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Abstract

Graphs are important data structures that can be found in a wide variety of real-world

scenarios. It is well recognised that the primitive graph representation is sparse, high-

dimensional and noisy. Therefore, it is challenging to analyse such primitive data for

downstream graph-related tasks (e.g., community detection and node classification). Graph

representation learning (GRL) aims to map graph data into a low-dimensional dense vector

space in which the graph information is maximally preserved. It allows primitive graphs to

be easily analysed in the new mapped vector space.

GRL methods typically focus on simple connectivity patterns that only explicitly model

relations between two nodes. Motif structures that capture relations among three or more

nodes have been recognised as functional units of graphs, and can gain new insights into the

organisation of graphs. Therefore, in this thesis we propose new GRL methods modelling

motif structures for different graph-related tasks and applications along three directions:

(1) a method to learn a spectral embedding space with both edge-based and triangle-based

structures for clustering nodes; (2) a graph transformer by unifying homophily and heterophily

representation for role classification and motif structure completion; (3) a method to tackle

noises in knowledge graph representations with motif structures for recommendations and

knowledge graph completion. Experimental studies show that the proposed methods have

outperformed related state-of-the-art methods for targeted tasks and applications.





Important Notations and Abbreviations

Symbol Definition

a(l)i j lth-order proximity value between node vi and v j

assoc2(S1) Total degrees of vertices in the subgraph induced by vertices in S1

assoc3(S1) Number of nodes in triangles in the subgraph induced by vertices in S1

Ak kth-order proximity

AM Homophily representation with motif M

cut2(S1,S2) Number of edges between S1,S2

cut3(S1,S2) Number of triangles between S1,S2

c Containing (eh,r,et) community indicator vector

C Cluster set

D Degree matrix

eh, r, et Head, relation, tail

E[w(vd,vk)] Expectation of the weight of the edge connecting nodes vi and vk

gE Energy function score for TransE

G = {E ,R} KG entity set E and relation setR

H Heterophily representation

L Laplacian matrix

L(n)k Neural margin-based ranking loss

L(w)k Weighted margin-based ranking loss



x Important Notations and Abbreviations

m(eh,r,et) Motif feature vector for the triple (eh,r,et)

ML L−layer fully-connected neural network

p(et |eh) Value of the resource on the tail entity from head entity

p,q Weight of edges for intra-communities and

inter-communities under PPM, respectively

pu, qi Latent vector for user u and item i

P Transition tensor

Q Unification of homophily and heterophily representation

S∗1,S
∗
2 Two disjointed true clusters

S1,S2 Two disjointed clusters produced by an algorithm

t̂(eh,r,et) Trustworthiness value of the triple (eh,r,et)

t̂(e) Trustworthiness of entity e

T Adjacency tensor

vol2(S1) Total degrees of vertices in S1

vol3(S1) Number of nodes in triangles that reside in S1

W Adjacency matrix
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Chapter 1

Introduction

Graphs (a.k.a. networks) are important data structures that abstract relations between discrete

objects, such as social network [116], citation networks [27] and brain networks [83]. A

graph is composed of nodes (a.k.a. vertices) and edges (a.k.a. links) representing node

interactions. For example, in social networks (Fig.1.1), nodes are people and there is an edge

between two people if they are friends. In citation networks, one node represents one paper,

and one edge is directed from one paper to another that it cites.

Fig. 1.1 The illustration of Zachary Karate Club Network [127] represents the friendship
between members in a karate club, which is produced by the author. An edge connects two
people if they interacted outside of the club.

Machine learning in graph analysis plays an essential role in a range of tasks across

many disciplines. For example, in social networks, clustering is valuable for targeted



2 Introduction

advertising and friends recommendation. There are three important graph analysis tasks

that are clustering [85], node classification [11, 132, 130, 131] and link prediction [16].

Specifically, clustering aims to find subsets of similar nodes and group them together. Node

classification is used to predict labels of nodes based on labelled nodes and graph structures.

Link prediction aims to complete graphs by predicting some missing links or links that are

likely to occur in the future.

To complete the above graph analysis tasks, a key problem is about how to incorporate

graph structural information into machine learning models. Therefore, conventional methods

heavily rely on graph statistics (e.g., degrees, common neighbours) to extract graph structural

information [11]. However, these methods are inflexible and time-consuming because such

hand-engineered features cannot adapt during the learning process and manual design is

very expensive. In recent years, there has been emerging a large number of methods that

can automatically learn representations that encode graph structural information. The idea

is that representation learning approaches aim to learn a mapping function that embeds

nodes, edges, or entire (sub)graphs, into a low-dimensional vector space [47]. The goal is

to optimise this mapping function so that geometric relationships in this learned space can

reflect and preserve the structural information of the original graph. After optimising the

embedding space, the learned embeddings can be used as feature inputs for downstream

machine learning tasks.

Most graph analysis methods are based on an edge structure that is the simplest structure

to reflect a pairwise relation. However, in many real-world graphs (e.g., social networks), the

minimal and functional structural unit of a graph is not a simple edge but a small network

subgraph that involves more than two nodes [9], which is called motifs (a.k.a higher-order

structures) 1. This term is introduced in the paper [94] when they studied the frequency of

interactions of more than two nodes through subgraph analysis. Subsequently, Milo et al.

[76] define motifs as recurrent and statistically significant subgraphs or patterns of a larger

graph. In follow-up work, Milo et al. [75] showed that the frequencies of the 13 connected,

3-node directed subgraphs (Fig.1.2) were sufficient to distinguish biological, social, and

1This thesis uses “motifs” when describing connectivity patterns in graphs and use the term “higher-order
structures” when discussing the more mathematical points.
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Fig. 1.2 Illustration of all possible three-nodes motifs (M1−M13) and two examples of
four-node motifs (Mbifan and Mloop).

linguistic networks. In subsequent research, important motifs have been identified in a variety

of domains, including brain science [98], biology [118], and social network analysis [61].

There is substantial evidence that motif structures, or small subgraph patterns between a

few nodes, are essential to the behaviour of many complex systems modelled by graphs [76,

75] because they can reflect functional properties. Fig. 1.2 lists all possible thirteen different

three-node motifs. For example, triangular structures M4, with three reciprocated edges

connecting three nodes, play important roles in social networks [61]. In this case, two people

who share a common friend are more likely to become friends themselves, which forms a

triangular structure. Motif M5 that is a feed-forward loop is a characteristic motif in neurons

connectivity [10]. The reason for these characteristics relies on the functionality of such

small subgraphs on the performance of specific graphs.

1.1 Motivation and Research Questions

Graph representation learning (GRL) has been widely recognised as an effective approach

to learn the low-dimensional representations of vertices in graphs. The primitive graph

representation suffers from overwhelming high dimensionality and sparsity. GRL aims to

learn low-dimensional and dense continuous latent representations of nodes on a graph.

Meanwhile, it can preserve the structure and the inherent properties of the graph, which

can then be exploited effectively in downstream tasks. Fig.1.3 shows the GRL framework
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Fig. 1.3 Illustration of the graph representation learning framework that takes the role
classification as a downstream task. In order to encode the connectivity information for each
node in a primitive input graph, we need to use a high-dimension and sparse vector. In this
example, such a vector is shown as a heat map, in which non-zero values are highlighted
with red. After using GRL techniques, we can learn the low-dimensional embedding space
of each node while preserving the inherent graph structure. The learned representations are
used as feature inputs for downstream machine learning models (e.g., logistic regression).

that takes high-dimensional and sparse connectivity information as an input for a role

classification task.

Motif structures have proven fundamental to gain insights into diverse complex graphs.

Additionally, the usage of motifs allows for greater modelling flexibility. Among all the

possible motifs, a simple motif structure is the triangle which represents a basic unit of

transitivity in graphs. For triangular motif structures, total thirteen different interactions

among three nodes can be found when considering directions (Fig. 1.2), but only two different

edge structures. The application will decide which motif structures should be modelled.

Despite its key importance, motif structures have not been well integrated into the analyses,

models, and algorithms that we actually use to study the graph representation. Although much

work in recent years has been dedicated to refining and improving the performance of GRL

algorithms, most methods still are limited to model pairwise relations [135, 56, 87, 82, 101].

That is, these works perform graph prediction (e.g., link prediction, node classification)

tasks based on pairwise relations between nodes and ignore motifs structures involving more

than two nodes. It is widely known that motifs are essential to the structure and function of

complex graphs.
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Therefore, the motivation of this thesis is to develop new algorithms that encode motif

structures into GRL to improve some remarkable graph-related tasks. This thesis will focus

on the clustering, classification and link prediction tasks. In order to improve the performance

of these tasks, this thesis answers and solves three key research questions. Note that before

describing research questions, this thesis will give a brief background about them and the

detailed background will be introduced in Chapter 2.

1. Spectral clustering (SC) is a popular approach for gaining insights from complex graphs

by grouping similar nodes together. Conventional SC methods focus on the simple

edge structures without direct consideration of motif structures. This has motivated

SC extensions that directly consider motif structures. However, both conventional SC

methods and its extensions are limited to considering a single type. Therefore, the

first research question is about how to incorporate both edge and motif structures into

spectral embedding space for graph clustering.

2. Higher-order proximity (HOP) is fundamental for most graph embedding methods

due to its significant effects on the quality of node embedding and performance on

downstream graph analysis tasks. Most existing HOP definitions are based on either

homophily to place close and highly interconnected nodes tightly in embedding space

or heterophily to place distant but structurally similar nodes together after embedding.

In real-world graphs, both can co-exist, and thus considering only one could limit

the prediction performance and interpretability. Additionally, there is no general and

universal solution that takes both into consideration. Therefore, the second research

question is about how to leverage motif structures to unify homophily and heterophily

graph representation via a universal solution?

3. Incorporating knowledge graphs (KGs) into recommender systems (RS) has recently

attracted increasing attention. For large-scale KGs, due to limited labour supervision,

noises are inevitably introduced during automatic construction. However, most existing

KG-aware RS do not consider such noises in KGs, which can degrade the performance

of KG-aware RS. Therefore, the third research question is about how to use motif
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structures to estimate the noises of triples for KG representation and improve the

performance of RS?

1.2 Research Challenges and Hypothesis

The overall objective of this thesis is to automatically learn graph representation with motif

structures. To achieve this, this thesis first looks at the potential challenges this raises, and

then discusses how each challenge can be addressed with motif representation, as follows:

1. Structure preservation of different orders in clusters. The real-world graphs have

both edge and higher-order structures, and both can be important. Existing conventional

and higher-order SC methods model only either edges or higher-order structures. For

example, edge-based SC does not take motifs into consideration, while higher-order

SC loses information of some edges, in particular, those that do not belong to any

motifs. That is, only preserving one type of structures will lead to largely missing

another structures. The challenge is the preservation of both types of structures in

spectral embedding space and generates clusters with rich structures.

2. Inflexibility of GRL assumptions. Most existing GRL methods are based on either

the homophily assumption to place close and highly interconnected nodes tightly in

embedding space or the heterophily assumption to place distant but structurally similar

nodes together after embedding. Such a “one-size-fit-all” representation potentially

limits the performance and interpretation of many graph-based tasks. Moreover, there

is no universal solution to unify both assumptions. Therefore, a challenge is to develop

a universal method to flexibly unify both homophily and heterophily assumptions in

the graph embedding space.

3. Noise-tolerant KGR for RS. The KGs usually contain tremendous structured facts.

Incorporating such rich facts into RS has attracted increasing attention recently. How-

ever, plenty of noises are inevitably introduced in large-scale KGs during automatic



1.3 Structure and Contributions 7

construction due to limited labour supervision. These noises can degrade the per-

formance of knowledge-aware RS. Therefore, a challenge is about automatically

estimating noises and developing a noise-tolerant method to improve the performance

of knowledge-aware RS.

The hypothesis of this thesis is that motif-aware GRL can capture complex interactions

among nodes to learn better node representation, which can improve the performance of

graph-based tasks and applications.

1.3 Structure and Contributions

This section outlines the structure of this thesis, alongside presenting the key novel contribu-

tions of this thesis. Prior to it, this thesis structures the contributions and important tasks in

this thesis as shown in Fig. 1.4.

Chapter 2: "Background" presents a survey of the literature relating to the topics

explored in this thesis. This chapter begins with describing definitions of motif structures

and graph representation learning. It then presents spectral clustering including some

important steps : normalised graph Laplacian, sorting nodes and cut criteria. Next, this

chapter introduces the concept of higher-order proximity that is commonly used for structure

preservation in graph embedding space. Next, this chapter shows two GRL assumptions

that are homophily and heterophily, which will help to describe the motivation of the work

(Chapter 4). Additionally, this chapter reviews some important works about knowledge

graph embedding methods. Finally, the recommender system as one important application of

trustworthiness-aware knowledge graph embedding will be introduced.

Chapter 3: "Mixed-order Spectral Clustering for Graphs" presents two spectral

clustering methods by modelling both edge and triangle structures in spectral embedding

space simultaneously. The first method is based on graph Laplacian, with its theoretical

performance guarantee derived by proving a Cheeger inequality. For the second method, this

chapter defines a new random walks model for a probabilistic interpretation. After that, this

chapter introduces newly designed cut criteria to enable existing single-order SC to preserve
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Fig. 1.4 The structured contributions of this thesis in motif-aware GRL and important tasks.

mixed-order structures, and new mixed-order evaluation metrics for structure evaluation.

This chapter introduces experiments on community detection and superpixel segmentation

tasks to show the superior performance of our algorithms over existing methods.

Contribution 1: We develop two new algorithms for preserving both edge and triangle

structures information simultaneously in spectral embedding space for node clustering

by using graph Laplacian and random walks, along with new cut criteria and evaluation

metrics.

Chapter 4: "Unifying Homophily and Heterophily Graph Transformation via

Motifs" theoretically studies why most existing GRL methods with higher-order proximity

preservation only hold a homophily assumption. Thus, in this chapter we propose a universal

framework to unify both homophily and heterophily assumptions by newly designing micro-

level and macro-level walk paths, which leverages the motif representation. Additionally in

this chapter we conduct experiments on node classification, structural role classification and

motif prediction to show the superior prediction performance and computational efficiency

over state-of-the-art (SOTA) methods.
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Contribution 2: We propose micro-level and macro-level walk paths with the motif

representation to preserve homophily and heterophily in HOP by theoretically studying

why most HOP preserving embedding methods only hold a homophily assumption,

and propose a novel framework to unify homophily and heterophily representations,

and three instantiations.

Chapter 5: "Trustworthiness-aware Knowledge Graph Representation for Recom-

mendation" proposes to estimate the trustworthiness of triples through internal structural

information: motifs, communities and global information. In this chapter, we then integrate

triple trustworthiness into a weighted/neural loss function of KGR to learn noise-tolerant

KGR. Meanwhile, in this chapter we integrate entity trustworthiness into RS to learn noise-

tolerant item representations for RS. Lastly, we conduct extensive experiments to show the

superior performance of our method over SOTA methods for book and movie recommenda-

tions.

Contribution 3: We propose a trustworthiness estimator for KGR to take noises

in KGs into account by considering motifs, communities and global structural in-

formation, and integrate it to learn noise-tolerant KGR and item representations for

RS.

Chapter 6: "Conclusion and Future Work" summarises findings and the contributions

of this thesis. This chapter also presents future research directions in the area based on the

work presented in the prior chapters.

The contents of this thesis are based on the following publications and papers that are

currently under review, for which I am a leading author. The technical contents of Chapters

3 has appeared in Elsevier copyrighted materials, with the permission to reprint granted by

Elsevier:

1. Ge, Yan, Pan Peng, and Haiping Lu. "Mixed-Order Spectral Clustering for Complex

Networks." Pattern Recognition (2021): 107964.
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2. Ge, Yan, Jun Ma, Li Zhang, and Haiping Lu. "Unifying Homophily and Heterophily

Network Transformation via Motifs." arXiv preprint arXiv:2012.11400 (2020).

3. Ge, Yan, Jun Ma, Li Zhang, and Haiping Lu. Trustworthiness-Aware Knowledge

Graph Representation for Recommendation, ECML-PKDD GEM Workshop (2020).



Chapter 2

Background

Graphs have become ubiquitous because data from many different disciplines can be naturally

mapped to graph structures, such as social networks, traffic networks and protein–protein

interaction graphs. Therefore, to understand the structure and feature of these complex

systems, graph analysis has become both crucial and interdisciplinary. Motivated by it, in

Chapter 1, we have shown the importance of motifs and GRL. Therefore, in this chapter,

we start with the definition of motifs and GRL to gain insights. After that, we categorise

GRL methods based on the techniques used and introduce some basis of SC. Additionally,

the proximity as an important concept in GRL will be presented in Sec.2.4. Finally, we will

show knowledge graph representation learning and its important application recommender

systems.

2.1 Motif Structures in Graphs

Graph analysis in terms of the edge structure connecting two nodes is natural since the edge

is assumed to be the simplest unit structure in graphs. However, there is substantial evidence

that higher-order structures (Fig. 1.2) that are small subgraph connectivity patterns among

several nodes, are essential to understand the behaviour of many complex systems modelled

by graphs [76, 125, 10]. Following the paper [10], we formally define a motif on k nodes

by a tuple (B,A), where B is a k× k binary matrix and A ∈ {1,2, ...,k} is a set of anchor
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nodes. The matrix B encodes the edge connection pattern between the k nodes, and A labels

a relevant subset of nodes for defining motif conductance. Third-order structures model

interactions among three nodes, which are the cases of k =3. For example, the motif M4 in

Fig.1.2, where all nodes are anchors is denoted by

(B,A) =




0 1 1

1 0 1

1 1 0

 ,{1,2,3}

 . (2.1)

Higher-order structures consist of at least three nodes (e.g. triangles, 4-vertex cliques) [10].

It can directly capture interaction among three or more nodes. For example, when clustering

graphs, higher-order structures can be regarded as fundamental units and algorithms can

be designed to minimise cutting them in partitioning. Clustering based on higher-order

structures can help us gain new insights and significantly improve our understanding of

underlying graphs. For example, triangular structures, with three reciprocated edges con-

necting three nodes, play important roles in brain networks [98] and social networks [45].

More importantly, higher-order structures allow for more flexible modelling. For instance,

considering directions of edges, there exist 13 different third-order structures, but only two

different second-order structures 1 [92]. Thus, the application can drive which third-order

structures to be preserved.

2.2 Graph Representation Learning

Graphs can be naturally found in a wide diversity of real-world scenarios, such as social

networks and citation networks. Effective graph analysis can benefit some graph-related tasks.

For example, by analysing a constructed graph derived from users’ online social behaviours

(e.g., retweet/ comment/follow in Facebook), we can classify users, detect communities, and

predict whether an interaction will happen between two users [15].

1Edges are considered as first-order structures in [9] but second-order structures in [136]. We follow the
terminologies in the latter [136] so that the “order” here refers to the number of nodes involved in a particular
structure.
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Graph representation learning (GRL), which has attracted a lot of research interest,

represents nodes by low-dimensional vectors while preserving graph topology structure,

vertex content, and other side information. After we learn new node representations, graph

analysis tasks can be easily and efficiently handled by applying traditional vector-based

machine learning algorithms (e.g., logistic regression, k-means). In essence, the learned node

representations remove redundant and noisy information while preserving reasonable and

valuable information for downstream graph-related tasks.

In the early 2000s, graph embedding algorithms were mainly designed to reduce the high

dimension of the non-relational data. Given a set of non-relational high-dimensional data

features, a similarity graph (e.g., k-nearest neighbour graph) is first constructed based on the

pairwise feature similarity. Then, each node in the graph is embedded into a low-dimensional

space where connected nodes are closer to each other. Isomap [102] and Locally Linear

Embedding [89] are representative methods. However, these methods only focus on the

similarity of direct neighbours and usually require at least quadratic time complexity in terms

of the number of nodes. Therefore, in recent years, loans of research works give attention to

the development of effective and scalable representation learning techniques that are directly

designed for graphs. Also, beyond the structure of direct neighbours, preservation of the

indirect neighbour structure becomes an attractive research problem. For example, DeepWalk

[82] as a pioneering work first proposes to use truncated random walks to collect connection

information of nodes and apply the SkipGram model [73] to derive the embedding vectors.

The problem of GRL can be formally defined as follows:

Definition 1. (GRL) Given a graph denoted as G = (V,E), GRL is a mapping function f :

vi→ yi ∈ Rd ,where d≪ |V |. The objective function is to make the similarity between yi and

y j explicitly preserve the structural information of vi and v j.

In the following, we categorise GRL methods into three groups that are matrix factorisa-

tion based, random walk based and deep neural network. In general, GRL aims to project a

graph to a low dimensional space while preserving graph property information as much as

possible. The main differences among different categories of GRL rely on the definition of
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graph property information to be preserved. Note that the below three categories of models

are not completely exclusive, and it is possible to combine them for developing algorithms.

2.2.1 Matrix Factorisation based GRL

Matrix factorisation based methods encode the connections information between nodes in

the form of a matrix that can be adjacency matrix, Laplacian matrix and transition probability

matrix. The matrix is then factorised to obtain the embedding. Additionally, depending

on the matrix properties, approaches to factorise the representative matrix is various. For

example, if the obtained matrix is positive semi-definite (e.g. the Laplacian matrix), we can

use the eigenvalue decomposition. Matrix factorisation based methods have been proved

effective in learning node representations [122, 135] because of capturing global structure,

but the scalability is a limitation that needs to be concerned. The reason is that performing

factorisation on a matrix with millions of rows and columns is memory intensive and

computationally expensive.

