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Abstract

Experimental time series data collected across a sequence of ordered replicates often

crop up in many fields, from neuroscience to circadian biology. In practice, it is natural

to observe variability across time in the dynamics of the underlying process within

a single replicate and wavelets are essential in analysing nonstationary behaviour.

Additionally, signals generated within an experiment may also exhibit evolution across

replicates even for identical stimuli.

We propose the Replicate-Evolving Locally Stationary Wavelet process (REv-LSW)

which gives a stochastic wavelet representation of the replicate time series. REv-

LSW yields a natural desired time- and replicate-localisation of the process dynamics,

capturing nonstationary behaviour both within and across replicates, while accounting

for between-replicate correlation. Firstly, we rigorously develop the associated wavelet

spectral estimation framework along with its asymptotic properties for the particular

case that replicates are uncorrelated. Next, we crucially develop the framework to

allow for dependence between replicates. By means of thorough simulation studies, we

demonstrate the theoretical estimator properties hold in practice.

Finally, it is unreasonable to make the typical assumption that all replicates stem

from the same process if a replicate spectral evolution exists. Thus, we propose two

novel tests that assess whether a significant replicate-effect is manifest across the

replicate time series. Our modelling framework uses wavelet multiscale constructions

that mitigate against the potential nonstationarities, across both times and replicates.

Thorough simulation studies prove both tests to be flexible tools and allow the analyst

to accordingly tune their subsequent analysis.

Throughout this thesis, our work is motivated by an investigation into the evolu-

tionary dynamics of brain processes during an associative learning experiment. The

neuroscience data analysis illustrates the utility of our proposed methodologies and

demonstrates the wider experimental data analysis achievable that is also of benefit to

other experimental fields, e.g. circadian biology, and not just the neurosciences.
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Introduction

In an experimental setting, time series data are often collected across a sequence of repeated

trials (also interchangeably referred to as replicates) with a natural ordering. A typical

approach to analysing the underlying process would make inference on the average dynamics

over all trials of the experiment. However, this approach naively assumes that all trials

stem from the same process and fails to account for the possibility of a change in the

process dynamics over the course of the experiment, even for identical stimuli. Such

process behaviour was investigated in a recent study on neurological signals by Fiecas and

Ombao (2016). Their data example focusses on the hippocampus (Hc) and the nucleus

accumbens (NAc), both known to play important roles in cognitive processing as they

are individually associated with memory recall and the processing of reward, respectively.

Recordings of electrical activity (at approximately 1000Hz) using local field potentials

(LFPs) were obtained from the Hc and NAc of an awake behaving macaque monkey during

an associative learning experiment. For each trial, the macaque was presented with one of

four pictures and was then tasked with associating this picture with one of the four doors

appearing on the screen. Upon making a correct association, the macaque was rewarded

with a small quantity of juice. Variability in neuronal activity within both brain regions

has also been observed over the trials of a learning experiment in other recent studies for

humans, monkeys and rats (Seger and Cincotta, 2006; Gorrostieta et al., 2011; Abela et al.,

2015). Such data experimental traits are not restricted to the neurosciences but can also be

found in the analysis of, e.g. an organism’s ‘biological clock’ in circadian biology (McClung,

2006), with such processes containing replicate nonstationary information (Hargreaves

et al., 2018, 2019). The process dynamics arising within experimental areas present the

challenge of modelling time series that display potential evolutionary behaviour not only

across time, but also across ordered trials.

Under certain statistical properties, such as process stationarity (the assumption that

its mean and variance are constant over time), there exist many methods of statistical

analysis of time series within the time domain, for example ARMA models, and within

the spectral domain, such as classical Fourier representations of the periodogram (for an

introduction, see Priestley (1982); Brockwell and Davis (1991); Box et al. (2008); Shumway

and Stoffer (2017)). These methods are well-established in the analysis of time series

arising from a variety of fields, for example, circadian biology, climatology, economics and

neuroscience. As time series data encountered in practice are often of a nonstationary

nature and much recent research has been concerned with developing statistical models

that capture variation within the series, the developments within this thesis are primarily

built to handle nonstationary data. Specifically, this thesis is concerned with the statistical

modelling of an ordered collection of (constant mean) second-order nonstationary time

series arising from the same stimulus, which we term a replicate time series or meta-process.

Wavelets can be thought of as localised ‘little wave’ functions with the ability to provide

sparse multiscale representations of many signals. In this thesis, wavelets provide the

fundamental ‘building blocks’ for our nonstationary process model, enabling us to capture

localised replicate-, time- and scale- variability.

This thesis is motivated by the (briefly introduced above) specific neuroscience applica-
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tion that records the brain process dynamics of a macaque monkey during an associative

learning experiment. Our approach acknowledges the work of Fiecas and Ombao (2016),

who developed their time–replicate model using Fourier waveforms, however we propose to

take advantage of the multiscale and time localisation properties of wavelets. In the specific

context of brain signals, the usefulness of time-scale decompositions that are typical of

wavelet constructions has already been established in the literature (Sanderson et al., 2010;

Park et al., 2014). Our aim is therefore to develop a wavelet-based model that directly

gives a stochastic representation to the meta-process of ordered trials and simultaneously

captures, in a scale-dependent manner, the evolutionary dynamics of the underlying brain

process across time within each trial and across the trials of the experiment. Furthermore,

considering that the signals are being recorded from the same subject (human, animal or

plant, as dictated by the experimental field), it would not be unreasonable to assume that

a dependence between trials could exist. For instance, some studies (Arieli et al., 1996;

Huk et al., 2018) have documented evidence of correlation across trials in an experiment.

Thus, to assume uncorrelation may be unrealistic and consequently produce misleading

results from statistical inference. This highlights an important limitation of the work

of Fiecas and Ombao (2016), namely that their methodology is developed under the

assumption of uncorrelated replicates. Therefore, we develop our general model with the

fundamental advantage that it accounts for the dependence between trials by means of a

coherence quantity that acts as a measure for cross-trial dependence. Nevertheless, should

trial uncorrelation be a reasonable assumption, our model is able to flexibly incorporate

it as a particular case. Additionally, we also propose two tests for checking whether a

replicate-effect indeed occurs over the experiment, thus justifying (or not) the adoption of

the proposed replicate time series model.

This thesis is structured as follows: Chapter 1 gives an overview of the statistical

concepts within the literature that are fundamental to our proposed methodology (developed

in Chapters 2, 3 and 5). Wavelets require particular attention and we will give an overview

of the basic concepts from wavelet theory, including multiresolution analysis which provides

the framework around which wavelets are built, and the discrete wavelet transform (DWT).

Next, we provide an overview of time series analysis in two parts. Firstly, we introduce

stationary time series, a topic underpinned by constancy of the process mean and variance

over time, and document classical approaches to their analysis in both the time and

spectral domain. Secondly, we explore approaches in the spectral domain developed to

handle nonstationary time series data. Specifically we introduce the locally stationary

Fourier processes (LSF) framework of Dahlhaus (1997) and then the developments of this

framework in the wavelet domain through the locally stationary wavelet (LSW) model of

Nason et al. (2000).

Chapter 2 addresses the crucial problem of approaching replicate time series as identical

process realisations and demonstrates the misleading results this approach can yield when

studying the process dynamics over the replicate domain. Here, we develop a new wavelet-

based replicate-evolving locally stationary wavelet (REv-LSW) model, capable of capturing

evolutionary process characteristics across time within a single replicate and across all

replicates. We propose to model the meta-process within a locally stationary wavelet

(LSW) process paradigm that builds upon the framework introduced by Nason et al.
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(2000) for a single process (here, replicate or trial). This amounts to developing novel

evolutionary wavelet quantities and associated estimation theory that encompass variation

across time within a replicate and across all replicates. To obtain well-behaved, consistent

spectral estimates we propose to perform local smoothing of the raw wavelet periodograms

across replicates, as opposed to employing the smoothing over time typically undertaken

in the locally stationary process context. A fundamental assumption we make for the

methodology in this chapter, is that replicates are uncorrelated as also assumed in Fiecas

and Ombao (2016). Through an extensive simulation study, we demonstrate the new

information captured by the REv-LSW model in comparison to the classical LSW approach

that assumes replicates are identical process realisations.

In Chapter 3, we propose a general model that allows for between-replicate correlation,

and the constraint of uncorrelated replicates, from Chapter 2, is treated as a particular case.

The associated estimation theory additionally encompasses between-replicate variation,

enabling us to estimate the replicate-coherence which is shown to provide novel, useful

information about the process replicate evolution. By means of a thorough simulation

study, our proposed model is shown to successfully capture between-replicate dependence,

giving a good indication of the features of the replicate-coherence.

Chapter 4 applies the methodology developed in Chapters 2 and 3 to the real dataset on

the macaque monkey associative learning experiment. The results obtained here highlight

the major advantages of our model, which are that (i) it offers the superior time-localisation

typical of wavelet constructions, and (ii) it takes into account the correlation of brain signals

across trials. These advantages have enabled us to infer evidence of learning throughout

the experiment and furthermore detect between-trial dependence within the data obtained

from the nucleus accumbens.

It is often of interest to perform tests of stationarity on a time series to investigate the

presence of varying dynamics. Thus, in Chapter 5 we propose two novel hypothesis tests to

assess whether a significant replicate-effect is manifest across the meta-process (replicate

time series). We propose location-specific and global tests, both underpinned by the

methodological framework developed in Chapter 2. Through both a thorough simulation

study and an application to the macaque data, we demonstrate the tests successfully

identify the presence of a replicate-effect and provide further information on where the

replicate-effect is located across the trials, as well as across time and scale localisations.

The results of testing on the macaque data corroborate the results obtained in Chapter

4, thus establishing the tests as favourable tools to be used as a first step to analyse a

replicate time series.

Chapter 6 concludes with a summary of the proposed methodologies within the thesis

and highlights potential avenues for future work.
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1 Literature review

1.1 Wavelet theory

Spectral analysis is broadly concerned with decomposing a function as a linear combination

of basis functions. Various bases for well-behaved function spaces can be formed using,

e.g. trigonometric functions, albeit, the methodological developments of this thesis rest on

wavelets.

Wavelets are a major modern development on the concepts that form Fourier theory,

thus it is only fitting to first review some of the relevant concepts of Fourier analysis.

The earliest connection to proposing a trigonometric series (Definition 1.1.1 below) to

approximate functions dates back to Daniel Bernoulli (1753) (see Larsen (1974)) in relation

to a problem on the vibration of strings. New techniques underpinned by the sine and

cosine trigonometric functions were investigated by Jean Baptiste Joseph Fourier, who

asserted there exists a trigonometric series representation for any periodic function (see

Bachman et al. (2000) for a historical introduction). This however was not the case, as

some signals are too ‘wild’ to be represented efficiently by the Fourier sines and cosines,

thus motivating new techniques, namely wavelets.

Our review of Fourier analysis will take structure from the descriptions given in Priestley

(1982) with further reference to Bachman et al. (2000).

1.1.1 Fourier analysis

Fourier analysis is primarily concerned with using sine and cosine waves to form bases for

L2(R) functions, where f ∈ L2(R), the space of square integrable functions. This consists

of functions f(·) that fulfill
∫∞
−∞ |f(x)|2dx <∞. Therefore we start by defining the Fourier

series decomposition of a function denoted by f .

Definition 1.1.1. Let f be a periodic function with period 2π (i.e. f(x) = f(x + 2π))

and square integrable over the interval [−π, π). Then the Fourier series representation of

f in trigonometric form is

f(x) =
a0
2

+

∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where an and bn are the nth Fourier coefficients, calculated from

an =
1

π

∫ π

−π
f(x) cos(nx)dx, bn =

1

π

∫ π

−π
f(x) sin(nx)dx.

We note that the Fourier series can be expressed in exponential form (e.g. Bachman et al.

(2000)).

Each term within the Fourier series decomposition has a magnitude, given by the

Fourier coefficients an and bn, that exposes the frequency structure of the signal. Thus,

various periodic functions can be constructed from a mixture of the Fourier functions, such

that {cos(nx), sin(nx)}n∈N forms an orthonormal basis. Convergence of the series is often

overlooked in practice, for instance in the case of functions with discontinuities the Fourier
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approximation can overshoot, referred to in the literature as the ‘Gibbs phenomenon’ (see

(Bachman et al., 2000, §4.8)). For periodic functions in L2([−π, π)), convergence can be

achieved in the mean-square sense i.e.,∫ π

−π
|f(x)− fn(x)|2dx→ 0, as n→ ∞,

where fn(x) is the nth partial sum. Additionally, if a 2π-periodic function f is absolutely

integrable over [−π, π), and has a finite number of extrema and finite number of discon-

tinuities in the interval [−π, π), then it is said to satisfy the Dirichlet conditions and its

Fourier series converges point-wise. In the presence of a finite discontinuity, xd, the Fourier

series converges to 1
2 limℓ→0[f(xd − ℓ) + f(xd + ℓ)].

Generally, most functions are not periodic. Suppose a function f is non-periodic and

defined for all real x. We can construct a Fourier series representation for f ∈ L1(R), the
space of absolutely integrable functions (i.e.

∫∞
−∞ |f(x)|dx < ∞), through application of

the following transform.

Definition 1.1.2. For a function f ∈ L1(R), the Fourier transform of f is given by

f̂(ω) =
1√
2π

∫
R
f(x)e−iωxdx,

where f̂ ∈ L1(R) and ω is the angular frequency. We seek to recover f through the inverse

Fourier transform of f̂ , given by

f(x) =
1√
2π

∫
R
f̂(ω)eiωxdω. (1)

We note here that the angular frequency (measured in radians per second) and the Hertz

frequency (denoted here by v) have the relationship ω = 2πv. When particular conditions

for convergence are satisfied, equation (1) gives a representation for f by means of a ‘sum’

of sine and cosine functions. Note that in contrast with the Fourier representation for

periodic functions which involved a discrete range of frequencies, the integral representation

here provides access to frequencies on a continuous scale.

In practice, many statistical applications are concerned with discrete-time series. Al-

though theoretically the Fourier transform can be applied to discrete-time signals (for

example the discrete-time Fourier transform), the integral may be unrealistic to evaluate.

By sampling the frequencies on the continuous scale as to obtain a discrete range of

frequencies, the signal f can be recovered by means of inversion of the discrete Fourier

transform.

Definition 1.1.3. For a signal f defined on the finite set {0, 1, ..., N − 1}, such that

f(t) = f(t+ kN), the discrete Fourier transform of f is given by

Df̂j =
1√
N

N−1∑
t=0

f(t)e−2πitj/N ,

for j = 0, 1, ..., N − 1, where j/N is the jth multiple of the fundamental frequency.

Here, the 1/
√
N factor is chosen for symmetry with the inverse transform, the same
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reason for choosing 1/
√
2π in the Fourier transform.

As already discussed, Fourier representations for series with sharp changes may require

many combinations of the sine and cosine basis functions in order to approximate at ‘jump’

points. However, a sparse representation, meaning few non-zero basis coefficients, can

lead to a better understanding of the signal structure. Since Fourier functions are only

localised in frequency and not in time, their applicability to represent signals is better suited

for smoother signals which exhibit periodicity, than for signals with a more ‘turbulent’

behaviour with features manifest locally. Thus, basis functions that can capture local

features would be desirable. Wavelets can do exactly that; many are constructed to have

compact support which gives them localisation in time and we introduce them next.

