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PHD ABSTRACT 
 
Water utilities in the UK collect vast amounts of water quality data during their monitoring 
programs to assure that the final product that they deliver to consumers is of a high quality. 
This data, once checked over the compliance with the regulations, is archived and not used 
for further analysis. However, advanced data analytics tools, such as machine learning (ML), 
have the potential to uncover hidden information, regarding the complex processes that 
occur in the drinking water distribution systems (DWDS), from such types of data. This work 
contributes to the research over the application of these techniques in real world water 
quality problems when the water quality datasets are used as inputs. More specifically, this 
research investigates the potential of these techniques, by exploring their ability in analysing 
real drinking water quality problems and by proposing to the water utilities a new operational 
approach on the management of the water quality data for creating evidence that will support 
decision making over proactive interventions in the DWDS.  
 
The main contribution of this work is a Big Data framework that works as a guide for the water 
utilities to solve water quality related problems in their DWDS by applying ML applications in 
the data that have already been collected.  This framework proposes, in the form of 4 layers, 
a new holistic approach that demands changes in the way the data storage, integration, 
analysis and visualisation is made. It also includes a novel process to facilitate the selection of 
the most appropriate ML technique, based on the water quality related problem and the 
existing data for analysis.  
 
Moreover, this research investigates the ability of some of the most common ML techniques 
by developing data-driven methodologies and applying them on water quality case studies 
for a water utility that supplies 5.5 million people. These methodologies are: a) a methodology 
that identifies correlations between different parameters and, thus, identifying factors that 
contribute in water quality deterioration; b) a methodology that predicts the risk of 
bacteriological deterioration in water exiting service reservoirs; c) a methodology for the 
short term forecast of free chlorine losses in drinking water trunk mains; d) a methodology 
that predicts the bacteriological behaviour of the water exiting the WTWs - flow cytometry 
total cell counts prediction in the WTWs outlet.   
 
The results obtained by the application of these methodologies, reported in this thesis, 
demonstrate the huge potential of ML techniques in both understanding the factors of 
deterioration and predicting future water quality behaviour. Overall, the data-driven 
methodologies and the framework presented in this thesis, open a new discussion to 
researchers regarding the identification of the appropriate data and methods for creating 
models that improve drinking water quality, and direct water utilities over a new data 
management approach to gain beneficial information for their DWDS operation and 
maintenance. 
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1. Introduction 

1.1. Background & motivation 
 
Water utilities’ (WUs) aim to provide their customers with drinking water of high-quality 
standards set by stringent national and international regulations. Thus, it is in their duties to 
guarantee that the water that arrives in their customers’ taps is of a high quality. This means 
that it is WUs’ responsibility to guarantee that the travel of the drinking water from the source 
to the taps through their drinking water distribution systems (DWDS) is safe. This travel 
includes the water treatment in the water treatment works (WTWs), with innovative 
treatment technologies, the distribution to service reservoirs (SRs) through the water 
distribution trunk mains (WDTM), the storage of the water in SRs that are well maintained, 
and the distribution to the taps through the water distribution mains (WDM). In the UK, the 
drinking water delivered by the WUs is of a high-quality standard, and microbial 
contamination of water pollution are very rare phenomena. However, even small incautions 
by the WUs could produce serious health impacts to humans and huge negative economical 
and reputational impacts to the companies. An example to give is the Cryptosporidium 
contamination that occurred in Lancashire, U.K. affected 575000 people and forced United 
Utilities to pay a £300,000 fine (DWI 2017).  
 
For eliminating the risk of water quality deterioration, guaranteeing that these phenomena 
will not occur, and complying with the regulations, WUs monitor the water throughout its 
travel from the source to the WTWs, the SRs, and the customer taps. Regarding the WTWs, 
in the UK, WUs monitor all the processes using sensors that measure the main water quality 
(WQ) parameters such as, turbidity, pH and Cl2, in steady frequency (usually 5 minutes). These 
measurements are stored in the supervisory control and data acquisition (SCADA) system, 
and, through this, the processes are adapted to properly treat the raw water and produce a 
final product of high standards.  However, monitoring the water during the distribution in the 
same way as WTWs, is more complicated as the water distribution mains are buried. 
Therefore, in the UK, for monitoring the water quality inside their DWDS, the WUs take 
samples from their WTWs’ outlets, their service reservoirs (SRs’) outlets, and randomly from 
some of their customer taps. For the DWDS monitoring program there is some minimum 
number of samples per year that WUs should collect from their assets, which is set by the 
Drinking Water Inspectorate (DWI) in England and Wales and the Drinking Water Quality 
Regulator (DWQR) in Scotland (DWI 2016; DWQR 2019a). Routine monitoring schedule is 
mostly focusing on the identification of indicator bacteriological microorganisms (coliforms, 
E. coli, enterococci and clostridium perfringens) and the heterotrophic plate counts (HPCs) as 
parameters that indicate biological degradation in the DWDS (Standing Committee of 
Analysts 2002).  In addition, other parameters that could be indicators of chemical or 
aesthetic degradation of the drinking water are also measured. Overall, in Scotland, DWQR 
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requires Scottish Water (SW) to undertake regular monitoring samples for 51 parameters 
such as iron, manganese, lead, turbidity etc. (DWQR 2019a). SW has undertaken more than 
300,000 samples in their WTWs, SRs and tap samples only for the year 2016 (DWQR 2017).   
 
The common policy for the WUs, in the UK, is to check the measured parameters over their 
compliance with the regulations limits and prioritize their interventions in the DWDS if the 
parameters exceed them. This approach by the WUs, however, is a reactive management 
approach that includes interventions in the DWDS (flushing, additional disinfection, cleaning 
of the network, mains replacements etc.) to handle water quality degradation that occurred 
there. This approach sets the WUs’ customers at risk of consuming drinking water with low 
quality standards for the period between the water quality incident occurring and the 
intervention to act. Therefore, new methodologies are required that could provide early 
warning advice to WUs decision makers and transform the reactive management of the 
DWDS to a proactive one.  As WUs collect large amounts of data that increase year after year, 
the research over these new methodologies should include data-driven techniques that 
extract valuable information hidden in raw datasets.  Positive outputs of this research could 
give sufficient evidence and support WUs over their proactive management of their networks. 
 
Data analytics or data science is not a new scientific field. It is a field where visualisation 
methods and other approaches are developed for understanding and interacting with 
datasets (Gandomi and Haider 2015).  With today’s continuous development of computing 
systems and data storage it is possible to store huge amount of data (digital traces) and, 
therefore, new approaches in data science were required to gain better knowledge from the 
available “big data”. Machine learning (ML) is a computer science domain that develops 
mathematical and statistical algorithms to give computers the ability to learn from data 
(Alpaydin 2014). ML methods are applied for prediction of future trends, for a deeper 
understanding of the relationships between various variables, for clustering unlabelled data 
and for detecting events. ML offered new approaches and techniques to data scientists for 
better understanding of the available data. Nowadays, its use is expanded in various scientific 
fields such as medicine, science, and engineering (Praveena and Jaiganesh 2017; Zekić-Sušac, 
Mitrović, and Has 2020; Dai and Wang 2019). WUs in the UK are in the process of creating 
data analytics departments in within their organisations and have already successfully 
collaborated with Academia in various cases for understanding the roots of discolouration in 
their DWDS  (Speight, Mounce, and Boxall 2019) understanding the roots of bacteriological 
failures in the WTWs (K. Ellis et al. 2014, 2015), predicting discolouration in water distribution 
trunk mains (Meyers, Kapelan, and Keedwell 2017; Kazemi et al. 2018), predicting water 
quality in the DWDS (Garcia, Puig, and Quevedo 2020; S. R. Mounce et al. 2017; Vries et al. 
2016; Kühnert et al. 2014) etc. As the scientific domain increases and new ML techniques are 
created, this field could offer benefits in the drinking water quality management. 
Unfortunately, though, there is no clear connection between the water quality problems that 
the WUs require to be solved with data, the available datasets that could be used for that, 
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and the ML techniques that could be applied in these datasets to provide WUs with actionable 
information.  Therefore, further research is required for understanding better the logic 
behind each ML technique, investigating which one could be more appropriate for a certain 
water quality investigation using specific datasets, and, mainly, for providing WUs with a 
holistic and strategic tool that could aid them operate and maintain their DWDS using their 
own data.  

1.2. Research questions, aim and objectives 

1.2.1. Research questions  
 
This work explores the ability of data-driven techniques in supporting the management of 
drinking water quality. Therefore, the research questions that the thesis addresses are: 
 

1. What WUs can learn and how can they benefit from the application of machine 
learning techniques in their data in terms of better managing their systems and 
improving the quality of the drinking water that they serve? 

2. Which machine learning type is the most appropriate for each specific water quality 
problem? 

3. What is required to facilitate the application of machine learning methods by WUs for 
deriving new knowledge that could support the management of their drinking water 
distribution systems? 

1.2.2. Aims and Objectives  
 
The overall aim of this research is to provide a new operational approach on the use and the 
analysis of water quality data that WUs collect on their daily monitoring routine programs, 
that develops new knowledge regarding drinking water quality behaviour in the DWDS and 
creates evidence for supporting proactive interventions for their maintenance.  The main 
objectives are as follows: 

1. To investigate the existing machine-learning techniques and the ways that these could 
be applied to drinking water quality problems (addresses research question 1). 

2. To develop data-driven models for understanding the roots for drinking water 
deterioration in DWDS (addresses research question 1 & 2).  

3. To develop predictive data-driven models for water quality deterioration events in the 
DWDS (addresses research question 1 & 2). 

4. To compare the various data-driven methods and suggest the most appropriate for a 
specific water quality problem (addresses research question 2). 

5. To present a new strategic approach that includes changes in WUs mode of collecting, 
integrating, and analysing their own data to create evidence that supports decisions 
over a proactive management of their DWDS (addresses research question 3). 
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1.3. Thesis structure 
 
Including the introduction chapter, this thesis is divided in 11 chapters. In this section, a 
summary of the remaining chapters is presented: 
 
Chapter 2: Literature review 

 
This chapter is divided into 2 parts. The first part focuses on presenting the main aspects of 
drinking water quality in the DWDS, concentrating mostly in the sources of bacteria in the 
DWDS, the parameters that influence bacteriological regrowth in the DWDS, the types of 
bacteria that are used as indicators of bacteriological regrowth. In addition, a further 
overview of the main causes of discolouration in the DWDS is also provided. In the second 
part of this review, the ML categories are explained, and a brief presentation of some key ML 
applications in various scientific fields and in the water sector, is provided. 

 
Chapter 3: Machine learning techniques selection for drinking water quality problems and 
performance metrics for their evaluation 

 
In the first part of this chapter, a methodology for selecting ML techniques based on the type 
of water quality (WQ) problems that could be solved using data-driven approaches is 
presented.  This methodology proposes a 6-step approach that should be followed based on 
Mitchell’s definition for machine learning algorithms (Mitchell 1997). In the second part of 
this chapter, the main ML methods that were investigated for this thesis are presented. Some 
of these ML methods were applied in real case studies presented in the remaining chapters 
of the thesis, and some of them were just investigated for their potential but not applied in a 
real WQ problem. Finally, in the last part of the chapter, the performance metrics used for 
evaluating the ML methods’ performance in the case studies are presented. This chapter 
addresses objective 1 and partially objective 5. 

 
Chapter 4: Scottish Water’s water quality data analysis 
 
This chapter presents the samples water quality monitoring program that SW follows to 
control the quality of the drinking water in their systems. In addition, the steps that were 
taken to transform the raw data from various sources into a main samples’ water quality 
dataset are provided. 

 
Chapter 5: Understanding bacteriological activity in service reservoirs by applying data-
driven techniques on water quality datasets 
 
In this chapter two ML techniques (self-organising maps and principal component analysis) 
were applied in SW’s SRs and WTWs WQ dataset for identifying the main factors that increase 
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bacteriological activity and bacteriological failures in the SRs. This chapter addresses 
objectives 2 and 4. 

 
Chapter 6: A SOMs application on water quality datasets for investigating the impact of 
switching disinfection type on drinking water quality 
 
In this chapter, self-organising maps are applied in SW’s tap WQ dataset taken from their 
systems that during the period between January 2012 and May 2020 have switched their 
disinfection type from chlorination to chloramination. The main aim is to understand the 
impact on drinking water quality of switching disinfection by identifying correlations between 
the various water quality parameters before and after the disinfection switch. This chapter as 
the previous one addresses objectives 2 and 4.  
 
Chapter 7: Α comparison between ensemble decision tree models for the classification of 
service reservoirs using drinking water quality data  
 
This chapter investigates the potential of ensemble decision trees, a group of ML methods, in 
predicting low chlorine events and coliform events in SRs. The methods used in this work are 
random forest, Adaboost and Rusboost and the proposed methodology was developed for 
the identification of high - risk SRs in the forthcoming month based on the samples WQ 
monitoring data, taken in the SRs outlet in the previous months. A comparison of the models 
is made based on their performance and a new model that combines the best single ML model 
is created. This chapter addresses objectives 3 and 4. 
 
Chapter 8: Predicting short-term chlorine losses in water distribution trunk mains using 
machine learning applications 
 
In this chapter a data-driven model for the short-term prediction of chlorine losses in water 
distribution trunk mains is presented. The data-driven model uses three different ML 
techniques, random forest, feed-forward artificial neural network and non-linear 
autoregressive artificial neural network, and their performance is compared. This chapter 
addresses objectives 3 and 4.  
 
Chapter 9: A data-driven investigation on the performance of Balmore water treatment 
plant 
 
A data-driven investigation in Balmore, one of SW’s largest treatment plants, is presented in 
this chapter. This investigation aims to, initially, understand the factors that contribute the 
most in the increase of flow cytometry total cell counts in the outlet of Balmore WTW and 
then to predict the total cell counts in the WTWs’ outlet up to certain hours ahead. This 
chapter addresses objectives 2,3 and 4. 
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Chapter 10: A Big-Data framework for actionable information to manage drinking water 
quality 
 
This chapter contains the main contribution that this thesis is providing. Based on the outputs 
of the previous chapters, this chapter proposes a framework for the holistic approach on how 
to use ML applications for specific water quality problems from the standardisation of the 
data storage to the data integration, the data analysis, and the visualisation of the outputs. 
The main purpose of this framework is to provide evidence to WUs decision makers to direct 
their investments into certain areas and, thus, guarantee the good operation and 
maintenance of their DWDS. This chapter is a reproduction of a paper submitted at the 
Environmental Science Water Research & Technology journal and is under review at the time 
of the writing and addresses objectives 1 and 5. 
 
 
Chapter 11: Discussion - conclusions and future work recommendations 
 
This chapter summarises the outputs of the previous chapters, presents the novel 
contributions of this thesis and makes recommendations for future research. 

1.4. Resources and Publications 

1.4.1. Resources 
 
The data used in this thesis belong to SW and, therefore, is not publicly available. The data 
include discrete monitoring samples data, telemetry data, time-series data, water distribution 
modelling data and assets information. The rainfall data collected in the rainfall stations that 
belong to the Meteorological Office of the UK (Met Office) were used in chapter 5 and chapter 
7. This data is available to purchase under request and for research purposes.   
 
The codes used for this thesis are written in MATLAB 2018b,2019a and 2019b (MathWorks). 
All the different algorithms are available in the following github repository: 
https://github.com/goresonic/PhD-Codes. 

1.4.2. PhD publications 
 
This research work produced and will produce a number of publications that are presented 
in this section and summarised in the table 1-1. 
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1.4.2.1. Journal paper 
 
Grigorios Kyritsakas, Joseph B. Boxall and Vanessa L. Speight (2020). A Big Data Framework 
for Actionable Information to manage Drinking Water Quality. J. Environmental Science: 
Water research & Technology themed issue: Data-intensive water systems management and 
operation (under review)  
(Chapter 10 is a reproduction of this paper) 

1.4.2.2. Conference papers 
 
Grigorios Kyritsakas, Vanessa Speight, Joby Boxall. (2021). “A data-driven model for the 
prediction of chlorine losses in water distribution trunk mains” Abstract accepted at the 
Hydroinformatics conference (HIC) 2022, Budapest 
 
Grigorios Kyritsakas, Vanessa Speight, Claire Thom, Joby Boxall. (2020). “A machine learning 
approach for the prediction of chlorine decay in the water distribution trunk mains” 
Conference paper accepted at the Hydroinformatics Conference (HIC) 2021, Mexico City, 
Mexico - conference cancelled due to COVID. 
(This conference paper was based on the work presented in chapter 8. The paper was 
accepted but the conference was cancelled due to COVID restrictions)  
 
Grigorios Kyritsakas, Vanessa Speight, Claire Thom, Joby Boxall. (2019). “Investigating drinking 
water behavior treated by different disinfection with the use of a machine learning technique 
on water quality datasets”. Computing and control in the Water Industry (CCWI) conference 
2019, Exeter, UK 
(This conference paper was based on the work presented in chapter 6)  
 
Grigorios Kyritsakas, Vanessa Speight, Claire Thom, Joby Boxall (2019). “A machine learning 
application on water quality datasets for understanding the factors of bacteriological failures 
on Service reservoirs” IWA-ASPIRE 2019 conference, Hong Kong 
(This conference paper was based on the work presented in chapter 5)  
 
Grigorios Kyritsakas, Vanessa Speight, Claire Thom, Joby Boxall (2019). “A machine learning 
approach to predict low chlorine decay in water distribution trunk mains” Sensing in Water 
2019 conference, Nottingham, UK 
(Part of the work presented in chapter 8 was included in this paper) 
 
An additional paper titled: “Predicting Water Quality Events in Storage Tanks Using Data-
Driven Techniques” that included part of the work presented in chapter 7 was submitted for 
presentation to the Water Quality Technology 2020 conference, but the conference was 
cancelled due to COVID. 
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1.4.2.3. Future publications 
 
In the future two more journal publications are planned. The first one will include the research 
presented in chapter 7 regarding the prediction of SRs that are at risk. The second one will 
include the investigation made in Balmore WTW that is presented in chapter 9.   

1.4.2.4. Linking publications with research questions and objectives 
 
The objectives of the thesis and the way that are linked to the research questions and the 
publications is presented in the following table 
 

Table 1-1: Overview of publications and their linkage to the objectives and the research 
questions of this thesis 

Publication Research questions answered Objective addressed 
Grigorios Kyritsakas, Joseph B. Boxall 
and Vanessa L. Speight (2020). A Big Data 
Framework for Actionable Information 
to manage Drinking Water Quality. J. 
Environmental Science: Water research 
& Technology themed issue: Data-
intensive water systems management 
and operation (under review)  
 

a) What is required to facilitate 
the application of machine 
learning methods by WUs for 
deriving new knowledge that 
could support the management of 
their drinking water distribution 
systems? 
 
b) Which machine learning type is 
the most appropriate for each 
specific water quality problem? 

Objectives 1 and 5 
 
a) Investigate the existing machine-
learning techniques and the ways 
that these could be applied to 
drinking water quality problems 
 
b) Present a new strategic 
approach that includes changes in 
WUs mode of collecting, 
integrating, and analysing their 
own data to create evidence that 
supports decisions over a proactive 
management of their DWDS 

Grigorios Kyritsakas, Vanessa Speight, 
Claire Thom, Joby Boxall. (2019). 
“Investigating drinking water behaviour 
treated by different disinfection with the 
use of a machine learning technique on 
water quality datasets”. Computing and 
control in the Water Industry (CCWI) 
conference 2019, Exeter, UK 
 

a) What WUs can learn regarding 
from their data regarding the 
impact of switching to 
chloramination on the drinking 
water quality  
b) Is SOMs a good tool for this type 
of investigation? 

Objective 2  
 
a) Develop data-driven models for 
understanding the roots for 
drinking water deterioration in 
DWDS  

Grigorios Kyritsakas, Vanessa Speight, 
Claire Thom, Joby Boxall. (2020). “A 
machine learning approach for the 
prediction of chlorine decay in the water 
distribution trunk mains” Conference 
paper accepted at the Hydroinformatics 
Conference (HIC) 2021, Mexico City, 
Mexico - conference cancelled due to 
COVID. 
 

a) How WUs can benefit from the 
application of machine learning 
techniques in their data in terms 
of better manage their systems 
and improve the quality of the 
drinking water that they serve? 
 
b) Which machine learning type is 
the most appropriate for 
predicting chlorine decay? 

Objective 3 and 4  
 
a)Develop predictive data-driven 
models for water quality 
deterioration events in the DWDS 
 
b)Compare the various data-driven 
methods and suggest the most 
appropriate for a specific water 
quality problem 
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Grigorios Kyritsakas, Vanessa Speight, 
Claire Thom, Joby Boxall (2019). “A 
machine learning application on water 
quality datasets for understanding the 
factors of bacteriological failures on 
Service reservoirs” IWA-ASPIRE 2019 
conference, Hong Kong 
 

a) What WUs can learn and how 
they can benefit from the 
application of machine learning 
techniques in their data in terms 
of better manage their systems 
and improve the quality of the 
drinking water that they serve? 
 
b) Is SOMs a good tool for 
understanding the factors that 
influence the bacteriologica 
behaviour in the SRs? 

Objective 2  
 
a) Develop data-driven models for 
understanding the roots for 
drinking water deterioration in 
DWDS  

Future publication based on chapter 7: Α 
comparison between ensemble decision 
trees classifiers for the risk classification 
of drinking water service reservoirs 

a) What WUs can learn and how 
they can benefit from the 
application of machine learning 
techniques in their data in terms 
of better manage their systems 
and improve the quality of the 
drinking water that they serve? 
 
b) Which machine learning 
technique is the most appropriate 
in predicting failures in SRs? 

Objective 3 and 4  
 
a)Develop predictive data-driven 
models for water quality 
deterioration events in the DWDS 
 
b)Compare the various data-driven 
methods and suggest the most 
appropriate for a specific water 
quality problem 

Future publication based on chapter 9: 
Investigation of the bacteriological 
behavior of the WTWs 

a) How WUs can improve the 
bacteriological performance of 
their WTWs using their own data? 
 
b) Which machine learning type is 
the most appropriate for 
predicting TCCs in in WTWs 
outlet? 
c)How can PCA and SOMs help 
WUs identify the factors that 
increase the bacteriological 
activity exiting WTWs?  

Objective 3 and 4  
 
a)Develop predictive data-driven 
models for water quality 
deterioration events in the DWDS 
 
b)Compare the various data-driven 
methods and suggest the most 
appropriate for a specific water 
quality problem 
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2. Literature review 

2.1. Introduction 
 
As described in the introduction chapter, this thesis is investigating the potential gains that 
water utilities (WUs) could obtain by applying machine learning techniques on water quality 
data obtained either for their monitoring programs or for certain investigations. Therefore, 
prior to the investigation a general understanding of the water quality and the data analytics 
is required. The aim of this literature review is, firstly, to highlight the various water quality 
aspects and concentrate, especially, on bacteriological regrowth and monitoring but also to, 
briefly, explain the machine learning categories and applications.  
More specifically, the aim of this review is:  

1. To present some of the tools and the techniques that are used to detect bacteria in 
the DWDS. 

2. To explain the sources of bacteria and metals in the water. 
3. To understand the factors that could influence bacteriological regrowth and spread in 

the DWDS. 
4. To present the risks of water discolouration on drinking water quality. 
5. To demonstrate various machine learning techniques and their applications. 
6. To show examples where machine learning techniques were used in research related 

to the water sector. 

2.2. Method 
 
There were various papers, books, theses, and reports that contributed to this review. Most 
of the papers were collected from Scopus website, Science direct. The search terms used 
during the search were “drinking water” “disinfection”, “distribution system”, “bacteria in the 
drinking water distribution system, “supervised learning”, “unsupervised learning”, “data-
driven methods”, “data-driven, water”, “data-driven modelling”. Papers were also found as 
references of other papers. The books that were used the most in this review were 
“Introduction to Machine Learning” by E. Alpaydin (Alpaydin 2014), “Applied predictive 
modelling” by M. Kuhn and K. Johnson(Kuhn and Johnson 2013), “Pattern recognition and 
machine learning” by C. Bishop (Bishop 2006), “The Elements of Statistical Learning” by T. 
Hastie et al. (Hastie, Tibshirani, and Friedman 2008), “Introduction to potable water treatment 
processes” by S. Parsons and B. Jefferson (Parsons and Jefferson 2009) and “Microbial growth 
in Drinking Water Supplies” by P. van der Wielen and D. van der Kooij (van der Krooij and van 
der Wielen 2014). The review includes articles published before September 2021.    
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2.3. Water quality in drinking water distribution systems 
 
Access to drinking water is a human right recognized by the United Nations (United Nations 
2010). However, even if clean drinking water is taken as granted in the Western World, 
around 2.1 billion people lack access to safe and readily available water at home (WHO, 2017). 
Treatment and safe distribution of water are highly important as unsafe water is a potential 
source of various diseases.  Water Treatment is obtained in the Water Treatment Works 
(WTWs) after passing various different processes depending on the water source. Water 
distribution is achieved through its transportation inside a complicated network of service 
reservoirs (SRs), pipes and valves known as Drinking Water Distribution Network (DWDS). 
Thus, the thorough and systematic control of the WTW operation, the maintenance of both 
the WTW and the DWDS and the water quality monitoring are an obligation for the WUs.  
 
Water quality monitoring is a highly important procedure that guarantees that the water is 
safe for drinking. WUs are collecting samples from the WTWs, the SRs and customer’s taps to 
analyse them for various physical, chemical, and microbiological parameters (WHO 2011). The 
European Directive (Council of the European Communities 1998) and the “Public water 
Supplies in Scotland” regulation (DWQR 2014) indicate the quality standards that the drinking 
water in Scotland should maintain in order to be considered as safe to consume. In both 
standards, it is specified that there are mandatory and non-mandatory parameters that WUs 
should measure in their monitoring program. The results of the samples’ analysis should be 
below the indicating values suggested by these regulations for every parameter measured, 
otherwise further investigation over a potential water quality accident is required.    
 
In this section, the main methods for detecting bacteria in discrete monitoring water quality 
samples taken from various parts of the DWDS, the sources of bacteria and the indicator 
parameters for bacteriological regrowth are presented. Furthermore, the effect of iron and 
manganese presence on water quality and the discolouration phenomenon are, briefly, 
described.  

2.3.1. Bacteriological monitoring 
 
WUs in the Western World are forced by the regulations (Council of the European 
Communities 1998; Gorchev and Ozolins 2011) to take samples for bacteriological 
monitoring. Identification of bacteriological existence in the drinking water is crucial for 
human health and understanding the potential sources of microbiological failure in the DWDS 
or WTW and preventing future contamination is very important.   
 
There are various methods for the identification of indicator bacteria and other 
microorganisms that are either based on bacteria’s physical characteristics or their 
deoxyribonucleic acid (DNA). The first category of tests, known as phenotyping methods, are 
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all the typical culture tests that WUs routinely do. The second category, known as genotyping 
methods, are methods that are applying molecular analysis for the identification of specific 
microorganisms. In this literature review, the focus is on presenting the methods that Scottish 
Water is using for monitoring bacteria. Some of these parameters are mandatory to measure 
(heterotrophic plate counts, Indicator bacteria) and some are not (flow cytometry total and 
intact cell counts).  

2.3.1.1. Heterotrophic Plate Counts (HPC) 
 
Heterotrophic plate counts (HPC) is the most common monitoring tool for WUs. Heterotrophic 
microorganisms including bacteria, fungi, protozoa etc. (Berry & Raskin, 2006) need organic 
carbon as energy source for growth (Bartram et al., 2004). HPC include a variety of culture-
based tests that intent to recover microorganisms by grow them in a carbon-based plate 
environment (Bartram et al. 2004). Typically, the microorganisms are incubated at 22oC and 
37oC and, according to Water Research Centre, when the microorganisms that grow in the 
37oC environment are more than those growing in 22oC environment the water should be 
considered as contaminated (Water Research Centre 1976). It is   generally accepted that 
even if higher numbers of HPC microorganisms are found in the test, these should not be 
necessarily considered as a threat to human health (Allen, Edberg, and Reasoner 2004; M. W. 
LeChevallier, Seidler, and Evans 1980; Dick van der Kooij and van der Wielen 2014a; Payment 
P. 2003). It is also proven that there is no direct relationship between coliform presence in 
the water and HPC (K. Ellis et al. 2014; Sam Van Nevel et al. 2016; G. Liu et al. 2013) . The 
percentage of HPC microorganisms recovered in the plates in the routine monitoring usually 
represent less than the 1% of the total concentration of bacteria in a DWDS or WTWs and the 
results always vary widely between locations, seasons of the year etc. (Bartram et al. 2004; 
van der Kooij and van der Wielen 2014; McCoy and Olson 1987). Thus, HPC is not a method 
that could show the level of microbial regrowth in the DWDS. However, if HPC 
microorganisms exceed the 500 CFU/ml threshold, could interfere with coliform and E.Coli 
enumeration (Allen, Edberg, and Reasoner 2004). Furthermore, the outputs of an experts 
meeting, as presented by Bartram et al. (Bartram et al. 2004), indicate the importance of the 
HPC measurements in DWDS. Therefore, WUs continue doing the HPC tests as it is a cheap 
and easy method to investigate a failure of maintaining a disinfectant residual, a possible 
water contamination and a fouling of the DWDS (van der Kooij & van der Wielen, 2014a). 

2.3.1.2. Indicator bacteria monitoring tests 

2.3.1.2.1. Coliform Bacteria - E. Coli test 
 

Coliform and E.Coli tests are the most important routine tests that the WUs are doing as these 
tests provide a potential detecting faecal contamination in the raw water or the DWDS but 
also to check the effectiveness of the WTWs. Coliform bacteria are a genus of bacteria that 
include Escherichia, Klebsiella, Enterobacter, Citrobacter, and Serratia. The main 
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characteristics of this genera are that these bacteria are oxidase-negative and produce acid 
from lactose at 37 oC (Standing Committee of Analysts 2009). Escherichia Coli also belong to 
this genera and have the same characteristics but the difference is that E.Coli produce acid 
from lactose at  44 oC (Standing Committee of Analysts 2009) and they also produce indole 
from tryptophan. Coliform Bacteria are indicators of water quality deterioration and E.Coli 
are indicators of a potential faecal contamination (van der Kooij and van der Wielen 2014). E. 
Coli   are not a pathogenic microorganism, but their detection could indicate the existence of 
E. Coli O157:H7 which presence is related to the development of haemorrhagic colitis and 
haemolytic uraemic syndrome (Standing Committee of Analysts 2016). LeChevallier (Mark W. 
LeChevallier 1990) suggested that because coliforms’ survival and regrowth in the DWDS is 
frequent, their presence does not necessarily mean recent contamination in the system.  
 
The main mechanisms for the coliform and E.Coli introduction to the drinking water are the 
defective performance of the WTWs or the intrusion into the DWDS (Besner et al. 2002). 
Coliforms identification in the WTWs outlets is, usually, related to the poor treatment 
performance with respect to raw water quality changes due to rainfall or other events that 
change the organic matter (Besner et al. 2002). The main conditions for coliforms growth in 
the DWDS are pipe corrosion, pipe burst, temperature above 15oC, low disinfection residual 
and sediments (Mark W. LeChevallier 1990; Besner et al. 2002; Dick van der Kooij and van der 
Wielen 2014b).  

2.3.1.2.2. Enterococci 
 
Enterococci are genera of bacteria that are used as indicators of faecal contamination of 
water. Enterococci identification tests are used for assessing the risk of contamination on 
water that is used in recreational parks, for assessing the effectiveness of disinfection in 
swimming pools and for detection of microorganisms in wastewater treatment plants 
(Standing Committee of Analysts 2015b). WUs in the UK, are using Enterococci identification 
tests as secondary tests for faecal pollution when coliforms are detected and no E.Coli test 
has been made. 

2.3.1.2.3. Clostridium perfringens  
 
Clostridium perfringens are Gram-positive, rod-shaped, anaerobic, spore-forming pathogenic 
bacteria used as subsidiary indicators. They form spores that resist to environmental loading for 
long periods. Therefore, the presence of Clostridium perfringens in clean water is related to faecal 
contamination and when detected on water samples in absence of other indicator bacteria 
indicates a remote source of water pollution (Standing Committee of Analysts 2015a). Their main 
characteristics are that they are able to reduce sulphite to sulphide at 44oC in less than 24h and 
they produce phosphatase which is the main characteristic that make them unique in the genera 
of Clostridia bacteria (Standing Committee of Analysts 2015a). 
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2.3.1.3. Flow Cytometry (FCM) 
 
Genotyping methods for the identification of bacteria are split into two groups PCR-based 
and luminescence/ fluorescence methods. Flow Cytometry (FCM) is a fluorescent method 
that facilitates measurement of a cell by fluorescence using laser (Y. Wang et al. 2010) This 
method was firstly recommended by Hammes et al. (Hammes et al. 2008) and Y. Wang et al. 
(Y. Wang et al. 2010) for use in the identification of bacteria in drinking water. FCM is an 
accurate technique that is used for counting the total number of cells counts (TCCs) (Hammes 
2008, Wang 2010) when nucleic acid stain is used, or the number of intact cells counts (ICC) 
(Helmi 2014) when nucleic acid is combined with viability stains (S. Van Nevel et al. 2017). 
Van Nevel et al (2017) suggest that FCM can soon replace the HPC method in the WUs routine 
bacteriological monitoring due to its accuracy, its rapid analysis, its reasonable cost, and the 
high information that it provides. Various studies reinforced this argument (G. Liu et al. 2013; 
Helmi et al. 2014; Sam Van Nevel et al. 2016). SW is the first company in the UK that used 
FCM in their WTW outlet and SRs (SR) outlet samples as a routine sampling tool and the first 
company in Europe that uses online FCM for more accurate and faster results. However, 
arguments against FCM exist and include: i) the difficulties in identifying the viable and non-
viable bacteria (Sam Van Nevel et al. 2016; Gillespie et al. 2014) ii) the identification of 
indicator bacteria (Kathryn Ellis 2013; Gillespie et al. 2014) and iii) the problem with 
undercounting the number of bacteria when these are in clusters and attached in inorganic 
compounds (van der Kooij & van der Wielen, 2014). 

2.3.2. Sources of Bacteria  
 
Raw water cleaned from the WTW, travels through the DWDS to arrive in our taps. In this 
travel, the abundant microorganisms and other contaminants raw water is treated through 
in various process stages in the WTW and exits as a high-quality drinking water. However, 
during its transport to our taps deteriorates as it passes through a complicated network of 
the DWDS and SRs. This is because water during the travel to the taps i) passes through the 
complicated, usually buried, old and sometimes in poor condition network of the DWDS ii) 
remains for a certain period in SRs iii) contacts with the biofilm of the DWDS, a complex 
community of microorganisms and inorganics attached in the pipe surface. 

2.3.2.1. Raw Water 
 

Raw water could be impacted by industrial waste, sewage overflow spills, pesticides, and 
other chemicals from agricultural run-offs (Parsons and Jefferson 2009). Treatment of the raw 
water is dependent on the type of the source (groundwater, lowland surface water, upland 
surface water) (Parsons and Jefferson 2009). Upland waters are generally low in minerals and 
contain high dissolved organic matter and their treatment focuses on the organic matter 
reduction and disinfection (Parsons and Jefferson 2009). Lowland waters receive water from 
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upland but also effluents from sewage treatment works, industrial wastewater and 
agricultural chemicals, therefore their treatment should include pesticides removal, chemical 
removal, and organic matter reduction (Parsons and Jefferson 2009). Groundwater is usually 
a low bacteriological source so the treatment for this source is focusing more on the chemicals 
and inorganics removal (Parsons and Jefferson 2009). A typical treatment process includes 
coagulation – flocculation, clarification, filtration, and disinfection (Parsons and Jefferson 
2009).  Even if disinfection is the last stage of treatment, it could not be effective for bacteria 
removal if the previous treatment stages do not perform well (Kathryn Ellis 2013). Various 
studies prove that changes in organic matter or inorganics concentration of the raw water 
could have a negative impact on the drinking water quality (Korth et al, 2004; Kulbat & 
Sokołowska, 2017). Korth et al. (Korth et al. 2004) found that the increase of natural organic 
matter (NOM) in the German water sources generates a NOM increase in the treated water, 
requires a higher disinfectant demand, and, finally, could potentially spike the number of 
bacteria entering in the DWDS. Research on climate change and precipitation effects on 
microbial pollution show that rainfall increases the microbial load in the raw water (Tornevi, 
Bergstedt, and Forsberg 2014; Curriero et al. 2001). Tornevi et al. (Tornevi, Bergstedt, and 
Forsberg 2014) suggest that heavy rainfall and extreme events will lower the water quality of 
the raw water, and this will be a huge challenge for the WUs in the future. Curriero et al. 
(Curriero et al. 2001) study the waterborne diseases in the US and found that there is a 
significant correlation between heavy rainfall events and waterborne diseases. 

2.3.2.2. Pipe Bursts 
 
Water pipe networks and service reservoirs (SRs) are designed in a way to maintain high water 
quality and to prevent any contamination of the water by external factors. However, the pipe 
network and the SRs are vulnerable infrastructures that corrode through age, damage and 
bad operational practices and maintenance.  
 
Bursts occur in the DWDS pipes because of the phenomenon of pressure transients (also 
known as water hammer). Pressure transients are caused by unexpected increase of the 
water velocity because of power cut or operational activities (e.g., sudden close of a valve). 
During bursts, the flow rate suddenly increases and thus the system starts having negative 
pressures that allow intrusion of contamination into the DWDS through leaks.  LeChevallier 
et al (Mark W Lechevallier et al. 2003) investigated the health risks associated with bursts and 
found that the soil and the groundwater that could potentially enter the system are sources 
of faecal pathogens and bacteria. Besner et al. (Besner, Prévost, and Regli 2011) created a 
conceptual model to discover the risks of leakage on human health and understand the 
causes of negative pressure events. They found that duration of the intrusion is a key factor 
on contamination of the system. According to Yang et al. (Yang et al. 2011), the most effective 
tool to limit the contamination intrusion due to bursts, would be an optimized pressure 
management program with an accurate modelling tool that will control the negative 
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pressures. In the same research, they also found that the last protection border against 
intrusion in chlorinated systems, is to maintain the chlorine residual in the DWDS above 
0.2mg/L but as regards the chloraminated systems, maintaining the chloramine residual does 
not reduce the risk of contamination.   

2.3.2.3. Biofilm 
 
Biofilms are complex communities that consist of bacteria, other microorganisms (fungi, 
protozoa etc.) and inorganic compounds attached in the surfaces of all the systems that treat 
and transfer the drinking water to our taps. These communities are embedded in a produced 
by the community matrix of Extracellular polymeric substances (EPS) (K. Fish, Osborn, and 
Boxall 2017; K. E. Fish et al. 2015; Flemming et al. 2016; Douterelo, Sharpe, and Boxall 2013; 
Hallam et al. 2001). The process of biofilms’ formation is the following: i) microorganisms, 
carbohydrates and organic acids that survived disinfection passed through the DWDS and got 
attached to the systems’ surface, ii) Proteins are polymers are adhered and the EPS is 
formatted iii) microorganisms in the surface are creating individual colonies (cells) in the 
empty spaces of the surface iv)  the colonies are embedded in EPS matrix and inorganic 
compounds are attached v) biofilm formed vi) release of bacteria due to changes in the 
hydraulic regime, enabling stabilisation of the biofilm (Dick van der Kooij and van der Wielen 
2014a; Camper 2014). Fish et al.  (K. E. Fish, Osborn, and Boxall 2016) suggests that biofilm 
appears in every DWDS pipe, it should be characterized as a proper microbiological 
community and since it is impossible to completely remove biofilm for pipe surfaces, the 
research should focus on the management and the control of it.   
 
Bacteria release from biofilm is very common phenomena within biofilms (Douterelo et al., 
2013; Fish et al., 2016; Flemming et al., 2016; Husband et al., 2016; Moore et al., 2000; 
Petrova et al., 2016). According to Petrova et al. (2016) there are three ways of bacteria 
release from biofilms: i) desorption, the direct transfer from the upper layers of the biofilm 
to the bulk water, ii) detachment that occurs when hydraulic change, such as shear stress, 
occur and iii) dispersion which is the passive release of bacteria from biofilms due to some 
physiological change in the bacterial community. Biofilm detachment is also subcategorized 
into four different groups depending on the mechanisms that remove it: abrasion, grazing, 
erosion, and sloughing (Moore et al. 2000). Abrasion occurs when bacteria collide with other 
particles in the bulk water. Grazing is the result of biofilm bacteria consumption by eukaryotic 
organisms. Erosion is a low-level detachment that occurs due to a continuous flow increase 
in a DWDS. Sloughing is the detachment of larger quantities of biofilm due to extreme shear 
stress forces. Phenomena such as sloughing, or erosion are related with high turbidity but 
also with bacteriological failure as the detached biofilm enters the bulk water and then ends 
in the taps (Fish, Osborn, and Boxall 2016). 
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2.3.3. Disinfection 
 
Disinfection is the last process in WTWs. The purpose of disinfection is to inactivate pathogens 
and bacteria responsible for the deterioration of the drinking water, the prevention of 
waterborne diseases. Disinfection efficacy is dependent upon the performance of the 
upstream treatment processes. There are two groups of disinfection methods:  

i) Chemical disinfection with the use of mainly chlorine but also ozone, bromide, 
heavy metals, and hydrogen peroxide 

ii) Physical disinfection with the use of heat, light etc. 
Most common disinfection methods are chlorination, Chloramination and Ultraviolet light 
(UV) which are presented in this literature review (Parsons and Jefferson 2009). 
The disinfection process is dependent on two factors, the concentration of the disinfectant 
and the contact time. Various studies (Fish et al., 2015, 2016; LeChevallier et al., 1985) found 
that the disinfection process could result in the entrance of small, injured bacteria and 
microorganisms in the DWDS which might recover under the correct temperature and 
nutrients conditions.  

2.3.3.1. Chlorination  
 
Chlorination is the most common disinfection type used in water treatment. Chlorination 
disinfection uses either pure chlorine (Cl2) as liquefied gas or sodium hypochlorite with 13% 
of Cl2 or solid calcium with 30% Cl2. The main advantage of the chlorination is that the formed 
chlorine residual remains in the DWDS for a long period and thus is protecting it from bacterial 
regrowth (Parsons and Jefferson 2009). Chlorine gas reacts with water to form hypochlorous 
acid (HOCl) which further dissociates to hypochlorite anion OCl-   following these equations. 
 

Cl2 + H2O → HCl + HOCl 
HOCl → H+ + OCl- 

 
HOCl is penetrating the bacterial cell walls and destroying the cytoplasm. Thus, HOCl is better 
disinfectant than OCl-. The dissociation of HOCl to OCl- is correlated with high pH values while 
in pH below 5 HOCl is undissociated.  Therefore, the best solution for efficient disinfection 
would have been to keep the pH in lower levels but, unfortunately, in lower pH values 
degradation of HOCl to oxygen and hydrochloric acid (HCl) becomes significant when contact 
times are 30 or more minutes (minimum time required per disinfection). In chlorination, the 
goal is always to find the balance that promotes efficient disinfection without impacting the 
taste of the water. Generally, it is recommended a dose between 0.5-1 mg/l of chlorine in the 
contact tank in order to have a sufficient chlorine residual of 0.2 mg/l in the taps (Parsons and 
Jefferson 2009). 
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Chlorine reaction with natural organic matter and inorganic ions inside the DWDS and forms 
the disinfection by-products (DBPs). Most common DBPs are the trihalomethanes (THMs) and 
the haloacetic acids (HAAs). DBPs concentrations are related to various health risks (Parsons 
and Jefferson 2009). Therefore, WHO and USEPA (USEPA 2002a) have regulated the 
maximum allowed DBPs concentration in the clean water.   
 
The chlorine residual is consumed by biofilm heterotrophic bacteria and chemicals in the 
water (Fish et al., 2016). Various studies found that biofilm growth strengthens microbial 
resistance on disinfection (Berry et al., 2006; Fish et al., 2015; Lechevallier et al., 1988). Fish 
et al. (Fish, Osborn, and Boxall 2016) showed the importance of EPS matrix in the biofilm 
bacteria resistance to chlorine residual. Other studies observed that chlorine residual is more 
efficient on the deactivation of bulk bacteria than biofilm bacteria (Besner et al., 2002; 
Morrow et al., 2008). Low chlorine concentrations have been successful in controlling 
coliform bacteria (Besner et al. 2002) but LeChevallier et al. (LeChevallier, 1987) found that in 
some cases even high chlorine doses are ineffective in controlling coliform appearance. In a 
different study though, LeChevallier (LeChevallier, 1990) found that increasing the chlorine 
dose has helped to control coliform appearance. 

2.3.3.2. Chloramination  
 

Chloramination is the disinfection method where ammonia (as ammonium sulphate NH4
+) is 

added either simultaneously with the chlorine dose or in a short time after chlorine dose. 
Chloramines are not as effective in penetrating microorganisms as chlorine but are very stable 
and therefore are used in long DWDS with large water age (Parsons and Jefferson 2009).  NH4

+ 
reacts with HOCl creates 3 chloramine compounds, firstly monochloramine (NH2Cl), then 
dichloramine (NHCl2) and finally trichloramine (NCl3) as shown in the following equations:  
 

NH4
+ + HOCl → NH2Cl + H2O + H+ 

NH2Cl + HOCl → NHCl2 + H2O 
NHCl2 + HOCl → NCl3 + H2O 

 
Chloramination procedure is pH dependent as in chlorination. Normally, the chlorine 
ammonia ratio is 5:1 by weight which minimizes the free chlorine residual and the free 
ammonia concentration (Parsons and Jefferson 2009). 
 
Research works on chloramines reaction with biofilms found that chloramines were more 
effective on reducing biofilm growth than chlorine (LeChevallier et al. 1988; LeChevallier, 
1990). LeChevallier (LeChevallier, 1990) also found that coliforms appearance was more often 
in chlorinated than in chloraminated systems and van der Kooij (van der Kooij, 2014) found 
that monochloramines are more effective with Legionella control and reduction. However, 
the use of chloramination should be carefully controlled as high free ammonia residual in the 
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DWDS could result in the growth of nitrifying bacteria that could end in nitrification in some 
parts of the network (Dykstra 2007; Y. Zhang and Edwards 2009). Nitrification is the process 
of biological oxidation of ammonia to nitrite performed by ammonia-oxidizing bacteria (AOB) 
leading to loss of chloramine residuals which form an important barrier in the management 
of drinking water quality and public health (Telfer, 2014). Factors leading to nitrification are 
low chlorine residual, high temperature, low pH, and high-water age (Telfer,2014). Research 
on the field shows that approximately two thirds of medium to large chloraminated systems 
in the US experience nitrification (Dykstra 2007). Thus, Zhang & Edwards (Y. Zhang and 
Edwards 2009) suggest that with the absence of nitrification, chloramines are more persistent 
than chlorine, that they reduce corrosion and decrease the amount of HPCs in the bulk water 
but when nitrification exists or corrosion rates are low, chlorine is more efficient than 
chloramines.    

2.3.3.3. Ultraviolet light (UV) 
 
Ultraviolet light (UV) is used in various countries (Netherlands, Germany, Denmark) as the 
main disinfection process and replaced the traditional disinfection processes (Medema et al. 
2014). The main advantage of the UV systems is that, in these systems, with the absence of 
disinfection residual no disinfection by- products (DPBs) are produced.  
 
UV is an electromagnetic radiation with higher frequency than visible light but lower than X-
Rays. UV can penetrate the cell and react directly with the DNA of the bacteria. Thus, this 
reaction prevents the replication of these bacteria which means that even if they are not 
destroyed, they are inactivated (Parsons and Jefferson 2009). In recent years, with the 
development of computational fluid mechanics, the optimization of UV reactors is achieved 
and makes UV disinfection a more popular choice for disinfection.  However, there are four 
major factors that influence the UV performance: (i) UV transmission that is related with the 
transmissivity of the water, (ii) turbidity that scatters the light, (iii) foulants that are using UV 
radiation to oxidize and (iv) hydraulics that may affect the transmissivity of water (Parsons 
and Jefferson 2009). USEPA recommends the use of UV disinfection for waters where 
Cryptosporidium is observed as neither chloramination nor chlorination are effective against 
this species (USEPA 2001). 

2.3.4. Indicator parameters for microbial regrowth in DWDS 
 
Bacteria regrowth in the DWDS is dependent on the concentration and nature of 
biodegradable compounds that serve as a source of energy (van der Kooij and van der Wielen 
2014). The use of these compounds from bacteria in the DWDS depends on the growth 
kinetics of the existing in the DWDS bacteria and various environmental parameters such as 
the nutrients (nitrogen, carbon, phosphorus), the age of the water, the water temperature, 



 

29 
 

the disinfectant residual, the sediments, and the pipe material (van der Kooij and van der 
Wielen 2014).  

2.3.4.1. Nutrients 
 
Carbon is the nutrient required the most for microorganisms’ growth in the DWDS as a source 
of energy. Natural organic matter (NOM) is a complex mixture of organic compounds that are 
found in the most water resources. NOM is the main source of carbon in the DWDS even if 
the majority of NOM is removed in the WTW (Parsons and Jefferson 2009).  Total organic 
carbon (TOC) is the total available organic carbon concentration in the drinking water. From 
the available TOC in the drinking water only a small fraction is available as a nutrient for the 
microorganisms known as biodegradable organic carbon (BOC). It is, therefore, 
comprehensible, that by knowing the BOC concentration, the growth of biofilm and 
heterotrophic bacteria could be predicted. There are two main methods for the measurement 
of the BOC: the biodegradable dissolved organic carbon (BDOC) and the assimilable organic 
carbon (AOC).  BDOC is the portion of the biodegradable organic carbon mineralized by 
heterotrophic microorganism and AOC is the portion of the biodegradable organic carbon 
that can be converted to cell numbers by a single or by defined microorganisms (Camper 
2014). BDOC concentrations are bigger than AOC concentrations due to the larger number of 
bacteria contributing to the carbon consumption.  
 
Nitrogen is an inorganic nutrient that could be found in water resources that are close to the 
agricultural areas due to the use of agricultural fertilisers (Parsons and Jefferson 2009). 
Consumption of high levels of nitrogen concentration in drinking water could cause 
methaemoglobinaemia and therefore regulations either in the UK but also in the EU require 
its removal in the WTW (Parsons and Jefferson 2009). A secondary source of nitrogen in the 
drinking water is through the nitrification process in chloraminated systems (Telfer, 2014). 
The presence of nitrifying bacteria in the chloraminated systems lead to the formation of 
nitrite and nitrate in the DWDS. In these systems high chlorine levels or low ammonia levels 
are required to inactivate the nitrifying bacteria (Berry, Xi, and Raskin 2006).  
 
Phosphorus could be the limiting nutrient in the drinking waters (Lehtola, Miettinen, and 
Martikainen 2002). In heterotrophic bacteria it is required a ratio of carbon to nitrogen to 
phosphorus of approximately 100:10:1 (M. W. LeChevallier, Schulz, and Lee 1991). Most of 
the phosphorus is usually removed in the coagulation/flocculation process in the WTW. The 
addition of small doses of orthophosphate in the drinking water to prevent the release of lead 
and suspend corrosion, is the main reason for observing phosphorus in the DWDS (Douterelo, 
Husband, and Boxall 2014). Research made in the waters in Finland found   that the lack of 
either nitrogen or phosphorus is the principal factor for the limitation of microbial growth and 
that minor changes in phosphorus concentration may affect the microbial growth potential 
in the DWDS (Miettinen and Vartiainen 1997). A further study in the same region, showed 
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that phosphorus addition in steady-state biofilms increases the microbial concentrations 
(Lehtola, Miettinen, and Martikainen 2002). However, Gouider et al. (Gouider et al. 2009) 
suggested that phosphate does not have any impact on microbial regrowth in the DWDS. 
Finally, findings by Douterelo et al. (Douterelo, Husband, and Boxall 2014) demonstrated that 
phosphate increases microbial diversity in the DWDS but their results could not indicate if the 
presence of phosphorus increases the microbial community as well. 

2.3.4.2. Temperature 
 

Temperature is the most important indicator parameter of the bacterial regrowth process as 
it affects directly or indirectly all the other factors responsible for the microbial growth (Mark 
W. LeChevallier 1990). More specifically, temperature affects the disinfection efficiency, the 
disinfectant residual, corrosion rates and the water hydraulics due to increased water 
consumption (Besner et al. 2002).  When the water temperature is equal or lower to 5oC the 
growth rate of bacteria decreases (van der Kooij and van der Wielen 2014a). LeChevallier et 
al. found that coliform bacteria are increasing when the water temperature is higher than 15 

oC (LeChevallier et al., 1991; LeChevallier, 1990). Fish et al. (Fish et al., 2016) observed that 
most bacteriological issues, in the DWDS, are happening in the warmer months, probably 
because of the increased bacteria growth rate during these months.  Temperature is highly 
correlated with chlorine decay and generally in high temperatures the disinfectant residual is 
decreased (Parsons and Jefferson 2009). Finally, it is observed in various studies that when 
the water temperature is higher, the chlorine residual should be increased as the bacteria 
growth rate increases (Francisque et al., 2009; LeChevallier, 2014). 

2.3.4.3. Disinfectant residual 
 
A disinfectant residual limits the bacteria growth rate. The effects of chlorine in the DWDS 
are explored in detail in a previous section of this chapter. In this section a small summary is 
presented. High chlorine residual in the DWDS, may result in the formation of disinfection by-
product (DBP) as it reacts with NOM and inorganic ions (Parsons and Jefferson 2009). 
Chloramination is more effective than chlorine in reducing the number of coliform bacteria in 
the DWDS (LeChevallier, 1990), reducing the biofilm (LeChevallier et al., 1988) and is less 
reactive with NOM and corrosion by-products (van der Kooij and van der Wielen 2014a). 
However, in the disinfection with chloramines, the presence of ammonia in the DWDS may 
contribute in the nitrification phenomena (Y. Zhang and Edwards 2009). 

2.3.4.4. Pipe Material 
 
The DWDS consists of pipes composed of different materials such as iron/steel, asbestos 
cement, copper, plastics and concrete. The influence of pipe material characteristics on 
biofilm growth, density and composition was investigated in various works (Camper, 2014; 
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Douterelo et al., 2014; Fish et al., 2017; LeChevallier, 1990; Niquette et al., 2000). Niquette et 
al. (Niquette, Servais, and Savoir 2000) showed that biofilm on iron mains is more problematic 
than biofilm on plastic mains. Various other investigations agreed with this view (M. W. 
LeChevallier, Schulz, and Lee 1991; Camper 2014; K. E. Fish et al. 2015). Finally, Douterelo et 
al. (Douterelo, Husband, and Boxall 2014) found that there is a significant difference between 
bacteria communities on plastic and iron pipes, with the density of the biofilm being greater 
in the iron mains but the bacteriological community in the plastic pipe being more diverse.  
 