2.2.2 Random Walk based GRL

From Definition 1, graph structure preservation is essential in graph embedding space. The

assumption of random Walk based GRL is that the neighbourhood structure that is local

connectivity information of a node is important for GRL. The primitive representation of a

node is an adjacency vector that encodes the connection information of direct neighbours.

However, this vector is sparse, noisy, and high-dimensional. Specifically, for a real-world

large graph with n nodes, we use a vector i to encode the connection information for a node

vi. This vector is sparse, which means that only few entities in this vector are non-zero

due to few connected neighbours of the node vi. This vector is noisy because the node vi

and its connected neighbours potentially have different given labels for predictions. This

vector is high-dimensional because the dimension of vector i is 1× n. Such a primitive

representation is not friendly to downstream applications. DeepWalk [82] is a pioneer work

in using random walks to collect a list of neighbour connection information. Based on
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DeepWalk, node2vec [46] exploits a biased random walk strategy to capture more rich

structural information. Random Walk based GRL methods bring the idea from the field

of natural language processing because the word representation learning also suffers from

sparse, noise, and high-dimensional problems. After performing random walks, it then uses

word2vector [74] to reconstruct its neighbourhood connection information that is defined by

co-occurrence rate. The core idea is that regarding a node as a word, we can regard a random

path as a sentence, and the node neighbourhood can be identified by co-occurrence rate as in

Word2Vector. The following works of DeepWalk, such as node2vec [46] and struc2vec [87],

focus on the key problem about the definition of neighbourhood.

2.2.3 Deep Neural Networks based GRL

Deep neural networks have shown superior performance in a wide variety of research fields,

such as computer vision and natural language processing. One important reason is that deep

neural networks can effectively model the non-linear function. Essentially, by definition the

core problem is to learn a function that can effectively map from the original graph space

into a low-dimensional vector space. As introduced matrix factorisation based methods

in Sec. 2.2.1, these methods assume the mapping function to be linear. Nevertheless, the

real-world graphs are complicated and highly non-linear [128]. Due to an effective non-linear

function learning model, the deep neural network can be a useful alternation to be considered.

Additionally, end-to-end training is an advantage of deep neural networks for GRL. In

recent years, graph convolutions networks [56] and their variations that define a convolution

operator on networks become popular to learn GRL. These models iteratively aggregate the

embeddings of neighbours for a central node and use a non-linear activation function of the

obtained embedding. The aggregation operation only focuses on local neighbourhoods that

which makes it scalable. Also, multiple iterations allow the learned embedding of a node to

capture global information.
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2.3 Spectral Clustering

Clustering is an important and powerful tool in analysing graph data, e.g., for community

detection [85, 22, 38] and image segmentation [106]. Clustering aims to divide the data

set into clusters (or communities) such that the nodes assigned to a particular cluster are

similar or well connected in some predefined sense [55, 77]. It helps us reveal functional

groups hidden in data. Spectral clustering is one of the most popular clustering algorithms.

It has efficient solutions by standard linear algebra software, and frequently outperforms

other popular clustering algorithms such as k-means [108]. As a popular clustering method,

conventional spectral clustering (SC) [72, 79] encodes pairwise similarity into an adjacency

matrix. Such encoding inherently restricts SC to second-order structures [10], such as

undirected or directed edges connecting two nodes. However, in many real-world graphs, the

minimal and functional structural unit of a graph is not a simple edge but a small network

subgraph (a.k.a. motif ) that involves more than two nodes [9].

Typical steps in a bi-partition SC algorithm is shown in Algorithm 1. Step 1 differentiates

higher-order SC from conventional SC on whether an adjacency tensor or matrix is built

first from the graph G. This adjacency matrix/tensor is then used to construct a similarity

(Laplacian/transition) matrix/tensor. A three-dimensional adjacency tensor T encodes the

connection information among three nodes. If three nodes {vi,v j,vk} form a triangle, all

entries in T with a permutation of indices i, j,k are 1 otherwise are 0. For higher-order tensor

SC, the similarity tensor is further reduced to a similarity matrix. Then, we compute the

dominant eigenvector of the similarity matrix, whose entries correspond to the vertices. Next,

a procedure called sweep cut is applied to this eigenvector, where the entries are sorted to

construct (n−1) candidate partitions. A sweep cut criterion is then used to evaluate these

partitions to find the optimal one as the final output.

In this thesis, we focus on methods based on normalised graph Laplacian and random

walks where a transition matrix/tensor is constructed in Step 2 and present more relevant

details below.
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Algorithm 1 Generic steps in bi-partition spectral clustering
Input: G = (V, E)

Output: Two node sets S1, S2

1: Construct an adjacency matrix/tensor from G.

2: Construct a similarity (Laplacian/transition) matrix/tensor from the adjacency ma-

trix/tensor.

3: [Higher-order tensor SC only:] Reduce the similarity tensor to a similarity matrix.

4: Compute the dominant eigenvector z of the similarity matrix above. Each entry in z

corresponds to a vertex.

[Sweep cut]

5: Sort the n entries in z from z1 ≤ ·· · ≤ zn to zψ1 ≤ ·· · ≤ zψn , which gets the vertices V

sorted to {vψ1 , . . . , vψn}.

6: Let Tk = {vψ1 , . . . , vψk} consist of the first k sorted vertices, for 1≤ k ≤ n−1.

7: Use a cut criterion β (Tk,V\Tk) to compute all (n−1) possible binary partitions of the

sorted vertices.

8: The partition k∗ with the optimal criterion value is the output partition {S1, S2} ←
(Tk∗ ,V \Tk∗).

2.3.1 Normalised Graph Laplacian

Let W ∈ Rn×n be an unweighted adjacency matrix of G where W(i, j) = 1 if (vi, v j) ∈ E,

otherwise W(i, j) = 0. The degree matrix D is a diagonal matrix with diagonal entries

D(i, i) =
n

∑
j=1

W(i, j), (2.2)

which is the degree of vertex vi. We denote the Laplacian matrix of G as

N = D−W. (2.3)

The normalised Laplacian of G is defined as

L = D−
1
2 ND−

1
2 . (2.4)
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Let WT be triangle adjacency matrix of G with its entry (i, j) being the number of

triangles containing vertices i and j, which leads to a corresponding weighted graph GT [10].

For implementation, based on [10], we formulate

WT = A ·A◦A, (2.5)

where A is an edge adjacency matrix, ‘·’ is matrix multiplication, and ‘◦’ is Hadamard product.

Similarly, we can define the triangle Laplacian as NT =DT−WT and the normalised triangle

Laplacian as

LT = D−
1
2

T NT D−
1
2

T , (2.6)

where DT (i, i) = ∑
n
j=1 WT (i, j).

2.3.2 Random Walks for Structures

We define a second-order transition matrix P by normalising the adjacency matrix W to

represent edge structures as [72]

P = D−1W. (2.7)

The entry Pi j represents the probability of jumping from vertex vi to v j in one step. The

transition matrix P represents a random walk process on graph G [72]. From the random

walk perspective, SC can be interpreted as trying to find a partition of the graph such that the

random walk stays long within the same cluster and seldom jumps between clusters [108].

Benson et al. [9] extend the above using a three-dimensional transition tensor to encode

triangle structures. They firstly define a symmetric adjacency tensor T ∈ Rn×n×n such that

the connectivity information for three vertices {vi, v j, vk}∈ V can be represented explicitly in

this tensor. All entries in T with a permutation of indices i, j, k have the same value (hence

symmetric). Thus, T encodes triangle structures in G as:

T (i, j,k) =

1 vi,v j,vk form a triangle,

0 otherwise.
(2.8)
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Next, they form a third-order transition tensor P as:

P(i, j,k) = T (i, j,k)/
n

∑
m=1
T (i,m,k), (2.9)

where ∑
n
m=1T (i,m,k) ̸= 0, and 1 ≤ i, j, k ≤ n. For ∑

n
m=1T (i,m,k) = 0, we follow Ben-

son et al. [9] and fill in P(i, :,k) with a vector u where every value of entity is 1
n , where n

is the number of nodes. The vector u is a dangling distribution vector. Benson et al. [9]

interpret this transition tensor P as a second-order random walks. The reason for this setting

is that it can prevent information from getting stuck on the nodes that do not involve in

any triangular motifs and eventually resulting information received by these nodes cannot

be propagated. For this case, the vector u ensures that the information can be randomly

propagated from the node that does not involve in any triangular to any other nodes with the

same probability 1
n .

Based on the strategies for constructing different similarity matrices in Sec. 2.3.1 and

Sec. 2.3.2, the existing higher-order SC can be grouped into four approaches: 1) The first

approach constructs an affinity tensor to encode higher-order structures and then reduces

it to a matrix [39], followed by conventional SC [79]. These methods, such as tensor

trace maximisation (TTM) [40], are developed in a closely related problem of hypergraph

clustering that considers “hyperedges” connecting multiple nodes. 2) The second approach

develops higher-order SC by constructing a transition tensor based on random walks model

and then reduces it to a matrix for conventional SC, such as tensor spectral clustering (TSC)

[9]. 3) The third approach uses a counting and reweighting scheme to capture higher-order

structures and reveal clusters [105], such as motif-based SC (MSC) [10].2 4) The fourth

approach is higher-order local clustering aiming to reduce computation cost [126], such as

High-Order Structure Preserving Local Clustering (HOSPLOC) [136].

2We have verified that TTM and MSC are equivalent, nevertheless.
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2.3.3 Sorting the Nodes

We hope to find a binary partition, i.e., a cut, that can optimise some cut criterion (as

listed in Table 2.1). However, this is an NP-hard combinatorial optimization problem [109].

Fortunately, some real-valued relaxations of this problem provide a guaranteed approximation

[26]. One of the most popular approach is to calculate a domain eigenvector z = {z1, z2, . . . ,

zn}, called Fiedler vector [34], of the similarity matrix. We can sort the vertices according to

the values {zi}. Then, we consider the vertex subsets Tk = {v1, v2, . . . , vk}, 1≤ k ≤ n−1,

i.e., Tk consists of the first k vertices in the sorted vertex list and becomes a candidate cluster,

with its complement V \ Tk as the other cluster. Next, we use a sweep cut procedure to

evaluate this partition using some cut criterion β (·) to find the best one.

2.3.4 Cut Criteria

The sweep cut procedures are described in steps 5 to 8 of Algorithm 1. In the following, we

describe some commonly used cut criteria (i.e., the function β (·)) to be studied in this thesis.

Firstly, we introduce some essential definitions.

Edge volume, associativity, and cut. The (edge) volume of a set of vertices S1, denoted

by vol2(S1), is the sum of the degrees of vertices in S1:

vol2(S1) = ∑
vi∈S1,v j∈V

Wi j. (2.10)

The (edge) associativity of vertices in S1, denoted by assoc2(S1), is the sum of the degrees of

vertices in the subgraph induced by vertices in S1, defined as

assoc2(S1) = ∑
vi,v j∈S1

Wi j. (2.11)

The (edge) cut, denoted by cut2 (S1, S2), is the number of edges between S1 and S2

cut2(S1,S2) = vol2(S1)−assoc2(S1). (2.12)
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These are conventional definitions [108].

Triangle volume, associativity, and cut. Benson et al. [9] extended the above definitions

to 3D. The triangle volume of S1, denoted by vol3(S1), counts the number of vertices in

triangles that reside in S1:

vol3(S1) =
1
2 ∑

vi∈S1;v j,vk∈V
T (i, j,k). (2.13)

The triangle associativity, denoted by assoc3(S1), counts the number of vertices in triangles

in the subgraph induced by vertices in S1, defined as

assoc3(S1) =
1
2 ∑

vi,v j,vk∈S1

T (i, j,k). (2.14)

The triangle cut, denoted by cut3(S1,S1) is the number of triangles between S1 and S2.

cut3(S1,S2) =
1
3
(((vol3(S1)−assoc3(S1))

+(vol3(S2)−assoc3(S2))). (2.15)

In the above, we introduce some factors 1/2 and 1/3 to the original definitions in [9] to avoid

counting vertices in triangles more than once in an undirected graph.

Table 2.1 lists eight cut criteria based on the above definitions, to be studied in this thesis.

These sweep cut criteria have two main objectives: 1) to preserve a rich set of structures in

S1 and S2; 2) to avoid breaking (as many as possible) structures due to partitioning S1 and S2.

Besides these sweep cut methods, k-means [70] is another popular choice in finding the final

partition by clustering the first two eigenvectors into two sets.

2.3.5 Cheeger Inequalities

Given G = (V,E) and a subset S⊆ V, let S̄ denote the complement of S. Let cut2(S;G) denote

the edge cut of S, i.e, the number of edges between S and S̄ in G. Let vol2(S;G) denote the
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Table 2.1 Edge-based and triangle-based cut criteria.

Edge-based cuts Triangle-based cuts

Conductance (φ ) φ2(S) = cut2(S)
min(vol2(S),vol2(S̄))

[91] φ3(S) = cut3(S)
min(vol3(S),vol3(S̄))

[9]

Ncut (η) η2(S) =cut2(S)( 1
vol2(S)

+ 1
vol2(S̄)

) [95] η3(S) = cut3(S)( 1
vol3(S)

+ 1
vol3(S̄)

) [63]

Nassoc (ξ ) ξ2(S) = assoc2(S)
vol2(S)

+ assoc2(S̄)
vol2(S̄)

[95] ξ3(S) =
assoc3(S)

vol3(S)
+ assoc3(S̄)

vol3(S̄)
[40]

Expansion (α) α2(S) = cut2(S)
min(|S|,|S̄|) [35] α3(S) = cut3(S)

min(|S|,|S̄|) [9]

edge volume of S, i.e. the total degrees of vertices in S, and assoc2(S;G) is the total degrees

in the subgrapgh induced by vertices in S. The edge conductance of S is defined as

φ2(S;G) =
cut2(S;G)

min{vol2(S;G),vol2(S̄;G)}
. (2.16)

Other popular edge-based cut criteria are shown in Table 2.1 (left column). The classical

Cheeger inequality below relates the conductance of the sweep cut of SC to the minimum

conductance value of the graph [34].

Lemma 1 (Second-Order Cheeger Inequality [34]). Let v be the second smallest eigenvector

of L. Let T ∗ be the sweep cut of D−1/2v w.r.t. cut criterion φ2(·;G). It holds that

φ2(T ∗;G)≤ 2
√

φ∗2 , (2.17)

where φ∗2 = minS⊂V φ2(S;G) is the minimum conductance over any set of vertices.

Let cut3(S;G) denote the triangle cut of S, i.e. the number of triangles that have at least

one endpoint in S and at least one endpoint in S̄, and let assoc3(S;G) count the number

of vertices in triangles in the subgraph induced by vertices in S. Let vol3(S;G) denote the

triangle volume of S, i.e. the number of triangle endpoints in S. The triangle conductance [9]
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of S is defined as

φ3(S;G) =
cut3(S;G)

min{vol3(S;G),vol3(S̄;G)}
. (2.18)

It is further proved in [10] that for any S ⊂ V , φ3(S;G) = φ2(S;GT ), which leads to the

following third-order Cheeger inequality. Other popular triangle-based cut criteria are

summarised in Table 2.1 (right column).

Lemma 2 (Third-order Cheeger Inequality [10]). Let v be the second smallest eigenvector of

LT . Let T ∗ denote the sweep cut of D−1/2
T v w.r.t. cut criteria φ2(·;GT ). It holds that

φ3(T ∗;G)≤ 4
√

φ∗3 , (2.19)

where φ∗3 = minS⊂V φ3(S;G).

2.4 Proximity in Graph Representation Learning

2.4.1 Higher-order Proximity

Graph embedding (a.k.a. network embedding) learns low-dimensional latent representations

of nodes while preserving the structure and inherent properties of the graph. It has been

successfully applied in node classification [56, 107, 37], link prediction [135, 100], and

community detection [114, 20].

Graph embedding aims to learn latent, low-dimensional representation of nodes while

preserving graph topology [128]. Prior works have demonstrated that the higher-order

proximities between nodes are of tremendous importance in capturing the underlying structure

of the graph [17, 80, 123, 33]. The adjacency matrix A can be treated as the first-order

proximity, which captures the pairwise proximity between nodes. However, the first-order

proximity is very sparse and insufficient to fully model the relationships between nodes in

most cases. In order to characterise the connections between nodes better, HOP is widely
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studied. Given A, the HOP can be defined as a polynomial function of A [135]:

S = w1A+w2A2 + . . .+wlAl, (2.20)

where l is the order, and w1, ...,wl are the weights for each term. The { w1,w2, · · · ,wl } are

hyperparameters, and users can define them. In the paper [135], the authors recommend a

setting wi = 0.1i. Matrix Al denotes the lth-order proximity matrix, with a multiplication of

l matrices A. The lth-order proximity value between nodes vi and v j is denoted as a(l)i j .

2.4.2 Homophily and Heterophily Proximity

Preserving higher-order proximity (HOP) instead of only considering direct neighbourhood

relationship (e.g., adjacency matrix) has been shown to be effective for graph embedding

since it can capture rich underlying structures of graphs [17, 101, 135]. In the context of the

graph embedding, homophily is an assumption that highly inter- connected nodes that are

resident in the same community should be placed tightly in the embedding space [71]. To

encode homophily information, we use a homophily proximity K that is defined as:

Definition 2. (Homophily Proximity) Given a graph denoted as G = (V,E), homophily

proximity is a square matrix K of G such that an entry K(i, j) indicates a level that node vi

and node v j are resident in the same community.

Most graph embedding methods share the homophily assumption. However, heterophily

is also an important assumption that places distant but structurally similar nodes (e.g., bridge

[6]) together after embedding. It can benefit the role classification task. Here we use

heterophily proximity N to encode heterophily information of a graph G, and it is defined as:

Definition 3. (Heterophily Proximity) Given a graph denoted as G = (V,E), heterophily

proximity is a square matrix N of G such that an entry N(i, j) indicates a level of an edge ei j

to connect nodes acting as roles and to connect different communities.

In Definition 3, the level of an entry N(i, j) is the weight of an edge ei j. This weight

indicates how likely this edge to bridge different communities. To preserve HOP under the
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homophily assumption, DeepWalk [82] employs random walks to generate node sequences

analogous to word sentences, and then the HOP is approximately captured by a Skip-gram

model [74]. Graph convolutional network (GCN) [56] aggregates the features of local

neighbours for central node representation so that feature vectors of nodes within the same

community are more similar than those in different communities. Arbitrary-order proximity

embedding (AROPE) [135] effectively and accurately preserves arbitrary-order proximity by

reweighting the eigen-decompostion. To preserve HOP under the heterophily assumption,

struc2vec [87] first encodes the node structural similarity into a multi-layer graph, and then

DeepWalk is performed on this multi-layer graph to learn node representations. A recent

transformation model graph diffusion convolution (GDC) [57] generates a new graph by

constructing a diffusion graph obtained by a polynomial function, and then sparsify this

diffusion graph by setting a threshold, but still overlooks the heterophily assumption.

2.5 Knowledge Graph Representation for Recommenda-

tion

2.5.1 Knowledge Graph Representation

In this thesis, we investigate the GRL for homogeneous graphs that all nodes belong to a

single type and all edges belong to one single type, such as the Zachary Karate Club network

in Fig. 1.1. Additionally, we study the GRL for heterogeneous graphs that both node and

edge types are larger than one. Knowledge graphs (KGs) contain rich knowledge in the form

of heterogeneous graphs where nodes correspond entities and edges correspond to relations.

Knowledge in KGs is presented as in the form of the triple (head entity, relation, tail entity)

[113]. For example, in Fig. 2.1, (Tom Hanks, Star, Forrest Gump) indicates that Tom Hanks

is a star of Forrest Gump.

KGR is used to embed entities and relations into low-dimensional vectors while preserv-

ing the semantic and structural information [53]. Translational models are popular to exploit

distance-based energy functions and a relation is regarded as a translation in the embedding
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Fig. 2.1 An example of a knowledge graph that contains entities and relations.

space. TransE [13] follows an assumption that eh and et are connected by r with low error if

a triple (eh,r,et) holds, and thus formulates an energy function

gE = ||eh + r− et ||. (2.21)

However, TransE has flaws when dealing with 1-to-N, N-to-1 and N-to-N relations. To

address these issues, TransH [115] introduces relation specific hyperplanes, which each

relation r as a vector r on a hyperplane with wr The embeddings eh and et are first projected

to the hyperplane of relation r to obtain vectors. They are defined as

e⊥h = eh−w⊥r ehwr , e⊥t = et−w⊥r etwr. (2.22)

We then calculate e⊥h + r ≈ e⊥t . For TransE and TransH, the embeddings of entities and

relations are in the same space. However, entities and relations are different types objects, it

is insufficient to model them in the same space. To address this issue, In TransR [66], eh and

et are projected to a new space so that the relation r focuses on through a matrix Mr and then

gR = ||Mreh + r−Mret ||. (2.23)
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TransD [52] constructs dynamic mapping matrices as

Mrh = rphp + I , Mrt = rptp + I. (2.24)

We then construct projection vectors hp, tp,rp ∈ Rn and an identity matrix I ∈ Rn×n, with

the formulation as

gD = ||
(

rph⊤p + I
)

h+ r−
(

rpt⊤p + I
)

t||. (2.25)

2.5.2 Knowledge Graphs for Recommender Systems

The explosive growth of media services has provided overwhelming choices for users, such as

movies, music and series. Recommender systems (RS) aim to ease information explosion and

largely reduce users’ effort in finding items of interest. Collaborative filtering (CF) is popular

for recommender systems, which assumes that behaviourally similar users would have a

similar preference on items [51]. To build RS, CF models users’ preference on items based

on historical interactions. CF recommends items to users by learning user/item similarities

from existing ratings. MF [58] is a popular technique, which decomposes a rating matrix

into two-factor matrices, representing latent factors for users and items respectively. It is

formulated as

ŷui = pT
u qi, (2.26)

where pu and qi denote the latent vector for user u and item i. Bayesian personalised ranking

(BPR) optimises the above equation with a pairwise ranking loss [86]

Lr = ∑
(u,i)∈Y,(u,i′)∈Y′

− logδ (ŷui− ŷui′), (2.27)

where δ (·) is a sigmoid function and Y′ contains negative interactions by randomly corrupting

an interacted item to a non-interacted one for each user. It encourages that the interacted

items are smaller than random ones for each user through BPR loss function MF associates

each user and item with a real-valued vector of latent features. Conventional RS, based

on collaborative filtering (CF) [58], usually suffer from the sparsity of interactions and the
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cold-start problem. To address these issues, CF-based methods usually suffer from the

cold-start problem and have troubles in recommending brand new items that have not yet

been heavily explored by users. The sparsity problem can be addressed by incorporate

auxiliary sources as side information, such as social networks [50] and images [129]. In

this thesis, we incorporate KGs as an auxiliary source into CF-based methods to address the

above two issues. Recently, some KGs (e.g., Freebase [12]) are successfully applied to many

applications such as question answering [31], text classification [113].