1.1.2 Wavelets

Wavelets, as their name suggests can be thought of as ‘little wave’ functions, which possess

the ability to capture local characteristics due to their localisation in time as well as

frequency. The addition of locality in time, gives wavelets a natural advantage over the

Fourier functions previously mentioned, to represent discontinuous functions. Motivated

by the monographs of Vidakovic (1999), Daubechies (1992) and Nason (2008), we now

proceed to introduce some theory on wavelets.

To begin, meet the mother wavelet, ψ ∈ L2(R), a square integrable function capable of

generating a family of functions that can form bases for various spaces of functions. For

dilation and translation parameters, a ∈ R\{0} and b ∈ R, respectively, a family of wavelet

functions can be defined as

ψa,b(x) =
1√
|a|
ψ

(
x− b

a

)
, (2)

where the normalisation parameter |a|−1/2, ensures the L2-norm of ψ is maintained:

||ψa,b||2 = ||ψ||2. We understand this to mean that wavelet families are constructed

through re-scales and translations of the mother wavelet ψ, where a and b are allowed to

vary continuously.

Wavelets are attractive due to their localisation in both frequency and time. These

properties are ensured through the following condition that the wavelet function is assumed

to satisfy.

Definition 1.1.4. A wavelet, ψ ∈ L2(R), is any square integrable function which satisfies

the admissibility condition

Cψ =

∫
R

|ψ̂(ω)|2

|ω|
dω <∞ (3)

where ψ̂(ω) is the Fourier transform of ψ(x) (see Definition 1.1.2). The admissibility

condition implies (Vidakovic, 1999) that at the zero frequency ω = 0

ψ̂(0) =

∫ ∞

−∞
ψ(x)dx = 0,

which ensures the wavelet oscillates.
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Daubechies (1992) characterised wavelets to have compact support, ensuring a fast

decay to zero and helping to provide time localisation.

An important property of wavelet functions, ψ ∈ L2(R), is that they can be constructed

with different degrees of smoothness. At one extreme is the discontinuous Haar wavelet

function and at the other is the Shannon wavelet function. If ψ satisfies∫ ∞

−∞
xℓψ(x)dx = 0, (4)

for ℓ = 0, ..., n−1, then it is said to have n vanishing moments. Thus the wavelet coefficients

are zero for any polynomial of degree (n − 1) or less. This property is advantageous as

it allows for a sparse representation of a function, such that for a reasonably smooth

function only few coefficients need to be estimated. The more vanishing moments ψ has,

the smoother the function it will be.

Let us gain a feel for the characteristics of wavelets through introducing the Haar

wavelet (Haar, 1910), often regarded as the simplest example of a wavelet system. The

Haar mother wavelet is defined by

ψH(x) =


1, for x ∈ [0, 12)

−1, for x ∈ [12 , 1]

0, otherwise.

Through the dilations and translations of the Haar mother wavelet using equation (2), the

associated wavelet functions are given by

ψHa,b(x) =


1√
a
, for x ∈ [b, a2 + b)

−1√
a
, for x ∈ [a2 + b, a+ b]

0, otherwise,

where a ∈ R\{0} and b ∈ R. The Haar mother wavelet, ψH(x) = ψH1,0(x), is displayed in

Figure 1 alongside an associated translated and dilated Haar wavelet.

Examples of wavelets

Daubechies’ compactly supported wavelets

Daubechies wavelets are an important historical step in the development of wavelet

theory. Daubechies (1992) discovered that a basis for L2(R) can be formed from a family of

orthonormal wavelets with compact support and varying degrees of smoothness. Smooth-

ness is determined by the number of vanishing moments (recall equation (4)) and each

member of a Daubechies wavelet family is indexed by an associated number of vanishing

moments, N , and will have support of size larger than or equal to 2N − 1 with minimum

compact support on the interval [−N + 1, N ] (Mallat, 2009). Note, some authors index

Daubechies wavelets by the length of the compact support. The Daubechies Extremal

Phase wavelet family is constructed to have the minimal support possible for N vanishing

moments. Haar wavelets are included in this family, indexed by N = 1 with support on the

interval [0, 1]. The Daubechies Least Asymmetric wavelet family are designed to minimise

4



−1 0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x 
 Haar wavelet

ps
i

−1 0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x 
 translated/dilated Haar wavelet: a=2, b=2

ps
i

Figure 1: Left : Haar mother wavelet ψH
1,0(x); Right : translated/dilated Haar mother wavelet

ψH
2,2(x).

the degree of asymmetry within the wavelet. For an exhaustive review of Daubechies

wavelets see Daubechies (1992), alternatively see (Percival and Walden, 2000, §4.8) for

a discussion the construction of Daubechies wavelet filters. Examples of Daubechies Ex-

tremal Phase and Least Asymmetric wavelets for a selection of vanishing moments, N , are

displayed in Figure 2.

Shannon wavelet

We have seen that Haar wavelets are compactly supported on [0, 1] and are localised in

time. Shannon wavelets are the time-scale mirror image, such that they are localised in

frequency and have compact support on [−2π,−π)∪ (π, 2π]. The Shannon mother wavelet,

as defined in (Chui, 1997, §4.2), is given to be

ψ(x) =
sin(2πx)− cos(πx)

π(x− 1/2)
,

with support over R and its Fourier transform is given by

ψ̂(ω) = −eiω/2I[−2π,−π)∪(π,2π](ω),

where I denotes the indicator function. With decay like |x|−1 in the time domain, the

Shannon wavelet is rarely used in practice but could aid theoretical understanding of

wavelets with a very high number of vanishing moments. Chui (1997) remarks that all

high-order orthonormal wavelets ‘imitate’ the Shannon wavelet. Thus, Shannon wavelets

can be thought of as the limiting wavelet for Daubechies wavelets of order N as N → ∞.

The continuous wavelet transform (CWT)

Statistical applications using wavelet analysis are mainly interested in discrete trans-

formations however it is only natural to introduce wavelet theory by starting with the

continuous wavelet transformation.
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Figure 2: Daubechies wavelets of varying degrees of vanishing moments N . Top: Extremal Phase;
Bottom: Least Asymmetric. Plotted using Wavethresh (Nason, 2008).

Definition 1.1.5. For a function f ∈ L2(R), the continuous wavelet transform (CWT) is

defined as

CWTf (a, b) = ⟨f, ψa,b⟩ =
∫
f(x)ψa,b(x)dx, (5)

where ψa,b(x) is the complex conjugate of ψa,b(x) and a ∈ R\{0}, b ∈ R. Assuming the

admissibility condition (equation (3)) is satisfied, we can find the inverse transform through

the resolution of identity relation (Vidakovic, 1999)

f(x) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞

1

a2
CWTf (a, b)ψa,b(x)da db, (6)

thus providing a way to recover f by means of superimposing wavelet basis functions.

In comparison with the Fourier transform representation given in Definition 1.1.2, it can

be seen that the coefficients, CWTf (a, b), in the wavelet decomposition given in equation (5)

have the advantage of providing information on the amplitude at a given location (through

b) as well as a given scale (through a). The coefficients in the Fourier transform can only

provide information about the amplitude at a given frequency (equivalent to wavelet scale).

The Haar wavelet is one of many that can be used here, for further examples, such as the

‘mexican hat’ wavelet, see (Vidakovic, 1999, §3.1.2). A comprehensive review of CWT can

be found in Daubechies (1992).
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Discretisation of the CWT

The work in this thesis mainly focuses on constructions of discrete wavelet represen-

tations. One drawback of the continuous wavelet transform is redundancy, such that the

information captured in the coefficient CWTf (a, b) is also contained within neighbouring

coefficients. To answer this issue, sampling the values of a and b can yield less redundant

transformations. Discretisation of the continuous wavelet transform involves selecting

discrete values of a and b such that we still have an invertible transformation. Most often,

the choices of dyadic translations a = 2−j and b = 2−jk (as noted by Antoniadis and

Gijbels (2002)) are adopted, known as critical sampling. This is the coarsest choice that

will admit a function to be uniquely recovered from its wavelet transform. Plugging this

sampling choice into equation (2), a family of discrete (decimated) wavelet functions can

be defined as

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z, (7)

where j and k are the resolution level (also referred to as scale) and location respectively.

Note that in ‘j, k’ notation the mother wavelet, ψ, is equivalent to ψ0,0 and this is the

form we refer to from now on. For suitable choices of ψ, a and b, the above wavelet family

can form an orthonormal basis for f ∈ L2(R) (see Daubechies (1988, 1992)). Technically,

information about the function being decomposed will be contained within each scale 2j

at locations 2−jk. Through finer choices of sampling, for instance greater values of j, the

transformation becomes more redundant, whereas too coarse sampling will lead to not

being able to recover f uniquely. Antoniadis and Gijbels (2002) introduce the choice of

a = 2−j and b = k which leads to the construction of the non-decimated wavelet family

ψj,k(x) = 2j/2ψ(2j(x− k)), j, k ∈ Z. (8)

Unlike the wavelet family in (7) that exists across dyadic intervals, here a wavelet exists at

all integer locations. Note, this highlights the time translation invariance of transforms

using wavelets from (8) and lack of translation invariance from wavelets in (7). More on

this will be delved into later.

In similar fashion to the inverse continuous transform (equation (6)), any function,

f ∈ L2(R), can be recovered by means of a linear combination of wavelet basis functions

at different scales and locations. Specifically, we define the following representation for f .

Definition 1.1.6. For suitable choices of ψ ∈ L2(R), such that the decimated wavelet

family {ψj,k(x)}j,k∈Z forms an orthonormal basis for L2(R), the function f ∈ L2(R) has a
wavelet representation given by

f(x) =
∑
j∈Z

∑
k∈Z

⟨f, ψj,k⟩ψj,k(x),

where ⟨·, ·⟩ is the L2-inner product and due to the orthogonality of wavelets,

dj,k = ⟨f, ψj,k⟩ =
∫ ∞

−∞
f(x)ψj,k(x)dx.

The {dj,k}j,k∈Z are called the wavelet coefficients within a scale j for a location k. As

mentioned previously for the continuous wavelet transform, the wavelet coefficients provide
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information on the amplitude at a given location (through k) and scale (through j), unlike

the Fourier coefficients that can only provide the latter (for frequency).

1.1.3 Multiresolution analysis (MRA)

Let us now take a slight detour away from wavelets explicitly to introduce the framework

upon which wavelets are built, multiresolution analysis, introduced by Mallat (1989a,b)

and Meyer (1993). We can think of a multiresolution analysis (MRA) as if painting

a portrait of a function. We start with a low-resolution approximation to a function

f ∈ L2(R), then by ‘zooming in’ on our subject (f) we can progressively add finer details

from higher resolution approximations. Thus our portrait (representation) of f(x) is much

more detailed. Comprehensive accounts of MRA can be found in Mallat (1989a,b) and

Daubechies (1988, 1992). Next, we introduce the important characteristics of MRA and

the part it plays in constructing wavelets. Our discussion follows the work presented in

Vidakovic (1999), Debnath (2002) and Nason (2008).

Definition 1.1.7. A multiresolution analysis of L2(R) consists of a sequence of closed

subspaces {Vj}j∈Z of L2(R),

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ...,

thought of as successive approximation spaces, such that as j gets larger the space Vj

contains functions of finer scales. The following conditions must be satisfied:

1. The spaces have trivial intersection and their union is dense in L2(R)⋂
j∈Z

Vj = {0},
⋃
j∈Z

Vj = L2(R),

where the overline denotes closure of the set and 0 denotes the zero function.

2. The spaces have the following interscale linkage relations

f(x) ∈ Vj ⇔ f(2mx) ∈ Vj+m, ∀x ∈ R,m ∈ Z,

f(x) ∈ V0 ⇔ f(x− k) ∈ V0, ∀x ∈ R, k ∈ Z. (9)

3. There exists a scaling function ϕ ∈ V0 with
∫∞
−∞ ϕ(x)dx = 1, for which the set of

integer translates {ϕ(· − k), k ∈ Z} form an orthonormal basis of V0.

Condition 2 demonstrates how successive spaces contain finer details, for instance the

detail added to Vj+1 is twice as fine as the detail in Vj . Additionally, any shift in f(x) by

an amount k does not change the level of resolution j that we are adding to.

By equation (9) of condition 2 along with condition 3, for a fixed j, the family

{ϕj,k(x), k ∈ Z} forms an orthonormal basis of Vj , where

ϕj,k(x) = 2j/2ϕ(2jx− k), j, k ∈ Z.
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This prompts us to define the scaling function as

ϕ(x) =
∑
k∈Z

hk
√
2ϕ(2x− k), hk, k ∈ Z, (10)

which tells us that we can represent any function ϕ(x) ∈ V0 as a linear combination of

functions from V1, due to V0 ⊂ V1. The set of coefficients {hk} is referred to as a low-pass

filter, for reasons that will soon become clear. This relation is also referred to as the

dilation equation, and it is fundamental in the construction of wavelets and building a

general MRA.

Daubechies (1988) introduced the operator Pj that projects a function into the space

Vj . As such, for a resolution level j, an approximation for a function f , can be given by

Pjf =
∑
k∈Z

⟨f, ϕj,k⟩ϕj,k(x), (11)

since {ϕj,k(x), k ∈ Z} is a basis for Vj . As j increases, our approximation improves and Pj

converges to f as j → ∞ Daubechies (1992). Next, we will see how wavelets can ‘explain’

the detail that is lost when moving from an approximation space, Vj+1, to the next coarser

space, Vj .

Constructing wavelets

The principle of multiresolution analysis (Daubechies, 1992) is that for a sequence of

closed subspaces satisfying a MRA, there exists a family {ψj,k(x) = 2j/2ψ(2jx−k); j, k ∈ Z}
that forms an orthonormal wavelet basis of L2(R), such that

Pj+1f = Pjf +
∑
k∈Z

⟨f, ψj,k⟩ψj,k(x), (12)

for all f ∈ L2(R), where Pj is the projection operator that projects a function into the

space Vj and ⟨·, ·⟩ denotes the L2-inner product. Recall that ψj,k is a translated and

dilated member of the wavelet family derived from the mother wavelet ψ = ψ0,0. It can be

seen from equation (12) that the difference between projections (Pj+1 − Pj)f is a linear

combination of wavelets. Thus, the detail that is lost from moving to a coarser projection,

Pj+1 to Pj , can be characterised by the orthonormal basis of wavelets {ψj,k(x)}k∈Z. To

demonstrate this, define the detail space Wj to be the orthogonal complement of Vj in

Vj+1 such that

Vj+1 = Vj ⊕Wj , ∀j ∈ Z, (13)

where ⊕ denotes the direct sum. Successive application of equation (13) then gives that

Vj+1 = V0 ⊕
j⊕
i=0

Wi.

Then due to condition 1 of a MRA (Definition 1.1.7), as
⋃
j∈Z Vj is dense in L2(R) we

obtain

L2(R) =
⊕
j∈Z

Wj .

