agreement with experimental investigations in industrial flows reinforces the de-
gree of confidence in using the k− ϵ as a viable technique despite the hand-waving
approach in modelling the Reynolds stresses. In spite of its success, it is worth men-
tioning that several iterations of the methods have emerged which attempt to ad-
dress some critical flaws in the model. For example, the RNG iteration attempts to
improve the accuracy of the solution for rapidly strained flow where the standard
k− ϵ is known to perform poorly (ANSYS, 2013). More recently, the realizable k− ϵ
model modifies the definition of the eddy-viscosity to better reflect the physicality
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of real turbulence.
Due to the gradient diffusion term appearing in the k − ϵ equations, their be-

haviours in general are of elliptic in nature. This has important consequences in
specifying the type of additional boundary conditions (along with the usual bound-
ary conditions for the NS equations) for the solver, i.e.

• Inlet: initial distribution of k and ϵ.

• Outlet: ∂nk = 0 and ∂nϵ = 0 where n⃗ is the unit outboard normal to the sym-
metry axis

• Free-stream: k = 0 and ϵ = 0

• Solid walls: wall functions at high Reynolds number and wall damping treat-
ment at low Reynolds number to ensure that viscous stresses take over from
turbulent Reynolds stresses

see Versteeg and Malalasekera (1995) and the references within for the full discus-
sion.

Of course, the complexity in the field of turbulence modelling has only meant
that there are multiple approaches; each with certain advantages to a particular as-
pect. What we have just discussed here is a small subset of the developed techniques.
Over the course of the CFD history, more complicated models have been introduced,
such as the Reynolds stress equation model (RSM) which attempts to resolve the
Reynolds stresses more accurately as opposed to using the heuristic Boussinesq as-
sumption. Clearly, the more extensive of the modelling technique, the higher the
computational cost. For example, the RSM method coupled with the RANS results
in an addition of 7 PDE (6 transport equations of < u′iu

′
j > and one ϵ equation) com-

pared to the simple algebraic modelling of the eddy-viscosity such as the Prandtl
mixing length model. Thus it is not conceptually difficult to see that the cost asso-
ciated with the RSM is considerably more expensive. Moreover, the assumptions
made in those models might be applicable to certain types of flow. For other flows,
however, extensive adjustments to the model parameters need to be constructed in
and ad-hoc basis. This then poses a significant problem when dealing with different
scenario or flow types since the adjustments often need to be handcrafted case by
case.

2.3 Vortex methods

An alternative approach to the grid-based methods is to solve the NS equations in
a Lagrangian frame of view. This view tracks a finite number of vorticity-carrying
particles which can be used to construct the global flow field by means of the Biot
Savart law.

In this physical representation, the discretization is done on the vorticity rather
than the velocity. This is particularly useful if vorticity occupies narrow regions of
space. In such cases, a particle or filament representation of the vorticity field can
be assumed. Together with a vorticity generating mechanism, this technique can
offer a robust alternative to the grid-based approach without the need for an ad-hoc
turbulence modelling. Furthermore, this representation sets out to resolve two of
the most important weakness in the grid-based methods. One is the introduction
of numerical diffusion when a grid-based discretization is applied to the diffusion
term. This inherently modifies the physical diffusion which can be problematic in
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low Reynolds number flow where diffusion is often the dominant effect (Cottet and
Koumoutsakos, 2008). The second weakness is the large simulation time typically
required by the grid in order to at least obtain a well-resolved simulation (Section
2.2.2). Commonly, a large sparse matrix equation has to be solved iteratively for
convergence, the inter-dependence of the equations means the grid-based solver is
difficulty to be parallelized on the GPU where data need to be compact for a fully
parallel implementation.

The vortex approach is a flexible technique that can be used as a high-fidelity
simulation tool or as a mid-fidelity engineering approach. The difference lies in
the modelling of the viscosity in the wake and the treatment of solid objects in the
computational domain. In this section, various techniques (from low to high) are
examined in the context of aerofoil/wing aerodynamic.

2.3.1 The lifting line

The lifting line is a simplified approach in which the detailed representation of a
three-dimensional wing is ignored. The surface of the wing is given as a continu-
ous distribution of circulation strength along the span-wise direction (also known
as the bound vortex line). By circulation strength we mean the limit of the vortic-
ity (tube) multiplied by its cross-sectional area as the tube diameter varnishes, which
becomes a vortex line whose strength is the circulation. This approximation relies on
the observation that the effect of the wing is to induce flow curvature on the incom-
ing fluid, which is aerodynamically similar to what a vortex line would do. With the
correct strength distribution, the flow curvature can be approximated. In accordance
with the Helmholtz’s second theorem, who stated that the vortex line cannot end in a
fluid; it must extend to the boundary of the fluid or form a closed path, any changes
in the lift experienced by the wing is counteracted by the creation of vortex lines
into the wake. This then gives rise to the vortex-filament structure which consists of
the bound circulation, trailing circulation and the shed circulation. The trailing edge
vortex is a response to the span-wise variation of the lift whereas the shed vortex is a
response to the temporal lift variation. In this approach, a vortex filament structure
can be constructed as in Figure (2.1). The distribution of the bound circulation Γ, can
be determined by enforcing the kinematic condition (i.e. the no-through condition at
a representative position) and the lift is calculated by means of the Kutta-Joukowski
theorem (Katz and Plotkin, 2001; Moran, 1984). The wake of such systems consists
of horseshoe vortices which induce a downwash on the wing; when enforcing the
kinematic condition, this downwash needs to be taken into account. In addition, the
pressure continuity at the tip implies that the bound circulation must varnish at the
end points. This results in the Prandtl’s integro-differential equation whose solution
can be constructed by a Fourier-type series. Physically, the equation represents a
statement of computing the effective angle of attack. Commonly, the lifting line is
coupled with the free wake model, in which the lattice points of the vortex system
are allowed to advect freely. The advection velocity is determined from both the
bound vortex line, free-stream velocity and the other vortex filaments in the system.
This is considered a transient solution. By allowing the lattice point to move freely,
the vorticity stretching is automatically accounted for, however, diffusion effect re-
mains difficult to model. Most investigators (Dixon, 2008; Sebastian and Lackner,
2012; Tescione et al., 2016) adopted the core-spreading approach, in which the regu-
larization core of the vortex filament is to spread outwardly as a function of time -
in mimicking the idea that the role of diffusion is to allow a concentrated quantity to
spread uniformly in space and time, in this case, the vorticity. Unfortunately, such
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simplification does not converge to the NS equations, as reported in the proof of
C. Greengard (1985). Therefore, one cannot expect that the solution associated with
advecting the filaments follow by spreading the regularization core to satisfy the NS
equations in any meaningful way.

FIGURE 2.1: Schematic diagram describing how the wake is created
from the variation of the bound circulation in the spatial and temporal

domain. Here y is the span-wise coordinate on the wing.

Despite the flaws, the lifting line approach remains a popular choice for many
investigators of rotor aerodynamic (Katz, 1981; Leishman et al., 2002; Sebastian and
Lackner, 2012). Since the complicated interaction between the wing and the air flow
is simplified as a series of horseshoe vortices whose effect can be calculated by means
of the Biot-Savart formula. However, the lifting line model assumes the wing to be
sufficiently flat and thin so that camber and thickness effects can be ignored alto-
gether. In cases that such effects are important, the lifting line approach might not
be applicable.

One generalization of the approach, taking account of the camber, is to model
the wing surface as a two-dimensional surface about the camber. One can then dis-
cretize this surface as a system of vortex filaments with a circulation distribution that
varies in the local x and y directions (Landhal and Stark, 1977). The same kinematic
condition still applies at each representative point on the camber surface. The vor-
ticity wake is generated in the same way as the lifting line. Continuing from this
school of thought, the most complete application is to extend the panel to fit around
the actual surface of the wing. This way, both camber and thickness are modelled
appropriately (Wie et al., 2009). Thus, in this representation, the unknowns in the
problem are the strengths of various sorts. In Chapter 3, we present the formal math-
ematical treatment and introduce the source and dipole as the unknown strengths
for a fully two/three-dimensional representation with proper diffusion modelling.

2.3.2 The viscid-inviscid coupling algorithm

The limitation of the lifting line method and all of its derivatives is clear, in that there
is an implicit assumption that the boundary layer developed on the surface of the
wing is thin and will be remained thin in the duration of the flow problem. If the
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latter proved to be false, then the effect of boundary layer has to be incorporated
into the calculation. In the spirit of an engineering approach, one such scheme is
the viscid and inviscid coupling algorithm. In this approach the boundary layer
equations are solved and coupled with the outer inviscid solution iteratively until
the solutions in each region match. In solving the boundary layer equations, two
broad approaches generally adopted in the literature. A finite difference solver may
be employed with the inviscid solution acting as the boundary conditions on the
interaction interface (Cebeci et al., 2005). Due to the parabolic nature of the boundary
layer equations, a simple space marching scheme is possible. So that the solution can
start at the stagnation point and progressively marches towards the trailing edge.
The solution requires the specification of the boundary layer thickness, which must
be guessed initially and iteratively refined until convergence is achieved. The other
important class of approach is to introduce the boundary layer variables in the form
of integrals of the boundary layer velocity. Specifically, assuming incompressible
flow those are the momentum thickness θ , displacement thickness δ∗ and kinetic
energy thickness θ∗, which are defined as follows (Drela and Giles, 1987):

θ =
∫ ∞

0

u
ue

(
1− u

ue

)
dη,

θ∗ =
∫ ∞

0

u
ue

(
1−

(
u
ue

)2
)

dη

δ∗ =
∫ ∞

0

(
1− u

ue

)
dη,

where u is the boundary layer u-velocity (projected in the body fitted coordinate
frame) and ue is the outer edge inviscid u-velocity. Here, ϵ and η denote the body-
fitted coordinates with ϵ parallel to the surface and η along the normal direction.
Integrating the boundary layer equations results in the integral form of the equa-
tions:

ϵ

θ

dθ

dϵ
=

ϵ

θ

C f

2
− (H + 2)

ϵ

ue

due

dϵ
(2.3.1)

ϵ

H∗
dH∗

dϵ
=

ϵ

θ

2Cd

H∗
− ϵ

θ

C f

2
− (1− H)

ϵ

ue

due

dϵ
. (2.3.2)

where H∗ = θ∗/θ and H = δ∗/θ, which are known as the shape factors, and the
variables C f and Cd are called the friction and dissipation coefficient, respectively.
Although the integration process produces a set of two ordinary differential equa-
tions as opposed to the PDE of the finite difference approach, but those equations
contain terms such as the Cd, C f , H∗ that need to be modelled in much the same
way as turbulence modelling in Section 2.2.3, which results in a closure problem.
By extensive data fitting with experiments and assuming a known velocity distribu-
tion inside the boundary layer for both laminar and turbulent flow, Eq.(2.3.1) and
Eq.(2.3.2) can be solved to a reasonable accuracy (Drela, 1985). Another issue associ-
ated with it is the prediction of laminar bubble and the transition region in which the
laminar flow near the stagnation point destabilises and subsequently transitions into
turbulence. This is a crucial estimate as it directly predicts the point of separation
occurring on the aerofoil surface, which is important for flow separation modelling
(Riziotis and Voutsinas, 2008; Zanon et al., 2013). Drela (1985) used the amplification
factor approach, in which the amplitude of the perturbation waves emanating from
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the stagnation point is determined. Transition is thought to occur when the expo-
nent of this perturbation amplitude has exceeded some critical value. Numerically,
this means that there is an additional equation for the amplification factor. Beyond
the transition point, the empirical terms are readjusted for turbulence and the same
equations are solved for the remaining section. Once the boundary layer variables
have been obtained, the coupling equation is then given by:

u⃗inviscd · n⃗|η=0 =
d
dϵ

(ueδ
∗) (2.3.3)

where u⃗inviscid is the outer inviscid flow. Eq.(2.3.3) modifies the boundary condi-
tion for the inviscid solver, thus the effect of the boundary layer can be regarded as
applying a blowing effect to the inviscid flow field.

In an naive approach, a typical coupling loop sees ue to be prescribed follow
by solving Eq.(2.3.1) and Eq.(2.3.2) alongside with the amplification factor equation.
The inviscid flow is then modified by satisfying the new boundary equations as
in Eq.(2.3.3), which results in a change of ue and the boundary layer equations are
solved again. This process continues until there is no appreciable change in ue. How-
ever, it was discovered that this direct approach cannot proceed beyond some criti-
cal point where reversed flow might occur (Wolles, 1968). This difficulty is known as
the Goldstein singularity. It was later discovered that such difficulty is not a phys-
ical singularity but rather a numerical one. If instead, the displacement thickness
was prescribed and the boundary layer is solved for the outer inviscid field ue, the
iteration becomes stable and is able to integrate beyond the critical point.

Although the coupling algorithm provides a convenient way to include viscous
effect in an otherwise inviscid flow, it is important to recognise that the empirical
relations appearing in the formulation is based on steady flow, which means it is
extremely difficult to generalize this approach to a transient problem. The best one
can do is to assume a quasi-steady approach, in which one freezes the boundary
layer in time and solves for the viscous effect (Ramos-García et al., 2014; Zanon
et al., 2013). However, the accuracy of this approach depends on the quasi-steady
assumption, which clearly not applicable in highly unsteady problems.

2.3.3 Double wake model for simulating separated flow past aerofoils

Separated flow arises when there is an adverse pressure gradient on the aerofoil that
causes the flow near the surface to reverse its direction. As a consequence, the flow
might separate from the surface resulting in a distinct shear layer. Traditionally, this
shear layer is modelled by a vortex shedding mechanism (Katz, 1981; Vezza and
Galbraith, 1985a). The strength of this vortex sheet is calculated from the velocity
difference across the shear layer. Vezza and Galbraith (1985b) implemented a panel
approach in which the velocity immediately behind the layer is zero and the velocity
in front can be calculated from the induction velocity of the panels. Once the strength
is determined, a particle discretization is then applied to the layer. However, an in-
herent weakness in this method is the determination of the separation point which
needs to be known a priori for the model to work. Previously, this vital informa-
tion is either obtained experimentally or via intuition. Recent development on the
double wake model is to incorporate the boundary layer equations. This serves two
purposes. One is to incorporate viscous effect to the inviscid flow as discussed in
Section 2.3.2 and the other is to deduce the separation point based on the boundary
layer variable. Specifically, most of those methods rely on the value of the shape fac-
tor H. Flow separation is assumed to occur when H reaches a value between 1.8 and
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2.4 (Cebeci et al., 1972). The point at which this occurs is taken to be the separation
point and the shear layer is placed there. The shear layer is also parametrized by an
angle and an length, which have to be obtained iteratively by considering the local
velocity direction and magnitude. Due to the unsteadiness in the separated wake
region, the boundary layer equations are only solved in the attached region of the
aerofoil.

Riziotis and Voutsinas (2008) implemented the double wake along with the viscid-
inviscid coupling algorithm for pitching aerofoils. Their results show good agree-
ment with experimental data in terms of the pressure distribution. However, the re-
sulting wake structure is not correctly represented. Indeed, it is a question whether
such a low-order method is capable to reproduce the rich vortical structures ob-
served in more sophisticated CFD codes. Based on the formulation of Riziotis and
Voutsinas (2008), Zanon et al. (2013) applied the method to a VAWT. The reattach-
ment process is empirically modelled based on the shape factor near the laminar
separation region.

2.3.4 High-fidelity vortex methods

The preceded discussion has been concentrated on engineering simplifications to
what would be a highly complicated flow problem, i.e. separating flow. Those low
order methods can only provide a grossly under-represented picture of the local flow
structure. This is certainly inadequate if one tries to develop a complete picture.
Commonly, the CFD is more suited for this task. However, due to the introduction
of numerical dissipation in the grid and the various turbulence models, the results
are often not consistent. High-fidelity vortex method provides a means to overcome
this limitation. The central difference that separates a high order scheme and a low
order scheme is the treatment of the vorticity field on the surface and in the wake
region. Recall that the double-wake model uses the panel approach to generate an
inviscid flow field and vorticity is shed along the trailing edge and the separating
shear layer. The idea behind a high-order scheme is to allow the vorticity genera-
tion to take place naturally on the surface; thereby avoiding solving the boundary
layer equations. High order methods have been developed in the past, but only for
flow past bluff objects (Cottet and Koumoutsakos, 2008; Eldredge, 2007; Ploumhans
and Winckelmans, 2000; Ramachandran et al., 2007). One of the reason that limits
its appeal is the complexity of coding such a method in a numerically efficient way.
Since vorticity are allowed to diffuse around the body, a large number of vortices
are created in the wake at each time-step as opposed to just two in the double wake
model. Thus it necessitates an acceleration routine for computing the Biot-Savart
law. One popular strategy is the fast-multipole method (L. Greengard and Rokhlin,
1987), which reduces the quadratic complexity of the problem into a linear complex-
ity. Recent trend in this development is to incorporate the power of GPU to solve for
the advection velocity of the vortex particles (Goude and Engblom, 2013).

2.4 Aim and structure of the thesis

There are many unsatisfactory strategies in the modelling approaches adopted in the
literature. In theory, the lifting line provides a straightforward simplification to the
problem, but the difficulty in the diffusion modelling makes it rather hard to recom-
mend. In particular, since the induction is calculated from the filaments, it is difficult
to develop an acceleration technique to speed up this part of the computation; thus
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preventing it from design applications. The high-order vortex methods are viable
for examining flow structures with high fidelity, but those too require significant
computational resources to make the methods viable.

Taking advantages of the recent trends in using graphical processing units (GPU)
in simulations, the aim of this thesis is to utilise the GPU to make substantial im-
provements in the existing methodologies that can be used as a tool for wind turbine
applications. In this context, this thesis sets out to fulfil two main adjectives relating
to the aerodynamic analysis of wind-farms and these are as follows:

• The loss of the wind-farm efficiency is primarily due to the less energetic flow
in the farm. Optimization procedures require a detailed study into the aero-
dynamic behaviour of the flow field around the wind turbines. However, high
fidelity tools are too computational demanding to be used as a design tool.
Thus it necessitates a fast solution method that accurately approximates the
correct physics. However, naive implementation of the vortex particle method
results in a quadratic scaling of the problem, which quickly becomes unten-
able for large scale problems. In this context, this thesis sets out to explore
an acceleration technique that could resolve the inherit weakness of the vortex
particle method; thus, the new developed tool can be used as a basis for future
wind-farm optimization endeavours.

• Aerofoil aerodynamic is crucial to study the macroscopic properties of the air
flow, which inherently relates to the large scale flow structure observed in a
real turbine. Optimization procedures need the collective efforts of both the
large scale and the macroscopic scale study in order to deliver the most opti-
mal output. For this reason, a high fidelity approach needs to be developed
to complement the inherent weakness of the engineering approach in order to
validate and identify the shortcomings of the large scale studies and to pro-
vide a qualitative assessment of the methodologies used. For this reason, a
new highly efficient solution procedure has been developed whose resolution
can be compared to DNS; this is mainly due, in a large part, to the efficient
implementation of the Fast Multipole Method (FMM) on the GPU.

The structure of the thesis is divided as follows. In Chapter 3, the basic formula-
tion of the vortex particle method (VPM) is reviewed and the general mathematical
framework of the boundary element method (BEM) is presented in 3D (The 2D case
follows naturally from the 3D formulation). These two approaches form the basis for
the engineering method that is to be used to solve large scale problems. The novelty
in this chapter is the development of the coupling algorithm based on an accurate
interpolation scheme using a bilinear function. Moreover, a multipole expansion
technique based on Complex Spherical Harmonic Basis (CSHB) function has been
developed to accelerate the calculation of the panel influence at far field.

Chapter 4 provides the mathematical formulation of the fast multipole method
(FMM) and the implementation detail on a shared memory device is given. The use
of the shared memory requires a novel construction of the data tree, which plays
a critical role in facilitating the parallelization construct of the new technique. The
novelty in this chapter is the development of an analytical expression for computing
the strain tensor, which is used to update the circulation vectors and the develop-
ment of a fast data construction algorithm.

Chapter 5 provides a series of VPM validation case studies and the performance
of the GPU is compared to a pure CPU implementation of the FMM. The aim of
Chapter 5 is to show that the VPM gives a natural representation of the fluid flow as
opposed to the Eulerian representation of the flow field.
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In Chapter 6, an algorithm based on the operator splitting has been developed
on the GPU for solving the NS equations for flow past arbitrary geometries. The
novelty in this chapter is the efficient implementation of the approach on the GPU
which relies on several fast routines to compute the body diffusion and the new re-
meshing technique. Timing results have shown that the new code is a magnitude
faster than what is available in the literature.

In Chapter 7, the developed toolbox is applied to aerofoil/turbine aerodynamic
in a series of validation case studies relating to turbine applications. Both qualita-
tive and quantitative measures have been obtained and compared to experimental
works. Moreover, several large scales problems have been solved using the engi-
neering technique, which concerns with the interaction of a pair of VAWT rotors.

Finally, the general conclusion and the recommendation for future work of the
thesis is found in Chapter 8. A basic overview of the GPU architecture used in this
work (often referred without giving too much detail) is given in Appendix A.
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Chapter 3

Theories and methodologies

In this chapter, the vortex particle method is formulated in terms of a series of La-
grangian markers that carry vorticity information from the vorticity source to the
rest of the flow domain (vortex particles). Several aspects of the method are dis-
cussed, such as the treatment of the singular behaviour when two vortex particles
become close to each other, and the diffusion modelling based on a deterministic
scheme that replaces the Laplacian operator with an integral operator. It is noted
that the approach requires a constant overlap of the particles to avoid creation of
non-physical vortex structures. In this work, a location processing technique is im-
plemented on the GPU which re-meshes the particles at regular intervals.

The second part of the chapter examines the boundary element method (BEM)
for solving unsteady problems in attached condition. The developed method relies
on solving the Laplace equations by introducing a set of singular distribution whose
magnitude is solved by satisfying the no-through conditions. In addition, the current
work implements a hybrid approach in which the nascent wake dipole sheets are
converted to a set of vortex particles via the Hess’ equivalence principle.

To accelerate the panel influence at far field, a multipole expansion technique has
been developed which makes use of the Complex Spherical Harmonic Basis function
(CSHB) to represent the far field influence. This acceleration technique is invaluable
in high fidelity simulations where fine-grained body discretization is required.

3.1 Vortex Particle Method (VPM)- the Lagrangian approach

By simultaneously tracking the trajectories of a collection of fluid elements, one may
determine the kinematic properties of the underlying flow field. In this purely La-
grangian setting, the transport phenomenon is resolved exactly. Consequently, this
transforms the partial differential equations of the Navier-Stokes flow to a system of
coupled ordinary differential equations (ODE). From a numerical point of view, this
is a favourable proposition, since it allows an ODE solver to be implemented instead.
In this section, we explore the mathematical framework of a purely Lagrangian vor-
tex particle method.

3.1.1 Streamfunction-vorticity formulation

The Navier-Stokes equations describe the dynamic evolution of an incompressible
flow. If (u⃗, p) describes the state variables at the spatial coordinate x⃗ and time t, then
Eq.(3.1.1) describes the evolution of the state variables in the absence of external
forces:

∂u⃗
∂t

+ u⃗ · ∇u⃗ = −1
ρ
∇p + ν∇2u⃗ (3.1.1)



30 Chapter 3. Theories and methodologies

where u⃗, p, ρ, µ denote the flow velocity, pressure, density and kinematic viscosity,
respectively. Additionally,

∇ · u⃗ = 0 (3.1.2)

is imposed to satisfy the incompressibility condition.
By introducing the vorticity field ω⃗ = ∇× u⃗, it is possible to transform Eq.(3.1.1)

to the vorticity-equations:

∂ω⃗

∂t
+ u⃗ · ∇ω⃗ = ω⃗ · ∇u⃗ + ν∇2ω⃗. (3.1.3)

It is worth noting that the first term on the right hand side of Eq.(3.1.1) is known
as the stretching term as it encapsulates the physics of intensification of the vorticity
which correlate to the local strain field (note this term is zero for two-dimensional
flow); meanwhile, the second term represents the molecular diffusion.

To satisfy the continuity equation (Eq.(3.1.2)), we introduce the stream-function ψ⃗
such that

u⃗ = ∇× ψ⃗. (3.1.4)

The gauge transformation ensures that the solenoidal property is imposed on ψ⃗.
Using the vector identity:

∇×∇× ψ⃗ = ∇
(
∇ · ψ⃗

)
−∇2ψ⃗ (3.1.5)

together with the solenoidal assumption, it is readily seen that ψ⃗ satisfies the Pois-
son’s equations in each of its component:

∇2ψ⃗ = −ω⃗. (3.1.6)

Now, by accounting for the far-field requirement (
∥∥ψ⃗
∥∥→ 0 as ∥x∥ → 0 ), Eq.(3.1.6) is

solved by introducing the fundemental solution G (x⃗) in the 3D Laplace’s equation,
so that

ψ⃗ (x⃗, t) = − (G ⋆ ω⃗) (x⃗, t) := −
∫

R3
G (x⃗− y⃗) ω⃗ (⃗y, t) dy⃗, (3.1.7)

where ⋆ denotes the convolution operator and G is given by

G (x⃗) = − 1
4π ∥x⃗∥ . (3.1.8)

Thus, Eq.(3.1.7) can be explicitly written as:

ψ⃗ (x⃗, t) =
1

4π

∫
R3

1
∥x⃗− y⃗∥ ω⃗ (⃗y, t) dy⃗. (3.1.9)

A particle-approximation is applied to the vorticity field ω (x⃗, t) with compact
support in V :=

⋃N
j=1 Vj, where Vj is the compact support of the j-th particle. Thus

ω⃗ may be approximated by the following expression:

ω⃗ (x⃗, t) =
N

∑
j=1

α⃗j (t) δ
(
x⃗− x⃗j (t)

)
. (3.1.10)
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Here, α⃗j is often referred to as the particle circulation and is defined by the integral of
the vorticity over the support Vj, i.e.

α⃗j (t) =
∫

Vj(t)
ω⃗ (⃗y, t) dy⃗. (3.1.11)

x⃗j (t) is the computed trajectory of the particle which is everywhere tangent to the
local velocity field. Upon substituting Eq.(3.1.10) into Eq.(3.1.7) and taking the curl
of the resulting expression, the induced velocity due to a discretized vorticity field
is computed as follows:

u⃗BiotSavart (x⃗, t) = −
N

∑
j=1
∇G

(
x⃗− x⃗j (t)

)
× α⃗j (t) (3.1.12)

Eq.(3.1.12) is known as the Biot-Savart formula and it plays many pivotal roles across
different disciplines of science. Following the trajectory of the j-th vortex particle (so
∂/∂t + u⃗ · ∇ = d/dt ) and integrating Eq.(3.1.3) over the support Vj, the vorticity
equation is equivalent to the following system of ODEs:

dx⃗j

dt
= u⃗

(
x⃗j, t

)
, (3.1.13a)

d⃗αj

dt
= α⃗j · ∇u⃗ + ν

∫
Vj

∇2ω⃗ dV. (3.1.13b)

The velocity vector in the above typically consists of the induced Biot-Savart, a
velocity field that results from a scalar potential (see Section 3.2 ) and a constant
free-stream. As we shall discuss later, the diffusion term on the right hand side of
Eq.(3.1.13b) is replaced by the particle-exchange scheme (PSE), in which the Lapla-
cian appearing in the integrand is replaced by an integral operator.

Unfortunately, the free-space Green’s function appearing in the solution of the
stream-function (Eq.(3.1.6)) exhibits a strong singularity at the particles’ location (or
a logarithmic singularity in 2D). At the same time, the discretized-vorticity is not
defined at those points because of the Dirac delta function. Consequently, if this
singularity is not avoided, it may give rise to unbounded velocity whenever two
particles are in close proximity of each other, which, on physical grounds, is not en-
tirely realistic as viscosity is likely to regularize the field when that occurs. For this
reason, as well as for stability argument, one must apply some form of regulariza-
tion to avoid this singular behaviour. A formal approach is to accept the fact that
the vortex particles are not strictly singular in space but they contain a core region in
which diffusion can take place. This process of removing the singularity is formal-
ized by replacing∇G with a mollified expression parametrized by a core parameter
(Cottet and Koumoutsakos (2008, p. 20)), see Section 3.1.2 for more detail.

3.1.2 Mollification of the singular field

Let ϵ denote a positive scalar and ζ be a smooth function (cut-off) chosen in such a
way that it shares the same moment as the Dirac delta function as in Eq.(3.1.10) up
to the order R− 1, where R is known as the order of the cut-off. More precisely, ζ is
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said to have order R if the following properties are satisfied:∫
R3

ζ (x⃗) dx⃗ = 1, (3.1.14a)∫
R3

x⃗i⃗ζ (x⃗) dx⃗ = 0, |⃗i| ≤ R− 1 (3.1.14b)∫
R3
|⃗x|Rζ (x⃗) dx⃗ < ∞. (3.1.14c)

where the multi-index i⃗ = (i1, i2, i3) ∈ N3
+ has the following meanings: |⃗i| = i1 +

i2 + i3 and x⃗i⃗ = xi1
1 xi2

2 xi3
3 . It should be noted that there is a natural generalization to

an arbitrary space dimension.
Once a smooth function ζ is chosen, the mollification of ζ is derived by setting:

ζϵ (x⃗) = ϵ−3ζ

(
x⃗
ϵ

)
. (3.1.15)

In practice, the choice of ϵ is informed on the basis of simulation resolution (which
in turns depends on the Reynolds number) as well as on the stability consideration
imposed by the particle-strength exchange scheme discussed in Section 5.4. For the
sake of argument, it is taken for now that ϵ is a small but non-zero constant.

By replacing the Dirac delta function with ζϵ, one arrives at the mollified vorticity
field:

ω⃗ϵ (x⃗, t) =
N

∑
j=1

α⃗j(t)ζϵ

(
x⃗− x⃗j(t)

)
(3.1.16)

As an example, one popular choice for a second-order cut-off function ζ is the Gaus-
sian function of the form:

ζ (x⃗) =
1

(2π)3/2 exp
(
−|⃗x|

2

2

)
. (3.1.17)

For this cut-off, Figure (3.1) shows the profile of the mollified function at three
values of ϵ. The result shows that the mollified function does indeed converge
asymptotically to the Dirac delta function as ϵ→ 0. The effect of mollification can be
thought of as to spread the vorticity to its surrounding region. This way, the scalar ϵ
is naturally interpreted as the core radius of the vortex blob.

Based on the Gaussian smoothing, one can show that the mollified velocity is
given by (He and Zhao, 2009):

u⃗ϵ (x⃗, t) = −
N

∑
j=1

K⃗ϵ

(
x⃗− x⃗j

)
× α⃗j (3.1.18)

where

K⃗ϵ (x⃗) := ϵ−3 f
(
∥x⃗∥

ϵ

)
x⃗, (3.1.19)

and

f (s) =
1
s2

(
1

4πs
erf
(

s√
2

)
− ζ (s)

)
. (3.1.20)
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FIGURE 3.1: Eq.(3.1.17) at different values of ϵ. It can be seen that ζϵ

approaches to the Dirac delta function asymptotically as ϵ→ 0 .

Here, erf (s) is the error function defined as

erf (s) =
2√
π

∫ s

0
exp

(
−v2) dv. (3.1.21)

As Figure (3.2) demonstrates, an important observation is that the mollified kernel is
regular at the origin as long as the core radius is non-zero there. Of course, one is not
restricted to the second-order cut-off Gaussian smoothing and higher-order cut-offs
are possible. However, it is often the case that higher-order cut-offs often violate the
positivity property, which means that a locally positive circulation may be negative
in the mollified field.

3.1.3 Particle-strength-exchange scheme (PSE) to model viscosity

The effect of viscosity can be simulated in various ways in a particle setting. The
earliest offering was proposed by Chorin (Chorin, 1973). In his approach, a proba-
bilistic strategy was adopted to mimic the large frequency spectral that is typically
associated with turbulence motion. Diffusion is thus interpreted as fluid elements
undergoing Brownian motion. In such view, a random component, which is asso-
ciated with a Gaussian probability distribution, is attached to the position of the
vortex blobs at each time step. While the approach demonstrates the advantage of
being simple to implement, but it is also noted by various researchers in the past
(see Berdowski (2015) and Cottet and Koumoutsakos (2008)) for its poor accuracy at
a given computational cost. The problem is that, being a probabilistic formulation,
the accuracy is only guaranteed for a relatively large sampling size, meaning a large
vortex population is generally required, which is untenable in practice because of
the limiting computer resource available.

A deterministic approach, however, has the advantage of representing the correct
diffusion physics whilst maintaining the computational efficiency. One interesting
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FIGURE 3.2: The magnitude of the mollified kernel as in Eq.(3.1.19)
compared to the singular kernel, |∇G|

solution is to apply the particle-exchange scheme, or PSE, proposed by Degond and
Mas-Gallic, 1989 to the diffusion term in Eq.(3.1.13b). Specifically, the Laplacian
operator is to be replaced by the integral operator, so that:

∇2ω⃗ = ϵ−2
∫

R3
gϵ (x⃗− y⃗) (ω⃗ (⃗y, t)− ω⃗ (x⃗, t)) dy⃗ (3.1.22)

where gϵ is the mollification of a smooth scalar function that satisfies certain moment
conditions. For reason to be discussed later, we require that gϵ to be even in its
arguments. Discretizing the integral in Eq.(3.1.22) with a quadrature rule whereby
the weights and the nodes are chosen to be volumes and particle positions yields the
discrete form: ∫

Vj

∇2ω⃗ dy⃗ ≈
N

∑
j=1

1
ϵ2 gϵ

(
x⃗i (t)− x⃗j (t)

) (
|Vi |⃗αj − |Vj |⃗αi

)
(3.1.23)

where |Vj| is the volume of the vortex blob. In practice, each vortex blob is given a
core region of variable size. It is known from Kelvin’s theorem that the total circula-
tion in the flow is a conserved quantity, so it is preferable to use a numerical scheme
that respects this property. Formally, this is equivalent to the statement:

d
dt

(
N

∑
j=1

α⃗j (t)

)
= 0. (3.1.24)

The matter is now turned to choosing a suitable ϵ so that Eq.(3.1.24) is fulfilled. For
this purpose, the simplest symmetric core is one that averages the two core param-
eters. Specifically, if ϵi and ϵj denote the core parameters of the i-th and the j-th
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particles, one simply replaces ϵ in Eq.(3.1.23) with ϵij, where

ϵij =

√
ϵ2

i + ϵ2
j

2
. (3.1.25)

Consequently, the conservative nature of the PSE scheme is notably visible from its
skew property. To see this, consider the change of the circulation of the i-th particle
due to the interaction with particle j. Ignoring the stretching effect, this change is
given by δ⃗αi, where

δ⃗αi =
νδt
ϵ2

ij
gϵ

(
x⃗i − x⃗j

) (
|Vi |⃗αj − |Vj |⃗αi

)
. (3.1.26)

Conversely, one can show that the circulation change of particle j is the negative of
δ⃗αi, so that the net exchange between particle i and particle j is effectively zero. i.e.

δ
(⃗
αi + α⃗j

)
δt

= 0. (3.1.27)

Extending the above argument to include all pair-wise interactions and taking the
limit as δt → 0 yields Eq.(3.1.24) as one would expect. However, one important
corollary resulting from the above observation is that particles cannot diffuse their
vorticity if they are not overlapped. This is because the kernel in the PSE is typically
a rapidly decreasing function, so if an interactive particle is sufficiently far from
the target particle, the change as given in Eq.(3.1.26) rapidly decreases. From Fig-
ure (3.1), the diffusion length-scale for the vorticity field (assuming the Gaussian
function was used) is comparable to the core radius of the particles. This brings an
important limitation regarding the PSE approach - particle distortion.

3.1.4 Lagrangian grid distortion

The limitation of the PSE approach outlined in Section 3.1.3 is a serious issue when
particles are separated at a distance that is a magnitude greater than the core radius
as it means there is no way for them to communicate so they cannot diffuse vorticity.
Typically, this occurs in under-resolved region in which the local strain field spreads
the particles apart. At the same time, particles may also be clustered in another
direction, which results in an over-resolved region. Under such condition, the local
Reynolds number diminishes, which introduces non-physical vortex structures at
length-scales smaller than the allowable inter-particle distance. Consequently, if the
distortion of the vortex particle distribution is not corrected under a severe local
strain, the following detrimental effects can occur:

1. diffusion is severely inhibited because of the inter-particle spacing between
particles exceeds the diffusion scale, which is on the order of the core radius.

2. simulation may be destabilized by the introduction of small non-physical vor-
tex structures in regions of particle cluttering. Consequently, this instability
may result in the unbounded growth of the circulation vectors

The solution to this issue are typically approached in two ways. First, one could
process the circulation strength so as to account for the distortion of the Lagrangian
grid. Secondly, one can restart the particle distribution at new locations at which
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the overlapping condition is maintained. In this work, the location processing ap-
proach is chosen to avoid solving an ill-conditioned system of linear equations that
is typically associated with the circulation processing techniques.

In the location processing method, the set of vortex particles is to be replaced by
a new set whose locations coincide with the nodes of a Eulerian grid. The circulation
of the new particles are derived via a high order interpolation formula which respect
the moment conditions of the old particles. Principally, the new particles must con-
serve the circulation, linear impulse and angular impulse of the field. Specifically, if(⃗

αold
j , x⃗old

j

)
characterizes the j-th particle, one wishes to determine the new particle(⃗

αnew
j′ , x⃗new

j′

)
in such a way:

α⃗new
j′ =

N

∑
j=1

W
(

H−1
(

x⃗old
j − x⃗new

j′

))
α⃗old

j (3.1.28)

where W denotes the interpolation matrix and H := diag
(
hx, hy, hz

)
, where hx, hy, hz

denote the grid-spacing in the direction x, y and z, respectively. In practice, Eq.(3.1.28)
is applied by introducing a scalar interpolation kernel in each direction, which ren-
ders W to be diagonal with diagonal elements given by

Wii (x⃗) = M (⃗ei · x⃗) . (3.1.29)

Here, M is the one-dimensional interpolation kernel and e⃗i denotes the Cartesian
basis vector.

In this thesis, a fourth-order, also commonly denoted by M′4, scheme was used
(Figure (3.3)) and is defined as follows:

M′4 (x) =


0 if |x| > 2,
1
2 (2− |x|)

2 (1− |x|) if 1 ≤ |x| ≤ 2,
1− 2.5|x|2 + 1.5|x|3 if |x| ≤ 1,

(3.1.30)

Eq.(3.1.30) was noted for its accuracy and efficiency (see Monaghan, 1985 and Cottet
and Koumoutsakos, 2008 and the references within).