Corrosion of pipe material has an impact on the amount of biofilm in the DWDS as corroding 
iron is realised which is used by iron and manganese oxidizing bacteria (Berry et al., 2006; 
LeChevallier, 1990). Furthermore, corrosion material could affect the ability of chlorine to 
inactivate biofilm bacteria (Besner et al. 2002).  The importance of iron-corrosion material in 
the development, the growth and the strength of biofilms in the DWDS was experimentally 
shown by Camper (Camper 2014). Corrosion control mechanisms, such as the addition of 
phosphate, are required when a DWDS is at risk, to improve the effectiveness of disinfection 
and therefore to control the biofilm growth rate in the DWDS (Besner et al., 2002; 
LeChevallier, 1990). 

2.3.4.5. Sediments 
 
Sediments are formatted when particles in the water are accumulated in the bottom of the 
pipe due to gravity. Studies found that sediments are promoting microbial regrowth (McCoy 
et al., 1987; Vreeburg et al., 2004; Vreeburg et al., 2008). Sediments are responsible for the 
discolouration of the drinking water which is the main reason for customers complaints to 
the WUs (Vreeburg & Boxall, 2007). The origin of particles could be either the WTW or 
corrosion material from iron mains inside the DWDS (Vreeburg, 2014). The source of particles 
that enter the network from the WTW could be the incomplete removal from raw water, the 
precipitation of metals such as manganese and iron passing the coagulation/flocculation 
process and the bacterial biomass that passed the disinfection process without being 
completely destroyed (Vreeburg, 2014). However, particles coming as material from the 
corrosion of iron mains are playing a very important role in the increase of turbidity. An 
extended study on discolouration by Vreeburg and Boxall (Vreeburg & Boxall, 2007) described 
the roots of discolouration and the mechanisms of accumulation of the particles in the DWDS 
and presented methods for predicting discolouration. This study also indicated that particles, 
related to discolouration, promote biological regrowth. Vreeburg (Vreeburg, 2014) suggests 
that the percentage of bacteria biomass in particles is between 1-12% which makes the 
sediments an important factor in water quality degradation.  
 
Unidirectional flushing of the distribution system is the main method that the WUs use to 
remove sediments from water pipes (Boxall et al., 2003). Vreeburg et al. (Vreeburg et al., 
2008) found that flushing in the presence of sediments removes more organic material and 
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thus the regrowth rate is reduced. However, Douterelo et al. (Douterelo, Husband, and Boxall 
2014) found that initial changes in hydraulic conditions, due to flushing, remove part of the 
biofilm but there are layers of sediments that under velocities used in the routine flushing 
programs, will not be mobilized. 

2.3.4.6. Water age 
 
Water’s travel to customer taps through the DWDS could last days depending on the distance 
from the WTWs, the water velocity based on the demand, and the general DWDS’ design. In 
general, an increased age of water increases the bacteriological activity in the water and   
thus, it also increases the risk of water quality deterioration (USEPA 2002a; Emmanuelle I. 
Prest et al. 2016).  
 
Over-dimensioning of either the service reservoirs or the pipe network of a DWDS reduces 
the water mixing and creates areas inside the DWDS that the water could stagnate for weeks 
before being consumed (USEPA 2002a; Zlatanović, van der Hoek, and Vreeburg 2017). The 
main impact of water stagnation is the loss of the disinfection residual that directly leads to 
microbial regrowth and increased numbers of bacteria on customers’ taps (Mark W. 
LeChevallier 1990). Further studies that investigated the factors of bacteriological regrowth 
in some DWDS, indicated stagnation and water age as the factors that contributed to the 
decay of the disinfection residual and, consequently, to the bacteriological growth (Kerneïs 
et al. 1995; H. Wang et al. 2012).  In addition, a study on stagnation indicated that it could 
potentially increase the metal release from pipes, especially in the summer period 
(Zlatanović, van der Hoek, and Vreeburg 2017).  Finally, USEPA includes the disinfection by-
products (DBPs) as one of the health impacts that the high water age could cause (USEPA 
2002a).  
 

2.3.5. Iron and Manganese 
 
There are various inorganic compounds that can be found in water sources, passed to the 
DWDS, and influence the drinking water quality including arsenic, nitrate, lead, iron and 
manganese (Parsons and Jefferson 2009). However, even if water with low and medium iron 
and manganese concentrations are not considered of high risk to human health (Parsons and 
Jefferson 2009), these two metals are mostly related to the discolouration phenomenon and 
thus, the reduction and the control of their concentrations is of a high priority for the WUs 
(Husband et al., 2011; Husband et al., 2010; Vreeburg & Boxall, 2007; Vreeburg et al., 2008).  
 
Minerals with iron and manganese concentrations could be found in both rocks and soils that 
water passes through, and therefore both metals are found in any type of source water 
especially in waters with high organic matter (Parsons and Jefferson 2009). Iron and 
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manganese could, to some extent, be oxidized upon contact with air producing turbid water 
and stain surfaces and affect water quality (Khadse et al., 2015; Parsons & Jefferson, 2009). 
Therefore, their concentrations are reduced (or completely removed), in the first stages of 
the water treatment process, by oxidizing them to insoluble forms, firstly by using oxygen and 
then by using a strong agent such as chlorine or ozone in combination with pH control for the 
removal of the most persistent manganese ions (Edzwald, 2011; Ellis et al., 2000; Khadse et 
al., 2015).  However, particles contain iron and manganese appear in the DWDS even after 
passing the treatment works, because of the ineffectiveness of the treatment processes 
(Speight et al., 2019; Vreeburg & Boxall, 2007; Vreeburg et al., 2008) or because of the 
corrosion of pipes (Gerke et al., 2016; Peng et al., 2010; Sarin et al., 2004; Seth et al., 2004).  
 
Iron is the metal that can be found the most in the DWDS, not only in the bulk water but also 
in the pipe network and equipment which are mostly constructed from iron based material 
(J. Hu et al. 2018). Therefore, as expected, corrosion of metallic pipes is the main reason for 
high iron concentrations in the DWDS (Sarin et al., 2003; Sarin et al., 2004; Seth et al., 2004; 
Vreeburg, 2014). The consequences of pipe corrosion regarding the bacteriological regrowth 
were explained in the sediments section of this chapter. In addition to that, high 
concentrations of iron in the drinking water influence the colour and the taste of the water 
and stain household equipment, such as washing machines, which, subsequently, leads to  
customer complaints (Seth et al. 2004). 
 
Manganese mostly appears in the DWDS because of its ineffective removal during the 
oxidation and filtration processes in the treatment works (Sly et al., 1990). However, Peng et 
al. (Peng et al. 2010) suggested that manganese is also released from PVC and iron pipes. High 
levels of manganese give a metallic taste to the drinking water that, as in iron, lead to 
customers’ dissatisfaction and, consequently, to damage of the water company’s reputation 
(Seth et al. 2004).                  

2.3.6. Discolouration 
 
Discolouration occurs when accumulated in the DWDS material, that mainly contain high 
levels of iron and manganese, is, suddenly, mobilised creating an unpleasant colour in the 
drinking water (Boxall et al., 2003; Husband et al., 2010, 2011; Vreeburg & Boxall, 2007). 
Although not an actual measurement of discolouration, turbidity is mainly used as the main 
parameter for understanding the phenomenon (Husband et al., 2010; Sharpe et al., 2019).  
The impacts of discolouration on bacteriological regrowth were, briefly, explained in a 
previous section. In this section, the main causes of discolouration are presented. 
 
Discolouration is observed in various DWDS with different source water, different treatment 
processes and different pipe material and it is the main cause of customer complaints in 
England and Wales (Husband et al., 2016). Material contributing in discolouration, contain 
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organic and inorganic compounds and could appear in the DWDS for three main reasons: (i) 
insufficient removal of the material in the treatment process, (ii) bad maintained coagulation 
and filtration processes in the WTWs (iii) corrosion of metallic and mainly cast iron pipes 
(Cook et al., 2011; Husband et al., 2011). Various studies indicated that the dominant material 
causing discolouration is iron with manganese having an important contribution as well (I. J. 
H. G. Vreeburg and Boxall 2007; Seth et al. 2004; J. H. G. Vreeburg 2007; Cook and Boxall 
2011).  The main cause of discolouration is a sudden change in the hydraulic conditions of the 
DWDS, such as flow increase, that urges sediment layers to mobilise from one part of the 
network to another (J. H. G. Vreeburg, Schaap, and Van Dijk 2004; P. S. Husband and Boxall 
2011). Main events that could, potentially, change the hydraulic conditions of a DWDS are 
pipe bursts, increases in water demand, hydrant use and misuse of valves (J. H. G. Vreeburg, 
Schaap, and Van Dijk 2004; P. S. Husband and Boxall 2011).  

2.4. Data analytics and machine learning 

2.4.1. Data analytics 
 
Data analytics (also known as “Big Data” or Data mining) is the process of collecting, cleaning, 
transforming, and modelling data to gain useful information, predict future trends and 
support decision-making. The applications of methods such as machine learning in data, are 
very common in areas like finance and stock market, in medicine for medical diagnosis, in 
science and technology. The applications of machine learning, and data analytics are 
increased with the evolution of computers and computer storage as the datasets year after 
year are getting larger and they also include, apart from numbers and strings, videos, images, 
audio, web pages etc.  Over the last years Machine Learning and Data Mining techniques are 
often used in the hydroinformatics and water resources domain for predicting flood 
frequency, water consumption, water discolouration, calibrate water models, understand the 
roots and parameters of discolouration etc. Gandomi et al. (Gandomi et al., 2015) 
summarized in their research paper the definition of big data analytics, its applications, the 
methodologies that are used and future research needs that are required.  
This review briefly explains the field of machine learning, specifies the various machine 
learning categories, and approaches, and presents some cases where machine learning 
techniques were used in the water sector.      

2.4.2. Introduction to machine Learning 
 

Machine Learning (ML) is a subset of artificial intelligence (AI) that uses collected data in 
various formats to enable computers to “learn” and improve performance towards a specific 
task without explicit programming. In other words, ML is the area of AI that studies the 
algorithms that computers should use to optimize future performances by learning from 
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existing data or past experience (Alpaydin 2014). The programming models that are created 
include some initial parameters set by the user and during the learning period (also known as 
training period) the computer program optimizes these parameters with the use of existing 
data.   

 
The basics of machine learning is math. It uses the theory of statistics to build mathematical 
models and algorithms that process the data in specific ways and create predictable outputs 
based on the data patterns. However, the created algorithms determine how the computer 
interprets the data; therefore, it affects the outcome of the learning process and the final 
output. Furthermore, the quality and the complexity of the data could affect the learning 
procedure. Thus, machine learning is part of computer science that includes the creation of 
algorithms, the cleaning of the data before the use and the training of the computer to 
provide efficient predictions (Mueller and Massaron 2016). 
 

 
Figure 2.1:Machine Learning methods (MathWorks 2016a) 

 
There are two main categories in machine learning: supervised machine learning methods 
and unsupervised machine learning approaches. In supervised learning, the machine learns a 
function that represents the known responses (output) to the input set of data and then this 
function is used to predict the response to new input data. In unsupervised learning, there 
are no specific outputs, and the machine is learning to understand the connections between 
the data, to group them in clusters with similar characteristics, and to explore hidden patterns 
in the datasets.  

2.4.2.1. Supervised Learning 
 

In Supervised Learning the steps that usually are followed regardless the chosen methodology 
are the determination of the type of dataset required, the dataset collection, the 
determination of the input feature in the learned function, selection of the appropriate 
algorithm – method, running the selected algorithm and evaluation of the accuracy of the 
learned function (Praveena and Jaiganesh 2017).  The Supervised Learning techniques are a 
form of classification or regression or both.  
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Classification problems are the problems where the machine is required to identify in which 
set of categories the new observations (new set of data) belong to, based on a training data 
set whose category is known.  The algorithm that is used for the classification problem is 
called the classifier. A typical example of a classification problem is the assignment of a new 
email to inbox or to spam class. Classification predictions can be evaluated by checking the 
accuracy of the model compared to the actual outputs (more details in the next chapter). In 
Regression, the training data set of inputs and known outputs create a predictive function 
that gives a continuous output value for any new input value (new observation). The accuracy 
of regression models is checked by using various performance metrics (more details in the 
next chapter). There are various supervised learning methods and algorithms that could be 
used for both classification and regression. Most common algorithms are the Decision Trees 
and the Artificial Neural Networks (ANN). However, there are methods that could only be 
used for regression problems such as linear regression and methods that could only be used 
for classification problems such as logistic regression. In the following paragraphs the main 
supervised learning methods are presented.  
 
Linear regression is the most common statistical and machine learning method. It is used for 
solving regression problems. In linear regression, the predictive function is linear whose 
model parameters are estimated from the input dataset. The main advantages of this 
statistical method are its simplicity and its ability to predict by solving the function with 
specific inputs (Alpaydin 2014). 
 
Logistic regression is another statistical method that is used in Machine Learning. Logistic 
regression is applied to datasets when two possible outcomes are expected. Therefore, 
Logistic Regression is used for classification problems. The Logistic or sigmoid function 
calculates the probability of a binary response based on predictor variables. More specifically, 
it models the probability of an output based on the input values and therefore, by setting a 
limit to this value the values are divided into two different categories. In cases where more 
than two output categories are required, multinomial logistic regression is used which 
combines multiple logistic regression methods (Alpaydin 2014). 
 
Decision trees are predictive Machine Learning algorithms that are trained from existing 
datasets and create hierarchical tree structures to demonstrate the relationships between 
the input predictors from the datasets and the target class (Quinlan 1987). Decision trees are 
used for both classification problems (classification trees) and regression problems 
(regression trees). Each node of the tree (tree leave) is an attribute that is used in the problem 
and each branch is the outcome of the attribute test (Pedrycz and Sosnowski 2001). The tree 
grows from the most meaningful attribute and continues with other attributes at lower 
nodes. A tree is trained by splitting the input dataset into subsets based on the attribute test 
and the process continues until the splitting does not add value to the predictions (Praveena 
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and Jaiganesh 2017). Breiman et al. (Breiman et al. , 1984)  developed the most widely used 
decision tree algorithm known as Classification and Regression Tree (CART). CART is a non-
parametric decision tree that, after training, could be either a regression or a classification 
tree depending on the desired outputs.  
 
Ensemble Classifiers or Ensemble methods are supervised methods that use multiple 
algorithms to create a predictive model with improved performance (Rokach 2010). The main 
idea behind ensemble classifiers is to apply as many individual predictive classifiers as possible 
into the training dataset, compare their outputs and combine the most accurate to obtain a 
“super” classifier that suits the most with the available dataset (Rokach 2010). The 
mechanisms that are used to build ensemble classifiers are: (i) using various datasets in one 
learning algorithm (ii) using various parameters in a single algorithm (iii) using different 
learning algorithms in the same dataset (Kotsiantis et al., 2007). However, they also argued 
that ensemble classifiers have three main disadvantages: they require increased storage, they 
increase the computational requirements, and they are difficult to be applied by a non-expert 
user. The most common ensemble classifier methods are bagging, boosting, and random 
subspace (random forest); their comparison was presented in a review paper by Dietterich 
(Dietterich 2000). 
 
Support Vector Machines (Cortes and Vapnik 1995) are supervised learning models for 
classification and regression analysis. Support Vector Machine (SVM) is an ML method that, 
after trained with specific datasets, creates an optimal tool to separate values into different 
groups with the same characteristics. SVM maps the input variables n into a dimensional 
feature space.  A linear decision surface is created based on the training dataset and separates 
the network into different parts. SVM was successfully applied in various domains including 
text categorization, classification of images and image segmentation (Alpaydin 2014). 
 
Artificial Neural Networks (ANN) are computing systems inspired by biological neural 
networks. These systems are trained from ‘examples” without being programmed to a 
specific task (Bishop 2006). A neural network consists of a large number of neurons that are 
separated in three classes, the input neurons (input layer), the output neurons (output layer) 
and the in-between neurons known as hidden layers (Kotsiantis, Zaharakis, and Pintelas 
2007). There are various ANN types, for example, feed-forward networks where the 
information, that every layer receives, is taken by the previous layer only or recurrent neural 
networks (RNNs) where the information passed to one layer contains information from not 
only its previous layer but from previous layers as well (Bishop 2006). ANNs are widely applied 
in various domains including medicine, process control, game-playing, face identification, text 
recognition etc. (Bengio 2009; Aggarwal 2018).  
 
Naïve Bayes Classifiers (NBC) are probabilistic classifiers that are using Bayes’ probability 
theorem (Alpaydin 2014). They take all the attributes of the dataset and analyse them 
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individually as equally important factors. The representation of NBCs is the probability of each 
class in the training dataset and the probability of each input value given each class. Thus, 
NBCs learning procedure is fast as only these two probabilities need to be calculated. Based 
on these two probabilities, the naïve models could perform prediction and classification 
(Maimon and Rokach 2006). 

2.4.2.2. Unsupervised learning  
 
In unsupervised machine learning there are no specific outputs to correspond to the input 
dataset and therefore the task here is to get some knowledge from the data. In unsupervised 
learning there are no correct answers, and the algorithms are left to present interesting 
structures in the data (Mueller and Massaron 2016). Unsupervised learning could be further 
grouped into clustering, association, dimensionality reduction and anomaly detection 
techniques (Usama et al. 2017; Hastie, Tibshirani, and Friedman 2008) . Clustering aims to 
create groups (clusters) that split the input dataset based on common properties and 
characteristics, association is used for discovering relations between variables in large and 
complex datasets, the dimensionality reduction algorithms aim to reduce the dimensionality 
of the dataset and finally anomaly detection algorithms are used for detecting errors in the 
datasets (Usama et al. 2017; Hastie, Tibshirani, and Friedman 2008). Some of the 
unsupervised techniques that belong to one of these categories could also be used for 
problems related to the other unsupervised learning categories. In the following paragraphs, 
the main unsupervised machine learning categories are presented.  
  
Clustering is the most common reason for using unsupervised machine learning techniques. 
There are three main clustering approaches based on the way that they follow to separate 
the datasets in different clusters. The first approach is the partitional clustering that separates 
the data into a strict predefined number of clusters where its sample belongs only to one 
cluster.  
 
The most common technique that belongs in this category being k-means, a method that is 
briefly explained in the next chapter (Maimon and Rokach 2006) . In this approach belong 
also the density-based clustering methods, such as density – based spatial clustering of 
applications with noise (DBSCAN), where instead of selecting the number of clusters, the 
minimum number of samples that belong in a certain neighbourhood (Ester et al. 1996). A 
special method that also belongs in the density-based family of ML methods is Self-organising 
maps (SOMs) which is another method that is explored further in the next chapter (T. 
Kohonen 1990).  
 
The second approach is the hierarchical clustering that creates hierarchical clusters either by 
starting from the “bottom” where each observation is a cluster and then pairs of clusters are 
merged and move up the hierarchy (agglomerative type), or by putting all the points of the 
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dataset in one cluster and then dividing the cluster in smaller sub-clusters (divisive clustering 
type) without defining the number of clusters (Usama et al. 2017). The third clustering 
approach is the Bayesian clustering where, once defined, the number of clusters are formed 
based on probability distributions, such as the Gaussian, and the data are split into different 
clusters based on the probability of following that distribution. Thus, each datum could 
belong in more than one clusters. The most common Bayesian method is the Gaussian 
mixture model (GMM) (Usama et al. 2017). 
 
Association rule learning is a method used for uncovering strong relationships between 
variables in datasets and it is a very popular tool for mining in commercial databases web 
mining (Hastie, Tibshirani, and Friedman 2008). In association, the goal is to find the possibility 
of a variable being present when another variable or variables are present. For example, what 
is the probability that someone that buys bread and cheese in a supermarket, will buy ham 
as well. There are various algorithms that generate the association rule with the most known 
being the Apriori algorithm and the Eclat algorithm (Hastie, Tibshirani, and Friedman 2008) .    
 
Dimensionality reduction is the process of reducing the dimensions of a large dataset and 
representing it with a smaller one that has new features created as functions of all the 
features of the dataset (Usama et al. 2017). Dimensionality reduction is mainly applied for 
visualisation of the dataset but could be also used for clustering, for understanding the 
variables correlation and for feature (variables) extraction. The most common dimensionality 
reduction algorithm is principal component analysis (PCA), a method that is described in the 
following chapter (Jolliffe 2002). Another dimensionality reduction method that is presented 
in the following chapter is t-distributed Stochastic Neighbor Embedding (t-SNE) (van der 
Maaten and Hinton 2008).  
   
Anomaly detection is the process for discovering an outlier or a group of outliers in large 
datasets. The algorithms that are used for anomaly detection are also used for clustering or 
classification. Anomaly detection is used for data leakage prevention, fraud detection, 
consumption anomalies and tumour detection (Usama et al. 2017). 

2.4.2.3. Other machine learning approaches  
 

There are some other machine learning methods that are standing between unsupervised 
and supervised learning. A brief presentation of some of these approaches is presented in the 
following paragraphs. 
 
Semi-supervised learning (SSL) is settled between unsupervised and supervised learning. It 
uses unlabelled data in combination with a small amount of labelled data for training to 
increase learning accuracy (Chapelle, Scholkopf, and Zien 2006). The first approach on SSL 
was the self-learning classification algorithm in which the algorithm is trained by the labelled 
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data firstly, then labels the unlabelled data according to the existing chosen function and 
finally is retrained by its own predictions. However, this method’s success depends on the 
accuracy of the selected supervised method. Interest in SSL has increased because there are 
applications in which there is plenty of unlabelled data that needed to be used such as images, 
texts, bioinformatics etc. (Chapelle, Scholkopf, and Zien 2006). 
 
Reinforcement learning is the learning method where a computer learns through trial-and-
error interactions with the environment. It is used when the desired output is a sequence of 
correct actions to reach a specific goal (Alpaydin 2014). In the standard reinforcement 
learning, a computer agent receives an input indication at a specific time and selects a specific 
action from a set of actions that the user provides, to generate as output. The selected action 
is sent to the environment and the value of this transition is transmitted through a 
reinforcement signal. This procedure continues as above, and the agent learns from the trial 
and error guided by reinforcement algorithms. The main difference between reinforcement 
learning and supervised learning is that in reinforcement learning there is no input/output 
training, and the agent is not told if its chosen action is the best available action or which 
action should have been chosen (Kaelbling and Littman 1996). 
 
Deep learning is a new approach in machine learning (basically is not different to  supervised 
and unsupervised approaches) that learns from data representation and not from algorithms 
and therefore, requires more data for training and learning(Lecun, Bengio, and Hinton 2015).  
Generally, a deep learning neural network (DNN) is an ANN with more neurons, more complex 
ways of connection and multiple layers between the input and output layers (Patterson and 
Gibson 2017). The deep learning methods were well known since the first years that ANNs 
became popular, but they were rarely used due to their computational cost (Usama et al. 
2017). However, in recent years, due to the technological development of computer 
hardware and computer storage, DNNs’ training ability has improved as they were learning 
faster and from larger input datasets. DNNs could be applied in supervised, un-supervised, 
and reinforcement learning tasks and they were implemented in various scientific fields for 
clustering, data mining, classification etc. (Che et al. 2018; Patterson and Gibson 2017; Z. Y. 
Wu and Rahman 2017; Ozturk et al. 2020; Yura et al. 2018; Fischer and Krauss 2018; Barzegar, 
Aalami, and Adamowski 2020).  

2.4.3. Machine learning in the water sector 
 

Hydroinformatics is a domain in the water sector that   concentrates on applications of high 
technologies and Artificial Intelligence to address problems regarding water issues. With the 
ability to store large amounts of historical data, the use of machine learning methods was 
successfully applied in different domains in the water sector including flood prediction, flood 
flow forecasting, water resources, water quality, wastewater overflow, water treatment 
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optimisation etc. In this section, some research papers, where machine learning approaches 
were applied, are presented. 
 
The use of ANN in various water related problems has been very popular since the beginning 
of the 90’s (W. Wu, Dandy, and Maier 2014). In their study Wu et al. (W. Wu, Dandy, and 
Maier 2014) developed a protocol for comparing various ANNs and, based on this protocol, 
they reviewed 81 past papers where ANNs were applied in river water quality modelling. A 
later study by Ahmed et al. (Ahmed et al. 2019) compared 3 different ANN models for the 
prediction of the water quality deterioration in Johor River, Malaysia. They managed to 
accurately predict the behaviour of various parameters in the river and thus improve its 
quality.  In flood modelling, an ensemble network with 10 ANNs was used in flood frequency 
analysis by Shu and Burn (Shu and Burn 2004) and it was proved to be more accurate in flood 
estimation and less sensitive in the choice of initial parameters than a single ANN. Kim and 
Seo (Kim and Seo 2015) developed an ensemble ANN model with exploratory factor analysis 
(EFA) for the 1-day ahead streamflow forecasting. This model was applied in three stations in 
South Korea and results indicated that this could be a really good tool for 1-day stream 
prediction for balanced datasets.  
 
ANNs were also applied in various research studies in the water and wastewater systems for 
the prediction of the behaviour of water quality parameters, understanding and predicting 
burst events in the DWDS, and monitoring treatment processes.  Gibbs et al. (Gibbs et al. 
2006) made a comparison between linear regression, multi-layer perceptron (MLP) and 
general regression ANN (GRANN) to predict chlorine concentrations in two different locations 
of a DWDS in Adelaide, Australia and found that MPL outperformed the other data-driven 
techniques. They also indicated the importance of identifying the best parameters for 
improving the models’ performance. Two different studies applied ANNs for the development 
of an online artificial intelligence system for the prediction of bursts at a DMA level; the first 
one used past flow timeseries data from 144 DMAs and a hybrid ANN  fuzzy inference system 
(ANFIS) (S. R. Mounce, Boxall, and Machell 2010) and the second one collected the pressure 
and flow timeseries measurements  to use them as inputs to a  hybrid event recognition 
system (ERS) to provide as output the probability of an almost real-time burst occurring  in a 
DMA (Romano, Kapelan, and Savić 2014). ANNs were applied in combined sewer overflows 
(CSOs) using rainfall data taken from radar devices and CSOs’ depth timeseries for the 
prediction of the CSO’s  depth up to an hour ahead (S. R. Mounce et al. 2014). As regards the 
treatment process, extreme learning machine coupled with radial basis function (RBF) ANNs 
was used for the improvement of the coagulation process in a WTW in Malaysia and predicted 
the coagulation dosage with a correlation coefficient of at least 0.8 (Jayaweera, Othman, and 
Aziz 2019). Finally, Kazemi et al. (Kazemi et al. 2018) developed an ANN with the nonlinear 
autoregressive exogeneous algorithm (NARX) which, in combination with data preparation 
models, could predict turbidity behaviour in water distribution trunk mains up to 8 hours 
ahead.  
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A very popular in the water sector data-drive regression tool named Evolutionary Polynomial 
Regression (EPR) was developed by Giustolisi and Savic (Giustolisi and Savic 2009). This tool 
was firstly used for the prediction of groundwater levels in relation to monthly rainfall data 
(Giustolisi and Savic 2009). Later, this tool was used for other water related problems such as 
main bursts prediction in relationship with weather conditions (Laucelli et al. 2014) and as a 
discolouration rate predicting tool in DWDS (S. R. Mounce et al. 2016).  
 
Decision trees and ensemble decision trees are also popular in hydroinformatics for 
classification and regression problems. Harvey et al. (Harvey et al. 2015) applied a decision 
classification tree to identify the factors that pose the water quality of small DWDS at risk and 
predict future water quality deterioration in 158 small DWDS in the province of Ontario, 
Canada. Alfonso et al. (Alfonso et al. 2018) proposed a combined decision tree model with 
the prospect theory on decision making under uncertainty, to create a tool that automates 
the decisions for flood early warning. Mounce et al. (S. R. Mounce et al. 2017) used the 
RUSBoost boosting ensemble decision tree algorithm to predict iron failures in DMAs of a 
water company in the UK and achieved 80% of correct iron failure predictions. Random forest 
classifier algorithm was successfully applied to CCTV footage for the classification of sewer 
pipe faults (Myrans et al. 2018) and to smart metering datasets for the short-term water 
demand forecast (Xenochristou, Kapelan, and Hutton 2020; G. Chen et al. 2017). 
 
Unsupervised learning methods were utilised in various research areas in the water sector for 
evaluating parameters, creating natural groupings, and discovering correlations in complex 
datasets. DB-SCAN algorithm was used for clustering customer complaints in a DWDS (S. 
Mounce et al. 2012). K-means was used in combination with a particle swarm optimization 
algorithm for reducing the number of the parameters that are required for the calibration of 
hydraulic models (Freitas et al. 2017). A novel clustering approach with the use of t-SNE 
algorithm was proposed by Mounce (Stephen Mounce 2018) for separating smart water 
network daily flow data into clusters of residential and commercial customers. PCA was used 
in plenty of research papers, including modelling the performance of wastewater treatment 
plants (WWTP) (Abba et al. 2020) and understanding the factors that increase the energy 
consumption of the water distribution mains (Hashemi, Filion, and Speight 2018).  
 
SOM algorithm applications on water quality datasets are very popular. The application of 
SOMs in water resources problems were summarized in  a review paper by Kalteh et al. 
(Kalteh  et al.,2008). Α comparison of the SOM technique against other clustering methods 
(PCA and cluster analysis) appears in a research paper that examines the river water quality 
with the use of water quality monitoring data and in which SOM clustering outputs  
outperformed the outputs of the other two methods (Astel et al. 2007). The first approach in 
applying SOMs in a drinking water quality related problem was made by Chang et al (Chang 
et al., 2011). In this work, SOMs were used in combination with K-means and Fuzzy c-means 
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for the clustering of the water mains of a large DWDS in different water quality categories. 
However, for this study Chang et al. instead of using actual measured WQ data, they used the 
WQ data as calculated by the hydraulic model. Conversely, there are significant papers in the 
literature that apply SOMs as their main tool or one of their main tools in measuring drinking 
water quality data for understanding drinking water quality and identifying correlations 
between various water quality parameters in DWDS. More specifically, Mounce et al. (S. 
Mounce et al. 2012) used SOMs in combination with PCA  for understanding the relationships 
between bacteriological species and the chemical and physical characteristics of the drinking 
water inside a laboratory pipe rig;  Blokker et al. (E. J. Blokker et al. 2016) applied SOMs in 
two water quality datasets, one taken from a UK DWDS ,and one taken from a Dutch DWDS, 
to identify correlations between water quality deterioration, temperature of water and the 
age of water on customer taps; Mounce et al. (S. R. Mounce et al. 2016) used SOMs in 
combination with EPR for the estimation of the rate of discolouration in DWDS in the UK; Ellis 
et al. (Ellis et.al., 2015; Ellis et al., 2014) utilised SOMs in combination with cross-correlation 
algorithm to identify the factors that caused coliform failures in two different WTWs;  Speight 
et al. (Speight, Mounce, and Boxall 2019) applied SOMs in monitoring water quality samples 
datasets of three different UK WUs for understanding the factors that cause discolouration 
of the drinking water.  
 
Various studies in the water sector used ensemble of machine learning techniques or 
compared the performance of two or more machine learning techniques. Research by 
Nourani et al. (Nourani, Elkiran, and Abba 2018) compared three different ensemble 
techniques that combined support vector machines (SVM), ANNs, fuzzy logic and multilinear 
regression for the prediction of the performance of a WWTP in Nicosia, Cyprus. Mounce et al. 
(Mounce, Mounce, and Boxall 2011) compared the performance of a support vector machine 
(SVM) model with a previously developed ANN model in detecting anomalies in water flow 
and pressure timeseries data in water distribution networks (WDNs) and found that the SVM 
model outperformed the ANN model on providing alert over sudden changes in the network. 
Another study on anomaly identification on WDNs, compared SVMs with clustering methods, 
and also found that SVM had better performance in predicting anomalies (Vries et al. 2016). 
In the same subject, Carreno - Alvarado et al. (Carreño-Alvarado et al. 2017) compared the 
performance of SVM with the performance of Relevance Vector Machines (RVM) - a Bayesian 
approach on SVM - and suggested that RVM could be also a suitable tool for leakage 
detection. SVM appears to be the most accurate tool in predicting future water demand 
followed by random forests in a work held in a city in the south of Spain (Herrera et al. 2010). 
Finally, in an interesting research work on turbidity forecasting in water distribution trunk 
mains, Meyers et al. (Meyers, Kapelan, and Keedwell 2017) compared the regression and 
classification performance of SVM, random forest, and feedforward ANN in predicting 
turbidity behaviour and turbidity events up to 5 hours ahead and indicated that random forest 
outperformed the other methods. However, they, also, indicated that as regards the 
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classification model, the longer ahead the prediction is, the higher the number of false 
positives is.   
 
Lastly, in the recent years that deep learning neural networks and deep learning applications 
are receiving a lot of attention from the scientific world, studies that apply DNNs in various 
water related projects can be found in the literature. Most of these research works are related 
with areas where telemetry systems generate hundreds of thousands of data such as WWTPs 
monitoring systems. The first study that indicated the effectiveness of deep neural networks 
compared to other forecasting models, has used deep convolutional neural networks (Deep 
CNNs) for the prediction of the daily water flow and water level on a catchment of a river in 
Ireland (Assem et al. 2017). A novel approach that combines hydraulic modelling with 
DenseNet, a deep learning algorithm, was tested in two different WDNs for the localisation 
of synthetic pipe bursts (Zhou et al. 2019). Deep reinforcement learning was successfully 
applied in two water related studies, one for the optimization of the performance of a 
pumping station inside a WWTP (Filipe et al. 2019) and one for scheduling valves in a DWDS 
using sensor data and programmable logical systems (PLC) systems for minimizing 
contamination inside the WDNs by isolating contaminated areas the network (C. Y. Hu et al. 
2019). The former decreased the pumping station energy consumption by up to 16.7% and 
the latter managed to minimise contamination in a WDN, even when multiple contamination 
source events occurred. Finally, two different studies concentrated on solving problems and 
improving the process performance of two different WWTPs. More specifically, Dairi et al. 
(Dairi et al. 2019) used a combined RNN and restricted Boltzmann machine (RNN-RBM) model 
in combination with classification algorithms for the identification of abnormal influents 
entering a coastal WWTP in Thuwal, Saudi Arabia, and Mamandipoor et al.  (Mamandipoor et 
al. 2020) applied long short-term memory networks (LSTM) in a WWTP in Treviso, Italy for 
detecting faults in 12 different sensors during the nitrification and oxidation process and 
achieved a fault detection rate of up to 92%.  
 
This thesis focuses, as mentioned in the previous chapter, on ML applications for the 
improvement of drinking water quality.  Therefore, to summarise the work that has been 
done in the field, the research works mentioned in the previous paragraphs that applied ML 
methods for improving drinking water quality, the problems that addressed and their results 
are presented in table 2-1.    
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Table 2-1: Overview table of the research works that apply ML applications on drinking water 
quality problems 

Study title 
Publication 
Reference 

Addressed 
water quality 

problem 

ML method 
used 

Case study 
Available data 

Outputs (pros/cons) 

Investigation into the 
relationship between 
chlorine decay and 
water distribution 
parameters using data 
driven methods 

(Gibbs et al. 
2006) 

Prediction of 
chlorine decay 
in the DWDS 
and chlorine 
concentrations 
in customers 
taps 

- Linear 
regression 
model  
 
- MPL ANN   
 
-GRNN  

A DWDS in Hope 
Valley, South 
Australia.  
Inputs: Flow, Cl2 
temperature, DOC 
and UV in the 
WTW, 
temperature in the 
network 
Output: Cl2 in 
some points in the 
network  

 - ML based models 
useful when the 
network hydraulics 
are not known.  
-ML models require 
higher frequency 
data than the 
available for more 
accurate results.  
-Finding the 
appropriate inputs 
increases prediction 
accuracy 

Water quality 
comprehensive 
evaluation method 
for large water 
distribution network 
based on clustering 
analysis 

(Chang et al. 
2011) 

Evaluating 
water mains in 
a DWDS based 
on WQ 
parameters 

-SOMs for 
correlations 
identification  
-K-means and 
fuzzy c-means 
for clustering 
the mains   

A large DWDS with 
available hydraulic 
model. 
Inputs: Residual 
chlorine, water 
age, THMs, TOC 
and other 
parameters - all 
calculated by the 
hydraulic model 

-Clustering of mains 
in WQ categories 
based on multiple 
parameters 
-ML model in this 
study uses non 
measured data (WQ 
parameters were 
calculated) 

A bio- 
hydroinformatics 
application of self- 
organizing map neural 
networks for 
assessing microbial 
and physico -chemical 
water quality in 
distribution systems 

(S. Mounce 
et al. 2012) 

Assessing 
microbiological 
water quality 
characteristics 
in DWDS 

-PCA for 
reducing the T-
RFLP profiles 
dimensionality. 
-SOMs for 
correlations 
identification 

A testing loop 
facility that 
simulates DWDS.  
Inputs: T-RFLP 
outputs, WQ 
parameters  

-SOMs provides a 
visualised output of 
the microbiological 
behaviour of the 
testing loop. 

Relating Water 
Quality and Age in 
Drinking Water 
Distribution Systems 
Using Self-Organising 
Maps 

(E. J. Blokker 
et al. 2016) 

Relating 
microbiological 
water quality 
parameters 
with water age 
and 
temperature in 
DWDS 

SOMs 

A Dutch and a UK 
real DWDS and a 
testing loop. 
Inputs: drinking 
water quality 
parameters and 
modelled water 
age    

- Temperature and 
water age are 
independent 
parameters  
-Temperature 
influences more the 
microbiological 
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activity than water 
age  

Multivariate data 
mining for estimating 
the rate of 
discolouration 
material 
accumulation in 
drinking water 
distribution systems 

(S. R. 
Mounce et 
al. 2016) 

Estimation of 
discolouration 
accumulation 
rates in DWDS 

-SOMs for the 
data mining  
-EPR for 
creating 
mathematical 
models’ 
expressions 

A UK national 
dataset collected 
during flushing 
operations in 36 
different DWDS 
and two small local 
DWDS in the 
Netherlands.  
Inputs: WQ 
parameters, mains 
characteristics, 
flushing outputs 
Outputs: 
Discolouration 
accumulation rates 

-SOMs indicated 
that in the UK case 
study, high 
accumulation rate is 
related to high iron 
in the bulk water, 
non-plastic pipes, 
iron coagulation 
treatment and 
unlined cast iron 
mains. 
-EPR models could 
be used for 
assessing iron 
related parameters 
to reduce 
accumulation of 
materials in the 
DWDS 
-No temporal 
relationship 
between 
accumulation rates 
and WQ parameters 
could be identified 
with these two 
approaches 

Improving root cause 
analysis of 
bacteriological water 
quality failures at 
water treatment 
works 

(K. Ellis et al. 
2015) 

Understanding 
the roots of 
coliform 
bacteria failure 
in a WTW 

SOMs  

A WTW of a water 
utility in the UK.  
Inputs: WQ 
parameters taken 
from various 
locations in the 
works and in 
different 
frequency. 

-Coliform bacteria in 
the WTW exit 
related to low 
turbidity and low 
disinfectant residual 
in the works 
-Heavy rainfall also a 
potential parameter 
that influences 
WTW failure 
-Study could not 
provide a definitive 
cause of 
bacteriological 
failure in the works 
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Identification of the 
Causes of Drinking 
Water Discolouration 
from Machine 
Learning Analysis of 
Historical Datasets 

(Speight, 
Mounce, and 
Boxall 2019) 

Understanding 
the factors 
that influence 
discolouration 
in DWDS  

SOMs 

A full WQ samples 
and physical 
characteristics 
dataset of a water 
utility in the UK, a 
WQ samples 
physical 
characteristics 
dataset for 3 cities 
that belong in a 
different water 
utility and a full 
WQ samples 
dataset in a DMA 
level of third 
company. 
 

-SOMs is a great tool 
for visualising 
corelations between 
various parameters 
-This paper opens 
the discussion over 
the use of data 
mining in sparse 
datasets such as the 
WQ samples 
datasets. 
- SOMs outputs 
indicate that the risk 
of discolouration is 
not necessarily 
related to the bad 
condition of iron 
mains 
-SOMs gives great 
visualisation of the 
mechanisms that 
could result in iron 
release and 
discolouration in 
DWDS 

Using data mining to 
understand drinking 
water advisories in 
small water systems: 
A case study of 
Ontario first nations 
drinking water 
supplies 

(Harvey et al. 
2015) 

Identifying the 
factors that 
cause 
preventive 
measures to 
protect public 
health from 
contaminated 
water in small. 
DWDS. 

Decision tree 

A dataset that 
contains 
information from 
the type of the 
water, the status 
of the operators, 
the age of the 
DWDS, the pipe 
length the WTW 
quality etc, from 
158 small drinking 
water systems in 
Ontario Canada. 
Outputs:  the 
status of the 
DWDS (is at risk or 
not at risk of 
contamination) 

-The model correctly 
predicted 71% of 
the systems 
-Systems that use 
groundwater source 
are safer  
-Systems that are 
maintained by 
untrained operators 
have higher risk to 
fail 
-Main aim of this 
work is to 
demonstrate that 
decision trees are 
user-friendly tools 
-The model requires 
further investigation 
with more data to 
increase accuracy   
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Short-term 
forecasting of 
turbidity in trunk 
main networks 

(Meyers, 
Kapelan, and 
Keedwell 
2017) 

Forecasting 
turbidity up to 
certain hours 
ahead to aid 
operational 
stuff and 
enabling 
proactive 
interventions 
in DWDS 

-Random 
Forest 
-Feed-forward 
ANN 
-SVM 
 

The case study 
area is a trunk 
main that serves 5 
DMAs with water. 
Sensors to 
measure flow and 
turbidity are 
installed in the 
main. 
Inputs: Flow 
measurements up 
to certain hours 
back, 
Flow peaks and 
turbidity peaks 
Outputs:  
1.Turbidity values 
up to certain hours 
ahead (regression)   
2. Turbidity 
threshold up to 
certain hours 
ahead 
(classification) 

-High classification 
accuracy up to 5 
hours ahead 
-Low regression 
accuracy achieved 
by the model (30 
minutes ahead) 
- This model could 
be useful tool for 
turbidity predictions 
in systems with 
sufficient past 
turbidity events 
-If there are not 
enough turbidity 
events in the 
dataset there is a 
high risk of getting a 
large number of 
false positives and 
low overall accuracy  
-RF was the best out 
of the three ML 
models in this case 
study 

Predicting turbidity in 
water distribution 
trunk mains using 
nonlinear 
autoregressive 
exogenous artificial 
neural networks 

(Kazemi et al. 
2018) 

Predicting 
turbidity 
events in 
water 
distributions 
trunk mains 
for reducing 
discolouration 
risk in drinking 
water 

-NARX ANN 
-Feed-Froward 
ANN 

Model tested in 
two trunk mains in 
different DWDS. 
Inputs: Flow 
measurements in 
flow events related 
to turbidity events 
Risk parameter 
Outputs: Turbidity 
events 

-The model 
predicted turbidity 
events up to 10 
hours ahead with 
MAE 0.05NTU error. 
-NARX ANN was a 
better method than 
Feed-forward ANN 
-The model is a good 
tool for predicting 
turbidity and 
providing proactive 
information to 
operators 
-Model’s 
effectiveness limited 
when not enough 
discolouration 
events available for 
training  
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Ensemble Decision 
Tree Models Using 
RUSBoost for 
Estimating Risk of Iron 
Failure in Drinking 
Water Distribution 
Systems 

(S. R. 
Mounce et 
al. 2017) 

Estimating 
DMAs’ risk of 
iron failure 
one year 
ahead to 
provide water 
utilities with a 
DMA risk 
ranking list 
that will 
prioritize their 
interventions 
in the DWDS   

 
RUSBoost 
boosting trees 

Case study was a 
water utility in the 
UK where their 
WQ dataset over a 
period of 7 years 
was used. 
Inputs: average 
median  iron, 
manganese, 
turbidity values 
from all samples 
per year per DMA, 
customer 
complains per year 
per DMA, 
percentage of iron 
mains per year per 
DMA 
Outputs: DMA 
class (failure/non 
failure) per year.  

-Model predicted 
60.5% of the high-
risk DMAs and 76% 
of the low-risk 
DMAs in the 
upcoming year 
-RUSBoost is a great 
tool for classification 
when the dataset is 
unbalanced (in this 
case, very low 
percentage of iron 
failures in the 
dataset) 
-Model creates large 
number of false 
positives due to the 
imbalance in the 
dataset 

Improved predictive 
capability of 
coagulation process 
by extreme learning 
machine with radial 
basis function 

(Jayaweera, 
Othman, and 
Aziz 2019) 

Optimising 
coagulation 
process in a 
WTW to 
improve 
drinking water 
quality   

Extreme 
learning 
machine with 
RBF  

Segama WTW, 
Sabah, Malaysia. 
Inputs: pH, 
turbidity color TDS, 
alkalinity in raw 
water and color, 
TDS, alkalinity, in 
treated water 
Outputs: coagulant 
dosage 
 

-Model provided 
better results and 
with less 
computational time 
than the ANN 
-Low turbidity water 
required only 3 
parameters for the 
optimization of the 
coagulant dosage 
-High turbidity 
water required 4 
parameters for the 
optimization of the 
coagulant dosage 
-ELM-RBF good tool 
for coagulation 
optimization 
however data 
quality could effect 
model’s 
performance 
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Machine learning 
approaches to predict 
coagulant dosage in 
water treatment 
plants 

(K. Zhang et 
al. 2013) 

Predicting 
coagulant 
dosage in a 
WTW 

-K-Nearest 
Neighbours 
-SVR 

4 WTWs, 2 small ,1 
medium and 1 
large were used as 
case studies in this 
work 
Inputs: pH, 
temperature and 
turbidity in the 
coagulation tank 
Output: Alum 
dosage 

-KNN outperformed 
SVR in the small 
WTWs  
-KNN and SVR had 
similar performance 
in the medium and 
large WTWs 
-Performance 
improvement of 
both methods is 
highly depended on 
the quality of the 
datasets as poor 
quality data 
influence both ML 
methods 

Random forest tree 
for predicting faecal 
indicator organisms in 
drinking water supply 

(Mohammed, 
Hameed, and 
Seidu 2017) 

Predicting 
fecal indicator 
microorganism 
in the source 
water of a 
WTW 

Random forest  

Water quality data 
taken from raw 
water used as a 
source for a WTW 
in Bergen, Norway 
Inputs: 
conductivity, pH, 
colour, turbidity 
and season of the 
year 
Outputs: Coliform 
bacteria and E-coli  

-RF is vital tool for 
the prediction of 
faecal 
microorganisms 
-Feature importance 
outputs indicated 
that colour and 
seasonality are the 
most important 
parameters that 
influence the results 

  

2.5. Conclusions  
 
DWDS are complicated systems. Bacteria regrowth in the DWDS could be promoted, as 
presented above, due to various factors including disinfection residual, pipe material, 
network condition and maintenance, WTW performance etc. Aging and poorly maintained 
DWDS could be the main factors of water discolouration but, as various studies indicate, there 
are many other factors that could cause accumulation and mobilisation of material inside the 
WDNs. Therefore, it is very difficult to understand the roots that cause water deterioration 
by just taking water samples periodically for water quality testing.  
 
Methods that have the potential to give a better understanding of the reasons for water 
deterioration or that could potentially predict future water behaviour and deterioration 
events are very useful tools for decision makers inside WUs. Machine learning applications, 
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as presented above, were, successfully, applied in various research projects in the water 
sector, where enough data were available. As WUs are storing water quality data and lots of 
other types of data from various sources and various points inside their DWDS, large datasets 
of various parameter measurements are created that could be a very good input for training 
machine learning models. However, the selection of a machine learning method depends on 
the data availability and the type of the water quality problem that is required to be solved, 
which is a gap that the current research works have not answered yet. In addition, there are 
certain areas in the DWDS where available water quality data exist and no work using data-
driven models is made and, therefore, some water quality research questions have not been 
answered yet.  More specifically, the knowledge gaps that this thesis aims to address are 
described below: 
 

● In the research works where ML applications are applied, the common practice is to 
create the data-driven model that could solve a certain WQ problem using the 
available data given by WUs. However, none of the studies aimed to explain which 
type of ML method is the most appropriate for a certain WQ problem and for the 
available data. In other words, there is no clear guidance for WUs on applying ML 
methods for supporting the management of their DWDS.  Therefore, to fill this gap, 
this thesis provides a ML selection process which is presented in chapter 3 and 10. 

● WUs are collecting large number of water quality data from their systems. However, 
there are no papers in the literature that provide a holistic approach regarding the 
storage of these data, the necessary information that WUs should include in these, 
and how this information could be connected and integrated to facilitate the 
application of ML methods for improving drinking water quality. The big data 
framework, presented in chapter 10, fills this gap, and proposes certain steps that 
WUs should follow to facilitate data-driven applications using their data.   

● There are no research works that aim to identify the factors that increase 
bacteriological activity in service reservoirs or identifying potential service reservoirs 
that are at risk of a future failure. This thesis fills this gap by undertaking two data-
driven investigations in service reservoirs, one for identifying the factors that increase 
bacteriological activity in the service reservoirs (chapter 5) and one for predicting 
service reservoirs that are at risk (chapter 7). 

● There are no data-driven research studies that focused on the potential impact of a 
disinfection switch in drinking water quality. The Self-organising maps investigation in 
chapter 6 aims to fill this gap.  

● The use of ML applications for predicting future turbidity values to prevent 
discolouration events in trunk mains is explored in at least two different research 
works. However, it is important to investigate the potential of these models in 
predicting other parameters that could help WUs reduce the risk of bacteriological 
risk in their systems. An approach that partially fills this gap is presented in chapter 8 
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where a predictive data-driven model is used to predict Chlorine losses at the end of 
3 distribution trunk mains.  

● Over the recent years, bacteriological sensors that measure total cell counts have 
become a popular tool for recording the bacteriological activity in the WTWs. 
Potential analysis of these data using ML applications for understanding WTWs’ 
bacteriological activity and predicting future bacteriological behaviour has not been 
made so far. This area of research is investigated in chapter 9. 
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3. Machine learning techniques selection for drinking water 
quality problems and performance metrics for their 
evaluation  

3.1. Introduction 
 
In chapter 2, machine learning (ML) was defined as the computer science domain that 
constructs algorithms that could learn how to perform a task through past examples (past 
data). The ML categories and main techniques were also presented. The selection of the 
appropriate ML technique, though, is fully dependent on the problem that requires to be 
solved, the type and the amount of the available data and the required output.  
In addition, for the water utilities (WUs) the collection of the available data, usually stored in 
different data warehouses, is a more complicated task. More specifically, the complete 
collection of all the available data requires the collaboration of different WUs departments 
that own parts of the data and a huge amount of effort and time for their integration into a 
unique dataset. As an example, the following chapter presents in detail the effort and all the 
required steps to create the datasets that were then used as inputs in chapters 5,6 and 7. In 
Chapter 10, a holistic approach for the application of big-data analytics tools is proposed. This 
is presented in the form of a framework and includes recommendations regarding the data 
storage and integration that decreases the amount of time required for the application of ML 
methods on water quality related problems. This chapter focuses only on the required steps 
for the selection and application of ML methods without taking into consideration the data 
storage and integration. More specifically, the aim of this chapter is to propose the ML 
application steps, from the setting of the water quality problem to the ML output evaluation, 
that WUs should follow to tackle drinking water quality problems in their DWDS, using only 
the data that have already been collected in their routine monitoring program. Thus, this 
chapter addresses the first objective and partially to the fifth objective of this thesis. 

3.2. Background   
 
Tom Mitchell in the introduction of his book Machine Learning defined ML algorithm as 
follows: “a computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks in T, as measured by P, 
improves with experience E” (Mitchell 1997). A small example to show how this formalism 
could be used is the following:  
All the employees of a company are receiving a significant amount of spam emails in their 
professional email accounts including emails that could harm their company’s computers. In 
order to solve this problem with data-driven techniques, it should be redefined as follows: 
“Could spam emails be identified and sent to the spam folder?”. The computer program in 
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this case is the selected ML application and the task T, the performance P and the experience 
E are defined as follows: 
 

● Task (T): Classify an email into two categories - spam and not spam. 
● Experience (E): A large number of emails where some of them are spam and some are 

not spam to be used as the input data. 
● Performance (P): the accuracy of the classification prediction as applied by the 

machine learning technique.   
 
In addition, the ML model task implementation procedure usually follows these steps 
(MathWorks 2016): 

a. Collection and understanding of the data: In the real world, datasets are not perfect. 
There is messy, noisy, and incomplete data in various formats. The first step before 
selecting a ML model is to understand the type of the raw available data and to define 
the hidden information that needs to be uncovered.  

b. Data preparation: This step includes all the required activities for constructing the final 
dataset that will be used as the input to a ML model. Cleaning, interpolating, or 
transforming the data and selecting features are just some of the activities that are 
included in this step. 

c. Model selection & training: This is the step where an ML method is selected and 
trained. The model selection is highly related to the type of desired output and the 
data format. The training of a model is the procedure that is followed in order to assist 
the model to understand the data and learn from the data. 

d. Model evaluation: In this step the performance of the trained model is compared to 
existing data. The aim is to evaluate the model and the procedure that was followed 
in the previous steps. 

e. Model improvement: It may be necessary to change some of the features, steps and 
either simplify or add complexity to the model.  All these decisions are part of the 
model improvement step. If the model evaluation is satisfactory, this step could be 
skipped. 

f. Model deployment: The improved model is now ready to be applied for problem 
solutions. 

 
For generating the machine learning selection and application steps for water quality 
problems, Mitchel’s formalism in combination with the ML implementation procedure are 
transformed into steps that should be followed to tackle drinking water quality deterioration 
problems. In the rest of this chapter, the machine learning selection and application steps, 
the methodology of the ML techniques that were investigated in the thesis, and the 
performance metrics used for the evaluation of the techniques are presented.    
 

1. Setting up the machine learning application steps for water quality problems 
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These proposed steps work as a guide on how to define the water quality problem, to work 
with the available data and specify the required output. Each step is necessary for the 
procedure of the machine learning application. The selection of the appropriate ML 
techniques occurs in step 4 and is facilitated by the use of the machine learning selection tree 
The application steps are as follow: 
 

1. Step 1: Definition of the water quality problem 
The spam email example in the previous section indicates the importance of the definition 
of a problem that needs to be solved. Data-driven techniques could be used to tackle specific 
problems that are only data related. Therefore, the water quality problem should be a 
problem that could potentially be solved using historical water quality data or any other 
available data.     
 

2. Step 2: Clarification of the required output (Task T) 
As the spam email indicates, after the water quality problem definition, the required output 
could be defined. The required output is what Mitchell defines as Task T and it could be a 
classification output, a prediction of future water behaviour, a correlation between water 
parameters or clustering of unlabelled and unstructured data.         
 

