
Conservative and Traceable
Executions of Heterogeneous Model

Management Workflows

Beatriz Angelica Sanchez Pina

Doctor of Philosophy

University of York
Computer Science

September 2021

Abstract

One challenge of developing large scale systems is knowing how artefacts are
interrelated across tools and languages, especially when traceability is mandated
e.g., by certifying authorities. Another challenge is the interoperability of all
required tools to allow the software to be built, tested, and deployed efficiently
as it evolves. Build systems have grown in popularity as they facilitate these
activities. To cope with the complexities of the development process, engineers
can adopt model-driven practices that allow them to raise the system abstraction
level by modelling its domain, therefore, reducing the accidental complexity
that comes from e.g., writing boilerplate code. However, model-driven practices
come with challenges such as integrating heterogeneous model management
tasks e.g., validation, and modelling technologies e.g., Simulink (a proprietary
modelling environment for dynamic systems). While there are tools that support
the execution of model-driven workflows, some support only specific modelling
technologies, lack the generation of traceability information, or do not offer the
cutting-edge features of build systems like conservative executions i.e., where
only tasks affected by changes to resources are executed. In this work we
propose ModelFlow, a workflow language and interpreter able to specify and
execute model management workflows conservatively and produce traceability
information as a side product. In addition, ModelFlow reduces the overhead of
model loading and disposal operations by allowing model management tasks to
share already loaded models during the workflow execution. Our evaluation
shows that ModelFlow can perform conservative executions which can improve
the performance times in some scenarios. ModelFlow is designed to support the
execution of model management tasks targeting various modelling frameworks
and can be used in conjunction with models from heterogeneous technologies. In
addition to EMF models, ModelFlow can also handle Simulink models through
a driver developed in the context of this thesis which was used to support one
case study.

3

List of Contents

Abstract 3

List of Contents 6

List of Tables 7

List of Figures 9

List of Listings 12

List of Algorithms 13

Acknowledgments 15

Author Declaration 16

1 Introduction 17
1.1 Research results . 20
1.2 Thesis structure . 22

2 Background 23
2.1 Model-Driven Engineering . 23

2.1.1 Models and metamodels 23
2.1.2 Modeling languages . 25
2.1.3 Model management operations 27
2.1.4 Global model management 30
2.1.5 Model management platforms 32
2.1.6 MDE challenges . 34
2.1.7 Scalability . 34
2.1.8 Co-evolution . 39
2.1.9 Heterogeneity and interoperability 40

2.2 Traceability . 41
2.2.1 Defining traceability . 41
2.2.2 Demanding traceability 43
2.2.3 The challenges of traceability 44
2.2.4 Traces in MDE . 45

4

List of Contents

2.2.5 Tools . 45
2.3 Automation of task processes 48

2.3.1 Business processes . 48
2.3.2 Model management workflows 49
2.3.3 Build systems . 52
2.3.4 Continuous integration 58

2.4 Summary . 59

3 Analysis and hypothesis 60
3.1 Analysis . 60
3.2 Research overview . 65

3.2.1 Hypothesis . 65
3.2.2 Objectives . 65
3.2.3 Scope . 66

4 ModelFlow: A model management workflow framework 69
4.1 ModelFlow’s features . 69

4.1.1 Declarative workflow . 69
4.1.2 Conservative executions 70
4.1.3 Automated model management 70
4.1.4 Model management traces 70

4.2 Architecture . 71
4.2.1 Components . 72

4.3 Language . 73
4.3.1 Abstract syntax . 74
4.3.2 Concrete syntax . 76
4.3.3 Workflow metamodel . 78
4.3.4 Semantics . 80

4.4 System design . 81
4.4.1 Knowing when to execute 81
4.4.2 From declarations to runnable entities 85
4.4.3 Conservative task executions 90
4.4.4 Model management traces 98

4.5 Implementation . 106
4.5.1 Decisions . 106
4.5.2 Plugins . 107

4.6 Summary . 108

5 Supporting heterogeneous models: MATLAB/Simulink 110
5.1 Background . 112
5.2 Integration with Epsilon . 117

5.2.1 Simulink models . 118

5

List of Contents

5.2.2 Collection query optimisation 125
5.3 Evaluation . 128

5.3.1 Experiment on Simulink models 128
5.3.2 Experiment on collection queries 137

5.4 Observations and lessons learned 145
5.5 Related work . 147
5.6 Integration with ModelFlow . 149

6 Evaluation 151
6.1 Case study: Component workflow 151

6.1.1 Background . 152
6.1.2 Experimental setup . 155
6.1.3 Results . 157
6.1.4 Discussion . 159
6.1.5 Threats to validity . 160

6.2 Case study: EuGENia . 160
6.2.1 Background . 161
6.2.2 Approach . 164
6.2.3 Setup . 171
6.2.4 Correctness results . 176
6.2.5 Performance results . 180
6.2.6 Discussion . 184
6.2.7 Threats to validity . 185

6.3 Case study: Industrial workflow 185
6.3.1 Background . 186
6.3.2 Approach . 187
6.3.3 Results . 193
6.3.4 Discussion . 194

6.4 Extensibility . 199
6.5 Interoperability . 199

6.5.1 Eclipse . 199
6.5.2 Build tools . 199

6.6 Summary . 201

7 Conclusion 202
7.1 Summary . 202
7.2 Thesis contributions . 203

7.2.1 Novel tools and techniques 203
7.2.2 Notable additional results 205

7.3 Future work . 206

8 Bibliography 212

6

List of Tables

2.1 Classification of existing build systems. 54

5.1 Evaluated invariants . 131
5.2 Number of elements per type by MATLAB model file size (MB). 132
5.3 Number of elements per type on each model. 140
5.4 Mean query execution time and percentage of time spent sending

commands to MATLAB and awaiting a response. 141
5.5 Performance improvement by query and model. 144

6.1 Executed tasks per scenario . 177
6.2 Execution time by execution stage for MF 182
6.3 Generated files through EGX. 189
6.4 Number of traces extracted by ModelFlow from the execution. . 194

7

List of Figures

2.1 Social network sample model 24
2.2 Modeling layers in a Model-Driven Architecture 25
2.3 Exogenous Model-to-Model transformation 28
2.4 Endogenous Model-to-Model transformation 28
2.5 Epsilon architecture . 33
2.6 Model indexing framework architecture 39
2.7 Example of a Hawk model index 40
2.8 Trace triplet . 42
2.9 Types of traceability . 43
2.10 Capra architecture . 47
2.11 ChainTracker main screen . 48
2.12 MTC-Flow metamodel . 51
2.13 Example Workflow+ metamodel and instance 51

4.1 ModelFlow architecture . 71
4.2 ModelFlow component diagram 72
4.3 Class diagram of ModelFlow’s abstract syntax 75
4.4 Workflow specification metamodel 79
4.5 ModelFlow dependency graph of Listing 4.7. 84
4.6 ModelFlow execution graph of Listing 4.7. 85
4.7 Class diagram of classes involved in the task instantiation process 87
4.8 Class diagram of classes needed to contribute plugins 88
4.9 Class diagram of the IModelResourceInstance interface 91
4.10 Execution trace metamodel . 92
4.11 Class diagram of the IHasher interface 96
4.12 Sequence diagram of the process of a task’s first time execution 97
4.13 Class diagram of traces returned by Epsilon languages 101
4.14 Model management trace metamodel 102
4.15 Class diagram of the model management trace builder 105

5.1 Example MATLAB/Simulink model. 112
5.2 Example of MATLAB/Stateflow model elements 113
5.3 Simulink element types in Massif’s Simulink metamodel 115
5.4 Class diagram with architecture of Simulink driver 119

8

List of Figures

5.5 Model management execution process for approaches 130
5.6 Imported EMF model size vs. original MATLAB files. 132
5.7 Execution time vs. MATLAB file size per stage of validation

process . 133
5.8 Total execution time vs. MATLAB file size 134
5.9 Structure of generated Simulink models 138
5.10 Distribution of the query performance on the models with and

without optimisations. 142
5.11 Performance of queries, with and without optimisation, against

the number of elements in the models. 143

6.1 Component workflow dependency graph 152
6.2 Boiler components . 153
6.3 configuration and component metamodels 153
6.4 Execution time of each scenario in milliseconds. 159
6.5 SCL editor generated with EuGENia 162
6.6 EuGENia task-resource and inter-task dependencies 163
6.7 EuGENia ModelFlow dependency graph. 172
6.8 EuGENia ModelFlow execution graph. 173
6.9 BPMN model created using the graphical editor generated with

ModelFlow. 174
6.10 EuGENia model inter-dependencies. 178
6.11 EuGENia traces of ETL rule 179
6.12 EuGENia traces of EOL task 179
6.13 EuGENia traces of GmfMap2GmfGen task 180
6.14 EuGENia mean execution times per scenario and approach . . 181
6.15 Time spent in ModelFlow features per scenario 182
6.16 Core task logic execution times per scenario 183
6.17 ModelFlow dependency graph of industrial case study. 188
6.18 Step navigator view of the original EEC design tool. 195
6.19 ModleFlow run configuration 200

7.1 User Interface that supports the GMF execution process 209

9

List of Listings

2.1 Social network metamodel in Emfatic 23
2.2 Sample EOL program . 33

4.1 Example of a task declaration. 74
4.2 Concrete syntax of a model resource declaration. 76
4.3 Model resource declaration example. 76
4.4 Concrete syntax of a task declaration. 77
4.5 Concrete syntax of <ModelCall>. 77
4.6 Task declaration example. 78
4.7 Sample workflow declaration . 82
4.8 Example of task and model definition classes. 88
4.9 Example of parameter configuration in task definition. 89
4.10 Annotated input methods of an epsilon:egx task definition. . 93
4.11 EGX input and output declaration in task definition. 95
4.12 Tree metamodel . 98
4.13 Tree validation in EVL . 99
4.14 Graph metamodel . 99
4.15 ETL transformation from Tree to Graph 99
4.16 EGL template that generates a Graphviz/Dot graph from a

graph model . 100
4.17 Retrieving trace from epsilon:etl task definition 103
4.18 An EOL program creating traces at runtime 105
4.19 Trace utility to capture traces through EOL programs. 105

5.1 MATLAB Simulink functions 114
5.2 MATLAB Java API . 115
5.3 Collection of block names in EOL 118
5.4 MATLAB functions to collect Simulink blocks and their names. 118
5.5 Model element creation . 120
5.6 Linking methods for block elements in EOL 121
5.7 Stateflow element creation in MATLAB 121
5.8 Stateflow element creation in EOL 121
5.9 Model element deletion in EOL 122
5.10 Simulink element deletion in MATLAB 122

10

List of Listings

5.11 MATLAB Simulink element getter and setters 122
5.12 Get and set Simulink element properties in EOL 122
5.13 Get and set Stateflow element properties in MATLAB and EOL 123
5.14 Retrieval of model elements in EOL 123
5.15 Retrieval of Simulink elements in MATLAB 124
5.16 Retrieval of Stateflow elements in MATLAB 124
5.17 Retrieval of Stateflow elements in EOL 124
5.18 MATLAB function structure . 124
5.19 EOL method structure . 124
5.20 Invocation of MATLAB functions as EOL methods 125
5.21 Sample MATLAB functions that act on Simulink elements . . . 125
5.22 EOL collection of Simulink block names 125
5.23 EOL selection of Simulink inport blocks 125
5.24 MATLAB Simulink and Stateflow collection operations 126
5.25 Simulink element selection MATLAB function 127
5.26 EOL selection of Simulink gain blocks 127
5.27 MATLAB selection of Simulink gain blocks 127
5.28 Stateflow element selection MATLAB function 127
5.29 EOL selection of Stateflow states 127
5.30 MATLAB selection of Stateflow states 127
5.31 Sample EVL script with invariant 9 from Table 5.1 129
5.32 Port dimension block property in EOL with Simulink Model Driver130
5.33 Port dimension block property in EOL with EMF/Massif . . . 130
5.34 List of EOL queries . 139
5.35 Example Simulink model declaration in ModelFlow 149
5.36 MATLAB function used to compute dependencies of a Simulink

model. 150
5.37 MATLAB function used to compute the ID of Simulink and

Stateflow model elements . 150

6.1 Sample EVL invariants . 154
6.2 Generated code of the TemperatureComparator component . . . 154
6.3 Gradle workflow . 156
6.4 ModelFlow workflow . 157
6.5 Annotated Emfatic metamodel of an SCL 161
6.6 ModelFlow EuGENia workflow parameters and variables 165
6.7 Models used in the ModelFlow EuGENia workflow 165
6.8 Ecore step tasks in the ModelFlow EuGENia workflow 166
6.9 GenModel step tasks in the ModelFlow EuGENia workflow . . 167
6.10 GMF step in ModelFlow EuGENia workflow 169
6.11 GmfGen step in ModelFlow EuGENia workflow 170

11

List of Listings

6.12 EmfCode step in ModelFlow EuGENia workflow 170
6.13 Extension fragment to polish script 173
6.14 Original EuGENia delegate execution order. 175
6.15 ModelFlow parameters for the industrial case study. 189
6.16 EEC and Simulink models in ModelFlow. 189
6.17 generateSimulink ETL transformation in ModelFlow. 190
6.18 Code generating multi-tasks in ModelFlow. 191
6.19 Code generating tasks from the Simulink model in ModelFlow. 192
6.20 HTML model group and trace extraction task in ModelFlow. . 193
6.21 Supporting model and task declaration extension 197
6.22 Dynamically model generation ModelFlow proposal with model

matching in tasks . 198
6.23 Nested workflow ModelFlow proposal for industrial case study . 198
6.24 Sample Maven ModelFlow plugin 200

7.1 Workflow nesting proposal . 207
7.2 EOL explicit and implicit file dependencies 210

12

List of Algorithms

1 Execution plan construction algorithm. 86

13

To my dad and his never-ending admiration for technology.
To my husband for sharing this journey with me.

14

Acknowledgements

In the first place I would like to thank my supervisors Prof. Dimitris Kolovos
and Prof. Richard Paige for their continuous support and valuable guidance
along the way. They are both extraordinary supervisors, researchers, teachers,
and people. I am deeply thankful for I know that thanks to them I have grown
not only as a researcher and practitioner but also as a person.

Thank you to both Dr. Javier Camara and Prof. Tim Kelly for their support
and guidance during internal milestones. I am also grateful to my examiners
Prof. Juergen Dingel and Dr. Siyuan Ji for taking the time to review this
work. Similarly, I would like to thank Dr. Konstantinos Barmpis, Dr. Simos
Gerasimou, Dr. Horacio Hoyos, Dr. Alfonso de la Vega, Dr. Sina Madani,
Qurat ul ain Ali and Sorour Jahanbin for taking the time participate in my
Mock Viva and provide feedback on the thesis.

Thank you to academic and industrial colleagues for discussions and feedback.
In particular, thanks to Dr. Simos Gerasimou, Dr. Konstantinos Barmpis, Dr.
Thanos Zolotas, Justin Cooper, Caroline Brown, Jason Hampson, Dr. Mole Li,
Dr. Mike Bennett, Philip Elliott, Dr. Steve Law, Dr. Stuart Hutchesson and
Dr. Alan Grigg.

A big thank you to my husband, Dr. Horacio Hoyos, for fruitful discussions,
advice and feedback on my work but also for his support and care.

Finally, thank you to my family and friends for their support and encourage-
ment.

15

Author Declaration

This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as references. Except where stated,
this thesis is a presentation of original work by the author. Parts of this thesis
have been previously published by the author. The following publications have
been primarily written by the PhD candidate.
[Journal] B. A. Sanchez, A. Zolotas, H. Hoyos Rodriguez, D. Kolovos, R. F.

Paige, J. C. Cooper, J. Hampson, “Runtime Translation of OCL-like
Statements on Simulink Models: Expanding domains and optimising
queries”, in Software and Systems Modeling, 2021.

[Conference] B. A. Sanchez, D. S. Kolovos and R. F. Paige, “To build or not
to build: ModelFlow, a build solution for MDE projects”, in Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems Companion Proceedings - MODELS ’20,
2020.

[Workshop] B. A. Sanchez, D. S. Kolovos and R. F. Paige, “ModelFlow: To-
wards Reactive Model Management Workflows”, in Proceedings of the 17th
ACM SIGPLAN International Workshop on Domain-Specific Modeling,
2019.

[Conference] B. A. Sanchez, A. Zolotas, H. Hoyos, D. S. Kolovos and R. F.
Paige, “On-the-fly Translation and Execution of OCL-like Queries on
Simulink Models”, in Proceedings of the 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Com-
panion Proceedings - MODELS ’19, 2019.

[Doctoral Symposium] B. A. Sanchez, “Context-aware traceability across het-
erogeneous modelling environments”, in Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion Proceedings - MODELS ’18, 2018, pp. 174–179.

The initial version of the Simulink driver was implemented by Dimitris
Kolovos. The author continued its maintenance, added support for Stateflow
blocks and provided optimisations for operations on collections.
This work was supported by the University of York and by the EPSRC

through the National Productivity Investment Fund in partnership with Rolls-
Royce under Grant EP/R512230/1.

16

1 Introduction

It might not come as a surprise to the reader that technology keeps evolving
at an ever-increasing speed. This is the result of industry ambitions to reduce
product costs and their time to market. Paradoxically, the rapid evolution
of technology makes it more complex for the industry to meet these goals
as new standards must be followed and more project dependencies —such
as Components Off The Shelf (COTS), are introduced. Time pressures have
forced development process to adopt agile practices that allow for quick defect
detection and rapid adaption in case priorities change or unexpected events
take place. At the same time, the increased complexity requires more domain
specific experts to deal with the different dimensions of the product such as its
real-time behaviour and its requirements. To cope with these challenges, many
industries are now adopting Model-Driven Engineering (MDE) processes which
advocate for automation and enable engineers to work with artefacts that are
close to their domain of expertise.

The key idea behind MDE is to use models that capture the essential
complexity of a system in a given context to make it easier to understand and
manipulate. For example, a model can be used to capture the real time behaviour
of the system to facilitate the work of Real Time Engineers. Traditionally,
models used to be drawings of views of the systems which were used to guide
the development process. However, in MDE processes, models are living entities
at the core of the development process that capture information in a structured
way so it can be processed. Models can be validated, compared, transformed
into other type of models, and used to generate text, documents, code, and
configuration artefacts. All these automated tasks reduce the time spent on
manual and error prone activities. For example, generating code can reduce
the number of programming errors, the time spent writing boilerplate code and
the need for code reviews.

Usually, models are created, modified, and tested with dedicated tools that
know how to manipulate them. Examples of such tooling include MathWorks
Simulink, which manages dynamic system models, and IBM Rational DOORS,
which is dedicated to requirement models. Modelling tools usually provide
facilities to perform operations on the specific type of models they manage.
For example, simulations can be executed for Simulink models in the Math-
Works workbench and Word documents can be generated from requirement

17

1 Introduction

models in DOORS. There are also generic model management tools that do
not make assumptions on the type of model they act upon (e.g., requirements
or dynamic system models) and are used to perform common operations such
as transformations and validations on them. While running a simulation for
a Simulink model is a preconfigured activity in the MathWorks workbench,
running a transformation in a generic model management tool (e.g., OCL, ATL,
QVT, EOL) usually requires the user to write a custom model management
program. As such, MDE projects end up relying on a variety of domain specific
models and model management programs that are managed by different tools.
While individual models facilitate the comprehension of an aspect of the system,
understanding how models are connected to each other and orchestrating their
model management activities remains a challenge.

Coping with heterogeneity is one the main challenges in large MDE projects.
The first challenge that it brings has to do with interoperability. Developers
have proposed integrations with build tools to support the orchestration and
execution of multiple and heterogeneous model management tasks with diverse
persistence technologies. Build tools are almost a requirement in software
projects these days and are well integrated with Continuous Integration (CI)
tools. Both CI and build tools along with version management systems facilit-
ate collaboration within and across teams, support agile processes and enable
continuous testing and delivery of software. And yet, neither build tools nor CI
tools are model-aware resulting in the need to adapt models and model manage-
ment tasks as build tasks. Examples of such adaptations include the declaration
of model loading and disposal tasks, which are normally steps configured within
model management tasks as opposed to tasks on their own. Build tools and
CI tools that orchestrate tasks often work with files. In contrast, model man-
agement workflows involve model management tasks that consume, modify, or
produce heterogeneous models that may be backed by arbitrary technologies,
including databases (e.g., PTC Integrity Modeller). Other developers have
proposed dedicated model management workflow frameworks to orchestrate
these tasks (e.g., MWE2, MTC-Flow). Nevertheless, these frameworks often
lack some of the cutting-edge features that state-of-the-art build tools offer such
as executions where only tasks that may be transitively affected by external
changes to build resources are re-executed (e.g., by Gradle).

The second challenge that heterogeneity brings has to do with the provenance
of generated artefacts. Aerospace and automotive are examples of industries
adopting MDE in their processes and yet, as safety critical industries, they
must not only produce the software that runs on their products but also certify
it as safe. To do this, certifying authorities require evidence (e.g. in the form of
test results and traceability) to check whether all requirements have been trans-
lated into code and if they have been successfully tested. Manually producing

18

traceability information, that is, a set of links (traces) that connect source and
target elements through a semantically rich relationship, is not an easy task.
Neither it is to produce this information when models involved in the traces
are provided by different tools as they may conform to various metamodels and
be persisted in different formats. In contrast, traceability is often a by-product
of model management activities. A model management trace works as a ledger
of the actions that occurred during the model management task execution. For
example, a model-to-model transformation often returns traces of all model
elements that are generated in the target model specifying the model elements
in the source model that were involved in their transformation. Producing and
maintaining rich traceability information from orchestrated model management
tasks could support the establishment of end-to-end traceability, that is, trace-
ability from artefacts at the early development process, such as requirements,
to those at the very end, such as test results. This information can help com-
panies provide evidence required in certification processes. At the same time it
can also be used by developers to determine model coverage, debug complex
workflows, perform impact analysis on potential metamodel or transformation
changes, and to identify refactoring opportunities. However, while many model
management tasks produce traces as a side-product of their execution, others
do not produce any.

This thesis proposes an architecture that can orchestrate model management
workflows that (i) support executions where only tasks that may be transitively
affected by external changes to build resources are re-executed, (ii) produce
model management traceability information from tasks involved in the workflow
and (iii) reduce invocations of model loading while disposing models when they
are no longer needed. An outcome of this project is ModelFlow, a prototype
implementation of this architecture which is publicly available and has been
tested with several example workflows. Our architecture supports the definition
of the workflows through a declarative textual language that is based on
the relationship of the models with the tasks which ensures that model-task
and task-task dependencies are clearly stated. ModelFlow takes advantage
of this information to schedule the task executions and to generate runtime
views of these interdependencies. Another outcome of the thesis includes the
implementation of a bridge between Simulink models and the languages of the
Epsilon family of model management languages which offers a native integration
with MATLAB as opposed to available solutions which require the models to be
transformed into an open-source modelling representation format. This bridge
enables ModelFlow workflows to query and modify Simulink and Stateflow
models and to maintain traces that involve their model elements. This bridge
has been integrated with ModelFlow, enabling the management of Simulink
models within ModelFlow workflows.

19

1 Introduction

1.1 Research results

This work proposes a novel architecture of a model management workflow
interpreter that (a) combines features from build tools that allow for partial
executions that only re-execute tasks transitively affected by external changes to
workflow resources, while also (b) gathering and creating traceability information
in a queryable format as a side product of its execution, and (c) using a novel
approach to automatically handle models that loads them when first needed
and disposes them when no longer required by the workflow. Additionally, to
declare these workflows, this work has proposed a model management workflow
language that differs to other frameworks in the way models are used to drive
the execution and in its capability to generate tasks dynamically. To validate
the architecture we have built ModelFlow which is a prototype of the model
management workflow language and interpreter, which is publicly available and
has been presented in [163].

These architectural features are evaluated through three case studies per-
formed using the ModelFlow prototype. Overall, the model management
workflow architecture was designed to be extensible to support multiple model
and task types. The case studies demonstrate its extendibility when supporting
heterogeneous tasks beyond Epsilon (e.g., GMF, EMF) and model types beyond
EMF (e.g., HTML, Simulink).

The first case study presented a contrived case study of a workflow with
three models and three tasks that evaluates the correctness and performance
of ModelFlow executed under scenarios that change different resources used
or produced by the workflow. This case study also compared the workflow
language and execution in ModelFlow against those of the Gradle build tool.
Overall Gradle outperformed ModelFlow in most scenarios but ModelFlow was
better suited to provide fine grained responses to changes to workflow resources,
particularly those affecting outputs.

The second case study reproduced a more complex workflow used by the
EuGENia tool (which predates this work) to generate graphical editors from
annotated metamodels. This workflow involved heterogeneous tasks from GMF
and EMF. The case study evaluated the correctness and performance shown
by ModelFlow compared against the original implementation and executed
under realistic change scenarios. We were able to reproduce this workflow
(which contained tasks that modified models) with ModelFlow and the results
suggest that the performance of repetitive executions of the workflow can be
significantly improved with ModelFlow, particularly when not all tasks need to
be re-executed offering the ability to reduce execution times when only parts of
the workflow are affected by external changes. At the same time, the results
suggest that scenarios that need to be re-executed completely will inevitably

20

1.1 Research results

spend additional time processing inputs and outputs. Overall ModelFlow’s
features like execution graph generation, model loading and disposal, model
management trace generation, and input and output processing took 3.3% of
the total workflow execution in most of the change scenarios. In particular,
tracking and comparing changes among input and output models were the
most time-consuming activities (not including the core task logic e.g. the
execution of a transformation program). Additionally, this case study showed
that ModelFlow was able to collect and generate traces from relevant tasks
without a significant impact in the performance. Furthermore, it showed that
ModelFlow was also able to reduce the number of invocations of model loading
and disposal procedures which is a valuable feature in workflows involving
models that are time consuming to load such as Simulink models.

The third case study described a sanitised industrial workflow that involved
heterogeneous models including Simulink and HTML. This qualitative study
was used to validate the language and model management traceability support
provided by the prototype but also to provide insights regarding the conciseness
of the workflow specification, its visualisation and user interaction facilities,
the recovery of model management traces, limits to conservative executions,
and it also explored potential workflow language optimisations. This workflow
demonstrated the utility of the dynamic task generation feature to reduce the
number of tasks in the workflow declaration and the ability to collect traces from
tasks in the workflow. Overall, further improvements can be made regarding
user interaction (e.g. triggering only parts of the workflow), conciseness (e.g.
nested workflows, abstract tasks, dynamic model generation) and visualisation
support (e.g. making workflow views executable). Similarly, the case study
highlighted potential conservative execution pitfalls when tasks contain implicit
inputs or outputs that are not provided in the task declaration (e.g. when using
a String to read a file in a model management program).

To demonstrate the extensibility of ModelFlow while also bridging the gap
between proprietary modelling tools and open-source research tools, we set out
to propose an integration between the Epsilon family of languages and MATLAB
Simulink that could be integrated with ModelFlow. Our approach relies on
the “on-the-fly” translation of OCL-like queries into MATLAB statements. As
opposed existing solutions, our approach does not require an intermediate
representation and can mitigate the cost of the upfront transformation on large
models. We evaluated both approaches and measure the performance of a
model validation process with Epsilon on a sample of large Simulink models
publicly available. Our results suggest that, with our approach, the total
validation time can be reduced by up to 80%. We also improved the approach
to perform queries on collections of model elements more efficiently and propose
an experiment that compares the performance of a set of queries on models

21

1 Introduction

with different sizes. Our results suggest an improvement by up to 99% on some
queries.

1.2 Thesis structure

Chapter 2 provides an overview of the background theory and current re-
search in the domains of Model-Driven Engineering, traceability, and build
systems. Chapter 3 presents the analysis of the problem, states the research
framework including the hypothesis, goals, and scope. Chapter 4 presents the
architecture and implementation of ModelFlow highlighting its main features:
conservative executions, traceability, and lazy loading. Chapter 5 presents
the architecture and implementation of the Simulink bridge with the Epsilon
family of model management languages and its integration with ModelFlow.
Chapter 6 contains the evaluation of ModelFlow which is composed of three
case studies. Chapter 7 summarises the thesis contributions and proposes
lines of future work.

22

2 Background

This chapter introduces the key domains for the proper understanding of
this research work. Section 2.1 provides the background of Model-Driven
Engineering. Section 2.2 offers an overview of the background on Traceability.
Finally, Section 2.3 offers background on Automated Task Processes.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software development approach that
places models at the core of the development process. Models are structured
entities that capture the essential complexity of a system required for a given
context or purpose. As models are inherently structured, they can be processed
to be validated, transformed or to generate code from them.

MDE has been successfully adopted in industries such as aerospace, automot-
ive, and telecommunications [128, 198]. In this section we provide an overview
of the key concepts, challenges, and opportunities in MDE, which is at the core
of this thesis as it defines its context and powers the proposed solution.

2.1.1 Models and metamodels

Consider the activity of modelling a society where people either like or dislike
each other. Before we can name and identify which people who like or dislike
each other, we need to define the concept of a social network that contains a
list of persons which have a name and can specify two relationship types: likes
and dislikes. These concepts would be captured in a metamodel (Listing 2.1)
which would be used to specify whether a model has a valid structure or
not [149, 171, 19]. In this case an example of a valid model (Figure 2.1) would
be one with two people: Alice and Bob who, despite their polite appearance,
dislike each other. This model is said to conform to the metamodel as it is
using correctly the constructs defined in a metamodel. In contrast, we could
invalidate this model by including an additional person called Charlie that has
an email charlie@mde.com. The model would be invalidated as email is not
defined in the metamodel as a known property for a person.

1 @namespace(uri="socialnetwork ", prefix="sn")
2 package socialnetwork;
3 class SocialNetwork {

23

2 Background

Figure 2.1: Social network sample model

4 val Person [*] people;
5 }
6 class Person {
7 attr String name;
8 ref Person [*] likes;
9 ref Person [*] dislikes;
10 }

Listing 2.1: Social network metamodel in Emfatic

The complexity of the metamodel can be influenced by how we intend to
use the models. The metamodel from the example contains very little personal
details but may have been defined with sufficient complexity if our only intention
is to determine whether people like or dislike each other. However, if we intended
to use the model to send emails to the people in it, then the metamodel would
have lacked the required constructs to capture this information.

The modeling process is confined in a layered architecture (see Figure 2.2)
with an abstraction layer and three modeling layers [16]. This architecture was
proposed by the Object Management Group (OMG) Model-Driven Architecture
(MDA) [138] and first achieved by Meta-Object Facility (MOF) [140] . The
abstraction layer represents a real-world object that exists at level M0 and is
represented by a model at level M1. From our example, the real Alice and
Bob would exist in M0 while only their names and people preferences would
be captured in the M1 model. The first modeling layer at Level M1 is the
model which conforms to a metamodel at level M2. This is the conformance
relationship discussed in the example where the properties and relationships of
a Person are defined. At this level we can observe that metamodels are used
as modeling languages. The next modeling layer at level M2 is the metamodel
which conforms to a meta-metamodel at level M3 (which can conform to itself).
In the example, we have the class Person that has three properties: name,
likes and dislikes so the M3 level would define the concept of a class and
of property. At this level we can say that the metamodels are defined by
metamodeling languages. Examples of metamodeling languages include Ecore
from the Eclipse Modeling Framework [175] and the MOF [140]. Another
example of this architecture are XML documents (M1) used to represent a
real-life system (M0) which at the same time conform to a custom XML Schema
Definition (XSD) (M2) which in turn conforms to XSD (M3).

24

2.1 Model-Driven Engineering

Figure 2.2: Modeling layers in a Model-Driven Architecture

In the example, the metamodel is defined using Emfatic, a textual rep-
resentation of Ecore while the model instance is persisted in XMI although
Figure 2.1 shows a graphical visualisation in which people are boxes and dislike
relationships are red arrows.

Having explored the concept of models and metamodels, we now explore the
characteristics of modeling languages, that is, metamodels.

2.1.2 Modeling languages

The previous section mentions that metamodels at level M2 can be used as
metamodeling languages. Indeed, metamodels describe the abstract syntax of a
modeling language, that is, the key concepts, properties, and relationships to
be captured. A modeling language is not only defined by its abstract syntax
but also by its concrete syntax and the semantics of them both [19, 90].
Abstract syntax. This aspect describes the structure of the language and

its grammatical rules, that is, its constructs and allowed connections with each
other [19, 90]. In modeling languages, the abstract syntax is commonly specified
in a metamodel [90].
Semantics. This aspect provides meaning to the modelling constructs

defined in the abstract syntax of the language and to their combinations [19].

25

2 Background

The semantics of a language can be defined using natural language or, more
rigorously, through a language such as Z ([167]) [171].
Concrete syntax. This aspect describes a specific representation of the

modeling language along with a notation [90]. The concrete syntax allows the
construction of models that conform to the language (metamodel) [171]. The
representations of modeling languages are commonly graphical or textual but
can also be based on arbitrary forms such as matrices, tables, and forms [90].

Classification of modeling languages

According to the purpose, modeling languages can be classified as general-
purpose or domain-specific.
General-Purpose Modeling Languages (GPLs). These provide con-

structs and notations that can be applied to any domain for modeling purposes.
GPLs are intended to be universal. Examples of GPLs include UML [142],
MERISE [6], SSADM [5], IDEF [93] and SysML [143]. Although the Unified
Modeling Language (UML) [142] is intended for analysis, design, and imple-
mentation of (object-oriented) software-based systems, its application domain is
so broad that can be classified as general-purpose [19]. A similar argument can
be made for the other GPLs such as MERISE which is intended for information
systems.
Domain-Specific Modeling Languages (DSLs). These languages are

tailored to the requirements of a specific domain, context, or company [19].
According to Kelly and Tolvanen [90] these languages are often more productive
and easier to create than general-purpose languages because they raise the level
of abstraction and use concepts from the specific problem domain. An example of
a DSL is the Goal Structured Notation (GSN) [168] used to structure arguments
and their relation to evidence which can be used to support assurance cases.
Another example is the VHSIC Hardware Description language (VHDL) [82]
intended for modeling electronic systems. The Business Process Model and
Notation (BPMN) [136] is another graphical modeling language used to represent
business processes. The minimal social network example can also be classified
as a DSL as the concrete syntax indicates that models are captured in XMI,
and the semantics and abstract syntax (metamodel) have been described in
the previous section. Finally, the Web Modeling Language (WebML) [26] is a
graphical DSL intended to specify the content, composition, and navigation
features of web applications.

Classification of DSLs

DSLs can be classified according to their focus, style, notation, internality, and
execution characteristics [19].

26

2.1 Model-Driven Engineering

Focus. Depending on their domain of applicability, DSLs can be classified
as vertical or horizontal. Vertical focus implies that the domain, industry or
field of application is clearly defined e.g., VHDL. In contrast, horizontal focus
implies that the DSL has a broader range of applicability e.g., SQL, WebML.

Style. Depending on the specification of control flow, DSLs can be classified
as declarative or imperative. A declarative style expresses the logic of a compu-
tation without specifying how to achieve it i.e., the control flow. In contrast, an
imperative style explicitly indicates the steps that need to be taken to achieve
a specific computation.

Notation. The notation of a DSL can be graphical or textual. Graphical
DSLs result in graphical models with graphical model elements such as blocks
and arrows. Textual DSLs rely on structured text notations such as XML-based
notations.

Internality. Depending on the use of a host language, DSLs can be either
external or internal. Internal DSLs either give the feel of a domain to a host
language either through the insertion of fragment DSL in the host language or
by building on top of it to provide more abstractions, structures, or functions.
In contrast, external DSLs are independent and have their own syntax and
parser.

Execution. Modeling languages can be classified as executable when they
provide execution semantics i.e., execution behaviour specification, that can
be used to define and execute models [76]. Examples of executable modeling
languages include Petri Nets [126], fUML [172], and BPMN [136]. An executable
model must conform to an executable modeling language and define its behaviour
in sufficient detail for it to be executed [76].

According to Hojaji et al. [76], execution semantics of an executable modeling
language can be defined using three different approaches. The denotational ap-
proach uses algebraic and mathematical constructs. The translational approach
defines these semantics by the translation of the model into another executable
language through a model transformation. Finally, the operational or interpret-
ational approach relies on an interpreter to create an initial representation of
the execution state of a model and then modifies it through transitions from
one execution state to another that result from the model execution.

Information about the execution of these models may be captured within a
model execution trace which may include events, state transitions, and input or
output parameters [76].

2.1.3 Model management operations

Model management operations are actions defined at metamodel level that
apply at model level [149, 155]. It is through model management operations

27

2 Background

Metamodel A Metamodel BTransformation
Specification

Model A Target model
Source model Target model

<<conforms to>> <<conforms to>>

Figure 2.3: Exogenous Model-to-Model transformation

Metamodel A Transformation
Specification

Model A
Model

<<conforms to>>

Transformation execution
Dependency

Figure 2.4: Endogenous Model-to-Model transformation

that concrete software development artefacts can be produced in an automated
fashion from models [104]. Some model management operations can be specified
through executable model management languages. In the following we introduce
several kinds of model management operations.

Model transformation

Model transformations are operations which generate an arbitrary number of
target artefacts from a number of source artefacts based on a transformation
specification. The kinds of model transformations based on the nature of the
source and target artefacts are presented below.

Model-To-Model Transformation. Model-to-Model (M2M) transforma-
tions can produce one or more target models from one or more source models.
The nature of M2M transformation languages varies greatly as they can be
declarative, imperative or hybrid, textual or graphical, unidirectional, or bid-
irectional, and semi-formal or formal. Moreover, if transformations produce
models conforming to a different modeling language from the source model, they
are called exogenous (Figure 2.3), while if the output and input models conform
to the same modeling technology, the transformations are called endogenous
(Figure 2.4).

Examples of M2M transformation languages include the Epsilon Transforma-
tion Language (ETL) [99], the ATLAS Transformation Language (ATL) [87],
the VIsual Automated model TRAnsformations (VIATRA) [15], and the
Query/View/Transformation (QVT) [141].

Model-To-Text transformation. Model-to-Text (M2T) transformations
enable the generation of text such as documentation or source code, from models.
Some source code generators are built atop general purpose languages and use

28

2.1 Model-Driven Engineering

the model API to produce source code for a target programming language.
Examples of this generation approach are the Ecore-to-Java transformation
provided by EMF, and the C code produced with the Simulink Coder. The main
issues with this approach are that static and dynamic code are intermingled
and it is hard to grasp the final output structure [19].

Model transformation languages —as opposed to general purpose language
code generators, alleviate these problems by using a configurable template-
based approach. In this approach, the template allows to explicitly represent
the structure of the output and clearly indicates where to insert the dynam-
ically generated parts. Examples of M2T transformation languages include
Acceleo [179], the Epsilon Generation Language (EGL) [156] and Xpand [176].
A particular case of M2T transformations are High Order Transformations
(HOT) whose outputs are transformations.

Text-To-Model transformation. Text-To-Model (T2M) transformations
can extract a model from a text. This kind of transformation is used for
reverse engineering [19] but is also used by parsers that can produce mod-
els [171]. T2M tools require a grammar, a target metamodel, and a text-to-
model parser. Example of T2M tools include ANother Tool for Language
Recognition (ANTLR) [152], Xtext [184], and EMFtext [74].

Model validation

Modeling validation languages specify the structure of “valid” models, that is,
models that conform to their specification and other wellformedness rules. The
well-formedness specification that a modeling language can impose is limited by
the expressiveness of the meta-modeling language by which it is defined [103, 19].
Model validation languages provide the means to apply more complex structural
constraints to models that may not be possible to enforce or express through
the basic constructs of a meta-modeling language. The ultimate goal of model
validation programs is to check that a model complies with constraints imposed
at metamodel level to detect errors in the model.

In general, model validation languages define invariants (i.e., Boolean ex-
pressions) associated to a context type (i.e., a model element type) and these
are evaluated against all model element instances of the context type. Ex-
amples of model validation languages include the Object Constraint Language
(OCL) [137] which is an OMG standard, and the Epsilon Validation Language
(EVL) [103].

29

2 Background

Model comparison

Model comparison languages enable the detection of differences between models.
Model comparison programs produce a difference-model or correspondence
model which contains the found differences. The comparison process consists of
two phases. Model matching is the first phase and consists in matching two
corresponding model elements using a matching strategy [19] which, according
to Kolovos et al. [102], can be language-specific or identity-, signature-, or
similarity-based. The second phase is model differencing which consists in the
execution of differentiating algorithms that apply comparison on the previously
found pairs of correspondent model elements. Examples of model comparison
languages include EMFCompare [180], and Epsilon Comparison Language
(ECL) [98].

Model composition

Model composition is the activity of taking a pair of source models and combin-
ing them into a new target model with the aid of a correspondence model [24].
A model composition framework must be able to identify corresponding ele-
ments in the models that are to be composed, indicate how these elements
are to be merged and how to transform non corresponding elements to avoid
losing information. Model merging is a specific composition scenario where
all information from the input models is present in the output model and
where there is no information duplication [24]. Examples of model composition
frameworks include the Atlas Model Weaver (AMW) [38], the Glue Generator
Tool (GGT) and the Epsilon Merging Language (EML) [96].

2.1.4 Global model management

Managing models can be done at two levels which in the literature are referred
to as modelling in the small and modelling in the large. Modelling in the
small refers to the activity of managing elements of models and metamodels.
In contrast modelling in the large refers to the activity of establishing and
managing relationships among models as a whole [23]. A model that has
interrelated models as elements is called a megamodel [95]. The activity of
modelling in the large can also be referred to as megamodelling or global model
management. Whilst megamodelling is interested in mappings and operations
over models, intermodeling is a particular case where the models of interest are
modelling languages i.e., metamodels [72].

30

2.1 Model-Driven Engineering

Megamodeling

The term megamodel was coined by Bézivin et al. [17] which defined it as
a terminal model in which elements themselves are models. One key aspect
around megamodeling is the management of these models, which may include
browsing and editing these models (e.g., AM3 [7]) or performing operations
on collections of models such as map, filter, reduce [161] and slicing [160].
However, one of the challenges for the management of megamodels is taming
the technological heterogeneity of tools, frameworks and languages used by
MDE projects [44].
Regarding the theory behind megamodelling, Diskin and Maibaum [40]

highlighted an overlap between Category Theory and model management
activities. Using a mathematical framework based on category theory, Diskin
et al. [42] proposed a mega-modelling framework based on graphs, graph
mappings and operators along with a library of structural design patterns
for megamodel engineering. This theoretical framework has been used to
set mathematical principles for model synchronisation [39] based on models
and model mappings, and bidirectional transformations [40], among other
operations. Another mathematical framework that has been used to support
model synchronisation and bidirectional transformation is algebraic lenses [55].
In contrast to the approach presented by Diskin [39], lenses only use models
as input (leaving out model mappings) which can make their synchronisation
results erroneous [39].
Another approach to global model management was proposed by Melnik

[122] which defined high-level algebraic operators such as match, merge, and
compose to manage models based on SQL expressions. In addition, Melnik
[122] also provided a prototype of a model management platform, called Rondo,
which can manipulate models and mappings as first-class objects and execute
model management scripts using the defined operators.

MDE projects

Metamodels, models and model management languages are at the core of MDE
projects. MDE projects can use a wide range of technologies and artefacts
(e.g., models, metamodels, model transformations). Without any structured
representation of these artefacts or proper documentation, users can have
difficulties understanding their classification, the flow in which they are used
and other properties and relationships within the projects which in turn makes
projects difficult to analyse, build, test and reuse [44].

Butting et al. [22] proposed the use of an artefact model to explicitly capture
information about the artefacts in a project, their languages and the tools
producing and consuming them. This artefact model would be able to describe

31

2 Background

all possible interactions with other artefacts and tools in the project during
its lifetime. The main goal of this artefact model is to represent an MDE
project in a structured way to facilitate dependency analysis, communication,
impact analysis, compliance checks, data-driven decision making and metrics
computation. The artefact model itself would be composed of artefacts in the
MDE project, the tool chain configuration along with traces of any tool chain
executions and artefact relationship knowledge.
An alternative approach to structure and visualise artefacts of an MDE

project is taken by Di Rocco et al. [44] which uses a megamodel-based approach
combined with reverse engineering heuristics to identify specific artefact types
or relationships in an MDE project.

2.1.5 Model management platforms

This section introduces some of the available model management platforms and
the tools and languages that are supported by them.

Atlanmod

Atlanmod is a platform that proposes a set of model management tools in-
cluding ATL, a model-to-model transformation language, NeoEMF an efficient
model persistence tool for EMF models that can be backed by various NoSQL
datastores, and MoDISCO a tool that extracts models from legacy systems to
describe them in a structured way.

Epsilon

Epsilon is a framework of inter-operable languages and tools designed for
model management tasks like model navigation, validation, and transformation.
The Epsilon Object Language (EOL) [97] is an OCL-like model query and
transformation language that all other Epsilon languages are built on top of.
Among these model management languages we find the Epsilon Validation
Language (EVL) [103] — designed to evaluate invariants on model elements, and
the Epsilon Transformation Language (ETL) [99] — targeted at model-to-model
transformations.
Epsilon has a layered architecture (see Figure 2.5). The Epsilon Model

Connectivity (EMC) layer provides abstraction facilities that allow models of
arbitrary technologies (e.g., EMF, XML) to be managed in a uniform manner
in any of the Epsilon languages. Concrete EMC implementations for different
modelling technologies such as EMF, or PTC-Integrity Modeler, are known as
(epsilon model) drivers.

Listing 2.2 shows a sample EOL program that navigates and manipulates a

32

2.1 Model-Driven Engineering

Figure 2.5: Epsilon architecture (Image from [52])

model M1 of arbitrary underlying modeling technology (e.g., EMF, XML). In
the first line, the first of all the elements of type Block contained in the model
is selected and then assigned to a new variable named element. In line 2 the
value of its name property is retrieved while in line 3 its evaluate() method is
invoked. Further down, line 4 shows how a new element of type Block is created
and assigned to the newElement variable while line 5 sets its name property.

1 var element = M!Block.all().first();
2 element.name;
3 element.evaluate ();
4 var newElement = new M!Block;
5 newElement.name = "My Block";

Listing 2.2: Sample EOL program

The EOL program in Listing 2.2 can be executed on models of arbitrary
technology because the model is injected to the EOL interpreter at runtime by
an arbitrary driver. The syntax that an EOL program uses to create and delete
model elements, to set and get their properties, or invoke their methods does
not depend on the driver. The contribution of a driver on any Epsilon program
is the availability of model element types, their properties, and additional
methods at runtime. For example, the first() operator works on collections

1The character “!” is used in Epsilon to separate the runtime name of the model from a
model element type or kind available in that model.

33

2 Background

and is handled by the EOL engine by default2. In contrast, the all() method
in Listing 2.2 delegates the collection of all elements of type Block to the driver
that handles model M. For Listing 2.2 to terminate successfully, the driver
that provides and manages model M would need to know how to handle model
elements of type Block with a name property and an evaluate() method.
Epsilon currently provides drivers for a variety of modelling technologies

including EMF, XML [97] and Spreadsheets [58]. Sec. 5 presents the architecture
of the Simulink driver which is another contribution in this work and was first
introduced in [162].

2.1.6 MDE challenges

As MDE popularity increased, several limitations in terms of its efficiency and
capacity are hampering wider adoption [62, 8, 101]. In particular, MDE has
shown scalability, co-evolution, heterogeneity and interoperability challenges.
Scalability becomes an issue when models become very large as they require
more storage, more memory, and collaboration becomes more complex. In
parallel, preserving the consistency of model, metamodel and model management
programs, which are disjoint artefacts but mutually related, requires efficient
co-evolution mechanisms. Additionally, the heterogeneity challenge comes from
the use of different domain specific modeling languages at the various stages
of the development process. Moreover, when the domain specific modeling
languages are based on different technical stacks or are managed by different
modeling tools (e.g., EMF and MATLAB/Simulink) interoperability becomes
imperative. In the following we discuss the aforementioned challenges in more
detail.

2.1.7 Scalability

Modeling technologies have shown scalability issues when dealing with large
models (millions of model elements) [101, 104, 62] in particular regarding model
persistence, but also in model management activities like model querying and
transformation [104]. We introduce some of the strategies that have been
proposed to address the scalability challenge and highlight research works that
support them.

Static analysis. Programs can be analysed both at runtime and before
execution. The former case is referred to as dynamic analysis while the latter is
called static analysis. Static analysis usually is done at the source code level or
at some form of object code. This analysis can be used for multiple purposes

2Other collection operators such as select() and collect() are provided in EOL by
default although drivers may override their behaviour.

34

2.1 Model-Driven Engineering

including the notification of compilation errors, code linting, and detection
of sub-optimal controls or unused variables. Static analysis can be used as a
performance enhancement tool when it can detect parts of the code that can be
optimised (and even change them) to improve runtime performance. In MDE,
static analysis has been used to optimise queries and filters in object collections
e.g., Ali et al. [2] and to partially load models to reduce their memory footprint
e.g., Wei and Kolovos [192], Wei et al. [193] and Jahanbin et al. [85].

Laziness. This approach relies on delaying the evaluation of an expression
until its result is needed. This can reduce the invocations of functions and
improve the overall program performance. In addition, laziness can also be
combined with caching which consists of storing the value of a computation
so that future invocations can skip the re-computation. While caching can
also improve performance by reducing computation times, it must be handled
correctly to invalidate and re-compute cached values when the stored ones are no
longer valid. Lazy computations are common in model management programs
both for model navigation and other declarative operations such as model-
to-model transformations. Functional languages e.g., Haskell and functional
constructs such as Streams in languages like Java make use of lazy computations.
Consequently, model navigation languages that rely on functional constructs
such as OCL and EOL have been adapted to adopt these strategies in works
like Tisi et al. [187] and Madani [109]. For hybrid languages like ATL and ETL,
laziness has been adopted by compartmentalising computations as on demand
operations but also by enabling some transformation rules to be invoked on
demand (e.g., Tisi et al. [185]). For example, in ETL some transformation rules
can be annotated as lazy so that the target model elements are only created if
the program explicitly calls that rule.

Incrementality. Another strategy to cope with scalability issues is increment-
ality. This strategy relies on detecting artefact changes so that computations
that use those artefacts can be re-executed but only for the affected parts, re-
ducing computation times and improving efficiency. In practice, incrementality
minimises the execution of redundant computation by responding to changes
in resources like models [135]. In MDE systems, incrementality can reduce the
number of artefacts re-generated after models or model management programs
are modified. This can reduce the computational efforts by limiting the number
of artefacts that need to be re-compiled, tested or analysed [60, 75].
However, when speaking about incrementality support, it is important to

clarify what type of incrementality is supported. In model transformations alone,
incrementality can be of different types, such as edit-preserving incrementality,
target incrementality, and source incrementality [30]. Edit-preserving incre-

35

2 Background

mentality is focused on preserving manual changes to generated artefacts [132].
In contrast, target incrementality focuses on updating a target artefact based
on changes in a source model by re-executing a transformation whose output
needs to be merged with the previous target [132]. Source incrementality is
similar to target incrementality but it limits the execution of the transformation
to only parts affected by the changes in the source model, seeking to eliminate
the need to perform a merge of the old and new target [132].

To support source incrementality, model transformation tools may rely on re-
cording property access traces, using model differencing techniques or employing
static analysis [135]. Frameworks such as EMFCompare [180] or languages like
ECL can be used to compute the differences between model versions. Property
access traces are commonly used by rule-based model transformation languages
e.g., Hearnden et al. [73], Rose et al. [156], and Tratt [188]. Regarding model-
to-text transformations, another strategy to support incrementality involves
manually or automatically computing source model signatures associated to
templates e.g., Ogunyomi et al. [133].