9



This tells us that the basis functions that characterise the detail spaces {Wj}j∈Z, can
provide a representation for an L2-function. Additionally, the scaling properties given in

condition 2 are inherited by the detail spaces, such that

f(x) ∈Wj ⇔ f(2mx) ∈Wj+m and f(x) ∈W0 ⇔ f(x− k) ∈W0.

Putting this construction together, if we can form an orthonormal basis for W0 through

integer translations of a function ψ(x), then through further translations and dyadic

dilations, an orthonormal basis for Wj can be formed from {ψj,k(x)}k∈Z. Linking back

to the discussion on equation (12), the detail that is lost when moving from Pj+1 to Pj

is characterised in Wj . So intuitively, we can think of the next finest approximation of a

function f , given by Pj+1f to be the detail already described by Vj ‘plus’ the finer details

characterised by Wj . This concept is illustrated in Figure 3. Starting at V5, as we ‘add’ the

detail captured within successive resolution levels j = 5, ..., 9, finer approximations of f are

obtained. Thus, it can be seen that the family {ψj,k(x); j, k ∈ Z} forms a basis of L2(R).
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Figure 3: Multiresolution analysis of the Doppler function (topmost signal in right plot). Left :
Wavelet coefficients characterising the detail contained in Wj ; Right : Successive approximations of
the Doppler function projected into the spaces Vj where Vj+1 = Vj ⊕Wj . This figure is reproduced
following Figure 3.7 in Vidakovic (1999).

As W0 ⊂ V1, then the wavelet function ψ(x) ∈ V1, which can be constructed from the

scaling function by

ψ(x) =
∑
k∈Z

gk
√
2ϕ(2x− k), gk, k ∈ Z, (14)

where the set of coefficients {gk} is called a high-pass filter, for reasons that will soon

become clear. Daubechies (1992) showed that a possible solution to equation (14), that

yields a desirable mother wavelet is to set

gk = (−1)kh1−k,

which is known as the quadrature mirror relation. Recall that {hk} is the low-pass filter,

that suppresses the higher frequencies whilst preserving the low ones, and with opposite
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characteristics is the high-pass filter, {gk}. Under the above relation, these coefficients are

referred to as the quadrature mirror filters. For an extensive proof of this relation, readers

can consult either Vidakovic (1999) or Daubechies (1992).

1.1.4 The discrete wavelet transform (DWT)

In a manner similar to discrete Fourier transforms, discrete wavelet transforms (DWT) are

applied to discrete sets of data, returning outputs that are also discrete. Mallat (1989a,b)

was first to connect multiresolution analysis and cascade algorithms with wavelets, in

order to provide a nested structure to recursively compute the scaling and wavelet (detail)

coefficients, this scheme is referred to as Mallat’s Pyramid Algorithm. Essentially, the

scheme uses the low- and high-pass filters, {hk} and {gk}, associated with the scaling

equations (10) and (14), to provide a relation between the wavelet coefficients at different

levels in the transformation, ergo, bypassing the need to evaluate the inner products

⟨f, ϕj,k⟩ and ⟨f, ψj,k⟩ in equation (12).

Recalling that ϕ = ϕ0,0 and ψ = ψ0,0, through the substitution of indices in the scaling

equations (10) and (14), the following refinement relations can be obtained

ϕj−1,k(x) =
∑
l∈Z

hl−2kϕj,l(x), and ψj−1,k(x) =
∑
l∈Z

gl−2kϕj,l(x). (15)

As customary in the wavelet literature, we denote the scaling coefficients and wavelet

coefficients to be, cj,k = ⟨f, ϕj,k⟩ and dj,k = ⟨f, ψj,k⟩ respectively, then using the refinement

relations (15) allows us to construct a recursive relationship structure between coefficients

at different levels:

cj−1,k = ⟨f, ϕj−1,k⟩

=

〈
f,
∑
l∈Z

hl−2kϕj,l

〉
=
∑
l∈Z

hl−2k⟨f, ϕj,l⟩

=
∑
l∈Z

hl−2kcj,l. (16)

In the same manner, for the wavelet coefficients we obtain

dj−1,k =
∑
l∈Z

gl−2kcj,l. (17)

Formulas (16) and (17) are the mechanics referred to when computing the DWT. For each

level j, they provide a recursive way to compute the scaling and wavelet coefficient vectors,

cj = {cj,k}k∈Z and dj = {dj,k}k∈Z, at successive coarser levels. Thus, linking this with

the level j multiresolution decomposition of a function f ∈ L2(R) (see equations (11) and

(12)), it is possible to represent a function in L2(R) by

f(x) =
∑
k∈Z

cj0,kϕj0,k(x) +
∑
j≥j0

∑
k∈Z

dj,kψj,k(x),
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where j0 denotes the coarse level. The first part of the above sum is equivalent to Pj0f and

captures the ‘smooth’ underlying global characteristics of f at level j0. The second part of

the sum represents the finer details of f that are lost when moving to coarser scales.

As with the continuous case, the DWT described by formulas (16) and (17) which

is also referred to as the forward transform, has an inverse. The inverse allows us to

recursively reverse the direction of the cascade algorithm such that we can obtain the next

finer level coefficients starting at the coarsest level scaling and mother coefficients. The

inverse discrete wavelet transform (IDWT) is given by

cj,l =
∑
k∈Z

cj−1,khl−2k +
∑
k∈Z

dj−1,kgl−2k, (18)

where {hl} and {gl} are the quadrature mirror filters that share the same structure as the

filters computed for the forward transform.

DWT in the presence of discrete data

In most practical situations, a function f is a collection of discrete values observed at

N = 2J equally spaced locations {xi, 0 = 1, ..., N − 1}. The DWT is initiated from the

‘finest scale’ scaling coefficient vector cJ, however as we are operating on discrete values of

f we cannot directly calculate the scaling coefficients at the finest scale. Thus, we need a

way to approximate cJ (see (Nason, 2008, §2.7.3)). An often convenient approach is to

approximate the finest scale scaling coefficients by the original function samples, such that

cJ,i = f(xi), for i = 0, ..., N − 1.

However, this approach can incur some error and is referred to as committing the ‘wavelet

crime’ by Strang and Nguyen (1996); the authors suggest to first pre-filter the original

data samples. Thus, an approximation of the observed function f can be constructed at

the finest level J , by

f̃(x) =
∑
k∈Z

cJ,kϕJ,k(x).

It is then possible to construct the coarser scaling and wavelet coefficients for j < J . Note

that as a consequence, although we will maintain the notation cj,k and dj,k, the coefficients

of f̃ will be approximations of cj,k = ⟨f, ϕj,k⟩ and dj,k = ⟨f, ψj,k⟩. On a further note, the

empirical coefficients are approximately proportional to their continuous counterparts by a

factor 1/
√
N (see Abramovich et al. (2000)).

Having chosen a particular wavelet family, and starting with the finest scaling coefficients

in cJ, the DWT progresses by applying the formulas (16) and (17) to obtain the next

coarser level coefficients, cJ−1 = {cJ−1,k}k∈Z and dJ−1 = {dJ−1,k}k∈Z. The length of each

coefficient vector at scale J − 1 is equal to half the length of the data N , so after one

application N/2 scaling and wavelet coefficients are obtained. This halving continues with

each application to the next coarsest scale and is a result of the decimation step in the

DWT captured through the ‘2k’ term in formulas (16) and (17). The next step then uses

the output cJ−1 as the input for the next application of the algorithm and this process

repeats until the desired coarse level decomposition, denoted j0, has been reached. A visual

interpretation of this algorithm is given in Figure 4. The result of the DWT is therefore a
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transformation of an initial vector in the time domain to the following vector in the wavelet

domain:

DWT (f) = (cj0 ,dj0 , ...,dJ−2,dJ−1),

where j0 denotes the desired coarse level. Note, if j0 is set to equal 0 so that a full

decomposition of the series is constructed, then c0 = c0,0 and d0 = d0,0.

Figure 4: Flow diagram depicting the DWT on the finest scale scaling coefficients cJ = f . The
high- and low-pass filters are denoted by g and h respectively. Each step in the decomposition is
headed by the number of coefficients produced for each of the scaling and wavelet coefficients.

A ‘Haar’-tening example of the DWT

To demonstrate the DWT in practice, we present here a simple yet informative example

that uses the Haar wavelet basis to form a wavelet decomposition for discrete data. The

low- and high-pass filters for the Haar wavelet are given by

hk =


1√
2
, for k = 0

1√
2
, for k = 1

0, otherwise

, gk =


1√
2
, for k = 0

−1√
2
, for k = 1

0, otherwise

. (19)

For the discrete data sequence y = (y0, ..., yN−1), we start the DWT by first approxi-

mating the finest scale scaling coefficients by the original data such that

cJ = (5, 3, 1, 9, 2, 2, 8, 4) = y.

As y is of length N = 8 = 2J , the finest level is J = 3 and thus cJ = c3. Using formulas (16)

and (17), we can obtain the next coarsest level scaling coefficients c2 = (c2,0, c2,1, c2,2, c2,3)

and wavelet (detail) coefficients d2 = (d2,0, d2,1, d2,2, d2,3) in the following manner:

c2,0 =
∑
l

hlc3,l =
1√
2
· 5 + 1√

2
· 3 = 4

√
2

c2,1 =
∑
l

hl−2c3,l =
1√
2
· 1 + 1√

2
· 9 = 5

√
2

c2,2 =
∑
l

hl−4c3,l =
1√
2
· 2 + 1√

2
· 2 = 2

√
2

c2,3 =
∑
l

hl−6c3,l =
1√
2
· 8 + 1√

2
· 4 = 6

√
2
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d2,0 =
∑
l

glc3,l =
1√
2
· 5− 1√

2
· 3 =

√
2

d2,1 =
∑
l

gl−2c3,l =
1√
2
· 1− 1√

2
· 9 = −4

√
2

d2,2 =
∑
l

gl−4c3,l =
1√
2
· 2− 1√

2
· 2 = 0

d2,3 =
∑
l

gl−6c3,l =
1√
2
· 8− 1√

2
· 4 = 2

√
2.

If we then continue to repeat this process to find the coefficients for (c1,d1) and lastly

(c0,d0), we obtain the following output for the DWT:

DWT (y) = (
17√
2
,
1√
2
,−1,−4,

√
2,−4

√
2, 0, 2

√
2).

Figure 5 gives a visual representation of our example, where it can be seen that each

successive step to the next coarsest level results in obtaining half the number of coefficients.

To recover the original data sequence y, we can perform the inverse DWT given in equation

(18) on the set of wavelet coefficients obtained for DWT (y) and the coarsest level scaling

coefficient, c0,0, which provides the coarsest characterisation of the original signal.

Figure 5: Graphical representation of the DWT for the Haar wavelet example. Solid arrows:
represent application of the low-pass filter H; Dotted arrows : represent application of the high-pass
filter G. This figure follows Figure 2.2 in Nason (2008).

A note on matrix representation

An alternative way to formulate the DWT, although not as computationally fast as the

pyramid algorithm (Nason, 2008), is through the following matrix multiplication

DWT (y) =Wy,

where W is the orthogonal matrix (i.e. W TW = IN , where IN is the identity matrix of

order N = 2J) associated with the wavelet used in the DWT process. The orthogonality of

W follows from the orthonormality of the wavelet bases of the spaces Vj and Wj described
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in Section 1.1.3. Since at each step of the DWT we are representing the input signal on

two different bases, matrix multiplication can represent the change of basis as we move to

the next coarser level (space Vj−1). Additionally since W is orthogonal, it follows that

||d||2 = dTd = (Wy)TWy = yT (W TW )y = yTy = ||y||2,

where we have let d = DWT (y) for brevity. Thus, the length of the input vector d is the

same as that of the input y, which we have seen is true through our application of the

pyramid algorithm. It also follows that the inverse DWT can be constructed through the

matrix multiplication given by

y =W TDWT (y),

noting that since W is orthogonal, W−1 =W T .

A note on boundary conditions

Haar wavelets are constructed on the smallest support, such that the Haar filters

work in pairs to transform one dyadic sequence to another. Thus we see no issues when

approaching the ‘boundaries’ of the sequence. However, issues occur when the support of

the wavelet filter extends beyond the length of the sequence. For example, consider we

have four detail filters, {gk}3k=0, associated with a wavelet (e.g. Daubechies D4 compactly

supported wavelets) and we wish to transform a dyadic vector y = (y0, ..., yN−1). The

transform begins by filtering the first four elements of y with the corresponding filter

coefficients and then skips to the right by two elements. This process continues for the

remainder of y and can be viewed as a moving window of operations on four elements,

skipping two elements at a time in order to account for dyadic decimation. However, the

resulting transformed sequence is one element short of being dyadic. This may only be

one element of detail missing but the issue becomes more serious for wavelets with greater

support. Various approaches have been considered to tackle this issue, with a general idea

being to extend the boundary, i.e., to obtain elements y−2 and y−1 in the example just

given. Periodic bounding and reflection at the boundary are options discussed by Nason

and Silverman (1994). A further option by Cohen et al. (1993), constructs coarser scale

coefficients without borrowing detail from periodisation or reflection, this procedure is

known as ‘wavelets on the interval’.

1.1.5 The non-decimated wavelet transform (NDWT)

A defining feature of the DWT discussed in the previous section was that the transform

to the next coarser scale resulted in a dyadic decimation of the number of scaling and

wavelet coefficients. For instance, in our Haar wavelet example of the DWT on the series

y = (y0, ..., y7), the wavelet (detail) coefficients for level j = 2 (= log2 8−1) were calculated

by

d2,k =
y2k − y2k+1√

2
, for k = 0, ..., 3.

So for this step of the transform, the ‘information’ contained in the wavelet coefficients

capture the differences between the pairs (y0, y1), (y2, y3), (y4, y5) and (y6, y7). It is clear

that starting the DWT from a different element of the series, could lead to a different
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decomposition of the data. Hence, the DWT is not translation invariant. Specifically, if we

were to perform the DWT on a shifted version of the series, the resulting decomposition

would not be equal to a shift of the decomposition obtained from transforming the original

series (e.g. see Figure 6). Antoniadis and Gijbels (2002) highlight that the lack of translation

invariance of the DWT leads to non-uniformity in the localisation of a particular detail

(e.g. a discontinuity) across the scales. So this motivates the question, are we ‘missing

information’ that might be captured by performing the DWT on shifted pairs, such as

(y1, y2) and (y3, y4)?

We now focus our attention on the work of Nason and Silverman (1995) who pro-

pose a modified DWT that no longer requires decimation and results in a ‘stationary’

wavelet transform that is not dependent on the origin, we refer to this procedure as the

non-decimated wavelet transform (NDWT) and recall the non-decimated wavelet family

introduced in equation (8).

In the manner of Nason and Silverman (1995), let us start by introducing some notation.

For a sequence x = {xi} (assuming boundary issues are treated), the action of the low-pass

filter on x is defined by

(Hx)k =
∑
n

hn−kxn, (20)

where H = {hn}n∈Z. The action of the high-pass filter G can be defined similarly. In order

to ‘fill the gaps’, we define the following dyadic decimation operators that effectively allows

us to capture the information contained in the differences between all overlapping pairs, for

example (xi−1, xi) and (xi, xi+1). We define the even and odd dyadic decimation operators,

respectively D0 and D1, to be

(D0x)l = x2l, and (D1x)l = x2l+1.