3. Step 3: Specification of the available dataset (type, amount etc. - Experience E) 
What Mitchell defines as experience E in water quality problems are the available water 
quality data, unstructured data, asset data etc. to train the model. These data could be water 
quality monitoring data, telemetry data, water quality timeseries data measured for specific 
investigations. In addition, some data regarding specific characteristics of the assets (pipe 
age, pipe material, type of disinfection, number of properties etc.) could also be used if they 
could improve the ML models’ performance. 
 

4. Step 4: Selection of an ML technique 
The selection of an ML technique is highly dependent on the previous 3 steps. As mentioned 
above, the appropriate ML technique for solving the problem could be selected from the 
machine learning selection tree. For creating this tree an investigation on some of the 
available ML techniques is required and which is also one of the objectives of this thesis 
(objective 1). The techniques that are investigated in this thesis are presented in the 
following section. Most of these ML techniques were applied in real WQ case studies 
presented in the following chapters. However, k-means and t-SNE, even if they were 
investigated over their abilities, were not used in any of this thesis’ case studies.   
 

5. Step 5: Preparation and pre-processing of the data  
Data preparation and pre-processing refers to all the techniques that are used for changing 
the data format, adding extra data to fill the missing values or removing the outliers (Kuhn 
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and Johnson 2013). Data preparation is a very important step for the accurate application of 
the ML technique. The type of data preparation required for each ML technique is also 
included in the machine learning investigation. Explanation of the data preparation required 
for each specific technique is included in the machine learning selection tree.   
 

6. Step 6: Machine learning application output 
This step refers to the training of the selected ML technique, the types of outputs that it 
produces, and the testing of its performance. In other words, in this step the ML technique 
outputs are produced in forms of graphs, tables etc., and then, the performance P of the 
technique, as defined by Mitchell, is examined.  
 
The machine learning application steps are summarized in the following figure 
 

 
Figure 3.1:Machine learning application steps 

3.3. ML techniques and selection tree 
 
The ML techniques that are picked for this thesis are selected based on covering the ML 
categories (supervised, unsupervised learning etc.), as described in the literature review 
chapter, and on the basis of covering important water quality problems that Scottish Water 
(SW) has to tackle. Therefore, the ML techniques selected for this investigation could be 
divided into three main groups:   methods for understanding the water quality behaviour of 
the DWDS and the factors of water quality deterioration (correlation - association 
unsupervised learning techniques), methods for clustering of water quality data into groups 
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with similar behaviour (clustering unsupervised learning techniques) and methods for 
predicting future water quality behaviour  (predictive regression and classification supervised 
Ml techniques). The aim of this research is to both investigate the performance of the most 
common methods, some of which are already applied in other research projects in the water 
sector, as described in the previous chapter, and  the performance of  new  ones on water 
quality problems.  The selected methods are presented in the remainder of this section. In 
the following chapters some of these techniques are applied in real world water quality case 
studies.   

3.3.1. Clustering unsupervised machine learning techniques 
 
Clustering methods in water quality could be used for dividing monitoring water quality 
samples into different categories with similar behaviour, for example samples with high or 
low chlorine concentration in certain areas of a DWDS. Clustering could also be used for 
identifying and visualising the main groups of smart meter datasets, timeseries datasets used 
for water quality investigations in certain areas. In this thesis two methods are selected, k-
means the most common clustering method, and t-distributed stochastic neighbour 
embedding (tSNE) a new technique mainly used for dimensionality reduction, visualisation of 
the data and for group clustering.  

3.3.1.1. k-means 
 
k-means is the most used clustering method for data mining due to its simplicity. This 
algorithm separates the input datasets into a k number of clusters where every single input 
belongs in the cluster with the closest mean value (Maimon and Rokach 2006). Therefore, a 
cluster is a group of data whose distances are smaller than their distances with data that 
belong to other clusters (Bishop 2006). The number of clusters k should be defined by the 
user before the application of the method. Once the number of clusters is defined, the 
distance between the centre of the cluster (mean value) and the actual observation, using the 
Euclidean distance, is calculated as follows: 
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Where:  
N: Total number of observations 
K: total number of clusters 
xn: the nth observation of the dataset 
μΚ: the centre of the kth cluster  
d: the Euclidean distance of each observation to the centre of each cluster μκ 
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The aim is to categorize each datapoint to each cluster so that d is minimized. Therefore, once 
the initial distance d is calculated, the average of the observations (data points) that belong 
in the same cluster is computed to obtain the new μκ of the cluster. Finally, this procedure is 
repeated until the clusters remain stable or when the predefined maximum number of 
repetitions is reached (Hastie, Tibshirani, and Friedman 2008).  
K-means is easy to implement and separates the data in robust clusters once the k is defined. 
However, in some cases where complex non-linear relationships exist, it is difficult to select 
the number of clusters a dataset should be divided, and thus the k-means may not be the 
appropriate technique for that. In addition, k-means requires an input dataset with no missing 
values for each selected variable, therefore it could not be applied to water quality monitoring 
samples (discrete samples) dataset where in each sample (observation) just few of the 
available variables (water quality parameters) are measured.  However, in the water sector 
k-means was used as a simple tool for grouping pipes to reduce calibration time of the 
hydraulic models (Freitas et al. 2017) and as a clustering methodology that categorised the 
mains of a DWDS based on a number of water quality indicator parameters (Chang et al. 
2011).  

3.3.1.2. t-distributed stochastic neighbour embedding (t-SNE) 
 
t-distributed stochastic neighbour embedding (t-SNE) is a ML technique used for clustering 
and visualizing high dimensional datasets (van der Maaten and Hinton 2008). The idea of this 
methodology is to group high dimensional datasets to low dimensions where nearby points 
are embedded to nearby points in the low dimensional space, and the long-distance points 
are embedded to distance embedded points in the low dimensional space. The methodology 
follows the steps of SNE algorithm firstly developed by Hinton and Roweis (Hinton and Roweis 
2002) but instead of using a Gaussian distribution for the calculation of similarity between 
two points in the low dimensional space, it uses the Student t-distribution. The t-SNE 
algorithm briefly follows these steps: 
 

a. The distance between the various points of the dataset is calculated. The Standard 
Euclidean distance is the most used distance metric.   

b. The standard deviation σι for each row i of the dataset is calculated.  
c. The conditional probability pj|i is calculated. The conditional probability pj|i is 

defined by van der Maated and Hinton (2008) as “the probability that xi would pick 
xj as its neighbour in the low dimension if neighbours are selected in proportion to 
their probability density under Gaussian centred at xκ” (van der Maaten and 
Hinton 2008). Pi|j is calculated as follow: 

𝑝)|+ =
𝑒
(
-./0!-0"/.

#

(1$#
)

∑&3+ 𝑒
(
-/|0!-0%|/

#

(1$#
)

	



 

59 
 

d. The perplexity parameter is defined. The perplexity measures the number of the 
efficient neighbours to point xi. t-SNE performs a search over the standard 
variation to fix the perplexity for each point xi. 

e. An initial set of low dimension points is created.  
f. The conditional probability (similarity) qij is calculated. As mentioned above in the 

t-SNE the similarity is calculated using the t-distribution and therefore, is 
calculated as follows: 

𝑞+|) =
(1 + 12𝑦+ + 𝑦)21

(
)-$

∑&34 (1 + 2|𝑦& + 𝑦4|2
()-$

	

g. The gradient of Kullback-Leibler divergence between the Gaussian distribution in 
the high-dimensional dataset and the low-dimensional space is calculated. 

h. The low dimensional space is updated, and the steps f and g are repeated until the 
optimum Kullback-Leibler divergence is achieved. 

 
By following the above algorithm t-SNE plots a high dimensional dataset in a low dimensional 
space, groups the data into robust clusters and allows visualisation of complex datasets 
without predefining the number of clusters. However, t-SNE requires an input dataset with 
no missing values, each line with missing values is removed and therefore, as in k-means, this 
method could not be applied in gram monitoring water quality datasets. In the water sector 
this technique was successfully applied as a clustering and visualisation method of smart 
water meter data into commercial and residential customers (Stephen Mounce 2018) and as 
a tool for clustering the influents of various WWTPs in order to optimize their processes and 
improve their performance (Xu et al. 2021).    

3.3.2. Correlation unsupervised machine learning techniques 
 
The 2 techniques presented in this section are, as the above, unsupervised ML techniques 
mainly used for visualisation. In addition, though, the methodology followed by these 
techniques allows an understanding of correlations between the various variables measured 
for each observation. Therefore, these methods could be applied on water quality data for 
identifying the correlations between the various water quality parameters and understanding 
the factors of water quality deterioration. More specifically, the methods that were 
investigated in this thesis are Self-Organised Maps (SOMs) a clustering technique, also used 
for visualisation of the data, and Principal Components Analysis (PCA) a method that is mainly 
used for dimensionality reduction of high dimensional datasets and feature extraction.        

3.3.2.1. Self-Organized Maps (SOMs) 
 

Self-organizing Maps (SOMs) are a type of unsupervised ANN proposed firstly by Kohonen (T. 
Kohonen 1990). It is a clustering methodology for visual data mining and exploration and has 
the properties of both vector quantisation and vector projection algorithms (S. R. Mounce et 
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al. 2016). As an unsupervised learning method, SOM does not require to know the 
relationship between the input variables. There are more than 10000 scientific papers that 
applied SOMs algorithm in various fields including financial applications, biomedical 
applications, telecommunications, industrial control, engineering, and genetics (Teuvo 
Kohonen 2014). In recent years, SOMs have been, successfully, applied in the water sector as 
well (see machine learning in the water sector section of the previous chapter). 
 
SOMs are composed of two layers, the input layer which contains a number of neurons equal 
to the number of imported by the user variables and the output layer which is a 2D colour-
coded rectangular map that contains a certain number of hexagonal cells. Each cell has an 
associated weight vector that connects it with the input neurons and an associated weight 
vector that connects it with its neighbours. The steps that SOM algorithm is following are as 
follows: 

a. The user selects the input nodes, and the input vector is created 
b. A weight vector of the output neuron with equal nodes as the input vector is 

created. The weight vector at the beginning of the training process has random 
values. 

c. The weight vector is initialised either randomly or by using initialisation algorithms 
d. The distance between each input and each of the weights is calculated - usually 

the Euclidean distance is chosen. 
e. The output neuron with the smaller distance is the selected (winning) neuron.  
f. The influence of the winning vectors to its neighbouring neurons is calculated 
g. The weight vector is updated to become more similar to the input vector  

This algorithm is repeated for a number of times while the learning rate is decreased. Then, 
the winning neuron and its neighbouring neurons become almost similar to the input nodes 
and at the end, a well-trained SOM is created (Chang et al. 2011). The missing input values 
are ignored by SOM during the distance calculation procedure and during the update weight 
vector stage, these values are replaced by utilising an imputation SOM as described by 
Vatanen et al.(Vatanen et al. 2015). SOMs’ ability to ignore the missing values during the 
training process, made this algorithm a very popular method for clustering and visualization. 
The output 2D map consists of hexagon cells, each of which are associated with a weight 
vector. For each input variable of the dataset a different component plane is created. Each 
plane is presented as a grid of colour hexagon cells where red cells contain the high values 
and blue cells contain the low values of this specific input variable. Therefore, by comparing 
the values of the different component planes, correlations between the variables or between 
portions of the variables could be identified (S. R. Mounce et al. 2016).  
 
The SOM algorithm sets the size of the hexagonal cells depending on the available data. Any 
additional input variable will change the reference vectors and as a consequence their 
position in the component planes will change as well. Finally, SOM’s ability to describe the 
data is controlled through a U-matrix, also included in the SOM output. This matrix is 
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generated to reflect the dissimilarity between the weight vectors in the map. High U-matrix 
values indicate weaker clusters and correlations. 

 
 

Figure 3.2:Example of SOM air temperature and hours of sunshine per month (Pennine Water 
Group; ARC Consultancy 2017). 

 
A simple example of SOM output is shown in figure 3.2. This example is taken from a Sheffield 
University report made on behalf of Scottish Water (Pennine Water Group; ARC Consultancy 
2017). In this case, a dataset that contains data for two numerical variables is used. The first 
variable is the hours of sunshine per day and the second is the air temperature. A third 
categorical variable is also presented that corresponds to the months of the year. The high 
air temperature values (red) are clustered in the top right of the component plane, which 
correspond to the top of the sunshine plane.  The top right portion of the planes also 
corresponds to the months of June, July, and August in the labelled map, indicating a 
correlation between these variables.  Similarly, the cluster of low hours of sunshine (in blue 
at the bottom of the component planes) corresponds to the months of December and January 
in the labelled map which are in the same location within each component plane.  
 
SOMs were successfully applied in various scientific works in the water sector as it is a great 
tool for simple visualisation of multiparameter correlations. More specifically, in the water 
sector, SOMs were applied for correlation identification of various water quality indicator 
parameters in the DWDS for categorising water distribution mains (Chang et al. 2011), for 
understanding the factors of discolouration (Speight, Mounce, and Boxall 2019; S. R. Mounce 
et al. 2016) and for identifying the relationships between bacteria regrowth, temperature and 
age of water (E. J. Blokker et al. 2016).  

3.3.2.2. Principal Components Analysis (PCA) 
 
Principal Components Analysis (PCA) is a technique that reduces the dimensionality of a large 
dataset by transforming it to a small number of uncorrelated variables known as principal 
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components (PCs) (Jolliffe 2002). Every PC represents a linear function an x that captures part 
of the variance of the dataset. X represents the vector of the variables of the dataset and an 
is the nth vector which consists of a number of constants equal to the number of the various 
variables. The an vectors are called eigenvectors, representing the linear transformation of 
the dataset when a scalar vector, also known as eigenvalue, is applied to it. The number of 
both the eigenvalues and the eigenvectors is equal to the number of the variables in a dataset. 
The equation that describes the first PC of dataset with n number of variables is as follows: 
 

𝑎$𝑥 = 𝑎$$𝑥$ + 𝑎$(𝑥( + 𝑎$5𝑥5 +⋯ .+𝑎$"𝑥" =#
"

+#$

𝑎$+𝑥+ 	

 
The number of PCs in a dataset could be equal to the number of variables of the dataset but 
the aim is to capture most of the variance of the dataset in the first 2-3 PCs and therefore, 
the dimensionality reduction is achieved. Thus, the first PC is a line that captures the 
maximum possible variance of the dataset, the second PC is a new line calculated in the same 
way as the first PC and captures the next highest variance with the only condition being 
uncorrelated to the first PC and so on (Jolliffe 2002).  
 
The five steps of the PCA algorithm are explained by Smith (Smith 2002) in his university 
lecture notes as follows: 

a. Standardization of the dataset: The standardization is required to transform the 
data into comparable scales and therefore minimise the dominance of larger 
variables over the smaller variables. For each value x0 of each variable the 
standardized value z0 is calculated as follows: 

𝑧6 =
𝑥6 −𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	

b. Calculation of the covariance matrix: The covariance matrix is a symmetric matrix 
where its line and its column number are equal to the number of the variables. For 
the calculation of the covariance matrix the covariance of each variable with every 
other variable of the dataset is calculated. The diagonal of the matrix represents 
the covariance of the variable with itself, therefore it is actually the variance of 
that variable. The other values of the covariance matrix are symmetric with 
respect to the matrix diagonal. 

c. Calculation of the eigenvalues and eigenvectors of the covariance matrix: 
Eigenvalues and eigenvectors are calculated from the following formula:  

𝑆𝑢$ = 𝜆$𝑢$	
where S is the covariance matrix, u1 the eigenvector and λ1 the eigenvalue. There                                                    
are as many solutions for this formula as the number of the variables of the 
dataset.  

d. Selecting principal components and creating the feature vector: The calculated 
eigenvectors are sorted from the ones that capture the higher variance to the ones 
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that capture the lower variance. The principal components are the 2-3 (or more) 
first eigenvectors that capture most of the variables of the dataset. The feature 
vector is a matrix formed by the selected principal components. 

e. Deriving the new dataset: The new dataset with less variables is calculated as 
follows: 
𝑁𝑒𝑤	𝐷𝑎𝑡𝑎 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑒𝑐𝑡𝑜𝑟7𝑥	𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑	𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝐷𝑎𝑡𝑎𝑠𝑒𝑡7 	

 
Each variable of the original dataset is represented by a vector and the closer the vector to a 
principal component is, the more the contribution of the vector to the component. By 
visualising the direction of each variable, the correlations between the various variables are 
uncovered. Thus, PCA could be applied in datasets when the water quality problem is more 
related to the identification of the factors of water deterioration. However, as presented 
above, for the application of the PCA in datasets, the replacement of the missing values is 
required. The replacement could be achieved by using algorithms such as alternative least 
squares (ALS), but in datasets with more than 30% of missing data, the accuracy of the ALS is 
degraded and, consequently, PCA outputs could be unreliable. The SRs water quality 
investigation, presented in chapter 5, reinforces the previous argument, and indicates the 
inability of PCA to tackle the missing data issue on discrete monitoring water quality data. 
However, when the available datasets contain no missing or few missing data, PCA is a great 
tool for the visualisation of multi-parameters linear correlations and the dimensionality 
reduction of complex datasets. Thus, for these two reasons PCA was applied in the water 
sector in different projects. As an example of the former applications, Hashemi et al. 
(Hashemi, Filion, and Speight 2018) applied a PCA based model for identifying the main 
factors that increase the energy consumption of the water distribution mains. Finally, as an 
example of the latter application,  Abba et al. (Abba et al. 2020) applied PCA for reducing the 
dimensions of a WWTP effluents dataset and generating a more simple dataset that was then 
used as an input in predictive ML methods for modelling the performance of a WWTP.   

 

3.3.3. Predictive machine learning techniques 
 
Predicting future water quality behaviour is very important for the WUs as it allows them to 
prioritise their interventions and thus prevent water quality deterioration. Depending on the 
water quality problem, the prediction could be either a prediction of a future water quality 
event, such as a coliform appearance in a DWDS or the prediction of the behaviour of one 
water quality parameter up to certain hours ahead. The prediction of the former is a 
classification problem, and the prediction of the latter is a regression problem. In this thesis, 
both types of problems are investigated. The predictive techniques presented in this section 
and in the following chapters are selected either because they are included in the most 
common ML techniques or because they are new methods, and their potential is promising. 
More specifically, the methods presented here belong to the ensemble decision trees 
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category (random forest (RF), boosting), the artificial neural networks category (feed forward, 
NARX) and the deep learning neural networks category (LSTM).   

3.3.3.1. Ensemble decision trees 
 
Models that belong in the ensemble decision trees category have the advantage of operating 
as an “white box” which means that after their application to the dataset, the resulting trees 
that end up in a specific decision could be explored. Thus, it is possible to find the variables 
that were more crucial for that decision and remove the features with less or no impact. In 
addition, ensemble decision trees could handle different types of data, including categorical 
data and sample data, and require less data pre-processing and manipulation (S. R. Mounce 
et al. 2017). Furthermore, the produced outputs by these models are calculated as 
probabilities and so the end users could observe the likelihood of each prediction and make 
their final decisions.  Therefore, for all the above reasons, ensemble decision tree models are 
significant tools for the WUs. In the thesis, the techniques that were selected for investigation 
are the random forests (RFs) and some methods that implement the boosting algorithm. A 
brief explanation of the algorithms that these methods follow is presented in this section, a 
case study that compares the classification performance of these methods is presented in 
chapter 7, a case study that compares RFs with an ANN is presented in chapter 8 and finally 
RF is also used in Balmore WTWs investigation in chapter 9.    

3.3.3.1.1. Random Forests (RFs) 
 
Random Forests (RF) is an ensemble decision trees technique that generates a large number 
of trees whose splitting decision at each node is dependent only to a small randomly selected 
group of the total number of dataset’s variables (Breiman 2001). Random forests could be 
used for either regression or classification problems. In RF, every generated tree contributes 
equally to the final decision and therefore, in regression problems the final RF prediction 
value is equal to the mean of the predicted values of each tree and in classification problems 
the final class prediction is equal to the class that most of the independent trees chosen. 
 
Hyperparameters in machine learning are the parameters of ML technique that should be 
defined prior to the learning process. There are three hyperparameters that RFs’ performance 
is dependent on, the number of generated trees, the number of the variables that consist of 
the splitting group at each node and the tree depth (Scornet 2018). The maximum number of 
variables that consist of the splitting group is equal to the number of the available variables 
of the dataset. The hyperparameters should be defined by the user before the application of 
the method to optimize the model accuracy, minimize the errors and avoid overfitting. 
Typically, in RFs the number of the variables that consist of the splitting group at each node, 
is equal to the total number of variables divided by three (Xenochristou 2019).         
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3.3.3.1.2. Boosting 
 
In this subcategory belong all the algorithms that follow the boosting method. The boosting 
method initially gives a random set of weights over the dataset and then adjusts these weights 
depending on the learning experience of the first classifiers. This procedure continues until 
all the trees of the ensemble have passed the learning procedure.  The adjustments increase 
the weights of the samples that were misclassified and decrease the weights of the correctly 
classified samples, based on the selected boosting algorithm (Dietterich 2000). Therefore, the 
main differences between RF and boosting are as follows: 

(i) In RF each tree of the ensemble is independent while in boosting each new tree tries 
to improve the performance of the ensemble in areas of the dataset where the 
previous trees failed 

(ii) In RF all data are independent and used as collected while in boosting weights have 
been imported in the datasets 

(iii) In RF all trees are equally contributing to the final decision while in boosting the high 
weight trees contribute more than the others in the final decision 

(iv) In boosting the aim of the method is to reduce bias toward a certain direction but in 
RF the aim is to reduce the overfitting problem due to the independence of the data. 

 
The different algorithms that follow the boosting method follow a different procedure to find 
the weights that could be used in the next step. The first boosting algorithm is the Adaptive 
boosting or AdaBoost (Freund and Schapire 1997) which is a classification ML technique but 
there are other boosting algorithms that could be used only in classification problems or in 
both classification and regression problems. Some examples are Gradient boosting machines 
(Friedman 2001) and extreme gradient boosting or XGBoost (T. Chen and Guestrin 2016) that 
are used for both regression and classification, adaptive logistic regression or LogitBoost 
(Jerome, Trevor, and Tibshirani 2000) a classification technique for data with not perfectly 
separable classes and random under sampling boosting or RUSBoost (Seiffert et al. 2010) a 
classification technique for datasets with imbalanced classes. The hyperparameters required 
in boosting defer depending on the algorithm. In general, the hyperparameters required by 
all the boosting algorithms are the number of the generated trees, the tree depth, the 
learning rate and the number of split decisions where learning rate is the factor that each new 
classifier is allowed to contribute in the change of the weights comparing to the previous 
classifier and the number of split decisions define the maximum number of subgroups that 
each node could be split with the maximum value being the number of training samples.    
 

3.3.3.2. Artificial neural networks (ANNs) 
 
As mentioned in the previous chapter, ANNs consist of an input layer, a hidden or a number 
of hidden layers and the output layer. Due to the hidden layers, the ANNs are considered 
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“black box” methods as it is not possible for the user to check the procedure followed in the 
hidden units. Therefore, it is not suggested to apply these methods in monitoring water 
quality samples as it is not possible to check the factors that contribute to the decision and 
thus, it is not possible to improve the model, besides most of the ANNs require timeseries or 
continuous data as inputs for their application. However, ANNs have proven their ability in 
predicting future behaviour in various water related research projects and thus, two ANN 
techniques are investigated in this thesis. The first one is the feed forward ANN, the first and 
most common ΑΝΝ. The second is the Nonlinear autoregressive exogeneous (NARX) ANN 
which has been proven a really good tool for predicting peak levels in timeseries datasets 
(Pisoni et al. 2009; Boussaada et al. 2018; Kazemi et al. 2018).   

3.3.3.2.1. Feedforward ANN  
 
The feedforward is the first ANN ever invented and is also the simplest and most commonly 
used ANN. In feedforward, the information travels only in the forward direction from the 
input layer to the hidden layer/s and then to the output layer with no loops or cycles in the 
network (Bishop 2006). The minimum number of layers in a feedforward network is two 
(input and output layers) where in this case the feedforward model is called a single-layer 
perceptron and the relationship between inputs and outputs is linear. A feedforward network 
with at least one hidden unit is called a multi-layer preceptor (MLP) as it is composed of more 
than one perceptron. The structure of a feedforward ANN with 2 hidden layers is shown in 
figure 3.3. This feedforward ANN, represented in figure 3.3, has 3 input nodes 2 nodes in the 
first hidden layer, 3 hidden nodes in the second hidden layer and 2 nodes in the output layer.     
  

 
 

Figure 3.3:Example of a four layer (1 input, 1 output and 2 hidden). 
 
Each node in the hidden layers represents a linear connection between all or some of the 
input variables. For example, in the feedforward shown in figure 3.3 the hidden node s1 
follows this equation: s1=x1wx1s1+x2wx2s1+b where wx1s1 and wx2s2 are the weight coefficients 
that connect x1 to s1 and x2 to s2 respectively and b is the bias coefficient. However, this linear 
combination is transformed to a nonlinear relationship via a nonlinear function, known as 
activation function, and therefore, this procedure gives the ANN the ability to understand and 
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learn non-linear relationships between inputs and outputs (Kuhn and Johnson 2013). More 
specifically, the training of the feedforward ANN follows the following steps: 

a. Initialization: the weights and bias coefficients are given random numbers  
b. Hidden layer calculation: The hidden nodes are calculated following the linear 

relationship described above and transformed with the aid of the selected 
activation function (for example the Sigmoid function for classification problems).  

c. Output layer calculation: The output layer activation values are calculated, once 
all the hidden units are defined, usually as the sum of the contribution of each 
hidden unit to the output layer (linear activation function). However, other 
functions could be also applied (i.e. Softmax function).  The mathematical 
expression of the linear activation function is as follows: 
 

𝑓(𝑥) = 𝑏6 +∑8&#$ 𝑤&ℎ&  
 

where b0 is the final bias, hk is the kth hidden unit and wk its corresponding weight. 
d. Error calculation: The error between the initial output layer and the actual values 

is calculated using the mean square error (MSE) metric as described in the 
following section of this chapter 

e. Backpropagation: In this step, the aim is to adjust the weights in order to minimise 
the MSE and thus improve the training of the ANN. The weights are updated using 
an optimisation algorithm such as the gradient descent optimization algorithm 
described below: 

𝑤&"9: = 𝑤& − 𝑎(
𝜕𝐸𝑟𝑟𝑜𝑟
𝜕𝑊𝑥 )	

 
where ∂Error is the MSE and a is the learning rate which, as in the ensemble 
decision trees, is the hyperparameter that controls the learning procedure. The 
backpropagation step is a repeated calculation of the selected optimization 
algorithm for all the weights and the biases of the network that stops when the 
error is minimized or after certain repetitions. 

 
The required hyperparameters for the application of the feedforward ANN are the number of 
hidden layers (the ANN could accept up to 3 hidden layers), the number of units per layer, 
and the learning rate. It is also important to initially define the activation function for the 
hidden layer/s, the activation function for the output layer, the optimisation algorithm and 
the criteria that will stop the ANN optimisation procedure (i.e. number of repetitions, weight 
decay etc.)       

3.3.3.2.2. Nonlinear autoregressive exogenous (NARX) ANN 
 
The NARX model is initially developed as the non-linear approach on the autoregressive 
exogenous (ARX) model, a model used in time-series analysis, in order to capture the hidden 
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nonlinear relationships between various time-series datasets (Q. Liu et al. 2020). The NARX 
model equation is as follows: 
 

𝑦(𝑡) = 𝐹(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), …	, 𝑦W𝑡 − 𝑛;X, 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛<))	
 
This equation means that the one-step ahead prediction y(t) is a function F () of previous 
outputs y () and of previous independent (exogenous) inputs u().  The ny and nu represent the 
maximum time lags for the y() and u() respectively (MathWorks 2020).  
The NARX F() function could be modelled using artificial neural networks (ANNs). There are 2 
different NARX ANN architectures, the series parallel (also known as open loop) architecture 
and the parallel (also known as closed loop) architecture (Boussaada et al. 2018). The open 
loop NARX is a feedforward ANN that for a future prediction of y(t) uses the past and present 
values of the u(t) timeseries and the actual past values of the y(t) timeseries. The closed loop 
NARX is also a feedforward ANN but the difference here is that the future prediction is 
generated with the use of present and past u(t) time-series values and the past predicted y(t) 
time-series values of the NARX model. Both models could be used for future predictions of a 
time-series dataset. The open loop approach has the advantage that during the training 
period the feedforward network is more accurate compared to the closed loop network, as it 
uses real time-series dataset, but it cannot be applied for many steps ahead prediction as the 
closed loop does. Therefore, for timeseries prediction, it is commonly used to combine these 
two architectures by training the network using the open loop and then using the closed loop 
for the prediction over many steps ahead.  
 
The hyperparameters required in the NARX ANN model are the same as the feed-forward 
model described above, but in addition the input delays and the feedback delays should be 
defined. These two hyperparameters are referred to the maximum past time steps of the 
input and output time-series that the model should “look” to understand the present output 
value.        

3.3.3.3. Deep neural networks (DNN) 
 
Deep neural networks (DNN) also known as deep learning (DL) methods, are, as briefly 
mentioned in the previous chapter, ANN with the ability to have multiple hidden layers 
between the input and the output layer (Lecun, Bengio, and Hinton 2015). Deep learning 
methods have the advantage, compared to the conventional ANNs, to understand the long-
term relationships between different datasets and therefore, to make decisions based on the 
general seasonal trend of the data. This means, though, that deep learning methods require 
a large amount of data to capture the seasonality and that the computational and GPU 
requirements could be expensive due to the complexity of these models. As regards the water 
quality datasets, it could be understood that it is not possible to apply DNNs in monitoring 
water quality datasets because both the amount and the seasonality of data are absent in 
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these datasets. However, the success of these methods in various research projects in the 
water sector, as presented in the previous chapter, implies that these methods could be 
applied in DWDS where a large number of time-series or telemetry data are available. In this 
thesis, the long sort-them memory (LSTM) DNN was used in a WTW case study, in chapter 10, 
using time-series telemetry data.  

3.3.3.3.1. Long short-term memory (LSTM)  
 
Long short-term memory (LSTM) is a deep recurrent neural network (RNN) developed by 
Hochreiter and Schmidhuber (Hochreiter and Schmidhuber 1997). RNNs, in contrast to the 
feed-forward approach, have feedback connections which means that each new hidden layer 
is not related only to its previous one but also to other previous layers by using their memory 
to save and then process the longer sequences of the input datasets. Therefore, RNNs could 
not only be implemented in time-series datasets but also in speech recognition, video 
recognition, robotics etc. (Dairi et al. 2019).   
 
The LSTM architecture follows the RNN formulation as follows: 
 

ℎ= = 𝜎>(𝑊>𝑥= + 𝑈>ℎ=-$ + 𝑏>)	
 
Where ht is the hidden layer at time t, xt is the input vector at time t, Wh, Uh and bh are the 
weights of the input, the hidden and the bias vectors and σh is the activation function of the 
hidden layers. The weights are updated and optimized during the backpropagation through 
time, a process that takes a very long computational time due to the learning process over 
long time lags. Furthermore, during backpropagation, the weights error through time could 
be really small which effects the learning procedure from inputs that are far from  the 
present(Hochreiter and Schmidhuber 1997). To tackle this issue, Hochreiter and Schmidhuber 
introduced, in their LSTM networks, a memory cell that can learn from the trends of the 
datasets what to memorize and what to forget. In addition, they introduced three gates that 
control the information passing through LSTM networks, the input gate that processes the 
input data and selects which data should contribute to the cell, the forget gate that removes 
the data that could be ignored, and the output gate that takes the final output from the cell. 
This complicated procedure requires new activation functions and different weights and bias 
vectors for each gate. Thus, the hyperparameters required for the application of the LSTM 
network are the size of the input gate, the number of the hidden layers and units, the learning 
rate, the gradient threshold, the size of the output gate and to control the feed of the large 
datasets, 3 other parameters are introduced, the number of epochs, the batch size, and the 
number of iterations. The first hyperparameter defines the number of the times the neural 
network passes both forward and backward once, the second hyperparameter is introduced 
to divide dataset into parts with equal size to avoid entering large datasets all in once and, 
finally, the iterations are the number of butches that are required in order to finish one epoch. 
Finally, the activation functions for all the gates and the training algorithm should be defined 
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and if LSTM is used for classification problems, the softmax function should also be included 
in its architecture. 
 
LSTM has the advantage of learning from a really large time window and understanding long-
term relationships between the available data, by using the gates to control the inputs. During 
the training process the algorithm understands which information is important and which 
information should be removed. There are various applications that applied LSTM in various 
sectors including music composition (Eck and Schmidhuber 2002), speech recognition (Graves 
and Schmidhuber 2005) and time-series prediction (Schmidhuber, Wierstra, and Gomez 
2005).  
 

3.3.4. Preliminary Machine learning selection tree 
 
Assuming that the first three steps of the machine learning selection application steps are 
answered, it is possible to direct our selection towards a specific ML category based on what 
are our output requirements. As mentioned above, the selection of the appropriate method 
is facilitated by the machine learning selection tree. The initial idea was to not separate the 
water quality data into two categories, however it was decided to split the data as the 
application of some methods in the monitoring discrete samples datasets is impossible due 
to the significant number of missing values that they have. More specifically, k-means and 
tSNE were excluded from water quality problems where only this type of data are available. 
In addition, ANNs and DNNs were also excluded from the analysis of discrete datasets as 
missing values have a significant impact on their  performance (Ennett, Frize, and Walker 
2001).  
 
The machine learning selection tree presented in this section is the preliminary one (Figure 
3.4 below). In the final one presented in chapter 10, PCA is removed from being a potential 
method for the analysis of discrete monitoring samples as the investigation over the SRs 
deterioration, in chapter 5, demonstrates their inability to work with this type of data.  In 
addition, in the final machine learning tree, presented in chapter 10, another factor is 
introduced and needs to be specified before the final selection of the ML technique. This 
factor is the “interpretability” of the method which is the ability of the ML technique to make 
transparent explanations of their outputs.  
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Figure 3.4:Preliminary machine learning selection tree 

3.4. Machine learning performance metrics 
 
The investigation over a certain ML technique should, obviously, include the evaluation of the 
technique’s performance to a certain target. The model evaluation includes the ability of the 
technique to answer to the problem and to analyse the available dataset (i.e. tackle the 
missing values). In some cases, the model complexity and the computational time required 
for implementation may be included in the evaluation. It is easy to compare models over their 
computational time for implementation or their complexity, and to understand if there is a 
potential with applying a certain method to a certain dataset; however, evaluating their 
ability to answer to a certain problem (how well they performed) is not that straightforward 
and differs from predictive techniques to clustering techniques. In clustering, the evaluation 
is based on how weak or strong are the clusters or the final correlations between the 
variables. In the predictive models, performance metrics are introduced for the evaluation of 
the performance of the models with respect to the needs of the case studies. There is a large 
number of performance metrics for either regression or classification type of problems. This 
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is because each one of them is biased towards a certain aspect of the model and provides 
outputs over the model’s performance towards this aspect. Thus, the American Society of 
civil engineers (ASCE) proposed, in a scientific report, 7 different metrics to evaluate 
continuous and single event models in order to cover the bias of the model towards the mean 
or the extreme values, the quality and the quantity of the data and the research questions 
that the model aims to answer (ASCE 1993). This work concentrated into the performance of 
hydrological regression models; however, these criteria stand also for other engineering 
models. As regards the classification performance metrics, Liu et al. (Y. Liu et al. 2014) 
proposed a strategy for clustering the various metrics in 3 different groups with similar 
behaviour to help practitioners selecting metrics that evaluate different aspects of the 
models.  The most important performance metrics for both classification and regression 
problems are presented in the following sections. 

3.4.1. Classification performance metrics 
 
For classification models performance, the simplest performance metric is accuracy which is 
the percentage of observations that are correctly classified. More specifically the formula that 
calculates the accuracy is as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑐𝑙𝑎𝑠𝑠	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	 %	

 
However, in unbalanced datasets, accuracy may not be a good indicator of the model 
performance. This is because the accuracy of a model that classifies the test dataset to the 
majority class only, will be high, even if no accurate predictions are made for the minority 
class. Therefore, the confusion matrix is introduced in order to summarize the outputs of the 
classification models. The confusion matrix for a binary classification is a 2 by 2 matrix that 
looks as below: 
 

Table 3-1:Confusion Matrix 
 Predicted as events Predicted non events 
Actual events TP FN 
Actual non events FP TN 

 
The samples that are correctly predicted as events are defined as true positives (TP) and their 
sum is added in the first cell of the first row of the matrix. The samples that were correctly 
predicted as non-events are defined as true negatives (TN) and their sum is added in the 
second cell of the second row of the matrix. The samples that were wrongly predicted as non-
events are defined as false negatives (FN) and their sum is added in the second cell of the first 
row of the matrix. Finally, the wrongly predicted events are defined as false positive (FP) and 
their sum is added in the first cell of the second row of the matrix. 
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Once the confusion matrix is created some other metrics could be calculated. Firstly, the true 
positive rate (TPR) and the true negative rate (TNR). TPR is also known as the sensitivity or 
recall of the model and is the proportion of the correctly positive events over all the actual 
events. TNR is also known as specificity of the model is the proportion of the correctly 
predicted non-events over all the non-events.       
 

    Recall = Sensitivity=𝑇𝑃𝑅 = 7?
7?@A!

          Specificity=𝑇𝑁𝑅 = 7!
A?@7!

 

 
Another metric commonly used in classification is precision. Precision is the ratio of the 
correctly predicted true positives over the total number of predicted positive observations 
(both true and false positives). This metric is used to check the ability of the ML model not to 
produce a large number of false positive predictions. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
 
In the classification over unbalanced datasets, such as the water quality datasets, the above 
metrics are good criteria for the performance of the model over both classes. However, both 
TPR and TNR do not include all the available outputs of the confusion matrix (for example TPR 
does not include TN and FP) and, thus, do not give an overall performance of the model. 
Therefore, another metric is introduced that includes all the information of the confusion 
matrix and its result could be used as a comparison indicator of the overall performance of 
the network. This metric applied in this thesis is the Matthews Correlation Coefficient (MCC)  
(Baldi et al. 2000). The MCC formula is as follows:  

 𝑀𝐶𝐶 = 7?	C	7!-A?	C	A!
D(7?@A?)(7?@A!)(7!@A?)(7!@A!)

	

 
The range of MCC values lie between -1 and 1 with models scoring close to -1 being bad 
models and models scoring close to +1 being good models. This metric was used as an 
indicator of the best model to use for event predictions in the SRs. 
 
F1 - Score is a metric that combines precision and recall. Its aim is to investigate how harmonic 
the relationship between these two metrics is, which is a very important indicator for 
understanding the performance of the models in imbalanced datasets. The F1-score formula 
is as follows:  
 

𝐹1	𝑠𝑐𝑜𝑟𝑒 =
2	𝑋	(𝑅𝑒𝑐𝑎𝑙𝑙	𝑋		𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙	 + 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 	

 
The F1 score values spread between 0 and 1 with models scoring close to 0 being bad 
classification models and models scoring close to 1 being good classification models. 
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Finally, another popular metric for binary classification is the Receiver Operator Characteristic 
- Area Under the Curve (ROC AUC).  This is a very useful plot that shows the relationship 
between sensitivity and false positive rate (FPR=1-specificity). ROC is a curve that plots the 
FPR vs TPR and the AUC is showing in the plot how much the model could distinguish between 
the two classes. As regards the model performance, the best models have an AOC value close 
to 1, the poor model has an AOC close to 0 (meaning that the models predict the opposite to 
the actual class) and the models that have a value of 0.5 or near to 0.5 have no class 
separation capacity. Even though the ROC AUC visualises the performance of the models, this 
metric was not used for the evaluation of the ML models created in this thesis. This is because 
in the two classification problems presented in this thesis, in chapter 7 and 9, this metric could 
not be applied for different reasons. In chapter 7, ROC AUC could not be used as the available 
dataset is highly imbalanced with very few positive points and, thus, a metric that uses the 
FPR could be misleading. In chapter 9, ROC AUC could not be applied as the problem is a multi-
classification one. 

3.4.2. Regression performance metrics 
 
There are various metrics to account for understanding the performance of a regression 
model. For all the metrics it is important to know the following parameters: 

● n=number of samples 
● Oi=the ith observed value and 𝛰d  = the observed mean value 
● Yi= the ith predicted value𝛶d  = the predicted mean value 

 
The simplest of all the metrics is the mean absolute error (MAE) which is expressed as follows:  
 

𝑀𝐴𝐸 =
1
𝑛#|𝑂+−𝑌+|

"

+#$

	

 
MAE is more used as an indication of the overall agreement between the true and the 
predictive values and could not highlight the larger errors over the small errors. Thus, 4 other 
metrics are introduced, the mean squared error (MSE), the root mean squared error (RSME), 
the normalised mean squared error (NMSE) and the coefficient of determination (R2).   
 
MSE is the average of the squared errors between the observed and the predicted values and 
RMSE is the square root of the MAE. The mathematical expressions of these formulas are: 
 
   

𝑀𝑆𝐸 = $
"
∑ |𝑂+−𝑌+|("
+#$        𝑅𝑀𝑆𝐸 = g$

"
∑ |𝑂+−𝑌+|("
+#$ 	= √𝑀𝑆𝐸 
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MSE is a quality estimator of the model performance as by squaring the difference between 
observed and predicted values it is easier, comparing to MAE, to penalize the higher errors. 
The RSME is also measuring the overall quality of the model and is also sensitive to large 
errors. The only reason that RMSE could be preferred over MSE is that RMSE has the same 
units as the observed and the predicted values as the square is removed. Values of MSE or 
RMSE closer to zero indicate a good model performance with zero being the perfect value 
(perfect model). NMSE is the MSE divided by the variance of the observed values as expressed 
below: 

𝑁𝑀𝑆𝐸 =
&
'
∑ |F!-G!|#'
!(&

HIJ(F)
= KLM

HIJ(F)
        

 
NMSE is often used to facilitate the comparison of a model’s performance over datasets with 
different scales.  
 
The coefficient of determination - R2 is used as an indicator of the correlation degree between 
the observed and the predictive values. The R2 lies between 0 and 1 (or 0% to 100%) with 
models scoring close to 1 being the models that explain better the variance of the observed 
data. R2 is calculated as follows: 
 

𝑅( =

⎣
⎢
⎢
⎡ ∑ (𝑂+ − 𝛰d)(𝑌+ − 𝛶d)"

+#$

g	∑ (𝑂+ − 𝛰d)("
+#$ ∑ (𝑌+ − 𝛶d)("

+#$ ⎦
⎥
⎥
⎤
(

	

 
 
The Nash-Sutcliffe Model Efficiency Coefficient (NSE) is commonly used in hydrological 
modelling to investigate how the predicted by the model values fit the observed data. When 
NSE=1 the model is optimal, when NSE=0, the model has the same predictive skills as the 
mean of the observed data and when NSE is less than zero the mean of the observed data is 
a better predictor than the model. NSE is defined as follows: 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑌+ − 𝑂+)("
+#$

∑ (𝛰d − 𝑂+)("
+#$

	

 
 

NSE and R2 both belong to the group of metrics that are used for understanding how well the 
predicted data fit with the observed values. Therefore, in this thesis, for avoiding a repetition 
of similar model evaluations, only the R2 was used.   
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4. Scottish Water’s water quality data analysis 

4.1. Introduction 
 
The aim of this chapter is to briefly present the water quality monitoring program that 
Scottish Water (SW) follows and to describe the steps followed by this thesis for setting up a 
water quality dataset using discrete monitoring water quality data. The dataset setting up 
procedure includes the downloading and the collection of water quality data from the period 
between the 1st of January 2012 to the 31st of May 2020, the downloading and the collection 
of meteorological data for the same period, the extraction of data from SW GIS, the collection 
of information for various SW assets and for the way that SW organises their WDNs, the 
collection of technical details for each asset, and the organisation of the data in a format that 
would, firstly, help us understanding the dataset and then use it as input for data-driven 
techniques for further water quality investigations. The created water quality datasets were 
used as inputs to the machine learning techniques in some of the water quality investigations      
presented in the following chapters.   

4.2. Scottish Water’s water quality monitoring program 

4.2.1. Definition of water for human consumption in Scotland 
 
SW monitors water quality by taking, sporadically, samples from their WTWs exit points, their 
SRs exit points and from some of their consumers’ taps, selected randomly. The monitoring 
program follows the “Public Water Supplies (Scotland) Regulations 2014”. The most updated 
version of these regulations came into force on the 1st of January 2015 (DWQR 2014). 
 
The regulations define the, supplied by SW, water as water for human consumption only if it 
follows these requirements: 

(i) does not contain microorganisms 
(ii) does not contain substances and parasites at concentrations that could be dangerous 

for human health 
(iii)  does not contain any water parameters that exceed its upper concentration or value 

limit prescribed in Table A & B of the regulations at the point of measurement (WTW, 
SR, customer tap) defined by the same tables.      

4.2.2. Monitoring program on consumers’ taps 
 
The regulations obligate SW to divide, before the beginning of each year, the areas that supply 
water into zones with similar water quality and of a maximum 100000 population. These 
zones are defined in the regulations as Water Supply Zones, however inside SW these are 
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defined as Regulatory Supply Zones (RSZs), as Water Supply Zones (WSZs) are the distribution 
areas that are fed with water from the same SR. The monitoring program, as defined by the 
regulations, sets the minimum number of samples per year that should be taken from 
different consumers’ taps inside each RSZ, to measure each one of the specific parameters 
described in the Table A, B and C of the regulations (DWQR 2014). For bacteriological 
parameters such as coliform bacteria, E-Coli, Colony counts, and disinfection residual, SW 
should always monitor with a minimum frequency of 12 measurements per 5000 people per 
year at each RSZ. However, for some chemical parameters monitoring is only required if 
certain circumstances, defined by Table 1 of the regulations, occur. For example, iron and 
manganese should be measured only if the water source is surface water. In addition, for each 
one of the chemical parameters only, the regulations allow SW to reduce the number of 
samples that should take the following year to those defined in Table 2 of the regulations, 
only if in the previous year none of the samples of that specific parameter exceeded the upper 
or lower limit(DWQR 2014).       

4.2.3. Monitoring program on water treatment works 
 
The regulations oblige SW to monitor the quality of the water exiting the works with a specific 
frequency defined at Table 4 of the regulations (DWQR 2014). The number of samples taken 
per WTW per year are dependent on the volume of water supplied by the WTW per day in 
m3/d. In the WTWs, the minimum number of samples taken for each one of all the parameters 
(chemical, physical and bacteriological), could be reduced to the number defined by Table 4 
of the regulations, only if in the previous year none of the samples of that specific parameter 
exceeded the upper or lower allowed limit.          

4.2.4. Monitoring program on service reservoirs 
 
The regulations require that SW takes one sample per week from the exit of every SR that is 
in use to measure all the main bacteriological parameters (Coliform bacteria, E-Coli, colony 
counts at 22 and 37 oC and disinfection residual).     

4.2.5. Additional sampling 
 
SW is doing additional monitoring sampling for various reasons including: 

(i) Measuring other water parameters that are not included in the regulations, such 
as flow cytometry total cell counts, and intact cell counts in their assets  

(ii) investigating over customers complaints in specific areas of the network 
(iii) investigating over the continuous over the limit concentration of a certain water 

parameter 
(iv) investigating over a potential water quality deterioration due to certain events 

that occurred in the DWDS (e.g., pipe burst)             
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4.2.6. Publication of yearly monitoring water quality results 
 
SW must prepare and maintain a record of all the samples taken including the name of the 
zone, the WTW and SR where the sample is taken, and the lab analysis output of every 
parameter measured in that sample and notify the Drinking Water Quality Regulator (DWQR) 
for any water quality deterioration event. SW must, also, publish by the end of the March in 
each year the results of their monitoring program in a report including the number of samples 
that were taken and the number of the compliance and non-compliance samples. Then, 
DWQR should check SW’s report and produce their own annual report which is public and 
available to everyone. According to the 2019  “Drinking Water Quality in Scotland 2018” 
report, SW undertook an overall of 319124 samples and  achieved a 99.9% compliance for the 
year 2018 (DWQR 2019a).     

4.3. Creating water quality datasets 
 
The final format of each dataset is dependent on the desired data-driven analysis and, thus, 
it cannot combine a mix of data that do not have any physical connection. For example, a 
dataset that combines monitoring water quality data taken from both the taps and the WTWs 
together, does not make any practical sense as it combines analysis results from samples 
taken from different parts of the network. It is also important that the final datasets are 
organised in a way that is easily readable and could be used by the machine learning 
techniques directly. Therefore, three different monitoring water quality datasets were 
created, one that included all the SW WTWs water quality data for the years 2012-May2020, 
one that included all the SW SRs water quality data for the same years, and  one that included 
all the samples taken from the consumers taps fed by SW‘s DWDS. In addition, each row at 
each one of the datasets represents a different sample taken and each column represents a 
different parameter for each specific sample including the sample ID and the point and the 
date that it was collected. The parameters that were not measured in a sample are left blank 
(missing values).  

4.3.1. Collection of monitoring water quality data  
 
At the time that the datasets were created, there were three different tools that SW’s 
employees were using for downloading monitoring water quality data.  Each one of these 
tools had its advantages and disadvantages. More specifically: 
 
Tool A was the official tool for downloading and monitoring water quality data. The format 
that the downloaded data had, was the required one, however, it only allowed 1000 data 
samples per time used. In addition, for each tap sample the information given was the address 
point and the RSZ that the property belonged to. Moreover, it was a difficult software to use 
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for extracting WTWs water quality data as it was not clear if the samples were taken at the 
entrance or the exit of the works. 
 
Tool B was a macro excel file that was directly connected to the SW laboratory database. This 
tool was more user friendly than tool A and there was no limit as regards the number of 
samples to download per time. However, in the final extract format, each measured 
parameter was exported in a different line, creating large datasets with lots of unwanted and 
repeated lines, and as regards the tap samples, a limited information was given (RSZ and 
postcode of the property that the sample was taken). 
 
Tool C was a data processing tool that allowed users to create reports by selecting the 
information that he/she wanted to extract. The software was not easy to use and, as in tool 
B, each parameter was extracted at a different line. However, with this tool it is possible to 
extract important information regarding the water quality samples. More specifically, for 
each tap sample information regarding the property eastings and northings and the DMA, the 
WSZ, the WOA that the property belonged to could be given, and for WTWs samples the 
volume of the water supplied by the plant and the type of the water source feeding the plant 
were given.  
Knowing the DMA and the exact location that a tap sample is taken, offers the opportunity to 
do an analysis at a DMA level and at distribution pipe level by linking the tap sample to its 
distribution pipe. Therefore, the tool used for downloading the data was tool C.        

4.3.2. Collection of rainfall data 
 
For understanding the relationships between rainfall and water deterioration the daily and 
hourly rainfall data were collected from the Met Office stations in Scotland (Met Office 2020) 
for the period between the 1st of January 2012 to the 31st of May 2020. 
 

4.3.3. Collection of any other information 
 
In the following table 4-1, the files and the tools used to collect any other information 
regarding SW’s DWDS and the type of the collected information are presented. 
 

4.3.4. Data manipulation and water quality datasets production 
 
The steps followed for combining the above collected data, changing their format, removing 
unnecessary information, and finally creating the monitoring water quality datasets were as 
follows:     
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Table 4-1: Data sources used in the datasets 
Sources Extracted information 

GIS -Pipe material 
-Pipe commission date 
-Pipe diameter 
-Pipe location 
-Pipe ID 
-Pipe length 
-No of bursts per pipe 
-DWDS hydraulic hierarchy 

Scottish Water database file 1 -Service reservoir retention time 
-Water age exiting the SR (as sum of 
the retention time of all the cascading 
SRs - pipe travel time not included) 
- Number of feeding DMAs 
-Last cleaning date per SR  
-WTW fed by 

Scottish Water database file 2 -DWDS hydraulic hierarchy (including 
connections between WOAs and the 
WTWs that fed them etc.)   
-Number of properties per WOA, WSZ, 
DMA 

Scottish Water database file 3 -SRs’ year of construction  
Scottish Water database file 4 -WTWs names  

-WTWs disinfection type 
 
 
Step 1: Changing the format of the raw water quality data  
The raw water quality data that were downloaded using the tool C, required a reshape of 
their format in order to get a final table where each line represents a different sample and 
each column a different parameter for this sample, including its location, its area and its 
measured water parameter. Thus, a code was created in MATLAB R2018a (The MathWorks 
Inc., Massachusetts). The code was also identifying the samples with two or more 
measurements per parameter and retaining the first measurement only. The code was run 
separately for the tap, the SRs and the WTWs data creating three different datasets. The code 
for this step is in the GitHub repository mentioned in chapter 1. 
 
Step 2: Connecting SRs and WTWs asset information to the water quality datasets. 
The next step, after creating the datasets, is to add information regarding the DWDS that each 
one of the samples belongs, for example, including the water age leaving the SR’s in the SRs 
and the customer taps water quality datasets, and the disinfection type of the system to all 
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three of the datasets. Firstly, the connection between the sampling point and their SR or their 
WTW was made using searching tools. Then, by using the “outerjoin” command in MATLAB 
and the files from SW’s database described in the above table, the asset information for the 
WTWs and the SRs was included in both the WTWs and the SRs water quality datasets. As 
regards the tap water quality datasets, two further steps were required, the first was to 
connect the Water Supply Zone (WSZ) that the sample belongs to the SR serving this area with 
water and to connect the Water Operation Area (WOA) that the sample belongs to the WTW 
that is fed by. This step was achieved, again, by using firstly searching tools and then the 
“outerjoin” command in MATLAB.  
   
Step 3: Connecting tap samples to their nearest distribution main 
The raw extracted tap monitoring water quality data do not include any information regarding 
the distribution main that fed the properties, an information that could be useful to include 
in the research. Therefore, the process followed to reference the tap data to their nearest 
water main was as follows: 

● Import the tap data in the ArcGIS (ESRI., California) using the eastings and 
northings 

● Use of the “Spatial Join” command to connect each sampling point to the nearest 
main using a straight line to count the distance between them 

● Creation of a new layer that contains both the sample’s and water main’s 
information 

● Export layer in a csv file and merge it with the tap dataset using the “outerjoin” 
command in MATLAB     

 
Step 4: Relating tap and SR water quality data with the WTW that are fed by 
To relate SRs’ water quality with the water quality of the WTW that is fed by, and the 
customers’ taps water quality with the water quality in both their WTWs and their SRs, a code 
in MATLAB was created. This code calculated the monthly average values of all the 
parameters measured in the samples taken in the WTWs exit points and then merged them 
to the SR water quality dataset and the tap dataset. Thus, in the final dataset, for every sample 
taken at a specific month, the average value of each parameter measured at its related WTW 
at that month, is included. The same code was also used to relate each tap sample to the SR 
that is served by. As with the previous code, this one is also added in the GitHub repository. 
 