3.2 Boundary element method (BEM)

High Reynold number applications often give rise to situations in which real vis-
cous flow is confined to a thin layer of strong vortical flow. Outside of this layer,
however, the flow field is approximately that of inviscid and irrotational nature. In
such applications, the Euler equations may be treated as a first approximation to
the Navier-Stokes flow. There are many advantages of utilising the Euler equations.
Chiefly, because the diffusion term in the Navier-Stoke’s equations is notably miss-
ing; the computational effort in resolving the diffusion scale is altogether avoided,
which means the solver only has to resolve for the dominant flow scales, which can
be done in a numerically efficient way. Furthermore, with suitable modelling of the
viscous flows in the wake region (e.g. vortex particle modelling), the error of the in-
viscid approximation is limited only to the boundary layer on the body. In attached
flow scenario, this is an acceptable practice. In this section, we present the bound-
ary element method, which solves the Euler’s equations for a given solid body with
arbitrary motion.
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FIGURE 3.3: M′4 is continuous in the first derivative.

3.2.1 Mathematical formulation

We begin by considering the Euler’s equation, which is given by

∂u⃗
∂t

+ u⃗ · ∇u⃗ = −1
ρ
∇p (3.2.1)

with mass conservation
∇ · u⃗ = 0. (3.2.2)

where u⃗ is the flow velocity, p is the pressure field and ρ is the constant density. By
virtue of the irrotational assumption, which purposes the vorticity be zero (∇× u⃗ =
0), the velocity field can be characterized by a single scalar function, say ϕ, which is
related to the velocity as

u⃗ = ∇ϕ. (3.2.3)

Indeed, one could verify that the above relation does imply the irrotational assump-
tion. Taking the curl of Eq.(3.2.3), one has that

(∇×∇ϕ)i = ϵijk∂j∂kϕ = −ϵijk∂k∂jϕ. (3.2.4)

where we have used the anti-symmetry properties of the Levi-Civita symbol and the
commutative property of the differential operators. Noting that the ith component of
(∇×∇ϕ)i in Eq.(3.2.4) is equal to the negative of itself, one concludes that the sum
is zero. One should note that, contrary to other grid-based methods, the pressure
variable is not directly used to determined the velocity. It is, however, required
to determine the force via the application of the unsteady Bernoulli’s equation (see
Section 7.3.1 for the exact implementation).

By mass conservation, ϕ yields the solution to the Laplace’s equation

∇2ϕ = 0. (3.2.5)
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Consider a streamlined solid body with surface boundary SB moving through an
infinite domain of inviscid flow whose boundary is denoted by S∞. Suppose further
that the body leaves a thin trailing wake region, which is denoted by SW . Let x⃗ be
a fixed point inside the domain bounded by V := SB ∪ SW ∪ S∞. A sphere, centred
at x⃗, with radius ϵ is excluded in V. By introducing the domain cut, as it shown
in Figure (3.4b), one can verify that the modified domain V is simply connected.
Let ϕg = ϕg (⃗y, t; x⃗) be any twice differentiable function that satisfies the Laplace’s
equation Eq.(3.2.5) in the y⃗ variable. Suppose further that ϕ = ϕ (⃗y, t). In a simply-
connected region V, the divergence theorem states that for a vector-valued function
F⃗, the following holds: ∫

V
∇ · F⃗dV = −

∫
∂V

n⃗ · F⃗dS, (3.2.6)

where n⃗ denotes the "inward" pointing normal (hence the minus sign on the RHS).
With the identity ϕg∇2ϕ ≡ ∇ ·

(
ϕg∇ϕ

)
−∇ϕg · ∇ϕ, one can show that the following

holds:
ϕg∇2ϕ− ϕ∇2ϕg = ∇ ·

(
ϕg∇ϕ− ϕ∇ϕg

)
. (3.2.7)

Since ∇2ϕ = 0 = ∇2ϕg in a simply connected region and together with Eq.(3.2.6), it
follows that the following surface integral varnishes, i.e.

−
∫

∂V
n⃗ ·
(
ϕg∇ϕ− ϕ∇ϕg

)
dS (⃗y) = 0 (3.2.8)

Moreover, in the limit when the length of the domain cuts varnishes, the combined
contribution to the surface integral must be zero, so that∫

Sϵ

I (⃗y, t; x⃗) dS (⃗y) +
∫

SB∪SW∪S∞

I (⃗y, t; x⃗) dS (⃗y) = 0, (3.2.9)

where
I := ϕgn⃗ · ∇ϕ− ϕn⃗ · ∇ϕg. (3.2.10)

Suppose ϕg = 1/ϵ as ∥y⃗− x⃗∥ = ϵ, so
∥∥∇ϕg

∥∥ = 1/ϵ2. This is easily verified by
setting

ϕg (⃗y, t; x⃗) =
1

∥y⃗− x⃗∥ . (3.2.11)

As ϵ→ 0 and assuming regularization of the first derivative of ϕ, one has∫
Sϵ

I (⃗y, t; x⃗) dS (⃗y) ≈ 4πϵ2 ×
(

ϵ−1nk∂kϕ + ϕϵ−2
)
= 4πϕ (x⃗, t) . (3.2.12)

Thus we have
ϕ (x⃗, t) = − 1

4π

∫
SB∪SW∪S∞

I (⃗y, t; x⃗) dS (⃗y). (3.2.13)

Interestingly, if one supposes that SB ∪ SW bounds a volume of inviscid flow (see
Figure (3.5) for the domain definition) then it is possible to define an internal poten-
tial ϕ∗ = ϕ∗ (⃗y, t), which, if x⃗ ∈ V, satisfies the following equality:

−
∫

SB∪SW

I∗ (⃗y, t; x⃗) dS (⃗y) ≡ 0. (3.2.14)

where
I∗ := ϕgn⃗ · ∇ϕ∗ − ϕ∗n⃗ · ∇ϕg. (3.2.15)

Note that the minus sign in Eq.(3.2.14) reflects the fact that the normal vector now
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(A) The computational domain

(B) Modified domain

FIGURE 3.4: Domain decomposition for solving Eq.(3.2.5). (A) is the
original domain. (B) is the modified domain subjecting to two branch

cuts.

points into V ′. Hence for any function ϕ∗ fulfilling Eq.(3.2.5) and Eq.(3.2.14), one can
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FIGURE 3.5: Domain definition of the internal field ϕ∗.

construct an arbitary solution ϕ to the Laplace’s equation as

ϕ (x⃗, t) = ϕ∞ (x⃗, t)−
1

4π

∫
SB∪SW

[
1

∥y⃗− x⃗∥nk∂k (ϕ− ϕ∗)− (ϕ− ϕ∗) nk∂k

(
1

∥y⃗− x⃗∥

)]
dS (⃗y) (3.2.16)

and
ϕ∞ (x⃗, t) = − 1

4π

∫
S∞

I (⃗y, t; x⃗) dS (⃗y). (3.2.17)

Typically, if V is subjected to an ambient free-stream u⃗∞ (t), one can determine the
exact form of ϕ∞, i.e.

ϕ∞ (x⃗, t) = x⃗ · u⃗∞ (t) . (3.2.18)

It is convenient to introduce the singular surface distributions σ and µ (referred to
as source and dipole, respectively) as

σ := nk∂k (ϕ− ϕ∗) (3.2.19)
µ := ϕ− ϕ∗. (3.2.20)

It should be noted that Eq.(3.2.19) and Eq.(3.2.20) differ from the definitions
found in Katz and Plotkin (2001) by a reverse of sign due to the way that the normals
were defined.

For completeness, one could also check for the consistency of the solution. That
is to say, if x⃗ were located inside V ′, one then expects the continuity of the field to
hold, i.e.

ϕ (x⃗, t) = ϕ∗ (x⃗, t) . (3.2.21)

Indeed, by applying the proceeding analysis, ϕ∗ may be expressed as

ϕ∗ (x⃗, t) =
1

4π

∫
SB∪SW

I∗ (⃗y, t; x⃗) dS (⃗y), (3.2.22)

and for a potential field ϕ outside of V, we have∫
SB∪SW∪S∞

I (⃗y, t; x⃗) dS (⃗y) = 0, x⃗ ∈ V ′. (3.2.23)

By combining Eq.(3.2.22) and Eq.(3.2.23), Eq.(3.2.21) follows as expected.
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In conclusion, the general solution to the Laplace’s equation is controlled by three
parameters. The surface values of ϕ and its normal derivatives (σ and µ) and an ar-
bitrary internal field ϕ∗. In order to determine the field uniquely, we require further
information about the problem.

3.2.2 Boundary conditions, panel discretization and the Kutta condition

Let u⃗B denote the velocity of SB and v⃗p be any perturbation velocity in the flow, we
seek values of the singular distributions (σ and µ) so that(

∇ϕ + v⃗p − u⃗B
)
· n⃗B = 0. (3.2.24)

This physical condition (also known as the impermeable condition) can be realised
via two methods. The Neumann condition enforces Eq.(3.2.24) exactly, but at the ex-
pense of evaluating the gradient of ϕ to obtain the vector velocity. The other method,
termed the Dirichlet formulation, indirectly satisfies the boundary condition by pre-
scribing the potential field everywhere on SB. The Dirichlet approach clearly leads
to a more efficient algorithm but the issue is to enforce the correct values of the po-
tential.

In the Dirichlet approach, the first step is to determine the source values, which
has to be known a priori, which, by examining Eq.(3.2.19) and Eq.(3.2.20), can be
done as follows: First, we set the internal potential to be ϕ∗ (x⃗, t) = ϕ∞ (x⃗, t) and
note that ϕ∗ satisfies Eq.(3.2.5) and Eq.(3.2.14), so it is true from Eq.(3.2.19) that

σ = n⃗B · ∇ (ϕ− ϕ∞) = n⃗B ·
(
−u⃗∞ − v⃗p + u⃗B

)
. (3.2.25)

With the source strength fixed, x⃗ ∈ V ′ and with the use of the consistency relation
Eq.(3.2.21), upon cancelling ϕ∞ on both sides in Eq.(3.2.16), we arrive at the equation:

1
4π

∫
SB

σ
1

∥y⃗− x⃗∥dS (⃗y)− 1
4π

∫
SB∪SW

µ∂n

(
1

∥y⃗− x⃗∥

)
dS (⃗y) = 0, x⃗ ∈ V ′. (3.2.26)

The above forms the general methodology of the BEM in a Dirichlet setting. With a
suitable discretization scheme, Eq.(3.2.26) typically results in a set of linear algebraic
equations for the singular elements on the body.

Low order methods, such as those found in the literature (Katz and Plotkin, 2001,
Dixon, 2008), assume a piece-wise constant distribution for the dipole and the body
is usually discretized by flat quadrilateral/triangular panels Figure (3.6a). This ap-
proach is conceptually simple and easy to code. However, one of the biggest draw-
back is the lack of accuracy. Higher order methods mitigate this deficiency by in-
troducing a high-order interpolation function for the singular distributions while
modelling the body geometry as curved panels (Willis, 2006). Clearly, higher order
methods are superior in the sense of obtaining a comparable accuracy at a much
coarse level, but due to the complexity of the scheme, those methods generally re-
quire a substantial amount of coding effort to be efficient. Driven by the needs to
reduce the simulation time, we have adopted a low order approach whereby the
body discretization is done using a combination of flat quadrilateral and triangular
panels and the singular distributions are assumed piece-wise constant.
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(A)

(B)

FIGURE 3.6: Schematic of a low-order discretization of a 3D wing (A)
and position of the collocation points used in the BEM formulation

(B).

Let M and K denote the number of body and wake panels, respectively. One
discretizes the surface SB and SW as follows:

SB =
M

∑
j=1

Sj, (3.2.27)

SW =
K

∑
k=1

SW,k. (3.2.28)

Further, let us introduce the influencing functions, which are defined by the following
integrals:

Aj (x⃗) := − 1
4π

∫
Sj

n⃗ · ∇
(

1
∥y⃗− x⃗∥

)
dS (⃗y), (3.2.29)

Bj (x⃗) :=
1

4π

∫
Sj

−1
∥y⃗− x⃗∥dS (⃗y), (3.2.30)

Ck (x⃗) := − 1
4π

∫
SW,k

n⃗ · ∇
(

1
∥y⃗− x⃗∥

)
dS (⃗y). (3.2.31)
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By averaging each singular distributions over Sj, the following representative values
are obtained:

σj (t) =
1
|Sj|

∫
Sj

σ (⃗y, t) dS (⃗y), (3.2.32)

µj (t) =
1
|Sj|

∫
Sj

µ (⃗y, t) dS (⃗y), (3.2.33)

µW,k (t) =
1
|SW,k|

∫
SW,k

µ (⃗y, t) dS (⃗y). (3.2.34)

Substituting the influencing functions and the averaged values to the BEM equation,
one arrives at the discretized form:

M

∑
j=1

µj (t) Aj (x⃗) +
K

∑
k=1

µW,k (t)Ck (x⃗) =
M

∑
j=1

σj (t) Bj (x⃗). (3.2.35)

Enforcing the Dirichlet conditions at the collocation points results in M algebraic
equations. Accounting for the unknown values of the wake strength µW,k, the num-
ber of unknowns is M+K, which means the problem cannot admit a unique solution
without additional physical consideration on the flow pattern near the trailing edge.

Typically, a resolution of this nature is provided by the use of the Kutta condition,
which purposes the flow field to be finite at the trailing edge. On physical grounds,
this is equivalent to the following conditions:

• continuity of the pressure field across the trailing edge region;

• the total circulation is necessarily zero.

Depending on the numerical schemes, either conditions fix the amount of the wake
circulation generated by the body. Mathematically, the latter item in the above list is
expressed as

µW,k = µ+,k − µ−,k, (3.2.36)

where µ±,k denote the trailing dipole strengths whose panels share a common edge
with SW,k (see Figure (3.6a)). This, together with Eq.(3.2.35) now constitutes the cor-
rect number of constrains and unknowns.

Numerically, the enforcement of Eq.(3.2.26) occurs at the collocation points, which
are defined inside SB. Currently, the points are chosen in a manner similar to Dixon
(2008), in which off-centre position (controlled by the parameter δ) are used. Typi-
cally, δ is chosen to be 1.5% of the characteristic panel length (Figure (3.6b)).

3.2.3 Wake shedding angle and shedding length

Unfortunately, the BEM formulation does not allow the immediate wake geometry
to be determined. Generally, this problem has to be approached either by prescribing
a known wake shape in the understanding that such shape approximates the real
one in some physical sense or applying an iterative scheme in which the shape is
allowed to evolve according to the local flow. More precisely, we introduce two
parameters that define the generating wake in the immediate vicinity of the trailing
edge - the shedding angle, α and the shedding length, γ. For the sake of argument, those
are defined on a two-dimensional cross-section station (Figure (3.7)).
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FIGURE 3.7: Nomenclature used to define the shedding geometry: α
denotes the angle of the shedding line with respect to the x axis, while

γ defines the length of the dipole panel during a single time-step.

In the iterative method, it is assumed that the local flow vector u⃗ is a function of
the variables α and γ, which in turns relate to u⃗ via:

α = tan−1
( v

u

)
, γ =

√
u2 + v2, (3.2.37)

where u and v are the projected velocity components in the local two-dimensional
cross-section plane (note that u⃗ is a 3-dimensional vector in general). During the
simulation, the correct shedding geometry is computed by first guessing the initial
values for α and γ, followed by solving the BEM equations. The total velocity is
then computed and the shedding geometry is updated according to Eq.(3.2.37). This
process is said to have converged if the change between the updated values and the
values from preceded iteration is less than a certain tolerance (the flow chart of this
process is illustrated in Figure (3.9)). Since the elements of the influencing matrix
implicitly depend on these two parameters, each iteration in the routine will: a)
update the influencing matrix of the system, and b) solve the dense matrix equation.
For a sufficiently resolved body geometry, the computational overhead is simply too
large to ignore. For this reason alone, a different approach was sought in the code.

Basu and Hancock (1978) noted that in an unsteady 2D aerofoil simulation, the
shedding line of the nascent wake aligns with the upper or the lower surface tangent
depending on the sign of the shed vorticity; in general, when the sign is positive
(clock-wise rotation), the shedding line is parallel to the upper surface, whereas if
the sign is negative (anti-wise rotation), the shedding line is parallel to the lower
surface (see Figure (3.8)). However, since the sign is not known a priori, the correct
implementation of such scheme still employs the use of an iterative routine.

One simple approach, which avoids applying the iteration procedure to correct
the shedding geometry, is to freeze the parameters α and γ. It is derived from the fact
that in the limit as the rate change of the circulation of the blade approaches zero,
the flow leaves the trailing edge at the bisector of the two surfaces. This approach
has been adopted by various researchers to simplify the calculation of the shedding
geometry (see Katz and Plotkin (2001)), and is implemented here as well. The value
of γ is appropriately modelled by inferring from accuracy analysis and is currently
controlled by a dimensionless input. In the work of Katz and Plotkin, 2001, this is
set to 40% of the transition length from one time step to the next.
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FIGURE 3.8: Schematic diagram showing that the physical alignment
of the shedding line is parallel to either the top or bottom surfaces;

depending on the sign of the shed vorticity.

3.2.4 Analytical evaluation of the influencing functions and the far field
approximations

The task of evaluating the surface integrals as in Eq.(3.2.29)-Eq.(3.2.31) is a highly
non-trivial task. The exact derivation can be found in the literature (Hess & Smith,
1967). Sufficed to say, those expressions involve a total of 4 logarithmic and inverse
tangent operations, which resolve for the detailed quadrilateral/triangular geomet-
ric influence. On account of the large number of field points during simulations, this
portion of the computation remains a significant bottleneck.

When x⃗ is sufficiently far from the panel, it is anticipated that the exact panel geo-
metric detail is less important, thus one could expand the denominator in Eq.(3.2.29)
-Eq.(3.2.31) as a Laurent series. The leading order term in the series give rise to the
far-field approximations, which take the rather simple forms

Aj (x⃗) ∼
|Sj|
4π

n⃗ ·
(
y⃗j − x⃗

)∥∥y⃗j − x⃗
∥∥3 , (3.2.38)

Bj (x⃗) ∼ −
|Sj|
4π

1∥∥y⃗j − x⃗
∥∥ . (3.2.39)

where |Sj| denotes the surface area of Sj and y⃗j is the collocation point. Algorith-
mically, the domain relative to the body is first partitioned into the near-field and
far-field regions. The influence in the near-field region is calculated exactly while the
far-field is approximated by Eq.(3.2.38) - Eq.(3.2.39).

The overall accuracy of the computation therefore depends on the partitioned
domain. If the partition occurred relatively far from the body, for instance, then
it is likely that the reduction in the computational effort will be limited as a large
portion of the particles may still remain in the near-field region. Likewise, if the near-
field region is too small, then calculation of the neighbouring far field points will
generally induce a relative large error. To understand how the accuracy is impacted
by the partition, one needs to investigate the error estimate as function of the size
of the near-field region. The precise definition of the near-far region is summarized
as: given a body composed of a collection of panels, one defines the minimum box
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initialize
k = 0, αk, γk

solve for
u⃗ (αk, γk)

compute αk+1
and γk+1

(Eq.(3.2.37))

k ← k + 1

converge?

stop

no

yes

FIGURE 3.9: Iteration flow chart to determine the correct α and γ.
Here, k is the iteration counter and αk means the value of α after the

k-th iteration.

as the minimum three-dimensional space that encapsulates the geometry without
intercepting with its boundary. Let L be the largest characteristic panel length and
f some dimensionless number, the near-field region (or box) is the extension of the
minimum box whose 8 corners are outwardly translated by f × L in each direction.
The size of the near-field region is thus controlled and parametrized by varying the
value of f (hereafter f is called the partition parameter, see also Figure (3.10) for an
example). To survey the variation of the error of the far-field approximation, a mesh
on one of the faces is generated. The normalized root-mean squared deviation (NRMSD)
is used to measure the expected deviation from the true values. Specifically, for two
distributions g and h, the NRMSD is defined as

NRMSD (g, h) =

√√√√∑N
j=1
(

gj − hj
)2

∑N
j=1 h2

j

. (3.2.40)

The (u, v, w) component of the induction were surveyed. Since the error term in the
Laurent series behaves like O

(
r−5

0

)
where r0 is the length between the field point

and the near-field centre, it should be expected that the NRMSD should exhibit a
similar asymptotic behaviour in f . Indeed, Figure (3.11) depicts a monotonic de-
creasing trend. Although the code provides the option to set the partition parameter,
one should be conscious about the behaviour of the approximation error and how
the partition parameter affects the accuracy of the simulation. For the simulation
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FIGURE 3.10: Near-field regions at different values of f = 2.5, 5.0 and
7.5

cases considered in this thesis, f = 5 is a reasonable compromise between speed
and accuracy.

3.2.5 A multipole expansion of the far-field approximation of the panels

A second level of approximation is explored, which is motivated by the need to
accelerate the far-field calculation in cases when fine-grained discretization on the
body is performed. The aim is to reduce the original far-field approximation fur-
ther without sacrificing accuracy too much. For this purpose, a multipole expansion
based on the spherical harmonic functions is developed. First, one observes that
Eq.(3.2.38) is related to Eq.(3.2.39) via the expression:

Aj = −n⃗j · ∇Bj = ∇ ·
(∣∣Sj

∣∣ n⃗j

4π

1∥∥x⃗− y⃗j
∥∥
)

(3.2.41)

At a far-field location, the total source and dipole potential are simply the sum
of the product between the singular surface values and their kernels:

A := ∇ · Ψ⃗ (3.2.42)

B :=
N

∑
j=1

σjBj (3.2.43)
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0 5 10 15
10-4

10-3

10-2

FIGURE 3.11: Normalized root-mean squared deviation of the induc-
tion velocity (u, v, w) as function of the partition parameter f .

where

Ψ⃗ =
N

∑
j=1

µj
∣∣Sj
∣∣ n⃗j

4π

1∥∥x⃗− y⃗j
∥∥ . (3.2.44)

The idea is to convert the potential as in Eq.(3.2.44) and Eq.(3.2.43) into an expansion
of the form:

Ψ⃗ (r, θ, ϕ) =
∞

∑
n=0

n

∑
m=0

Jm
n (r, θ) S⃗m

n (ϕ) (3.2.45)

B (r, θ, ϕ) =
∞

∑
n=0

n

∑
m=0

Jm
n (r, θ) Qm

n (ϕ). (3.2.46)

where (r, θ, ϕ) defines the spherical coordinates relative to an expansion center (see
Section 4.4.2 for detail). At degree n and order m, the induced velocity due to the
source elements is given by

u⃗m
s,n =

∂Jm
n

∂r
Qm

n∇r +
∂Jm

n
∂θ

Qm
n∇θ + Jm

n
∂Qm

n
∂ϕ
∇ϕ, (3.2.47)

Meanwhile, the induced velocity due to the dipole elements requires significantly
more effort to derive:
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u⃗m
d,n = ∇

(
∂Jm

n
∂r

)
f1 +

∂Jm
n

∂r
∇ f1 +∇

(
∂Jm

n
∂θ

)
f2 + (∇Jm

n ) f3 + Jm
n ∇ f3 (3.2.48)

f1 = S⃗m
n · ∇r, (3.2.49)

f2 = S⃗m
n · ∇θ, (3.2.50)

f3 =
∂S⃗m

n
∂ϕ
· ∇ϕ, (3.2.51)

∇ f1 =

(
∇r · ∂S⃗m

n
∂ϕ

)
∇ϕ + r−1

(
S⃗m

n − f1∇r
)

, (3.2.52)

∇ f2 =
1

r2 sin θ

(
f1⃗k +

(⃗
k · S⃗m

n

)
∇r +

(⃗
k · ∇r

) (
S⃗m

n − 3 f1∇r
))

− cot θ f2∇θ +

(
∇θ · ∂S⃗m

n
∂ϕ

)
∇ϕ (3.2.53)

∇ f3 = −m2
(
∇ϕ · S⃗m

n

)
∇ϕ+ ∥∇ϕ∥2

(⃗
k× ∂S⃗m

n
∂ϕ

)
− 2

(⃗
k · ∂S⃗m

n
∂ϕ
×∇ϕ

)
∇ϕ. (3.2.54)

The strain tensor requires the derivative of the velocity field and thus requires fur-
ther differentiation of the relevant quantities. Presently, no attempts have been made
to derive the exact expression for the strain. Therefore, a central difference scheme
is applied in each of the directions.

The error of the multipole expansions is controlled by two parameters in addition
of the partition parameter f . They are:

• the truncation number in each expansions, P

• the number of expansions/body, Nb

For the latter item, the code generates Nb number of boxes to cover the body. For
each box in the collection, the influences of the containing panels are transformed
into the multipole expansions relative to the boxes’ centre according to Eq.(3.2.45)
and Eq.(3.2.46). Again, the error behaviour with respect to the truncation number P
is reported in Figure (3.12a) in which the NRMSD was computed against the far field
approximation in Section 3.2.4 at a partition size f = 5 and Nb = 5. Indeed, the trend
in Figure (3.12a) suggest the accuracy is improved exponentially at a larger value
of P, but this comes at the expense of increasing the computational effort (Figure
(3.12b)), which is defined by the ratio between the wall-clock time of the evaluation
of the multipole expansions and the direct evaluation of the far-field approximation.
Thus if the computational effort is larger than 1, there is no real speed advantage of
using the multipole approach. Interestingly, there is no notable gain in accuracy if
an odd value of the truncation number was used. In fact, there appears to be a slight
deterioration of the result. It is not known whether this is a feature of the spherical
harmonic basis functions.
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FIGURE 3.12: (A) shows the NRMSD being plotted against the trun-
cation number P for the induction field at f = 5, Nb = 5 and (B)

shows the computational effort versus P

3.3 BEM and VPM coupling

In attached flow, vorticity is shed to the fluid domain at the trailing edges of the
solid body. In the BEM calculation, this physical phenomenon is manifested in the
introduction of nascent wake dipole panels. To properly model the vorticity shed-
ding mechanism, a forward conversion procedure between the dipole sheet and the
vortex particles is required. Before this conversion procedure can take place, how-
ever, one recalls that in the low-order modelling, the panels are assumed piece-wise
constant, which, if untreated, makes the induction field close to the wake to exhibit
notable numerical discontinuity. One way to reduce this apparent numerical artefact
is to apply interpolation for a discrete set of dipole values. Indeed, the current code
makes use of a simple bilinear interpolation technique which applies a linear function
to approximate the continuity between two consecutive panels. Once the interpola-
tion is done, the forward conversion is performed using the Hess’ equivalent prin-
ciple (Hess and Smith, 1967), which relates the induction field due to a dipole panel
with an arbitrary dipole distribution to a surface vortex distribution plus a boundary
term.

3.3.1 Hess’ equivalent relationship

Let u⃗d denote the induction velocity due to a dipole panel with a surface dipole
distribution µ(⃗y) and outward normal n⃗ (⃗y), where y⃗ denotes the surface point on S.
u⃗d is obtained by taking the grad of a general dipole potential. i.e.

u⃗d = ∇
(
∇ ·

∫
S

µ (⃗y) n⃗ (⃗y)
4π

1
∥x⃗− y⃗∥dy⃗

)
. (3.3.1)

By using the Stoke’s theorem, one could show that the following holds:

u⃗d =
1

4π

∫
S
(⃗n×∇µ)× x⃗− y⃗

∥x⃗− y⃗∥3 dy⃗ +
1

4π

∫
∂S

µ
dy⃗× (x⃗− y⃗)
∥x⃗− y⃗∥3 . (3.3.2)
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FIGURE 3.13: Nomenclature used in the bilinear interpolation of a
convex quadrilateral dipole panel. The corner points are denoted by

the tuple
(

µi, X⃗i

)
.

The first term on the right corresponds to the surface vortex distribution with point-
wise vorticity vector assigned by n⃗×∇µ, while the boundary term is discretized as
line vortices around the surface boundary ∂S. The particle conversion thus relies on
applying Eq.(3.3.2) to a collection of piece-wise constant dipole panels, which has
to be interpolated across the inter-panel boundaries in order to achieve a smooth
discretization of the particle field on the dipole sheet.

3.3.2 Bilinear interpolation and computation of ∇µ

Fast and reliable computation of ∇µ is essential to the accuracy of the VPM as it
directly controls the amount of vorticity entering to the flow. Despite the fact that
numerous investigators have included this process in their works (Wang et al., 2018),
they have not included the implementation detail. For this reason, we have devel-
oped an accurate scheme for the evaluation of ∇µ. The accuracy is limited only to
the bilinear interpolation. To demonstrate the technique, we consider a quadrilateral
panel whose corner points are assumed coplanar. Furthermore, the dipole values are
known at each of the corner point. For reason to be discussed later, we imposed con-
vexity of the points. Hence, a convex quadrilateral dipole panel is uniquely defined
by specifying the corner data, which shall be denoted by

(
µi, X⃗i

)
for i = 1, 2, 3, 4.

Without loss of generality, let us suppose that the points are distributed in a
clock-wise orientation. For this particular panel configuration, the bilinear inter-
polation requires a compact way to parametrize the surface, which can be done as
follows: First, we pick a point Y⃗1 on the line segment between X⃗1 and X⃗2, and we
note this point splits the line by a ratio s where s =

∥∥∥Y⃗1 − X⃗1

∥∥∥ /
∥∥∥X⃗2 − X⃗1

∥∥∥. For this

value of s, one may compute the point Y⃗2 on the line segment between X⃗4 and X⃗3.
By the convexity assumption, points on the line segment between Y⃗1 and Y⃗2 are com-
pletely confined in the panel. In particular, if Y is one of such points, then one could
define a ratio t such that t =

∥∥∥Y⃗− Y⃗1

∥∥∥ /
∥∥∥Y⃗2 − Y⃗1

∥∥∥. Hence, there is a one-to-one

correspondence between an interior point Y⃗ and the pair (s, t) (see Figure (3.13)).
Knowing this, it is possible to construct the bilinear interpolation formula for an

arbitrary point Y⃗ by applying two linear interpolations sequentially to the s and t
variables. The end result is a quadratic function that takes the particularly simple
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FIGURE 3.14: Example of the bilinear interpolation with some ran-
dom corner values.

expression

Y⃗ =
(
(1− s) X⃗1 + sX⃗2

)
(1− t) +

(
(1− s) X⃗4 + sX⃗3

)
t. (3.3.3)

where s ∈ [0, 1] and t ∈ [0, 1]. By the same token, the dipole strength at Y⃗ (s, t) is
interpolated as

µ (s, t) = ((1− s) µ1 + sµ2) (1− t) + ((1− s) µ4 + sµ3) t. (3.3.4)

This particular simple interpolating scheme is capable to handle panel distortion
in the projected two-dimensional plane (see Figure (3.14)), as long as the deviation
in the normal direction is small compared to the other two length-scales. Having
defined the parametrization of the panel, our next task is to compute ∇Sµ, which is
related to ∇µ as follows:

∇Sµ = ∇µ− n⃗⃗n · ∇µ. (3.3.5)

where n⃗ is the normal of the panel.
Let p⃗1 and p⃗2 be two vectors such that (⃗n, p⃗1, p⃗2) forms an orthonormal basis, so

one may express the explicit form of ∇Sµ as

∇Sµ =
∂µ

∂p1
p⃗1 +

∂µ

∂p2
p⃗2. (3.3.6)
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By definition,

∂µ

∂pi
= lim

δ→0

µ
(

X⃗ + δ p⃗i

)
− µ

(
X⃗
)

δ

 , (3.3.7)

where X⃗ = (x, y, z) is an interior point. Generally, the explicit form of µ
(

X⃗
)

is
not available, therefore it is not possible to evaluate ∂µ/∂pi via Eq.(3.3.7). In the
proximity of the point X⃗, however, we may expand s and t along the path L : X⃗ + δ p⃗i,
so as δ→ 0, we have

t (δ) ∼ t∗ +
∂t
∂δ

δ, (3.3.8)

s (δ) ∼ s∗ +
∂s
∂δ

δ, (3.3.9)

where (s∗, t∗) satisfy the equation

X⃗ = Y⃗ (s∗, t∗) . (3.3.10)

Setting

X⃗ + δ p⃗i = Y⃗
(

s∗ +
∂s
∂δ

δ, t∗ +
∂t
∂δ

δ

)
,

= Y⃗ (s∗, t∗) +

(
∂Y⃗
∂s

∂s
∂δ

+
∂Y⃗
∂t

∂t
∂δ

)
δ +O

(
δ2) ,

and upon comparing the coefficients, it follows that ∂t/∂δ and ∂s/∂δ satisfy the
equation

p⃗i =
∂Y⃗
∂s

∂s
∂δ

+
∂Y⃗
∂t

∂t
∂δ

. (3.3.11)

In the limit δ→ 0, Eq.(3.3.7) may be replaced by

∂µ

∂pi
= lim

δ→0

(
µ (s (δ) , t (δ))− µ (s∗, t∗)

δ

)
=

∂µ

∂s
∂s
∂δ

+
∂µ

∂t
∂t
∂δ

.

Finally, solving Eq.(3.3.11) yields the following expressions for ∂s/∂δ and ∂t/∂δ:

∂s
∂δ

=
1
λ

∥∥∥∥∥∂Y⃗
∂t

∥∥∥∥∥
2(

p⃗i ·
∂Y⃗
∂s

)
−
(

∂Y⃗
∂s
· ∂Y⃗

∂t

)(
p⃗i ·

∂Y⃗
∂t

) , (3.3.12)

∂t
∂δ

=
1
λ

∥∥∥∥∥∂Y⃗
∂s

∥∥∥∥∥
2(

p⃗i ·
∂Y⃗
∂t

)
−
(

∂Y⃗
∂s
· ∂Y⃗

∂t

)(
p⃗i ·

∂Y⃗
∂s

) , (3.3.13)

λ :=

∥∥∥∥∥∂Y⃗
∂t
× ∂Y⃗

∂s

∥∥∥∥∥
2

. (3.3.14)

It is worth noting that the solution only exists if λ > 0 with equality only in situation
where two adjacent panel edges are aligned parallel with each other. This extreme
case is not handled in the code and thus one should exercise with caution when
generating the body and wake geometry data.

For the purpose of validating the conversion procedure, it is useful to compare
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(A) (B) (C)

FIGURE 3.15: velocity field due to the far-field approximation of the
dipole panel. a) x component, b) y component and c) z component.

(A) (B) (C)

FIGURE 3.16: velocity field due to the particle discretization with a
fixed core radius ϵ = 1E-3. a) x component, b) y component and c) z

component.

the induction field between the Biot-Savart induction and the far field approxima-
tion in Section 3.2.4. Recall that for a dipole panel, the far field velocity is obtained
by taking the grad of Eq.(3.2.38), i.e.

u⃗far (x⃗) = ∇x⃗

(
µ̄A
4π

n⃗ · (⃗y− x⃗)
∥y⃗− x⃗∥3

)
, (3.3.15)

where A is the area of the panel, y⃗ is the collocation point and µ̄ is given by

µ̄ =
1
A

∫ 1

0

∫ 1

0
µ (s, t)

∥∥∥∥∥∂Y⃗
∂s
× ∂Y⃗

∂t

∥∥∥∥∥ dsdt. (3.3.16)

Figure (3.15) and Figure (3.16) illustrate the velocity induction field at a survey plane
located above the panel (along the normal direction). The plane is located at a
distance 5.5L from the collocation point where L is the characteristic panel length.
Despite some discrepancies in terms of the obtained maximum values, the overall
agreement is satisfactory. Also, it is worth mentioning that although Eq.(3.3.6) is de-
fined through the prescription of the direction vectors, one should expect that the
end result should be independent on the choice of the vectors; as long as they form
an orthonormal basis for the panel.

Once ∇Sµ is determined, the panel is discretized by a set of surface vortices as
well as edge vorticies according to the Hess’ equivalent principle. For the surface
vortices, the vorticity value is assigned to the vortex particles according to the for-
mula

ω⃗ = n⃗×∇Sµ. (3.3.17)
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Meanwhile, the initial core assigned to the vortices remains an arbitrary input at
this point. But principally, it should depend on the boundary thickness of the solid
bodies that generate them.

3.3.3 A robust least square fit for interpolating the dipole values

In the particle conversion algorithm, a set of dipole panels are transformed to a clus-
ter of particles representing the effect of the thin boundary layer in the wake. To
do that, the dipole strengths, which are assumed constant on each panel, are first
interpolated to the nodes followed by fitting a bilinear interpolation approach to
reconstruct the linear variation across the panel surfaces. However, it was found
that naive implementation produces highly oscillatory results. Specifically, suppose
µi, i = 0, 1, . . . , N − 1 denote the constant dipole values associated with the panels
with index i. Assuming a linear variation between the nodes, it can then be shown
that a simple technique can be constructed as follows:

F (i + 1) = 2µi − F (i) , (3.3.18)

where F is the node value with F (0) = 0. In general, the span-wise distribution of µ
is characterised by sharp changes towards the tips of the blade, thus it is anticipated
that the values might be erroneous in those regions even if a fine discretization is
performed. Inferring from the theoretical result for the span-wise distribution of µ
for the elliptical wing (Katz and Plotkin, 2001), it is clear that the gradient is singular
at the tips. This could be the reason that the dipole values are prone to error in those
regions. Indeed, if one is to perform Eq.(3.3.18) on such data points, the result is
plagued by high frequency noise. An example of such behaviour is given in Figure
(3.17) where the calculated dipole distribution failed to converge to zero even for a
refined discretization towards the tips of the elliptical wing.

To avoid such cases, a non-linear regression model is developed with the fitting
curve f (x, a⃗) given by

f (x, a⃗) =
√

x (s− x)Qn (x, a⃗) , (3.3.19)

where s is the blade span, Qn is a polynomial with degree n and a⃗ is the coefficient
vector. The choice for the square root function is essential to mimic the steep gradient
near the tip regions - keeping inline with the theoretical prediction. A robust variant
of the least-squares was employed to circumvent the limitation of the traditional
least squares regression, i.e. sensitive to outliers. For this purpose, an iteratively re-
weighted least squares method was used that minimizes the weighted loss function
of the form:

E =
N−1

∑
i=0

wi (⃗a) | f (xi, a⃗)− µi|2. (3.3.20)

Here, the weight is defined as wi := 1/ max [δ, | f (xi, a⃗)− µi|] and δ is a small non-
zero positive constant introduced to prevent division by zero. Since the weight is
a function of the coefficient vector, an iterative approach is used to solve the mini-
mization problem. Figure (3.17) shows that the robust fit seems to produce excellent
result especially near the tip region where the data are erroneous.
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FIGURE 3.17: Comparison of µ for an elliptical wing between the
naive approach Eq.(3.3.18) and the robust least square fit with the fit-

ting function given by Eq.(3.3.19) for an elliptical wing.