Inspired by the success of applying KGs in a variety of tasks, some recent works incorpo-

rate KGs into RS. The usage of KGs within the context of RS can alleviate the item cold-start

and sparsity problem of CF. The reason is twofold: (1) KGs introduce extra semantic connec-

tions among items, which can provide new items with more interactions to recommendations;

(2) KGs consist of a variety of relation types, which helps extend a user’s interests reasonably

and increasing the diversity of recommended items. Moreover, KG can bring explainability

to recommender systems since KG connects a user’s historical records and the recommended

ones based on relations in the KG.

To construct RS with KGs, we have a knowledge graph G = {E ,R}, which is comprised

of massive entity-relation-entity triples (eh, r, eh), in which h ∈ E , r ∈R, and t ∈ E denote the

head, relation, and tail of a knowledge triple, E andR are the set of entities and relations in

the knowledge graph, respectively. For example, the triple (Forrest Gump, film.film.director,

Robert Zemeckis) states the fact that Robert Zemeckis is the director of the film “Forrest

Gump”. In many recommendation scenarios, an item v ∈ V corresponds to an entity e ∈ E

(e.g., item “Forrest Gump” in MovieLens also appears in the knowledge graph as an entity).

The set of entities E is composed from items V (V ∈ E) and non-items E/V (e.g., entities

corresponding to item properties). We construct a directed graph G from a KG G. Each entity

e ∈ E is abstracted into a node. If there is a relation from the entities e1 to e2, a directed edge

will exist from node e1 to e2. Therefore, a KG with n entities can be mapped as a directed

graph G with n nodes. Given user-item interaction matrix Y and knowledge graph G, our

task is to predict whether user u has a potential interest in item v with which this user has not
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engaged before. Specifically, we aim to learn a prediction function

ŷuv = F(u,v|Θ,Y,G), (2.28)

where ŷuv denotes the probability that user u will engage with item v, and Θ are model

parameters of the function F .

Therefore, collaborative knowledge-based embedding (CKE) [129] combines CF with KG

embedding in a unified Bayesian framework. CFKG [133] combines user-item interactions

and KG into one graph. It then uses an existing KGR method and CF-based method to

learn user and item representations. Knowledge translation-based user preference model [18]

transfers relation information from a KG to recommendation for better understanding the

reasons that a user likes an item. Knowledge-aware graph neural network (GNN) with label

smoothness regularisation [111] applies GNN architecture to KGs by using a user-specific

relation score function and aggregating neighbourhood information with different weights.

2.5.3 Trustworthiness in Knowledge Graphs

Most traditional knowledge graph construction methods usually involve huge human supervi-

sion or expert annotation, which are extremely labour-intensive and time-consuming [119].

Recently, large-scale knowledge graphs (e.g., DBpedia [8], Freebase [12]) are productively

and automatically constructed from unstructured web text (e.g., NELL [19]). However, some

noises and errors are inevitably introduced in the process of automation due to limited labour

supervision [49, 65].

Existing KG-based tasks (e.g., knowledge completion [64]) or applications (e.g., question

answering [68]) assume knowledge in the existing KG is completely correct. To model

errors in KGs, Xie et al. [119] proposed a triple confidence awareness knowledge representa-

tion learning framework, which detects possible noises in KGs while learning knowledge

representations with confidence simultaneously. They introduced the triple confidence to

conventional translation-based methods for knowledge representation learning. Jia et al.

[54] synthetically extracted trustworthiness of the triples from knowledge graph embedding,
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entity resource and path information of the knowledge graph. Most KGs representations

consider deterministic KGs (e.g., Freebase) that consist of deterministic facts. Chen et al.

[24] proposed a KGs embedding model on uncertain KGs that associate every fact with a

confidence score. Dong et al. [32] built a large-scale uncertain knowledge graph, and fused

multiple extraction sources with prior knowledge derived from an existing knowledge base.

2.6 Summary

In this chapter, we conduct a review of the literature in the motifs and GRL. We provide a

formal definition to the problem of GRL and introduce some basic concepts. Additionally,

we present state-of-the-art GRL algorithms in the data mining and machine learning field,

which will help to introduce our proposed algorithms in the following chapters.



Chapter 3

Mixed-order Spectral Clustering for

Graphs

3.1 Introduction

As discussed the importance of motif structures in the Sec. 1.1, there are emerging interests

in directly modelling higher-order structures in graph clustering. However, it should be

noted that most graphs have both second-order and higher-order structures, and both can

be important. Existing conventional and third-order SC methods model only either second-

order or third-order structures, but not both. Second-order SC does not take triangles into

consideration, while third-order SC loses information of some edges, in particular, those

that do not belong to any triangle. A simple example is given by the graph in Fig. 3.1a,

which contains both edges and triangles. In Figs. 3.1b and 3.1c, which correspond to the

representations used by second-order and third-order SC, respectively, each entry indicates

the number of edges and triangles involving two nodes of Fig. 3.1a. As the figures show:

second-order SC fails to capture the importance between nodes 2 and 3, but they participate

in more triangles than any other two adjacent nodes (say 1 and 2), which is not reflected

in Fig. 3.1b; Third-order SC fails to model the importance of the relation between nodes 4

and 5, but there does exist an edge between them (and thus is more important than any two

non-adjacent nodes, say nodes 2 and 5), which was missed in Fig. 3.1c.
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(a) A graph. (b) Edges. (c) Triangles. (d) Mixed.

Fig. 3.1 Motivation of mixed-order structures: the second and third order structures in (a)
can not be fully captured by edge/triangle adjacency matrix in (b) or (c). A mixed adjacency
matrix in (d) can capture both.

In this thesis, we propose a novel Mixed-Order Spectral Clustering (MOSC) framework

to preserve structures of different orders simultaneously, as in Fig. 3.1d. For clear and

compact presentation, we focus on two undirected unweighted structures: edges (second-

order structures) and triangles (third-order structures). Further extensions can be developed

for mixing more than two orders, and/or orders higher than three.

The MOSC framework can be decomposed into three blocks, and we summarise our

contributions of this chapter based on building blocks as follows:

1. Mixed-order structure. We propose two mixed-order structure approaches: one

based on Graph Laplacian (GL) and the other based on Random Walks (RW). Based

on these approaches, we develop two new algorithms MOSC-GL and MOSC-RW.

MOSC-GL combines edge and triangle adjacency matrices to define a mixed-order

Laplacian, with its theoretical performance guarantee derived by proving a mixed-order

Cheeger inequality. MOSC-RW combines first-order and second-order RW models for

a probabilistic interpretation. Besides, mixing parameter (ranging from 0 to 1) can be

automatically decided based on cut criteria and triangle density.

2. Mixed-order cut criterion. To enable existing single-order SC methods [95, 10] to

preserve mixed-order structures, we consider cut criteria of different orders from the

order used to encode a structure (e.g. second-order SC with a third-order cut criterion).

We then empirically study the effectiveness of mixed-order cut criterion, finding that

this strategy can enhance the performance of conventional SC methods.



3.2 Methodology 33

3. Mixed-order evaluation metric. Given ground truth, existing works only consider the

number of error nodes to evaluate the quality of output clusters [126, 40]. However, it

may fail to reflect the errors in structures. To address this issue, we propose structure-

aware error metrics to evaluate performance at the level of structures. Additionally, we

design mixed-order evaluation metrics by further utilising proposed metrics of different

orders from the order used to encode a structure (e.g. evaluate second-order SC with

a third-order-aware error metric), which aims to gain new insights on the quality of

structure preservation.

3.2 Methodology

To model both edge and triangle structures simultaneously, we introduce a new Mixed-Order

SC (MOSC) approach, with two methods based on Graph Laplacian (GL) and Random

Walks (RW). MOSC-GL combines the edge and triangle adjacency matrices, which leads to

a mixed-order Cheeger inequality to provide a theoretical performance guarantee. MOSC-

RW is developed under the random walks framework to combine the first and second order

random walks, providing a probabilistic interpretation. Moreover, we define new mixed-order

cut criteria to enable existing single-order SC methods to preserve mixed-order structures,

and propose mixed-order evaluation metrics to evaluate clustering methods at the level of

structures. The proposed MOSC framework is illustrated in Fig. 3.2.

3.2.1 MOSC Based on Graph Laplacian (MOSC-GL)

MOSC-GL introduces a mixed-order adjacency matrix WX that linearly combines the edge

adjacency matrix W and the triangle adjacency matrix WT , with a mixing parameter λ ∈ [0,1].

WX can be seen as a weighted adjacency matrix of a weighted graph GX , on which we can

apply conventional SC (Algorithm 1). Specifically, we first construct the matrix WX and the

corresponding diagonal degree matrix DX as

WX = (1−λ )WT +λW, (3.1)
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Fig. 3.2 Illustration of mixed-order structures (i.e. MOSC-GL), cut criteria and evaluation
metrics. The left shows a mixed-order adjacency matrix WX that linearly combines an
edge-based matrix (W) and a triangle-based matrix (WT ). The middle shows output clusters
S ={S, S̄} generated by either a second-order (ω2) or third-order cut criterion (ω3). An
orange line from the left to the middle indicates an instance of a mixed-order cut criterion
where a sorted dominant eigenvector (vX ) derived from only triangle-based adjacency matrix
is split by an edge-based cut criterion. The right shows that given the ground-truth, we
evaluate the quality of output clusters S={S, S̄} by either a second-order (εE) or a third-order
structural error metric (εT ). A blue line from the left to right indicates an instance of a
mixed-order evaluation metric where output clusters S derived from only a triangle-based
adjacency matrix (WT ) are evaluated by an edge-based error metric (εE).

DX = (1−λ )DT +λD. (3.2)

Let GX denote an undirected weighted graph with adjacency matrix WX , as illustrated

in Fig. 3.2 (the left block). We can define a mixed-order Laplacian NX and its normalised

version LX as

NX = DX −WX = (1−λ )NT +λN,

LX = D−
1
2

X NX D−
1
2

X . (3.3)

Then, we compute the eigenvector corresponding to the second smallest eigenvalue of LX

and perform the sweep cut to find the partition with the smallest edge conductance in GX .

The MOSC-GL algorithm is summarised in Algorithm 2.

When λ = 1, MOSC-GL is equivalent to SC by Ng et al. [79] and only considers second-

order structures. When λ = 0, MOSC-GL is equivalent to motif-based SC [10]. MOSC-GL
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Algorithm 2 MOSC-GL

Input: G = (V, E), a mixing parameter λ

Output: Two node sets {S, S̄}
1: Construct the edge adjacency matrix W ∈ Rn×n.

2: Construct the triangle adjacency matrix WT ∈ Rn×n.

3: Let D be diagonal with D(i, i) = ∑
n
i W(i, j).

4: Let DT be diagonal with DT (i, i) = ∑
n
i WT (i, j).

5: WX = (1−λ )WT +λW.

6: DX = (1−λ )DT +λD.

7: NX = DX −WX = (1−λ )NT +λN.

8: LX = D−
1
2

X NX D−
1
2

X .

9: Compute the second smallest eigenvector vX of LX .

10: vX ← Sort entries of D−
1
2

X vX .

11: {S, S̄}← Sweep cut on vX w.r.t. some cut criteria.

maintains the advantages of traditional SC: computational efficiency, ease of implementation

and mathematical guarantee on the near-optimality of resulting clusters, which we formalise

and prove in the following.

Performance Guarantee. Given a graph G and a vertex set S, we define its mixed-order

cut and volume as

cutX(S;G) = (1−λ )cut3(S;G)+λcut2(S;G), (3.4)

and

volX(S;G) = (1−λ )vol3(S;G)+λvol2(S;G), (3.5)

respectively. Then, we define the mixed-order conductance of S as:

φX(S;G) =
cutX(S;G)

min(volX(S;G),volX(S̄;G))
, (3.6)

which generalises edge and triangle conductance. A partition with small φX(S;G) corre-

sponds to clusters with rich edge and triangle structures within the same cluster while few
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both structures crossing clusters. Finding the exact set of nodes S with the smallest φX

is computationally intractable. Nevertheless, we can derive a performance guarantee for

MOSC-GL to show that the output set obtained from Algorithm 2 is a good approximation.

To prove Theorem 1, we need the following Lemma.

Lemma 3 (Lemma 4 and 1 in [10]). Let G = (V, E) be an undirected, unweighted graph and

let GT be the weighted graph for the triangle adjacency matrix. Then for any S⊂V , it holds

that

cut3(S;G) =
1
2

cut2(S;GT ), (3.7)

vol3(S;G) =
1
2

vol2(S;GT ). (3.8)

Theorem 1 (Mixed-order Cheeger Inequality). Given an undirected graph G, let T ∗ denote

the set outputted by MOSC-GL w.r.t. the cut criterion φ2(·;GX). Let φ∗X = minS⊆V φX(S;G)

be the minimum mixed-order conductance over any set of vertices. Then it holds that

φX(T ∗;G)≤ 4
√

2φ∗X . (3.9)

Proof. It suffices for us to prove that for any set S,

1
2

φ2(S;GX)≤ φX(S;G)≤ 2φ2(S;GX). (3.10)

Assume for now that the above inequality (3.10) holds. By Lemma 1, the set T ∗ satisfies

φ2(T ∗;GX)≤ 2
√

ψ∗, (3.11)

where ψ∗ = minS⊆V φ2(S;GX). Let R be the set with φX(R;G) = φ∗X = minS⊆V φX(S;G).

Then by inequality (3.10), we have

φX(T ∗;G)≤ 2φ2(T ∗;GX)≤ 4
√

ψ∗ ≤ 4
√

φ2(R;GX)≤ 4
√

2φX(R;G) = 4
√

2φ∗X . (3.12)



3.2 Methodology 37

This will then finish the proof. Therefore, we only need to prove the inequality (3.10). We

will make use of the Lemma 3 from [10].

By Lemma 3, we have

cutX(S;G) = (1−λ )cut3(S;G)+λcut2(S;G) = (1−λ )
1
2

cut2(S;GT )+λcut2(S;G),

volX(S;G) = (1−λ )vol3(S;G)+λvol2(S;G) = (1−λ )
1
2

vol2(S;GT )+λvol2(S;G).

Since the adjacency matrix of GX is a linear combination of the adjacency matrix of GT and

the adjacency matrix of G, i.e.

WX = (1−λ )WT +λW, (3.13)

we have

cut2(S;GX) = (1−λ )cut2(S;GT )+λcut2(S;G), (3.14)

vol2(S;GX) = (1−λ )vol2(S;GT )+λvol2(S;G). (3.15)

The above equations imply that for any set S,

1
2

cut2(S;GX)≤ cutX(S;G)≤ cut2(S;GX), (3.16)

1
2

vol2(S;GX)≤ volX(S;G)≤ vol2(S;GX). (3.17)

The last inequality also implies that for any S,

1
2

vol2(S̄;GX)≤ volX(S̄;G)≤ vol2(S̄;GX). (3.18)
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Therefore, by the definition of φX(S;G), we have

φX(S;G) ≤ cut2(S;GX)

min(1
2vol2(S;GX),

1
2vol2(S̄;GX))

= 2φ2(S;GX),

φX(S;G) ≥
1
2cut2(S;GX)

min(vol2(S;GX),vol2(S̄;GX))

=
1
2

φ2(S;GX).

This completes the proof of the inequality (3.10).

Complexity Analysis. The computational time of MOSC-GL is dominated by the time

to form WX and compute the second eigenvector of LX . The former requires finding all

triangles in the graph, which can be as large as O(n3) for a complete graph. While most real

graphs are far from complete so the actual complexity is much lower than O(n3). In general,

for a graph with n nodes and m edges, building a triangle adjacency matrix WT is at least

as hard as the problem of triangle detection (i.e. to check if a graph contains a triangle or

not), which in turn is conjectured to require m1+δ+o(1) time, for some constant δ > 0 [1].

In this thesis, we build WT by checking each edge and then finding all possible common

neighbours, which requires O(mn) time. For the calculation of the second eigenvector of LX ,

it suffices to use power iteration to find an approximate eigenvector, with each iteration at

Õ(g), where g denotes the number of non-zero entries in LX .

3.2.2 MOSC Based on Random Walks (MOSC-RW)

Alternatively, we can develop MOSC under the random walks framework. Edge/triangle

conductance can be viewed as a probability corresponding to the Markov chain. For a set S

with edge volume at most half of the total graph edge volume, the edge conductance of S

is the probability that a random walk will leave S conditioned upon being inside S, where

the transition probabilities of the walk are defined by edge connections [108]. Similarly,

for a set S with triangle volume at most half of the total graph triangle volume, the triangle

conductance of S is the probability that a random walk will leave S conditioned upon being
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inside S, where the transition probabilities of the walk are defined by the triangle connections

[9]. This motives us to directly combine random walks from edge and triangle connections

to perform MOSC. Therefore, we propose MOSC-RW to consider both edge and triangle

structures via the respective probability transition matrix and tensor, under the random walks

framework.

Specifically, starting with the third-order adjacency tensor T , we define a third-order

transition tensor P as Eq. (2.9). Each entry of P represents the transition probability of a

random walk such that the probability of jumping to a state j depends on the last two states i

and k [120]. In the case ∑
n
m=1T (i,m,k) = 0, we set P(i, j,k) with 0.

Let Tk ∈ Rn×n denote the kth n×n block of P , i.e.

Tk = P(:, :,k). (3.19)

Next, we average {Tk,k = 1, ...,n} to reduce P to a similarity matrix A:

A =
1
n

n

∑
k=1

Tk. (3.20)

Now recall that P = D−1W denotes the probability transition matrix of random walks on the

input graph. We construct a mixed-order similarity matrix H by a weighted sum of A and P

via a mixing parameter λ ∈ [0,1] as

H = (1−λ )A+λP. (3.21)

Thus, we obtain the MOSC-RW algorithm with standard SC steps on H, as summarised in

Algorithm 3.

When λ = 1, MOSC-RW is equivalent to conventional SC by Shi and Malik [95] and

considers only second-order structures. MOSC-RW with λ = 0 considers only third-order

structures, which is a simplified (unweighted) version of tensor SC (TSC) by Benson et al.

[9], so we name it as simplified TSC (STSC). In the intermediate case, λ controls the

trade-off.
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Algorithm 3 MOSC-RW

Input: G = (V, E), a mixing parameter λ

Output: Two node sets {S, S̄}
1: Construct the adjacency matrix W ∈ Rn×n.

2: Construct the adjacency tensor T ∈ Rn×n×n.

3: for 1 ⩽ i, j,k ⩽ n do

4: if ∑
n
m=1T (i,m,k) ̸= 0 then

5: P(i, j,k) = T (i, j,k) /∑
n
m=1T (i,m,k).

6: else

7: P(i, j,k) = 0.

8: end if

9: end for

10: Tk ←P(:, :,k) for k = 1, · · · ,n.

11: Compute the reduced similarity matrix A.

12: Let D be diagonal with Dii = ∑
n
i W(i, j).

13: P = D−1W.

14: H = (1−λ )A+λP.

15: Compute the second largest eigenvector v of H.

16: v← Sorting entries of v.

17: {S, S̄}← Sweep cut on v w.r.t. some cut criteria.

Interpretation. Now we interpret the model as a mixed-order random walk process. At

every step, the random walker chooses either a first-order (with probability λ ) or a second-

order (with probability (1−λ )) random walk. For the first-order random walk, the walker

jumps from the current node i to a neighbour j with probability P(i, j) = 1
D(i,i) . For the

second-order random walk in A, A(i, j) is the probability of the following random process:

supposing the walker is at vertex i, it first samples a vertex k with probability 1
n , then in the

case that some neighbour k of i is sampled and i, j,k forms a triangle, the walker jumps from

i to j with probability 1/WT (i,k), where WT (i,k) is the number of triangles containing both

i and k.
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Complexity Analysis. The running time of MOSC-RW is again dominated by the time

of finding all the triangles and the approximate eigenvector, and thus asymptotically the same

as the running time of MOSC-GL. However, since MOSC-RW involves tensor construction,

normalisation and averaging, it is more complex than MOSC-GL in implementation.