Step 5: Adding meteorological data in the water quality datasets. 
The aim in this step was to include in the water quality datasets the average daily rainfall per 
month per year and the total monthly rainfall per year of the area where each SR and each 
WTW are located. This requires calculating the values for these two parameters for every Met 
Office station and then referencing a Met Office Station at each WTW and at each SR. The 
former was achieved with a MATLAB code and the latter was achieved by following the same 
process as in step 3 in ArcGIS.     
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4.3.5. Final water quality datasets 
 
The types of information included at each one of the final datasets are summarized at the 
following table. 
 

Table 4-2:Type of information included at the water quality dataset 
Dataset Type of information 

WTW water quality dataset - Sample ID & date collected 
- Water quality analysis results 
- Average daily precipitation & total monthly 

precipitation  
- Disinfection type 

SR water quality dataset - Sample ID & date collected 
- Water quality analysis results 
- Average daily precipitation per month & 

total monthly precipitation in the SRs  
- Average daily precipitation per month & 

total monthly precipitation in the WTWs  
- Monthly average values of the WTWs water 

parameters 
- SRs asset information (age of SR, 

bacteriological failures etc.) 
- Disinfection type 
- Age of water exiting the SRs 

Tap water quality dataset - Sample ID & date collected 
- Water quality analysis results 
- Average daily precipitation per month & 

total monthly precipitation in the SRs  
- Average daily precipitation per month & 

total monthly precipitation in the WTWs  
- Monthly average values of the WTWs water 

parameters 
- Monthly average values of the SRs water 

parameters 
- SRs asset information (age of SR, 

bacteriological failures etc.) 
- Disinfection type 
- Age of water exiting the SRs 
- DWDS hierarchy information (WOA,WSZ 

DMA etc.) 
- Distribution main information 
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5. Understanding bacteriological activity in service 
reservoirs by applying data-driven techniques on water 
quality datasets   

5.1. Introduction 
 
Service reservoirs (SR’s) are assets inside the DWDS used for balancing water supply 
variations. Drinking water, during its travel from the WTWs to consumers’ taps, could stay for 
a significant amount of time (from a couple of hours to a few days) inside these assets and, 
therefore, SRs are crucial components of the systems. As explained in the previous chapter, 
water utilities (WUs) are taking samples from the SR’s outlet to monitor the bacteriological 
activity and the chemical and physical parameters of the water exiting these assets. However, 
monitoring sampling is, as previously mentioned, sparse in time and, therefore, it is not 
possible to clearly understand the factors that could cause bacteriological failures in the SRs 
by just checking if these samples comply with regulations limits. It is for the WUs benefit, to 
further investigate methods and techniques that could transform the sparse SRs’ water 
quality datasets into valuable material for understanding water quality behaviour inside 
them. Speight et al. (Speight, Mounce, and Boxall 2019) demonstrated that Self organising 
Maps (SOMs), a clustering and visualisation machine learning technique, has the potential of 
identifying the causes of discolouration when applied in consumers taps’ water quality 
datasets. In this chapter, SOMs and PCA are applied in the SRs water quality dataset with the 
aim to, firstly, understand the factors that increase bacteriological activity in the SRs and to, 
secondly, investigate the potential of these two techniques as supporting tools for decision 
making on interventions in SW’s DWDS. SOMs and PCA are selected in this investigation, 
instead of other clustering techniques, as they are data mining techniques that generate clear 
and simple visualisation outputs that indicate the correlations between multiple water quality 
parameters, an ability that other clustering techniques do nοt have.  
 
The overall aim of this chapter is to do an investigation over the bacteriological activity in the 
SRs, the factors that influence this activity and to further explore the ability of these two ML 
methods on data mining of sparse water quality samples dataset. In this investigation, various 
water quality indicator parameters are used in addition to other information, such as the 
precipitation in the SRs, and WTWs and the disinfection type used in these. As there is limited 
research in the area that concentrates in the WQ in service reservoirs (Doronina et al. 2020), 
this work aims to aid water utilities on understanding what causes bacteriological 
deterioration in the water that exits their SRs and, therefore, better maintain their DWDS.     
In addition, by comparing the outputs produced by both SOMs and PCA, this chapter aims to 
make a proper comparison between these two methods and propose the most appropriate 
one for these types of WQ problems. Therefore, this chapter seeks to address objectives 2 
and 4. 
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5.2. Methods  

5.2.1. Data Collection & analysis 
 
The SR dataset includes a total of 405464 samples taken in all the Scotland’s SRs outlets that 
belong to SW in the period between 2012 and May 2020. For some SRs there are just few 
data available, or the available data are for certain periods of the year. This is because some 
of the SRs were either abandoned at some point during the analysis period or these SRs are 
used in certain periods of the year that the water demand is increased. However, the data 
from these SRs is also included in the analysis. As mentioned in the previous chapter, in the 
final dataset, apart from all the water quality parameters measured in the SRs’ outlet, the 
average monthly values of the parameters measured in samples exiting the WTWs, the 
precipitation in both the WTWs and the SRs and other qualitative parameters were also 
included.   

5.2.2. Self-Organising Maps 
 
Self-organising Map analysis was carried out using the MATLAB® SOM Toolbox version 2.1 
(Teuvo Kohonen 2014) in MATLAB® version 2019b. For the analysis only some of the 
parameters were used depending on the research question that needed to be analysed. 
Therefore, three different algorithms were created in MATLAB® (codes are stored in GitHub) 
to, firstly, extract the selected quantitative and qualitative parameters from the main dataset 
and then to call the Toolbox for the analysis. The Toolbox, normalised the data, conducted a 
rough training and created the final SOMs plots. In the final output, each selected parameter 
was represented with a different map including the qualitative parameters that were created 
after the main SOM training was finished. By default, the Toolbox creates a colour bar scale 
that changes from deep blue for the low values of each parameter to deep red for the highest 
values of each parameter. In this analysis, the outliers initially were included, however, to 
guarantee that the final SOMs were not skewed by extreme values, the maps’ colour range 
was standardized to use all the values that were between the 5th and the 95th percentile of 
the dataset. Finally, a different algorithm was created to include the number of samples per 
parameter, the average and the standard deviation in the final analysis.        

5.2.3. Principal Components Analysis 
 
PCA analysis was conducted using MATLAB® version 2019b. The PCA function in MATLAB was 
used in an algorithm produced to apply this method. In addition, for the selection of the 
parameters selected for the PCA analysis the algorithms that were created for the same 
purpose in the SOMs analysis were used. The final number of samples per parameter and the 
average and standard deviation of each parameter used in each analysis were included in the 
final analysis.  
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5.3. Machine learning application steps 
 
The machine learning application steps are filled as follows: 
 

a. Define the water quality problem   
In this chapter, the aim is to understand the factors that increase bacteriological activity and 
cause bacteriological failures in the SRs.  Therefore, the water quality problem should be 
defined as follows:  
What are the main water quality parameters related to increased bacteriological activity 
and high numbers of bacteriological failures in the SRs? 
 

b. Type of the available data 
The available data for the investigation are the water quality monitoring samples taken from 
the SRs’ outlets and the WTWs’ outlets.  

  
c. Define required output 

The required output in this investigation is to identify clear correlations between water 
parameters measured from the water quality samples   

 
d. Machine learning selection 

Clustering and identification of the correlations between various parameters requires an 
unsupervised machine learning technique. By following the machine learning tree presented 
in chapter 3, the selected techniques could be either the SOMs or PCA.  

 
e. Data preparation 

The data for both techniques should be prepared in a way that each row is a different 
observation (sample) and each column represents a different water quality parameter 
(coliform bacteria, heterotrophic plate count, flow cytometry data etc.). The SRs water quality 
dataset created as described in the previous chapter will be used as input to SOMs and PCA. 

  
f. Application output 

The required outputs are a few graphs that visualise the correlations between the various 
parameters and therefore the correlations between them could be explored. The procedure 
followed to produce these outputs is presented in the following sections of the chapter. 
 
The ML application steps for the SRs’ water quality investigation are summarized in the 
following figure. 
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Figure 5.1: Machine learning application steps for the SR’s water quality case study 

5.4. Results 
 
This investigation aims to identify and understand the correlations between the main 
bacteriological parameters and the other chemical and physical characteristics of the water 
measured in the SRs’ outlets. The bacteriological parameters that SW measures in the SRs 
outlets are coliform bacteria and e-coli, heterotrophic plate counts (HPCs), flow cytometry 
total cell counts (TCCs) and intact cell counts (ICCs). In addition, another parameter that SW 
is using in their investigations is the number of bacteriological failures (coliform or e-coli 
events) per SR per year. As the DWDS are complex systems and the bacteriological activity 
could be related with multiple parameters a multi-investigation that included the interaction 
between the various parameters inside the SRs, the impact of the WTWs in SRs biological 
activity, and the impact of the SR cleaning was generated. Therefore, the main research 
objective of this chapter - understanding bacteriological activity in the SRs -   was subdivided 
in 4 different research questions as follows: 
 

a) What are the main factors related to bacteriological failures in SRs? 
b) Which are the main parameters correlated with increase in the bacteriological activity 

in the SRs? 
c) What is the impact of the WTWs to SRs bacteriological activity? 
d) What is the impact of SR cleaning to the bacteriological activity inside them? 

5.4.1. Self-organising Maps 
 

For each research question, a different SOM was produced. The results are presented in this 
section.     

 

 
 

What are the main water parameters related to increased 
bacteriological activity and high numbers of bacteriological failures in 

 Define the water quality 
problem 

 

Water quality monitoring samples from SW’s WTWs and SRs    Type of available data 

 

Correlation between various water quality parameters  Define type of required output 

 Self organising maps (SOMs) / Principla Component Analysis (PCA)  Machine learning selection 
 

Create SR WQ datasets including monthly average values of the 
parameters measured from the samples taken in the WTWs exit. 

 Data preparation 

 

See section 4 of this chapter  Application output   



 

87 
 

a) Which are the main factors of bacteriological failures on SRs? 
 

A SOM was produced to answer the above question using the following parameters: age of 
water exiting the SR, HPCs at 22oC, free chlorine, total chlorine, FC_TCCs, temperature, 
average daily precipitation per month per year in the SRs and the bacteriological failures 
(figure 5.2). 
 
As Figure 5.2 indicates, the high total chlorine clusters on the right of the plot are correlated 
with the low free chlorine clusters. This is an indication that these clusters belong to 
chloraminated SRs which is confirmed in the labelled SOM on the right where most of the 
high chlorine clusters are correlated to chloraminated SRs (blue cells). Contrariwise, high, and 
medium free chlorine clusters are correlated to chlorinated systems (blue cells). These two 
correlations were already known, but their appearance in this specific SOM, is a clear 
demonstration that Self-organising Maps could be a very useful tool for clustering monitoring 
water quality data. 
 
By looking the high bacteriological failures cluster located in the bottom of the plane, high 
bacteriological failures clusters are correlated with medium to high temperature clusters, low 
total and free chlorine clusters, high age of water, medium to high average precipitation per 
month in the SRs and could happen in both disinfection type systems. It is also clear that the 
increase in bacteriological failures is mostly related to the age of water exiting the SRs as the 
increased bacteriological failures clusters as appeared in the bottom of their plane follow 
almost the same trend as the age of water clusters in their map. 
 
Other interesting findings include the clear correlation of the medium to high TCCs in the left 
of their map with the chloraminated systems, a correlation that also appears in most of the 
high HPCs clusters but as the age of the water cluster indicates is high in these systems. High 
HPCs also appear in the chlorinated systems with medium or high age of water exiting the SRs 
(top right, middle, bottom left), low free chlorine and medium to high temperature of the 
water (top right, bottom middle to right).  
 



 

88 
 

  
                                                                                                                                                 Green cells: chlorinated  

Blue cells: chloraminated 
Figure 5.2:SOM for bacteriological failures, including secondary disinfection labelled map 

 
Table 5-1: Summary of variables for SOM presented in figure 5.2 

 
 

 
b) Which are the main parameters correlated with increase in the bacteriological activity 

in the SRs? 
 

The aim is to investigate the correlations between the bacteriological indicator parameters 
and the main parameters that, to the best of our knowledge, could be the responsible 
parameters for the increase of bacteriological activity in the SRs. Thus, the parameters 
presented in this SOM (figure 5.3) are the age of water exiting the SRs, the HPCs at 22oC, the 
free and the total chlorine, the temperature of the water, the flow cytometry ICCs and TCCs 
and finally the time, in days, from the official cleaning date as given by SW asset files. The 

Variable (units) Variable short form for SOM Data Source Number of 
samples

Average value Standard 
deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs) AgeOfWaterLeavingSR SW Asset files

401926 86.51 77.35

HPCs @22C (No of colonies) HPC_22 Water quality 394206 1.95 16.61
Free Chlorine  (mg/l) FreeCl Water quality 396194 0.32 0.25
Total Chlorine (mg/l) TotalCl Water quality 373708 0.70 0.28

Flow cytometry Total Cell 
Counts (cells per ml) TCCs Water quality

51753 34272 143257

Temperature (C) Temperature Water quality 240095 9.30 4.87

Average daily precipitaton per 
month in the SRs (mm) SR_AverageDailyPercipitation Met Office

365760 11.63 26.55

Bacteriological failures       
(events per year) BactiFails SW Asset files

61278 1.24 0.63
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latter was calculated by finding the difference, in days, between the official cleaning date and 
the official date that sample was taken. Therefore, negative values indicate samples that were 
taken before the cleaning date and positive values indicate samples that were taken after the 
SR was cleaned. A post analysis disinfection SOM was also created with cyan cells for 
chloraminated systems and red cells for chlorinated systems, as figure 5.3 indicates.     
 

  
Figure 5.3:SOM for bacteriological activity in the SRs, including secondary disinfection labelled 

map 
 

This SOM confirms the correlations found in the previous SOM as well. More specifically, this 
SOM confirms the clear correlation between high and medium TCCs and high HPCs with 
chloraminated systems, the correlation between high age of water and low total and free 
chlorine in both systems with HPCs and the correlation between clusters of medium to high 
temperature with HPCs. 

 
In addition, in this SOM the clusters with increased numbers of ICCs (top and centre of the 
map) are correlated with clusters of high age of water exiting the SRs, high temperature and 
low free and total chlorine in both chloraminated and chlorinated SRs. This SOM also indicates 
that there is some clear correlation between some of the high HPCs clusters and the high ICCs 
clusters. It also shows that there is no clear correlation between ICCs and TCCs. 
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Table 5-2: Summary of variables for SOM presented in figure 5.3 

 
 

Finally, as regards the impact of the SR cleaning in the bacteriological activity inside the tanks, 
the SOM analysis indicates a small decrease of the HPCs numbers in the chloraminated 
systems after the cleaning (bottom left of the map) and a small reduction of the high ICCs 
clusters after the cleaning in both chloramine and chlorine systems. However, TCCs numbers 
appear to not be affected by cleaning of the SRs.  

  
c) What is the impact of the WTWs to SRs bacteriological activity? 

 
A different SOM was created (Figure 5.4) to answer the above question.  The parameters 
introduced in this SOM were some of the parameters measured in the WTWs that supplied 
the SRs to investigate the impact of the WTWs in the bacteriological activity inside the SRs. 
More specifically, the parameters used in this SOM were the age of water exiting the SRs, the 
HPCs at 22oC, the free and the total chlorine, the flow cytometry TCCs and ICCs, the monthly 
average total organic carbon (TOC) in the WTWs, the monthly average Temperature of water 
exiting the WTWs, the monthly average TCC exiting the WTWs and daily average precipitation 
per month in the works.  As in the previous cases, a post analysis labelled SOM for the 
disinfection was also produced where the blue cells corresponded to the chlorination systems 
and the green cells corresponded to the chloramination systems.   
 
The observed correlations in the previous two SOMs were also observed in this SOM (TCCs 
correlation with chloraminated systems, HPCs with chloraminated systems and high HPCs and 
ICCs correlation in both systems when the water age is high, and the free chlorine is low).  
This SOM shows, also, that most of the medium to high WTW TCCs and WTW TOC clusters 
are correlated with the chloraminated systems, therefore, they are also correlated with the 
high TCCs clusters and the high HPC clusters. However, the 3 different high TCC clusters - the 
first in the top left to middle of the plane, the second in the middle and the last one in the 
bottom of the plane - appear to not have any impact on the SR TCCs in both systems. Out of 
these three clusters, the top one correlates with the high WTWs water temperature clusters  

Variable (units) Variable short form for 
SOM

Data Source Number of 
samples

Average value Standard 
deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs)

AgeOfWaterLeavingSR SW Asset files 401926 86.51 77.35

HPCs @22C (No of colonies) HPC_22 Water quality 394206 1.95 16.61
Free Chlorine  (mg/l) FreeCl Water quality 396194 0.32 0.25
Total Chlorine (mg/l) TotalCl Water quality 373708 0.70 0.28

Temperature (C) Temperature Water quality 240095 9.30 4.87

Flow cytometry Intact Cell 
Counts (cells per ml)

FC_ICCs Water quality 51753 2767 19642

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 51753 34272 143257

Number of days from the SR 
cleaning date (days)

DaysFromCleaningDay Calculated 269795 11.6 26.6
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and medium to high WTWs TOC clusters and the bottom clusters appear to have a clear 
correlation with the medium to high precipitation clusters.  
High HPCs clusters are correlated with high and medium WTW temperature of water in the 
chloraminated systems. Most of their numbers decrease when the WTW temperature of 
water decreases, however some small clusters of high HPCs appear to correlate with low 
WTW temperature of water as well. A similar correlation is also observed with the high WTW 
TOC clusters. 
 
Finally, ICCs appear in both systems and, in addition to the correlations mentioned above and 
observed in the previous SOMs, high ICCs clusters are correlated with high and medium 
WTWs TOC clusters and high WTWs water temperature clusters.  

    

 
Figure 5.4:SOM for WTWs impact in the SRs, including secondary disinfection labelled map 
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Table 5-3: Summary of variables for SOM presented in figure 5.4 

 
 

 
d) What is the impact of SR cleaning to the bacteriological activity inside them? 

 
As the SOM in figure 5.3 showed, the cleaning of the SR could have a positive impact regarding 
the bacteriological activity in the SRs. However, due to the clear correlations between the 
other parameters the actual impact of the cleaning was not clear. Therefore, two further 
SOMs were produced for understanding that impact, one for the chloraminated systems and 
one for the chlorinated systems. To produce these two SOMs, the initial dataset was 
subdivided into two datasets, one that included all the chloraminated SRs, and one that 
included all the chlorinated SRs. In addition, to see the actual impact, from these two datasets 
only the samples that were taken up to a year (365 days) before or after the official cleaning 
date were included in the final analysis. Overall, the total number of samples included in the 
chlorinated SOM (Figure 5.5) were 61520 and in the chloraminated SOM (Figure 5.6) were 
34111. As in the previous SOMs, flow cytometry TCCs and ICCs, and HPCs were used as 
bacteriological indicator parameters. The number of days from SR official cleaning date was 
also used in both SOMs. This time though, free chlorine was used only in the chlorinated SOM 
analysis and total chlorine was used in the chloraminated SOM analysis. In addition, the age 
of water was included in the chlorinated SOM analysis, as in the previous SOMs appears to 
be a crucial factor regarding the increase of bacteriological activity in these systems. Finally, 
for both SOMs a post analysis labelled SOM was created to indicate the pre post cleaning 
clusters. 
 

Variable (units) Variable short form for SOM Data Source Number of 
samples

Average value Standard 
deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs)

AgeOfWaterLeavingSR SW Asset files 401926 86.9 77.9

HPCs @22C (No of colonies) HPC_22 Water quality 394206 1.95 16.61
Free Chlorine  (mg/l) FreeCl Water quality 396194 0.32 0.25
Total Chlorine (mg/l) TotalCl Water quality 373708 0.70 0.28

Flow cytometry Intact Cell 
Counts (cells per ml)

FC_ICCs Water quality 51753 2767 19642

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 51753 34272 143257

Monthy Average WTW total 
organic carbon (mg/l)

TOC_WTW_AVE Water quality 358088 1.46 1.27

Monthy Average WTW water 
temperature (C)

Temperature_WTW_AVE Water quality 292130 9.45 4.13

Monthy Average WTW Flow 
cytometry total cell counts 

(cells per ml) 
FC_TCC_WTW_AVE Water quality 292130 116099 808274

Average daily precipitaton per 
month in the WTWs  (mm)

WTW_AverageDailyPrecipitation Met Office 362260 7.97 9.51
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                           Cyan cells: Before cleaning  

          Blue cells: Post cleaning 
Figure 5.5:SOM for cleaning impact in the chlorinated SRs, including pre/post cleaning labelled 

map. 
 

Table 5-4: Summary of variables for SOM presented in figure 5.5 

 
 
 

Variable (units) Variable short form for 
SOM

Data Source Number of 
samples

Average value Standard 
deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs)

AgeOfWaterLeavingSR SW Asset files 61413 78.75 73.32

Free Chlorine  (mg/l) FreeCl Water quality 59852 0.48 0.19
HPCs @22C (No of colonies) HPC_22 Water quality 60139 0.89 11.16
Flow cytometry Intact Cell 

Counts (cells per ml)
FC_ICCs Water quality 11436 2925 6397

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 10425 6397 21768

Number of days from the SR 
cleaning date (days)

DaysFromCleaningDay Calculated 61518 18.5 205.8
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Blue cells: Before cleaning  
  Green cells: Post cleaning 

Figure 5.6: SOM for cleaning impact in the chloraminated SRs, including pre/post cleaning 
labelled map 

 
Table 5-5: Summary of variables for SOM presented in figure 5.6 

 
 
As expected, in both SOMs there is a clear correlation between the pre-cleaning days clusters 
and the pre-cleaning labelled clusters and between the post-cleaning days clusters and the 
post-cleaning labelled clusters. This is another indication that the SOM clusters’ analysis is 
accurate. 
 SOM analysis indicates that there is some positive impact regarding the reduction of the HPCs 
in the chlorinated systems as the clusters with high HPCs are reduced after the cleaning 
(figure 5.5). However, it is clear that the cleaning has no impact in the ICCs and TCCs as there 
is no change in the pre and post cleaning clusters. Moreover, high ICCs and TCCs clusters are 
clearly correlated to each other and to low free chlorine and high age of water clusters. In 
addition, the high HPCs clusters after the cleaning are also correlated with the above clusters 
as well. Contrariwise, SOM analysis in the chloraminated SRs (figure 5.6) shows that both ICCs 
and HPCs are reduced after the cleaning of the SRs. Furthermore, clusters with high values 
for both of those parameters and in both pre and post cleaning conditions, appear to be 

Variable (units) Variable short form for 
SOM

Data Source Number of 
samples

Average value Standard deviation

Total Chlorine  (mg/l) TotalCl Water quality 29992 0.96 0.23
HPCs @22C (No of colonies) HPC_22 Water quality 33089 4.49 24.15
Flow cytometry Intact Cell 

Counts (cells per ml)
FC_ICCs Water quality 4523 2503 15229

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 4278 84871 250505

Number of days from the SR 
cleaning date (days)

DaysFromCleaningDay Calculated 34109 25.4 206.5
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correlated with low total chlorine clusters (right part of the planes). TCCs though in the 
chloraminated systems could appear either before or after the cleaning of the SRs with no 
clear correlation to any other parameter as well.      

5.4.2. Principal Components Analysis 
 
PCA was also applied in the SR water quality dataset to investigate bacteriological activity in 
SW’s SRs. For a better comparison between the two methods, the parameters used at each 
different SOM analysis to answer each one of the research questions mentioned at the 
beginning of this section, were also used in the PCA analysis. However, PCA’s inability to deal 
with missing data in the input matrix, reduced the original dataset to a dataset that included 
only the samples where all the selected for the analysis parameters were measured. The 
number of samples included in the final dataset for each research question is presented in 
the corresponding tables.       
 

a) Which are the main factors of bacteriological failures on SRs? 
 

PCA was applied using the 8 parameters used in the first SOM (age of water, temperature, 
HPCs at 22oC, free and total chlorine, flow cytometry cell counts, the bacteriological failures 
per year and average daily precipitation in the SRs). The first 2 principal components (PCs) 
described the 35% of the variance (22.83% and 13.83% respectively), an indication that more 
components are required to fully describe the dataset.  However, the variance described in 
each one of the other 6 PCs is significantly smaller, therefore the first two components were 
selected for visualising the relationships between the various parameters of the dataset in a 
two-dimensional space. As mentioned in chapter 3, each PC is a linear combination of the 
various parameters, and it is completely uncorrelated to the other PCs.  
 
Figure 5.7 shows the biplot of the PCA applied for understanding the factors of bacteriological 
failures in the SRs. The x-axis represents the first PC and the y-axis the second PC. All the 
parameters, apart from the average rainfall precipitation and the TCCs appear to be 
influential in the PCs. Bacteriological failures and free chlorine appear to be the most 
influential parameters in the first PC and have less influence in the second. These two 
parameters also point in reverse directions; therefore, it could be implied that there is a 
reverse correlation between bacteriological failures and free chlorine. Age of water, total 
chlorine and TCCs appear to have the same influence in both PCs however only total chlorine 
and TCCs are pointing in the same direction, an indication of high correlation between those 
two parameters. Temperature is the main parameter influencing the second PC with rainfall 
and HPCs being the second and the third parameter respectively most related to the second 
PC. HPCs at 22oC are in between the age of water and the temperature and point to the part 
of the plot. This is an indication that HPCs have a small linear correlation with age of water 
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and temperature. This small correlation appears also between bacteriological failures and the 
age of water.   
 
Table 5-6 indicates that only 12734 out of the 405462 samples represent only 3% of the 
dataset. Therefore, it is understood that PCA does not represent the whole of SW’s SRs 
dataset.  

 
Figure 5.7: PCA biplot for bacteriological failures in the SRs 

 
Table 5-6: Summary of variables of PCA biplot presented in figure 5.7 

 
 

b) Which are the main parameters correlated with increase in the bacteriological activity 
in the SRs? 
 

PCA was applied using the 8 parameters used in the second SOM (age of water, temperature, 
HPCs at 22oC, free and total chlorine, flow cytometry intact and total cell counts and the days 

Variable (units) Variable short form in PCA 
biplot

Data Source Number of 
samples

Number of 
samples used

Average value Standard 
deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs)

Age SW Asset files 401926 12734 86.99 70.13

HPCs @22C (No of colonies) HPC_22 Water quality 394206 12734 2.31 18.19
Free Chlorine  (mg/l) FreeCl Water quality 396194 12734 0.29 0.24
Total Chlorine (mg/l) TotCl Water quality 373708 12734 0.75 0.33

Temperature (C) Temperature Water quality 240095 12734 9.30 3.84
Flow cytometry Total Cell 

Counts (cells per ml)
FC_TCCs Water quality 51753 12734 40280 219483

Bacteriological failures (events 
per year)

FC_TCCs SW Asset files 61278 12734 1.28 0.69

Average daily precipitation per 
month in the SRs  (mm)

SR_Rain Met Office 355403 12734 10.93 21.67
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from the SR cleaning day). The first 2 principal components (PCs) described the 37.5% of the 
variance (21.21% and 16.44% respectively) which, as in the previous PCA, is an indication that 
more components are required to fully describe the dataset. As table 5-7 demonstrates this 
PCA is more representative than the previous one, however even in this one, only 11% of the 
samples are used.  
 

 

 
Figure 5.8: PCA biplot for bacteriological activity in the SRs 

 
Table 5-7: Summary of variables of PCA biplot presented in figure 5.8 

 
 

Figure 5.8 shows the biplot for this PCA. The parameters with the most influence in the PCs 
are the ICCs, the TCCs and the total and free chlorine. These parameters are influencing both 
PCs with ICCs appearing to be the only one out of these parameters more related to the 
second PC than the first. Temperature appears, again, to influence the second PC, however it 
is not as influential as in the previous PCA. Days from SR cleaning day is the least influential 

Variable (units) Variable short form in PCA 
biplot

Data Source Number of 
samples

Number of 
samples 

used
Average value Standard 

deviation

Age of water leaving the SR (as 
sum of the retention time of 

this SRs and the retention time 
of the previous SRs that the 
water passed through - hrs)

Age SW Asset files 401926 46877 87.32 68.46

HPCs @22C (No of colonies) HPC_22 Water quality 394206 46877 1.59 15.08
Free Chlorine  (mg/l) FreeCl Water quality 396194 46877 0.33 0.24
Total Chlorine (mg/l) TotCl Water quality 373708 46877 0.71 0.30

Temperature (C) Temperature Water quality 240095 46877 9.22 3.92
Flow cytometry Intact Cell 

Counts (cells per ml)
FC_ICCs Water quality 51753 46877 2614 18190

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 51753 46877 32812 140337

Number of days from the SR 
cleaning date (days)

D Calculated 401022 46877 904.4 1427.3
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parameter in this PCA. As regards the correlations, this PCA indicates that there is high 
correlation between ICCs and HPCs, and a smaller correlation between these two parameters 
and TCCs and Temperature. There is also a significantly high correlation between the age of 
water and the total chlorine, and, finally, a reverse correlation between those two parameters 
and the free chlorine.         

5.5. Discussion 

5.5.1. Understanding bacteriological activity in the SRs 
 
 The first SOM (Figure 5.2) indicates that the over the investigation period the coliform 
appearance in the SRs is correlated with high water age exiting the SRs (as sum of the 
retention time of all the SRs that the water passed), high water temperature, low free chlorine 
residual in the chlorinated systems and low total chlorine in chloraminated systems. The 
correlation between high temperature, low chlorine residual and coliform failures was also 
found in various studies on coliform bacteria regrowth on DWDS (LeChevallier, Welch, and 
Smith 1996; LeChevallier 1990; Besner et al. 2002). However, these studies were 
concentrated in the coliform regrowth in the network and thus there were only mentioning 
stagnation as another factor influencing the phenomenon. The importance of retention time 
as a factor that influences bacteriological regrowth was mentioned in other research works 
that were concentrating in the general bacteriological activity in the DWDS. Kerneïs et al. 
(Kerneïs et al. 1995) found that the higher SR retention time is, the higher are the HPCs inside 
them. Prest et al. (Emmanuelle I. Prest et al. 2016) in their review paper indicated that all 
three aforementioned parameters are influencing bacteriological activity in the DWDS. The 
SOM findings in this work agree with both works as both high ICCs and high HPCs appear in 
systems with high temperature, low chlorine residual and high age of water (Figures 5.2-5.4).  
    
All the aforementioned research works indicated the importance of temperature as the key 
factor that influences all the biological processes inside the DWDS, and it is one of the main 
factors that control the disinfectant decay. In this research this is demonstrated in the SOM 
analysis (Figures 5.2 - 5.6) where in general low total and free chlorine clusters are correlated 
with medium to high and high temperature. Controversially, the PCA analysis shows no 
relationship between temperature and total or free chlorine. This finding demonstrates that 
this temperature - chlorine decay relationship is more complicated and does not follow the 
linear relationship that PCA is able to identify. 
 
In contrast, water age (sum of the SR’s retention time and the retention time of all the SRs 
that the water passed after exiting the WTWs and before reaching this SR), has clear linear 
reverse correlation with free chlorine in the PCA analysis (Figures 5.7-5.8). A simple 
explanation of the above finding is that the higher the water remains into the SRs the more 
reactions between the disinfectant residual and the nutrients are happening which means 
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weaker disinfection and thus the bacteriological activity increases. However, as we saw above 
in such complex systems there is not only one direct influence between one parameter and 
another but multiple parameters that affect the water stability.  
 
Monochloramine has been proven to be more effective than chlorine in controlling coliform 
regrowth, even if it is a weaker disinfectant, because it is less-reactive disinfectant (Camper 
2014; Mark W. LeChevallier 1990). The SOM analysis in this work indicates this weakness as 
in every SOM high TCCs and most of the high HPCs are correlated with chloraminated systems. 
In addition, it also indicates that with high temperatures and high age of water, chloramine 
disinfectant is also reduced and as a result, coliform bacteria appear in these systems as well.  
 
SOMs analysis in the WTWs influence on the SRs’ bacteriological activity (Figure 5.4) indicates 
that the potential source of high TCCs and high HPCs in the chloraminated SRs are the high 
numbers of TCCs in combination with the high TOC levels exiting their WTWs. There is no 
clear explanation regarding the TCC levels exiting the WTWs in the chloraminated systems, 
however it is an indication that in the WTWs of some of these DWDS the time after adding 
chlorine and before adding ammonia in the water is not sufficient and thus bacteria cells are 
exiting the works. The same SOM also indicates high ICCs in chlorinated and chloraminated 
SRs correlating with high TOC exiting the WTWs and high water temperature. High HPCs that 
belong in the chlorinated systems also correlate with these two factors. The importance of 
organic and inorganic nutrients in governing the bacteriological regrowth in the drinking 
water distribution system has been indicated in various research works (E. I. Prest et al. 2016; 
K. E. Fish, Osborn, and Boxall 2016). LeChevallier et al. (M. W. LeChevallier, Schulz, and Lee 
1991) used a DWDS in the US as a case study for understanding the factors of bacteriological 
regrowth and found that there is a clear relationship between coliform occurrences and high 
TOC levels. High carbon levels in the drinking water is utilized by heterotrophic bacteria as an 
energy resource and, therefore, it contributes to their increase (Mark W. LeChevallier 1990). 
As mentioned above, the findings in this work agree with these studies and indicate the 
importance of TOC on bacteriological regrowth in the DWDS. However, it remains unclear the 
reason that most of the high TOC concentration clusters exiting the WTWs appear in the 
chloraminated systems.  
 
This work indicates that in chloraminated systems there is no clear correlation between TCCs 
and ICCs (Figures 5.3, 5.4, 5.6). On the contrary, high ICC and high TCC clusters are fully 
correlated in the chlorinated systems (Figure 5.5). By checking the actual numbers of cells in 
both systems, TCC numbers in the chloraminated systems are much higher compared to the 
ones in chlorinated systems (340000 - 28000) but the opposite occurs with the ICC numbers 
(6000-12000). This finding, in combination with the appearance of the ICCs in systems with 
low free chlorine residual and high-water age, indicate, firstly, the importance of maintaining 
steady free chlorine residual in chlorinated systems and secondly the steadiness of 
monochloramine as disinfectant even if it is a weaker disinfectant to chlorine. It is  interesting 
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that these results agree with the findings of a study by Gillespie et al. (Gillespie et al. 2014) 
where flow cytometry was applied in  three DWDS with different disinfection types (one 
chlorinated DWDS and two chloraminated DWDS) for understanding the microbiological 
differences in these two systems. 
 
SOMs’ analysis demonstrated the role of heavy rainfall in both the increase of bacteriological 
activity exiting the WTWs (Figure 5.4) and in the coliform - E. Coli occurrence in the SRs (Figure 
5.2). In the first case, the high TCC clusters in the WTWs correlation with medium to high 
intensity average daily rainfall clusters indicates a potential deterioration in the quality of the 
raw water that was feeding these WTWs. There are various studies that have associated 
heavy rainfall with increased bacteria and pathogens numbers in the DWDS (M. W. 
LeChevallier, Schulz, and Lee 1991; Geldreich 1996; Kumpel and Nelson 2013). Potential 
factors that could relate heavy rainfall with bacteria intrusion into the drinking water are the 
increase of organic matter in the raw water, the appearance of increased bacteria numbers 
in the raw water and the slow adaptation response of the WTWs in the new conditions. 
LeChevallier et al. (M. W. LeChevallier, Schulz, and Lee 1991) showed that there is a time lag 
between heavy rainfall and coliform appearances in the DWDS. Unfortunately, with the 
absence of the time element in SOMs analysis, it is not possible to identify this time lag with 
this analysis. However, a further SOMs analysis using water quality data taken from the raw 
water may indicate the factors related to this TCCs increase during heavy rainfall periods. In 
the second case, knowing that all the SRs in SW’s network are fully covered and most of them 
are underground or semi-underground, the correlation between the bacteriological failure 
clusters (E.Coli/coliform events) and heavy rainfall clusters could be an indication of  ingress 
of contaminated water in the SRs through cracks in their structures. Another potential 
explanation of this correlation could be that the rainfall has transferred nutrients from the 
soil into the SRs through these cracks. However, there are not enough SR monitoring water 
quality samples where nutrients (e.g TOC) are measured to further investigate their 
relationship with rainfall in the SRs using SOMs. Besner et al. (Besner et al. 2002) presented a 
case study where coliforms appeared in a SR due to issues in the structure that forced the 
utility company to immediately repair the  crack. The findings here cannot directly relate 
potential structural problems to specific tanks, however, they indicate the importance of 
adequate maintenance of the SRs.     
 
Finally, the last two SOMs outputs (Figures 5.5, 5.6) show some interesting findings regarding 
the impact of the SRs cleaning on drinking water quality. Both SOMs indicated that there is a 
reduction of the high HPC, TCC and ICC clusters after the cleaning in both systems. However, 
this reduction is more significant in the chloraminated SRs where both HPCs and ICCs are 
reduced after the cleaning. In these systems, the high ICC and HPC clusters correlate with low 
total chlorine either before or after the cleaning of the SRs. This finding indicates that in the 
chloraminated systems, high water quality exiting the WTWs could be maintained in these 
levels by keeping a steady total chlorine residual and by systematically cleaning the SRs. 
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Controversy, in the chlorinated systems cleaning is contributing in the improvement of water 
quality exiting the works, but the main factor that is required to be controlled is the SRs 
retention time (water age in this study is the sum of the retention time in all SRs that water 
passed through) that also contributes to the free chlorine decay. 

5.5.2. Comparison of PCA and SOMs for water quality samples analysis  
 
SOMs are mainly used for clustering data and PCAs’ main use is for dimensionality reduction 
of large datasets. As this research demonstrated, both methods can also be applied for 
visualisation of large datasets with multiple parameters and for identification of relationships 
between those parameters. However, there is a clear difference between those two methods, 
regarding the path that they follow to identify relationships between variables, the required 
conditions for their application and the visual outputs that they provide.  
 
PCA follows an algorithm to provide linear relationships between the variables (Smith 2002). 
This approach allows the identification of only linear correlations between various 
parameters and thus complex non-linear relationships are not covered. Due to the complex 
reaction mechanisms that are taking place in the DWDS, most of these hidden relationships 
between the various water quality parameters could not be identified by PCA when used for 
this type of analysis. This argument is reinforced by the fact that in both PCA examples 
presented here, the first two PCs were capturing less than 40% of the dataset’s variance, an 
indication that more PCs were required to fully capture the data and that the relationship 
between those parameters is more complex.   
 
PCA also requires an input matrix with no, or few missing data as explained in a previous 
chapter. Monitoring water quality datasets, in general, have a lot of missing or non-measured 
parameters per sample. Tables 5.6 and 5.7 show the number of samples out of all the 
available data that were used for the analysis - 3% of the data for the first PCA and 11% for 
the second). It is, therefore, clear that some trends in the data and some correlations between 
the various parameters were not captured by PCA analysis.  
PCA’s visualisation output makes it easy to understand which parameters were the most 
important for each PCA. It is also easy to see which parameters are clearly correlated, reverse 
correlated or uncorrelated with other parameters. However, the findings in figures 5.7 and 
5.8 indicate that most of the relationships between the water quality parameters are more 
complex and non-linear apart from some clear exceptions explained in the above section.  
SOM technique, in contrast to PCA , follows a non-linear approach for doing the analysis (S. 
R. Mounce et al. 2016). Therefore, it captures nonlinear more complicated relationships 
between various parameters and visualising them into two dimensional planes. In this 
research, SOM’s analysis showed more clear correlations than PCA. In addition, the post-
analysis labelled maps separated the data into categories (chlorinated vs chloraminated 
DWDS, pre cleaning and post cleaning data) and gave a better understanding of the 
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bacteriological activity in the different systems. SOM’s ability to ignore missing inputs when 
finding the corresponding outputs, enabled the use of all the available data in the analysis as 
the accompanying to SOM tables show. Finally, as regards the actual visualisation outputs, 
SOM are easy to follow and, thus, it is easier to identify not only the strong correlations, but 
the weak ones as well. Therefore, it could be said that for an analysis on the water quality 
samples dataset, SOM is a better technique than PCA.   

5.5.3. Operational value of the findings 
 
SOMs have proven to be a very useful tool for discovering relationships between various 
water quality parameters and trends in the water behaviour. SOMs application in the Scottish 
water SRs dataset, as presented in this chapter, provided some interesting findings regarding 
the factors that increase the bacteriological activity and that are potentially related to the SRs 
bacteriological failures as described in the previous section. Moreover, the application of 
SOMs for understanding the impact of the WTWs, of the SRs’ cleaning, and of the rainfall in 
the bacteriological activity inside the SRs indicated the need of the following managerial 
actions by Scottish Water: 
 

● Control and optimisation of the retention time in SRs of both disinfection systems 
but mainly in the chlorinated SRs where retention time appears to be the main 
parameter that reduces the free chlorine residual 

● Systematic check of the need for a secondary disinfection in the chlorine SRs 
especially when the water temperature increases 

● Systematic cleaning of the chloraminated tanks to reduce the bacteria numbers 
entering the system 

● Systematic check of the SR condition to reduce ingress of contaminated water or 
nutrients from the soil to the drinking water 

● Management and reduction of the TOC concentrations exiting the WTWs 
● Improvement of the WTWs’ automatization to adapt in sudden changes of the 

quality of the raw water that feeds them  
 
SOMs are not a method that could be used directly by the WUs’ operators to prevent water 
deterioration in the short-term future. They require data exploration and processing prior to 
their application. However, by changing the procedures that WUs store and collect water 
quality data, SOMs could become a really important tool in understanding the general 
behaviour of the water in the utilities systems. Thus, they could become a supporting tool for 
the WUs senior managers and water quality experts in their decisions for interventions in 
their DWDS. 
 
As presented above, PCA is not as powerful as SOMs as regards the analysis of water quality 
data. However, there are two key findings of the PCA analysis of this work. The first one is the 
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inverse linear correlation between the free chlorine and age of water that indicates the 
importance of controlling the water circulation. The second one is the linear correlation 
between temperature, HPCs and ICCs that indicates the importance of a residual disinfection 
management during the warm periods of the year.   

5.6. Conclusions 
 
Two unsupervised data-driven techniques, PCA and SOMs, were applied on Scottish water 
SRs dataset, created using monitoring water quality samples taken between January 2012 and 
May 2020, for identifying the correlations between various water quality parameters and 
understanding the factors that influence the bacteriological activity inside them.  The results 
obtained from this investigation are as follows: 
 

● SOMs is a better technique than PCA for mining monitoring water quality samples 
datasets and discovering correlations between water quality parameters. It tackles 
the main issue of the sparse data that these types of datasets have, it is able to identify 
more complex non-linear relationships between various water quality parameters and 
its visualisation output could be understood by stakeholders without any ML  
background knowledge.  

● The main factors that contribute to bacteriological failures are high temperature, high 
water age, low chlorine residual and high rainfall in the SRs. 

● Higher bacteriological activity has been found in the SRs that belong to chloraminated 
systems as there are higher TCC numbers in these SRs than in the chlorinated systems 
counterparts. However, the large numbers of live bacteria cells (ICCs) in both 
disinfection systems’ SRs when low disinfection residual and high water temperature 
conditions exist, indicate that disinfection type is not a main factor for the SRs 
bacteriological failures.  

● Bacteriological failures’ correlation with high precipitation in the SRs indicates a 
potential issue with the structures and the condition of some of Scottish Water’s SRs. 

● The correlation between high rainfall in the WTWs with high TCCs in the WTWs outlet 
is an indication of a slow adaptation of the WTWs processes in the new raw water 
quality conditions. 

● Systematic SR cleaning reduces the risk of increased bacteriological activity in the 
chloraminated SRs. 

● For the chlorinated SRs, their systematic cleaning will not guarantee a bacteriological 
activity reduction and controlling and reducing their retention times is also required. 

● PCA findings indicate a linear inverse correlation between free chlorine residual and 
age of water. However, this finding requires further investigation as due to the sparce 
nature of the dataset and PCA’s inability to ignore missing data, only a small part of 
the data was analysed.    
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6. Α SOMs application on water quality datasets for 
investigating the impact of switching disinfection type on 
drinking water quality 

6.1. Introduction 
 
 
Chlorination is the most common type of disinfection that WUs use. It is the process of adding 
small doses of chlorine in the drinking water before exiting the WTWs to guarantee that the 
water is free of bacteria and other microorganisms. The main advantage of chlorination is 
that it forms a residual that could be maintained in the water for long periods and, thus, could 
limit the bacteriological regrowth during its transportation to the consumers taps (K. E. Fish 
et al. 2020). However, chlorine, when in high concentration in the water, reacts with natural 
organic matter (NOM) or inorganic ions to produce disinfection by-products (DBPs) that are  
related to carcinogenic diseases (Parsons and Jefferson 2009). The common policy for the 
WUs when they notice an increase of DBPs in a DWDS, is to switch its disinfection type from 
chlorination to chloramination by adding ammonia at the same time as chlorine is added in 
the WTWs. This reaction produces chloramines which are weaker disinfectants comparing to 
chlorine but they also react less with NOM and have  longer retention time (Parsons and 
Jefferson 2009).  
 
The impact in drinking water quality of switching disinfection from chlorination to 
chloramination has not been largely investigated. However, some of the potential impacts 
have been reported in American Water Works Association (AWWA) publication by Dyksen et 
al. (Dyksen et al. 2008). In this report, they investigated 11 DWDS that switched their 
disinfection from chlorination to chloramination and they found an overall improvement of 
the quality of the water after the switching in terms of an overall DBPs and HPCs reduction in 
addition to less odour and taste complains by consumers. However, they also noticed 
increased levels of metals (lead and copper) and a higher risk of nitrification.   
 
In this chapter, a different investigation over the impact of switching disinfection type from 
chlorination to chloramination using SOMs is presented. The motivation for this investigation 
was one of SW’s DWDS where iron concentrations in water quality samples continuously 
exceeded the acceptable limits and an increased number of consumer contacts reporting 
discolouration was noticed after its secondary disinfection type was changed from 
chlorination to chloramination. This DWDS is a large system in the southwest of Scotland. Its 
WTW high capacity is 120 Ml/day and serves a population of more than 210000 people 
through a complicated network of more than 1400km and more than 60 DMAs. The decision 
of switching disinfection residual was made in 2014 as a solution for reducing the increased 
concentrations of trihalomethanes (THMs) in the system. The required for the switch works 
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in the WTW were officially finished by the end of 2017 and in April 2018 chloramination 
disinfection commenced. Days after the switch, more than 10 consumer contacts reporting 
taste and odour were noticed and during the following months more than 10 water samples 
exceeded the iron standard. By the end of the year 2018, the total number of customers 
complaining about discolouration incidents was way higher compared to the previous two 
years. SW’s investigation for the incidents indicated that a possible cause of the 
discolouration issue in this DWDS was the destabilisation of the network’s biofilm due to the 
changing in the water chemistry following the change to chloramination (DWQR 2019b).  
 
This event indicated the importance of understanding the impact of changing disinfection 
residual on the drinking water quality prior to making such a drastic intervention in the DWDS. 
Thus, this chapter investigates the impact of switching disinfection type from chlorination to 
chloramination by applying SOMs on monitoring water quality data taken from consumers 
taps’ samples in DWDS that have made this change during the period between 2012 and 2019. 
The aim of this work is not to examine the decision to switch disinfection type by SW but to 
understand the potential impacts that this switch could have in drinking water quality, using 
samples water quality data. Findings of this work could inform WUs about the factors that 
could influence the deterioration of the drinking water quality after the switch and avoid the 
same mistakes in the future. As in the previous chapter, this chapter addresses objectives 2 
and 4. In this chapter there is no comparison between SOMs and other ML techniques, 
however the answer to objective 4 is achieved by demonstrating a different way that SOM 
analysis could be applied for understanding water quality. 

6.2. Methods & materials 

6.2.1. Data Collection & analysis 
 
The consumers taps’ dataset includes a total of 140853 samples taken in all of Scotland's 
DWDS during the period between 2012 and May 2020. However, for this investigation only 
the data from the systems that have switched from chlorination to chloramination during this 
period were required and extracted from the dataset. Overall, during the study period 14 
systems have switched their disinfection from chlorination to chloramination. The system 
described in the previous section is the biggest DWDS out of these 14, serving with water 
more than 110000 properties. 11 DWDS are small systems with 9 of them serving water to 
less than 1000 properties. 1 DWDS is a medium to small system serving less than 10000 
properties and 1 is medium sized DWDS (approximately 20000 properties). The final dataset 
for the investigation included a total of 8957 samples taken from consumers taps in these 
systems. More than half of these samples were taken from taps inside the DWDS A (5324 
samples) and the rest of the samples were taken from all the other systems together. 
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6.2.2. Self-Organising Maps 
 
As in the previous chapter, the MATLAB® SOM Toolbox version 2.1 (Teuvo Kohonen 2014) 
was used for creating the various SOMs. The analysis was held using MATLAB® version 2019b 
and the same algorithms as in the previous chapter were used for selecting the parameters 
and calling the Toolbox. Again here, the maps’ colour range was standardized using as 
reference ranges the 5th and 95 percentiles of the dataset. Finally, a different algorithm was 
created to include the number of samples per parameter, the average, and the standard 
deviation in the final analysis.     

6.3. Machine learning application steps 
 
The machine learning application steps are filled as follows: 
 

a. Define the water quality problem   
In this chapter, the aim is to identify changes in the drinking water quality that may occur by 
switching from one disinfection type to another, which in this case is a switch from 
chlorination to chloramination.  Therefore, the water quality problem should be defined as 
follows:  
What is the impact of switching disinfection type to the drinking water quality behaviour? 
 

b. Type of the available data 
Τhe water quality monitoring samples taken from the customers taps’ outlets, the SRs 
outlets and the WTWs’ outlets are the available data for the investigation. 

  
c. Define required output 

The required output is understanding the disinfection type change impact on drinking water 
quality by identifying correlations between various water parameters in the pre and post 
switch period.      

 
d. Machine learning selection 

By following the machine learning tree presented in chapter 3, the selected techniques should 
have been either the SOMs or PCA. However, the research work on chapter 5 demonstrated 
that SOMs is the more appropriate technique.    

 
e. Data preparation 

The data should be prepared in a way that each row is a different observation (sample) and 
each column represents a different water quality parameter (coliform bacteria, heterotrophic 
plate count, flow cytometry data etc.). The consumers taps’ water quality dataset created as 
described in a previous chapter, will be used as input in this investigation. 
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f. Application output 

The required output is a number of graphs that visualise the correlations between the various 
parameters and therefore the correlations between them could be explored. The procedure 
followed to produce these outputs is presented in the following sections of the chapter. 
 
The ML application steps for this investigation are summarized in the following figure. 
 

 
Figure 6.1: Machine learning application steps for the disinfection type change investigation 

 

6.4. Results and discussion 
 
As shown in the previous chapter, SOM analysis can identify correlations between various 
parameters, but it has no time element - it is not possible to visualise in the main SOM analysis 
the parameters correlations and clusters through time. In this investigation, however, the 
time issue was surpassed by using for each created SOM the post-analysis labelled 
disinfection map as an indicator of clusters and correlations that are related to chlorination 
or chloramination. In other words, parameter clusters correlating with chlorination indicate 
a pre-switch water condition and clusters correlating with chloramination indicate a post-
switch condition. Thus, with this way SOMs will be used for investigating the impact of 
changing disinfectant in drinking water quality. The research questions that this chapter aims 
to answer are as follows: 
 

a) Has the disinfectant change improved the quality of the drinking water in the 
customers taps? 

b) Which factors contributed to the increased bacteriological activity after the switch? 

 

 
What is the impact of switching disinfection type to the 

drinking water quality behaviour? 
 Define the water quality 

problem 
 

Water quality monitoring samples from systems that 
switched from chlorination to chloramination 

 Type of available data 

 

Correlation between various water parameters  Define type of required 
output 

 

Self organising maps (SOMs)  Machine learning selection 

 

Creating tap WQ datasets 
Calculate monthly average WTWs and SRs parameters 

 Data preparation 

 

See section 4 of this chapter  Application output   
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c) Is switching disinfectant the cause of discolouration? 
d) Are there any indications of nitrification after changing disinfection residual?    

 
A different SOM was produced for each one of the above research questions. 
 

a) Has the change improved the quality of the drinking water in the customers taps? 
 
Water utilities change disinfection type from chlorination to chloramination in DWDS usually 
when increased levels of disinfection by-products (most commonly THMs) are observed in 
the customers taps. Therefore, this SOM (Figure 6.2) investigates the impact of switching to 
chloramination on THMs in comparison with the impact on bacteriological activity inside the 
DWDS. The parameters used for this investigation are THMs, flow cytometry TCCs, free and 
total chlorine and total organic carbon (TOC).      
 
      

 
                                                                                                                                                        Blue cells: after the switch 
                                                                                                                                                 Green cells: Before the switch 

Figure 6.2: Water quality after changing disinfection, including secondary disinfection labelled 
map 

 
Table 6-1: Summary of variables for SOM presented in figure 6.2 

 
 
As expected, SOM analysis correlates the high chlorine clusters on the top of their map with 
low free chlorine clusters and the post-switch clusters (chloramination disinfection) in the 

Variable (units) Variable short 
form for SOM

Data Source Number of 
samples

Average value Standard 
deviation

THMs total (μg/l) THM_Total Water quality 2128 41.82 27.94
Free Chlorine  (mg/l) FreeCl Water quality 7354 0.30 0.26
Total Chlorine (mg/l) TotCl Water quality 7206 0.60 0.33

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 1552 17432 43328

Total Organic Carbon (mg/l) TOC Water quality 2051 1.54 0.88
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labelled map. SOM analysis also indicated a reduction of THMs after the switch as low THM 
clusters correlate with chloramination (blue cells) in the labelled map, while high THMs are 
observed with chlorination (green cells) in the labelled map. However, TCCs appear to be 
increased after the switch, as clusters with high numbers of TCCs correlate with 
chloramination (blue cells). Finally, as regards the TOC, SOM analysis indicated that there was 
an increased number of high TOC clusters in the systems before and after the switch but there 
were noticeably more clusters containing the highest TOC that were related to 
chloramination than to those related to chlorination.  
 
The increased TCC numbers related to chloramination clusters indicate an increase in the 
bacteriological activity after the switch which disagrees with the findings by Dyksen et al. 
(Dyksen et al. 2008). However, this output reinforces the findings presented in the previous 
chapter regarding the correlation between high TCCs correlating with chloramination systems 
and supports the consensus that chloramination is a weaker disinfection than chlorine. 
However, there are other factors that could contribute to this increase, such as changes in 
the DWDS’ biofilm or the age of water arriving at the tap, for which parameters, 
unfortunately, there were no available data. 
 