Model transformation incrementality can also be classified as live and offline
depending on how the change detection occurs. Live incrementality directly
propagates events between models already loaded in memory relying on change
events emitted by the modeling framework holding the source model [86]. In
contrast, in offline incrementality models are not loaded and the approach needs
to keep track of the original unmodified source to later compare it with the new
source [86]. Once the changes have been identified source and target artefacts
are loaded to propagate the changes [86].

Incrementality is also available in the domain of model querying. For example,
EMF-IncQuery [14] is a environment for incremental queries over EMF models
that is based on an incremental pattern matching system for graph patterns
relying on the RETE networks algorithm. Similarly, Cabot and Teniente [25]
has investigated whether OCL expressions can be incrementally evaluated to
detect if OCL constraints are remain valid after modification to a UML model.

Reactiveness. The reactive manifesto [18] is a document that defines the core
principles of reactive programming such as responsiveness, resilience (responsive
upon failure), elasticity (responsive under various workloads) and message-
driven (asynchronous and non-blocking). In software, reactive programming is
a programming paradigm that consists in reacting to changes such as events or
values [131] and has been mostly studied in relation to functional languages.
As such, the behaviour of components is determined and triggered by instances
observed on event streams [15]. A reactive execution requires both the ability
to detect updates or requests as events and to incrementally execute based on
the changes. Reactiveness in MDE has been adopted in model transformation

36

2.1 Model-Driven Engineering

languages such as VIATRA [15] and Reactive ATL [115]. In the case of VIATRA,
transformations are written as actions that are triggered when a specific change
event occurs. In the case of Reactive ATL the program is the same as a regular
ATL but some rules are triggered in response to changes in the source model.

Concurrency, parallelisation, and distribution. Concurrency can be
described as the potential for parallelism [194]. In practice when programs
exhibit concurrent behaviour, they allow parts of themselves (or threads) to be
executed in arbitrary order without affecting the program’s outcome. When
these threads are effectively handled by different processing units, in a way that
individual threads could potentially be executed simultaneously, the program is
said to be executed in parallel. A particular case of parallelisation is distributed
computing in which threads are executed on different network computers where
they can independently fail. Parallelism and distribution have been investigated
in the MDE community to tackle scalability issues. Tisi et al. [186] proposed a
parallel implementation of the ATL compiler and virtual machine. Similarly,
Madani has worked on parallelisation of Epsilon languages including EVL
(validation) [110], and EOL (navigation) [111]. Other examples that execute
parallel and distributed ATL model transformations using frameworks for
parallel processing include works by Burgeno [21, 20] which are implemented
atop the Linda framework and work by Benelallam et al. [12] implemented atop
MapReduce. Benelallam et al. [13] later proposed two improvements of the
ATL execution atop MapReduce which include a model partitioning algorithm
taken from graph theory and an algorithm to distribute data from declarative
model transformations based on static analysis in a greedy and prioritised way.

Model persistence

The achievement of intensive and fast model queries and transformations on
large models is closely related with the model persistence mechanism [62]. The
ability to store, access and update large models with a low memory footprint can
be achieved through file-based model fragmentation (e.g., XMI/JSON-based),
through a model persistence layer backed by a database (e.g., Teneo/Hibernate,
NeoEMF, MongoEMF) or through the use of model repositories (e.g., CDO,
Morsa, EMFStore) [62]. Alternatively, model indexes can make file-based model
storage more efficient by monitoring models and mirroring them in a model
index backed by a scalable database [62, 104]. These indexes enable efficient
global queries as they are kept synchronised with the latest version of the
models without having to copy files locally or load them into memory. We now
discuss some of the strategies for model persistence and their scalability.
XMI. The XML Metadata Interchange (XMI) format is an Object Man-

agement Group (OMG) and an ISO/IEC (19503:2005) [104] standard that

37

2 Background

is used to describe objects by representing them as XML elements and/or
attributes [139]. In addition, XMI specifies how to link objects within and
across XMI documents, how to validate these documents using XML schemas
and how to identify objects within the documents [139]. XMI can be used to
describe models conforming with the Meta-Object Facility (MOF) including
UML models, and models from the Eclipse Modeling Framework (EMF). In-
troduced to support modeling tool interoperability and prevent vendor lock-in,
XMI has become the most widely adopted model persistence format [104].

One of the limitations of XMI, inherent to XML, is that the models need
to be fully read and loaded in memory before they can be queried. While this
is not a limitation for small models, it negatively impacts loading times and
memory usage in large ones [104]. Moreover, despite having the ability to store
models across a range of XMI files, many tools store the models in a single file
by default [62]. The fragmentation of resources can be used as a strategy to
reduce scalability issues [9]. Another limitation of XMI is that its serialization
is inherently verbose (because it extends XML) which ends up producing model
files that are larger in size compared with the actual amount of information
they need to store [104].

Database-backed persistence. To deal with the scalability issues of file-
based persistence, several solutions have been proposed where models are
serialised into a database. Most of the solutions target EMF models and they
usually deserialise the database contents into a memory representation that
is compatible with the EMF API. Originally, relational databases were the
preferred solutions in frameworks like Teneo/Hibernate [174]. While this solu-
tion can be more efficient than file-based persistence, extensive join operations
can be required to navigate the models, impacting performance. Similarly,
migrating models based on metamodel changes require updates in the database
schemas that can be hard to maintain/orchestrate. This motivated the develop-
ment of alternative solutions backed by NoSQL databases such as Morsa [146],
MongoEMF [79] and NeoEMF [32].

Model repositories. An alternative strategy to cope with scalability issues
derived from model persistence is the use of model repositories. A model
repository offers remote model access and enables users to concurrently access
the model while also providing model versioning and transaction support [146].
Examples of model repositories include CDO [181], EMFStore [177], Mod-
elio [124], MagicDraw and MetaEdit+. These repositories may offer different
choices to use as backend for the model storage. For example, CDO supports
both relational and NoSQL databases as store.

Model Indexes (Hawk) An example of a model indexing framework is
Hawk [10] (Figure 2.6) which enables developers to perform efficient global
queries [62] on a NoSQL model-element-level graph database which mirrors the

38

2.1 Model-Driven Engineering

contents of (possibly fragmented) models stored in file-based version control
systems, without needing to maintain a complete copy of all model fragments in
their local workspace [10, 61]. Figure 2.7 provides an example of a Hawk model
index where the top-left box represents an Ecore metamodel, the bottom-left box
represents an XMI instance of such metamodel and the right box represents the
Hawk index. The Hawk index contains nodes of different nature i.e., Metamodel,
Type, Element and File. Hawk keeps an index of the Metamodel and File

nodes so that they can be efficiently accessed for querying. Type nodes belong
to Metamodel nodes whilst Element nodes are linked to Type nodes through
the isOfType relationship and to File nodes through the file relationships. In
addition, Element nodes may have metamodel-specific relationships to other
Element nodes (e.g., book) as defined by their Metamodel file (top-left box).
File nodes are also related to the Repository nodes which are used by Hawk
to detect repository changes (e.g., Git, SVN, Local Directory) and trigger index
updates.

Figure 2.6: Model indexing framework architecture (Image from [10])

2.1.8 Co-evolution

In addition to scalability challenges, Model-Driven Engineering tools have had
issues with managing the co-evolution of its core artefacts—models, metamodels
and model management operations, to keep a system of inter-related models in
a mutually consistent state [149, 41].
Approaches to manage their co-evolution have been broadly categorised as

approaches where metamodels change or not [149]. Paige et al. [149] uses the
following characteristics to describe current co-evolution solutions: scope —used
to define whether the solution applies to a single MDE artefact or if a change

39

2 Background

Figure 2.7: Example of a Hawk model index (Image from [61])

in the metamodel triggers changes in other MDE artefacts, automation —to
determine whether the solution is manual or fully automated, environment —
whether a specialised model editor or operation recorder is required, conformance
—if it provides means to restore metamodel conformance when a metamodel
changes and whether constraints are required to verify conformance.

Research on bidirectional model transformations (BX) and lenses addresses
the challenge of preserving mutual consistency of a pair of inter-related models by
discovering deltas and propagating the changes [41, 55]. Stevens [169] highlights
the need for bidirectional transformation in Model-Driven Engineering and
points out how the QVT standard for model transformations provides semantics
based on lens-like structures. Paige et al. [149] highlights that another challenge
to support modeling artefacts co-evolution is managing the heterogeneity of
inter-dependencies between MDE artefacts.

2.1.9 Heterogeneity and interoperability

As systems grow and become more complex, several models may be required at
different stages of the development process. Models may vary greatly depending
on the development stage they are used on or their purpose. For example, at
early stages of the development process a project may use requirements models
(e.g., ReqIF or IBM Rational DOORS) to capture the application requirements,
while at the development stage the project may use system models (e.g., SysML)
to capture the composition of the various systems to develop.

The various models used in the development of a system are likely to con-
form to different modeling languages which may not be based on the same
technical stack. For example, a SysML model created with Papyrus would
conform to an EMF-based SysML metamodel, but a system model created with

40

2.2 Traceability

MATLAB/Simulink would only be compliant with the MATLAB’s modeling
language. Considering that there are many modelling frameworks available e.g.,
MOF and EMF, a broad range of model management languages e.g., Epsilon,
Acceleo, ATL, Kermeta, QVT, OCL and multiple tools to manage the models,
the integration of the tools and formats may involve significant effort [28].

A significant interoperability challenge comes from the gap between tools used
in industry and academy. Proprietary modelling tools (e.g., MATLAB Simulink
and PTC Integrity Modeller) are used predominantly in industry, while most of
the Model-Driven Engineering research is centred around open-source modelling
frameworks such as EMF [198]. To bridge this gap, proprietary tools must offer
exchange mechanisms of their models from and into standardised interchange
formats (e.g., XMI) [92] and model management platforms must be able to
manipulate models beyond the most common research metamodeling languages
such as EMF. The Open Services for Lifecycle Collaboration (OSLC) [144] is an
initiative that aims to simplify tool integration through a set of specifications
for different aspects of application and product life-cycle management. Several
proprietary software vendors are exposing a range of services through OSLC,
including PTC Integrity and IBM Rational DOORS.

2.2 Traceability

Gotel et al. [67] defines traceability as “the potential to relate data that is stored
within artefacts of some kind, along with the ability to examine this relationship”.
Traceability has many applications including requirements management, change
management, impact analysis, verification, reuse, system understanding, audit
and certification [195]. In software processes there is great interest in achieving
end-to-end traceability where software development products are inter-related by
trace-links through all the phases of the development process [148]. This section
introduces key traceability concepts and classifications, and then discusses
the key features and limitations of a selection of traceability tools. Finally,
the section introduces how traceability is used in Model-Driven Engineering
activities.

2.2.1 Defining traceability

There are multiple definitions for the term Traceability (e.g., [165, 148, 67])
which seem to vary according to the context and purpose of the research. The
aforementioned traceability definition is stated at a fundamental level which
highlights the storage of the traceability information and the importance of
being able to navigate those relationships. However, the same authors provide
a more formal definition for traceability as “the potential for traces to be

41

2 Background

established and used” [67].

The latter definition uses the term trace which refers to a “triplet of elements
comprising a source artifact a target artifact and a trace link associating the
two artifacts” [67]. The term trace can also be used as a verb, in which case
it refers to the ability to “[follow] a trace link from a source artifact to the
target artifact or vice-versa” [67]. Figure 2.8 illustrates how a source and a
target artefact are related through a trace link which is navigable both ways.
Note that the definition of trace link varies in the literature depending on its
typed/untyped, binary/n-ary and interconnected/isolated nature [113].

Figure 2.8: Trace triplet [67]

Types of traceability

There are various types of traceability and some of the most common types are
shown in Figure 2.9. Backward traceability follows links of an artefact back
to the artefact from which it was derived, in contrast, forward traceability is
concerned with following links of an artefact to find those artefacts derived
from it. Horizontal traceability follows traces between artefacts that are at the
same project phase or abstraction level, whilst vertical traceability applies to
artefacts that do not satisfy the previous condition. As traceability is intensely
researched in the software requirements community, Pre and Post Requirement
Specifications deal with traces created before or after said specification is
formalised. Other kinds of traceability not represented in Figure 2.9 are
functional and non-functional traceability, the former concerned with artefacts
being transformed into other artefacts and the latter with informal traces
which provide reasoning or context information. Finally, implicit traceability
results from an inherent relationship between traced artefacts whilst explicit
traceability has to be created as it cannot or should not be inferred.

To make the trace links more useful they can be enriched with attributes or
by classifying trace links into types with richer semantics. There are multiple
propositions for traceability link classifications which may be flat (e.g., Span-
oudakis et al. [166], Ramesh and Jarke [153]) or hierarchical (e.g., Dahlstedt
and Persson [31]), while some researchers advocate that trace link classifications
should be built on a project-specific basis e.g. Paige et al. [147].

42

2.2 Traceability

Figure 2.9: Types of traceability (Image from [195])

Activities

There are several activities required to achieve traceability. Gotel et al. [67]
identify four activities in their proposed generic traceability process model
which are planning, creating, maintaining, and using traceability. The first
activity is about the identification of traceability needs and resources and
the definition of a Traceability Information Model (TIM) which defines the
information that should be captured to support traceability i.e., traced ele-
ments, their granularity and trace link types. There is a broad range of TIM
propositions (e.g., Drivalos et al. [45], Katta and Stålhane [89], Mustafa and
Labiche [130], Ramesh and Jarke [153], Taromirad [171]), and only recently
Mustafa and Labiche [129] proposed a set of requirements for traceability model
solutions and evaluated the completeness of several published TIMs. Creating
traceability involves the acquisition, representation and storage of traces and
may be achieved with two possible approaches: trace creation or trace recovery
(discovery) [67]. Traceability maintenance is interested in preserving the trace-
ability information relevant and consistent whilst the artefacts being traced
evolve. Finally, traceability usage involves traceability visualisations such as
matrices, graphs and hyper-links, and traceability retrieval through queries.

2.2.2 Demanding traceability

Regulated industries that develop safety-critical systems often must comply
with guidelines and standards to certify their systems as safe and secure [154].
Usually, these guidelines prescribe activities and deliverables around software de-

43

2 Background

velopment and verification processes which may also consider quality assurance
and configuration management [154]. Examples of guidelines and standards
that demand traceability are described below.

DO-178C is a standard for satisfying airworthiness requirements in software
of airborne systems and equipment used on aircraft and engines provided by
the US Federal Aviation Authority (FAA). DO-178C is an update of DO-
178B [157]. The DO-178C guidelines require bi-directional traceability of the
software development process which includes trace data between (a) system
requirements allocated to software and high-level requirements, (b) high-level
requirements and low-level requirements, and (c) low-level requirements and
source code [157]. The objective of keeping these traces is to ensure that the
functional, performance, and safety-related requirements of the system can be
traced to source code passing through high- and low-level requirements [157].
Additionally, DO-178C also requires bi-directional trace data about the software
verification process which includes trace links between (a) software requirements
and test cases, (b) test cases and test procedures, and (c) test procedures and
test results [157]. These traces are required to verify that the complete set
of test cases was developed into test procedures and that all of these were
executed. Trace links may be shown through naming conventions or by using
references either embedded or external to the software data [157].

ISO 26262 is a standard for safety critical systems with electrical and/or
electronic systems that are installed in road vehicles [84]. This standard
requires traceability between safety related artefacts, for example from hazards
to safety goals, to safety requirements, to the structure and behaviour of these
safety requirements, to the code and to tests [114]. ISO 26262 recommends
bi-directional traceability and requires artefacts to be versioned and have unique
identifiers [114].

2.2.3 The challenges of traceability

Despite its many advantages such as change impact analysis, system under-
standing and regression testing [65, 114], traceability is known for being hard to
achieve [29]. Particularly in large and continuously evolving software systems,
creating and maintaining trace links can be a costly activity that requires
a lot of effort and discipline [29]. Furthermore, poorly defined traceability
processes, inadequate user training, and lack of effective tooling can prevent
the exploitation of traceability [65, 88].

44

2.2 Traceability

2.2.4 Traces in Model-Driven Engineering

Traceability in the context of Model-Driven Engineering is used to capture
relationships among modeling artefacts and generated code.
Model management traces capture information derived from the internals of

a single model management operation or from the relationships among a group
of model management operations. Model management languages often produce
model management traces as a side product of their execution. To illustrate the
variety of model management traces at model element level offered by different
model management languages, we focus on the traces offered by the languages
of the Epsilon family.

As a result of the execution of a model-to-model transformation with ETL [99],
the language provides a transformation trace which contains information about
the source and target model elements consumed and produced by each trans-
formation rule. In contrast, the EVL [103] model validation language produces
a constraint trace which links model element instance, the rule they are valid-
ated against and the result of the validation. Similarly, the ECL [98] model
comparison language produces a comparison trace which contains the pairs of
model elements being compared, the rule that compares it and the result of
the comparison. Merging activities in EML [96] require the execution of model
comparisons and provide a merge trace for each match containing the resulting
merged elements and the merge rule which produced them. For model-to-text
transformations, the EGL [156] language produces a template trace which
contains the information of the templates and variables used to produce output
files.

Traceability at model level occurs when relationships are established among
models as a whole. For example, the transformation of model A (source artefact)
into model B (target artefact) through transformation T (trace link) illustrates
such a trace. Traceability at this level is tightly related with the domain of
mega-modeling and global model management discussed in section 2.1.4. At
this level, traceability may involve non-model management relationships such
as the conforms to relationship between a model and its metamodel.

2.2.5 Tools

Tools are important to support traceability management activities. Maro
et al. [113] recently proposed ten guidelines for traceability tool developers
that facilitate the trace maintenance activity. Their work was inspired by
the set of guidelines proposed by Gotel and Mäder [66] regarding what to
look for in traceability tools to assist engineers in their decisions to adopt a
traceability solution. These guidelines are based on identified factors that affect
traceability maintenance: versioning, tool boundaries, configurable semantics,

45

2 Background

and consistency specification. Broadly, their guidelines propose that tools should
support versioning of their internal traceability models, enable the extraction
of deltas for all traced models, expose interfaces to access the managed models,
and provide common interfaces for tool adapters.

In the following we introduce a set of relevant traceability tools and discuss
key features regarding their interoperability and architecture.

DOORS. One of the most widely used requirements management tool in
industry [113] is the commercial IBM Rational DOORS [80] product which can
manage traces to requirements. This tool stores requirements and traceability
links in a database and can compute deltas on its requirements which are
used to notify of possible inconsistencies with their traced artefacts. DOORS
enables external access to its requirements via OSLC services (Requirement
Management) and can also be extended to consume services of external tools
that provide OSLC services regarding change, quality and/or architecture
management [81]. One of the main deterrents of the adoption of DOORS is its
onerous acquisition cost.

YAKINDU Traceability [1] is a commercial traceability solution. In
YAKINDU, traceability models are processed as EMF models that can be
configured for each project. Traced model types require an EMF representation
which if unavailable must be produced by tool adapters. YAKINDU provides
a long and varied list of adapters which range from Google products such as
Gmail and Calendar, and commercial tools such as IBM Rational DOORS,
RHAPSODY, PTC Integrity and MATLAB Simulink/Stateflow to code e.g.,
Java (JDT) and C (CDT), and Eclipse projects e.g., Mylyn, Papyrus. Sup-
ported artefact types determine how the versions of its artefacts are handled.
YAKINDU uses artefact versions to detect suspicious traceability links and
provides a snapshot feature that allows browsing traceability information at
different points in time [77]. The tool provides diff and merge actions on its
traceability models but not for its traced artefacts. In addition, YAKINDU
provides a rule-based language to specify link derivation which can be stored
or computed at memory.

Capra [182] is an open-source traceability tool developed under the Eclipse
Foundation. The architecture of Capra is presented in Figure 2.10 where four
components are connected to a generic component through Eclipse extensions
and extension points (service provider and consumers). As traceability needs
to change from project to project, Capra allows the definition of custom trace
links through the Traceability Metamodel extension point. Its artefact handler
component allows the registry of new artefact formats to be supported in the
traceability solution which (like YAKINDU) also require an EMF representation.
Capra’s persistence extension point enables the storage of the traceability model
e.g., per project or per workspace, and allows the integration of the traceability

46

2.2 Traceability

models with version control solutions like EMF Store, CDO or Git [112]. Capra
provides a set of artefact extensions including EMF, Microsoft Office and Excel,
Java code and the Hudson continuous integration tool. In addition, Capra offers
two visualisation features: matrix- and graph-based. Capra offers Java APIs
that can be used to access information about artefact wrappers, traceability
links, and their contents. This API is used by its visualisation features and can
be used for other navigation scenarios.

Figure 2.10: Capra architecture (Image from [182])

VeroTrace [190] is a commercial traceability solution produced by Vero-
cel. It supports the creation and maintenance of bi-directional traces between
requirements, design, and verification artefacts. Additionally, it provides valid-
ations and coverage reports. VeroTrace also supports impact analysis and can
generate document and web reports.

Simulink Traceability [121] is a MathWorks plugin which enables the
establishment and management of traces among Simulink requirement, design,
and test artefacts. Traceability information is embedded in the environment
where the artefacts are developed. Like other MathWorks add-ons, this plugin
can manage the traces programmatically which may be used for custom and
automated trace management procedures.

ChainTracker [69, 70, 71] is a state-of-the-art model-to-model and model-
to-text transformation analysis tool. The main contributions of this tool are
trace information collection and analysis in the form of visualisations. Within
its traceability model, ChainTracker considers not only model resources but also
how metamodel constructs at attribute level are used by invoked rules in the
model management tasks. Figure 2.11 shows the main screen of ChainTracker.
The top left panel shows the model transformation composition visualiser which
uses vertical lines to represent models, blue rectangles to represent model
elements (yellow when selected), black dots for element attributes connected
through implicit and explicit transformations using red and green arrows [71].

47

2 Background

Then the right panel shows the transformation code viewer which shows the
transformation programs and how they involve model elements (which can be
highlighted). Then the bottom panel shows model element information. As of
the time of writing, the traceability tool is not publicly available.

Figure 2.11: ChainTracker main screen (Image from [68])

2.3 Automation of task processes

2.3.1 Business processes

In complex model-driven software development processes, executing multiple
model management tasks of different kinds is a common requirement. For
example, before transforming a database model into code, we might want to
verify that the model is well formed. In addition, model management tasks
often need to be triggered in response to a modeling resource update, such as a
model or a transformation being modified. For the different actors that need
to understand how these tasks are related to each other and to other modeling
resources, and for them to execute the required groups of tasks in response to
resource updates, we need to introduce the domains of Business Processes and
Workflows.

The International Standard for Systems and Software Engineering and Soft-
ware Life Cycle Processes (ISO/IEC 12207:2008) defines a process as “a set of
interrelated or interacting activities which transform inputs into outputs” [83].
A business process is used to represent, understand, and communicate how
business-related activities must be carried out within an organisation. The
Business Process Model and Notation (BPMN) standard defines a business
process as “[a] defined set of business activities that represent the steps required

48

2.3 Automation of task processes

to achieve a business objective” [136].
The Workflow Management Coalition defines a workflow as “[t]he automation

of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set
of procedural rules” [196]. In other words, the automated aspects of a business
process definition can be transformed into an executable process enacted by a
workflow management system [196].

There are several aspects that characterise a process, in particular those
defining the control-flow, data, and resource management viewpoints [159].
The control flow viewpoint determines the sequencing of activities. The data
viewpoint describes the information visibility and interaction among workflow
components. The resource viewpoint describes the way in which tasks can
be allocated to human and non-human resources. The Workflow Patterns
Initiative [159] provides a comprehensive description of common patterns for
each of these workflow aspects.

The first part of this section introduces some of the most popular business
process modeling languages. Then, build systems are introduced as tools that
can support workflow management systems. Finally, the section ends with an
overview of model management workflows in Model-Driven Engineering.

In the following we describe a set of popular tools/frameworks that are used
for the orchestration and execution of programming tasks that have been used
or have the potential to be used for model management tasks.
BPMN 2.0. The Business Process Model and Notation is a mature and

widely adopted [108] international standard issued by the Object Management
Group (OMG). This specification was built as a compilation of the best ideas
and practices of the business modeling community including UML Activity
Diagrams, Event-Process Chains (EPCs), etc.
YAWL. Yet Another Workflow Language (YAWL) [158] is an open-source

workflow language based on formal Petri net foundations and designed to provide
support for many workflow patterns (control-flow, resource, data, exception
handling).

2.3.2 Model management workflows

In Model-Driven Engineering, workflows are understood as frameworks or
tools able to define and execute model management operations in a predefined
order. Diskin et al. [42] observed that megamodels can be used to process
models in the form of abstract workflow languages. There are several tools
that support the execution of model management workflows but only recently
Kokaly [94] proposed switching their task-oriented paradigm into a declarative
style that guarantees correctness by construction. Kokaly [94] proposes that

49

2 Background

the specification of the inter-relationships between models is based on graphs,
graph mappings, constraints and operations which can be composed to form
complex chains of operations that can be parsed into a Directed Acyclic Graph
(DAG) which verifies their correctness.

In the following we introduce some of the model-driven workflow frameworks
and discuss their strengths and limitations.

MMINT [37] is an extensible and graphical model management tool for
exploration and experimentation [37]. At its core MMINT builds a megamodel
that is described at two levels of abstraction: the type-level where metamodels
are interrelated through relationships and megamodel operators (e.g., filter, map,
reduce, merge) [37] defining the relationships and operations allowed for models
at the instance-level. From their definition model management operations
are strongly typed and to execute them they must be invoked manually and
individually. In this context, only relevant model loading activities are triggered
when editor views are opened and when model management operations are
invoked. Similarly, the strong and explicit typing of model relationships allows
model management operations to produce trace links at model element level
that become part of the megamodel. While the tool can be extended to support
different metamodels, its scope is limited to EMF-based models.

MTC-Flow is a graphical tool that enables the definition and total or partial
execution of chains of model management operations [3]. A workflow definition
consists of the declaration of models and files that are consumed or produced
by transformations (operations which use a model as input, output, or both).
These chains of operations are executed by identifying the input resources of
the workflow and invoking the tasks that consume them. When a task finishes
its execution, it notifies that the output models and files are ready to be used by
the tasks that use them as input. Before each operation is executed, validations
may be performed on the models that it uses. In MTC-Flow, the workflow
definition itself works as an explicit dependency graph. This tool supports a
variety of model management tasks from different frameworks and its notion of
a model is sufficiently abstract so that each task can implement its own model
interpretation. However, for each task execution, models are created, loaded
and disposed regardless of whether they are later reused by other tasks. An
overview of the MTC-Flow metamodel is presented in Figure 2.12. Similarly,
there are no validations to check whether an input or output file or model
has changed from a previous execution to determine whether a re-execution is
required. Regarding model management traceability, MTC-Flow does not seem
to support it at any level.

Workflow+ is a theoretical modelling framework with a prototype that has
been targeted to build safety cases [43] but has wider applications. Workflow+
uses a process-driven approach to model and analyse cyber-physical systems

50

2.3 Automation of task processes

Figure 2.12: MTC-Flow metamodel (Image from [3])

and safety engineering processes with complex data flow and control flow [43, 4].
The framework is proposed as an alternative to GSN [91] that uses data to
drive the argument flow. Workflow+ uses UML class diagrams to capture
process and data definitions, control flow and constrains of data and processes,
and traceability between model elements, dataflow, and process flow [43, 4].
Figure 2.13 illustrates an example Workflow+ metamodel describing a baking
process and of the resulting workflow instance. In this figure, green boxes are
processes, yellow boxes represent data, red lines are constraints, and green
arrows represent dataflow to/from processes and black lines denote regular
associations.

Figure 2.13: Example Workflow+ metamodel (left) and an instance (right)
(Image from [4])

MWE2 [197] is a textual declarative workflow language and execution engine
that allows the definition of tasks that read/write EMF resources, perform
operations on them and generate artefacts from them. It is worth noting that
MWE2 is a language designed to be used by the Xtext language generator

51

2 Background

to configure itself. To the best of our knowledge MWE2 is only performs
batch workflow executions, and is not concerned with the production of model
management traces, or with dealing with non-EMF models. The execution
life cycle of MWE2 consists of three phases: pre-execution, execution, and
post-execution. At each of these phases, all tasks and sub-workflows invoke the
method that corresponds to the phase in the order in which they are declared
i.e., sequentially. This execution process is therefore not engaged with task
interdependencies. Regarding model handling, MWE2 relies on explicit tasks
to read and write EMF models.
Epsilon Workflows. The Epsilon modelling framework provides a family

of interoperable languages and tools designed for specific model management
tasks. Epsilon provides Ant Tasks [100] to execute each of its languages. The
limitations of this workflow framework are bound to those of the ANT build sys-
tem. While no dependencies can be established among model loading/disposal
tasks or model management tasks, dependencies can be established through
the Ant targets containing tasks.
ChainTracker was discussed in Sec. 2.2.5 as a traceability tool for model

transformation analysis. However, ChainTracker also supports the execution
of model-to-model and model-to-text transformations using ATL and Acceleo,
correspondingly. We are not aware of any extensibility mechanisms to support
more model management tasks and to our knowledge the workflow executions
are performed in batch.

2.3.3 Build systems

Build systems or tools are used to automate the software compilation process.
They are an integral part of Continuous Integration systems as they are often
used to execute tasks jobs or steps in their pipeline. Mokhov et al. [125]
describes a build system as a tool that “takes a task description, a target
key, and a store, and returns a new store in which the target key and all its
dependencies have up-to-date values”. The keys and stores vary according to
the build system, for example, keys are filenames when the store is a filesystem
as in software build systems [125]. Task description are specifications that
indicate how to compute new values for a given key.
According to Mokhov et al. [125], build tools can be compared based on

several criteria including whether the build system is local or executes in the
cloud; whether dependencies are known before the build (static) or are resolved
as the build progresses (dynamic); the build determinism; whether tasks monitor
changes to the task itself in addition to its dependencies (self-tracking); and
whether the build can be stopped when outputs do not change (early cut-off).
More importantly, Mokhov et al. [125] identifies two key design choices at the

52

2.3 Automation of task processes

core of build tools: the order in which tasks are built (scheduler) and whether
a task can be rebuilt (rebuilder). Table 2.1 (influenced by [125]) shows some
popular build tools classified by their scheduler, rebuilder, cloud-support and
build activities (e.g., task execution, project configuration based on natures3).

Minimality. In addition to supporting the construction of outputs, build
tools aim to be as efficient as possible. Mokhov et al. [125] recognises minimality
as a guiding principle for build systems in which the build “executes tasks at
most once per build, and only if they transitively depend on inputs that changed
since the previous build”. Some build tools refer to minimality as incrementality
usually to indicate that only part of a build script needs re-execution after
changes to source artefacts as other parts can be reused from a previous
execution e.g., Konat et al. [107].

Correctness. Mokhov et al. [125] proposes a definition of correctness in
which an acyclic and deterministic build is correct if it produces a correct result
for any tasks, key, and store in which the result is the store obtained by running
the build system with a given key, store and tasks. In other words, the result
is correct if result and store agree on all input keys and if the value of all
non-input keys stored in the result match one computed by the corresponding
task [125]. For shallow builds the correctness is only needed for the target itself
and the input keys reachable from the target, not those of their dependencies.

Schedulers. Mokhov et al. [125] distinguishes 3 types of schedulers among
build systems. The topological scheduler pre-computes the order of the tasks
before execution ensuring that when executed their dependencies will be satisfied.
Computing this order requires the construction of an acyclic graph with the
dependencies of a given key and then the iteration in topological order. The
restarting scheduler interleaves the execution of tasks with their ordering. In this
approach, tasks are executed and if out-of-date dependencies are found during
their execution, the tasks are aborted and their dependencies are executed.
The suspending scheduler follows a similar approach but instead of aborting,
it suspends the task execution. Compared to the restarting scheduler, the
suspending one supports minimal executions as it avoids re-execution of aborted
tasks. In practice, the suspending scheduler is only better than the restarting
only “if the cost of avoided duplicate work outweighs the cost of suspending
tasks” [125]. The last two types of schedulers enable dynamic dependency
discovery as opposed to the topological scheduler where dependencies must be
known in advance.

3Project natures are an opinionated approach to configure a project. For example, a project
configured with a Java nature might require a source and test folder in a specific (but
configurable) location.

53

2 Background

T
able

2.1:C
lassification

of
existing

build
system

s.
A
pproach

Scheduler
R
ebuilder

C
loud

B
uild

Topological

Restart

Suspend

Parallelism

None

Dirty bit

Verifying
Trace

Constructive
Trace

Deterministic
Constructive
Trace

Cloud

Local

Tasks

Natures

A
nt

[56]
4

4
4

4
4

B
azel[64]

4
4

4
4

4
4

B
uck

4
4

4
4

4
4

C
loudB

uild
4

4
4

4
4

4

C
loudShake

4
4

4
4

4

E
xcel

4
4

4
4

G
radle

[34]
4

4
4

4
4

4

M
ake

4
4

4
4

4

M
aven

4
4

4
4

4
4

N
inja

4
4

4
4

4

N
ix

4
4

4
4

4
4

P
luto

[53,107]
4

4
4

4

R
edo

4
4

4
4

4

Shake
4

4
4

4
4

T
up

4
4

4
4

4

54

2.3 Automation of task processes

The challenges supporting the parallel execution of builds are dependent on
the type of scheduler [125]. The most straightforward implementation is for
the topological scheduler in which tasks can be started once their dependencies
are completed. An approach to parallelise the suspending scheduler is to start
multiple dependencies in parallel. For the restarting scheduler, parallelisation
can involve the creation of as many threads as keys in the build and moving
tasks with non-built dependencies to the end of a queue. The latter approach
can lead to race conditions, but these can be mitigated by storing the build
order across executions.

Rebuilders. Regarding rebuilders, Mokhov et al. [125] distinguishes 4 broad
categories among build systems. The dirty bit rebuilder consists in saving
information of a key (e.g., a timestamp) as a bit that encodes if it is dirty or
clean. After an execution all bits are cleaned and key changes in subsequent
executions are marked as dirty. This rebuilder only rebuilds what has changed
including any affected transitive dependencies. The verifying traces rebuilder
uses a trace to record values or hashes of the task and its dependencies, and
only re-executes when these values have changed. To support this type of
rebuilder, two operations are required: one for recording hashes in the trace,
and another to verify them. Alternatively, the constructive trace rebuilder
records actual values instead of their hashes. This type of rebuilder is useful for
cloud build systems that can reuse results computed in other machines when
local inputs are out-of-date. The last type of rebuilder is the deep constructive
trace which in contrast to the regular constructive trace, it does not record
values of dependencies. This rebuilder (also known as shallow build) relies on
tasks being deterministic.

Build tool examples

This section describes the main features of some build tool examples and
compares their dependency resolution procedure and whether they support
minimal executions as defined by Mokhov et al. [125].

Apache Ant is a widely used build tool written in Java. A build definition
in Ant is captured in an XML file and it starts with a root project which
contains one or more targets. Each target defines one or more tasks which
are sequentially executed. Ant does not statically declare file dependencies,
instead it uses target inter-dependencies to compute its execution plan. As
such, the ANT rebuilder does not support minimal executions by default [53].
To improve the efficiency of workflow executions, targets can be marked as
conditional using the uptodate macro which checks whether a set of target
resources are more up to date than their source to trigger a re-execution [53].

55

2 Background

Gradle is also a task-based build tool, language, and dependency manager.
In contrast to Ant, tasks in Gradle must not be contained in targets and
they can directly depend on other tasks. Its build life cycle consists of three
phases: initialization, configuration, and execution. After resolving
project dependencies in the initialization phase, the configuration phase
builds a graph of the tasks that are part of the build and computes which of
them are required to be executed in the execution phase [127]. Gradle was
designed to support minimal execution of build scripts. The task execution
graph is not only influenced by task interdependencies but also by their inputs
and outputs [127]. These values are typically evaluated at the configuration

phase, but some inputs may be evaluated at the execution phase [127]. If
the inputs of a task have not changed, it is considered up-to-date and skipped,
otherwise it is executed [127]. In Gradle, properties of type file, directory or
file collections can be declared as inputs or outputs, but properties of arbitrary
nature such as strings can only be used as inputs.

Apache Maven is a build tool and dependency manager that favours con-
vention over configuration. Maven configures the build process using one or
more XML files called POMs. In contrast to ANT, Maven has three predefined
lifecycles [57] which go through specific phases in a predefined order. For ex-
ample, its default lifecycle includes the phases validate, initialize, compile,
and test, in that order. Invoking any of those phases will implicitly call those
that precede it. Custom tasks can be defined but they must be attached to a
specific phase of a life cycle. Similarly, the archetype of a maven project defines
different tasks which are executed by default at different phases of the life cycle.
If more than one task is attached to the same phase, they are executed in
the order in which they are declared. While some Maven tasks can execute
themselves incrementality, the build execution is performed in batch.

GNU Make is a popular build tool that has been around for a long time.
Make describes tasks and their dependencies in Make files with the form:

<provide > : <require >* <command >*

where provide is the file to be generated, require is the list of input files
dependencies and command describes the task execution. A build is invoked by
specifying a build target (any of the provide constructs) which triggers the
recursive invocation of its dependent targets (any of the require constructs)
if they have a more up-to-date value than last time the main target executed.
Make uses the files timestamps to determine the dirty state of build targets and
executes using a topological scheduler [125]. Other build tools like CloudMake
and Ninja, manage dependencies in a similar fashion to Make [53]. These

56

2.3 Automation of task processes

characteristics allow it to perform minimal executions. However, Make has
faced scalability challenges [125] as dependencies must be specified statically
in the build file which also can lead to missing dependencies making the build
unsound [53]. Furthermore, the use of the timestamp as indication of the dirty
state of a file can lead to re-executions that are not really needed [53].

Shake is a build tool that aims to provide dynamic dependencies while still
allowing for minimal executions [125]. It achieves this goal by using a suspending
scheduler and by using a constructive trace that stores the dependency graph of
the previous execution [125]. Like Make, Shake must statically declare the files
that are provided but can discover and register dependencies at runtime allowing
it to support incremental re-executions that consider these [53]. However,
Erdweg et al. [53] indicates that there are three issues with Shake: that it is
dependent on timestamps to determine the dirty state of files (irrespective of
their contents); it requires clean builds when the build program is updated;
and provided files cannot be computed, they must be statically declared.

Pluto is an incremental build tool that performs dynamic analysis to enforce
invariants on its dependency graph [53, 107]. This graph connects file nodes
with built units (i.e., tasks) through edges that indicate whether the build unit
produces or requires the file [53]. The initial version of the algorithm pluto [53]
interleaved dependency analysis with task execution. The hybrid version of
the algorithm considered the full dependency graph traversal unnecessary in
subsequent executions and proposed the use of file changes to only select
potentially impacted tasks and check their consistency to decide whether to
re-execute them [107]. To check whether a file is up to date, pluto uses the
notion of stampers which are functions which take a file and produce a value or
stamp based on some criteria such as its last modification date, contents’ hash,
or existence [53]. These stamps are saved in the edges between a file and a task
in the dependency graph. Because of the stampers, Pluto offers minimal task
execution. Pluto additionally supports cyclic executions if a resolution strategy
is provided by the user.

Bazel [64] is a build tool developed by Google. Bazel maintains in the
cloud a map of file hashes to file contents along with a log of executed build
commands along with their input and output file hashes [125]. By using the
build log, Bazel can predict the hash of a build result by examining the hashes of
dependencies with matching inputs [125]. Additionally, if the computed hash is
available in the map of file hashes to file contents, Bazel enables local machines
to download the result and skip intermediate outputs [125]. Bazel supports
dynamic dependencies only in built-in tasks for which it uses a restarting

57

2 Background

scheduler [125].

2.3.4 Continuous integration

Software development processes have been moving away from waterfall meth-
odologies into more agile processes that allow for rapid feature integration,
error detection and release cycles. Continuous Integration (CI) is a software
development practice that is used to support such processes, which has been
shown to increase productivity [47]. Generally, the CI build process involves
compiling and testing the code, creating executable artefacts from the source
code, and any other tasks prescribed in the build process [60]. Usually, these
tasks involve build tools like ANT or maven that are used to compile, test, and
deploy code.

CI tools are normally linked to a Version Control System repository which
developers work against. A CI build is triggered whenever the repository is
updated. In a distributed team, CI tools are a centralised view of the project
that can provide metrics (such as code coverage) of current and past builds
and report to the team when builds fail. CI offers many advantages including
reactivity, parallelisation and visibility of the process and state [59]. Example of
popular CI tools include Jenkins, Travis, TFS, CicleCI and GitHub Workflows.

García-Díaz et al. [60] identified two issues while working with MDE projects
in CI. One regarding the lack of model-driven tools integrated with CI tools.
The other is that domain experts modifying the models were able to re-generate
code artefacts and deploy to CI while other engineers that needed to modify
the code could not do it without the help of the model experts.

Later Garcia and Cabot [59] proposed the invocation of MDE tools directly
from the CI pipeline. [59] claims that if tools are executable in standalone
mode, they can be integrated with the CI tools and provides examples of
tools that can be readily integrated. In their paper, they use an example of a
co-evolution scenario in which a metamodel is evolved and where the workflow
involves change detection, impact analysis and co-evolution and testing before
the execution of model-to-model and model-to-text transformations. While
having the model management tasks defined in the CI would be useful for
workflows that run in the CI, for those that also need to be executed locally this
configuration might lead to duplication in the build/task configuration. While
CI tools are meant to run in the cloud, build tools can be executed locally and
in the cloud through the CI triggering the same results in both mediums, which
is why they are commonly the main task in the CI processes.

58

2.4 Summary

2.4 Summary

The first part of this chapter introduced key concepts of Model-Driven Engin-
eering. The definitions of models and metamodels were provided and then the
classification of modeling languages and key components (semantics, abstract
and concrete syntax) were provided. Later, this section introduced different
kinds of model management operations such as model-to-model/text transform-
ations, model validations and model comparison. Then, the notion of global
model management and the differences between modeling in the small and
modeling in the large were presented. This section finished with an overview of
current MDE challenges such as scalability, co-evolution, heterogeneity, and
interoperability.

The second part of this chapter introduced Traceability for software develop-
ment. This section started with key terminology, classifications, and activities
and then moved to discuss the traceability use within Model-Driven Engin-
eering. The section finished with an overview of available tools that support
traceability.
The third part of the chapter was an overview of business processes, build

systems and MDE workflow tools. The section started with the terminology
followed by the introduction of some of the most common business process
modeling languages. Later, the section moved on to introduce and discuss some
of the most popular and relevant build systems. Finally, the section concluded
with an overview of some of the model management workflow languages used
in the Model-Driven Engineering community.

59

3 Analysis and hypothesis

This chapter provides an overview of the limitations of state-of-the art build tools
as MDE tools which motivate the proposition of a dedicated MDE workflow
system, which is the main contribution of this thesis. After analysing the
literature and identifying current challenges in Sec. 3.1, we present the research
hypothesis, objectives, and scope in Sec. 3.2.

3.1 Analysis

General purpose business process and workflow languages such as BPMN [136],
YAWL [189], UML Activities [46] can be used to capture model management
processes. These tools are specialised to capture processes where control flow,
resource interactions and data flow are precisely specified. As such they offer
a wide range of control flow (e.g., branching, multi instance synchronisation,
state-based triggers, iterations), data flow (e.g., between task and environment,
push or pull strategy) and resource (e.g., authorisation, role-based access,
distribution, selection) patterns. To take advantage of the previous patterns,
these business process tools, and workflow languages are best suited for complex
workflows that need to be precisely defined and orchestrated.

In contrast to business process and workflow languages, build systems which
consist of a set of tasks executed to achieve a specific target, have a more limited
range of available control flow patterns while often offering more efficient
executions. The limited set of control flow patterns available to tasks in
build systems is simplified to either task interdependencies (e.g., dependsOn,
after/before) or build phase attachment (e.g., “compile phase”). In other cases,
like Make, the dependencies are specified at file level rather than task level, for
example: fileC requires fileA and fileB. Overall, build systems can be seen as
domain specific workflow execution engines that offer a narrow set of control
patterns to the users that are sufficient to achieve a successful build.
In addition, build systems have become more popular as the complexity of

software development increases. As such, more build tools are available and
these are increasingly efficient, reducing overall build times. The strategies
that have facilitated this include the establishment and resolution of task and
resource dependencies and the use of execution traces or dirty flags to ensure
that the builds are only re-executed for the items that change. For example,

60

3.1 Analysis

build tools such as Ant [56], Gradle [34], and Pluto [53] have the ability to
check for changes in input resources to determine which tasks need re-executing.
These tools use different mechanisms to identify resource changes that enable
partial executions that respond to changes in the resources. For example, Pluto
allows the user to indicate how to determine if a resource is up to date, while
Ant may use either a file checksum or timestamp and Gradle will use exclusively
file checksums or string values1. However, despite its flexible change detection
criteria, Ant relies on excessive specification of the uptodate check in build
definitions [53] to identify the resources that changed. More recently execution
traces and generated artefacts can be shared in a remote location so that if a
local item of a user matches a remote item built by a team colleague, the user
can download the previously built artefact rather than rebuilding it locally.

Another approach that can be used to support model management workflows
is megamodelling. This approach requires the specification of artefact relation-
ships at a more specific level than how they are consumed (e.g., read/write)
or their dependencies, possibly indicating the logic of the operator that binds
them. For example, artefact relationships may be of type matches, transforms,
slices, etc. Evidently, this requires models and model operators to be precisely
(and even formally) specified to chain operations into a workflow. Because of
its precise construction, megamodelling has the advantage of producing model
management traces as a side product of an operator execution. Currently,
MMINT is an example of such a megamodelling tool, although it does not
support workflow executions as it expects the user to manually trigger operators
on selected model resources of a project.

There are several dedicated tools that support model management workflows
such as ChainTracker [69], MTC-Flow [3] and MWE2 [197]. ChainTracker is
primarily a model management trace analysis tool, but it also supports the
execution of chained model-to-model or model-to-text transformations. It is
unclear how complex these workflows can be as many examples include at most
two tasks in the trace analysis. Similarly, because workflow execution is not its
primary focus, it is anticipated that executions are performed in batch. Another
tool is MTC-Flow which supports model management workflow executions and
captures the workflows in a graphical domain specific language. While MTC-
Flow supports multiple model management tasks, it only supports EMF/Ecore
models. One key functionality of MTC-Flow is support for alternative execution
paths, which is a feature that is rarely available in build systems. However, MTC-
Flow also executes workflows as batch processes (disregarding optimisations seen
in build systems) and loads and disposes models before and after the execution
of each task that uses them. One of the missing features of this tools is the lack
of traceability produced as a side product of the workflow execution. Another

1For non-file-based properties

61

3 Analysis and hypothesis

tool that can execute model management workflows is MWE2, a declarative
and extendible textual workflow language and execution engine. Just like MTC-
Flow, MWE2 can define workflows involving arbitrary model management
tasks although it mostly handles EMF models. Similarly, no traceability can be
produced as a side product of the execution. However, in contrast to MTC-Flow,
MWE2 does not automatically read or write models before and after they are
used, but rather expects the user to use dedicated loading and disposal tasks
before and after a model management task. Another difference with MTC-Flow
is that MWE2 can only define workflow tasks sequentially and execute them in
the order that they are defined.

Models can be handled by multiple modeling frameworks. For example,
MATLAB is used to manage Simulink, Requirements and Dictionary mod-
els, while EMF models are commonly manipulated in Eclipse. Additionally,
MATLAB has its own set of model management tools for its own models while
open-source model management frameworks such as Epsilon can support a
multitude of modeling formats like spreadsheets and databases. However, most
model management frameworks such as ATL tend to support EMF models
exclusively. An important aspect of a model management workflow framework is
the ability to support heterogeneous modeling formats and model management
tasks. As such, extensibility is an important feature. Most of the dedicated
model management workflow tools described above can support multiple model
management tasks. However, as most of the model management languages and
tools, they seem to only support EMF models.

Considering the improved efficiency efforts, omnipresence, and popularity
of build tools, it is no surprise that there have been attempts at integrating
model management tasks with these. Examples of these integrations include
Epsilon and ATL tasks in Ant and more recently Epsilon tasks executed from
Gradle. One of the challenges in these integrations, as in MWE2, is that model
loading and disposal are usually separate tasks. While this in itself is not a
problem, the user is left to handle how model management tasks will use the
models (read/write or both) and this configuration may change based on how
the tasks are invoked (e.g., an arbitrary target in ANT, a single or a group
of tasks in Gradle). But more importantly, models are also dependencies of
model management tasks, that is, if a model changes as a result of a previous
model management task, the next task that uses it may need re-execution
even if the model management program remains the same. By not considering
model resources as dependencies of model management tasks (but rather as
dependent model loading/disposal tasks), build systems could skip model
management tasks executions when the models they use change. Moreover,
model loading/disposal tasks cannot be skipped if the resources do not change
as they must always be executed in case any model management task needs

62

3.1 Analysis

them. A related challenge is that build systems are not supposed to modify
any of their inputs while in model management workflows models are often
used as both inputs and outputs. According to [125], a build tool cannot be
correct if inputs are modified. We argue that if the interpreter keeps track of
these models and of their use by different tasks in the workflow, it can ensure
that subsequent executions are correct if the model is compared against its
latest state from the previous workflow execution. To do this, task outputs
should be tracked, and yet, only some build tools do this, and they differ in
how they are used by the engine and when are they tracked. For example,
Gradle can handle outputs that are known before a task execution, Pluto only
knows about them when a task is finished (which may trigger a task reordering)
and Ant does not track them at all. Another challenge in build systems is the
generation and maintenance of model management traces. While integrated
tasks can sometimes produce this information individually, build systems have
no interface to collect or homogenise them because it is not their intended
purpose, although global accessible variables could be used to capture these
during an execution.
In summary, there are three key areas where we consider that model man-

agement workflow engines could be enhanced:

Conservative executions. Engines supporting the execution of model man-
agement workflows should have some of the cutting-edge features seen on build
systems like minimal executions (as defined by Mokhov et al. [125]). To support
these in model management workflows, the engine must trigger executions
that are consistent with the impact that model and other resource changes
have on the different tasks. For example, if the user changes a model-to-text
transformation program that follows a model-to-model transformation, it would
be desirable that the workflow only executes the model-to-text transformation
task as nothing else would be affected. Additionally, the interpreter needs to
take into consideration the fact that models may be used as input and output
by some tasks and handle this appropriately to ensure correct executions.

In this work we use the word conservative to describe workflow executions that
only execute tasks transitively affected by external changes to workflow resources
and where these resources are seen as a black box. The word conservative
is related to the concept of incrementality described in Sec. 2.1.7 as they
both aim to reduce redundant computations if changes in resources do not
affect the outcome of an execution. However, in MDE incrementality is usually
employed in the context of an activity such as a model transformation or a model
querying program. As such, as opposed to any type of MDE incrementality that
is observed on a single model management activity, a conservative execution
refers to workflow unit incrementality i.e., across tasks in a workflow. Similarly,

63

3 Analysis and hypothesis

a conservative execution is also related to the minimality definition presented in
Sec. 2.3.3. However, the word minimality may suggest that a minimal workflow
has effectively no further optimisations available. As such, a conservative
execution does not make such a suggestion as further optimisation are indeed
possible if workflow resources were to be monitored at a finer level of detail
(e.g., changes to model elements or lines in a file) not as a black box.

Context-aware model loading and disposal. Model loading and disposal
is an important activity that is often required in model management workflows.
However, current model management workflow tools either load and dispose
the models on each task that executes them or load the models at the start
of the workflow execution and dispose them at the end. The first strategy
may incur loading and disposal overheads particularly when the same model is
reused in multiple tasks, while the latter approach may incur memory issues
when multiple models are involved in the workflow as these consume memory
resources during the whole execution. Similarly, in build systems it is expected
that the user will handle the loading and disposal strategy which may not be
efficiently handled by their conservative execution mechanisms as dependencies
between models and tasks may not be clearly specified. Because large models
can be slow to load and memory-intensive [101], we argue that they should be
loaded only when needed by the tasks in the workflow. Likewise, to free up
memory, it is also important to dispose them as soon as they are no longer
useful. For example, if a model is to be reused by several tasks, it should not
have to be reloaded in between them. Similarly, if a model is only used once,
it does not need to remain loaded during the execution of other tasks in the
workflow. A context-aware model loading and disposal strategy should know if
a loaded model needs to be retained in memory to be reused by another task
or if it can be safely disposed of.