3.4 Chapter conclusion

Under the assumption of high Reynolds number flow condition, the Euler’s equa-
tions are solved by the introduction of the BEM approach. The new proposed method
involves constructing a velocity scalar potential function, which satisfies the appro-
priate boundary and far-field conditions. It was shown that the potential is har-
monic and a general solution is constructed by prescribing the surface singular dis-
tributions (σ and µ ) as well as an internal potential for closed geometry. A new
low-order BEM was developed, which uses the Dirichlet formulation for enforcing
the boundary condition at the collocation.

In addition, we have presented the mathematical theory for viscous wake flow,
in which the vorticity field is discretized by a set of vorticity-carrying particles. This
allows a fully Lagrangian approach to solve the non-linear advection term in the
Navier-Stokes equations. To avoid the singular nature of the Green’s function, the
field is mollified by treating the particles as blobs with a finite core region. This
allows the diffusion to be modelled by a deterministic scheme (PSE).
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Chapter 4

Fast multipole methods

The essence of the current work is the development of a new efficient calculation
procedure to compute the Biot Savart law for a large set of vortex particles in the
flow domain. This chapter explores the Fast Multipole Method (FMM) in an attempt
to reduce the quadratic scaling of the N-body problem to a linear scaling. It is noted
that such a reduction requires an efficient data structure for storing the interaction
information. For this purpose, a novel data construction algorithm has been pro-
posed and developed which proceeds to sort the particle data in a backward sweep
manner. In the 3D implementation, an analytical expression for the strain tensor has
been derived in terms of the real spherical harmonic basis functions. The use of the
real basis functions is crucial for minimizing the GPU overhead in the code. For
this purpose, several mathematical expressions have been derived to facilitate the
complex to real conversion.

4.1 Introduction to the fast multipole methods (FMM)

The needs to apply a fast summation algorithm arise from an important class of
problems in physics - the N-body problems. Applications of such problems can be
found in a variety of scientific and engineering principles, for example, the Colom-
bic interaction of celestial objects in astrophysics, the Lagrangian evolution of the
vortex particles in fluid dynamics, the molecular dynamics in chemical systems and
so forth. Typically, in these types of problems the solutions require the repeated
evaluations of a large sum of the form:

Ψ
(

x⃗j
)
=

N

∑
i=0
i ̸=j

ϕ
(
x⃗j − x⃗i

)
, j = 1, 2, ..., N (4.1.1)

where ϕ is some scalar potential function. Direct evaluation of Eq.(4.1.1) for each po-
sition/particle requires O

(
N2) operations and N is generally very large. Although

such a scheme is numerically simple but the quadratic dependency on N often de-
mands unrealistic load on computing power. Fast summation techniques are an im-
portant class of techniques that mitigate the quadratic asymptotic and thus they find
applications across many disciplines of science and applied mathematics. The origi-
nal attempt of reducing the quadratic dependency was due to Barnes and Hut (1986)
in their dynamic simulation of the evolution of stars. The novelty in their work in-
cludes the approach to efficiently construct a hierarchically divided domain in which
the computational elements are sorted. By the introduction of a judiciously designed
interaction list, which contains the information necessary to resolve communication
between the field particles and their far-field, they were able to represent the far
field influence as a multipole expansion series. Interaction between a field particle
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and those result from the far field is computed, not on a pair-wise basis but, by sim-
ply evaluating the resulting expansions. Accounting for the cost of constructing the
data structure, the overall complexity of the scheme isO (N log N). Fast summation
techniques that follow this school of thought are sometimes referred to as tree-code.

The success of the Barnes-Hut algorithm led to development of several fast sum-
mation techniques that are still in use for many physics simulation codes. In partic-
ular, the fast multipole method, or FMM, introduces an extra layer of complexity -
the local representation. Essentially, in addition of the original tree code, the multi-
pole expansions of the far-field regions are successively converted and translated to
a local expansion. This allows the expansions from multiple far-field regions to be
congregated at a local level to create an effective local potential. More specifically,
all aspects of the FMM routine can be categorically grouped into 5 main components
(Figure (4.1)), these are summarized as follows:

• Data structure: The source particles are recursively sorted by dividing the com-
putational domain into a quadtree (or Octree in 3D).

• Initial expansion: In each sub-domain of certain kind, the particle cluster is con-
verted to a multipole expansion.

• Upward pass: Recursively, the multipole expansion of each sub-domain is trans-
lated and combined to its parent’s expansion. The resulting expansion repre-
sents the influence of the source particles of its parent.

• Downward pass: For each sub-domain, the multipole expansion of its far-field
region is converted to a local expansion. Then, recursively, the local expansion
of the sub-domain is translated and combined to its children’s local expansion.

• Final evaluation: For each field point, one computes the influence of its neigh-
bour directly while the far-field influence is evaluated on the local-expansion
of the sub-domain that contains the field point.

Notably, one distinguishes the tree code, such as those from the Barnes-Hut algo-
rithm, and the FMM algorithm by the inclusion of the Downward pass step. Cru-
cially, it is precisely because of this step that allows the operation count of the FMM
to be reduced from O (N log N) to O (N). In the above, we have introduced sev-
eral concepts which are yet to be defined, such as the notion of a parent, children and
neighbour. These will be subsequently discussed in Section 4.2.

Currently, both the 2-D and the 3-D FMM algorithms have been developed on
graphics processing units (GPU). Although much of the theories are based on the
early literature (for example, the 2D implementation is based on the work of Car-
rier et al. (1988) and L. Greengard and Rokhlin (1987), while the three-dimensional
approach is primarily based on L. Greengard and Rokhlin (1997) ), the actual im-
plementation draws many similarities from more recent works such as those from
Gumerov and Duraiswami (2008), Hu et al. (2013), and Yokota et al. (2009). The
implementation of the FMM code on the GPU brings extra complexities to the al-
ready complicated FMM structure. One such concern is the parallelization of what
would be a highly serialized structure in the traditional FMM formulation. To over-
come this issue, we have employed a space-filling curve to construct the FMM tree
in a numerically efficient way. Moreover, one notable distinction between our codes
and that of the literature is that we have adapted the FMM methodology specifically
for wind turbine applications under a unified framework with the modelling ap-
proach outlined in Chapter 3. For the sake of completeness, this chapter reviews and
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presents the underlying mathematical theories and computer algorithms needed to
construct an efficient FMM routine.

Data structure

Initial expansion

Upward pass

Downward pass

Final evaluation

FIGURE 4.1: Typical components of the FMM routine.

4.2 Data structure

Consider a set of source particles with index set J. Each particle in the set is identified
by the index j ∈ J and parametrized by the tuple

(⃗
αj, x⃗j

)
, where α⃗j is the vector

strength and x⃗j is the position of the particle (in 2D, α⃗j is taken to be a scalar). Without
loss of generality, we assume that the positions of the particles are scaled to fit within
a unit-square (2D) or a unit-cube (3D) located at the origin. So each component in
the position vector is greater than zero and less than unity. If the particles are not
already normalized, one simply applies the normalization operation:

x⃗j ←
x⃗j − x⃗min

D
. (4.2.1)

where x⃗min := minj∈J
(

x⃗j
)

(note that the minimization is conducted on a component-
wise basis) and D is a scalar chosen to ensure that the norm of all normalized po-
sitions are within the square (cube). Since the multipole (or local) expansions rely
on the truncated Taylor series, one has to make sure that the far-field region for a
given source point is within the radius of convergence of such series. To make this
concise, we introduce the notion of a well-separated set. Let X = {x⃗j, j = 1, 2, ..., N}
and Y = {y⃗j, j = 1, 2, ..., M} denote two sets of Cartesian points such that∣∣⃗xj − x⃗0

∣∣ < r for i = 1, 2, ..., N (4.2.2a)∣∣⃗yj − y⃗0
∣∣ < r for j = 1, 2, ..., M (4.2.2b)

|⃗x0 − y⃗0| > 3r, (4.2.2c)
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where x⃗0 and y⃗0 denote the centre of the balls that contain the set X and Y, respec-
tively. Here, r is the common radius of the balls (see Figure (4.2)).

FIGURE 4.2: The sets X and Y are well-separated if the distance be-
tween the open balls are separated by at least three times the radius.

Now, if B (X, r) and B (Y, r) denote the ball for the set X and Y, respectively, then
for any x⃗ ∈ B (X, r), we require that the multipole expansion due to the influence of
the sources in Y to be convergent. Likewise, for any x⃗ ∈ B (Y, r), convergence needs
to be assured for the expansion due to the source influence in X. For the forms of the
expansion considered in this thesis, this property is always assumed. Therefore, in
consideration of the convergence condition, it is absolutely imperative to consider
the type of data structure that respects the convergence property.

For the mapping given by Eq.(4.2.1), it is readily seen that a natural choice for
the data structure is a quadtree, in which the domain (box) is recursively divided
into 4 smaller sub-domains of equal size (sub-boxes). Specifically, we denote D0 as
the initial domain at refinement level 0. After the first refinement, D0 is partitioned
into

D0 =
3⋃

j=0

D0,j. (4.2.3)

where D0,j denotes the j-th sub-box that results from D0.
The D0,j’s are referred to as the children of D0 (note that in 3D, the original do-

main would have given birth to 8 children boxes), and D0 is called the parent node of
D0,j. Proceeding from this line of thought, one can see that at the end of the second
refinement level, each of the 4 children would result in a division of 4 further chil-
dren boxes; resulting in a total of 16 boxes at this level. To label those, we denote the
j-th children of the i-th parent at refinement level 1 as D0,i,j. Generalizing this argu-
ment for the k-th refinement, the children boxes at refinement level k admit a unique
identification in the form D0,i1,i2,...,ik , where each subscript index ip ∈ {0, 1, 3}. More
generally, if d is the dimension of the space, then 2d-tree can be constructed whose
children boxes at refinement k can be labelled by D0,i1,i2,...,ik , with each ip takes values
from the set {0, 1, ..., 2d − 1}.

It should be noted that the number of boxes Ntotal at the end of refinement k is
given by

Ntotal = 1 + 4 + 42 + · · ·+ 4k =
1
3

(
4k+1 − 1

)
. (4.2.4)
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FIGURE 4.3: Schematic diagram showing that the initial 2D domain
D0 is partitioned into the union of D0,0, D0,1, D0,2 and D0,3. Children
boxes of subsequent refinements are conveniently identified by intro-

ducing the multi-dimensional index j such that j = [0, i1, i2, . . . in].

The corresponding result for the 3D case is Ntotal =
(
8k+1 − 1

)
/7. One notes that

Ntotal has an unfavourable exponential dependence on k, which means that if the
refinement level increases without bound, the cost of constructing the tree increases
exponentially, which in most cases is simply not acceptable. In practical terms, it is
seldom the case that the particles would occupy the space uniformly (some boxes
may not even contain any source particles), so depending on the particle distribu-
tion, one can employ an adaptive control strategy to refine only those boxes that
meet certain division criteria. It is customary to introduce the parameter s, which
is the maximum number of source particles in any given childless box. Here the
box is called childless if it is non-empty and contains fewer than s source parti-
cles, otherwise it is referred to as a parent box. For a given multi-dimensional index
j = [0, i1, i2, ...in], which returns a reference to a box at refinement level n, Algorithm
4.1 checks whether the box is empty (note that a box is empty if it does not contain
any source particles) and proceeds to divide the box into 2d sub-boxes if it is not. The
output is a set of box references that will be appended to the tree’s division list. The
idea is that by actively maintaining the division list, one can exhaust every boxes in
the domain (see Algorithm 4.2 for the full construction). At the end of Algorithm
4.2, the tree will: (a) produce a Boolean array to mark which boxes are empty and
(b) resolve all parental connections among non-empty boxes and spatially sort the
particle data. The next phase of the processing involves defining what we mean by
far-field in the FMM setting.

For demonstration purposes, let us apply the tree-construction algorithm to two
distributions. Figure (4.5) illustrates the result of the initial domain after the division
process for a uniform distribution of the source particles. Here, the number of source
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FIGURE 4.4: Illustration of how the cube is recursively divided in 3D.
The resulting data structure is now an Octree.

particles was set to 500 and the division parameter was set to s = 5. Similarly, Figure
(4.6) demonstrates the outcome of the algorithm applied to a non-uniform particle
distribution in which the particles are constrained in an annular region. In the first
instance, the code requires 5 refinement levels to resolve the distribution while in the
latter case an additional level was performed. Notice, however, that the numbers
of childless boxes for both distributions are more or less equal (being 200 and 204,
respectively). But as we shall see later that in general the FMM always performs
better for highly non-uniform distributions.

Once the data structure has established, one needs to introduce a hierarchical
structure that defines, in a systematic sense, the notion of near and far-fields. We
follow the idea introduced by L. Greengard and Rokhlin (1987) to characterize this
notion formally. For each box in the tree, we maintain a set of 4 interaction lists.
These are labelled as List 1, List 2, List 3 and List 4. In addition, we introduce the
idea of a colleague and an associate. Specifically, let b denote the reference of a box at
refinement level k, then:

• A colleague of b is a non-empty box that results from the same refinement level
as b and is also shared a common boundary with b; excluding b itself. Namely,
b cannot be it’s own colleague.

• An associate of b is a non-empty box that shares a common boundary with b and
whose refinement level is smaller or equal to b. In other words, the associate
box must be at least as small as b. Furthermore, we allow b to be its own
associate.

• List 1 of b is a set of box references that consist of b itself and all other childless
non-empty boxes that share a common boundary with b. This list, however, is
empty if b is a parent box. The neighbours of b are thus defined as the distinct
boxes in the List 1 minus b.

• List 2 of b is a set of box references formed by the non-empty children of the
colleagues of b’s parent that are well-separated from b (i.e. Eq.(4.2.2)).
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Algorithm 4.1: Divide Box
input : reference of the tree object (tree), a multi-dimensional box index (j)

and the division parameter (s)
output: reference to the modified tree object, tree

// Obtain the box reference from tree

B = tree.getBoxReferenceFromIndex(j)
if B’s parent is not empty then

B.getParticleDataFromParent()
// exit early if B is empty

if B is empty then
return

if number of source particles in B exceeds s then
// The splitBox() function divides the box B and performs a preliminary

test to ascertain whether each children is empty

B.splitBox()
for each children box C in B do

if C is non-empty then
tree.appendToDivisionList(C)
// here, the reference of box C is added to the tree's division list

• List 3 of b consists of all non-empty descendants of b’s colleagues whose par-
ents share a common boundary with b but they themselves do not. This list is
empty if b is a parent box.

• List 4 of b consists of all non-empty box references whose List 3 contains b.

By examining the definition carefully, it is a simple exercise to deduce the relative
size of the boxes in the Lists. For instance, all boxes in List 2 must be the same size
as b, whereas boxes in List 3 are strictly smaller since they are derived from higher
refinement levels. This way, one can clarify succinctly the definition of the near- and
far-field regions. For instance, the near-field of a childless box is defined to be the
union of all boxes in its List 1 set. Likewise, the far-field regions relative to the box
are hierarchically divided among its List 2, List 3 and List 4.

As well as providing the clarification we need, the well-separateness property
can also be showed to be respected. The next task is to populate the Lists for all
boxes in the domain. This is accomplished by a two-step approach. First, one has
to resolve the associate list. During this stage, the tree is traversed sequentially from
the canopy to the root and the associate list of each box is determined by searching
the associate list from their parent’s ( Algorithm 4.3 ), which would have previously
generated from the preceded sweep. In addition, the list 2 partition is also resolved
at this stage. The second step involves sweeping the associate list of each box and
determining their spatial position. In general, an iterative approach has to be applied
(see Algorithm 4.4 for detail). At the end of this step, all of the List partitions would
have resolved and the next stage in the FMM will commence.

4.2.1 The Morton index and the Z-order curve

The original sorting algorithm, as outlined in Algorithm 4.2, was inefficient and is
difficult to parallelize on a shared-memory device due to the fact that the particle data
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Algorithm 4.2: Tree-Construction
input : reference of the tree object (tree), a set of particle data (pData) and

the division parameter (s)
output: reference to the modified tree object (tree)
// check if the current number is too small to initialize the construction

if the number of source particles of the initial domain is less than s then
return

if tree is not initialized then
tree.initialize(pData)

// perform the initial division, recall that the index representing the

genesis domain is denoted by zero

B = tree.getBoxReferenceFromIndex(0)
list = tree.getDivisionList()
while list is non-empty do

// copy the content of list to a temporary variable tmplist and reset the

list

tree.copyListTo(tmplist)

tree.resetList()
for each box B in tmplist do

// applies Algorithm 4.1 sequentially to each box in the list

Divide-Box(tree, B.getIndex(), s)
// The output is a newly created list which contains the references of the

non-empty boxes to be checked at the next iteration

list = tree.getDivisionList()

have to be sequentially checked and compared to the boxes’ locations. To overcome
this difficulty and avoid serializing the checks, we adopted a more efficient way of
spatially sorting the particles based on their coordinate values. To begin our presen-
tation, one has to understand the concept of space-filling curves, which are commonly
encountered in the field of computer science.

Essentially, the space-filling curve is a way to transform multi-dimensional data
to one-dimension while preserving their local geometric properties (see Orenstein
and Merrett (1984) ). To achieve this, the points in a d-dimensional space is pre-
sented as a vector consisting of positive integers. The curve thus corresponds to the
mapping

R : Nd
+ →N. (4.2.5)

Depending on the map R, different types of space-filling curves can be obtained.
Quite commonly, the z-order curve also known as the Morton curve is used for its
consistency with the indexing convention adopted in Section 4.2 as a way to iden-
tify the boxes in the FMM tree. As previously mentioned, each component of a d-
dimensional vector is represented as a positive integer, and thus one can determine
its binary representation. The bits of the components are interleaved to produce a
new positive integer of certain length (usually a 64-bit integer). The resultant inte-
ger is known as the z-value of the operation (hence the name). So for example, the
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FIGURE 4.5: An example of the TreeConstruction algorithm applied
to a uniform set of source particles in the unit square. The source
points are represented by the blue dot whilst the box centers are in-
dicated by the red cross. Moreover, the empty childless boxes are not

shown.

z-value of two 8-bit unsigned integers 55 and 62 can be obtained as:

55 = 001101112 (4.2.6a)
62 = 001111102 (4.2.6b)

z = 00001111011111102 (4.2.6c)

Here the subscript 2 indicates that the expression is in binary form. The result is
a 16-bit integer equal to 3966 in decimal. So how could one apply this technique
to the physical coordinates since they are most likely stored as floating-point num-
ber instead? A straight forward extension is to interleave the bits of the fractional
part of the floating-point numbers (assumed non-negative), which is equivalent to
modifying the map as in Eq.(4.2.5) to the following

R′ : Fd → F, (4.2.7)

where F is the open unit interval. Indeed, this approach has been used by vari-
ous authors in the literature (see Gumerov et al. (2003) for more detail) and is also
adopted here. To see this, consider x1 = 0.25 and x2 = 0.33, the z-value as the result
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FIGURE 4.6: An example showing the domain division for an annular
particle distribution. Again, the childless empty boxes are not shown

here.

of the map R′ is given as follows

0.25 = 0.01000000 . . .2 (4.2.8a)
0.33 = 0.01010100 . . .2 (4.2.8b)

z = 0.0011000100010000 . . .2 , (4.2.8c)

which in decimal, the value of R′ (0.25, 0.33) is 0.191650390625. In terms of the FMM
application, one can now demonstrate how the bit-interleaving technique can help
us to spatially sort the particle in an numerically efficient and parallelizable way.

Consider a 2D source particle with coordinates given by x⃗ = (x1, x2), first one
computes the z-value of the map R′, i.e.

z = R′ (x1, x2) , (4.2.9)

and for a given refinement level k we label and attach all boxes at this refinement
level with a unique number from the set {0, 1, 2, . . . , 4k − 1}. This number will be
known as the Morton index of the box. Next, we compute the product between the
z-value with the integer 4k and we take only the integer part of the product. The
result is an integer Imorton ∈ {0, 1, 2, . . . , 4k − 1}, which corresponds to the Morton
index of the box that contains the source particle. i.e.

Imorton =
⌊

z× 4k
⌋

(4.2.10)
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Algorithm 4.3: Associate Partition
input : a reference to the tree object (tree)
output: a modified tree object (tree)
// Initialize the search by appending the genesis box to its own associate

list

B = tree.getBoxReferenceFromIndex(0)
B.appendAssociate(B)
for refinement level k from 1 to n do

for each non-empty box B at refinement level k do
// get the associate list from B's parent and denote it to the variable

plist

plist = B.getParentReference().getAssociateList()
if plist is empty then

continue

for each box C in plist do
if C is empty then

continue

if C is next to B and is childless then
B.appendAssociate(C)

else if C is a parent then
// check the children boxes of C

for each non-empty children box D of C do
if D is next to B then

B.appendAssociate(D)
else

B.appendToList2(D)

Additionally, one nice property of the map R′ is that the centre position of the
box with Morton index Imorton can be conveniently obtained by applying the de-
interleaving operation to the index. Formally, the de-interleaving operation is ex-
pressed as a map Q such that

Q : N+ →Nd
+. (4.2.11)

Let Imorton be represented in binary form (assume a 64-bit unsigned integer)

Imorton = [a0a1a2 . . . an]2 (4.2.12)

where each coefficient ai is either 0 or 1 and n is the significant bit position (in other
words, the largest value n between 0 and 63 at which an is non-zero). One notes
that the square bracket in Eq.(4.2.12) is defined to be the binary expansion having
coefficients from left to right, i.e.

[a0a1a2 . . . an]2 = a0 + a12 + a222 + · · ·+ an2n. (4.2.13)

The result of Q applied to Imorton is a vector n⃗ = (n1, n2) whose elements are com-
puted as follows:

n1 = [a1a3 . . . a2p+1]2, n2 = [a0a2 . . . a2p]2, (4.2.14)
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Algorithm 4.4: List-Partition
input : a reference to the tree object (tree)
output: a modified tree object (tree)
for each non-empty box B in tree do

if B is a parent then
return

// copy the content of B's associate to the variable tmplist1 and reset

tmplist2

tmplist1 = B.getAssociateList()
tmplist2.reset()
done = false

while done is false do
for each box C in tmplist1 do

if C is a parent then
for each non-empty children D of C do

if D is next to B then
tmplist2.append(D)

else
B.appendToList3(D)

else
if C is next to B then

B.appendToList1(C)
else

B.appendToList4(C)

if tmplist2 is empty then
done = true

else
tmplist1 = tmplist2

// apply a simple correction for parent boxes to avoid branching

for each non-empty parent box B in tree do
for each non-empty associate box C of B do

if C is childless and C is not next to B then
B.appendToList4(C)

where p = ⌊n/2⌋(note that n1 and n2 are in general 64-bit integers and so all of the
bits in position greater than 2p+ 1 and 2p are suitably taken to be zero, respectively).
The centre of the box, say x⃗c, with the Morton index Imorton is thus given by

x⃗c = 2−k (⃗n + 0.5) . (4.2.15)

The distribution of the Morton indices {0, 1, 2, . . . , 4k − 1} produces a distinct access
pattern. In fact, the curve defined by the box centres can be shown to be space-
filling, which means as k→ ∞, the curve will visit every point in the square domain.
Indeed, Figure (4.7) shows the z-order curve at the end of the 2 nd , 4 th and the
6 th iterations. Previously, one recalls that the box in the tree is labelled with the
multi-dimensional index j, where j = [0, i1, i2, . . . in] at refinement level n. Using the
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FIGURE 4.7: The z-order curve at the 2 nd , 4 th and 6 th iteration. This
access pattern is completely determined by the interleaving operator

R′.

Morton indexing, one can convert the multi-dimensional index j to its equivalent
Morton index via the following transformation:

Imorton = [inin−1 . . . i1]4 (4.2.16)

where we make use of the notation in Eq.(4.2.13) to mean the number expansion with
respect to the base 4 (also, there is a straightforward generalization to d-dimensional
space, namely Eq.(4.2.16) may be replaced by Imorton = [inin−1 . . . I1]2d ). One impor-
tant feature of the multi-dimensional index is its ability to recover the parental index,
which is simply obtained by truncating the last digit in. So for instance, by defining
the parent function, we have

parent (j) = [0, i1, i2, . . . , in−1]. (4.2.17)

Thus, one can further derive the Morton index of the parent index by applying
Eq.(4.2.16) to its multi-dimensional index. It is desirable to derive a similar func-
tion that operates on the Morton indices instead. However, by converting to the
Morton convention the refinement information is lost, so in practice, for any oper-
ation involving the boxes expressed in the Morton convention, one has to maintain
an additional array which serves to keep track of the refinement level from which
the boxes are derived. The parent function now takes the explicit form:

parent (Imorton) =
Imorton −mod (Imorton, 4)

4
. (4.2.18)

where mod is the modulo function. Although much of the discussion have been
centered on the 2D case where d = 2, there is a straightforward extension to 3D and
therefore we will not repeat the arguments here.

Having introduced the mathematical machinery, the TreeConstruction algo-
rithm (i.e.Algorithm 4.2) has to be modified to reflect the changes needed to run on
a shared-memory device. Contrary to Algorithm 4.2, the algorithm we are about to
describe is slightly more complicated. In general, a key characteristic of the original
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TreeConstruction algorithm is that the leaf nodes are created progressively from
the coarser levels, this can be seen as a forward traversal, since the sorting at finer
levels is done from a set of inherit particle data belonging to the previously sorted
set. The modified construction does not proceed in this forward manner. Instead,
one initializes the construction by prescribing the maximum refinement level. Sub-
sequently, the routine proceeds from the root and merges boxes belonging to the
same family if the combined sum of the particles is less than the division parameter
s. Precisely, it is this characteristic that we now term the routine as the reverse traver-
sal approach. To this ends, several book-keeping arrays are now introduced, which
serve to facilitate the communication between particle data and that of the leafs of
the tree. These are as follows:

1. permutationArray. This array stores the particle indices resulted from a sort-
ing operation based on the particles’ Morton index.

2. boxPointerArray. This array stores the Morton index and the refinement num-
ber of the childless box in which the sorted particle resides.

3. particleBinArray. This array stores the number of source particles in each
leaf of the tree.

4. particlePointerArray. This array stores the smallest sorted particle index
from a set of particles that have the same Morton index and refinement num-
ber.

One can infer the lengths of those arrays. For example, the permutationArray and
boxPointerArray both have a length equal to the number of particles in the com-
putation domain, whereas particlePointerArray and particleBinArray must be
maintained at a length equal to Eq.(4.2.4) to account for all particle distributions. The
pseudo-code for the modified tree-construction is given by Algorithm 4.6.

Algorithm 4.5: Morton Sort
input : a particle data array (pData), maximum refinement level (n),

boxPointerArray, permutationArray and particleBinArray

output: modified boxPointerArray, permutationArray and particleBinArray

counter = 0;
for each source particle p in pData do

// obtain the Morton index based on p's position coordinates. This step

can be parallelized

Imorton = ComputeMortonIndex(p.getCoordinates());
boxPointerArray.idx(counter) = Imorton;
boxPointerArray.lvl(counter) = n;
counter← counter + 1;
// note here that the indexing method of particleBinArray requires two input

arguments

particleBinArray.idx(Imorton, n)← particleBinArray.idx(Imorton, n) + 1;

// Sort sorts the first input argument in ascending order and returns the

sorted array and the permutation array

Sort(boxPointerArray, permutationArray);

Qualitatively, the particle data are first passed to the function MortonSort (Al-
gorithm 4.5), during which the Morton index of each particle is computed using
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Algorithm 4.6: Modified Tree Construction
input : a reference to the tree object (tree), the maximum refinement level

(n), the division parameter (s) and the particle data array (pData)
output: particleBinArray, permutationArray, boxPointerArray and

particlePointerArray

// applies the MortonSort algorithm to spatially sort the particle array based

on the Morton index

MortonSort(pData, n, boxPointerArray, permutationArray, particleBinArray)

// np is the effective max refinement number

np = n

// apply the merging operation

for each refinement level k from n to 1 do
allChildlessFlag = true

for each box b at refinement level k do
Imorton = b.getMortonIndex()
if particleBinArray.idx(Imorton, k) is 0 then

b.setEmpty()
continue

if particleBinArray.idx(Imorton, k) is less than s then
b.setNonEmpty()
b.setChildless()
b.setChildrenBoxesEmpty()

else
allChildlessFlag = false

b.setParent()

Jmorton = Parent(Imorton)

particleBinArray.idx(Jmorton, k- 1)← particleBinArray.idx(Jmorton, k-
1) + particleBinArray.idx(Imorton, k)

if allChildlessFlag is true then
np = k

for each i from 0 to boxPointerArray.length() - 1 do
boxPointerArray.lvl(i) = np

// particlePointerArray contains the smallest sorted particle index from a set of

neighboring particles with the same Morton index and refinement number.

for each refinement level k from np to 1 do
for each i from 0 to boxPointerArray.length() - 1 do

Imorton = boxPointerArray.idx(i)
L = boxPointerArray.lvl(i)
if tree.getBoxReferenceFromIndex(Imorton, L) is an empty box then

Imorton← Parent(Imorton)

L← L- 1
boxPointerArray.idx(i)← Imorton

boxPointerArray.lvl(i)← L

particlePointerArray.idx(Imorton, k)← min(

particlePointerArray.idx(Imorton, k), i)
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Eq.(4.2.10) and the particles are sorted in ascending order based on their computed
Morton index. The output of this step is the modified boxPointerArray, particleBinArray
and permutationArray. What follows is the merging operation whereby the empty
and the parental properties are updated for each box in the tree. This step occurs from
the root and is progressed successively to coarser levels. A secondary objective of
this step is to identify the effective refinement number np, which will differ from
the initial prescribed refinement number if a fewer refinement levels were able to re-
solve the particle distribution. The final stage of the algorithm is creating the pointer
to the sorted particle data, which consists of finding and storing the smallest sorted
particle index for a given group of neighbouring particles with the same Morton
index and refinement number.

Using a combination of the book-keeping arrays, access to the particle data is
characterized by a series of memory mappings. For instance, given a box identifier
j (either a multi-dimensional index or the Morton index and the refinement number
tuple) and one wishes to fetch all of the particle data contained within the box, the
code passes j to the particleBinArray to obtain the number of source particles that
reside in that box. The first sorted particle index is subsequently returned by the
particlePointerArray, from which all of the sorted particle indices belonging to
that box are deduced. The sorted particle indices are then passed to the permutation
array to obtain their actual indices. This process is illustrated in Figure (4.8). Simi-
larly, if one wishes to determine the set of neighbouring particles for a given sorted
particle index, say j, then the following procedure can be applied: First, j is fed to
the boxPointerArray, which returns the Morton index and the refinement number
of the childless box that contains j. Then one repeats the preceded operation with
this as the box identifier to obtain all of the neighbouring points.

It is worth noting that for a highly parallelizable code, it is important to have
an independent access structure. This means threads can fetch information inde-
pendent of other threads. The code structure that we just introduced fulfils pre-
cisely this role. However, one should note that there are several disadvantages to
this approach. First, since the traversal occurs from the root, the adaptive control
is no longer possible (meaning that the refinement level cannot proceed beyond the
prescribed refinement number), which may produce a notable side effect that some
boxes at the finest level violate the division criterion. A second disadvantage is that
in order to establish the communication between particle data and the tree, the code
maintains several large arrays. For machines with low memory capacity, this may
seen problematic. Furthermore, the final access pattern, which occurred when fetch-
ing particle data, is considered a random access; the caller function has to make
several fetch requests to the main memory to service the threads. Depending on
the hardware, this operation can induce a substantial latency as accessing the main
memory is typically the most expensive access in the GPU’s memory hierarchy.

4.3 Two-dimensional FMM

In this section, the mathematical formulation of the 2D FMM implementation is pre-
sented. We follow the method introduced by Carrier et al. (1988). The main objective
of the 2D-FMM is to compute the induced velocity due to a large collection of vortex
elements. In the far-field limit, the induced velocity is approximated by point vor-
tices for which the induction field behaves like 1/r, where r is the radius between
a field point and the element’s position. Under such a simplification, the induced
velocity can be represented using complex formulation. Let Φ define the complex
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FIGURE 4.8: From left to right, each schematic rectangle
represents the memory address of the particlePointerArray,
permutationArray and the particle data, respectively. Access to parti-
cle data is characterized by a series of memory mappings. However,
the access pattern in the last phase is considered a random access,

which may incur some speed penalties.

potential in the complex plane C. In formulae, Φ is computed as

Φ = ψ + iϕ, (4.3.1)

where ψ is the stream-function, ϕ is the velocity potential that gives rise to the in-
duced velocity and i is the imaginary unit. Due to the analyticity of the potential
field, it is expected that there exists a close form expression for Φ which depends
only on the complex variable z, defined as z = x + iy, where (x, y) defines the usual
Cartesian coordinate in the problem. Thus, one should expect that the velocity po-
tential is linked to the stream-function by means of the Cauchy-Riemann equation,
i.e.

∂ϕ

∂x
=− ∂ψ

∂y
, (4.3.2a)

∂ϕ

∂y
=

∂ψ

∂x
. (4.3.2b)

Indeed, Eq.(4.3.2) implies that both the stream-function and the velocity potential
satisfy the Laplace’s equation (i.e. Eq.(3.2.5)). For a point vortex, it is easy to see that
the solution to the Laplace’s equation is given by:

ϕ =
Γ

2π
tan−1

(y
x

)
. (4.3.3)
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where Γ is the circulation of the point vortex. By the Cauchy-Riemann’s condition,
the stream-function is derived as:

ψ = − Γ
2π

log
(√

x2 + y2

)
. (4.3.4)

Thus the complex potential Φ may be expressed in terms of the complex variable z
as

Φ (z) = − Γ
2π

log z + C. (4.3.5)

where C is the constant of the integration. Since the constant term in Eq.(4.3.5)
does not contribute to the induced velocity, it is preferable to neglect it in the cal-
culation. For a collection of discreet vortices, parametrized by the tuple

(
αj, x⃗j

)
for

j = 0, 1, . . . , N − 1, the total complex potential is evaluated as the sum of all of the
individual vortex elements, i.e.

Φ (z) = −
N−1

∑
j=0

αj

2π
log
(
z− zj

)
. (4.3.6)

where zj is the complex position formed from the position vector x⃗j. Since we require
the velocity, it is convenient to work with the derivative of Φ, which is related to the
complex velocity ϖ := v + iu as:

ϖ (z) =
dΦ
dz

. (4.3.7)

Moreover, by differentiating the individual terms in Eq.(4.3.6), ϖ may also be ex-
pressed as

ϖ (z) = −
N−1

∑
j=0

αj

2π

1
z− zj

. (4.3.8)

The form of the complex kernel in Eq.(4.3.8) suggests that the kernel can be written
as a power series in terms of the variable z or z−1. Indeed, the basic premise of the
FMM is to be able to apply the translation and conversion operators to the multipole
expansion to account successively the hierarchical far-field influence. The following
sections describe the mathematical machinery to accomplish such a goal.

4.3.1 Multipole expansion of the complex velocity

We assume the source particles (
(
αj, zj

)
, j = 0, 1, . . . , N − 1) are distributed inside a

closed circular region with radius r and centred at the origin. We denote this region
by B (r, 0) ⊂ C. Let z ∈ C denote a field point. Then for z ̸∈ B (r, 0), the following
holds: ∣∣∣∣ zj

z

∣∣∣∣ < 1. (4.3.9)

From Eq.(4.3.8), we have

ϖ (z) = −
N−1

∑
j=0

αj

2π

1
z
(
1− zj/z

) = −
N−1

∑
j=0

αj

2πz

(
1−

zj

z

)−1

. (4.3.10)
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Noting Eq.(4.3.9), one can show that the Taylor expansion in Eq.(4.3.10) converges
and is given by (

1−
zj

z

)−1

=
∞

∑
k=0

(
zj

z

)k

. (4.3.11)

By substituting Eq.(4.3.11) to Eq.(4.3.10) and interchanging the summations, one ar-
rives at the multipole expansion for the complex velocity ϖ, which is everywhere
convergent in the complement of B (r, 0), i.e.

ϖ (z) =
∞

∑
k=0

akz−k−1, (4.3.12)

where

ak = −
N−1

∑
j=0

αjzk
j

2π
, (4.3.13)

which will be known as the multipole coefficient, and the set of multipole coefficients
will hereafter denote by [ak].

4.3.2 Translation operator of the 2D multipole expansion

We formalize this process as a map Tw such that

Tw : CP → CP, (4.3.14)

which principally transforms a set of multipole coefficients in the open ball B (r0, w0)
to the set of multipole coefficients in the ball B (r1, w1) via the complex translation
vector w, where

B (r0, w0) ⊆ B (r1, w1) . (4.3.15)

Here, w0 and w1 denote the ball centres and r1 ≥ r0. Without loss of generality, one
may suppose that w1 = 0 (this means the origin of the coordinate system coincides
with that of the centre of B (r1, w1)) so for z ̸∈ B (r1, w1), Eq.(4.3.12) becomes

ϖ|B(r0,w0) =
∞

∑
k=0

ak (z− w0)
−k−1. (4.3.16)

For this z, it is certainly true that ∣∣∣w0

z

∣∣∣ < 1 (4.3.17)

therefore, one may expand the inner term in Eq.(4.3.16) as a power series of the form

(z− w0)
−k−1 = z−k−1 (1− w0/z)−k−1 = z−k−1

∞

∑
s=0

(
k + s

s

)(w0

z

)s
. (4.3.18)

In the above, we have used the Binomial notation, i.e.(
n
k

)
:=

n!
k! (n− k)!

. (4.3.19)

Substituting Eq.(4.3.18) to Eq.(4.3.16), one obtains the following:

ϖ (z) =
∞

∑
k=0

akz−k−1
∞

∑
s=0

(
k + s

s

)
ws

0z−s =
∞

∑
k=0

∞

∑
s=0

ak

(
k + s

s

)
ws

0z−k−s−1. (4.3.20)
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FIGURE 4.9: Schematic diagram showing that the effect of the map
Tw is to translate the multipole coefficients in B (r0, w0) to the ball
B (r1, w1). So for any field point z in the complement of B (r1, w1),

Eq.(4.3.12) is valid.