THMs are disinfection by products (DBPs) that are produced in chlorinated DWDS when free 
chlorine residual reacts with natural organic matter (NOM) and especially with organic carbon 
(Parsons and Jefferson 2009). This SOM shows, high and medium TOC clusters correlate with 
high THM clusters and medium to low free chlorine clusters. This finding indicates that the 
high TOC concentrations in consumers’ taps are related to THMs appearance in the DWDS 
before the disinfection switch. The fact that there are more high TOC clusters in the 
chloramination systems could be related to the absence of free chlorine and the stability of 
the monochloramine as a disinfectant that reacts less with organic and inorganic material. 
These increased TOC concentrations after the disinfection switch, could be another factor 
that contributes to the increased TCCs noticed after the switch.     
 

b) Which factors contributed to the increased bacteriological activity after the switch? 
 
The first SOM indicated that there is a potential increase in the bacteriological activity of the 
DWDS after the disinfectant change. Therefore, a SOM (Figure 6.3) for identifying correlations 
between bacteriological activity and other parameters including WTWs and SR parameters 
was produced. More specifically, the selected for this SOM parameters were the free and the 
total chlorine, the flow cytometry TCCs, the TOC, the temperature of water, the monthly 
average flow cytometry TCCs exiting the SRs, the monthly average flow cytometry TCCs 
exiting the WTWs and the monthly average TOC exiting the WTWs.    
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   Blue cells: after the switch  

  Green cells: Before the switch 
Figure 6.3: Bacteriological activity after changing disinfection, including secondary disinfection 

labelled map 
 
 

Table 6-2: Summary of variables for SOM presented in figure 6.3 

 
 

High clusters of TCCs appear in the right of their plane with clusters containing higher values 
correlating with the chloramination post switch cells (blue cells). The two clusters containing 
the highest TCC values were a small cluster in the top right of the plane and a bigger one in 
the bottom right. The first one correlates with high total chlorine, high TCCs exiting the WTWs 
and the SRs, medium to high TOC and low water temperature. The second one correlates with 
low total chlorine, high temperature of water, high TCCs in both the SRs and the WTWs, high 
TOC and high WTWs’ TOC. 
 
As regards the correlations between the other parameters, there is a perfect correlation 
between TCCs exiting the WTWs and TCCs exiting the SRs and between the tap TOC and the 
WTWs TOC. The high clusters of TCCs in the SRs and WTWs on the top of their plane correlate 
with chloramination and the high clusters of TCCs in the bottom of their plane are mostly 
correlated with chloramination, however there is a part that also correlates with chlorination, 

Variable (units) Variable short 
form for SOM

Data Source Number of 
samples

Average value Standard 
deviation

Free Chlorine  (mg/l) FreeCl Water quality 7211 0.30 0.26
Total Chlorine (mg/l) TotCl Water quality 7206 0.60 0.33

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 1552 17432 43328

Total Organic Carbon (mg/l) TOC Water quality 2051 1.54 0.88
Water Temperature (C) Temperature Water quality 1420 11.05 4.31

Monthy Average SRs total cell 
counts (cells per ml) 

FC_TCC_SR_AVE Water quality 3439 18527 67117

Monthy Average WTW Flow 
cytometry total cell counts 

(cells per ml) 
FC_TCC_WTW_AVE Water quality 7566 80522 135215

Monthy Average WTW total 
organic carbon (mg/l)

TOC_WTW_AVE Water quality 8820 1.50 0.59
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low free chlorine, and high TOC. High TOC appear in the systems pre and post switching 
disinfection, however, as in the previous SOM, the clusters containing the highest TOC values 
are related to chloramination indicating a potential increase after the disinfectant switch.   
 
This SOM indicates that the source of the high TOC concentration in the taps is the high TOC 
concentration exiting WTWs and agrees with the findings regarding the TOC concentrations 
of the previous chapter. In addition, this SOM agrees with the finding of the previous SOM 
regarding the increased TOC concentrations after switching disinfection. A further 
investigation over the changes that SW did in the WTWs’ processes of these DWDS before 
switching disinfection to allow the drinking water to adapt in the new disinfection 
environment is required. This investigation could potentially explain further the causes of this 
increase in the TOC concentrations. However, the findings of this study suggest that a 
management and a reduction of the TOC concentrations in these DWDS is required to control 
the bacteriological activity. 
 
The perfect correlation between high SRs TCC clusters and high WTWs TCC clusters also 
agrees with the findings of the previous chapter. This finding again shows the weakness of 
total chlorine as a disinfection residual but, in addition, it also reinforces the hypothesis stated 
in the previous chapter regarding the insufficient chlorine contact time prior to ammonia 
addition in the WTWs. However, this is just a hypothesis and, again, a further investigation in 
the WTWs processes is required.    
 
The other parameters related to high TCC clusters after the switch are low total chlorine 
residual and high temperature. This finding indicates again as in the previous chapter the 
importance of temperature in the various reactions inside the DWDS as, usually, low total 
chlorine residual is a result of high disinfection demand due to high water temperature 
conditions.  

 
c) Is switching disinfectant the cause of discolouration? 

 
Discolouration is related to organic and inorganic compounds (I. J. H. G. Vreeburg and Boxall 
2007). The discolouration that appeared in the main DWDS described at the beginning of the 
chapter, was related to high iron concentration and high turbidity in the customers taps. The 
SOM presented here, (Figure 6.4) was produced to investigate if in general switching 
disinfection residual increases the risk of discolouration. The selected parameters in this SOM 
were iron, manganese and turbidity, as the main parameters related to discolouration, and 
also free and total chlorine, and flow cytometry TCCs. 
 
There are two high iron clusters, one in the bottom right of the iron plane and a smaller one 
in the middle left of the plane. Both clusters correlate with high turbidity clusters and high 
manganese clusters. The labelled SOM indicates that this correlation appears in both systems, 
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however the part of the clusters that belongs to chloramination cells is bigger than the one 
that belongs to chlorination cells.  The medium and high TCCs, in general, correlate with 
chloramination systems, with the highest TCC clusters (bottom right of their map) correlating 
with low total and free chlorine and high manganese and iron clusters.  Clusters with low 
levels of turbidity appear in the systems before the disinfectant change. All the medium to 
high and high turbidity clusters are located in the bottom of the plane and mostly follow the 
shape of the blue - post-switch chloramination cells with some exceptions where high clusters 
of turbidity are related to pre-switch chlorination (middle to bottom left). The chlorination 
high turbidity clusters are mostly correlated with high iron and high manganese clusters.  
 

 
 Blue cells: after the switch  

  Green cells: Before the switch 
Figure 6.4: Discolouration after changing disinfection, including secondary disinfection labelled 

map 
 

 
Table 6-3: Summary of variables for SOM presented in figure 6.4

 
 
Transition from chlorination to chloramination as a secondary disinfectant changes the water 
chemistry of the DWDS, which could affect the chemical balance of the network and increase 
the corrosion levels of metallic pipes (The U.S. Department of the Interior 2013). A couple of 
studies investigated an extreme case in Washington D.C., where increased levels of lead 
appeared in the tap water due to extreme corrosion of lead pipes and service pipes after 
switching the secondary disinfection of the DWDS from chlorine to chloramine (Edwards and 

Variable (units) Variable short 
form for SOM

Data Source Number of 
samples

Average value Standard 
deviation

Free Chlorine  (mg/l) FreeCl Water quality 7211 0.30 0.26
Total Chlorine (mg/l) TotCl Water quality 7206 0.60 0.33

Iron (mg/l) Fe Water quality 3668 82.22 550.26
Manganese (mg/l) Mngs Water quality 3588 8.83 67.47

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 1552 17432 43328

Turbidity (NTU) Turbidity Water quality 2945 0.48 3.51
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Dudi 2004; Edwards, Triantafyllidou, and Best 2009). The findings in this investigation show 
that there are high iron and manganese clusters before and after the transition to 
chloramination. By looking at the actual manganese and, especially, to the iron 
concentrations, it could be assumed that in these systems there is, in general, a big 
discolouration problem related to inorganic particles. With the available data and with SOMs 
limitations though, it is not possible to investigate if there were increased corrosion levels in 
the distribution pipes after the disinfection switch. However, this SOM indicates that, in these 
systems, switching disinfection increased the organic cell numbers and, consequently, 
increased the turbidity levels. Thus, it suggests that the increased microbial growth noticed 
after the disinfection change, in these DWDS, had a potential contribution to increased 
discolouration levels after the switch. This correlation in combination with the 
aforementioned high WTWs TCCs correlation with high consumers’ tap TCCs, as presented in 
the previous SOM (Figure 6.3), indicate the importance of producing water of high quality in 
the WTWs to manage discolouration risk.  
 
The correlation between high manganese, high iron, high TCCs and high turbidity as shown in 
this SOM, is a finding that agrees with various research works that study discolouration (I. J. 
H. G. Vreeburg and Boxall 2007; J. H. G. Vreeburg, Schaap, and Van Dijk 2004; S. Husband et 
al. 2016; Speight, Mounce, and Boxall 2019). The additional correlation between the clusters 
containing the highest levels of these parameters and low total chlorine clusters, as shown in 
the bottom part of their planes, indicates the importance of maintaining a stable disinfection 
residual to control biological regrowth and manage the DWDS’ biofilm.  
 

d) Are there any indications of nitrification after changing disinfection residual?  
 
Nitrification is the phenomenon of oxidation of nitrogen compounds (mainly ammonia) to 
nitrate and then nitrite by nitrifying bacteria (USEPA 2002b) . The factors that contribute to 
the increase of these bacteria and, thus, to nitrification are high free ammonia concentration, 
high temperature, high water age and insufficient chlorine residual (Telfer A. 2014). 
Nitrification leads to complete loss of the chlorine residual,  bacteriological growth (HPC 
growth in particular), iron release,  and decrease of pH (American Water Works Association 
(AWWA) 2013).   
 
Findings presented in the previous SOM related bacteriological activity with high iron 
concentrations. In addition, nitrification mostly occurs in chloraminated systems where 
ammonia is introduced to chlorine to form chloramines. Therefore, a new SOM (figure 6.5) 
was produced to discover the relationships between the various parameters related to 
nitrification to examine the scale of the phenomenon after switching disinfection residual. 
The selected parameters in this SOM were free and total chlorine, iron, manganese, turbidity, 
flow cytometry TCCs, HPCs at 22oC, nitrate, and nitrite. Two post-analysis labelled SOMs were 
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also produced: one that labels the pipe material and another that labels the type of 
disinfection.    
In the produced SOM, a strong correlation between high nitrite, high TCC clusters, high HPCs, 
high iron, high manganese, low total chlorine, and high turbidity is shown (bottom centre to 
right of the planes) and, according to the labelled output, these clusters align with cast iron 
pipes (cyan clusters in the pipe material labelled SOM) and are associated with the post switch 
chloramination disinfection. Another high nitrite cluster (middle right of the plane) is 
correlated with low total chlorine and high TCC and HPC clusters and medium to high 
turbidity. These clusters are again associated with post switch chloramination, but, in this 
SOM, apart from iron pipes, they are aligned with plastic pipes as well (pink cells in the pipe 
material labelled SOM).  These findings show that there are signs of nitrification in these 
systems after the switch as agree with some of the nitrification parameters. In particular, the 
bottom right to centre cluster indicates the link between nitrification, iron, increased 
bacteriological activity and iron mains. The other high nitrite cluster, however, indicates that 
nitrification could be caused due to low or insufficient total chlorine residual or due to the 
increased bacteriological activity related to low concentrations of the chloramination 
disinfectant (low total chlorine).   
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                                               Cyan cells: Iron pipes                                                         Blue cells: after the switch 
                                                Pink cells: Plastic pipes                                                  Green cells: Before the switch 
                                           Yellow cells: Asbestos pipes 
                                            Green cells: Ductile Iron pipes 

Figure 6.5: Nitrification after changing disinfection, including pipe material and secondary 
disinfection labelled maps 
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Table 6-4: Summary of variables for SOM presented in figure 6.5

 
 

6.5. Operational value of the findings  
 
In this chapter, SOM was used to understand the general change of the drinking water 
behaviour after switching disinfection. SOMs analysis indicated that there is an increased 
bacteriological activity after switching disinfection related to high bacteriological activity 
exiting the works. This finding in combination with the increased TOC concentrations found 
in the customers taps after the switch indicate the importance of managing and controlling 
the WTWs to adapt to the changes in the water chemistry after the disinfection switch. 
Potential improvement of the WTWs performance may also reduce the increased turbidity 
levels noticed in the DWDS after the switch. Finally, this research emphasises the importance 
of controlling the free ammonia concentration in the chloraminated systems to reduce the 
risk of nitrification in the DWDS, a phenomenon that once in its full length, could lead to the 
complete degradation of the monochloramine residual and to the increased iron levels in the 
DWDS.   

6.6. Conclusions 
 
SOMs were applied on a tap monitoring water quality samples dataset that included all the 
DWDS that have switched their disinfection type from chlorination to chloramination for 
understanding the impact of that switch on drinking water quality. The disinfection type, used 
as qualitative parameter in the SOMs analysis, was also used as temporal indicator to cluster 
the various quantitative SOM map cells into the pre-switch (chlorination group) and post-
switch group (chloramination group). Therefore, the cells in the SOM output map of each 
water quality parameter that are correlated with the chlorination group, belong in the pre-
switch period and the opposite for those that correlate with the chloramination group. The 
key findings of this work are:  
 

● Switching to chloramination reduces the concentrations of the DPBs in the drinking 
water 

Variable (units) Variable short 
form for SOM

Data Source Number of 
samples

Average value Standard 
deviation

Free Chlorine  (mg/l) FreeCl Water quality 7211 0.30 0.26
Total Chlorine (mg/l) TotCl Water quality 7206 0.60 0.33

Iron (mg/l) Fe Water quality 3668 82.22 550.26
Manganese (mg/l) Mngs Water quality 3588 8.83 67.47

Flow cytometry Total Cell 
Counts (cells per ml)

FC_TCCs Water quality 1552 17432 43328

HPCs @22C (No of colonies) HPC_22 Water quality 2859 2.17 19.74
Nitrate(mg/l) Nitrate Water quality 1293 1.03 0.57
Nitrite( mg/l) Nitrite Water quality 1338 0.01 0.02

Turbidity (NTU) Turbidity Water quality 2945 0.48 3.51
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● The bacteriological activity, both in terms of high HPCs and high TCCs, is increased 
after the disinfection switch  

● The increased TOC concentrations in both the customers taps and in the WTWs after 
switching to chloramination, explain the increased bacteriological activity after the 
disinfection switch.     

● Turbidity levels are increased after the switch which indicates a change in the water 
chemistry related both to increased metals’ concentrations but also to increased 
bacteriological levels. 

● There are indications of nitrification in the systems after the transition to 
chloramination.  

● Water utilities should concentrate in improving the performance of their WTWs, in 
terms of TOC and metals reduction, of the DWDS that are planning to switch 
disinfection 
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7. Α comparison between ensemble decision tree models 
for the classification of service reservoirs using drinking 
water quality data 

7.1. Introduction 
 
In the previous 2 chapters a new direction for understanding relationships between various 
parameters using an unsupervised machine learning method on monitoring water quality 
samples was presented. This approach, as it was demonstrated, could be very useful to water 
utilities (WUs) for understanding the factors of water quality deterioration and the impact of 
interventions in the DWDS. However, WUs require prediction of future deterioration events 
to increase the proactive management of the DWDS. Therefore, further investigation over 
the ability of supervised methods in predicting future water quality deterioration events using 
discrete monitoring water quality datasets. Successful prediction of such events could be 
beneficial for WUs as they could direct their actions into the high-risk areas, improve the 
general water quality in their networks, guarantee a better water quality for their consumers 
and thus improve their reputation.  
 
Ensemble decision trees, as explained in the literature review chapter, have the advantage 
that they do not operate like “black boxes” as the ANNs do. The split approach followed by 
each one of decision trees and the factors that contributed the most to the final decision for 
each tree that form the ensemble, could be presented to the model user once the prediction 
is made. Therefore, data-driven models that apply ensemble decision trees methodologies 
could be used not only as prediction tools but also as supportive tools for decision-making 
regarding pro-active interventions in the DWDS.  To the author’s knowledge, Mounce et al. 
(S. R. Mounce et al. 2017) were the first to apply a data-driven model based on an ensemble 
decision tree methodology on tap discrete monitoring water quality data for the prediction 
of iron failures at a DMA level of a water company in the UK and for the iron risk classification 
of the company’s DMAs.  
 
In this chapter, a methodology, that uses ML ensemble decision trees methods, is developed 
for the prediction of future failures in SW’s SRs. More specifically, this model predicts which 
SRs will fail in terms of having at least one sample with low Cl concentration (<0.3mg/l) the 
upcoming month or in terms of having at least one sample with coliform bacteria in the 
upcoming two months. Therefore, as this methodology identifies which SRs will fail and which 
will not, the binary classification approach is used. If the model predicts that a certain SR will 
fail in the upcoming month, then this SR will be grouped in the class named as “High risk” 
class, otherwise it will be grouped in the class named “Low Risk” class.  
 



 

119 
 

The ensemble decision trees that the methodology uses are random forest and boosting trees 
(AdaBoost and RusBoost) and a comparison of their outputs for both the prediction of low 
chlorine events and coliform bacteria events in SRs is made. This methodology aims to be a 
predictive tool that could be used by WUs for the identification of the SRs that are more likely 
to fail in the upcoming month. In addition, as it uses “white-box” ML techniques, it can also 
provide the water quality parameters that influenced the model’s outputs, an information 
that could be used for improving the models’ prediction performance further. Therefore, this 
chapter seeks to address the objectives 3 and 4 of this thesis. 

7.2. Data processing and final input dataset production 
 
The SRs’ monitoring water quality dataset for the years between 2012 and 2019 created as 
described in chapter 4 was used for this investigation. As it was mentioned many times before 
in this thesis, the monitoring water quality data are sparse both geographically and 
temporally and therefore the SR investigation was preferred to the tap investigation for two 
reasons: a) in the SRs each one of the samples was taken from the same point (SR outlet) and 
b) the regulations require to take 4 samples per month for every active SR to measure chlorine 
concentration (total and free), coliform bacteria and HPCs. However, by selecting the SR 
investigation, important parameters such as turbidity and total organic carbon (TOC) could 
not be included in the investigation as these parameters are not frequently measured in the 
SRs. For this work, we concentrated on low chlorine events and coliform bacteria events in 
SRs where at least 3 samples per month for every month of the investigation period were 
taken. In addition, the low chlorine events investigation, obviously, was made only to the SRs 
that belonged to the DWDS where chlorine was used for disinfection.     
 
As regards the temporal scale of the analysis, this was selected based on the frequency of low 
free chlorine and coliform bacteria events. A low free chlorine event was defined as the 
sample where the chlorine concentration was measured below 0.3 mg/l as the minimum free 
chlorine concentration on customers taps is 0.2 mg/l (WHO 2000) and part of the chlorine is 
consumed during the water travel through the pipe network before reaching the taps. A 
coliform bacteria event was defined as the sample that at least one coliform bacterium is 
counted as set by the regulations (DWQR 2019b). The counted events were also included in 
the water quality dataset. Low free chlorine events are rare events and consist of 5-10% of 
the monthly events. Therefore, based on this frequency the monthly temporal scale was 
selected for this investigation. On the other hand, coliform events are even more rare events 
and appear in less than 1% of the yearly samples. However, the coliform appearance is 
disproportional during the year with most of the events appearing during the summer period 
and very few appearing in the winter period. For example, in the year 2019, SW had in total 
71 coliform events in their SRs, 48 of which appeared during the summer months (from June 
to September) and for the months of January, February and March there were only 5 coliform 
events in total. It is, therefore, impossible to predict a coliform event during the winter 
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months using data-driven techniques as there are not enough past events to be used for 
training the models. In addition, even during the summer period the maximum number of 
events per month is not bigger than 8. Thus, this work focused on the prediction of coliform 
events during the summer period only, using a monthly scaled dataset for the months of May, 
June, July and August for the prediction of the events for the following two months 
respectively (e.g May input - June, July outputs). Both the monthly (low chlorine events) and 
the seasonal model (coliform events) are further described in the following section. 
 
Two final datasets were created using MATLAB® version 2019b. The first one was a monthly 
scaled dataset that included only the chlorine disinfection SRs for the period between 2012 
and 2019 and was used as an input in the monthly model. The second one was a summer 
monthly scaled dataset that included both the chlorine and the chloramine SRs and was used 
as input for the seasonal model. In each one of the datasets the following parameters were 
included: 

● Mean average values per SR per month for the following parameters: 
1.1.1.1. Free chlorine (Cl_AVE) - used only in the low chlorine events models 
1.1.1.2. Total chlorine (TotCl_AVE) - used only in the coliform events models 

only 
1.1.1.3. Heterotrophic Plate counts at 22 and 37 oC (HPC22 - HPC37) 
1.1.1.4. Flow cytometry intact and total cell counts (ICCs - TCCs) 
1.1.1.5.  Water temperature (SR temperature) 

 
● Mean average values from supplying WTWs per month for the following parameters: 

(i) Free chlorine (Cl_WTW) - used only in the low chlorine events models  
(ii) Total chlorine (TotCl_WTW) - used only in the coliform events models only 
(iii) Flow cytometry intact and total cell counts (ICCs_WTW - TCCs_WTW) 
(iv)  Water temperature (TEMP_WTW) 
(v) pH (pH_WTW) 
(vi) TOC (TOC_WTW) 

 
● Standard deviation per month per SR for the following parameters: 

(i) Free chlorine (Cl_std) - used only in the low chlorine events models 
(ii) Total chlorine (TotCl_std) - used only in the coliform events models only 

 
● Age of water exiting the SRs as given by SW (Water age) 

 
● Average daily precipitation per month per SR (SR precipitation) and per WTW (WTW 

precipitation)  
 

● Three nominal (categorical) parameters: 
(i)  SR Name (TWS) 
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(ii) Month of the year (Month) - used only in the low chlorine events models 
(iii) Disinfection type - used only in the coliform events models only  

 
In the final datasets there were no temperature, ICC and TCC data, both in the SRs and in the 
WTWs, for the years 2012-2014, as SW started measuring these parameters in the year 2015.  
The model inputs and outputs for both the low chlorine event prediction and the coliform 
event prediction are shown in figure 7.1  
 

 

 
Figure 7.1: a. Simplified diagram of inputs and outputs of the low chlorine events model. b. 

Simplified diagram of inputs and outputs of the coliform bacteria events model 
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7.3. Machine learning application steps 
 

The machine learning application steps for this investigation is as follows: 
 

a. Define the water quality problem   
In this chapter, the aim is to accurately classify SRs into High or Low Risk class by predicting 
future low chlorine and coliform events. Therefore, the water quality problem should be 
defined as follows:  
 
Is it possible to correctly classify SRs into High and Low risk classes by accurately predicting 
future low chlorine and coliform events in them? 
 

b. Type of the available data 
Τhe discrete water quality monitoring samples taken from the SRs outlets and the WTWs’ 
outlets are the available data for the investigation. In addition, the precipitation data, taken 
from the gauging stations located close to the WTWs and the SRs are also included. 

  
c. Define required output 

The required output is the classification of the under-investigation SRs into two different 
classes (event or non-event class / high and low risk class) 

 
d. Machine learning selection 

By following the machine learning tree presented in chapter 3 the most appropriate methods 
for this investigation are random forest and boosting trees. The final machine learning 
methods for this investigation were random forest, AdaBoost and RusBoost. The former two 
ML techniques belong to the broader family of boosting trees.  

 
e. Data preparation 

The SRs monitoring water quality dataset for the years 2012 to 2019 created as described in 
chapter 4 was used for this investigation. In addition, to create a steady temporal scale 
dataset - one monthly and one yearly scaled dataset - the average monthly and yearly values 
of each parameter of the dataset were calculated, including the WTWs parameters and the 
precipitation in both the SRs and the WTWs.    

  
f. Application output 

The required output is a vector that indicates in which class each one of the under-
investigation service reservoirs belongs. The application outputs are presented in the rest of 
this chapter. 
 
The ML application steps for this investigation are summarized in the following figure. 
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Figure 7.2: Machine learning application steps for the prediction of future deterioration events in 

SRs 

7.4. SR classification models methodology 

7.4.1. Ensemble algorithms and imbalanced datasets 
 
The main aim of the predictive models was to classify the SRs into either the no-event (Low 
Risk) class or the event class (High Risk), for the month or the period under consideration, 
based on their predictions regarding the appearance of low chlorine events (month under 
consideration) and coliform events (period - season - under consideration).   
The initial concept was to investigate traditional ensemble machine learning techniques such 
as random forest and AdaBoost (the main boosting algorithm) as the main algorithms for the 
predictive models. These two models were used successfully in various scientific projects 
including research projects in the water domain (Rojek 2014; Meyers, Kapelan, and Keedwell 
2017; Xenochristou et al. 2018) and their algorithms are explained in chapter 3. However, 
their main weakness is that in heavily unbalanced datasets, like the under-investigation SR 
dataset, they tend to overclassify towards the majority, in this case low risk, class. Therefore, 
in this work some other methods that aim to tackle the imbalance issue are also investigated.  
 
The most common type of methods applied to solve the imbalanced datasets problem are 
the sampling methods (He and Ma 2013). The general idea of these methods is to change the 
balance of the dataset with a specific mechanism and create a new dataset with more 
balanced classes. Oversampling of the minority class, undersampling of the majority class and 
the combination of both are some of the mechanisms used in sampling methods. In this 
chapter, 3 different techniques were investigated. More specifically, 2 oversampling 
techniques, SMOTE (synthetic minority oversampling technique) and ADASYN (adaptive 

•Is it possible to correctly classify SRs into High and Low risk classes 
by accurately predicting future low chlorine and coliform events in 
them?

Define the water quality 
problem

•Discrete water quality monitoring samples from SW’ WTWs and 
SRs  Type of available data

•2 different categories (events – non-events)Define type of required output

•AdaBoost
•RUSBoost
•Random Forest

Machine learning selection

•Creating SR WQ datasets
•Calculate monthly average WTWs and SRs parameters
•Including meteorological data

Data preparation

•See section 4 of this chapterApplication output  
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synthetic sampling approach) that balanced the final input dataset by creating synthetic data 
for the minority class (event/high risk class). In addition, an ensemble decision tree method, 
RUSBoost (random under sampling boosting), that combines the undersampling approach 
with the boosting algorithm was also investigated. 
  
SMOTE (Chawla et al. 2002) creates synthetic (artificial) data for the minority class following 
these steps: 

1. For each sample, find randomly k nearest minority class neighbours (where k an 
integer number)  

2. Select randomly one of the k nearest neighbours  
3. For all the numerical features (parameters)  

a. calculate the Euclidean distance between the sample vector and the selected 
neighbour vector 

b. Multiply the result with a random number between 0 and 1   
c. Add the result to the sample vector and create a new synthetic vector   

4. For all the nominal features (parameters)  
a. Find the nominal feature with the maximum number of appearances over the 

k minority class neighbours and the sample and add it to the new synthetic 
sample. If these are more than 1, select randomly   
 

ADASYN (He et al. 2008) creates synthetic data for the minority class by using a weight for 
each minority class sample that corresponds to its difficulty in learning. Thus, the minority 
samples that are surrounded by samples of the majority class contribute more in the synthetic 
data than the minority samples that are surrounded by similar samples. The steps that 
ADASYN follows are: 

1. Find k neighbours (where k an integer number) of each minority sample based on the 
Euclidean distance and calculate the ratio of the sample by dividing the number of 
these neighbours that belong to the majority class and k.   

2. Normalise the ratio for each sample by dividing the ratio of each sample with the sum 
of the ratios of all the samples 

3. Calculate the number of synthetic samples that should be generated for each sample 
by multiplying its normalised ratio with the total number of synthetic samples that we 
want to generate 

4. For each minority sample, create the defined in step 3 number of synthetic data by 
following the SMOTE algorithm. 

 
RUSBoost (Seiffert et al. 2008) is a machine learning technique that combines the random 
undersampling method for balancing the datasets with the boosting ensemble decision tree 
algorithm. The random undersampling method simply removes samples that belong in the 
majority class randomly, so that the final dataset that is used for training is balanced or more 
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balanced than the initial one. Once the final dataset is created each weak learner (each 
decision tree of the ensemble) is trained based on the new more balanced dataset. 

7.4.2. Monthly (low chlorine events) and seasonal (coliform bacteria 
events) predictive models 

 
The problem, as described above, was a binary classification problem where SR should have 
been classified in either the Low-Risk no-event class or the High-Risk event class. Therefore, 
the seasonal and the monthly models were required to predict in which of the two classes 
each SR will belong in the following two months or the next month respectively.  

7.4.2.1. Monthly low-chlorine events predictive models 
 
For the monthly predictive models all the data up to and including the month prior to the 
present month were included, requiring a target output which in this case was the prediction 
of low chlorine events in SRs for the present month. This practically means that for predicting 
the chlorine events in August 2019, the input data from January 2012 with the SR classification 
for February 2012 up to input data for June 2019 with SR classification for July 2019 were 
given for training the model and the input data for July 2019 were given to the model to 
predict the class that each SR belongs in August 2019. Figure 7.3a shows a simple schematic 
of the monthly model.  

7.4.2.2. Seasonal coliform events predictive models 
 
For the seasonal predictive models all the data up to and including the month prior to the 2 
investigation months were included, requiring a target output which in this case was the 
prediction of coliform events in SRs for these two months. So, in the seasonal model for 
predicting the coliform events in July and August 2019, the input data from May 2012 with 
the SR classification for Jun - July 2012 up to the input data for May 2019 with SR classification 
for June 2019 were given for training the model and the input data for June 2019 were given 
to the model to predict the class that each SR belongs in June-July 2019. Figure 7.3b shows a 
simple schematic of the seasonal model. 

7.4.2.3. Models’ parameters and implementation 
 

For the training of each model there was the option of including or excluding a sampling 
method (SMOTE, ADASYN or none of them) and selecting one of the 3 machine learning 
algorithms (random forest, AdaBoost and RUSBoost). Therefore, there were 9 possible 
options for the training of the monthly and the seasonal model. In addition, for each model 
there is also the option of selecting all the available water parameters, or part of them. For 
the implementation, an algorithm was created in MATLAB® version 2019b (saved in the 
Github repository) where the user was able to select the type of model (season or month), 
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the sampling method (SMOTE or ADASYN or none), the machine learning algorithm (random 
forest, AdaBoost and RUSBoost) and the water parameters to be included in the investigation.  
 
There were a number of parameters that were required to be defined regarding the machine 
learning algorithm and the sampling methods. For the machine learning algorithms, the 
number of weak learners was defined as 1000 trees, the minimum leaf size was defined equal 
to 1, the learning rate for the boosting algorithms was set as 0.1 and the number of randomly 
selected variables set for each tree split in random forest was set to 3.  As regards the 
sampling methods, the k number of neighbours was set equal to 5 and the number of 
synthetic data to be created was defined by the user for each different model run.   
 

 

 
Figure 7.3: a. Monthly predictive model scheme for SR class prediction for August 2019. b. 

Seasonal predictive model scheme for SR class prediction for the period July-August 
2019Performance metrics 
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Three performance metrics were used in this work for evaluating the models’ results in 
comparison with the real - test data, the true positive rate (TPR) the true negative rate (TNR) 
and the Matthews correlation coefficient (MCC). The formulas and the meaning of each one 
of these metrics is explained in chapter 3. 
 

7.4.3. Combining the ensemble models 
 
A further combination of the best predictive models’ outputs was made to investigate if the 
combined model could, potentially, enhance the final performance. In this study, 3 different 
combined ensembles models were created based on the way that the models contributed to 
the final decision. More specifically: 
 

a. Simple Average Combined Ensembles Model (SACEM) 
In SACEM for each SR each one of the top ensemble models contributed equally in the 
classification decision with a single vote in the final decision. In case of a tie in the votes, 
SACEM classified the SR in the High - risk (event) class.  
  

b. TPR Weighted Average Combined Ensembles Model (TPR WACEM) 
The TPR WACEM model made its classification decision for each SR by assigning different 
weights on each one of the best ensemble models based on their TPR performance. The 
weights on each model were assigned as follows: 
 

𝑇𝑃𝑅_𝑤+ =
𝑇𝑃𝑅+

∑!+#$ 𝑇𝑃𝑅+
	

 
where TPR_wi is the assigned weight at the ith model and TPRi its TPR performance. 
 

c. MCC Weighted Average Combined Ensembles Model (MCC WACEM) 
The MCC WACEM model made its classification decision for each SR by assigning different 
weights on each one of the best ensemble models based on their MCC index. The weights on 
each model were assigned following the same equation as in the TPR WACEM model but 
instead of using the TPR performance of each model, the MCC index was used.  

7.5. Results  

7.5.1. Monthly low chlorine predictive models  

7.5.1.1. Checking past events method  
 
For this investigation the month selected as the test month was August 2019. Before training 
the machine learning models, a simple check in the original dataset for the SRs that had 
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repeated low chlorine events during the month of August in the previous three years (2016-
2018) was made. In this approach, it was assumed that an SR that had 2 or more low chlorine 
events in the past 3 years should be classified as a high-risk SR and the opposite for those with 
1 or zero events during the same period. This is an approach that WUs commonly follow for 
prioritising their interventions in their SRs and was also followed in this chapter to compare 
its outputs with the ones of the data-driven methodology. The outputs indicated that the 
checking past events approach had a TPR performance of 0.61 (with correctly predicting 53 
SRs in the high-risk class), a TNR performance of 0.75 (243 SRs were correctly classified in the 
low-risk class) and an MCC index of 0.31.  

7.5.1.2. Summary of monthly ensemble models results  
 
Overall, 7 algorithms were used in this work for the monthly model investigation as follows: 

a. Random forest (RF) 
b. Random forest with SMOTE with synthetic sampling rate equal to 100% of the 

minority class so that the minority class equals to around 35% of the final training 
dataset (RFS100) 

c. Random forest with SMOTE with synthetic sampling rate equal to 200% of the 
minority class so that the final dataset is balanced (RFS200) 

d. Random forest with ADASYN with synthetic sampling rate equal to 100% of the 
minority class (RFA100) 

e. Random forest with ADASYN with synthetic sampling rate equal to 200% of the 
minority class (RFA100) 

f. AdaBoost (AB) 
g. RUSBoost (RB) 

 
For each one of these algorithms 3 model simulations were made using different groups of 
parameters. More specifically, for all the algorithms:  

● In simulation 1, all the numerical and categorical parameters were included  
● In simulation 2, only the 5 parameters that contributed the most in the final decision 

of the first simulation, as defined from the post-training graphs (see appendix A), were 
included 

● In simulation 3, the three free chlorine parameters (free chlorine average, free 
chlorine standard deviation, WTWs’ free chlorine average), the categorical 
parameters (SR name and month of the year) plus the water age and the temperature 
of water in the SRs are included.  

 
SR water age and temperature are included in the third simulation because these were the 
two main parameters correlated with low free chlorine concentrations in the SRs, as the SOMs 
investigation demonstrated in chapter 5. The total number of models produced were 21 (7 
ML techniques with 3 different sets of parameters per technique). Each model was named 
based on the algorithm that followed and a number between 1-3 that represented the specific 
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simulation as described above. So, for example, the random forest plus SMOTE 100% model 
that included all the parameters in the training process was named RFS100.1. The models 
were trained to predict the low chlorine events for August 2019. The results were compared 
with the real data for the month of August 2019, and the performance metrics of these 
models are presented in Table 7-1. 
 

Table 7-1: Summary of the monthly models’ performance metrics

 
 

The MCC of these models has a range between 0.33 and 0.46 which is an indication that all 
the models perform relatively well. However, the TPR variation indicates that some of the 
algorithms and models outperform others. More specifically, the random forest models (RF.1-
RF.3) and the AdaBoost models 2 and 3 (AD.2-AD.3) could not predict sufficient low chlorine 
events. The use of ADASYN and SMOTE sampling methods improved the positive predictive 
performance of the random forest algorithm as the TPR metric indicates but with the cost of 
increased false positive events as the decrease of TNR shows.  The RUSBoost models, which 
also use a sampling method in their algorithms, correctly predicted more positive events 
compared to the simple boosting model (AdaBoost) but again with the cost of increased false 
positive events.  The MCC metric indicates that overall, the most balanced model is AB.1 as it 
has the higher MCC number (0.46). However, the TPR of this model is lower compared to 
other models which, in our case, is a disadvantage as the main goal is to correctly predict as 
many high-risk SRs as possible. By contrast, RFA200.3, the model that correctly classified the 
most SRs in the high class (TPR 0.8), had the lowest TNR performance (TNR=0.63) which 
indicates that this model had also increased false positive predictions which also affects its 
MCC performance. Thus, a further comparison over the actual number of SRs that were 
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correctly classified in either the low-risk or the high-risk class was also made using the models 
that had an MCC value of 0.4 or higher but also had a TPR value of 0.6 or higher. In this 
comparison, the number of the correctly classified SRs using the repeated events approach 
over the last 3 years, as described at the beginning of the chapter, was also included.  The 
results are presented in table 7-2.  

 
Table 7-2: Comparison of the numbers of the correctly classified SRs by the most accurate 

ensemble decision tree monthly models and the checking the past years events method   

 
 

 
As the table indicates, without the use of a machine-learning algorithm, only 53 out of 87 SRs 
would have been predicted correctly as high-risk SRs. The AB.1 model predicted correctly one 
less SR in the high-risk class compared to repeated events approach, but also generated 41 
less false positives, a result that demonstrates the superiority of the data-driven approach 
over the simple check of past years results approach. The RF models using SMOTE and 
ADASYN (RFS200.3, RFA100.3, RFA200.2) were the models that predicted most of the low-
chlorine events, however, with the cost of creating a lot of false positives, as around 100 SRs 
were incorrectly classified in the high-risk class. Overall, the RB models (RB.1 and RB.3) appear 
to be the most accurate models in classifying the high-risk SRs without over producing false 
positives as the numbers in table 7-2 indicate.     

7.5.1.3. Monthly low chlorine combined ensemble models’ results 
 
For the combined ensemble models the 4 models that produced the better results were 
selected. More specifically, the models selected for the investigation were RFA100.3, AB.1, 
RB.1, RB.3. The models’ outputs for August 2019 are presented in table 7-3. The results 
indicate that all three models (SACEM, TPR WACEM) produced good results and correctly 
predicted at least 60 SRs in the high-risk class. In addition, the MCC indexes of all the 
combined models were equal or higher to the single ensemble decision trees. SACEM and TPR 
WACEM models were able to identify more positive SRs than both the RB.1 and RB.3 models 
and one less compared to the RFA.100. The MCC WACEM model predicted fewer positive 
events compared to the other two models, however its higher TNR performance indicates 

Checking past 
years events 

method
RFS200.3 RFA100.3 RFA200.2 AB.1 RB.1 RB.3 Cl events for 

August 2019

Correctly predicted 
high-risk SRs

53 64 65 67 52 62 63 87

Correctly predicted 
low-risk SRs

243 236 237 226 285 257 255 326

MCC 0.31 0.4 0.4 0.4 0.46 0.44 0.44
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that it created less false positive events. Finally, according to the MCC indexes, TPR WACEM 
is the best out of these three models (0.45 MCC index and 0.44 the other two models). In 
addition, TPR WACEM performs better to both RB.1 and RB.3 models. 
 

Table 7-3: Comparison of the combined low chlorine events ensembles models outputs for 
August 2019 

 
 

7.5.2. Seasonal coliform events predictive models  

7.5.2.1. Checking past years events  
 
The months of July and August 2019 were selected as the test period for our investigation. As 
in the monthly models, a simple check in the data for past coliform events was also made 
prior to the models’ training. This is again an approach that commonly WUs use for prioritising 
their interventions in the SRs prior to the summer period and thus avoiding bacteriological 
failures.   In this case, as the coliform events were even more rare, an SR was classified in the 
high-risk SR class if there was at least 1 coliform bacterium appearance in its water quality 
samples in the months of July and August for the years 2016-2018. This approach had a TPR 
performance of 0.25 (with correctly predicting 5 SRs in the high-risk class), a TNR performance 
of 0.88 (571 SRs were correctly classified in the low-risk class) and an MCC index of 0.07.  

7.5.2.2. Summary of seasonal ensemble models’ results  
 
The coliform bacteria dataset is even more unbalanced compared to the low-chlorine one 
and therefore, in the coliform bacteria investigation, only the algorithms that had better 
performance in classifying the SRs by predicting low chlorine events were selected. More 
specifically, the RF models and the RF models using SMOTE to create a less unbalanced 
dataset (RFS100 models) were excluded from this investigation. In addition, the AdaBoost 
algorithm was used only in combination with SMOTE and ADASYN.   Overall, the algorithms 
that were selected in this investigation were as follows: 

a. Random forest with SMOTE with synthetic sampling rate equal to 1400% of the 
minority class so that the minority class equals the majority class in the final dataset 
(RFPS1400) 

b. Random forest with ADASYN with synthetic sampling rate equal to 1000% of the 
minority class so that the minority class equals to the 35% of the final dataset 
(RFPA1000) 

c. Random forest with ADASYN with synthetic sampling rate equal to 1400% of the 
minority class (RFPA1400) 

Combined Ensemble 
Model

No of models 
combined TPR TNR MCC

Correctly 
predicted 

high-risk SRs

Correctly 
predicted 

low-risk SRs
SACEM 4 0.74 0.77 0.44 64 251

TPR WACEM 4 0.74 0.78 0.45 64 255
MCC WACEM 4 0.7 0.8 0.44 60 262

Models combined

RFA100.3,AB.1,RB.1,RB.3
RFA100.3,AB.1,RB.1,RB.3
RFA100.3,AB.1,RB.1,RB.3
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d. AdaBoost with SMOTE with synthetic sampling rate equal to 1400% of the minority 
class (ADPS1400) 

e. AdaBoost with ADASYN with synthetic sampling rate equal to 1400% of the minority 
class (ADPA1400) 

f. RUSBoost (RBP) 
 
For each one of these techniques 3 model simulations were made using different groups of 
parameters. More specifically, for all the algorithms: 

● In simulation 1, all the numerical and categorical parameters were included 
● In simulation 2, the used parameters were the free and the total chlorine, the age of 

water, the temperature of water in the SRs as these are the parameters that are 
mostly related to bacteriological failures during the summer period (an argument that 
agrees with the SOMs analysis findings in chapter 5 as well), plus the SR name as a 
categorical parameter 

● In simulation 3, the total chlorine, the free chlorine, and the temperature of water in 
the SRs plus the SR names as categorical parameters were used. The reason that the 
water age parameter was excluded in the third simulation was for investigating the 
performance of each algorithm without the use of a repeated numerical parameter 
(the age of water was a steady number for each SR).  

 
The total number of the produced models was 18 (6 techniques with 3 simulations per 
technique).  As above, for this investigation, each model was named based on the algorithm 
that followed and a number between 1-3 that represented the specific parameters used as 
described above. In addition, the letter P (for period) after the algorithm initials for each 
model was also included. So, for example, the random forest plus ADASYN 1000% model that 
included all the parameters in the training process was named RFPA1000.1. The models were 
simulated to classify the SRs based on their coliform events for July-August 2019. The outputs 
were compared with the real data for July and August 2019 and their performance metrics 
are presented in Table 7-4.  
 
The MCC of these models has a range between 0.12 and 0.31 which is an indication that the 
seasonal coliform prediction models had, in general, a worse performance compared to the 
monthly low-chlorine prediction models. However, these findings were expected since only 
20 out of the total 670 SRs under investigation, had a coliform event during July-August 2019. 
That also explains the fact that all the models, apart from the RB ones, had a low TPR 
performance.  
 
The MCC values indicate that the best model was RFPA1000.1 (MCC=0.31) for all the reasons 
mentioned in the previous paragraph. This is because this model classified correctly all the 
low-risk SRs and two SRs in the high-risk class but mainly because it did not create any false 
positives. This model, though, had the lowest TPR performance (TPR=0.1) of all the models 
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(together with the models RFPS1400.1, ABPS1400.1, RFPA1400.1, ABPS1000.1) which is a big 
disadvantage as its main goal is to predict the most coliform events possible. Nevertheless, 
when the RFPA1000.1 model is compared with the other aforementioned models with equal 
TPR, it is clear that this one performs better, as all the others, not only they did not correctly 
classify a sufficient number of high-risk SRs in the correct class, but they also produced a 
significant amount of false positive SRs. 
 

Table 7-4: Summary of the seasonal models’ performance metrics 

 
 

For all the RF algorithms with 1400% extra synthetic minority data (RFPS1400 & RFPA1400), 
the 2nd and the 3rd model had an increased TPR performance and a decreased TNR 
performance compared to the 1st model. Their MCC index though is increased, a factor that 
indicates that the cost of generating more false positives (smaller TNR performance) did not 
affect their overall performance. The AdaBoost models (ABPS1400 & ABPA1400 models) had 
the lowest TPR performance when compared to the respective models of the other 
techniques. However, their TNR performance which is high (0.95-1) and their MCC index 
indicate that the Adaboost algorithm produced more balanced models and, more 
importantly, less false positive SRs. Finally, the RUSBoost models had by far the highest TPR 
performance (TPR=0.8 for all the RB models). However, the TNR performance and the 
decrease of the MCC value in the 2nd and 3rd model of the algorithm indicate that to achieve 
this positive rate, a high number of false positives SRs were also created.  
A further comparison over the actual number of the correctly classified SRs of the most 
successful models (those SRs with MCC 0.2 or higher) and the repeated events is presented 
in table 7-5.  
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The repeated events approach had the worst performance as its MCC shows. This is another 
indication of the importance of the use of data-driven techniques over the simple checking of 
past events approach. The AdaBoost models (ABPS1400.3, ABPA1400.2 and ABPA1400.3) and 
RFPA1000.1 model correctly classified less SRs than the other models but have predicted 
correctly a very high number of low-risk SRs. By contrast, the other RF models (RFPS1400.3 
and RFPA1400.3) and the RB model predicted more events but with the cost of a high number 
of false positives. Overall, the table 7-5 indicates that there is no clear “winning” model.  
 

Table 7-5: Comparison of the numbers of the correctly classified SRs by the most accurate 
ensemble decision tree seasonal models and the checking the past years events method 

 

7.5.2.3. Seasonal coliform events combined ensemble models results  
 

For the combined models, the 5 models with the most predicted coliform events were 
selected (RFPS1400.3, RFPA1400.3, ABPA1400.2, ABPA1400.3 and RBP.1). The combined 
models’ outputs for July-August 2019 are presented in table 7-6. As expected, none of the 
combined models could not predict more positive events than the RBP.1 model. However, 
both the SACEM and TPR WACEM models had a better performance compared to both the 
RFPS1400.3 and the RFPA1400.3, as the former predicted the same positive SRs and 38 more 
negative SRs and the latter predicted 2 more positive SRs and 26 more negative SRs. The MCC 
WACEM had similar predictions with the AB models which was an expected finding as the ABP 
models had the best MCC index and, therefore, they were the models that influenced it the 
most. Overall, by looking at both the performance metrics and the actual numbers of the 
correctly predicted SRs, it could be said that the combined models performed better than 
most of the single ensemble decision trees.    
 

Table 7-6: Comparison of the seasonal combined ensembles models outputs for July & August 
2019 

 
 
 

Checking 
past years 

events 
method

RFPS1400.3 RFPA1000.1 RFPA1400.3 ABPS1400.2 ABPA1400.2 ABPA1400.3 RBP.1
Coliform Events for 
July-August 2019

Events 5 11 2 11 3 6 5 16 20
Non Events 571 474 650 474 646 619 633 456 650

MCC 0.14 0.2 0.31 0.21 0.28 0.24 0.26 0.24

SACEM 5 0.55 0.78 0.23 11 508
TPR WACEM 5 0.65 0.75 0.24 13 490
MCC WACEM 5 0.3 0.96 0.24 6 623RFPS1400.3, RFPA1400.3,ABPA1400.2,ABPA1400.3, RBP.1

RFPS1400.3, RFPA1400.3,ABPA1400.2,ABPA1400.3, RBP.1
RFPS1400.3, RFPA1400.3,ABPA1400.2,ABPA1400.3, RBP.1

MCC Events Non-EventsCombined Ensemble 
Model

No of models 
combined

Models combined TPR TNR
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7.6. Discussion 

7.6.1. Results analysis 
 
The RF classification models without the use of sampling methods were ineffective to 
correctly classify a high number of high-risk SRs in their correct class, based on their low-
chlorine event prediction, as their low TPR indicates. However, this is not a surprising 
output due to the nature of the RF algorithm (Breiman 2001). RF makes its final 
classification decision based on a vote between its independent and individual decision 
trees, each of which was trained in a highly unbalanced dataset. Therefore, it was easier 
for the RF model to predict the low-risk SRs, as their TNR performance indicates, than 
identifying the high-risk SRs. The use of the sampling models had improved RF’s TPR 
performance in both the monthly and the seasonal approach. In fact, the more balanced 
the final dataset was, the more high-risk SRs were predicted. The cost of generating more 
false positive results when the use of the sampling methods was included, was also 
expected as the test dataset (August 2019 for the low chlorine events and July and August 
2019 for the coliform events) had a small number of positive events while the RFs were 
overfed with positive events during their training.  
 
ADASYN has been proven to be a better sampling method for creating synthetic data to 
improve the monthly RF models’ TPR performance than SMOTE in this case study. This 
finding indicates that the ADASYN approach of creating data from the most hidden 
minority class data and not from all the original dataset, generates more “difficult” 
minority examples for the RFs’ training and, thus, improves their ability to predict more 
positive events. However, for the seasonal RF models, ADASYN and SMOTE produce 
almost similar synthetic data as the RFPS1400 and RFPA1400 models’ performance 
demonstrate. This could be potentially explained by the fact that the coliform events 
constitute only the 4.4% of the seasonal dataset, thus many the synthetic data (1400% of 
the minority class dataset) was required to balance it and, consequently, for both 
methods, the minority data has contributed multiple times to accomplish that.   

 
The boosting algorithm (AdaBoost) produced better results regarding the low Cl events 
prediction compared to the RF. This is because, in contrast to the RF algorithm, each 
decision tree in boosting is not independent and does not contribute the same in the final 
decision(Rokach 2010). Each new decision tree is influenced by the performance of the 
previous trees during the training and, thus, the AdaBoost algorithm could understand 
the training dataset. As the monthly models’ MCCs indicate, AdaBoost are steady models 
that do not create a high number of false positives or false negatives. However, they were 
unable to predict enough positive events which is the main scope for WUs.   
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AdaBoost algorithm remains steady and unbiased towards the minority class even when 
it is trained with a balanced dataset generated by either SMOTE or ADASYN as the 
seasonal models’ results indicate. The fact that the TPR performance is low may indicate 
that, when there is no clear difference between the minority and majority class data, the 
AdaBoost algorithm classifies the SRs into the safer class (low-risk class). This “safe” 
approach predicts a small number of high-risk SRs, but at least most of them are correctly 
classified. This is in contrast with the RF algorithm behaviour when the sampling methods 
are used to balance the dataset as described in the previous paragraphs. 
 
The RUSBoost model was introduced as a model to tackle the problem with the 
unbalanced datasets by combining the simple removal of unnecessary data from the 
majority class and the boosting algorithm. The seasonal and monthly RB findings indicate 
that with this approach the boosting algorithm increases the number of positive classified 
events but with the cost of losing the stability of the AdaBoost and of classifying 
incorrectly many SRs in the high-risk class. 
 
The combined models’ performance is dependent on the performance of each individual 
ensemble decision tree. Thus, it is impossible for these models to outperform the 
individual ones in all the performance metrics. However, the SACEM and TPR WACEM 
combined models’ approach, introduced in this chapter, indicated that the combination 
of more stable models - models with higher MCC with models with higher TPR - creates 
models that have sufficient positive rate and, at the same time, reduces the false positives 
that the high TPR models generate. As regards the MCC WACEM models, they may had 
predicted less positive SRs, but they also had high TNR performances, which indicates that 
this is the recommended combined model that someone could use when their main goal 
is to prioritise the interventions to a limited number of SRs. 
 
The findings demonstrated that selecting the important water quality parameters for 
training the models, is important for the RF seasonal and monthly models. In general, RF 
required less parameters to increase their TPR performance. Selecting the top-5 
parameters was a good approach but the findings also demonstrated that parameters 
such as the water age, the temperature the free and the total chlorine contributed the 
most into creating more accurate results. Therefore, it would have been very interesting 
to investigate the accuracy of the models if further information was available, regarding 
the seasonality change of the water age exiting the SRs and the water temperature data 
for the whole study period, and not only for the last 4 years. 
 
It is worth mentioning that some of the seasonal and monthly boosting models (both 
AdaBoost and RUSBoost) performed better when all the available parameters were 
included in their training. This could, probably, be explained by the difference in the way 
that boosting and random forest make the final decision. As mentioned before, in 
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boosting, the final decision is made using a weighted average and the final trees in the 
training sequence had learnt to use the information from each parameter proportionally 
to their contribution in the classification process. In random forest, though, each tree is 
completely independent and each split decision at each tree is made based on 3 
parameters selected randomly each time. Therefore, in random forest the more the 
available parameters the merrier are the chances that a parameter that is not related to 
the deterioration event is selected for the splitting decision.  
 
Both models, in this chapter, have been trained using the maximum available data for 
training and tested only in one month (two months for the coliform bacteria events 
model). This is because it was aimed to maximise the available data for the training period 
and get better model outputs. In practice, WUs will follow the same approach by adding 
the new available data at the end of the month in the model for training and predicting 
the SRs class in the following month. In the future where data for more years will be 
available, further work is required to investigate if the existing models’ performance could 
be improved when, in addition to the previous month inputs, the data of the previous 
year are included.  

7.6.2. Operational value of models’ application 
 
Checking past years events approach indicated the importance of recording and 
maintaining a monitoring water quality dataset. This study showed that, even without the 
use of any data-driven technique, many water quality deterioration events could have 
been prevented merely by checking repeated past events and the values of their related 
water quality parameters. 
 
The monthly and the seasonal prediction could be used for different approaches by the 
WUs. The former could be used as an alarm of low chlorine concentrations and, 
subsequently, as a bacteriological risk indication in the water supply zones (WSZs). The 
later could be used for early prediction of coliform events and prioritisation of proactive 
interventions in the SRs. 
 
The ensemble decision trees make their class decision based on a likelihood of risk per SR 
that is provided to the user as an output of scores for each SR and for each class. 
Therefore, this score could be used for ranking the SRs from the highest to the lowest risk 
and, based on these, WUs can concentrate their interventions into the ones that have 
higher chances to fail. In addition, each model could export as an image every decision 
tree of the ensemble. An example of one of the decision trees of the RB.3 model is 
presented in figure 7.4. This example shows the split criteria of the data in the first 2 leaves 
of the decision tree. The model user could check the splitting criteria of a certain number 
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of the model’s decision trees, and, therefore, understand the reasons that it made a 
certain decision. 
 