Model management traceability. Traceability is an important feature that
enables impact analysis, regression testing and system understanding while also
being sometimes demanded by certifying authorities in safety critical systems.
While traceability is often a by-product of model management languages and
tasks, it is rarely offered as a side product of model management workflows.
To our knowledge, only ChainTracker [69] offers end-to-end traceability for
its workflows, while none can recover traces. We consider traceability to be a
missing feature of model management workflow engines. These should provide
trace collection and recovery mechanisms that collate traces in a structured
and analysable format that is maintained across executions. This would allow
workflow users to determine model and program coverage across the workflow,
debug programs in the context of the workflow, and to assess the impact of

64

3.2 Research overview

model, program and template changes in the rest of the workflow artefacts.

3.2 Research overview

This section introduces the research hypothesis in Sec. 3.2.1 and its objectives
in Sec. 3.2.2. To narrow down the breadth of the research Sec. 3.2.3 clarifies
its scope.

3.2.1 Hypothesis

The performance of repetitive executions of model management
workflows can be significantly improved with the help of a conser-
vative interpreter that consumes declarative workflow specifications
capturing dependencies among models and model management
tasks. At the same time, these inter-dependencies can be used to
establish and maintain traces at model element level of granularity.

The highlighted terms are defined as follows:

Model management workflow: A set of model management tasks (e.g., model
validation and model-to-model/text transformations) to be executed in
such an order that respects their dependencies.

Conservative: Executions where only tasks transitively affected by a set of
external changes to workflow resources are executed, and where affected
resources are considered as black boxes.

Models: Heterogeneous artefacts that represent a domain in a structured way
and which may need to be loaded to memory and disposed from it.

Model management tasks: Heterogeneous activities that manipulate models
such as transformations and validations.

Traces: Semantically-rich relationships among resources such as models, model
elements, model management programs, and files.

3.2.2 Objectives

To assess the validity of the research hypothesis, the following research objectives
were defined:

(i) Development of a prototype of a MDE workflow system, herein referred
to as ModelFlow, able to be conservatively executed and produce model
management traces as a side product of its execution.

(ii) ModelFlow must be able to accommodate diverse MDE workflows. As
such, an evaluation of the ability of the prototype to capture and execute
multiple MDE workflows will be performed.

65

3 Analysis and hypothesis

(iii) To determine the correctness of the workflow dependencies and execu-
tion, an evaluation of these based on different workflows and resource
modification scenarios will be provided.

(iv) To determine if ModelFlow performance is adequate, this will be compared
against executions with a sample of general-purpose build tools.

(v) Assess the overhead of the framework features, including the production
of model management traces and automated model management.

Derived objectives to support objective (i)
(i.i) ModelFlow must be able to handle heterogeneous model formats. As

such, an extensibility mechanism to support multiple modelling formats
will be offered.

(i.ii) ModelFlow must be able to support the execution of heterogeneous model
management tasks. As such, an extensibility mechanism to support
multiple model management tasks will be offered.

3.2.3 Scope

The research objectives are bound to the following research scope:
1) Regarding objective (iii), to determine the correctness of a workflow

execution we will carefully select relevant change scenarios for a workflow rather
than an exhaustive list of scenarios covering all possible change combinations.
2) Regarding objective (iv), it may not be possible to compare the solution

against all available build tools therefore the comparison will be carried out
with a selection of those most used for model management (e.g., Ant) and
general purpose programming (e.g., Gradle).

Areas that are out of the thesis scope are described below.

Task parallelisation. While it is the next recommended optimisation, it
is not our goal to support parallel executions in this work. However, taking
into consideration this optimisation, we shall implement ModelFlow in such
a way that adding parallelisation does not require a complete redesign. In
practice, this feature motivates the decision to adopt a topological scheduler as
it facilitates parallelisation.

Incrementality. This work attempts to support conservative MDE workflow
executions, that is, workflows that only execute the tasks transitively affected
by a set of workflow resource changes. While the term conservative is related to
incrementality because both aim to reduce redundant computations, in MDE
the term incrementality is generally used within tasks and not within workflows.
As discussed in Sec. 2.1.7, there are many types of incrementality for model
management activities like model transformations and model querying, but

66

3.2 Research overview

in general they are used in the context of a single model management task.
In this work tasks are considered a black box that may or may not execute
incrementally.

Collaboration and Continuous Integration. In this work it is not our
goal to explore how to support collaboration across fragmented and distributed
teams that use an MDE workflow. In practice, build tools are commonly
executed locally and independently from other users and that is the convention
we shall follow. Similarly, while it is our goal to integrate ModelFlow with
other build tools, it is not our goal to directly integrate it with any Continuous
Integration (CI) tool. Build tools can usually be executed within CI tools, as
such, by integrating ModelFlow with a popular build tool its indirect integration
with CI tools is possible.

Business process. We argue that much like other build tools, an MDE
workflow can be orchestrated and executed based on task interdependencies.
That is, the workflow can be scheduled by resolving these dependencies. While
build processes provide an alternative that prescribes the control flow of a
workflow execution it also provides a much richer set of control flow patterns
(e.g., choice, merge, synchronise, etc.) and resource patterns (e.g., role based
distribution, authorisation, etc.). While building a workflow using a business
process notation could provide a precise and detailed prescription of the work-
flow, it would also require users to develop a deep understanding of the process
constructs (of control and resources) which may be more than the subset that
a user usually needs (e.g., a “dependency” relationship between tasks). It is not
our intention to create a prescriptive tool that captures workflows at this level
of detail but rather to support generic MDE workflows and integrate them to
regular software build process.

Authentication and authorisation. As in the previous point, we assume
that a user should be able to execute the workflow completely, that is, tasks
are not split across users. As such user authentication and authorisation to
execute tasks or modify resources is out of this work’s scope.

Replacing current build tools. Model management tasks are only a subset
of all potential tasks to be used in a build script. Attempting to develop a
complete replacement for a build tool such as Gradle, Maven, Make or Ant
would be an unrealistically ambitious task. As such, in this work we attempt
to provide a complement to current build tools that is tailored for model
management workflows.

67

3 Analysis and hypothesis

Scalability. This work attempts to provide a solution that can execute model
management workflows but also do so conservatively. Evidently some of the
features that enable the conservative execution may incur a slight overhead
compared to a batch execution. However, our goal is to keep this overhead
from being significantly time consuming compared to a batch execution while
providing significantly better performance in scenarios where only partial re-
executions are required.

68

4 ModelFlow: A model management
workflow framework

ModelFlow is a prototype for specifying and executing multi-step workflows
involving model management tasks. It consists of a textual language for
specifying model management tasks and their dependencies, and an interpreter
that can conservatively execute such workflows based on changes made to
relevant artefacts (e.g., models, model management programs, generated files).
ModelFlow also supports context-aware model loading and disposal, and offers
end-to-end traceability. The prototype is in active development under the
EpsilonLabs GitHub organisation1.

4.1 ModelFlow’s features

A workflow can be described as a series of tasks that are executed in a predefined
order. A model management workflow involves model management tasks that
interact with models that need to be loaded and disposed of at some point
during the execution (e.g., MTC-Flow). ModelFlow is a model management
workflow language and interpreter with the following characteristics.

4.1.1 Declarative workflow

Many workflow languages and model management languages are declarative
to allow users to focus on what they need to do rather than on how. As
such, we decided to use a declarative language to capture model management
workflow specifications as described in Sec 4.3. In the case of model management
workflows, the user will specify which models are used by different tasks and
the manner in which they are used (e.g., input, output, or both), along with
the tasks that must be executed beforehand. By placing the focus on how
these elements interact with each other, the engine can propose an appropriate
execution plan in an order that satisfies these relationships using a scheduler.
This enables the user to focus on capturing dependencies between workflow
elements rather than on the execution order.

1https://github.com/epsilonlabs/modelflow

69

https://github.com/epsilonlabs/modelflow

4 ModelFlow: A model management workflow framework

4.1.2 Conservative executions

Conservative workflow executions only execute tasks transitively impacted
by an external change to resources in the workflow (e.g., source programs,
consumed or generated models). The more complex and time-consuming model
management workflows become, the more benefit a conservative execution can
bring. To support conservative executions ModelFlow records a stamp of the
inputs and outputs of each task (including models) in an execution trace (Sec.
4.4.3). Conservative executions have the benefit of potentially executing a
smaller subset of tasks than the original execution, which may reduce the time
of the overall execution. However, processing inputs and outputs to determine if
a re-execution is necessary produces an additional overhead compared to a batch
execution. In practice, this overhead may be less noticeable when individual
task executions are time-consuming. Similarly, if all tasks are equally time
consuming, then the benefit of conservative executions grows as the number of
affected tasks reduces.

4.1.3 Automated model management

In ModelFlow models are loaded when first needed by tasks in the workflow
and disposed when no longer needed. In practice this model remains loaded
as long as there is use for it through different tasks in the workflow. Model
loading has been highlighted as a performance bottleneck when large models
are involved [101]. As such, ModelFlow has been designed to minimise the
invocation of model loading and disposing procedures. By disposing models
as soon as they are no longer needed, the memory is freed of a resource that
is no longer necessary. Similarly, by loading models only when first required
the process avoids loading all resources before they are actually needed. This
strategy is useful when different models are needed at different stages of the
workflow. When models are used in throughout the workflow execution or at
the start and end of the workflow, ModelFlow can reduce the overhead of the
loading and reloading procedures by keeping models in-memory throughout the
execution.

4.1.4 Model management traces

It is important to support the collection, creation and maintenance of model
management traces in a workflow as it allows users to determine model and
program coverage across the workflow, debug programs in the context of the
workflow, and to assess the impact of model, program and template changes
in the rest of the workflow artefacts. In addition, several standards, certifying
authorities and government guidelines demand traceability (Sec. 2.2.2). As
many model management tasks already produce traceability as a side-product

70

4.2 Architecture

of their execution, the new feature to be incorporated to the architecture is the
recovery of side-product traces and the ability to create new traces in those tasks
that do not produce any by default. As such, overarching traces are recovered
during the execution in a standardised format (model) that can be persisted
and reused. The declarative specification of the workflows allows ModelFlow to
map traceable artefacts (e.g., models and tasks) in the produced traces to the
declared artefacts in the workflow. By building and maintaining this traceability
information, users can answer traceability queries. The standardised format in
which these are produced, allows users to process this information in arbitrary
tools. Evidently, keeping traces incurs an additional performance overhead and
requires models to be kept loaded for longer while the workflow management
trace is updated. Additionally, not all workflows require the collection of traces
for analysis or any other purpose. As such, this feature has been made optional
and is only enabled on demand.

4.2 Architecture

Figure 4.1 provides an overview of the architecture of ModelFlow. ModelFlow
consumes a workflow specification captured in a declarative domain specific
language. The workflow specification declares models and tasks, while tasks
explicitly state which models are required or produced by them. Both models
and tasks can be configured within their declaration (e.g., src parameter)
according to the parameters accepted by their definition type (e.g., emf or etl).

ModelFlow

Management
Trace

Workflow Specification

Dependency
Graph

model source is emf;
model target is emf;

task transform is etl
in source out target {

src: "transformation.etl"
}
task generate is egx

in target {
src: "generate.egx"

}

source!element1

target!element2
target!element3

Transforms Into

Inputs

Programs Models

Scheduler

Outputs

Models Generated files

Figure 4.1: ModelFlow architecture

When the workflow specification is consumed by the interpreter, it is trans-
lated into a dependency graph that captures model and task interdependencies.
This graph is used by the scheduler to determine how to execute the tasks
in the workflow. Task executions may implicitly require model management
programs and generate other files that are resolved as inputs or outputs by the
task at runtime. This information is used by the ModelFlow to determine if
future executions of the tasks will be required. Additionally, ModelFlow collects

71

4 ModelFlow: A model management workflow framework

and aggregates model management traces that tasks produce and share during
their execution (e.g., traces of a transformation linking model elements created
in a target model from model elements in a source model). In addition to any
generated models and files, ModelFlow may produce as output the aggregate
of the management traces generated during the workflow execution.

4.2.1 Components

ModelFlow is composed of the components shown in Figure 4.2 which are
described below.

Tasks

Epsilon : EOLSchedulers

Epsilon : ETL

EMF : Emfatic To Ecore

EMF : Generate Code

GMF : GmfGen

GMF : Diagram Code

Topographic Sequential

Topographic Parallel

Models

EMF

User Interface
(Eclipse)Language

ModelFlow Core

Simulink

Figure 4.2: ModelFlow component diagram

Model Components. These components provide an interface to manage
model technologies. Examples of such components include:

epsilon:emf: Supports Epsilon EMF models.
epsilon:simulink: Supports Epsilon Simulink models as described in Sec.

5.6.

Task Components. These components provide an interface to manage model
management tasks. Examples of such components are listed below. Note that
ModelFlow does not provide model loading/disposal tasks (as Epsilon tasks in
Ant) since these operations are performed automatically by the engine.

epsilon:eol: Executes an Epsilon imperative program.
epsilon:etl: Executes an Epsilon model-to-model transformation

program.
epsilon:egl: Executes an Epsilon model-to-text transformation pro-

gram.

72

4.3 Language

epsilon:egx: Executes an orchestrator of EGL programs.
epsilon:eml: Executes an Epsilon merge program.
epsilon:ecl: Executes an Epsilon comparison program.
epsilon:flock: Executes an Epsilon migration program.
epsilon:eunit: Executes an Epsilon model testing program.

Scheduler Components. These provide alternative execution mechanisms
to execute the workflow (see Sec. 4.4.1). Currently only the topological
sequential scheduler is fully supported although there is an experimental version
of a topological parallel scheduler.

Language Component. This component can parse a workflow definition
and resolve the dependency graph and execution plan required to execute the
workflow. Currently ModelFlow uses an ANTLR based concrete syntax that
extends EOL’s.

Core Component. This component is responsible for the execution of the
workflows and is the one that organises all the other components. In particular,
this component is responsible for resolving the dependency graph and proposing
an execution plan for the workflows. Additionally, it orchestrates the model
loading, saving and disposal while also maintaining the execution traces that
support the conservative executions and the model management traces that
support end-to-end traceability.

UI Component. This component provides tools to support the creation
and execution of model management workflows. It provides views for the
dependency graph, a runtime configuration to execute the workflows and some
compile-time validations.

4.3 Language

As discussed in the background a domain specific language is described in
terms of its abstract syntax i.e., the metamodel of the language; its concrete
syntax i.e., a graphical or textual representation that is used to create an model
instance with the constructs and relationships defined in the abstract syntax;
and its semantics i.e., the context and reasoning behind the elements defined
in the abstract syntax along with the rationale for the allowed and forbidden
links among them. Note that in the case of executable DSLs like ModelFlow,
the semantics of the language must include its behavioural specification. This
section describes all these aspects.

73

4 ModelFlow: A model management workflow framework

To distinguish between the kinds of elements involved in the construction
and execution of tasks and models alike we will use the terms:

- Rule or Declaration: an item defined by the user using a concrete syntax
which indicates how tasks or models are to be configured and related. A rule
or declaration shall be later compiled and resolved as an executable instance.

- Definition or Interpreter : an implementation that defines how to execute
task or model instance of a given type e.g., an EOL task.

- Instance: a runtime item that has been configured based on the information
from its declaration and workflow context which can be executed according to
the implementation provided by its definition type.

To clarify the use of these terms we provide the following example. Listing 4.1
shows a task rule that declares two task instances (task A{x = 1} and task
A{x = 2}). Each of these instances is of type epsilon:eol, which is a task
definition that can execute an EOL program from the configuration of the task
instances.

1 task A is epsilon:eol forEach x in Sequence {1..2}{
2 src: x.asString () + ".eol"
3 }

Listing 4.1: Example of a task declaration.

Sec. 4.3.1 presents the abstract syntax of the language and Sec. 4.3.2 its
concrete syntax. Sec. 4.3.3 introduces the metamodel used to represent the
resolved workflow. Finally, Sec. 4.3.4 describes the semantics of different
language elements in terms of their execution.

4.3.1 Abstract syntax

In ModelFlow, workflow specifications are organised in ModelFlowModule mod-
ules (see Figure 4.3). As ModelFlowModule extends EolModule, it can contain
user-defined operations and import other EOL library modules and ModelFlow
modules. A ModelFlow module also contains a set of task, model, and para-
meter declarations along with pre and post blocks that are inherited from the
ErlModule.
ConfigurableRule: An abstract type that is used to configure task and

model declarations. Each configurable rule has a name, a definition type and
may contain a set of parameters to configure itself. The parameters are a list
of key-value pairs. The definition type must know how to process each of the
parameter keys. Just as well, the parameter’s value must be in a format that
can be processed by the definition type. Parameter values can be in the form
of statements or expression that can be evaluated at runtime.
ModelDeclaration: A model declaration specifies a single model that may

be consumed, modified, or produced by an arbitrary number of tasks in the

74

4.3 Language

«abstract»
ConfigurableRule

- name : NameExpression
- type : NameExpression
- parameters : Map<NameExpression, ModuleElement>

TaskDeclaration

- guard: ExecutableBlock<Boolean>
- enabled : Boolean
- trace : Boolean
- always : Boolean
- inputs: List<ModelCallExpression>
- outputs: List<ModelCallExpression>
- inouts: List<ModelCallExpression>

TaskDependencyDeclaration

- target : NameExpression

ModelDependencyDeclaration

- target : NameExpression

ModelDeclaration

-type: EolModelElementType
-guard: ExecutableBlock<Boolean>

ForStatement

- iteratorParameter : Parameter
- iteratedExpression : Expression
- bodyStatementBlock : StatementBlock

ForEachDeclaration

Pre Post Guard

EolModule

ErlModule

ModelFlowModule

elements *

dependsOn * consumes/produces/modifies *
forEach

Figure 4.3: Class diagram of ModelFlow’s abstract syntax

workflow. This element inherits all its configuration from a ConfigurableRule,
that is, name, definition type and parameter list. In the case of its type, this
must correspond to a model definition type.

TaskDeclaration: A task declaration specifies an atomic or multi-instance
task that shall be executed. This element inherits all its configuration from a
ConfigurableRule, that is, name, definition type and parameter list. In the
case of its type, this must correspond to a task definition type. A task definition
may declare a list of ModelCallExpressions to indicate which models it con-
sumes, produces, or modifies. Task dependencies can also be declared through a
list of TaskDependencyDeclarations Each task can optionally define a guard

which determines whether the task should execute. Tasks that shall build
multi-instance tasks can use the ForEachDeclaration to provide a collection
to use to configure these tasks.

ModelDependencyDeclaration: A model call expression indicates a de-
pendency between the declaring task and a model resource. Each model call
expression can declare an alias for the model being referenced.

TaskDependencyDeclaration: A task dependency declaration holds the
name of a list of tasks that the declaring task depends on. In other words, the
list of dependency tasks must be up to date for the declaring task to execute.

ForEachDeclaration: This construct represents a for-loop iterator that
creates task instances for each of the iteration parameter values.

75

4 ModelFlow: A model management workflow framework

Guard: Guards determine whether a task should be allowed to execute. In
the case of multi-instance rules, the guard is evaluated on each of its atomic
tasks.
Pre and Post: A ModelFlow module can define pre and post blocks that

execute EOL statements before and after the tasks’ execution, respectively.

4.3.2 Concrete syntax

We now present the concrete syntax of ModelFlow that is constructed using
Epsilon/ANTLR facilities. Just as other Epsilon languages, the concrete syntax
of ModelFlow is hybrid as it contains a mix of declarative constructs and
imperative code (in the form of EOL expressions and statements). ModelFlow
accepts model and tasks declarations but allows imperative code to configure
their properties and to initialize and terminate the workflow setup.

Model resource declaration

Listing 4.2 provides the concrete syntax for a model declaration. This declara-
tion starts with the model reserved word followed by the name of the model
(<Name>). Then the model type definition follows (<Type>) which shall be
used to match the model with a model definition. Inside the curly brackets
multiple parameters can be declared to configure the model. Alternatively, if
no parameters are required, the model declaration can omit the curly brackets
and close with a semicolon.

1 model <Name > is <Type > ({
2 (<Parameter.Key > (: expression |{ statementBlock }))*
3 }|;)

Listing 4.2: Concrete syntax of a model resource declaration.

Listing 4.3 illustrates an example of a declaration of a model of type epsi-
lon:emf named GenModel. The model definition type epsilon:emf requires the
model file (src) and the metamodel (metamodelUri) and expects their values
as Strings. In the example, the src parameter is provided as a String statement
while the metamodelUri is provided as an executable block that after evaluation
returns a String.

1 model GenModel is epsilon:emf {
2 src : "workflow.genmodel"
3 metamodelUri {
4 return "http ://.../ emf /2002/ GenModel";
5 }
6 }

Listing 4.3: Model resource declaration example.

76

4.3 Language

Task declaration

The concrete syntax for a task declaration is specified in Listing 4.4. The
declaration starts with the task keyword followed by the name of the task
(<Name>). Then follows the task definition type (<Type>) preceded by the is

word. In addition to the list of parameter declarations (as in Model Declaration),
inside the curly brackets a task may also declare a guard. The task declaration
may also list task dependencies (TaskDependencyDeclaration in the abstract
syntax) using the dependsOn construct followed by the names of the tasks
separated with the and keyword.

1 (@disabled|@noTrace|@always)
2 task <Name > is <Type >
3 (in(?)? <ModelCall > (and <ModelCall >)*)?
4 (inout (?)? <ModelCall > (and <ModelCall >)*)?
5 (out(?)? <ModelCall >(and <ModelCall >)*)?
6 (dependsOn <TaskName > (and <TaskName >)*)?
7 (forEach <iterationParam > in (expression |{

statementBlock }))?
8 ({
9 (guard (: expression)|({ statementBlock }))?
10 (<Parameter.Key >(?) ?(: expression |{ statementBlock }))*
11 }|;)

Listing 4.4: Concrete syntax of a task declaration.

Additionally, the task declaration can specify which models shall be used as
input, output or inout by providing ModelCall elements accordingly (lines
3-5). For any of these model calls (ModelDependencyDeclaration in the abstract
syntax) it is possible to specify a list of aliases to be used. The concrete syntax
of each of these elements (<ModelCall>) is defined (Listing 4.5).

1 <Model.Name > (as <Model.Alias >)?

Listing 4.5: Concrete syntax of <ModelCall>.

The generation of multiple task instances from a single task declaration is
possible using the forEach construct (line 7 in Listing 4.4). This mechanism
uses values from a collection to configure the individual task instances. The
collection is declared as a statement or executable block and the iteration
variable can be used to configure the task parameters of the different task
instances. An example of such a multiple task declaration is provided in
Listing 4.1. In this example, the iteration variable x is used to configure the
task’s src parameter which takes the values of 1.eol and 2.eol.
Additionally, a task declaration may be annotated to configure its runtime

behaviour. The @disabled annotation ensures this task is not executed. In
contrast the @always annotation ensures the task is always executed regardless

77

4 ModelFlow: A model management workflow framework

of whether its inputs and outputs are up-to-date or not. Furthermore, a task
may be annotated with @noTrace to indicate that its model management traces
are not to be recorded in the workflow’s model management trace. For example,
tasks that serve as utilities rather than as process steps can omit being traced.
This annotation only works when the workflow being executed has been flagged
to record traces.

An example of two tasks is presented in Listing 4.6. The first task named
gencode uses the task definition type emf:generateCode which does not require
any parameters to be configured but does require an input model such as
GenModel. The second task named transformGenModel of type epsilon:etl

uses two models as inputs and one as output. Note that the input ECore model
also indicates an alias to be used in this task only. The task also indicates a
dependency with another task with name validation. The task configures its
src parameter with a specific value but also uses a guard to evaluates that the
source file exists to be allowed to execute.

1 task gencode is emf:generateCode in GenModel;
2
3 task transformGenModel is epsilon:etl
4 in ECore as Ecore and GenModel
5 out Gmf
6 dependsOn validation
7 {
8 guard : self.src.exists ()
9 src : "mmop/validate.etl"
10 }

Listing 4.6: Task declaration example.

4.3.3 Workflow metamodel

This section describes the workflow metamodel. The outcome of the language
compilation is a model that conforms to this metamodel. The abstract syntax
of the language is translated into the metamodel presented in Figure 4.4.

Named: This abstract class is used to capture the name of configurable
items.

Configurable: An abstract class that represents an item that needs to
be instantiated based on a definition. It also points to a Java object that
represents the Epsilon module element that declared it. Elements that inherit
from this class contain a series of property elements that are used to configure
them.

Property: This element represents a key-value pair used to configure tasks
and resources. The key of this element is a string, while the value is represented

78

4.3 Language

Figure 4.4: Workflow specification metamodel

by an executable block or expression that returns a value. This resolved value
is captured in the evaluatedValue attribute once it is computed.

Workflow: A workflow element is the root of the model, and it represents
an executable subprocess that is composed of tasks. A workflow may contain
multiple resources, tasks, and task dependencies. Note that this class inherits
from Task, which means that the workflow can be contained in another workflow.

AbstractResource: This abstract class is used to represent arbitrary types
of resources, that is, a software artefact that can be consumed, modified, or
produced by tasks. An abstract resource inherits from Configurable, therefore
it can contain properties to configure itself and requires a definition.

Resource: This class is used to represent concrete resource instances that
do not need to be loaded or disposed, for example, a file.

ModelResource: This class is used to represent a model resource, that is,
an object that needs to be loaded and disposed.

DerivedResource: A derived resource is used to refer to an in-memory
resource that can be shared across tasks but is not declared in the workflow.
Such a derived resource can be a product of a task execution and can be reused
by other tasks.

Task: This element represents an atomic executable work unit. This element
extends from Configurable and as such it requires a name, a definition and

79

4 ModelFlow: A model management workflow framework

may contain configuration properties. A task may reference resources that
it consumes, modifies, or produces as a result of its execution. Similarly,
a task may specify any number of tasks as dependencies, that is, as pre-
requirements for its execution. Its alwaysExecute attribute is used by the
execution engine to skip the computations required to know if inputs and outputs
have changed, which is used to determine if the task execution is required.
When the alwaysExecute flag is enabled, the task is executed regardless of the
state of its inputs or outputs. The enabled attribute is a boolean used to mark
the task execution as enabled or disabled. Its traceable attribute is used to
indicate whether the traces are to be recorded. This attribute is only relevant
when the workflow execution has indicated that traces should be captured. The
guard of the task holds an executable Java object that upon evaluation will
determine is the task is allowed to continue with its execution.

ResourceReference: This element is used to map to a task a resource
that can be consumed, modified, or produced by it. Within this reference it is
possible to assign aliases to the resource that shall be valid only for the task
that contains the resource reference.

TaskDependency: This element is used to capture dependencies between
tasks. This element declares how a task depends on another through the
dependsOn attribute.

4.3.4 Semantics

These are the execution phases of the language:

1) Parsing: This stage starts by parsing the workflow concrete syntax and
resolving all elements in their corresponding abstract syntax. For example,
the multi-task declaration from Listing 4.1 is resolved as a single instance
of the class TaskDeclaration shown in Figure 4.3.

2) Resolution: In ModelFlow, the resolution phase is used to resolve de-
pendencies and configure tasks and models. In practice this means that
elements from the abstract syntax, which act as configuration placeholders,
are resolved into runnable tasks and model instances. It is at this phase
that the multi-task is resolved as two task instances, each with a different
file source value.
To achieve the task and model instantiation, their parameter values (which
are statements or executable blocks) must be evaluated. Similarly, the
for-loop collections of multi-task declarations must be evaluated to cre-
ate the appropriate number of instances and configure each with their
corresponding parameters.

3) Pre and parameters: In this stage the global parameters are evaluated
from runtime information and then the pre blocks are executed.

80

4.4 System design

4) Dependency and execution graph construction: At this stage the
dependency graph with task and resource instances is resolved. Then the
execution graph, which contains the order in which task shall be executed,
is resolved from the dependency graph.

5) Task iteration: The engine iterates over all the tasks in the execution
graph.

6) Post: At this stage, the block is executed and some of the internal caches
are cleaned.

4.4 System design

In this section we describe the interpreter that can (a) conservatively execute
such workflows based on changes made to relevant artefacts (e.g., models, model
management programs, generated files), (b) provide unified model management
traces and (c) load and dispose models as required. Sec. 4.4.1 describes how the
interpreter knows when to execute a task in the workflow. Sec. 4.4.2 describes
the process through which task and model definition types are retrieved and
instantiated. Sec. 4.4.3 presents the process followed to support conservative
task executions. Finally, Sec. 4.4.4 describes the process to capture model
management traces and the structure of the model in which they are captured.

4.4.1 Knowing when to execute

ModelFlow uses a topological scheduler to dispatch and execute the tasks in the
workflow. In Sec. 2.3.3 we discussed the advantages and disadvantages of such
a scheduler based on Mokhov et al. [125]. Overall, this scheduler facilitates
execution parallelisation but is unable to adapt the execution order based on
dependencies discovered at runtime. In practice, ModelFlow uses declared model
and task dependencies to determine the execution order, dynamic dependencies
of tasks (such as programs or generated files) and models (e.g., reference model
files) are resolved to determine if a task needs to be re-executed, not to alter
the execution order.

Dependency graph

The first step in the build execution process involves deriving a dependency
graph from the compiled workflow specification. In build tools, a dependency
graph usually captures the order in which tasks are to be executed. In Mod-
elFlow, the dependency graph contains not only tasks but also models, and
is intended to capture dependencies between tasks and dependencies between
models and tasks. Parameter inputs and outputs such as a task’s source pro-
gram or a task result are not captured in the graph. Cycles are allowed as

81

4 ModelFlow: A model management workflow framework

the graph serves to capture dependencies of the workflow, not to indicate an
execution order to the scheduler.

The dependency graph is a directed graph composed of interconnected task
(TaskNode) and model resource (ModelResourceNode) nodes. Multiple nodes
for the same task or model are not allowed and models used by a task must be
declared as one of: consumed, produced or modified. Similarly, tasks cannot
dependOn themselves or on a model. The types of edges that are allowed in
the graph include task interdependencies which indicate that one task should
execute before another (dependsOn) and model-task interdependencies which
indicate whether a task consumes (in), produces (out) or modifies (inout)
a model. All these edges are created from explicit elements in the workflow
declaration i.e. dependsOn, in, out, inout. However, in some cases, task
definitions such as epsilon:ecl, produce in-memory models as a side-product
of its execution e.g. a comparison model, that are accessible using a specific
alias. These side-product models are not explicitly declared in the workflow
program. In the cases where another task declaration requires such a model,
the resolved dependency graph will capture this task-model relationship. For
example, TaskZ in Listing 4.7 has both types of model-task dependencies, as
ModelA and TaskY.comparison are both models consumed by TaskZ but one
is declared in the workflow while the other is dynamically provided by the
epsilon:ecl task.

1 model ModelA is epsilon:emf;
2 model ModelB is epsilon:emf;
3 model ModelC is epsilon:emf;
4
5 task TaskZ is epsilon:eml
6 in ModelA as A and TaskY.comparison as Comparison
7 inout ModelB as B
8 out ModelC as C;
9
10 task TaskY is epsilon:ecl
11 dependsOn TaskX;
12 task TaskX is epsilon:evl;

Listing 4.7: Sample workflow declaration

Visual representation. ModelFlow provides a visual representation for the
dependency graph that is built using the Epsilon-Picto tool. This thesis uses
this representation to facilitate the comprehension of the workflows to be used
as examples or case studies. As such, this section is intended to describe its
graphical elements and their meaning.

Consider the workflow declaration in Listing 4.7. Orange edges are used to

82

4.4 System design

denote modification relationships between tasks and models. In it, TaskZ modi-
fies ModelB. Yellow edges are used to denote explicit production relationships
between tasks and models. For example, TaskZ explicitly produces ModelC

because the task declaration indicates so. However, there are tasks that produce
derived outputs because of their task definition type. For example, TaskY is an
epsilon:ecl comparison task and the task definition (epsilon:ecl) provides
a comparison model as an output of its execution. Purple arrows are used
to denote this type of model resource production and are only shown when
another task in the workflow consumes or modifies the resource. Green edges
are used to denote consumption relationships between tasks and models. In the
example, TaskZ consumes ModelA and the derived comparison model resource
that is produced by TaskY for being a comparison task. Note that for all the
above cases, model aliases are provided as edge labels. Additionally, all arrows
described above are dotted to indicate that they relate a task and a model
resource. In contrast, blue filled arrows are used to denote requirement rela-
tionships between tasks. A dependsOn construct in the workflow declaration
is transformed into a is required by relationship in the view. For example,
since TaskY depends on TaskX in the workflow declaration, TaskX is required
by TaskY in the view. The resulting graph is a flowchart but not the actual
execution plan.

Execution graph

The previous section presented the dependency graph which is used to capture
how models and tasks depend on each other. However, to actually execute
a workflow ModelFlow needs to translate this information into an executable
graph that respects these dependencies. As such a wellformed dependency
graph is an input of the algorithm that generates the execution graph. In
contrast to the dependency graph, the execution graph is composed exclusively
of task nodes (TaskNode) and uses a single type of edge that is later used by
a scheduler to navigate the graph. Like the dependency graph, the execution
graph is also directed but additionally it is acyclic to ensure that the execution
terminates2.

The algorithm that builds this graph, presented in algorithm 1. All declared
tasks are captured in the execution graph, even if they are marked as disabled.
Disabled tasks are skipped by the scheduler but are kept in the execution graph
to respect task and model inter-dependencies. The first step in the algorithm
to build the execution graph consists in creating all task nodes (lines 2-4).
Task interdependencies are explicitly created by users to suggest an execution
order and have a higher priority than task-model dependencies. As such. the

2The cycle detection mechanism in the ModelFlow prototype is provided by the JGraphT
library.

83

4 ModelFlow: A model management workflow framework

Figure 4.5: ModelFlow dependency graph of Listing 4.7.

next step in the algorithm is to insert the task interdependencies (dependsOn
declarations) as edges (lines 5-15). The algorithm checks that for every edge
insertion such an edge does not already exist and that no cycle is induced. If
any edge induces a cycle, the algorithm will throw an exception and exit. Once
the task interdependencies are captured, the algorithm goes on to capture the
task-model interdependencies. Because there is only one type of edge in the
execution graph, the algorithm analyses model-task edges in the dependency
graph and for each model that connects two tasks by being used as input (in
or inout) by one and as output (out or inout) by another then an edge is
inserted (lines 16-28). As with the task interdependencies, edges are inserted
only if such an edge does not already exist and if it will not induce a cycle,
otherwise the execution is halted by throwing an exception. If all edges were
successfully added, the graph may contain multiple paths that can be traversed
to arrive from a source node to a target node. As such, the following step (lines
29-39) consists in removing all paths between a source and a target node except
for the shortest path.

84

4.4 System design

As an example, Figure 4.6 is the resulting execution graph built from the
dependency graph in Figure 4.5. Once more, the blue arrows denote a is
required by relationship.

Figure 4.6: ModelFlow execution graph of Listing 4.7.

Schedulers

The next step in the build is to execute the plan. This is orchestrated by the
Executor component by iterating over the graph in topological order. This
ensures all required tasks are executed before the task at hand. In the present
implementation of ModelFlow, tasks are executed sequentially. In future work
we will add support for concurrent executions.

4.4.2 From declarations to runnable entities

After the dependency graph is built, task (ITaskDeclaration) and model (IMod-
elDeclaration) declarations have been transformed into nodes in the graph.
When the scheduler dispatches for execution a given task node (ITaskNode) a
task instance (ITaskInstance) is created and configured with the parameter val-
ues from the declaration. Any model nodes (IModelNode) used by the tasks are
also transformed into model instances (IModelResourceInstance). Additionally,
a serialisable task element (ITask) is created with the resolved configuration
of the task. In summary, task nodes are used to determine when to execute
a given task declaration, task elements represent a snapshot of the resolved
configuration for a given task node, and task instances represent the executable
unit that performs actions prescribed by a task definition e.g., how to execute
an EOL program. The Java classes involved in the process of transforming a
task declaration into a runnable instance are illustrated in Figure 4.7.

Making definitions available

ModelFlow provides extension mechanisms that allow users to provide their
own task and model definitions. The same mechanism is used by ModelFlow to
provide readily available tasks and models to execute in ModelFlow workflows
such as those of the Epsilon family. This mechanism relies on providing a

85

4 ModelFlow: A model management workflow framework

Algorithm 1: Execution plan construction algorithm.
in Dependency graph (dg)
Result: Execution graph (eg)

1 eg ←− new DirectedAcyclicGraph();
2 for t in dg.taskNodes do
3 eg.addNode(t);
4 end
5 for e in dg.edges do
6 if e is Task-to-Task dependency then
7 if et1−t2 /∈ eg.edges & et2−t1 /∈ eg.edges then
8 try:
9 eg.addEdge(e);

10 catch CycleInducedException:
11 haltExecution();
12 end
13 end
14 end
15 end
16 for t1 in dg.taskNodes do
17 for t2 in dg.taskNodes 6= t1 do
18 if any (t2.inputs or t2.inouts) match any (t1.inouts or

t1.outputs) then
19 if et1−t2 /∈ eg.edges & et2−t1 /∈ eg.edges then
20 try:
21 eg.addEdge(et1−t2);
22 catch CycleInducedException:
23 haltExecution();
24 end
25 end
26 end
27 end
28 end
29 paths← AllPaths(eg);
30 it← TopologicalOrderIterator(eg);
31 while it.hasNext() do
32 node← it.next();
33 for edge in node.outgoingEdges do
34 redundant← paths.select(p =⇒ p.source ≡ node &

p.target ≡ edge.target));
35 len← min(redundant.length);
36 long ← redundant.filter(p =⇒ p.length 6= len);
37 eg.removeAll(long.edges);
38 end
39 end

86

4.4 System design

«Interface»
ITaskInstance

validateParameters() : void
acceptModels(IModelWrapper[] models) : void
beforeExecute() : void
execute(IModelFlowContext ctx) : void
afterExecute() : void
processModelsAfterExecution() : void
getTrace()
getName() : String
isAlwaysExecute() : boolean

«Interface»
ITaskNode

execute(IModelFlowContext context) : void
getState() : TaskState
getModuleElement() : ITaskDeclaration
getTaskElement() : ITask
getTaskInstance() : ITaskInstance
getSubNodes()
getParentNode() : ITaskNode
setParentNode(ITaskNode parent) : void

«Interface»
IGraphNode

getName() : String
getType() : String

«Interface»
ITask

getProduces() : EList<IResourceReference>
getConsumes() : EList<IResourceReference>
getModifies() : EList<IResourceReference>
getDependencies() : EList<ITaskDependency>
getDependentTasks() : EList<ITaskDependency>
getEnabled() : Boolean
setEnabled(Boolean value) : void
getTraceable() : Boolean
setTraceable(Boolean value) : void
getAlwaysExecute() : Boolean
setAlwaysExecute(Boolean value) : void
getGuard() : Object
setGuard(Object value) : void

ITaskDeclaration

Task EpsilonEolTask

produces

executes
requires

Figure 4.7: Class diagram of classes involved in the task instantiation process

87

4 ModelFlow: A model management workflow framework

«abstract»
AbstractPlugin

configure() : void
+registerResourceFactories() : void
+registerTaskFactories() : void

«Interface»
IPlugin

setFullyQualifiedId() : String
getReadableName() : String
getVersion() : String
getModelFactories() : List<Class>
getTaskFactories() : List<Class>

AbstractModule

configure() : void

EpsilonPlugin

Figure 4.8: Class diagram of classes needed to contribute plugins

plugin object (instance of IPlugin) which references a group of model and
task definitions. This plugin provides the definitions through the getModel-

Factories() and getTaskFactories() methods which return a list of classes
that extend the IModelResourceInstance or ITaskInstance interfaces, respect-
ively. Additionally, plugins are made available by contributing to the extension
point org.epsilonlabs.modelflow.engine.pluginExtension. For example,
Figure 4.8) shows how the set of Epsilon models and tasks are contributed
under the EpsilonPlugin class.

To match task and model declarations with their definitions, the definitions
must be uniquely identifiable so that declarations can reference them by name.
ModelFlow provides the annotation @Definition to provide an identifier for
definitions for tasks (lines 1-5) and models (lines 6-10) as shown in Listing 4.8.

1 @Definition(name = "epsilon:eol")
2 public class EpsilonEolTask
3 implements ITaskInstance {
4 ...
5 }
6 @Definition(name = "epsilon:emf")
7 public class EpsilonEmfModel
8 implements IModelResourceInstance {
9 ...
10 }

Listing 4.8: Example of task and model definition classes.

88

4.4 System design

Making task definitions runnable

When a task node is about to execute, the class that matches the definition
type is instantiated. For example, based on Listing 4.8, a task declaration
with the definition type epsilon:eol will produce a task instance of class
EpsilonEolTask. After this, ModelFlow goes on to configure the task instance
with information from the task declaration such as the source program (src).
Task definitions must provide setter methods that indicate the name of the
parameters to be accepted through the @Param annotation and the type of the
parameter based on the method argument class. Listing 4.9 shows how the
EpsilonEolTask definition class can receive a configuration parameter with the
key src and profile expecting a file or a Boolean, respectively.

1 @Param(key="src")
2 public void setSrc(File src) {
3 this.src = src;
4 }
5 @Param(key="profile")
6 public void setProfile(Boolean profile) {
7 this.profile = profile;
8 }

Listing 4.9: Example of parameter configuration in task definition.

Task instances are runnable because they provide custom implementations
of the ITaskInstance interface (see Figure 4.7) which is invoked when the task
node is executing (see Sec. 4.4.3). The method validateParameters() is used
to ensure that all the configuration parameters that were received are valid,
potentially setting other internal values once all parameters have been assigned
and resolved. The method acceptModels() which receives an array of model
wrappers3 (IModelWrapper) is used to determine if the models that are provided
by ModelFlow are useful for the task (e.g., expected type or configuration) and
to extract any information from them. Then, the method beforeExecute() is
used to invoke any preparation activities that should be carried out before the
execution. The execute() method is the one that defines the main logic of the
execution after all checks have been successful. The getTrace() method is used
to extract management traces from the execution and to translate them in the
format that ModelFlow is expecting. This process is discussed in more detail
in Sec. 4.4.4. Finally, the method afterExecute() is used for any clean-up
activities required.

For multitasks like the one defined in Listing 4.1 a TaskNode and a corres-
ponding ITask is created for each resolved task from the forEach collection.

3These elements have a reference to the model node in the dependency graph, its aliases
and the resolved model instance (IModelResourceInstance).

89

4 ModelFlow: A model management workflow framework

Making model definitions runnable

As with tasks, model definitions can also use the @Param annotation to declare
accepted configuration parameters. However, model definitions must implement
the IModelResourceInstance interface which has a different set of methods that
the definition must override. In particular, the configure() method is intended
to perform further internal model setup after all parameters have been resolved.
As in the IModel Epsilon interface, model definitions also need to indicate how
to load(), dispose() and save() their contents, and to indicate if they are
loaded (isLoaded()). Once configured and loaded, tasks can access the actual
model instance by invoking the get() method. For example, Epsilon models
must implement the IModel interface and Epsilon tasks consume elements of
this type, as such, calling get() on a model instance representing an Epsilon
model would return the required IModel instance.

The methods asInput(), asOutput(), asInOut(), asTransient() are used
to adapt the model to the different tasks in the workflow that use them and are
discussed in the next section. The methods loadedHash() and unloadedHash()

are used to determine whether a model has changed and are described in Sec.
4.4.3.

Automated model management

ModelFlow minimises the number of model loading invocations by loading
models when first used in the workflow and disposing them as soon as they are
no longer needed. In particular, the decision to dispose a model is made when
no task that remains to be executed needs the model.

While the model is being used by workflow tasks, these may use it in different
ways. For example, one task could produce the model and a subsequent
task could consume the model. Model definitions implement the asInput(),
asOutput(), anInOut() and asTransient() methods to re-configure models as
required by the next task to be executed taking into consideration its previous
state. While switching from an output model to an input model may not require
the model to be reloaded, switching from an input model to an output model
may require a reload. As such, model definitions determine how to react to
usage changes.

After each task execution, models used as outputs are saved but only disposed
when no other task in the workflow will use them.

4.4.3 Conservative task executions

To determine whether a task needs re-executing ModelFlow examines its input
and output parameters along with the models involved in the task. To do so,
ModelFlow uses an execution trace model as store containing computed stamps

90

4.4 System design

«Interface»
IModelResourceInstance<M>

getName() : String
setName(String name) : void
setAlias(String alias) : void
getAliases() : Collection<String>
configure() : void
asInput() : IModelResourceInstance<M>
asOutput() : IModelResourceInstance<M>
asInOut() : IModelResourceInstance<M>
asTransient() : IModelResourceInstance<M>
load() : void
isLoaded() : boolean
save() : void
dispose() : void
loadedHash() : Optional<Object>
unloadedHash(Object trace) : Optional<Object>
getKind() : ResourceKind
get() : M

Figure 4.9: Class diagram of the IModelResourceInstance interface

for parameters and models used by a task. Stamps were first introduced by
Erdweg et al. [53] as values that could precisely indicate whether the file was
up-to-date and that could be computed using a convenient strategy such as a
timestamp, a hash, etc. We describe the execution trace model below.

Execution trace metamodel

To support conservative executions, the workflow execution engine requires a
store in which the different inputs and outputs of a task are stored. The purpose
of this store is the analysis of inputs and outputs used to compute whether the
resources are up to date compared with previous executions. ModelFlow uses
an execution trace model as this store. This execution trace conforms to the
metamodel shown in Figure 4.10 and has been designed to trace the execution
of models conforming to the metamodel from Figure 4.4. The type of data
captured with this model includes end states along with property and resource
stamps. Data that is not relevant for the identification of the up-to-date status
of a task, is not stored in the trace. The execution trace is built from runtime
information provided by the interpreter. Since the execution trace is captured
in an EMF model, it is stored by default as a binary XMI file. The different
metamodel elements are described below.

ExecutionTrace: This element is the root of the model and contains a
list of executions (as WorkflowExecution elements) along with the latest

known version of the model resources involved in the last workflow execution
in the form of ResourceSnapshot elements.
Snapshot: This abstract element is used to capture a stamp or hash of an

object along with the timestamp of when it was captured.

91

4 ModelFlow: A model management workflow framework

Figure 4.10: Execution trace metamodel

92

4.4 System design

Stateful: This abstract class is used to capture the end state of a task or
workflow execution.

Named: This abstract class is used to capture the name of task, model, and
property references.

ResourceSnapshot: This element inherits from the class Snapshot the
stamp and timestamp properties. Similarly, it inherits from class Named the
name of the model resource it that the snapshot information belongs to.

PropetySnapshot: Like the ResourceSnapshot, this element inherits from
Snapshot and Named. However, in this case the name of this element refers to
the key of a task property that the snapshot information belongs to.

WorkflowExecution: A WorkflowExecution contains all TaskExecution
instances. Additionally, it contains the stamp and timestamp of the original
workflow that dictated the execution.

TaskExecution: A TaskExecution inherits from Named so that the name
corresponds to the name of the task being captured. Additionally, it contains a
list of input and output models as ResourceSnapshots and the snapshots of
input and output properties as PropertySnapshots. Notice that for models
that are declared as inout, that is, as to be modified by the task, the task
execution captures a snapshot at the beginning of the execution that is stored
within the inputModels collection, while it also captures another snapshot at
the end of the execution that is recorded in the outputModels collection.

Detecting task changes

To determine if a task needs to re-execute, ModelFlow records a stamp of
input and output parameters. In previous sections we have described how task
definitions must use the @Param annotation to configure their properties. In this
section we describe how some of these parameters can also be used as inputs
and how non-configuration inputs and output parameters can be associated to
the task. For example, Listing 4.10 shows two examples of input declarations
for an epsilon:egx task definition. The input declaration consists in annotating
getter methods with the @Input annotation and indicating a key to use as
identification. In particular, the getSrc() method in line 2 is provided to use
the source program as input while the getImports() method in line 6 is used to
use additional imported files as inputs. Any Epsilon based program may import
additional programs which may contain additional functionality or operations.
By declaring these imported files as inputs of the task we ensure that a task
execution is triggered if its source or any of its import dependencies change.
Notice that while the src parameter is provided by the task declaration, the
imports are resolved at runtime.

1 @Input(key="src")

93

4 ModelFlow: A model management workflow framework

2 public File getSrc () {
3 return src; // Provided by a task declaration
4 }
5 @Input(key="imports")
6 public List <File > getImports () { // Resolved at runtime
7 return getModule ().getImports ().stream ().map(i->i.

getFile ()).collect(Collectors.toList ());
8 }

Listing 4.10: Annotated input methods of an epsilon:egx task definition.

Annotated input methods provide objects that shall be stamped and stored
in the worflow’s execution trace model. Task declarations do not need to
compute the stamps themselves; this is delegated to ModelFlow’s Paramet-

erManager class. This class looks for all @Input annotated methods of a task
and computes a standard stamp based on the return value class, such as the File
and List<File> returned by methods in Listing 4.10. By default, ModelFlow
computes a message digest with the MD5 algorithm as stamps for objects that
can be translated to a byte arrays, such as Files. To determine if a re-execution
is required based on task inputs, ModelFlow compares the newly calculated
stamps of all input keys with those available in the execution trace, if any.

In ModelFlow outputs are also processed before an execution to determine
if they have been externally changed and therefore trigger a re-execution to
discard the changes or skip it to protect them. For example, in case generated
files were manually modified when they should not, ModelFlow could trigger
a re-execution which restores the generated files to their original state. At
the same time, manual modifications in generated files could have valuable
information that is temporarily useful e.g., if changes are to be propagated to
templates used as input or if evaluating the behaviour of tasks that depend on
these changes. In these cases, we can prevent the producer task from executing
to observe the response in other parts of the workflow.

Task outputs can be declared using the @Output annotation which also
requires a key as identifier. ModelFlow offers two execution modes to deal
with outputs: predetermined or interactive. In a predetermined execution
ModelFlow will either discard any externally modified outputs by triggering
a re-execution or skip the task execution altogether to prevent the changes
from being overwritten. Alternatively, in an interactive execution, whenever
ModelFlow detects an output to be externally modified, it will prompt the user
which action to take. This is to prevent unintended modification of output
resources (models, files, etc.).

In contrast to input stamp calculation, stamps cannot be recomputed from
the outputs before the task is executed. As a work-around, ModelFlow stores in
the trace sufficient information so that the stamp can be re-computed without

94

4.4 System design

a re-execution. For example, recorded traces of generated files consist of a
map with absolute file paths as keys and their calculated stamp as value. In
contrast, recorded traces for input files only store the value of the computed
stamp. This enables ModelFlow to re-compute the value and compare it with
the value stored in the trace.

While ModelFlow handles the stamping process for basic types like Files and
Strings, in some cases task definition may need to provide their own implement-
ation. For example, the epsilon:egx task definition requires a dedicated stamper
for generated files that takes into account protected regions. Protected regions
in EGL are designated areas in generated files where manual modifications are
allowed. To use this special stamper for its output files, the epsilon:egx task
definition annotates its generateOutputFiles() method as an output with a
dedicated hasher as shown in line 1 of Listing 4.11. This hasher implements the
IHasher interface (Figure 4.11) for which two methods must be implemented:
fromExecutionTrace() and fromEvaluatedParameter(). The first method is
used to compute output stamps from information stored in the trace of a past
execution while the latter is used to compute the output stamps once outputs
have been produced after a task execution. The method in Listing 4.11 returns
a dedicated object (ProtectedFiles) which can be serialised in the trace with
sufficient information so that the stamps can be recomputed before execution
in future invocations.