The double summation in Eq.(4.3.20) can be simplified into the following form:

∞

∑
k=0

∞

∑
s=0

ak

(
k + s

s

)
ws

0z−k−s−1 =
∞

∑
q=0

z−q−1
q

∑
k=0

ak

(
q

q− k

)
wq−k

0 . (4.3.21)

It follows that the multipole expansion in B (r1, w1) is related to B (r0, w0) via

ϖ|B(r1,w1) =
∞

∑
k=0

bkz−k−1, (4.3.22)

where

bk :=
k

∑
s=0

as

(
k

k− s

)
wk−s

0 . (4.3.23)

Equivalently, the translation operator Tw is explicitly constructed as

Tw0 ([ak]) = [bk]. (4.3.24)

In cases that w1 ̸= 0, then one simply applies the transformation:

w0 ← w0 − w1, (4.3.25)

as the effective translation vector.

4.3.3 2D local expansion and the conversion operator

Consider now that the source particles are distributed in a close ball B (R, w) with
w ̸= 0. Let z be a field point close to the origin (see Figure (4.10) for the schematic



4.3. Two-dimensional FMM 77

description). Assume that the following inequality is satisfied by z:

FIGURE 4.10: Schematic diagram illustrating the distribution of the
source particles which are constrained in the ball B (R, w) with w ̸= 0.
The field point z has to satisfy the inequality |w− z| > R in order for

the local expansion to be convergent.

|w− z| > R. (4.3.26)

From Eq.(4.3.8) and together with the fact that
∣∣zj − w

∣∣ < R, then it is true that:∣∣∣∣ z
zj

∣∣∣∣ < 1, (4.3.27)

therefore a local expansion can be derived, i.e.

ϖ (z) =
∞

∑
k=0

zk
N−1

∑
j=0

αj

2π
z−k−1

j (4.3.28)

with ck defines the local coefficient of the expansion, i.e.

ck :=
N−1

∑
j=0

αj

2π
z−k−1

j . (4.3.29)

From a computational perspective, it is undesirable to compute the local expansion
from first principle (i.e. Eq.(4.3.28)). It is much faster to transform the existing multi-
pole expansion to a local expansion. To accomplish such a goal, again, we introduce
this process formally by means of a map Qw such that

Qw : CP → CP+1. (4.3.30)
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First we note that the multipole expansion of the ball B (R, w) is expressed by a
change of origin, i.e.

ϖ|B(R,w) =
∞

∑
k=0

ak (z− w)−k−1. (4.3.31)

Noting the inequality in Eq.(4.3.26), it is possible to show that the following inequal-
ity holds: ∣∣∣ z

w

∣∣∣ < 1. (4.3.32)

Together with the general result

(1− x)−n =
∞

∑
s=0

(
n + s− 1

s

)
xs, n ≥ 1, (4.3.33)

one can Tayler expand the summand in Eq.(4.3.31) in a similar way, i.e.

(z− w)−k−1 = (−w)−k−1
(

1− z
w

)−k−1
= (−w)−k−1

∞

∑
s=0

(
k + s

s

)( z
w

)s
(4.3.34)

Upon substituting Eq.(4.3.34) to Eq.(4.3.31), we have

ϖ|B(R,w) =
∞

∑
k=0

∞

∑
s=0

ak (−w)−k−1
(

k + s
s

)( z
w

)s

=
∞

∑
s=0

zs

(
∞

∑
k=0

ak

(
k + s

s

)
(−1)−k−1 w−k−s−1

)
(4.3.35)

By defining the set of transformed coefficients ck as follows:

ck :=
∞

∑
s=0

as

(
k + s

k

)
(−1)−s−1 w−k−s−1, (4.3.36)

the explicit form of the conversion operator Qw can be written as

Qw ([ak]) = [ck]. (4.3.37)

If a change of origin is required, say W, then one applies the transformation to w

w← w−W. (4.3.38)

4.3.4 Translation operator of the 2D local expansion

The translation operator operating on the local coefficients is defined by the map Vw.
Suppose that the local expansion of the open ball B (r1, w) is given by

ϖ|B(r1,w) =
∞

∑
k=0

ck (z− w)k. (4.3.39)

Let B (r2, 0) denote the open ball with radius r2 centred at the origin and is such that

B (r2, 0) ⊆ B (r1, w) . (4.3.40)
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The local expansion in B (r2, 0) is obtained by expanding (z− k)k as a Binomial ex-
pansion and collecting like terms, i.e.

w|B(r2,0) =
∞

∑
k=0

zk

(
∞

∑
s=k

cs

(
s

s− k

)
(−w)s−k

)
. (4.3.41)

The effect of the map Vw is to transform the set of local coefficients [ck] to [dk]

Vw ([ck]) = [dk], (4.3.42)

where

dk :=
∞

∑
s=k

cs

(
s

s− k

)
(−w)s−k. (4.3.43)

4.4 Three-dimensional FMM

Having introduced the mathematical framework in Section 4.3, it is natural that
one should extend the framework to the three-dimensional case. However, naive
attempt to generalize this to 3D will meet with considerable difficulty. In light of
Section 3.1, the vortex elements in 3D are now characterized by a vector-valued cir-
culation. Moreover, in the limit as the core parameter ϵ varnishes, the mollified Biot
Savart with the Gaussian smoothing function can be shown to approach the asymp-
totic expression:

lim
ϵ→0

u⃗ϵ = −
N−1

∑
j=0
∇G

(
x⃗− x⃗j

)
× α⃗j, (4.4.1)

where G (x⃗) is the singular Green’s function (see Section 3.1.1 for detail). Noting that
α⃗j is spatially independent, the far-field limit of the mollified Biot Savart induction
can be alternatively expressed as:

u⃗farfield =
1

4π
∇×

(
N−1

∑
j=0

α⃗j∥∥x⃗− x⃗j
∥∥
)

(4.4.2)

Denote the vector potential ϕ⃗ as

ϕ⃗ :=
N−1

∑
j=0

α⃗j∥∥x⃗− x⃗j
∥∥ , (4.4.3)

it is not difficult to observe that the 3D FMM would require three multipole ex-
pansions along each basis direction. For this reason, the computational cost of the
3D FMM is significantly higher than its 2D counterpart. Nonetheless, we have de-
veloped a highly efficient 3D FMM engine that improves upon the current FMM
codes in the literature by means of deriving an exact expression for the local strain
field. The purpose of this section is to review and present the 3D FMM mathemat-
ical framework. Although the underlying mathematics detract quite significantly
from that of the 2D, the underlying code, however, follows exactly the same struc-
ture. The only aspects that differ quite markedly are the translation and conversion
operators (i.e. Tw, Qw and Vw), which are a lot more complicated to describe. The
subsequent presentation is a variation of the idea introduced by L. Greengard and
Rokhlin (1997).
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4.4.1 Complex spherical harmonic basis (CSHB)

The first step towards obtaining the FMM is to introduce a set of complete basis
functions {γk, k = 0,±1,±2, . . . } under which the multipole and local series have
the expected convergence behaviour in this function space. In 2D, this is given by
the power functions, i.e. {. . . , z−2, z−1, 1, z, z2, . . . }. In 3D, one popular choice is the
complete set of complex spherical harmonic functions, which we will denote by Ym

n .
The subscript n ∈N+ is called the degree and the superscript m ∈N is known as the
order. Furthermore, it is assumed that

|m| ≤ n. (4.4.4)

To derive the form of Ym
n , we note that each component of the vector potential ϕ⃗ sat-

isfies the Laplace’s equation with respect to the variable x⃗. Recall that the Cartesian
Laplacian is the operator L such that

L =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (4.4.5)

In the spherical coordinate system (r, θ, ϕ), the Cartesian coordinates (x, y, z) trans-
form as

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (4.4.6)

Consequently, Eq.(4.4.5) becomes:

L =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2 . (4.4.7)

Let f = f (r, θ, ϕ) be a solution to the spherical Laplace’s equation, i.e.

L f = 0. (4.4.8)

One seeks separable solution of the form

f (r, θ, ϕ) = R (r)Y (θ, ϕ) . (4.4.9)

Substituting Eq.(4.4.9) to Eq.(4.4.8) yields:

1
R

∂

∂r

(
r2 ∂R

∂r

)
+

1
Y sin θ

(
∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin θ

∂2Y
∂ϕ2

)
= 0. (4.4.10)

By virtue of the separable assumption, the only way that Eq.(4.4.10) can be satisfied
is when each term is equal to a constant, say λ, i.e.

1
R

∂

∂r

(
r2 ∂R

∂r

)
=λ, (4.4.11a)

1
Y sin θ

(
∂

∂θ

(
sin θ

∂Y
∂θ

)
+

1
sin θ

∂2Y
∂ϕ2

)
=− λ. (4.4.11b)

Using the product rule, Eq.(4.4.11a) may be solved by a power solution of the form

R = rα. (4.4.12)
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Substituting the trial solution to Eq.(4.4.11a), it is readily seen that α satisfies quadratic
equation

α2 + α− λ = 0. (4.4.13)

Denote the two roots of Eq.(4.4.13) as α±, the general form of R (assume the roots are
distinct) is given by

R (r) = Arα+ + Brα− , (4.4.14)

for some constant A and B. A separable solution for Eq.(4.4.11b) is sought. Suppose
that Y (θ, ϕ) = Θ (θ)Φ (ϕ), then through a similar argument, it can be shown that
for some complex constant m, the following holds:

∂2Φ
∂ϕ2 + m2Φ =0, (4.4.15a)

sin θ
∂

∂θ

(
sin θ

∂Θ
∂θ

)
+
(
λ sin2 θ −m2)Θ =0, (4.4.15b)

The general solution of Eq.(4.4.15a) is a linear combination of the complex exponen-
tial e±imϕ. Additionally, by noting the periodicity of the function Φ (ϕ) at ϕ = 0, 2π,
one can deduce that m must take integer values. Furthermore, by dividing sin θ and
defining the operator LSL such that

LSL =
∂

∂θ

(
sin θ

∂

∂θ

)
− m2

sin θ
, (4.4.16)

Eq.(4.4.15b) is recast as:
LSLΘ = −λ sin (θ)Θ, (4.4.17)

which constitutes a Sturm-Liouville problem whose solution consists of finding the
eigenvalues λ that satisfy the self-adjoint condition at the boundary point θ = 0, π.
Further requiring that Θ to be regular at the boundary points, one can deduce that
λ must have the form

λ = n (n + 1) , (4.4.18)

for some positive integer n for which n ≥ |m| (see Appendix B for the derivation).
Substituting Eq.(4.4.18) to Eq.(4.4.13) to obtain α+ = n and α− = −n− 1. Moreover,
by a change of variable x = cos θ and Θ (θ) = F (cos θ), Eq.(4.4.15b) is recast to a
more familiar form:

d
dx

((
1− x2) dF

dx

)
+

(
n (n + 1)− m2

1− x2

)
F = 0. (4.4.19)

Eq.(4.4.19) is known as the Legendre equation and admits a set of elementary solu-
tions called the associated Legendre functions. Let us denote such a set by the notation
Pm

n . Suppose dm
n is a normalization factor, then we define the complex spherical har-

monic basis function (CSHB) Ym
n (θ, ϕ) at degree n and order m as

Ym
n (θ, ϕ) := dm

n P|m|n (cos θ) eimϕ. (4.4.20)

By virtue of the Sturm-Liouville theory, the set of CSHB is complete on the unit
sphere in the sense that any function defined on the unit sphere can be represented
by a linear combination of the CSHB functions. Indeed, the general solution to the
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spherical Laplace’s equation can be expressed as:

f (r, θ, ϕ) =
∞

∑
n=0

n

∑
m=−n

(
αm

n rn + βm
n r−n−1

)
Ym

n (θ, ϕ) (4.4.21)

We use the same normalization factor dm
n as Cheng et al. (1999), in that

dm
n =

√
(n− |m|)!
(n + |m|)! . (4.4.22)

4.4.2 Multipole expansion in the CSHB function space

An important property of the spherical harmonic functions is that they obey what
is known as the addition law. Formally, let γ denote the angle between two points
whose spherical coordinates are (ρ, α, β) and (r, θ, ϕ). More precisely, γ is the angle
between the two lines that extend from the origin to where these two points are, then
it is true that

Pn (cos γ) =
n

∑
m=−n

Y−m
n (α, β)Ym

n (θ, ϕ), (4.4.23)

where Pn is the Legendre polynomial of degree n, which may be defined via the gen-
erating function of the form

1√
1− 2xt + t2

=
∞

∑
n=0

Pn (x) tn. (4.4.24)

One can relate the application of Eq.(4.4.24) to the kernel 1/
∥∥x⃗− x⃗j

∥∥ as follows:

1∥∥x⃗− x⃗j
∥∥ =

1√∥∥x⃗− x⃗j
∥∥2

=
1√

∥x⃗∥2 − 2x⃗ · x⃗j +
∥∥x⃗j
∥∥2

=
1

r
√

1− 2 cos γ
(
rj/r

)
+
(
rj/r

)2
,

where r := ∥x⃗∥ and rj :=
∥∥x⃗j
∥∥. Moreover, by matching the terms in Eq.(4.4.24), it is

readily seen that
1∥∥x⃗− x⃗j
∥∥ =

1
r

∞

∑
n=0

Pn (cos γ)

(
rj

r

)n

. (4.4.25)

Let a set of source particles {
(⃗
αj, x⃗j

)
, j = 0, 1, . . . , N − 1} occupy the open ball

B (R, 0) ⊂ R3, then for any x⃗ in the complement of B with spherical coordinate
(r, θ, ϕ), the vector potential as in Eq.(4.4.3) may be computed by

ϕ⃗|B(R,0) =
N−1

∑
j=0

α⃗j

∞

∑
n=0

Pn
(
cos γj

)
rn

j r−n−1

=
N−1

∑
j=0

α⃗j

∞

∑
n=0

n

∑
m=−n

Y−m
n
(
αj, β j

)
Ym

n (θ, ϕ) rn
j r−n−1

=
∞

∑
n=0

n

∑
m=−n

M⃗m
n r−n−1Ym

n (θ, ϕ) . (4.4.26)
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where the vector-valued multipole coefficient M⃗m
n is given by

M⃗m
n =

N−1

∑
j=0

rn
j α⃗jY−m

n
(
αj, β j

)
, (4.4.27)

and
(
rj, αj, β j

)
denotes the spherical coordinate of x⃗j. Similarly, we denote the set of

expansion coefficients with a square bracket, i.e. [M⃗m
n ].

4.4.3 Translation operator of the 3D multipole expansion

In much the same way as in Section 4.3.2, the translation operator is a map T⃗y that
transforms the set of vector-valued multipole coefficients [M⃗m

n ] in the ball B (R0, x⃗0)

to the ball B
(

R1, 0⃗
)

, where

B (R0, x⃗0) ⊆ B
(

R1, 0⃗
)

. (4.4.28)

Here it must be the case that R1 ≥ R0, which denote the ball radii. The map T⃗y is a
linear operator that transforms as follows:

T⃗x0

(
[M⃗m

n ]
)
= [N⃗m

n ]. (4.4.29)

The result is a dense matrix-vector multiplication, whose elements of the product
[N⃗m

n ] are given by the formula

N⃗m
n =

n

∑
j=0

j

∑
k=−j

M⃗m−k
n−j i|m|−|k|−|m−k|Ak

j Am−k
n−j ρjY−k

j (α, β)

Am
n

, (4.4.30)

where

Am
n =

(−1)n√
(n−m)! (n + m)!

, (4.4.31)

and (ρ, α, β) is the spherical coordinate of x⃗0.
If the translation vector x⃗0 is parallel to the z-axis, then a considerable saving in

evaluating Eq.(4.4.30) can be made. This corresponds to the values α = 0, or π. In
such case, Ym

n is simply
Ym

n = Y0
n δm0. (4.4.32)

Therefore, one can simplify the translator in Eq.(4.4.30) as

N⃗m
n =

n

∑
j=0

M⃗m
n−j A

0
j Am

n−jρ
j

Am
n

. (4.4.33)

Numerically, the simplification represents a reduction from the dense matrix-vector
multiplication to a sparse matrix-vector multiplication. We denote Eq.(4.4.33) with
the reduced map Treduced.

4.4.4 Conversion of multipole to local expansion and the translation op-
erator of the local expansions

Suppose that the source particles are located inside an open ball B (R, x⃗0) and x⃗0 is
identified with the spherical coordinate (ρ, α, β), let [M⃗m

n ] denote the set of multipole
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coefficients in B (R, x⃗0). Let x⃗ with spherical coordinate (r, θ, ϕ) satisfy the inequality

∥x⃗− x⃗0∥ > R, (4.4.34)

then the local expansion at the field point x⃗ is described by the series:

ϕ⃗ =
∞

∑
n=0

n

∑
m=−n

L⃗m
n rnYm

n (θ, ϕ), (4.4.35)

where

L⃗m
n =

∞

∑
j=0

j

∑
k=−j

M⃗k
j i|m−k|−|m|−|k|Ak

j Am
n Yk−m

n+j (α, β)

(−1)j Ak−m
n+j ρn+j+1

. (4.4.36)

This conversion is denoted by the map Qx⃗0 . Furthermore, the reduced map Qreduced
is obtained by setting α = 0, π and substituting Eq.(4.4.32) to Eq.(4.4.36), i.e.

L⃗m
n =

∞

∑
j=0

M⃗m
j (−1)m+j Am

j Am
n

A0
n+jρ

n+j+1 . (4.4.37)

The translation operator V⃗x0 operating on the set of local expansion coefficients
[⃗Lm

n ] in the ball B (r0, x⃗0) with (ρ, α, β) identified as the spherical coordinate of x⃗0 is
similarly defined via the transformation of [⃗Lm

n ] to the new set of local expansion
coefficients [D⃗m

n ] in the ball B (r1, 0) with B (r0, x⃗0) ⊆ B (r1, 0). The elements of the
new set are the result of the product of a dense matrix-vector multiplication:

D⃗m
n =

∞

∑
j=n

j

∑
k=−j

L⃗k
j i|k|−|k−m|−|m|Ak−m

j−n Am
n Yk−m

j−n (α, β) ρj−n

(−1)j+n Ak
j

. (4.4.38)

The reduced map Vreduced is similarly defined by setting k = m in the above sum, i.e.

D⃗m
n =

∞

∑
j=n

L⃗m
j A0

j−n Am
n ρj−n

(−1)j+n Am
j

. (4.4.39)

4.4.5 Rotation operator for the CSHB functions

As previously mentioned, each of the operators in the preceded discussion repre-
sents a dense matrix-vector multiplication. When considering the number of opera-
tions that needs to be carried out in the FMM tree, the computational time quickly
becomes untenable. The way to resolve this issue to employ the reduced maps in-
stead. However, this involves introducing new machinery that will enable us to
transform the dense maps to the reduced maps such as those in Eq.(4.4.33), Eq.(4.4.37)
and Eq.(4.4.39). For this purpose, we will introduce the rotation operator, denoted
by D, which is a linear map that corresponds to the following operation:

M̃m
n =

n

∑
m′=−n

Dm′,m
n M⃗m′

n , (4.4.40)

where the set [M̃m
n ] is the rotated multipole or local expansion coefficients and Dm′,m

n

are the elements of the matrix D. Apparently, there are two ways to construct Dm,m′
n .

One is through a series of elementary rotations on the principle axis, i.e. through the



4.4. Three-dimensional FMM 85

Euler angles. The result is the Wigner’s D matrix (Gumerov and Duraiswami, 2015).
Specifically, if α, β and γ denote the Euler angles relative to the principle axes (via
the zyz convention), then one may compute the rotation operator as:

Dm,m′
n = e−im′αdm,m′

n (β) e−imγ, (4.4.41)

where the explicit form of dm,m′
n is given by the formula:

dm,m′
n =

√
(n + m′)! (n−m′)! (n + m)! (n−m)!

×∑
s

 (−1)m′−m+s c2n+m−m′−2s
β sm′−m+2s

β

(n + m− s)!s! (m′ −m + s)! (n−m′ − s)!

 , (4.4.42)

here s traverses all integer values in such a way that the factorials are non-negative
and cβ = cos (β/2) , sβ = sin (β/2). The other approach is to employ a coordinate
transformation, in which the coordinate system is rotated in such a way that the z-
axis of the original system is aligned parallel to an input vector in the transformed
system. The latter proves to be more tractable as it avoids dealing with the Euler
angles, which can be quite ambiguous. Here, we note down the key results with-
out proof. The construction is based on certain recursive relations satisfied by the
associated Legendre functions (see Choi et al. (1999) for detail).

Given a normalize vector k⃗, one determines the coordinate transformation matrix
R under which k⃗ becomes the new z-axis in the transformed system. It can be shown
that this operation can be decomposed by two elementary rotations, namely Dy and
Dz, i.e.

R
(⃗

k
)
= Dy (β) Dz (−α) , (4.4.43)

where

Dy (β) =

 cos β 0 − sin β
0 1 0

sin β 0 cos β

 , (4.4.44)

and

Dz (−α) =

 cos α sin α 0
− sin α cos α 0

0 0 1

 . (4.4.45)

The angles α and β are related to the vector k⃗ as follows:

α = tan−1

(
e⃗y · k⃗
e⃗x · k⃗

)
, β = cos−1

(
e⃗z · k⃗

)
. (4.4.46)

Once R is found, the complex matrix D formed from the elements of R is defined as
follows:

D =


(

Ryy + Rxx
)

/2 Rxz/
√

2
(

Ryy − Rxx
)

/2
Rzx/

√
2 Rzz −Rzx/

√
2(

Ryy − Rxx
)

/2 −Rxz/
√

2
(

Ryy + Rxx
)

/2


+ i


(

Ryx − Rxy
)

/2 Ryz/
√

2 −
(

Ryx + Rxy
)

/2
−Rzy/

√
2 0 −Rzy/

√
2(

Ryx + Rxy
)

/2 Ryz/
√

2
(

Rxy − Ryx
)

/2

 . (4.4.47)
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Subsequently, the following recursive relations were used to determine the elements
of the rotation matrix D, i.e. Eq.(4.4.40):

Dm′,m
n = am′,m

n DyyDm′,m
n−1 + bm′,m

n DzyDm′,m−1
n−1

+ bm′,−m
n DxyDm′,m+1

n−1 , −n + 1 ≤ m′ ≤ n− 1, (4.4.48)

where

am′,m
n =

√
(n + m) (n−m)

(n + m′) (n−m′)
, bm′,m

n =

√
(n + m) (n + m− 1)
2 (n + m′) (n−m′)

. (4.4.49)

Also for −n ≤ m′ ≤ n− 2, the following recursive relation is valid:

Dm′,m
n = c−m′,m

n DyxDm′+1,m
n−1 + d−m′,m

n DzxDm′+1,m−1
n−1

+ d−m′,−m
n DxxDm′+1,m+1

n−1 , −n ≤ m′ ≤ n− 2, (4.4.50)

where

cm′,m
n =

√
2 (n + m) (n−m)

(n + m′) (n + m′ − 1)
, dm′,m

n =

√
(n + m) (n + m− 1)
(n + m′) (n + m′ − 1)

. (4.4.51)

Finally, in the range −n + 2 ≤ m′ ≤ n, we employ the recursion:

Dm′,m
n = cm′,m

n DyzDm′−1,m
n−1 + dm′,m

n DzzDm′−1,m−1
n−1 + dm′,−m

n DxzDm′−1,m+1
n−1 . (4.4.52)

Using Eq.(4.4.48), Eq.(4.4.50) and Eq.(4.4.52), the dense operators are equivalent to
the composition of two rotations and their reduced counterpart. For example, the
multipole translation operator T⃗x0 in Eq.(4.4.29) may be expressed as

T⃗x0 = D+ (R (x⃗0/ ∥x⃗0∥)) TreducedD (R (x⃗0/ ∥x⃗0∥)) , (4.4.53)

where D+ denotes the complex conjugate transpose of D. It is worth mentioning
that D is a unitary operator in the sense that it satisfies the relation:

I = D+D, (4.4.54)

so that D−1 = D
(

R−1) = D+.
Other dense operators are similarly generalized using Eq.(4.4.53). Through the

decomposition, the dense matrix-vector product is seen as three sparse matrix-vector
multiplications. Indeed, the matrix D and the reduced matrices associated with the
reduced operators are both stored as sparse matrices using the compressed row for-
mat.

4.4.6 Representing the multipole and local expansions using the real har-
monic spherical functions

Up to this point, we have introduced enough mathematics to describe all of the
important operations on the multipole and local expansions. The final discussion
concerns with reducing the memory overhead in the FMM code. The motivation to
use the real spherical harmonic functions stems from the fact that the code dedicates
two floating-point numbers to cache the real and imaginary part of each expansion
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coefficient. This results in the unnecessary waste of precious memory space in the
GPU, where the memory of the current hardware is quite limited. In addition, since
the final evaluation of the expansion produces real-numbers, so it is anticipated that
the complex parts of the operations will, at some point, vanish. Therefore, it is much
more efficient to identify and discard the complex part of any operation since they
will be inconsequential to the final result. For this reason, we may represent the
expansions (either multipole or local) via the real spherical harmonic function basis.
Specifically, recall that the vector potential ϕ⃗ is real and may be represented using
CSHB functions of the form

ϕ⃗ (x⃗) =
∞

∑
n=0

n

∑
m=−n

M⃗m
n Sm

n (x⃗) (4.4.55)

where [M⃗m
n ] and Sm

n are both complex. Indeed, let us suppose there exists a set of
real coefficient [d⃗m

n ] and kernel Rm
n such that

ϕ⃗ (x⃗) =
∞

∑
n=0

n

∑
m=−n

d⃗m
n Rm

n (x⃗) . (4.4.56)

Writing Eq.(4.4.55) as

ϕ⃗ =
∞

∑
n=0

n

∑
m=0

(
d⃗m

n

(
Sm

n + S−m
n

2

)
+ d⃗−m

n

(
Sm

n − S−m
n

2i

))
, (4.4.57)

and comparing coefficients, one can infer the following (m > 0):

d⃗0
n = M⃗0

n, d⃗m
n = M⃗m

n + M⃗−m
n , d⃗−m

n = i
(

M⃗m
n − M⃗−m

n

)
. (4.4.58)

Similarly, the real kernel Rm
n is related to Sm

n as

Rm
n =

{ Sm
n +S−m

n
2 m ≥ 0,

S|m|n −S−|m|n
2i m < 0.

(4.4.59)

Finally, it is desirable to obtain the real rotation Rm′,m
n , which operates on the set of

real coefficients, i.e.

d̃m
n =

n

∑
m′=−n

Rm′,m
n d⃗m′

n . (4.4.60)

By applying Eq.(4.4.58), it can be shown that the elements of Rm′,m
n may be deduced

as follows:

Rm′,0
n =


D0,0

n m′ = 0,
1
2

(
Dm′,0

n + D−m′,0
n

)
m′ > 0,

i
2

(
D−|m

′|,0
n − D|m

′|,0
n

)
m′ < 0.

(4.4.61)

Moreover, for m > 0, we have

Rm′,m
n =


D0,m

n + D0,−m
n m′ = 0,

1
2

(
Dm′,m

n + Dm′,−m
n + D−m′,m

n + D−m′,−m
n

)
m′ > 0,

i
2

(
D−|m

′|,m
n + D−|m

′|,−m
n − D|m

′|,m
n − D|m

′|,−m
n

)
m′ < 0,

(4.4.62)
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and

Rm′,−m
n =


i
(

D0,m
n − D0,−m

n

)
m′ = 0

i
2

(
Dm′,m

n − Dm′,−m
n + D−m′,m

n − D−m′,−m
n

)
m′ > 0

1
2

(
D|m

′|,m
n − D|m

′|,−m
n − D−|m

′|,m
n + D−|m

′|,−m
n

)
m′ < 0.

(4.4.63)

It should be noted that by transforming to the real rotation, the unitary property of
D is loss. But considering the computational saving of halving the memory cost and
computational load, this is a minor compromise.

4.4.7 Exact expression for the Biot-Savart induction and the strain field

Here, we present a derivation of an analytical expression for both the far-field Biot
Savart induction (Eq.(3.1.12)) and the velocity strain expressed in the transpose for-
mulation, namely the expression α⃗ · ∇T u⃗, where α⃗ is a constant vector and u⃗ is the
Biot Savart velocity. Note that the strain can be alternatively expressed as:

α⃗ · ∇T u⃗ = ∇ (⃗α · u⃗) . (4.4.64)

First, we note that the local expansion of the vector potential in the real spherical
harmonic basis can be recast as:

ϕ⃗ (r, θ, ϕ) =
∞

∑
n=0

n

∑
m=0

Jm
n (r, θ) Q⃗m

n (ϕ), (4.4.65)

where

Jm
n (r, θ) = rndm

n Pm
n (cos θ) (4.4.66a)

Q⃗m
n (ϕ) = L⃗m

n cos mϕ + L⃗−m
n sin mϕ. (4.4.66b)

Here, L⃗m
n denotes the real local expansion coefficients derived from Eq.(4.4.36). Let

u⃗m
n denote the velocity at degree n and order m. Noting that

u⃗ =
1

4π
∇× ϕ⃗, (4.4.67)

then one obtains:
u⃗m

n =
1

4π
∇×

(
Jm
n (r, θ) Q⃗m

n (ϕ)
)

. (4.4.68)

Using a combination of the chain rule and the anti-symmetric properties of the Levi-
Civita symbol, it is a simple exercise to show that Eq.(4.4.68) is given by

4πu⃗m
n =

∂Jm
n

∂r

(
∇r× Q⃗m

n

)
+

∂Jm
n

∂θ

(
∇θ × Q⃗m

n

)
+ Jm

n

(
∇ϕ× ∂Q⃗m

n
∂ϕ

)
, (4.4.69)

where (r, θ, ϕ) is related to Cartesian coordinates (x, y, z) as follows:

r =
√

x2 + y2 + z2, cos θ =
z
r

, tan ϕ =
y
x

. (4.4.70)
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The only work here is to compute the partial derivatives of the Jm
n quantity. ∂Jm

n /∂r
is straightforward and can be computed as follows:

∂Jm
n

∂r
= nrn−1dm

n Pm
n (cos θ) =

nJm
n

r
. (4.4.71)

The latter expression in the above equation is preferred since it avoids evaluating
the associated Legendre function again. For ∂Jm

n /∂θ, we make use of the backward
recursive relations satisfied by the associated Legendre functions, i.e.

(n + m + 1) (n−m) Pm
n (x) = −2 (m + 1) x√

1− x2
Pm+1

n (x)− Pm+2
n (x) , (4.4.72)

and (
x2 − 1

) dPm
n

dx
(x) =

√
1− x2Pm+1

n (x) + mxPm
n (x) . (4.4.73)

Using Eq.(4.4.72) together with Eq.(4.4.73), it is easy to show that

∂Jm
n

∂θ
= rndm

n
∂Pm

n
∂θ

= rndm
n

∂Pm
n

∂ cos θ

∂ cos θ

∂θ
= − sin θ Jm

n

(
1

Pm
n

∂Pm
n

∂ cos θ

)
. (4.4.74)

Algorithmically, the code proceeds to compute Eq.(4.4.74) by first storing the values
of Pm+1

n and Pm+2
n , which would have computed during the previous iteration. Pm

n
is obtained by solving Eq.(4.4.72). Finally, dPm

n /d (cos θ) is obtained by substituting
the values of Pm

n and Pm+1
n to Eq.(4.4.73).

In order to derive the analytical expression for the strain (Eq.(4.4.64)), we make
use of the following observations. The general expression for the second order
derivatives of r is given by

∂2r
∂xi∂xj

=
1
r

(
δij −

∂r
∂xi

∂r
∂xj

)
. (4.4.75)

The corresponding results for ∂2θ/∂xi∂xj and ∂2ϕ/∂xi∂xj are as given follows:

∂2θ

∂xi∂xj
=

1
r2 sin θ

(
δiz

∂r
∂xj

+ δjz
∂r
∂xi

+ δij
∂r
∂z
− 3

∂r
∂xi

∂r
∂xj

∂r
∂z

)
− cot θ

∂θ

∂xi

∂θ

∂xj
, (4.4.76)

and
∂2ϕ

∂xi∂xj
= ∥∇ϕ∥2 (δjxδiy − δjyδix

)
− 2

(
∂ϕ

∂y
δjx −

∂ϕ

∂x
δjy

)
∂ϕ

∂xi
. (4.4.77)

Next, we project the velocity u⃗m
n onto the direction α⃗ and define the variables f1, f2

and f3, i.e.

4π (⃗α · u⃗m
n ) =

∂Jm
n

∂r
f1 +

∂Jm
n

∂θ
f2 + Jm

n f3, (4.4.78)

where

f1 = α⃗ · ∇r× Q⃗m
n , f2 = α⃗ · ∇θ × Q⃗m

n , f3 = α⃗ · ∇ϕ× ∂Q⃗m
n

∂ϕ
. (4.4.79)

Using Eq.(4.4.75), Eq.(4.4.76) and Eq.(4.4.77), the grad of the variables fi are obtained:

∇ f1 =
1
r

(
Q⃗m

n × α⃗− f1∇r
)
+

(⃗
α · ∇r× ∂Q⃗m

n
∂ϕ

)
∇ϕ, (4.4.80)
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∇ f2 =
1

r2 sin θ

(
f1⃗ez +

(⃗
ez · Q⃗m

n × α⃗
)
∇r + (⃗ez · ∇r)

(
Q⃗m

n × α⃗− 3 f1∇r
))

− cot θ f2∇θ +

(⃗
α · ∇θ × ∂Q⃗m

n
∂ϕ

)
∇ϕ. (4.4.81)

∇ f3 =

(⃗
α · ∇ϕ× ∂2Q⃗m

n
∂ϕ2

)
∇ϕ + ∥∇ϕ∥2

(
(⃗ez · α⃗)

∂Q⃗m
n

∂ϕ
−
(⃗

ez ·
∂Q⃗m

n
∂ϕ

)
α⃗

)

+ 2 (∇ϕ× e⃗z) ·
(⃗

α× ∂Q⃗m
n

∂ϕ

)
∇ϕ. (4.4.82)

Thus, by the application of the product rule, the strain is given by:

4π∇ (⃗α · u⃗m
n ) = ∇

(
∂Jm

n
∂r

)
f1 +

∂Jm
n

∂r
∇ f1 +∇

(
∂Jm

n
∂θ

)
f2 +

∂Jm
n

∂θ
∇ f2 +(∇Jm

n ) f3 + Jm
n ∇ f3,

(4.4.83)
where

∇
(

∂Jm
n

∂r

)
=

∂2 Jm
n

∂r2 ∇r +
∂2 Jm

n
∂θ∂r
∇θ, (4.4.84a)

∇
(

∂Jm
n

∂θ

)
=

∂2 Jm
n

∂r∂θ
∇r +

∂2 Jm
n

∂θ2 ∇θ, (4.4.84b)

∇Jm
n =

∂Jm
n

∂r
∇r +

∂Jm
n

∂θ
∇θ. (4.4.84c)

Although we have used the local series for derivation, there is a straightforward
extension to handle the multipole case. Having introduced the translation and con-
version operators both in 2D and 3D, we now have all of the ingredients needed to
construct the FMM algorithm, which will be the subject of discussion in the subse-
quent sections.

4.5 Initial expansion

The initial expansion component, as in Figure (4.1), of the FMM algorithm is respon-
sible to convert the source particles in each childless box into a multipole expansion
using Eq.(4.3.13) or Eq.(4.4.27). Through the modified tree construction algorithm
outlined in Section 4.2, this process is parallelized by assigning each thread to one
childless box. The thread traverses the particle data via the access method outlined
in Section 4.2.1. For each source particle the thread encounters, the thread com-
putes the multipole expansion coefficients and accumulates them to the predefined
multipoleExpansionArray. The form of the multipoleExpansionArray differs in
2D and 3D. For example, in 2D, the multipoleExpansionArray is simply a C-array
whose real and imaginary parts of the coefficients are stored in a contiguous order,
whereas for the 3D case, it consists of 3 C-arrays for the three-components. This
phase is illustrated in Algorithm 4.7. In 3D, however, the complex coefficients are
transformed to the real coefficients according to Eq.(4.4.58) during this step.
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Algorithm 4.7: Initial Expansion (P2M)
input : A reference to the tree object (tree), the set of particle data (pData), a

truncation number (P), permutationArray, boxPointerArray,
particleBinArray and particlePointerArray

output: The multipole coefficient array (multipoleExpansionArray)
// Assume that the tree has already constructed

for each childless non-empty box b in tree do
// obtain the Morton index and the refinement level of b

b.getBoxReferenceIndex(Imorton, RefLvl)
// obtain the number of source particles in b by passing the identifier to

the particleBinArray

numberOfSrcParticles = particleBinArray.idx(Imorton,RefLvl)
pptr = particlePointerArray.idx(Imorton, RefLvl)
for each i from 0 to numberOfSrcParticles- 1 do

// Create a reference to the particle

p = pData.getParticleReference(permutationArray.idx(pptr))
// Compute the multipole coefficient and consolidate the coefficients

to the existing multipoleExpansionArray

ComputeMultipoleCoefficients(multipoleExpansionArray, P, p,
Imorton, RefLvl)

// increment the particle pointer

pptr← pptr + 1

4.6 Upward pass

The upward pass involves applying the translation operator on the multipole expan-
sion coefficients of the children boxes to their parent boxes. The modified expansion
coefficients are then accumulated at the parent boxes. The parallelization is han-
dle by letting each thread handle a single translation for each children box. The
result is stored to a temporary array. When all threads have finished processing the
translations, the results are sequentially added to the parent boxes. This process is
illustrated in Algorithm 4.8.