There were some models that outperformed in this work and others that show that they 
are not appropriate for the available data in the SRs.  However, this research could not 
recommend only one model to use for either the low chlorine events prediction or the 
coliform bacteria prediction. This is because the models’ outputs indicated that there will 
always be a trade between increasing the TPR performance and decreasing the MCC index 
by generating a large number of false positives. The optimal trade between these two 
metrics criteria should be decided on a managerial level, based on the balance between 
proactive intervention in the predicted high-risk SRs and the available financial sources. 
The combined ensemble models presented here, demonstrated that could be the solution 
that could balance the TPR vs MCC. Therefore, it is recommended that the final decision 
on the proactive management strategy should be taken after checking the outputs of 
these models.    
  

 
Figure 7.4: Part of one of the 1000 decision trees of the RB.3 model 

 
Finally, it is worth pointing out that this is machine learning approach that uses only available 
water quality monitoring data in the SRs. This methodology can be applied for any other 
deterioration event prediction in the DWDS if there are sufficient discrete water quality 
monitoring sample data for a specific temporal scale and as long as, in the under-investigation 
data, a range of past deterioration events are included. 

7.7. Conclusions 
 
In this chapter, a methodology for classifying SW’s SRs into two different classes (high-risk or 
low-risk class) was presented. This methodology used three different ensemble decision tree 
algorithms (random forest, AdaBoost and RUSboost) on the monitoring water quality samples 
dataset taken from the SR outlets. Two different types of models were created, the monthly 
models and the seasonal models. The monthly models used past water quality data on a 
monthly temporal scale for the classification of the SRs based on the model’s prediction of  at 
least one low chlorine event (samples with free chlorine concentration below the 0.3 mg/l 
threshold) in the upcoming month. The seasonal models used past water quality data on a 
monthly temporal scale for the summer months only, for the classification of the SRs based 
on the prediction of coliform events in the following two months during the summer period 
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(June and July, July and August, August and September). The SRs that the methodology 
predicts will have at least one event were grouped in the High-risk class and the others in the 
Low-Risk class. Due to the unbalanced nature of the monitoring water quality dataset - with 
the increased majority of the dataset being in the Low-Risk class,  two different sampling 
methods, SMOTE and ADASYN, were also used to generate synthetic data for the minority, 
High - Risk class, for balancing the training dataset and, thus, assisting the algorithms’ training.  
Overall, 21 different ML - input combinations of the monthly model were tested for their 
predictions in the month of August of 2019 and 18 different ML-input combinations of the 
seasonal model were tested for their predictions in the months of July & August 2019. In 
addition, 3 different combination of the most accurate monthly and seasonal models was also 
examined. Finally, the checking past events approach that WUs commonly used was also 
tested for comparison. The results indicated that:  
 

● Checking past years events approach indicated the importance of recording, 
maintaining and systematically check the past data for preventing some of the future 
events. However, machine learning based models outperformed this approach.    

● The monthly seasonal model produces more accurate results because has less 
imbalanced dataset than the seasonal model. 

● The monthly model that uses RF without additional synthetic data was the worst 
monthly model as managed to predict a maximum of 53% of the SRs that belonged in 
the High- Risk class. 

● Both SMOTE ad ADASYN improved RF models’ performance in predicting more SRs in 
the High-Risk class but with the cost of producing many false positives (SRs that were 
incorrectly classified in the High-Risk class). 

● The RusBoost based models (both monthly and seasonal) had the best performance 
as they managed to have a balance between correctly classifying SRs in the High-risk 
class and not producing many false positives (TPR=0.72 - TNR=0.78 - MCC 0.44). 

● Combining the best outputs in both the monthly and the seasonal approach 
improved the predictions outputs in terms of generating outputs that have a balance 
between true positives and false positives  

● The main advantage of this methodology is of being an “open box” approach. It 
produces outputs that the user could check for understanding the classification 
decision criteria and for ranking the SRs from the most likely to fail to lowest likely 
one. Thus, this methodology could provide evidence to WUs that could support the 
proactive interventions in the SRs that are more likely to deteriorate. 

● As a data-driven approach, this methodology is generic, and it could be also applied 
in other parts of the DWDS.  

● Further work when more data are available, should examine if the models’ 
performance could be improved when, in addition to the previous month inputs, the 
data of the previous year are included as inputs.  
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8. Predicting short-term chlorine losses in water distribution 
trunk mains using machine learning applications 

8.1. Introduction 
 
Water Utilities (WUs) usually collect time-series water quality data for specific investigations 
into their DWDS. The time-series data usually consist of flow, chlorine, and turbidity data in 
trunk mains. Most commonly, these data are collected from sensors in specific DWDS with 
known water quality problems, for monitoring the changes in the parameters. Typically, these 
datasets once checked for a certain investigation or research work are stored without further 
use. Thus, this chapter aims to explore the potential additional use of these types of time-
series datasets as inputs in data-driven models for predicting future deterioration events.   
 
Traditionally, predictions of the future behaviour of a water quality parameter, such as 
turbidity and chlorine decay, in the DWDS are made using process-based numerical models. 
These models attempt to mathematically describe the physical and chemical processes that 
occur inside the DWDS and require time-series data as input for their calibration. In general, 
process-based models describe the processes inside the DWDS accurately. However, for this 
hydraulic simulation, they require extended information regarding the DWDS characteristics 
(e.g., pipe material), accurate time-series data of flow, water temperature and all the water 
quality parameters whose behaviour is under investigation and a good understanding of the 
DWDS by the user. In addition, these models are only site-specific and require a lot of 
computational time for their simulation. 
 
Data-driven techniques could be an alternative approach for the prediction of the water 
quality behaviour. This is because, as shown in the previous chapters, these are not site-
specific and thus, once created, could be applied in any site with similar characteristics and 
where sufficient data are available. In addition, for their training, no hydraulic model is 
required and therefore the computational time is minimal. In the past, machine-learning 
methods were used in various works for the prediction of turbidity in water distribution trunk 
mains (WDTM) (Meyers, Kapelan, and Keedwell 2017; Kazemi et al. 2018) and chlorine 
concentrations on customers taps  (Gibbs et al. 2006) that are also mentioned in the 
Literature review chapter (Chapter 2).  
 
In this chapter, the aforementioned methodology that Kazemi et al. (Kazemi et al. 2018) 
developed, is adapted and redeveloped for the prediction of chlorine losses (ΔCl) at the 
WDTM end point. More specifically, the model, presented here, is a regression-based model 
that predicts future chlorine loss events, at the end of the WDTM up to certain hours ahead, 
using either past temperature and chlorine loss data or past flow and chlorine loss data. This 
methodology uses three different ML techniques for the future chlorine loss predictions, the 
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Artificial Neural Network (ANN) based on the nonlinear autoregressive exogenous network 
(NARX), the Feed-Forward (FF) ANN and Random Forest (RF). The methodology is tested in 
three WDTM with different hydraulic characteristics located in the same SW DWDS. This work 
investigates the general performance of the methodology and compares its performance 
using different parameters (temperature or flow) and different ML techniques. The overall 
aim of this chapter is to produce a predictive model that could be used by WUs’ operational 
staff to proactive intervene in their DWDS and reduce the risk of distributing water with low 
disinfectant concentration to their customers. This chapter addresses objectives 3 & 4. 

8.2. Machine learning application steps 
 
The machine learning application steps for this investigation is as follows: 
 

a. Define the water quality problem   
In this chapter, the aim is to predict a future ΔCl event at the end of the water distribution 
trunk mains. The water quality problem is defined as follows:  
 
Could the chlorine loss events at the end of the WDTM be predicted up to certain hours ahead 
using sensor time-series data?    
 

b. Type of the available data 
15 minute timestep chlorine, flow and temperature time-series data  
 

c. Define required output 
Chlorine losses predictions up to n hours ahead  

 
d. Machine learning selection 

By following the machine learning tree presented in chapter 3, the most appropriate methods 
for this investigation are the ANNs (FF and NARX) and the random forest algorithm.  

 
e. Data preparation 

The available data for this work were created for the purposes of a hydraulic discolouration 
research study. Once collected, the dataset should be cleaned from outliers, missing values 
and prepared for the analysis. In addition, the chlorine losses at the end of the trunk mains 
should be calculated and the chlorine loss events should be identified.  

  
f. Application output 

The application outputs would be a file that contains the model’s chlorine losses prediction 
per timestep. In addition, the model produces graphs where the predicted chlorine loss 
events are compared with the real chlorine loss events for comparison. The application 
output is presented in the following sections of this chapter. 



 

142 
 

 
The machine learning application steps for this investigation are summarized in the 
following figure. 
 

 
Figure 8.1: Machine learning application steps for the prediction of short-term chlorine loss 

events in water distributions trunk mains 

8.3. Site description, data collection and data preparation 

8.3.1. Site details and available dataset 
  
The data-sets selected for this investigation were created and collected for a research work 
on discolouration management in a SW DWDS in Scotland, UK (Sunny et al. 2017). As figure 
8.2 shows, the study area consists of 3 different trunk mains (TM-1, TM-2, TM-3) fed with 
water from the same water treatment work (WTW). Chlorine concentrations were monitored 
with a frequency of 15 minutes at the WTW outlet pipe and at the end of each trunk main 
prior to reaching the DMAs. Water temperature was also measured at the end of each trunk 
main, and flow was measured at the start of each trunk main with the same frequency. The 
main pipe characteristics for all the trunk mains are similar (table 8-1), however, during the 
study period, different flow conditions were applied at each one of the mains for the 
investigation of the impact of flow conditioning on chlorine decay, and, therefore, their 
hydraulic characteristics differed (Sunny et al. 2017).  More specifically, in TM-1 a flow 
conditioning that had a 40% shear stress increase in addition to the peak shear (normal 
conditioning) was applied. In TM-2 a flow condition of 15% increase to the peak (passive 
conditioning) was applied. Finally, in TM-3 had only two flow conditioning interventions, one 

•Could the chlorine decay in a trunk main be predicted 
with sensor timeseries data? 

Define the water quality 
problem

•Time series of chlorine, flow and temperature dataType of available data

•Future chlorine losses up to 8 hours aheadDefine type of required 
output

•NARX ANN
•Feed-Forward ANN
•Random Forest 

Machine learning 
selection

•Collect sensor data  clear outliers and missing values, 
identify chlorine decay, temperature and flow eventsData preparation

•See section 5 of this chapterApplication output  
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at the biggening of the investigation period and one at end of the investigation period, 12 
months later.       
 
The chlorine loss ΔCl during the travel from the WTW till the end of each trunk main at each 
timestep is calculated after assuming that during the study period there was no leakage in 
the trunk mains which means that there were no changes in the monitoring flow during the 
travel of the water through the trunk mains. Therefore, ΔCl at each timestep and for each 
trunk main is calculated as the difference between the measured chlorine concentration in 
the WTWs and the chlorine concentration at the end of each trunk main at a time step Δt 
which is equal to the required time for the water to travel the pipe’s length.  
 
 

 
          Table 8-1: Water distribution trunk mains characteristics 

  
Figure 8.2: Schematic of the DWDS trunk mains (Sunny et al.2017) 
 
 
Overall, three different datasets, one for each water distribution trunk main, are collected. 
Each dataset consists of 15 minutes time lag ΔCl, flow and temperature data for a period of 7 
months. During this period, there are some months with no available chlorine or temperature 
data that are excluded from the analysis.    

8.3.2. Data preparation 

8.3.2.1. Removing outliers and missing values 
 

 As in every time-series dataset, several outliers, either spikes or zero and negative values, 
have been found in these datasets. The spikes in the datasets could be identified as they occur 
in very short time (usually one timestep) and their values are much higher compared to the 
values of their neighbour measurements. As the datasets are large, a gradient algorithm is 
created in MATLAB® version 2019b to identify and remove these outliers (see github 
repository. The algorithm, firstly, identifies and removes the zero and negative values and 
replaces them with missing values. Then it computes the gradient between each point and its 
previous one and if it is greater than a certain threshold, the data point is replaced with a 
missing value as well.  

Trunk 
main 

Mean 
internal 

diameter 
[mm] 

Pipe 
material 

 
Velocity    

[m/s] 

Length from 
WTW outlet to 
downstream 
logger [km] 

TM-1 304.8 Unlined CI 
(25% lined) 

 
0.6 6.4 

TM-2 406.8 Unlined CI  
0.3 5.6 

TM-3 304.8 Unlined CI 0.4 5.9 
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Once the outliers are removed, the next step is to remove and replace the missing values. In 
this work, when 4 or more consecutive timesteps with missing values are identified (1 hour 
without any measurement), are ignored in the final dataset. In all the other timesteps with 
missing measurements, the missing values are filled using the spline interpolation in MATLAB.   
 

8.3.3. Smoothing the data  
 
The last step of the data preparation is to smooth the data to remove noise that could affect 
the training of the predictive model. An algorithm that uses the cubic spline function for 
smoothing the dataset is created in MATLAB® version 2019b. The smoothing length is set 
equal to 2Δt i.e. 30 minutes as there is a lot of noise in the ΔCl data. A small part of TM-3’s 
ΔCl, flow and temperature original and smoothed data are presented in figure 8.3. 

 

 

 
Figure 8.3:Original and smoothed flow (top), temperature (middle) and ΔCl (bottom) data for TM-3 



 

145 
 

8.4. Data-driven methodology 

8.4.1. Detecting high Cl losses events 
 

Commonly, the regression-based models are trained using all the available time-series data 
(Nourani, Elkiran, and Abba 2018; Jayaweera, Othman, and Aziz 2019; Filipe et al. 2019). 
However, in this case, the aim is to predict potential future ΔCl events and instead of training 
the model using all the available data, only the past ΔCl events are used in this process. 
Therefore, prior to the model training, the ΔCl events and the temperature or flow events 
related to these events are identified as follows: 
 

a. Cl loss events detention 
A model is created in MATLAB® version 2019b to find the Cl loss peaks and extract the events 
period that start up to a certain time before and continue up to a certain time after each one 
of these peaks. As chlorine consumption is highly dependent on the seasons of the year, to 
reduce the seasonality effect the events were selected based on the magnitude of the events 
instead of using the absolute values. The model extracts the Cl loss events following these 4 
steps: 

1. The event peaks are detected as the local maximum values.  
2. For each peak, the event starting and finishing points are identified based on the 

gradient of the time-series around the event peak. An event starts when a change in 
the gradient is noticed, up to a certain period before the peak, and ends when the 
change in the gradient ends, up to a certain period after the peak. In this analysis, the 
gradient threshold was set equal to 0.02 mg/l per 15 min, in other words 0.02 mg/l 
per time step. The period prior to the peak and after the peak are equal to each other 
and also are equal to half of the required forecasting time. For example, if the required 
forecasting period is 4 hours ahead, the model searches for a gradient of 0.02mg/l up 
to 2 hours before and up to 2 hours after the peak.    

3. The third step is to find the “base value” of the event which is equal to the pre-event 
ΔCl value and then the “base line” that connects all the base values is drawn.  

4. The magnitude of the event is calculated by extracting the base value from the peak 
ΔCl value and if this is above a certain threshold (in our case was set up to 0.15mg/l), 
the event is selected for further analysis.  

 
b. Flow and Temperature event detection 

The flow and temperature events are detected once all the Cl loss events are detected. These 
are defined as sudden changes and peaks that could be associated with each one of the ΔCl 
events. Flow or temperature events associated with Cl loss events were selected by tracing 
the datasets over a period of up to n hours before the ΔCl event. A flow and temperature 
detention model created in MATLAB® version 2019b was used for the identification of the 
events. The model follows 5 steps with the first 4 being similar to the steps followed in the Cl 
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loss detection model described above. In the fourth step the threshold used for defining a 
flow event was equal to 10l/s and the one used for defining a temperature event was equal 
to 0.3 oC.  The fifth and final step is to remove all the Cl loss events where no associated flow 
or temperature peaks are found. Figure 8.4 shows 2 Cl loss event detections in trunk main 
TM-3 with their associated flow events. 

 
Figure 8.4: Two ΔCl detected events with their associated flow events in TM-3 

8.4.2. Predictive model  
 
A multistep prediction model was created using the NARX ANN, the Feed-Forward ANN and 
the RF algorithms in MATLAB® version 2019b. The model user should define which one of 
these algorithms and which of the temperature or flow parameters would like to use prior to 
the model's application. The model is trained using as inputs a number of past flow or past 
temperature events (10 to 12 past events) and as targets their associated past Cl loss events 
without considering the temporal distance between these events. Once trained, the model 
predicts the Cl loss values up to certain hours ahead based on a current flow or temperature 
event.  
 
The characteristics of each machine learning algorithm are as follows: 

● NARX algorithm: 10 hidden layers, 3 input delays and 3 feedback delays  
● FF algorithm: 1 hidden layer with a size of 14 neurons  
● RF algorithm: 1000 weak trees set the ensemble, minimum number of observations 

per tree set to 5 

8.4.3. Use of the event risk parameter 
 
Kazemi et al. (Kazemi et al. 2018) in their predictive turbidity model suggested an extra input  
parameter (Ep) to quantify the risk of new turbidity event occurrence based on the temporal 
distance between this event and a previous captured turbidity event. Ep at the current time t 
is defined locally as the temporal distance (Lev) between an imaginary event - a weighted 
average of n past events- and t, divided by the imaginary event magnitude (Hev) following this 
equation: 
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t: current time 
Ept: Event risk at current time t 
Lev: Temporal distance between the imaginary event and t 
Hev: Magnitude of the imaginary event 
i: a past event 
n: total number of past events included for the calculation of the imaginary event 
Hi: Magnitude of the past event i 
Li: temporal distance between event i and current time t 
 
This equation determines that the longer the temporal distance to past turbidity events or 
the lower the magnitudes of these events, the higher the risk of a new event to occur at 
current time. Ep   describes in the best the risk of a frequency of a turbidity event, however, 
the factors that increase the Cl consumption inside the DWDS are usually not related to the 
occurrence and the magnitude of past events. Nevertheless, in this chapter the Ep parameter 
was also used as an extra input in the NARX predictive model, and the performance of the 
NARX + Ep model was compared with the performance of the NARX, FF and RF models where 
the Ep was not included as input.  

8.4.4. Summarized model’s inputs and outputs  
 
Once the Cl losses events and their related flow and the temperature events are detected, 
the data-driven predictive model used 4 possible combinations of input parameter/output 
parameters for training: 

1. Flow events for inputs / Cl losses events for outputs 
2. Temperature events for inputs / Cl losses events for outputs 
3. Flow events and event risk for inputs / Cl losses events for outputs 
4. Temperature events and event risk for inputs / Cl losses events for outputs 

 
This predictive model uses 3 different ML methods, RF, NARX ANN and FF ANN. The event risk 
parameter was only used in the NARX model. Therefore, the total number of inputs - ML 
combinations investigated in this chapter was 8 (NARX - flow input, NARX - temperature, 
NARX - flow and event parameter, NARX - temperature and event parameter, RF - flow input, 
RF - temperature, FF - flow input, FF - temperature).  
 
The model predicts Cl losses values every 15-minute and up to a predictive period set by the 
user. So, for example for a predictive period of 4 hours the model predicts 16 different values. 
Once the model is trained, it predicts one step ahead and reruns up to the set period - for a 4 
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hour period reruns for another 15 times. This approach was followed as building a new model 
for each new time-step approach is practically impossible when the temporal distance 
between the timesteps is that short.        
 

8.4.5. Performance metrics 
 
The metrics used for the evaluation of the models and for the comparison of their 
performance were the Mean Average Error (MAE), the Mean Squared Error (MSE), and the 
Normalised Mean Squared Error (NMSE). 

8.5. Results and discussion 
 
The aim of this chapter is to suggest the best algorithm with the most appropriate input 
parameter for the prediction of chlorine losses at the end of the WDTM. To accomplish that, 
the process followed was, firstly, to train the model considering different combinations of 
algorithms and input parameters for each one of the trunk mains, secondly, to use the trained 
model for the prediction of a new Cl loss event, and, finally, to compare the outputs using the 
performance metrics. This process is also presented in figure 8.5.  

 
Overall, 8 different combinations were tested (NARX - flow, NARX - temperature, NARX - flow 
& Ep, NARX - temperature & Ep, FF - flow, FF - temperature, RF - flow, RF - temperature) for 
each trunk main and for different forecasting horizons (2-10 hours).  Table 8-2 shows the 
performance results for each model simulation at each one of the WDTM and for a specific 
forecasting horizon. Each model has taken its name using the initials of the trunk main that 
was applied, the ML technique that was used, its input parameter and its predictive horizon 
hours. Therefore, for example a model that was applied in TM-1, trained using the NARX 
technique and temperature as input data, and made predictions for up to 4 hours ahead, was 
named TM1-NARX -T-4.  
 
As table 8-2 indicates, the maximum prediction horizon varies from trunk main to trunk main 
and is also dependent on the selected input parameter. In general, the smallest predictive 
horizon was achieved in TM-2 where the ΔCl was predicted up to maximum 4 hours ahead 
using flow as input parameter, and the largest was achieved in TM-3 where the model 
managed to predict Cl losses up to 10 hours ahead when flow was used as input parameter. 
This could be, potentially, explained by the fact that there was a period with many chlorine 
spikes and negative chlorine measurements in the TM-2 dataset. These noisy data points, 
once removed or replaced with the process described in the previous section, created a 
smaller and weak final dataset that affected the training of the model. In addition, the 
different flow conditions in the three trunk mains during the study period, indicate different 
hydraulic characteristics that also influenced the performance of the model. The outputs in 
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this work indicate that the model could adapt the normal conditions (TM-3) and the high flow 
conditioning changes (TM-1) but cannot adapt in small ones (TM-2). However, the flow 
condition impact in the model's performance should further investigated either in this DWDS 
or in a different one with more sensor data and, most importantly, with better quality data.      
      
 

 
Figure 8.5: Α simple schematic that describes the process for selecting the best predictive ΔCl 

model 
 
By comparing the performance metrics of all the models’ outputs, flow is a better input 
parameter to temperature for predicting Cl losses in this DWDS. The only temperature model 
that performed better than its counterparts flow models was TM-1 - NARX - T - 8 (NMSE 0.54 
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vs NMSE 0.74 for the TM-1 - RF - F - 8). All the other temperature models have unacceptable 
NMSE values (all of them above 1) and underperformed in all the other performance metrics  
 
Table 8-2: Performance of NARX, NARX+Ep, RF and FF using different inputs and predictive horizons      

 
 

compared to the flow models. In addition, the smaller number of detected temperature 
events related to ΔCl events in all three trunk mains compared to the flow events (e.g., in TM-
2 there were 12 captured temperature events and 51 captured flow events) implies that the 
temperature model misses the majority of Cl loss events. As regards the ML algorithms, Table 
8-1 justifies that the best among the applied algorithms is NARX ANN as in almost all the cases 
outperformed all the others.  In an overall hierarchical comparison, NARX was the best model 
with RF and FF being, with a very close distance to each other, second and third respectively, 
and, finally, by far the worst algorithm was NARX with Ep. These findings confirm, also, the 
initial hypothesis that the Ep risk parameter is not a parameter that could mathematically 
describe the frequency occurrence of the Cl loss events. Figure 8.6 shows three timeseries 
comparisons between monitored and predicted values by the four flow input ML algorithms. 

Model NAME Trunk Main ML algorithm Input parameter
Predictive 

horizon (hrs)
MAE  

(mg/l)
MSE 

(mg/l)^2
RMSE 
(mg/l)

NMSE

TM-1 - NARX - F - 8 TM-1 NARX Flow 8 0.06 0.007 0.084 2.12
TM-1 - NARX - FEp - 8 TM-1 NARX Flow - Ep 8 0.06 0.005 0.071 1.49

TM-1 - RF - F - 8 TM-1 RF Flow 8 0.04 0.002 0.045 0.74
TM-1 - FF - F - 8 TM-1 FF Flow 8 0.05 0.003 0.055 0.94

TM-1 - NARX - F - 6 TM-1 NARX Flow 6 0.04 0.0007 0.027 0.21
TM-1 - NARX - FEp - 6 TM-1 NARX Flow - Ep 6 0.06 0.005 0.071 1.42

TM-1 - RF - F - 6 TM-1 RF Flow 6 0.05 0.005 0.071 1.29
TM-1 - FF - F - 6 TM-1 FF Flow 6 0.04 0.005 0.071 0.89

TM-1 - NARX - T - 8 TM-1 NARX Temperature 8 0.04 0.003 0.055 0.54
TM-1 - NARX - TEp - 8 TM-1 NARX Temperature -Ep 8 0.07 0.009 0.095 1.76

TM-1 - RF - T - 8 TM-1 RF Temperature 8 0.06 0.006 0.077 1.13
TM-1 - FF - T - 8 TM-1 FF Temperature 8 0.05 0.005 0.071 1

TM-2 - NARX - F - 2 TM-2 NARX Flow 2 0.03 0.0009 0.030 0.38
TM-2 - NARX - FEp -2 TM-2 NARX Flow - Ep 2 0.04 0.003 0.055 1.11
TM-2 - RF - F - 2 TM-2 RF Flow 2 0.04 0.002 0.045 0.6
TM-2 - FF - F - 2 TM-2 FF Flow 2 0.04 0.002 0.045 0.77

TM-2 - NARX - F - 2 TM-2 NARX Flow 4 0.02 0.0003 0.018 0.15
TM-2 - NARX - FEp -2 TM-2 NARX Flow - Ep 4 0.06 0.005 0.08 2.44

TM-2 - RF - F - 2 TM-2 RF Flow 4 0.03 0.001 0.034 0.54
TM-2 - FF - F - 2 TM-2 FF Flow 4 0.03 0.001 0.026 0.34

TM-2 - NARX - T - 2 TM-2 NARX Temperature 2 0.05 0.003 0.055 3.44
TM-2 - NARX - TEp - 2 TM-2 NARX Temperature -Ep 2 0.06 0.006 0.077 8.53

TM-2 - RF - T - 2 TM-2 RF Temperature 2 0.06 0.006 0.077 8.84
TM-2 - FF - T - 2 TM-2 FF Temperature 2 0.05 0.005 0.071 3.61

TM-3 - NARX - F - 10 TM-3 NARX Flow 10 0.04 0.002 0.045 0.61
TM-3 - NARX - FEp - 10 TM-3 NARX Flow - Ep 10 0.07 0.007 0.084 1.94

TM-3 - RF - F - 10 TM-3 RF Flow 10 0.05 0.003 0.055 0.94
TM-3 - FF - F - 10 TM-3 FF Flow 10 0.05 0.003 0.055 0.89

TM-3 - NARX - T - 4 TM-3 NARX Temperature 4 0.03 0.001 0.032 1.93
TM-3 - NARX - TEp - 4 TM-3 NARX Temperature -Ep 4 0.03 0.001 0.032 1.86

TM-3 - RF - T - 4 TM-3 RF Temperature 4 0.04 0.003 0.055 4.29
TM-3 - FF - T - 4 TM-3 FF Temperature 4 0.04 0.003 0.055 3.48



 

151 
 

Figure 8.6a shows a 5-hour event in TM-1; Figure 8.6b shows a 4-hour event in TM-2; and 
Figure 8.6c shows a 10-hour event in TM-3. These plots indicate that NARX captures the event 
better compared to the other models and agree with the performance metrics presented in 
table 8-2. Therefore, for the available dataset, the model that uses flow data as inputs and 
the NARX algorithm for training is the best model for the prediction of Cl losses at the end of 
the WDTM.      
 
 

 
Figure 8.6: Predicted vs Measured data of ΔCl event in the three trunk mains: a) 5-hour event in 

TM-1, b)4 hour event in TM-2,c)10 hour event in TM-3 
 
 

(a) 

(b) 

(c) 
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8.6. Operational benefits of models’ application 
 
The predictive model was tested in a small dataset with many missing data and could not 
capture the seasonality changes in chlorine consumption. Therefore, a further investigation 
should be implemented in a DWDS where at least a full year of chlorine and flow time-series 
data are available to test the model’s ability to adapt the chlorine seasonal variations. Once 
this is accomplished and the prediction outputs are acceptable, the model could be used as a 
predictive tool to support the proactive strategies of the WUs. More specifically, it could be 
used in combination with an alarm system connected to the Supervisory control and data 
acquisition (SCADA) system of the DWDS. The SCADA system could inform the predictive 
model for a sudden change in the flow and then the model, once trained using the past 10 to 
12 previous events, could forecast a potential future ΔCl event. If the prediction exceeds a 
defined threshold the alarming system is activated and informs the water operators for this 
potential event. This process, in a DWDS with a modern SCADA, will not require more than 5 
minutes from start to finish as the computational time required to train the model is minimal. 
In addition, this model could be applied for testing the impact of a potential maintenance 
intervention in the WDTM, which will increase its flow (e.g., flushing or conditioning of the 
WDTM). More specifically, the model could be asked to predict chlorine losses caused by an 
artificial flow event that simulates the maintenance intervention to investigate the impact of 
this intervention in the chlorine concentrations in the drinking water exiting the WDTM. 

8.7. Conclusions 
 
In this chapter, a data-driven methodology for the forecasting of a future ΔCl event at the end 
of a WDTM is presented. This methodology, firstly, identifies past ΔCl events and their related 
past temperature or flow events. Then, it imports these events as inputs for the training of 
the predictive model that uses one of the following ML techniques: NARX ANN, FF and RF. An 
extra input risk parameter Ep, used in another work to capture the temporal distance between 
turbidity events (Kazemi et al. 2018), was introduced as an optional input for the predictive 
model as well. The methodology is tested in a dataset taken from 3 WDTM mains (TM-1, TM-
2, TM-3) of a DWDS that belongs to SW. The aim is to, firstly, investigate the predictive ability 
of the model and then identify which input (flow or temperature) - ML algorithm (NARX ANN, 
FF, RF) combination performs better to provide an accurate predictive model that could be 
used by the WUs for supporting their proactive strategies. Overall, 8 input - ML algorithm 
combinations of the model were applied at each WDTM (flow - NARX, temperature - NARX, 
flow + Ep - NARX, temperature + Ep - NARX, flow - RF, temperature - RF, flow - FF and 
temperature - NARX). The main conclusions are as follows: 
 

● The model managed to predict accurately a future event with a period of 6 hours 
ahead in TM-1, 4 hours ahead in TM-2 and 10 hours ahead in TM-3. 
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● The performance metrics (MAE, MSE, RMSE, NMSE) indicated that flow is a better 
input parameter than temperature for the application of the model in these WDTM. 

● NARX has been found to be the best ML algorithm with RF following in second place 
and FF being third. 

● As expected, the use of the Ep did not improve the model’s performance, contrariwise 
the models that included this parameter had the worst performance in all three 
WDTM. 

● This predictive model has the potential of becoming an accurate supporting tool in the 
WUs’ decision making for proactive intervention. However, as the available data for 
this work were taken for a small period (overall less than 5 months of data were 
available if we include the spikes and the missing data), further research is required 
using larger datasets - with at least 1 year of data - to investigate the ability of the 
model to adapt in the seasonality changes of the Cl concentrations. 
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9. A data-driven investigation on the performance of 
Balmore water treatment work     

9.1. Introduction 
 

Water treatment works (WTWs) are complicated systems consisting of various treatment 
stages used by WUs to produce drinking water of high-quality standards for their customers. 
Inside the WTWs various parameters including the operational function of the 
electromechanical equipment, the water flow, the water level in the treatment tanks and 
water quality parameters such as pH, turbidity, and chlorine, are monitored with sensors 
connected to the supervisory control and data acquisition (SCADA) system. SCADA systems 
allow WUs’ operators to control in real-time the various treatment processes, to interact with 
the various devices, to adapt the treatment stages when changes in either the water flow or 
the water quality occur and, finally, to record the data and the various quality events into log 
files. Most of the parameters are measured with a 5 min to 10 min frequency and, therefore, 
large datasets are created that, when explored properly, could give significant knowledge 
regarding the optimisation of WTWs’ performance, the parameters that influence the quality 
of the drinking water entering the DWDS, and the prediction of future water quality 
deterioration. 
 
Due to this large data availability in the WTWs and the wastewater treatment plants 
(WWTPs), there is a plethora of projects in the literature where data-driven methods, such as 
machine learning (ML), were applied. More specifically, data-driven applications were utilised 
for the optimisation of a process in the works (Asadi et al. 2017; K. Zhang et al. 2013; 
Jayaweera, Othman, and Aziz 2019), minimise the treatment works energy consumption 
(Filipe et al. 2019) and improving the overall performance of the treatment works (Nourani, 
Elkiran, and Abba 2018; Dairi et al. 2019; Mohammed, Hameed, and Seidu 2017). Most of the 
recent research works that used artificial intelligence (AI) and ML in WTWs are presented in 
a review paper by  Li et al.  (Li et al. 2021). In this paper, they grouped these works based on 
the treatment process that the projects focused on, then they indicated the advantages and 
the weaknesses of the ML techniques over other approaches in the analysis and control of 
the WTWs and, finally, they discuss the potential that AI technologies could offer as intelligent 
models for supporting the management of the DWDS.       
 
This chapter aims to examine further the ability of ML techniques on analysing the available 
data and supporting WTWs management. More specifically, in this chapter, a data-driven 
investigation on the bacteriological activity of Balmore WTW, one of the largest Scottish 
Water (SW) treatment sites, is presented. SW recently installed two online flow cytometers 
(FCM) to measure total cell counts (TCCs) in the inlet and the outlet of the treated water 
storage tank in Balmore to investigate the bacteriological activity of the water that reaches 
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Balmore water operation area (WOA). Thus, in addition to the existing time-series dataset 
with all the monitored parameters in the WTW, TCCs time-series with a frequency of 1 to 2 
hours were also available. A data-driven investigation was made using the available data with 
the aim to understand the factors that could influence TCCs increase in the treated water and 
to forecast the TCCs behaviour in the water exiting Balmore WTW up to certain hours ahead. 
This investigation used both supervised ML techniques for predicting the TCCs behaviour, and 
unsupervised ML techniques for understanding the factors that increase bacteriological 
activity in the WTW.  This chapter addresses objectives 2, 3 & 4. 

9.2. Balmore WTW description & data preparation 
 

Balmore is one of the largest SW’s WTWs, located in the north part of Glasgow between 
Kirkintilloch and Bearsden. It was opened in 2000 and supplies the areas of North Lanarkshire, 
Falkirk, Grangemouth, West Lothian, and parts of the Glasgow area. Overall, it serves around 
600000 people with water - WTW’s capacity of 200000 m3/day. Balmore treats the water 
coming from Loch Katrine and Loch Lomond via a pre-treatment stage and three main 
treatment stages - coagulation - flocculation using aluminium as a coagulant, filtering (with 6 
double-staged RGFs) and disinfection. The disinfection type in this site is chlorination which 
is achieved with hypochlorite dosing in the water before reaching the disinfection contact 
tank. The hydraulic retention time (HRT) of the treatment process is estimated to be roughly 
8 hours and then the treated water is stored in the treated water service reservoir for roughly 
11 hours (SR_RT=11 hours). Finally, the water reaches the distribution networks via 2 pumps 
(1 main +1 backup). A Balmore WTW’s flow schematic is presented in figure 9.1. 
 
 

 
Figure 9.1: Flow schematic in Balmore WTW including the points where water quality parameters 

are measured 
 
The SCADA system in this site collects water quality and flow data from the inlet of the works, 
the outlet of the works and from the outlet of each treatment process tank with 5 min 
frequency. The water quality parameters measured in this site include turbidity and pH at the 
inlet, the outlet and the treatment stages, colour in the inlet, Cl2 at the disinfection contact 
tank outlet and the SR outlet. Due to bacteriological increase noticed in the water exiting the 
works in the last couple of years, SW installed, in September 2020, 2 online FCMs in the site 
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to measure TCCs at the exit of the disinfection tank and at the outlet of the treated water 
service reservoir with a frequency between 1 and 2 hours.    
 
From all the available data collected from the SCADA, in this study, the water quality and flow 
data from the inlet, the disinfection tank outlet, and the SR’s outlet were used as the figure 
9.1 shows. More specifically, the data used for this investigation were: 

● Flow at the inlet (Inlet Flow - m3/s) 
● Turbidity at the inlet (Turb Inlet - NTU) 
● Colour at the inlet (Colour Inlet - DegH) 
● pH at the inlet (pH Inlet) 
● Flow at the outlet of the disinfection tank (TW Flow - m3/s)  
● Cl2 at the outlet of the disinfection tank (TW Cl - mg/l) 
● pH at the outlet of the disinfection tank (TW pH) 
● Phosphate at the outlet of the disinfection tank (TW Phosphate - ppb) 
● Turbidity at the outlet of the disinfection tank (TW Turb - NTU) 
● TCCs at the outlet of the disinfection tank (TW TCCs - cell counts per ml)     
● Flow at the works’ outlet (Final Flow - m3/s) 
● Cl2 at works’ outlet (Final Cl - mg/l) 
● Turbidity at the works’ outlet (Final Turb - NTU) 
● Aluminium at the works’ outlet (Final Alum - mg/l) 
● pH at the works’ outlet (Final pH) 
● TCCs at the works’ outlet (Final TCCs - cell counts per ml)     

 
As the TCCs data availability starts from September the 1st 2020 the study period for this 
investigation starts from 31st of August 2020 up to the 12th of July 2021. Descriptive statistics 
of these parameters are presented in table 9-1.   

 
Due to the difference in the measurement frequency between the WTW’s flow and water 
quality parameters and the online FCM measurements, prior to the investigation, all the data 
were transformed to hourly time step data. The WTW parameters were transformed from 
5min time-series data to hourly data using the mean of each parameter in the hourly time 
bin. However, as the FCM data had an hourly or bihourly frequency, the missing TCC data 
were filled using the cubic spline interpolation. In table 9-2 the descriptive statistics of the 
actual and the interpolated TCC data are presented. 
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Table 9-1: Descriptive statistics of the used Balmore WTW parameters 
WTW stage Parameter Units Min Max Mean Std 

INLET 

Inlet flow m3/s 0 2.9446 2 0.2067 
Turb inlet NTU 0.024 6.7655 0.7052 0.3871 
pH inlet - 5.46 10.1281 6.71 0.8522 
Colour 
inlet 

DegH 
-3.36 

112.478
6 26.404 6.1446 

DISINFECTION 
OUTLET 

TW Flow m3/s 0 4.5224 1.988 0.2601 
TW pH - 6.1 10.9049 8.5252 0.2132 

TW Turb NTU 0.044 1 0.0826 0.0259 
TW Cl mg/l 0 2 0.977 0.0723 

TW TCC cells/ml 0 984992 296632 94589 
TW 

Phosphate 
 

ppb 0 2000 327.407 41.7897 

OUTLET 

Final Flow m3/s 0 5.8258 1.933 0.2526 
Final pH - 5.37 10.1307 8.1805 0.1595 

Final Turb NTU 0.00024 1 0.07013 0.0219 
Final Cl mg/l 0 1.498 0.8047 0.0549 

Final TCC cells/ml 911 394011 61820 75504 
Final Alum mg/l 0 0.1797 0.0072 0.0047 

 
 

Table 9-2: Descriptive statistics of the actual and the hourly interpolated TCCs exiting Balmore 
WTW 

Total Cell Counts 
TCCs Samples Mean Std Median 

Actual Data 4525 61805 75504 26183 
Hourly 

Interpolated 7595 59727 73738 25778 

 
 
The hourly timeseries dataset requires a reorganisation to capture the time lags in the WTW. 
The overall retention time in Balmore WTW is estimated to be around 19 hours (HRT+SR_RT), 
which means that the water enters the WTW on the 31st of August at 00:00h, passes the 
disinfection tank at 08:00h on the same day, and exits the WTW at 19:00h on the same day 
again. In addition, the TCCs predictive horizon was set to be equal to 12 hours ahead, which 
means that for the ML models training, the TCC measurement that corresponds to the water 
exiting the works at 19:00h should be the measurement taken at the WTW’s outlet on the 1st 
of September at 07:00h. The dataset was reorganised as presented in figure 9.2.  
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Figure 9.2: Example of the reorganisation of the dataset for filling the different time 

measurements 
 
The final dataset was utilised in this format as input in SOMs and PCA methods for the 
identification of the factors that increase TCCs. However, for the TCCs prediction, this dataset 
was separated into input and output data, with input data being all the water quality 
(including the TW TCCs) and the  
flow data from all three plant points, and output data being the TCCs exiting the works.  

9.3. Machine learning application steps 
 
There are two different water quality problems to investigate. The first one is the 
identification of the factors that increase bacteriological activity in the water exiting Balmore 
WTW and, therefore, it is a correlation type of problem. The second water quality problem is 
the prediction of the future bacteriological behaviour in the water exiting the treatment plant 
and, therefore, it is a prediction problem. The machine learning application steps for these 
two problems are presented in the following sections.     
 

9.3.1. Understanding the factors that increase TCCs at Balmore WTW 
 

a. Define the water quality problem   
What are the main water quality parameters related to increased bacteriological activity in 
the water exiting Balmore WTW?  
 

b. Type of the available data 
Water quality, flow and online FCM time-series data from the WTW inlet and the outlets of 
every treatment stage.   

  
c. Define required output 

The required output in this investigation is to identify the correlations between high TCCs in 
the WTW outlet and some of the other available water quality parameters.  

 
d. Machine learning selection 
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By following the machine learning tree presented in chapter 3, the selected techniques could 
be either the SOMs or PCA.  

 
e. Data preparation 

The data transformation into a similar temporal scale is required. All data were transformed 
in hourly time-step frequency. 
 

f. Application output 
Graphs that visualise the correlations between the various parameters and therefore the 
correlations between them could be explored. The procedure and the outputs are presented 
in this chapter. 
 
The ML application steps for this investigation are summarized in the following figure. 

 
Figure 9.3: Machine learning application steps for relating TCCs with other water quality 

parameters 

9.3.2. Predicting bacteriological behaviour at Balmore WTW outlet 
 

a. Define the water quality problem   
Is it possible to predict the bacteriological activity of the water exiting Balmore WTW up to 
12 hours ahead? 
 
 

b. Type of the available data 
Water quality, flow and online FCM time-series data from the WTW’s inlet and outlets of 
every treatment stage   

  

What are the main water quality parameters related to 
increased bacteriological activity in the water exiting 
Balmore WTWs? 

Define the water quality 
problem

•Water quality, flow and online FCM time-series data from 
the WTWs inlet and the outlets of every treatment stage Type of available data

Correlations between high TCCs  in the WTWs outlet and 
some of the other available water quality parameters 

Define type of required 
output

•SOMs
•PCA

Machine learning 
selection

•Τransformation of the dataset in an hourly frequency 
timeseries/ Organize data based on the time difference 
between the various measurements. 

Data preparation

See section 9.4 of this chapter.Application output  
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c. Define required output 
TCCs prediction up to 12 hours ahead or TCCs threshold up to 12 hours ahead 

 
d. Machine learning selection 

By following the machine learning tree presented in the chapter 3, the selected techniques 
could be random forest (RF), feed-forward artificial neural network (FF - ANN or simply ANN), 
and long short-term memory networks (LSTM).  

e. Data preparation 
The data transformation into a similar temporal scale is required. The dataset that was 
already pre-processed for the correlation problem above was used. In addition, before 
training the model, the data were standardized. 
 

f. Application output 
Bacteriological risk ranking prediction for the water exiting Balmore WTW up to 12 hours 
ahead and graphs that show TCCs behaviour for the same prediction horizon. The procedure 
and the outputs are presented in section 5 of this chapter. 
 
The ML application steps for this investigation are summarized in the following figure. 
 

 
Figure 9.4: Machine learning application steps for TCCs prediction Methods  

9.3.3. Self-organising maps (SOMs) 
 
As in both 3 and 4 chapters, SOMs analysis was carried out using the MATLAB® SOM Toolbox 
version 2.1 (Teuvo Kohonen 2014) in MATLAB® version 2019b. For the analysis all the 
parameters of the dataset were used. The same algorithms, as the ones used in chapter 5, 

Is it possible to predict the bacteriological activity of the 
water exiting Balmore WTW up to 12 hours ahead?

Define the water quality 
problem

•Water quality, flow and online FCM time-series data from 
the WTWs inlet and the outlets of every treatment stage Type of available data

1.TCCs prediction up to 12 hours ahead
2.Bacteriological risk prediction up to 12 hours ahead

Define type of required 
output

•ANN
•Random forest
•Boosting trees - RuSBoost
•Deep learning - LSTM

Machine learning selection

•Hourly transformation as in the first water quality problem 
/ Standardisation of dataset Data preparation

See section 9.5 of this chapterApplication output  
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were used for this case study as well (see GitHub for code details). The SOMs’ colour range 
was standardized to use all the data that were between the 5th and the 95th percentile of the 
dataset to avoid the skewness of the final outputs.  

9.3.4. Principal component analysis (PCA) 
 
PCA analysis was conducted using MATLAB® version 2019b. The PCA function in MATLAB 
was used in an algorithm produced to apply this method. 

9.3.5. Results 
 
The output graphs from both models are presented in figures 9.5 (SOMs output) and 9.6 (PCA 
output). Both figures indicate that there is a perfect correlation, as expected, between the 
flows in all three parts of the plant and high correlation between high TCCs exiting the 
disinfection tank (TW_TCCs) and high TCCs in the WTW’s outlet.  
 
By checking the SOMs output, high TCCs, and, therefore high bacteriological activity in the 
plant’s outlet, is expected when there is (i) high flow in the plant (high inlet, TW and outlet 
flow) (ii)high turbidity in the inlet (iii) high colour in the inlet (iv) high TCCs exiting the 
disinfection tank (vi) low turbidity in the water exiting the disinfection tank(vi) low free 
chlorine in the water exiting the disinfection tank. Moreover, some correlation between final 
TCCs and pH in the treated water (TW pH) is also present. Finally, there is a clear reverse 
correlation between aluminium in the final water and final TCCs.  
 
As regards the other correlations, there is an interesting correlation between colour in the 
inlet and turbidity in the inlet. The increased colour numbers (red and yellow cells) follow the 
trend of the medium (cyan cells, 0.66-0.80 NTU), medium high (yellow cells, 0.90-1.1 NTU) 
and high (red cells, 1.1-1.2 NTU) turbidity. This trend is also followed by the medium to high 
TCCs exiting the disinfection tank (cyan to reads cells) which indicates its correlation with both 
these parameters and perhaps indicates that the higher the turbidity is in the raw water, the 
higher the bacteriological activity in these waters is. This SOM also shows a correlation 
between medium turbidity in the inlet with high turbidity exiting the disinfection tank (right 
top of the plane). However, this correlation should be ignored as the turbidity exiting the 
disinfection tank is low with a range between 0.05 to -0.12 NTU. 
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Figure 9.5: SOMs output for Balmore WTW reorganised dataset 

 

 
Figure 9.6: PCA output for Balmore WTW reorganised dataset 
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The first two PCA components explain more than half of the dataset variance (46% and 15% 
respectively with all the other 14 components explaining less than 8% each. Therefore, the 
linear correlations represented in figure 9.6 are indicative to the relationships between the 
various parameters in the data set. 
 
Figure 9.6 indicates that final TCCs have a clear linear correlation with all the flows in the 
WTW and the turbidity in the inlet, a finding that also appears in SOMs. In addition, a relative 
linear correlation appears between final TCCs and pH in the inlet which is not clear in the 
SOMs analysis. Smaller but also significant linear correlations appear between final TCCs and 
TCCs exiting the disinfection tank and pH in the water exiting the disinfection tank. Also, there 
is a reverse correlation between final TCCs and chlorine in the disinfection tank, a finding also 
found in the SOMs analysis.  Finally, PCA did not capture any relationship between final TCCs 
and colour and small reverse correlation between final Aluminium and Final TCCs, 
correlations that appear clearly in the SOMs output.  

9.4. Predicting total cell counts’ behaviour at the WTW’s 
outlet 

9.4.1. Data preparation and model inputs 
 
The model aims to predict the TCCs in the water exiting the WTW 12 hours ahead but also to 
categorise, for the 12 hours ahead, the water exiting the WTW into different bacteriological 
risk ranking classes. The TCCs prediction is a regression problem and, thus, for testing the 
model, the dataset was split into input and output data as described in section 3. The 
bacteriological risk ranking categorisation is a classification problem with the water exiting 
Balmore plant being classified into the different bacteriological risk classes based on their TCC 
numbers. More specifically, 4 classes were defined, based on SW’s criteria for TCCs exiting 
their works, the minimum-risk class when the TCCs are below 20000, the low-risk class when 
the TCCs are between 20000 and 50000, the medium-risk class when the TCCs are between 
50000 and 90000 and the high-risk class when the TCCs are above 90000 (see table 9-3). 
 

Table 9-3: Risk ranking classes for the water exiting Balmore WTW 

 
 
The dataset was divided into training set and testing set using the k-fold cross validation 
approach (Kohavi 1995). In k-fold, the dataset is broken randomly into k parts, where each 
time the kth part is used for testing and the rest of the dataset is used for training. 
Consequently, this means that by using the k-fold approach the model could be tested in k 
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different testing datasets. In our case, the dataset was split into 20 folds. This is because the 
available dataset is not a large one, covers just a 9-month period and, therefore, if a larger 
testing set had been used, the training set would have been very small. However, the model 
was tested only randomly only in 4 of the of the overall 20 folds, the 5th, the 8th, the 12th and 
the 15th folds.  
 
Once the training and test dataset were created and before training the model, both input 
and output data (only the regression problem) were standardized (scaled to have mean 0 and 
standard deviation 1) using the following equation: 
 

𝑋" =
𝑋O − 𝑋P9I"

𝑆 	
where Xn is the normalized data, Xo is the measured (observed) by the sensor data, X mean is 
the mean of the training set and S is the standard deviation of the training dataset. The 
variables that follow the time lag presented in section 9.2 are given in the model as inputs 
and outputs as shown in the following figure. 
 

 
Figure 9.7: Simplified diagram of inputs and outputs of the TCCs predictive model 

9.4.2. Machine learning models 
 
The predictive model was created in MATLAB version 2019b using the Statistics and Machine 
Learning toolbox and the Deep learning toolbox (all codes are stored in the GitHub). The ML 
algorithms used in the model were as follows: 

1. Random forest (RF): The random forest algorithm (Breiman 2001) was used for both 
the classification and the regression approaches. The number of the weak trees in this 
algorithm was set equal to 1000, the minimum of the randomly selected parameters 
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used in each randomly selected subset was set equal to 4 and the minimum tree leaf 
was set equal to 2. 
 

2. Feed-forward ANN (ANN): The ANN algorithm (Bishop 2006) was used for the 
regression approach only. The hidden layer’s size was set equal to 10 units and the 
Bayesian regularization backpropagation was used as a training function to update the 
weights and the bias values. 
 

3. RusBoost boosting trees (RB): The RB algorithm (Seiffert et al. 2008) was used for the 
classification approach only.  As in RF, the weak trees were set equal to 1000, the 
maximum number of splits per tree was set equal to the number of the training 
samples and the learning rate was set equal to 0.1. 
 

4. Long short-term memory (LSTM):  The LSTM algorithm (Hochreiter and Schmidhuber 
1997) was used in both the classification and the regression approaches. For the LSTM 
algorithm there were several hyperparameters that required to be set, such as the 
total number of hidden LSTM layers, the number of units per LSTM layer, the initial 
learning rate, the learning drop factor, the number of epochs and the minibatch size. 
The number of epochs, the learning drop factor and the minibatch size were set equal 
to 150, 0.1 and 20 respectively. As regards the other 3 hyperparameters, a Bayesian 
optimisation was applied to find the best value that reduces the prediction error 
setting the following ranges: 
LSTM layers: 1 to 5 layers / LSTM units: 15 to 150 units / Initial learning rate: 0.01 to 1 
The overall architecture of the LSTM algorithm is shown in figure 9.8 
 

5. Combined model (CM): The combined model was simply averaging the prediction 
outputs in both regression and classification approaches. In regression, for each 
prediction output, CM was calculating the mean average of the three models used (RF, 
ANN, LSTM). In classification, each one of the classification models (RF, RB and LSTM) 
contributed with one vote in the final decision and the CM model produced the final 
output based on the most popular class selection. In case where each one of the 
models produced a different output, CM was selecting as output the highest (more 
risky) of the available 3 classes. So, for example, if RF had predicted that the water 
belonged in the low-risk class, RB had predicted that the water belonged in the 
minimum risk class and LSTM had predicted that the water belonged in the high - risk 
class, the CM classified the water in the high-risk class as well.      
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Figure 9.8: LSTM architecture for a) regression approach and b) classification approach 

9.4.3. Performance metrics 
 

In regression, the performance metrics used to evaluate the predictive models were the mean 
squared error (MSE), the root mean squared error (RMSE) of the normalised outputs, 
meaning that both had no dimensions, the normalised mean squared error (NMSE) of the 
actual predicted outputs, and the coefficient of determination (R2).   
 
In classification, 5 metrics were used, the overall accuracy, the TPR of the high-risk class, the 
macro-recall, the macro-precision, and the macro-F1 score. The macro-recall, the macro-
precision, and the macro-F1 score are the arithmetic mean per class of the recall, precision 
and F1 score respectively.   

9.4.4. Results 
 
The predictive model, initially, was trained using one of the ML algorithms and all the available 
parameters. Then it was trained using the 8 most important parameters of the RF model - 8 
parameters, Inlet flow, TurbInlet, Colourinlet, TW_TCCs, TW Cl, Final Turb, FinalCl and Final 
Alum as shown in figure 9.9. Finally, the predictive model was trained using the 5 parameters 
that in SOMs analysis appear to be the ones that correlate the most with high TCCs in the 
WTW’s outlet. More specifically, the selected parameters were Inletflow, TurbInlet, 
Colourinlet, TW_TCCs, TW Cl. Outlet flow and TWFlow were excluded from the latter group 
of parameters, despite being highly correlated with final TCC, because of their similarities with 
the Inletflow. In the last case, as no outlet parameters were used the prediction horizon was 
increased from 12 hours to 23 hours (SR_RT= 11 hours + the 12 hours predictive horizon). 
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Overall, 48 regression and 48 classification models were produced. Each different model was 
named based on the algorithm that was used for the predictions (RF, ANN, LSTM or CM for 
regression and RF, RB, LSTM or CM for classification), the number of parameters used (All, 
RF8 for the 8 RF parameters, and SOMs for the 5 SOMs analysis parameters) and the 
predictive horizon (12 or 23 hours). So, for example when the RF with all the parameters was 
used, the model was named as RF-All-12.      

 
Figure 9.9: Performance importance of each parameter of the RF-All-12 model in the 5th fold (see 

appendix B for performance importance in folds 8, 12 and 15) 

9.4.4.1. Regression results 
 

The performance metrics for each model are presented in table 9-4.  It is notable that some 
of the ML models have produced satisfactory results in predicting the TCCs exiting the WTW.  