1 @Output(key="outputFiles", hasher=EglHasher.class)
2 public ProtectedFiles getOutputFiles () {
3 Collection <String > files;
4 if (outputFiles.isEmpty () && outputRoot.isPresent ()

&& target.isPresent ()) {
5 files = Arrays.asList(outputRoot.get() +File.

separator+ target.get());
6 } else {
7 files = outputFiles.stream ().map(OutputFile ::

getName).collect(Collectors.toList ());
8 }
9 CompositePartitioner partitioner = getModule ().

getContext ().getPartitioner ();
10 return new ProtectedFiles(files , partitioner);
11 }

Listing 4.11: EGX input and output declaration in task definition.

If the execution of a task is to go ahead, the computed stamps for the inputs
are stored in the execution trace before the execution by the ParameterManager
while stamps for outputs are stored after the task execution.

95

4 ModelFlow: A model management workflow framework

«Interface»
IHasher<OUT,TRACE>

fromExecutionTrace(valueFromTrace : TRACE) : TRACE
fromEvaluatedParameter(evaluatedParameter : OUT) : TRACE

Figure 4.11: Class diagram of the IHasher interface

Detecting model changes

Just like inputs and outputs of the tasks, changes on models used by the task
can also influence the decision to re-execute. In ModelFlow, model definitions
must indicate how to compute their stamp because their contents may be split
across multiple files or backed by a database. Moreover, with the intention
of avoiding unnecessary loading, model definitions must also indicate how to
compute this stamp when the model is loaded and when it is not. To compute
these stamps, model definitions implement the methods loadedHash() and
unloadedHash() from the IModelResourceInstance interface.

Take for example the stamp computation of epsilon:emf model definitions.
Regular EMF models are backed by an XMI file but may reference others. If the
model does not depend on these references to be processed, then the definition
only needs to compute the stamp of the main model file. Otherwise, the
definition needs to resolve all the dependent files and compute their stamps. In
practice, these dependencies can only be resolved when the model is loaded, as
such these are determined in the loadedHash() method before a task execution,
if the model is an input, or after its execution, if the models is an output. In
the cases where a model is both, the hash is computed before and after the
task execution. The unloadedHash() is only used when the task is evaluating
whether to re-execute and if the model has not been loaded by the execution of
another task.

While this loaded/unloaded stamp mechanism is useful to prevent model
loading, it requires two alternative computations (when loaded/when not) that
must result in the same stamp if the model has not changed. This may pose a
problem for model definitions that can only compute a stamp when loaded or
when unloaded. Other strategies such as using a model indexing framework
could also be used to avoid loading the models unless necessary. A model
index such as Hawk [8] keeps a graph store of model elements of models in a
repository and can be updated periodically or on demand. The index should
point to the containing resource, in case these are multiple local or remote files.
ModelFlow needs to know if a model has changed compared to the last time it
was executed (using a given stamp or timestamp) however the current version
of Hawk cannot provide this information. While adding support for this feature
is an implementation matter that requires providing a dedicated index updater

96

4.4 System design

ITaskNode ITaskDeclaration ITaskInstance ParameterManager ModelManager IModelInstance

is enabled & guard OK?is enabled & guard OK?
1

yesyes
2

validateParameters()validateParameters()
3

Parameters validParameters valid
4

processInputs()processInputs()
5

processModelsBeforeExecution()processModelsBeforeExecution()
6

load()load()
7

loop [For unloaded
models]

List<IModelWrapper>List<IModelWrapper>
8

acceptModels(IModelWraper... models)acceptModels(IModelWraper... models)
9

beforeExecution()beforeExecution()
1 0

execute()execute()
1 1

getTrace()getTrace()
1 2

processOutputs()processOutputs()
1 3

processModelsAfterExecution()processModelsAfterExecution()
1 4

dispose()dispose()
1 5

loop [For last use
models]

afterExecution()afterExecution()
1 6

ITaskNode ITaskDeclaration ITaskInstance ParameterManager ModelManager IModelInstance

Figure 4.12: Sequence diagram of the process of a task’s first time execution

and expanding the information stored in the graph nodes (e.g., version), this
has been left as future work. Adding support for these features would be an
important enhancement of model indexing frameworks.

Task execution process

Figure 4.12 shows a sequence diagram that provides an overview of execution
process of a task node that has been instantiated and configured. There are
five actors in this sequence diagram the task node, which is executing, the task
declaration and task instance along with the task manager which locates and
loads or disposes required model instances.
The successful execution of a task node starts by checking if the task de-

claration is enabled and if the guard provided evaluates to true 1○. If this is
successful then the node asks the task instance to validate its parameters 3○.
Then if this is successful, the parameter manager is asked to process inputs 5○
while the model manager is asked to process models before the execution 6○
which may include loading them if they are used for the first time 7○. Then the

97

4 ModelFlow: A model management workflow framework

task instance method acceptModels() 9○ is invoked using the list of model
wrappers returned by the model manager 8○. Any illegal model configuration
for the given task may throw an exception, otherwise the task node goes on to
invoke the beforeExecute() 10○ followed by the execute() 11○ methods of the
task instance. Following the execution and if the declaration was configured to
record model management traces, then the next method to be invoked from
the task instance is getTrace() 12○. After the traces have been processed, the
parameter manager is asked to process any outputs 13○ while the model manager
is asked to process models after execution 14○ which may involve disposing
any model instance 15○ that is last used by the current task node. Once the
execution is finished and traces have been recorded the last method to be
executed is afterExecute() 16○ in which clean-up activities are performed.

4.4.4 Model management traces

ModelFlow provides facilities that enable the recovery and/or creation of traces
from the execution of model management tasks. The traces are aggregated in
a model that conforms to ModelFlow’s model management trace metamodel,
described later in the section. In subsequent workflow executions, ModelFlow
maintains the trace model up to date by updating the traces for tasks that
were executed. This model is captured as an EMF model that can be serialised.
ModelFlow also provides a custom visualisation for recovered traces to facilitate
the understanding and analysis of the activities in the workflow.

Model management tasks often produce traces as a side product of their
execution. For these tasks, ModelFlow can collect their side-product traces
and make them conformant to ModelFlow’s metamodel. Since not all model
management tasks produce traces (e.g., EOL tasks), ModelFlow also provides
facilities that can be used by the tasks to create traces at runtime. We illustrate
ModelFlow’s trace aggregation process for tasks that produce traces as side
product in the following example.

Consider a model management workflow that transforms a tree model into a
graph model which is later used to generate a graph representation in Graphv-
iz/DOT language. The first part of the workflow consists in the validation of
the tree model to ensure that all tree elements have labels defined and that
these are unique. The metamodel of the tree model is shown in Listing 4.12
and its EVL validation in Listing 4.13. The execution of the EVL produces
a set of ConstraintTraceItems trace elements (see Figure 4.13) indicating
the constraint executed, the model element instance it was evaluated for and
whether it was successful.

1 class Tree {
2 id attr String label;

98

4.4 System design

3 val Tree [*]# parent children;
4 ref Tree#children parent;
5 }

Listing 4.12: Tree metamodel

1 context Tree {
2 constraint HasLabel {
3 check : self.label.isDefined ()
4 message : " Found tree with label undefined "
5 }
6 constraint HasUniqueLabel {
7 guard : self.satisfies("HasLabel")
8 check : Tree.all().label.select(l|l== self.label).

size() == 1
9 message : self.label + " is not unique "
10 }
11 }

Listing 4.13: Tree validation in EVL

After the validation, the next step in the workflow consists in transforming
the tree model into a graph model. The graph metamodel is presented in
Listing 4.14 and the ETL transformation in Listing 4.15. The execution of
the ETL produces a set of Transformation trace elements (see Figure 4.13)
indicating the transformation rule executed, the source model element that
triggered the transformation and the collection of model elements that were
generated as a result.

1 class Graph {
2 val Node [*] nodes;
3 }
4 class Node {
5 id attr String name;
6 val Edge [*]# source outgoing;
7 ref Edge [*]# target incoming;
8 }
9 class Edge {
10 ref Node#outgoing source;
11 ref Node#incoming target;
12 }

Listing 4.14: Graph metamodel

1 rule Tree2Node
2 transform t : Tree!Tree
3 to n : Graph!Node {
4 n.name = t.label;

99

4 ModelFlow: A model management workflow framework

5 if (t.parent.isDefined ()) {
6 var e : new Graph!Edge;
7 e.source ::= t.parent;
8 e.target = n;
9 }
10 }

Listing 4.15: ETL transformation from Tree to Graph

The last step in the workflow consists in the translation of the generated
graph model into a Graphviz/Dot (text-based) representation. This is done by
running an EGL transformation that uses the template shown in Listing 4.16.
This execution generates a TraceLink elements (see Figure 4.13) which link a
model element and a particular property (ModelLocation) to a region in a file
(TextLocation).

1 diagraph ConnectionsView {
2 node [color=lightblue2 , style=filled];
3 [%for (node in Node.all){%]
4 [%= node.name%]
5 [%}%]
6 [%for (edge in Edge.all){%]
7 [%= edge.source.name%] -> [%= edge.target.name%]
8 [%}%]
9 }

Listing 4.16: EGL template that generates a Graphviz/Dot graph from a graph
model

The structure of the traces produced by these tasks varies from task to task
but they share some common elements. For example, the artefacts that are
traced include model elements (e.g., ConstraintTraceItem and Transforma-

tion), model element properties (e.g., ModelLocation) and regions in files (e.g.,
TextLocation). Additionally, they may hold information on type of link they
represent as indicated by the reference to the constraint or transformation rule
that connects source and target artefacts. ModelFlow uses this commonality to
propose the structure of its trace metamodel (described below) and requires the
different tasks to translate their traces (e.g., Transformation, Cosntratint-
TraceItem) to conform with this metamodel. In addition to the standardised
format in which traces are captured, the ModelFlow model management trace
metamodel requires model elements to be uniquely identifiable as it is this
identifier that is kept in the trace rather than the model element object itself.
Workflow users can then use the model management trace model produced

as a side product of a workflow execution to perform analysis. For example,
users can identify if there are any unused elements in a given model across the
different workflow tasks. In the previous workflow example, this could translate

100

4.4 System design

ModuleElement

- file : File
- region : Region

ModuleRegion

- start : Position
- end : Position

Position

- line : int
- column : int

ConstraintTraceItem

- instance : Object
- constraint : Constraint
- result : boolean

Constraint

- name : String

Transformation

- source : Object
- targets: Collection<Object>
- rule : TransformationRule

TransformationRule

- name : String

TextLocation

- region : Region
- resource : String

TraceLink

- source : ModelLocation
- destination : TextLocation

ModelLocation

- modelElement : Object
- propertyName : String

Region

- offset : int
- length : int

Figure 4.13: Class diagram of traces returned by EVL
(List<ConstraintTraceItem>), ETL (List<Transformation>) and
EGL (List<TraceLink>)

to identifying if all tree elements were translated into nodes in the graph model
and if all of these nodes were in turn translated into a node declaration line
in the output Graphviz description. Similarly, users can use the management
trace to identify which model elements or properties template lines or generated
output lines depend on. To illustrate this with the previous workflow example,
a user could examine the model elements from the graph model related to a
given template line and then navigate to identify which element they came from
in the tree model. Similarly, the user could even check if the validation threw
any warnings in model elements from the tree model that were indirectly used
to produce a given line in the generated code. By analysing and navigating
the model management trace model, users can determine model and program
coverage across the workflow, debug programs in the context of the workflow,
and assess the impact of model, program, and template changes in the rest of
the workflow artefacts.

Model management trace metamodel

The result of ModelFlow’s execution is an up-to-date version of the model
management trace aggregating all traces that were collected from the execution
of tasks in the workflow. The model management traces are captured in an
EMF model conforming to the metamodel is presented in Figure 4.14 and

101

4 ModelFlow: A model management workflow framework

described below. Overall, this metamodel can capture traces that link arbitrary
number of source and target elements which can represent model elements,
model element properties, complete files or regions in files.

Figure 4.14: Model management trace metamodel

ManagementTrace: This is the root element which contains TaskTrace
elements for each task that produces traces in the workflow.
TaskTrace: This entity is used to bind a collection of Trace elements to a

task in the workflow identified through its name.
Trace: This entity represents a trace link that is composed of source and

target elements connected through a link. The link may contain additional
properties to characterise it. The source and target Elements of the trace link
can have an arbitrary multiplicity and level of granularity.
Element: This is an abstract class that encompasses all possible types of

source and target elements used in a Trace. An element must be associated
to a resource, which is identified through its name. This resource may be
contained in the workflow specification or produced during the execution of the
workflow, e.g., a generated file. Additionally, an element may optionally specify
its role in the trace.
ModelElement: This type of element represents a model element in a

model resource. This entity requires an element identifier which is expected to

102

4.4 System design

be unique within its containing model.

ModelElementProperty: This type inherits from ModelElement and rep-
resents a property of a model element. In addition to the inherited attributes,
this element captures the name of the property.

FileElement: This type represents a file element. This is a commonly
used type when dealing with model-to-text transformations. In this case, its
resource attribute represents the name of the file. Optionally, a region in the
file can be specified.

FileRegionElement: This element extends FileElement and represents a
region in a file that is characterised by an offset and a length.

Link: This class is used to represent the link that connects source and target
elements of a trace. The type of the link should specify the type of activity
that produced it e.g., a model-to-model transformation. Additionally, trace
links that are created as a result of a model management rule or operation
within a task, e.g., a transformation rule in ETL, can specify which through
the operation property. A link may contain additional properties to further
characterise it.

Property: The metamodel also support attaching metadata to the traces
through Property elements. Each property represents a key-value pair. For
the trace to be serializable, the property value must be so.

Contributing traces

All task definitions in ModelFlow must implement the ITaskInstance interface
which has a getTraces() method that returns a collection of Trace elements.
To contribute a set of traces, tasks can override this method and translate their
traces into the format expected by ModelFlow’s Trace model.

For example, consider the definition of an ETL task definition, which overrides
the getTraces() method as illustrated in Listing 4.17. Line 3 retrieves the
collection of Transformation elements which represent the traces that resulted
from the execution. Then, line 4 transforms each of these elements into
ModelFlow Trace elements and then these are returned within an Optional.

1 @Override
2 public Optional <Collection <Trace >> getTrace () {
3 Collection <Transformation > etlTraces = module.

getContext ().getTransformationTrace ().
getTransformations ();

4 Collection <Trace > mfTraces = etlTraces.stream ().map(
transf -> transform(transf)).collect(Collectors.
toList ());

5 return Optional.of(mfTraces);
6 }

103

4 ModelFlow: A model management workflow framework

7 private Trace transform(Transformation t) {
8 ManagementTraceBuilder builder = new

ManagementTraceBuilder ();
9 // link
10 String rule = t.getRule ().getName ();
11 builder.traceLink("Transformation",rule);
12 // source
13 String sId = getId(t.getSource ());
14 String sModel = getContainer(t.getSource ());
15 builder.addSourceModelElement(sId ,sModel ,null);
16 // targets
17 t.getTargets ().forEach(target -> {
18 String tId = getId(target);
19 String tModel = getContainer(target);
20 builder.addTargetModelElement(tId ,tModel ,null);
21 });
22 return builder.build();
23 }
24 private String getId(Object element) {
25 try {
26 ModelRepository repo = module.getContext ().

getModelRepository ();
27 IModel model = repo.getOwningModel(element);
28 return model.getElementId(element);
29 } catch (Exception e) {
30 return "unknown";
31 }
32 }
33 private static String getContainer(Object element) {
34 ModelRepository repo = module.getContext ().

getModelRepository ();
35 IModel model = repo.getOwningModel(element);
36 for (IModelWrapper r : this.getResources ()) {
37 if (model.equals(r.getModel ())) {
38 return r.getResource ().getName ();
39 }
40 }
41 return "unknown";
42 }

Listing 4.17: Retrieving trace from epsilon:etl task definition

The utility method transform(t:Transformation):Trace (line 7) uses a
builder utility that is provided by ModelFlow to assist in the creation of traces.
The methods of this utility are shown in the class diagram of Figure 4.15.

There are two additional methods in Listing 4.17, getId(Object):String

104

4.4 System design

ManagementTraceBuilder

+ManagementTraceBuilder()
+build() : Trace
+link(String type, String operation) : ManagementTraceBuilder
+link(String type) : ManagementTraceBuilder
+addSourceModelElement(String elementId, String container, String role) : ManagementTraceBuilder
+addTargetModelElement(String elementId, String container, String role) : ManagementTraceBuilder
+addSourceModelElementProperty(String elementId, String container, String name, String role) : ManagementTraceBuilder
+addTargetModelElementProperty(String elementId, String container, String name, String role) : ManagementTraceBuilder
+addSourceElement(String file, Integer offset, Integer length) : ManagementTraceBuilder
+addTargetElement(String file, Integer offset, Integer length) : ManagementTraceBuilder
+addProperty(String key, Object value) : ManagementTraceBuilder

Figure 4.15: Class diagram of the model management trace builder

(line 24) and getContainer(Object):String (line 33), which are used by mul-
tiple Epsilon task definitions in ModelFlow. In the case of the Transformation
object that an ETL transformation trace returns, source and target elements
represent model elements, not their identifiers. As such, the getId method is
used to retrieve the id of the element within its containing model. Similarly,
the getContainer method is used to identify the name of the model as used in
the workflow specification.

But what about the task definitions that do not contribute traces? The
model management task definitions can use ModelFlow’s model management
creation utilities to adapt their execution. In the case of EOL programs, their
ModelFlow task definition has been adapted to accept a tracing utility accessed
as a variable (mfTrace) in the programs at runtime (see Listing 4.18 —lines
4-5).

1 for (tree in T!Tree.all) {
2 var node = new G!Node;
3 node.name = tree.label;
4 if (mfTrace.isDefined ()) {
5 mfTrace.trace(tree ,node ,"tree2node");
6 }
7 }

Listing 4.18: An EOL program creating traces at runtime

The mfTrace variable is created before the task’s execution with a reference
to the EOL task being executed. As such it contains an empty list of traces that
is incremented every time the program calls the trace method. This method
receives the source and target objects along with the link type. Then it resolves
the model element ids and resources and translates them into a ModelFlow
Trace instance. At the end of the execution, the collection of traces, if any, are
aggregated in the management trace model.

1 public void trace(IModelElement source , IModelElement
target , String link) {

2 ...
3 // once resolved the source and target ids and

105

4 ModelFlow: A model management workflow framework

resources the trace is built with the information
4 Trace trace = new ManagementTraceBuilder ().build();
5 traces.add(trace);
6 }

Listing 4.19: Trace utility to capture traces through EOL programs.

4.5 Implementation

ModelFlow is currently implemented as a series of Eclipse Java plugins that
extend the language and processing facilities of the Epsilon project. As a model-
based project, it uses several metamodels to capture the workflow specification,
the execution trace, and the end-to-end traceability. Currently, workflow
specifications can be prescribed using a Java API or a concrete Epsilon-based
syntax. Sec 4.5.1 describes the rationale behind some of the implementation
decisions while Sec. 4.5.2 describes the structure of the project in terms of the
plugins implemented.

4.5.1 Decisions

We provide rationale for key implementation decisions such as the task and
model definitions and the execution engine.

Execution engine. One of the first decisions we had to make was to decide
a framework upon which to build and support the execution of ModelFlow.
Because of its support for conservative executions, Gradle was our first option.
However, at early development stages some of the Gradle internal features
proved to be inaccessible or rigid which challenged our ability to experiment
with task execution order, task generation and output management. To avoid
being constrained we decided to implement our solution from first principle
atop Epsilon.

The decision to build ModelFlow on Epsilon had multiple benefits. In partic-
ular, there were several languages built on top of EOL (e.g., ETL, EVL) that
could be used as a guide for the addition of another language. In practice, we
were more familiar and had hands-on experience in the usage and development
of Epsilon which facilitated experimentation and modification of the code.

Task and model definitions. For similar reasons we decided to use Epsilon
as the main task and model provider. In contrast to other model management
frameworks or languages such as ATL and QVTo, Epsilon is a family of lan-
guages that support multiple model management activities. By adding support
to the range of Epsilon languages ModelFlow would be immediately benefiting

106

4.5 Implementation

from a range of operations that could be executed within the workflows. Ad-
ditionally, the Epsilon architecture which decouples modeling languages from
modelling technologies, provides similar benefits that make a range of model-
ing technologies such as spreadsheets, CSV, JDBC databases models available
within ModelFlow workflows. Supporting multiple Epsilon languages and model
drivers was key to demonstrate the extensibility of ModelFlow. However, case
studies in Chapter 6 required the integration additional non-Epsilon tasks and
models that also contributed to the demonstration its extensibility.

4.5.2 Plugins

We describe the Eclipse Java plugins that conform the implementation of
ModelFlow. Overall, these can be classified as engine, contributors, setup,
example and integration plugins.

Engine plugins. These plugins provide the basic functionality of ModelFlow
along with the supporting user interface for Eclipse.

org.epsilonlabs.modelflow.engine: This plugin provides the core functionality
of ModelFlow including the definition and parsing of workflow specifica-
tions, the resolution into a dependency graph, the task scheduling, the
processing of task inputs and outputs and the maintenance of execution
and management traces. Additionally, it provides extension points which
are used by contributors to define additional model management tasks or
model resources.

org.epsilonlabs.modelflow.engine.dt: This plugin contains the tools that are
provided for users in the developer environment, i.e., Eclipse. In particular,
this plugin contains the editor for the ModelFlow concrete syntax, the
run configuration (Sec. 6.5.1) which allows users to run the workflows
and Picto views that render a graphical display of the dependency graph
of workflow specifications and of the resulting model management traces.

Contributor plugins. These plugins demonstrate the extensibility of the
Modelflow framework. Each of these plugins is a model manager contributor
(mmc) which contributes tasks and/or model definitions.

org.epsilonlabs.modelflow.mmc.core: Provides a set of basic tasks definitions
including: reading file contents into memory, timed sleep, and console
printing.

org.epsilonlabs.modelflow.mmc.epsilon: Provides definitions for Epsilon tasks
including EOL, EVL, ETL, EPL, EML, Flock, ECL, EGL, EGX and
EMG. Similarly, it provides definitions for Epsilon model resources such
as EMF and Simulink. The Epsilon Simulink model implementation

107

4 ModelFlow: A model management workflow framework

is presented in Ch. 5 and its integration with ModelFlow was used to
support the industrial case study (Sec. 6.3).

org.epsilonlabs.modelflow.mmc.emf: Provides the EMF task definitions for
generating an Ecore from an Emfatic file and to generate code from an
Ecore metamodel. These tasks were introduced to support the EuGENia
case study (Sec. 6.2).

org.epsilonlabs.modelflow.mmc.gmf: Provides task definitions for GMF tasks
which include the generation of GmfGen models from GmfTree, GmfGraph
and GmfMap models and the generation of diagram code from GmfGen
models. These tasks were introduced to support the EuGENia case study
(Sec. 6.2).

Example plugins. These plugins provide functional examples of ModelFlow
workflow specifications along with the model and task artefacts used in the
workflow.

org.epsilonlabs.modelflow.examples.component: Provides a fully functional
Workflow for the component case study (Sec. 6.1).

org.epsilonlabs.modelflow.examples.eugenia: Provides a Workflow for the Eu-
GENia case study (Sec. 6.2) that is fully functional.

Setup plugins. These plugins are used to configure the development envir-
onment of ModelFlow and resolve required dependencies.

org.epsilonlabs.modelflow.target: This plugin specifies a collection of depend-
ency plugins from Eclipse approved update sites.

org.epsilonlabs.modelflow.dependencies: This plugin is a utility that down-
loads and re-exports a series of dependency plugins from maven when
these are not available as Eclipse update sites.

Integration plugins. These plugins provide integration with external build
tools that allow the invocation of ModelFlow from them.

org.epsilonlabs.modelflow.maven: This plugin provides the ModelFlow integ-
ration with Maven in the form of an executable maven plugin. More
details are provided in Sec. 6.5.2.

4.6 Summary

This chapter described the main features of ModelFlow: declarative specification,
conservative executions, automated model management and aggregation of
model management traces. Then, it introduced ModelFlow’s architecture as
language and interpreter that monitors task and model inputs and outputs while

108

4.6 Summary

producing management traces as output of the workflow execution. The chapter
described its language, built atop Epsilon, in terms of its syntax and semantics.
Then, the system design was described describing the process of contributing
task and model definitions to ensuring they can configure themselves, declare
inputs and outputs and can recover their traces, while also describing the
execution process more in detail. Finally, the chapter described some of the
key implementation decisions and plugins that were produced.

109

5 Supporting heterogeneous models:
MATLAB/Simulink

In the previous chapter we introduced ModelFlow, a model management work-
flow tool that supports arbitrary types of models. In practice, most research
on MDE and most of the open-source model management frameworks such as
OCL and ATL tend to focus on manipulating models built atop the Eclipse
Modelling Framework (EMF), a de facto standard for domain specific model-
ling. However, EMF is not the only type of modelling framework that there
is. For example, MATLAB Simulink is a widely used proprietary modelling
framework for dynamic systems that is built atop an entirely different technical
stack to EMF. And yet, industrial software development processes rely on a
variety of modelling tools such as Rhapsody, MagicDraw and PTC Integrity
Modeller (PTC-IM) that are specialised in development tasks and have their
own technical infrastructure.

One of the goals of this work is to support models beyond the EMF realm,
targeting tools used in industry. This goal is set out to support organisations
in their attempt to adopt open-source modelling and model management tools
and use them along with their proprietary tools. One of such tool bridges was
proposed between PTC-IM and the Epsilon model management framework in
[198] in the context of the SECT-AIR project. Another one is the result of this
thesis and bridges the Epsilon framework with MATLAB/Simulink models.

MATLAB/Simulink is a modelling framework for dynamic systems that is
widely used across many industries including aerospace and automotive [11, 150,
151]. While this framework has its own set of model management capabilities
to operate on its own models, such as code generation and validation, it does
not offer facilities to export these models in XMI, the default exchange format
for EMF models. As such, involving Simulink models in model management
activities outside of MATLAB – particularly those involving other heterogeneous
models – can be challenging.

The Massif [191] project offers facilities that make Simulink models available
to model management frameworks with EMF support; this is achieved by
transforming Simulink models into an EMF-compatible representation and
vice-versa. With this approach the full Simulink model must be translated
into EMF. This upfront transformation can be crippling for large models (as

110

demonstrated later in the chapter) and unnecessary when the model manage-
ment programs do not work on the entire model. Additionally, Simulink models
that continuously evolve may require the co-evolution of the EMF-counterpart
which involves the re-execution of a non-incremental transformation which
can be time consuming for large models. Furthermore, model management
programs might be limited by the set of model element types supported by
the Simulink-to-EMF transformation [123] which currently does not support
Stateflow blocks.

Since MATLAB/Simulink is a tool that allows the creation of large and
complex designs [119], we anticipated that the upfront transformation required
with Massif would be expensive in time for these models. As such, we set out
to implement an alternative approach that would shift the cost away from their
EMF transformation and into the complexity of the manipulating program. Our
approach consists in translating model management operations into MATLAB
programs at runtime (on-the-fly). This ensures a constant synchronisation
between the modelling tools and the MATLAB models. Since no upfront
transformation is required, the round-trip engineering and co-evolution costs
are eliminated. Sec. 5.1 introduces the modelling technologies used in our
approach and Sec. 5.2 presents the architecture of our “live” approach to bridge
MATLAB Simulink models with Epsilon.

Sec. 5.3.1 compares the performance of our approach against Massif’s upfront
model transformation by measuring the execution time of different stages of a
representative model validation process. This process involves the execution
of OCL-like invariants that validate structural properties on a sample of the
largest available Simulink models on GitHub. Our evaluation indicates that
our approach is more appropriate for continuously changing models as it can
reduce the overall time of the validation process by up-to 80%. In contrast, the
transformation-based approach (Massif) is better suited for signed-off models
that need to be extensively queried as the cost of the transformation is a one-off
and the validation two orders of magnitude faster.

Although the experimental results above show that it can reduce the overall
execution time for a set of validation tasks on large models [162], the execution
time was still high for certain classes of queries. Queries on collections of
model elements were identified as an area for optimisation. To improve the
performance of our solution we rewrite and delegate the execution of bulk
queries to the MATLAB engine to take advantage of its inner indexes that are
inaccessible by external clients. Sec 5.2 presents a query optimisation approach
which works on collections of Simulink and Stateflow model elements. The
experiment described in Sec. 5.3.2 with models that grow exponentially in
number of elements demonstrates that off-loading to MATLAB these queries
can improve their performance by up to 99%.

111

5 Supporting heterogeneous models: MATLAB/Simulink

Our approach offers an additional option to manage Simulink models from
model management frameworks that is convenient for large and/or continuously
evolving Simulink models. Observations and lessons learned are discussed
in Sec. 5.4. Our implementation atop Epsilon, which offers a set of model
management languages, makes this approach accessible to a range of model
management activities such as model validation, model-to-model and model-
to-text transformations, model comparison, etc, that can involve multiple
heterogeneous models (e.g., EMF, UML) in the same program. Sec. 5.5 discusses
related work.
ModelFlow can manage heterogeneous models, including Simulink models

which are managed through the proposed approach. The ModelFlow imple-
mentation enables tasks that use these models to load and dispose them when
needed and to determine if they have changed from previous executions to
support conservative executions. Through ModelFlow, it is also possible to
generate unified traces from workflows that involve such models. Sec. 5.6
describes the integration of these Simulink models with ModelFlow and how
are their model elements captured in the traces. Later, chapter 6 demonstrates
the use of this integration in a case study.

5.1 Background

In this section we introduce the modelling technologies at the core of this work:
MATLAB/Simulink, Epsilon, EMF and Massif.
MATLAB is a commercial tool developed by MathWorks that provides

a variety of numerical computing environments. Under its Simulink [116]
environment, it provides a graphical block-based modelling framework that
supports the design, simulation, and analysis of dynamic systems as well
as model management activities like code generation and continuous model
verification for such systems.

Simulink models. These are file-based models that represent dynamic sys-
tems based on interconnected blocks. A sample Simulink model representing
the behaviour of a car in motion after the accelerator pedal [117] is presented

Figure 5.1: Example MATLAB/Simulink model.

112

5.1 Background

Figure 5.2: Example of MATLAB/Stateflow model elements

in Figure 5.1. The model contains five blocks from the Simulink library: a
pulse generator, a gain, a second-order integrator and two outports. The pulse
generator produces an input signal which simulates the accelerator pedal. The
gain simulates the multiplied effect in the car acceleration. The second-order
integrator enables the acquisition of the position and speed of the car from
the acceleration through its outports. These blocks are interconnected by their
ports through directed lines called signals.
Simulink model elements have both a type and a subtype. Example model

element types include Block, Line and Port. Elements of type Port may have
an inport or outport subtype. The list of subtypes is much longer for Block

elements. All elements in Figure 5.1 are blocks and their subtypes, from
left to right, are: DiscretePulseGenerator, Gain, SecondOrderIntegrator and
Outport.

Stateflow. MATLAB offers an additional toolbox of decision logic, called
Stateflow [118], used to describe how blocks react to events, input signals and
time-based conditions. This toolbox is based on state machines and flow charts
that can be attached to Simulink model elements. Figure 5.2 shows a sample
Stateflow diagram containing two states named ON and OFF representing the
operating modes of a system, and one transition1, named E1, that connects
one state to the other.
Stateflow model elements are persisted within a Simulink model. On a Si-

mulink model there is a corresponding Stateflow machine which contains all
Stateflow charts of the model. Each chart defines decision logic by combin-
ing logical elements such as states, boxes, functions, data, events, messages,
transitions, junctions, and annotations. Only states, boxes and functions may
contain any other logical elements in arbitrary levels of nesting. Stateflow
charts may be included as blocks in the Simulink model.
All model elements in Stateflow are Stateflow.Object instances and their

specific type names are always preceded by the Stateflow prefix and a period.
For example, states are of type Stateflow.State.

Simulink functions. Simulink models can be manipulated manually using
MATLAB’s graphical interface or programmatically by invoking Simulink

1The arrow on the left is not a transition.

113

5 Supporting heterogeneous models: MATLAB/Simulink

functions via MATLAB’s command line interface. Listing 5.1 illustrates some
of the main Simulink functions that enable model navigation and modification.

1 load_system m
2 find_system('m','Type','Block')
3 find_system('m','BlockType ','Gain')
4 gain=add_block('simulink/Math Operations/Gain','m/Gain'

)
5 get_param(gain ,'BlockType ')
6 set_param(gain ,'Name','newName ')

Listing 5.1: MATLAB Simulink functions

Line 1 shows how to load a model named m (same as its filename without
extension) before we can interact with it. Line 2 shows how to retrieve all
model elements of a given type, in this case, of elements of type Block from
model m. For the model in Figure 5.1, this evaluation would return five blocks.
By changing the value of the type parameter to Line or Port (instead of Block)
the same evaluation would return the 4 signals or 8 ports from the figure,
respectively. To find block model elements by their subtype it suffices to change
the type keyword for BlockType in the find_system function. Line 3 illustrates
query at subtype level which looks for block elements of subtype Gain. A similar
approach applies for line and port elements which must replace the BlockType

keyword for the corresponding LineType or PortType.
Line 4 illustrates the creation of a block of type Gain. The first function

argument is the path of the library block to be used while the second argument
represents the location in the destination model where the block will be created.
This path starts with the name of the Simulink model, ends with the new
element’s intended name, and may contain in-between the name of intermediary
nested blocks that will contain the new element. Regarding the management
of model element properties, line 5 gives an example of how to retrieve the
subtype property of a gain block while line 6 shows how to set the block’s name.

MATLAB Java API. MATLAB provides several Application Programming
Interfaces (APIs) that allow the invocation of MATLAB functions from lan-
guages like Python, C, C++, Fortran, and Java. In the case of its Java API,
MATLAB provides the MatlabEngine class which can start or connect to a
MATLAB engine and to evaluate MATLAB functions. The Java API also
provides wrappers for specific MATLAB types such as structural arrays, cell
arrays, etc.

Listing 5.2 illustrates a sample program that starts a MATLAB engine (line
1), evaluates MATLAB functions (lines 2-3) and then closes the connection
with the engine (line 5). The evaluation of MATLAB functions through the
engine is done using the eval method which receives the functions as strings.

114

5.1 Background

Figure 5.3: Simplified view of the Simulink element types provided by Massif’s
Simulink metamodel

Line 4 shows how the getVariable method can then be used on the engine to
retrieve variables from MATLAB’s workspace.

1 MatlabEngine e= MatlabEngine.startMatlab ();
2 e.eval("load_system sl;");
3 e.eval("m=getSimulinkBlockHandle('sl ')");
4 Object m = e.getVariable("m");
5 e.close();

Listing 5.2: MATLAB Java API

Massif. The Massif [191] project enables the transformation of MAT-
LAB/Simulink models into an EMF-compatible representation and vice-versa.
Massif connects to MATLAB’s engine to parse and update Simulink models.
The resulting EMF models conform to an Ecore Simulink meta-model defined
by Massif which is limited to Simulink elements i.e., leaving out Stateflow
elements.

Massif’s Simulink Ecore meta-model. The Massif meta-model con-
siders any Simulink model element that can be identified and named as a
subtype of the SimulinkElement class. All subclasses of SimulinkElement are
presented in Figure 5.3. Its direct descendants are Connection, Port, Block and
SimulinkModel.
The SimulinkModel class is the root model element which keeps a reference

to the file and version of the Simulink model. This class contains all the Block

elements along with their Port and Connection elements.
In Massif, the ports (Port) of a block are either of type InPort or OutPort

and they can be represented by a virtual block of class PortBlock. Similarly,
the lines that connect the block ports are instances of the Connection class
which can be either SingleConnection or MultiConnection. Any block whose
MATLAB subtype cannot be found as a class in Massif is considered as a
generic Block. Some blocks have predefined properties as attributes e.g., the

115

5 Supporting heterogeneous models: MATLAB/Simulink

tag property in the SubSystem class, but most of their properties are dynamically
added to their parameters attribute which contains array of Property elements,
each with a name, value and type.

Some of the Massif meta-model constructs differ from the way MATLAB
manages Simulink models. The most notable difference is that Simulink’s block
library offers 140 different Block subtypes (e.g., Gain, Sum, UnitDelay, etc.)
while Massif only provides 11 concrete ones. The Simulink subtype of blocks
that do not fall under the previous 11 subtypes can be retrieved from the
block’s parameters attribute, looking for the one with the BlockType identifier.
Similarly, there are 5 Port subclasses in Massif’s meta-model out of the 6
subtypes found in the Simulink library and, it is unclear how the State class in
Massif maps to one or both of the Reset and ifaction port types in Simulink.
A related inconsistency can occur when, after a transformation into EMF, the
attributes of some block subclasses can have redundant or unpopulated values
as they can also be found within the block’s parameters attribute e.g., the tag

attribute in the SubSystem class which can also be found in the parameters.
Another difference is that the Connection class in Massif refers to Simulink
model elements of type Line and subtype signal and that the MultiConnection

and SingleConnection subclasses in the meta-model are used to refer to the
SegmentType property of lines in MATLAB which can take the value of trunk
or branch, correspondingly. In addition, subtype capitalization is important for
Simulink functions e.g., input is used to refer to a port subtype as opposed to
Input which identifies a block subtype. By contrast, in Massif the InPort and
InPortBlock classes are used to refer to the port and block elements, respectively.
Finally, MATLAB also handles special data types such as Cell Arrays2 and
Structure Arrays3 which Massif stores as plain Strings.

From Simulink to EMF and vice-versa. Massif provides four different
ways to transform Simulink models into an EMF-compatible representation.
This process is known as the import process. The import modes can affect
performance of the process as they differ in the way the MATLAB/Simulink
ModelReference blocks4 are resolved: The shallow mode does not process the
referenced model; the deep mode creates new SimulinkModel elements for each
ModelReference block; the flattening model processes these blocks as SubSystem
blocks; and the referencing mode processes ModelReference blocks as new EMF
resources (once) and references them in the model.

The Massif export process transforms the Simulink EMF-compatible repres-
entation into a Simulink file. This process can produce files with either .slx or

2Indexed data containers that can store any type of data.
3Groups of data in containers that store any type of data
4Blocks that represent a reference to another model

116

5.2 Integration with Epsilon

.mdl extension.

5.2 Integration with Epsilon

In this section we introduce the architecture and implementation of an approach
that bridges models of the MATLAB Simulink environment with the Epsilon
model management framework through on-the-fly translations of model man-
agement constructs into MATLAB functions. We chose the Epsilon [173] model
management framework to implement and evaluate our approach based on the
connectivity facilities that it offers and for the variety of model management
languages in which the implementation becomes available. A similar approach
can be implemented by other model management frameworks with similar
connectivity facilities, such as ATL [87].

We present a concrete implementation (known as driver or EMC) that bridges
with Epsilon a Simulink models and their Stateflow model elements. We have
implemented other bridges for Simulink Dictionaries and Requirements whose
architecture is described, and their use demonstrated in [162]. All drivers are
publicly available as plugins of the Epsilon project [173].

Implementation. The Epsilon Model Connectivity (EMC) layer enables
the uniform navigation and manipulation of models in any Epsilon model
management language regardless of the model’s underlying technology. Each
driver implementation can access and interact with “live” Simulink models
as they generate on-demand MATLAB commands that are executed on the
Simulink model. To achieve this, these drivers connect to MATLAB’s engine
via the MATLAB Java API.

To illustrate the on-the-fly translation from EOL to MATLAB functions,
consider the EOL program in Listing 5.3. At runtime, this program receives a
model managed by the Simulink EMC driver, which can handle elements of type
Block and knows how to manipulate their properties. The EOL Block.all()

statement is used to retrieve all the Simulink Block model elements from the
model. To collect these elements the Simulink driver replaces the ? placeholder
in the MATLAB function from line 1 in Listing 5.4 with the appropriate values,
in this case the name of the model and the kind of element looked for i.e.,
Block. The resulting function (line 2) is then submitted for evaluation to the
MATLAB engine through its Java API. The function returns a collection of
block identifiers which is wrapped by the Simulink EMC into a lazy collection
of SimulinkBlock instances to be used in subsequent processing. The first()

statement from our EOL program in Listing 5.3 is then called on this lazy
collection of SimulinkBlock elements. This statement is an Epsilon operation
that works on collections of any type to return their first element. The following

117

5 Supporting heterogeneous models: MATLAB/Simulink

statement Name is acting on the first SimulinkBlock returned. Since this model
element belongs to the Simulink model handled by the Simulink EMC driver, it
is the driver which handles the requested property access. To do so, the driver
replaces the ? placeholder in line 3 of Listing 5.4 and submits its populated
version (line 4) to the MATLAB engine over the API. The get_param MATLAB
function in this place is expecting as first argument the block’s identifier (or
handle) which is a number of type double. The last step consists in parsing the
function result and assigning its value to the EOL variable name.

var name = Block.all().first ().Name;

Listing 5.3: Collection of block names in EOL

1 find_system('?','type','?')
2 find_system('modelName ','type','Block')
3 get_param(?,'Name')
4 get_param (34.394856839 , 'Name')

Listing 5.4: MATLAB functions to collect Simulink blocks and their names.

Architecture. Figure 5.4 shows the architecture of Simulink-based drivers
and how they relate to the core facilities of the Epsilon Model Connectivity
layer (Group 1). The concrete drivers such as the Simulink EMC (Group 3)
uses common classes and helpers that are provided by the abstract Common
Simulink EMC (Group 2) which extends the core EMC. The common facilities
include the configuration of the Simulink project and the establishment of a
connection with the MATLAB engine. In addition, a set of abstract classes
to handle lazy collections of Simulink-based model elements are also provided.
Each concrete driver extends the AbstractSimulinkModel class and implements
its own approach to create, delete, and collect elements of specific types. This
is done by overriding the respective methods from the Model superclass.

5.2.1 Simulink models

Model. The Simulink EMC driver considers a Simulink file (*.slx or *.mdl)
as a model. This model is managed as an instance of the SimulinkModel class
(see Figure 5.4). A model defines the behaviour of inherited methods from
the class AbstractSimulinkModel in the Common Simulink EMC layer which in
turn extends functionality from the CachedModel class defined in the EMC layer.
Together, these classes describe how a model will perform CRUD operations
on its owned model elements and the model itself, while they also determine
how to load and dispose the model instance before and after the execution of a
model management program e.g., validation, transformation.

118

5.2 Integration with Epsilon

Figure 5.4: Class diagram with architecture of the Simulink driver. Group 1
represents the Epsilon Model Connectivity (EMC) Layer. Group 2
contains the Common Simulink EMC facilities. Groups 3 show the
main contents of the Simulink Model EMC.

119

5 Supporting heterogeneous models: MATLAB/Simulink

Model elements. The SimulinkModelmanages elements that inherit from the
SimulinkModelElement class. As such, elements can be of type SimulinkElement

or StateflowBlock. For each MATLAB Simulink type e.g., Block, Port and
Line, there is a corresponding class e.g., SimulinkBlock, SimulinkPort and
SimulinkLine that extends SimulinkElement. These classes provide additional
methods e.g., to link blocks or to change their parents; and may override the
behaviour of CRUD operations for the type of element they work on.

As discussed in Sec. 5.1, Simulink elements in MATLAB have subtypes e.g.,
an element of type Block may be of subtype Gain or SubSystem. In Epsilon,
the union of an element’s super types and of its concrete type is referred to as
the element’s kinds. The Simulink EMC driver considers the Simulink subtype
(e.g., Gain) as the model element concrete type, while still considering their
Simulink type (e.g., Block) as one of their kinds. Stateflow element types (e.g.,
Stateflow.State) are used as their concrete type in Epsilon. At the same time,
all Stateflow elements belong to the Stateflow kind in Epsilon.

MATLAB Simulink model elements provide different ways to be identified
(e.g., path, id, handle). However, MATLAB Simulink functions return either
handles or paths. As such, for Simulink elements, the driver uses as identifier
their handle property which is a non-persistent session-based immutable iden-
tifier of type Double. In contrast, the driver uses the id property (Integer)
to manipulate Stateflow elements which is easy to retrieve from the Stateflow
objects returned by most Stateflow functions and queries. In the rest of the
chapter, we use interchangeably the words identifier and handle of a model
element to refer to the mechanism by which specific element instances are
retrieved across MATLAB toolboxes.

Create element. The SimulinkModel instance manages the creation of Simu-
link and Stateflow model elements. When the reserved word new precedes a type
name in an Epsilon program, the interpreter invokes the method createInstance

(type:String) of the EMC model.

To instantiate Simulink blocks, MATLAB requires the path of the block in
the Simulink library. The user is responsible for providing this path in order
to instantiate a block in Epsilon. Once provided, the model populates the
MATLAB function add_block with the path of the library block then asks the
MATLAB engine to evaluate it. Listing 5.5 shows the creation of Sum and
SubSystem blocks in EOL using their library block path5. The Simulink driver
creates these blocks at the top level of the Simulink Model but they can later
be placed elsewhere by changing their parent.

1 var sum = new `simulink/Math Operations/Sum`;

5The use of the back-tick (`) is required when a type identifier contains spaces.

120

5.2 Integration with Epsilon

2 var subsystem = new `simulink/Ports & Subsystems/
Subsystem`;

Listing 5.5: Model element creation

There is no equivalent add_port function in MATLAB to create port model
elements. In contrast, the add_line MATLAB function which creates lines,
requires the source and target ports to be connected. The Simulink EMC
driver does not allow the direct creation of lines through EOL statement such
as new Line or new signal. Instead, lines are created using linkage methods
on block elements which may specify the source and/or target ports to be
connected. For example, provided the model from Figure 5.1 with no lines,
these can be created with the following EOL program:

1 pulse.link(gain);
2 gain.linkTo(integrator , 1);
3 integrator.linkFrom(outport1 , 1);
4 integrator.linkFrom(outport2 , 2);

Listing 5.6: Linking methods for block elements in EOL

In MATLAB, Stateflow elements use a different syntax for instantiation which
consists of their type followed by a container. For example, a Stateflow state can
be created by invoking the function in Listing 5.7 where chart is the container
Stateflow element. This same statement can be used in EOL to instantiate
this state by preceding it with the new reserved word (line 1). Additionally,
the Simulink EMC can delay the instantiation of Stateflow elements until the
parent is assigned. In other words, a placeholder is created when using a
statement with no parent (line 2) which is only submitted to the MATLAB
engine for instantiation when its parent property is assigned (line 3). Before
then, other properties of the Stateflow element can be assigned in memory to
its placeholder. These properties are submitted to MATLAB just after the
element is instantiated.

1 Stateflow.State(chart)

Listing 5.7: Stateflow element creation in MATLAB

1 var off = new `Stateflow.State`(chart);
2 var on = new `Stateflow.State`;
3 on.parent = chart;

Listing 5.8: Stateflow element creation in EOL

Delete element. In Epsilon programs, deleting a model element involves
the use of the delete reserved word before the element to delete as shown in
Listing 5.9.

121

5 Supporting heterogeneous models: MATLAB/Simulink

1 delete sum;
2 delete subsystem;

Listing 5.9: Model element deletion in EOL

Deleting a Simulink block or a line in MATLAB is performed with the
functions from lines 1 and 2 in Listing 5.10, respectively. There is no equivalent
delete_port MATLAB function.

1 delete_block(blockElement);
2 delete_line(lineElement);

Listing 5.10: Simulink element deletion in MATLAB

The SimulinkModel is responsible for the deletion of model elements and does
this through its deleteElementInModel(e:Object) EMC method . For Simulink
elements, the Simulink EMC chooses the appropriate MATLAB function for
the element being deleted and provides its appropriate identifier. MATLAB
has a different syntax to delete Stateflow elements which is the dot notation
e.g., elementId.delete.

Read and update element properties. The SimulinkModel delegates to
instances of the SimulinkPropertyGetter and SimulinkPropertySetter classes
the responsibility of reading and updating properties of model elements. The
former receives a model element and the property that is to be retrieved from it
while the latter additionally requires the value to be assigned to the element’s
property.

Depending on the kind of model element that these act upon, they populate
and evaluate different MATLAB functions. For example, when dealing with
Simulink blocks, these property managers evaluate the MATLAB functions
from Listing 5.11.

1 get_param(element ,'PropertyName ')
2 set_param(element ,'PropertyName ',value)

Listing 5.11: MATLAB Simulink element getter and setters

An example of an EOL program retrieving and populating Simulink element
properties is shown in Listing 5.12.

1 subsystem.name = "Controller";
2 var subsystemName = subsystem.name;
3 sum.description = "Sum block";
4 var sumDescription = sum.description;
5 var inportHandles = subsystem.LineHandles.Inport;

Listing 5.12: Get and set Simulink element properties in EOL

Lines 1 and 3 set element properties while lines 2, 4 and 5 get property values

122

5.2 Integration with Epsilon

from them. In the case of line 5, the property LineHandles returns a Structured
Array, which is a MATLAB-specific type that represents an array of key-value
pairs. In MATLAB, their values are retrieved using the getfield(element,

property) function. The Simulink EMC driver can identify these types and
navigate them as any other property. In the example, the value of its Inport

key is retrieved.
In MATLAB the dot notation is used once more to get and set properties

from Stateflow elements. This is illustrated in Listing 5.13 where the name of
a Stateflow State element is retrieved (line 1) and set (line 2). The syntax to
do the same in an EOL program would be identical.

1 element.Name;
2 element.Name='NewName ';

Listing 5.13: Get and set Stateflow element properties in MATLAB and EOL

Retrieve elements. To collect all instances of a given type, Epsilon programs
use the all() operation on types. Alternatively, to collect all available elements
on the model, Epsilon provides the allContents() operation at the EMC model
level. Given a model M, Listing 5.14 illustrates different ways to retrieve Simulink
model elements in EOL.

1 var blocks = M!Block.all();
2 var lines = M!Line.all();
3 var ports = M!Port.all();
4 var sums = M!Sum.all();
5 var subsystems = M!SubSystem.all();
6 M.allContents ();

Listing 5.14: Retrieval of model elements in EOL

The getAllOfKindFromModel(kind:String) method from the SimulinkModel

is triggered by the all() operation (lines 1-3). At first this method attempts
to find elements of either Block, Line, Port or Stateflow kind. If the kind

argument does not match any of those, as in lines 4-5, then the SimulinkModel

will attempt to find the MATLAB subtype e.g., SubSystem blocks or Stateflow.
State elements. In contrast, the use of the allContents() in line 6 triggers the
result aggregation of collections by kind i.e., Block, Port, Line, and Stateflow

elements.
Line 1 in Listing 5.15 reminds the reader how elements of type Port, Block

or Line can be collected in MATLAB, while line 2 shows how this function
is adapted to collect elements by their subtype. The SimulinkModel class
populates and submits the appropriate MATLAB functions for the element
kinds (e.g., Block) or types (e.g., Sum) to be collected and then stores the
results in lazy collection objects which extend the AbstractSimulinkCollection

123

5 Supporting heterogeneous models: MATLAB/Simulink

class.

1 find_system(model ,'type','Port')
2 find_system(model ,'blockType ','Sum')

Listing 5.15: Retrieval of Simulink elements in MATLAB

Stateflow elements are collected using the MATLAB functions in Listing 5.16
which act on the model handle. All Stateflow objects can be retrieved by passing
the Stateflow.Object as isa parameter but subtypes (e.g., Stateflow.State)
can also be passed instead. The approach to collect these from Epsilon is shown
in Listing 5.17.