The computation of the second largest eigenvector of H in step 15 is another costly

procedure, and its complexity depends on the sparsity of T and P. Let a and p be the number

of non-zeros entries in T and P, respectively. In theory, the number of non-zero entries of H

can be O(a+ p), and an eigenvector can be computed via power iterations, and the running

time for each iteration is O(a+ p).

Multiple Clusters and Higher-order Cheeger Inequalities of MOSC. To cluster a

graph into k > 2 clusters based on MOSC-GL and MOSC-RW, we follow the conventional

SC [108]. Specifically, MOSC-GL treats the first k row-normalised eigenvectors of LX as

the embedding of nodes that can be clustered by k-means. Similarly, MOSC-RW uses the

first k eigenvectors of H as the node embedding to perform k-means. Regarding performance

guarantee, following [10] and [60], MOSC-GL and MOSC-RW do not have performance

guarantee with respect to higher-order Cheeger inequalities.

3.2.3 Automatic Determination of λ

The mixing parameter λ is the only hyperparameter in MOSC. To improve the usability, we

design schemes to automatically determine its optimal value λ ∗ from a set Λ based on the

quality of output clusters [62, 21, 124]. For bi-partitioning graphs, the cut criterion used to

obtain output clusters can help to determine the best λ ∗ from Λ. For multiple partitioning

graphs, we can use the sum of triangle densities of the individual cluster to determine the

best λ ∗ from Λ.

Specifically, for each λ ′ ∈ Λ, let {Sλ ′ , Sλ ′} denote the MOSC bi-partitioning clus-

ters obtained with λ = λ ′. For a specific minimisation or maximisation cut criterion

τ (e.g. edge conductance φ2), we choose λ to be the one that optimises τ , i.e. λ ∗ =

arg minλ ′∈Λ τ(Sλ ′) or λ ∗ = arg maxλ ′∈Λ τ(Sλ ′), respectively.



42 Mixed-order Spectral Clustering for Graphs

For the case of multiple partitions, we propose a triangle-density-based scheme to

determine λ as follows:

λ
∗ = arg max

λ ′∈Λ

k

∑
c=1

∑vi,v j,vk∈Sc(λ ′)T (i, j,k)

6|Sc(λ ′)|
, (3.22)

where Sc(λ
′) denotes the c-th cluster resulted from λ ′, and the factor 1/6 is used to avoid

repeated count of triangles in an undirected graph.

3.2.4 Mixed-order Cut Criteria

A cut criterion measures the quality of output clusters when performing the sweep cut

procedure. However, conventional SC is limited to use edge-based cut criteria [95, 79], while

triangle-based SC is limited to use triangle-based cut criteria [10, 9]. Thus, to enable existing

single-order SC methods [95, 10] to preserve mixed-order structures, we consider cut criteria

of different orders from the order used to encode a structure (e.g. second-order SC with

a third-order cut criterion). Therefore, we formally define a mixed-order cut criterion as

follows:

Definition 4. (Mixed-order Cut Criterion) Given a graph G = (V,E), a mixed-order cut

criterion performs a triangle-based cut criterion ω3 ∈ {φ3,η3,ξ3,α3} on a sorted dominant

eigenvector ve derived from an edge-based similarity matrix B of G, or performs an edge-

based cut criterion ω2 ∈ {φ2,η2,ξ2,α2} on a sorted dominant eigenvector vt derived from a

triangle-based similarity matrix T.

Mixed-order cut criteria are illustrated in the middle block of Fig.3.2. In this thesis, we

will empirically study the effectiveness of eight cut criteria including edge- and triangle-based

(Table 2.1) ones on representative edge- and triangle-based SC algorithms. Additionally, we

discuss a relation between ξ3(S) and η3(S). According to η3(S) [63] and cut3(S, S̄) [63], we

have

η3(S) = 2
3 −

1
3(

assoc3(S)
vol3(S)

+ assoc3(S̄)
vol3(S̄)

)+ 1
3(

vol3(S̄)−assoc3(S̄)
vol3(S)

+ vol3(S)−assoc3(S)
vol3(S̄)

).
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Then based on ξ3(S) =
assoc3(S)

vol3(S)
+ assoc3(S̄)

vol3(S̄)
, we can see a relation between ξ3(S) and η3(S)

as below:

η3(S) =
2
3
− 1

3
ξ3(S)+

1
3
(
vol3(S̄)−assoc3(S̄)

vol3(S)
+

vol3(S)−assoc3(S)
vol3(S̄)

). (3.23)

In the above Eq. (3.23), the term

ω(S) =
vol3(S̄)−assoc3(S̄)

vol3(S)
+

vol3(S)−assoc3(S)
vol3(S̄)

(3.24)

is not a constant function due to the definition of vol3(·) and assoc3(·) from Eq. (2.13) and

Eq. (2.14) in the thesis respectively.

3.2.5 Mixed-order Evaluation Metrics

If we have ground-truth clusters available, we can use them to measure performance of

clustering algorithms. Existing works commonly use mis-clustered nodes [40] or related

metrics (e.,g. NMI) [7]. We denote the ground-truth partition of G with k clusters as

S∗ = {S∗1,S∗2, . . . ,S∗k} and a candidate partition to be evaluated as S= {S1,S2, . . . ,Sk}. The

mis-clustered node metric is defined as

εN(S∗,S) = min
σ

k

∑
c=1
|S∗c⊕Sσ(c)|, (3.25)

which measures the difference between two partitions S∗ and S, where σ indicates all

possible permutations of {1, 2, . . . , k} and ⊕ denotes the symmetric difference between the

two corresponding sets. A smaller εN indicates a more accurate partition.

To break existing rigid evaluation scenarios based on the level of nodes, we design a

flexible way to evaluate the quality of communities by leveraging the level of structures (e.g.

triangles). In this scenario, the level of nodes means that popular graph clustering metrics

only consider the node information rather than edge/triangle information. For example, the

metric mis-clustered node measures the difference between two node sets. Depending on

diverse application scenarios, we can flexibly choose one to evaluate communities. For
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example, if the triangle structure plays an important role in communities (e.g. in social

networks), we can evaluate communities in terms of triangles to truly reflect the quality

of communities. A limitation of the above metric is that it fails to truly reflect the errors

at the level of structures. Also, our studies show that mis-clustered nodes do not have a

monotonic relationship with mis-clustered edges or triangles. That is, a smaller number of

mis-clusterd nodes does not imply smaller number of mis-clustered edges or triangles, and

vice versa. This motivates us to propose structure-aware error metrics to measure the quantity

of mis-clustered edges (εE) and triangles (εT ), respectively. Specifically, we define εE as

εE(S∗,S) =
k

∑
c=1

EN(S∗c)−max
σ

k

∑
c=1

EN(S∗c ∩Sσ(c)), (3.26)

where EN(S) is the number of edges in S. We can define εT similarly by replacing EN(S)

with TN(S), where TN(S) is the number of triangles in S.

Based on the proposed structure-aware error metrics, we define a mixed-order evaluation

metrics that can give us new insights on the preservation of edges and triangles for existing

single-order SC. It is illustrated in the right block of Fig. 3.2.

Definition 5. (Mixed-order Evaluation Metrics) Given a graph G = (V,E) and ground-truth

S∗, a mixed-order evaluation metric evaluates a candidate partition S derived from an edge-

based similarity matrix B of G by the triangle-aware error metric εT , or evaluates a candidate

partition S derived from a triangle-based similarity matrix T of G by an edge-aware error

metric εE .

3.3 Experiments

This section aims to evaluate MOSC against existing SC methods in two applications:

community detection and superpixel segmentation. Furthermore, we will explicitly study the

effect of mixed-order cut criteria, and gain insights from the newly designed mixed-order

evaluation metrics for the community detection task.



3.3 Experiments 45

Table 3.1 Statistics of the 2,005 graphs. The number in parentheses is the median for each
range.

Graph |V| |E| Size Triangle density #Interaction edges #Clusters/graph #Graph(s)

DBLP 317K 1.05M 14∼303 (22) 7.4∼167.9 (15.4) 1∼278 (15) 2 500

YouTube 1.13M 2.99M 6∼389 (91) 1∼22.9 (3.73) 1 ∼1054 (89) 2 500

Orkut 3.07M 117M 88∼379 (206) 213.7∼1526 (452.6) 37∼10470 (2411) 2 500

LJ 4.00M 34.7M 33∼193 (98) 116.3∼2968 (422.4) 1∼9179 (1489) 2 500

Zachary 34 78 34 1.32 11 2 1

Dolphin 62 159 62 1.53 6 2 1

Polbooks 105 441 105 5.33 70 3 1

Football 115 613 115 7.04 219 12 1

PBlogs 1490 16716 1490 67.8 1576 2 1

Facebook 22,470 170,912 22,470 35.50 19,590 4 1

3.3.1 Datasets

The experiments were conducted on two popular groups of graphs with very different tri-

angle densities: The first group consists of five full real-world graphs: Zachary’s karate

club (Zachary) [127], Dolphin social network (Dolphin) [69], American college football

(Football) [78], U.S. politics books (Polbooks) [78], Political blogs (PBlogs) [4] and Face-

book1 [90]. Full graphs means that the graph size referring the number of nodes and edges is

not tailored. Statistics of networks are shown in Table 3.1. The description of these networks

is shown as below:

1. Zachary: It is an university karate club in which the nodes represent club members and

edges represent the members who interact outside the club. This network is split into

two communities since an internal conflict between the administrator and instructors.

2. Dolphin: This is a dolphin social network. The nodes represent dolphins and the edge

will appear if a pair of dolphins interact frequently. Two communities are formed

because of one temporarily disappeared dolphin.

3. Polbooks: This is a politics book network. The nodes represent authors and a link

between two authors exists if they jointly publish at least one paper. Three communities

denote categories of books “liberal”, “neutral” and “conservative”.

1https://archive.ics.uci.edu/ml/datasets/Facebook+Large+Page-Page+Network

https://archive.ics.uci.edu/ml/datasets/Facebook+Large+Page-Page+Network
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4. Football: This is a U.S college football network in which the nodes represent teams,

and the edges represent regular-season games between the two teams. The network

Football has twelve communities. Teams that are in the same conference consist of a

community. Teams within the same conference have more frequent games than that of

teams in different conferences.

5. PBlogs: This is a political blogosphere about 2004 U.S election network. The nodes

represent a blog, and the link is automatically generated from a crawl. The two

communities are “liberal” and “conservative”.

6. Facebook: This graph is collected by using the Facebook Graph API and restricted

to pages from 4 categories which are defined by Facebook. These categories are:

politicians, governmental organisations, television shows and companies.

The second group consists of four complex real-world graphs: DBLP, YouTube, Orkut,

and LiveJournal (LJ) from the Stanford Network Analysis Platform (SNAP) [124].2 All

graphs have ground-truth communities available. We describe them as below:

1. DBLP: This is a co-authorship network. Nodes represent authors and a link between

two authors exists if they jointly publish at least one paper. The community is formed

since authors publish in the same journal or conference.

2. Youtube: This is a video-sharing network. The nodes represent users and the links

represent friendship between users. Communities are formed due to created groups

that other users join.

3. Orkut: This is an online social network. Nodes represent users and links indicate their

friendship. User-defined groups are viewed as communities.

4. LJ: This is a content-sharing online network, such as culture, entertainment. People

are the nodes and the links represent the friendship. Communities are created with

user-defined groups that can share content.

2https://snap.stanford.edu/data/index.html

https://snap.stanford.edu/data/index.html
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For the four SNAP graphs, we extract paired communities to focus on bi-partitioning prob-

lems with the following procedures: 1) For each graph, we select communities with the top

500 highest triangle densities, among those communities having no more than 200 nodes (for

DBLP, YouTube, and Orkut) or 100 nodes (for LJ) because it has high density; 2) For every

community in the top list, we choose another community having the most connections with

it, among all the other communities in the respective graph (without limiting the community

node size). These two communities form a bi-partitioning graph. In this way, we extracted

2,000 graphs from SNAP.

Besides the aforementioned graph datasets, we perform experiments on the test set of

Berkeley Segmentation Dataset3 including two hundred images (size 481 × 321, equivalent

to 154,401 nodes in graphs) with human-labelled ground-truth segmentations.

3.3.2 Baselines

We evaluate MOSC-GL and MOSC-RW against the following seven state-of-the-art methods,

including both edge-based SC and triangle-based SC, and both global and local methods:

1. SC-Shi [95]: Shi and Malik developed a method aiming to minimise Ncut2 criterion

via a generalised eigenvalue problem of Eq. (2.7).

2. SC-Ng [79]: Ng et al. designed a method built upon [95]. Instead of using one

dominant eigenvector, it used the first k eigenvectors of L for performing k partitions

and then an additional row normalisation step before k-means.

3. Tensor Spectral Clustering (TSC) [9]: TSC is a higher-order spectral clustering method

developed by Benson et al. They constructed a transition tensor P as in Eq. (2.9)

and used an expensive multilinear PageRank algorithm [42] to produce a vector as

the weight for reducing the tensor to a matrix via weighted average, followed by

conventional SC.
3https://www2.eecs.Berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

https://www2.eecs.Berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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4. Higher-order SVD (HOSVD) [39]: To address the hypergraph clustering problem, this

method used an adjacency tensor T to encode hyperedges, which is equivalent to the

adjacency tensor definition in Eq. (2.8). T is then reduced to a matrix via computing a

modelwise covariance matrix, followed by conventional SC.

5. Motif-based SC (MSC) [10] / Tensor Trace Maximisation (TTM) [40]: MSC is a

general higher-order spectral clustering method via re-weighting edges according to

the number of motifs containing corresponding edges, followed by conventional SC.

TTM is independently proposed but equivalent to MSC, which we have verified both

analytically and experimentally.

6. HOSPLOC [136]: This is a higher-order local clustering method aiming for more

efficient processing while taking higher-order graph structures into account.

7. DeepWalk [82]: DeepWalk adopts an unsupervised Skip-Gram [6] neural network

model to learn the embedding of each node. This approach samples random walks

from each node, and then maximises the co-occurrence probability among the nodes

that appear as neighbours. Following [17], we employ the learned embedding of nodes

in a k-means to conduct communities.

For superpixel segmentation, besides the above baselines, we compare MOSC with two

baselines that are specifically designed to the superpixel segmentation task:

1. Simple Linear Iterative Clustering (SLIC) [3]: It adapts a variant of k-means clustering

approach to efficiently generate superpixels by a weighted distance measure combining

colour and spatial proximity.

2. Linear Spectral Clustering (LSC)[23]. LSC relates the optimisation objectives between

k-means and normalised cuts by introducing a elaborately designed high dimensional

space.

We study two versions for each MOSC: MOSC (λ = 0.5): MOSC with a fixed (rec-

ommended) λ value of 0.5; MOSC (Auto-λ ): MOSC with automatically determined λ ;

Additionally, for MOSC-RW, we study simplified TSC (STSC) when λ = 0.
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We implemented algorithms using Matlab code released by the authors of MSC,4

HOSVD,5 HOSPLOC,6, SLIC7, LSC8, and TSC via multilinear PageRank.9 We followed

guidance from the original papers to set their hyperparameters. All experiments were per-

formed on a Linux machine with one 2.4GHz Intel Core and 16G memory. We have released

the Matlab code for MOSC.10

3.3.3 Evaluation metrics

For the community detection task, we use the proposed structure-aware metrics, mis-clustered

edges (εE) and triangles (εT ). We also use two popular metrics, mis-clustered nodes (Eq.

(3.25)) and normalised mutual information (NMI) [7, 22]. For the SNAP graphs, we show

the average results of the 500 bi-partitioning graphs.

To define NMI, we need the Shannon entropy for S that can be defined as

H(S) =−
k

∑
c=1

(nSc/n) log(nSc/n), (3.27)

where nSc is the number of vertices in community Sc. The mutual information between S and

S∗ can be expressed as

I(S,S∗) =
k

∑
c=1

k

∑
d=1

nScS∗d
n

log(
nScS∗d

/n

(nSc/n)× (nS∗d
/n)

), (3.28)

where nScS∗d
is the number of vertices shared by communities Sc and S∗d . The NMI between

two partitions S and S∗ is defined as

NMI(S,S∗) =
2I(S,S∗)

H(S)+H(S∗)
. (3.29)

4https://github.com/arbenson/higher-order-organization-matlab
5http://sml.csa.iisc.ernet.in/SML/code/Feb16TensorTraceMax.zip
6http://www.public.asu.edu/~dzhou23/Code/HOSPLOC.zip
7https://www.mathworks.com/help/images/ref/superpixels.html
8https://github.com/neuwangmeng/
9https://github.com/dgleich/mlpagerank

10https://bitbucket.org/Yan_Sheffield/mosc/

https://github.com/arbenson/higher-order-organization-matlab
http://sml.csa.iisc.ernet.in/SML/code/Feb16TensorTraceMax.zip
http://www.public.asu.edu/~dzhou23/Code/HOSPLOC.zip
https://www.mathworks.com/help/images/ref/superpixels.html
https://github.com/neuwangmeng/
https://github.com/dgleich/mlpagerank
https://bitbucket.org/Yan_Sheffield/mosc/
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If S and S∗ are identical, NMI(S,S∗) = 1. If S and S∗ are independent, NMI(S,S∗) = 0.

For the superpixel segmentation task, we quantitatively evaluate our algorithm by two

popular metrics that are 1) undersegmentation error (UE) [93], 2) achievable segmentation

accuracy (ASA) [67]. To compute the above metrics, we use C= {C j}K
j=1 to denote the K

segmentations of a ground-truth image, and T= {Ti}L
i=1 to represent the L segmentations by

the superpixel algorithm. where K and L are the number of superpixel in a ground-truth and

predicted output image.

1. Undersegmentation Error [93]. A good superpixel segmentation should ensure that

a superpixel only overlaps with one object. This evaluation measurement considers

the deducted area by the superpixel that overlaps with the given ground-truth. We

formulate it as

UE =
∑i ∑k:Ck∩Ti ̸= /0 |Ck−Ti|

∑i |Ti|
. (3.30)

2. Achievable Segmentation Accuracy [67]. It calculates the highest achievable accuracy

by labelling each superpixel with the label of ground truth segmentation that has the

biggest overlap area. The metric is defined as

ASA =
∑k maxi |Ck∩Ti|

∑i |Ti|
. (3.31)

3.3.4 Effectiveness of Mixed-order Cut Criteria

Firstly, we study the effect of mixed-order cut criteria on clustering performance. We have

seven existing cut criteria from Table 2.1 and the proposed mixed-order conductance (φX ).

We study their effect on SC-Shi, SC-Ng, MSC, HOSVD, MOSC-GL (λ = 0.5) and MOSC-

RW (λ = 0.5) on DBLP, Orkut and LJ w.r.t εT , εE , εN . Note that we omit experimental

results about εE on DBLP, Orkut and LJ since they show the same scenarios with εT on these

three datasets. From Fig. 3.3, we have the following observations:

1. Mixed-order cut criteria have a greater impact on graphs with dense triangles (e.g.

Orkut and LJ) than graphs with the sparse triangles (e.g. DBLP). The reason is that one
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Fig. 3.3 Mixed-order cut criteria analysis on SC-Shi, SC-Ng, HOSVD, MSC, MOSC-GL
(λ = 0.5) and MOSC-RW (λ = 0.5) w.r.t mis-clustered triangles (εT ) and nodes (εN) for
eight cut criteria: Conduct3 (Con-3), Exp3, Nassoc3 (Nass-3), Ncut3, Conduct-X (Con-X),
Conduct2 (Con-2), Exp2, Nassoc2 (Nass-2). In general the cut criteria Nassoc3 is the best
criteria. The correlations between criteria and errors are that triangle-based criteria can lead
to a low number of errors and depend on the properties of graphs.

error node in a dense triangle graph, in comparison to in a sparse graph, is normally

shared by more error triangles.

2. Some optimised cut criteria do not truly reflect the quality of output communities

w.r.t εT when comparing with ground-truth communities. In particular, in DBLP

the optimised Nassoc2 of SC-Shi still has great quantity of error triangles εT when

comparing with some other optimised cut criteria (e.g. Ncut3).

3. Mixed-order cut criteria can improve the performance of SC-Shi and SC- Ng that are

conventional SC. In general, the cut criteria Nassoc3 is the best criteria. It consistently

gives the lowest number of error triangle εT and edge εE over three datasets than other

seven cut criteria except for εE of MOSC-RW on Orkut. For error nodes, Nassoc3 has

the lowest number on LJ and second lowest on DBLP and Orkut.



52 Mixed-order Spectral Clustering for Graphs

4. Triangle-based criteria can lead to the less errors than edge-based criteria. In particular,

Nassoc3 can achieve a very low number of errors. In general edge-based cut criteria

(e.g. Nassoc2) do not show such low number of errors. From Table 2.1, Nassoc3 is

the only one that considers the number of triangles within communities. Therefore,

the maximisation of the number of triangles within communities is effective to reduce

errors in output communities.

5. The correlation between criteria and errors depends on the properties of datasets. For

LJ with small graphs and dense triangles, the criterion Nassoc3 can significantly reduce

errors in terms of εN , εE and εT when comparing with other criteria. By contrast, for

DBLP with big graphs and sparse triangles, the performance of criterion Nassoc3 is

weakened so that the performance of criteria Ncut3 is closed to it in terms of εE and

εT .