4.7 Downward pass

This phase is described in two stages. The first stage is to convert the set of multipole
expansion coefficients of the List 2 and List 4 partition boxes to a set of local expan-
sion coefficients via the conversion operator as in Eq.(4.3.37) or Eq.(4.4.36). The idea
of this stage is to account for the local far-field influence of the target box. This stage
is described in Algorithm 4.9. The algorithm assumes the List partitions have al-
ready been defined using Algorithm 4.4. The local expansion coefficients are stored
to a dedicated array that we denote it by localExpansionArray. The elements are
stored in a contiguous order to reduce the number of fetch operations. At the end
of this stage, all non-empty boxes in the FMM tree would be allocated a local ex-
pansion, which corresponds to the local far-field influence. Subsequently, we may
start the second stage of the phase in which the local expansion coefficients are re-
cursively translated from the parent boxes to their children boxes. This is equivalent
to the inclusion of the larger hierarchical far-field influences. This step is illustrated
in Algorithm 4.10. The parallelization of this stage proceeds in a similar manner
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Algorithm 4.8: Upward Pass (M2M)
input : A reference of the tree object (tree), the truncation number (P), the

effective refinement level (np) and the multipoleExpansionArray

output: the modified multipoleExpansionArray

for each refinement level k from np to 1 do
for each non-empty box b at refinement level k do

// Obtain the box reference from b's parent

pb = b.getParentReference()
// Obtain the translation vector

transVector = b.getBoxCoord() - pb.getBoxCoord()
// Copy the multipole expansion coefficients from box b to a temporary

variable tmp by passing the 'start' and 'end' iterators to the

multipoleExpansionArray

CopyElementToArray(multipoleExpansionArray, tmp, startIterator,
endIterator)

// Apply the translation operator to tmp. Note the caller modifies the

array elements in tmp

TranslateMultipoleCoefficients(tmp, P, transVector)
// Modify the iterators so that they point to the begin and end

position of pb's multipole expansion

// Combine the modified expansion to pb's expansion

AccumulateExpansion(multipoleExpansionArray, tmp, startIterator,
endIterator)

as in Algorithm 4.8, in which each thread handles a children box and performs a
translation from their parent’s local expansion.

4.8 Final evaluation of the field

The evaluation of the Biot Savart and the velocity strain occurs at this final stage of
the FMM routine. There are three types of evaluations that we need to account for:
the evaluation of the near-field influence (i.e. the List 1 partition ), the evaluation
of the local expansion (i.e. the far-field) and the evaluation of the far-field given by
the List 3 partition, which we may coin the local influence. Using the access method,
the evaluation at the particle locations is parallelized by assigning each thread with
a particle reference. The thread then proceeds to evaluate the direct influence using
the mollified Biot-Savart induction, i.e. Eq.(3.1.18), follows by the evaluation of the
local expansion using Eq.(4.3.28) or Eq.(4.4.68). The final outcome of the algorithm
is a velocity array (velocityArray) and the velocity strain array (strainArray) com-
puted at the particles’ locations. Moreover, we note that strainArray is empty in
2D, which is a consequence of the fact that the stretching term varnishes in 2D. The
near field evaluation is described in Algorithm 4.11. The evaluation of the local ex-
pansion and the local influence proceeds in a very similar fashion and therefore we
will not be presenting them here.
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Algorithm 4.9: Downward Pass Conversion (M2L)
input : a reference to the tree object (tree), the truncation number (P), the

multipoleExpansionArray and the localExpansionArray

output: the modified localExpansionArray

for each non-empty box b in tree do
tmplist = b.getList2();
for each box c in tmplist do

// Obtain the translation vector

transVector = c.getBoxCoord() - b.getBoxCoord();
// Copy the c's multipole coefficients to the variable tmpArray. Here

startIterator and endIterator point to c's start and end position in the

multipole array, respectively.

CopyElementToArray(multipoleExpansionArray, tmpArray, startIterator,
endIterator);

// Apply the conversion operator.

ConvertMultipoleToLocal(tmpArray, P, transVector);
// Copy the result to the localExpansionArray. startIterator and endIterator

should be appropriately modified so that they point to the b's local

expansion in the local array

AccumulateExpansion(localExpansionArray, tmpArray, startIterator,
endIterator);

repeat for the List 4 partition of b;

Algorithm 4.10: Downward Pass Translation (L2L)
input : a reference to the tree object (tree), the truncation number (P), the

effective refinement number and the localExpansionArray

output: the modified localExpansionArray

for each refinement level k from 2 to np do
for each non-empty box b at refinement level k do

// Obtain the box reference of b's parent

pb = b.getParentReference();
// Obtain the translation vector

transVector = pb.getBoxCoord() - b.getBoxCoord();
// Copy the local expansion of pb to a temporary variable tmpArray

using the iterators

CopyElementToArray(localExpansionArray, tmpArray, startIterator,
endIterator);

// Apply the translation operator to tmpArray.

TranslateLocalCoe�cients(tmpArray, P, transVector);
// Accumulate the local expansion to b's local expansion. Assume that

startIterator and endIterator have appropriately modified

AccumulateExpansion(localExpansionArray, tmpArray, startIterator,
endIterator);



94 Chapter 4. Fast multipole methods

Algorithm 4.11: Near Field Evaluation
input : a modified tree object (tree), particle data (pData), velocityArray,

strainArray, permutationArray, boxPointerArray, particleBinArray and the
particlePointerArray

output: modified velocityArray and strainArray

counter = 0

for each source particle p1 in pData do
Imorton = boxPointerArray.idx(counter)
RefLvl = boxPointerArray.lvl(counter)
// Obtain the box reference from tree with the identifier (Imorton, RefLvl)

b = tree.getBoxReferenceFromIndex(Imorton, RefLvl)
for each box c in b.getList1() do

// Obtain the Morton index and the refinement for the box c

c.getBoxReferenceIndex(Jmorton, Jlvl)
// Get the first sorted particle pointer to the box c as well as the

number of source particle

pptr = particlePointerArray.idx(Jmorton, Jlvl)
nsrc = particleBinArray.idx(Jmorton, Jlvl)
for i from 0 to nsrc- 1 do

// Obtain the reference to the source particle corresponding to pptr

p2 = pData.getParticleReference(permutationArray.idx(pptr))
// Evaluate the direct influence between p1 and p2 and store the

result to the velocityArray and strainArray. The actual particle

index is required to be ensured that the data is stored at the

right memory location

DirectEvaluate(velocityArray, strainArray, p1, p2,
permutationArray.idx(counter))

// increment pptr

pptr← pptr + 1

// increment counter

counter← counter + 1

4.9 Conclusion

The FMM calculation is an important and necessary component to the current tur-
bine simulation code as it substantially reduces the simulation time by an order
of magnitude. This reduction allows the simulation to reach steady state much
faster. To achieve such an accomplishment, we have developed a new parallelized
data structure whereby communication between vortex elements and the underly-
ing FMM tree is efficiently facilitated by means of maintaining several large arrays.
Moreover, all parts of the FMM code are implemented natively on the GPU. In ad-
dition to the data structure, we have introduced several important mathematical
concepts that play pivotal roles in allowing us to perform translation and conver-
sion operations on the multipole coefficients. This is a crucial step in the FMM al-
gorithm as it allows the code to achieve the O (N) asymptotic time. Moreover, the
rotation operator in the three-dimensional calculation decomposes the dense matrix
vector multiplication to three sparse matrix vector products, which further reduces
the computational cost.
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In this chapter, an important contribution to the literature has been made by de-
riving an analytical expression for the velocity strain in terms of the real spherical
harmonic basis functions. This analytical derivation has not been found in the liter-
ature and therefore it will prove very useful for improving the efficiency of the final
evaluation phase of the FMM routine. Previously, investigators have used the cen-
tral difference approach to approximate the strain field. This approach is not only
marred by inaccuracies, but it also proved to be inefficient as it generally requires
2 evaluations to obtain the partial derivative in each direction. The presented work
in this chapter mitigates this deficiency entirely. The result is a simple and efficient
evaluation routine that makes use of the stable backward recursive formula of the
associated Legendre functions.
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Chapter 5

Validation of the vortex particle
methods and performance
measurements

Several validation cases are presented in this chapter, which serve to illustrate that
the new proposed vortex particle method can provide a good and accurate repre-
sentation of the flow physics in a variety of flow problems. Additionally, the GPU
performance is analysed by measuring the performance gain on the most intensive
parts of the simulation which are denominated by the evaluation of the Biot Savart
induction. The results derived from this analysis will impact on future works in
terms of optimizing the GPU parameters in the code.

5.1 Dynamic evolution of an inviscid vortex ring

Due to the collective influence of the vorticity contained within the vortex ring, in
the absence of external flow the vortex ring undergoes a steady translation along
the axis of symmetry. The self-induced velocity field due to an inviscid vortex ring
is analysed in this section. The reason for investigating its kinematic behaviour is
due to the fact that under the thin core approximation the ring as a whole undergoes
a constant translation whose velocity approaches asymptotically to the theoretical
expression (Sullivan et al., 2008):

U =
Γ

4πR

(
log
(

8R
σ

)
− 1

2

)
, (5.1.1)

where Γ is the circulation, R is the ring radius and σ is the core radius. The self
induced velocity is thus oriented in the normal direction to the ring plane. The
convenience of Eq.(5.1.1) provides a simple test case for the three-dimensional code
in the absence of viscosity.

5.1.1 Ring discretization

Let ω⃗ denote the vorticity field of the ring. Under the thin core approximation (i.e.
σ≪ R), one may assume that ω⃗ can be written as

ω⃗ = ω0⃗eθ , (5.1.2)



98
Chapter 5. Validation of the vortex particle methods and performance

measurements

where e⃗θ is the azimuthal vector relative to the ring (see Figure (5.2)) and ω0 is a
constant. By imposing that the circulation be constant. i.e.∫

S
ω⃗ · e⃗θdS = Γ, (5.1.3)

where S represents the cross-sectional area of the ring, one may deduce that:

ω0 =
Γ

πσ2 . (5.1.4)

The ring is discretized in two stages. In stage one, the cross-section of the ring is
first discretized by a set of ’2D’ particles. The construction of the 2D slice is subject
to the constraint that the total area of the particle must add up to the area of the
circle and each particle carries the same area. An example of such discretization
scheme is given in Figure (5.1). Subsequently, the slice is copied around a circle with

FIGURE 5.1: An example of an equal-area discretization for the 2D
slice.

a prescribed normal to produce the effective particle discretization. Each particle is
associated with the tuple

(⃗
αj, x⃗j

)
, which characterises the vorticity field. Initially, the

circulation of the j-th particle may be assigned by:

α⃗j =
ΓVolj

πσ2 e⃗θj . (5.1.5)

where Volj denotes the volume of the particle.
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FIGURE 5.2: The three-dimensional ring is constructed by duplicating
NR copies of the cross-section around a central axis to form a torus
(shown on the left). The vortex elements at each sectional station are
assigned a constant circulation vector that is proportional to the cir-

cumferential unit vector e⃗θ of that station (shown on the right).

5.1.2 A first order integration scheme in time

Under the collective influence of the vortex element, the ring is propelled by a non-
zero induction field along the normal of the ring plane, which is taken to be k⃗ =

(1, 0, 0)T. The position of the ring is tracked by measuring the mean position of the
vortex particles in each instance of time. In order to reduce the computational cost,
we have adopted a straightforward first order explicit integration scheme for the
position x⃗j and the circulation α⃗j. Subsequently, when the Biot-Savart step is com-
pleted, the position and the circulation of the j-th particles are updated according to
the following discretized formula:

x⃗n+1
j = x⃗n

j + δt u⃗
(

x⃗n
j

)
, α⃗n+1

j = α⃗n
j + δt α⃗j · ∇T u⃗, (5.1.6)

where the superscript, n, indicates the value of the variable at the n-th time-step, and
δt is the time-stepping size, which is currently set to δt = 0.01. Note here that we
have employed the transpose scheme for the stretching term for its robust conserva-
tion properties (see Cottet and Koumoutsakos (2008) for an in-depth discussion).

5.1.3 Discussion

To validate the new proposed code, the averaged position of the ring is tracked at
each time step. Figure (5.3a) shows the x-value of the position for a short time.
Due to the variation of the particles’ position, a linear regression was fitted to com-
pute the average velocity of the ring. In the computation, the slope on the fitted
line is about Ūcomputed = 0.55177. This is to be compared to the theoretical value
of Utheoretical = 0.5473, which produces a relative error of 8× 10−3. However, for
t > 0.6, a significant departure from the theoretical value was observed. On a close
inspection of the particles’ distribution, one may suggest that the discrepancy might
be due to the core expansion experienced by the ring. Evidently, by sampling the
velocity data of the ring in the x − z plane at different time-intervals, one observes
that the core velocity decreases monotonically over time (Figure (5.4)), thus lower-
ing the self-induced speed. The parameter for this simulation is listed in Table 5.1.
In order to maintain the stability of the simulation, particles are re-meshed every 5
steps using the M′4 scheme (Section 3.1.4). In addition, a form of population control
was implemented to avoid excessive particle growth during the re-meshing step. A
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vorticity cut-off value ω0 was used so that only particles whose magnitude of the
circulation vector greater than ω0 are kept. In conclusion, the computed result using
the 3D FMM code compares favourably to the theoretical result, which validates the
new FMM code in Chapter 4.

param value description
δt 1× 10−2 time step size
h 1.12× 10−2 grid size
N0 1.77× 104 initial particle number
fremesh 5 re-meshing frequency
P 7 FMM expansion order
ω0 1× 10−5 vorticity cut-off

TABLE 5.1: Parameters used in the simulation of the inviscid vortex
ring.

5.2 Partition error of the FMM code

One particular form of error in the current FMM code is associated with the nor-
malization procedure outlined in Section 4.2. As previously mentioned, the physical
vortex particles are transformed to fit within a unit square or cube by applying a
translation and a scaling operations. Although the convergence error was known to
scale with the truncation number P, it is unfortunate that this scaling depends on
the type of particle distribution. In the worst case of scenario, the scaling behaviour
of the error might incur a substantially large scaling factor, as is evidence in Figure
(5.5), in which the particle partition produces an overflow of particles that results in
the creation of excessively large boxes to accommodate the excess particle counts.
The result is a slow convergent behaviour that demands a relatively large truncation
number to suppress the resulting error. Indeed, if one samples the error as a function
of the truncation number P, it is readily seen that the error evaluated at field points
that are outside of the radius of divergence for the larger boxes improves substan-
tially, at least by several orders of magnitudes, as compared to the points that are
inside. Although this is an extreme form of the particle distribution which seldom
occurs in real simulations, but it does pose an inherent weakness to the FMM code,
which has not been previously documented in the literature. One resolution to this
issue is to judiciously introduce an offset in the normalization procedure in such a
way that over-flow should altogether be avoided. However, given the complexity of
the undertaking, this weakness is presently left untreated.

Comparatively, if over-flow is not present in the partitioned domain, conver-
gence exhibits the expected property that is typical to the usual FMM error be-
haviour. Indeed, by computing the NRMSD (see Section 3.2.4), Table 5.2 displays
a clear symptom of the detrimental effect of over-flow in the partition algorithm.

particle # (n) truncation #(P) Over-flow u-NRMSD v-NRMSD
2000 15 yes 1.028× 10−3 1.464× 10−3

2000 15 no 3.156× 10−6 4.000× 10−6

TABLE 5.2: shows the adverse effect of over-flow in the particle distri-
bution, which could reduce the accuracy of the code by several orders

of magnitude.
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(A)

(B)

FIGURE 5.3: The computed averaged position of the ring along the
x axis. (A) A short time comparison with the theoretical result
(Eq.(5.1.1)). The average velocity is calculated by fitting a linear re-
gression to the position data. (B) Significant deviation from the the-
oretical result was observed for t > 0.6. This may be due to the fact

that the core experiences a constant expansion.
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(A) t = 0.11 (B) t = 0.68 (C) t = 1.19

FIGURE 5.4: Velocity contours in the x-component sampled at differ-
ent times. Clearly, the core velocity is decreasing which is associated

with the core expansion.

5.3 Inviscid evolution of the (2:1) elliptical vortex patch (2D)

The two-dimensional vortex particle method is validated in this section and we
present a parametric study on the effect of the various simulation parameters that
affect the solution. To validate our approach, we simulated the inviscid evolution of
an elliptical vortex patch with a non-uniform vorticity profile given by the following
formula:

ω (r, ϕ) = Λ
{

1− fq (r/R0 (ϕ)) , if r/R0 < 1,
0, otherwise,

(5.3.1)

where fq (z) := exp (− (q/z) exp (1/ (z− 1))) and R0 is a function of the azimuthal
angle only. Here Λ and q are both constants.

This initial vorticity profile was investigated by Koumoutsakos (1997) and this
serves as a benchmark case for the validation study. The choice for this flow is made
based on the fact that the initial simple vortex structure will subsequently evolve into
a complex one through the process of filamentation. This mechanism is initialized by
the differential rotation of the vorticity field in the flow, which is akin to the Kelvin-
Helmholtz type instability. As a result, the ellipticity of the vortex is reduced and
approaches to that of a circular configuration. The aim of this section is to accurately
capture this transition.

5.3.1 Initial particle distribution

Following Koumoutsakos (1997), the values q = 2.56085 , Λ = 20 were used. The R0
function represents the radial length from the boundary of the ellipse and is given
by the following formula:

R0 (ϕ) = r0

√
1 + (λ2 − 1) sin2 f (ϕ), (5.3.2)

where f (ϕ) := tan−1 (λ−1 tan ϕ
)

and λ is the aspect ratio of the vortex. Currently,
the value of r0 = 0.8 and λ = 2 were used.

The initial vorticity distribution is discretized by a particle quadrature rule where
the quadrature nodes are the particles’ positions. To initialize the discretization,
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FIGURE 5.5: The domain partition results in the creation of large
boxes to accommodate the excess particles (marked by the blue cir-
cles). In particular, convergence is severely hindered for field points
inside the radius of divergence of the large boxes. In fact, the relative
error curves have been computed at two reference points that are rel-
atively close (marked by the green and magenta circle). The result is

presented in Figure (5.6).

a uniform grid with grid spacing (δx, δy) is over-laid on the support of Eq.(5.3.1).
In order to reduce the initial discretization error, the initial particle circulations Γi
were not directly assigned by Γi = ω (xi, yi) δxδy, instead the following system of
equations were solved for Γi:

N−1

∑
j=0

AijΓj = ω (xi, yi) (5.3.3)

where Aij := ξϵ

(
xi − xj, yi − yj

)
and ξϵ is the smooth Gaussian core function dis-

cussed in Section 3.1.1. However, due to the size of the resulting matrix equation,
Eq.(5.3.3) is currently solved using the successive over-relaxation (SOR) iterative
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FIGURE 5.6: The normalized error curve as a function of the trun-
cation number P at two field locations. (A) the field point is located
inside the radius of divergence as outlined in Figure (5.5). (B) the field
point is outside, which drastically improves the result by an order of

magnitude.

scheme. To validate this step of the simulation, we compute the exact vorticity mo-
ment parameter Jnm and compare those from the particle discretization. Precisely,
the vorticity moment parameter is defined by

Jnm =
∫ ∫

R2
ω (x, y) xnym dx dy. (5.3.4)

In order to numerically evaluate the integral in Eq.(5.3.4), it was shown that it is
necessary to transform it to the (r, ϕ) coordinate following to the (u, v) coordinate
where u = r/R0 (ϕ) , v = ϕ, so that Eq.(5.3.4) becomes

Jnm =
∫ 2π

0
Rn+m+2

0 (v) sinm v cosn v dv
∫ 1

0
un+m+1F (u) du. (5.3.5)

Here, F (u) = Λ
(
1− fq (u)

)
. A high-order numerical scheme is then employed to

integrate Eq.(5.3.5).
For the particle discretization, the moment parameter may be expressed as:

Jp
nm =

N−1

∑
i=0

N−1

∑
j=0

Γjξϵ

(
xi − xj, yi − yj

)
xn

i ym
i (5.3.6)

In practice, however, the double sum is not evaluated directly and instead it is as-
sumed that the non-negligible contribution from each particle is due to its immedi-
ate neighbourhood so that a fast tree-code can be employed (see Chapter 4). For this
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Eq.(5.3.5) Eq.(5.3.6)
J00 22.119502439638271 22.119502417163982
J11 0.000000000000000 0.000000000000002
J02 5.280561671991749 5.280561673576734
J20 1.320140417997938 1.320140416374350

TABLE 5.3: The vorticity moment parameters computed between
Eq.(5.3.5) and Eq.(5.3.6). The absolute error is in the order of

O
(
10−6), which is sufficient for the current purpose.

reason, the code permits a real-time monitoring of those variables. For comparison
between the two approaches, we tabulated the values of J00, J11, J02 and J20 in Table
5.3. The absolute errors of these calculations are of the order of O

(
10−6), which is

sufficient for the current simulation.
For a grid size δx = δy = 1.1× 10−2, the support of the initial vorticity field is

resolved by a total number of N (0) = 35348 particles. Each particle is assigned a
core radius given by

ϵ = 0.9× δx. (5.3.7)

Figure (5.7) shows the initial circulation of the particle field used to resolve the vor-
ticity field.

FIGURE 5.7: The contour plot of the initial assignment of the par-
ticle circulations for the elliptical vortex. For the grid resolution
δx = 1.1 × 10−3, a total of N (0) = 35348 particles are used to re-

solve the distribution.

5.3.2 Diagnostic: effective aspect ratio

It order to gauge the correctness of our numerical approach, it is important to in-
troduce a scalar that encapsulates the correct physical attributes of the problem.
Following Dritschel (1989), it was observed that the elliptical vortex will undergo
a process of axisymmetrization in which the highly elliptical core transfers to a more
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stable circular configuration. This phenomenon is characterized by the effective as-
pect ratio λeff, which is defined by:

λ2
eff =

J + R
J − R

, (5.3.8)

where R2 = D2 + λ2 J2
11, D := J20 − J02 and J := J20 + J02. Numerically, it can be

shown that the initial value of λeff is indeed equal to the aspect ratio of the ellipse.

5.3.3 Discussion

Outside of the re-meshing step, the code uses the second order Adam-Bashforth
scheme to advance the solution. The rationale for a multi-step scheme is to avoid
performing the Biot-Savart evaluation multiple times to achieve the same second
order accuracy; though at the expense of allocating memory to store the previous
velocity data. After a re-meshing step, however, there are no previous velocity data
available for the new set of particles. To circumvent this issue, the code uses a
predictor-corrector scheme immediately after the re-meshing. A time step size of
δt = 4× 10−3 was used in all of the subsequent simulations and the M′4 interpola-
tion scheme was employed to re-mesh the particles.

The time series of the evolution is presented in Figure (5.8). Initially, the strong
vortical flow in the core causes a differential angular velocity amongst the vortex
layers with the inner layer rotating at a faster rate. This differential speed results in
the creation of two distinct vortex filaments that are become progressively thinner
and interact strongly with the core (Figure (5.8a) - Figure (5.8d)). This stage of the
evolution is encapsulated by a sharp reduction in the effective aspect ratio (Figure
(5.9)). At a critical distance, the mutual interaction between the core and the fila-
ments causes the core to eject vorticity, which also produces a plethora of small-scale
filament structures(Figure (5.8e) - Figure (5.8h)).

At a later time, however, these small scale structures are damped by the sur-
rounding flow. The result is an equilibrium state in which the vortex core experi-
ences a periodic absorption and the production of vorticity from its neighbour. Dur-
ing the simulation, the effective aspect ratio was found to hover between 1.1 and
1.2 for t > 12 and no axisymmetrization was observed. In our computation, the
results are closely matched with those of Koumoutsakos (1997) at least for t < 4.
However, for t > 4, there appears to be an apparent shift in the effective aspect ratio.
This discrepancy might be attributed to the way in which the particle is initialized;
particularly in the choice of the function R0, which was not specified explicitly in
his work. Indeed, Koumoutsakos, through his systematic parametric studies, sup-
ports the observation that the final configuration of the vortex is a strong function
of the initial vorticity profile. In particular, the two profiles tested in Koumoutsakos
(1997), both of which utilised the spherical symmetric assumption for the initial vor-
ticity distributions for some reason (i.e. ω = ω(r)), evolve to two complete different
configurations. Although it is observed also that the long time configuration of both
profiles seems to exhibit a moderate dependence on the simulation parameters such
as the time-step size and the remeshing frequency (e.g. see the difference between
case 1 and case 2 of the ω I I profile in the published work of Koumoutsakos (1997)).
However, the simulated result closely follows the conclusion derived in the prelim-
inary calculation in his PhD thesis (Koumoutsakos, 1993), in which Koumoutsakos
concluded that axisymmetrization did not occur at the end of the long time simula-
tion (T > 24). However, neither studies provided clarification on the choice of the
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R0 function. In fact, R0 was taken to be a constant in the published work, which
is puzzling given the fact that one has to stretch the distribution to fit the ellipse; a
process that is extremely ambiguous. For the purpose of the current chapter, which
serves to validate the developed method, such a pursuit to match with the literature
to an excessive degree is not necessary. As we shall see in Chapter 6, there is a strong
base to argue that our method is indeed correct despite the minor discrepancies.

The present simulation is conducted on the GPU with an efficient data tree that
permits a higher number of particles to resolve the initial vorticity profile. The
re-meshing process, in particular, is efficiently handled by using a custom-written
atomic operation that allows a high level of parallelization. During the simulation,
both creation and deletion of particles are allowed. New particles are constantly be-
ing introduced by the re-meshing while particles whose circulations are less than a
threshold are deleted. There is a net increase of particle size N (t) that experiences
a sharp increase between the time interval t = 0 and t = 5. This rise might be at-
tributed to the initial formation of the filaments. Subsequent evolution sees N (t) to
vary more slowly and appear to approach to a local balance (Figure (5.10)). At the
end of the computation, N (t) has increased by a factor of 2.24.

The code is extremely efficient, e.g. for 5300 time steps, it only takes approx-
imately 10 minutes to finish. This is in stark contrast to other Eulerian methods
where simulation times are on the order of days rather than minutes. In conclusion,
we have validated the 2D vortex particle code.

5.4 A simple validation case for the PSE scheme in 1D

We present a simple validation case for the PSE scheme, in which the one-dimensional
heat equation is solved using the PSE algorithm. The aim of this section is to verify
our PSE code. To achieve such an aim, we present a rather contrived model problem,
in which we seek the solution ω (x, t) to the following set of equations:

∂ω

∂t
=ν

∂2ω

∂x2 , (x, t) ∈ (−L/2, L/2)× (0, ∞) , (5.4.1a)

ω (±L/2, t) =0, t > 0, (5.4.1b)
ω (x, 0) = f (x) , x ∈ (−L/2, L/2) , . (5.4.1c)

where L is a constant and ν is the thermal diffusivity. Physically, Eq.(5.4.1) may be
interpreted as finding the transient heat distribution of a 1D rod subject to an initial
heating given by the function f . The boundary condition is there for convenience of
the finite-difference solver but one may also interpret the constraint as connecting
the rod to a heat sink at both ends. It should be noted, however, that if the Dirichlet
conditions were to be replaced by the Neumann conditions ωx (±L/2, t) = 0, this is
analogous to the situation where the two ends are insulated (total heat is conserved
in the rod). In such a case, the PSE scheme provides the direct solution to the Neu-
mann problem instead. Since the role of the PSE is to redistribute the heat amongst
the particles whilst conserves the total heat, this is equivalent to the Neumann con-
dition that the heat flux shall varnish at the boundary. However, for the purpose
of validating the new PSE code, it is not necessary to complicate the boundary dis-
cretization in the finite-difference solver.
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5.4.1 A choice for gϵ in the PSE scheme

In one-dimension, one has to modify the heat-kernel gϵ (x) := ϵ−1g (x/ϵ) appropri-
ately so that the moment properties are satisfied (see Section 3.1.3). It is readily seen
that a Gaussian kernel of the form can be used:

g (x) = C exp
(
− x2

2

)
., (5.4.2)

where the constant C is determined from the moment condition:∫ ∞

−∞
x2g (x) dx = 2. (5.4.3)

Indeed, using that fact that
∫ ∞
−∞ exp

(
−u2) du =

√
π, it is straightforward to show

that the constant C is equal to 2/
√

2π.

5.4.2 Solving Eq.(5.4.1) via finite difference

Eq.(5.4.1) can be solved in various ways. A straightforward approach is to imple-
ment a finite difference to approximate both the time and spatial derivatives. In this
study, we opt for a first order time and a second order central difference in x. Specif-
ically, if ωn

i := ω (iδx, nδt) , i = 1, 2, . . . , N, then the discretized form of Eq.(5.4.1a)
can be derived as follows:

ωn
i −ωn−1

i
δt

= ν

(
ωn

i+1 − 2ωn
i + ωn

i−1

δx2

)
(5.4.4)

The boundary conditions Eq.(5.4.1b) are enforced by setting ωn
0 = ωn

N+1 = 0.
Equivalently, a sparse matrix can be assembled and the resulting equations of the

system is
1 + 2λ −λ 0 . . . 0 0
−λ 1 + 2λ −λ . . . 0 0

...
...

...
. . .

...
...

0 0 . . . 0 −λ 1 + 2λ




ωn
1

ωn
2

...
ωn

N

 =


ωn−1

1
ωn−1

2
...

ωn−1
N

 , (5.4.5)

where λ := νδt/δx2.

5.4.3 Solving Eq.(5.4.1) via the PSE algorithm

As previously mentioned, the PSE replaces the Laplacian by an integral expression:

∂2ω

∂x2 (x, t) ≈ ϵ−2
∫ ∞

−∞
(ω (y, t)−ω (x, t)) gϵ (y− x) dy (5.4.6)

with g given by Eq.(5.4.2). A particle discretization sees that ω be approximated by
a set of particles with the properties (αi, xi), where αi denotes the particle strength
given by αi := ωiδx and xi denotes the trajectory. Since only diffusion is resolved,
the trajectory remains constant throughout.

Upon applying the PSE approximation, the particle strength satisfies the coupled
ODE

dαi

dt
=

νδx
ϵ2

N

∑
j=1

(
aj − ai

)
gϵ

(
xj − xi

)
. (5.4.7)



5.4. A simple validation case for the PSE scheme in 1D 109

As discussed in Section 3.1.3, particles need to maintain an overlap to achieve the
second order accuracy of the scheme, therefore an overlap ratio of 1.2 was used - so
that the core parameter is ϵ = 1.2δx. Suppose αn

i denotes the i-th particle’s strength
at the time-step n, then a forward Euler scheme can be used to integrate Eq.(5.4.7),
i.e.

αn
i = αn−1

i +
νδxδt

ϵ2 ∑
j∈Pi

(
αn−1

j − αn−1
i

)
gϵ

(
xj − xi

)
. (5.4.8)

where the summation is applied only to those particles within a certain radius away
from the i-th particle. For this purpose, a fast tree-code was used to determine the
sum.

5.4.4 Discussion

The PSE algorithm does not satisfy the boundary condition exactly even though the
initial particle strengths do. This can be corrected by using a sufficiently large L. In
this particular simulation L = 6 seems to be sufficient. The initial condition is given
by the function f (x):

f (x) = ωmax

(
1− 4

( x
L

)2
)

exp
(
− (x/ϵ0)

2
)

, (5.4.9)

where ωmax = 0.6 and ϵ0 = 0.37796 were used. There is no particular importance to
those values. They were randomly chosen from a pseudo-random number genera-
tor.

In any case, the vorticity profile scaled by ωmax is shown in Figure (5.11) after
the 3000-th time step. The presented result demonstrated an excellent agreement be-
tween the two approaches. In the PSE algorithm, the total number of particles used
to resolve the vorticity field was 500. It was observed that higher particle numbers
did not improve the result. In fact, instability can arise if a large enough number
of particles was used (leading to a blowup of the simulation). Indeed, Degond and
Mas-Gallic (1989) presented a stability condition relating the diffusivity ν, the time
discretization and the core parameters. In their analysis, the PSE scheme is stable if

νδt < λϵ2. (5.4.10)

for some number λ, which depends on the type of time-marching scheme and the
overlap ratio. Since ϵ is related to the grid spacing δx, which itself is derived from the
particle number, a larger particle count will reduce the core parameter. Eventually,
at some critical value ϵ =

√
νδt/λ, the stability condition will cease to be valid. It

should be noted that decreasing the overlapping ratio will destabilise the simulation
to the same effect.

One of the biggest advantage of the PSE is its ability to generalize to arbitrary
dimension. This only involves modifying the heat-kernel g so that it satisfies the
appropriate moment conditions in that dimension. In 2D and 3D, g will always be
taken to be a Gaussian with different constants. However, since each update for
the particle strengths requires a summation from every particle, a direct approach
is extremely expensive. Usually, only neighbouring particles contribute to the sum,
therefore a fast neighbour search algorithm has to be used in conjunction to speed
up the computation. In the current implementation, this is automatically done using
the tree-structure outlined in Chapter 4. So it presents no particular difficulties in
solving the coupled ODE in O (N) time. Admittedly, however, the PSE algorithm
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on the GPU runs marginally slower than the finite-difference, this is to be expected
since the particle discretization is too coarse so that the parallelization capability of
the GPU is not being fully realized.

Although only the 1D case has been investigated and verified, the underlying
code structures are exactly the same both in 2D and 3D with minor modifications
to the heat-kernel. Therefore, one may assume that the new PSE code is correct and
this concludes the aim of this section.

5.5 Performance measurement of the 2D FMM code

The most intensive part in the vortex particle method is the evaluation of the Biot
Savart law. For N particles in the domain, the work scales as O

(
N2), which quickly

becomes untenable for large N if a brute-force approach is used. In Chapter 4, we
have introduced the concept of the Fast-Multipole Method, which aims to reduce the
scaling to O (N). In this section, we present the timing results between the different
modes of evaluating the Biot Savart law.

5.5.1 Speed comparison between the direct approach and the FMM

The wall-clock time of the Biot Savart computation is compared between the direct
approach and the FMM. The direct approach was implemented in the CPU using
MATLAB’s programming language. To speed up the direct calculation, a simple
parallelization approach was used in which the evaluation points are split between
4 worker nodes in a local parallel cluster. Each worker node has its memory space,
so data are copied to the workers’ memory space before the computation can pro-
ceed. This parallelization approach requires minimum effort to code thanks to the
MATLAB’s parallel computing toolbox. The only real work here is to replace the for-
loop with a parfor-loop and to modify the output data to a cell array for which the
worker nodes can copy back the data to the host. For the CPU FMM implementation,
however, no such parallelization method was used but vectorization was explored
whenever was possible. The wall-clock times of the various evaluation modes are
shown in Table 5.4 for the 4 particle clusters investigated. In each cluster, the parti-
cles are randomly generated in the unit square and all of the particles are of Rankine
type. All times are measured in seconds.

N CPU-FMM(s) GPU-FMM(s) CPU-Direct(s) (CPU-FMM/GPU-FMM)
2× 104 5.62 0.14 2.17 40.14
5× 104 5.87 0.18 15.23 32.61
1× 105 28.51 0.24 73.57 118.79
5× 105 295.16 0.54 2361.85 546.59

TABLE 5.4: Wall-clock time for the different modes of evaluation of
the Biot-Savart.

The GPU-FMM code demonstrates an excellent speed up compared to the single
threaded implementation of the CPU-FMM and the parallelized CPU-Direct; reach-
ing an impressive 546 times the speed-up compared to CPU-FMM. Perhaps what is
surprising is that the CPU-FMM runs marginally slower than CPU-Direct for smaller
particle clusters. Using the MATLAB’s built-in profiling tool, one is not hard to ob-
serve that, at those sizes, the CPU-FMM spent almost three-quarter of its time cre-
ating the FMM tree, which is not surprising given that the original tree-construction



5.6. Conclusion 111

algorithm (Algorithm 4.2) has proven to be inefficient. This is compounded by the
fact that the CPU-FMM uses a fully adaptive tree; meaning for each increase of re-
finement level in the tree there is an exponential increase of the children boxes that
need to be traversed and sorted. In all of cases considered, the GPU-FMM code is
clearly superior.

5.5.2 GPU FMM profiling

On a close inspection of the GPU-FMM code, one may identify how much time the
FMM code spent in each of the evaluation phases, namely the data structure, the ini-
tial expansion (P2M), the upward pass (M2M), the downward pass (M2L + L2L) and
the final evaluation (Section 4.1). Table 5.5 shows the percentage of the time in each
phases. As to be expected, the multipole to local conversion step (M2L) is the most
expensive step as it dominates the majority of the time. Indeed, this observation is
consistent with the reported results of Gumerov and Duraiswami (2008) and Yokota
et al. (2009). The reason for this is that each box in the tree needs to traverse the
List 2 partition, which contains the most elements, and convert a multipole expan-
sion in the list to a local expansion. Consequently, a large number of fetch requests
was made which drastically increases the latency of the execution as a large volume
of data needs to be exchanged back and forth between the L2 cache and the main
memory. As discussed before in Section 4.2, accessing the main-memory is typically
the most expensive access in the GPU’s memory hierarchy. This issue becomes even
more pronounced in 3D where the List 2 partition contains, on average, 189 boxes.
Therefore, an obvious direction for future improvement of the code is to optimize
the memory transfer.

Data tree P2M M2M M2L L2L final-evaluation
14.8% 3.3% 2.7% 63.7% 3.3% 12.1%

TABLE 5.5: Percentage of the total time the GPU-FMM code spent in
each of the evaluation phases

5.6 Conclusion

Several aspects of the vortex particles methods have been validated against simple
flow problems. The new three-dimensional FMM code was used to simulate the
evolution of the inviscid vortex ring. The results showed that the code managed
to capture the self-induced velocity with a relative error of 8 × 10−3 compared to
the theoretical value. For longer time, however, it was observed that the core un-
dergoes significant expansion which results in a clear departure from the theoretical
prediction.

The two-dimensional code was validated by simulating an elliptical vortex patch.
The new results agree quite well with the existing literature values. However, some
discrepancies are present especially in the computation of the effective aspect ratio,
which we attributed the reason as due to the particle initialization process.

In addition, a simple 1D case was presented for solving the heat equation via the
particle-strength exchange scheme (PSE) and finite difference approach. The two re-
sults agree extremely well. It was noted that the PSE requires a fast neighbour search
algorithm in order to avoid the O

(
N2) cost. This approach is efficiently handled by

using the tree-structure outlined in Chapter 4.
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Finally, the performance of the GPU-accelerated FMM code has been analysed
and was found that, compared to a single-threaded CPU implementation of the
FMM, the GPU manages to achieve an impressive 546 times the speed up. This
capability allows high-fidelity simulations to be performed in both 2D and 3D flow
problems in realistic times.
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(A) T = 0 (B) T = 0.6

(C) T = 1.2 (D) T = 2.0

(E) T = 3.0 (F) T = 4.0

FIGURE 5.8: Contour plots of the vorticity field at different time
stamps of the elliptical vortex patch. The simulation demonstrates
a complex filamentation process by which the ellipticity of the initial
vortex is gradually transitioning to that of a circular configuration.