1 model.find('-isa','Stateflow.Object ');
2 model.find('-isa','Stateflow.State ');

Listing 5.16: Retrieval of Stateflow elements in MATLAB

1 M!Stateflow.all();
2 M!`Stateflow.State`.all();

Listing 5.17: Retrieval of Stateflow elements in EOL

Element methods. The Simulink EMC adds convenience methods to its
model and model elements, such as the one for linking blocks in Listing 5.6.
Other methods are also available, such as getType, getParent and getChildren.
Nevertheless, MATLAB provides many more functions for its Simulink and
Stateflow model elements that would be challenging to individually replicate in
the EMC driver. To deal with this, when an unknown method in EOL is called
on the model or its elements the following strategy is applied.
Many MATLAB functions for Simulink model and model elements have

a common structure (Listing 5.18) which takes the model element as first
argument. At the same time, model element operations in EOL are executed
as instance methods and have the form shown in Listing 5.19.

method_name(element ,arg0 ,..., argN)

Listing 5.18: MATLAB function structure

element.methodName(arg0 ,..., argN);

Listing 5.19: EOL method structure

To execute non-hard-coded MATLAB functions, the Simulink driver dy-
namically translates the method as a MATLAB command and submits it to
the MATLAB engine for evaluation. The SimulinkOperatorContributor class
specifies this behaviour. As an example, consider the EOL statements in List-
ing 5.20 which would be translated to the corresponding MATLAB functions

124

5.2 Integration with Epsilon

in Listing 5.21.

1 subsys.find_mdlrefs ();
2 subsys.find_mdlrefs('AllLevels ',true);

Listing 5.20: Invocation of MATLAB functions as EOL methods

1 find_mdlrefs(subsys)
2 find_mdlrefs(subsys ,'AllLevels ',true)

Listing 5.21: Sample MATLAB functions that act on Simulink elements

MATLAB operations acting on Stateflow elements commonly6 share the same
syntax as EOL, except for operations with no arguments which do not require
brackets in MATLAB. Through the SimulinkOperatorContributor class the
Simulink EMC driver can change the translation of these functions depending
on the model element kind they act upon.

5.2.2 Collection query optimisation

The Simulink driver returns lazy collections of model elements when retrieving
elements by type or kind. This capability was already presented in [162].
However, performing collection and selection operations on these collections
can become computationally expensive as these collections grow in size because
they are performed sequentially by default. Taking advantage of some of the
MATLAB functions which can perform bulk operations much more efficiently,
in this work we use them on collections of Simulink or Stateflow model elements
when select or collect operations involve property checks on their members.

A collect operation works on a collection and consists in evaluating an
expression on each member of the collection to return a new collection with the
evaluation results. For example, the EOL statement from Listing 5.22 starts
on a collection of all Block elements in the model and returns a new collection
with all the names of these elements.

Block.all().collect(b|b.Name);

Listing 5.22: EOL collection of Simulink block names

A select operation also works on collections and filters the collection leaving
only the elements that satisfy a given condition. For example, the EOL
statement from Listing 5.23 starts from a collection of elements of Inport type
and returns a copy of the collection with only the elements named Temperature.

Inport.all().select(i|i.Name=="Temperature");

Listing 5.23: EOL selection of Simulink inport blocks

6The only method that does not follow this structure is provided by the driver.

125

5 Supporting heterogeneous models: MATLAB/Simulink

Lazy collections of Simulink or Stateflow model elements work by storing
the array of model element identifiers (handles) and only constructing the
appropriate wrapper (e.g., SimulinkBlock, StateflowBlock) when acting on
the elements of the collection. For example, when Block.all() is invoked
in Epsilon, the collection of blocks returned by the appropriate MATLAB
function is an array of Simulink handles (doubles). There are operations we can
compute on this array without having to resolve them into their corresponding
SimulinkBlock wrapper instance. For example, we can get the number of
blocks on the collection by getting the size from the array of Simulink handles.
However, when select or collect operations are invoked on a lazy collection,
their argument expressions are likely to involve interactions with properties
from elements in the collection. As such the lazy collections must iterate over
their elements, instantiate them in their appropriate wrapper class and evaluate
their expressions.

We have extended the implementation of the lazy collections to support
the invocation of select and collect operations without having to instantiate
wrapper classes for all its elements. To achieve this, the lazy collection first
checks whether the operator’s expression can be optimised (i.e., has a specific
form) and if so then the collection builds a MATLAB function that can use the
array of Simulink handles. Currently, we optimise only those operations whose
expressions can be translated into a valid bulk MATLAB statement.

For collect operators we currently support simple property navigation expres-
sions such as Listing 5.22. The MATLAB functions in Listing 5.24 are used
to collect properties from collections of Simulink (line 1) or Stateflow (line 2)
model elements. These functions take as first argument the array of element
handles and replace the '?' placeholder with the property name to be retrieved.

simulink=get_param(handles , '?')
stateflow=get(handles ,'?')

Listing 5.24: MATLAB Simulink and Stateflow collection operations

The Epsilon operator sortBy reuses this implementation to sort the elements
on the collection after they have been collected in bulk.

The select operator optimisation for collections of Simulink model elements
uses the MATLAB function in Listing 5.25 to perform the bulk queries. This
function replaces the question mark placeholders with property-value pairs
that all elements in the collection must match. When more than one property-
value pair is used the function performs the logical AND operation. As such,
optimised select operations in Epsilon only support expressions which involve
logical AND expressions that, as in the collect case, involve simple property
checks. Select operations that do not match this criterion fall back to the
default non-optimised evaluation.

126

5.2 Integration with Epsilon

simulink=find_system(handles ,'?','?')

Listing 5.25: Simulink element selection MATLAB function

An example of a supported EOL query on a collection of Simulink model
elements is shown in Listing 5.26. The corresponding MATLAB function
submitted to the engine is shown in Listing 5.27, where all refers to a collection
of Simulink element handles.

1 Gain.all().select(g|(g.Gain ==2) and (g.Name=='Gain'))

Listing 5.26: EOL selection of Simulink gain blocks

1 find_system(all ,'Gain',2,'Name','Gain')

Listing 5.27: MATLAB selection of Simulink gain blocks

The select operator for collections of Stateflow elements delegates to the
MATLAB function in Listing 5.28. The question mark placeholders in this
function can be replaced with property-value pairs to be matched from the
elements in the collection. This MATLAB function supports more fine-grained
queries than the find_system MATLAB function. For example, it supports
multiple logical operators (i.e., AND, OR, XOR and NOT) to join property-
value pairs and supports regular expressions for property values.

stateflow=handles.find('?','?')

Listing 5.28: Stateflow element selection MATLAB function

Listing 5.29 is an example of an EOL select operation that can be performed
on collections of Stateflow elements. Listing 5.30 shows the MATLAB function
that is constructed and submitted to the MATLAB engine, where all represents
a collection of Stateflow handles.

1 `Stateflow.State`.all().select(s|
(s.Name.startsWith('S')) and
(s.IsExplicitlyCommented ==0) or not
(s.IsImplicitlyCommented ==0)))

Listing 5.29: EOL selection of Stateflow states

1 all.find('-regexp ','Name','^S','-and',
'IsExplicitlyCommented ',0,'-or',
'-not','IsImplicitlyCommented ' ,0)

Listing 5.30: MATLAB selection of Stateflow states

The select operator is reused by other Epsilon operators such as: selectOne,
find, findOne, reject, rejectOne, exists and forAll.

127

5 Supporting heterogeneous models: MATLAB/Simulink

5.3 Evaluation

This section presents a two-part evaluation of the Simulink-Epsilon drivers. The
first part (Sec. 5.3.1) consists of an experiment that compares the performance
of managing Simulink models directly via MATLAB functions or building an
intermediate EMF representation with an upfront model-to-model transforma-
tion. This experiment was first published in previous work [162]. The second
part of the evaluation is presented in Sec. 5.3.2 and compares the performance
of collection operators executed on collection of Simulink and Stateflow model
elements using the query optimisations described in Sec 5.2.2.

5.3.1 Experiment on Simulink models

This section evaluates the execution-time performance of two approaches to
bridge MATLAB/Simulink models in a model management framework. The
first approach consists in the use of the Simulink Model driver to manage
models in the Epsilon model management framework. The second approach
uses Massif facilities to transform Simulink models into an EMF-compatible
representation. Since Epsilon provides an EMF driver able to read and write
arbitrary EMF-based models, we use it to manage those produced by Massif
in the second approach. In the following, we refer to the first approach as live
—since it directly manipulates the actual Simulink model, and to the second
one as Massif/EMF —as it uses the Massif’s import facilities to produce their
EMF-compatible representation.
Epsilon supports model element caching through an abstraction that both

the Simulink Model driver and the EMF driver reuse. We evaluate both
approaches with these facilities enabled and disabled. Note that at the time of
this experiment, the query optimisations on Simulink and Stateflow elements
had not been implemented.

Experiment setup

To evaluate the model management of Simulink models through both approaches,
we compare the performance of their model validation process applied on large
Simulink models. We have selected a model validation process as a representative
model management operation, but other operations such as model-to-model or
model-to-text transformations could have been used instead.

Validation process. This process is based on the execution of EVL invariants
that validate structural properties of the models. EVL has a dedicated engine
that consumes an EVL validation script, and any number of models provided
by Epsilon drivers of arbitrary modelling technology at runtime. An example

128

5.3 Evaluation

of an EVL script is shown in Listing 5.31. This script starts by specifying the
context in which the invariants are to be executed, in this case all elements of
kind Block. Invariants may be of type constraint or critique depending on the
severity level of a failed compliance. Line 2 of the script shows the declaration
of an invariant of type critique with name BlockNameIsLowerCase. Invariants
declare their validation check as an EOL statement, which in this case (line 3)
verifies that the name of the element is lowercase. The self reserved word is a
reference to the current model element the invariant is acting on. If a given
block fails the check statement, then fix elements become available if present
in the invariant declaration. In the script, the fix in line 4 updates the element
name to lowercase as specified in the do environment (line 7). The fix title
(line 5) is just informative.

1 context Block {
2 critique BlockNameIsLowerCase {
3 check : self.Name == self.Name.toLowerCase ()
4 fix {
5 title : "Name to lower case"
6 do {
7 self.Name = self.Name.toLowerCase ();
8 }
9 }
10 }
11 }

Listing 5.31: Sample EVL script with invariant 9 from Table 5.1

Before the EVL engine can execute the model validations, the models must
be loaded. When the EMF driver is used to process an EMF model, the model
loading stage consists in the registration of meta-model packages and creating
an in-memory representation of the model. When the Simulink Model driver
is used to process a Simulink model file, the model loading stage consists of
establishing the connection with the MATLAB engine and requesting the model
to be loaded there.

In the following we consider the model loading and validation execution as
two different stages of the validation process. The overall validation process
for each approach is captured in Figure 5.5 where loading and validation are
represented by stages 1 and 2, respectively. In the Massif/EMF approach
we consider the transformation of the model (from Simulink to EMF) as an
additional stage of the validation process (Stage 0 in Figure 5.5). We refer to it
as the import stage after the Massif facilities that enable this transformation.

The implementation of the Epsilon drivers and the structure of the meta-
model used in the EMF driver affect the way the model is navigated in EOL-
based programs. Consequently, the EVL validation script cannot be reused

129

5 Supporting heterogeneous models: MATLAB/Simulink

Figure 5.5: Model management execution process for both approaches, in this
case, running a model validation with EVL.

as-is across approaches. To illustrate this, consider an EOL program that
retrieves the PortDimension property of a block model element. When executed
on a model managed with the Simulink Model driver, the EOL statement from
Listing 5.32 can retrieve this property from an element of type block.

block.PortDimension;

Listing 5.32: Port dimension block property in EOL with Simulink Model Driver

In contrast, when using the EMF driver with the Massif meta-model, the
statement needs to be adapted (as in Listing 5.33) because the Block class in
the meta-model does not have a PortDimension attribute but instead has a
parameters attribute containing a set of Property elements, one of them with
the PortDimension identifier.

block.parameters.selectOne(p|p.name==
"PortDimension").value;

Listing 5.33: Port dimension block property in EOL with EMF/Massif

In this experiment we measure the execution-time performance of the different
stages of the validation process i.e., (0) Simulink-to-EMF transformation, (1)
model loading, and (2) model validation. Notice that: Stage 0 is only applicable
to the Massif/EMF approach; Stage 1 is applicable to both approaches; and
Stage 2 is applicable to each approach with both the Epsilon caching facilities
enabled and disabled.

Each stage of the validation process was executed 20 times with 5 warm-
up iterations for each model. We used the Java Microbenchmark Harness
(JMH) [145] tool to run these experiments on a quad core Intel Core i5-7200U
CPU @ 2.5 GHz with 16GB of RAM. The Java Virtual Machine (64-Bit) was
provided with up to 10GB of memory and ran Java 8 on JDK 1.8.0_152.
All EMF-compatible models were generated using the shallow mode of the

130

5.3 Evaluation

Table 5.1: Evaluated invariants
Kind Context Description

1 PropertyCheck Goto TagVisibility property is local
2 NavigationAndFilter From There is a Goto block in scope with

the name of the GotoTag property
3 PropertyCheck Inport

InPortBlock
PortDimensions property should not
be inherited (-1)

4 PropertyCheck Outport
OutPortBlock

Description property is not null or
empty

5 NavigationAndFilter SubSystem ForegroundColor property is green for
all connected Inport blocks

6 TransitiveClosure SubSystem Subsystem is no more than three
levels deep

7 VertexConnectivity SubSystem All outports are connected
8 LoopAbsence SubSystem No feedback. Outports do not con-

nect to the same subsystem
9 PropertyCheck Block Block’s name is in lower case

Massif import facilities which does not process external model references. The
validation scripts and the Simulink models that were used in our experiments
can be found in the examples of the Epsilon project7.

Validation scripts. Equivalent EVL scripts are used to evaluate each ap-
proach. Each script consists of 9 invariants (see Table 5.1) intended to exercise
the model (e.g., using different operations or navigation strategies) through
typical query language features [170] performed on signature model element
types [11]. The scripts are equivalent to the best of our knowledge as they are
using (a) equivalent EVL contexts which may vary in naming across approaches
(e.g., Inport vs. InPortBlock), (b) equivalent model element navigations (such
as the PortDimension property discussed above), and (c) equivalent way in
which the constraint checks and guards are prescribed. In Table 5.1 the Kind
column refers to type of query check inspired by well-formedness constraint
categories used by the Train Benchmark [170], and the Context column refers
to the EVL context, that is, the model element types on which the invariant is
executed. Stateflow blocks were not included in the validation scripts as Massif
does not support them.

The validation scripts for the live approaches used 96 lines of code (LOC) and
that for the Massif/EMF approach used 110 LOC. The body of the invariants
was written in the same number of lines for both approaches (89 LOC) and the
extra lines were related to helper operations.

7https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.
examples.emc.simulink.emf

131

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.examples.emc.simulink.emf
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.examples.emc.simulink.emf

5 Supporting heterogeneous models: MATLAB/Simulink

Table 5.2: Number of elements per type by MATLAB model file size (MB).

Size (MB) Block Inport Outport Goto From SubSystem

1.112 8785 1373 1177 69 103 717
1.131 8628 1372 1167 62 93 740
1.133 8645 1372 1167 62 93 740
1.134 9536 1489 1269 38 57 861
1.135 8645 1372 1167 62 93 740
1.138 8651 1376 1177 62 93 745
1.141 8634 1374 1156 67 99 714

1.110 1.115 1.120 1.125 1.130 1.135 1.140
MATLAB File size (MB)

100

120

140

160

180

E
M

F
Fi

le
 s

iz
e

(M
B

)

Figure 5.6: Imported EMF model size vs. original MATLAB files.

Model selection. We used BigQuery [63] to find in GitHub publicly available
Simulink files (*.slx) larger than 1MB8. Out of the 70 models found, we selected
the first 7 models that could be translated into EMF in under 2 hours using
Massif’s import facilities. Table 5.2 shows the number of model elements of
each type used in the validation. The number of block elements on the models
ranged from 8628 to 9536. Due to their inaccessibility, we did not process any
libraries in any approach.

Results

All invariants were executed in the same number of model elements for all
approaches. Similarly, the results of the validation reported the same number
of unsatisfied constraints on all approaches. The file size of the EMF models
produced by the import stage are displayed in Figure 5.6, plotted against the
size of the original MATLAB file.

Figure 5.7 shows the execution time of each stage of the model validation pro-
cess (in seconds and logarithmic scale) against the size of the MATLAB Simulink
model files (in MB). Sub-figure (a) displays the distribution of Massif’s import
task (Stage 0) which transforms Simulink models into an EMF-compatible

8We had access to one industry model that was 1.4MB in size but for the experiment we
had to find others in public repositories. To increase our chances to find complex models
and to facilitate the collection procedure, we looked for models persisted in a file larger
than 1MB in size.

132

5.3 Evaluation

1.
11

0
1.

11
5

1.
12

0
1.

12
5

1.
13

0
1.

13
5

1.
14

0
(a

) M
A

TL
A

B
 F

ile
 s

iz
e

(M
B

)

10
0

10
1

10
2

10
3

Time (s) log scale

S
ta

ge
 =

 Im
po

rt

A
pp

ro
ac

h
M

as
si

f
Li

ve
M

as
si

f-C
ac

he
d

Li
ve

-C
ac

he
d

1.
11

0
1.

11
5

1.
12

0
1.

12
5

1.
13

0
1.

13
5

1.
14

0
(b

) M
A

TL
A

B
 F

ile
 s

iz
e

(M
B

)

S
ta

ge
 =

 L
oa

di
ng

1.
11

0
1.

11
5

1.
12

0
1.

12
5

1.
13

0
1.

13
5

1.
14

0
(c

) M
A

TL
A

B
 F

ile
 s

iz
e

(M
B

)

S
ta

ge
 =

 V
al

id
at

io
n

Figure 5.7: Execution time (log-scale) against MATLAB file size per stage of
the validation process.

133

5 Supporting heterogeneous models: MATLAB/Simulink

1.110 1.115 1.120 1.125 1.130 1.135 1.140
MATLAB File size (MB)

0

10

20

30

40

50

60

70

80

90

Ti
m

e
(m

in
)

Massif Live Massif-Cached Live-Cached

Figure 5.8: Total execution time (import + loading + validation) vs. MATLAB
file size. Note that Massif and Massif-Cached overlap.

model. Similarly, Sub-figure (b) displays the time distribution of the model
loading task (Stage 1), required by both the EMF and Simulink Model drivers.
Sub-figure (c) displays the time distribution of the model validation task (Stage
2) for both approaches with and without caching.

Figure 5.7 shows that most of the performance overhead of the Massif/EMF
approach happens at the import stage while most of the Simulink Model driver
overhead happens at the validation stage. The import stage of the Massif/EMF
approach took between 2,911 and 4,486s to finish. The Massif/EMF approach
achieved the loading stage in 2.95-3.63s while the Simulink Model driver achieved
it in 15.5-16.5s. The live approach was approximately one order of magnitude
slower at the loading stage. In the validation stage, the Massif/EMF approach
took between 22.4-28.9s while it took the Simulink Model driver 1,877-2,098s
to complete. With caching facilities enabled in both drivers, the Massif/EMF
approach took 8.10-10.2s while the Simulink Model driver took 816-882s to finish.
With and without caching, the live approach was approximately two orders of
magnitude slower at the validation stage. The caching facilities improved the
performance in the validation stage by 54.4-72.0% in the Massif/EMF approach
and 55.3-58.0% in the live approach.
Figure 5.8 shows the whole validation process execution-time (in minutes)

calculated using the sum of averages of each stage for each approach with and
without caching. By comparing this overall process, we observe that the live
approach improves the performance of the Massif/EMF approach by taking
70.7-80.0% less time when caching is enabled and by 32.6-53.2% with no caching.

In Figure 5.6 we observe that the size of the EMF model produced by Massif
is much larger than the original MATLAB/Simulink (.slx) files. This is partly

134

5.3 Evaluation

due to *.slx being a compressed file format. As Table 5.2 shows, the size of the
MATLAB/Simulink file is not directly proportional to the number of Block9

elements in the model. In contrast, the size of the EMF model file seems to be
related to the number of block elements, which would explain the peak on the
EMF file size with the MATLAB/Simulink model with the largest number of
block elements.

Discussion

In this experiment we focused on a program that only reads large Simulink
models. We intended to investigate the performance of using of both approaches
with large models. In this subset of models, our experiment shows that the
overhead of the Massif/EMF approach lies on the upfront model transformation
whereas for the Simulink EMC it lies in the complexity of the model management
program. In contrast, the actual execution of the program with the EMF driver
works much faster than with the Simulink EMC driver. This is partly due to
the full model being loaded in memory and potential internal optimisations of
the mature EMF driver.

Intense querying is a scenario for which the EMF approach is more suitable,
as the communication with MATLAB is expensive in time, and our experiment
shows the clear advantage that the EMF driver has over our Simulink imple-
mentation. However, our experiment also shows the non-negligible impact that
the importing stage has over the overall execution. Choosing one approach over
the other is a matter of determining the size of the model, understanding the
purpose of the model management program, and being aware of constraints
such as performance or model coverage. For example, it is likely that large
models will incur in computationally expensive import procedures with Massif.
Whether this is a sensible cost depends on the number of times the import is to
be executed, the available time, the model management framework to be used
i.e., if it only supports EMF and the range of operations to be performed (e.g
do they require Stateflow blocks?). To avoid the cost of the import process on
continuously evolving models, a practitioner may choose to manually replicate
modifications in the Simulink model in the already imported EMF copy, however
this would be an error-prone activity.

With the same large models, our implementation avoids the import/export
procedures when the models are evolving e.g., changing property values, adding
new blocks or removing blocks. Indeed, intense querying is not the best use
scenario for our driver as demonstrated by the experiment. With the knowledge
of the new query optimisations, the validation scripts used in the experiment
could be rewritten to take advantage of these optimisations to reduce cost of

9Inport, Outport, Goto, From and SubSystem are all subtypes of Block

135

5 Supporting heterogeneous models: MATLAB/Simulink

the validation stage.

In Section 5.3.2 we show how the driver can be used to generate Simulink
models. Further investigation would be needed to show how the Massif approach
copes with continuously evolving models and programs that modify or create
the Simulink model. Validation scripts in EVL can also feature fix constructs
that invoke EOL expressions on the elements that do not pass the constraints.
While we have not evaluated this, we can anticipate that the validation step
with fixes would require little additional time for both the Simulink EMC driver
and the EMF driver. The difference would be that the overall validation process
with Massif/EMF would require an additional step to generate the modified
Simulink model from the modified EMF which could potentially be just as
expensive in time as its import procedure.

Threats to validity

We selected a validation program as a representative model management op-
eration to compare both approaches. As indicated in the Validation scripts
paragraph, the invariants used in the experiments were intended to exercise the
models in similar ways in both approaches by means, for example, of interacting
with the same types of elements and navigating properties in similar ways. As
such, the invariants were not intended to be representative of validations per-
formed in industry, although some were inspired by industrial cosmetic checks.
Validations performed in EVL can be seen as complementary validations as
Simulink models can go through custom validation checks within MATLAB
using its Model Advisor tool.

Our evaluation only tested the performance of a single model management
language (EVL). Performance results may vary across other types of model man-
agement programs and for different EVL programs. Moreover, the validation
scripts were limited to read-only operations.

The sample of models may not be significant but was limited by the 2-hour
cap imposed to the import stage. Our experiments would benefit from more
diverse models with a broader range of sizes and more varied constraints.

There may be hidden differences in the implementation of each driver (EMF
vs Simulink) such as internal optimisations which do not make them entirely
comparable. However, for the purpose of this experiment, both driver imple-
mentations were considered black boxes.

Large and complex models can be built by referencing multiple models
persisted in small files. Our decision to use large models allowed us to skip
the model reference processing by ensuring that a single model contained the
most model elements. Additional metadata other than model elements, such as
images, can contribute to the model file size without affecting its complexity.

136

5.3 Evaluation

We have not measured the impact of the meta-information in the file size, but
this is mitigated by indicating the number of model elements that were present
in each file.

5.3.2 Experiment on collection queries

We have designed an experiment that evaluates the performance of the collection
operator optimisations presented in Sec 5.2.2. The research question is whether
these modifications improve the performance of select- and collect-based operat-
ors when executed on collections of Simulink or Stateflow elements of different
sizes. All resources required to reproduce the experiment are available under
the Epsilon project10.

Experiment setup

This experiment includes the evaluation of EOL queries on collections of
Simulink and Stateflow model elements. We execute each query on four models
with a similar structure but with different number of model elements that grow
exponentially. For each query and model, we observe how the use of the query
optimisations on collections affects the execution performance.
As we need to have control over the number of elements of a given type on

each model, we decided to generate the test models. As such, the models share
a similar structure but have some variability which is described later in the
section. While the generation script is not part of this evaluation, it serves to
demonstrate the write capabilities of the Simulink Model driver.

Model generation process A boiler control system can be designed using
an on/off closed loop control. Closed loop control systems are very common,
and they can be designed and simulated using the Simulink environment.
Furthermore, on/off controllers are easy to model as state machines which can
be designed using MATLAB’s Stateflow environment. Since boiler systems can
contain both Simulink and Stateflow model elements, we use them at the core
of our model generation process.
The model generation process consists in producing several contrived com-

ponents with different set points11 all receiving the ambient temperature from a
pulse generator and displaying their status in a scope. To scale our experiment,
each model has a different number of boilers which grow exponentially (base
3) and the value of their set point is spread out so that each has a different
value within their operational range. At the same time, each boiler has only
one pulse generator and scope. Four models were generated in total.
10https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/tests/org.eclipse.epsilon.emc.

simulink.test/experiments/query-optimisation
11The temperature at which they start to heat

137

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/tests/org.eclipse.epsilon.emc.simulink.test/experiments/query-optimisation
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/tests/org.eclipse.epsilon.emc.simulink.test/experiments/query-optimisation

5 Supporting heterogeneous models: MATLAB/Simulink

(a) The top level (b) Contents of a boiler

(c) Contents of a boiler’s Stateflow chart

Figure 5.9: Structure of generated Simulink models

Figure 5.9a illustrates the root level of the model where all boilers receive
as input the ambient temperature from a pulse generator and display their
operational state in a scope. The set point of each boiler is represented by a
block of type constant with the temperature value. The internal structure of
a boiler is illustrated in Figure 5.9b. Each of them has three input ports and
an output port. The inport that receives the set point is compared with the
current ambient temperature using a block of type substract, whose output goes
into a Stateflow chart. The contents of a chart are illustrated in Figure 5.9c.
The chart computes the logic to go from state ON to state OFF and produces
a signal that decides whether it is required to turn on or off the boiler. The
action which results from the chart logic goes into a delay which represents the
time taken for the real boiler to respond to the signal. The delayed signal is
displayed in the topmost scope and the one which is used as feedback on the
boiler subsystem and chart.

Queries The list of EOL statements to be evaluated are presented in List-
ing 5.34 where line numbers are used as query identifiers. These queries were
designed to demonstrate both the usefulness of retrieved information from the
boiler model, and the complexity supported by the query optimisations on
collections. Four of these statements are executed on collections of Simulink
elements while the other four are executed on collections of Stateflow elements.
The queries use EOL select- and collect-based operators both in plain form e.g.,

138

5.3 Evaluation

select ; and derived form e.g., exists, sortBy, reject, forAll. While most of the
queries use single operators that evaluate one-argument predicates, Query 6
uses two operators (select and forAll) and Query 8 evaluates a three-argument
predicate.

1 Block.all().collect(b|b.Name);
2 Block.all().sortBy(b|b.BlockType);
3 Inport.all().select(i|i.OutDataTypeStr =="boolean");
4 SubSystem.all().selectOne(s|s.Name=="Chart");
5 `Stateflow.State`.all().reject

(s|s.Decomposition =="PARALLEL_AND");
6 `Stateflow.Transition`.all().select(t|not

(t.SourceOClock ==0)).forAll(t|t.LabelString <>"?");
7 `Stateflow.Transition`.all().collect(t|t.LabelString);
8 `Stateflow.State`.all().exists

(s|s.IsImplicitlyCommented ==1 or
s.BadIntersection ==1 or s.IsExplicitlyCommented ==1);

Listing 5.34: List of EOL queries

Query 1 is used to retrieve the names of all Simulink blocks in the model,
including those contained in the boiler subsystems. Query 2 sorts all these
blocks by their block type. Query 3 acts on blocks of Inport type i.e., input
ports 1 to 3 in each boiler subsystem (Figure 5.9b), and filters those of Boolean
type i.e., port no. 3 which handles the boiler state. Query 4 acts on subsystem
blocks which include the boilers and the chart blocks and selects the first
element with the name “Chart”. Moving on to Stateflow elements, the list of
non-parallel states is retrieved with Query 5 using the reject operator. Query 6
starts by filtering out default transitions i.e., those with no source state, and
then checks if they have all been assigned a non-default name using the exists
operator. In a similar fashion to Query 1, Query 7 retrieves the labels attached
to all transitions in the model. Finally, Query 8 checks for malformedness
across Stateflow states by checking whether they are explicitly or implicitly
commented or if they have bad intersections.

Model population Our experiments evaluate the 8 EOL statements on four
different models. Each evaluated EOL statement starts from a collection of
model elements of a given type. These model element collections may contain
Simulink elements of type Block, Inport or SubSystem; or Stateflow elements of
type Stateflow.State or Stateflow.Transition. The number of elements of each
type in the different models is presented in Table 5.3.

Infrastructure In the experiment each EOL statement was executed 20
times with 5 warm-up iterations on each model. The Simulink Model driver

139

5 Supporting heterogeneous models: MATLAB/Simulink

Table 5.3: Number of elements per type on each model.

Model 1 Model 2 Model 3 Model 4

Block 47 137 407 1217
Inport 15 45 135 405
Stateflow.State 15 45 135 405
Stateflow.Transition 15 45 135 405
SubSystem 6 18 54 162

caching facilities were not used. The experiments were executed on an 8-Core
Intel Core i9 CPU @ 2.3 GHz with 16 GB of RAM. The Java Virtual Machine
(64-Bit) was provided with up to 2GB of memory and ran Java 8 on JDK
1.8.0_231.

Results

In both optimised and non-optimised executions, all queries were executed on
the same number of elements and yielded the same results.

The mean execution time of each query is presented in Table 5.4 under
the Duration section. This section compares the time (in seconds) taken by
each of the models with and without the collection operator optimisations.
The iteration distribution on the four models is presented in the box plot of
Figure 5.10. This figure compares the distribution with optimisations enabled
(right/orange) and disabled (left/blue) for each model. Note that subplots do
not share the y-axis to have a closer look at the distribution per query.

Regardless of the collection size, all queries with optimisations enabled out-
performed those which did not use them, between 50% to 99%. Table 5.5 sum-
marizes the performance improvement percentage that optimisations achieved
on the different models and queries.

Another view of the results is presented in Figure 5.11 where the mean
execution time per query is plotted against the number of model elements that
the query acted on. The y-axis in this view has been capped at 40 seconds and
only Query 8 went above this limit.

Additionally, Table 5.4 shows (under the MATLAB Communication section)
the percentage of execution time that was spent sending or receiving inform-
ation to/from MATLAB. Overall, this section shows that without operator
optimisations the impact of the communications with MATLAB lies above 93%
whereas with optimisations the impact can be reduced to 59% in some queries
although remaining high (e.g., 99%) in others.

140

5.3 Evaluation

D
ur
at
io
n
(s
)

M
A
T
LA

B
C
om

m
un

ic
at
io
n
(%

)
Q

O
pt

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

M
od

el
1

M
od

el
2

M
od

el
3

M
od

el
4

1
O
ff

0.
15

0.
38

1.
06

3.
39

94
.7
4

96
.6
4

97
.3
2

97
.6
1

O
n

0.
00

0.
00

0.
01

0.
01

76
.0
7

75
.2
4

76
.4
7

73
.9
9

2
O
ff

0.
20

0.
55

1.
73

4.
96

97
.2
1

97
.7
0

97
.9
5

97
.7
9

O
n

0.
09

0.
24

0.
86

2.
23

96
.9
2

98
.1
0

98
.1
8

98
.5
0

3
O
ff

0.
06

0.
14

0.
35

1.
08

95
.1
1

96
.6
9

97
.0
6

97
.2
4

O
n

0.
00

0.
00

0.
00

0.
01

75
.4
4

73
.2
3

68
.6
7

59
.8
8

4
O
ff

0.
02

0.
06

0.
16

0.
47

93
.6
0

96
.7
7

97
.4
4

98
.0
6

O
n

0.
01

0.
01

0.
01

0.
01

86
.2
2

84
.4
5

81
.8
5

75
.2
4

5
O
ff

0.
12

0.
39

1.
93

14
.8
7

95
.5
9

97
.0
5

98
.1
3

99
.0
7

O
n

0.
01

0.
02

0.
12

0.
91

89
.0
3

95
.1
5

98
.8
8

99
.7
8

6
O
ff

0.
70

2.
28

8.
33

38
.4
9

98
.8
0

98
.9
7

99
.1
5

99
.3
9

O
n

0.
03

0.
04

0.
16

1.
25

95
.0
0

97
.0
9

99
.0
6

99
.8
3

7
O
ff

1.
03

3.
13

10
.1
7

38
.1
7

99
.3
1

99
.3
8

99
.4
9

99
.5
8

O
n

0.
02

0.
04

0.
14

1.
02

95
.6
3

97
.4
2

99
.0
9

99
.8
1

8
O
ff

2.
72

8.
50

28
.0
4

10
9.
40

99
.4
9

99
.4
9

99
.5
5

99
.6
0

O
n

0.
03

0.
05

0.
15

0.
98

96
.7
6

97
.7
9

99
.1
7

99
.8
2

Table 5.4: Mean query execution time in seconds and percentage of time spent
sending commands to MATLAB and awaiting a response. Column
Q indicates the query number, while column Opt indicates whether
the optimisations were enabled.

141

5 Supporting heterogeneous models: MATLAB/Simulink

1
2

3
4

01234 Duration (s)

Q
ue

ry
 =

 1

1
2

3
4

0123456
Q

ue
ry

 =
 2

1
2

3
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Q
ue

ry
 =

 3

1
2

3
4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Q
ue

ry
 =

 4

1
2

3
4

M
od

el

051015 Duration (s)

Q
ue

ry
 =

 5

1
2

3
4

M
od

el

010203040

Q
ue

ry
 =

 6

1
2

3
4

M
od

el

010203040

Q
ue

ry
 =

 7

1
2

3
4

M
od

el

02040608010
0

12
0

Q
ue

ry
 =

 8
O

pt
im

is
at

io
n

O
ff

O
n

Figure 5.10: Distribution of the query performance on the models with and
without optimisations.

142

5.3 Evaluation

0510152025303540 Duration (s)

Q
ue

ry
 =

 1
Q

ue
ry

 =
 2

Q
ue

ry
 =

 3
Q

ue
ry

 =
 4

0
10

0
20

0
30

0
40

0
50

0
E

le
m

en
ts

0510152025303540 Duration (s)

Q
ue

ry
 =

 5

0
10

0
20

0
30

0
40

0
50

0
E

le
m

en
ts

Q
ue

ry
 =

 6

0
10

0
20

0
30

0
40

0
50

0
E

le
m

en
ts

Q
ue

ry
 =

 7

0
10

0
20

0
30

0
40

0
50

0
E

le
m

en
ts

Q
ue

ry
 =

 8
O

pt
im

is
at

io
n

O
ff

O
n

Figure 5.11: Performance of queries, with and without optimisation, against
the number of elements in the models.

143

5 Supporting heterogeneous models: MATLAB/Simulink

Table 5.5: Performance improvement (%) by query and model.

Query Model 1 Model 2 Model 3 Model 4

1 97.52 98.95 99.43 99.76
2 55.03 56.15 50.20 55.09
3 91.80 97.20 98.82 99.48
4 69.92 87.68 94.95 98.01
5 91.73 93.95 93.71 93.88
6 96.36 98.11 98.07 96.75
7 97.58 98.72 98.64 97.33
8 98.78 99.45 99.46 99.10

Discussion

The first four queries acted on Simulink elements while the last four acted
on Stateflow elements. Non-optimised queries were more time-consuming on
Stateflow elements than on Simulink elements regardless of the complexity of
the evaluated expression. Consider queries 1 and 7 which are comparable as
they both invoke a collect operation that gathers a single property value but
work on Simulink blocks and Stateflow transitions respectively. Even though in
Model 4 query 1 acts on 1217 blocks while query 7 only on 405, query 7 is much
more expensive in time than query 1 (without the optimisations). Since more
than 98% of the execution time of Stateflow queries without optimisations is
spent on the MATLAB exchange, a reasonable explanation for this difference
is that MATLAB has more efficient indexes for Simulink blocks.
Based on preliminary observations, executing the functions that the driver

generates in the MATLAB console is much faster than through its Java API
for both the optimised and non-optimised implementations. Considering the
impact that reducing the number of exchanges with the MATLAB Java API
has, future work will involve investigating optimisations of more complex collect-
and select-based arguments so they can be transformed into a single complex
MATLAB function that only requires to be sent once.

To take advantage of these optimisations, the model management programmer
should be aware of the operations that have been optimised to write the
programs accordingly. A difference with the Massif/EMF approach is that in
that approach there are no optimisations to be aware of.

Threats to validity

The models used in the experiment had a similar internal structure as it enabled
us to focus on the impact of the number of model elements that the queries
acted upon. From this experiment, it is unclear to what extent the structure of
the models affects the performance.

144

5.4 Observations and lessons learned

We chose a range of collection queries that were sufficiently varied, and which
could be optimised. We recognise that our evaluation could be complemented
with more queries evaluating a broader range of expression forms.

5.4 Observations and lessons learned

This section summarises observations and lessons learned in the implementation
of the Simulink-based drivers and our experiments.

Usability. Being able to manage these models in either the native tool or
a model management framework requires metamodel understanding (model
element types, their properties, and operations). Model management programs
should provide uniformity and predictability in how model elements are managed
as part of the conciseness and expressiveness they offer compared to general-
purpose languages. For example, in Epsilon CRUD operations on model element
types share the same syntax regardless of the model’s underlying technology.
This enables practitioners to focus on the model elements and the logic of their
programs.

Uniformity can help to speed up the learning process and make these programs
easier to write and maintain. Sec. 5.2 evidences the multiple styles that
MATLAB uses to manage different model elements types, within the same
model e.g., Simulink vs. Stateflow, and between different model formats e.g.,
Simulink vs. Simulink Requirements. It is not just the naming of the MATLAB
functions that varies across operation types (e.g., get as property getter for
Stateflow elements and get_param for Simulink elements), but also the arguments
required by those functions. Similarly, different toolboxes use different notions
of what constitutes an element id in their domain e.g., Simulink sometimes uses
the element id but most functions only work with their path property (their
location) or their handle (a session based, non-persisted identifier). Furthermore,
in the case of Simulink different parameters sometimes yield different result
types e.g., the find_system function can return handles or paths depending
on whether the FindAll flag is active. A side-contribution of our approach is
the unification of the syntax of several MATLAB toolboxes which can make it
easier to focus on the core model management logic.

Completeness. MATLAB and its Java API provide facilities to support the
execution of CRUD operations on its model elements and the model itself. This
API also provides an interface for a few MATLAB-specific data types such as
structured arrays. In contrast, Simulink models cannot be exported into any
exchange format from MATLAB. It is common that vendor tools are reticent
to export their models into exchangeable data formats e.g., to protect their

145

5 Supporting heterogeneous models: MATLAB/Simulink

intellectual property. However, when they do export them, sometimes they
do so partially —like PTC with partial exports [198], which can make the
round-trip engineering prohibitive (e.g., [198]) or complex (e.g., [120]).
In the case of Massif, the Simulink to EMF transformation is done by an

external party. Among the disadvantages of this transformation is the lack of
support for Stateflow elements and slightly different naming conventions to the
ones used in MATLAB, different places to find element properties depending
on the element type and the management of Simulink data types as strings. In
contrast, model element types used in the Simulink EMC driver are closer to
those managed by the MATLAB command line interface and include Stateflow
elements. In addition, by exploiting the MATLAB API facilities at runtime
our Simulink EMC driver can also manipulate MATLAB specific data types.

Performance. Several criteria can impact the performance of model man-
agement processes that involve Simulink models e.g., the size of the model, the
program complexity, and the rate of model evolution. Our first experiment on
large Simulink models showed that the cost of the upfront Simulink-to-EMF
transformation in time was particularly expensive in the Massif/EMF approach
while the cost of the program execution time was much lower than that of the
Simulink EMC driver (by 2 orders of magnitude). Considering the program
execution performance, the Massif/EMF approach seems convenient for large
signed-off models (transformation cost paid once) that need to be extensively
queried. In contrast, this same experiment showed that the overall execution
process was reduced by up to 80% with the Simulink EMC driver, which
concentrated the time cost in the program execution. The overall execution
performance makes the Simulink EMC driver better suited for continuously
evolving models; otherwise recurrent transformations would be needed in Mas-
sif/EMF. We anticipated that the execution overhead in our approach was due
to the time cost of the MATLAB exchanges. Our proposed optimisations on
operations on collections of Simulink model elements (Sec. 5.2.2) were able to
reduce the number of MATLAB exchanges by not making them proportional
to the collection size.

For smaller models, the decision of one approach or the other is more related to
the model coverage offered by the approach and the relevance of the EMF model
i.e., its support in the model management tool and associated maintainability
costs.

Other Model validation processes generally involve several iterations of check-
ing constraints and fixing errors unless the model is correct to start with.
Similarly, model-to-model transformation and other model management pro-
grams may also result in the generation or modification of Simulink models.

146

5.5 Related work

From our experiments the performance impact and completeness of the EMF-to-
Simulink transformation is unclear although it is likely to have similar time costs
as the import procedure and similar issues to those found in other tools such
as those mentioned for the ReqIF requirements imported by MATLAB [120]
or the XMI models exported by PTC [198]. Our on-the-fly approach does not
need to incur in round-trip engineering costs as it directly acts on the models
themselves.
Our piecewise translation of model management constructs to MATLAB is

convenient to deal with multiple (heterogeneous) models in the same model
management program and to process the model information within the managing
program. A complete translation of these constructs to a MATLAB program
that executes just once would be more complex to orchestrate and to interact
with from the model management program e.g., to retrieve variable values that
are assigned to elements from other models. The stark performance difference
between the execution of MATLAB functions in Java or in its console suggests
that further optimisations and strategies are required to reduce the number of
exchanges with MATLAB and improve the performance of model management
programs while still preserving their ability to interact with other models.

5.5 Related work

It is often desirable to have a common framework to manage models from
heterogeneous modelling technologies. Traceability tools such as Capra [112]
and Yakindu [1] are examples of those frameworks, which need to be able to
read models used at different stages of the development process to create and
manage traces among their model elements. Other examples include model
management frameworks such as Epsilon [97] and ATL [87], which offer a subset
of task-specific languages for model navigation, validation, model-to-model
or model-to-text transformations, etc. and which are able to interact with a
number of models of arbitrary underlying technologies.
When model management frameworks do not offer support for a specific

modelling technology such as Simulink, import and export facilities can be
used to translate the models into a supported format. Possibly for reasons
of protecting intellectual property, proprietary modelling tools do not always
offer exporting facilities into open modelling formats such as XMI. MATLAB
does not offer any export or import facilities for Simulink Models with other
open-source modelling formats. To address this feature gap, the open-source
Massif project led the development of import and export facilities between
EMF and Simulink models. Massif internally uses MATLAB’s command line
interface to parse the Simulink models and populate their EMF representation
and vice-versa.

147

5 Supporting heterogeneous models: MATLAB/Simulink

The OSLC [144] is an initiative that aims to simplify the software tool
integration problem among proprietary tools. Built atop the W3C Resource
Description Framework (RDF), Linked Data, and the REST architecture, OSLC
provides a set of specifications targeted at different aspects of application and
product life cycle management. OSLC is now being used by proprietary tool
vendors (e.g., IBM Rational DOORS [80]) and some open-source tools (e.g.,
[50]) who expose a range of services following these specifications. Nevertheless,
the comprehensiveness of the information exposed by these services is at the
discretion of the service provider. MATLAB does not officially provide an
OSLC interface for its Simulink models, although the Eclipse Lyo [178] project
provides an OSLC adaptor for Simulink [48] for MATLAB version R2013b, and
Massif provides an OSLC adaptor for their EMF-compatible representations [78].
Reqtify [33] is a proprietary tool which exposes internal traceability information
from Simulink models in a similar fashion to OSLC.

Transformations from SysML to Simulink models (and vice-versa) have
motivated several research works such as [164, 35, 27, 36]. [164, 35, 36] and
[27] made use of model-to-text transformations with Acceleo [179] to produce
MATLAB programs that on execution created the Simulink model. More
specifically, [35, 36] generated several MATLAB scripts to populate different
parts of the Simulink model, [27] proposed the use of a UML profile to annotate
the SysML models before the MATLAB code generation, and [164, 36] suggested
that to go back from Simulink to SysML the creation of a MATLAB script to
parse Simulink models and produce an XML-based SysML model description file.
In the domain of co-simulation, communicating between MATLAB Simulink
and other frameworks is a common task. For example, [51] uses a software
environment based on Ptolemy II [49] to run MATLAB scripts that get and
set parameters of specific Simulink blocks and run simulations. As these works
either use purposed SysML to Simulink transformations or focus on setting and
getting parameter values of limited elements; they are not easily reusable for
alternative model management scenarios such as querying the Simulink model
or validating constraints. Examples of other works that used Simulink models
external model management processes include [123] which performs independent
translation of Simulink and Stateflow blocks into UPPAAL timed automata
representations that are later combined and used in model checking and [54]
which performs invariance checks on simplistic Simulink model representations
written in JSON. In this regard, the Massif project and our approach facilitate
the managing an EMF-compatible representation or the actual Simulink model
(respectively) in a broader range of model management scenarios.

Our Simulink bridge built atop the Epsilon facilities is not the first one to
bridge proprietary tools with the open-source model management languages of
the Epsilon family. In [58] a spreadsheet driver was introduced to enable the

148

5.6 Integration with ModelFlow

manipulation of spreadsheets as models where element types were resolved from
spreadsheet names, elements from rows, and properties from columns while
enabling flexible rules to resolve element references or change these conventions.
Our approach is closer to that used by the PTC-IM driver presented in [198],
where an interface with the PTC is used to manage the models. One difference
with the PTC driver is that in MATLAB the API is not consistent and required
commands to be built on demand. Additionally, MATLAB has a full-fledged
language to manage its model elements that PTC does not, which allowed us to
implement query optimisations. As in this work, one of the findings of [198] is
that where performance is of essence, it is best to use the native tooling. In [198]
the driver is evaluated against the native approach to manage the models by the
tool i.e., Visual Basic. In contrast, in this work our first experiment compares
two different approaches to bridge Simulink models with model management
frameworks, while the second experiment evaluates an approach to reduce the
overhead of queries while also measuring the cost in time of communicating
with MATLAB. Another driver for relational databases was proposed in [105]
which generated SQL queries at runtime. The main difference between this
approach and ours is the domain of application and non-uniform MATLAB
API used to manage different model types. [105] investigates the use services
provided by the underlying technology to optimize those provided at the proxy
level in a similar fashion to what we do in this work although no evaluation is
provided.

5.6 Integration with ModelFlow

To use the Simulink model driver in ModelFlow a dedicated model definition
is required. To configure a Simulink model, the model definition accepts as
configuration properties the location of the Simulink model, of its Simulink
project (optional) and of the engine and library path that ensure the connection
to MATLAB. In addition, the model definition needs to support the computation
of a custom hash of the model to determine if it is up to date and must ensure
that model elements can be uniquely identified to make these traceable.

1 model Simulink is epsilon:simulink {
2 src: <SimulinkModelLocation >
3 project: <SimulinkProjectLocation >
4 engine: <engineJarLocation >
5 library: <libraryPathLocation >
6 }

Listing 5.35: Example Simulink model declaration in ModelFlow

149

5 Supporting heterogeneous models: MATLAB/Simulink

Determining model up-to-date status. To compute the hash of the Simu-
link model we first need to identify any dependencies in the form of referenced
Simulink models, Simulink Requirements, Simulink Dictionaries, MATLAB
function scripts, etc. We compute this information using the MATLAB function
shown in Listing 5.36.

1 dependencies.fileDependencyAnalysis('ModelName ')

Listing 5.36: MATLAB function used to compute dependencies of a Simulink
model.

The dependencies resolved by this function will change depending on whether
the model is part of a Simulink project and if it is loaded within the project’s
context. As such, it is important to provide a project in Simulink model
declarations when appropriate to ensure that the model is properly loaded and
that dependencies can be resolved.

For each of the files returned by the MATLAB function, the Simulink model
definition computes a message digest of the file contents with the MD5 algorithm.
The hash of the Simulink model is a hash of hashes (of the model and its
dependencies) to their corresponding message digests.

In subsequent executions where the model has not been loaded the Simulink
model definition computes new message digests from the file paths of the map
produced in the past execution.

Supporting model management traces. To ensure that model elements
can be uniquely identified we have updated the Simulink driver to have the
ability to identify elements by id. To compute this value, the driver delegates
to the MATLAB engine the execution of the MATLAB function in Listing 5.37
takes as input an element’s handle. This function works for both Simulink and
Stateflow elements.

1 Simulink.ID.getSID(elementHandle)

Listing 5.37: MATLAB function used to compute the ID of Simulink and
Stateflow model elements

150

6 Evaluation

This chapter presents the evaluation of ModelFlow through three case studies.
The first case study is presented in Sec. 6.1 and it presents a contrived case
study of a workflow with three models and three tasks. This case study evaluates
the correctness and performance of ModelFlow executed under scenarios that
change different resources used or produced by the workflow. The case study
also compares the workflow language and execution in ModelFlow against those
with the Gradle build tool. Sec. 6.2 presents the second case study which
reproduces the graphical editor generation workflow used by the EuGENia tool,
a graphical editor generator from annotated metamodels which predates this
work. This case study further evaluates the correctness and performance of
ModelFlow but this time compared against the original implementation and
executed under realistic change scenarios for the specific workflow. Furthermore,
this case study also provides measurements of the overhead of ModelFlow’s
features, such as model management tracing, and input and output model and
parameter processing. The last case study is presented in Sec. 6.3, and it
describes a sanitised industrial workflow that involves heterogeneous models
including Simulink and HTML models. This qualitative study is mostly used
to validate the language and the model management traceability support
provided by ModelFlow but also provides insights regarding the conciseness of
the workflow specification, its visualisation and user interaction facilities, the
recovery of model management traces, limits to conservative executions, and it
also discusses potential ModelFlow language optimisations. Finally, Sec. 6.4
and 6.5 describe how ModelFlow satisfies the extensibility and interoperability
objectives defined in Sec. 3.2.2.

6.1 Case study: Component workflow

This section describes a contrived workflow that consists of three models and
three tasks, each task has different complexities which increase with the number
of elements in the source model. In this case study the workflow will be executed
under different change scenarios that alter the contents of some of the resources
used or produced by the workflow e.g. models, model management programs,
generated files. The main goal of this case study is to evaluate the performance
of this workflow under the different change scenarios and across two platforms:

151

6 Evaluation

Gradle and ModelFlow. The case study will also check the correctness of each
scenario execution by ensuring that tasks affected by the changes are actually
executed and that all required outputs are generated. Sec. 6.1.1 describes the
background of the workflow, Sec. 6.1.2 presents the experimental setup, then
Sec. 6.1.3 reports the results of the evaluation, while Sec. 6.1.4 provides the
discussion and Sec. 6.1.5 reports on the threats to validity.

6.1.1 Background

Our motivating example describes a simplified process for generating a Java im-
plementation of a component-based system. The process consists of three model
management tasks: validation, model-to-model transformation, and model-to-
text transformation. The dependencies between tasks, models, metamodels
and file resources are illustrated in Figure 6.1. For simplicity, all models and
metamodels in this example are built with EMF.