Based on the above observations, we recommend the criterion Nassoc3 to achieve a low

number of error edges and triangles. We recommend Ncut3 to reduce the number of error

nodes for big and sparse graphs.

3.3.5 Performance for Community Detection

We study the results of all algorithms in combination of all eight criteria and k-means (KM).

Fig. 3.3 shows that cut criteria can affect the performance of all algorithms. Therefore,

for fair comparison, we report the clustering results conducted by the best criteria for each

algorithm. The top two results are in bold (best) or underlined (second best).

Results on SNAP Graphs. We show the performance of all clustering algorithms with

the best cut criteria in terms of NMI, εN , εE , and εT on SNAP graphs in Table 3.2. The

results for some settings of TSC and HOSPLOC are not available either due to long running

time (not finished within 40 hours) or out of memory. In particular, the multilinear PageRank

algorithm in TSC is very expensive.

We have four observations:

1. MOSC-RW (λ = 0.5) achieves the best in 10 out of 16 settings.
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Table 3.2 Performance of clustering algorithms with the best cut criteria on SNAP graphs.
The best is in bold and the second best is underlined. A larger NMI indicates a better result,
while a smaller εN /εE /εT indicates a better result.

Second order Third order MOSC-RW MOSC-GL

Method SC-Shi SC-Ng DeepWalk HOSVD MSC TSC HOSPLOC STSC λ = 0.5 Auto-λ λ = 0.5 Auto-λ

D
B

L
P

NMI 0.650 0.656 0.614 0.550 0.620 0.648 0.286 0.628 0.654 0.646 0.648 0.645

εN 4.13 4.56 4.99 5.40 4.65 4.30 17.28 4.24 4.43 4.76 4.82 4.87

εE 13.36 14.58 17.46 17.99 15.98 18.72 70.49 18.72 14.27 15.68 15.87 16.67

εT 24.81 26.84 35.15 32.18 29.57 37.93 236.65 45.46 29.23 28.46 30.30 32.01

Y
ou

Tu
be

NMI 0.248 0.270 0.258 0.124 0.184 - - 0.150 0.284 0.260 0.275 0.263

εN 22.48 23.31 26.63 25.69 24.41 - - 23.83 22.18 23.46 23.44 23.83

εE 44.42 46.46 61.43 50.61 47.18 - - 63.12 44.28 46.74 52.58 47.96

εT 27.70 29.49 47.36 30.78 29.1 - - 59.78 28.90 29.29 38.63 29.46

O
rk

ut

NMI 0.397 0.397 0.399 0.3618 0.390 - - 0.387 0.410 0.393 0.397 0.394

εN 37.13 37.09 38.06 40.43 38.49 - - 37.60 36.05 37.02 36.72 36.93

εE 574.6 574.6 635.5 624.7 582.3 - - 569.2 521.6 571.8 550.4 574.9

εT 4557 4557 5703 4937 4575 - - 5104 3949 4541 4405 4614

L
J

NMI 0.226 0.224 0.156 0.218 0.224 0.214 - 0.201 0.229 0.221 0.208 0.212

εN 5.58 5.63 23.08 5.79 5.74 5.52 - 5.15 5.49 5.66 5.76 5.64

εE 49.83 50.01 1134 55.09 52.54 58.19 - 57.06 47.88 51.01 58.64 54.17

εT 546.1 547.6 3404 600.6 574.5 737.7 - 773.0 530.6 556.4 730.3 617.8

2. MOSC-RW outperforms MOSC-GL, although MOSC-GL achieves top two results in

4 settings. We will give a detailed discussion about it at Sec. 3.3.7.

3. Both MOSC-RW(λ = 0.5) and MOSC-GL(λ = 0.5) have better results than MOSC-

RW(Auto-λ ) and MOSC-GL(Auto-λ ). This demonstrates that a fixed mixing param-

eter is effective, but it also shows the automatic schemes are not effective in these

settings.

4. Mixed-order evaluation metrics can give insights on the quality of structure preservation

for single-order SC. Specifically, SC-Shi preserves the most number of nodes, edges

and triangles in DBLP than others. Additionally, although SC-Shi does not preserve

the most number of nodes in YouTube, it still can preserve the most number of triangles

than others.
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Table 3.3 Clustering performance of algorithms with the best cut criteria. The best is in bold
and the second best is underlined. A larger NMI indicates a better result, while a smaller
εN /εE /εT indicates a better result. Note that there are ties.

Second order Third order MOSC-RW MOSC-GL
Method SC-Shi SC-Ng DeepWalk HOSVD MSC TSC STSC λ = 0.5 Auto-λ λ = 0.5 Auto-λ

Z
ac

ha
ry NMI 0.837 0.837 0.732 0.069 0.732 0.677 0.325 0.837 0.837 0.837 0.837

εN 1 1 2 14 2 2 8 1 1 1 1
εE 2 2 7 34 3 3 24 2 2 2 2
εT 1 1 10 16 1 1 14 1 1 1 1

Fo
ot

ba
ll NMI 0.883 0.904 0.529 0.896 0.924 0.866 0.862 0.924 0.924 0.9 0.931

εN 23 15 65 16 10 26 26 10 10 15 9
εE 63 37 291 36 7 70 72 7 7 36 7
εT 99 50 584 39 2 110 114 2 2 39 2

Po
lb

oo
ks NMI 0.575 0.542 0.615 0.092 0.542 0.180 0.103 0.575 0.575 0.563 0.589

εN 17 18 17 56 18 55 51 17 17 17 17
εE 27 33 39 185 34 281 172 27 27 28 21
εT 7 10 19 234 8 384 227 7 7 7 1

D
ol

ph
in NMI 0.889 0.889 0.889 0.081 0.536 0.582 0.631 0.889 0.889 0.889 1

εN 1 1 1 19 7 6 5 1 1 1 0
εE 1 1 1 43 10 8 6 1 1 1 0
εT 0 0 0 29 0 1 0 0 0 0 0

PB
lo

gs

NMI 0.007 0.007 0.740 0.014 0.023 - 0.430 0.012 0.458 0.098 0.016
εN 671 732 54 677 614 - 204 659 230 478 647
εE 7,302 7,302 159 7,307 7,260 - 362 7,302 184 7,302 7,301
εT 36,401 36,402 423 36,400 36,400 - 631 36,401 456 36,402 36,400

Fa
ce

bo
ok NMI 0.023 0.255 0.163 0.177 0.055 - 0.0228 0.023 0.139 0.032 0.258

εN 15,553 11,171 13,062 12,234 14,206 - 15,636 15,553 12,955 15,517 11,166
εE 69,789 57,630 64,195 60,853 69,889 - 81,438 69,789 67,973 69,740 57,635
εT 244,499 190,424 220,356 182,274 243,998 - 381,685 244,499 244,498 244,487 190,335

Results on Full Graphs. We show the performance of all clustering algorithms with

the best cut criteria for five full graphs in terms of NMI, εN , εE , and εT in Table 3.3,

except HOSPLOC, for which we were not able to obtain comparable results. We have four

observations:

1. MOSC-GL (Auto-λ ) achieves the best performance in 17 out of 24 settings, demon-

strating that automatic determination of λ is effective in these settings. Specifically, in

Dolphin MOSC-GL (Auto-λ ) produces perfect results in all metrics. For graphs with

multiple clusters (Polbooks, Football), MOSC-GL (Auto-λ ) is also superior to others.

We visualise the output clusters of Dolphin, Polbooks and Football in Fig. 3.4a, 3.4b

and 3.4c respectively.
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(a) Dolphin (b) Polbooks

(c) Football (12 clusters)

Fig. 3.4 Clusters in Polbooks, Dolphin and Football graphs discovered by MOSC-GL (Auto-
λ ).

2. MOSC-GL (Auto-λ ) outperforms MOSC-RW (Auto-λ ), although MOSC-RW (Auto-

λ ) achieves the best results in 10 settings, which is still better than all existing SC

algorithms (Note that there are ties).

3. Mixed-order evaluation metrics can gain insights on the quality of structure preserva-

tion. In Football MSC achieves the best εE and εT but not for εN , which also indicates

existing mis-clustered node cannot reflect errors in structures.

4. In Facebook, MOSC-GL (Auto-λ ) achieves the best performance w.r.t NMI and εN ,

and achieves the second best w.r.t εE and εT . Also, the results of SC-Ng are closed to
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Table 3.4 The best is in bold and the second best is underlined. The down arrow means that a
small number indicates good performance. The up arrow means that a large number indicates
good performance. MOSC-GL uses λ = 0.5. Comparing with LSC, MOSC-GL achieves
competitive results especially for ASA.

SLIC SC-Shi SC-Ng MSC DeepWalk LSC MOSC-GL

UE ↓ 0.123 0.256 0.112 0.110 0.697 0.092±0.046 0.108±0.046

ASA ↑ 0.867 0.767 0.880 0.882 0.438 0.894±0.045 0.883±0.043

the results of MOSC-GL (Auto-λ ) since MOSC-GL(Auto-λ ) is the generalisation of

SC-Ng.

In Table 3.2, our auto-learning strategy that is based on cut criteria do not show superior

performance for bi-partitioning and dense graphs extracted from large graphs. The reason is

that optimised cut criteria do not truly reflect the quality of output communities w.r.t NMI,

εN , εE , εT when comparing with ground-truth communities. However, in Table 3.3, our

auto-learning strategy that is based on triangle density is effective to multi-cluster graphs.

Triangle density of communities can better reflect the quality of communities.

3.3.6 Performance for Superpixel Segmentation

A superpixel is a group of similar pixels in colour or other low-level properties [99].

Superpixel segmentation as a preprocessing technique is increasingly popular in many

computer vision tasks such as object tracking [117]. The main merit of superpixel is to

provide a more natural and perceptually meaningful representation of the input image [93].

Therefore, compared with the traditional pixel representation of images, the superpixel

representation greatly reduces the number of image primitives and improves the representative

efficiency [93].

We exclude the comparison with tensor-based method, e.g. MOSC-RW, HOSVD and

TSC due to their large space consumption (still out of memory using 100G memory to



3.3 Experiments 57

(a) SLIC (b) SLIC (c) SLIC (d) SLIC

(e) SC-Ng (f) SC-Ng (g) SC-Ng (h) SC-Ng

(i) MOSC (λ=0.5) (j) MOSC (λ=0.5) (k) MOSC (λ=0.5) (l) MOSC (λ=0.5)

Fig. 3.5 Visual comparison among SLIC, SC-Ng and MOSC (λ=0.5). We observe that
superpixels obtained by MOSC (λ = 0.5) can adhere well to boundaries of the head of a bird,
and also can fit to the edges between a man’s neck and head. SLIC generates the irregular
and sharp superpixels.

construct the adjacency tensor). For all compared algorithms, the total number of superpixel

is set to 100 for each image.

For quantitative evaluation, from Table 3.4, we observe that comparing with LSC, MOSC-

GL achieves competitive results especially for ASA. Although our MOSC-GL is not mo-

tivated to handle superpixel segmentation, superpixel segmentation still turns out to be an

application that is worthy to be applied. Furthermore, LSC is not applicable to the community

detection task in graphs since it cannot form graphs.

For qualitative evaluation, Fig. 3.5 shows two example segmentations generated by

MOSC (λ = 0.5), SC-Ng and SLIC. At the first column in Fig. 3.5, bounding boxes aim

to highlight important parts of images such as a bird/human head in this case. At the
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Fig. 3.6 Sensitivity analysis of λ on Football, Dolphin and PBlogs w.r.t NMI.

second column, you can see enlarged parts within bounding boxes to visually compare image

segmentation performance. We observe that the superpixel boundaries obtained by proposed

MOSC (λ = 0.5) can fit the object edges better than others. For example, MOSC (λ = 0.5)

can adhere well to boundaries of the head of a bird, and also can fit to the edges between

a man’s neck and head. Additionally, compared with graph-based methods, superpixels

obtained by SLIC are irregular and sharp.

3.3.7 Sensitivity Analysis

The mixing parameter λ is the only hyperparamter in MOSC. To gain insight of MOSC, we

conduct sensitivity analysis on λ as shown in Fig. 3.6 w.r.t. NMI. We can see that the choice of

λ can significantly affect the performance while there are large regions of stable performance

as well. This was the motivation of developing schemes to automatically determine the best λ .

For PBlogs, Table 3.3 shows that MOSC-RW achieves significantly better performance than

the others. From Fig. 3.6c, MOSC-RW does not have good performance for large λ values

(>0.4). Fortunately, benefiting from automatic λ determination scheme, an outstanding

performance has been achieved.

From performance comparison in Section 3.3.5 and the above sensitivity analysis, we

see that MOSC-GL and MOSC-RW have different performance on graphs with different

triangle densities. MOSC-RW tends to be better for graphs with high triangle densities while

MOSC-GL tends to be better for graphs with low triangle densities. For MOSC-GL, WT

can dominate WX in WX = (1− λ )WT + λW, especially for dense graphs. Each entry
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Fig. 3.7 Computational time (in log scale) on YouTube, LJ, PBlogs and Football.

of WT denotes the number of triangles containing the corresponding edge while W is a

binary matrix. Therefore, for most non-zero pairs (i, j), WT (i, j) is much larger than W(i, j)

especially for dense graphs. This can be the reason that MOSC-GL is less sensitive to tuning

λ , or finding the appropriate λ is more difficult. That is, WX tends to encode much less edge

information. In contrast, MOSC-RW does not have such issue since A and P are normalised

and thus they are in similar scales before linear combination. Therefore, MOSC-RW has

a better performance than MOSC-GL in SNAP graphs and the dense full graph PBlogs.

Furthermore, based on the above discussion, we can give an explanation that MOSC-RW

is quite sensitive to λ on PBlogs. In PBlogs, triangle information is likely to dominate

the mixed-order structure and thus tuning λ may not change its mixture proportion largely

especially for the PBlogs with dense triangles.

3.3.8 Computational Time

Fig. 3.7 compares the computational time of different methods on YouTube, LJ, PBlogs

and Football, using k-means to obtain the final clusters to avoid the effect of cut criteria.

We have the following three observations: 1) Both HOSVD and MOSC-RW involve tensor

construction and operations so they are both more time consuming, in particular on dense

graphs such as LJ and PBlogs, where HOSVD is the slowest and MOSC-RW is the second
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slowest. The reason is that HOSVD uses a more complicated dimension reduction method

than MOSC-RW. 2) MOSC-GL is more efficient than MOSC-RW in all cases and has similar

efficiency as conventional SC methods on the whole. 3) SC-Shi and SC-Ng are slower than

MOSC-RW and MOSC-GL on Football since they use more time on converging of k-means

step. But for PBlogs that is dense and large, MOSC-RW spends lots of time on constructing

the triangle tensor while MOSC-GL is scalable to construct the triangle matrix.

3.4 Summary

This chapter proposed two mixed-order spectral clustering (MOSC) methods, MOSC-GL

and MOSC-RW, which model both second-order and third-order structures simultaneously.

MOSC-GL combines edge and triangle adjacency matrices with theoretical performance

guarantee. MOSC-RW combines first-order and second-order random walks with a prob-

abilistic interpretation. Moreover, we designed mixed-order cut criteria to enable existing

single-order SC to preserve mixed-order structures, and new mixed-order evaluation metrics

for structure evaluation. Experiments on community detection and superpixel segmentation

tasks show that MOSC algorithms outperform existing SC methods in most cases and the

proposed mixed-order approach has produced superior clustering of graphs and superpixel

segmentations of images.



Chapter 4

Unifying Homophily and Heterophily

Graph Transformation via Motifs

4.1 Introduction

As pointed out in Sec.2.4.2, preserving HOP instead of only considering one-hop neigh-

bourhood relationship (e.g., adjacency matrix) has been shown to be effective for the graph

representation. Based on the proximity assumption, there are three categories of HOP:

homophily, heterophily, and hybrid. In homophily [36], nodes that are highly interconnected

and in the same community should be placed tightly in embedding space. For example, in

Fig. 4.1a, proximity within the same department should be higher than different ones after

embedding, which benefits community detection [110] and node classification [82]. For

heterophily [57], nodes that are far away and in different groups, but due to their strong struc-

tural similarity, they should be close after embedding. For example, in Fig. 4.1b, department

heads from different academic areas (yellow nodes) should have stronger relation than their

immediate neighbours due to the same job role under heterophily, good for structural role

classification [88].

The higher-order proximities in the aforementioned methods are defined to be either

homophily or heterophily. Such “one-size-fit-all” proximity representation potentially limits

the performance and interpretation on many graph-based tasks. To alleviate this problem,
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(a) Homophily (b) Heterophily (c) Hybrid (proposed)

Fig. 4.1 Three categories of higher-order proximity assumptions for graph embedding: ho-
mophily, heterophily and hybrid (proposed). Homophily assumes proximity within the same
department should be higher than different ones after embedding; department heads (yellow
nodes) from different academic areas should have stronger relation than their immediate
neighbours.

one representative hybrid solution is the node2vec method [46], which flexibly adopts both

breadth-first and depth-first search strategies to conduct a biased random-walk process. How-

ever, it is designed specifically for random-walk-based methods and cannot take advantage of

other more powerful graph embedding methods proposed recently, such as GCN and AROPE.

Additionally, most existing proximity preserving methods still rely on simple pairwise rela-

tions without considering motifs (e.g., triangles, 4-vertex cliques) that can directly capture

interactions between more than two nodes [10]. For example, triangular structures, with three

reciprocated edges connecting three nodes, play important roles in social networks [59] that

can be partitioned into dense triangle communities with motif spectral clustering (MotifSC)

[10]. This thesis will focus on fundamental triangle motif structure, though our proposed

method can be easily extended to other motifs.

To design a general framework with a hybrid HOP assumption, we propose a homophily

and heterophliy preserving graph transformation (H2GT) with motif representations. Our

H2GT defines a new HOP by micro-level and macro-level walk paths as two complementary

components to represent homophily and heterophily. The micro-level walk paths embody

the homophily assumption, aiming to collect the similarity of close neighbours according to

their homophily levels generated by motif information. The macro-level walk paths embody
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Table 4.1 Comparison with state-of-the-art methods in term of fulfilled (✔) and missing (✘)
properties.

Property DeepWalk LINE node2vec AROPE GCN struc2vec MotifSC H2GT

Homophily ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔

Heterophily ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✔

Motif ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔

the heterophily assumption, aiming to encourage walk paths to explore global information

according to structural similarity.

As a general framework, H2GT is not limited to one specific algorithm but can be

integrated to any graph embedding algorithm as a preprocessing step, without requiring

changing their cores. Furthermore, the two walk path strategies rely on local motif structures

and sparsifying graphs, which subsequently improves the computational efficiency when

we integrate H2GT with existing graph embedding algorithms. Table 4.1 compares three

desirable properties to show the uniqueness of H2GT compared with several state-of-the-art

(SOTA) methods. To summarise, the contributions of this chapter are as follows:

1. We propose micro-level and macro-level walk paths to preserve homophily and het-

erophily in HOP by theoretically studying why most HOP preserving embedding

methods only hold a homophily assumption.

2. We propose a simple and novel framework to unify homophily and heterophily represen-

tations according to micro-level and macro-level walk paths, and three instantiations.

3. We conduct experiments on three tasks, node classification, structural role classification,

and motif prediction (a generalised link prediction problem) to show the superior

performance of H2GT over SOTA methods.
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4.2 Methodology

4.2.1 Theoretical Framework and Motivations

In this section, we theoretically reveal why most graph embedding algorithms only hold a

homophily assumption in HOP. This motivates us to propose micro-level and macro-level

walk paths strategies to represent homophily and heterophily in HOP respectively.

We first introduce an existing fully-connected planted partition model (PPM) [28] as

follows:

Definition 6. (Fully-Connected PPM) Let G f ∼ G f (nk,k, p,q) be a graph sampled from

the planted partition model on nk vertices, with k clusters C = {C1, · · · ,Ci, · · · ,Ck} each with

exactly n vertices. The edge set is then generated as follows: two vertices {vi,v j} ∈Ci are

connected with weight p otherwise with weight q < p to ensure well-connected clusters.

We prove the following lemma to show a relationship between homophily and HOP.

Lemma 4. Let G f ∼G f (nk,k, p,q) be a fully-connected PPM with k clusters C = {C1, · · · ,Ci,

· · · ,Ck}, nodes { vi,v j} ∈Cs and vk ∈Ct , the value of lth-order proximity between vi and v j

is a(l)i j , then

a(l)ik < a(l)i j . (4.1)

Proof. Based on the following Chapman-Kolmogorov equations [103], we have

a(l)ik =
kn

∑
z=1

a(l−1)
iz ·azk, a(l)i j =

kn

∑
z=1

a(l−1)
iz ·az j. (4.2)

The above equations interpret the proximity between node vi and node v j in l steps is obtained

by summing the proximity of the mutually events of going from node i to some node vk in

the first n−1 walk steps and then going from node k to node j in the lth walk step. Therefore,
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the difference is

a(l)i j −a(l)ik = ∑
z∈Cs

a(l−1)
iz · (aiz−azk)+ ∑

z∈Ct

a(l−1)
iz · (aiz−azk)

+ ∑
z∈{Ch|1≤h≤k,h/∈{s,t}}

a(l−1)
iz · (aiz−azk)

= ∑
z∈Cs

a(l−1)
iz · (p−q)− ∑

z∈Ct

a(l−1)
iz · (p−q).