Simply put, the role of these operators is to select every even/odd member of a sequence.

In fact, the DWT is an application of the even dyadic decimation operator, for instance,

formulas (16) and (17) can be expressed as

cj−1 = D0Hcj, and dj−1 = D0Gcj, (21)

where cj = {cj,k}k∈Z and dj = {dj,k}k∈Z. In other words, to obtain the next coarse scale

scaling coefficients, we filter each overlapping pair of elements in cj using equation (20) and

then select only the evenly indexed elements of the transformed sequence to be contained

in cj−1, hence the dyadic decimation of the DWT. Replacing D0 with D1 in equations (21),

would correspond to selecting only the oddly indexed elements of the transformed sequence.

This is equivalent to performing the DWT on shifted pairs of the original input sequence

and accounts for the ‘missing’ information, as mentioned previously. So, by applying and

retaining both sets of even and odd indexed decimated transformed coefficients at each

scale, more information about the original signal could be obtained. This is the basic idea

of the NDWT.

The result is a redundant, non-decimated transform, such that at each scale both sets

of scaling and wavelet coefficients are the same length as the original sequence, say N = 2J .

For instance, the application of D0GcJ and D1GcJ results in two sets of wavelet coefficients
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at the finest scale, J−1, each of length N/2. For the next coarse scale, J−2, we apply both

D0G and D1G to both of D0GcJ−1 and D1GcJ−1. This results in four sets of coefficients

each of length N/4. Therefore, it can be seen that by repeating this procedure, at each

successive coarse scale {J − l, l = 1, ..., J} there will contain 2l sets of coefficients each of

length 2−lN , such that the total number of wavelet coefficients will equal 2−lN × 2l (= N)

at each scale. A similar approach is taken for the scaling coefficients using the low-pass

filter H. Computationally, this procedure works by ‘padding out’ the filters, H and G, with
zeroes at each scale. More specifically, if H[j] denotes the set of scale j filter coefficients,

the next coarse scale filter H[j−1] is obtained by inserting a zero between every adjacent

pair of filter coefficients of H[j] (see Nason and Silverman (1995) for further information).

An example of the NDWT, ‘Haar’ we go!

We return to our example of the DWT using the Haar wavelet basis, where the finest

scale scaling coefficients c3 were approximated by the original data y = (y0, ..., yN−1) =

(5, 3, 1, 9, 2, 2, 8, 4). The coefficients computed for the DWT using even dyadic decimation,

form the evenly indexed elements of the c2 for the NDWT. So,

c2 = (4
√
2, c2,1, 5

√
2, c2,3, 2

√
2, c2,5, 6

√
2, c2,7).

Then to fill in the gaps, the NDWT (assuming periodic bounding, i.e. yN = y0), additionally

computes the coefficients for the overlapping pairs (y1, y2), (y3, y4), (y5, y6) and (y7, y0). So,

recalling the Haar wavelet filters given by equations (19) and using equation (20), the

oddly indexed coefficients of c2 can be found to be

c2,1 = (Hc3)1 = (
1√
2
,
1√
2
) • (c3,1, c3,2) = 2

√
2

c2,3 = (Hc3)3 = (
1√
2
,
1√
2
) • (c3,3, c3,4) =

11√
2

c2,5 = (Hc3)5 = (
1√
2
,
1√
2
) • (c3,5, c3,6) = 5

√
2

c2,7 = (Hc3)7 = (
1√
2
,
1√
2
) • (c3,7, c3,0) =

9√
2
,

where • refers to the vector dot product. This completes the set for the NDWT scaling

coefficients at scale 2. The whole set (even and odd indexed elements) of scale 2 wavelet

coefficients d2 can be constructed similarly, but replacing the low-pass filter with the

high-pass filter G = (1/
√
2,−1/

√
2). The next step is to retain the sets of even (subscripted

by 0) and odd (subscripted by 1) indexed coefficients of c2 such that

c2,0 = D0Hc3 = (c2,0, c2,2, c2,4, c2,6), and c2,1 = D1Hc3 = (c2,1, c2,3, c2,5, c2,7). (22)

Similar can be written for the wavelet coefficients. Then in the same manner as above, for

scale 1 we apply both D0H and D1H to c2,0 which results in the sets of coefficients c1,00

and c1,01, and to c2,1 which results in the sets of coefficients c1,10 and c1,11. Note, we

have added an additional 0 or 1 to the second subscript to denote the scale 1 even and

odd indexed coefficients of the sets c1,0 and c1,1, respectively. Each of these sets are of

length 2. Note, if we maintain this even and odd dyadic decimation structure, such that
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we construct sets of coefficients at each coarse scale, we will construct a NDWT with a

packet-ordered transform. This ordering is not of relevance to this thesis, so for further

understanding the reader can see Nason (2008).

For time series applications, it is useful to have a time-ordered transform. We still

maintain the idea of performing the wavelet transform on the even and odd decimation sets

of coefficients, e.g. equations (22), but instead of physically constructing the sets (or packets)

of scaling and wavelet coefficients, we instead ‘pad-out’ the filters with zeroes at each

coarser scale in the manner we have previously mentioned. Therefore, the scale 1 scaling

coefficients, c1, can be obtained from c2 = (4
√
2, 2

√
2, 5

√
2, 11/

√
2, 2

√
2, 5

√
2, 6

√
2, 9/

√
2)

by

c1,0 = (Hc2)0 = (
1√
2
, 0,

1√
2
) • (c2,0, c2,1, c2,2) = 9

c1,1 = (Hc2)1 = (
1√
2
, 0,

1√
2
) • (c2,1, c2,2, c2,3) =

15

2

c1,2 = (Hc2)2 = (
1√
2
, 0,

1√
2
) • (c2,2, c2,3, c2,4) = 7

c1,3 = (Hc2)3 = (
1√
2
, 0,

1√
2
) • (c2,3, c2,4, c2,5) =

21

2

c1,4 = (Hc2)4 = (
1√
2
, 0.

1√
2
) • (c2,4, c2,5, c2,6) = 8

c1,5 = (Hc2)5 = (
1√
2
, 0,

1√
2
) • (c2,5, c2,6, c2,7) =

19

2

c1,6 = (Hc2)6 = (
1√
2
, 0,

1√
2
) • (c2,6, c2,7, c2,0) = 10

c1,7 = (Hc2)7 = (
1√
2
, 0,

1√
2
) • (c2,7, c2,0, c2,1) =

13

2
,

where we have inserted a zero between the adjacent elements of the wavelet filter. The

scale 1 wavelet coefficients d1 can be obtained similarly, but with use of the high-pass filter

G = (1/
√
2, 0,−1/

√
2). To obtain scale 0 coefficients, more zeroes would be inserted into

the filters between each two elements, such that the Haar wavelet filters would be given by

(·, 0, 0, 0, ·). Noticeably, unlike the DWT, the NDWT produces sequences of scaling and

wavelet coefficients of length equal to the original data. This is evident in Figure 6 which

displays the wavelet coefficients from performing the DWT and NDWT on the original

data y = (5, 3, 1, 9, 2, 2, 8, 4) and on shifted data ys = (4, 5, 3, 1, 9, 2, 2, 8). The application

of both transforms on the shifted data, demonstrates the translation invariance of the

NDWT and lack of translation invariance for the DWT. Specifically, it can be seen that

the wavelet coefficients for the NDWT on the shifted data, correspond to a unit shift of

the NDWT wavelet coefficients for the original data but this is not the case for the DWT.

The NDWT, as we will see later on, is useful for studying nonstationary time series that

exhibit local features. Additionally, an application of the NDWT that produces ‘packets’

of the wavelet coefficients was introduced by Coifman and Donoho (1695). Their proposed

translation-invariant denoising procedure was designed to remove noise from signals.
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Figure 6: Haar wavelet coefficients computed using DWT and NDWT on the original data
y = (5, 3, 1, 9, 2, 2, 8, 4) and on the shifted data ys = (4, 5, 3, 1, 9, 2, 2, 8). Observe that the NDWT
coefficients for the shifted data are a unit shift of the NDWT coefficients for the original data, thus
demonstrating translation invariance. This is not the case for the DWT (top row).

1.2 Stationary time series analysis

Time series occur in a variety of diverse fields, such as economics (e.g. quarterly gross

domestic product (GDP) or monthly unemployment rates); finance (e.g. daily closing

prices of shares); meteorology (e.g. monthly rainfall measurements or temperature) and

circadian biology (e.g. measurements of circadian rhythms in plants). In this thesis, our

methodology will have a particular application to a problem arising in the neuroscience,

where the time series are observations of electrical activity recorded in regions of the brain

of a macaque monkey during an experiment. A time series given by {xt} can be thought

of as a realisation of a stochastic process, {Xt}, observed sequentially through time. The

analysis of time series has been under investigation throughout the 1900s and has split off

into two main ways of approach, namely time domain and spectral domain analysis. We

will briefly review both approaches. As time series analysis is a very wide subject there

exist numerous reference books, a selection include Brockwell and Davis (1991), Percival

and Walden (2000), Brillinger (2001), Chatfield (2003) and Shumway and Stoffer (2017).

A time series is said to be stationary if there is no systematic change in its statistical

properties over time. In other words, its mean and variance are assumed to be constant

over time. Some time series can be assumed to be stationary, however many time series

exhibit seasonal variation and (long term) trend. Thus generally, the first step of time

series analysis is to identify any components of variations and remove them (e.g. detrending

and deseasonalising) in order to achieve stationarity.

Definition 1.2.1. A time series {Xt, t ∈ Z} is said to be strictly stationary if the joint

distributions of {Xt1 , ..., Xtk} and {Xt1+τ , ..., Xtk+τ
} are the same for all k ∈ Z+ and for

all t1, ..., tk, τ ∈ Z.
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Intuitively, this means that the statistical properties of the time series are unaffected

by a change of the time origin. In practice, stationarity is often defined in a less restrictive

way.

Definition 1.2.2. A time series {Xt, t ∈ Z} is said to be weakly stationary or second-order

stationary if its mean is constant through time and its autocovariance depends only on

time-lags, such that

E [Xt] = µ, and cov (Xt, Xt+τ ) = γ(τ), ∀t, τ.

Under weak stationarity, the restrictions are placed only on the first and second order

moments. The function γ(τ) is referred to as the autocovariance function of {Xt} at lag τ .

A simple example of a stationary process is the purely random process defined as

follows.

Definition 1.2.3. The process {Zt, t ∈ Z} is said to be a purely random process (or

white noise) if the random variables, {Zt}, are uncorrelated with zero mean and variance

σ2Z . Additionally, the random variables {Zt} are often assumed to be independently

and identically distributed. The process is stationary with constant mean and under

the assumption of independence, cov (Zt, Zt+τ ) = σ2Zδ0,τ where δ is the Kronecker delta

(Chatfield, 2003).

1.2.1 Analysis in the time domain

Key to the analysis of time series in the time domain, are the autocorrelation coefficients

that describe the dependence structure between observations at different distances (lags)

apart. The autocorrelation function defined by

ρ(τ) =
γ(τ)

γ(0)
= corr(Xt, Xt+τ ),

measures the correlation between Xt and Xt+τ . After estimation, the (sample) autocorre-

lation coefficients and the (sample) partial autocorrelation coefficients (which measure the

amount of autocorrelation at each lag that is not accounted for by the autocorrelation at

previous lags), are an essential aid to determine the order of the stochastic process chosen

to model the time series.

A useful and most commonly chosen class of models for time series is formed by

combining two processes, an autoregressive (AR) model in which Xt is regressed on past

observations of Xt and a moving-average (MA) model that uses past errors.

Definition 1.2.4. (The ARMA(p, q) process.) The stationary process {Xt} is said to be

an autoregressive moving-average process of order (p, q) if for every t

Xt =

p∑
i=1

ϕiXt−i + Zt +

q∑
j=1

θjZt−j , (23)

where {Zt} is a purely random process.
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The constants, {ϕi} and {θj}, describe the internal process dependence of Xt. We can

write equation (23) in the form

Φ(B)Xt = Θ(B)Zt, (24)

where Φ(B), Θ(B) are the polynomials

Φ(B) = 1− ϕ1B − · · · − ϕpB
p, and Θ(B) = 1 + θ1B + · · ·+ θqB

q, (25)

and B denotes the backward shift operator defined by BlXt = Xt−l. Thus, for an

ARMA(p, q) process to be stationary and invertible, the latter ensuring the process is

unique for a given autocorrelation, then it is necessary that the roots of polynomials

Φ(z) = 0, and Θ(z) = 0,

lie outside the unit circle, respectively for stationarity and invertibility (Shumway and

Stoffer, 2017).

1.2.2 Analysis in the spectral domain

Recalling Section 1.1.1, we could consider decomposing a real-valued stationary process

{Xt} into a linear combination of sine and cosine components with uncorrelated coefficients.

For instance, a discrete time series {Xt} satisfying weak stationarity with mean zero, can

be expressed by the Cramér representation (see (Brillinger, 2001, §4.6))

Xt =

∫ π

−π
A(ω)eiωtdZ(ω), (26)

where A(ω) is the amplitude of the process {Xt} and {Z(ω)} is a random process

with orthonormal increments dZ(ω) (i.e. dZ(ω) = Z(ω + dω) − Z(ω), E(dZ(ω)) = 0,

E(dZ(ω), dZ(ω′)) = dωδ0(ω − ω′), where δ is the Kronecker delta). Note, the amplitude is

also referred to as the transfer function, A(ω) =
∑∞

j=−∞ a(j)e−iωj , where a(j) are unknown

function coefficients (Brillinger, 2001, §4.6). In comparison with the representation in

equation (1) for a deterministic series, the integral in equation (26) is a stochastic integral.

In other words, for each frequency, ω, each realisation of Z(ω) is allowed to vary, thus,

for each realisation of Xt there will be a corresponding realisation of Z(ω). Note, the

amplitude, A(ω), is deterministic.

In the time domain, we emphasised the use of the autocovariance (or autocorrelation)

as a means to study the dynamics of a process over time. Here, in the spectral domain, we

consider a function complementary to studying the autocovariance, the spectral density

function (or spectrum).

Definition 1.2.5. The spectral density function or spectrum, is given as

f(ω) = |A(ω)|2,

such that, f(ω) quantifies the contribution to the process variance of Xt, contributed by

the components at frequency ω. Note, in engineering terms this is equivalent to the ‘energy’
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spectral density (Semmlow, 2012, §4.2).

The autocovariance function of {Xt} can be expressed by the Fourier representation

cX(τ) =

∫ π

−π
f(ω)eiωτdω, (27)

where f(ω) is the spectrum. Thus, the spectrum and autocovariance are Fourier pairs.

Consider the ARMA(p, q) process in the form given by equation (24). The spectral

density of a stationary ARMA(p, q) process Xt is given by (Brockwell and Davis, 1991)

fX(ω) =
σ2Z
2π

∣∣∣∣Θ(e−iω)

Φ(e−iω)

∣∣∣∣2 , (28)

where the polynomials in (25) give, Φ(e−iω) =
∑p

j=0 ϕje
−iωj and similarly for Θ(e−iω) of

order q. Note that the polynomials are of the same form as the transfer function A(ω)

and the spectral density of an ARMA processes is often referred to as a rational spectral

density. Note that in the form of equation (28), fX(ω) is a ‘power’ spectral density, where

σ2Z is the ‘energy’ spectral density of Z(ω) and the (2π)−1 factor is due to power being

measured in terms of ‘energy per unit time’ (Priestley, 1982).