Figure 6.1: Component workflow dependency graph

The component model a○ represents a set of interconnected component blocks
such as the one in Figure 6.2a. The goal of this process is to produce a variant
version of the component model, referred to as the extended model c○, that
will later be used to generate code. An example of this variant model is shown
in Figure 6.2b. The information used to produce this variant is captured in a
configuration model b○. The metamodels used by these models are shown in
Figure 6.3.
In this workflow the extended model is a copy of the component model but

with additional filter components. The configuration of these filters is defined
in Tolerance elements in the configuration model. Each Tolerance element
is translated into a signal Filter block in the extended model with a given
tolerance value and connected to a given port. Ports are identified by the name
of the containing component and the name of the port.

To proceed with the variant model generation, the wellformedness of models

152

6.1 Case study: Component workflow

(a) A boiler component

(b) An extended boiler component

Figure 6.2: Boiler components

Figure 6.3: configuration and component metamodels

153

6 Evaluation

a○ and b○ is validated with task 1○ using EVL invariants1 such as in Listing 6.1.
The constraint HasSource in line 2 checks that all Connector elements in the
component model have a source, by checking that their from property is defined.
Similarly, the constraint PositiveValue in line 8 checks that the value of
elements of type Tolerance in the configuration model are greater than zero.

1 context component!Connector {
2 constraint HasSource {
3 check : self.from.isDefined ()
4 message : self.name + " has no source"
5 }
6 }
7 context config!Tolerance {
8 constraint PositiveValue {
9 check : self.value > 0
10 message : "Tolerance does not have positive value"
11 }
12 }

Listing 6.1: Sample EVL invariants

After the validation step, models a○ and b○ are consumed by an ETL model-
to-model transformation 2○ to produce the extended model c○. Each Filter

component created from the configuration model is assigned with a tolerance
value and placed at the appropriate connector’s port. The Filter is created
at the same level (container) as the component of the targeted port. The
TemperatureFilter in Figure 6.2b and its new connections are the example
added elements that result from this transformation.

The remaining operation is an EGX model-to-text transformation 3○ which
uses the extended model as input to generate Java code. The resulting code
establishes the connections between components, but the developer is expected
to handwrite their internal logic inside protected regions2. These regions are
illustrated in Listing 6.2 where lines 4 and 6 indicate the start and end of
a protected region which shall not be overwritten if the code generation is
re-executed.

1 public class TemperatureComparator {
2 private Double temperature , targetTemperature ,

difference;
3 private void compute () {
4 /* protected region compute on begin */
5 this.difference = this.targetTemperature -this.

1The type of element that the constraints act upon and the model they belong to is indicated
in the context environment e.g., component!Connector acts on Connector elements
from the component model. The message in the constraint is displayed when the check
fails.

2A section which should not be overwritten if the model-to-text transformation is re-executed.

154

6.1 Case study: Component workflow

temperature;
6 /* protected region compute end */
7 }
8 }

Listing 6.2: Generated code of the TemperatureComparator component

6.1.2 Experimental setup

We have implemented and executed this workflow both in Gradle and ModelFlow
under seven different scenarios. The first scenario represents a clean build, while
all other scenarios represent realistic changes to resources (models, generated
files) which affect subsequent executions. These scenarios are described in
Sec. 6.1.3. Both build tools parse an equivalent build script that captures
the workflow and uses the same model management tasks and resources. We
measure the execution time of the different scenarios in both tools and also
verify that each scenario executes affected tasks and generates required files.
The correctness of the outputs is tested by running a Java program that uses
the generated Java classes to run a boiler execution simulation which prints
the values of some component ports in response to simulated input port values.

Gradle setup. We have extended Gradle to support the execution of the
EVL, ETL and EGX tasks required by the workflow. In addition, we have
also extended its DSL to support a custom data structure where models can
be defined once. The Gradle workflow specification is presented in Listing 6.3.
Lines 1-14 illustrate a custom data structure that we implemented to capture
the models. Each model indicates its type in brackets, while configuration
parameters are captured within curly braces. In this case study all models
are EMF models and are persisted in files with an XMI format. The model
management tasks of the workflow are declared in lines 15-33. Each task
receives the names of its input and output models as parameters.

As a general-purpose build tool, Gradle does not support most of the desired
MDE build tool features out of the box. Its conservative execution mechanism is
based on inputs and expected outputs i.e., known before the task execution. In
addition, dynamic resources such as models cannot influence the task execution
order, there is no end-to-end traceability offered and outputs are not protected
at any point.

Our Gradle task extensions for Epsilon have been implemented so that they
resolve required input and output models from the model DSL extension and
the model files are declared as dynamic inputs or outputs. We have some task
parameters as inputs or outputs as we do in ModelFlow, however their hashes
are computed with the default mechanism used by Gradle. Upon execution, our

155

6 Evaluation

task implementations iterate over required input and output models, loading
all required models before execution and disposing all after the execution.

1 epsilon {
2 models {
3 config(EMF){
4 modelFile = file('resources/m/config.model')
5 metamodelFile =

file('resources/mm/configuration.ecore')
6 }
7 component(EMF){
8 modelFile = file('resources/m/component.model')
9 metamodelFile =

file('resources/mm/component.ecore')
10 }
11 extended(EMF){
12 modelFile = file('resources/m/extended.model')
13 metamodelFile =

file('resources/mm/component.ecore')
14 }
15 }
16 }
17 task validate(type: EVL){
18 src = file('resources/mmt/validation.evl')
19 input = 'config '
20 input = 'component '
21 }
22 task m2m(type: ETL){
23 src = file('resources/mmt/extended.etl')
24 input = 'config '
25 input = 'component '
26 output = 'extended '
27 dependsOn validate
28 }
29 task m2t(type: EGX){
30 src = file('resources/mmt/generate.egx')
31 outputRoot = file('src -gen')
32 input = 'extended '
33 }

Listing 6.3: Gradle workflow

ModelFlow setup. We ran ModelFlow in non-interactive mode and con-
figured it to discard any changes in the outputs of tasks. No model management
traces were recorded. These actions were taken to make ModelFlow’s execution
similar to Gradle’s except from how up-to-date checks for task parameters and

156

6.1 Case study: Component workflow

model resources.

1 param basedir;
2 model config is epsilon:emf {
3 src : basedir + "config.model"
4 metamodelFile : basedir + "configuration.ecore"
5 }
6 model component is epsilon:emf {
7 src : basedir + "component.model"
8 metamodelFile : basedir + "component.ecore"
9 }
10 model extended is epsilon:emf {
11 src : basedir + "extended.model"
12 metamodelFile : basedir + "component.ecore"
13 }
14 task validate is epsilon:evl
15 in config and component {
16 src : basedir + "validation.evl"
17 }
18 task m2m is epsilon:etl
19 in config and component
20 out extended
21 dependsOn validate {
22 src : basedir + "extended.etl"
23 }
24 task m2t is epsilon:egx
25 in extended {
26 src : basedir + "generate.egx"
27 outputRoot : "src -gen"
28 }

Listing 6.4: ModelFlow workflow

6.1.3 Results

Correctness. All scenarios in both tools were able to generate the required
files to run the Java simulation.
We describe below the set of changes that the different scenarios involved,

along with the observed behaviour of the tools.
1) Clean execution: This scenario represents a first-time execution where no

caches are available. Both tools behaved as expected, that is, all tasks were
executed.
2) No changes: After a clean execution, in this scenario we trigger a new

one having made no changes to input or output resources. As such, we would
not expect any task to be executed, which is the case for both tools in the
experiment.

157

6 Evaluation

3) Change in the source model: In this scenario the component model file
is modified after a clean execution by changing the name of a port in the
component model. We expect everything to re-execute as component is an input
model for the validation and model-to-model transformation tasks, and this
property should be propagated to the extended model and into the generated
code. In the experiment, this is the case in both tools.
4) Change in intermediate output model: In this scenario we modify the

value of a filter element in the extended model after a clean execution. Using
the non-protective execution mode of ModelFlow, we expect it to trigger the
transformation to restore the consistency of this model and to skip the code
generation. A similar behaviour is expected from Gradle. This is the observed
behaviour on both.
5) Template changes: After a clean execution, this scenario consists of trigger-

ing an execution after modifying the template files required by the model-to-text
transformation. As this is the only task affected, we expect both tools to only
execute that task. This is the observed behaviour on both build tools.
6) Non-protected changes in generated code: In this scenario, we add a com-

ment outside of the protected regions of a generated file. In contrast to the
previous scenario, it is the task’s outputs that are modified not its inputs. In
this case ModelFlow only executed the model-to-text transformation, overwrit-
ing the not-allowed changes in the generated code, while Gradle skipped all
tasks, leaving the changes in the generated code.
7) Protected changes in generated code: In this scenario, we add a print

statement inside a protected region of a file from the generated code. We expect
all tasks to be skipped as the output should be considered up to date for the
code generating task. In this case, both build tools behave as expected.

Performance. We report on the execution times of the scenarios in which
both tools reacted to changes in the same way. The time measures of their
execution are shown in Figure 6.4. The value reported for the first scenario
corresponds to the time of the first execution (clean), while all other scenarios
report on the time of the second execution.

The workflow was configured to use a component model (24kB) that represents
a system of controllers (such as the one displayed in Figure 6.2a), and a
configuration model (686 bytes) that was used to create a filter for each controller.
Each scenario was executed 20 times with 5 warm-up iterations. We used Gradle
version 6.2.1 and invoked it with the Gradle Tooling API ensuring no cache
files were available between iterations. The experiments were executed on an
8-Core Intel Core i9 CPU @ 2.3 GHz with 16 GB of RAM and the Java Virtual
Machine was provided with up to 4GB of memory running with JDK 1.8.0_231.

158

6.1 Case study: Component workflow

1 2 3 4 5 7
Scenario

0

20

40

60

80

100

120

D
ur

at
io

n
(m

s)

Approach
Gradle
ModelFlow

Figure 6.4: Execution time of each scenario in milliseconds.

6.1.4 Discussion

While most scenarios resulted in similar behaviour on both built tools, we now
discuss those that did not.

In Scenario 4, ModelFlow can respond to changes in the extended model in
two different ways: either to (a) use the modified model as source and trigger
the code generation; or (b) discard the modifications in the model by triggering
the transformation and skipping the code generation. However, this is not
possible in Gradle which by default responds with the second approach which
discards the changes invoking the transformation. Moreover, the reason why the
model-to-model task is executed in Gradle is because the model file (declared
as output) is known before the task execution.

In Scenario 6, ModelFlow executed the model-to-text transformation which
was able to restore the build consistency while Gradle skipped the output
analysis for the generated files which are known after the execution. Gradle did
not trigger this execution because dynamic outputs are not used to determine
whether a re-execution is needed. A workaround for this would involve declaring
the output folder as an input directory so that changes in the generated files
are used to determine whether a re-execution is needed.

In Scenario 7 both tools behave as expected but for different reasons. Mod-
elFlow does not execute because it determines that the outputs have not
been modified from previous executions, while Gradle simply skips the output
analysis for the same reasons as in Scenario 6.

Regarding performance, the computation of changes to input resources
was slower in ModelFlow, particularly in the first-time execution. However,
subsequent executions were nearly identical to Gradle’s. The computation

159

6 Evaluation

of output resources is more exhaustive in ModelFlow which may account for
some of the overhead. While there was no mechanism to reuse loaded models
in Gradle, the size of models used does not incur on a significant reloading
overhead. It is unlikely that the use of larger models could highlight the impact
of the mode reuse approach has on the workflow performance. This is because
EMF models start presenting scalability issues when the models are very large
i.e., in the order of millions of elements. In contrast, using models with a
technology like Simulink could show the impact of the model reuse approach as
the loading stage is much more expensive in time than EMF, even for small
models.

6.1.5 Threats to validity

One clear threat to validity are the implementation differences between the
two build engines, inherent to their own architectures. We have minimised this
threat by implementing the code of the invoked tasks as equivalent as possible
so that the results of the evaluation reflect the impact of the architectural
decisions and not of the individual tasks. Furthermore, we opted for a custom
data structure to declare the models, so that tasks can receive the models
in a similar fashion as tasks in ModelFlow do, that is, declared globally so
that tasks can indicate which are used as input or output but, in Gradle’s
case, requiring reloading per task execution. The purpose of the performance
evaluation was to give a time context to the qualitative evaluation but was
not intended to measure the scalability of the approaches as the size of the
models used in the experiment are small. That said, we have removed from the
performance evaluation those scenarios in which the behaviour of the two tools
was different.

6.2 Case study: EuGENia

EuGENia is a tool that predates this research and consists of a workflow
with multiple tasks and intermediate models used to generate graphical model
editors. This case study explores the use of ModelFlow to reproduce this
workflow and compares it with the original implementation of EuGENia in
terms of performance and correctness under realistic change scenarios. In
contrast, the previous case study evaluated the correctness and performance of
ModelFlow across change scenarios affecting different types of input and output
artefacts from the workflow (e.g., in/out/inout models, output files, source
programs, protected/unprotected regions) and against another build tool.

Regarding the correctness evaluation, this case study reviews if the workflow
responds to change scenarios by executing the appropriate tasks, whether the

160

6.2 Case study: EuGENia

models are loaded and disposed appropriately, and verifies that the workflow
was able to recover traces from different types of tasks. Additionally, the
generated code was manually inspected to check for differences with the output
of the original implementation and, to ensure its correct behaviour, we verified
that a BPMN editor could be launched and used. Regarding the performance
evaluation, this case study measures the overhead of features like tracing and
up-to-date checks on inputs and outputs, and compares the overall execution
time with the original workflow implementation.

We introduce EuGENia in Sec. 6.2.1 then discuss how we re-implemented it
with ModelFlow in Sec. 6.2.2 and then evaluate its correctness and performance
in Sec. 6.2.3-6.2.5.

6.2.1 Background

EuGENia is an existing open-source tool that uses metamodel annotations
and model transformations to streamline the process of generating graphical
model editors based on EMF and GMF [106]. For example, Listing 6.5 shows a
metamodel defined in Emfatic (a textual notation for Ecore) which describes
a Simple Component-connector Language (SCL) [106]. This metamodel has
been extended with @emf and @gmf annotations placed on top of the various
metamodel constructs to specify aspects of the EMF and GMF generation
processes. The result of EuGENia’s execution on this metamodel is the graphical
editor in Figure 6.5a.

1 @namespace(uri="scl", prefix="scl")
2 @emf.gen(basePackage="eugenia.examples ")
3 package scl;
4 @gmf.diagram @gmf.node(label="name", color= "2,3,2")
5 class Component {
6 attr String name;
7 @emf.gen(propertyMultiline="true")
8 attr String description;
9 }
10 @gmf.compartment(layout="free")
11 val Component [*] subcomponents;
12 @gmf.affixed
13 val Port [*] ports;
14 }
15 @gmf.link(source="from", target="to", label="name", target

.decoration="arrow ")
16 class Connector {
17 attr String name;
18 ref Port#outgoing from;
19 ref Port#incoming to;
20 }

161

6 Evaluation

21 @gmf.node(figure="ellipse ", size= "15,15", label.icon="
false", label.placement="external ", label="name")

22 class Port {
23 attr String name;
24 val Connector#from outgoing;
25 ref Connector#to incoming;
26 }

Listing 6.5: Annotated Emfatic metamodel of an SCL

(a) Initial

(b) Polished

Figure 6.5: SCL editor generated with EuGENia (Image from [106]).

To enable the generation of a graphical editor from a metamodel, EuGENia
extends and integrates the built-in EMF and GMF code generation processes
described below.
The EMF code generation process starts from the definition of the domain

metamodel (abstract syntax) in Ecore or an Emfatic [183] file. Then built-in
EMF model-to-model transformations are used to produce the EMF generator
model (GenModel) from the metamodel. The GenModel captures Java imple-
mentation details and can be further customised. Finally, an EMF built-in
model-to-text transformation consumes the GenModel and produces the Java
code and required configuration files.

The Graphical Modeling Framework (GMF) provides a model-driven approach
to the generation of Eclipse-based graphical editors for EMF-based DSLs. Its
code generation process builds on the EMF code generation process. The first
stage of this process involves the manual construction of models that specify

162

6.2 Case study: EuGENia

different aspects of the graphical syntax of the language. These models include
the graph model (GmfGraph) which specifies the shapes, connections, labels,
decorations, etc.; the tooling model (GmfTool) which specifies element creation
tools; and the mapping model (GmfMap) which weaves the graphical elements
in the GmfGraph model with the creation tools of the GmfTool model and the
abstract syntax elements of the Ecore metamodel. The second stage of the
process involves the production of a generator model (GmfGen) from the mapping
model. The generator model contains the implementation details required by
the graphical editor code generator and is produced from a model-to-model
transformation. In the last stage, code is generated from the generator model.
The dependency graph in Figure 6.6 shows all the steps (groups of tasks of

same colour) executed by EuGENia and the model resources they consume and
produce.

Figure 6.6: EuGENia task-resource and inter-task dependencies. The tasks in
each step are sequentially ordered top-to-bottom. The solid arrows
show the input and output models of the different tasks. Task
names ending in a question mark denote optional tasks.

Without EuGENia, simple metamodel changes can be propagated to the

163

6 Evaluation

corresponding GenModel by an EMF built-in reconciler without overwriting any
user-defined customisations. However, for more complex changes the GenModel
would need to be regenerated and customised from scratch [106]. EuGENia
provides a set of built-in metamodel annotations to attach implementation
semantics which can be used to customise the GenModel after it is generated.
Some of these (starting with @emf) are illustrated in Listing 6.5.
Similarly, while GMF provides built-in wizards for generating the GmfTool,

GmfGraph, and GmfMapping models from the metamodel, the resulting models
are very simple [106]. Consequently, these models need to be manually created
and updated after any metamodel changes [106]. With EuGENia, another set
of built-in metamodel annotations can be used to attach graphical semantics
to metamodel elements and enable the automated derivation of these models
from the metamodel. Some of these (starting with @gmf) are illustrated in
Listing 6.5.

Overall, after model-to-model transformation tasks, EuGENia triggers built-
in fixes derived from the used annotations but also allows the execution of
polishing transformations, that is, user-defined in-place model transformations
that can be used to fine-tune the models produced by predefined model-to-
model transformations and model fixes. After fixing and polishing, the initial
SCL editor from the previous example could look like Figure 6.5b. In addition,
EuGENia provides and executes built-in metamodel validations that, upon
failure, halt the execution of subsequent steps of the EMF and GMF processes.

EuGENia steps can be launched from Eclipse. The EuGENia/Eclipse UI has
manually extended context-menus of the different workflow models to trigger
“build targets” that use them as starting point. For example, the context-menu
for an Emfatic file offers 3 build targets: to generate the GMF Editor (which is
the complete workflow), to generate the Model code and to generate the Ecore
model.

Alternatively, EuGENia can also be executed as an Ant task that can run the
entire workflow or only a part of it. To execute a subset of its workflow the Ant
task must specify the starting and/or ending step. Below is an example of a
EuGENia workflow that will only execute the gmf and gmfgen steps. As an Ant
script, EuGENia can be integrated into other model management workflows or
be invoked automatically when the metamodel is changed.

<epsilon.eugenia src="my.ecore"
firstStep="gmf" lastStep="gmfgen"/>

6.2.2 Approach

In this section we discuss how the EuGENia workflow has been re-implemented
in ModelFlow. We have fragmented the complete workflow definition into

164

6.2 Case study: EuGENia

several listings for readability. We use the EuGENia steps described in the
previous section to decompose and describe the workflow in groups of tasks
that serve towards a common goal. The resolved dependency graph is shown in
Figure 6.7. Overall, the ModelFlow workflow specification of EuGENia declares
6 models and 14 tasks out of which, 12 are model management tasks and 2 are
helper tasks.

The following listings share parameters and variables across different task
and model declarations. The parameters defined in lines 1-3 of Listing 6.6 are
provided at runtime by the user. The metamodelName is the name of the source
metamodel file (without extension) that will be used to drive the graphical
editor components. All intermediate models that will be produced will share
this name but differ in their file extension and the metamodel they conform
to. The pluginPrefix is used to determine the prefixing name of the Java
projects that will be generated with the code that will launch the graphical
editor. Finally, the copyrightStatement is an optional parameter that points
to a file from which copyright information shall be extracted.

The variables base and pluginName are defined in the pre block in lines 4-7
of Listing 6.6 and compute useful information based on the metamodelName

and pluginPrefix parameters. In particular, the base refers to the directory
in which the models are or will be persisted and the pluginName computes the
base name for the Java projects that will be generated.

1 param metamodelName;
2 param pluginPrefix;
3 param copyrightStatement;
4 pre {
5 var base = "resources/model/" + metamodelName;
6 var pluginName = pluginPrefix + "." + metamodelName;
7 }

Listing 6.6: ModelFlow EuGENia workflow parameters and variables

The model declarations are shown in Listing 6.7 and these include ECore,
GenModel, GmfTool, GmfMap, GmfGraph and GmfGen. All these models are of
type epsilon:emf and share the same name differing in the file extension.
Similarly, all these models conform to a different metamodel described by the
parameter metamodelUri.

1 model ECore is epsilon:emf {
2 src : base + ".ecore"
3 metamodelUri : "http :// www.eclipse.org/emf /2002/ Ecore

"
4 }
5 model GenModel is epsilon:emf {
6 src : base + ".genmodel"

165

6 Evaluation

7 metamodelUri : "http :// www.eclipse.org/emf /2002/
GenModel"

8 }
9 model GmfGen is epsilon:emf {
10 src : base + ".gmfgen"
11 metamodelUri : "http :// www.eclipse.org/gmf /2009/

GenModel"
12 expand : true
13 saveOpts {
14 var map = new Map;
15 map.put("ENCODING", "UTF -8");
16 map.put("SAVE_ONLY_IF_CHANGED","MEMORY_BUFFER");
17 map.put("SCHEMA_LOCATION",true);
18 map.put("LINE_WIDTH" ,1);
19 return map;
20 }
21 }
22 model GmfMap is epsilon:emf {
23 src : base + ".gmfmap"
24 metamodelUri : "http :// www.eclipse.org/gmf /2008/

mappings"
25 expand : true
26 }
27 model GmfTool is epsilon:emf {
28 src : base + ".gmftool"
29 metamodelUri : "http :// www.eclipse.org/gmf /2005/

ToolDefinition"
30 }
31 model GmfGraph is epsilon:emf {
32 src : base + ".gmfgraph"
33 metamodelUri : "http :// www.eclipse.org/gmf /2006/

GraphicalDefinition"
34 }

Listing 6.7: Models used in the ModelFlow EuGENia workflow

The Ecore step shown in Listing 6.8 has one task that transforms an Emfatic
file into the ECore model. This task is captured by the Emfatic2Ecore task
which is an EMF task of type emf:emfatic2ecore. The Emfatic file is used as
the source of the task which parses the file and generates the ECore as output.

1 task Emfatic2Ecore is emf:emfatic2ecore
2 out ECore {
3 src : base + ".emf"
4 }

Listing 6.8: Ecore step tasks in the ModelFlow EuGENia workflow

166

6.2 Case study: EuGENia

In EuGENia the genmodel step consists of four tasks: ValidateEcoreFor-

GenModel, Ecore2GenModel, FixGenModel, and PolishGenModel. Listing 6.9
shows how these tasks are captured in ModelFlow. The ValidateEcoreFor-

GenModel task (lines 1-4) is an EVL task that validates that the ECore is
well-formed and that it can be used to produce the GenModel model. The
Ecore2GenModel task (lines 5-22) is an ETL task that takes as input the ECore
model and produces the GenModel. This task also uses additional parameters,
some that are passed by the user at runtime (e.g., pluginName) while others
(e.g. copyright and genPackages) are the result of the execution of other
tasks in the workflow. Line 14 shows how the map entry usedGenPackages

of the params task definition property receives the result of the EOL task
genPackages (lines 53-57) while lines 15-19 illustrate how the map entry copy-

right uses the file contents retrieved by the file reader task copyright (lines
58-58). The explicit use of other task results in the Ecore2GennModel task
creates an implicit dependency between these tasks. Also, since the results
of the genPackages task are only accessible in memory, it is annotated with
@always to ensure that, regardless of its inputs, it always executes. Tasks of
type core:fileReader, such as the copyright task, do not need an annotation
as they are always executed.

The tasks FixGenModel (lines 23-36) and PolishGenModel (lines 37-52) are
both of type EOL. They both receive as input the ECore model and modify
the GenModel. In contrast to FixGenModel, PolishGenModel is an optional
task that is executed when the polishing script is available as indicated by its
guard (line 41). Because these two tasks use the same models in the same
way (consume one and modify the other), to ensure that PolishGenModel is
executed after FixGenModel (if the guard is valid), then a dependency must be
created between these two tasks.

1 @always
2 task ValidateEcoreForGenModel is epsilon:evl
3 in ECore as Ecore {
4 src : "resources/task/Ecore2GenModel.evl"
5 }
6 task Ecore2GenModel is epsilon:etl
7 in ECore as Ecore
8 out GenModel
9 dependsOn ValidateEcoreForGenModel {
10 src : "resources/task/Ecore2GenModel.etl"
11 params {
12 var map = new Map;
13 map.put("pluginName", pluginName);
14 map.put("foreignModel", "Ecore2GenModel");
15 map.put("usedGenPackages", genPackages.result);

167

6 Evaluation

16 if (copyrightStatement.isDefined ()){
17 map.put("copyright", copyright.contents);
18 } else {
19 map.put("copyright", "");
20 }
21 return map;
22 }
23 }
24 task FixGenModel is epsilon:eol
25 in ECore as Ecore
26 inout GenModel {
27 src : "resources/task/FixGenModel.eol"
28 params {
29 var map = new Map;
30 if (copyrightStatement.isDefined ()){
31 map.put("copyright", copyright.contents);
32 } else {
33 map.put("copyright", "");
34 }
35 return map;
36 }
37 }
38 task PolishGenModel is epsilon:eol
39 in ECore
40 inout GenModel
41 dependsOn FixGenModel {
42 guard : self.src.exists ()
43 src : "resources/task/polish/FixGenModel.eol"
44 params {
45 var map = new Map;
46 if (copyrightStatement.isDefined ()){
47 map.put("copyright", copyright.contents);
48 } else {
49 map.put("copyright", "");
50 }
51 return map;
52 }
53 }
54 @always
55 task genPackages is epsilon:eol
56 in ECore {
57 src : "resources/task/genPackages.eol"
58 }
59 task copyright is core:fileReader
60 in ECore as Ecore {
61 guard: copyrightStatement.isDefined ()

168

6.2 Case study: EuGENia

62 src {
63 if (copyrightStatement.isDefined ()){
64 return copyrightStatement;
65 } else {
66 return "";
67 }
68 }
69 }

Listing 6.9: GenModel step tasks in the ModelFlow EuGENia workflow

The GMF step shown in Listing 6.10 consists of 3 tasks ValidateEcore-

ForGMFToolGraphMap, Ecore2GMFToolGraphMap and PolishGMFToolGraphMap.
The ValidateEcoreForGMFToolGraphMap task (lines 1-4) is another EVL val-
idation against the Ecore which checks for well-formedness on the graphical
side. Then Ecore2GMFToolGraphMap (lines 5-10) uses as input the ECore to
generate three models (GmfMap, GmfGraph and GmfTool) through an EOL pro-
gram. Then PolishGMFToolGraphMap (lines 11-16) may execute if the user
provides a polishing script that modifies the three generated models. Since
Ecore2GMFToolGraphMap produces the three models (rather than modify them),
it is executed before the polishing task.

1 @always
2 task ValidateEcoreForGMFToolGraphMap is epsilon:evl
3 in ECore as Ecore {
4 src : "resources/task/ECore2GMF.evl"
5 }
6 task Ecore2GMFToolGraphMap is epsilon:eol
7 in ECore as Ecore
8 out GmfMap and GmfGraph and GmfTool
9 dependsOn ValidateEcoreForGMFToolGraphMap {
10 src : "resources/task/ECore2GMF.eol"
11 }
12 task PolishGMFToolGraphMap is epsilon:eol
13 in ECore
14 inout GmfMap and GmfGraph and GmfTool {
15 guard : self.src.exists ()
16 src : "resources/task/polish/ECore2GMF.eol"
17 }

Listing 6.10: GMF step in ModelFlow EuGENia workflow

The GmfGen step shown in Listing 6.11 consists of three tasks: GmfMap2GmfGen,
FixGmfGen and PolishGmfGen. The GmfMap2GmfGen task is a GMF task that
takes as input the models ECore, GmfMap and GenModel to produce a GmfGen

model. Then the FixGmfGen task executes an EOL program intended to modify
the GmfGen model. Once more, the PolishGmfGen task is another EOL program

169

6 Evaluation

that depends on the previous task and only executes if the source file is provided
by the user.

1 task GmfMap2GmfGen is gmf:gmfMap2gmfGen
2 in ECore as Ecore and GmfMap and GenModel
3 out GmfGen;
4 task FixGmfGen is epsilon:eol
5 in ECore as Ecore and GenModel and GmfMap and

GmfGraph and GmfTool
6 inout GmfGen {
7 guard : self.src.exists ()
8 src : "resources/task/FixGMFGen.eol"
9 params {
10 var map = new Map;
11 if (copyrightStatement.isDefined ()){
12 map.put("copyright", copyright.contents);
13 } else {
14 map.put("copyright", "");
15 }
16 return map;
17 }
18 }
19 task PolishGmfGen is epsilon:eol
20 in ECore as Ecore and GenModel and GmfMap and

GmfGraph and GmfTool
21 inout GmfGen
22 dependsOn FixGmfGen {
23 guard : self.src.exists ()
24 src : "resources/task/polish/FixGMFGen.eol"
25 }

Listing 6.11: GmfGen step in ModelFlow EuGENia workflow

The last two steps of the EuGENia workflow are the code generation steps: one
for the domain code (GenerateDomainModelCode), another for the graphical
editor (GenerateDiagramCode). The domain code generator task (lines 1-5) is
provided by EMF and uses the GenModel as input, and it receives additional
parameters to configure the generation. The graphical editor generator task
(lines 5-7) is provided by GMF and uses the GmfGen model as input.

1 task GenerateDomainModelCode is emf:genCode
2 in GenModel {
3 generateEdit : true
4 generateEditor : true
5 generateTests: true
6 }
7 task GenerateDiagramCode is gmf:genDiagram

170

6.2 Case study: EuGENia

8 in GmfGen;

Listing 6.12: EmfCode step in ModelFlow EuGENia workflow

The resolved dependency graph is illustrated in Figure 6.7 while the computed
execution graph is shown in Figure 6.8.

6.2.3 Setup

To evaluate ModelFlow’s adaptation of EuGENia we executed it under different
change scenarios that are common in EuGENia workflows. We evaluate the
correctness of the adaptation by analysing the tasks that are executed on the
different mutation scenarios. Similarly, we measure the time it took for the
workflow to execute in ModelFlow and compare it to its execution in the original
implementation. Furthermore, we profiled the total and partial execution with
ModelFlow to estimate the overhead of features such as conservative executions
and model management tracing.

Both approaches (ModelFlow and the original implementation) were measured
executing a workflow that used the same Emfatic file as input3 which was
originally presented in [106] and describes a simple BPMN process. Furthermore,
we reused the two polishing scripts and the custom plugin provided in [106] to
customise the graphical editor generation in both approaches. An example of a
simple BPMN model in the generated graphical editor (using ModelFlow) is
shown in Figure 6.9.

Scenarios

We have executed the EuGENia workflow in six different scenarios for both
approaches. The first scenario represents the first-time execution, while all other
scenarios represent changes to resources which affect subsequent executions.
We describe below the set of changes that the different scenarios involved, along
with the observed behaviour of the tools.
i) First-time execution: This scenario represents a first-time execution.
ii) No changes: This scenario represents a second execution of the workflow

having made no changes to any artefacts.
iii) GMF annotation change in Emfatic: The second execution happens after
the annotation border.style of the @gmf.node annotation of the Group class
is changed from dash to dot. This change affects the graphical representation
of the metamodel constructs.
iv) Rename of EMF class in Emfatic: This scenario represents a second
workflow execution after the class Activity in the Emfatic is renamed to Task.
This change affects the metamodel and its graphical representation.

3https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.
eugenia.bpmn

171

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.eugenia.bpmn
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.eclipse.epsilon.eugenia.bpmn

6 Evaluation

Figure 6.7: EuGENia ModelFlow dependency graph.

v) GenModel annotation in Emfatic: This scenario represents an execution
after adding the @emf.gen annotation to the top of the Emfatic file, to specify

172

6.2 Case study: EuGENia

Figure 6.8: EuGENia ModelFlow execution graph.

a basePackage. This change affects how the metamodel code is generated and
implicitly affects the graphical side as well.
vi) Modify GMF polishing: In this scenario the script Ecore2GMF.eol (invoked
by the task PolishGMFToolGraphMap) is updated to change a label’s font style
and the border colour of a figure. The changes are shown in Listing 6.13 and
have been slightly adapted from the polishing transformation in Listing 10 of
[106] to be used with the BPMN metamodel used in the workflow.

1 // Add bold font to component label
2 var activityLabel = GmfGraph!Label.all.selectOne(l|l.

name="ActivityLabelFigure");
3 activityLabel.font = new GmfGraph!BasicFont;
4 activityLabel.font.style = GmfGraph!FontStyle#BOLD;
5
6 //Set background color and border of the component

compartment
7 var activityFigure = GmfGraph!RoundedRectangle.all.

173

6 Evaluation

Figure 6.9: BPMN model created using the graphical editor generated with
ModelFlow.

selectOne(r|r.name="ActivityFigure");
8 var lineBorder = new GmfGraph!LineBorder;
9 lineBorder.width = 1;
10 activityFigure.backgroundColor = createColor

(245 ,245 ,245);
11 activityFigure.border = lineBorder;
12
13 operation createColor(red : Integer , green : Integer ,

blue : Integer) : GmfGraph!RGBColor {
14 var color = new GmfGraph!RGBColor;

174

6.2 Case study: EuGENia

15 color.red = red;
16 color.blue = blue;
17 color.green = green;
18 return color;
19 }

Listing 6.13: Extension fragment to polish script

Additional tasks

While the EuGENia workflow relies on several Epsilon tasks that were initially
integrated to ModelFlow, it also required additional tasks to invoke EMF and
GMF tasks that are part of the EuGENIA workflow. More specifically, the
additional tasks that were integrated to ModelFlow to support this workflow
were:

gmf:gmfgen: Generates a graphical generator model (GmfGen)
from a set of GMF models (GmfGraph, GmfMap,
GmfTool).

gmf:gencode: Generates the graphical editor code from a graph-
ical generator model (GmfGen).

emf:emfatic2ecore: Generates an Ecore file from an Emfatic file.
emf:gencode: Generates the metamodel code from a generator

model (GenModel).

Differences from the original EuGENia workflow

The original EuGENia workflow works by sequentially executing a series of
delegates (or tasks). The delegates that were executed in our experiments
to represent the original workflow are shown in Listing 6.14. Some of those
delegates that perform fixes also invoke the polishing tasks if their scripts are
provided.

1 return Arrays.asList(
2 new Emfatic2EcoreDelegate (),
3 new GenModelEcoreValidationDelegate ()
4 .setClearConsole(false),
5 new ToolGraphMapEcoreValidationDelegate ()
6 .setClearConsole(false),
7 new Ecore2GenModelDelegate ()
8 .setClearConsole(false),
9 new FixGenModelDelegate ()
10 .setClearConsole(false),
11 new GenerateToolGraphMapDelegate ()
12 .setClearConsole(false),
13 new GmfMap2GmfGenDelegate ()

175

6 Evaluation

14 .setClearConsole(false),
15 new FixGmfGenDelegate ()
16 .setClearConsole(false),
17 new GenerateEmfCodeDelegate (),
18 new GenerateDiagramCodeDelegate ()
19 .setTargetPart(targetPart)
20);

Listing 6.14: Original EuGENia delegate execution order.

All Epsilon programs used in EuGENia (e.g., ECore2GMF.etl) remain the
same except for EOL tasks as they had to be extended to produce traceability
information. In those cases, we have modified the program to use tracing
facilities provided by the ModelFlow EOL task definition.

Regarding Epsilon task definitions such as EOL or ETL, their base execu-
tion remains the same, but their invocation had to be adapted to ModelFlow
to determine whether input and outputs have changed and to collect traces.
Regarding EMF and GMF task definitions, these underwent an invasive ad-
aptation of their execution to recover generated files and have the ability to
retrieve traceability information which is not readily available in their original
implementation. In this workflow, this traceability information could be used
to identify all generated files that come from a particular metamodel attribute
or class, or to explore the variations in generated code or intermediate models
based on the use of different annotations in the metamodel.

The execution parameters used in ModelFlow differ slightly from the ones
used in the original implementation. In ModelFlow we use the metamodelName,
pluginPrefix and copyright location as parameters, whereas the original
workflow does not ask for pluginPrefix and assumes a default copyright
location. Other conventions, such as the polish script location and naming
remain the same in both implementations. These slight modifications are
unlikely to have a significant impact in performance.

6.2.4 Correctness results

To determine the correctness of the workflow we examined the expected execu-
tion process (tasks skipped based on change scenarios), the number of times
that models were loaded and disposed and the generated management traces.
Additionally, the generated code was manually inspected to check for differ-
ences with the output of the original implementation and to ensure its correct
behaviour we verified that a BPMN editor could be launched and used.

176

6.2 Case study: EuGENia

Executed tasks per scenario

Table 6.1 presents which tasks were executed by ModelFlow under the different
change scenarios. Compared to the original implementation, EuGENia executes
all the tasks regardless of the changes. In the table we can notice that the task
Emfatic2Ecore is correctly skipped where the Emfatic file is not modified, that
is, in scenarios ii and vi as the former is the scenario with no changes, and the
latter the scenario in which the polishing script for the task PolishGMFTool-

GraphMap is modified. The following four tasks in the table were supposed to
be executed as per the @always annotation.

Table 6.1: Executed tasks per scenario

Task i ii iii iv v vi

Emfatic2Ecore 4 x 4 4 4 x
genPackages 4 4 4 4 4 4
copyright 4 4 4 4 4 4
ValidateEcoreForGenModel 4 4 4 4 4 4
ValidateEcoreForGMFToolGraphMap 4 4 4 4 4 4
Ecore2GenModel 4 x 4 4 4 x
Ecore2GMFToolGraphMap 4 x 4 4 4 x
FixGenModel 4 x 4 4 4 x
PolishGMFToolGraphMap 4 x 4 4 4 4
PolishGenModel x x x x x x
GmfMap2GmfGen 4 x 4 4 4 4
GenerateDomainModelCode 4 x 4 4 4 x
FixGmfGen 4 x 4 4 4 4
PolishGmfGen 4 x 4 4 4 4
GenerateDiagramCode 4 x 4 4 4 4

The tasks Ecore2GenModel and Ecore2GMFToolGraphMap are executed when
the Emfatic model is modified (even with annotations) as it produces a modi-
fied Ecore metamodel. The GenModel produced by the Ecore2GenModel task
changes in Scenarios i, iv,v. As such, the FixGenModel task is expected to
be executed in these scenarios. The reason why this task is also executed in
scenario iii is that the GenModel produced by the Ecore2GenModel task is the
same as in the previous execution but not the same as its latest version at the
end of the previous workflow execution (after the task PolishGenModel). In
particular, the latest version has additional information including copyright
material which is extracted in the copyright task.

The PolishGMFToolGraphMap task is executed in scenarios i and vi because a
polishing script is provided or modified, respectively. However, since the GmfMap
model depends on the Ecore (see Figure 6.10) to compute its stamp (as indicated
by the expand flag in the model declaration), changes to its dependencies or to
itself trigger the execution of the task PolishGMFToolGraphMap where GmfMap

177

6 Evaluation

is used as input. As such, the task is also executed in scenarios iii-v.
The GmfMap2GmfGen task is executed whenever the GmfMap model or its

dependencies change, that is, in scenarios i, iii-vi. Task GenerateDomainMod-

elCode is executed when the Emfatic is modified, which excludes scenarios
ii and iv. The remaining tasks (FixGmfGen, PolishGmfGen and GenerateDia-

gramCode) are always executed as they depend on GmfGen which also computes
its stamp based on dependencies.

genmodel

ecore

gmfgen

gmfmap

gmfgraph gmftool

Figure 6.10: EuGENia model inter-dependencies. Arrows denote a “requires”
relationship e.g., genmodel requires ecore

Model loading/disposal

In all scenarios except Scenario ii - No modification, ModelFlow correctly
loaded and disposed each model exactly once. In Scenario ii only the Ecore

model was correctly loaded and disposed once during the execution.

End-to-end traceability

Out of the 14 tasks executed by ModelFlow, 12 should produce traceability
information because of how they interact with models. The EuGENia workflow
was able to recover traces from tasks that provide them by default e.g., EVL
and ETL, create them when they do not e.g., EOL and GMF/EMF tasks.

Figure 6.11 illustrates a sample of the recovered traces from the execution of
the Ecore2GenModel ETL task. The figure shows the model element identifiers
(hexagons) from the Ecore model (green) that produced model elements in the
GenModel (brown). These models were produced in the context of the ETL
rule with name EStructuralFeature2GenFeature.
As an example of created traces when tasks definition types do not provide

them, Figure 6.12 shows the traces from the Ecore2GMFToolGraphMap EOL
task which passed a trace utility to the EOL program at runtime.
For the Emfatic2Ecore task, which is an EMF task, we decided not to

produce traceability as they both represent the same information but in a
different notation. In the ModelFlow implementation of tasks GmfMap2GmfGen,
GenerateDomainModelCode and GenerateDiagramCode we have modified the

178

6.2 Case study: EuGENia

Figure 6.11: Trace view of the EstructualFeature2GenFeature rule of the
ETL program executed by the Ecore2GenModel task. The view
shows the model elements (hexagons on the right) that were pro-
duced by the ETL rule on the model GenModel from model elements
(hexagons on the left) of the model ECore.

Figure 6.12: Partial management trace view of the EOL program executed
by the Ecore2GMFToolGraphMap task. Model elements on the left
belong to the ECore model while green model elements on the
right belong to the GmfGraph model and beige ones to the GmfMap
model. The arrows show the name of the trace relationship.

execution of their task definition types to listen for output files or elements
being generated and capture those traces. As an example, Figure 6.13 shows a

179

6 Evaluation

fragment of the traces captured during the execution task GmfMap2GmfGen.

Figure 6.13: Partial management trace view of the GmfMap2GmfGen task. Green
model elements on the left belong to the GmfMap model while beige
ones on the right belong to the GmfGen model. The arrows indicate
the trace relationship between the elements, in this case the stage
at which output model elements were created.

6.2.5 Performance results

We report on the execution of the EuGENia workflow under the change scenarios
described in Sec. 6.2.3 both in with the original implementation (Orig) and
with its ModelFlow adaptation (MF).

The value reported for the first scenario corresponds to the first execution,
while all other scenarios report on the second. Each approach reports the aver-
age of 20 executions that were performed for each scenario, having previously
discarded 5 warm-up executions. Both the original and the ModelFlow ap-
proaches were automated in a similar fashion using parametrised Java tests and
reusing the automated change scenarios. The original implementation had to
be adapted for both the ModelFlow and original approaches to be comparable
and measurable. We had to listen for asynchronous jobs to complete and to
enable or disable delegates to have an equivalent execution to ModelFlow4. The
experiments were executed on an 8-Core Intel Core i9 CPU @ 2.3 GHz with 16
GB of RAM and the Java Virtual Machine was provided with up to 4GB of
memory running with JDK 1.8.0_231.

Results

Figure 6.14 shows the mean execution time in seconds per scenario and ap-
proach (Orig, MF). The black lines on top of the bars show the 95% confidence
interval. Overall, the approaches were not significantly different in scenarios

4EuGENia is in active development, so we had to choose a snapshot to replicate it in
ModelFlow which then evolved.

180

6.2 Case study: EuGENia

i, vi, whereas in scenarios ii, v MF outperformed Orig and in scenarios iii, iv
Orig outperformed MF.

i ii iii iv v vi
Scenario

0

1

2

3

4

5

6

7

8

D
ur

at
io

n
(s

)

Approach
MF
Orig

Figure 6.14: Mean execution time (s) per scenario and approach. Black lines
at the top of each bar represent 95% confidence intervals for the
mean.

Compared to Orig, ModelFlow’s features (conservative executions, model
management and management traces) can produce an additional overhead.
However, some of these additional features like conservative execution and
model management should pay-off when artefacts of the workflow change. To
understand how these features affect the workflow execution performance we
provide Table 6.2 which shows the time in seconds spent by MF in different exe-
cution phases. Among these execution phases we find the core task logic which
is executed after the task has been configured and all the inputs (parameters
and models) have been processed and just before any outputs or traces need to
be processed. Also, the execution graph and dependency graph stages represent
the time spent resolving these graphs. The stages process inputs and process
outputs represent the time spend processing the stamps of input parameters
such as the program of an EOL task, but also that of task outputs such as
the generated files by a code generator. Similarly, the stages process models
before/after execution represent the time spent processing the configuration of
models and their stamps. The previous stages do not contain the time spent
loading or disposing the models, these times are presented in their own stage:
Load or Dispose. We can observe that the time spent loading models is very
small. This is partly because models are small and of type EMF. Other model
formats like Simulink take longer to load. In contrast, we can observe that
the time spent disposing the models is more expensive. This is likely due to
the overhead of the serialization and of write operations. Figure 6.15 provides
a graphical view of the execution time of these phases (stacked) per scenario
(excluding the core task logic). Overall, the core task logic execution phase is

181

6 Evaluation

Table 6.2: Execution time (ms) by execution stage for MF

Scenario i ii iii iv v vi
Stage

Dependency graph 0.35 0.30 0.33 0.30 0.30 0.31
Execution graph 2.69 2.97 2.49 3.44 3.03 3.65
Process inputs parameters 1.36 0.42 1.26 1.32 1.33 0.73
Process models before execution 62.4 2.15 64.2 67.0 68.7 90.5
Load models 0.092 0.008 0.088 0.077 0.079 0.081
Core task logic 5564 50.8 7457 7753 5958 7131
Process outputs parameters 16.4 0.058 14.4 14.1 14.6 13.8
Process models after execution 47.2 0.052 45.3 49.1 48.3 42.0
Dispose models 5.59 0.89 5.48 5.44 5.73 4.14
Management Traces 0.25 0.045 0.22 0.23 0.26 0.14

i ii iii iv v vi
Scenario

0

20

40

60

80

100

120

140

160

St
ac

ke
d

tim
e

(m
s)

Stage
Dependency graph
Dispose models
Execution graph
Load models
Management Traces
Process inputs parameters
Process models after execution
Process models before execution
Process outputs parameters

Figure 6.15: Time spent in ModelFlow features per scenario

above 96.7% of the total execution in scenarios i,iii-vi, which indicates a total
overhead of 3.3% due to ModelFlow features and base processing. In these
scenarios, the phases that have the most impact on the performance are the
model processing phases which compute their stamps.

In all approaches the EuGENia workflow is more time consuming in sub-
sequent executions (scenarios ii-vi) compared to the first execution, except
for MF in scenario ii. This is partly explained by the execution of the Gener-

ateDiagramCode task which takes longer to execute in executions where the
GmfGen model already exists as shown in Figure 6.16. This figure shows the
mean execution time of the core task logic execution phase of the different tasks
in the workflow (in seconds) per scenario in the two MF approaches.

182

6.2 Case study: EuGENia

01234567 Duration (s)

Sc
en

ar
io

 =
 i

Sc
en

ar
io

 =
 ii

Sc
en

ar
io

 =
 ii

i

Polish
GenModel

Ecore2GenModel
genPackages

Emfatic2Ecore

GmfMap2GmfGen

ValidateEcoreForGMFToolGraphMap

Polish
GMFToolGraphMap

FixGenModel

ValidateEcoreForGenModel

Polish
GmfGen

FixGmfGen

GenerateDomainModelCode copyright

Ecore2GMFToolGraphMap

GenerateDiagramCode

Ta
sk

01234567 Duration (s)

Sc
en

ar
io

 =
 iv

Polish
GenModel

Ecore2GenModel
genPackages

Emfatic2Ecore

GmfMap2GmfGen

ValidateEcoreForGMFToolGraphMap

Polish
GMFToolGraphMap

FixGenModel

ValidateEcoreForGenModel

Polish
GmfGen

FixGmfGen

GenerateDomainModelCode copyright

Ecore2GMFToolGraphMap

GenerateDiagramCode

Ta
sk

Sc
en

ar
io

 =
 v

Polish
GenModel

Ecore2GenModel
genPackages

Emfatic2Ecore

GmfMap2GmfGen

ValidateEcoreForGMFToolGraphMap

Polish
GMFToolGraphMap

FixGenModel

ValidateEcoreForGenModel

Polish
GmfGen

FixGmfGen

GenerateDomainModelCode copyright

Ecore2GMFToolGraphMap

GenerateDiagramCode

Ta
sk

Sc
en

ar
io

 =
 v

i

Ap
pr

oa
ch

M
F

Figure 6.16: Core task logic execution times (in seconds) per scenario. This
plot is provided to demonstrate the dominance of the Generate-
diagramCode task, particularly after the first execution.

183

6 Evaluation

6.2.6 Discussion

Regarding correctness, ModelFlow was able to capture the EuGENia workflow
and to execute the required tasks in all the evaluated change scenarios based
on their task and model dependencies. Contrary to our predictions, Scenario
iv, in which the Emfatic is modified by adding a GMF annotation, required
the GenerateDomainModelCode task to re-execute despite having the same
outcome as previous executions. This is explained by the chain of tasks that
modify a the GenModel: Ecore2GenModel (produces), FixGenModel (modifies)
and PolishGenModel (modifies). In the second execution of this scenario,
Ecore2GenModel is executed because the Ecore now has the new annotation,
however the GenModel does not change from its past execution, but it changes
from the last version that the workflow produces (after the modifications). As
such, ModelFlow triggers both FixGenModel and PolishGenModel once more.
While this is correct, in practice it would be convenient to have checkpoints
for models that could be aware of these potential situations and prevent their
execution.

Overall, Orig was faster than MF in scenarios where most (if not all) tasks
had to be re-executed (scenarios i, ii-v). However, MF proved to be faster
in scenarios where not all tasks were executed (scenarios ii and vi), making
the input and output tracking worthwhile. EuGENia is a workflow in which
tasks build on previous work and reuse the models throughout the workflow
execution. As such, changes in a reused model such as the Ecore affect most of
the workflow execution. Therefore, ModelFlow may be more useful in workflows
where models are less interconnected with each other.

By far, processing models before and after execution, to determine if they have
changed compared with the execution trace were the stages that caused most
overhead excluding the core task logic execution. This suggests, that having
an approach able to detect changes on models and to provide a mechanism to
compute their stamps efficiently could improve the performance of MF. Similarly,
more efficient ways to process the stamps of outputs and inputs could help
improve ModelFlow’s performance.

With the current implementation, the collection of management traces does
not seem to impact the performance of MF significantly. Notice that the
end-to-end tracing value reported in Figure 6.15 measures the moment where
ModelFlow asks a task instance for its collected traces to merge them with
the workflow’s trace; it is not measuring tracing while the tasks instances are
executing nor when they translate traces into ModelFlow’s format. While some
task definitions could have been instructed not to collect traces during their
execution (e.g., gmf:genDiagram), others like epsilon:etl always produce
such information as is required for execution. In the latter case, additional

184

6.3 Case study: Industrial workflow

overhead would be caused by the translation to match ModelFlow’s metamodel
and would depend on the task definition implementation.