Then, according to Lemma 5 and Lemma 6,

Lemma 5. Let G f ∼ G f (nk,k, p,q),{vi,vd,ve} ∈Cs, then we have a(h)id = a(h)ie .

Lemma 6. Let G f ∼ G f (nk,k, p,q),vi ∈Cs,{vr,vs} ∈Ct , we have a(h)ir = a(h)is .

we can have ∑z∈Ct a(l−1)
iz = na(l−1)

i j and ∑z∈Cs a(l−1)
iz = na(l−1)

ik .

Therefore,

a(l)i j −a(l)ik = (p−q)(na(l−1)
i j −na(l−1)

ik )

= nl−1(p−q)l−1(ai j−aik) = nl−1(p−q)l > 0.

This completes the proof of the inequality Eq. (4.1).

Observations. We have two main observations:

• From Lemma 4, most existing HOPs hold the assumption of homophily. In the

embedding space, distance of two nodes residing in different communities is inherently

larger than that of those in the same community.

• Eq. (4.2) reveals that HOP between any pair of nodes vi and v j essentially represents

the total similarity of a sequence of nodes traversed by all possible walk paths from

vi to v j, and all walk paths share the same contributions to represent a(l)i j regardless

of various downstream graph tasks. However, we argue that every walk path should

have task-relevant contributions to a(l)i j . This inspires the following question: are there

some specific walk paths that characterise the task-relevant HOP w.r.t. homophily

or heterophily? Subsequently, to explicitly reveal the characteristics of HOP, we
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Fig. 4.2 Illustration: 1) Micro-level (orange arrows within the community 1) and macro-level
(dark green arrows across communities 1 and 2) walk paths represent the 5th-order proximity
between nodes 1 and 2; 2) The green node contributes more centrality to the red node than
any blue node.

categorise all possible walk paths into micro-level and macro-level walk paths as two

complementary components to represent HOP. Our proposed definitions are below.

Definition 7. (Micro-level walk path) A micro-level walk path connecting vi and v j is a

sequence of vertices V ′ = (vi, vk,· · · , v j) traversed a sequence of edges E ′ = (e1, e1,· · · , en)

that ensures V ′ ⊆Ci and E ′ ⊆Ci.

Definition 8. (Macro-level walk path) A macro-level walk path connecting vi and v j is a

sequence of vertices V ′ = (vi, vk,· · · , v j) traversed a sequence of edges E ′ = (e1, e1,· · · , en)

and E ′∩C j ̸= φ and E ′∩Ci ̸= φ and i ̸= j.

For example, in Fig 4.2, we observe that orange (micro-level) path and dark-green

(macro-level) path play very different roles to induce a five-step connectivity pattern from

node 1 to node 2, although both can contribute to 5th-order proximity between node 1 and

2. Under the homophily assumption, the orange path has more expressive power than the

dark-green path since it is likely to leverage tightly close neighbourhood similarity within a

community, which may benefit community detection and node classification tasks. In contrast,

under the heterophily assumption, the dark-green path has more appropriate expressive

power than the orange path to heterophily since it tends to use weak-connectivity and

distant neighbourhood similarity across communities, good for structural role classification.

Moreover, only homophily or heterophily cannot be suitable for all graph-based tasks.

In general, micro/macro-level walk paths allow us to capture the structure of the traversed

region and provide an attention mechanism to guide the walk. This allows us to focus on task-
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Fig. 4.3 The H2GT framework. H2GT first constructs homophily proximity (AM) by triangle
representations. This homophily proximity is proceeded by a maximum operation (M) and
then can generate heterophily proximity (H). We finally linearly combine AM and H to form
unification proximity Q which can be integrated with any existing graph embedding methods.
The colour bar indicates the weight scales of edges.

relevant parts of the graph while eliminating the noise in the rest of the graph which results

in the graph embedding that provides better predictive performance. Note that different

from the breadth-first and depth-first approximately search in node2vec, fixed length of

micro-level and macro-level walk paths will be exhaustedly and accurately considered to

represent HOP between two nodes. While they share a general idea that representation of a

node is determined by its neighbourhoods that need to be flexibly defined.

Building on the above discussions, in the following we propose H2GT that defines new

HOP to flexibly preserve both homophily and heterophily by characterising walk paths

with micro-level and macro-level walk paths. It is a generic model that can be used as a

preprocessing step to provide input to any graph embedding methods. A whole process

of H2GT is illustrated in the Fig. 4.3, and it will be elaborately discussed in the following

sections.
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4.2.2 Homophily Proximity Representation

To represent homophily proximity, the adjacency matrix A or random walk matrix P is widely

used but both are noisy and sparse. Another choice is to perform community detection so that

homophily character of each edge can be clearly shown, such as by spectral clustering [79]).

However, this will lead to a binary-valued output edge (i.e., within or across communities)

and limits our ability in exploring unseen patterns of a graph.

To address the above challenges, we adopt a scalable and smooth community detection

method with motif representations [10] to represent homophily proximity as AM,

AM(i, j) = ∑
vi,v j∈V

1
(
vi,v j occur in M

)
, (4.3)

where i ̸= j, vi and v j belong to motif M , and 1(s) is the truth-value indicator function, i.e.,

1(s) = 1 if the statement s is true and 0 otherwise. Note that the weight is added to AM(i, j)

only if node vi and v j occur in the given motif M. In this chapter, we only focus on undirected

triangle motif, but it can be easily generated to any other type of motifs. The intuition of

homophily proximity representation (Eq. (4.3)) is that motif representation smooths out the

neighbourhood over the graph, acting as denoise filter due to removed edges that do not

participate in any motif.

4.2.3 Heterophily Proximity Representation

Most of existing graph embedding algorithms (e.g., DeepWalk, AROPE) hold a homophily

assumption in HOP but overlook heterophily. To discover heterophily proximity, we encour-

age macro-level walk paths to contribute more to proximity. The reason is that structurally

similar nodes tend to play the same role and the defined macro-level walk path can identify

such roles by a centrality measure. Centrality measure that can identify the importance of

nodes is an effective tool to identify hub [135] and bridge [6] roles. Thus, we consider a

contribution centrality [6] (Definition 9) into each step of the defined macro-level walk path
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such that encoded contribution centrality instructs walks to access distant nodes in different

communities and to connect nodes acting as bridge roles.

Definition 9. (Contribution Centrality) Contribution centrality of a node vi is a measure of

the importance of vi as a central node in G, which is determined by the contribution of its

immediate neighbours as bridge roles to access distant neighbours in different communities.

From the above definition, a node bridging different communities contributes more

centrality to a central node if a central node can only access nodes in different communities

via the bridging node. For example, considering centrality of red node in Fig. 4.2, centrality

contribution from green to red is larger than that from any immediate blue nodes. The

reason is that the red one can access the grey ones only through the green, and the blue

nodes are redundant for the red one because it can access directly each blue node without

any intermediary. Therefore, the macro-level walk path strategy with encoded contribution

centrality can identify structurally similar (i.e., bridge) but distant nodes.

However, estimation of such macro-level walk paths seems not straightforward to over-

come because heterophily information is not explicitly provided in most common graphs. A

signed network G± = (G+,G−) has both positive and negative edge weights, where positive

relations G+ encode friendship, and negative relations G− encode enmity interactions [61].

Essentially, a signed network is represented by two networks with largely different structural

properties.

Inspired by signed networks, we propose motif-aware signed networks G±M = (G+
M,G−M).

where G+
M and G−M are homophily and heterophily graphs respectively. An intuition of

designing G±M is based on a random walk theory that homophily/heterophily edges increase

the probability of staying in/escaping from a community. We represent homophily as AM

shown in the last section. We represent heterophily as −AM by turning all values in AM

into their opposite numbers. We interpret that the larger non-zero value of −AM(i, j), the

higher chance to achieve macro-level walk paths that explore global structures. However,

most graph embedding methods do not have capacity to handle negative weights. To develop

a general and universal graph transformer model, we use the following simple but efficient
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approach to transform negatives into positives while preserving heterophily:

H =−AM +M, (4.4)

where

M(i, j) =

 fmax(AM) vi,v j are contained in a triangle,

0 otherwise,

where fmax(AM) indicates a maximum value in AM. Heterophily proximity (H) can be

achieved by Eq. (4.4).

We give more attention to the edge containing more triangles via a maximum operation.

The heterophily proximity H is an effective instantiation of macro-level walk paths to

represent heterophily information because it can encode the below two aspects of information:

1) for distant nodes, the value of entries in H reflects the ease of accessing distant neighbours

residing in different communities; 2) for contribution centrality, the weight H(i, j) between

the central node vi and its neighbours v j indicates the contribution of v j as a bridge role to

access indirect neighbours of vi. Therefore, our heterophily proximity H can efficiently

encode heterophily information in graphs. Also, we will validated its efficiency by conducting

experiments on the role classification task.

4.2.4 Unification and Instantiations

We linearly unify the homophily and heterophily proximity as follows:

Q = AM +λH, (4.5)

However, micro-level walk paths are still able to represent proximity with increasing of

orders due to the inherit graph structure. To prevent it, we need to enlarge the difference

of entries in H. Considering the scalability issue in the graph embedding field, we focus

on a linear combination (λ ), but similar ideas (e.g., non-linear operators) can be straight-

forwardly generalised. The first-order proximity Q flexibly shows homophily and heterophily
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characteristics by hyperparameter λ that controls over the importance of heterophily. The

Eq. (4.4) models a heterophily representation, which aims to give more weights to edges

acting as a bridge role connecting two communities. The Eq. (4.5) linearly combines and

heterophily and homophily representations with a hyperparameter λ , which helps us to

flexibly preserve both representations. By tuning λ , the unification proximity Q enables

existing homophily-based methods (e.g., AROPE) to preserve heterophily proximity in

node embedding. Therefore, combining our H2GT with existing homophily-based methods

overcomes the limitation of one specific proximity and integrates both. Fig 4.3 illustrates the

proposed H2GT framework.

The H2GT framework has three key benefits:

1. Unification. The proposed H2GT embodies both homophily and heterophily, with the

trade-off hyperparameter (λ ) determined by cross validation. This enables existing

graph embedding methods to break the limitation of preserving either homophily or

heterophily by simply combining with our framework.

2. Simplification. To generate a new graph as illustrated in Fig 4.3, it only involves some

simple graph transformation, such as max operation, subtraction and summation of

matrix, without any optimisation process. Motif counting [5, 97] has some mature

solutions to be addressed in large-scale graphs. Although it is of simplification, it still

can offer a solution to preserve homophily and heterophily together with partial mathe-

matical guarantee and strong intuition. Moreover, benefiting from its simplification, it

is easy to implement.

3. Efficiency. It is able to improve efficiency of a whole pipeline from an input original

graph to a final graph embedding through using an extra enhancer H2GT (show

experiment results in Section 4.3.8). The reason is two-fold. First, our proposed H2GT

enjoys simplification, and thus does not give much pressure on whole learning pipeline.

Second, the sparsity of output unified representation Q is commonly lower than that

of the input original graph. When constructing the homophily proximity, some edges
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Algorithm 4 H2GT

Input: Adjacency matrix A ∈ Rn×n

Output: Unification of homophily and heterophily proximity representation Q ∈ Rn×n

1: Construct a homophily matrix AM ∈ Rn×n.

2: Construct a maximality M from AM by converting all non-zero entries in M to a maxi-

mum value in AM.

3: Construct a heterophily matrix H = M−AM.

4: Construct an unification matrix Q = AM +λH.

are removed due to not contained in any triangle. It will improve the efficiency of the

latter combined method if its computation relies on the sparsity of the graph.

Our framework H2GT can be integrated with any graph embedding methods as a pre-

processing step to provide input to them. Here we select three representative algorithms,

AROPE on matrix factorisation, DeepWalk on random walks and GCN on convolutional

neural networks.

• H2GT-AROPE (H2GT-A). To preserve HOP, we use a linear combination of power of

biased matrix Q as follows,

PM = w1Q+w2Q2 + . . .+wlQl. (4.6)

When λ = 0, we interpret Qr(i, j) (1≤ r≤ l) as the total number of motifs traversed by

all possible l-length walk paths connecting nodes vi and v j. Increasing λ results in more

similarity from global neighbours to represent the HOP between vi and v j. Moreover,

benefiting from AROPE, H2GT-A can explore arbitrary walk length l between two

nodes without increase computational complexity.

• H2GT-DeepWalk (H2GT-D). The objective function of DeepWalk can be written as:

max
Φ

logPr({vi−w, . . . ,vi−1,vi+1, . . . ,vi+w}|Φ(vi)) , (4.7)
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where w is the window size, Φ(vi) is the representation of vi. Under the proposed

H2GT framework, instead of uniformly random sampling neighbours of vi, we adopt a

biased sampling strategy. Different from the biased sampling strategy in node2vec that

considers a second-order random walks by tuning two out-in parameters, H2GT-D only

needs to tune one unifying parameter λ . A small λ makes it more likely to sample

local, close neighbours. By contrast, a large λ makes it more likely to sample global,

far-away neighbours.

• H2GT-GCN (H2GT-G). The layer-wise propagation rule in GCN can be written as,

F(l+1) = σ

(
D̃−

1
2 Q̃D̃−

1
2 F(l)W(l)

)
, (4.8)

where Q̃ = Q+ IN , IN is an identity matrix, D̃ii = ∑ j Q̃i j, W(l) is a layer-specific

trainable weight matrix, F(l) is an activation in the lth layer; H(0) is the given feature

matrix, and σ(·) is an activation function. An activation function, such as ReLU [43],

is a function that is added into an artificial neural network to enable the network

learns complex non-linear patterns in the data. If the feature of nodes is not given,

we set H(0) as one-hot encoding. From Eq. (4.8), H2GT-G can discriminate the

neighbourhoods. Specifically, it will give more attention to neighbourhoods that has

homophily assumption if λ is small, and otherwise, it will give more attention to

neighbourhoods that has heterophily assumption.

4.2.5 Complexity Analysis

The time complexity of homophily representation can be as large as O(n3) for a complete

graph, where n is the number of nodes in the graph. Let t is the number of triangle of a

input graph G. While most real graphs are far from complete so the actual complexity is

much lower than t < O(n3). According to empirical study in [9], the value of t in real-world

graphs is linear with |E|. For heterophily and unification step, each has the same complexity,

which is the number of non-zero entries j ≤ |E| in AM. Only j = |E| when the graph is

complete. Thus the total complexity of H2GT is O(n3)+O( j) after ignoring lower order
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terms. The running time of H2GT is dominated by the time of finding all the triangles, which

can be O
(
n3). In addition, the computational complexity of both heterophily and unification

operations linearly depends on the number of edges j.
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Table 4.2 Statistics of graphs with isolated nodes removed. #Test Triangles indicates the
number of removed triangles as testing set for motif prediction.

Graph |V | |E| Edge Density Labels #Test Triangles

Amherst 2,021 81,492 40.3 15 10K
Hamilton 2,116 87,486 41.3 15 10K
Mich 2,924 54,903 18.7 13 10K
Rochester 4,140 14,5309 35.1 19 10K
Brazil 131 1,038 7.9 4 200
Europe 399 5,995 15.0 4 300
USA 1,190 13,599 11.4 4 500

4.3 Experiments

4.3.1 Datasets

We conduct extensive experiments on the following seven real networks covering social

networks 1 and traffic graphs 2. Statistics of graphs are shown in Table 4.2:

1. Amherst, Hamilton, Mich, Rochester [104]: They are the Facebook social networks at

different universities in US. Nodes are students and links represents friendship links

between students’ pages. We use class year as the node labels in node classification.

2. Brazil, Europe, USA [87]: They are air-traffic networks. Nodes indicate airports and

edges correspond to commercial airlines. We use the level of airport activity (e.g.,

passenger traffic) as the node labels in structural role classification.

4.3.2 Baselines

We extensively compare the proposed H2GT with the following eight state-of-the-art methods

covering graph embedding methods and a SOTA graph transformer method:

1https://escience.rpi.edu/data/DA/fb100/
2https://github.com/leoribeiro/struc2vec

https://escience.rpi.edu/data/DA/fb100/
https://github.com/leoribeiro/struc2vec
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1. Deepwalk3: This approach learns an embedding by sampling random walks from each

node, applying SkipGram learning on those walks. We vary the window size{1, 2, 3, 4,

5, 6} and use default settings for other hyperparameters.

2. LINE4: It defines loss functions to preserve the first-order or second-order proximity

separately. We study two versions of LINE that preserves the first-order proximity

(LINE-1st) and second-order proximity (LINE-2nd). We use the default settings for

other hyperparameters.

3. node2vec5: It defines a flexible random walk approach that extends DeepWalk by

adding two parameters inward (i) and outward (o), so as to control DeepWalk’s random

walk sampling. The special case with parameters i = 1, o = 1 corresponds to DeepWalk.

We finely tune the bias hyperparameters inward, outward from {0.25, 0.5, 1, 2, 4} and

use the default settings for other hyperparameters.

4. AROPE6: It is a matrix factorisation based method that preserves the polynomial-

based HOP (Eq. (2.20)). It is able to preserve arbitrary-order proximity and achieves

high scalability as it only performs eigen-decomposition to the adjacency matrix by

re-weighting eigen-decomposition. We tune the number of preserved higher-order

proximity {1, 2, 3, 4, 5, 6} and wi = 0.1i.

5. struc2vec7:It first encodes the node structural role similarity into a multilayer graph.

DeepWalk is then performed on this cobstructed multilayer graph to learn vertex

representations, such that vertices close to each other in the multilayer graph (with

high structural role similarity) are embedded closely in the new representation space.

We study all four different optimisation strategies of struc2vec.

3https://github.com/phanein/deepwalk
4https://github.com/snowkylin/line
5https://github.com/aditya-grover/node2vec
6https://github.com/ZW-ZHANG/AROPE
7https://github.com/leoribeiro/struc2vec

https://github.com/phanein/deepwalk
https://github.com/snowkylin/line
https://github.com/aditya-grover/node2vec
https://github.com/ZW-ZHANG/AROPE
https://github.com/leoribeiro/struc2vec
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6. Graph Neural Network8: It is derived from spectral graph convolutions [14, 25].

Neighbourhood aggregation is a key that step each node only aggregates feature vectors

of its first-order neighbours. We use the default settings to conduct experiments.

7. MotifSC: It is an unsupervised motif-based spectral clustering method. It aims to

minimise the conductance after producing partitions. we use the default settings to

conduct experiments.

8. Graph diffusion convention (GDC) 9 [57]: This approach is a graph transformer

model. A new graph is generated by firstly constructing a diffusion graph obtained by

polynomial function, and then sparsitying this diffusion graph by setting a threshold.

However, it does not incorporate heterophily assumption. We study two variants of

GDC, namely personal pagerank and heat kernel. Furthermore, we combine GDC

with arope (GDC-A), DeepWalk (GDC-D) and GCN (GDC-G) with recomended

transport probability {0.05, 0.15, 0.3}, exponential in heat kernel {1, 5, 10}, and

sparsity threshold { 0.00001, 0.0001, 0.001, 0.01 }

For our method, we study three variations: H2GT-A, H2GT-D and H2GT-G. H2GT-A and

H2GT-D take the number of proximity as {1, 2, 3, 4, 5, 6} and λ = {0.1, 0.3, 0.5, 0.7, 1.3,

1.5, 1.7}. H2GT-G uses the same λ with other variant but only uses two layers.

The dimension of embedding vector is 128 for all social networks and 16 for all traffic

networks considering the number of nodes in graphs. The best performance results for

all methods will be reported, with termination of the computation if no complete result is

returned within twelve hours. We use the open-source Python library GEM10 [44] to study

all methods under the same software framework. All experiments were performed on a Linux

machine with 2.4GHz Intel Core and 16G memory.

8https://github.com/tkipf/pygcn
9https://github.com/klicperajo/gdc

10https://github.com/palash1992/GEM

https://github.com/tkipf/pygcn
https://github.com/klicperajo/gdc
https://github.com/palash1992/GEM
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4.3.3 Evaluation Metrics

For motif prediction, we use precision@Np to evaluate the performance [110, 135]. It is

defined as:

precision @Np =
1

Np

Np

∑
i=1

δi, (4.9)

where δi =1 means the i-th reconstructed motif is correct (i.e., the reconstructed motif exists

in the graph), δi =0 otherwise and Np is the number of evaluated motifs. For node and

structural role classification, we use accuracy, i.e. the percentage of nodes whose labels are

correctly classified, to evaluate the performance [128]:

Accuracy(y, ŷ) =
1
n

n

∑
i=1

I(ŷi = yi) , (4.10)

where ŷ and y are predicted label and true label respectively, I is an indicator operator (1 if

two labels are equal otherwise 0).

4.3.4 Performance for Motif Prediction

Besides links, motifs are small subgraphs fundamental in graphs. Thus, prediction of motif

structures is important in real applications. Therefore, we design the motif prediction task

as a generalised link prediction task in our evaluation. We focus on fundamental triangle

prediction task, though it can be generalised to other motif structures. Triangle/Motif predic-

tion is not as commonly evaluated as link prediction. A recent paper in [10] points out the

importance of triangles/motifs in real-world applications and calls for more attention. Thus,

this chapter addresses such a practical need that many other methods fail to address. GCN

and H2GT-G are not studied here since GCN is primarily designed for node classification

tasks.

In our experiments, we first randomly remove some triangles to be used as testing set.