The periodogram is a quantity commonly used as an estimator for the spectrum. It is

defined as the squared modulus of the discrete Fourier transform of the process {Xt}, and
we introduce it below.

Definition 1.2.6. For a discrete time series {Xt}t=0,...,N−1, the periodogram is defined to

be

I(ωj) = |Df̂j |2

where ωj = 2πj/N and the discrete Fourier transform of {Xt} is given by Df̂j =
1√
N

∑N−1
t=0 Xte

−iωjt (see Definition 1.1.3).

For each ωj , the periodogram, in its ‘raw’ state defined above, is an asymptotically

unbiased estimate of the spectrum f(ω), but despite this desirable property, the estimate is

poor as it is not consistent (i.e. var(I(ωj)) ̸→ 0 as N → ∞). Smoothing the periodogram

is the common way to achieve consistency and there are various approaches to smoothing,

a simple way being to locally average adjacent periodogram ordinates. For further details

on periodogram smoothing and Fourier-based spectral domain analysis, Priestley (1982)

and Brillinger (2001) offer a comprehensive review.

Wavelet-based spectral analysis

Our discussion so far has been focused on Fourier methods which are generally regarded

as canonical for spectral domain analysis of stationary time series. The Fourier spectrum

can prove to be more informative than a wavelet-based spectrum due to the latter having

lower frequency resolution (Nason, 2008). However, wavelets do have a useful part to play

for analysing time series that contain information on a scale-by-scale basis (recall our earlier

review of wavelet theory in Section 1.1.2). We only briefly introduce wavelet scale analysis

here, as much of our interest is concerned with the analysis of nonstationary time series.

Nason and von Sachs (1999) and Nason (2008) can be consulted for an introduction to this
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topic, the former giving a review of relevant applications such as spectral density estimation

using wavelet shrinkage denoising (Neumann, 1996). For a comprehensive review, Percival

and Walden (2000) give a detailed account of the field and Chiann and Morettin (1998)

introduce a wavelet periodogram for wavelet-based spectral analysis.

The wavelet variance, introduced by Percival and Guttorp (1994), provides a means

to decompose the variance of a process across wavelet scales and hence it is a useful tool

to study an event with variations occurring over a range of scales (e.g. applications in

geophysics, see Kumar and Foufoula-Georgiou (1997)). The Allan variance (Allan, 1966),

a measure of frequency stability in clocks and oscillators, can be understood as a simple

example of the wavelet variance using Haar wavelets (see Nason and von Sachs (1999)), and

other wavelets can be used for the general wavelet variance. The variance can be estimated

based on decimated (DWT) coefficients or non-decimated (NDWT) coefficients, with the

latter displaying more favourable results, which can be attributed to capturing additional

information from overlapping pairs of a sequence (recall our discussion in Section 1.1.5).

Replicate time series

Traditionally, time series analysis has mostly been concerned with developing method-

ologies to study the dynamics of one (long) process realisation. What is not well accounted

for in the literature, is the statistical modelling of a collection of (constant mean) time

series, {xrt, t = 1, ..., T, r = 1, ..., R}, arising from the same stimulus presented within an

experimental setting. Among the first to consider modelling a replicate time series where

the inferential focus is on the stochastic variation across replicates was Diggle and Al

Wasel (1997). Motivated by an application to biomedical time series where the need was to

analyse a collection of blood samples taken from subjects (replicates), the authors proposed

a generalised linear mixed-effects model for periodograms to estimate the subject-specific

population spectra.

If Yrj , denotes the periodogram for the rth subject at frequency j, then for the array

{Yrj , r = 1, ..., R, j = 1, ...,m}, the general model is given as

Yrj = fr(ωj)Zr(ωj)Urj , (29)

where for known explanatory variables {drjk} and unknown parameters {βk},

fr(ωj) = exp

{
p∑

k=1

drjkβk

}
,

denotes the common population spectrum corresponding to the rth subject and ωj = 2πj/T

denotes the jth Fourier frequency. In equation (29), Urj are mutually independent, unit-

mean exponential variates, and Zr(ω) are independent copies of a stochastic process

detailing the perturbation from the population spectrum of the rth subject. For further

details and an exploration of parameter estimation, see Diggle and Al Wasel (1997).

Crucially note, stochastic variation was only assumed between subjects (or replicates).

However, within the context of this section, each individual replicate series, {xrt}t, is
assumed to be weakly stationary. In other words, the within-replicate statistical prop-

erties are assumed constant. A more general model that incorporates within-replicate
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nonstationarity as well as variation across replicates will be explored in the next section.

1.3 Nonstationary time series analysis

In practice, time series are often nonstationary. Many time series exhibit a long term trend

and seasonal effects that cause the properties of the time series to vary with time, albeit

slowly in most cases. For example, the gross domestic product (GDP) will display an

upwards or downwards trend reflecting the current performance of the economy; energy

consumption differs throughout the year with changing weather patterns. Later on,

our application to the macaque learning experiment will display nonstationarity as the

macaque’s behaviour, excitability towards reward and neuronal rhythms can contribute to

the process variation over each replicate as well as over the entire experiment.

Previously for stationary processes we mentioned transforming nonstationary data to

achieve stationarity, through for example differencing. The autoregressive integrated moving-

average (ARIMA) process embeds a differencing procedure. The ARIMA(p, d, q) models

is of the form given in equation (23) but we replace Xt with Wt = ∇dXt = (1 − B)dXt,

where B is the backwards shift operator and d is the number of differences of Xt. Thus,

the process reduces to an ARMA(p, q) model for Wt. A generalisation of ARIMA, the

seasonal (S)ARIMA model, includes further differencing in order to deal with seasonality

(see Box et al. (2008) for a comprehensive review). These models approach nonstationarity

by removing variation in order to apply stationary process theory. However, if the non-

stationary features are of interest or the nonstationarity is manifest in the second-order

moments, then it may be beneficial to model the time series in a manner that explicitly

takes into account these characteristics. As this thesis is concerned with spectral domain

analysis, we will now consider some approaches that generalise the spectral representation

to handle nonstationary behaviour.

Short-time Fourier transform

We have seen that Fourier representations are well established in the spectral analysis

of stationary processes where the statistical properties are invariant over time. The spectral

analysis of nonstationary processes require time localisation in order to capture time

varying features. A natural extension to Fourier analysis, which estimates the spectrum

locally over time, was introduced by Gabor (1946). The short-time Fourier transform, also

referred to as Gabor transform or windowed Fourier transform, is given by

STFT (t, ω) =

∫ ∞

−∞
x(τ)g(τ − t)e−iωτdτ,

where g(τ) is the time-localisation window function and g,X ∈ L2(R). The premise behind

this transform is that the data within each window is assumed stationary. Thus, the

window function is shifted over the time points of the signal in order to localise the Fourier

transform. The contribution to the process variance of x(t) at a frequency ω within the

neighbourhood of t is given by the spectral density function,

f(t, ω) = |STFT (t, ω)|2.
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One problem with this approach concerns the choice of window width of g(τ), which

remains unchanged for all frequencies. There is a trade-off between time and frequency

resolution, such that better time resolution (and equivalently time localisation) comes at

a cost of worsened frequency resolution, and vice versa. So intuitively, we would like to

use a narrower window for finer time resolution at higher frequencies and a wider window

to capture more information at lower frequencies. For a further understanding of this

approach see Chui (1997) or Debnath (2002).

Evolutionary spectra

Priestley (1965) introduced the theory of evolutionary spectra, such that the Fourier

spectrum describes the contribution to the process variance locally in the neighbourhood

of the time instant t, whereas the spectrum for stationary processes (recall Section 1.2.2)

described the process variation distributed over frequency over all time. Recalling the

Cramér representation in equation (26), the amplitude function, A(ω) can be replaced

with a time-varying version given by At(ω) (= A(t, ω)). Consequently, a process {Xt}
is said to be an oscillatory process if it has representation in the form of equation (26)

and {At(ω)eiωt} are a family of oscillatory functions. The amplitude function, At(ω) (as a

function of t) is constructed to ‘vary smoothly’, such that the absolute maximum of its

Fourier transform is obtained at the zero frequency (i.e. At changes slowly as a function of

time). Thus, instead of describing a function over all frequencies, in ‘oscillatory’ form a

process, {Xt}, could be described by a sine wave with ‘natural’ frequency ω0, modulated

by the smoothly varying amplitude function At(ω0). The natural frequency, ω0, is the

frequency at which a signal will tend to oscillate without any manipulation, or in other

words, the Fourier transform of a process will be concentrated around (±)ω0.

1.3.1 Locally stationary processes (LSP)

The idea of having approximately stationary local processes stems from the evolutionary

spectrum theory of Priestley (1965) and has led to a class of stochastic processes called

locally stationary processes. Dahlhaus (1997) notes that due to the unpredictable nature

of nonstationary processes, future observations may not give any information on the

behaviour of the process at present, thus it is difficult to make considerations on the

process asymptotics in the ordinary sense. To overcome this, the author introduced the

concept of modelling in rescaled time, u = t/T ∈ (0, 1), and thus developed a framework

for asymptotic considerations within the locally stationary setting, such that the efficiency

of local estimators could be evaluated. This infill asymptotic approach is most suitable for

processes with slowly varying statistical characteristics but at each time point appear close

to stationary. Such processes are said to be locally stationary.

Time domain methods from the stationary setting can be extended to the locally

stationary case for time-varying processes through inference on segments. For instance, the

coefficients of a time-varying autoregressive (tvAR) process can be estimated locally through

classical Yule-Walker estimation on segments that are close to stationary (see Dahlhaus

(1997)). The autoregressive conditional heteroscedasticity (ARCH) model, introduced by

Engle (1982) to explicitly model a stochastic conditional variance, has been generalised

to include time-varying parameters by Dahlhaus and Subba Rao (2006). The authors
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introduce the tvARCH process which can be locally approximated by stationary ARCH

processes. Kernel-based estimation of a time-varying regression function has been proposed

by Vogt (2012) for nonparametric models. Here, the regressors are locally stationary and

the regression function changes smoothly over time. The problem of prediction in locally

stationary time series has been investigated by Dette and Wu (2020).

Within the spectral domain, frameworks have been developed for both locally stationary

Fourier (LSF; (Dahlhaus, 1997)) and wavelet (LSW; Nason et al. (2000)) processes to

provide time-frequency and time-scale representations. We will consider these approaches in

more detail below. For a comprehensive review of inference on locally stationary processes

in both the time and spectral domain, see Dahlhaus (2012).

The locally stationary Fourier framework embeds the concept of rescaled time, u =

t/T ∈ (0, 1), which would then allow the time-varying amplitude transfer function At(ω) to

be replaced by an asymptotic version, A(u, ω). Constructing the amplitudes as functions

of rescaled time means that as more observations on a time series are obtained, there is

a greater availability of information to describes the local structure of A(u, ω), which in

turn allows the asymptotic estimation. The behaviour of a process is ensured to be locally

stationary through the smoothness of A(u, ω).

Definition 1.3.1. A stochastic process, {Xt}, modelled as a triangular stochastic array

{Xt;T }t=0,...,T−1, belongs to the class of locally stationary Fourier (LSF) processes, if there

exists a representation

Xt,T =

∫ π

−π
A0
t,T (ω)e

iωtdξ(ω),

and there exists a constant K, such that

sup
t,ω

|A0
t,T (ω)−A(

t

T
, ω)| ≤ K

T
, ∀T, (30)

where {ξ(ω)} is a random stochastic process with properties given in Dahlhaus (1997).

Then from equation (30), it can be seen how for LSF processes, the asymptotic transfer

function A(u, ω) controls the slow evolution of the time dependant amplitudes A0
t,T .

Naturally, there exists an associated evolutionary (or time-varying) spectrum for LSF

processes, given by

f(u, ω) = |A(u, ω)|2,

defined in terms of rescaled time u = t/T .

As a parallel to Dahlhaus (1997), Ombao et al. (2002) utilise the SLEX (smoothed

localised complex exponentials) library of waveforms, which give localisation in both time

and frequency, to provide a time-dependent ‘Cramér-like’ representation for nonstationary

processes. The SLEX functions used can be thought of as localised versions of the Fourier

exponential functions. Ombao et al. (2005) have extended this work to the multivariate

setting.

Similar representations have been developed using wavelets. Approaches that use

wavelet thresholding for smoothing the spectra of locally stationary time series have been

considered by von Sachs and Schneider (1996) and Neumann and von Sachs (1997).
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LSF processes for replicate time series

The extension of time-varying Fourier methods has been considered for the scenario of

replicate time series where there is potential for evolutionary (replicate-varying) dynamics

across the replicates. Qin et al. (2009) introduce a covariate-indexed locally stationary

time series, a slightly modified version of LSF processes that indexes a representation for

each replicate. Through the locally stationary processes framework, the authors developed

a time-frequency functional model, where the time-varying log-spectra determines the

evolution of the stochastic variation. The authors note that their methodology extends the

theory of functional data analysis (FDA) to the locally stationary time series setting. A

review of FDA is soon to follow.

More recently, Fiecas and Ombao (2016) propose a new time series model which they

name the slowly evolving locally stationary process (SEv-LSP). The model adopts the use

of the Fourier sine and cosine functions whilst allowing for a time varying spectral density

matrix within and across replicates. Note, the authors refer to trials as replicates over an

experiment. We again encounter the concept of rescaled time, u = t/T ∈ (0, 1), within

replicates and similarly they define rescaled replicate-time, ν = r/R ∈ (0, 1), across all

replicates. Their work is developed in the multivariate setting under the assumption that

replicates are uncorrelated.

Definition 1.3.2. For replicates r = 1, ..., R and within-replicate time t = 1, ..., T , a locally

stationary P -variate time series, Xt,r follows a SEv-LSP if it admits the representation

Xt,r =

∫ 0.5

−0.5
A(

t

T
,
r

R
, ω)ei2πωtdZr(ω),

where A(u, ν, ω) denotes the P ×P complex-valued transfer function matrix and {dZr(ω)}
is a P -variate orthogonal increment process with properties given in Fiecas and Ombao

(2016).

To capture the evolutionary nature of the process, A(u, ν, ω) is allowed to vary slowly

over time within a replicate and furthermore over all replicates. The ‘smoothly’ changing

dynamics of A over replicates means that the stochastic properties across neighbouring

replicates appear similar but different for replicates further apart. The authors additionally

introduce the P × P evolving evolutionary spectral density matrix, which at frequency

ω ∈ (−0.5, 0.5), it is defined as

f(u, ν, ω) = A(u, ν, ω)A(u, ν, ω)∗, ∀u, ν ∈ (0, 1),

where (∗) denotes the conjugate transpose. The spectral density matrix naturally inherits

the smooth evolutionary properties of A, such that the characteristics of the underlying

SEv-LSP may appear similar for neighbouring replicates but replicates much further apart

may appear as completely different processes. As we are in a multivariate setting, a further

quantity of interest that measures the linear dependence between a two sets of replicate time

series is the cross-channel coherence. In the context of SEv-LSPs, the evolving evolutionary
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coherence between dimensions p and q is given by

ρ2pq(u, ν, ω) =

∣∣∣∣∣ f(u, ν, ω)pq√
f(u, ν, ω)ppf(u, ν, ω)qq

∣∣∣∣∣ ,
where f(u, ν, ω)pq is the (p, q)th element of f(u, ν, ω).