There are technical challenges that should be considered in future invest-
igations like the reuse of models across frameworks. For example, while it
was possible to reuse Epsilon EMF model instances (e.g., epsilon:emf) in
non-Epsilon tasks (e.g., gmf:genDiagram), it was challenging to keep them syn-
chronised. It would be worth exploring mechanisms to reuse models like EMF
across frameworks like Epsilon, GMF and ATL without losing information and
with relative ease. For example, it would be convenient to use the same EMF
model in an Epsilon validation program but also in an ATL transformation
without requiring a dedicated EMF model definition for each framework (e.g.,
atl:emf and epsilon:emf) representing the same model.

6.2.7 Threats to validity

A threat to construct validity is the differences in the implementation of the task
definitions between ModelFlow and the original implementation. To ensure that
we could recover management traces and to identify inputs and outputs (e.g.,
generated files) we had no option but to modify some of the task definitions to
extract such information. Similarly, some of the these were also modified to
avoid loading or storing the models, as ModelFlow provides mechanisms to do
this when required. While these modifications make core task logic executions
between approaches not comparable, the overall workflow execution (which
achieves the same objective in both approaches) is comparable. Lastly, some
Epsilon scripts had to be rewritten to accommodate partial workflow executions.
For example, instead of blindly adding a new element to a model, we had to
check if it already existed and if not add it. To mitigate this threat to validity,
all approaches (MF and Orig) were executed with the same modified scripts.

Regarding external validity, the performance results from the experiment are
only valid in the context of the specific workflow and change scenarios. While
the feature overhead suggests that some phases of the ModelFlow process may
be more expensive in time than others, they are also inherently impacted by
the type and size of models used in the experiment (e.g., affects model loading,
disposal and model stamp computation) just as well as the complexity of the
tasks executed (e.g., may produce more traces to be processed).

6.3 Case study: Industrial workflow

This section presents a sanitised version of an industrial case study where we
use ModelFlow to support the software development of an Engine Electronic
Controller (EEC) for a turbine engine which must be adapted based on the

185

6 Evaluation

EEC physical settings and the software features supported by the turbine.

The design tool used to capture the EEC requirements and to generate its
code is in active development and has been built as model-based Integrated
Development Environment (IDE) atop Eclipse. Aside from the design of the
controller, the IDE will support the production of certification evidence, impact
analysis, traceability analysis and synchronisation between artefacts. The
development of the software that controls the EEC unit involves several models
including Simulink (Design, Requirements, Tests) and EMF models. The EMF
model is used to capture the core concepts and features of the EEC and several
Simulink models are derived from it. The design tool uses MDE facilities to
generate code, validate the models, and even guide users in the development
process.

In this case study we selected a fragment of a model management workflow
used by the design tool to support the generation of Simulink models and code
from the main EMF model. This fragment workflow was also selected to demon-
strate the use of heterogeneous models in ModelFlow, in particular, regarding
the use of Simulink models. The goal of this case study is to qualitatively
evaluate if ModelFlow can capture this workflow and to discuss the advantages
it offers along with its shortcomings. In particular, we report observations
regarding its conciseness, potential language optimisations, visualisation facil-
ities, user interaction, recovered model management traces, and conservative
executions.

6.3.1 Background

The selected workflow includes various model management tasks including
a model-to-model transformation that generates a Simulink model and four
model-to-text tasks that generate code. The workflow implemented by the
design tool consists of a combination of Java files and Make files (see Sec. 2.3.3).
In practice, the workflow consists of three activities that are executed manually
and independently: Code generation from the EEC model, Simulink model
generation from the EEC model, code generation from the Simulink model.

We describe the types of artefacts and data involved in this case study to
illustrate the size of the project.

EMF model. The EMF model is the artefact that describes the functionality
of the software that controls the EEC. It defines electronic, software, network,
and service components along with their interconnections. The EMF model
used in the case study has a total of 2451 model elements (4 of them are service
components) and its Ecore metamodel contains a total of 234 classes.

186

6.3 Case study: Industrial workflow

EMF-to-Simulink transformation. This model-to-model transformation
is executed for a given service component from the EMF model and it generates
a corresponding Simulink model. The workflow uses the Simulink driver
presented in chapter 5 to handle Simulink models during this transformation.
The transformation is composed of 14 ETL files and 1 EOL program files that
amount to approximately 3250 lines of code.

Simulink model. This is the model that is generated for each service compon-
ent in the EMF model through the ETL transformation above. The generated
Simulink model is later used to run simulations and to generate code from the
model. For illustrative purposes, the largest generated Simulink model contains
1513 Simulink blocks and is persisted in a file of 116KB.

Code generation. Two approaches are used to generate code from the
different models. The first approach consists of a combination of EGX/EGL
programs used to generate C code from the EMF model. Currently, the workflow
uses 7 EGX generators, 49 EGL templates and 7 EOL programs to support
the code generation. Table 6.3 shows the number and type of files generated
through EGX which in total amounts to 234 files.
The other approach consists in the execution of Make build targets that

invoke MATLAB functions, which generate C code. The code generated from
the EMF model is complementary to that generated from the Simulink models
and is mostly used for initialisation purposes.

Traceability information. Trace information is extracted from the model-
to-model transformation which is then saved in a text file. Similarly, the code
generated with MATLAB functions produces a dedicated website is with code
documentation and traces from Simulink blocks to lines in the generated code.

6.3.2 Approach

In this section we present a sanitised version of the EEC fragmented workflow
captured with ModelFlow. We have identified three separated activities that are
executed independently and captured them in the same ModelFlow workflow.
As in the original implementation, this workflow is executed for a given service
component. The result of the workflow is the generation of a Simulink model
and of code artefacts derived from it and from the input EEC model. The
dependency graph of the workflow is presented in Figure 6.17.

Parameters. Listing 6.15 shows the parameters that are required to con-
figure the workflow. repo is the source path of the repository that contains
all the transformations and utilities to support the generation of the EEC

187

6 Evaluation

Figure 6.17: ModelFlow dependency graph of industrial case study.

188

6.3 Case study: Industrial workflow

Table 6.3: Generated files through EGX.

Task Files Extensions

generateMakeFiles@true 2 mk
generateMakeFiles@false 8 mk, bif
generateCFiles@true 131 c, cfg, psprj, h, mk, bif
generateCFiles@false 24, c, cfg, h, mk
generateProcessConfig@1 8 c,h
generateProcessConfig@2 18 c,h
generateProcessConfig@3 0
generateProcessConfig@4 6 c,h
generateProcessConfig@5 0
generateProcessConfig@6 6 c,h
generateProcessConfig@7 0
generateProcessConfig@8 7 c,h
generateProcessConfig@9 5 c,h
generateProcessConfig@10 12 c,h
generateProcessConfig@11 0
generateProcessConfig@12 6 c,h
generateSimulinkMAT 1 mat

software. outDir is the output directory where Simulink models will be created.
serviceName is the name of the service component for which the Simulink
models and code will be generated. pathHandler is a Java utility passed at
runtime that has information about the structure of the workspace and is used
by the different tasks to locate elements or know where to create new ones.

1 param repo : String;
2 param outDir : String;
3 param serviceName : String;
4 param pathHandler; // Java Object

Listing 6.15: ModelFlow parameters for the industrial case study.

Models. Listing 6.16 shows the declaration of the two models used in the
original workflow: the EEC EMF model and the Simulink model. Lines 1-8
show the EEC model, which is configured by indicating the source model file,
the metamodel URIs involved, a dedicated URI mapping and the expand flag
which is used to resolve proxy elements. Lines 9-15 show the configuration of
the Simulink model which takes the source file, the MATLAB engine location,
the MATLAB library path and the project of the model. By specifying the
project of the model, we ensure that the model is loaded properly.

1 model EEC is epsilon:emf{
2 src : "model.system"
3 metamodelUri : "http :// www.company.com/X/v1.0"

189

6 Evaluation

4 metamodelUri : "http :// www.company.com/X/A/v1.0"
5 expand: true
6 uriMapping : Map{"uriToMap"="actualUri"}
7 }
8 model Simulink is epsilon:simulink {
9 src: outDir + "\\" + serviceName + ".slx"
10 project: "projectLocation.prj"
11 engine: matroot + "\\path\\ engine.jar"
12 library: matroot + "\\path\\ library \\"
13 }

Listing 6.16: EEC and Simulink models in ModelFlow.

Model-to-model transformation. Listing 6.17 shows the generateSim-

ulink ETL transformation which is responsible for producing the Simulink
model. It requires as input the name of the service component for which the
model will be generated along with the location of the source repository.

1 task generateSimulink is epsilon:etl
2 in EEC as M
3 out Simulink {
4 src: "generate.etl"
5 params {
6 var map = new Map;
7 map.put("serviceName", serviceName);
8 map.put("sourcePath", repo);
9 return map;
10 }
11 }

Listing 6.17: generateSimulink ETL transformation in ModelFlow.

Code generation with EGX. Listing 6.18 shows the three code generation
tasks with EGX. The first one is the multi-task generateMakeFiles (lines 1-12)
which produces Make files. This task receives the pathHandler and a Boolean
flag that affects the generated output. As indicated in line 3, it is executed
for each of the values that flag can take, in this case true and false. A
similar structure is used for task generateCFiles (lines 13-24) which instead
of producing Make files, it generates C programs.
The last task generateProcessConfig is a special type of multi-task that

iterates over model elements from the input EMF model. Line 28 shows the
EOL statements that defines the set of parameters to be used to create task
instances. Overall, these statements iterate over elements of type Configuration
from the EMF model and selects those that have the generate property set
to true. From this collection, sequence of maps is created, each with the keys

190

6.3 Case study: Industrial workflow

flag and config. This results in 12 combinations as there are 6 configuration
model elements. Furthermore, line 27 shows how each task instance is assigned
a dynamic name resolved from the information in the corresponding map. For
example, for the map with {flag=true, config="ConfigX"} the task will be
named generateProcessConfig@ConfigX-true.

1 task generateMakeFiles is epsilon:egx
2 in EEC as M
3 forEach flag as: flag.toString () in: Sequence{true ,

false}
4 {
5 src : "generateMake.egx"
6 params {
7 var map = new Map;
8 map.put("flag", flag);
9 map.put("path", pathHandler);
10 return map;
11 }
12 }
13 task generateCFiles is epsilon:egx
14 in EEC as M
15 forEach flag as: flag.toString () in: Sequence{true ,

false}
16 {
17 src : "generateC.egx"
18 params {
19 var map = new Map;
20 map.put("flag", flag);
21 map.put("path", pathHandler);
22 return map;
23 }
24 }
25 task generateProcessConfig is epsilon:egx
26 in EEC as M
27 forEach setup as: setup.get("config")+"-"+setup.get

("flag") in {
28 return EEC!Configuration.all().select(c|c.

generate).collect(c| Sequence {true , false}.
collect(flag| Map{"flag"=flag , "config"=c.name
}).flaten ()).flatten ();

29 }
30 {
31 src : "generateProcessConfig.egx"
32 params {
33 var map = new Map;
34 map.put("flag", setup.get("flag"));

191

6 Evaluation

35 map.put("config", setup.get("config"));
36 map.put("path", pathHandler);
37 return map;
38 }
39 }

Listing 6.18: Code generating multi-tasks in ModelFlow.

Code generation from Simulink model. The original implementation of
this task uses Make build targets to generate code from the Simulink model.
In practice the make scripts were used to (a) invoke a MATLAB function that
performed the code generation and (b) generate a MAT file. We have migrated
the invocation of the MATLAB function to EOL to make use of the Simulink
driver to invoke the code generation. Listing 6.19 shows the corresponding tasks
generateSimulinkCode (lines 1-7) and generateSimulinkMAT (lines 8-13).
This translation had the advantage that we could re-use the pathHandler

for information that did not need to be repeated, and, for the case of gen-
erateSimulinkMAT traces could be created within the EOL program. We set
out to retrieve trace information for the task generateSimulinkCode in a
separate task because we were unable to retrieve this information from the
MATLAB function that produces the code. As such, the task was annotated
with @noTrace to skip trace processing.

1 @noTrace
2 task generateSimulinkCode is epsilon:eol
3 in Simulink
4 {
5 src : "generateSimulinkCode.eol"
6 params : Map{"path"=pathHandler}
7 }
8 task generateSimulinkMAT is epsilon:eol
9 in Simulink
10 {
11 src : "generateSimulinkMat.eol"
12 params : Map{"path"=pathHandler}
13 }

Listing 6.19: Code generating tasks from the Simulink model in ModelFlow.

Recovering external traces. The invocation of the MATLAB function
that generates code form Simulink models produces a set of HTML pages with
documentation and trace information that links Simulink blocks, Stateflow
blocks and MATLAB functions to the generated program files and the lines in
which they are referenced. We have provided additional tasks to the workflow to

192

6.3 Case study: Industrial workflow

recover those traces from the HTML pages and integrate them in the workflow
management trace model.

Task extractTraces in Listing 6.20 parses the set of HTML pages and
extracts traceability information from them. Lines 1-3 show a custom HTML
model group that is used as input for the trace extraction task. This model
group represents a collection of Epsilon HTML models, each representing a
single HTML page. To configure this model group, we specify the root of the
website folder. At runtime this model will locate all HTML pages under that
folder. Then lines 4-9 show the EOL task declaration that performs the trace
extraction.

1 model html is epsilon:htmlGroup {
2 root: "generated/folder/with/traceInfo/"
3 }
4 task extractTraces is epsilon:eol
5 dependsOn generateSimulinkCode
6 in html and Simulink
7 {
8 src: "extract.eol"
9 }

Listing 6.20: HTML model group and trace extraction task in ModelFlow.

6.3.3 Results

Management traces. Table 6.4 summarises the number of model man-
agement traces produced from the workflow execution5. The traces column
indicates how many Trace elements were created (see Sec. 4.4.4). Since the
trace links can have multiple sources or target elements, the combinations
column sums the product of the number of targets and sources of each link
created by the task (

∑n
t=1 |sources| ∗ |targets|). Overall, there were 223 unique

files generated and 2296 different model elements involved in the workflow.
Most of the traces linked one source element to a target element, except the gen-
erateSimulink ETL task in which transformation rules can generate multiple
target model elements.

5The name of generateProcesConfig task instances has been sanitised to use numbers
from 1 to 12 rather than information from model elements.

193

6 Evaluation

Table 6.4: Number of traces extracted by ModelFlow from the execution.

Task Traces Combinations

generateSimulink 80 1239
generateMakeFiles@true 28 28
generateMakeFiles@false 275 275
generateCFiles@true 40733 40733
generateCFiles@false 8255 8255
generateProcessConfig@1 531 531
generateProcessConfig@2 1383 1383
generateProcessConfig@3 0 0
generateProcessConfig@4 165 165
generateProcessConfig@5 0 0
generateProcessConfig@6 165 165
generateProcessConfig@7 0 0
generateProcessConfig@8 252 252
generateProcessConfig@9 157 157
generateProcessConfig@10 464 464
generateProcessConfig@11 0 0
generateProcessConfig@12 177 177
generateSimulinkMAT 1 1
extractTraces 6205 6205

6.3.4 Discussion

Conciseness. The original implementation provides a set of smaller workflows
that are independent and manually invoked by the user. One of such workflows
generates the Simulink model for a given service and is captured in a few Java
classes (using 212 lines of code6) that invoke the ETL transformation. The
workflow that generates the code from the EEC model requires a few Java
classes (using 96 lines of code) to invoke all the EGX tasks for a given service.
Finally, the workflow that generates the C code invoking MATLAB functions
is distributed across 3 Make files.
In this case study, we put together all these tasks in the same ModelFlow

workflow in a single declaration file with 118 lines of code. The Make files that
generated C code were translated to EOL programs that were invoked from
the workflow declaration.

Visualisation. To support design tool users, developers originally provided a
dedicated procedural view that highlighted the different activities to manually

6Counting lines in the body of methods only

194

6.3 Case study: Industrial workflow

Figure 6.18: Step navigator view of the original EEC design tool.

execute (e.g., generate Simulink models or generate code) at different stages of
the development process. This view has recently been updated to show a graph-
based view of step interdependencies where each step offers a list of available
tasks to trigger manually (Figure 6.18). While this is a helpful navigation
tool for users it serves a different purpose than the visualisation provided by
ModelFlow, as not all tasks are meant to be executed in a workflow (e.g., open
a diagram view). The ModelFlow Picto view automatically generates a graph
of task dependencies of an automated workflow making interactions between
models and tasks visible to users. This view is not executable but making tasks
in the workflow individually executable could facilitate user’s interaction with
the workflow or parts of it.

User interaction. Users of the original workflow work on different aspects of
the model and tend to execute individual tasks on demand and in a prescribed
order. With ModelFlow, only the tasks that need re-execution would be
executed. We recognise that ModelFlow would benefit from user interface
facilities that allow the execution of a single task from the workflow or to use a
task as target of the execution7 or as starting point8. Alternatively, users could
also be given the ability to execute a group of tasks. For example, the EGX
tasks could be grouped as in a CodeGeneration workflow or task group.

7Invoking the task dependencies and the task itself only
8Invoking the task and then any other tasks that depend on it

195

6 Evaluation

Management traces. ModelFlow has demonstrated its ability to retrieve
traces from tasks that produce them, and to create them when they do not, as
with EOL tasks. Currently, only EOL can create a custom trace at runtime
although other tasks like ETL can be extended to both retrieve tasks and allow
the creation of custom traces within their programs. This case study has also
demonstrated a use case for the @noTrace annotation. With ModelFlow the
management traces of the workflow are maintained through their executions.
However, a future area of improvement for trace maintenance is giving users
the ability to choose a custom trace metamodel that may use different naming
and structural conventions.

Conservative executions. In the original workflow, conservative executions
are supported for tasks that are defined in Make. Make provides these checks out-
of-the-box as build targets specify their file dependencies. For the workflow tasks
that are invoked through Java (executing Epsilon tasks) in the original workflow,
the up-to-date checks are not available. With ModelFlow this functionality
becomes available for all tasks.

The inherent limitation with Make is that all dependencies must be manually
specified and that there is no support to dynamically declare them. The limita-
tion with ModelFlow is that no implicit inputs or outputs can be determined
at runtime beyond those resolved by the task definition type. We go over this
in the next discussion point.

Regarding the response to changes, we observe with ModelFlow that no tasks
are executed if there are no changes to any model or task artefacts. However,
even small changes in the EEC model would trigger the re-execution of the
ETL and EGX tasks. Because the ETL task is time-consuming, an approach
to exploit the ModelFlow conservative execution facilities at the moment would
involve the refactoring of the EEC model into various smaller models so that the
ETL transformation is updated to use the relevant ones. Nevertheless, it would
be convenient if ModelFlow, modeling frameworks like EMF or supporting
model management frameworks like Hawk provided a mechanism to detect
changes to parts of the model relevant to the task to be executed.

Runtime inputs and outputs. ModelFlow determines inputs and outputs
from task definition types. For example, EOL tasks parse the source program
to check for imported files and reports them as inputs before the task executes.
However, this case study demonstrates the need to provide the ability to
report implicit inputs at runtime. Take the tasks generateSimulinkCode and
generateSimulinkMat, which invoke MATLAB functions from EOL to generate
code or a MAT file, and the various other tasks that use the pathHandler

parameter to locate input and output files at runtime. In the former case, the

196

6.3 Case study: Industrial workflow

MATLAB function being invoked is a static String in the EOL program which
the task definition is unable to resolve as an input before the execution. Similarly,
while the generated MAT file can be declared as the target of a management
trace at runtime, it cannot be declared as an output to be analysed when
determining if a task should be re-executed.
Currently, ModelFlow cannot declare inputs and outputs at runtime in a

similar fashion as management traces can be created in EOL programs. To
support this feature, ModelFlow would need to recover this information after
the task’s execution and use it in subsequent invocations to determine if it is up
to date. Not being able the track this information can make build executions
un-sound as tasks could be skipped when they need to re-execute.

Language optimisations. In the original workflow, users need to specify
a service component to generate the corresponding Simulink model and code.
However, the Make files that generate code are executed for the Simulink
models of all service components (4 in total). The workflow captured with
ModelFlow works exclusively for a single service component which means that 4
ModelFlow invocations with different parameters would be needed to generate
all the required artefacts.
Ideally, the workflow should capture the execution for all available service

components while allowing users to decide whether to execute the full workflow
or just parts that affect a service component. In practice we could declare 3
more Simulink models, 3 more ETL tasks for each output Simulink model and
adapt the EOL tasks to work with the 4 Simulink models. A useful addition
to ModelFlow would be the support of extensible model and task declarations.
For example, with this feature, concrete Simulink models could be created
with different source files while sharing the rest of their configuration (see
Listing 6.21).

1 @abstract
2 model AbstractSimulink is simulink {
3 engineJar: "..."
4 libraryPath: "..."
5 }
6 model SimulinkServiceX extends AbstractSimulink{
7 src: "serviceXmodel.slx"
8 }

Listing 6.21: Supporting model and task declaration extension

Alternatively, ModelFlow could dynamically generate models9 and match
them at runtime with tasks. For example, Listing 6.22 shows a proposition for
the dynamic generation of Simulink models for each service in the ECC model

9As multi-tasks are created through the forEach construct.

197

6 Evaluation

(line 3). Similarly, line 9 shows how the generateSimulink task could use a
statement block environment to locate the corresponding model for each task
instance.

1 model EEC is emf;
2 model Simulink is epsilon:simulink
3 forEach x in: EEC!Service.all() as: x.name {
4 src: x + ".slx"
5 }
6 task generateSimulink is epsilon:etl {
7 forEach x in : EEC!Service.all() as: x.name
8 in EEC
9 out {
10 return Model.all().selectByType(simulink).select(

m|m.name.endsWith(x))
11 }
12 {
13 src : "transform.etl"
14 }

Listing 6.22: Dynamically model generation ModelFlow proposal with model
matching in tasks

Another approach to capture the full workflow would be to use nested
workflows. Listing 6.23 illustrates a (currently unsupported) workflow (lines
2-13) able to declare a Simulink model along with all tasks that use it and
which could be instantiated multiple times (line 4). Arguably, this would be
one of the cleanest solutions and is discussed more in detail in Sec. 7.3.

1 model EEC is epsilon:emf {...}
2 workflow serviceProcess
3 in EEC
4 forEach service in: EEC!Service.all()
5 {
6 model Simulink is epsilon:simulink {
7 src: service.name + ".slx"
8 }
9 task generateSimulink is epsilon:etl
10 in EEC
11 out Simulink
12 {...}
13 }

Listing 6.23: Nested workflow ModelFlow proposal for industrial case study

198

6.4 Extensibility

6.4 Extensibility

This section summarises the instances in which ModelFlow has demonstrated
to be extendible to support heterogeneous tasks and models. In particular,
this has been demonstrated through three case studies. For example, in Sec.
6.2 we used added support for EMF and GMF tasks that are not part of the
Epsilon family of languages. Similarly, in Sec. 6.3 we used the Simulink model
definition presented in Sec. 5.6 and a new HTML model group. The support for
heterogeneous model and task was considered in objectives i.i and i.ii from Sec.
3.2.2. The case studies demonstrate that these objectives have been achieved.

6.5 Interoperability

We have provided different mechanisms that can be used to execute ModelFlow.
In addition to the core Java libraries that can be reused by Java projects, we
have provided an Eclipse run configuration (Sec. 6.5.1) which allows Eclipse
users to trigger executions from the user interface, and an integration with the
Maven build tool (Sec. 6.5.2), which allows projects built with Maven to invoke
ModelFlow workflows during the build process.

6.5.1 Eclipse

Run configuration. ModelFlow extends the run configuration of Epsilon
languages to support its own. One difference to other Epsilon languages is that
the Models tab is not needed as all models are declared in the program.
Through the run configuration, users can determine whether to run Mod-

elFlow in interactive mode. In this mode the execution will ask the user for
permission to re-execute a task that has the potential to be a destructive opera-
tion, that is, a task whose outputs have been externally modified. Alternatively,
a user can disable these prompts and choose whether the execution should
avoid destructive operations by enabling the option protect outputs. The run
configuration also has a convenience button to clear execution traces to ensure
that the next invocation triggers a full execution or to discard corrupted traces
e.g., if tasks or models in the workflow are renamed. Similarly, a user can
enable the recording and/or storage of management traces.

6.5.2 Build tools

Maven. Maven is a popular build tool for Java and Eclipse-based projects. It
is an opinionated framework that expects projects to be formatted in a specific
way and build processes to follow a pre-defined lifecycle. ModelFlow provides
a prototypical integration with Maven that allows it to be invoked within

199

6 Evaluation

Figure 6.19: ModleFlow run configuration

this build process. Listing 6.24 shows an example usage of the implemented
ModelFlow plugin identified by the version, artefact and group identifiers
indicated in lines 4-6. This plugin requires the ModelFlow workflow definition
file to be provided (line 10) and the execution goal mflow to be indicated (line
13). In this example, the ModelFlow execution would be invoked at the Maven
compile phase as indicated by line 15.

1 <build >
2 <plugins >
3 <plugin >
4 <groupId >org.epsilonlabs.modelflow </groupId >
5 <artifactId >modelflow -maven -plugin </artifactId >
6 <version >1.0- SNAPSHOT </version >
7 <executions >
8 <execution >
9 <configuration >
10 <src>${ project.basedir }/src/main/resources/

test.mflow </src>
11 </configuration >
12 <goals >
13 <goal>mflow </goal>
14 </goals >
15 <phase >compile </phase>
16 </execution >
17 </executions >
18 </plugin >
19 </plugins >
20 </build >

Listing 6.24: Sample Maven ModelFlow plugin

200

6.6 Summary

6.6 Summary

This chapter presented the evaluation of ModelFlow through three case studies.
The first case study evaluated the execution of an artificial workflow in Model-
Flow and Gradle under different change scenarios that affected various types
of artefacts (e.g., source programs, intermediate models, generated files). The
results of the case study suggest that both tools can be adapted to implement
the model management workflow although ModelFlow was able to process
dynamically generated outputs and was able to configure how to compute
stamps of input and outputs which allowed it to discern between protected and
non-protected regions in generated files.

The next case study evaluated the correctness and performance of ModelFlow
when reproducing the EuGENia model management workflow which generates
a graphical editor from an annotated metamodel. Like the first case study,
this case study was also executed under different change scenarios that were
realistic for the type of workflow. The results show that ModelFlow was able
to correctly execute the workflow in response to the changes while also being
able to collect traces from tasks that produced them or not by default, and to
only load models once per execution and only when they are needed. Similarly,
ModelFlow proved to be faster than the original implementation in the change
scenarios that did not require the re-execution of all tasks. This study also
demonstrated ModelFlow’s task extensibility as it was adapted to execute EMF
and GMF tasks.
Finally, the last case study evaluated the ability of ModelFlow to capture

and reproduce an industrial case study. ModelFlow demonstrated its model
extensibility to accommodate the management of Simulink and HTML models.
This case study demonstrated the use of ModelFlow constructs able to generate
multiple tasks based on information from the models. While overall, ModelFlow
was able to capture the workflow for a selected service from the workflow
domain, the case study highlighted that ModelFlow would benefit from more
features such as nested workflows.

201

7 Conclusion

This thesis has investigated an approach to capture model management work-
flows that execute conservatively and produce traceability information as a side
product. This thesis has contributed to the research hypothesis defined in Sec.
3.2.1:

The performance of repetitive executions of model management
workflows can be significantly improved with the help of a conser-
vative interpreter that consumes declarative workflow specifications
capturing dependencies among models and model management tasks.
At the same time, these inter-dependencies can be used to establish
and maintain traces at model element level of granularity.

The remainder of this chapter is structured as follows. Sec. 7.1 provides an
overview of the main discussions in the thesis. Sec. 7.2 describes the main
contributions to the field. Sec. 7.3 provides future work.

7.1 Summary

We have presented ModelFlow, a model management workflow language and
interpreter which offers conservative executions, end-to-end traceability, and lazy
model loading/disposal. Chapter 2 provided an overview of the theory behind
Model-Driven Engineering, traceability, build systems and other workflows while
it also reviewed the capabilities of several state-of-the-art tools used in all these
domains. Chapter 3 analysed the findings of the review and stated the research
framework including the problem, hypothesis, goals, and scope. Chapter 4
presented the architecture, design, and implementation of ModelFlow’s language
and interpreter while also describing the details and rationale behind algorithms
and processes used to support its main capabilities. Chapter 5 presented
the architecture and implementation of the Simulink bridge with the Epsilon
family of model management languages and its integration with ModelFlow.
Chapter 6 evaluated ModelFlow using three case studies. The first case study
focused on change scenarios affecting different resources of the workflow, that
is, input program files, program dependencies like imported files, models of
all types (input, output, inout), and generated files. The second case study
replicated an existing workflow that generates graphical editors from annotated

202

7.2 Thesis contributions

models in ModelFlow and evaluated its response to relevant change scenarios
more in detail. Finally, the last case study aggregated build tasks used in an
industrial context to evaluate the ModelFlow language features.

7.2 Thesis contributions

We have categorised the main contributions of the thesis into two categories:
novel tools and techniques (Sec. 7.2.1) and notable additional results (Sec.
7.2.2).

7.2.1 Novel tools and techniques

The main contribution of this work is the architecture of a model management
workflow interpreter that (a) combines features from build tools that allow for
partial executions that only re-execute tasks transitively affected by external
changes to workflow resources, while also (b) gathering and creating traceability
information in a structured format as a side product of its execution, and
(c) introducing a novel approach to automatically handle models that loads
them when first needed and disposes them when no longer required in the
workflow. Additionally, to declare these workflows, this work has proposed a
model management workflow language that differs to other frameworks in the
way models are used to drive the execution and in its capability to generate
tasks dynamically. This architecture and language have been embodied in
a prototype called ModelFlow which has been evaluated in this work. We
discuss in detail the novelty of these features below.

Conservative executions. Conservative executions are a common feature
of state-of-the-art build tools like Gradle and even research tools like Pluto.
However, this is a feature that is generally absent in model-centric workflow
tools. In general, conservative executions in build tools are based on the
principle that inputs are non-modifiable. In contrast, modifying models is
often part of a model management workflow. In this work we have achieved
conservative executions for model management workflows that may modify
model resources (see Sec. 6.2) by not only tracking changes in tasks’ inputs
(e.g. programs and models) but also to their outputs (e.g. generated files
and models) and by comparing them against the latest version tracked by the
workflow execution.

Traceability as side-product. Traces are a common but not mandatory
side product of model management activities. However, as in build tools,
model management workflow tools do not usually collect this information in
a structured way. In this work we have proposed a mechanism that allows

203

7 Conclusion

individual model management tasks to contribute their side-product traces to
an optional overall workflow trace that may be used for debugging, analysis
and even certification purposes. This overall model management workflow
trace conforms to a trace metamodel which homogenises the traces produced
by the heterogeneous tasks executed in the workflows, making it easier to
process. Moreover, these traces are maintained up to date during subsequent
workflow invocations. Additionally, we have proposed facilities that allow model
management tasks that do not produce traceability information to generate
this information during their execution to contribute to the overall workflow
trace. This mechanism consists in providing a trace building interface that
allows authors of model management tasks to build relevant traces within the
task’s execution (as demonstrated for GMF, EMF and EOL tasks).

Automated model loading/disposal. In model management tasks two
important steps are (a) loading the models into memory and (b) disposing
them (which may involve saving any changes). When working with build tools
or model management tasks, these activities are sometimes handled by the tool
(e.g. MTC-Flow, ChainTracker, MMINT) and sometimes the user is left to
decide at which point to load or dispose the models (e.g. ANT, MWE2, Gradle).
When the tool automatically handles these activities, it usually does it through
one of two strategies: either loading all models at the start of the workflow
and disposing all of them at the end, or loading required models before a task
and disposing them all after the task execution. The advantage of the former
strategy is that models are only loaded and disposed once at the expense of
keeping them all in memory during the whole execution. In contrast, the latter
strategy loads only the required artefacts when a task is about to execute at
the expense of reloading (a potentially expensive activity) and re-disposing
models if these are employed by multiple tasks in the workflow. In this work
we have proposed a novel strategy that delays model loading until the model
is first required in the workflow and disposes it when no other task will use
it. This strategy avoids reloading models unnecessarily and also delays their
loading until it is actually required. However, different model loading/disposal
strategies may be convenient for different models depending on how these are
used in the workflow (e.g., once, in all tasks, in sequential tasks, at the start
and at the end of the workflow) and the expensiveness (time- and memory-wise)
of keeping them loaded or reloading them.

Output awareness. In MDE workflows some outputs, such as intermediary
models or program files, may receive further input from developers (e.g., gener-
ated files with regions protected from overwriting by regeneration in EGL). In
general, neither build tools nor other model management workflow tools pay

204

7.2 Thesis contributions

much attention to output resources. This work has demonstrated the need to
track outputs to be able to conservatively execute workflows when resources like
models are modified. Additionally, we have proposed alternative approaches
for conservative workflow execution to respond to external modification of
outputs. The first approach consists in triggering a re-execution of a task if
its outputs have changed. This is appropriate when outputs are not allowed
to be externally modified. The second approach consists in preventing a task
re-execution (and halting the workflow) if a task’s outputs have changed. This
approach is convenient when overwriting the external changes is a potentially
destructive operation.

Models that drive the execution. In most build tools, task interdepend-
encies drive the execution order. Similarly, in model management workflow
tools, tasks are interconnected with each other to indicate the execution flow.
While in general all these frameworks allow tasks to indicate which models
they consume, modify or produce, these indications have no influence over the
execution order. This work allows task interdependencies to drive the execution
order (with the highest priority) but also proposes a novel technique that allows
models to influence the execution order depending on how they are used by the
tasks in the workflow (see Sec. 4.4.1). As such, a workflow does not have to
explicitly create task-interdependencies for all tasks in the workflow as long as
the use of models implicitly connects them all. This approach can reduce the
verbosity of the workflow specification while still allowing users to amend the
proposed workflow by specifying task interdependencies when needed. While
some languages (such as Gradle) can be extended to support the declaration of
models as inputs, outputs or modifiable resources of a task (see Sec. 6.1), these
cannot be used to drive the execution order.

Dynamic task generation. In this work we have proposed a mechanism
that allows for the dynamic generation of tasks that share some common features
(e.g. the type of task, the consumed models) but also allows for some variability
among the generated tasks. While some build tools offer this capability (e.g.,
Gradle intrinsically and ANT/Epsilon through a task extension) we are not
aware of any MDE tools that support this. Our dynamic task generation
approach uses information from input models to generate and configure the
sub tasks.

7.2.2 Notable additional results

Simulink bridge with open-source model management frameworks.
Another contribution of this work is an approach to bridge Simulink models with
model management frameworks that uses on-the-fly and on-demand translation

205

7 Conclusion

of OCL-like statements into MATLAB commands presented in chapter 5.
Given the widespread use of Simulink models in industry and the potentially
large size of such models, our bridge offers an alternative approach to manage
these without requiring their complete upfront transformation into an EMF-
compatible representation therefore avoiding expensive transformation costs for
large models and potential co-evolution procedures. Our implementation, built
atop Epsilon, enables comprehensive and uniform Simulink model management
that includes Stateflow elements.
We have evaluated our implementation against an existing approach that

requires an upfront model transformation into EMF setup using facilities from
the Massif project. This experiment measured the execution time of a model
validation process evaluated on a sample of large publicly available Simulink
models in GitHub (up to 1.141 MB and 9536 blocks) using both approaches.
Our evaluation results support the claim that the transformation of large
Simulink models into an EMF-compatible representation can be very time
consuming and shows that our bridge was able to reduce the execution time by
up to 80% (mainly due to the transformation) in the validation process of the
experiment. Further evaluations showed that the cost of continuous MATLAB
communication in our implementation is far from negligible which led us to
introduce optimisations for operations that work on collections of Simulink
and Stateflow model elements that were able to make these operations more
efficient –by up to 99% in some cases.

7.3 Future work

Evaluation against other build tools. As seen in Sec. 2.3, there are
multiple build tools (e.g., Gradle, Bazel, Buck, Ninja) available along with
dedicated MDE tools (e.g., MWE-2, MTC-Flow) that support workflows. As
future work it would be interesting to compare the features of these frameworks
more in detail and to evaluate them under different workflows and change
scenarios.

Nested workflows. Currently, the ModelFlow language does not support the
nesting of tasks and/or models within sub-workflows although the metamodel
already defines a workflow as a task to enable nesting. To support this fea-
ture, the concrete syntax of the language would have to be extended and the
interpreter adapted to be able to execute them.
An example of what we envision the syntax for a nested workflow to be is

presented in Listing 7.1. In this language proposal the workflow keyword would
be added and would be required for all workflows even those without nesting.
A workflow construct would not need a task type but could still declare input

206

7.3 Future work

and output models as well as task dependencies and forEach iterations. We
have indicated in the commented lines the computed identifier of the different
entities in the workflow.

1 // main
2 workflow main {
3 // main:: sample
4 model sample is epsilon:emf { ... }
5 // main:: transform
6 task navigate is epsilon:eol
7 in sample { ... }
8 // main:: nested
9 workflow nested
10 dependsOn navigate
11 in sample
12 out product
13 forEach elem in sample!Element.all() as elem.id
14 {
15 // main:: nested :: elemId :: product
16 model product is epsilon:simulink { ... }
17 // main:: nested :: elemId :: transform
18 task transform is epsilon:etl
19 in sample
20 out product { ... }
21 // main:: nested :: elemId :: generate
22 task generate is epsilon:egx
23 dependsOn transform { ... }
24 }
25 }

Listing 7.1: Workflow nesting proposal

Dynamic specification for models. We refer to dynamic specification as a
convenience to dynamically generate elements based on a collection. In this work
we proposed the use forEach constructs in task declarations (see Listing 4.1) to
allow the dynamic resolution of multiple tasks based on input from a collection.
However, a similar mechanism is missing for model declarations.

Additional task and model definitions. We have demonstrated that Mod-
elFlow can be extended to support more task definitions such as GMF and EMF
tasks. However, it would be interesting to add support for other popular MDE
tasks such as ATL, and QVT. It would also be convenient to have immediate
access to some of the utility tasks available in build tools like ANT e.g., to
copy files. Regarding model definitions, we have also demonstrated extensibility
capabilities by providing support for Simulink models.

207

7 Conclusion

The main difference between the model definition interface of ModelFlow
with that used by Epsilon is that Epsilon captures CRUD operations at model
and model element level which ModelFlow does not, and that in addition to
the configuration of the model ModelFlow also determines how to check if
the model has changed from one execution to another. Since there is some
overlap between the two interfaces, it would be worth exploring if these could
be consolidated to get immediate access to all the model definitions already
supported by Epsilon.

Alternative schedulers. ModelFlow has been implemented to use a directed
graph iterated in topological order as scheduler. This scheduler has the disad-
vantage that all task dependencies must be known in advance. Future work will
involve experimenting with other types of schedulers e.g., restarting/suspending
that may enable the discovery of dependencies at runtime.

Adapting the management trace metamodel. Sec. 2.2.5 discussed how
the traceability tool Capra allows users to provide their own traceability
metamodel. In contrast, ModelFlow uses a single management trace metamodel
as presented in (Sec. 4.4.4). Capra achieves this extensibility through an
implementation that adapts the main metamodel produced by the tool into
the one that users require. This adapter can be used to filter uninteresting
traces, or to extract information from them to modify it. ModelFlow could be
extended to support such metamodel adaptation after or during the execution
of the workflow.

Cleaning outputs. One feature that is missing from ModelFlow is the ability
to clean outputs. Consider a model-to-text transformation that generates a
file for each model element in a collection. Generated files can become stale
if one of the elements in a collection is deleted. Having a mechanism that
allows the workflow to discard files that are no longer needed would allow the
workflow to remain consistent. This mechanism could be attached to pre and
post executions of a given task which could use information from the execution
trace to decide how to dispose stale outputs.

Pre/post task executions. While task definitions can already define custom
pre and post actions, they may benefit from directly receiving input and output
information from past executions (from the execution trace) to e.g., clean
outputs or perform incremental computations. Additionally, task declarations
in the workflow program would benefit users as they could allow logging or
computing information from the inputs or outputs of a task.

208

7.3 Future work

Partial executions. Currently, ModelFlow processes all tasks in a workflow
definition. However, MDE workflows such as EuGENia (Sec. 6.2) and even
GMF (Figure 7.1) are often accompanied with support to run individual tasks
or to start the workflow from or up-to a specific task. Similarly, as noted
by [125], build systems are often executed using a target which triggers the
execution all its dependencies and then the target itself. ModelFlow could be
extended to support all these kinds of partial executions. Dedicated views and
context-menus could also be derived from the workflow definitions to support
these activities through the user interface.

Figure 7.1: User Interface that supports the GMF execution process

Transient models. ModelFlow currently supports input, output and in/out
models but it does not support transient models, i.e., those that only live in
memory during a task execution. While these models would not influence the
execution order, they may be traceable.

Customisation of inputs. For conservative workflows like ModelFlow or
Gradle which determine whether to re-execute a task or not based on its inputs
or outputs, it is imperative that the task can correctly identify these. It is the
responsibility of the task writer to declare these properly. However, sometimes
the programs that some of these tasks execute (e.g., EOL) could implicitly
depend on resources that are not identified as inputs or outputs of the task.
For example, in the industrial case study (Sec. 6.3), one of the tasks invoked
external file scripts that lived outside of the EOL program being executed. In
this example, while the EOL task definition can identify imported EOL programs
because they are part of the EOL program structure (line 1 in Listing 7.2), it
is unable to identify Strings that represent files, and which may be used within
the EOL program (lines 3-4 in Listing 7.2). Without a mechanism to declare
these resources as inputs or outputs, the decision to execute or not may not be
entirely correct. Knowing this limitation, users can either adapt their workflow
tasks (e.g., avoid invoking, reading, writing external resources within programs)

209

7 Conclusion

or choose to execute all tasks in the workflow as in a first-time execution. A
similar mechanism to the one used to create management traces in tasks that
do not provide them by default (such as in EOL programs) could be used to
register inputs during a task execution. Another alternative would be to allow
for declaration of additional dependent files in the task declarations. This
could lead to information duplication (e.g., in the EOL program and the task
declaration) but would lead to correct conservative executions.

1 import "library.eol";
2
3 var file = "myExternalProgram.sh";
4 executor.execute(file);

Listing 7.2: EOL explicit and implicit file dependencies

Incrementality. Currently, none of the model management tasks that Mod-
elFlow supports are incremental. Incremental tasks execute only parts that are
different from previous executions and they are only convenient if the cost of
the execution (time-wise) is larger than the cost of determining which parts to
execute. As a future research direction, incremental tools could be examined
to evaluate how best to integrate them with ModelFlow.

Model change impact. In ensuing executions, ModelFlow only re-executes
tasks affected by changes in their inputs (e.g., an EOL program) or used models.
However, full model changes are not always indicative that a re-execution is
required. Consider a state machine model that changes the name of a state
and a task that reads transitions from the model. In this example, the task
would detect that the model changed but for the purposes of reading the
transitions, the model is the same. Currently ModelFlow cannot distinguish
relevant changes for a given task beyond what has been defined as input or
output in the task definition. While ModelFlow allows task definitions to
indicate the types of changes they are looking for, a task instance cannot refine
this criterion. This can result in task re-executions that may not be necessary.

Research on model impact analysis could be used to address this issue. An
example of such an approach is given in [134] which tracks model element
properties accessed during an execution and requires a mechanism to detect if
these have changed from one version of a model to another, although it has
shown some limitations with ordered collections and non-deterministic programs
(e.g., with random number generators). Examples of entities that could be used
to verify whether these property values have changed between model versions
are both model indexes (e.g., Hawk [8]) and model comparison systems (e.g.,
EMFCompare [180], ECL [173]). To support the detection of relevant changes,

210

7.3 Future work

ModelFlow task definitions would have to be adapted to record the property
accesses, while models would need to be able to verify these changes according
to the record kept by the task.

Optional models. Currently, users can indicate in a ModelFlow’s task de-
claration all the models that a task needs for its execution. However, in some
occasions users may want some of the models used in the task declaration to
be optional. These models would be part of the task declaration but would
not prevent its execution if they were inaccessible e.g., if the model file did not
exist, or if they were not produced. While at the moment ModelFlow does not
support optional models, these could be supported in the future.

Alternative loading strategies. ModelFlow uses a loading strategy that
aims to reduce the invocation of model loading and disposal procedures. To
do this, ModelFlow loads a model when it is first used in the workflow and
disposes it when it is deemed no longer useful. However, while some models
are expensive to load, others can be costly to keep loaded in memory. As such,
we recognise that, depending on the type of workflow, other strategies may be
more suitable such as (a) loading all models at the beginning of the workflow
and disposing them at the end or (b) loading and disposing them before and
after each task, respectively. ModelFlow could be extended to support more
model loading and disposal strategies that allow different types of workflows to
deliver optimal performance. Similarly ModelFlow could allow users to decide
which loading strategy is more appropriate for their workflows and even support
the combination of strategies for different models within the same workflow.

Error handling. Currently ModelFlow offers limited support for error hand-
ling. The current behaviour is to halt the workflow execution when an exception
occurs and to update the execution trace with tasks that were successful, in-
dicating which task failed. For exceptions such as a task or model declaration
misconfiguration identified at runtime, ModelFlow could be extended to add
transactional support to workflow resources to undo changes when errors are
detected. Transaction support should allow subsequent executions to start
from a consistent state and continue with the rest of the workflow when the
error has been fixed. For exceptions which are expected from a given workflow,
ModelFlow could be extended to allow tasks (or nested workflows) to be invoked
when a certain exception is thrown, possibly by a specific task. This would
effectively allow for alternative exception-handling execution paths. Finally, for
unexpected exceptions ModelFlow can be integrated with CI tools to notify
about the issues so that the workflow structure or its resources can be repaired
and then re-executed.

211

8 Bibliography

[1] Itemis AG. Yakindu Traceability. [Online], January 2017. Available:
https://www.itemis.com/en/yakindu/traceability/. [Accessed 07 July 2018.

[2] Qurat ul ain Ali, Dimitris Kolovos, and Konstantinos Barmpis. Effi-
ciently querying large-scale heterogeneous models. In Proceedings of
the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings, pages 1–5,
Virtual Event Canada, October 2020. ACM. ISBN 978-1-4503-8135-2.
doi: 10.1145/3417990.3420207.

[3] Camilo Alvarez and Rubby Casallas. MTC Flow: a tool to design,
develop and deploy model transformation chains. In Proceedings of the
workshop on ACadeMics Tooling with Eclipse - ACME ’13, pages 1–9,
Montpellier, France, 2013. ACM Press. ISBN 978-1-4503-2036-8. doi:
10.1145/2491279.2491286.

[4] Nicholas Annable. A Model-Based Approach to Formal Assurance Cases.
PhD thesis, McMaster University, 2020.

[5] Caroline M Ashworth. Structured systems analysis and design method
(SSADM). Information and Software Technology, 30(3):153–163, April
1988. ISSN 09505849. doi: 10.1016/0950-5849(88)90062-6.

[6] D. E. Avison. MERISE: A European methodology for developing inform-
ation systems. European Journal of Information Systems, 1(3):183–191,
August 1991. ISSN 0960-085X, 1476-9344. doi: 10.1057/ejis.1991.33.

[7] Mikaël Barbero, Frédéric Jouault, and Jean Bézivin. Model Driven
Management of Complex Systems: Implementing the Macroscope’s Vision.
In Proceedings of the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS 2008),
pages 277–286, Belfast, Northern Ireland, March 2008. IEEE. ISBN
978-0-7695-3141-0. doi: 10.1109/ECBS.2008.42.

[8] Konstantinos Barmpis. Towards Scalable Model Indexing. PhD thesis,
University of York, 2016. Available: http://etheses.whiterose.ac.uk/14376/.

212

https://www.itemis.com/en/yakindu/traceability/
http://etheses.whiterose.ac.uk/14376/

8 Bibliography

[9] Konstantinos Barmpis and Dimitrios S. Kolovos. Evaluation of Contem-
porary Graph Databases for Efficient Persistence of Large-Scale Models.
The Journal of Object Technology, 13(3):3:1, 2014. ISSN 1660-1769. doi:
10.5381/jot.2014.13.3.a3.

[10] Konstantinos Barmpis and Dimitris Kolovos. Hawk: towards a scal-
able model indexing architecture. In Proceedings of the Workshop
on Scalability in Model Driven Engineering - BigMDE ’13, pages 1–9,
Budapest, Hungary, 2013. ACM Press. ISBN 978-1-4503-2165-5. doi:
10.1145/2487766.2487771.

[11] Marc Bender, Karen Laurin, Mark Lawford, Vera Pantelic, Alexandre
Korobkine, Jeff Ong, Bennett Mackenzie, Monika Bialy, and Steven
Postma. Signature required: Making Simulink data flow and interfaces
explicit. Science of Computer Programming, 113:29–50, December 2015.
ISSN 01676423. doi: 10.1016/j.scico.2015.07.005.

[12] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. Dis-
tributed model-to-model transformation with ATL on MapReduce. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Soft-
ware Language Engineering, pages 37–48, Pittsburgh PA USA, October
2015. ACM. ISBN 978-1-4503-3686-4. doi: 10.1145/2814251.2814258.

[13] Amine Benelallam, Massimo Tisi, Jesús Sánchez Cuadrado, Juan de Lara,
and Jordi Cabot. Efficient model partitioning for distributed model
transformations. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, pages 226–238, Amsterdam
Netherlands, October 2016. ACM. ISBN 978-1-4503-4447-0. doi: 10.1145/
2997364.2997385.

[14] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András
Balogh, Zoltán Balogh, and András Ökrös. Incremental Evaluation of
Model Queries over EMF Models. In Proceedings of Model Driven Engin-
eering Languages and Systems (MODELS), pages 76–90. Springer, Berlin,
Heidelberg, 2010. ISBN 3642161448. doi: 10.1007/978-3-642-16145-2_6.

[15] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István
Ráth, Zoltán Ujhelyi, and Dániel Varró. Viatra 3: A Reactive Model
Transformation Platform. In Theory and Practice of Model Trans-
formations, volume 9152, pages 101–110. Springer International Pub-
lishing, Cham, 2015. ISBN 978-3-319-21154-1 978-3-319-21155-8. doi:
10.1007/978-3-319-21155-8_8. Series Title: Lecture Notes in Computer
Science.

213

8 Bibliography

[16] J. Bezivin and O. Gerbe. Towards a precise definition of the OMG/MDA
framework. In Proceedings of the 16th Annual International Conference
on Automated Software Engineering (ASE 2001), pages 273–280, San
Diego, CA, USA, 2001. IEEE Comput. Soc. ISBN 978-0-7695-1426-0. doi:
10.1109/ASE.2001.989813.

[17] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the Need
for Megamodels. In Proceedings of the OOPSLA/GPCE: Best Practices
for Model-Driven Software Development workshop, 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications,(2004), Vancouver, Canada, October 2004. Available: https:
//hal.archives-ouvertes.fr/hal-01222947.

[18] Jonas Boner, Dave Farley, Roland Kuhn, and Martin Thompson. Re-
active Manifesto. [Online], September 2014. Available: https://www.
reactivemanifesto.org. [Accessed 20 May 2021].

[19] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Synthesis Lectures on Software En-
gineering, 1(1):1–182, September 2012. ISSN 2328-3319, 2328-3327. doi:
10.2200/S00441ED1V01Y201208SWE001.

[20] Loli Burgueno, Javier Troya, Manuel Wimmer, and Antonio Vallecillo.
Parallel in-place model transformations with LinTra. In Proceedings of
the 3rd Workshop on Scalable Model Driven Engineering, 2015. Available:
http://ceur-ws.org/Vol-1406/paper6.pdf.

[21] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo.
On the concurrent execution of model transformations with Linda. In
Proceedings of the Workshop on Scalability in Model Driven Engineering -
BigMDE ’13, pages 1–10, Budapest, Hungary, 2013. ACM Press. ISBN
978-1-4503-2165-5. doi: 10.1145/2487766.2487770.