The number of removed triangles are shown in Table 4.2 (the right most column). Then

we train all models on the rest of the graph. Note that the summation of the number of

triangles in testing and training are not equal with the total number of triangles in the original
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Table 4.3 Motif prediction (i.e. generalised link prediction) results reported in precision @Np.
The best results are in bold and the second best ones are underlined. We set Np to 500 for all
traffic graphs and 10k for all Facebook social networks.

Methods Amherst Hamilton Mich Rochester Brazil USA Europe

MotifSC 0.658 0.654 0.702 0.873 0.096 0.187 0.331
AROPE 0.894 0.898 0.928 0.955 0.548 0.985 0.742
DeepWalk 0.639 0.658 0.789 0.864 0.050 0.060 0.035
LINE-1st 0.082 0.084 0.085 0.088 0.066 0.088 0.082
LINE-2nd 0.310 0.310 0.307 0.319 0.075 0.062 0.060
node2vec 0.094 0.085 0.087 0.097 0.125 0.100 0.295
struc2vec 0.167 0.181 0.225 0.152 0.387 0.628 0.126
GDC-A 0.679 0.734 0.665 0.774 0.515 0.881 0.635
GDC-D 0.821 0.811 - - 0.121 0.397 0.282

H2GT-A 0.928 0.927 0.927 0.978 0.578 0.986 0.747
H2GT-D 0.864 0.857 0.938 0.972 0.098 0.777 0.324

graph since triangle structures are correlated with each other in a graph. To evaluate the

performance, we take the following five steps:

1. Positive sampling: we sample existing triangles (i.e., testing set) in the original graph.

2. Negative sampling: we sample three-node tuples and ensure every tuple cannot com-

pose triangles in the original graph. Its quantity is ten times over positive samples.

3. After obtaining embedding of nodes, we calculate the mean of tuplewise similarity

(e.g., dot product) in positive and negative sampling sets.

4. Mix and sort similarity of negative and positive together, and use precision@Np to

evaluate. Here, we set the maximal Np as 500 for all traffic networks and 10,000 for

all Facebook social networks (noting the total number of triangles is at exponential

scale) and with the reasoning that for a good model, the similarity of positive sampling

should be larger than that of negative sampling.

5. Calculate all precision@Np from 1 to maximum Np and average them. Finally, the

average results of 5 runs are reported in Table 4.3.

We have following observations:
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Table 4.4 Node classification results (accuracy) on three datasets. The best results are in bold
and the second best ones are underlined. The results of LINE-1st and LINE-2nd have much
lower accuracy so they are not shown.

Hamilton Rochester Mich

%Labels 2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

MotifSC 0.209 0.218 0.255 0.249 0.327 0.210 0.221 0.244 0.279 0.303 0.208 0.233 0.231 0.239 0.241

AROPE 0.770 0.840 0.862 0.874 0.876 0.717 0.770 0.790 0.799 0.811 0.465 0.506 0.524 0.537 0.542

DeepWalk 0.721 0.804 0.842 0.861 0.864 0.711 0.768 0.787 0.798 0.807 0.464 0.506 0.523 0.536 0.547

node2vec 0.277 0.317 0.331 0.348 0.354 0.252 0.292 0.319 0.334 0.340 0.226 0.247 0.258 0.257 0.257

GCN 0.649 0.679 0.704 0.742 0.747 0.605 0.660 0.650 0.680 0.675 0.422 0.494 0.531 0.549 0.550
struc2vec 0.218 0.238 0.251 0.260 0.271 0.201 0.207 0.211 0.214 0.215 0.196 0.208 0.220 0.224 0.225

GDC-D 0.758 0.829 0.848 0.859 0.862 0.690 0.738 0.756 0.765 0.773 0.475 0.505 0.513 0.524 0.532

GDC-A 0.224 0.284 0.317 0.313 0.423 0.212 0.238 0.274 0.332 0.389 0.211 0.237 0.247 0.242 0.251

GDC-G 0.481 0.592 0.660 0.730 0.719 0.187 0.421 0.269 0.431 0.413 0.260 0.329 0.380 0.477 0.409

H2GT-D 0.789 0.843 0.866 0.877 0.879 0.745 0.780 0.796 0.802 0.811 0.485 0.507 0.525 0.535 0.541

H2GT-A 0.729 0.795 0.815 0.824 0.829 0.680 0.723 0.744 0.744 0.754 0.438 0.450 0.460 0.470 0.465

H2GT-G 0.642 0.688 0.730 0.738 0.745 0.605 0.646 0.662 0.674 0.669 0.412 0.484 0.511 0.529 0.533

1. H2GT-A achieves the overall best performance over all datasets, and AROPE achieves

the second best.

2. H2GT-A improves the AROPE by 2.23% on average. Additionally, H2GT-D can

improve DeepWalk by 23.9% for all social networks on average, and it even can

improve more than ten times for two sparse USA and Europe traffic networks. It shows

the effectiveness of H2GT for preserving triangle structures in embedding space.

4.3.5 Performance for Node Classification

We evaluate the node classification performance. Specifically, we randomly select a portion

of nodes as training set and leave the rest as test set. Then, we train a one-vs-all logistic

regression with L2 regularisation. We repeat the process for 10 times and report the average

accuracy in Table 4.4. We have following observations:

1. H2GT-D achieves the overall best performance.

2. H2GT-D and H2GT-A have poorer results than DeepWalk and AROPE, i.e., there is

degradation rather than improvement. The reason could be matrix factorisation and

convolutional neural network are less sensitive to heterophily.
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Table 4.5 Structural role classification results on Brazil, Europe and USA with 90% training
data. The results of LINE-1st and LINE-2nd have much lower accuracy so they are not
shown. The best results are in bold and the second best ones are underlined.

Datasets MotifSC AROPE DeepWalk node2vec GCN struc2vec GDC-D GDC-A GDC-G H2GT-D H2GT-A H2GT-G

Brazil 0.564 0.686 0.429 0.450 0.379 0.736 0.607 0.436 0.428 0.514 0.664 0.500
Europe 0.365 0.535 0.365 0.422 0.362 0.568 0.530 0.452 0.350 0.430 0.577 0.450
USA 0.379 0.589 0.493 0.479 0.549 0.608 0.588 0.519 0.403 0.629 0.600 0.565

4.3.6 Performance for Structural Role Classification

Earlier, we heuristically show that the H2GT can help preserve node centrality as an applica-

tion of the structural role classification. To validate the effectiveness, we conduct this task on

Brazil, USA and Europe and show result in Table 4.5 with 90% training ratio. We observe

that:

1. H2GT-A and H2GT-D achieve the best performance on Europe and USA respectively.

Struc2vec is specifically designed to this task so it achieves better performance on

Brazil than H2GT-based methods. It could be caused by sparsity problem of H2GT-

based methods due to motif representation, and especially for Brazil, the most sparse

graph among all datasets.

2. H2GT-based method can improve the overall performance of original methods. For

example, in Europe, H2GT-D, H2GT-A and H2GT-G improve 17.8%, 7.9% and 24.3%

over original DeepWalk, AROPE, and GCN respectively.

4.3.7 Sensitivity Analysis

We conduct a sensitivity study for two hyperparamters: the order of HOP P and unifying

weight λ , as shown in Fig. 4.4. The left of Fig. 4.4 shows the performance variation of

H2GT-A for motif prediction task on Hamilton and Rochester. We see that H2GT-A is less

sensitive to the unifying weight than the number of HOP. The right of Fig. 4.4 shows the

performance variation of H2GT-D for node classification task on Hamilton and Rochester.

We see that H2GT-D is more sensitive to the unifying weight than the number of HOP.
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Fig. 4.4 Sensitivity analysis on two hyperparameters proximity order P and unifying weight
λ . Left: H2GT-A for motif prediction on Hamilton and Rochester. Right: H2GT-D for node
classification on Hamilton and Rochester.

4.3.8 Computational Time

Table 4.6 compares the computational time of the original AROPE, DeepWalk and GCN

with H2GT-A, H2GT-D and H2GT-G. For our H2GT, the computational time includes the

whole pipeline from input original graph to output graph embedding. We have two key

observations:

1. Our H2GT-A, H2GT-D and H2GT-G can improve efficiency of AROPE, DeepWalk,

and GCN by 35.1%, 45.7% and 10.1% respectively. This is because our H2GT only

uses local motif structures and sparsifies the original graph, which accelerates the

optimisation process of combined methods and improves efficiency.

2. We further study the overhead of the motif representation calculation. Our studies

show that the motif calculation is not the most important part in computational cost, e.g.

it accounts for only 5% and 8% of the total time of H2GT-A on Amherst and Rochester,
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Table 4.6 Computational time (in seconds). The last row shows the average with the most
efficient result in bold and the second underlined. We can see that our H2GT-A, H2GT-D
and H2GT-G can improve efficiency of AROPE, DeepWalk, and GCN by 35.1%, 45.7% and
10.1% respectively.

Datasets AROPE H2GT-A DeepWalk H2GT-D GCN H2GT-G

Amherst 3.99 2.79 216.97 99.17 26.46 28.34
Hamilton 4.06 2.84 218.87 112.23 32.57 28.10
Mich 5.35 2.63 306.91 121.21 25.46 19.89
Rochester 5.40 3.96 443.54 311.06 72.17 64.42

Average 4.70 3.05 296.57 160.92 39.16 35.19

respectively. Thus, the efficiency gain due to increased sparsity has exceeded this small

overhead, leading to an overall improvement of computational efficiency.

4.4 Summary

In this chapter, we proposed an H2GT framework that makes use of motif representations to

transform a graph into a new graph preserving both homophily and heterophily via flexible

and complementary micro-level and macro-level walk paths. H2GT can be integrated with

any existing graph embedding methods without requiring changing their cores such that

it can take advantage of powerful graph embedding methods proposed recently. We con-

ducted experiments on node classification, structural role classification and newly designed

motif prediction to show the superior prediction performance and computational efficiency

improvement of H2GT over SOTA methods.





Chapter 5

Trustworthiness-aware Knowledge Graph

for Recommendation via Motifs

5.1 Introduction

Knowledge-aware recommendation has shown great potential to improve accuracy and

explainability. However, when incorporating KGs into RS, most existing methods, including

the introduced methods in Sec. 2.5.2, do not consider noise in KGs. In real-world KGs, some

noise is inevitably introduced in the process of automatically constructing large-scale KGs

due to limited labour supervision [119, 54]. We argue that such noise in KGs as auxiliary data

can degrade the performance of RS, which will be verified by our experiments. As illustrated

in Fig. 5.1, the red dashed arrow indicates an interaction to be predicted between a user and a

movie Death Becomes Her. Assuming that this user has interacted with three similar movies

Back to The Future I & II and Forrest Gump due to the same director Robert Zemeckis by

using the KG. The correctness of the director of Death Becomes Her can determine whether

to recommend it to this user. In this case, we fail to recommend Death Becomes Her if a

noisy triple (Death Becomes Her, IsDirectedBy, Christopher Nolan) exists. Therefore, it is

essential to tolerate such noisy triples in the KG incorporated with RS since KGR, as an

important way to integrate with RS, heavily relies on triples.
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Fig. 5.1 An example to show that a noisy triple (Death Becomes Her, IsDirectedBy, Christo-
pher Nolan) can degrade the recommendation performance (i.e., recommend interesting
Death Becomes Her to the user). It motivates our model to tolerate such noisy triples.

In this chapter, we aim to estimate noise in KGs, while constructing noise-tolerant KGR

to incorporate with RS. However, there remains two challenges: 1) Noise estimation in

any KG. Some works [32, 64] strongly rely on external information (e.g., web content,

text) but do not have good generalisation to estimate noise in KGs. Therefore, it is a

challenge that how to estimate noise without relying on external information to enhance

generalisation; 2) Noise estimation integration. Some existing works [129, 18] study an

integration between two modules (KGR and RS) through, for example, linearly combining

the entity and the corresponding item embeddings. However, building on this two-module

integration, introducing another noise estimation module is still unclear.

To address the above challenges, we propose a novel method trustworthiness-aware KGR

for recommendations (TrustRec). TrustRec incorporates noise-tolerant translation-based

KGR into a CF-based method through a trustworthiness estimator, which gives the degree of

certainty of triples. Specifically, to construct this trustworthiness estimator, we firstly leverage

internal structural information in KGs from microscopic to macroscopic levels: the motif

(co-occurrence in the same type of local connectivity pattern), communities (co-occurrence

in the same high association group) and global information (correlation strength on all paths).

Then we use a neural network architecture to fuse the structural information, and finally yield
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a trustworthiness value for every triple. By this way, we can estimate triple trustworthiness

in any KG by leveraging internal information to enhance generalisation capacity, which

tackles the first challenge. To address the second challenge, building on our estimator,

we integrate triple trustworthiness into a proposed neural/weighted pairwise ranking loss

functions for noise-tolerant KGR. Meanwhile, we integrate entity trustworthiness as a linear

combination ratio of an entity embedding to learn a noise-tolerant item representation for RS.

We summarise our contributions of this chapter as follows:

1. We propose a trustworthiness estimator to take noise in KGs into account.

2. We propose trustworthiness integration to learn noise-tolerant KGR and item represen-

tations for RS.

3. We conduct extensive experiments to show the superior performance of TrustRec over

SOTA methods.

5.2 Methodology

In this section, we propose to estimate trustworthiness of triples through internal structural

information: motifs, communities and global information. We then integrate triple trustwor-

thiness into a weighted/neural loss function of KGR to learn noise-tolerant KGR. Meanwhile

we integrate entity trustworthiness into RS to learn noise-tolerant item representations for

RS.

5.2.1 Motif-aware Trustworthiness

Triangular motifs (shown in left bottom of Fig. 5.3) demonstrate very important local

structures underlying various complex networks, such as social networks.

We use the strength of a tie between head and tail linked by a relation to measure the

trustworthiness of triple (eh, r, et). If head eh and tail et have a strong tie, the relation

r between head eh and tail et is expected to be strong. Motif modelling is an effective

approach to measure the strength of a tie between two entities [10, 105]. For example, in
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Fig. 5.2 An example to show 1) a strong tie occurs in the triple (Tom Hanks, actor, Forrest
Gump) through the motif I; 2) high association in the triple (Tom Hanks, actor, Forrest Gump)
within a community (shadow); 3) high correlation (an orange dashed arrow) occurs in an
entity pair (Drama, Robert Zemecks) through all paths.

a social network, two people who have a common friend are likely to be friends, so this

common friend and two people constitute a triangular motif connectivity pattern. Intuitively,

if two people have more common friends, the stronger strength of a tie between them can

occur. Additionally, considering motifs can capture the rich context of relations to diversify

strengthen of ties while direct edges relation cannot. For example, in Fig. 5.2, if only

considering the simple edge relation, triples (Tom Hanks, actor, Bridge of Spies) and (Tom

Hanks, actor, Forrest Gump) has the same strength of a tie. However, when considering

a motif type I in Fig. 5.2, the triple (Tom Hanks, actor, Forrest Gump) has a rich context

(e.g., with Robert Zemeckis) to enhance its strength of a tie. This chapter will focus on all

triangular motifs as shown in Fig. 5.3, though our proposed method can be easily extended

to other motifs.

Based on the above analysis, we take the input (eh,r,et) from G, and quantify the strength

of a tie for it by counting the number of the motif typeMi containing this triple. Different

type of triangular motifs reflect different connectivity patterns. Thus, we construct a feature

vector m(eh,r,et) to consider all, and the ith entry in m(eh,r,et) are decided by:

mi(eh,r,et) = ∑
eh,et∈E ,r∈R

1(eh,r,et occur inMi) , (5.1)
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Fig. 5.3 The framework of the proposed trustworthiness estimator by leveraging internal
structure information of KGs: motifs, communities and global information.

where 1(s) is the truth-value indicator function, i.e., 1(s) = 1 if the statement s is true and

0 otherwise. It shares the similar idea with motif-based clustering in the Chapter 3. We

form a feature vector m(eh,r,et) where the i-th element indicates the number of motif type

Mi containing (eh,r,et). We then compress the motif feature vector m(eh,r,et) into a value

m(eh,r,et) by a trainable weight wm as m(eh,r,et) = m(eh,r,et) · δ (wT
m), We interpret the

value wm(i) as the importance of motif typeMi. Note that all triples in the KG share the

same trainable weight wm to largely avoid the increase of the model complexity with the

increase of KG size.

5.2.2 Community-aware Trustworthiness

The motif-aware trustworthiness estimator based on the local neighbours is straightforward

but cannot take fully advantage of rich structural information of KGs. To capture a more

complete picture of triples, we consider a community structure that consists of a group of

entities. Community structure refers to the occurrence of groups of nodes in a graph that are

more densely connected than with the rest of the graph. Some existing works [114, 20] show
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that entities within a community have relatively higher association than entities in different

communities. If head eh and tail et have a higher association, head eh and tail et are more

likely to have a trusted relation. For example, in Fig. 5.2, the same relation actor connecting

an intra-community entity pair (Tom Hanks, Forrest Gump) is more trustful than it in an

inter-community entity pair (Tom Hanks, Bridge of Spies).

Inspired by the above, we thus perform community detection task on G. Since our focus

is the association of triples, we first convert all directed edges in G to undirected ones and

form a graph Gu. For the graph Gu, we then use a spectral clustering (SC) [108] method to

cluster Gu into k communities S = {S1, . . . ,Sk}. Let A ∈ Rn×n be an adjacency matrix of

weighted graph Gu where the entry A(i, j) is the number of relations between ei and e j. The

degree matrix D is a diagonal matrix with diagonal entries D(i, i) = ∑
n
j=1 A(i, j), which is

the degree of the entity ei. We then construct a Laplacian matrix L as follows:

L = In−D−
1
2 AD−

1
2 , (5.2)

where In is an identity matrix. SC aims to learn a spectral embedding Z∈Rn×k by optimizing

a function as follows:

min
Z

tr
(
ZT LY

)
, s.t. ZT Z = I, (5.3)

where tr(·) is the trace function. The above function can be solved by eigenvalue decom-

position of L, i.e., Z = [z1,z2, · · · ,zk] are the eigenvectors corresponding to the smallest k

eigenvalues of L. To find clusters, SC then uses Z as an input to perform k-means.

The changing number of communities can determine the state that whether a triple

(eh,r, et) are in the same community. Our model thus contains multiple states to represent

community-aware trustworthiness by constructing a community indicator vector c. The ith

entry in c(eh,r,et) is determined by:

c j
i (eh,r,et) =

1 (eh,r,et) ∈ Sn with j partitions,

0 otherwise,
(5.4)
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where 1 ⩽ j ⩽ k. Consistent with compression operation in motif-aware trustworthiness,

we have a community-aware trustworthiness c(eh,r,et) = c(eh,r,et) ·δ (wT
c ), where wc is a

shared trainable weight to indicate the importance of the number of communities.

5.2.3 Global-structure-aware Trustworthiness

Motif-aware and community-aware estimators mainly focus on microscopic and mesoscopic

structural information. The global structure, one important macroscopic description of the

graph structure, is a complementary component to represent the trustworthiness of triples

in KGs. Therefore, to consider the global structure, we introduce the concept of correlation

strength that captures how difficult to reach a tail entity et from a head entity eh through a

sequence of relations in a whole graph. For example, in Fig. 5.2, there are dense paths from

Drama to Robert Zemecks (e.g., Drama→ Tom Hanks→ Robert Zemecks), that is, there is a

high correlation between them. By contrast, it is impossible to reach from Drama to Matt

Charman following all paths in the graph.

To instantiate the above idea, we adopt source allocation theory in PageRank [81] to

characterise the correlation strength for triples. We assume that the trustworthiness between

entity pairs (eh,et) will be higher, and more resource is passed from the head eh through all

paths to the tail et in a whole graph G. The amount of resource aggregated into et indicates

the trustworthiness between eh and et . Specifically, starting from eh each node in the graph

should be reached. In the initial state, the resource amount of eh is 1, and all others are 0. In

the process of resource allocation, the sum of all resources of nodes is always 1. We simulate

resource flowing until distribution steady. The value of the resource on the tail entity is

p(et |eh), it is calculated as follows:

p(et |eh) = (1−α) ∑
ei∈D

p(ei | eh) ·weit

d(ei)
+

α

n
, (5.5)

where D is a set of entities that have outgoing links to the entity et , weit is the weight from

the ei to et , d(ei) is the out-degree of the entity ei. Thus, for each entity ei in D, the resource

flows from ei to et should be
p(ei|eh)·weit

d(ei)
. The entities without outgoing links can cause the
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absorption of the resource. To prevent it, resource flow from each entity may directly jump

to a random entity with the same probability α . This part of the resource that flows to et

randomly is 1
n .

5.2.4 Fusion of Estimators

We use a neural network structure multi-layer perceptron (MLP) to extract a final trustworthi-

ness from three estimators. Note that the way of extraction is not limited to MLP, and we

can use a more elaborate design of the neural network. For the triple (eh,r,et), we first con-

catenate the above three-level trustworthiness x(eh,r,et) = [m(eh,r,et),c(eh,r,et), p(et |eh)].

The vector x(eh,r,et) will be input into the MLP and transformed passing L hidden layers as

follows:

t̂(eh,r,et) = M(M(· · ·M(x(eh,r,et))))

= ML(x(eh,r,et)), (5.6)

whereM(x) = σ(Wmx+bm) is a fully-connected neural network layer with weight Wm,

bias bm, and nonlinear ReLU activation function σ(·). In the output layer ofML(·), we

use a sigmoid function δ (·) to ensure the returned t̂(eh,r,et) in the range 0 to 1. The whole

framework of the trustworthiness estimator is shown in Fig. 5.3.