 
RF appears to be the best ML method for this WQ problem as the RF models’ performance 
metrics were ranged between 0.08-0.14 and 0.3-0.37 for MSE and RMSE respectively. In 
addition, the RF models’ performance was not influenced by both the parameters reduction 
and the increase in the predictive horizon (RF - RF8 - 12 & RF - SOMs - 12 models). Moreover, 
the RF models explained up to 91% of the variance of the model (R2=87-91%). 
 
From the other two ML methods, LSTM performed better when all the parameters are used 
comparing to ANN (R2=0.84-0.86 /R2=0.82-0.85 respectively, MSE=0.14-0.17/ MSE=0.15-0.18 
respectively, RMSE=0.37-0.41/ RMSE=0.38-0.42 respectively). However, ANN performed 
slightly better than LSTM when the 8 RF parameters or the SOMs are used as input data 
(R2=0.79-0.84 /R2=0.78-0.84 respectively).  
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Table 9-4: Summary of the regression models’ performance metrics 

Model NAME R2 MSEn  RMSEn  NMSE  
RF - All - 12 0.89-0.91 0.09 - 0.12 0.3 - 0.35 0.09 - 0.12  

ANN - All - 12 0.82 - 0.85 0.15 - 0.18 0.38 - 0.42 0.15 - 0.18  
LSTM - All - 12 * 0.84 - 0.86 0.14 - 0.17 0.37 - 0.41 0.14 - 0.17  
CM - All - 12 * 0.88 - 0.9 0.1 - 0.13 0.32 - 0.36 0.14 - 0.17  
RF - RF8 - 12 0.90 - 0.91 0.08 - 0.11 0.29 - 0.34 0.08 - 0.11  

ANN - RF8 - 12 0.79 - 0.84 0.17 - 0.21 0.41 - 0.46 0.16 - 0.21  
LSTM - RF8 - 12 ** 0.78 - 0.84 0.16 - 0.22 0.4 - 0.45 0.16 - 0.23  

CM - RF8 - 12  0.87 - 0.88 0.11 - 0.13 0.34 - 0.36 0.14 - 0.19  
RF - SOMs - 23 0.87 - 0.89 0.11 - 0.14 0.34 - 0.37 0.11 - 0.14  

ANN - SOMs - 23 0.76 - 0.82 0.17 - 0.21 0.41 - 0.46 0.16 - 0.21  
LSTM - SOMs - 23^ 0.8 - 0.82 0.19 - 0.2 0.43 - 0.45 0.19 - 0.2  

CM - SOMs - 23 0.86 - 0.88 0.12 - 0.15 0.35 - 0.39 0.15 - 0.22  
      
* LSTM - All - 12: 1 LSTM layers,25 units per layer,0.001 Initial learning rate  
** LSTM - RF8 - 12: 1 LSTM layers,16 units per layer,0.001 Initial learning rate  

^ LSTM - SOMs - 23: 1 LSTM layer,25 units per layer,0.0012 Initial learning rate  
MSE and RMSE are calculated for the normalized outputs and therefore they are unitless 

 
The CB model’s results indicated, as expected for the regression model, that CBs will not 
increase the overall accuracy as it is dependent on the accuracy of the single models. 
However, according to table 9-4, the CB models’ performance reduced the bias and the 
variance of each unique ML model and produced the second most accurate results explaining 
up to 90% of the model’s variance. Finally, table 9-4 justifies that the models’ prediction was 
better when all the parameters were used compared to the 8 RF parameters or the 5 SOMs 
parameters. The SOMs models’ performance, however, should also be considered as 
satisfactory since their predictive horizon was extended to 11 hours more than the other two 
model groups - overall predictive horizon of 23 hours. 
 
In figure 9.10, three plots that show the 15th fold test TCCs vs the predicted by the models 
TCCs using the different groups of input parameters are presented. From this figure it is clear 
that all the models were able to understand the TCCs increase and decrease trends. However, 
this graph also shows that none of these models , in all three cases, was able to predict  the 
extreme TCCs values in the time-series. The worst of all the models, as the graphs indicate, is 
LSTM as it cannot capture any of the extreme events. This is a finding that the performance 
metrics did not capture and indicates the importance of the graphical representation of the 
results for evaluating the models’ performance.  
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Figure 9.10: 15th fold Observed ΤCCs vs predicted time series of all the models when a) all the 
water parameters were used b) the RF 8 parameters are used and c) the SOMs 5 parameters are 

used (see appendix B for performance importance in folds 5, 8 and Classification results 
 

a) 

b) 

c) 
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The classification results are presented in table 9-5. As in the regression approach, the RF 
models performed better than the other two models according to the performance indices 
reaching up to 82% total accuracy and 97% recall of the high-risk class when all the 
parameters were used.  The RB models also produced accurate results when all or the 8 RF 
parameters were used (Accuracy 75-78%, high risk recall (87%-92%). However, RB model 
performance was decreased when the SOMs parameters were used and, thus, the predictive 
horizon was increased. LSTM models had the worst performance comparing to the other two 
models as all the macro - metrics, in all three different cases, were below 70%. The SOMs 
LSTM model managed to reach a 99% high risk category recall, but both macro-recall, micro 
precision and macro-F1 metrics for this model were poor (57%-61%, 54%-64%, 0.54 - 0.57 
respectively). This finding indicates that LSTM-SOMs-23 has created a high number of false 
high-risk class positives and therefore, this model should be considered as unreliable. The CB 
models for the classification approach produced worse results comparing to the regression 
approach. This performance could be explained by the fact that CB models was not able to 
reduce the bias and the variance of the bad LSTM models’ outputs. Finally, the performance 
metrics indicate that the best performance is achieved when all the parameters are used, 
however, as in the regression approach, when only the SOMs’ parameters are used, the 
results are also reliable (except for the LSTM - SOM - 23 model). This finding indicates that it 
is possible to have an accurate prediction of the bacteriological quality of the water exiting 
the WTWs 23 hour ahead, which is a sufficient time for the WTWs’ operators to act if it is 
necessary. 
 

Table 9-5: Summary of the classification models’ performance metrics 

Model NAME Accuracy High risk 
Recall Macro - recall Macro - 

Precision Macro - F1 

RF - All - 12 80 - 82% 90 -97% 68 -72% 72 - 78% 0.7 - 0.74 
RB - All - 12 75 - 78% 87 - 92% 68 - 75% 68 - 73% 0.68 - 0.74 

LSTM - All - 12 * 71 - 73% 76 - 90% 56 - 65% 61 - 68% 0.61 - 0.69 
CM - All - 12 * 77 - 80% 78 - 91% 68 - 75% 69 - 74% 0.68 - 0.76 
RF - RF8 - 12 78 - 81% 92 - 93% 69 - 72% 72 - 75% 0.71 - 0.72 
RB - RF8 - 12 75 - 78% 88 - 92% 69 - 75% 68 - 73% 0.68 - 0.72 

LSTM - RF8 - 12 ** 66 - 71% 80 - 93% 57 - 62% 60 - 70% 0.61 - 0.67 
CM - RF8 - 12  72 - 80% 79 - 91% 69 - 77% 69 - 75% 0.69 - 0.75 

RF - SOMs - 23 75 -77% 90 - 94% 66 - 91% 68 - 75% 0.66 - 0.74 
RB - SOMs - 23 70 - 75% 87 - 94% 66 - 72% 64 - 70% 0.64 - 0.72 

LSTM - SOMs - 23^ 68 - 71% 85 - 99% 57 - 61% 54 - 64% 0.54 - 0.57 
CM - SOMs - 23 74 - 76% 87 - 91% 67 - 72% 66 - 70% 0.66 - 0.71 

      
* LSTM - All - 12: 1 LSTM layers,25 units per layer,0.001 Initial learning rate  
** LSTM - RF8 - 12: 1 LSTM layers,16 units per layer,0.001 Initial learning rate  
^ LSTM - SOMs - 23: 1 LSTM layer,23 units per layer,0.0012 Initial learning rate  
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9.5. Discussion and operational value of this work 
 
Understanding the factors that increase the bacteriological activity in the water exiting the 
WTW could be beneficial for the WUs as it could help them adapt the treatment processes to 
control these factors and decrease the risk of bacteriological contamination of the water that  
they serve to their customers. This work demonstrates that with the simple use of methods, 
such as SOMs or PCA, WUs could identify correlations between bacteriological parameters 
and other WQ parameters using their own data collected from their SCADAs. Once these 
factors are identified, the plant operators could organise actions to control them and, thus, 
reduce the number of bacteriological cells in the WTW’s outlet. For example, in this work, 
both PCA and SOMs show that in Balmore WTW there is a clear correlation between high 
turbidity and flow in the inlet. This means that the operators could be notified when high 
turbidity and high flow in the inlet is measured, and, thus, prepare the treatment stages to 
adjust to these increases and reduce the deterioration risk in the outlet.  
 
There were a lot of similarities in PCA and SOMs findings as mentioned in the results. 
However, SOMs indicated some other correlations between high TCCs and certain parameters 
such as colour in the inlet, low aluminium in the outlet, low pH in the outlet and turbidity 
exiting the disinfection tank. This is because SOMs, as an ANN, is able to uncover both the 
linear and the non-linear correlations in comparison to PCA that can describe only the linear 
similarities (Speight, Mounce, and Boxall 2019). This finding demonstrates, one more time in 
this thesis, the complexity of the relationships between the various parameters that influence 
the water quality in the DWDS. This work, though, recommends the use of both methods by 
the WUs as by doing so, it helps to separate the linear relationships from the non-linear ones 
and, thus, understand better the water quality in their systems. 
 
The predictive model’s results demonstrated that WUs could be benefited by using the data 
that they already collect in their own WTWs as inputs in easy to train models and improve 
their final product. Their decision in which of the two different prediction approaches is more 
appropriate for their operations, is up to the WUs and their requirements. The regression 
model could be used as a tool for understanding the direction of the TCCs over a certain 
predictive period. The classification model could be used as a tool by the WUs if they are only 
interested in predicting the bacteriological risk of the water exiting their plants.  
 
RF is a well-known method in the water sector and has been applied in various projects 
(Parkhurst et al. 2005; Mohammed, Hameed, and Seidu 2017; Meyers, Kapelan, and Keedwell 
2017). The results of this work indicate that for this dataset, it was the best model for 
predicting TCCs in the outlet. This is the first case in this thesis where this model was proven 
to be the best one to select. This is probably because the available dataset here is more 
balanced compared to the previous two case studies. In agreement with other works where 
RF was applied (Meyers, Kapelan, and Keedwell 2017; Mohammed, Hameed, and Seidu 2017), 
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it is recommended the application of RF in most of the WQ problems as one of the methods 
for investigation, especially if the datasets are well distributed. RF is a simple ML model to 
apply, and its results could be justified and explained to decision makers due to its “white-
box” approach.   
 
The fact that LSTM was the worst performing model was not an unexpected output. In the 
recent year and in various works in the hydroinformatics field, deep learning approaches have 
been proven to be the models that could produce the most accurate results (Hitokoto and 
Sakuraba 2018; Dairi et al. 2019; Zhou et al. 2019; Mamandipoor et al. 2020). However, the 
available datasets in these studies were extremely large in comparison to the available 
dataset in our study, which is probably the reason that LSTM had that bad performance. In 
addition, LSTM required the most computational time during the training period. This finding 
though does not, necessarily, indicate that LSTM is not a good method for WQ problems. 
Deep learning approaches, in contrast to the traditional ML approaches, are learning directly 
from the examples and their multiple levels of representations over their consecutive layers 
(Lecun, Bengio, and Hinton 2015). Hence, a further investigation over the LSTM prediction 
ability is required in case studies with larger datasets or in the following years when sufficient 
amount of online TCC data will be available.  
 
The RusBoost algorithm that the RB models applied in the classification approach (also used 
in chapter 7 is a method that is commonly used in classification problems with unbalanced 
datasets (Seiffert et al. 2008, 2010; S. R. Mounce et al. 2017).  As mentioned above, in this 
case study, the dataset was more balanced with only the medium risk class (class 2) having 
fewer samples compared to the other three classes. These models increased the recall 
accuracy of this class that, consequently, increased the overall macro-recall accuracy as table 
9-5 shows. However, their lower performance in both macro-precision and macro-F1 score 
compared to the RF models, indicates that RBs also produced more false positives than the 
RF ones. This finding clearly demonstrates the importance of taking an overall consideration 
of 2-3 performance metrics to decide which model is the best. WUs decision makers should 
always consider what is the main purpose of the modelling prediction and how much 
compromise in false positives they can tolerate in their proactive water quality interventions.    
 
The CB models produced good regression results but bad classification results. This is because, 
as mentioned in the results section, the CB models are dependent on the accuracy of each 
one of the ML models. Overall, CB models reduce bias and variance of the single ML 
techniques and therefore, as we also saw in chapter 7, there is a reason to apply them in this 
type of problems. However, the classification results in this chapter clearly demonstrate that 
when the single ML models produce inaccurate results, the CB model cannot sufficiently 
improve them.  
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This chapter highlights the importance of online microbiological monitoring. The traditional  
bacteriological monitoring approaches that follow the regulations (DWQR 2014)  require a 
daily sample to measure the 4 bacteriological parameters. However, with this approach the 
variations of bacteria during the day cannot be captured. In addition, by measuring once per 
day randomly for coliform bacteria, it is pure luck to find coliforms in the outlet. The online 
monitoring system provided valuable information regarding the TCC numbers and the 
parameters that influence the bacteriological increase in the water entering the DWDS. 
Moreover, online monitoring can capture sudden changes in the water quality and, finally as 
we demonstrated in this chapter, they could provide data for data-driven models for the 
prediction of potential future deterioration events.   
 
Figure 9.10 and the figures in the appendix indicate that in the regression approach, all the 
used ML methods struggle to predict the extreme values. This is probably happening because 
the available dataset is not sufficient and does not capture all seasonal changes. In addition, 
there are only a few measurements in the dataset where extreme TCC values have been 
found. Therefore, the model was not trained properly with enough extreme data to be able 
to predict some as well. Future work, when more data will be available, should focus on 
extreme events by using them as an extra input variable for the training period. The 
classification approach, on the other side, managed to predict the water being in the high-
risk class (TCCs>90000) with an accuracy between 85% and 97%. This finding indicates that 
this model is able to understand when extreme TCC numbers will occur. By using this 
approach, WUs could get a 12-hour ahead indication of a high bacteriological risk water 
entering their networks and act promptly.  
 
The predictive model is a data-driven approach that does not require any hydraulic and 
process model for its implementation. It only uses the data measurements as captured by the 
sensors and stored in the SCADA of the WTW. Thus, the time that is required for its training 
is minimal in comparison to process based models that require lots of hours for simulation 
and high computational power. This is because the data-driven models learn the trends and 
the patterns of the dataset, in contrast to the process-based models that are using complex 
hydraulic and process equations to describe the water circulation and treatment process in 
the WTW. Moreover, the process-based models demand many process and hydraulic 
parameters that use a large amount of data for calibration. Furthermore, these parameters 
need recalibration with new data to fit the spatial and temporal changes of the system into 
the model. Finally, the data-driven model presented here, once built, could be used in any 
other WTW that has a SCADA system that contains enough water quality parameters data. 
The process-based models, though, cannot be transferred in other systems as each system 
has each unique process and hydraulic characteristics. 
  
This work contributes to the general discussion over the use of ML methods in the WTWs. It 
provides a new methodology that combines unsupervised and supervised ML methods and 
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uses only water quality and flow data for both understanding the factors that influence the 
bacteriological increase in the WTWs and predicts the future bacteriological behaviour which 
is the first time that has ever done. The successful implementation of the methodology in the 
Balmore WTW indicates that these methods should contribute to the existing WTWs 
managing approach that is manly reactive and transforming it into a proactive one.  
 
 
  

9.6. Conclusions 
 
In this chapter a data-driven investigation over the bacteriological activity of the water exiting 
Balmore WTW is presented. More specifically, this investigation aimed, firstly, to identify the 
factors that are related with high TCC numbers exiting the Balmore’s outlet, using SOMs and 
PCA ML methods, and, secondly, to explore the potential of a model based on ML methods 
to predict the TCCs behaviour up to 23 hours ahead. For this investigation, water quality, flow 
and TCCs data were taken from the SCADA system of the plant. From all the available 
monitored parameters in the WTW, the parameters measured in the inlet, the disinfection 
tank outlet and the WTW’s outlet were used. The key findings of this investigation are: 
 

● Both PCA and SOMs outputs indicated that the main factors that influence the high 
TCC numbers in WTW’s outlet are the inlet flow, the inlet turbidity and the low 
chlorine residual exiting the disinfection tank 

● SOM’s also indicated that there is a high correlation between inlet colour and TCCs, 
an inverse correlation between TCCs, aluminium in the outlet and pH in the outlet and 
a weak correlation between the disinfection tank pH and the TCCs 

● The additional correlations, captured by the more complex SOM model, indicate the 
complexity of the processes inside the WTWs that are not always clear   

● The regression predictive model managed to capture the TCC trends and the general 
bacteriological behaviour 12 hour ahead. However, it was not able to predict the 
highest observed peaks probably because the available dataset was not sufficient 

● The classification model captured the extreme events and classified the water that 
belong in the high bacteriological risk class with an accuracy of up to 97% 

● RF has been proven to be the best ML method for both the regression and the 
classification model 

● LSTM had the worst performance out of all the ML methodologies. However, this 
finding was expected as these type of deep learning approaches require way larger 
datasets than the available in this investigation          

 
Overall, the outputs of this work demonstrated the benefits that WUs could gain by using the 
WTWs’ data, they already collect, into these data-driven models. SOMs and PCA could be a 
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great tool for decision makers and process engineers to understand the general plant 
behaviour over a certain period and control specific parameters that increase the 
bacteriological activity. The predictive model could be developed in an online tool, connected 
to the SCADA system, and give an early warning to the operators for a potential 
bacteriological risk in the water exiting the plant few hours ahead. Thus, it will give the 
necessary time to adjust the processes and prevent deterioration. 
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10. A Big-Data framework for actionable information to 
manage drinking water quality 

 
Reproduced from Kyritsakas G., Boxall J.B., Speight V.L (2021). A Big-Data Framework for 
Actionable Information to Manage Drinking Water quality. Environmental Science Water 
Research & Technology. Themed issue: Data-intensive water systems management and 
operation (under review)  
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increased amount of time that was consumed for collecting the raw data from various sources 
in different formats and the effort for connecting this and creating a complete dataset 
indicated that for the fast application of the data-driven techniques, the need of facilitating 
the data storage and data integration is necessary. This paper reiterates some sections that 
are developed in the previous chapters of this thesis. More specifically, the big-data 
framework utilises the ML application steps as developed in chapter 3 as part of the data 
analysis layer. In addition, a small part of the research conducted for the case studies, 
presented in chapters 5 and 7, is used in form of two examples that demonstrate the 
successful application of the framework.     

10.1.   Abstract 
 
Water companies collect vast amounts of data, but it is stored and utilised in silos. Machine 
learning techniques offer the potential to gain deeper insight from such data. We set out a 
Big Data framework that for the first time enables a structured approach to systematically 
progress through data storage, integration, analysis, and visualisation, with applications 
shown for drinking water quality.  A novel process for selection of the appropriate method, 
driven by the insight required and the available data, is presented. Case studies for a water 
utility supplying 5.5 million people validate the framework and provide examples of the 
actionable information that can be obtained to help ensure the delivery of safe drinking 
water. 

10.2.   Introduction 
 
Water utilities have a duty to provide drinking water that complies with the high quality 
standards set by national and international regulations. This effort requires a multi-step 
approach that includes the application of efficient and innovative treatment technologies in 
the water treatment works (WTWs) as well as the prevention of water deterioration during 
its travel through the drinking water distribution system (DWDS), through the proper 
maintenance of DWDS and monitoring of the treated water quality from source to tap.  

In the UK, water utilities monitor treatment processes using sensors to measure various water 
quality parameters in a regular frequency (typically every 5-15 minutes), with resulting data, 
also known as telemetry data, stored in the supervisory control and data acquisition (SCADA) 
or similar system. In addition, utilities take samples from different points across their DWDS, 
including exit points from the WTW and service reservoirs (SRs) and randomly selected 
consumers’ taps.  The water quality parameters measured in a typical DWDS monitoring 
programme are microbial indicators, disinfectant residual, iron, manganese and turbidity as 
defined by the regulators (DWI 2016; DWQR 2019a). 
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The typical procedure for DWDS monitoring results at UK water utilities is to archive all the 
data, once checked for compliance, thereby creating a large store of data in various formats.  
This archived data is generally not used or analysed further, with its volume increasing year 
after year.  Analysis of these datasets, if done correctly, and when considered with wider 
asset, operational or even third-party data, can provide a better understanding of the 
complex processes that occur inside the ageing DWDS and can be used as evidence to direct 
capital, operational and maintenance activities within a water utility.  Advanced data 
analytics, including tools that broadly fall under the umbrella of artificial intelligence (AI), 
offer the opportunity to unlock the potential value of otherwise ignored DWDS water quality 
data.     

A few research studies have applied AI technologies, such as data mining (DM) or machine 
learning (ML), to drinking water quality problems for understanding factors contributing to 
water quality deterioration (Speight, Mounce, and Boxall 2019; E. J. Blokker et al. 2016) 
predicting future deterioration events  (Kazemi et al. 2018; Meyers, Kapelan, and Keedwell 
2017; S. R. Mounce et al. 2017) and optimising treatment processes at WTWs (Li et al. 2021). 
These studies demonstrate the potential that individual ML techniques could have for analysis 
of historical water quality data. While the focus of research is often the specific ML technique, 
the individual ML techniques are just one component of the ‘Big Data’ analytics approach 
required to support decision making and inform investment choices. Water utilities who want 
to benefit from Big Data analytics will also need to transform the ways that they collect, store, 
process, and visualise data and results. This transformation, sometimes referred to as the 
pathway to “Digital Water” (IWA 2019) requires holistic consideration of data issues to 
facilitate the big data applications for improving the delivery of safe drinking water.  

This paper proposes a Big Data framework for water utilities, using examples drawn from 
DWDS water quality applications to demonstrate its application (Speight, Mounce, and Boxall 
2019; M. Blokker, Vreeburg, and Speight 2014). This framework fills the gap between 
different, individual data-driven applications and the integration and processing of the 
various types of raw data collected by water utilities.  This framework is meant to be a guiding 
approach for water utilities with specific examples related to solving water quality problems 
in DWDS.  By presenting this framework, this work aims to contribute to the “Digital Water” 
transformation and to lay out the steps for water utilities to undertake on the journey to this 
digital revolution. 

10.2.1.   Big Data analytics 
 
Big Data refers to the collection of massive amounts of data that modern digital technologies 
generate and/or store. The volume of data, however, is just one of the characteristics of Big 
Data that also includes the velocity, the variety, the veracity, the variability and the value 
(Gandomi and Haider 2015). Briefly, these six characteristics respectively refer to generation 
and collections of extreme amounts of data, the speed that the data are generated and 
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analysed, the complexity of the datasets as these could be composed with data in various 
types of formats, the reliability (in terms of quality) of the available data, the variation of data 
sources and data flows and the important information that could provide once analysis.  Big 
Data analytics is the science that includes all the processes and the tools required to uncover 
valuable information hidden in these massive datasets, from the data collection to the mining 
and the predictive methods (usually DM and ML techniques and algorithms) used for 
providing outputs to decision makers. This science is evolving rapidly, with new methods and 
applications contributing to the derivation of new knowledge from data in various scientific 
domains including medicine (Okada 2021)11, agriculture (Geetha, Deepalakshmi, and Pande 
2019) , environmental protection (Dimokas et al. 2020; Lu 2020), energy efficiency (Zekić-
Sušac, Mitrović, and Has 2020), and finance (West and Bhattacharya 2016). Comparing across 
these works, the different applications pose unique challenges and while there are common 
features, there are critical differences.  Undeniably, successful application of big data science 
requires collaboration and integration with domain expertise.     

10.2.2.     Machine Learning  
 
Machine learning is the area of AI that develops the algorithms used to optimize future 
performance or understand patterns by learning from existing data or past experiences 
(Alpaydin 2014). ML algorithms are the most common tools that Big Data analytics use for 
identification of patterns in data and predictions of future trends. There are two main 
categories of ML algorithms: supervised and unsupervised.  Supervised learning algorithms 
are trained on data that has been labelled as input or output, therefore requiring some 
specification by the user. Once the training is finished, these algorithms then predict future 
outputs based on new unseen inputs.  Depending on the application, supervised ML 
predictive modelling can produce outputs of a numerical value or a classification. For 
classification, during the training period for the given inputs, a specific category or class is 
specified as the output (e.g. above or below a threshold).  Once trained, classification ML 
algorithms then predict the output category for the new unseen input data. For prediction of 
numerical values, the ML algorithms typically use regression techniques to develop numerical 
relationships that can predict future output values when given new unseen inputs. 
Unsupervised learning algorithms do not have specified inputs and outputs but rather use 
unlabelled data as inputs to generate clusters of different groups, uncovering hidden 
structures in the datasets and identifying correlations between the various parameters of the 
analysis. These types of algorithms are typically used for data exploration rather than 
prediction. 
Machine learning is gaining traction in water related applications, with recent studies having 
developed and applied algorithms for topics including leak detection in pipes (S. R. Mounce, 
Boxall, and Machell 2010; Romano, Kapelan, and Savić 2014; Carreño-Alvarado et al. 2017), 
water demand  forecasting (Herrera et al. 2010; Xenochristou et al. 2021), wastewater 
treatment plant operations (Dairi et al. 2019; Mamandipoor et al. 2020), sewer overflow 
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predictions (S. R. Mounce et al. 2014; Rosin et al. 2018), prediction of chlorine decay at 
consumers taps (Gibbs et al. 2006), prediction of indicator microorganisms in drinking water 
supply(Mohammed, Hameed, and Seidu 2017), and prediction of water quality events in 
DWDS using sensors (Vries et al. 2016; Fellini et al. 2018; Garcia, Puig, and Quevedo 2020). 
The aforementioned studies generally cover a single application but collectively demonstrate 
the potential for ML techniques to provide value to water utility operation.  However, Speight 
et al. (2019) and Mounce et al. (2017) report challenges in applying ML techniques in the 
collection of the data and the processes required to construct a dataset suitable for analysis.   
The need for a well-founded question, or a more exact articulation of the insight sought, to 
ensure the Big Data exercise is well directed and leads to consequential new understanding 
is evident when exploring and differentiating past research.  These observations reinforce the 
need to include consideration of the insight sought along with data collection, storage, and 
organisation; a Big Data framework that encompasses these and guides the selection of the 
ML algorithm is essential to create lasting value for water utility applications.    
 

10.2.3.    Big Data Analytics Frameworks 
 
The complexities in Big Data applications vary from one organisation to another, depending 
on the type of collected data and the knowledge that needs to be derived from the datasets. 
In many scientific domains, discussions over holistic structures, also known as Big Data 
analytics frameworks, have begun to emerge. Chandarana and Vijayalakshmi (Chandarana 
and Vijayalakshmi 2014) documented the challenges that organisations face using the 
different types of data that they collect and the requirements for development of frameworks 
to organise and analyse this data. As part of this work, the authors emphasised the 
importance of big-data analysis for deriving valuable information and making better 
decisions, and gave example areas such as healthcare and intelligence where big-data 
frameworks could be beneficial.  

Most frameworks proposed in the literature comprise a series of rules, in the form of layers, 
to 1) address the specific data storage and data integration complexities; 2) apply the proper 
ML, DM, or other data analysis methods depending on the desired outputs; and 3) visualise 
the outputs (Zekić-Sušac, Mitrović, and Has 2020; Abdullah et al. 2018; Ahmed et al. 2021). 
For example, Osman (2019) proposed a 3-layer framework for smart cities applications that 
includes the platform layer which specifies the operating systems and communication 
protocols for collecting the various types of data, the security layer which specifies the 
protocols for controlling access to the data and the protocols for data integration, and the 
data processing layer which specifies the data pre-processing, data analytics and 
management of the analytics model. The author also included a discussion of principles 
required for successful implementation, including the integration of static and real time data 
as well as standardisation of data acquisition. Villanueva Zacarias et al. (2018) suggested a 4-
layer framework for the manufacturing sector that includes data storage and integration, 
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consideration of the available IT resources for data pre-processing and analysis, selection of 
the appropriate ML algorithms for the data analytics, and a dashboard for the visualisation of 
the different solutions. 
Within the water sector, there were two published studies found that discuss Big Data 
analytics frameworks. One examined the benefits that water utilities could gain in reduction 
of chemicals in their wastewater using Big Data tools and ML techniques within their datasets 
(Romero, Hallett, and Jude 2017). This study described the current situation in the water 
sector, referred to applicable ML tools, and provided two different examples where the 
incorporation of Big Data tools could strengthen the existing approaches. However, the 
authors did not develop a specific Big Data framework or ML technique selection process. The 
second study proposed a 5-layer framework for improving urban domestic wastewater 
treatment and reducing environmental pollution, consisting of a data perception layer, data 
transmission layer, data storage layer, data analysis and application layer, and user interface 
layer (Du, Kuang, and Yang 2019). The authors analysed the volume and type of information 
that would be required for the application of such data-driven approaches and emphasised 
the importance of collecting all the necessary data from the wastewater treatment works and 
networks to support the Big Data framework implementation. The degree of data proposed 
would require a significant transformation of monitoring practices in wastewater networks 
compared to the typical level today and the application of the application-specific framework 
with a smaller dataset or with non-sensor data was not demonstrated.  Neither of these two 
studies refer to selection of specific ML techniques and the criteria required for the 
application of those techniques.  
 
This paper proposes a comprehensive Big Data framework that is driven from the insight 
sought, addresses data collection, storage, and management aspects, integrates ML 
technique selection, and includes visualisation and communication of outputs.  Importantly, 
the criteria for ML selection are based upon the desired drinking water quality investigation 
and the existing data that is available for the analysis, and the integration of data science and 
water engineering is essential for this.   
 

10.3.    Proposed Big Data Framework 
 
The data that water utilities collect cannot be compared with the amounts of data that IT 
companies collect every day. In addition, their collection and storage systems are obsolete, 
and the value of these data is not really explored. Thus, at present, water utilities data do not 
comply with the big-data definition. However, water utilities’ aim is to follow the digital 
revolution of the other sectors, a process that requires a complete change of the current 
setup. Recognising the need of a holistic approach for the management of water quality data 
in DWDS for data-driven applications, we propose a Big Data framework consisting of 4 layers: 
1) data storage; 2) data connection and integration; 3) data analysis; and 4) presentation and 
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communication of data analyses outcomes (Figure 10.1).  Importantly, the involvement of 
different types of expertise for each layer is noted to emphasise that the development of a 
Big Data framework is not solely within the domain of computer scientists and IT specialists 
but rather requires collaboration across a number of water utility teams.  In this section, the 
purpose and main principles required for the implementation of each layer is described based 
upon its application to water quality in DWDS. 

10.3.1.    The Layers of the Proposed Framework 

10.3.1.1.    Data Storage Layer 
 
The data storage layer includes the storage of various types of databases through the use of 
data warehouse or cloud storage technology. The data storage software and system 
specifications will differ from one water utility to another, but the key capability for all such 
systems is the ability to store all available types of data including structured, unstructured 
and asset information. In addition, it is very important that the format of the stored datasets 
makes them easily accessible for current and future use and supports linkages across 
databases with the use of unique IDs for every asset or sample. Therefore, the main principle 
required for this layer is the standardization of data deposition, which sounds straightforward 
but is not trivial. An examination of the sufficiency of the data collected by water utilities to 
answer questions of relevance and the quality of the available data sources (accounting for 
errors in measurement, missing values, etc.) is not the focus of this study.  
The data that water utilities collect may be grouped into two categories: the data regarding 
their assets that is static or changing infrequently over time, and time series data such as 
water quality and system operations or control data. Within the time series data, 3 further 
subcategories of data that is collected may be usefully defined: 1) telemetry data from 
permanent sensor installations at the WTW and key DWDS assets which is transmitted to a 
central data repository (typically SCADA), 2) discrete water quality (grab) samples from the 
WTWs and SRs outlets and sparsely from consumers’ taps, and 3) other time series 
monitoring data from temporary sensors in the DWDS, installed for water quality 
investigations, research, and similar purposes, that is often not stored in the central data 
repository but rather in a separate application. In addition to internal data collected by the 
water utilities, Big Data applications may also require data from external sources, including 
parameters such as rainfall and air temperature.  
 
Table 10-1 summarises the key parameters required to support analytics for different types 
of water utility data, with a focus on water quality.  The specifics of the parameters will differ 
by water utility, but baseline information will be required for assets and samples.   
To gain the greatest value from Big Data techniques, linkages between datasets including 
aspects of physical connectivity are important to be included.  For example, for a given water 
quality sample from the DWDS, it is ideal to be able to identify the pipes, water treatment 
works, and other relevant infrastructure supplying the sample location. 
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Figure 10.1: The proposed Big Data framework, labelled for data analysis applications in DWDS 

water quality 
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Table 10-1: Summary of typical data requirements by asset type and parameter category 
Asset Type Static Data Parameters Time Series Parameters 

Physical  Telemetry  Discrete Samples Other Time Series 
Water 

Treatment 
Works (WTW) 

- Name/ID number, 
location 
- Volumes, dimensions, 
etc.  
- Source of raw water 
- Water operation areas 
(WOAs) served 
- Type of secondary 
disinfection 
- Treatment processes 
- Locations of monitoring 
equipment and discrete 
samples, for permanent 
and temporary monitoring 
- Date of any treatment 
process or secondary 
disinfection change 
- Date of other significant 
events, maintenance 
activities, etc. 
- Location of external 
monitoring (e.g. weather 
stations) 

- All water quality 
parameters 
measured with online 
sensors in each 
treatment process 
and the final treated 
drinking water 
- Dosing data for key 
processes 
- Flows and levels for 
key process locations 
 
 

- All water quality 
parameters 
measured by discrete 
sample in each 
treatment process 
and the final treated 
drinking water 
- Historical data on 
failures including 
dates of failures and 
investigation results 
- Reason for taking 
sample (e.g., 
regulatory, failure 
investigation) 
 

- All water quality 
parameters 
measured with online 
sensors with dates 
and times of 
measurement  
- Reason for the 
investigation and 
results 
- External parameters 
e.g. temperature, 
rainfall 
 

Service 
Reservoir (SR) 

- Name/ID number, 
location 
- Volumes, dimensions, 
etc. 
volume, dimensions 
- Type of additional 
disinfection or chemical 
addition (if any) 
- Date of disinfection or 
other physical changes 
- Dates of cleaning and 
other maintenance 
activities 
- WTW supplying the SR 
-Water supply zones 
(WSZs) supplied by the SR 
- Location of external 
monitoring (e.g. weather 
stations)  

- All water quality 
parameters 
measured with online 
sensors (e.g. 
turbidity, chlorine) 
- Flows and levels  
- Chemical dosing 
data, if applicable 
 
 
 
 
 
 
 
 
 
 

- All water quality 
parameters 
measured by discrete 
sample 
- Historical data on 
failures including 
dates of failures and 
investigation results 
- Reason for taking 
sample (e.g., 
regulatory, failure 
investigation)  

- All water quality 
parameters 
measured with online 
sensors with dates 
and times of 
measurement  
- Reason for the 
investigation and 
results 
- External parameters 
e.g. temperature, 
rainfall 
 
 

Service Zone - WOA, WSZ and district 
meter areas (DMAs) 
names/ID numbers and 
locations 
- Historical data including 
dates on configuration, 
operational changes, and 
maintenance activities, 
ideally by DMA (e.g. 

- Flows, levels, 
pressure from any 
monitored locations 
(e.g. pump stations, 
control valves, DMA 
entry points)  
- Chemical dosing 
data, if applicable 
 

- All water quality 
parameters 
measured by discrete 
sample from 
customer taps and 
other system facilities 
- Historical data on 
failures including 
dates of failures and 
investigation results 

- All water quality 
parameters 
measured with online 
sensors with dates 
and times of 
measurement  
- Reason for the 
investigation and 
results 
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boundary changes, 
flushing)  
- Zone hierarchy from 
WTW to WSZ and DMA 
including key facilities like 
pump stations, valve 
vaults, and SRs  
- Type of additional 
disinfection or chemical 
addition (if any) 
- Location of monitoring 
equipment and discrete 
sample collection 
- Location of external 
monitoring (e.g. weather 
stations) 

- Reason for taking 
sample (e.g., 
regulatory, failure 
investigation) 
 

- External parameters 
e.g. temperature, 
rainfall 
 
 

Pipe - Location, pipe ID number 
 - Diameter, material, 
lining, etc. 
- Date of installation and 
repairs 
- DMA, WSZ and WOA for 
each pipe 
- Hydraulic model outputs 
(e.g. velocity, pressure, 
water age) 
- Burst history 
- Properties supplied by 
the pipe 
-Number of discolouration 
or other water 
deterioration events per 
pipe 

- Flows, levels, 
pressure from any 
monitored locations 

 - All water quality 
parameters 
measured by discrete 
sample from pipe 
sampling locations 

- All water quality 
parameters 
measured with online 
sensors at pipe 
sampling locations 
with dates and times 
of measurement  
- Reason for the 
investigation and 
results 
 

 

10.3.1.2.     Data Connection and Integration Layer 
 
This layer addresses the challenge of combining the various types of data and extracting the 
necessary parameters from storage in the previous layer data. The spatial connectivity 
between data elements is an important feature of DWDS data and harnessing this information 
in the Big Data analysis yields much more significant insight than considering water quality 
parameters alone.    
This layer includes the production of a dataset fit for analysis by integrating across and 
between the different types of data. The integration component links the various types of 
data to each other and with their associated DWDS assets. For example, linking each water 
quality sample to its local pipe and service area asset hierarchy (district metered area, water 
operations zone, pressure zone, WTW, water source, etc.) is required to fully understand the 
route that the water follows to enable identification of the causes of deterioration. Data 
integration can be a complicated task.  However, if good standardisation principles are 
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followed in the data storage layer, the process can be facilitated using references and indices 
like water operations zone names or geospatial coordinates. 
In the data pre-processing component, the integrated raw data are further cleaned to remove 
outliers, bad quality data, missing data, or chronological periods that should not be included 
in the given analysis. The pre-processing may also require certain calculations to be made 
using the raw data, such as assigning  
classes (for classification analyses) or determining averages.  Filling in missing values and 
removing unwanted parameters from the dataset are also included in this pre-processing.   
Once pre-processing has been completed, the final component of this layer is the extraction 
of the clean dataset in the appropriate, accessible format and ready for further analysis in the 
next layer.  

10.3.1.3.   Data Analysis Layer 
 
This data analysis layer is where analysis is performed using ML techniques for the creation 
of new knowledge from the available data. A critical component of this layer is the selection 
of the appropriate ML technique, which is dependent on the water quality question to be 
addressed, the type of output desired, and the type and quantity of the available data.  We 
propose a six-step ML selection and implementation process as follows: 
1. Define the water quality problem: The first step requires water quality experts to specify 

a task or a water quality question that has the potential to be addressed using data 
analytics solutions.  

2. Define the type of required output: Once the problem is defined, the water quality 
experts should specify the goal of the investigation and desired type of output. For this 
framework, ML learning outputs have been categorised into four types:  1) prediction of 
future class (classification output - e.g., prediction of a water quality failure); 2) prediction 
of future behaviour (regression output - e.g., predicting the future values of certain 
parameters); 3) grouping of unlabelled data (clustering - e.g., splitting large datasets in 
groups based on various criteria); and 4) identifying relationships between parameters 
(correlation - e.g., identifying parameters that influence water quality deterioration).  This 
definition should not be constrained by the available data initially, although it may need 
to be adapted through an iterative process with Step 3 to reflect the practicalities of the 
actual data. 

3. Type of available data: This step connects this data analysis layer with the previous data 
integration layer. Here, the final extracted dataset is reviewed to determine the type, 
format, and most importantly quantity of data available. For example, continuous water 
quality monitoring data from the DWDS typically results in a dataset that is spatially and 
chronologically sparse and covers only a few water quality parameters.  Given that the 
quantity of available data and number of included parameters influences the performance 
of some ML techniques, this review of available data is important for ML technique 
selection.  For example, artificial neural networks (ANNs) are generally not applicable to 



 

187 
 

small and sparse datasets with a significant number of missing values (Ennett, Frize, and 
Walker 2001). In some cases, some initial exploratory analyses will be required to 
determine if the available data is sufficient to address the given water quality question 
and iterative reconsideration of Step 2 will be required. 

4. Machine learning technique selection: Building upon the previous three steps, the 
appropriate ML technique is selected in this step, facilitated by use of a machine learning 
technique selection tree (Figure 10.2, further detail below).  Some ML techniques cannot 
handle missing data and it is not always possible to infill the missing values, , or the target 
of interest may be a rare event and the technique must be carefully selected to address 
this. Monitoring samples datasets are temporally and spatially sparse and, moreover, 
from each sample taken, not all the water quality parameters are measured. The ML 
methods selected for this framework are presented in detail in the next section.   

5. Data preparation: Once the ML technique has been selected, this step includes any final 
changes to the data format required for the selected ML technique.      

6. Application output:  In this step, the selected ML technique/techniques are trained using 
the available data and tested to check their performance on unseen data. Once the 
simulations are finished, the outputs are specified. These could include images, values, or 
tables. The outputs are then reviewed to ensure that the ML technique has produced 
effective results. 

10.3.1.4.    Machine learning selection tree 
 
For a defined water quality problem (Figure 10.2, Box A), a path in the tree is followed 
considering the available data (Figure 10.2, Box B) and desired output (Figure 10.2, Box C), all 
of which are considered in Steps 1 through 3 of the ML selection and implementation process.    
The ML technique selection then proceeds by considering an additional factor that needs to 
be specified (Figure 10.2, Box D).  This factor, termed ‘interpretability’, has been defined as 
the ability of the techniques to offer a transparent explanation of how outputs were 
calculated.  Techniques with high interpretability, also known as “white boxes”, offer a way 
to clearly demonstrate the logic behind outputs and indicate the contributions of various 
parameters to decisions.  Techniques with low interpretability, also known as “black boxes”, 
provide outputs without any explanatory elements.  Different water quality questions might 
necessitate selection of techniques with higher or lower interpretability.  For example, while 
seeking a prediction of future iron failures in a DWDS, deriving an understanding of the 
parameters that influence the prediction could be as useful as the prediction itself.  
Following through the selection tree process, the final part identifies the appropriate ML 
technique (Figure 10.2, Box E) based upon the requirements for that specific water quality 
problem.  Table 10-2 summarises such methods, covering those with examples of successfully 
tested ML techniques. New ML methods are continually emerging from research, hence the 
likes of table 10-2 require regular updating.  The methods investigated for this framework are 
those with demonstrated applications in the water sector. 
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Neural networks and deep learning applications are applied to discover knowledge from large 
and complicated datasets (Lecun, Bengio, and Hinton 2015). Therefore, ANNs and LSTM 
techniques were both excluded from applications where discrete sample data is used because 
these datasets are spatially and temporally sparse with many missing values.   Similarly, 
predictions based on regression techniques are not recommended with discrete samples due 
to their spatially and temporally sparse nature. 

10.3.1.5.  Presentation and communication of data analyses outcomes 
 
This layer overlaps with the application output step of the data analysis layer, taking the ML 
model outputs and presenting them using graphs, tables, and images to facilitate 
understanding and interpretation of the results by decision makers.  While the visual 
formatting is important, it is also critical that the most important and relevant results be 
carefully selected to clearly explain the ML outputs.  Presentation of all outputs created in the 
ML analysis may create confusion for non-technical stakeholders but editing outputs for 
clarity must be balanced with providing sufficient evidence for interventions.  Well-presented 
results provide sufficient and correct information to utility staff to make informed decisions 
for proactive interventions in the DWDS. 
 

 
Figure 10.2: Machine learning method selection tree 
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Table 10-2: Summary of ML methods investigated 
Method Type Output Interpretable Notes/Comments Example 

References 
k-means Unsupervised Clustering Yes Not suitable for datasets with 

missing values 
(Maimon 

and Rokach 
2006)  

Principal Component 
Analysis (PCA) 

Unsupervised Clustering/ 
Linear 

correlations/ 
Dimensionality 

reduction 

Yes Not suitable for datasets with 
missing values 

(Jolliffe 
2002) 

Self- Organising Maps 
(SOMs) 

Unsupervised Clustering/ Non-
linear 

correlations 

No Good for datasets with missing 
values 

(T. Kohonen 
1990) 

Random Forest (RF) Supervised Classification/ 
Regression 

Yes Ensemble decision trees with 
equal contribution to the final 

decision 

(Breiman 
2001) 

Boosting Trees 
(Boosting) 

Supervised Classification Yes Ensemble decision trees with 
weighted contribution to the 

final decision 

(Dietterich 
2000) 

Artificial Neural 
Networks (ANNs) 

Supervised Regression No Not suitable for datasets with 
missing values 

(S. R. 
Mounce et 
al. 2014)  

t-Distributed Stochastic 
Neighbour Embedding 

(tSNE) 

Unsupervised Dimensionality 
reduction / 
clustering 

No Ignores input rows with missing 
values so not suitable for many 

discrete sample datasets 

(van der 
Maaten and 

Hinton 
2008) 

Long Short-Term 
Memory (LSTM) 

Supervised Regression / 
Classification 

No Deep learning method, requires 
a large amount of data 

(Hochreiter 
and 

Schmidhube
r 1997) 

10.4.    Application of the Big Data Framework 
 
To validate and evidence the value of the proposed framework, its application with a water 
utility located in the north of the UK is presented. This water utility serves more than 5.5 
million people via 250 WTWs and greater than 50000 kilometres of pipes, with approximately 
1100 SRs. Two case studies are presented covering different aspects of water quality 
performance in SRs.  Specifically, the insights sought were: evaluating the factors related to 
bacteriological activity in SRs, and the prediction of low chlorine concentration events in the 
SR outlets.  
For the case study examples, the data storage layer of the Big Data framework comprised the 
water utility’s in-house data management system with manual integration of external sources 
like weather data.  The following sections present the application of layers 2 through 4 of the 
Big Data framework. 
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10.4.1.     Example 1: Factors related to increased bacteriological 
activity in SRs 

 
Layer 2 - Data connection and integration 
Discrete water quality samples taken from the outlets of SRs and WTWs were collected for a 
period between January 2012 and May 2020. In these samples, various parameters were 
measured including bacteriological indicator parameters such as heterotrophic plate counts 
(HPCs) at 22oC as well as flow cytometry total cell counts (FC_TCCs) and intact cell counts 
(FC_ICCs), disinfectant residual parameters, and other physical and chemical parameters. In 
addition, databases that included asset information such as estimated retention time (water 
age) within each SR, type of secondary disinfection at each WTW (chlorine/chloramine), and 
connections between SRs and their source WTWs were also collected. Finally, daily and hourly 
precipitation data for the same period were retrieved from the relevant Met Office weather 
stations 41 closest to each asset location.  
All the raw data was cleaned and collated, and links between water quality data and the 
corresponding physical asset were created based on spatial, naming, and/or connectivity 
data.  Precipitation was included as the average daily rainfall (mm) at each WTW.  Monthly 
average values for water quality parameters measured at the WTW were calculated and 
linked to the SRs within each WTW service zone. Additional parameters were created and 
integrated with the main SRs’ discrete samples dataset as follows: 1) the age of water exiting 
an SR (hours) as sum of the retention time of the given SR plus the retention time of the SRs 
that the water passed through upstream of the given SR (AgeofWaterLeavingSR); 2) the time 
(days) between the last reported SR cleaning date and the sample date 
(DaysFromCleaningDay), with negative values indicating samples that were taken before the 
last cleaning; 3) the monthly average total organic carbon in the WTWs (TOC_WTW_AVE); 4) 
the monthly average temperature of water exiting the WTWs (Temperature_WTW_AVE); 5) 
the monthly average flow cytometry total cell counts exiting the WTWs (FC_TCC_WTW_AVE); 
and 6) the daily average precipitation per month near the WTW 
(WTW_AverageDailyPrecipitation). 
 
Layer 3 - Data analysis  
The 6 steps within the ML selection and implementation process were performed for this 
water quality investigation as follows: 
1. Define the water quality problem  
The aim of this investigation is to understand the factors related to increased bacteriological 
activity in the SRs. 
2. Define the type of required output 
The required output in this investigation is correlations between parameters, with 
bacteriological parameters as the outcome parameters of interest.  Numerical predictions are 
not required to understand these correlations. 
3. Type of available data 
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As described above, the available data stems from the data integration layer. The outcome 
parameters of interest (bacteriological measurements HPC, FC_TCC, and FC_ICC) are only 
available as discrete samples taken from the outlet of the SRs.  Telemetry data on water 
quality as well as calculated daily average water quality from the WTW outlet is also available.  
Weather data is available as time series data and calculated daily average data.  Physical data 
on the WTWs and SRs is also available. 
4. Machine learning technique selection 
Given that this problem has an outcome characterised by discrete sample data and that the 
required output is correlation/clusters, the machine learning technique selection tree (Figure 
10.2) directs towards SOMs as the ML method.  
5. Data preparation  
For the SOM application, the SR water quality data were prepared so that each row represents 
a discrete sample and each column is a different measured parameter from that sample, 
including the average monthly values of the water quality parameters at the WTW outlets 
feeding the sample location and the average daily precipitation per month in the given SR. 
6. Application output 
Two SOMs were selected from the analysis (Figures 10.3 and 10.4).  These outputs consider 
many of the factors that have been shown to influence bacteriological water quality in the 
literature.  The SOM analysis produces output planes for each parameter that visualise 
clusters of similar data by colour (low is blue, high is red) based on the range within the 
dataset, which in this investigation was set to colour-code based on the 5th and 95th 
percentile for each parameter without excluding any data. The SOM Toolbox 2.1 for MATLAB 
was used for all analyses42.  
The first SOM (Figure 10.3) investigates the effect of disinfectant residual type and 
concentration, along with retention time in the SR and temperature, on the bacteriological 
indicator parameters of HPC at 22oC (HPC_22), flow cytometry total cell counts (FC_TCCs) 
and intact cell counts (FC_ICCs).  Both free (FreeCl) and total (TotalCl) chlorine are plotted, 
with the type of disinfectant (chlorine or chloramine) used for a post-clustering labelled plot 
(right hand side of Figure 10.3). 
This SOM shows a large cluster of high HPC values (left half of plane) with correlations to high 
and medium TCCs and high HPCs.  The high HPC cluster also has a tendency to correlate with 
higher age of water exiting the SRs, correlates strongly with low free chlorine, and somewhat 
with elevated temperature.  The labelled map, which is developed post-clustering analysis to 
assign categorical parameters that best match the members of each cell, shows a very strong 
correlation between high HPC values and chloraminated systems.  High HPCs corresponded 
to the entire range of total chlorine concentrations and therefore indicates that 
bacteriological activity is less strongly associated with loss of disinfectant residual than with 
type of disinfectant. 
A cluster with increased numbers of ICCs (top centre of the plane) is correlated with high age 
of water exiting the SRs, high temperature and low free and total chlorine in both 
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chloraminated and chlorinated SRs. Interestingly, this analysis shows no clear correlation 
between ICCs and TCCs.  
The impact of SR cleaning on bacteriological activity is somewhat less clear from this analysis.  
There is a cluster of low HPC values (lower left of the plane) within chloraminated systems 
that correlates with a higher number of days after cleaning.  Considering that recently cleaned 
SRs show as light blue (horizontal band in the middle of the plane), there seems to be slightly 
lower HPC values corresponding to this cleaning, but not exclusively so. 
The second SOM in this analysis (Figure 10.4) investigated the impact of key WTW water 
quality parameters (TOC and FC_TCCs) in addition to disinfectant type and concentration, 
water age in the SRs, and precipitation. 

 
Figure 10.3: SOM showing impact of disinfectant residual type and concentration on 

bacteriological activity in SRs, including secondary disinfection labelled map 



 

193 
 

 
Figure 10.4: SOM showing additional impact of key WTW parameters on bacteriological activity 
SRs, including secondary disinfection labelled map 

 
Layer 4 - Presentation and communication of data analyses outcomes 

In this layer, the application outputs were presented in the form of colour-coded output 
planes (Figures 10.3 and 10.4).  These outputs allowed for visual observation of correlations 
across multiple parameters and could be understood by a variety of water utility 
stakeholders.   The outputs provided a good indication of which factors influence 
bacteriological activity in the SRs, although evidence in this format does not provide 
numerical values or estimates.  As such, correlation analyses like these can answer general 
questions like the one posed in step 1 of the ML selection and implementation process for 
this case study but cannot address questions that require a numerical output like a score or 
ranking. 
 

10.4.2. Example 2: Predicting low chlorine concentration events in 
the SRs 

 
In this example application of the framework, the aim was to classify the SRs into either high-
risk or low-risk categories based on a prediction of monthly low chlorine events by the ML 
models. The monthly temporal scale was selected as a prediction horizon as, on average, 2 to 
4 monitoring samples per SR per month are collected for regulatory compliance (DWQR 
2019a).  A low chlorine event was defined as a sample where the chlorine concentration was 
measured below 0.3 mg/l to allow a small margin above the allowable minimum free chlorine 
concentration at customers taps of 0.2 mg/l.  The dataset used for this example was the same 
as the one used for Example 1 and therefore layers 1 and 2 were already complete. 
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Layer 3 - Data analysis  
The 6 steps within the ML selection and implementation process were performed for this 
water quality investigation as follows: 
1. Define the water quality problem  
The aim of this investigation is to classify SRs as high or low risk by predicting their low free 
chlorine events in the upcoming month. 
2. Define the type of required output 
The required output is the classification of each SRs into low and high-risk categories for the 
upcoming month based on low chlorine events. 
3. Type of available data 
The available data for the investigation are the water quality parameters from SR and WTW 
outlets during the period between January 2012 and December 2019 (complete years of data 
required, final 5 months from example 1 not utilised). The outcome parameter of interest 
(FreeCl) is only available as discrete samples taken from the outlet of the SRs.  Telemetry data 
on water quality as well as calculated daily average water quality from the WTW outlet is also 
available.  Weather data is available as time series data and calculated daily average data.  
Physical data on the WTWs and SRs is also available. 
4. Machine learning technique selection 
Following the machine learning method selection tree in Figure 10.2, two types of ML 
technique are suitable for this investigation, random forest and boosting trees. The SRs 
dataset is heavily unbalanced, meaning that most of the available data for training the ML 
model belong to the non-event, low-risk class. Therefore, RusBoost, a technique that 
combines random under sampling (of the non-event data) with the boosting tree algorithm 
was selected for this analysis (Seiffert et al. 2008).  
5. Data preparation  
The initial dataset contained water quality data taken from all SRs and WTWs on different 
days. Therefore, this dataset required a final transformation to a monthly scale for analysis.  
Monthly averaged values per parameter per SR and the chlorine standard deviation per 
month per SR were calculated.  Given that the results of the previous investigation revealed 
different behaviour in chlorinated and chloraminated SRs, all chloraminated SRs were 
excluded from this analysis.  The historical classification of low-risk or high-risk was calculated 
for each SR for every month of the dataset. Within a given month, high-risk SRs were those 
that had one or more low chlorine events for that month (chlorine measured value below 
0.3mg/l in at least one discrete sample in that month).  Low-risk SRs had no low chlorine 
events in the given month.   
6. Application output 

a. ML Model training 
Two options for the ML model were tested during training.  The first option used the water 
age exiting the SRs, the average daily precipitation per SR and the average monthly values of 
15 water quality parameters per SR per month (Model RB.1 in Table 10-3)  and the second 
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focused on the free chlorine parameters:  average monthly free chlorine , monthly free 
chlorine standard deviation, and average monthly WTW free chlorine  along with the two 
parameters from the previous case study that had the highest correlation with low chlorine 
concentrations: water age exiting the SRs , and average water temperature together 
comprising Model RB.2 (Table 10-3).   
During the training period, the ML model was used to predict the class (high-risk/low-risk) for 
each SR in the following month and this prediction was paired with the historical class for 
model training.  For example, using the January 2012 water quality data as inputs, the 
historical SRs classification for February 2012 was produced as output (Figure 10.5). The ML 
models were developed in MATLAB 2019b utilizing 1000 weak learners for each model and 
tested for their performance based on their predictions for August 2019. A simple schematic 
of the model training and testing is presented in Figure 10.5. 
 