No axisymmetrization is observed at the end of the run.
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(G) T = 5.0 (H) T = 10.8

(I) T = 16.8 (J) T = 21.2

FIGURE 5.8: continued
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FIGURE 5.9: Computed λeff versus those from Koumoutsakos (1997).
The results agree very well for t < 4. But for t > 4, our computation
shows that λeff does not converge to the circular configuration. Al-
though the trend of the two results generally matches quite well, it is
anticipated that this discrepancy could be due to the ways the parti-

cles are initialized.



116
Chapter 5. Validation of the vortex particle methods and performance

measurements

FIGURE 5.10: Variation of particle size N (t) as a function of time t.
A sharp rise of particles numbers was observed during the filamen-
tation process. At the end of the computation, the particle size has

increased by a factor of 2.24.
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.

FIGURE 5.11: A comparison of the vorticity profile between the PSE
and finite-difference. The presented results correspond to the follow-
ing simulation parameters: T = 30, ν = 10−2, δx = 1.2× 10−2 and

δt = 10−2
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Chapter 6

Two dimensional flows at moderate
Reynolds number

For moderate Reynolds number, flow separation is a common phenomenon in tur-
bine applications. In Section 3.2.1, we outlined a potential approach to solve the
inviscid Euler’s equations analytically. This approach, combined with the Kutta
conditions, assumes the flow remains attached on the body. Physically, however,
turbines with relative large TSR may still undergo severe separation in instances
where they interact with regions of concentrated vorticity. Furthermore, since sep-
aration is predominately a viscous effect, an accurate simulation thus requires one
to focus on a viscous particle methods where the correct viscous boundary effects
are accounted for. In three-dimensions, this places a large strain on computing re-
sources, therefore it is not implemented in this work. However, in two-dimensions,
together with the GPU accelerated FMM code in Chapter 4, high fidelity approaches
are afforded. With this in mind, this section highlights the new modelling approach
and presents the results for a variety of flow scenarios.

6.1 A fractional time-stepping algorithm

To correctly account for the kinematic boundary conditions, namely the ’no-slip’, it
is important to derive an equivalent boundary condition for the vorticity equations
as it constitutes the main source of vorticity generation in the viscous flow domain.
The incorporation of the vorticity generation mechanism has to be dealt with in two
stages, which are: a) inertial and particle diffusion, and b) wall diffusion. Although
these two processes are linked intrinsically and the particle method is capable on
resolving inertial and particle diffusion, but the main difficulty arises when trying to
satisfy the boundary conditions simultaneously. To alleviate these issues, a fractional
time-stepping algorithm is adopted which serializes the two processes.

6.1.1 Operator splitting

During a particular time-step, say at the k-th time step, the algorithm seeks to de-
termine the vorticity field for the (k + 1)-th time step, which procedurally solves the
advection step and the no-through boundary conditions. The latter step is particu-
larly important in that the vorticity generation in the flow depends entirely on the
correct vorticity flux which, in general, is expressed as a function of the vortex sheet
introduced to enforce the no-slip.

To this effect, the splitting scheme treats these two processes in a serial manner.
First, Eq.(6.1.1) are solved subjecting to the no-through conditions:
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∂ω

∂t
+ u⃗ · ∇ω = 0, x⃗ ∈ R2\D, t > 0, (6.1.1a)

ω (x⃗, 0) = g (x⃗) , x⃗ ∈ R2\D, (6.1.1b)
u⃗ (x⃗, t) · n⃗ = u⃗b · n⃗, x⃗ ∈ ∂D, t > 0, (6.1.1c)

where g denotes the initial condition which represents the vorticity field of previous
time-step, u⃗b denotes the body velocity, D and ∂D denotes the union of the rigid bod-
ies and their boundaries, respectively. It should be noted that Eq.(6.1.1c) represents
the no-through condition. Consequently, the no-slip is not enforced so that there is
no new vorticity generated at this stage. Also, diffusion among particles is carried
out as a sub-step, which corresponds to solving the following set of equations:

∂ω

∂t
= ν∇2ω, x⃗ ∈ R2\D, t > 0, (6.1.2a)

ω (x⃗, 0) = g (x⃗) , x⃗ ∈ R2\D, (6.1.2b)

which can be efficiently solved in O (N) time (see Section 5.4) using the developed
PSE scheme in Section 3.1.3. The effective vorticity field at the end of this sub-step
is obtained as a superposition of the solutions of Eq.(6.1.1) and Eq.(6.1.2). With
a proper velocity field that respects the no-through conditions in Eq.(6.1.1c), one
should expect that the solutions at the end of step one should not introduce vor-
ticity inside D. However, in practice, such idealization is difficult to realise due to
various factors such as the accumulation of numerical errors in the simulations. To
avoid this complication, the method employs a particle deletion algorithm which
seeks to identify and remove particles that settle too close to ∂D whilst still respect-
ing the conservation nature of the vorticity field in 2D. The exact implementation is
discussed in Section 6.1.4.

In any case, at the end of the first step the original vorticity field is modified. This
modified field then results in a spurious slip velocity at the boundary, which has to
be nullified in order to satisfy the no-slip. The nullification is done by introducing
a vortex sheet whose strengths are solved by the panel method discussed in Section
3.2. Subsequently, the vorticity flux (∂ω/∂n) is computed acting as the boundary
conditions for the following system of equations:

∂ω

∂t
= ν∇2ω, x⃗ ∈ R2\D, t > 0, (6.1.3a)

ω (x⃗, 0) = 0, x⃗ ∈ R2\D, (6.1.3b)

ν
∂ω

∂n
= F (x⃗, t) , x⃗ ∈ ∂D, t > 0, (6.1.3c)

where F denotes the vorticity flux function. In such calculation, the aim is then to
determine a secondary vorticity field satisfying Eq.(6.1.3) to incorporate the effect
of vorticity generation in the presence of rigid bodies in the flow domain. Once a
solution is found in step two, the effective vorticity field is advanced to the next
time step by superimposing the solution of Eq.(6.1.3) with those of Eq.(6.1.1) and
Eq.(6.1.2).

Eq.(6.1.3) admits an exact solution of the form (see Friedman (2008)):

ω (x⃗, t) =
∫ t

0

∫
∂D

G (x⃗, y⃗, t− τ) µ (⃗y, τ) dτ ds (⃗y), (6.1.4)
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where G is the heat-kernel given by equation Eq.(6.1.5):

G (x⃗, y⃗, t) :=
1

4πνt
exp

(
−∥x⃗− y⃗∥2

4νt

)
, (6.1.5)

here µ is called the surface density whose value is obtained from the Neumann con-
dition in Eq.(6.1.3c). Indeed, by applying the BEM approach (see Section 3.2.1), it is
readily verified that µ satifies a Fredholm integral equation of the second kind:

−1
2

µ (x⃗, t) +
∫ t

0

∫
∂D

∂G
∂n

(x⃗, y⃗, t− τ) µ (⃗y, τ) ds (⃗y) dτ = F (x⃗, t) . (6.1.6)

For a relatively small time-step size, one may assume that F and µ do not change
much during a time-step, so that F and µ can be treated as time-independent and
whose values may be parametrized by the arc-length s only (i.e. F(x⃗(s), t) = F(x⃗(s)) =
F(s), µ(x⃗(s), t) = µ(x⃗(s)) = µ(s)). Under this assumption, Koumoutsakos (1993)
derived the dominant contribution in the Taylor expansion for the surface density
relating the flux F and the curvature of the geometry:

µ (s) = −2F (s)
(

1− κ (s)
√

πνδt
)−1

. (6.1.7)

here, δt denotes the time step size, κ is the curvature and s is the arc-length parametriza-
tion.

Assuming that the body is approximated by M straight panels and the surface
density is independent of time, one may decompose the boundary as an union of
linear panels, i.e. ∂D =

⋃M−1
j=0 ∂Dj, where each linear ∂Dj is characterised by the

centroid x⃗0 = (x0, y0), the orientation angle θ and the length d. Denote ξ and η the
projected distance along the tangent and normal direction of the panel, i.e.

ξ = + (x− x0) cos θ + (y− y0) sin θ,
η = − (x− x0) sin θ + (y− y0) cos θ.

Further, let ψj(x⃗, t) be defined as follows:

ψj (x⃗, t) :=
∫

∂Dj

G (x⃗, y⃗, t) µ (⃗y) ds(⃗y). (6.1.9)

If y⃗ ∈ ∂Dj, then for some scalar s, y⃗(s) = x⃗0 + (s− s0) (cos θ, sin θ)T, where s0 is the
arc-length at the centroid location. Whence,

∥x⃗− y⃗ (s)∥2 = (s− s0 − ξ)2 + η2. (6.1.10)

Replacing G by its definition and substituting Eq.(6.1.10) to Eq.(6.1.9), one has that:

ψj (x⃗, t) =
∫

∂Dj

G (x⃗, y⃗, t) µ (⃗y) ds (⃗y)

=
∫ s0+d/2

s0−d/2

1
4πνt

exp

(
−∥x⃗− y⃗ (s)∥2

4νt

)
µ (s) ds,

=
1

4πνt

∫ s0+d/2

s0−d/2
exp

(
− (s− s0 − ξ)2 + η2

4νt

)
µ (s) ds.



122 Chapter 6. Two dimensional flows at moderate Reynolds number

Furthermore, one might impose the piece-wise constant assumption on µ so that µ
over ∂Dj may be replaced by an averaged value so that Eq.(6.1.9) becomes:

ψj (x⃗ (ξ, η) , t) =
µ̄j

4πνt
exp

(
− η2

4νt

) ∫ s0+d/2

s0−d/2
exp

(
− (s− s0 − ξ)2

4νt

)
ds. (6.1.11)

where µ̄j denotes the averaged value of µ of the panel. Using the substitution v =

(s− s0 − ξ) /
√

4νt in the above integral, Eq.(6.1.11) becomes

ψj (x⃗ (ξ, η) , t) =
1
2

µ̄j√
4πνt

exp
(
− η2

4νt

)(
erf
(

ξ + d/2√
4νt

)
− erf

(
ξ − d/2√

4νt

))
,

(6.1.12)
so that Eq.(6.1.4) is approximately:

ω (x⃗, t) ≈
∫ t

0

M−1

∑
j=0

ψj (x⃗, τ) dτ. (6.1.13)

There are various ways to integrate the time integral in Eq.(6.1.13). For example,
Koumoutsakos (1993) used the mid-point rule over a small time-interval t = δt, e.g.

ωmid (x⃗, δt) ≈ δt
M−1

∑
j=0

ψj (x⃗, δt/2) (6.1.14)

In this study, however, a P-point Gauss-Legendre quadrature rule is adopted in the
same small time-interval (Hildebrand, 2013), i.e.

ωGL (x⃗, δt) =
δt
2

P

∑
k=0

M−1

∑
j=0

wkψj

(
x⃗,

δt
2
(1 + rk)

)
. (6.1.15)

where wk and rk are the quadrature weights and nodes, respectively.
To validate the implementation of Eq.(6.1.15), Eq.(6.1.3) was solved using both

the finite-difference method and Eq.(6.1.15) in the square domain D = [−L/2, L/2]×
[0, L]. In order to simplify the problem, a mixed boundary condition was used for
the finite difference approach, with the Neumann condition ν∂ω/∂y|y=0 = F ap-
plied only at the bottom edge of the domain and the Dirichlet condition ω = 0 for
the rest (see Figure (6.1)).

A comparison of the results is shown in Figure (6.2) for the function F(x) =

λ
(

1− 4 (x/L)2
)

exp
(
− (x/ϵ0)

2
)

. In general, the two results agree reasonably well;
albeit there appears to be some discrepancies close to the bottom wall, which is at-
tributable to the use of the piece-wise constant assumption of the surface density
µ.

6.1.2 Modification of particle strength due to the boundary flux

Anticipating the descretization of the body geometry into a set of panels, the flux
in each panel contributes a change of circulation ∆Γ to the neighbouring particles
with coordinates (x, y) and volume h2 (see Figure (6.3b)). If one assumes that the
vorticity is constant in the volume, one recovers the Koumoutsakos scheme (scheme
K), in which the change of circulation at the end of the interval [0, δt] due to the
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FIGURE 6.1: A square domain for Eq.(6.1.3). For simplification, a
mixed boundary conditions were used. Only the bottom edge is sub-

jected to the Neumann condition.

boundary flux is approximated by Eq.(6.1.14), i.e.

∆Γ (x, y, δt) = h2ωmid (x, y, δt) . (6.1.16)

However, it was pointed out by Ploumhans and Winckelmans (2000) that such a
scheme may not be strictly conservative. Since if particles settle near the surface,
some parts of their volume may cross the boundary surface in an arbitrary way. To
alleviate such a limitation, it is necessary to allow the vorticity to vary in the volume,
so that the ∆Γ is expressed as an integral of the form:

∆Γ (x, y, t) =
∫ x+h/2

x−h/2

∫ y+h/2

h′
ω
(
x′, y′, t

)
dx′ dy′, (6.1.17)

where ω is given by Eq.(6.1.13) and h′ = 0 if the volume of the particle intercepts
the boundary, otherwise h′ = y − h/2. To evaluate the integral in Eq.(6.1.17), a
local panel transformation is performed so that x′ → x0 + ξ ′ cos θ − η′ sin θ and y→
y0 + ξ ′ sin θ + η′ cos θ. The time rate of ∆Γ concerned by the j-th panel may be then
expressed as follows:

∂∆Γ
∂t

(x⃗ (ξ, η) , t) =
∫ ξ+h/2

ξ−h/2

∫ η+h/2

h′
ψj
(
x⃗
(
ξ ′, η′

)
, t
)

dξ ′dη′, (6.1.18)
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FIGURE 6.2: A comparison between the finite-difference method and
Eq.(6.1.15). Figure depicts the solutions at x = 0 after t = 0.064.

where we made use of the fact that dx′dy′ = dξ ′dη′ such that the Jacobian of the
transformation is unity. Substituting the expression for ψj, so Eq.(6.1.18) becomes:

∂∆Γ
∂t

=
1
2

µ̄j√
4πνt

∫ η+h/2

h′
exp

(
− η′2

4νt

)
dη′

×
∫ ξ+h/2

ξ−h/2

(
erf
(

ξ ′ + d/2√
4νt

)
− erf

(
ξ ′ − d/2√

4νt

))
dξ ′. (6.1.19)

Straight forward integration by parts on the ξ ′ integral gives the following expres-
sion:

∂∆Γ
∂t

=
µ̄j

4

√
4νt [erf (u)](η+h/2)/

√
4νt

h′/
√

4νt

×
(
[ierf (u)](ξ+h/2+d/2)/

√
4νt

(ξ−h/2+d/2)/
√

4νt
− [ierf (u)](ξ+h/2−d/2)/

√
4νt

(ξ−h/2−d/2)/
√

4νt

)
. (6.1.20)

where ierf (x) := xerf (x) + exp
(
−x2) /

√
π. Finally, ∆Γ is obtained by integrating

the above expression using the same P-point Gaussian-Legendre quadrature rule on
the time-variable, i.e.

∆Γ (x⃗ (ξ, η) , δt) ≈ δt
2

P

∑
k=0

wk
∂∆Γ
∂t

(
x⃗ (ξ, η) ,

δt
2
(1 + rk)

)
. (6.1.21)

Note here that a similar expression was also proposed by Ploumhans and Winck-
elmans (2000), therefore Eq.(6.1.21) will be referred to as scheme W. An example
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(A) (B)

FIGURE 6.3: Schematic diagram for the panel characterization (A).
Once the flux is computed, the flux is parcelled to the neighbouring

particles near the surface to satisfy the no-slip (B).

calculation is presented in Figure (6.4) in which the circulation is sampled at differ-
ent heights for a panel fixed at y = 0. It should be noted for y < h/2, some parts of
the particle’s volume intercept the boundary which should be excluded from the in-
tegration. Indeed, this results in a noticeable discontinuity in the vertical derivative.
It is for this reason that scheme W is more conservative than scheme K.

6.1.3 Enforcement of the no-slip condition

Once Eq.(6.1.1) and Eq.(6.1.2) have been solved using the viscous particle method,
the no-slip, in general, is no longer satisfied. The aim of the second step in the frac-
tional time-stepping algorithm is to introduce a vortex sheet around the surface to
nullify this spurious slip velocity. However, care should be exercised to ensure that
the no-through condition, i.e. Eq.(6.1.1c) is also properly respected. One approach is
to extend the vorticity field inside the geometry, so that one treats the body motion
as being induced by an interior vorticity field. Under such generalization, Spalart
and Leonard (1981) showed that if the no-slip is satisfied then the no-through is au-
tomatically satisfied as well.

Thus, it is necessary to identify the velocity components that constitutes the ef-
fective field. If we denote u⃗eff as the effective field valid everywhere in the flow
domain, then one can write it as:

u⃗eff = u⃗γ + u⃗ f + u⃗∞ + u⃗Ω, (6.1.22)

where u⃗γ, u⃗ f , u⃗∞ and u⃗Ω denote the velocity fields induced by the vortex sheet, the
exterior vorticity, the free-stream and the interior vorticity, respectively. Note, how-
ever, only u⃗γ remains unknown and u⃗Ω is evaluated according to the contour dy-
namic formula of Zabusky et al. (1979), see Appendix C for a derivation of the for-
mula.
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FIGURE 6.4: Comparison between scheme K and scheme W. The plot
shows the variation of the change of circulation as a function of the
vertical distance directly above the panel at a fixed x-station. The
red curve corresponds to the 5-point Gauss-Legendre quadrature rule
and it is to be compared to the MATLAB’s built-in integration routine

(diamond marker).

Indeed, the no-slip implies the effective velocity must satisfy Eq.(6.1.23)

(u⃗eff − uB) · t⃗ = 0, (6.1.23)

which we might solve it via the BEM.
In light of the Kelvin’s theorem, there is a related constraint that must be imposed

on top of Eq.(6.1.23). If the body is rotating with angular velocity Ω, then the vortex
sheet with strength γ must also satisfy the following equation:∮

s
γ (s) ds = −2Aδt

dΩ
dt

, (6.1.24)

where A is the area of the body.
Effectively, Eq.(6.1.23) together with Eq.(6.1.24) and the use of the boundary ele-

ment method, constitute an over-determined system of linear equations whose solu-
tion may not even exist. Currently, the matrix equation is solved in an approximate
sense.

Suppose that Eq.(6.1.23) and Eq.(6.1.24) is expressed in the matrix form:

Ax = b, (6.1.25)
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we are interested in x that minimizes the norm ∥Ax− b∥. The underlying problem
thus transforms to the following minimization problem:

minx{∥Ax− b∥2} (6.1.26)

subject to the set of linear constraints of the form:

cT
1 x− r1 =0,

cT
2 x− r2 =0,

...

cT
k x− rk =0.

It should be noted that the constraints are the results of Kelvin’s condition (Eq.(6.1.24))
applied separately for the k bodies in the simulation.

By introducing the LagrangianL and the Lagrangian multipliers λi, i ∈ {1, 2, . . . , k}

L (x, λ) := ∥Ax− b∥2 −
k

∑
n=1

λn

(
cT

n x− rn

)
(6.1.28)

Eq.(6.1.26) is solved by requiring that ∂L/∂x = 0. Noting that

∇∥Ax− b∥2 = 2AT Ax− 2ATb,

then it is possible to show that the new matrix equations can be recast in the follow-
ing way: 

2AT A c1 c2 . . . ck
cT

1 0 0 . . . 0
cT

2 0 0 . . . 0
...

...
...

. . .
...

cT
k 0 0 . . . 0




x

λ1
λ2
...

λk

 =


2ATb

r1
r2
...

rk

 (6.1.29)

which can be solved by a dense matrix solver.
To validate the minimization procedure, we apply the approach to a stationary

cylinder immersed in an infinite stretch of incompressible fluid with an ambient ve-
locity field (U∞, 0). The cylinder is impulsively started, so immediately after t > 0,
the initial flow is inviscid and there is a velocity difference on the boundary. It is
well known that this difference corresponds to a vortex sheet with strength given
by γ (θ) = −2U∞ sin θ, where θ is the azimuthal angle of the cylinder (Batchelor,
1967). For this flow, Eq.(6.1.29) is used to determine the correct vortex strength. In-
deed, Figure (6.5a) illustrates the numerical result for the normalized vortex strength
and is compared to the analytical solution. There is almost no discernible difference
between the two calculations. For this particular strength, Figure (6.5b) shows the
streamlines seeded at a uniform interval. The developed flow pattern shows that the
no-through condition is indeed justified.

Once the vortex sheet strength is determined (i.e. γ (s)), it must flux to the flow
domain in order to nullify the slip velocity. To achieve this, there must be particles
surrounding the bodies to receive the flux. Initially, several layers of zero-strength
particles are initialized (see Section 6.1.4) with the number of layers as a function of
the diffusion scale. Subsequently, the flux function F in Eq.(6.1.3c) is computed from
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FIGURE 6.5: Numerical results for the static cylinder. (A) The vortex
strength computed using the minimization procedure is compared to
the analytical result. (B) The resulting streamline for the inviscid flow

past the cylinder.

γ, i.e.

F (x⃗ (s)) = −γ (s)
δt

. (6.1.30)

Once this is done, The flux must be passed to the surrounding particles as a circula-
tion change ∆Γ (Eq.(6.1.21)). The accuracy of the no-slip condition depends on the
grid resolution used to resolve the boundary layer on the solid body. For example,
for the same static cylinder, the surface velocity is computed at an azimuthal posi-
tion θ = 288◦ after the vortex sheet has transferred to the particles. Evidently, the
accuracy of both the no-slip and no-through conditions marginally improves as the
grid spacing h is reduced (Figure (6.7)). One interesting observation is that the parti-
cle cluster serves to establish the boundary layer on the surface, which is physically
consistent with the understanding that the generation of vorticity is a direct mani-
festation of an existence of a boundary layer. Furthermore, one can visualize how
the boundary layer has developed after the cylinder has impulsively started (Figure
(6.6)). These calculations confirm the validity of the current numerical approach.

6.1.4 The wall diffusion algorithm

The wall diffusion is handled by prescribing a uniform grid. At each time step, the
cells in the grid are given an active state. This parameter determines if the cell is
receptacle to receive a circulation from the wall flux. For cells that occupy inside of
the bodies, they are set inactive. The aim of this step is to apply the requirement that
the vorticity shall only be generated outside of the body; any cells that fall within a
certain distance of the boundary need to be marked. The first stage of the algorithm
is to associate a Boolean array to the grid and identify the inactive cells. This requires
an efficient point-in-polygon (PIP) algorithm that can be easily implemented in the
GPU. The winding number algorithm is particularly suited for this task (O’Rourke,
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FIGURE 6.6: The computed boundary layer developed on the surface
of the cylinder using a distribution of vortex particles (coloured dots).
The accuracy of the boundary conditions depend on the grid spacing

used. In this example, h = 6.3× 10−4 was used.

1998). Once this is done, the body is assumed to produce a vorticity flux, which
must create new or modify the circulation of existing particles. However, it is not
necessary to diffuse the flux to the whole of the domain since the influence is a prod-
uct of the exponential and error functions (Eq.(6.1.20)), which quickly diminish as
ξ or η increases. Only the closest particles to the body are significant. In the code,
this length is controlled by a diffusion parameter in terms of the number of cells
that must extend outward to capture the necessary diffusion. The actual number
of cells used for the diffusion depends on the kinematic viscosity of the flow. More
precisely, it is related to the diffusive length scale LDiff := C

√
νδt, where C is a user

specified constant. The diffusive length scale may be interpreted as the average dis-
tance for which the diffusion phenomenon has propagated over the time-interval
[0, δt]. This process is illustrated in Figure (6.8). Each panel would have a diffu-
sive zone in which the wall flux is applied. If a particle already occupied some cells
in the zone, then the flux is applied to that particle instead. Any unoccupied cells
are subsequently turned into free vortex particles in a way that minimizes the void
between particles whilst maintaining spatial homogeneity. To limit the growth of
the number of particles, however, a threshold is implemented. Only those particles
whose circulation greater than the threshold are considered.

Moreover, it is desirable for the code to conserve the total circulation of the wall
diffusion. It was pointed out by Ploumhans and Winckelmans (2000) that, unless
a body conforming grid is used, it is not always the case that the panel diffusion
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(A) normal component

(B) tangential component

FIGURE 6.7: Variation of the normal and tangential components of
the velocity as a function of the normalized perpendicular distance
(s/d) from the cylinder at an azimuthal station θ = 288◦ at different
resolutions h. The development of a surface boundary layer is clearly

visible.

would conserve the circulations. In their recommendation, ∆Γ should be appropri-
ately modified so that the equality is strictly enforced:

djγj −∑
i∈Ij

∆Γi,conserved = 0 (6.1.31)

where dj is the length of panel j and ∆Γi,conserved is the actual circulation received
by the i-th particle concerned by the panel. Those particles are labelled by the in-
dex set Ij. A Lagrangian multiplier approach was used to minimize the quantity
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FIGURE 6.8: Schematic diagram depicting the main sequence of wall
diffusion. Initially, the grid marks those cells that coincide with the
body and are subsequently turned-off. Each panel is given a diffusion
zone in which the wall flux is applied. Note that different diffusion

zones might overlap.

∑i∈Ij
(∆Γi − ∆Γi,conserved)

2 /∆Γ2
i , which gives the correction as follows:

∆Γi,conserved = ∆Γi +
∆Γ2

i

∑k∈Ij
∆Γ2

k

bjγj − ∑
k∈Ij

∆Γk

 . (6.1.32)

The presence of solid bodies in the domain presents a particular difficulty in the
re-meshing procedure. When particles settle near the surface (one or two particle
width away), they do not have a complete re-meshing stencil for the re-meshing
to work properly (recall that a re-mesh would require a 3× 3 stencil in which the
particle’s strengths are interpolated to those cells). Ploumhans and Winckelmans
(2000) devised a sophisticated approach in which several re-meshing schemes are
combined together to minimise a global penalty function. While their approach is
physically sound, but in practice, such a scheme is difficult to implement on the
GPU. For this reason, a simpler approach is used instead. The current scheme uses
the proper stencil for the re-meshing even for those particles within the close prox-
imity of the wall. If the interpolated cells happen to intercept the wall boundary, the
cells are deleted and their interpolated circulations are copied to the right hand side
of Eq.(6.1.24) as a source term. This way, the correct vorticity is fluxed back to the
domain in the subsequent time-step; therefore conserving the total circulation. Note
this scheme is similar to the one used in Eldredge (2007).
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6.1.5 Numerical implementation

The numerical procedure is described in this section. The work flow is split into two
phases. First is the geometry generation. Users can specify the number of solid bod-
ies present in the computational domain and their dynamic motion by creating the
body objects with the specified motion handle (MATLAB’s internal handle class).
Secondly, the simulation parameters are specified. This involves constructing a uni-
form grid which is used to facilitate the wall diffusion algorithm in Section 6.1.4 as
well as to handle the grid distortion discussed in Section 3.1.4.

Once the simulation parameters have been specified, the main loop of the code
proceeds as follows:

1. If the number of free vortex particles is non-zero, the Biot-Savart induction is
evaluated at the particles’ locations and the particles are advanced following
the local velocity. At the new locations, the circulation strengths of the particles
are modified according to the PSE scheme.

2. The coordinates of the bodies are updated by solving the motion equations:
dx⃗b/dt = u⃗b and the uniform grid is re-established (i.e. updating the boolean
array of the cells)

3. If remeshing is required, the particle cluster is restarted at the grid centroid
points using the M′4 interpolation scheme.

4. If any particles fall within a certain distance of the boundary, they are removed
from the domain and their circulations are added to the right hand side of
Eq.(6.1.24) as the source term.

5. The influencing matrix is reassembled due to the relative motion of the bod-
ies (If there is only one body, this step is skipped) and the particle velocity is
evaluated at the control points. This step partitions the field into the near and
far fields relative to the bodies. A direct sum is applied by any ’near-field’ par-
ticles while a local expansion is constructed at the bodies’ centroid due to the
’far-field’ particles.

6. The vortex sheet strength γ is then determined by solving Eq.(6.1.29), which is
subsequently turned to the boundary flux F.

7. Any particles within the diffusive length scale Ldiff of the bodies receive a
change of circulation ∆Γ due to this flux, i.e. Eq.(6.1.21).

8. post-process outputs and repeat step 1.

6.1.6 Force calculation

The aerodynamic force acting on a body generally consists of two components - the
pressure difference and the viscous shear. To derive these two forces, we note that
the Navier-Stokes equations for the velocity u⃗ and pressure p can be expressed in
component form:

Dui

Dt
= −1

ρ

∂p
∂xi

+
∂τij

∂xj
, (6.1.33)
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where D/Dt denotes the material derivative, ρ is the density and τij is the ’kine-
matic’ incompressible stress-tensor defined as follows:

τij := ν

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Integrate Eq.(6.1.33) in the fluid domain D and utilise the Divergence theorem, one
has that:

ρ
∫

D

Dui

Dt
dA =

∫
∂D

(p∞ − p) nids + ρ
∫

∂D
τijnjds,

where ni is the i-th component of the outward pointing normal on the bodies, and
p∞ is the far-field pressure. The first integral on the right gives the pressure force per
unit length while the second integral gives the viscous force.

By defining the force vector F⃗, the force acting on the bodies is then expressed as
follows:

F⃗ = −ρ
d
dt

∫
D

u⃗ dA.. (6.1.34)

For a body prescribed with the body velocity of the form u⃗b = u⃗0 (t) + Ω (t) k⃗ ×
(x⃗− x⃗cen (t)), Eq.(6.1.34) can be expressed, with the use of the internal body vorticity,
in terms of the particle circulation and positions (Koumoutsakos, 1993):

F⃗ = −ρ
d
dt

(
N−1

∑
i=0

Γi⃗ez × x⃗i

)
+ ρ|D|du⃗0

dt
− 2ρ|D| d

dt
(Ω (t) e⃗z × x⃗cen (t)) . (6.1.35)

Here, |D| denotes the area of the body. However, care should be exercised to com-
pute the time derivative after a re-meshing step. This is because, while the M′4 in-
terpolation kernel conserves the linear moment but it does not necessarily conserve
the time derivative. Alternatively, Eldredge (2007) derived an expression that avoids
dealing with the time discretization explicitly:

F⃗ = ρν
∮

∂D

(
(⃗y (s)− x⃗cen)× k⃗

∂ω

∂n
+ t⃗ω

)
ds + ρ|D|du⃗0

dt
, (6.1.36)

Nonetheless, once the force is computed the drag (CD) and the lift coefficient (CL)
may be then defined by:

CD =
F⃗ · e⃗x

1
2 ρU2

∞L
, CF =

F⃗ · e⃗y
1
2 ρU2

∞L
,

where L is the characteristic length of the body, e⃗x is the streamwise unit vector and
e⃗y is the cross-stream unit vector.

6.2 Transient flow past static cylinders

The application of our solution procedure can be applied to a variety of flow sce-
nario. Perhaps the simplest problem, which is considered as the benchmark problem
by many investigators, involves the calculation of the flow velocity for an impul-
sively started cylinder translating in unbounded incompressible flow. The choice
to reproduce this flow calculation is based on the fact that this problem has been
amassed a large volume of research works in the past, therefore a good base of qual-
itative and quantitative metrics is available to gauge the accuracy of our codes.
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6.2.1 Impulsively started cylinder at Re = 550

In this section, the flow past an impulsively started cylinder is simulated at the
Reynolds number Re = 550. At this number, the flow is unsteady and separation
develops on the leeward side of the cylinder which results in a recirculation zone
that grows in time (Van Dyke, 1988). To characterise this flow, we define the non-
dimensionalized time T = U∞t/D, where U∞ is the free-stream velocity and D is
the diameter of the cylinder. To obtain a well-resolved simulation, the time-step
size δt, the kinematic viscosity ν and the grid spacing h must satisfy the inequality
(Eldredge, 2007)

Dmin <
νδt
h2 < Dmax, (6.2.1)

where the lower limit Dmin is associated with the vorticity creation while the upper
limit is associated with the stability condition of the PSE (Section 5.4). In effect, the
time step is chosen in such a way that νδt/h2 = D0, where D0 = .5. This value was
used by Eldredge (2007) and Ploumhans and Winckelmans (2000) which seems to
produce stable results. For this reason, the same value is adopted in this work. The
parameter used for this particular simulation is shown in Table 6.1.

parameter value description
D0 1/2 resolution parameter
δt 2.7× 10−3 time step size
ν 1.8× 10−3 kinematic viscosity

U∞ 1 free-stream velocity
δs 6.2× 10−3 body discretization
D 1 Cylinder diameter
ω0 5.45× 10−7 vorticity cut-off
P 20 FMM truncation number

TABLE 6.1: Simulation parameters used for the impulsively started
cylinder at Re = 550.

A crucial step towards validating the current numerical code is to determine
whether the code is able to capture the recirculation zone properly. A series of snap-
shot is shown in Figure (6.12). Those plots show the development of the vorticity
field at the non-dimensionalized time T = 0.5, 1, 2, 3 and 4. By comparing to the
experimental results (Figure (6.11a)-(6.11c)), which show the streak-lines at times
T = 1 and 2, the simulated size of the recirculation zone shows a fair agreement,
especially at the latter time. Though the experimental streak-lines were for a slightly
lower Reynolds number Re = 500. Initially, there is no vorticity in the flow. As the
cylinder starts to move, an inviscid velocity field is established on the boundary of
the surface. Vorticity is thus generated by the no-slip condition. Subsequently, the
vorticity is shed and diffused to the surrounding fluid, which results in an increase
thickness of the boundary layer. At some short time later, separation begins on the
leeward side of the cylinder, which marks the start of the recirculation zone. The
current implementation automatically ensures that such physical process is handled
properly using layers of vortex particles to provide a means of receiving the bound-
ary flux.

Quantitatively, the linear impulse Ix and the drag coefficient of the cylinder might
be compared to the literature. Indeed, Figure (6.9a) presents a time-series for the lin-
ear momentum in the flow and this is to be compared with the results of Ploumhans
and Winckelmans (2000) for time up to T = 5. Figure (6.10b) shows the drag curve.
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(A) (B)

FIGURE 6.9: Left shows the computed linear impulse Ix compared to
Ploumhans and Winckelmans (2000) at Re = 550. Right shows the

time-series of the total circulation in the flow domain.

(A) (B)

FIGURE 6.10: Left shows the computed drag coefficient compared to
the theoretical expression Eq.(6.2.2). Right shows the long time drag

curve compared to Ploumhans and Winckelmans (2000).

The results match quite well, except possibly at the local maxima at which our result
shows a slight underestimation. The trend at least agrees well at a qualitative level.
On theoretical ground, Bar-Lev and Yang (1975) derived an asymptotic expansion
in terms of the small non-dimensionalized time T and large Reynolds number. The
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(A) T = 1, experiment (B) T = 1, superim-
posed

(C) T = 3, experiment (D) T = 3, superim-
posed

FIGURE 6.11: Left shows the experimental streak-lines (Van Dyke,
1988) of the flow past the cylinder at T = 1 and T = 3, respectively.
On the right, the numerical vorticity contours have been superim-
posed on top of the snapshots of the experimental streak-lines. The
numeric result shows a fair agreement in terms of capturing the size
of the recirculation zone as the wake develops. The Reynolds number

for this experiment was Re = 500.

theoretical drag coefficient (CD,theo) might be then computed as follows:

CD,theo = 4π
1
2 Re−

1
2 T−

1
2 + π

(
9− 15

π1/2

)
Re−1. (6.2.2)

It is interesting to see how well the new results compare to the theoretical prediction.
Figure (6.10a) shows the drag behaviour for small time. It is noteworthy to point out
that Eq.(6.2.2) possesses a square root singularity. The computed results may be seen
to tend to the asymptotic limit as T → 0. For T > 0.05 the two curves start to diverge.

In addition, the total circulation is physically conserved in the real flow. The
accuracy of the code, not just for force calculations, depends also on how well this
property is respected. A time series of the circulation is presented in Figure (6.9b).
Admittedly, the circulation curve exhibits a high level of fluctuations - possibly due
to numerical errors in the re-distribution of the deleted circulations. But the code
quickly corrects this spurious circulation by fluxing the correct amount of vorticity
to satisfy Kelvin’s theorem. This explains the random fluctuations. Overall, the
averaged circulation is seen to be well maintained around zero, which shows that
the new code is accurate.

Compared to the existing simulation codes in the literature, the new proposed



6.2. Transient flow past static cylinders 137

(A) T = .5 (B) T = 1

(C) T = 2 (D) T = 3

(E) T = 4 (F) T = 5

FIGURE 6.12: Vorticity contour plots for the impulsively started cylin-
der at the non-dimensionalized time shown. The Reynolds number

of this flow is Re = 550

implementation is extremely efficient and fast. For example, in this simulation the
total number of vortex particles went from∼ 10000 to 415230 at the end of the simu-
lation. The code manages to complete the simulation in less than 25 minutes, which
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shows a large speed up compared to the simulation time in Ploumhans and Winck-
elmans (2000), where a low resolution run can take several hours. In the new code,
most of the intensive parts of the simulation are offloaded to a GPU except for the
linear solver, which uses MATLAB’s built-in matrix equation solver instead.

6.2.2 Impulsively started cylinder at higher Reynolds numbers

At higher Reynolds number, the symmetric property of the recirculation zone is very
sensitive to numerical errors. At Re = 9500, we were unable to maintain the sym-
metric wake as time progresses for the same resolution we used for the low Reynolds
case. Specifically, D0 = 0.5 is inadequate. Looking from the vortex strength distri-
bution around the cylinder, the wake is symmetric for small time. However, the
wake quickly develops asymmetries for T > 1. This occurs at the instances where
the creation of two primary vortices are visible (see Figure (6.13)). Subsequently,
the evolution of the primary vortices distorts the field further, which results in the
progressive worsening of the wake symmetry. This is in stark contrast with the
numerical results of Koumoutsakos (1993), where they managed to maintain sym-
metries past T = 4. However, by increasing the value D0 to 1.5, it is readily seen
that the symmetry is much better preserved than the previous case (Figure (6.14)).
This suggests that the issue is not of the implementation of the method, but as a con-
sequence of the stability condition required by the method. A possible limitation is
that the current numerical code is not equipped with the adaptive grid in which the
grid is conformed to the bodies. Although such grid strategy is the most accurate
one can hope for, but their approach cannot be extended to bodies with arbitrary
geometry. Together with the fact that incompressible flow is highly sensitive to flow
disturbances at high Reynolds number, the numerical errors in the code act as artifi-
cial perturbations, which prematurely causes the wake to loss symmetry. However,
one should note that the computed field contains most of the key characteristics as
observed in Koumoutsakos (1993), such as the formation of primary vortices and
etcetera. One could further investigate the parameter space to obtain a better match
with the literature, but this is left as a topic for future work.