The above work of Fiecas and Ombao (2016) on SEv-LSPs, provides motivation for the

methodology developed in this thesis, as we will bypass the limiting assumption of replicate

uncorrelation while additionally providing a multiscale analysis. Note, the authors refer

to trials as replicates, a term we will also interchangeably borrow in our nomenclature,

while emphasizing that individual replicates (trials) are not to be understood as identical

realisations from the same process, i.e. the realisations from the same stimulus can still

vary from one trial to another.

1.3.2 Locally stationary wavelet (LSW) model

As previously mentioned, framework for the modelling of locally stationary stochastic

processes has been developed in the wavelet domain. Nason et al. (2000) introduced

the class of locally stationary wavelet (LSW) processes, whose framework underpins the

methodology developed within this thesis.

The LSW model provides a time-scale representation of nonstationary time series

with time-varying second order structure, where the building blocks are the discrete

non-decimated wavelets, which replace the Fourier exponentials {exp(iωt), ω ∈ (−π, π)}.
As described in Nason et al. (2000), a set of compactly supported discrete wavelets

ψj = {ψ0, ..., ψj,Nj−1}j∈Z+ of length Nj can be constructed for consecutively finer scales j

using the following formulae:

ψ1,n =
∑
k

gn−2kδ0,k = gn, for n = 0, ..., N1 − 1,

ψj+1,n =
∑
k

hn−2kψj,k, for n = 0, ..., Nj+1 − 1

Nj = (2j − 1)(Nh − 1) + 1,

where {hk} and {gk} are the low- and high-pass quadrature mirror filters as defined in

Section 1.1.3, δ0,k is the Kronecker delta and Nh is the number of non-zero elements of

{hk}.

To obtain the set of non-decimated discrete wavelets, {ψj,k(t)}t=0,...,T−1, we can shift

ψj to all integer locations k

ψj,k(t) = ψj,k−t,

where ψj,k is the kth element of the vector ψj . Although this results in an overcomplete

collection of shifted vectors, the NDWT is ensured to be translation invariant.

Definition 1.3.3. For T = 2J(T ), a sequence of stochastic processes {Xt;T }t=0,...,T−1 is a
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locally stationary wavelet (LSW) process if it admits the representation

Xt;T =

∞∑
j=1

∑
k∈Z

ωj,k;Tψj,k(t)ξj,k, (31)

where for scale j and location k, ωj,k;T is the amplitude corresponding to the discrete

non-decimated wavelet ψj,k(t) and {ξj,k} are a set of orthonormal identically distributed

random variables.

The representation of {Xt;T } can be thought of as the multiscale equivalent of the

previous Fourier-based representations we have seen, such that the process is built through

a linear combinations of oscillatory wavelet functions {ψj,k} with random amplitudes

{ωj,k;T ξj,k}. The quantities in representation (31) have the following properties:

1. For all j and k, E[ξj,k] = 0 (⇒ E[Xt;T ] = 0).

2. E[ξj,kξj′,k′ ] = δj,j′δk,k′ (= cov(ξj,k, ξj′,k′)).

3. For each scale j ≥ 1, there exists a Lipschitz continuous function in rescaled time

(z = k/T ) denoted by Wj(z) with the following properties

(a)
∞∑
j=1

|Wj(z)|2 <∞ uniformly in z ∈ (0, 1).

(b) The Lipschitz constants Lj are bounded in j and

∞∑
j=1

2jLj <∞.

(c) There exist a sequence of constants Cj such that, for each T the amplitudes are

forced to vary slowly across time, in the sense that

sup
k=0:T−1

∣∣∣∣ωj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj
T
, ∀j,

where {Cj} fulfills
∑∞

j=1Cj <∞.

Modelling under the concept of local stationarity means that the variation of the

amplitudes {ωj,k;T }k, happens slowly over time and this is controlled by a smoothly varying

continuous Lipschitz function Wj(k/T ) (property 3), that can be thought of as a scale (j)

and time (k) dependent transfer function (Fryzlewicz and Nason, 2006). Nason et al. (2000)

propose the evolutionary wavelet spectrum (EWS) as a means to quantify the contribution

to the overall process variance at a scale j and rescaled time z = k/T , formally defined as:

Sj(z) = |Wj(z)|2,

for all j = 1, ..., J . (Note that the spectra are non-negative).

For stationary processes, the autocovariance and spectrum are Fourier pairs (equa-

tion (27)). A similar link can be made here for a process {Xt;T }t=0,...,T−1 with the above
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defined EWS and autocovariance cT (z, τ) = cov(X⌊zT ⌋;T , X⌊zT ⌋+τ;T ), where ⌊x⌋ denotes the
largest integer less than or equal to x. Nason et al. (2000) show that cT tends asymptotically

to a local autocovariance, defined as

c(z, τ) =
J∑
j=1

Sj(z)Ψj(τ),

where τ is an integer lag, z ∈ (0, 1) and

Ψj(τ) =
∑
k∈Z

ψj,k(0)ψj,k(τ),

is the scale j autocorrelation wavelet for all j = 1, ..., J .

The raw wavelet periodogram is used for estimation of the EWS, {Sj(z)}j , and is defined

as

Ij,k;T = |dj,k;T |2 (32)

where

dj,k;T =

T−1∑
t=0

Xt,Tψj,k(t)

are the empirical wavelet coefficients at scale j and time k associated to a discrete non-

decimated family of wavelets.

The estimator Ij,k:T , is shown to be biased for the spectrum (Nason et al., 2000,

Proposition 4)

E[Ij,⌊zT ⌋;T ] =

J∑
l=1

Aj,lSl(z) +O(T−1), ∀z ∈ (0, 1).

The asymptotic bias arises as a result of the aforementioned overcompleteness of the

set of non-decimated wavelets {ψj,k(t)} (Van Bellegem and von Sachs, 2008). Correction

for bias can be attained, and we first need to define Aj,l to be the inner product for the j

and l autocorrelation wavelets given by

Aj,l = ⟨Ψj ,Ψl⟩ =
∑
τ

Ψj(τ)Ψl(τ),

which then form the elements of the J × J autocorrelation wavelet inner product matrix

defined as AJ = (Aj,l)j,l.

By introducing vector notation such that, I(z) = (Ij,⌊zT ⌋;T )j=1,...,J and S(z) = (Sj(z))j=1,...,J ,

a vector of corrected wavelet periodograms gives an asymptotically unbiased estimator of

Sj(z) in the form of

L(z) = A−1
J I(z), ∀z ∈ (0, 1), (33)

where L(z) = (Lj,⌊zT ⌋,T )j=1,...,J .

Furthermore, Proposition 4 of Nason et al. (2000) shows that the wavelet periodogram

estimator, Ij,k:T , is inconsistent due to having asymptotically non-vanishing variance. Thus,

to obtain consistency, the raw periodogram is first smoothed before applying the above

correction procedure. Various approaches to smoothing exist and a detailed account is

given by Nason (2008) with particular attention to wavelet shrinkage techniques originally
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introduced by the seminal works of Donoho and Johnstone (1994); Donoho et al. (1995).

Further considerations that naturally follow on from the LSW framework include: Fry-

zlewicz and Nason (2006) who propose a variance stabilisation approach based on the

Haar-Fisz transform, and Van Bellegem and von Sachs (2008) who, through introducing

a pointwise adaptive estimator of the evolutionary spectrum, extend the class of LSW

processes to contain processes that may exhibit sudden changes in their dynamics.

A short LSW example

In practice we will start with a real time series but for now let us specify a time series

that exhibits some time-varying characteristics of interest. This example is akin to Chapter

5 of Nason (2008). For a chosen T = 2J = 1024, we specify the ‘true’ EWS to be

Sj(z) =


1, for j = 9, z ∈ ( 400

1024 ,
500
1024),

cos2(4πz), for j = 4,∈ (0, 1),

0, otherwise.

(34)

In resolution level j = 4 we place a squared cosine behaviour and a ‘burst’ of value 1

appears in the finest level j = 9. Figure 7 provides plots for this example. A visualisation

of the true spectrum can be seen in the top left plot. Additionally, the top right plot

presents a simulated realisation of a process displaying the characteristics defined by the

EWS. In practice we do not know the true spectrum and we will try to estimate it using

the NDWT under the LSW framework. We attempt to estimate the spectrum via the

raw (uncorrected) periodogram defined in equation (32) and also through the corrected

periodogram defined in equation (33). We repeat the processes of simulating a realisation

and estimating the spectrum 100 times in order to obtain ‘on average’ estimates of the

wavelet periodograms. Thus, the bottom left and right plots of Figure 7 show the mean of

100 raw and corrected periodogram estimates of the true spectrum, respectively. Clearly

the estimates from the corrected periodogram are much better. Bias correction has the

effect of scaling up finer scale coefficients, hence the burst in the finest level is much more

apparent. Additionally, bias correction ‘smooths out’ spectral leakage into neighbouring

levels, for instance, see how the corrected spectral estimates in level 3 are closer to the

truth than the raw estimates.

Extensions of the LSW framework to the multivariate setting appear in the work

of Sanderson et al. (2010) and Park et al. (2014), where a coherence structure between

channels is embedded in the model.

A note on tests of stationarity

In practice, the above short LSW analysis could have begun with a test of stationarity.

Carrying out such a test could inform us as to whether a model allowing for nonstationary

behaviour is necessary. Additionally, if a process does exhibit second-order nonstationarity, a

test could give some indication of where significant nonstationarities are located. Specifically,

consider the Haar wavelet test of stationarity (HWTOS) developed by Nason (2013). If we

implement the HWTOS test on the realisation given in the top right plot of Figure 7, we

are informed that the realisation provides enough evidence to reject the null hypothesis
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Figure 7: LSW example plots. Top left : true spectrum defined in equation 34; Top right : realisation
simulated from the true spectrum; Bottom left : raw periodogram estimates on average over 100
realisations from the true spectrum; Bottom right : corrected periodogram estimates on average
over 100 realisation from the true spectrum. Plotted using Wavethresh (Nason, 2008).

of stationarity. The HWTOS test also indicates where the nonstationarities are located

in the series and this information is summarised nicely in Figure 8. The double headed

arrows indicate the time locations for which nonstationarities were detected. As the test is

based on wavelet transforms, the nonstationarities are also localised across scales j, given

by the right-hand axis. The test detects 12 departures from stationarity. The time and

scale locations of the nonstationarities appear to coincide with the true spectrum defined

in equation (34) that characterises the realisation we have performed the HWTOS test on.

In Chapter 5 we propose two tests to assess whether a significant replicate-effect is

manifest across a replicate time series. An in-depth review of the relevant literature on

tests of stationarity will be given there.

1.4 Functional regression

Modelling replicate time series data is often framed as a functional regression problem

(see e.g. Morris (2015) for a review). In contrast to the approach within this thesis that

proposes to model the meta-process itself, functional regression approaches often deal with

the replicate data by projecting it into the Fourier or wavelet domain, where the spectral

representations become subject to modelling (Martinez et al., 2013) and thus potentially

embedding within- and between-trial variability. A similar ethos is adopted by Gott et
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Figure 8: Test of stationarity plot of a realisation simulated from the true spectrum defined by
equation (34). The location for which a nonstationarity was detected is indicated by a double
headed arrow. The right-hand side axis indicates the scale j of the wavelet periodogram where the
nonstationarity was detected. Plotted using locits (Nason, 2013).

al. (2015), where the authors formulate a random effects model for the wavelet spectrum.

A possible avenue for future research might be to indeed fuse the two lines of modelling

in order to augment estimation. For now we give a brief review of the framework for the

functional regression approach.

Functional regression is a branch of functional data analysis (FDA) which concerns

analysing discrete data expressed in the form a function. In general, FDA involves a large

number of ‘replicates’ of the data, such that the analysis is then formed on a sample of

functions taken from the population of a subject. Thus, in part, longitudinal data studies

which collect data through repeated measurements per subject over an extended period of

time, have largely motivated the creation of this field. The aim of these studies is often to

understand change over time or time-dynamics such as growth. See Diggle et al. (2002)

for a comprehensive review on longitudinal data analysis. From a functional perspective,

principal components and regression methods (for example Fan and Zhang (2000); Yao

et al. (2005a,b); Greven et al. (2010)) are key tools for FDA on longitudinal data and an

excellent review is given by Müller (2005). For functional regression, most developments in

the field stem from the general framework presented in the seminal textbook of Ramsay and

Silverman (2005) which should be initially consulted for a further understanding on FDA.

The review of Morris (2015) gives a comprehensive account of functional regression alongside

numerous references to historical and current developments in the area. There exist three

methods of functional regression analysis: scalar-on-function regression, function-on-scalar

regression and function-on-function regression. We will limit this brief review to the case

of function-on-scalar regression, which involves the regression of a functional response on a

set of scalar independent variables. This approach is quite common and also forms the

basis framework for models concerned with spectral domain analysis.

33



In order to provide a functional representation of the discrete data we use a linear

combination of basis functions, and it should come as no surprise that Fourier series and

wavelets are candidates for that role, with splines and principal components being further

options. The key philosophy is to think of each sampled function as a single self-contained

object that gives rise to the observed discrete data. Morris (2015) highlights that two key

factors are at working during functional regression, replication and regularisation. Replica-

tion is the concept of combining information across replicate sampled functions in order to

investigate a relationship structure between them and improve inference on their parent

populations. Within each function, regularisation (smoothing) exploits the assumption of

global smoothness of the functions and ‘borrows strength’ across neighbouring observations,

which in turn leads to improved efficiency and better estimation. Regularisation is typically

determined through the choice of basis functions (e.g. for wavelets see: wavelet shrinkage

introduced by Donoho and Johnstone (1994); Donoho et al. (1995), and Nason (2008) for

a review of further approaches).

Definition 1.4.1. For replicates i = 1, ..., N , a sample of functional responses Yi(tj) with

p scalar independent variables Xia, can be expressed as a functional response regression

model given by

Yi(tj) =

p∑
a=1

XiaBa(tj) + Ei(tj),

where tj , j = 1, ..., Ti denotes the continuum in time over which the functional data are

recorded (Morris, 2015).

In the above model, X = {Xia, i = 1, ...N ; a = 1, ..., p} is the N × p design matrix

associated with the set of functional fixed effects B(tj) = {Ba(tj), a = 1, ..., p}. The set

E(tj) = {Ei, i = 1, ..., N} are the residual error functions whose covariance structure

describes the within-function covariance. The above model, which assumes an independent

sample of functions, can be extended to allow for correlations between functions through

including random effect terms.