The accuracy of the models was evaluated by using true positive rate as calculated with 
Equation (1) and the Matthews correlation coefficient (Baldi et al. 2000) as calculated with 
Equation (2), as follows: 
 

𝑇𝑃𝑅 = 7?
7?@A!

       (1) 

 

 𝑀𝐶𝐶 = 7?	C	7!-A?	C	A!
D(7?@A?)(7?@A!)(7!@A?)(7!@A!)

    (2) 

 
Figure 10.5: Monthly predictive model schematic for SR class prediction for August 2019 

 
where TP is the number of true positive predictions, FN is the number of false negative 
predictions, TN is the number of true negative predictions, and FP is the number of false 
positive predictions. True positive rate is used for quantifying the proportion of correctly 
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predicted positives (events) over all the actual events. The Matthews correlation coefficient 
is used for evaluating the overall performance of the model and has a range between -1 and 
+1, where a result of -1 indicates a poor predictive capability for the model and values close 
to +1 indicate good predictive capability.  

b. ML Model results 
The MCC results for the two ML model options (Table 10-3) show that both RB.1 and RB.2 
performed well, especially in keeping a balance between correctly predicting more high-risk 
SRs (TPR=0.71 and TPR=0.72, respectively) and creating less false positives (MCC=0.44 for 
both.).  Overall, RB.2 can be considered the best model given its slightly higher true positive 
rate.  
In this example, the outputs presented to the utility decision makers included a list of SRs and 
their predicted risk category for a given month.  Given that the boosting tree algorithm is a 
white-box model, part or all the decision trees that contributed to the final predictions were 
exported to illustrate which water quality parameters contributed the most to the model 
predictions (e.g., the most important predictor in Table 10-3). This valuable additional 
information, associated with the Interpretability factor for the selected ML method, allows 
the utility to understand not only the risk classification but also the factors that lead to this 
risk.   
 
Table 10-3: Summary of the performance metrics for the two ML model options tested in Example 2 

Algorithm Model PARAMETERS MOST IMPORTANT 
PREDICTOR TPR MCC 

 

RUSBoost 

RB.1 

Monthly free chlorine average, monthly free chlorine 
standard deviation, average monthly WTW total chlorine, 

monthly average HPCs @23C, Monthly average HPCs 
@37C, monthly average ICCs, monthly average TCCs,               

average water temperature, water age exiting the SRs, 
average daily precipitation per month per SR, average 

monthly WTW free chlorine,  average monthly WTW total 
chlorine, average monthly WTW TCCs, , average monthly 

ICCs, , average monthly WTW water temperature, 
average monthly WTW TOC, , average monthly WTW pH  

Monthly free chlorine 
average 

0.71 0.44 

 

RB.2 

Monthly free chlorine average, monthly free chlorine 
standard deviation, average monthly WTW free chlorine,                 
water age exiting the SRs, average water temperature 

Monthly free chlorine 
average 0.72 0.44 

 

 
 
Layer 4 - Presentation and communication of data analyses outcomes 
In this example, the outputs presented to the utility decision makers included a list of SRs and 
their predicted risk category for a given month.  Given that the boosting tree algorithm is a 
white-box model, part or all the decision trees that contributed to the final predictions were 
exported to illustrate which water quality parameters contributed the most to the model 
predictions (e.g., the most important predictor in Table 10-3). This valuable additional 
information, associated with the Interpretability factor for the selected ML method, allows 
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the utility to understand not only the risk classification but also the factors that lead to this 
risk.   

10.5.    Discussion 

10.5.1.    Actionable information 
 
The two example case studies delivered a variety of actionable information. In the first 
example, the water quality question was to identify factors that influence the bacteriological 
activity inside the SRs.  The SOM outputs provided the evidence to support actions including:  
1) closer investigation of chloraminated SRs and maintenance of disinfectant residual, 
especially when the temperature increases; 2) control and optimisation of the retention time 
in both the chlorinated and chloraminated SRs; 3) management and reduction of TOC exiting 
the WTWs; 4) improvements in the WTWs operation to respond to sudden changes in the 
quality of the raw water due to increased precipitation.  Additional studies may be required 
to more fully explore each of these actions, including collection of data that was not available 
for the SOM analysis, but the Big Data approach has provided focus and clarity for such 
additional studies that would not otherwise have been possible. 
In the second case study example, a prediction model for high-risk SRs based on their low 
chlorine events each month was created.  The model was able to predict up to 72% of the low 
chlorine events for the investigation month, which is a high degree of accuracy that allows 
targeted interventions to take place.  Furthermore, the fact that low chlorine events can be 
accurately predicted using mainly chlorine-related parameters is important, demonstrating 
that monitoring of supplemental parameters (e.g. other bacteriological indicators) would not 
be warranted to address this particular water quality question. 
For the water quality examples used, changes occur due to complex physical, chemical and 
biological reactions and interactions occurring inside a pipe network.  It was, therefore, 
important that the Big Data analytics investigation was directed by domain knowledge, the 
posing of the question and understanding sought that drives the third layer. This is crucial to 
ensure actionable information results. This finding is an underlying principle of the 
framework, whatever the application. It requires collaboration between experts in different 
water utility departments and with data scientists, in all the layers of the framework. 
Part of the appeal of Big Data analytics is the ability to answer increasingly complex questions 
and make predictions for the future.  Drawing upon the case study examples, basic data 
analysis could map the SRs with low chlorine measurements each month, perhaps identifying 
geographical areas with clusters of high-risk SRs.  But such an analysis cannot identify 
underlying factors that contribute to the low chlorine events and cannot predict which SRs 
may have problems next month.  It is this deeper understanding through iteration of the third 
layer that was key in obtaining the actionable information derived.  
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10.5.2. Framework 
 
The Big Data framework, presented in this paper with applications to drinking water quality, 
emphasises the necessary steps to unlock the power of machine learning and advanced data 
analytics for water utilities. The framework systemises a process to ensure that actionable 
information is derived by unlocking the potential of previously siloed data. Importantly a 
selection tree process to identify the best ML techniques, driven from the insight required 
and the data available is central.  This is based on the knowledge, and illustrates, that there 
is much more effort required for successful Big Data applications than coding a given ML 
algorithm.   
Standardising data acquisition and storage, organising the data to facilitate analysis including 
generating links between different datasets, understanding the difference between available 
data types, and selecting the most appropriate data-driven techniques are all necessary steps 
to deliver actionable information and supporting evidence to inform operation and 
management decisions. Implementation of standards that guarantee the collection of good 
quality data and the organisation of the stored data are often under-resourced tasks at water 
utilities, yet have been shown to be core elements of this framework.  The data-specific 
nature of current systems within the water industry as well as the lack of historical 
collaboration between the relevant areas of expertise perhaps explain why there have been 
so few Big Data frameworks proposed for the water sector before now.   
One of the most challenging but vital aspects of layer 2 is the generation and association of 
links between different data. Linkages between different data sources, such as between asset 
information and measured water quality parameters, are critical for ML analyses yet are not 
often performed.  For example, analysis of water quality sample data without consideration 
of the water treatment works supplying a given point in a network often falls short in 
answering the questions of interest.  This is a key area where data scientists and water domain 
experts must work closely to understand what is possible and to ensure that appropriate 
associations are made.  Unique ID and geocoding data are often useful here, but these should 
be supplemented by checking secondary data.  For example, linking a pipe repair record to 
GIS data can be done based on location data, with a check made using pipe material data that 
is also frequently contained in both datasets. 
The initial investment of time and effort for data collection, storage, and integration (layers 1 
and 2) is often greater than what is needed for data analysis (layer 3).  However, once created, 
layers 1 and 2 can then be used to support a multitude of analyses repeating and iterating 
layers 3 and 4 without the need to revisit layers 1 and 2.  This was shown for the two case 
study examples presented. The return on initial investment in layers 1 and 2 can be further 
multiplied many times if automatic updating of datasets can be incorporated.  The need for 
investment in layers 1 and 2 is great but the benefits will be felt across the water industry 
when the analytical power and decision-making support of layers 3 and 4 is unlocked.  
Once layers 1 and 2 are complete, the question, and opportunity, becomes to consider what 
new and actionable information is needed and how to extract it. Studies in the literature 
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which explored specific algorithm(s) with application(s) to a few water quality parameters 
have paved the way to greater understanding of the potential in Big Data analytics but the 
water industry lacked an understanding of how best to apply these techniques and which 
ones work best in which situations.  The machine learning method selection tree proposes a 
novel, problem-driven approach to this, enabling a wide range of investigations and opening 
up the possibilities for taking Big Data analytics to the next level of application across the 
water industry.   

10.6.   Conclusions 
 
A Big Data framework to enable water utilities to robustly and efficiently apply data-driven 
methods to derive new understanding from complex, traditionally siloed data is presented. 
The proposed framework is based on a four-layer approach:  
1. the data storage layer, including a system to categorise and sort data  
2. the data integration layer, where the importance of associating across and between data 

is emphasised, irrespective of types, formats and sources of data 
3. the data analysis layer, is systemised as a six-stage process that is driven from precise 

articulation of the decisions that are to be informed. These steps are: 1) definition of the 
problem; 2) definition of the type of required output; 3) type of the available data; 4) 
selection of the ML learning technique; 5) data preparation; and 6) application output.  A 
selection tree is used to inform the selection of ML technique based on 3 criteria: the 
available data (discrete water quality samples or time-series), the required output, and 
the need for interpretability of the process for producing the outputs.  

4. the presentation and communication of data analyses outcomes, where careful selection 
from the huge number of outputs generated is essential to present a logic effective and 
evidence-based narrative. 

The need for and integration of roles across water engineering and data science are set out 
across the framework. Layers 1 and 2 are often complex and time consuming. However, once 
comprehensively accomplished they readily enable a multitude of different explorations of 
the different data to derive different and deeper understanding by repeating and iterating 
layers 3 and 4.   
Case study examples evidence the application of the framework for drinking water quality.  
The examples demonstrate the derivation of new understanding, such as the association 
between disinfection residual type and concentration and age of water exiting a service 
reservoir combining to correlate with increased two-day plate counts, and for the prediction 
of low chlorine events at the outlet of service reservoirs.  This understanding readily informs 
operational decisions, such as managing disinfection residual dose and prioritisation of 
maintenance activities. Overall, the framework is demonstrated to provide robust data-driven 
understanding and evidence to inform vital water utility operational and maintenance 
decisions.   
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11. Discussion  
 
This thesis has sought to aid WUs obtaining new information regarding drinking water quality 
from the data that they have stored in their systems or collect daily. The ultimate aim of this 
work is to provide a holistic approach on the data collection, storage, management and 
analysis and to offer solutions on real-world drinking water quality problems that could 
improve the current engineering practice. For that reason, a number of data-driven models, 
based on ML techniques, are generated to tackle real-world water quality investigations using 
WQ data, already collected by SW. The results of these investigations provide actionable 
information to SW decision makers regarding both the understanding of some of their DWDS 
and the prediction of future water quality behaviour in them. These investigations indicate 
several advantages and weaknesses of the generated data-driven models that are presented 
in the following section. Moreover, to accomplish its main aim, this thesis main contribution 
is a 4-layer framework that develops a big-data environment for providing actionable 
evidence for supporting decisions over the proactive operation and maintenance of the 
DWDS and guaranteeing high - quality drinking water to consumers. In this chapter, a general 
discussion over the ML methodologies and the necessity of the big-data framework is 
presented based on the knowledge gained in the previous chapters of this thesis   

11.1.  Advantages and disadvantages of the models 

11.1.1.  Self-Organising Maps and Principal Components Analysis 
 
SOMs and PCA are unsupervised ML techniques. The former one is mainly used for clustering 
and the latter one is mainly used for dimensionality reduction. However, both could also 
identify correlations and connections between the various features of the dataset. This thesis 
indicates that both these techniques could be valuable tools for the water industry. The main 
advantage of both techniques is that they provide a simple visual representation of complex 
datasets as it was presented in chapter 5 and 10. In addition, both techniques can provide 
multi-parameter correlation that helps visualise the factors that cause deterioration events. 
Chapter 5 and 10 demonstrates, SOMs have four main advantages when used for 
understanding the correlations between the various parameters compared to PCA. More 
specifically: 
 

● SOMs could handle missing values while PCA requires either to remove lines with 
missing values or to replace the missing data with synthetic data. In chapter 5 the 
analysis made using SOMs has used the entire dataset (tables 5-1 & 5-2) while the 
analysis using PCA has only a very small percentage on the dataset (tables 5-6 & 5-7). 

●  PCA could only provide information regarding linear relationships between the 
various parameters compared to SOMs that, as an ANN, is capable of uncovering non-
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linear correlations as well and therefore it is a better tool for understanding WQ inside 
DWDS where complex reactions occur. For example, PCA was able to identify the 
relationship between low free chlorine and bacteriological failures (figure 5.7) but not 
with other parameters such as age of water, temperature, and precipitation in the SRs 
as the SOMs analysis did (figure 5.2). In addition, in chapter 10, PCA could not indicate 
as clear correlation between the inlet turbidity and the TCCs in the outlet as the SOMs 
analysis did (figures 9.6 and 9.5 respectively).     

● SOMs is a better tool in visualising the correlations as it could provide general 
clustering information per parameter and specific correlations between clusters of 
one parameter and clusters of the other - for example mid to high numbers of HPCs 
correlating with mid to low numbers of free chlorine in the network (figures 5.2) or 
TCCs in the disinfection tank outlet following the inlet turbidity and inlet colour trend 
(figure 9.5). 

● Finally, SOMs analysis can produce clusters of qualitative parameters and, thus, 
identify the correlations between them and the numerical ones. Using this qualitative 
parameter in chapter 5 and 6, the separation between chlorinated and chloraminated 
systems was visualised and a further understanding of the bacteriological behaviour 
in these two systems and of the impact of switching disinfection was achieved.     

 
For the above reasons, chapter 5 and chapter 9 recommend the use of SOMs when the 
available dataset is a water quality monitoring samples’ dataset.  However, PCA performed 
well with telemetry data as chapter 9 demonstrates. The Balmore WTW investigation in this 
chapter indicates that PCA is a good tool for uncovering the linear correlations in telemetry 
and timeseries datasets and, in combination with SOMs, understand which correlations are 
linear and easy to uncover, and which parameters are not linear. In addition, has one more 
advantage compared to SOMs, it quantifies the correlations between the parameters. This 
gives an information of how much linearly related these parameters are and how one 
parameter is dependent on the other.    
 
Both methods have two main disadvantages. While both can provide correlations between 
parameters, they could not provide information about the chronological starting point that 
the correlation between the parameters had appeared. In addition, both methods cannot 
provide any information regarding the temporal distance between these correlations, in 
other words, which parameter influences the other and after how much time this influence 
will appear. 

11.1.2.  SRs’ decision trees risk ranking methodology 
 
The SRs’ risk ranking methodology, presented in chapter 7, that uses decision trees ML 
methods has been proven to be a good tool for the prediction of low chlorine and coliform 
events. The unique models managed to predict up to 72% of the low chlorine events and the 
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combined model up to 74% of these events. Its accuracy is not the methodology’s only 
advantage as its interpretability aids WUs operational and managerial stuff in understanding 
the main parameters contributing to the model’s outputs and the way that the model’s final 
outputs were produced. In addition, the ability of these models to provide the score of each 
SR based on its likelihood of failure, could help decision makers create a risk ranking list of 
SRs per month that they could then use to prioritize their interventions only to the tanks that 
are in a continuous risk. However, their main disadvantage, which is also a general 
disadvantage for some ML applications, is the ability to predict the extremely rare event. 
Some of the techniques, presented in chapter 7, may tackle this problem but with the cost of 
generating higher numbers of false positives. Therefore, decision makers should also consider 
this factor in their intervention approaches. 

11.1.3.  Short-term prediction models 
 
The chlorine losses predictive model in chapter 8 and the TCCs predictive model in chapter 9, 
demonstrate that they can be important tools for WUs’ operations. Both models do not 
require any parameter to be calibrated as the deterministic models do, and once created, 
they require less time to train and simulate. The models can easily identify patterns in the 
data that cannot be identified by humans or by simple linear regression models. In addition, 
once produced they could be trained even without human interaction by just including them 
in the SCADA system of a DWDS. Another advantage of these models is their simplicity 
comparing to the traditional numerical models that require a high number of parameters for 
their simulation. ML models, in general, are improved when more data that include all 
seasonal changes are available. In these two cases the available data covered a maximum of 
9 months period which means that a period of the year was not covered. As mentioned in the 
discussion sections in both chapters, there are high chances that both models could produce 
better results once more data are available. Finally, one main advantage of both models is 
that they are data driven. Both models are trained using just data without taking under 
consideration the hydraulic characteristics of the DWDS. This means that they could be set 
and used in every similar DWDS that has enough amount of timeseries data. 
 
As regards their limitations, their main one is their requirements of a large amount of data 
for their training. In addition, these data should include outliers, extreme values, and rare 
events to allow the algorithms to learn from them during the training period and make more 
accurate forecasts. Potential absence or overrepresentation of these type of data can skew 
the training of the models and make the algorithms biased. Another issue that could generate 
bad predictions is the absence of relationships in the available dataset between WQ 
parameters that are known that are related. For example, in this thesis the chlorine loss 
model, in chapter 8, could not predict the chlorine losses when temperature data was used 
as inputs, because there were not enough chlorine loss events related to temperature 
changes in the dataset. Finally, the quality of the data collected by sensors, is at the least 
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equal if not more important parameter than the quantity of the data. Bad quality of data 
makes these supervised predictive models useless as they are trained in a false environment.  
As WUs are working for the transformation of their systems towards the digital era, it is very 
important to identify the protocols required for the correct installation and maintenance of 
sensors in their DWDS and produce unsupervised ML models that could accurately and 
promptly detect anomalies in these datasets. 

11.2.  The necessity of a big-data framework for managing 
drinking water quality 

 
The drinking water quality big data framework, presented in chapter 10, is a holistic approach 
on data management for the enablement of data-driven application by the water utilities. 
This framework has emerged while investigating the various case studies of this thesis. More 
specifically, the necessity of a proper data storage and a proper data integration layer was 
emphasised during the period where the grab monitoring samples datasets were generated. 
This process, presented in chapter 4, consumed a significant amount of time for assembling 
the grab monitoring samples, the physical assets information, and the external data and 
integrating them into one dataset. However, once created, the datasets were used in the case 
studies presented in chapters 5,6 and 7 and provided a better understanding of the processes 
in SW’s DWDS. These findings highlighted the need for WUs to standardize the data 
acquisition and storage processes for speeding up the data collection and facilitating the 
linkage between the different types of data. This process requires an initial time and 
investment spent by the WUs, but, once it is made, it will enable a deep exploration of the 
available data, through the data analysis and presentation and communication of data 
analyses outcomes.  
 
Regarding the data analysis layer, this thesis demonstrated, in these 5 different case studies, 
that the actionable information for improving drinking water quality could be gained by 
following its proposed ML application.  Considering the type of questions to be answered and 
the type of evidence required are the first and main steps in the ML application process. Once 
these are defined and the available data are identified, the machine learning method 
selection tree enables the application of the most appropriate ML technique for further data 
investigation that could unlock information for directing WUs investment into a proactive 
drinking water quality management. This novel approach that starts with the water quality 
question, and not with the ML technique, is critical in showing what data analytics do and, 
thus, aid WUs in integrating them in their business. 
 
To summarise the above, the proposed in this thesis, big-data framework, directs the 
conversation over the application of data-driven techniques in the water industry from the 
one case study solution to the holistic data-driven approach of the operation and 
maintenance of the DWDS.  
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12.  Summary, conclusions, and future work 
recommendations 

12.1.  Summary 
 
In this section a summary of the 5 research chapters is presented. This summary includes the 
aim, the approach, and the key outputs of each one of the chapters. 
 
Chapter 5. Understanding the factors that contribute to the bacteriological increase and 
cause bacteriological failures in the SRs will assist WUs with new knowledge regarding their 
DWDS and with the ways that future deterioration events could be avoided. This chapter 
investigates these factors by using SW’s SRs water quality samples dataset as inputs in two 
different correlation clustering ML techniques, SOMs and PCA. The aim is mainly to identify 
which water quality parameters influence the bacteriological activity in the SRs but also to 
compare the ability of these two ML methods in analysing water quality samples dataset. The 
ML methods outputs demonstrated that SOMs is the only, out of these two techniques, that 
should be applied in water quality samples datasets for correlations. This is because the SOM 
method overpasses the issue with the large number of missing data that these types of 
datasets have, but also because it could identify more complex non-linear relationships 
between the water quality parameters. SOMs outputs indicated 4 main factors that are 
related with the bacteriological failure in the SRs, the high water temperature, the high age 
of water, the low chlorine residual and the high precipitation in the area surrounding the SRs. 
In addition, this research found that there is a higher bacteriological activity in chloraminated 
systems in comparison to chlorinated systems, however, the highest numbers of live 
bacteriological cells (ICCs) appear in both systems with high temperature, high age of water 
and low disinfection residual. Finally, another interesting finding is that in chloraminated 
systems, cleaning the SRs noticeably reduces the bacteriological activity in the SRs in contrast 
to the chlorinated systems where in addition to cleaning the SRs, a reduction of the circulation 
time of the water (reducing the water age) is also required. 
 
Chapter 6.  In this chapter, SOMs are used as a main correlation tool for investigating the 
impact of switching disinfection from chlorination to chloramination on drinking water 
quality. The data, used here, are drinking water quality samples data taken from various 
customer taps in 11 DWDS that switched disinfection from chlorination to chloramination 
over the investigation period (2012-May 2020). The disinfection type qualitative parameter 
was used as an indication for grouping the SOMs clusters in either chlorination or 
chloramination and therefore in clusters prior and post the disinfection switch. The aim of 
this chapter is not to criticize SW’s decision for switching disinfection but to highlight the 
parameters that WUs should monitor before and after switching disinfection and avoid 
deterioration of the drinking water quality. Results indicated that switching disinfection 
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reduces the DBPs' concentrations in the water, however, increases the bacteriological activity 
in these systems. A potential reason for the bacteriological increase after the switch is 
potentially related to the increased TOC concentrations found in both the WTWs and the taps 
of the DWDS after the switch. In addition, the increased turbidity related to chloraminated 
systems indicates a change in the water chemistry after the switch. Therefore, SOMs 
investigation indicated that in order to minimize the impact on the quality of the drinking 
water, WUs should concentrate in reducing the TOC and metals concentration in the WTWs. 
 
Chapter 7. In this chapter a data-driven methodology that classifies the SRs in two different 
groups, the ones that will fail (High-risk SRs) and those that will not fail (Low-risk SRs) using 3 
different ML ensemble decision tree methods (RF, AdaBoost, RusBoost) is presented. 
Ensemble decision trees are selected, in this case, as they are “white-box” approaches and 
both the classification decisions made and the factors that influence these decisions could be 
identified once the models are trained.  Two type of failure criteria were investigated: low 
chlorine events - a failed SR is the SR with at least one sample of Chlorine less than 0.3mg/l in 
one month - and coliform bacteria events - a failed SR is the SR with at least one sample that 
contains coliform bacteria colonies. The methodology uses as inputs the monthly average 
values of various water quality parameters sampled in either the SRs or the WTWs that feed 
them and as outputs the class that each SR belongs to. For the low chlorine events prediction, 
the predictive horizon is set equal to one month ahead using the WQ parameters of the 
previous month, while for the coliform events a 2-month horizon was set using the WQ 
parameters of the month before. The aim of this work is to investigate the potential of this 
data-driven methodology in correctly classifying the SRs and, thus, becoming an important 
supporting tool for WUs’ proactive interventions in their SRs. Thus, the methodology is tested 
for its performance in both predicting low chlorine events and coliform bacteria events, and 
the comparison of the various ML methods using different combinations of inputs is made. 
Initial results indicated that the best ML method for both the low chlorine events and the 
coliform events was RUSboost (low chlorine events: TPR=0.72, TNR=0.78, MCC=0.44, 
coliforms:TPR=0.8, TNR=0.7, MCC=0.24). However, a further investigation using a 
combination of the best performing models indicated that the combined approach increased 
the performance of the methodology (low chlorine events: TPR=0.74, TNR=0.78, MCC=0.45, 
coliforms: TPR=0.65, TNR=0.75, MCC=0.24). 
 
Chapter 8. Predicting chlorine losses at the end of water distribution trunk mains up to certain 
hours ahead could be beneficial for WUs. This is because it will minimise the risk of water with 
insufficient chlorine residual and, thus, with higher risk of bacteriological deterioration, 
reaching the water mains and the consumers taps. The aim of this chapter is to build a data-
driven methodology that identifies chlorine loss events in the trunk mains and predicts future 
ones using sensor temperature, chlorine, and flow data. This methodology initially detects 
the chlorine loss events by identifying the local peaks and the starting and ending points of 
the events.  Subsequently, for each identified event, the methodology traces each associated 



 

206 
 

flow or temperature event. These flow or temperature events are used for training the 
predictive model. Three different ML methods are used for the prediction model, FF-ANN, 
ANN-NARX, RF. The methodology is tested in three different trunk mains of the same DWDS 
with similar pipe characteristics (similar diameters, material, and length) but different 
hydraulics characteristics. Results indicate that the model could accurately predict chlorine 
loss events with a period of up to 10 hours ahead for one of those mains (shorter time 
predictions for the other 2 trunk mains). In addition, the investigation demonstrated that the 
best input parameter for this analysis is the flow of the water and the best out of the three 
ML methods is the NARX-ANN.   
 
Chapter 9.  In September 2020, two bacteriological sensors that measure TCCs were installed 
in Balmore WTWs, one at the disinfection tank outlet and one at the WTW outlet. This sensor 
provides SW data for additional WQ parameters that shows the bacteriological activity in the 
plant. Thus, in this chapter a data-driven investigation over the general bacteriological 
performance of the Balmore WTWs is made, using the TCCs data and some of the other 
available flow and WQ data captured in various locations in the WTW. The aim of this 
investigation is to, firstly, identify the main parameters that influence the TCCs and then to 
investigate if a data-driven model can, accurately, predict the TCCs exiting the works. For the 
former analysis SOMs and PCA methods were used. Their outputs indicated that the main 
factors that are related to increased bacteriological activity (high TCC numbers) in the water 
exiting the plant, were the high inlet flow, the high inlet turbidity, the low chlorine residual 
and high TCCs numbers in the water exiting the disinfection tank. Moreover, SOMs’ analysis 
indicated a further correlation between high inlet colour and high TCCs as well as a weaker 
correlation between high TCCs in the outlet and low pH in the water exiting the disinfection 
tank. As regards the predictive model, this was built using past WQ data from the various 
stages of the plant (inlet, disinfection outlet, outlet) and TCCs data as outputs. The TCCs data 
were either the actual TCC numbers (regression approach) or some TCCs thresholds that 
characterised the water exiting the plant (TCCs<20000,20000<TCCs<50000, 
50000<TCCs<90000 and TCCs>90000 - classification approach). The predictive model used 4 
different ML methods, RF, LSTM and FF-ANN for the regression approach and RF, LSTM and 
RusBoost for the classification approach. The predictive model was tested in data not seen by 
the model during the training period. The results indicated that the model is able to predict 
TCCs with an accuracy of up to 82% for a forecasting horizon of 12 hours ahead and with a 
prediction of up to 77% for a forecasting horizon of 23 hours ahead. 
 
Chapter 10. WUs collect a vast amount of water quality data that are stored in silos. As ML 
approaches can provide further knowledge from data such as those that WUs collect, it is 
worth exploring a holistic approach that will facilitate these applications in drinking water 
quality problems. Therefore, this chapter proposes a big-data framework that enables the 
application of these ML methods through a systematic approach consisting of 4 layers. More 
specifically, the proposed layers of the framework are the storage layer, the data connection 
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and integration layer, the data analysis layer, and the presentation and communication of 
data analysis outcomes layer. In addition, in this chapter a novel ML selection tree is proposed 
that selects the most appropriate ML method for the data analysis, based on the type of the 
WQ problem and the available data for its solution.   

12.2.  Conclusions 
 
This work attempted to provide a better understanding of drinking water quality and DWDS 
by investigating the ability of the methods that could use data already collected by WUs as 
inputs and produce outputs that could be used for supporting decisions for proactive 
interventions in the DWDS. In addition, this thesis proposed a new operational approach on 
the use of the WQ data that WUs collect in their daily monitoring routing programs. Overall, 
this work had 5 main objectives, as presented in the introduction chapter, and manages to 
answer to these objectives as follows:  
 

1. Investigate the existing machine-learning techniques and the ways that these could 
be applied to drinking water quality problems 

 
This study investigated 8 different ML models (SOMs, PCA, RF, AdaBoost, RusBoost, Feed-
Forward ANNs, NARX ANNs, LSTM) in chapters 5 to 9 and demonstrated in real world drinking 
water problems their abilities and weaknesses. In addition, the thesis proposed another two 
ML techniques (k-mean and t-SNE) as potential techniques that could be used by WUs for 
their benefit. 
 

2. Develop data-driven models for understanding the roots for drinking water 
deterioration in DWDS  

 
A model based on SOMs and PCA was presented in chapter 5 for understanding the factors 
that increase bacteriological activity in SRs. In addition, SOMs model was applied for 
understanding the impact in drinking water quality of switching disinfection from chlorination 
to chloramination (chapter 6). Finally, both SOMs and PCA were used in a model for the 
identification of the factors that increase TCC numbers in the water exiting the WTWs and 
consequently decrease the quality of the water entering the DWDS (chapter 9).  
 

3. Develop predictive data-driven models for water quality deterioration events in the 
DWDS 

 
A model based on ML decision trees was produced for the prediction of low chlorine events 
and coliform events on SRs (chapter 8). This model was used for creating an SR risk ranking 
list for WUs to use as a supporting tool for the management of their SRs. A model was 
produced for the prediction of chlorine loss events at the end of the water distribution trunk 
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mains(chapter 8). This model managed to predict accurately the chlorine losses up to 10 hours 
ahead. Finally, a model for the prediction of TCCs exiting the works up to 12 hours ahead was 
created (chapter 9). This model managed to accurately predict TCCs exiting the works and 
classify these waters into 4 different groups (minimum, low, medium, high risk) up to 23 hours 
ahead. 
 

4. Compare the various data-driven methods and suggest the most appropriate for a 
specific water quality problem 

 
In chapter 5, SOMs technique has been compared with PCA technique on their ability to 
identify correlations between the various WQ and other parameters when WQ monitoring 
datasets are used. The work in this chapter indicated that SOMs is a better technique than 
PCA as it tackles the problem of sparse data and missing values better than PCA.  
 
In chapter 7, RF, RF with SMOTE sampling method, RF with ADASYN pling method, AdaBoost 
and RusBoost were compared in their ability to classify the SRs into low-risk or high-risk 
classes . This work indicated that the best methods to use for this type of prediction are 
RusBoost and RF with ADASYN. Moreover, this work showed that the model that combines 
the best single models, using a weighted average of the results, could increase the accuracy 
compared to the single models.   
 
In chapter 8, RF was compared to FF - ANN and to NARX - ANN in their ability of predicting 
chlorine losses at the end of the water distribution trunk mains up to certain hours ahead. 
This work indicated that the best out of these three ML techniques was NARX - ANN that 
managed to accurately predict chlorine loss events up to 10 hours ahead. 
 
In chapter 9, RF, FF - ANN and LSTM were compared in their ability of predicting TCCs exiting 
Balmore WTW (regression approach) and, for this type of data, RF was found to be the most 
accurate method, followed by FF-ANN. In addition, RF, LSTM and RUSboost were compared 
in their ability of classifying the water exiting Balmore WTWs into 4 different classes and, 
again, RF was proven to be the best out of these three models for this dataset. Finally, in the 
same chapter a new comparison between SOMs and PCA was made for the identification of 
the factors that increase TCCs in the Balmore WTW outlet that demonstrated that for this 
type of data both techniques are instrumental. 
 

5. Present a new strategic approach that includes changes in WUs mode of collecting, 
integrating, and analysing their own data to create evidence that supports decisions 
over a proactive management of their DWDS. 

 
Chapter 10 and partly chapter 3 presented a big-data framework that, once applied, could 
facilitate the ways the data storage and acquisition processes and, consequently, the data 
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analysis with the use of ML techniques is made. The final aim of this framework is to aid WUs 
extracting valuable information for their DWDS from the data that they collect daily, that 
could support their decisions regarding the maintenance and the operations of their DWDS. 

12.3.   Thesis contribution 
 
This thesis has the following key contributions: 
 
1. The main contribution of this thesis is the big-data framework for providing actionable 

information for the water quality management in the DWDS (objective number 5). This 
framework consists of 4-layers and is developed for creating a data oriented supporting 
tool that could assist WUs in the proactive operations of their DWDS to manage drinking 
water quality. The 4-layer framework proposes a new holistic and systematic approach 
regarding the data storage, integration and analysis using the appropriate ML methods 
for certain water quality problems. With this approach, WUs gain a greater understanding 
of the potential of the data analytics and their ability to provide actionable information 
that could be used to completely transform the management of drinking water quality in 
their DWDS (chapter 10).  Therefore, this framework answers the objective number 5 of 
this thesis.   

 
2. The second contribution is a methodology for understanding correlations between 

various water parameters including WQ parameters, other water characteristics and 
asset information (objective number 1 & 2). This thesis demonstrated that this 
methodology could be used for the identification of the correlations between the various 
WQ parameters in different water related problems and could aid WUs in identifying 
factors that contribute to drinking water deterioration (Chapters 5, 6, & 9). Therefore, this 
methodology addresses objective number 2 of the thesis. 

 
3. The third contribution is a white box data-driven methodology for predicting the SRs 

that are at risk of bacteriological compliance (objective number 1, 3 & 4). This 
methodology applied various decision trees methods for the prediction of low chlorine 
and coliform events in the SRs one month ahead and therefore classify the SRs into either 
the high-risk or the low-risk class based on these predictions. In addition, as a white-box 
approach, this methodology could help the users understand both the reasons behind the 
methodology’s final decision and the parameters that contributed the most in that. This 
method can be used for creating an SRs risk ranking that could be used to direct the 
cleaning interventions in the high-risk SRs (Chapter 7).  For this methodology various ML 
techniques were compared and, therefore, it contributes to both objectives 1, 3 and 4 of 
the thesis. 
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4. The fourth contribution is a new ML based model for the prediction of the chlorine 
losses in water distribution trunk mains (objectives 1, 3 & 4). This methodology was used 
for the prediction of chlorine loss events in the water distribution trunk mains, related to 
either sudden changes in the temperature of the water or sudden changes in the water 
flow (Chapter 8). This method could be used as an alarming tool for the proactive 
intervention to avoid bacteriological failures in the DWDS and, therefore, contributes to 
objectives 1,3 and 4 of the thesis. 

 
5. The fifth contribution is a methodology for investigating the bacteriological 

performance of WTWs (objectives 1,3 & 4). This methodology combines both supervised 
and unsupervised ML methods for understanding the factors that increase bacteriological 
activity in the water exiting the WTWs and for short-term forecasting the bacteriological 
behaviour of the water exiting the WTWs. This method could be integrated in every WTW 
SCADA system and assist WTWs’ operators in adapting the treatment stages to 
unexpected changes and improving the quality of the water exiting the plant (Chapter 9). 
As the chlorine losses model, this model contributes to objectives 1,3 and 4 of the thesis. 

 
6. The sixth contribution is an improved understanding of the bacteriological activity in 

the SRs. The methodology in Chapter 5 indicates that the main factors that increase the 
bacteriological activity in the SRs are the high-water temperature, the high water age, the 
low chlorine residual, and the high precipitation in the SRs’ area. In addition, it points out 
that the cleaning of the chloraminated SRs has a huge positive impact as regards the 
reduction of the bacteriological activity in these DWDS. However, the water age is a 
dominant parameter in the chlorinated SRs, and, therefore, in addition to cleaning, other 
operational interventions, such as the control of the water recirculation, are required to 
reduce the bacteriological activity in these tanks.  

 
7. The seventh contribution is the attempt for a better understanding on the impact on 

drinking water quality of switching from chlorination to chloramination. The findings of 
the SOMs methodology in Chapter 6 indicated that the disinfection switch could change 
the chemical balance inside the DWDS and, therefore, could increase the bacteriological 
activity there. As a consequence of that, the turbidity levels in these DWDS could be 
increased and discoloured water could be noticed in the customers’ taps. 

 
8.  The eighth and final contribution is a general technical guidance for the WUs. The case 

studies presented in this thesis, in combination with the proposed framework, could be 
used as guidance by WUs for improving their data storage and management system, 
selecting the appropriate models for specific water quality related problems and, 
therefore, producing high quality water and increasing their reputation. 
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12.4.  Future work 
 
This thesis addresses a few topics regarding the management and the analysis of the data 
that WUs collect for the quality control of the water that they serve to their customers. The 
methods that are generated in this thesis could be directly used by WUs to tackle some of 
their water quality issues in the DWDS. However, this work establishes a point of departure 
for further research in the field and raises many opportunities for future work in the area. 
 
A starting point for further research is the continuous investigation of other ML methods that 
could be applied for other water quality investigations. This work used different ML methods 
and indicated their advantages and disadvantages. However, machine learning as a scientific 
field is continuously evolving especially in the age of digitisation that we live in. Therefore, 
new methods are generated, and new approaches are already investigated in other scientific 
fields that could be useful for water quality investigations. Further work that applies some 
new methods in real world water quality problems could indicate in which type of water 
quality problems they could be used and what are their opportunities and limitations. The 
successful methods could then fill the machine learning decision tree, presented in chapter 
10, and provide WUs with more methods for their investigations. 
 
To go one step further, the work in the field should concentrate on extreme deterioration 
events. As the methodology presented in chapter 7 indicates the limitation of some ML 
methods in predicting extreme events, future research should focus on methodologies that 
aim to understand the factors that cause these events better. However, working with extreme 
events requires a better approach by the WUs. More specifically, extreme events (e.g. a pipe 
burst, an error in the WTWs or a coliform appearance in a discrete monitoring sample) should 
be better captured by the WUs. Therefore, future work should concentrate on the historical 
events captured by the WUs, the information that should have been included in these events, 
and the potential future accurate detection using mostly unsupervised or semi-supervised ML 
methods.  
 
 Another interesting topic that this thesis recommends focusing on, is the research into the 
potential of deep learning (DL) applications in the water quality sector. As mentioned before, 
DL is the state of the art in ML applications with various applications in speech recognition, 
visual recognition but also event detection and predictions  (Lecun, Bengio, and Hinton 2015). 
In this thesis, due to data unavailability, DL applications were used only in Chapter 9 where 
the long short-term memory (LSTM) model was applied for the prediction of total cell counts 
exiting Balmore WTW and, unfortunately, performed poorly. However, their potential in 
timeseries data has been proven in different engineering works (Assem et al. 2017)(Z. Y. Wu 
and Rahman 2017; Assem et al. 2017; Wei, Yue, and Rao 2017; Ronao and Cho 2016; 
Kuremoto et al. 2014; P. Liu et al. 2019; Barzegar, Aalami, and Adamowski 2020).Therefore, 
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future research in the field should focus on the applications of these methods in drinking 
water quality investigations on DWDS when large amount of data is available. 
 
With this work, the insufficiency of the amount of the discrete data that WUs collect has been 
prompted. It was indicated, in the thesis, that there are certain limitations on the use of 
sample datasets for data analysis as these are spatially and temporally scarce.  For example, 
in some case studies, presented here, there were some DWDS where only a sample per year 
is collected for monitoring purposes. This finding shows that these areas are not fully 
controlled by the WUs. Therefore, further discussion and research work is required regarding 
the changes in regulations for monitoring the DWDS. The work should mainly focus on the 
“how much data is enough to answer our water quality problems” topic. In addition, the 
research should contribute to the discussion regarding the “digitalisation” of the DWDS, as 
this is defined by the Institute of Water Association (IWA 2018),  by exploring the benefits and 
the disadvantages of installing sensors in the networks in comparison to the grab monitoring 
samples collection.  
 
Finally, the WUs direction towards the complete digital transformation of their systems will 
create many labelled data that could be used in in-line and automated supervised ML 
methodologies for predicting future water quality events (like the methodology in chapter 9). 
However, as mentioned in section 11.1.3, this direction requires not only large datasets but 
also good quality data. Future work on the digitalisation of the DWDS and the improvement 
of the drinking water quality requires to concentrate in producing protocols for validating the 
sensor measurements but also focusing on unsupervised methods, such as PCA or tSNE, for 
the accurate and fast detection of anomalies in the sensors’ outputs. This work should 
concentrate into creating final digital datasets that WUs would feel confident to use as inputs 
in their data analysis. 
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APPENDIX A: Predictor importance graphs for the ensemble 
classifiers in chapter 7 

 
In this appendix the predictors’ performance graphs for the 7 low chlorine events classifiers, 
when all the available parameters are used, are presented.  
 
 
Low Chlorine events predictors’ performance graphs 
 
RF.1 model 
 
Most important parameters are: average free chlorine per month, free chlorine standard 
deviation per month, SR Name, Month of the year, average free chlorine in the WTWs per 
month 

 
 

Performance importance of each parameter of the RF.1 model 
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RFS100.1 Model 
The 5 most important parameters are: average free chlorine per month, SR Name, average 
TOC per month in the WTWs, average pH in the WTWs per month, free chlorine standard 
deviation per month 

 
Performance importance of each parameter of the RFS100.1 model 

 
RFS200.1 Model 
The 5 most important parameters are: average free chlorine per month, SR Name, Month of 
the year, average pH in the WTWs per month, free chlorine standard deviation per month 

 

 
Performance importance of each parameter of the RFS200.1 model 
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RFA100.1 Model 
The 5 most important parameters are: average free chlorine per month, SR Name, average 
pH in the WTWs per month, free chlorine standard deviation per month, average daily 
precipitation in the SRs per month 

 
Performance importance of each parameter of the RFA100.1 model 

 
RFA200.1 Model 
The 5 most important parameters are: average free chlorine per month, SR Name, average 
pH in the WTWs per month, free chlorine standard deviation per month, average daily 
precipitation in the SRs per month 

 
Performance importance of each parameter of the RFA200.1 model 
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AB.1 model 
The 5 most important parameters are: average free chlorine per month, SR Name, Month of 
the year, average temperature in the WTWs per month, free chlorine standard deviation per 
month  

 
Performance importance of each parameter of the AB.1 model 

 
RB.1 model 
The 5 most important parameters are: average free chlorine per month, SR Name, Month of 
the year, average temperature in the WTWs per month, free chlorine standard deviation per 
month  

 
Performance importance of each parameter of the RB.1 model 
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APPENDIX B: Additional tables and graphs for chapter 9 
 
The TCCs predictive model presented in chapter 9 was tested in four out of the available 20 
folds that were selected randomly. These folds were the 5th fold, the 8th fold, the 12th fold, 
and the 15th fold. This appendix contains output graphs and performance metrics tables that 
are not presented in the main chapter. More specifically, in this appendix, the followings are 
included: 

● the predictors’ performance graphs of the RF-All-12 model in the 8th,the the 12th and 
the 15th folds 

● the performance metrics tables for both the regression and the classification 
approaches for each one of the 4 folds separately   

● the predicted by the regression models outputs vs the observed TCCs for the 5th, the 
8th and the 12th fold 
 

Predictors’ performance graphs for the RF-All-12 model 

 
Performance importance of each parameter of the RF-All-12 model in the 8h fold 
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Performance importance of each parameter of the RF-All-12 model in the 12th fold 

 

 
Performance importance of each parameter of the RF-All-12 model in the 15th fold 
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Regression models performance metrics 
 

Summary of the regression models’ performance metrics in the 5th fold 
Model NAME R2 MSEn RMSEn NMSE 

RF - All - 12 0.89 0.12 0.35 0.12 
ANN - All - 12 0.84 0.17 0.41 0.17 

LSTM - All - 12 * 0.84 0.17 0.41 0.17 
CM - All - 12 * 0.88 0.13 0.36 0.17 
RF - RF8 - 12 0.9 0.11 0.34 0.11 

ANN - RF8 - 12 0.79 0.21 0.46 0.21 
LSTM - RF8 - 12 ** 0.84 0.17 0.41 0.16 

CM - RF8 - 12  0.88 0.13 0.36 0.18 
RF - SOMs - 23 0.87 0.14 0.37 0.14 

ANN - SOMs - 23 0.76 0.21 0.46 0.21 
LSTM - SOMs - 23^ 0.8 0.2 0.45 0.2 

CM - SOMs - 23 0.86 0.15 0.39 0.22 
 
 

Summary of the regression models’ performance metrics in the 8th fold 
Model NAME R2 MSEn RMSEn NMSE 

RF - All - 12 0.9 0.1 0.32 0.1 
ANN - All - 12 0.85 0.16 0.4 0.16 

LSTM - All - 12 * 0.84 0.17 0.41 0.16 
CM - All - 12 * 0.88 0.12 0.35 0.14 
RF - RF8 - 12 0.91 0.09 0.3 0.09 

ANN - RF8 - 12 0.84 0.17 0.41 0.16 
LSTM - RF8 - 12 ** 0.8 0.2 0.45 0.2 

CM - RF8 - 12  0.88 0.12 0.35 0.14 
RF - SOMs - 23 0.89 0.11 0.34 0.11 

ANN - SOMs - 23 0.82 0.19 0.43 0.18 
LSTM - SOMs - 23^ 0.81 0.19 0.44 0.19 

CM - SOMs - 23 0.88 0.13 0.36 0.15 
 

Summary of the regression models’ performance metrics in the 12th fold 
Model NAME R2 MSEn RMSEn NMSE 

RF - All - 12 0.91 0.09 0.3 0.09 
ANN - All - 12 0.82 0.18 0.42 0.18 

LSTM - All - 12 * 0.84 0.15 0.39 0.16 
CM - All - 12 * 0.88 0.12 0.34 0.15 
RF - RF8 - 12 0.91 0.088 0.29 0.088 

ANN - RF8 - 12 0.82 0.18 0.43 0.18 
LSTM - RF8 - 12 ** 0.84 0.16 0.4 0.16 

CM - RF8 - 12  0.89 0.11 0.34 0.14 
RF - SOMs - 23 0.88 0.11 0.34 0.12 

ANN - SOMs - 23 0.81 0.2 0.44 0.21 
LSTM - SOMs - 23^ 0.82 0.19 0.43 0.19 

CM - SOMs - 23 0.87 0.13 0.37 0.18 
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Summary of the regression models’ performance metrics in the 15th fold 

Model NAME R2 MSEn RMSEn NMSE 
RF - All - 12 0.91 0.09 0.32 0.1 

ANN - All - 12 0.85 0.15 0.38 0.15 
LSTM - All - 12 * 0.86 0.14 0.37 0.14 
CM - All - 12 * 0.9 0.1 0.32 0.14 
RF - RF8 - 12 0.91 0.09 0.31 0.1 

ANN - RF8 - 12 0.82 0.18 0.43 0.19 
LSTM - RF8 - 12 ** 0.78 0.22 0.47 0.23 

CM - RF8 - 12  0.88 0.13 0.36 0.19 
RF - SOMs - 23 0.88 0.12 0.35 0.13 

ANN - SOMs - 23 0.84 0.17 0.41 0.16 
LSTM - SOMs - 23^ 0.82 0.19 0.43 0.19 

CM - SOMs - 23 0.89 0.12 0.35 0.17 

* LSTM - All - 12: 1 LSTM layers,25 units per layer,0.001 Initial learning rate 

** LSTM - RF8 - 12: 1 LSTM layers,16 units per layer,0.001 Initial learning rate 

^ LSTM - SOMs - 23: 1 LSTM layer,25 units per layer,0.0012 Initial learning rate 

MSE and RMSE are calculated for the normalized outputs and therefore they are 
unitless 
 
RF8: inlet flow, inlet turbidity, inlet colour, treated water TCCs,treated water turbidity, 
final water turbidity, final water chlorine, fina water aluminium 
 
 
SOMs: inlet flow, inlet turbidity, inlet colour, treated water TCCs, treated water free 
chlorine  
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Predicted by the regression models outputs vs the observed TCCs graphs 

 

 

 
5th fold Observed ΤCCs vs predicted time series of all the models when a) all the water parameters were used b) 
the RF 8 parameters are used and c) the SOMs 5 parameters are used  

a) 

b) 

c) 
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8th fold Observed ΤCCs vs predicted time series of all the models when a) all the water parameters were used b) 
the RF 8 parameters are used and c) the SOMs 5 parameters are used  

a) 

b) 

c) 
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12th fold Observed ΤCCs vs predicted time series of all the models when a) all the water parameters were used 
b) the RF 8 parameters are used and c) the SOMs 5 parameters are used  

a) 

b) 

c) 
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Classification models performance metrics 

 
Summary of the classification models’ performance metrics in the 5th fold 

Model NAME Accuracy High risk 
Recall Macro - recall Macro - 

Precision Macro - F1 

RF - All - 12 78.3% 90% 68% 72% 0.7 
RB - All - 12 76.2% 88% 70% 71% 0.71 

LSTM - All - 12 * 64.50% 76% 56% 61% 0.61 
CM - All - 12 * 77.60% 78% 72% 74% 0.744 
RF - RF8 - 12 78.40% 92% 69% 72% 0.71 
RB - RF8 - 12 78.1% 92% 73% 72% 0.73 

LSTM - RF8 - 12 ** 71.20% 83% 63% 69% 0.673 
CM - RF8 - 12  79.47% 86% 77% 75% 0.754 

RF - SOMs - 23 76.80% 90% 91% 75% 0.74 
RB - SOMs - 23 75% 92% 72% 70% 0.72 

LSTM - SOMs - 23^ 68% 99% 57% 54% 0.535 
CM - SOMs - 23 74.40% 90% 70% 69% 0.7 

 
 

Summary of the classification models’ performance metrics in the 8th fold 

Model NAME Accuracy High risk 
Recall Macro - recall Macro - 

Precision Macro - F1 

RF - All - 12 79.6% 97% 70% 74% 0.7 
RB - All - 12 74.6% 87% 68% 68% 0.68 

LSTM - All - 12 * 70.6% 90% 64% 67% 0.6722 
CM - All - 12 * 79.70% 91% 75% 75% 0.7564 
RF - RF8 - 12 79.1% 93% 72% 74% 0.72 
RB - RF8 - 12 74.5% 90% 69% 68% 0.68 

LSTM - RF8 - 12 ** 65.50% 80% 57% 60% 0.616 
CM - RF8 - 12  72.10% 79% 70% 69% 0.708 

RF - SOMs - 23 74.80% 93% 66% 68% 0.66 
RB - SOMs - 23 73% 94% 68% 67% 0.67 

LSTM - SOMs - 23^ 70% 90% 61% 64% 0.5667 
CM - SOMs - 12 74.86% 87% 72% 70% 0.7115 

 
Summary of the classification models’ performance metrics in the 12th fold 

Model NAME Accuracy High risk 
Recall Macro - recall Macro - 

Precision Macro - F1 

RF - All - 12 79.9% 94% 71% 81% 0.74 
RB - All - 12 76.7% 91% 73% 72% 0.71 

LSTM - All - 12 * 72.5% 84% 65% 68% 0.69 
CM - All - 12 * 79.10% 91% 72% 73% 0.737 
RF - RF8 - 12 78.3% 92% 69% 72% 0.71 
RB - RF8 - 12 77.2% 91% 73% 72% 0.717 

LSTM - RF8 - 12 ** 70.90% 93% 62% 70% 0.633 
CM - RF8 - 12  77.01% 91% 70% 70% 0.7119 

RF - SOMs - 23 76.50% 94% 68% 73% 0.69 
RB - SOMs - 23 75% 91% 70% 70% 0.7 

LSTM - SOMs - 23^ 69% 85% 56% 54% 0.55 
CM - SOMs - 12 75.70% 91% 67% 70% 0.6965 

 
 



 

225 
 

Summary of the classification models’ performance metrics in the 15th fold 
Model NAME Accuracy High risk 

Recall Macro - recall Macro - 
Precision Macro - F1 

RF - All - 12 81.5% 92% 72% 78% 0.733 
RB - All - 12 78.0% 92% 75% 73% 0.7404 

LSTM - All - 12 * 72.0% 81% 62% 66% 0.632 
CM - All - 12 * 76.61% 84% 68% 69% 0.6866 
RF - RF8 - 12 80.9% 92% 72% 75% 0.719 
RB - RF8 - 12 78.0% 88% 75% 73% 0.729 

LSTM - RF8 - 12 ** 71.20% 87% 61% 63% 0.61 
CM - RF8 - 12  77.69% 90% 69% 69% 0.6945 

RF - SOMs - 23 75.00% 91% 66% 68% 0.66 
RB - SOMs - 23 70% 87% 66% 64% 0.64 

LSTM - SOMs - 23^ 71% 99% 60% 63% 0.5708 
CM - SOMs - 12 73.66% 91% 67% 66% 0.6681 

 
 
 

* LSTM - All - 12: 1 LSTM layers,25 units per layer,0.001 Initial learning rate 
** LSTM - RF8 - 12: 1 LSTM layers,16 units per layer,0.001 Initial learning 
rate 
^ LSTM - SOMs - 23: 1 LSTM layer,23 units per layer,0.0012 Initial learning 
rate 
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