6.3 Conclusion

We have developed a new GPU-accelerated Navier Stokes solver for the flow field
past bodies with arbitrary geometry in motion. The solver relies on the concept of
operator splitting in which the advection and diffusion processes are serialized. The
accuracy of the new developed code has been validated by simulating the impul-
sively started cylinder. All the results obtained show that the new developed code
is extremely efficient and may be employed with advantage as a high fidelity CFD
tool for a variety of flow problems in scientific and engineering applications.
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(A) T = 0.5

(B) T = 1.0

(C) T = 1.5

FIGURE 6.13: Vorticity plots for the impulsively started cylinder at
Re = 9500 for the case D0 = .5. The wake quickly becomes asymmet-
ric as time develops owing to the creation of two primary vortices on

the surface boundary.
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(A) T = 0.5

(B) T = 1.0

(C) T = 1.5

FIGURE 6.14: Vorticity plots for the impulsively started cylinder at
Re = 9500 for the case D0 = 1.5. The symmetry of the wake is
now much better preserved. Though there is still some asymmetricity

present.
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Chapter 7

VAWT aerodynamic simulations

The motion cycle of the VAWT operates in a similar manner to that of a pitching
aerofoil in that the angle of attack α, changes periodically. Thus the two engineering
problems can be considered aerodynamically similar. However, one notable distinc-
tion between the two is that the VAWT may experience episodes of blade-vortex
interaction (BVI), during which the shed vorticity from previous time-steps inter-
act with the blade surfaces. This effect could be detrimental to the operation of the
VAWT as a large variation of noise and vibration is introduced. Unfortunately such
phenomenon is still not well studied and is an active area of research.

The aim of this chapter is to validate the new developed methodology and code
in the context of the wind-turbine and aerofoil aerodynamics and to apply the new
method to investigate the aerodynamics of VAWT and the aerodynamic interactions
between turbines.

7.1 Aerofoil discretization and trailing edge smoothing

The geometry module forms an important part of the code. With a few exceptions,
many optimised aerofoils do not have a closed analytical expression for the geom-
etry definition. However, for the purpose of the current work, it suffices to use the
popular NACA 4 digit series aerofoils whose construction can be derived by apply-
ing the concept of camber line and thickness distribution (Abbott and von Donenhoff,
1949). The construction begins by defining the mean camber line with equation yc (s),
where s is the normalized parametrization variable. Specifically, for the 4 digit series
aerofoils, the camber is taken to be of the form:

yc (s) =


m
p2

(
2ps− s2) 0 ≤ s < p,

m
(1−p)2

(
1− 2p + 2ps− s2) p ≤ s ≤ 1.

(7.1.1)

where m is the maximum camber (in percentage of the chord c) and p determines
the location of the maximum camber along the chord line. In fact, the first digit in
the NACA designation gives the value 100m whilst the second digit designates the
location of this camber.

In addition, a thickness distribution t (s) is used in conjunction with the camber
line to obtain the coordinates of the upper and lower surfaces. For the NACA 4 digit
series aerofoils, t is given by:

t (s) = 5t0

(
a0
√

s + a1s + a2s2 + a3s3 + a4s4
)

, (7.1.2)
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FIGURE 7.1: A NACA5612 cross section profile constructed by
Eq.(7.1.3). The dotted blue curve gives the mean camber line.

with the constants taking values:

a0 = +0.2969, a1 = −0.1260, a2 = −0.3516, a3 = +0.2843, a4 = −0.1015,

where t0 is the maximum thickness. For example, the NACA5612 aerofoil sets the
maximum camber to be 5% of the chord at the 60% chord position with a maximum
thickness of 12% of the chord (see Figure (7.1)).

By defining the normal vector along the camber line as
(
nx (s) , ny (s)

)
, the nor-

malized coordinates (x̃, ỹ) are obtained:

x̃ (s) = s± t (s) nx (s) , ỹ (s) = yc (s)± t (s) ny (s) . (7.1.3)

For the NACA aerofoils, a small gap can be found at the trailing edge, which could
give rise to stability issues in the code if left untreated. Currently, a quintic Hermite
polynomial interpolation curve is fitted at the trailing edge so as to continuously
vary the curvature around the gap. To this ends, let S⃗ (λ) denotes the two dimen-
sional quintic polynomial, where λ denotes the local parametrization of the curve.
We impose the condition that the curve shall be continuous in function value and the
first and second derivatives. Specifically, let x⃗± denote the upper and lower trailing
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positions respectively. Then, the interpolated curve must satisfy the following con-
ditions:

S⃗ (λ±) = x⃗±, (7.1.4a)

dS⃗
dλ

(λ±) = ∓
dx⃗±
ds

(7.1.4b)

d2S⃗
dλ2 (λ±) = ∓

d2 x⃗±
ds2 . (7.1.4c)

where λ± are the local parametric values that correspond to the upper and lower
trailing points (in general, the two parts of the body might use different parametriza-
tions to characterise the two regions separately). The change of sign in front of
Eq.(7.1.4b) and Eq.(7.1.4c) determines the anti-clock wise orientation of the parametriza-
tion.

A special form of the Hermite polynomial may be constructed as follows:

S⃗ (λ) = Q⃗1 (λ− λ+) + (λ− λ+)
3 Q⃗2 (λ− λ−) . (7.1.5)

where Q⃗i (x) := a⃗i + b⃗ix + c⃗ix2, i = 1, 2 for some constant vectors a⃗i, b⃗i and c⃗i. The
form in Eq.(7.1.5) makes substituting the conditions Eq.(7.1.4) rather trivial.

For demonstration of the interpolation technique, Figure (7.2) shows that inter-
polated trailing region for the NACA5612 aerofoil. Compared to a simple circular
closure curve, which shows noticeable kinks at the joining points, the quintic in-
terpolatant gives a smooth interpolation across the joining faces. Furthermore, the
continuity of the curvature is seen to be properly respected as can be observed in
Figure (7.2b).

If a non-normalized parametrization is used and the chord length is not unity,
then the physical coordinates of the aerofoil are simply c (x̃ (s/c) , ỹ (s/c)).

Generally, the curvature of the prescribed aerofoils is large at the leading and
trailing edge. Indeed, it is often observed that the flow around those regions ex-
hibits a large spectrum of kinematic variation. It is therefore desirable to have a
nodal distribution that increases the node density in those sensitive regions. A co-
sine discretization is often adopted by many investigators (Dixon, 2008; Katz and
Plotkin, 2001). Essentially, the parametric values s are computed by a cosine func-
tion of the form:

s =
1
2
(1− cos (ϕ)) , (7.1.6)

where ϕ ∈ [0, π], which is to be discretized linearly. A simple analysis reveals
that the node spacing ∆h

(
:= c

√
(dx̃/ds)2 + (dỹ/ds)2∆ϕds/dϕ

)
approaches zero to-

wards the trailing edge, which means the trailing edge nodes might be unrealis-
tically packed together; resulting in the deterioration of the node uniformity (see
Figure (7.3a)). One way to resolve this issue is to make sure that ∆h does not tend
to zero but instead approaches to a fixed controlled value. Thus, one can construct a
quintic interpolation curve s (ϕ) = S (ϕ− ϕ0) that satisfies the edge boundary con-
ditions: s = 1, ds/dϕ = γ, d2s/dϕ2 = 0 at ϕ = π, where S takes the 1-D form of
Eq.(7.1.5) and γ is a user specified input. In practice the interpolation does not start
from the leading edge but at the 75% chord. At the joining point, the interpolant
matches the function value, first and second derivatives of the cosine distribution.
For the same number of surface points (excluding the gap), Figure (7.3b) shows the
node uniformity is much better respected.
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(A)

(B)

FIGURE 7.2: Example of the trailing edge smoothing using the quintic
polynomial interpolant versus a simple circular closure. (A) The red
curve corresponds to Eq.(7.1.5) whilst the blue curve shows a simple
closure by a circle. (B) shows the curvature κ of the smoothing gap by

the two methods.
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(A) (B)

FIGURE 7.3: Trailing edge node distribution for a NACA0012 by the
cosine distribution (A) and the polynomial interpolation (B). Note
that the node spacing around the gap is taken to be the averaged spac-

ing of the last two trailing edge nodes.

7.2 Aerofoil aerodynamics

As a starting point for the aerodynamic analysis of wind turbines, we investigated
a range of aerofoil motions that correlate with the typical motion characteristic of a
VAWT blade. The aim of this section is to provide a qualitative description and a
quantitative measure of the flow behaviour during the stall event. Admittedly, the
Reynolds number simulated here might not be applicable to the normal operating
range (this is limited by the current hardware setup where the direct numerical sim-
ulation (DNS) approach provided by the code is still proved to be too taxing on the
GPU at higher Reynolds number), but the approach may be important for applica-
tions such as start-up motion of the VAWT blade where the Reynolds number may
remain low for a significant period of time.

7.2.1 Steady flow around a static NACA0012 at α = 15◦

A key characteristic of the VAWT is the occurrence of dynamic stall at low tip speed
ratio, during which the aerofoil experiences a lift overshoot followed immediately by
a large reduction in lift. This is typically accompanied by the formation of a large
leading edge vortex. This flow separation behaviour is investigated by simulating
the flow field at a range of angle of attacks around a static NACA0012 aerofoil at low
Reynolds number. The aim is to study the qualitative feature of the stall behaviour
that occurs when the geometric angle of attack (α) exceeds that of the static stall
angle (α0). This behaviour is traditionally known to be difficult to predict accurately
using the RANS models.
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(A) T = 0.520 (B) T = 1.564

(C) T = 1.825 (D) T = 3.131

(E) T = 3.914 (F) T = 4.436

(G) T = 4.958 (H) T = 5.219

FIGURE 7.4: Snapshots of the vorticity contour for the NACA0012 at
the non-dimensionalized time shown. The geometric angle of attack

is α = 15◦.

The impulsively started NACA0012 at low Reynolds number was investigated
experimentally by Huang et al. (2001). They used the particle tracking flow visual-
ization method and particle image velocimetry (PIV) to visualize the instantaneous
flow path of the surface flow when the aerofoil has impulsively started. The re-
ported streamlines show that a significant unsteadiness is present even for cases
when α < α0. Huang et al. (2001) has characterised 5 distinct flow evolution modes
depending on the value of α. For α < 2.5◦, the flow remains attached to the aero-
foil. A trailing vortex separation occurs for 2.5◦ < α < 6◦, a separation vortex for
6◦ < α < 15.5◦, leading edge vortex separation for 15.5◦ < α < 60◦ and finally
bluff body flow for α > 60◦. In order to gain an understanding of how such process
evolves and to correlate this understanding with dynamic stall, we perform two high
fidelity simulations targeting at the separation vortex regime and the leading edge
vortex regime using the developed code at the Reynolds number Re = 1200.

To reduce the simulation time, several vortex particle reduction schemes were
employed and in particular is the implementation of a bounding box. This box re-
moves any vortex particles when they are convected outside of the box boundary.
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The deleted circulations do not redistribute back to the remaining vortices therefore
one might not expect that the circulation in the domain to be conserved after a finite
time. Secondly, the circulation cut-off was used to remove any weak vortices. This
mainly affects vortices that have been convected sufficiently far from the aerofoil
therefore it should not have impacted our analysis. Finally, the code uses a mixed or-
der time integration scheme. By mixed order, we mean a combination of first-order
forward Euler and second-order Adam-Bashforth. The first order scheme is applied
to newly generated particles and for the re-meshed particles after the re-meshing
operation has been performed. The second order scheme is for those remaining par-
ticles where their velocity data have been stored in the previous time-step. This
is in contrast to the static cylinder simulations where we have used a second-order
Runge-Kutta for the re-meshed particles. However, after several numerical tests (not
documented), it is found that there is no significant difference in terms of the flow
visualization and the force quantities. The parameters for the simulations are listed
in Table 7.1.

parameter value description
c 1 aerofoil chord

∆hmax 7.19× 10−3 largest body panel length
∆hmin 2.58× 10−4 smallest body panel length

∆hmax/∆hmin 27.8 aspect ratio of the panels
h 3.60× 10−3 grid size
δt 7.77× 10−3 time step size
ν 8.33× 10−4 kinematic viscosity

D0 1/2 resolution/stability parameter
ω0 2.50× 10−6 circulation cut-off

λ := σ/h 1 overlap factor
P 17 FMM truncation number

U∞ 1 free stream speed
α 15◦, 30◦ geometric angle of attack

TABLE 7.1: Simulation parameters used for the static NACA0012 at
Re = 1200. Note here that no physical units are given because the
units are normalized by the aerofoil chord and the free-stream speed,

so that one could recover the units via dimensional analysis.

In the first test case, the geometric angle of attack was set to 15◦. At this angle,
the static stall angle has been exceeded. After the initial transient (as evident by the
convection of the starting trailing vortex), the flow over the suction side remains at-
tached. No reverse flow was observed (Figure (7.5a)). At T = 1.564, reversed flow
is now sighted near the trailing edge indicating the eminent formation of a surface
vortex. At some short time later (T = 1.825), the surface vortex has grown enough
which triggers the boundary layer to separate from the surface. Reverse flow be-
comes much more prevalent in much of the suction side. As the surface vortex de-
velops, it is convected towards the trailing edge whilst entrains the fluid around it
(Figure (7.4d)). This leads to the formation of a secondary counter clockwise rotat-
ing vortex at the trailing edge that grows in size as the primary vortex continues
to leave the surface. Subsequently, when the secondary trailing vortex has grown
in sufficient length, it perturbs the outer flow and creates a new clockwise rotating
surface vortex near the mid chord (Figure (7.4g)). The pair then interacts and moves
away from the aerofoil surface turning the trailing edge fluid circumferentially to-
wards the suction side from the pressure side (thus forming a new counter clockwise



148 Chapter 7. VAWT aerodynamic simulations

(A) T = 0.520 (B) T = 1.564

(C) T = 1.825 (D) T = 3.131

(E) T = 3.914 (F) T = 4.436

(G) T = 4.958 (H) T = 5.219

FIGURE 7.5: Snapshots of the non-dimensionalized u-velocity con-
tour for the NACA0012 at the non-dimensionalized time shown. The

geometric angle of attack is α = 15◦.

rotating trailing edge vortex (TEV)). Due to this, a periodic shedding of vortices is
subsequently established forming the well-known von-Karma vortex street (Figure
(7.8)). This sequence of events is confirmed in the flow visualization carried out by
Huang et al. (2001). Indeed, it can be seen that the time stamps of this sequence
of characteristic motions match quite well with the reported experiment in Figure
(7.6). From a dynamic point of view, when the primary surface vortex has grown
in sufficient length (around T = 3 ), this is accompanied by a large reduction in the
lift coefficient as can be observed in Figure (7.7a). Indeed, when the primary surface
vortex has left the foil, a period of recovery by the lift can be found. Subsequent
evolution sees the lift to increase and decrease due to the alternating shedding of
vortices.
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FIGURE 7.6: The plots show the experimental pathlines of the track-
ing particles conducted using the PIV by Huang et al. (2001). In
increasing time, the snapshots are sequenced from top right to
bottom, top left to bottom with the following timestamps: T =

0, 0.520, 1.564, 1.825, 3.131, 3.914, 4.436, 4.958, 5.219, 6.524
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(A) CF (B) CD

FIGURE 7.7: CF and CD plots for the impuslively started NACA0012
at α = 15◦. The noisy black lines corresponds to the lift and drag coef-
ficients obtained from Eq.(6.1.36) whilst the red line is the smoothed
data using the moving box averaging technique with a 5-point aver-
aging window. It can be observed that a large drop of lift occurs when

the surface vortex has evolved to a sufficient length.

FIGURE 7.8: After the initial transient of the impulsively started
NACA0012 at α = 15◦, alternating vortices are shed to create what

is known as the von-Karma vortex street.

7.2.2 Steady flow around a static NACA0012 at α = 30◦

At α = 30◦, the flow moves into the leading edge vortex regime which is charac-
terised by the formation of a strong vortex near the leading edge. Immediately after
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the aerofoil is jerked into motion, adverse pressure gradient near the leading edge
results in a laminar separation bubble. This bubble persists for a short time and is
quickly developed into a leading edge vortex (LEV). The vortex does not immedi-
ately propagate to the wake and is instead moving along the suction surface; grow-
ing in size as it does so. Near the trailing edge, the LEV entrains the fluid around the
trailing edge which results in a counter-rotating TEV that then lifts the LEV into the
wake. In the same manner as in the previous case, a clockwise rotating vortex is then
formed near the mid chord. Under the effect of the leading edge vortex, the trailing
edge vortex quickly leaves the aerofoil leaving the nascent surface vortex to continue
to grow. The instantaneous streamlines of this sequence is presented in Figure (7.9).
The interpolated PIV streamlines of Huang et al. (2001) is also given which shows
that the computed behaviour of the flow matches extremely well with the experi-
mental results. Unsurprisingly, at such extreme angle of attack, the drag force is the
dominant force at least during the initial leading edge vortex development (Figure
(7.10)). However, at 2 < T < 2.66 drop in both the lift and drag is reported. This
drop can be attributed to the fact that the leading edge vortex has reached the trail-
ing edge. Subsequent formation of the trailing edge vortex helps to recover the lift
marginally (2.66 < T < 3.66) without inducing too much drag. Indeed, this is to be
expected since the counter-clockwise rotating vortex serves to attach the separated
flow on the surface whereby reducing the adverse pressure gradient. However, as
the surface vortex continues to grow, substantial drop in both the lift and drag is
observed.

The short time analytical solution for the lift coefficient has been derived by Gra-
ham (1983) for an impulsively started aerofoil at high angle of attack. The theoretical
lift is found to be:

CL,theo = T
3−2k
2k−1 , (7.2.1)

where k = 2− θ0/π and θ0 is the trailing edge angle. Note that Eq.(7.2.1) is indepen-
dent of the angle of attack. For the NACA0012, θ0 = 0.303 or 17.38◦. Figure (7.11)
shows a comparison between the computed lift coefficient for α = 15◦ at short time
and Eq.(7.2.1). Although the computed data fluctuate, but one can agree that the two
set of data show a fair agreement. More reassuringly, at α = 30◦, the computed lift
coefficient also follows a similar short-time trend.

To be more explicit, the computed force is obtained using Eq.(6.1.36), in which the
surface vorticity ω is evaluated using the a central finite difference scheme according
to the Poisson’s equations:

∇2ψ = −ω,

where ψ is the stream function due to the non-mollified vortex particles. The close
analytical expression for ψ is given by Eq.(4.3.4). The reason for the observed fluc-
tuation in the computation of the forces can be attributed to the complex dynamic
between creation and destruction of vortex particles. One recalls that the method
employs a destruction algorithm in which particles close to the body geometry is
automatically removed from the fluid domain. Meanwhile, new particles are con-
stantly introduced to accept the boundary flux. Therefore, in the proximity of the
boundary surface, the number of vortex particles fluctuates quite irregularly. This
fluctuation is especially severe at the onset of the simulation where the boundary
layer has not yet established. Determining the force distribution during such a short
transience (before the establishment of the boundary layer) has always been a diffi-
cult task in a vortex particle method (Noca et al., 1999). Moreover, Eq.(6.1.36) intro-
duces additional uncertainties as it involves determining the surface vorticity, which
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is not well behaved in cases that the number of vortex particles is not fixed. There-
fore Figure (7.11) should serve as an indicative measure of the expected qualitative
behaviour.

Whilst Eq.(6.1.35) minimises the fluctuation as is evidenced in the computation
of the flow past circular cylinder in Chapter 6, unfortunately such an approach can-
not be correct in cases when particles have to be removed from the domain for the
sake of avoiding the particle cluster size becoming too large. One approach, which
is currently not implemented in this work, is to obtain the force via a finite and
arbitrarily chosen region and whose velocity fields in the region are known to be
well-behaved. Indeed such an approach can be found in the work of Noca et al.
(1999) where they obtained an expression relating the local velocity fields and their
derivatives, therefore bypassing the limitations of Eq.(6.1.35) and Eq.(6.1.36).

In order to capture the complex aerodynamic behaviour, a large number of vortex
particles was used. At the end of both simulations, over a half million particles were
present in the computational domain. At this resolution, the computation can be
regarded as a DNS. Accounting for the post-processing (i.e. force calculation and
solution information display), the GPU takes approximately one to two seconds to
update the solution at each time step. This represents a huge reduction in computing
time compared to the literature (Eldredge, 2007; Ramachandran et al., 2007).

7.2.3 Rotating NACA0012 at TSR = 3.2

The dynamic motion of a NACA0012 undergoing a constant rotation Ω about the
origin is simulated in this section. In this mode, the aerofoil has the same operating
characteristic as a VAWT whose geometric angle of attack is given as a function of
the azimuthal angle θ. Let u⃗b, u⃗∞ and u⃗e denote the body velocity, wind velocity
and the effective/resultant velocity respectively, then one can show that the local
geometric angle of attack α is given by:

tan (α + β) =
u⃗e · e⃗r

u⃗e · e⃗θ
= − cos θ

TSR + sin θ
(7.2.2)

where TSR is the tip-speed ratio and β is the initial pitch angle. We adopted the
convention that the blade pitches outward when β is positive and inwardly pitched
when β < 0. Since θ = Ωt, therefore α is a function of time. Figure (7.12) shows the
geometric definition for the various nomenclatures used. The tip-speed ratio directly
controls the aerodynamic property of the rotor, since a higher value (meaning that
the rotor rotates faster) would lower the value of α. Moreover, if α is sufficiently
small (at least smaller than the static stall angle) then flow attachment is possible for
the full range of the azimuthal positions. One should note that at the blade level, the
blade experiences a varying Reynolds number. In fact, if one defines the Reynolds
number to be Re := ∥u⃗e∥ c/ν, with u⃗e given by:

u⃗e = −ΩR⃗eθ + u⃗∞.

where R is the rotor radius. Then as θ varies, the maximum value of ∥u⃗e∥ is U∞ (TSR + 1)
with U∞ = ∥u⃗∞∥. Therefore in this simulation we adopt the definition Re = U∞ (TSR + 1) c/ν
as the effective Reynolds number. This definition mainly affects how the kinematic
viscosity is prescribed in the code. In this simulation, the rotor consists of a single
NACA0012 with a solidity of 0.25. The aim is to examine the flow structure during
the stall event in the context of the VAWT. Therefore only the upstream part of the
cycle is considered in this simulation (90◦ < θ < 300◦). The Reynolds number is
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FIGURE 7.9: A sequence of streamlines captured at the non-
dimensionalized times T = 0.6521n − 0.5857, n = 1, 2, ..., 12 at α =
30◦. Figures in the first and third column are the simulated results
and the interpolated PIV streamlines (Huang et al., 2001) are given in
the second and fourth column. All snapshots are taken at precisely
the same time stamps as the experiment. The motion is sequenced
from the top left to right and top to bottom at an equal time-interval.

set to 3000. This alters the time-step size δt to 2.96× 10−3 keeping in line with the
condition that D0 = 0.5 for a well-resolved simulation. A tip-speed ratio of 3.2 is
used.

At this TSR, the aerofoil experiences severe stall in much of its upstream trajec-
tory. The topological structure of the flow can be characterised by examining the
vorticity field near the aerofoil surface and is found to share many of the topological
similarities to the steady flow around the NACA0012 at a fixed α = 15◦. Indeed,
Figure (7.14) demonstrates the vorticity contours of the aerofoil in the upstream part
of the cycle. To better facilitate the discussion, the shifted azimuthal angle (θ∗) is
introduced, which is related to θ as follows: θ∗ = θ − π/2. At the shifted azimuthal
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(A)

(B)

FIGURE 7.10: Lift (A) and drag (B) coefficient for an impulsively
started NACA0012 at α = 30◦.

0◦ < θ∗ < 7◦, the flow remains attached to the aerofoil and is seen to be fairly sta-
ble. As α increases (7◦ < α < 11◦ ), in accordance with Eq.(7.2.2), instability waves
start to propagate in the wake region leading the flow to separate from the surface
around α = 11◦. The vortical structure at this stage is reminiscence of the static
NACA0012 at α = 15◦ in which there is an alternating shedding of positive and neg-
ative vortices. Moreover, as α starts to decrease from the the maximum α(≈ 19◦),
a clear reattachment process can be seen. This reattachment process does not occur
abruptly as reported by Riziotis and Voutsinas (2008) at high Reynolds number. In-
stead, the reattachment is gradual and it appears that the aerofoil has to convect the
sludge flow off the surface in order for the reattachment to be finalized. At about
θ∗ ≈ 200◦, the flow is fully attached.
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FIGURE 7.11: Computed short time lift coefficient for the NACA0012
at α = 15◦ compared to Eq.(7.2.1).

7.3 Vertical axis wind turbine (VAWT) simulations

Using the developed technique in Chapter 3, namely the 2D variant of the BEM,
this section explores the aerodynamic characteristic of the VAWT via a low-order
method. As discussed in Section 3.3, the method is applicable in attached flow con-
dition. However, as the blades in the VAWT experience a varying angle of attack
(Eq.(7.2.2)), it is possible to ensure that flow remains attached to the blade during the
full azimuthal traversal by making sure that the TSR is sufficiently large. To measure
this precisely, one can show that the maximum angle of attack (αmax) experienced by
the blade is obtained by differentiating Eq.(7.2.2), so that:

αmax = tan−1

(
1√

TSR2 − 1

)
. (7.3.1)

Here, the initial pitch is zero. Attached condition is assumed whenever αmax is less
than the static stall angle. Thus the minimum tip-speed ratio (TSRmin) required for
attached condition for a given static stall angle α0 is obtained:

TSRmin =
1

sin α0
. (7.3.2)

It should be stressed that determining the static stall angle is not a trivial task as it
also depends on the surface roughness. Sufficed to say, the general consensus seems
to be that α0 varies between 10◦ and 12◦ for the NACA0012 at high Reynolds num-
ber (Abbott and von Donenhoff, 1949), which corresponds to the TSRmin varying
between 4.81 and 5.76. In practice, however, the TSR can be slightly lower without
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FIGURE 7.12: A schematic diagram showing the typical motion cycle
of the VAWT blade. The geometric angle of attack is expressed as a

function of the azimuthal angle θ of the rotor.

FIGURE 7.13: Variation of α as a function of the tip-speed ratio (TSR)
at a zero pitched angle β = 0.
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FIGURE 7.14: The vorticity contour depicting the full sequence of the
aerofoil motion in the upstream part of the VAWT cycle. θ∗ is the

shifted azimuthal angle.

impacting on the assumption for a fully attached condition. Since the stall angle is
exceeded in a relatively short azimuthal window, so that flow separation is limited
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to the trailing edge region.

7.3.1 BEM validation for the impulsively started NACA0012

Before we present the result, it is important to validate the low order model in the
context of aerofoil aerodynamic. This is simply done by calculating the steady so-
lution for the NACA0012 pitched at α = 5◦, which is obtained by prescribing a
developed wake sheet in the formulation parallel to the free-stream. The strength of
the dipole wake sheet follows from the steady Kutta condition (Eq.(3.2.36)). Figure
(7.15) shows the computed pressure coefficient and is compared to XFOIL, which is
a validated steady viscid- inviscid coupling solver developed by Drela (1989). The
results show excellent agreement, which is not surprising given the fact that XFOIL
uses the same potential formulation as in Chapter 3. The computed streamlines and
the pressure field are given in Figure (7.16). For the unsteady validation, it is sufficed
to apply the formulation to the unsteady version of the same problem. The only dis-
tinction is that a finite trailing wake-panel is introduced to account for the variation
of the body circulation for the impulsive motion and to model the transient devel-
opment of the wake sheet. Once the strength of the wake panel is solved, the panel
is transformed to the vortex particles according to the algorithm outline in Section
3.3. In order to compute the pressure correctly, the unsteady potential term (∂ϕ/∂t)
now appears in the Bernoulli equation, i.e.

p∞ − p
ρ

=
1
2
∥∇ϕ∥2 + (u⃗∞ − u⃗b) · ∇ϕ +

∂ϕ

∂t
. (7.3.3)

The potential at the collocation point can be evaluated by integrating the velocity
field along a path that emanates from a representative far-field point and follows the
aerofoil contour. In the present work, the velocity integration uses the 5-point Gauss
Legendre quadrature rule and the time derivative is approximated by an explicit
Euler scheme.

Figure (7.17a) shows the pressure coefficient of the unsteady problem at 4 dif-
ferent non-dimensionalized times. Evidently, one can see that the pressure distribu-
tion tends asymptotically to the steady distribution. Indeed, the lift force, now time
dependent, illustrates the temporal behaviour in that there appears to be a large in-
crease of the lift follow by a more gradual trend (Figure (7.17b)). The asymptotic
behaviour is well represented. The computed results match well both qualitatively
and quantitatively with Vezza and Galbraith (1985a). The small discrepancy might
be attributed to the fact that a frozen wake approach was used (Section 3.2.3), which
likely results in the small inaccuracy of the wake shape.

7.3.2 Dynamic response of an isolated VAWT immersed in a uniform flow

To further validate the developed code, several studies have been carried out to ex-
amine the aerodynamic properties of an isolated VAWT. This is accomplished in two
parts. First is the dynamic response of the blades due to a variation of the effec-
tive angle of attack. The second part examines the flow structure and is compared
to smoke trailing visualization experiments. The cases considered here focused on
TSR = 5, where experimental data suited for attached conditions are available. In the
first test case, we considered a single-bladed Darrieus rotor whose parameters are
detailed in Table 7.2. This rotor appeared in the experiment conducted by Oler et al.
(1983) to measure the normal and tangential forces on the blade. The forces were ob-
tained by placing strain gauges on the supports of the blade, which were mounted
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FIGURE 7.15: Comparison of the pressure coefficient Cp for the steady
solution for the NACA0012 pitched at α = 5◦ between the simulated

result and XFOIL.

at the mid-chord position. The strain gauges were arranged in a way that they are
only sensitive to the desired forces. In the simulation, the forces per unit span are

rotor parameter value
aerofoil profile NACA0015
chord 15.24 cm
# of blades 1
rotor radius 0.61 m
rotor height 1.1 m
TSR 5

TABLE 7.2: Darrieus rotor parameters in the experiment used by Oler
et al. (1983) for the single bladed turbine

obtained by integrating the pressure distribution and projecting the x and y direc-
tion of the forces to the normal (Fn) and tangential (Ft) direction of the rotor. The
forces per unit span are then normalized by the free-stream and the aerofoil chord,
i.e.

F∗n =
2Fn

ρc|u⃗∞|2
, F∗t =

2Ft

ρc|u⃗∞|2
,

where the starred variables denote the normalized forces. The Reynolds number
reported in the experiment was 40000. Figure (7.18) shows the computed force co-
efficients in the 4th cycle. It is noted that the model produces good agreement in
the normal direction but the tangential force is over-predicted. This is a common
feature of the inviscid model as no friction drag is explicitly incorporated into the
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(A)

(B)

FIGURE 7.16: Computed streamline and pressure field for the
NACA0012 at α = 5◦

simulation. On a more positive note, the simulated results match quite well with
the results of Deglaire (2010), who used a conformal mapping approach to map the
aerofoils into circles in the complex plane and the BEM equations are solved ana-
lytically in the mapped domain. The tangential force can be corrected by solving
the integral boundary layer equations ( Eq.(2.3.1), Eq.(2.3.2)) and substituting the
boundary layer variables to the friction drag coefficient term. It should be stressed
again that the friction closure is based on data fitting with experiments in steady
conditions, therefore it is questionable whether such a correction would be applica-
ble in such a highly unsteady problem. For the purpose of this work, which is used
as a preliminary design tool, such complication is deemed unnecessary.

Following Deglaire (2010), a second test case for a two-bladed rotor is performed.
The dynamic response from the VAWT rotor of Klimas (1982) is reported in Figure
(7.19). The rotor uses the NACA0012 for the aerofoil profile and it has a solidity
value of 0.30 and TSR = 5. The computed forces show good agreement with ex-
perimental data both in the normal and tangential directions, which is in contrast
with the single-bladed case. Deglaire (2010) attributed the discrepancy observed in
the single-bladed case to the relatively large chord to rotor radius ratio for which
3D effects are a significant factor. Nonetheless, the developed code manages to re-
produce the results from other inviscid codes, which confirms the validity of our
methodology in Chapter 3.

7.3.3 Wake structure of an isolated VAWT

The second part of this study is to visualize the development of the near-field wake
structure. This is important in assessing the influence of the downstream turbines
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(A)

(B)

FIGURE 7.17: Evolution of the pressure coefficient (A) and the lift
behaviour as a function of the non-dimensionalized time (B).

in a VAWT farm where a majority of power loss in the farm is due to the less ener-
getic flow. Strickland et al. (1979) performed several flow visualization studies for
Darrieus rotors in a one-bladed, two-bladed and three-bladed configuration. This is
useful for a qualitative comparison of the near wake structure between the simula-
tion and experiment.

Owing to the variation of the geometric angle of attack, a vortex sheet is shed



162 Chapter 7. VAWT aerodynamic simulations

(A) F∗n

(B) F∗t

FIGURE 7.18: Computed normal and tangential force coefficients for
the singled bladed rotor. The results are compared to the inviscid
solution of Deglaire (2010) and the experimental result of Oler et al.

(1983).

continuously about the trailing edge. The vortex sheet convects with the local flow
velocity. A general structure of the generated wake is idealised by an epicycloidal
path formed by a point on the circumference of a circle that undergoes both transla-
tion and rotation (Figure (7.20)). Physically, however, due to the interference of the
neighbouring vortex elements in the wake, the path becomes highly distorted and
eventually gives rise to Kelvin-Helmholtz type instability, which de-regularize the
vortex sheet resulting in an early transition to turbulent flow. This phenomenon is
most evident in VAWTs with a large solidity value for which the added unsteadi-
ness in the problem serves to accelerate the growth rate of the instability wave. The
epicycloidal structure of the wake has two main consequences in the flow field. First
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(A) F∗n

(B) F∗t

FIGURE 7.19: Computed normal and tangential force coefficients for
the two-bladed rotor of Klimas (1982).

is the asymmetric formation of the velocity deficit about the rotor mean line in the
near field, which is attributed to the non-uniform distribution of the vortex sheet in
the cycle. And secondly, it is expected that blockage becomes more severe as the
rotor solidity increases.

In the flow visualization experiments of Strickland et al. (1979), a NACA0012
profile was used and mounted at the quarter chord position and the chord to rotor
radius ratio was kept constant (approximately 0.15) for the three configurations. The
rotors were subjected to a towing speed in a water tank to produce a TSR = 5. The
Reynolds number reported in the experiment was 40000. To illuminate the flow
streak-lines, dye was injected through the nozzle at the trailing edge of one of the
blade.
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FIGURE 7.20: The idealized wake structure for the one-bladed, two-
bladed and the three-bladed rotors. The idealized vortex sheet is con-

vected by the free-stream velocity.

Figure (7.21) shows the simulated streak-lines of the wake for the one-bladed ro-
tor at θ∗ = 1620◦. The computed result is then superimposed onto the experimental
streak-lines at the same azimuthal angle. Good agreement can be observed in the
near-field region. Due to the large strain in the flow, the vortex sheet near the tips of
the rotor subjects to severe Kelvin-Helmholtz instabilities which result in the break-
up of the vortices. Indeed, at those regions the strengths of the vortex sheet are
reported to be the largest in magnitude, which is consistent with the understanding
that the intensification of the vorticity is to promote instability in the flow. Figure
(7.22) illustrates the variation of the vortex circulation (Γ) as a function of the shifted
azimuthal angle θ∗. The large negative value at θ∗ = 0 corresponds to the starting
vortex of the aerofoil. Tip vortices of opposite parity are subsequently shed not ex-
actly at the tip locations as indicated by the dashed and dotted-dashed lines but at
a slightly shifted forward azimuthal angle. The irregularities on the curve are the
results of the blade-vortex interaction (BVI) but of much lesser magnitude.

The wake structure of a two-bladed rotor is shown in Figure (7.23). One thing
to note here is that in the flow visualization, only one blade was fitted with a dye
ejection mechanism whereas in fact the vortex sheet from the other blade also con-
tributes to the formation of the wake structure as is shown in the simulated result.
By matching the streak-line with one of the blade, the simulated results again give
good agreement, especially in the inboard region where the convection velocity is
correctly calculated.

A long time simulation has been performed for the two-bladed rotor. Figure
(7.24) shows the vortex markers after 20 revolutions. At this point, the near-wake re-
gion can be regarded as already having reached steady state, however, a clear tran-
sition point is observed, beyond which the vortices organise themselves in a way
that resembles the von-Karma vortex street. The length of the steady region might
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FIGURE 7.21: The computed streak-line of the wake (represented by
blue markers) is superimposed onto the experimental streak-line for

the one-bladed rotor.

be postulated as a function of the tip-speed ratio and the rotor solidity. Similar sim-
ulation with higher solidity value at the same tip-speed ratio (TSR = 5) results in a
much shorter region. Moreover, the shorter steady region is typically accompanied
with increasing severity of the blockage effect in the near-wake. For the three ro-
tors examined in this section, the solidity values are 0.15, 0.30 and 0.45 respectively.
Figure (7.25) shows the u-velocity contour after the 4th cycle normalized by the free-
stream. A general trend is that a large extent of stagnant flow prevails much of the
near-field region at high solidity whilst intensifying the shear layers that emanates
from the tips. Interestingly, by taking the solidity to infinity, the flow field can be
seen to approach that of a circular cylindrical flow.

7.4 Performance and aerodynamic analysis of a pair of VAWTs

Having validated the developed model for an isolated VAWT, the code is applied to
simulate the effect of having multiple VAWTs arranged in some configuration. This
is important in designing farm configuration for maximizing the power extraction
of the wind-farm. Due to the limited experimental and simulation data, this study
serves as a preliminary study into the complicated flow field inside the VAWT wind-
farm.