Definition 1.4.2. For replicates i = 1, ..., N , a sample of functional responses Yi(tj), j =

1, ..., Ti with (p + q) scalar independent variables Xia and Zib, can be expressed as a

functional mixed effects model (FMM) given by

Yi(tj) =

p∑
a=1

XiaBa(tj) +

q∑
b=1

ZibUb(tj) + Ei(tj),

where Z = {Zib, i = 1, ...N ; b = 1, ..., q} is the N × q design matrix associated with the set

of functional random effects U(tj) = {Ub(tj), b = 1, ..., q}.

The above FFM model was introduced by Morris and Carroll (2006) and as a result

of their modelling assumptions, namely that U(tj) and E(tj) are multivariate Gaussian

processes, the model allows for correlation between random effect functions through the

construction of their design matrices. Additionally, the model can be further generalised by

partitioning the random effects to allow for multiple levels of random effect functions. Note,

as reflected in our above models, most sample functions are defined on a 1D Euclidean
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domain but functions defined on higher domains are possible, for instance (Martinez et al.,

2013) model spectrograms as a 2D image defined for frequency and time.

Methods of functional response regression have been used for point estimation, con-

structing confidences intervals and various approaches to hypothesis testing, with much

attention on growth curve analysis (i.e. estimation of the mean of sample functions). In

Chapter 5, two hypothesis tests that assess the constancy of the spectrum are proposed.

Within the spectral domain, various tests to compare the differences in mean curves have

been constructed underpinned by the functional regression framework (see Chapter 5 for a

brief overview of some of the developments in this area).
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2 Methodology under the assumption of uncorrelated repli-

cates

The original LSW formulation (Nason et al., 2000) discussed in Chapter 1 (Section 1.3.2)

is for a single-replicate. Thus, it cannot capture the dynamics of time series data recorded

for several replicates (e.g. trials within an experiment), nor can it account for the potential

dependence across replicates. Our setting here presents additional challenges, notably

the fact that these signals behave in a way that is nonstationary at multiple scales, (i)

within the signal in each replicate, and (ii) across replicates over the course of the entire

experiment.

The chapter proceeds as follows. Section 2.1 (i) introduces our proposed meta-process

model under the assumption of uncorrelated replicates while accounting for intra- and cross-

replicate nonstationarity, and (ii) develops its associated estimation theory. Section 2.2

details simulation studies that showcase the behaviour of the proposed methodology

and demonstrates the advantage of our proposed work, both for across time and within-

replicate behaviour characterisation. We conclude the chapter in Section 2.3. The potential

dependence across replicates will be tackled in Chapter 3.

2.1 The proposed replicate-evolving nonstationary model

2.1.1 Replicate-Evolving Locally Stationary Wavelet (REv-LSW) process

Definition 2.1.1. We define a sequence of stochastic processes {Xr;R
t;T }, with time t =

0, . . . , T − 1 where T = 2J(T ) and replicate r = 0, . . . , R − 1 where R = 2J(R) to be a

replicate-evolving locally stationary wavelet (REv-LSW) process if it admits the following

representation

Xr;R
t;T =

∞∑
j=1

∑
k∈Z

ωr;Rj,k;Tψj,k(t)ξ
r
j,k. (35)

For each replicate (or replicate) r and within-replicate time k, ωr;Rj,k;T are the amplitudes

associated to the discrete non-decimated wavelets ψj,k(t) at scale j ≥ 1. Assume that

within each replicate r, the innovations {ξrj,k}j,k are a set of orthonormal random variables.

Letting ν = r/R denote rescaled replicate and z = k/T denote rescaled within-replicate

time, the quantities in (35) possess the following properties:

1. For all j, k and r, E[ξrj,k] = 0 (⇒ E[Xr;R
t;T ] = 0).

2. E[ξrj,kξ
r′
j′,k′ ] = δj,j′δk,k′δr,r′ (= cov(ξrj,k, ξ

r′
j′,k′)). This amounts to assuming uncorrelated

replicates.

3. For each scale j ≥ 1, there exists a Lipschitz continuous function in both rescaled

time (z) and rescaled replicate (ν), denoted by W̃j(z, ν) with the following properties

(a)
∞∑
j=1

∣∣∣W̃j(z, ν)
∣∣∣2 <∞ uniformly in z ∈ (0, 1), ν ∈ (0, 1). (36)

(b) Let Lνj denote the bounded Lipschitz constant corresponding to the time di-

mension at a particular rescaled replicate ν and scale j. Similarly, denote by
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N z
j the bounded Lipschitz constant corresponding to the replicate dimension

at a particular rescaled time z and scale j. Denote Lj = supν∈(0,1) L
ν
j and

Nj = supz∈(0,1)N
z
j , and assume they are uniformly bounded in j. Further

assume that
∞∑
j=1

2jLj <∞ and

∞∑
j=1

2jNj <∞. (37)

(c) There exist sequences of bounded replicate-specific constants {Crj }r and time-

specific constants {Dk
j }k, such that for each T and R respectively, the amplitudes

are forced to vary slowly across time within a replicate and across replicates, in

the sense that

sup
k=0:T−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣ ≤ Crj
T
, ∀j, r, (38)

sup
r=0:R−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣ ≤ Dk
j

R
, ∀j, k. (39)

Denote Cj = supr C
r
j and Dj = supkD

k
j and assume the sequences {Cj}, {Dj}

fulfill
∑∞

j=1 2
jCj <∞ and

∑∞
j=1 2

jDj <∞.

Remark 2.1.2 (rescaled time and replicate evolution). Within each scale j, the

transfer function W̃j(z, ν) controls the evolution of the amplitudes, forcing them to vary

slowly over both rescaled time (z) and replicate (ν) dimensions. The evolution of the

amplitudes over time within each replicate (replicate) happens in a smooth manner. The

evolution across replicates is such that while the spectral properties of different replicates

may also be different, however it is reasonable to assume that the spectral properties of

neighbouring replicates are similar. Nevertheless, further apart replicates may display

different traits. Such a meta-process evolution is presented in Figure 9.
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Figure 9: Realisation of a REv-LSW process demonstrating evolution across both time and
replicate dimensions. (Vertical lines denote breaks between replicates. Concatenation is only used
for meta-process visualisation.)
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2.1.2 Replicate evolutionary wavelet spectrum

As is common in spectral domain analysis (both Fourier and wavelet-based), we do not

work directly with the time- and replicate-specific multiscale transfer functions {W̃j(· , · )}j ,
but instead we define a scale-dependent measure for the time and replicate contribution to

the overall process variance.

As noted, the current LSW model quantities are not capable of capturing the multiscale

evolution of brain signals along replicates. Next, we develop a novel evolutionary wavelet

spectrum capable to extract nonstationarity within-replicates.

Definition 2.1.3. For a REv-LSW process {Xr;R
t;T } as in Definition 2.1.1, the within-

replicate evolutionary wavelet spectrum at scale j, rescaled replicate ν, rescaled within-

replicate time z is given by

Sj(z, ν) =
∣∣∣W̃j(z, ν)

∣∣∣2 = lim
T→∞
R→∞

(∣∣∣ω⌊νR⌋;R
j,⌊zT ⌋;T

∣∣∣2) . (40)

From equations (38) and (39) we directly obtain that for each T and R we have

sup
r=0:R−1

sup
k=0:T−1

∣∣∣∣ωr;Rj,k;T − W̃j

(
k

T
,
r

R

)∣∣∣∣ = O(CjT
−1) +O(DjR

−1), (41)

hence the right-hand equality in equation (40).

Remark 2.1.4 ( REv-LSW versus LSW processes). An innovation of the proposed

REv-LSW model is to impose within each scale not only a smooth spectral behaviour

across each (replicate) time series, but also to constrain the ‘meta’-spectral evolution across

replicates to happen in a smooth manner, as detailed by the conditions in Definition 2.1.1.

Note that a replicate-evolving locally stationary wavelet (REv-LSW) process is thus not

to be understood only as a collection of locally stationary wavelet (LSW) processes that

happen to be observed across several replicates, as this would limit its capacity to represent

multiscale behaviour across replicates.

Remark 2.1.5 (bounded variation jumps). Our theoretical development could of

course be extended to encompass bounded variation jumps, but this is outside the scope of

this work. Nevertheless, we show through simulation that such behaviour is well handled

by the proposed methodology.

For completeness and in order to aid our theoretical developments (and proofs), below

we also introduce the local autocovariance function associated to a REv-LSW process, but

note that we will not extensively pursue this quantity as our focus is on analysis within

the spectral domain.

Definition 2.1.6. For a REv-LSW process {Xr;R
t;T } as in Definition 2.1.1, the within-

replicate local covariance at some rescaled time z ∈ (0, 1) within rescaled replicate ν ∈ (0, 1),

at time-lag τ ∈ Z is given by

c(z, ν; τ) =

∞∑
j=1

Sj(z, ν)Ψj(τ),

where Ψj(τ) =
∑

k∈Z ψj,k(0)ψj,k(τ) denotes the scale j autocorrelation wavelet.
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Note that |c(z, ν; τ)| <∞ follows directly from the coherence range between −1 and 1,

and from the uniform bounds in lag (τ) and rescaled replicates (ν) for both the limiting

amplitudes and the autocorrelation wavelets (see equation (36)).

The local covariance defined above can be shown to be an approximation of the process

covariance corresponding to particular rescaled replicate(s), as follows.

Proposition 2.1.7. For a REv-LSW process {Xr;R
t;T } with properties as in Definition 2.1.1,∣∣∣cov(X⌊νR⌋;T

⌊zT ⌋;T , X
⌊νR⌋;T
⌊zT ⌋+τ;T )− c(z, ν; τ)

∣∣∣ = O(T−1) +O(R−1),

uniformly in τ at (rescaled) time z and replicates ν.

Proof. The proof appears in Appendix A.3.1 and uses the approximation properties in

Definition 2.1.1 of the REv-LSW process.

2.1.3 Estimation theory

We start our proposed estimation procedure for the spectral quantities, by first computing

the raw wavelet periodogram and exploring its asymptotic properties as an estimator for the

true, unknown spectrum. We note here that a well-behaved spectral estimator can then be

used to construct an estimator for the meta-process within-replicate local autocovariance,

by directly replacing the unknown spectrum in Definition 2.1.6. However, the development

and investigation of the local covariance, potentially along with the partial covariance and

their estimators for REv-LSW processes are beyond the current interest of this work and

are left as further research (see Killick et al. (2020) for the local partial autocorrelation

function in LSW processes).

Definition 2.1.8. For a scale j and time k, we define the within-replicate raw wavelet

periodogramof a REv-LSW process to be

Ir;Rj,k;T =
∣∣∣dr;Rj,k;T ∣∣∣2 .

where dr;Rj,k;T =
∑T−1

t=0 X
r;R
t;T ψj,k(t) are the process empirical wavelet coefficients constructed

using a family of discrete non-decimated wavelets, {ψj,k(t)}j,k.

We note that unlike the Fourier periodogram, the wavelet-based raw periodogram is

typically not an unbiased estimator of the wavelet spectrum, and this will also turn out to

be the case here.

For reasons that will become obvious next, we also define a transformed spectral

quantity βj(z, ν) =
∑∞

l=1Aj,lSl(z, ν), where Aj,l = ⟨Ψj ,Ψl⟩ =
∑

τ∈ZΨj(τ)Ψl(τ) is the

inner product matrix of the autocorrelation wavelets. The invertibility of the matrix A and

boundedness of its inverse norm (Nason et al., 2000) ensure that finding a well-behaved

estimator of the meta-process wavelet spectrum S is equivalent to finding a well-behaved

estimator for the spectral quantity β. Hence we next focus on estimating β and note that

the theoretical results below are derived under the Gaussianity assumption.

Remark 2.1.9 (normality assumption). Constrained by theoretical arguments, the

results below hold under the assumption that the innovations follow a Gaussian distribution,
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a commonplace assumption in time series analysis in general and in LSW modelling in

particular, e.g. Oh et al. (2003); Van Bellegem and von Sachs (2008). Nason (2013) illustrate

the non-limiting character of this assumption for practical applications, which indeed holds

for data arising from other fields, e.g. for experimental circadian data (Hargreaves et al.,

2019).

However, an empirical investigation (see Remark 2.2.2) into the quality of our estimation

in the presence of heavy-tailed innovations, namely Student distributed with 5, 7 and 10

degrees of freedom, demonstrates robustness against departures from normality.

Proposition 2.1.10. For a REv-LSW process {Xr;R
t;T } as in Definition 2.1.1, the replicate

raw wavelet periodogram has the following asymptotic properties for any fixed scale j and

rescaled time z, within rescaled replicates ν:

Expectation

E
[
I
⌊νR⌋;R
j,⌊zT ⌋;T

]
= βj(z, ν) +O(2jT−1) +O(R−1), (42)

Variance

var
(
I
⌊νR⌋;R
j,⌊zT ⌋;T

)
= 2β2j (z, ν) +O(22jT−1) +O(2jR−1).

Proof. The proof appears in Appendix A.1.1.

From Proposition 2.1.10, we see that the raw periodogram is asymptotically unbiased

for β, but inconsistent due its asymptotically non-vanishing variance. Thus we next propose

to smooth the raw periodogram in order to obtain consistency, and then we will correct for

bias to obtain an asymptotically unbiased estimator for S.

Definition 2.1.11. We define a replicate-smoothed estimator for the rephrased spectral

quantity βj(
k
T ,

r
R) to be

Ĩr;Rj,k;T = (2M + 1)−1
M∑

s=−M
Ir+s;Rj,k;T , (43)

where (2M + 1) is the length of the smoothing window and M is an integer such that as

T,R→ ∞, we have that M → ∞ and M/R→ 0.

Remark 2.1.12 (smoothing across replicates). Unlike for the usual locally stationary

processes where the periodogram is smoothed over time (and over frequency for the

classical Fourier-based models) in order to achieve consistency, here we propose a smoothing

procedure that operates over replicates by locally averaging the spectral estimates across

a window of neighbouring replicates. This approach is indeed theoretically justified by

the assumption of spectral smoothness across the replicate-dimension. In practice, these

assumptions will have to be verified in order to determine some empirically guided choice

of M , as seen in the simulation study (Section 2.2).

Proposition 2.1.13. Under the properties of Definition 2.1.1, the replicate-smoothed

wavelet periodogram in equation (43) has the following asymptotic properties for any fixed

scale j and rescaled time z within rescaled replicates ν:

Expectation

E
[
Ĩ
⌊νR⌋;R
j,⌊zT ⌋;T

]
= βj(z, ν) +O(MR−1) +O(2jT−1),
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Variance

var
(
Ĩ
⌊νR⌋;R
j,⌊zT ⌋;T

)
= O(22jM−1) +O(2jR−1) +O(MR−2).

Proof. Appendix A.1.2 contains the proof which manipulates the amplitude properties

across replicates as opposed to those across time in the absence of cross-replicate dependence.

Note that as T , R and M → ∞ and using the condition M/R → 0, the bias of the

smoothed periodogram becomes asymptotically negligible, while its variance tends to

zero for any fixed fine enough scale j (with 2j = o
(
min

{
T,R, (2M + 1)1/2

})
). The usual

bias–variance trade-off here is manifest through the increase of M resulting in a decrease of

the variance at the price of an increase in the bias. As the replicate-smoothed periodogram

proposed above is an asymptotically unbiased and consistent estimator for the true β,

the relationship between the true spectral quantities β and S suggests a natural way of

constructing a well-behaved spectral estimator for the unknown S.