[22] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. On the Need for Artifact Models in Model-Driven Systems En-
gineering Projects. In Software Technologies: Applications and Found-
ations, volume 10748, pages 146–153. Springer International Publish-
ing, Cham, 2018. ISBN 978-3-319-74729-3 978-3-319-74730-9. doi:
10.1007/978-3-319-74730-9_12. Series Title: Lecture Notes in Computer
Science.

[23] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.
Modeling in the Large and Modeling in the Small. In Model Driven
Architecture, volume 3599, pages 33–46. Springer Berlin Heidelberg, Berlin,

214

https://hal.archives-ouvertes.fr/hal-01222947
https://hal.archives-ouvertes.fr/hal-01222947
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
http://ceur-ws.org/Vol-1406/paper6.pdf

8 Bibliography

Heidelberg, 2005. ISBN 978-3-540-28240-2 978-3-540-31819-4. doi: 10.
1007/11538097_3. Series Title: Lecture Notes in Computer Science.

[24] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre
Gervais, Fréderic Jouault, Dimitrios Kolovos, Ivan Kurtev, and Richard F.
Paige. A Canonical Scheme for Model Composition. In Proceedings of the
2nd European Conference on Model Driven Architecture - Foundations
and Applications, volume 4066, pages 346–360, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-35909-8 978-3-540-35910-4.
doi: 10.1007/11787044_26. Series Title: Lecture Notes in Computer
Science.

[25] Jordi Cabot and Ernest Teniente. Incremental Evaluation of OCL Con-
straints. In Proceedings of Advanced Information Systems Engineering,
pages 81–95. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-34653-1.
doi: 10.1007/11767138_7.

[26] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Lan-
guage (WebML): a modeling language for designing Web sites. Com-
puter Networks, 33(1-6):137–157, June 2000. ISSN 13891286. doi:
10.1016/S1389-1286(00)00040-2.

[27] Bassim Chabibi, Abdelilah Douche, Adil Anwar, and Mahmoud Nas-
sar. Integrating SysML with Simulation Environments (Simulink) by
Model Transformation Approach. In Proceedings of the 2016 IEEE 25th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 148–150, Paris, France, June
2016. IEEE. ISBN 978-1-5090-1663-1. doi: 10.1109/WETICE.2016.39.

[28] J. Cleland-Huang, G. Zemont, and W. Lukasik. A heterogeneous solution
for improving the return on investment of requirements traceability. In
Proceedings of the 12th IEEE International Requirements Engineering
Conference, 2004., pages 214–223, Kyoto, Japan, 2004. IEEE. ISBN
978-0-7695-2174-9. doi: 10.1109/ICRE.2004.1335680.

[29] Jane Cleland-Huang, Orlena C. Z. Gotel, Jane Huffman Hayes, Patrick
Mäder, and Andrea Zisman. Software traceability: trends and future
directions. In Proceedings of the on Future of Software Engineering -
FOSE 2014, pages 55–69, Hyderabad India, May 2014. ACM. ISBN
978-1-4503-2865-4. doi: 10.1145/2593882.2593891.

[30] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645, 2006.
ISSN 0018-8670. doi: 10.1147/sj.453.0621.

215

8 Bibliography

[31] Åsa G. Dahlstedt and Anne Persson. Requirements Interdependencies:
State of the Art and Future Challenges. In Engineering and Managing
Software Requirements, pages 95–116. Springer-Verlag, Berlin/Heidelberg,
2005. ISBN 978-3-540-25043-2. doi: 10.1007/3-540-28244-0_5.

[32] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann
Vernageau, Abel Gómez, and Jordi Cabot. NeoEMF: A multi-database
model persistence framework for very large models. Science of Computer
Programming, 149:9–14, December 2017. ISSN 01676423. doi: 10.1016/j.
scico.2017.08.002.

[33] Dassautl Systems. Reqtify. [Online], December 2019. Available: https:
//www.3ds.com/products-services/catia/products/reqtify/. [Accessed 09
September 2020].

[34] Adam L. Davis. Gradle. In Learning Groovy, pages 65–70. Apress,
Berkeley, CA, 2016. ISBN 978-1-4842-2116-7 978-1-4842-2117-4. doi:
10.1007/978-1-4842-2117-4_12.

[35] Marco Di Natale, Francesco Chirico, Andrea Sindico, and Alberto
Sangiovanni-Vincentelli. An MDA Approach for the Generation of Com-
munication Adapters Integrating SW and FW Components from Simulink.
In Model-Driven Engineering Languages and Systems, volume 8767, pages
353–369. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
11652-5 978-3-319-11653-2. doi: 10.1007/978-3-319-11653-2_22. Series
Title: Lecture Notes in Computer Science.

[36] Marco Di Natale, David Perillo, Francesco Chirico, Andrea Sindico,
and Alberto Sangiovanni-Vincentelli. A Model-based approach for the
synthesis of software to firmware adapters for use with automatically gen-
erated components. Software & Systems Modeling, 17(1):11–33, February
2018. ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-016-0534-0.

[37] Alessio Di Sandro, Rick Salay, Michalis Famelis, Sahar Kokaly, and Marsha
Chechik. MMINT: A graphical tool for interactive model management.
In Proceedings of the 2015 Model Driven Engineering Languages and
Systems (MODELS) Demo and Poster Session, 2015. Available: http:
//ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf.

[38] Marcos Didonet, Del Fabro, Jean Bezivin, and Patrick Valduriez. Weaving
Models with the Eclipse AMW plugin. In Eclipse Modeling Symposium,
Eclipse Summit Europe, 2006.

[39] Zinovy Diskin. Model Synchronization: Mappings, Tiles, and Categor-
ies. In Generative and Transformational Techniques in Software En-

216

https://www.3ds.com/products-services/catia/products/reqtify/
https://www.3ds.com/products-services/catia/products/reqtify/
http://ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf
http://ceur-ws.org/Vol-1554/PD_MoDELS_2015_paper_6.pdf

8 Bibliography

gineering III, volume 6491, pages 92–165. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. ISBN 978-3-642-18022-4 978-3-642-18023-1. doi:
10.1007/978-3-642-18023-1_3. Series Title: Lecture Notes in Computer
Science.

[40] Zinovy Diskin and Tom Maibaum. Category Theory and Model-Driven
Engineering: From Formal Semantics to Design Patterns and Beyond.
Electronic Proceedings in Theoretical Computer Science, 93:1–21, August
2012. ISSN 2075-2180. doi: 10.4204/EPTCS.93.1.

[41] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank
Hermann, and Fernando Orejas. From State- to Delta-Based Bidirectional
Model Transformations: The Symmetric Case. In Model-Driven Engin-
eering Languages and Systems, volume 6981, pages 304–318. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-24484-1
978-3-642-24485-8. doi: 10.1007/978-3-642-24485-8_22. Series Title:
Lecture Notes in Computer Science.

[42] Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Mapping-Aware
Megamodeling: Design Patterns and Laws. In Software Language En-
gineering, volume 8225, pages 322–343. Springer International Publish-
ing, Cham, 2013. ISBN 978-3-319-02653-4 978-3-319-02654-1. doi:
10.1007/978-3-319-02654-1_18. Series Title: Lecture Notes in Computer
Science.

[43] Zinovy Diskin, Nicholas Annable, Alan Wassyng, and Mark Lawford.
Assurance via Workflow+ Modelling and Conformance (an extended
version). Technical report, McMaster Centre for Software Certification,
2019.

[44] Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino,
Ralf Lämmel, and Alfonso Pierantonio. Understanding MDE projects:
megamodels to the rescue for architecture recovery. Software & Systems
Modeling, 19(2):401–423, March 2020. ISSN 1619-1366, 1619-1374. doi:
10.1007/s10270-019-00748-7.

[45] Nikolaos Drivalos, Dimitrios S. Kolovos, Richard F. Paige, and Kiran J.
Fernandes. Engineering a DSL for Software Traceability. In Software
Language Engineering, volume 5452, pages 151–167. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00433-9 978-3-642-
00434-6. doi: 10.1007/978-3-642-00434-6_10. Series Title: Lecture Notes
in Computer Science.

[46] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams
as a Workflow Specification Language. In Proceedings of the 4th Interna-

217

8 Bibliography

tional Conference on the Unified Modeling Language, pages 76–90, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45441-0.
doi: 10.1007/3-540-45441-1_7.

[47] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous integ-
ration: improving software quality and reducing risk. Addison-Wesley
signature series. Addison-Wesley, Upper Saddle River, NJ, 2007. ISBN
978-0-321-33638-5.

[48] Eclipse Lyo. Lyo Simulink Adapter. [Online], August 2014. Available:
https://wiki.eclipse.org/Lyo/Simulink. [Accessed 07 July 2018].

[49] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the Ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, January 2003. ISSN
0018-9219. doi: 10.1109/JPROC.2002.805829.

[50] Jad El-Khoury, Cecilia Ekelin, and Christian Ekholm. Supporting the
Linked Data Approach to Maintain Coherence Across Rich EMF Models.
In Modelling Foundations and Applications, volume 9764, pages 36–47.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-42060-
8 978-3-319-42061-5. doi: 10.1007/978-3-319-42061-5_3. Series Title:
Lecture Notes in Computer Science.

[51] Georg Engel, Ajay Sathya Chakkaravarthy, and Gerald Schweiger. Co-
simulation Between Trnsys and Simulink Based on Type155. In Software
Engineering and Formal Methods, volume 10729, pages 315–329. Springer
International Publishing, Cham, 2018. ISBN 978-3-319-74780-4 978-3-
319-74781-1. doi: 10.1007/978-3-319-74781-1_22. Series Title: Lecture
Notes in Computer Science.

[52] Eclipse Epsilon. Documentation. [Online], March 2020. Available: https:
//www.eclipse.org/epsilon/doc/. [Accessed 23 July 2021.

[53] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and
optimal incremental build system with dynamic dependencies. ACM
SIGPLAN Notices, 50(10):89–106, December 2015. ISSN 0362-1340,
1558-1160. doi: 10.1145/2858965.2814316.

[54] Predrag Filipovikj, Guillermo Rodriguez-Navas, and Cristina Seceleanu.
Bounded invariance checking of simulink models. In Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing, pages 2168–
2177, Limassol Cyprus, April 2019. ACM. ISBN 978-1-4503-5933-7. doi:
10.1145/3297280.3297493.

218

https://wiki.eclipse.org/Lyo/Simulink
https://www.eclipse.org/epsilon/doc/
https://www.eclipse.org/epsilon/doc/

8 Bibliography

[55] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transforma-
tions: A linguistic approach to the view-update problem. ACM Transac-
tions on Programming Languages and Systems, 29(3):17, May 2007. ISSN
0164-0925, 1558-4593. doi: 10.1145/1232420.1232424.

[56] The Apache Software Foundation. Ant. [Online], July 2000. Available:
https://ant.apache.org. [Accessed 23 July 2021].

[57] The Apache Software Foundation. Maven - Introduction to the Life-
cycle. [Online], July 2021. Available: http://maven.apache.org/guides/
introduction/introduction-to-the-lifecycle.html. [Accessed 23 July 2021].

[58] Mārtin, š Francis, Dimitrios S. Kolovos, Nicholas Matragkas, and Richard F.
Paige. Adding Spreadsheets to the MDE Toolkit. In Model-Driven
Engineering Languages and Systems, volume 8107, pages 35–51. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-41532-6 978-
3-642-41533-3. doi: 10.1007/978-3-642-41533-3_3. Series Title: Lecture
Notes in Computer Science.

[59] Jokin Garcia and Jordi Cabot. Stepwise Adoption of Continuous De-
livery in Model-Driven Engineering. In Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production
and Deployment, volume 11350, pages 19–32. Springer International Pub-
lishing, Cham, 2019. ISBN 978-3-030-06018-3 978-3-030-06019-0. doi:
10.1007/978-3-030-06019-0_2. Series Title: Lecture Notes in Computer
Science.

[60] Vicente García-Díaz, Jordán Pascual Espada, Edward Rolando Núñez-
Valdéz, B. Cristina Pelayo García-Bustelo, and Juan Manuel Cueva
Lovelle. Combining the continuous integration practice and the model-
driven engineering approach. Computing and Informatics, 35(2):299–337,
2016.

[61] Antonio Garcia-Dominguez, Konstantinos Barmpis, Dimitrios S Kolovos,
Marcos Aurelio Almeida da Silva, Antonin Abherve, and Alessandra
Bagnato. Integration of a graph-based model indexer in commercial
modelling tools. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pages
340–350, Saint-Malo France, October 2016. ACM. ISBN 978-1-4503-4321-
3. doi: 10.1145/2976767.2976809.

[62] Antonio Garcia-Dominguez, Konstantinos Barmpis, Dimitrios S. Kolovos,
Ran Wei, and Richard F. Paige. Stress-testing remote model querying

219

https://ant.apache.org
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

8 Bibliography

APIs for relational and graph-based stores. Software & Systems Modeling,
18(2):1047–1075, April 2019. ISSN 1619-1366, 1619-1374. doi: 10.1007/
s10270-017-0606-9.

[63] Google. BigQuery. [Online], May 2011. Available: https://cloud.google.
com/bigquery/. [Accessed 07 July 2018].

[64] Google. Bazel. [Online], March 2015. Available: https://bazel.build.
[Accessed 23 July 2021].

[65] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grunbacher, and G. Antoniol. The quest for Ubiquity: A roadmap for
software and systems traceability research. In Proceedings of the 2012 20th
IEEE International Requirements Engineering Conference (RE), pages
71–80, Chicago, IL, USA, September 2012. IEEE. ISBN 978-1-4673-2785-5
978-1-4673-2783-1 978-1-4673-2784-8. doi: 10.1109/RE.2012.6345841.

[66] Orlena Gotel and Patrick Mäder. Acquiring Tool Support for Traceability.
In Software and Systems Traceability, pages 43–68. Springer London,
London, 2012. ISBN 978-1-4471-2238-8 978-1-4471-2239-5. doi: 10.1007/
978-1-4471-2239-5_3.

[67] Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zis-
man, Alexander Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Ant-
oniol, Jonathan Maletic, and Patrick Mäder. Traceability Fundament-
als. In Software and Systems Traceability, pages 3–22. Springer Lon-
don, London, 2012. ISBN 978-1-4471-2238-8 978-1-4471-2239-5. doi:
10.1007/978-1-4471-2239-5_1.

[68] Victor Guana. ChainTracker - Model Transformation Analysis. [Online],
November 2017. Available: https://guana.github.io/chaintracker. [Accessed
23 July 2021].

[69] Victor Guana and Eleni Stroulia. ChainTracker, a Model-Transformation
Trace Analysis Tool for Code-Generation Environments. In Theory and
Practice of Model Transformations, volume 8568, pages 146–153. Springer
International Publishing, Cham, 2014. ISBN 978-3-319-08788-7 978-3-
319-08789-4. doi: 10.1007/978-3-319-08789-4_11. Series Title: Lecture
Notes in Computer Science.

[70] Victor Guana and Eleni Stroulia. End-to-end model-transformation
comprehension through fine-grained traceability information. Software &
Systems Modeling, 18(2):1305–1344, April 2019. ISSN 1619-1366, 1619-
1374. doi: 10.1007/s10270-017-0602-0.

220

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://bazel.build
https://guana.github.io/chaintracker

8 Bibliography

[71] Victor Guana, Kelsey Gaboriau, and Eleni Stroulia. ChainTracker:
Towards a Comprehensive Tool for Building Code-Generation Envir-
onments. In Proceedings of the 2014 IEEE International Confer-
ence on Software Maintenance and Evolution, pages 613–616, Victoria,
BC, Canada, September 2014. IEEE. ISBN 978-1-4799-6146-7. doi:
10.1109/ICSME.2014.108.

[72] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, and Richard F. Paige.
Inter-modelling: From Theory to Practice. In Model-Driven Engineering
Languages and Systems, volume 6394, pages 376–391. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-16144-5 978-3-642-
16145-2. doi: 10.1007/978-3-642-16145-2_26. Series Title: Lecture Notes
in Computer Science.

[73] David Hearnden, Michael Lawley, and Kerry Raymond. Incremental
Model Transformation for the Evolution of Model-Driven Systems. In
Model-Driven Engineering Languages and Systems, volume 4199, pages
321–335. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN
978-3-540-45772-5 978-3-540-45773-2. doi: 10.1007/11880240_23. Series
Title: Lecture Notes in Computer Science.

[74] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and
Christian Wende. Derivation and Refinement of Textual Syntax for
Models. In Model Driven Architecture - Foundations and Applica-
tions, volume 5562, pages 114–129. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2009. ISBN 978-3-642-02673-7 978-3-642-02674-4. doi:
10.1007/978-3-642-02674-4_9. Series Title: Lecture Notes in Computer
Science.

[75] Georg Hinkel, Robert Heinrich, and Ralf Reussner. An extensible approach
to implicit incremental model analyses. Software and Systems Modeling,
18(5):3151–3187, 2019. ISSN 16191374. doi: 10.1007/s10270-019-00719-y.

[76] Fazilat Hojaji, Tanja Mayerhofer, Bahman Zamani, Abdelwahab Hamou-
Lhadj, and Erwan Bousse. Model execution tracing: a systematic mapping
study. Software & Systems Modeling, 18(6):3461–3485, December 2019.
ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-019-00724-1.

[77] Boris Holzer. Snapshots and change reports for requirements traceability
data. [Online], August 2017. Available: https://blogs.itemis.com/en/
snapshots-and-change-reports-for-requirements-traceability-data. [Accessed
07 July 2018.

[78] Akos Horvath, Istvan Rath, and Rodrigo Rizzi Starr. Mas-
sif - the love child of Matlab Simulink and Eclipse. [Online],

221

https://blogs.itemis.com/en/snapshots-and-change-reports-for-requirements-traceability-data
https://blogs.itemis.com/en/snapshots-and-change-reports-for-requirements-traceability-data

8 Bibliography

November 2015. Available: https://www.slideshare.net/kosHorvth2/
massif-the-love-child-of-matlab-simulink-and-eclipse. [Accessed 15 June
2018].

[79] Bryan Hunt. MongoEMF. [Online], March 2014. Available: https:
//github.com/BryanHunt/mongo-emf. [Accessed 23 July 2021].

[80] IBM. IBM Rational DOORS. [Online], June 2021. Available: https:
//www.ibm.com/uk-en/products/requirements-management/details.

[81] IBM. IBM Knowledge Center - Extending Rational
DOORS by using OSLC services. [Online], June 2021.
Available: https://www.ibm.com/docs/en/ermd/9.7.2?topic=
function-extending-doors-by-using-oslc-services.

[82] IEEE. IEEE 1076-2008: VHDL Language Reference Manual. Standard,
Institute of Electrical and Electronics Engineers, 2008.

[83] ISO. ISO/IEC 12207:2008: Systems and Software Engineering - Soft-
ware Life Cycle Processes. Standard, International Organization for
Standardization, 2008.

[84] ISO. ISO 26262-1:2018: Road vehicles - Functional safety. Standard,
International Organization for Standardization, 2018.

[85] Sorour Jahanbin, Dimitris Kolovos, and Simos Gerasimou. Intelligent
run-time partitioning of low-code system models. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, pages 1–5, Virtual
Event Canada, October 2020. ACM. ISBN 978-1-4503-8135-2. doi:
10.1145/3417990.3420198.

[86] Frédéric Jouault and Massimo Tisi. Towards Incremental Execution
of ATL Transformations. In Proceedings of the Third International
Conference on Theory and Practice of Model Transformations, pages
123–137, Malaga, 2010. Springer-Verlag. ISBN 3642136877. doi:
10.1007/978-3-642-13688-7_9.

[87] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick
Valduriez. ATL: a QVT-like transformation language. In Proceedings of
the 21st ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications - OOPSLA ’06, page 719, Portland,
Oregon, USA, 2006. ACM Press. ISBN 978-1-59593-491-8. doi: 10.1145/
1176617.1176691.

222

https://www.slideshare.net/kosHorvth2/massif-the-love-child-of-matlab-simulink-and-eclipse
https://www.slideshare.net/kosHorvth2/massif-the-love-child-of-matlab-simulink-and-eclipse
https://github.com/BryanHunt/mongo-emf
https://github.com/BryanHunt/mongo-emf
https://www.ibm.com/uk-en/products/requirements-management/details
https://www.ibm.com/uk-en/products/requirements-management/details
https://www.ibm.com/docs/en/ermd/9.7.2?topic=function-extending-doors-by-using-oslc-services
https://www.ibm.com/docs/en/ermd/9.7.2?topic=function-extending-doors-by-using-oslc-services

8 Bibliography

[88] Andrew Kannenberg and Hossein Saiedian. Why Software Requirements
Traceability Remains a Challenge. CrossTalk The Journal of Defense
Software Engineering, 22(5):14–19, 2009.

[89] Vikash Katta and Tor Stålhane. A Conceptual Model of Traceability
for Safety Systems. In Proceedings of the Complex Systems Design &
Management Conference, 2011.

[90] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: en-
abling full code generation. Wiley-Interscience : IEEE Computer Society,
Hoboken, N.J, 2008. ISBN 978-0-470-03666-2.

[91] Timothy Patrick Kelly. Arguing Safety – A Systematic Approach to
Managing Safety Cases. PhD thesis, University of York, 1998.

[92] Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Brambilla, and
Jordi Cabot. MoScript: A DSL for Querying and Manipulating Model
Repositories. In Software Language Engineering, volume 6940, pages
180–200. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-
3-642-28829-6 978-3-642-28830-2. doi: 10.1007/978-3-642-28830-2_10.
Series Title: Lecture Notes in Computer Science.

[93] Knowledge Based Systems Inc. IDEF: Integrated Definition Methods.
[Online], 1980. Available: https://www.idef.com. [Accessed 23 July 2021].

[94] Sahar Kokaly. Towards a Structured Workflow Language for Model
Management. In Proceedings of the Doctoral Symposium at MODELS’14,
2014. Available: http://ceur-ws.org/Vol-1321/dsmodels14_3.pdf.

[95] Sahar Kokaly, Rick Salay, Valentin Cassano, Tom Maibaum, and Marsha
Chechik. A model management approach for assurance case reuse due to
system evolution. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pages
196–206, Saint-Malo France, October 2016. ACM. ISBN 978-1-4503-4321-
3. doi: 10.1145/2976767.2976792.

[96] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Merging
Models with the Epsilon Merging Language (EML). In Model-Driven En-
gineering Languages and Systems, volume 4199, pages 215–229. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-45772-5
978-3-540-45773-2. doi: 10.1007/11880240_16. Series Title: Lecture
Notes in Computer Science.

[97] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The Epsi-
lon Object Language (EOL). In Model Driven Architecture - Foundations

223

https://www.idef.com
http://ceur-ws.org/Vol-1321/dsmodels14_3.pdf

8 Bibliography

and Applications, volume 4066, pages 128–142. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. ISBN 978-3-540-35909-8 978-3-540-35910-4. doi:
10.1007/11787044_11. Series Title: Lecture Notes in Computer Science.

[98] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model
comparison: a foundation for model composition and model trans-
formation testing. In Proceedings of the 2006 international work-
shop on Global integrated model management - GaMMa ’06, page 13,
Shanghai, China, 2006. ACM Press. ISBN 978-1-59593-410-9. doi:
10.1145/1138304.1138308.

[99] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The
Epsilon Transformation Language. In Theory and Practice of Model
Transformations, volume 5063, pages 46–60. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008. ISBN 978-3-540-69926-2 978-3-540-69927-9. doi:
10.1007/978-3-540-69927-9_4. Series Title: Lecture Notes in Computer
Science.

[100] Dimitrios S Kolovos, Richard F Paige, and Fiona A C Polack. A Frame-
work for Composing Modular and Interoperable Model Management
Tasks. In Model-Driven Tool and Process Integration Workshop, 2008.

[101] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Scalabil-
ity: The holy grail of model driven engineering. In First International
Workshop on Challenges in Model Driven Software Engineering, 2008.

[102] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and
Richard F. Paige. Different models for model matching: An analysis of
approaches to support model differencing. In Proceedings of the 2009
ICSE Workshop on Comparison and Versioning of Software Models, pages
1–6, Vancouver, BC, Canada, May 2009. IEEE. ISBN 978-1-4244-3714-6.
doi: 10.1109/CVSM.2009.5071714.

[103] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On
the Evolution of OCL for Capturing Structural Constraints in Model-
ling Languages. In Rigorous Methods for Software Construction and
Analysis, volume 5115, pages 204–218. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2009. ISBN 978-3-642-11446-5 978-3-642-11447-2. doi:
10.1007/978-3-642-11447-2_13. Series Title: Lecture Notes in Computer
Science.

[104] Dimitrios S. Kolovos, Massimo Tisi, Jordi Cabot, Louis M. Rose, Nicholas
Matragkas, Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado,
Juan De Lara, István Ráth, and Dániel Varró. A research roadmap

224

8 Bibliography

towards achieving scalability in model driven engineering. In Proceedings
of the Workshop on Scalability in Model Driven Engineering - BigMDE
’13, pages 1–10, Budapest, Hungary, 2013. ACM Press. ISBN 978-1-4503-
2165-5. doi: 10.1145/2487766.2487768.

[105] Dimitrios S. Kolovos, Ran Wei, and Konstantinos Barmpis. An approach
for efficient querying of large relational datasets with OCL-based lan-
guages. In Proceedings of the Workshop on Extreme Modeling, 2013.
Available: http://ceur-ws.org/Vol-1089/6.pdf.

[106] Dimitrios S. Kolovos, Antonio García-Domínguez, Louis M. Rose, and
Richard F. Paige. Eugenia: towards disciplined and automated devel-
opment of GMF-based graphical model editors. Software & Systems
Modeling, 16(1):229–255, February 2017. ISSN 1619-1366, 1619-1374. doi:
10.1007/s10270-015-0455-3.

[107] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. Scalable incremental
building with dynamic task dependencies. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
pages 76–86, Montpellier France, September 2018. ACM. ISBN 978-1-
4503-5937-5. doi: 10.1145/3238147.3238196.

[108] Felix Kossak, Christa Illibauer, Verena Geist, Jan Kubovy, Christine
Natschläger, Thomas Ziebermayr, Theodorich Kopetzky, Bernhard
Freudenthaler, and Klaus-Dieter Schewe. A Rigorous Semantics for
BPMN 2.0 Process Diagrams. Springer International Publishing, Cham,
2014. ISBN 978-3-319-09930-9 978-3-319-09931-6. doi: 10.1007/
978-3-319-09931-6.

[109] Sina Madani. Parallel and Distributed Execution of Model Management
Programs. PhD thesis, University of York, 2020.

[110] Sina Madani, Dimitrios S. Kolovos, and Richard F. Paige. Parallel
Model Validation with Epsilon. In Modelling Foundations and Ap-
plications, volume 10890, pages 115–131. Springer International Pub-
lishing, Cham, 2018. ISBN 978-3-319-92996-5 978-3-319-92997-2. doi:
10.1007/978-3-319-92997-2_8. Series Title: Lecture Notes in Computer
Science.

[111] Sina Madani, Dimitris Kolovos, and Richard F. Paige. Towards Op-
timisation of Model Queries: A Parallel Execution Approach. The
Journal of Object Technology, 18(2):3:1, 2019. ISSN 1660-1769. doi:
10.5381/jot.2019.18.2.a3.

225

http://ceur-ws.org/Vol-1089/6.pdf

8 Bibliography

[112] Salome Maro and Jan-Philipp Steghofer. Capra: A Configurable and
Extendable Traceability Management Tool. In Proceedings of the 2016
IEEE 24th International Requirements Engineering Conference (RE),
pages 407–408, Beijing, China, September 2016. IEEE. ISBN 978-1-5090-
4121-3. doi: 10.1109/RE.2016.19.

[113] Salome Maro, Anthony Anjorin, Rebekka Wohlrab, and Jan-Philipp
Steghöfer. Traceability maintenance: factors and guidelines. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pages 414–425, Singapore Singapore, August 2016.
ACM. ISBN 978-1-4503-3845-5. doi: 10.1145/2970276.2970314.

[114] Salome Maro, Jan-Philipp Steghöfer, and Miroslaw Staron. Software
traceability in the automotive domain: Challenges and solutions. Journal
of Systems and Software, 141:85–110, July 2018. ISSN 01641212. doi:
10.1016/j.jss.2018.03.060.

[115] Salvador Martínez, Massimo Tisi, and Rémi Douence. Reactive model
transformation with ATL. Science of Computer Programming, 136:1–16,
March 2017. ISSN 01676423. doi: 10.1016/j.scico.2016.08.006.

[116] MathWorks. MATLAB Simulink. [Online], 1984. Available: https:
//www.mathworks.com/products/simulink.html. [Accessed 07 July 2018].

[117] MathWorks. Create a Simple Model. [Online], 2018. Available: https://
uk.mathworks.com/help/simulink/gs/create-a-simple-model.html. [Accessed
07 July 2018].

[118] Mathworks. MATLAB Stateflow. [Online], March 2018. Available: https:
//uk.mathworks.com/products/stateflow.html. [Accessed 07 July 2018].

[119] Mathworks. Large-Scale Modeling. [Online], 2020. Available: https:
//uk.mathworks.com/help/simulink/large-scale-modeling.html. [Accessed
07 July 2018].

[120] Mathworks. Best Practices and Guidelines for ReqIF Round Trip Work-
flows. [Online], October 2020. Available: https://uk.mathworks.com/help/
slrequirements/ug/best-practices-for-reqif-roundtrip-workflows.html. [Ac-
cessed 16 October 2018].

[121] MathWorks. Simulink Traceability. [Online], October 2020. Available:
https://uk.mathworks.com/discovery/requirements-traceability.html. [Ac-
cessed 16 October 2020].

[122] Sergey Melnik. Generic Model Management : Concepts and Algorithms.
PhD thesis, University of Leipzig, 2004.

226

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://uk.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://uk.mathworks.com/help/simulink/gs/create-a-simple-model.html
https://uk.mathworks.com/products/stateflow.html
https://uk.mathworks.com/products/stateflow.html
https://uk.mathworks.com/help/simulink/large-scale-modeling.html
https://uk.mathworks.com/help/simulink/large-scale-modeling.html
https://uk.mathworks.com/help/slrequirements/ug/best-practices-for-reqif-roundtrip-workflows.html
https://uk.mathworks.com/help/slrequirements/ug/best-practices-for-reqif-roundtrip-workflows.html
https://uk.mathworks.com/discovery/requirements-traceability.html

8 Bibliography

[123] Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner.
Information Flow Analysis of Combined Simulink/Stateflow Models. In-
formation Technology And Control, 48(2):299–315, June 2019. ISSN
2335-884X, 1392-124X. doi: 10.5755/j01.itc.48.2.21759.

[124] Modeliosoft. Modelio. [Online], September 2020. Available: https:
//www.modelio.org.

[125] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. Build systems
à la carte: Theory and practice. Journal of Functional Programming, 30:
e11, 2020. ISSN 0956-7968, 1469-7653. doi: 10.1017/S0956796820000088.

[126] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, April 1989. ISSN 00189219. doi: 10.1109/5.
24143.

[127] Benjamin Muschko. Gradle in action. Manning, Shelter Island, NY, 2014.
ISBN 978-1-61729-130-2.

[128] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty
H. C. Cheng, Philippe Collet, Benoit Combemale, Robert B. France,
Rogardt Heldal, James Hill, Jörg Kienzle, Matthias Schöttle, Friedrich
Steimann, Dave Stikkolorum, and Jon Whittle. The Relevance of Model-
Driven Engineering Thirty Years from Now. In Model-Driven Engineering
Languages and Systems, volume 8767, pages 183–200. Springer Interna-
tional Publishing, Cham, 2014. ISBN 978-3-319-11652-5 978-3-319-11653-
2. doi: 10.1007/978-3-319-11653-2_12. Series Title: Lecture Notes in
Computer Science.

[129] Nasser Mustafa and Yvan Labiche. Modeling Traceability for Heterogen-
eous Systems:. In Proceedings of the 10th International Conference on
Software Engineering and Applications, pages 358–366, Colmar, Alsace,
France, 2015. SCITEPRESS - Science and Technology Publications. ISBN
978-989-758-114-4. doi: 10.5220/0005520303580366.

[130] Nasser Mustafa and Yvan Labiche. Towards Traceability Modeling for
the Engineering of Heterogeneous Systems:. In Proceedings of the 3rd
International Conference on Model-Driven Engineering and Software
Development, pages 321–328, ESEO, Angers, Loire Valley, France, 2015.
SCITEPRESS - Science and Technology Publications. ISBN 978-989-758-
083-3. doi: 10.5220/0005246103210328.

[131] Tomasz Nurkiewicz and Ben Christensen. Reactive programming with
RxJava: creating asynchronous, event-based applications. O’Reilly Media,
Inc, Sebastopol, CA, first edition, 2016. ISBN 978-1-4919-3165-3.

227

https://www.modelio.org
https://www.modelio.org

8 Bibliography

[132] Babajide Ogunyomi. Incremental Model-to-Text Transformation. PhD
thesis, University of York, 2016.

[133] Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos. On the
Use of Signatures for Source Incremental Model-to-text Transformation.
In Model-Driven Engineering Languages and Systems, volume 8767, pages
84–98. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
11652-5 978-3-319-11653-2. doi: 10.1007/978-3-319-11653-2_6. Series
Title: Lecture Notes in Computer Science.

[134] Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos. Property
Access Traces for Source Incremental Model-to-Text Transformation. In
Modelling Foundations and Applications, volume 9153, pages 187–202.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-21150-3
978-3-319-21151-0. doi: 10.1007/978-3-319-21151-0_13. Series Title:
Lecture Notes in Computer Science.

[135] Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos. Incre-
mental execution of model-to-text transformations using property access
traces. Software and Systems Modeling, 18(1):367–383, 2019. ISSN
16191374. doi: 10.1007/s10270-018-0666-5.

[136] OMG. Business Process Model and Notation (BPMN) version 2.0.
Specification, Object Management Group, 2012. Available: https:
//www.omg.org/spec/BPMN/2.0/.

[137] OMG. Object Constraint Language (OCL). Specification, The Object
Management Group, 2014. Available: https://www.omg.org/spec/OCL/.

[138] OMG. Model Driven Architecture (MDA) revision 2.0. Specification,
Object Management Group, 2014. Available: https://www.omg.org/mda/.

[139] OMG. XML Metadata Interchange (XMI). Specification, Object Man-
agement Group, 2014. Available: https://www.omg.org/spec/XMI.

[140] OMG. Meta Object Facility (MOF) Core. Specification, The Object
Management Group, 2016. Available: https://www.omg.org/spec/MOF.

[141] OMG. Query/View/Transformation (QVT). Specification, The Object
Management Group, 2016. Available: https://www.omg.org/spec/QVT.

[142] OMG. Unified Modeling Language (UML). Specification, Object Man-
agement Group, 2017. Available: https://www.omg.org/spec/UML.

[143] OMG. Systems Modeling Language (SYSML) v.1.6. Specification, Object
Management Group, 2019. Available: https://www.omg.org/spec/SysML.

228

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/OCL/
https://www.omg.org/mda/
https://www.omg.org/spec/XMI
https://www.omg.org/spec/MOF
https://www.omg.org/spec/QVT
https://www.omg.org/spec/UML
https://www.omg.org/spec/SysML

8 Bibliography

[144] OASIS Open. Open Services for Lifecycle Collaboration (OSLC). [Online],
June 2008. Available: https://open-services.net. [Accessed 07 July 2018].

[145] Oracle. Java Microbenchmark Harness (JMH). [Online], May 2018.
Available: https://openjdk.java.net/projects/code-tools/jmh/. [Accessed 07
July 2018].

[146] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús García Mo-
lina. A repository for scalable model management. Software & Systems
Modeling, 14(1):219–239, February 2015. ISSN 1619-1366, 1619-1374. doi:
10.1007/s10270-013-0326-8.

[147] Richard F. Paige, Gøran K. Olsen, Dimitrios S. Kolovos, Steffen Zschaler,
and Christopher Power. Building Model-Driven Engineering Traceability
Classifications. In Proceedings of the 4th ECMDA Traceability Workshop,
2008. Available: https://core.ac.uk/download/pdf/74235066.pdf.

[148] Richard F. Paige, Nikolaos Drivalos, Dimitrios S. Kolovos, Kiran J.
Fernandes, Christopher Power, Goran K. Olsen, and Steffen Zschaler.
Rigorous identification and encoding of trace-links in model-driven en-
gineering. Software & Systems Modeling, 10(4):469–487, October 2011.
ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-010-0158-8.

[149] Richard F. Paige, Nicholas Matragkas, and Louis M. Rose. Evolving
models in Model-Driven Engineering: State-of-the-art and future chal-
lenges. Journal of Systems and Software, 111:272–280, January 2016.
ISSN 01641212. doi: 10.1016/j.jss.2015.08.047.

[150] Vera Pantelic., Steven Postma., Mark Lawford., Alexandre Korobkine.,
Bennett Mackenzie., Jeff Ong., and Marc Bender. A Toolset for Simulink -
Improving Software Engineering Practices in Development with Simulink:.
In Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development, pages 50–61, ESEO, Angers,
Loire Valley, France, 2015. SCITEPRESS - Science and Technology
Publications. ISBN 978-989-758-083-3. doi: 10.5220/0005236100500061.

[151] Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett
Mackenzie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks,
and Alan Wassyng. Software engineering practices and Simulink: bridging
the gap. International Journal on Software Tools for Technology Transfer,
20(1):95–117, February 2018. ISSN 1433-2779, 1433-2787. doi: 10.1007/
s10009-017-0450-9.

229

https://open-services.net
https://openjdk.java.net/projects/code-tools/jmh/
https://core.ac.uk/download/pdf/74235066.pdf

8 Bibliography

[152] Terence Parr. The definitive ANTLR 4 reference. The pragmatic pro-
grammers. The Pragmatic Bookshelf, Dallas, Texas, 2012. ISBN 978-1-
934356-99-9.

[153] B. Ramesh and M. Jarke. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering, 27(1):58–93,
January 2001. ISSN 00985589. doi: 10.1109/32.895989.

[154] Patrick Rempel, Patrick Mäder, Tobias Kuschke, and Jane Cleland-
Huang. Mind the gap: assessing the conformance of software traceability
to relevant guidelines. In Proceedings of the 36th International Conference
on Software Engineering, pages 943–954, Hyderabad India, May 2014.
ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568290.

[155] Louis Rose, Esther Guerra, Juan de Lara, Anne Etien, Dimitris Kolovos,
and Richard Paige. Genericity for model management operations. Software
& Systems Modeling, 12(1):201–219, February 2013. ISSN 1619-1366, 1619-
1374. doi: 10.1007/s10270-011-0203-2.

[156] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C.
Polack. The Epsilon Generation Language. In Model Driven Architecture
- Foundations and Applications, volume 5095, pages 1–16. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-69095-5 978-3-540-
69100-6. doi: 10.1007/978-3-540-69100-6_1. Series Title: Lecture Notes
in Computer Science.

[157] RTCA. DO-178C: Software Considerations in Airborne Systems and
Equipment Certification. Standard, Radio Technical Commission for
Aeronautics, 2011.

[158] Nicholas Charles Russell. Foundations of Process-Aware Information Sys-
tems. PhD thesis, Queensland University of Technology, 2007. Available:
http://eprints.qut.edu.au/16592/.

[159] Nick Russell, Wil van der Aalst, and Arthur Ter Hofstede. Workflow
patterns: the definitive guide. MIT Press, Cambridge, MA, 2015. ISBN
978-0-262-02982-7.

[160] Rick Salay, Sahar Kokaly, Marsha Chechik, and Tom Maibaum. Het-
erogeneous megamodel slicing for model evolution. In Proceedings of
the 10th Workshop on Models and Evolution, 2016. Available: http:
//ceur-ws.org/Vol-1706/paper7.pdf.

[161] Rick Salay, Sahar Kokaly, Alessio Di Sandro, Nick L. S. Fung, and
Marsha Chechik. Heterogeneous megamodel management using collection

230

http://eprints.qut.edu.au/16592/
http://ceur-ws.org/Vol-1706/paper7.pdf
http://ceur-ws.org/Vol-1706/paper7.pdf

8 Bibliography

operators. Software & Systems Modeling, 19(1):231–260, January 2020.
ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-019-00738-9.

[162] Beatriz Sanchez, Athanasios Zolotas, Horacio Hoyos Rodriguez, Dimitris
Kolovos, and Richard Paige. On-the-Fly Translation and Execution
of OCL-Like Queries on Simulink Models. In Proceedings of the 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS), pages 205–215, Munich, Germany,
September 2019. IEEE. ISBN 978-1-72812-536-7. doi: 10.1109/MODELS.
2019.000-1.

[163] Beatriz Sanchez, Dimitris Kolovos, and Richard Paige. To build, or not to
build: ModelFlow, a build solution for MDE projects. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 1–11, Virtual Event Canada, October 2020.
ACM. ISBN 978-1-4503-7019-6. doi: 10.1145/3365438.3410942.

[164] Andrea Sindico, Marco Di Natale, and Gianpiero Panci. INTEGRATING
SYSML WITH SIMULINK USING OPEN-SOURCE MODEL TRANS-
FORMATIONS:. In Proceedings of the 1st International Conference
on Simulation and Modeling Methodologies, Technologies and Applic-
ations, pages 45–56, Noordwijkerhout, Netherlands, 2011. SciTePress
- Science and Technology Publications. ISBN 978-989-8425-78-2. doi:
10.5220/0003593600450056.

[165] George Spanoudakis and Andrea Zisman. SOFTWARE TRACEABILITY:
A ROADMAP. In Handbook Of Software Engineering And Knowledge
Engineering, pages 395–428. WORLD SCIENTIFIC, August 2005. ISBN
978-981-256-273-9 978-981-4480-70-3. doi: 10.1142/9789812775245_0014.

[166] George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana, and Paul
Krause. Rule-based generation of requirements traceability relations.
Journal of Systems and Software, 72(2):105–127, July 2004. ISSN
01641212. doi: 10.1016/S0164-1212(03)00242-5.

[167] J.M. Spivey. An introduction to Z and formal specifications. Software
Engineering Journal, 4(1):40, 1989. ISSN 02686961. doi: 10.1049/sej.
1989.0006.

[168] John Spriggs. GSN - The Goal Structuring Notation. Springer London,
London, 2012. ISBN 978-1-4471-2311-8 978-1-4471-2312-5. doi: 10.1007/
978-1-4471-2312-5.

[169] Perdita Stevens. Bidirectional model transformations in QVT: semantic

231

8 Bibliography

issues and open questions. Software & Systems Modeling, 9(1):7–20, Janu-
ary 2010. ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-008-0109-9.

[170] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The
Train Benchmark: cross-technology performance evaluation of continuous
model queries. Software & Systems Modeling, 17(4):1365–1393, October
2018. ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-016-0571-8.

[171] M Taromirad. A Modelling Approach to Multi-Domain Traceability. PhD
thesis, University of York, 2014. Available: http://etheses.whiterose.ac.uk/
7822/.

[172] Jérémie Tatibouët, Arnaud Cuccuru, Sébastien Gérard, and François Ter-
rier. Formalizing Execution Semantics of UML Profiles with fUML Models.
In Model-Driven Engineering Languages and Systems, volume 8767, pages
133–148. Springer International Publishing, Cham, 2014. ISBN 978-3-319-
11652-5 978-3-319-11653-2. doi: 10.1007/978-3-319-11653-2_9. Series
Title: Lecture Notes in Computer Science.

[173] The Eclipse Foundation. Epsilon. [Online], November 2012. Available:
https://www.eclipse.org/epsilon/. [Accessed 23 July 2021].

[174] The Eclipse Foundation. Teneo/Hybernate. [Online], November 2012.
Available: https://wiki.eclipse.org/Teneo/Hibernate. [Accessed 23 July
2021].

[175] The Eclipse Foundation. Eclipse Modeling Framework (EMF). [Online],
September 2014. Available: http://www.eclipse.org/emf. [Accessed 23
July 2021].

[176] The Eclipse Foundation. Xpand. [Online], May 2016. Available: https:
//www.eclipse.org/modeling/m2t/?project=xpand. [Accessed 23 July 2021].

[177] The Eclipse Foundation. EMFStore. [Online], December 2018. Available:
https://www.eclipse.org/emfstore/. [Accessed 23 July 2021.

[178] The Eclipse Foundation. Lyo. [Online], February 2018. Available: https:
//www.eclipse.org/lyo/. [Accessed 07 July 2018].

[179] The Eclipse Foundation. Acceleo. [Online], November 2019. Available:
https://www.eclipse.org/acceleo/. [Accessed 23 July 2021].

[180] The Eclipse Foundation. EMFCompare. [Online], November 2020. Avail-
able: https://www.eclipse.org/emf/compare/. [Accessed 23 July 2021].

[181] The Eclipse Foundation. CDO Model Repository. [Online], March 2021.
Available: https://www.eclipse.org/cdo/. [Accessed 23 July 2021].

232

http://etheses.whiterose.ac.uk/7822/
http://etheses.whiterose.ac.uk/7822/
https://www.eclipse.org/epsilon/
https://wiki.eclipse.org/Teneo/Hibernate
http://www.eclipse.org/emf
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/emfstore/
https://www.eclipse.org/lyo/
https://www.eclipse.org/lyo/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/cdo/

8 Bibliography

[182] The Eclipse Foundation. Capra. [Online], May 2021. Available: https:
//projects.eclipse.org/projects/modeling.capra. [Accessed 23 July 2021].

[183] The Eclipse Foundation. Emfatic. [Online], March 2021. Available:
https://www.eclipse.org/emfatic/. [Accessed 23 July 2021].

[184] The Eclipse Foundation. Xtext. [Online], March 2021. Available: https:
//www.eclipse.org/Xtext/. [Accessed 23 July 2021].

[185] Massimo Tisi, Salvador Martínez, Frédéric Jouault, and Jordi Cabot.
Lazy Execution of Model-to-Model Transformations. In Model-Driven
Engineering Languages and Systems, volume 6981, pages 32–46. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-24484-1 978-
3-642-24485-8. doi: 10.1007/978-3-642-24485-8_4. Series Title: Lecture
Notes in Computer Science.

[186] Massimo Tisi, Salvador Martínez, and Hassene Choura. Parallel Execution
of ATL Transformation Rules. In Model-Driven Engineering Languages
and Systems, volume 8107, pages 656–672. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013. ISBN 978-3-642-41532-6 978-3-642-41533-3. doi:
10.1007/978-3-642-41533-3_40. Series Title: Lecture Notes in Computer
Science.

[187] Massimo Tisi, Remi Douence, and Dennis Wagelaar. Lazy evaluation for
OCL. In Proceedings of the 15th International Workshop on OCL and
Textual Modeling, 2015. Available: http://ceur-ws.org/Vol-1512/paper04.
pdf.

[188] Laurence Tratt. A change propagating model transformation Language.
The Journal of Object Technology, 7(3):107, 2008. ISSN 1660-1769. doi:
10.5381/jot.2008.7.3.a3.

[189] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another
workflow language. Information Systems, 30(4):245–275, June 2005. ISSN
03064379. doi: 10.1016/j.is.2004.02.002.

[190] Verocel. VeroTrace. [Online], 2021. Available: https://www.verocel.com/
tools/lifecycle-management/. [Accessed 23 July 2021].

[191] Viatra. Massif: MATLAB Simulink Integration Framework for Eclipse.
[Online], October 2014. Available: https://github.com/viatra/massif. [Ac-
cessed 07 July 2018].

[192] Ran Wei and Dimitrios S. Kolovos. Automated analysis, validation and
suboptimal code detection in model management programs. In Proceedings

233

https://projects.eclipse.org/projects/modeling.capra
https://projects.eclipse.org/projects/modeling.capra
https://www.eclipse.org/emfatic/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
http://ceur-ws.org/Vol-1512/paper04.pdf
http://ceur-ws.org/Vol-1512/paper04.pdf
https://www.verocel.com/tools/lifecycle-management/
https://www.verocel.com/tools/lifecycle-management/
https://github.com/viatra/massif

8 Bibliography

of the 2nd Workshop on Scalability in Model Driven Engineering, 2014.
Available: http://ceur-ws.org/Vol-1206/paper_11.pdf.

[193] Ran Wei, Dimitrios S. Kolovos, Antonio Garcia-Dominguez, Konstantinos
Barmpis, and Richard F. Paige. Partial loading of XMI models. In
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pages 329–339, Saint-Malo
France, October 2016. ACM. ISBN 978-1-4503-4321-3. doi: 10.1145/
2976767.2976787.

[194] Andrew J. Wellings. Concurrent and real-time programming in Java. John
Wiley, Chichester, West Sussex, England ; Hoboken, NJ, 2004. ISBN
978-0-470-84437-3.

[195] Stefan Winkler and Jens von Pilgrim. A survey of traceability in require-
ments engineering and model-driven development. Software & Systems
Modeling, 9(4):529–565, September 2010. ISSN 1619-1366, 1619-1374. doi:
10.1007/s10270-009-0145-0.

[196] WMC. Workflow Management Coalition Terminology & Gloss-
ary. Technical report, Workflow Management Coalition, 1999.
Available: http://www.workflowpatterns.com/documentation/documents/
TC-1011_term_glossary_v3.pdf.

[197] XText. MWE 2. [Online], April 2019. Available: https://www.eclipse.org/
Xtext/documentation/306_mwe2.html. [Accessed 23 July 2021].

[198] Athanasios Zolotas, Horacio Hoyos Rodriguez, Stuart Hutchesson, Beatriz
Sanchez Pina, Alan Grigg, Mole Li, Dimitrios S. Kolovos, and Richard F.
Paige. Bridging proprietary modelling and open-source model manage-
ment tools: the case of PTC Integrity Modeller and Epsilon. Software &
Systems Modeling, 19(1):17–38, January 2020. ISSN 1619-1366, 1619-1374.
doi: 10.1007/s10270-019-00732-1.

234

http://ceur-ws.org/Vol-1206/paper_11.pdf
http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
https://www.eclipse.org/Xtext/documentation/306_mwe2.html
https://www.eclipse.org/Xtext/documentation/306_mwe2.html

	Abstract
	List of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Algorithms
	Acknowledgments
	Author Declaration
	Introduction
	Research results
	Thesis structure

	Background
	Model-Driven Engineering
	Models and metamodels
	Modeling languages
	Model management operations
	Global model management
	Model management platforms
	MDE challenges
	Scalability
	Co-evolution
	Heterogeneity and interoperability

	Traceability
	Defining traceability
	Demanding traceability
	The challenges of traceability
	Traces in MDE
	Tools

	Automation of task processes
	Business processes
	Model management workflows
	Build systems
	Continuous integration

	Summary

	Analysis and hypothesis
	Analysis
	Research overview
	Hypothesis
	Objectives
	Scope

	ModelFlow: A model management workflow framework
	ModelFlow's features
	Declarative workflow
	Conservative executions
	Automated model management
	Model management traces

	Architecture
	Components

	Language
	Abstract syntax
	Concrete syntax
	Workflow metamodel
	Semantics

	System design
	Knowing when to execute
	From declarations to runnable entities
	Conservative task executions
	Model management traces

	Implementation
	Decisions
	Plugins

	Summary

	Supporting heterogeneous models: MATLAB/Simulink
	Background
	Integration with Epsilon
	Simulink models
	Collection query optimisation

	Evaluation
	Experiment on Simulink models
	Experiment on collection queries

	Observations and lessons learned
	Related work
	Integration with ModelFlow

	Evaluation
	Case study: Component workflow
	Background
	Experimental setup
	Results
	Discussion
	Threats to validity

	Case study: EuGENia
	Background
	Approach
	Setup
	Correctness results
	Performance results
	Discussion
	Threats to validity

	Case study: Industrial workflow
	Background
	Approach
	Results
	Discussion

	Extensibility
	Interoperability
	Eclipse
	Build tools

	Summary

	Conclusion
	Summary
	Thesis contributions
	Novel tools and techniques
	Notable additional results

	Future work

	Bibliography