7.4.1 Classification of rotor placement

As a starting point for the simulation of a VAWT wind-farm, studies have been car-
ried out to examine the dynamic response and wake structure for a pair of VAWTs
in four configurations. All of the rotors share the same parameters except for the
rotation orientation. The normalized rotor parameters can be found in Table 7.3. It
should be noted that the rotor used in these simulations is geometrically similar to
the ones simulated in Section 7.3.3 except the TSR has been reduced to 4. The reason
for selecting a slightly lower TSR is to reduce the unsteadiness in the problem as it
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FIGURE 7.22: Shed vortex circulation strength as a function of the
shifted azimuthal angle for the one-bladed rotor. Dashed and dotted-
dashed lines indicate the tip location at the advancing and receding

side of the rotor, respectively.

would be the case in the real environment since the added unsteadiness may amplify
the unsteady load on the blade which could ultimately lead to the degradation of the
structural integrity of the rotor. One should note that at this TSR, Eq.(7.3.2) indicates
that at some points on the azimuthal cycle the blades may experience a higher than
static stall angle of attack. It is anticipated that this would not violate the validity of
the attached assumption too much given the fact that the violation often occurs in a
relative small azimuthal window so that flow separation is thought to be limited to
the trailing edge region.

rotor parameter value
aerofoil profile NACA0012

# of blades 2
chord 1

solidity 0.30
TSR 4

TABLE 7.3: Rotor parameters used in the interaction of a VAWT pair.

In addition to the 4 configurations of the VAWT pair, each configuration can also
vary by a set number of parameters. It is instructive to adopt a naming convention
for the various runs. The run ID is given by the designation CxRy, where x and y de-
note the configuration number and run number within the respective configuration,
respectively. The general characteristic of the 4 configurations can be summarised as
follows:

• C1: The two VAWTs are aligned in the y-direction with a co-rotating motion.
This configuration is parametrized by the normalized separation distance be-
tween the rotor centres.
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FIGURE 7.23: Comparison of the streak-lines between simulation and
experiment for a two-bladed rotor.

• C2: Same as the C1 but with a counter-rotating motion.

• C3: The VAWTs are aligned in the x-direction and are parametrized by the rel-
ative rotation orientation (co-rotating or counter-rotating) and the normalized
distance between the rotor centres.

• C4: The VAWTs are arranged in a staggered grid and are parametrized by
the relative x and y displacements of the rotor centres as well as the relative
rotation orientation.

It should be noted that C1, C2 and C3 can be regarded as special cases of C4. In any
case, the classifying of the configurations outlined above completely characterises
the pairwise turbine placement and the operation characteristic in a VAWT wind-
farm. The schematic arrangements of the various configurations can be found in
Figure (7.26) and Figure (7.27). The aim of the C1 and C2 configurations is to exam-
ine the performance magnification owing to the increased velocity surrounding the
rotors (due to blockage). While the C3 configuration is aimed at studying the power
degradation of the downstream turbine as a result of operating in the wake of the
primary rotor thus subjecting to a much retarded flow. And finally the C4 combines
the effect of magnification and degradation by operating the downstream turbine
partly in the wake of the first.

To measure the performance of the rotor, one defines the torque (τ) as

τ = R
B

∑
k=1

1
2

ρ ∥u⃗∞∥2 cF∗t,k. (7.4.1)

where B denotes the number of blades and F∗t,k is the tangential force coefficient of
the k-th blade. The power coefficient (CP) is derived as follows (Hansen, 2008):

CP =
τΩ

1/2ρ ∥u⃗∞∥3 Dhz
. (7.4.2)
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FIGURE 7.24: Wake markers for the two-bladed rotor after 20 revolu-
tions.

where hz is the blade-span. As Brusca et al. (2014) noted, the performance of the
VAWT rotor is sensitive to the prescription of the aspect ratio. Without loss of
generality, we take hz to be the diameter of the rotor. A benchmark case was first
performed, in which a single rotor was simulated and the power coefficients were
obtained as a function of the non-dimensionalized time T = t ∥u⃗∞∥ /c. The bench-
mark power coefficient is shown in Figure (7.28). The cycle average (C̄P) is also
given, which is obtained by applying the trapezoidal rule to the power coefficient
and averaging over time, i.e.

C̄P =
1

2π

∫ 2π

0
CPdθ.

The parameters for these runs can be found in Table 7.4. The relative rotation
orientation of the rotors is given by the parameter S := sign (Ω1) sign (Ω2). Fur-
thermore, to understand the influence of the rotors on each other, a relative power
coefficient (C̄P,relative) may be defined as follows:

C̄P,relative :=
C̄P

C̄P,0
, (7.4.3)

where C̄P,0 denotes the time-averaged power coefficient of the benchmark case. Each
simulations were run for 20 cycles with a time-step size of δt = 5.5 × 10−3. This
time-step size was used in the validation study in Section 7.3.2. The 20th cycle was
chosen because the averaged power coefficient of the benchmark case seems to have
converged during the initial parametric study (not documented). In addition, the
term primary is used throughout the section, which refers to the rotor whose centre
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(A) σ = 0.15, B = 1

(B) σ = 0.30, B = 2

(C) σ = 0.45, B = 3

FIGURE 7.25: Normalized u-velocity contour for the three rotors with
increasing solidity (σ) from top to bottom.

of rotation coincides with the origin.
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FIGURE 7.26: Schematic diagrams showing the VAWT placements of
the C1 and C2 configurations. C1 and C2 are both parametrized by
the dimensionless constant f > 1. Here D denotes the diameter of

the rotor. The free-stream is coming from the negative x-direction.

FIGURE 7.27: Schematic diagram showing the VAWT placements of
the C3 and C4 configurations.

7.4.2 C1 simulations

For the C1 configuration, two simulations were performed with f = 1.2 and f = 2.0
(see also Table 7.4). The relative power coefficients are reported in Figure (7.29b).
The result shows an improvement to the primary rotor as to be expected. Using the
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FIGURE 7.28: Computed power coefficient for the benchmark rotor.

20th revolution as an indicative measure, the primary rotor was found to achieve
a 13.37% gain averaged over the 20th cycle. Moving the secondary rotor further in
the lateral direction ( f = 2.0) yields in a moderate gain of 8%, which is consistent
with the understanding that C̄P,relative → 1 as f → ∞. A parametric model might
be constructed to determine the performance gain in terms of the dimensionless
parameters, which would be an interesting topic for future research.

run ID f fx fy S
C1R1 1.2 / / +1
C1R2 2.0 / / +1
C2R1 1.2 / / −1
C2R2 2.0 / / −1
C3R1 2.0 / / +1
C4R1 / 2.0 0.5 +1
C4R1 / 2.0 1.3 +1

TABLE 7.4: Parameter matrix for the four configurations. The nomen-
clature can be found in Figure (7.26) and Figure (7.27).

The wake structure of the co-rotating turbines is given in Figure (7.30). In the
C1R1, it is surprising that the wake of the two rotors maintained their identity up
to the transition point, beyond which the vortices in the wake interact strongly to
form a large scale fluctuation. In the C1R2, the wake of the two rotors started out
identically, but due to the mutual interaction, the wakes evolve to a considerable
degree of asymmetric both in the near and far field. Beyond the transition point, a
von-Karma street is clearly visible.
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(A) (B)

FIGURE 7.29: (A) Shows the power coefficients between the bench-
mark case and C1R1 and C1R2. (B) Indicates the relative coefficients

computed for each revolution.

7.4.3 C2 simulations

For the C2 configuration, the same values of f were used, except this time the sec-
ondary rotor reverses its rotation direction. The resulting situation is analogous to
a wall-bounded flow in which an imaginary wall can be thought to be placed at the
symmetric plane of the rotor centres. Therefore one should expect some degree of
symmetry in the wake. The simulated results for the C2 runs are found in Figure
(7.31). A general trend here is that the symmetric property of the wake is largely re-
spected in the steady region except near the transition region in which the numerical
error in the code serves to trigger the large-scale mixing between the wake vortices.
Moreover, owing to the interference of each other, the shear layer at the receding
side is severely suppressed which results in an almost flat layer.

The power output is collated and compared to the benchmark case as well as
to the C1 configuration. Figure (7.32) paints a rather interesting picture. All of the
cases considered so far yield improvement to the primary rotor as a result of the in-
creased velocity near the symmetric plane. However, at a small f , the co-rotating
configuration generally produces high yield as compared to the counter-rotating
configuration across all cycles. This trend somehow does not carry over to the case
when f = 2. Indeed, Figure (7.32b) shows that the co-rotating configuration yields
a slightly better performance up to the third cycle. But as soon as the wake starts
to develop, the counter-rotating configuration is able to provide a much higher gain
than the co-rotating configuration. After the 20th cycle, it is found that a gain of
10.46% and 9.4% was observed for the C2R1 and C2R2 simulation, respectively. The
similarity between the two numbers is counter-intuitive as one should expect that
C2R1 should perform better since the rotors are subjected to a higher blockage at
the receding side. A possible explanation is that the blockage is not as large as one
might imagine near the rotor boundary due to the relative small solidity. The nor-
malized u-velocity contour is shown in Figure (7.33), which appears to support this
observation.
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(A) Wake markers after the 20th cycle

(B) Wake markers after the 20th cycle

FIGURE 7.30: Computed wake structure for the C1R1 (A) and C1R2
(B).

7.4.4 C3 simulation

Only one simulation is performed for the C3 configuration. The aim is to examine
the detrimental effect on power production on the downstream rotor if it is placed in
the steady region of the upstream rotor. Both the tangential and normal forces were
examined for the blade on the downstream turbine. Visualization of the wake mark-
ers at the end of the simulation is found in Figure (7.34). Several notable features
can be extracted. First is that the wake, as a collective entity, shows a greater lat-
eral expansion possibly due to the limited power production still taking place by the
advancing blades (corresponding to the positive tangential force in Figure (7.35b)).
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(A)

(B)

FIGURE 7.31: Computed wake structure for the C2R1 (A) and C2R2
(B) simulation. Symmetry is maintained in the near field , but a sym-
metry breaking event is observed due to numerical error in the simu-

lations, which is amplified by the large number of time steps used.

Secondly, the transition region has been reduced considerably. The transition point
occurs just slightly downstream of the secondary rotor. The generated torque of the
advancing downstream blade on the secondary rotor shows a similar magnitude to
the upstream rotor operating in the wake region.

On the downstream rotor, the force has converged after the 4th cycle. Further-
more, it is found that the downstream rotor could not extract any power since the
averaged power coefficients were found to be negative. The negative contribution is
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(A)

(B)

FIGURE 7.32: (A) Shows the power coefficients between the bench-
mark case and C1 and C2. (B) Indicates the relative coefficients for all

of the C1 and C2 simulations.

primarily due to the blades operating in the downstream part of the cycle. The over-
all conclusion is that while the advancing blade is still able to extract some power as
indicated by the positive tangential force, but this is quickly offset by the other blade.
It is expected that a net positive torque might be achieved by varying the number
of blades, tip-speed ratio and solidity. A consequence arises from this is that, due
to its presence, there appears to be an improvement to the wake recovery, which is
beneficial to the downstream rotors in a real VAWT wind-farm. In this view, the sec-
ondary rotor can be treated as a vortex generator whose role is to provide a means
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FIGURE 7.33: Normalized u-velocity contour at the symmetric plane
for the C2R1 simulation.

FIGURE 7.34: Computed wake structure for the C3 simulation.

for achieving a faster wake recovery so that the more efficient downstream turbines
might benefit from it. While at the same time, the rotor itself would be able to pro-
duce a net positive torque. In the simulation, the said rotor clearly could not fulfil
such a role. One possible research direction is to determine the rotor parameters
and performance characteristics so as to optimise the operation in the wake region
if such strategy were to be implemented.



7.4. Performance and aerodynamic analysis of a pair of VAWTs 177

(A)

(B)

FIGURE 7.35: Computed normal and tangential coefficients for the
upstream and downstream rotor for the C3R1 simulation.

7.4.5 C4 simulations

For the final configuration (C4), two simulations were performed with separation
displacement

(
fx, fy

)
= (2, 0.5) , (2, 1.3). In the former case, the first and second

quadrants of the secondary rotor expose to the wake of the first (idealised by a shear



178 Chapter 7. VAWT aerodynamic simulations

line from the tip), whereas in the latter, the secondary rotor is fully subjected to
the high velocity stream-tube. For an isolated VAWT pair, the latter configuration
is clearly superior. However, in a large VAWT farm, the former might be preferred
since the secondary rotor might be used to promote momentum transfer between the
energetic and retarded flow; leading to a more efficient wake recovery mechanism.

(A)

(B)

FIGURE 7.36: The computed wake structure for the C4R1 (A) and
C4R2 (B) simulation after the 20th revolution.

The normal and the tangential force coefficients can be found in Figure (7.37). It
is noted that the downstream rotor subjects to severe unsteadiness in the flow espe-
cially in the inboard region where strong vortices from the upstream shear layer mix
with the retarded flow, resulting in a significant fluctuation of the force vector. No
significant degradation was observed for the tangential coefficient in the upstream
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cycle, however, power degradation is observed primarily due to the negative torque
induced by the second blade operating in the downstream cycle. The wake structure
is given in Figure (7.36a). One should mention that the large fluctuation of the force
vector plays a detrimental role to the structural property of the rotor owing to the
higher BVI rate and with stronger vortices.

The case fy = 1.3 results in a completely different flow structure as observed
in the C4R1 case. The lateral expansion of the upstream wake is significantly sup-
pressed as a result of the mutual interaction. A clear passage is formed between the
shear layers of the primary and secondary rotors. The passage maintains its identity
until the wakes have sufficiently mixed further downstream. The relative power co-
efficients for the downstream rotor have been obtained for both cases (Figure (7.39)).
The result shows that the maximum power output is almost halved in the C4R1 sim-
ulation as compared to C4R2. However, on average, the rotor is still able to generate
positive power, albeit at a significantly reduced efficiency. Indeed, Figure (7.39a)
and Figure (7.40b) show a reduction of 74.31% can be expected using the 20th cycle
as an indicative mark. Although at this point the force has clearly not converged.
On the other hand, by placing the downstream rotor slight downward in the lateral
direction, a favourable gain of 20.63% in efficiency is obtained.

A different perspective one can take is that the 4 configurations examined in
this section represent the inflow wind direction past a pair of static VAWTs (Figure
(7.41a)). The simulated results provided clues to the indicative loss and gain in oper-
ating under such conditions. To make this concise, one can define the wind-incident
angle (θw) to be the acute angle between the wind-direction and the rotor centre ori-
entation (see Figure (7.41b)). The effect of the different inflow conditions can then be
summarised in Table 7.5 for the cases that the separation distance between the rotors
is at least twice the rotor diameter. When θw = 0, the downstream rotor operates in
the wake of the first, simulated results show that the tested rotor could not generate
any torque. As the incident angle increases, the power efficiency is rapidly increas-
ing to a theoretical maximum value beyond which the efficiency starts to decrease
again until it is perpendicular to the centre orientation (C1 and C2), which might be
speculated as a local minimum. Beyond which we suspect that the trend follows in
a similar manner except the positions of the rotors have reversed.

θw [deg] C̄P,relative − 1
0.00◦ ≤ −100%
14.04◦ −74.31%
33.02◦ +20.63%
90.00◦ +8.00%

TABLE 7.5: Indicative percentage loss and gain for the downstream
rotor due to the different wind direction characterised by the wind

incident angle θw.

7.5 Conclusion

The new developed methodology has been applied in the simulation of aerofoil
aerodynamic with high resolution. Qualitative comparisons with experimental data
have been made for a static NACA0012. The new reported results show excellent
agreement with PIV visualization. Both the vortex shedding frequency and the topo-
logical properties of the vortex structure are well simulated. In addition, the lift and
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drag data have been obtained and match with the theoretical prediction at early
time.

The 2D adaptation of the BEM has been successfully validated by simulating the
dynamic response and the wake structures of the VAWT rotors in different configu-
rations. The results show good agreement mostly in the normal direction. However,
some discrepancies are seen for the tangential calculation. It is speculated that the
discrepancy is due to the lack of viscosity modelling in the model. A possible im-
provement has been suggested, which is to couple the boundary layer equations to
determine the friction drag coefficient. It was cautioned that care should be exercised
in order to make sure that the unsteady effect is correctly represented.

The method is then applied to the simulation of the interaction between a pair of
VAWTs, which serves to provide an indicative study of the complicated aerodynamic
in a fully VAWT wind-farm. The rotors were derived from Strickland et al. (1979).
The study points to a rich set of wake dynamic that depends on the wind-incident
angle. It is found that when a downstream rotor is carefully placed, wake collision
between the upstream and downstream rotors can be avoided. Furthermore, ow-
ing to the increased velocity, the downstream rotor shows a significant performance
gain of more than 20%. However, at a zero incident angle, the downstream rotor
was found to produce negative power but due to its presence, the transition point
has been significantly reduced, which may point to a strategy that the downstream
rotor might function as a mixing device whose role is to facilitate momentum trans-
fer. However it has also been pointed out that such a strategy needs extensive opti-
mization for the mixing rotor to produce a positive torque. At a 90◦ incident angle,
two configurations were tested. The co-rotating configuration was found to pro-
duce a higher gain at a small separation distance ( f = 1.2) and the counter-rotating
configuration might be preferred at a larger separation. At f = 2.0, the difference,
however, was marginal; being 8% and 9.4%, respectively.
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(A)

(B)

FIGURE 7.37: Computed normal and tangential coefficients for the
upstream and downstream rotor for the C4R1 simulation.
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(A)

(B)

FIGURE 7.38: Computed normal and tangential coefficients for the
upstream and downstream rotor for the C4R2 simulation.
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(A) fx = 2.0, fy = 0.5

(B) fx = 2.0, fy = 1.3

FIGURE 7.39: Computed power coefficients for the C4R1 and C4R2
simulations.
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(A) C̄P

(B) C̄P,relative

FIGURE 7.40: Comparison of the power coefficients for the C4R1 and
C4R2 simulations to the benchmark case.
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(A)

(B)

FIGURE 7.41: (A) Shows the schematic interpretation of the configu-
rations as defined by the incident wind direction. (B) Illustrates the

definition of the wind incident angle θw.
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Chapter 8

Conclusion and future work

The original aim of the thesis was to study the interaction of wind turbines in the
context of a wind-farm. Preliminary studies have shown that the actuator disk as-
sumption coupled with CFD does not give an accurate representation of the near-
field wake dynamics. This is particularly the case when multiple VAWTs are in close
proximity to each other. As a result of those studies, the idea of using CFD was
quickly dropped in favour of an engineering approach in the near-field. Two objec-
tives were borne out of this. First is to develop a low-order engineering method that
is capable to represent the flow physics in an approximate sense. Secondly, we aim
to complement the low-order method with a high-fidelity simulation tool so as to
account for the inherent weakness in the low-order approach. This thesis has largely
fulfilled these two objectives. This chapter reviews the primary conclusions of the
studies conducted in this thesis.

It is at the heart of the code development cycle that a large degree of general-
ization should be exercised in order to apply the developed technique to a wide
variety of engineering problems relating to fluid flow. With the increasing demand
for wind energy, optimization of wind-farm and aerofoil sections plays an increas-
ingly important role to deliver the most optimal solution both at the blade and rotor
scale. Load prediction methods such as the Jensen wake model and the DMST can-
not predict the wake structure of an isolated turbine, therefore they are excluded
from a large set of problems where an accurate wake analysis is required. On the
other hand, CFD methods are too computational demanding to be used as a viable
design tool. Coupled with the empiricism for turbulence modelling and the exces-
sive numerical dissipation inherent in the grid-based discretization, the methods are
deemed insufficient for the applications considered in this thesis. The adaptation of
the BEM in the context of rotor aerodynamic is aplenty in the literature, however,
the implementation of those approaches is vastly inefficient owing to the quadratic
complexity of evaluating the Biot Savart law. The novelty of this work is to provide
a unified code frame in which several acceleration techniques are exploited and im-
plemented on the GPU. This results in an order of magnitude speed-up compared to
other BEM codes. Thus this work serves as an important basis for future endeavour
on the aerodynamic analysis of rotor wake as well as on the optimization techniques
of wind-farm.

8.1 Primary conclusions

In chronological order, the achievements in this work are as follows:

1. The mathematical formulation of the Boundary Element Method (BEM) has
been reviewed and adapted for both 2D and 3D flows. To speed up the compu-
tation of the induction calculation, an acceleration routine has been developed
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which uses the multipole expansion method to approximate the far-field influ-
ence. In the 3D case, the influence of the panels are represented by the Com-
plex Spherical Harmonic Basis (CSHB) functions. Timing results show that the
accelerated routine manages to achieve a speed up that is dependent on the
truncation number. In practice, such a tool is invaluable when fine-grained
discretization is sought and especially in the high-fidelity simulations.

2. The vortex particles method (VPM) has been reviewed and incorporated in the
code as vorticity carriers. The developed tool offers an extensive modelling
option such as the particle-strength-exchange (PSE) scheme, the random-walk
scheme and the grid interpolation kernels. The developed methodologies have
been coded in the GPU, which offers a substantial speed-up compared to a
pure CPU computation.

3. A coupling strategy has been developed which couples the BEM with VPM
via an accurate interpolation technique. The coupling has been successfully
validated in later studies.

4. The Fast Multipole Method (FMM) has been reviewed and implemented in
the GPU for both 2D and 3D. Due to the different memory architecture in the
GPU, an efficient tree-construction algorithm has been developed, which sorts
the particle cluster in a reversed order. In addition, an analytical expression
has been derived for calculating the strain exerted by the neighbouring vortex
particles. As far as we are aware such an expression is not available in the
literature.

5. A series of validation studies have been successfully completed. In particular,
the 3D VPM was validated by simulating the dynamic evolution of an inviscid
vortex ring. The computed result agreed well with the theoretical prediction.
The 2D VPM was validated by simulating the inviscid elliptical vortex patch.
The effective aspect ratio was correctly calculated at some time, but discrep-
ancy was observed. We attributed the discrepancy to the variation of the initial
vorticity distribution. The particle-strength-exchange scheme was successfully
validated by solving the heat-equation on a one-dimensional line.

6. The mathematical formulation for the high-fidelity approach has been reviewed
and implemented in the GPU. The method relies on the concept of operator
splitting in which the advection and diffusion processes are serialized. To ex-
tend the method to arbitrary geometry, the particle re-meshing algorithm near
the geometric bodies has been simplified. The method was tested on flow past
circular cylinders. The linear impulse and the drag calculation matched well
with the literature.

7. The high-fidelity approach has been applied to a variety of flow problems in-
volving aerofoils. The simulated results have been successfully compared to
experimental flow visualization. The method is then used to study dynamic
stall of a one-bladed rotor. It was found that the topological properties of the
vortex shedding is similar to the static case at a similar angle of attack.

8. The low-order BEM was applied to VAWT with different solidity and blade
numbers. In the validation studies, the normal and tangential forces were cal-
culated and compared to experiments. Good agreement was obtained for both
normal and tangential forces for low solidity rotors. Flow visualization re-
vealed that the wake structure is correctly represented.
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9. The BEM was used to simulate the pairwise interaction between two VAWTs.
Several configurations have been proposed to study the aerodynamic influ-
ence in a co-operating state. A key-finding indicates that the downstream ro-
tor could extract as much as 20% more power if placed near the wake region.
The computed results also revealed that if the wind incident angle is zero, the
effect on the downstream rotor is detrimental. However, flow visualization
suggests there is an increased recovery rate as indicated by the shorter tran-
sition region. It was proposed that the downstream rotor might function as a
momentum mixer.

8.2 Recommendation for future investigations

Despite the myriad of achievements in this thesis, there are still many gaps in our
understanding. For example, the far-field wake in the simulation of the VAWT might
not be correctly represented despite the PSE scheme being applied. In the low-order
approach, the time and spatial scales associated with the vortex shedding can not
be correctly resolved via the grid interpolation technique due to the large Reynolds
number inherent in the assumption of the BEM. This then leads to the inaccurate
prediction of the far-field where diffusion is significant. For this reason, a LES cor-
rection has to be applied to the flow to account for those small scales.

In the high-fidelity approach, a uniform grid was prescribed to facilitate the re-
meshing operation. The size of the grid cell is kept constant throughout the compu-
tational domain, which can incur a substantial cost penalty if the points of interest
lie close to the body geometry. One way to alleviate this cost is to implement a
body-fitted overset mesh. In this hybrid approach, a fine grid may be employed in
the vicinity of the geometry while a coarser grid can be used together with a LES
scheme to model the vorticity field outside. An effective interpolation scheme is
then required which must satisfy several conservation rules, such as the total circu-
lation, the linear momentum and the angular momentum. Moreover, an adaptive
grid may also be constructed to eliminate the numerical perturbation of the devel-
oped method observed in Section 6.2.2. However, one should note that the adaptive
grid may not be possible to construct for complicated body geometry.

Currently, all of the simulations were performed exclusively on a workstation
with a dedicated graphics card. It is anticipated that utilising multiple graphics
cards via Message Passing Interface (MPI) could achieve a much better solution time.
This is essential if one wants to apply the high fidelity simulation tool for a real tur-
bine. Thus one needs to modify the algorithms in the code to take full advantage of
the High Performing Computing (HPC) facility of the university. Another possible
improvement to the code is to port some of the back-end operations to a low-level
language such as C++ or Fortran; utilising the highly efficient linear algebra package
whilst avoiding most of the frontend code checking procedures of MATLAB.

Presently, the viscous forces exerted on the body were omitted in the engineer-
ing model. The viscous forces become important in large solidity rotors. It has been
suggested that a viscid-inviscid coupling strategy may be employed by solving the
integral boundary layer equations and deriving the friction coefficients due to vis-
cous drag. However, one needs to be careful to ensure that the unsteadiness in the
problem is not too large so as to invalidate the empirical terms in the boundary layer
formulations.

In a real environment, the observed flow structure exhibits a strong 3D effect,
especially in the tip region where strong tip vortices are shed. This is not modelled
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in the 2D simulations. In addition, the validations of the 3D codes in the context of
turbine aerodynamic are left for future work.

In the simulations of rotor interactions, it is found that when the wind incident
angle is zero, the downstream turbine could not generate any torque. However, due
to its presence, the transition region has been reduced considerably. One strategy to
achieve a faster wake recovery under such an inflow condition is to utilise the down-
stream rotor as a momentum mixer. However, from an economic consideration, the
downstream rotor needs to produce a positive torque. A possible future topic is to
conduct parametric studies into the operating characteristic for a downstream rotor
by varying the number of blades, the solidity, the TSR as well as the blade height in
the 3D case.

In the FMM code, the most expensive operation involves computing the local ex-
pansion, which is done via a two-step approach. A significant latency was observed
in the M2L step; accounting for over 60% of the total GPU time. Part of the reason is
that a large amount of random fetch requests were made to the main memory. This
step can be improved substantially by designing an efficient memory management
system with a careful usage of shared and constant memory space.



191

Appendix A

Compute Unified Device
Architecture (CUDA)

In this thesis, the GPU implementation uses the Compute Unified Device Architec-
ture (CUDA) developed by Nvidia (NVIDIA et al., 2020). CUDA provides a parallel
computing platform and the application programming interface (API) to implement
parallel calculations. The platform is designed to work with C, C++ and Fortran
programming languages. In this appendix, a basic overview of CUDA is given.

A.1 Basic overview of CUDA

In computing, a basic unit of executing a sequence of instruction is known as a thread.
The GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SM), which is designed to execute hundreds of these threads con-
currently. To manage such a large amount of threads, each multiprocessor is based
on the SIMT (Single-Instruction, Multiple-Thread) architecture, in which groups of
32 parallel threads (called the warps) are created and managed. CUDA abstracts this
layer by introducing a thread hierarchy in which the threads are grouped into blocks
(called the thread block) and the blocks are grouped into grids. Each thread within
a thread block is identified by a three-component vector

(
tx, ty, tz

)
(accessible by the

struct threadIdx) and a thread block within a local grid may be identified by the
three-component vector

(
Dx, Dy, Dz

)
(accessible by the struct blockIdx). Due to the

limited memory resources on each computing core, each thread block may contain
up to 1024 threads. Thus, a global index in a three-dimensional array of data may be
associated with a local thread and can be identified as follows:

idx,global = tx + DxLx, idy,global = ty + DyLy, idz,global = tz + DzLz,

where
(

Lx, Ly, Lz
)

denotes the block lengths in the x, y, z direction, respectively (ac-
cessible by the struct blockDim). This thread hierarchy is illustrated in Figure (A.1).
Functions that are executable on the GPU are called the Kernels. In a typical GPU
calculation, device pointers (specialized pointers that operate on the GPU) are first
created and memories are allocated via the API provided by CUDA. Host (CPU)
data are then copied to the GPU memory via the dedicated pointers. The kernels
are launched by specifying the launch parameters, such as the thread block sizes,
the number of grids in each direction and the amount of shared memory to be used
in the kernel. During a single time step update, kernels are launched sequentially
from the host (CPU). For ease of implementation, the current work uses MATLAB’s
CUDAKernel class to manage the host side of the kernel launch.
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FIGURE A.1: A schematic illustration of the thread hierarchy imple-
mented in NVIDIA et al. (2020).

A.2 The memory architecture

In contrast to the CPU’s memory architecture, which is based on a distributed mem-
ory model (each computing processor has its private memory space), the Nvidia
GPU is built around a shared memory model, in which a global memory space is visi-
ble to all threads in the kernel at all time. In addition, each CUDA thread has private
local memory and each thread block has shared memory visible only to the threads
within that block.

Data manipulation requires the data to be stored in different hardware memory
caches. Access latency is characterised by how far the caches are located relative to
the processing units. For example, the L1 cache is built on-chip of the SM, therefore
they have the highest bandwidth but at a much smaller size. Data are first write to
the caches before they are being processed by the SM. An important performance
aspect of GPU computing is to have as few cache transaction as possible since fetch
requests to the main memory requires a large number of clock cycles. Typically, the
L1 and the L2 are used to cache access to local or global memory.

CUDA offers a high level programming language which abstracts much of the
memory optimization techniques used by the device. From a user’s perspective, a
simplified notion of the memory hierarchy is illustrated in Figure (A.2). Memory
management plays an important part of the GPU optimization. This typically in-
volves making clever use of the fast memory caches on the device in order to avoid
memory bottleneck.
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FIGURE A.2: A schematic illustration of the memory hierarchy im-
plemented in NVIDIA et al. (2020).
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Appendix B

Derivation of the eigenvalue of the
Sturm-Liouville problem

Derivation of the Eigenvalue of the Sturm-Liouville is given in this appendix. Re-
call that the Sturm-Liouville problem sees us to determine the eigen solution to the
differential operator LSL such that, for some constant λ, the following holds:

LSLΘ = −λ sin θΘ, (B.0.1)

where the Sturm-Liouville operator is defined by:

LSL :=
d
dθ

(
sin θ

d
dθ

)
− m2

sin θ
. (B.0.2)

First, a change of variable is performed. Suppose Θ (θ) = F (cos θ), with x :=
cos θ and together with the chain rule, one can show that the θ derivative can be
replaced with

sin θ
d
dθ

= sin θ
dx
dθ

d
dx

= −
(
1− x2) d

dx
, (B.0.3)

where we have used the fact that 1 = − sin θdθ/dx and dx/dθ = (dθ/dx)−1. Substi-
tuting the above expression to Eq.(B.0.1), one has that:

(
1− x2) d

dx

((
1− x2) dF

dx

)
+
(
λ
(
1− x2)−m2) F = 0. (B.0.4)

Divide Eq.(B.0.4) by the factor
(
1− x2) and setting m = 0, one obtains the particular

equation of the form:
d

dx

((
1− x2) dF

dx

)
+ λF = 0. (B.0.5)

We assume the solution for F is bounded at the boundary points θ = 0, π, so one
could look for a power expansion for the solution F, i.e.

F (x) =
∞

∑
n=0

anxn. (B.0.6)

Substituting Eq.(B.0.6) to Eq.(B.0.5) and collecting like-terms, one obtains:

(
1− x2) dF

dx
= a1 +

∞

∑
n=1

((n + 1) an+1 − (n− 1) an−1) xn. (B.0.7)
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Differentiate again w.r.t x, so that Eq.(B.0.7) becomes:

d
dx

((
1− x2) dP

dx

)
=

∞

∑
n=0

((n + 1) (n + 2) an+2 − n (n + 1) an) xn. (B.0.8)

Eq.(B.0.5) implies for each n ∈ N+, the series coefficients satisfy the recursive rela-
tion:

an+2 =
n (n + 1)− λ

(n + 1) (n + 2)
an. (B.0.9)

If λ ̸= k (k + 1), for some positive interger k, then one can be informed from elemen-
tary convergence test (|an+2/an| → 1 as n → ∞) that the series is diverging, which
violate the assumption of F. Therefore, an must varnish at some finite value of n
and λ = k (k + 1) for some integer k. For a given k, we denote Pk, after an appropri-
ate normalization, to be the polynomial solution to Eq.(B.0.5). The polynomial Pk of
degree k is known as the Legendre polynomial.

For m ̸= 0 (recall that m must take integer values), the solution to Eq.(B.0.4)
might be found by the following formula (assume that m > 0):

Pm
k =

(
1− x2)m/2 dm

dxm (Pk) . (B.0.10)

Since Pk is a polynomial of degree k, it follows that if m > k, then Pm
k ≡ 0.
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Appendix C

Contour dynamic formula

In this appendix, we present the derivation of the contour dynamic formula for eval-
uating the velocity field due to a constant vorticity distribution with close boundary
C. This is motivated by the notion of the extended vorticity field concept. To put this
into perspective, suppose a body is described by the body velocity u⃗b:

u⃗b (x⃗, t) = u⃗0 (t) + Ω (t) k⃗× (x⃗− x⃗0 (t)) , (C.0.1)

for some spatial independent functions u⃗0, Ω and x⃗0. Let ω⃗b denote the ’body’ vor-
ticity, such that ω⃗b = ∇× u⃗b, so one may express the body vorticity as

ω⃗b = ∇× u⃗b = 2Ω⃗k = ωb⃗k, (C.0.2)

where ωb is the magnitude of ω⃗b and is spatially independent (here, we have slightly
abused the notation, ωb should really be the compact support of the vorticity, so
that it is zero for points outside of D. But this does not invalidate the subsequent
derivation). Let u⃗Ω denote the velocity due to this vorticity distribution. In general,
u⃗Ω ̸= u⃗b. For this velocity, we may find a stream-function ψΩ such that

u⃗Ω = ∇×
(

ψΩ⃗k
)

. (C.0.3)

Taking the curl of Eq.(C.0.3), one may show that ψΩ satisfies the Poisson equation:

ωb = −∇2ψΩ. (C.0.4)

We solve Eq.(C.0.4) via the method of Green’s function. Let G (x⃗, y⃗) denote the free-
space Green’s function to Eq.(C.0.4), so it satisfies the equation:

∇2
xG = δ (x⃗− y⃗) . (C.0.5)

Note here the subscript x means we are differentiating with respect to the x variable
in its argument. Indeed, one can show that:

G (x⃗, y⃗) =
1

2π
log ∥x⃗− y⃗∥ . (C.0.6)

So we have:

ψΩ (x⃗, t) = −ωb (t)
2π

∫
C

log ∥x⃗− y⃗∥ dA (⃗y) (C.0.7)

Substitute for uΩ, one has that:

u⃗Ω = −ωb

2π

∫
C
∇x (log ∥x⃗− y⃗∥)× k⃗ dA (⃗y) . (C.0.8)
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Taking the dot product with the basis vector e⃗x and rearranging the resulting expres-
sion, we arrive at the expression:

u⃗Ω · e⃗x = −ωb

2π

∫
C

(⃗
ex × k⃗

)
· ∇ log ∥x⃗− y⃗∥ dA (⃗y) . (C.0.9)

Noting that e⃗x × k⃗ = e⃗y, we can further simplify Eq.(C.0.9) to

u⃗Ω · e⃗x = −ωb

2π

∫
C
∇ ·

(⃗
ey log ∥x⃗− y⃗∥

)
dA (⃗y) . (C.0.10)

By virtue of Stokes’ theorem, which states that for a sufficiently smooth vector field
F⃗, the following holds: ∫

C
∇ · F⃗dA =

∮
∂C

k⃗× F⃗ · d⃗s. (C.0.11)

So, Eq.(C.0.10) becomes:

u⃗Ω · e⃗x = − ωb

2π

∮
∂C

(⃗
k× e⃗y

)
· d⃗s log ∥x⃗− y⃗∥ ,

= − ωb

2π

∮
∂C

(⃗ex · d⃗s) log ∥x⃗− y⃗∥ . (C.0.12a)

In the same manner, the expression u⃗Ω · e⃗y is similarly derived. Finally, the velocity
field induced by a constant vorticity field is given as follows:

u⃗Ω (x⃗, t) = −ωb (t)
2π

∮
∂C

log ∥x⃗− y⃗∥ d⃗s (⃗y) . (C.0.13)

Eq.(C.0.13) is known as the contour dynamic formula.
In practice, Eq.(C.0.13) is applied for a set of linear panels which represent the

body geometry. Consider the i-th panel whose end nodes are given by x⃗i and x⃗i+1.
Further, let Li denote the length and t⃗i be the local tangent. The velocity due to this
panel, denoted by u⃗Ω,i, is expressed as follows:

u⃗Ω,i := −ωb (t)
2π

t⃗i

∫ Li

0
log ∥x⃗− y⃗ (s)∥ ds, (C.0.14)

where y⃗ := x⃗i + s⃗ti. The resulting integral can be simplified:

u⃗Ω,i = −
ωb

4π
t⃗i

∫ Li

0
log
∣∣∣(s− α)2 + β2

∣∣∣ ds (C.0.15)

where α := t⃗i · (x⃗− x⃗i) and β2 = ∥x⃗− x⃗i∥2 − α2. An analytical expression can be
found by applying integration by parts. In any case, the analytical expression is
derived as follows:

u⃗Ω,i =
ωb

4π
t⃗i

[
X log

(
X2 + β2)− 2X + 2β tan−1

(
X
β

)]α−Li

α

. (C.0.16)

One may verify that Eq.(C.0.16) gives the principal value if x⃗ is a boundary point.
This corresponds to the fact that β → 0. Specifically, if x⃗ is a boundary point then
there exists a λ∗ ∈ (0, 1) such that x⃗ = x⃗i + Liλ

∗⃗ti, so that the principal value is given
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by:

u⃗Ω,i = −
ωb

2π
t⃗iLi (log Li + λ∗ log λ∗ + (1− λ∗) log (1− λ∗)− 1) . (C.0.17)

An important observation is that u⃗Ω,i is properly defined even at the end points, i.e.
λ∗ = 0, 1.
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