5.2.5 Trustworthiness Integration

After obtaining trustworthiness of triples, TrustRec follows the conventional translation-

based KGR to incorporate with CF. To inject auxiliary information from KG to RS, some

existing works study the integration between two modules KGR and RS (e.g., linearly

combine the entity and the corresponding item embeddings). When considering an additional

trustworthiness estimator module, we propose trustworthiness integration with both KGR

and RS. Specifically, we propose triple trustworthiness integration to learn noise-tolerant

KGR, and entity trustworthiness integration to learn noise-tolerant item representations of RS.
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For the triple trustworthiness integration, we propose a weighted and a neural margin-based

ranking loss (MRL) of KGR.

Weighted MRL. The idea is that a triple with higher trustworthiness should be more

important when training KGR. Based on it, we construct a weighted MRL as below

L(w)k = ∑
(eh,r,et)∈G
(e′h,r,e

′
t)∈G−

t̂(eh,r,et) · [γ +gR(eh,r,et)−gR(e′h,r,e
′
t)]+, (5.7)

where [·]+ ≜ max(0, ·), G− contains incorrect triplets constructed by replacing head entity or

tail entity in a valid triple randomly, and γ controls the margin between positive and negative

triples, and gR(·) is the energy function of TransR. We choose TransR because TrustRec is

equivalent with CKE if our trustworthiness estimator is neglected, which can gain insights

about the effect of our estimator. To learn noise-tolerant KGR, trustworthiness t̂(eh,r,et)

instructs our model to pay more attention on those more trustful triples.

Neural MRL. The idea is that if t̂(eh,r,et) is involved in a parameterised way to determine

the score of the energy function, TrustRec itself will learn to integrate trustworthiness for

noise-tolerant KGR. For example, if t̂(eh,r,et) negligibly contributes to the energy score

of (eh,r,et), TrustRec can assign very low trustworthiness to it. Thus, we first perform a

concatenation operation n(eh,r,et) = [t̂(eh,r,et),gD(eh,r,et)]. We then construct a neural

MRL as below:

L(n)k = ∑
(eh,r,et)∈G
(e′h,r,e

′
t)∈G−

[
γ +N L(n(eh,r,et))−gD(e′h,r,e

′
t)
]
+
, (5.8)

where N (x) = σ(Wnx+bn). Here, we use the energy function of TransD because of a

consideration of different types of entities in KGs and a study of the diverse KGR methods

on TrustRec.
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Integration with RS. Some existing works linearly combine the entity and corresponding

item embedding as the final item embedding as

i′ = e+qi. (5.9)

However, the final item embedding i′ contains noise from knowledge. Therefore, to learn

noise-tolerant item representations of RS, we assume that if an entity is likely to be involved

in triples with high trustworthiness, this entity has high combination ratio to form i′. We

propose entity trustworthiness that is an averaged summation of the triple trustworthiness it

involves. It is formulated as below:

t̂(e) =
∑e′t∈E ,r′∈R t̂(e,r′,e′t)

nh
+

∑e′h∈E ,r′∈R t̂(e′h,r
′,e)

nt
, (5.10)

where nh and nt are the number of triples that the entity e acts as heads and tails. TrustRec

treats t̂(e) as an integration ratio of entity e, and formulates

q′i = t̂(e) · e+qi, (5.11)

where qi is a learned latent vector of item i by MF. We then develop two variants of TrustRec

depending on the overall loss. TrustRec(W) uses the overall loss

L(w) = L(w)k +Lr. (5.12)

The TrustRec(N) uses the overall loss:

L(n) = L(n)k +Lr. (5.13)
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Table 5.1 Statistics of DBbook2014 and MovieLen-1M

DBbook2014 MovieLens-1M

Rec

# Users 5,576 6,040
# Item 2,680 3,240
# Ratings 65,961 998,539
# Avg. ratings 12 165
# Completeness 0.4% 5.1%

KG
# Entity 13,882 14,708
# Relation 13 20
# Triple 334,511 434,189

5.3 Experiments

5.3.1 Datasets

We use two public datasets in the book and movie domains: DBbook2014 1, MovieLens-1M2.

1. DBbook2014: This dataset provides ratings for book recommendations, which consists

of 5,578 users and 2,680 books.

2. MovieLens-1M: It is a popular benchmark dataset in movie recommendations, which

consists of approximately 1 million explicit ratings on the MovieLens website.

Items in these two domains are mapped into DBPedia entities if there is a mapping available.

DBpedia extracts triples from Wikipedia pages, and contains broad scope of entities covering

different areas of knowledge. The extracted DBPedia is released by the paper [18]. Table 5.1

shows the statistics of datasets.

Following most item recommendation works that models implicit feedback, we treat

existing ratings as positive interactions, and generate negative ones by randomly corrupting

items. To study the effect of noisy triples, we generate noisy triples to be 10%, 20%, 30%

and 100% of existing triples by the following protocol: for an existing triple (eh, r, et) in

a training set, we generate a corresponding noisy one by randomly replacing its head (e′h,

r, et) or tail (eh, r, e′t) while ensuring that 1) it cannot be found in the existing KG; 2) it

1http://2014.eswc-conferences.org/important-dates.html
2https://grouplens.org/datasets/movielens/1m/

http://2014.eswc-conferences.org/important-dates.html
https://grouplens.org/datasets/movielens/1m/
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contains at least one item; 3) for noise injection, triple (eh, r, et) is replaced with (e′h, r, et)

(or (eh, r, e′t)) to ensure the total number of triples is unchanged. To validate the effect of

KG-aware methods, we consider an item cold-start and sparsity scenarios. For both datasets,

25% of items in valid and test sets cannot be found in the train set. We randomly sparsify

70% interactions of MovieLens-1M since from Table 5.1 its completeness is more than ten

times than the completeness of DBBook2014.

5.3.2 Baselines

We compare TrustRec with the following six SOTA RS methods:

1. Collaborative Filtering with Knowledge Graph (CFKG)3 [133]: This method constructs

an user-item KG and the relation is decided by user behaviours (i.e., review, brand,

category, bought-together). This KG will be combined with the item-side KG by

shared common items. It then uses translational recommendation to minimise the loss.

2. Collaborative Knowledge Embedding (CKE)3 [129]: This approach applies matrix-

factorisation-based CF to knowledge-base embedding for recommendation, which uses

TransR to learn entity and relation embedding.

3. Knowledge Co-Knowledge factorization model (CoFM)3 [84]: It studies the effect

of knowledge transfer between item recommendations and KG completion via a co-

factorisation model which can be seen as a transfer learning model.

4. Knowledge Translation-based User Preference model (KTUP) 3 [18]: KTUP models

various implicit relations between users and items and transfer knowledge learned from

TransH, which reveals the preferences of users on consuming items. Additionally, it

provides explainability via aligned relations and preferences.

5. Knowledge Graph Convolutional Networks (KGCN)4 [112]: It extends the GCN to

the KG by aggregating neighbourhood information selectively and biasedly, which

3https://github.com/TaoMiner/joint-kg-recommender
4https://github.com/hwwang55/KGCN

https://github.com/TaoMiner/joint-kg-recommender
https://github.com/hwwang55/KGCN
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Table 5.2 The comparison results about recommendation on the KG dataset without noise
injection. The best results are in bold and the second best ones are underlined.

DBBook2014 (@5, %) MovieLens-1M (@10, %)
F1 Precision Recall F1 Precision Recall

CoFM 2.56 2.04 4.39 2.71 2.72 4.01
CKE 6.08 4.86 10.07 3.47 3.46 5.38
CFKG 2.70 2.14 4.55 2.51 2.67 3.54
KTUP 4.72 3.82 7.78 3.54 3.64 5.16
KGCN 2.10 1.54 3.31 2.02 1.89 2.23
KGNN-LS 2.15 1.65 3.11 1.88 1.85 1.94
TrustRec (N) 6.33 5.04 10.64 3.80 3.84 5.57
TrustRec (W) 6.25 5.02 10.17 3.66 3.80 5.27

simultaneously learns both structural information and semantic information from the

KG as well as users’ preferences and potential interests.

6. Knowledge-aware Graph Neural Networks (GNN) with Label Smoothness regularisa-

tion (KGNN-LS)5 [111]:This approach incorporates GNN architecture into KGs after

converting KGs to weighted homogeneous graphs. This conversion uses a user-specific

relation scoring functions and then aggregates neighbourhood information with differ-

ent weights. In addition, KGNN-LS proposes label smoothness constraint to provide

strong regularisation for learning the edge weights in KGs.

We construct the training set, validation set and testing set by randomly splitting the

dataset with the ratio of 7 : 1 : 2. Each experiment is repeated five times, and the average

performance is reported. For hyperparameters, the learning rate of all methods is searched in

{0.0005, 0.001, 0.005, 0.01}, the embedding size in {16, 32, 64}, We use an open-source

PyTorch library to study all methods under the same software framework released by [18]. All

trainable parameters are optimised by Adam algorithm. The co-efficient of L2 regularisation

is 10−5. The batch size is 512. We perform early stopping strategy on validation sets. All

other hyperparameters use default settings. At the beginning of training, we assume all triples

are correct, and initialise the triple trustworthiness as 1. All experiments were performed on

a Linux machine with 2.4GHz Intel Core and 8G memory.
5https://github.com/hwwang55/KGNN-LS

https://github.com/hwwang55/KGNN-LS
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Table 5.3 The comparison results about recommendation on the effect of noisy triples. The
best results are in bold and the second best ones are underlined.

DBBook2014 (P@5, %) MovieLens-1M (P@10, %)
Noise Ratio 0.1 0.2 0.3 1.0 0.1 0.2 0.3 1.0
CoFM 2.06 2.00 1.98 1.90 2.89 2.89 2.83 2.56
CKE 4.88 4.72 4.70 4.70 3.62 3.59 3.47 3.33
CFKG 1.86 1.76 1.40 0.84 2.28 2.38 2.10 1.27
KTUP 3.46 3.72 3.98 3.24 3.51 3.45 3.43 3.50
KGCN 1.48 1.68 1.50 1.74 2.11 1.70 1.84 1.53
KGNN-LS 1.61 1.60 1.79 1.76 1.90 1.84 1.92 1.76
TrustRec (N) 4.98 4.98 4.92 4.80 3.66 3.61 3.71 3.48
TrustRec (W) 4.96 4.86 4.76 4.56 3.61 3.51 3.53 3.46

5.3.3 Evaluation Metrics

In recommendation, we use the trained model to select K items with highest predicted

click probability for each user in the test set, and choose F1@K, Precision@K(P@K) and

Recall@K. For KG completion, we use Hit ratio@K.

1. Hit ratio@K: It is 1 if a correct items are recommended within the top K items,

otherwise 0. We compute the mean of all users as the final hit ratio score.

2. F1-score@K: It is the combination mean of precision at rank K and recall at rank K.

3. Precision@K: It is the fraction of the items recommended that are relevant to the user.

We compute the mean of all users as the final precision.

4. Recall@K: It is the proportion of the items relevant to the user that have been success-

fully recommended. We compute the mean of all users as the final recall.

5.3.4 Performance for Recommendations

For recommendations, we evaluate methods in three scenarios w.r.t KG datasets without

noise injection, effect of noisy triples and top-K recommendations.

In Table 5.2, we show the performance comparison on DBook2014 and MovieLens-1M

with DBPedia without noise injection. We observe that:
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Table 5.4 The comparison results on top-K recommendation. The best results are in bold and
the second best ones are underlined.

DBBook2014 (P, %) MovieLens-1M (P, %)
Top K @3 @5 @10 @15 @20 @3 @5 @10 @15 @20
CoFM 2.62 2.00 1.47 1.35 1.23 3.34 3.05 2.78 2.69 2.57
CKE 5.89 4.77 3.43 2.83 2.46 4.41 4.05 3.49 3.29 3.10
CFKG 1.83 1.60 1.33 1.15 1.04 2.53 2.32 2.14 2.05 2.02
KTUP 4.21 3.64 2.73 2.32 2.02 3.98 3.69 3.51 3.24 3.03
KGCN 2.11 1.59 1.06 0.83 0.68 2.52 2.16 1.81 1.56 1.45
KGNN-LS 2.16 1.68 1.13 0.88 0.72 2.29 2.15 1.85 1.64 1.46
TrustRec (N) 6.07 4.94 3.59 2.92 2.53 4.48 4.09 3.66 3.39 3.19
TrustRec (W) 5.96 4.83 3.48 2.84 2.44 4.25 4.01 3.58 3.33 3.12

1. our proposed TrustRec(N) consistently achieves the best performance and TrustRec(W)

achieves the second best 5 out of 6 settings.

2. TrustRec(N) outperforms TrustRec(W) because it can flexibly learn a proper way to

incorporate triple trustworthiness into the energy function.

3. Two GNN-based methods do not show superior performance because their node

features are randomly generated and thus such features are not related with information

of KGs.

4. TrustRec(W) is superior over CKE, which indicates the efficacy of our trustworthiness

estimator.

In Table 5.3, we show performance comparison over the effect of noisy triples. We

observe the following:

1. With the increase of noisy triples our TrustRec(N) consistently outperforms compared

methods. Also our TrustRec(W) can achieve the second best 5 out of 8 settings. It

indicates our both methods are noise-tolerant.

2. The overall performance of all methods is degraded with the increase of noisy triples.

For top-K recommendation, in Table 5.4, we report the performance of KG-aware meth-

ods over precision at K = {3,5,10,15,20}. For each K, we report the averaged performance
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Fig. 5.4 Effect of noisy triples in DBBook2014 (The y-axis indicates the metric Precision@5).

over a range of noise ratio {0,0.1,0.2,0.3,1.0} because noise in KGs can significantly affect

performance. We can see that our TrustRec(N) is consistently superior over all baselines.

5.3.5 Performance for KG Completion

We evaluate on a KG completion task that predicts the missing entity eh or et . For each

missing entity, we take all entities as candidates and rank them according to the scores

computed based on entity and relation embeddings. Fig. 5.5 shows the overall performance

with the increase of ratio of noisy triples. We do not show the performance of TrustRec(N)

since feeding all unseen triples (more than 100 billion in DBBook2014) to our neural energy

function is unfeasible. From Fig. 5.5, we observe that TrustRec(W) has superior performance

over SOTA KG-aware RS.

5.3.6 Sensitivity Analysis

Firstly, we study the effect of noisy triples on recommendations. In Fig. 5.4, we show the per-

formance of three existing KG-aware RS methods CoFM, CKE and CFKG on DBBook2014

w.r.t Precision@5. We observe that:

1. with the increase of noise ratio the overall performance of all three methods are

degraded. It indicates that noisy triples negatively affect the performance of KG-aware

methods.
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Fig. 5.5 The comparison results on the KG completion task for DBPedia in DBBook2014
(left) and MovieLens-1M (right). The higher Hit Ratio@5 indicates the better performance.

Table 5.5 Computational Time (in seconds)

CoFM CKE CFKG KTUP KGCN KGNN-LS TrustRec(N) TrustRec(W)

DBBook2014 596 856 654 912 3281 1221 1536 1167

MovieLens-1M 2105 2955 1986 2230 7556 5393 7219 5368

2. The effect of noisy triples is different for different methods. For example, noisy triples

have more effect on CFKG than CoFM. This is because the embedding of entity with

noise in CoFM is reweighted to determine ratings while CFKG are not.

5.3.7 Computational Time

We show computational time of all compared methods in Table 5.5. We observe the following:

1. KGCN and KGNN-LS are not efficient due to personalised relation score function.

2. Our TrustRec(N) and TrustRec(W) are not efficient because both need to train a

trustworthiness estimator while all baselines do not need to train it.

3. Our TrustRec(W) is more efficient than TrustRec(N) because TrustRec(W) uses a

direct weighted loss function to avoid training an additional neural network.
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5.4 Summary

In this chapter, we proposed TrustRec that can estimate trustworthiness of triples in KGs

through an estimator that uses motifs, communities and global information. Based on

this, we proposed triple trustworthiness integration to learn noise-tolerant KGR, and entity

trustworthiness to learn noise-tolerant item representations of RS. We conducted experiments

to show that TrustRec outperforms SOTA methods.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

This thesis has investigated GRL methods with motif structures. We summarise this thesis

via the tackled research challenges as shown in Chapter 1 as below:

1. Structure preservation of different orders in clusters. Both edges and motif struc-

tures are important in the real-world graphs. However, existing SC methods only

explicitly encode either edges or motif structures, which are limited to considering a

single order. To address this issue, in Chapter 3, we proposed a novel mixed-order

spectral clustering framework to model both second-order and third-order structures

simultaneously. To model mixed-order structures, we proposed two new methods

based on graph Laplacian and random walks. MOSC-GL combines edge and triangle

adjacency matrices, with theoretical performance guarantee. MOSC-RW combines

first-order and second-order random walks for a probabilistic interpretation. Moreover,

we designed mixed-order cut criteria to enable existing SC methods to preserve mixed-

order structures, and developed new mixed-order evaluation metrics for structure-level

evaluation.

2. Inflexibility of GRL assumptions. In real-world graphs, both homophily and het-

erophily assumptions can co-exist, and thus considering only one could limit the
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prediction performance and interpretability. However, there is no general and universal

solution that takes both into consideration. In Chapter 4, we proposed a simple yet pow-

erful framework H2GT to capture HOP that flexibly unifies homophily and heterophily.

Specifically, H2GT utilises motif representations to transform a graph into a new graph

with a hybrid assumption via micro-level and macro-level walk paths. H2GT can be

used as an enhancer to be integrated with any existing graph embedding methods

without requiring any changes to latter methods. Because H2GT can sparsify graphs

with motif structures, it can also improve the computational efficiency of existing graph

embedding methods when integrated.

3. Noise-tolerant KGR for RS. For large-scale KGs, due to limited labour supervision,

noises are inevitably introduced during automatic construction, which can hurt the per-

formance of knowledge-aware applications. In Chapter 5, we integrated KGs into RS.

However, most existing KG-aware RS do not consider such noises in KGs, which can

degrade the performance of KG-aware RS. To address this issue, we proposed a novel

method TrustRec. TrustRec introduced a trustworthiness estimator into noise-tolerant

KGR methods for collaborative filtering. Specifically, to assign trustworthiness, we

leveraged internal structures of KGs from microscopic to macroscopic levels: motifs,

communities and global information. Building on this estimator, we then proposed

trustworthiness integration to learn noise-tolerant KGR and item representations for

RS.

6.2 Future Directions

While some fundamental problems in GRL have been addressed in this thesis, there are still

many open problems to be considered. This section outlines three research topics that worth

further investigation.

1. Higher-order structures enrichment for GRL. In this thesis, we only investigate

triangular motifs for GRL. For the other more complex motifs, such as Mbifan and Mloop
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in Fig. 1.2, this thesis does not extend to it. The type of motifs grows significantly with

the increase of orders, so it is impractical to enumerate all types motifs in large-scale

graphs. To ease the enumeration, we can incorporate some prior knowledge that cannot

be automatically identified. For example, triangle structures play an important role in

social networks. A few works such as [136] study the four-node loop and the five-node

star but it is limited to these two types of motifs and undirected graphs.

2. Dynamic GRL. Most existing works on GRL has focused on static graphs. The

real-world graphs (e.g., financial transaction graphs) are not always static and can

evolve over time. Therefore, dynamic graphs are becoming an increasingly important

topic of study. In such graphs, new nodes and/or new edges can appear while old

ones can disappear, which changes graph structures. Besides graph structures, the

node/edge context information can be also changed with varying time information.

Dynamic graphs have unique challenges to be tackled in terms of graph structures and

context information. Although a few attempts such as [134] can be applied to dynamic

graphs, they are still limited to fixed node size and do not incorporate important motif

structures into embedding space. Therefore, extending graph embedding techniques to

consider the dynamic character will open a variety of attractive application domains.

3. Substructure representations learning. Node embedding is the most common output

for GRL. Also, we study the relation (i.e., edge) embedding in KGs. In contrast

to node/edge embedding, the substructure (e.g., clique, community) embedding and

whole-graph embedding aims to represent the small-world graph and whole graph as

a low-dimensional vector, which can benefit to visualisation and graph classification.

Some existing works find some relations between node embedding and substructure

embedding [121, 20]. For example, learning node embedding can benefit to learn

community embedding [20]. However, these works do not study the effect of motifs

on substructure embedding, although we show the importance of motif in graphs.

Therefore, how to incorporate motifs into substructure embedding is an open problem.
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4. Motif-aware graph analysis in finance. Graph analysis plays an important role in

finance. In financial graphs, nodes are banks. If two banks share the same borrowers,

there will be a link between them. In the constructed financial graphs, some existing

works measure the systemic risk regarding vulnerability and reliability [41, 29, 2].

Vulnerability is an ability to maintain network functions under attacks or failures [96].

Reliability measures how long the network system performs effectively under at-

tacks [96]. Some recent works [30] have revealed the importance of motif structures

for the measurement of vulnerability and reliability in graphs (e.g., power-grid net-

works). In financial graphs, banking lending behaviours are co-related with each other,

which is the syndicated bank lending [48]. For example, a group of banks share the

same borrowers. For this case, motifs can model intrinsically interdependent and inter-

active banking behaviours, rather than edge structures that only capture independent

and individual banking behaviour. Therefore, how to assess systemic risks through

modelling motifs is an open problem.
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