Proposition 2.1.14. Under the assumptions of Proposition 2.1.13, the following is an

asymptotically unbiased and consistent estimator for the unknown wavelet spectrum for

each fixed scale j and rescaled time z within rescaled replicates ν

Ŝj(z, ν) =
J∑
l=1

A−1
j,l Ĩ

⌊νR⌋;R
l,⌊zT ⌋;T , (44)

where A−1
j,l is the (j, l) entry of the inverse of the inner product matrix A of the autocor-

relation wavelets and J = ⌊αJ(T )⌋ with α ∈ (0, 1), provided that M/R → 0 as T,R and

M → ∞.

Proof. Appendix A.1.3 contains the proof which hinges on the properties of the replicate-

smoothed periodogram shown in Proposition 2.1.13 above.

Remark 2.1.15 (replicate and time smoothing). The results in Proposition 2.1.13

highlight the small sample dependence of the bias and variance of the smoothed periodogram

on the number of replicates R, on the time series length T and on the smoothing window

(2M + 1), as well as well as on the ratio of (replicate) smoothing window to the total

number of replicates. While still having a bias–variance trade-off, the variance can be

further improved by additionally smoothing across the time-dimension.

Specifically, using a time-smoothing window of length (2MT + 1) such that MT → ∞
and MT /T → 0 (the reader may also refer to Park et al. (2014)) and chosen as usual

under LSW modelling (see e.g. Nason (2013)), and preserving the previous notation of

(2M + 1) for the replicate-smoothing window, we define the replicate- and time-smoothed

periodogram

˜̃Ir;Rj,k;T = (2M + 1)−1(2MT + 1)−1
M∑

s=−M

MT∑
t=−MT

Ir+s;Rj,k+t;T , (45)

to act as an estimator for the transformed spectral quantity βj(
k
T ,

r
R).

The time-smoothing window parameter MT is chosen automatically using the method

proposed by Nason (2013). The replicate-smoothing window (2M + 1) with a choice of

M = 3
4

√
R appears to work well in the following simulation studies. Killick et al. (2020)
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illustrate the robustness of LSW estimation to window width choices and form, while

we note the discussion in Cryer and Chan (2008, §14.2) and suggest that for a deeper

understanding of the spectral characteristics, but outside the testing framework, a user

might wish to obtain estimates over a range of M , e.g. M = 1
2

√
R, 34

√
R,

√
R.

We next show that this estimator has desirable asymptotic properties, leading to faster

convergence than its counterpart involving only replicate-smoothing.

Proposition 2.1.16. For a REv-LSW process as in Definition 2.1.1 and satisfying the

additional assumption of autocovariance summability, supz,ν∈(0,1)
∑

n∈Z |c(z, ν;n)| = O(1),

the smoothed replicate- and time-specific wavelet periodogram defined in equation (45) has

the following asymptotic properties for any fixed scale j and rescaled time z within rescaled

replicates ν:

Expectation

E
[
˜̃I
⌊νR⌋;R
j,⌊zT ⌋;T

]
= βj(z, ν) +O(MTT

−1) +O(MR−1) +O(2jT−1),

Variance

var
(
˜̃I
⌊νR⌋;R
j,⌊zT ⌋;T

)
= O(22j(MTM)−1) +O(22jM−1

T MR−2).

Proof. Appendix A.1.5 contains the proof which makes use of the smoothing in both

directions.

The replicate- and time- smoothed periodogram can then be used to further build a

well-behaved estimator of the unknown replicate wavelet spectrum S by means of

ˆ̂
Sj(z, ν) =

J∑
l=1

A−1
j,l

˜̃I
⌊νR⌋;R
l,⌊zT ⌋;T .

It is straightforward to show that this is also asymptotically unbiased and consistent for

Sj(z, ν), in the same manner as in the proof of Proposition 2.1.14.

2.2 Simulation study under the assumption of uncorrelated replicates

Here we aim to assess the behaviour of our proposed REv-LSW methodology as well as

compare it to a classical approach involving the LSW methodology (Nason et al., 2000).

Specifically, we evaluate (i) the classical approach where one would independently estimate

the spectrum for each replicate using a localised time smoother and then average over all

replicates (‘LSW’), (ii) our proposed methodology involving localised replicate smoothing

(‘REv-LSW1’), and (iii) our proposed methodology involving localised replicate and time

smoothing (‘REv-LSW2’). In order to match the current practice for LSW estimation, e.g.

Nason et al. (2000); Park et al. (2014), we have set J = J(T ) (corresponding to α = 1),

although in a bivariate spectral estimation context Sanderson et al. (2010) set a similar

measure to α = 0.7 and remark on its improved results when compared to α = 1. We carry

out simulations over N = 100 runs and explore performance across a range of time series

lengths T from 128 to 1024, number of replicates R from 64 to 512 and smoothing windows

(2M + 1) from 9 to 25. Overall, based on our findings, we recommend the use of replicate
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and time smoothing methodology (REv-LSW2) with a window length of (2M + 1) guided

by the choice of M = 3
4

√
R as a rule of thumb.

To quantify the performance of the model, we report the mean squared errors (MSE)

and squared bias results, and note these also implicitly infer the variance across simulations.

These measures are calculated as the average over all time-scale points and replicates as

follows

MSE(Ŝ) = (RJ T )−1
∑
r,j,k

[
1

N

N∑
n=1

(
Ŝ
(n)
j

(
k

T
,
r

R

)
− Sj

(
k

T
,
r

R

))2
]
,

Bias2(Ŝ) = (RJ T )−1
∑
r,j,k

[
1

N

N∑
n=1

Ŝ
(n)
j

(
k

T
,
r

R

)
− Sj

(
k

T
,
r

R

)]2
.

Note that although not explicitly calculated, the variance in estimates across simulations

can thus be implicitly obtained from the above measures.

Remark 2.2.1 (estimates at the boundaries). We do not assess edges that involve

local averaging over the first and last (M − 1) replicates. This has also been accounted for

when calculating the MSE and squared bias. As a result, the reported measures whose

values correspond to modelling via LSW will appear to change (in a very minor way), when

in fact they should be the same for all choices of M at fixed R and T .

Simulation 1

We simulate N = 100 realisations of a REv-LSW process consisting of R = 128 replicates,

each of length T = 256 = 28 and whose wavelet spectrum, illustrated in Figure 10, evolves

slowly over both rescaled time and replicates, as follows

Sj(z, ν) =

4ν sin2 (2πz(1 + 2ν)) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 1)

0, otherwise,
(46)

recalling that z = k/T and ν = r/R for k = 0, . . . , T −1 and r = 0, . . . , R−1. The spectral

characteristics thus appear at scale j = 8− 4 = 4.

The periodicity and magnitude of the sine wave evolve slowly over the replicates in such

a way that the spectral characteristics of neighbouring replicates do not look too dissimilar

whilst there is a noticeable difference between replicates further apart. One concatenated

realisation of the meta-process with the specified spectral structure in equation (46), viewed

as a series of length RT , can be seen in Figure 11. Note however that this is an abuse of

representation, since each replicate is a time series of its own, and the sole purpose of this

visualisation is to highlight the evolution of the meta-process.

We display in Figure 12 the true spectra and the average spectral estimates for replicates

20, 64 and 108. The non-decimated wavelet transform was computed using discrete wavelets

built by means of Daubechies Least Asymmetric family with 10 vanishing moments and

the local averaging for our REv-LSW1 method was carried out using M = 4, corresponding

to a window of 9 replicates (numerical MSE results in Table 1 highlight that we chose to

visually present some of our least performant results). Figure 12 displays the danger of

neglecting the possibility of an existing evolutionary behaviour over replicates (see e.g. level
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Figure 10: True wavelet spectra for replicates (trials) 20, 64 and 108 of Simulation 1.
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Figure 11: Realisation of a REv-LSW process with spectra defined in equation (46) for Simulation
1.

4 in the top row plots of the true spectrum), conducive to either under or over-estimation

(see the middle row plots). The bottom row plots show that the REv-LSW1 estimates

do reflect the process evolution over replicates. To further support this, Figure 13 takes

a closer look at the evolutionary behaviour of the spectral quantities over the time and

replicates in level 4.

The MSE and squared bias results (recalling that we do not assess replicates at the

edges) in Table 1, highlight that for this example, which adheres well to the REv-LSW

assumptions, the MSEs for the LSW model are higher than those computed for the REv-

LSW model. Note these results implicitly also provide evidence for the variance across the

simulation runs. The higher bias of the LSW estimates is unsurprisingly resulting from

averaging over all the replicates and thus failing to account for the evolutionary behaviour

through replicates. The benefit of taking a local smoothing approach over both time and

replicates is that it always results in spectral estimates with lower bias and MSE when

compared to LSW, although it is worth pointing out that taking a local smoothing approach

over replicates only, while yielding lower bias, might increase the MSE for inappropriately
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Figure 12: Simulation 1 time-scale plots for replicates (trials) 20, 64 and 108, respectively the
first, second and third columns. Estimates are averaged over 100 realisations. Top: true spectra;
Middle: estimates from the LSW method averaged over all replicates; Bottom: estimates using
REv-LSW(1).
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Figure 13: Simulation 1 time-replicate spectral plots in level 4. Estimates are averaged over 100
realisations. Top: true spectra; Middle: estimated spectra from the LSW method averaged over all
replicates; Bottom: estimates using REv-LSW(1).

small windows. Furthermore, we notice the REv-LSW methodology performance improves

with increases in the replicate local averaging window length (2M + 1). However, recalling

that we require M/R→ 0 as R,M → ∞, too large a choice of M could pull information

from too many replicates and lead to poorer estimates.

Figure 14 provides a visualisation on how the REv-LSW model performed over the 100

simulations via histograms of the simulation-specific MSE. The histograms highlight not

only how the increase in M improves performance but also how the increase in R and T
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reduces the MSEs, thus demonstrating the expected asymptotic behaviour of our smoothed

estimator.

Mean squared errors (×100)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

64 128 4 13.21 12.68 12.92 7.91 11.59 7.97

7 12.01 11.47 10.74 7.81 9.99 7.87

10 11.01 10.47 9.88 7.81 9.36 7.87

12 10.48 9.94 9.51 7.79 9.08 7.84

256 4 11.10 10.60 7.64 2.79 6.32 2.89

7 10.06 9.56 6.54 3.71 5.82 3.82

10 9.21 8.71 6.83 4.84 6.35 4.94

12 8.77 8.27 7.09 5.43 6.70 5.53

128 128 4 13.67 13.40 13.11 7.92 11.70 7.99

7 13.02 12.76 10.81 7.76 10.01 7.83

10 12.40 12.14 9.80 7.67 9.26 7.75

12 12.00 11.74 9.40 7.64 8.97 7.72

256 4 11.49 11.25 7.34 2.41 6.01 2.52

7 10.95 10.70 5.47 2.58 4.74 2.70

10 10.41 10.17 4.94 2.91 4.47 3.03

12 10.07 9.82 4.90 3.20 4.52 3.33

Mean squared errors (×100)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

256 512 4 10.16 10.03 5.66 0.39 4.13 0.40

7 9.91 9.78 3.54 0.40 2.64 0.43

10 9.67 9.54 2.67 0.46 2.05 0.49

12 9.51 9.38 2.36 0.52 1.86 0.55

1024 4 9.11 8.98 5.28 0.12 3.77 0.11

7 8.88 8.75 3.17 0.12 2.28 0.12

10 8.66 8.53 2.30 0.15 1.68 0.15

12 8.52 8.39 1.99 0.19 1.47 0.20

512 512 4 10.25 10.18 5.72 0.37 4.17 0.39

7 10.12 10.05 3.55 0.36 2.64 0.38

10 9.99 9.93 2.62 0.36 1.99 0.39

12 9.91 9.84 2.26 0.37 1.73 0.39

1024 4 9.18 9.12 5.29 0.11 3.77 0.10

7 9.06 9.00 3.19 0.09 2.28 0.09

10 8.95 8.89 2.29 0.09 1.65 0.09

12 8.87 8.81 1.93 0.09 1.40 0.09

Table 1: MSE and squared bias results, averaged over all time-scale points and replicates for
Simulation 1 and N = 100 runs. ‘LSW’ denotes the classical approach of averaging over the
replicates. ‘REv-LSW1’ denotes our proposed approach using localised replicate smoothing. ‘REv-
LSW2’ denotes our proposed approach using localised replicate and time smoothing. Our proposed
methods ‘REv-LSW1’and ‘REv-LSW2’ use a replicate smoothing window of length (2M + 1), while
the time smoothing window for ‘LSW’ and ‘REv-LSW2’ is automatically chosen.
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Figure 14: Histograms of the MSEs on the estimates from the REv-LSW model over 100 runs for
Simulation 1. Smoothing over replicates with M = 12 (red); with M = 4 (blue).

Simulation 2

We consider N = 100 realisations of a REv-LSW process consisting of R = 128 replicates,

each of length T = 256 = 28, and driven by the following wavelet spectrum

Sj(z, ν) =

sin2 (2πz + 10ν) , for j = J(T )− 1, z ∈ (0, 1), ν ∈ (0, 1)

0, otherwise.
(47)

Our spectra in this example are characterised by a squared sine wave in the finest level that

experiences a shift from replicate to replicate. This behaviour is displayed in Figure 15

and then a concatenated realisation of the meta-process appears in Figure 16. Note that

visually the meta-process behaviour does not offer any indication of transitioning through

replicates, despite this actually happening.
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Figure 15: True wavelet spectra for replicates (trials) 20, 64 and 108 of Simulation 2.

We obtain estimates for both the LSW model averaged over all replicates and for

the REv-LSW model which adopts the local averaging procedure (over replicate, and

over replicate and time dimensions). On visually examining the concatenated process in

Figure 16, one may not question the existence of evolutionary behaviour across replicates.

Inspection of our REv-LSW estimates of the spectral characteristics of this process tells

us otherwise. Figure 17 highlights that the REv-LSW(1) method (bottom row) manages

to capture the evolution of the spectra in the finest level. On the other hand, the LSW
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Figure 16: Realisation of a REv-LSW process with spectra defined in equation (47) for Simulation
2.

method (middle row) fails to capture this behaviour, and this is further demonstrated in

Figure 18 which shows the spectral estimates across rescaled time and replicate in the

finest level.

Mean squared errors and squared bias results for Simulation 2 are given in Table 2.

When comparing models, we notice that for low R, performing local averaging over the

replicates only (REv-LSW1) appears to yield low bias estimates that nevertheless have

poorer MSE results than the blanket LSW involving local time smoothing and then

averaging over all replicates (despite its high bias). The small squared bias for the REv-

LSW estimates implies that much of the MSE can be attributed to the variance. A possible

explanation for this is the spectral leakage across neighbouring scales, a known artefact

in the locally stationary spectral estimation context: the narrower choices of window to

smooth over replicates in the REv-LSW model were not sufficient enough to remove the

effects of the ‘leaked’ characteristics. These simulations provide a stronger highlight of

the impact of the ratio M/R when choosing the replicate window width (2M + 1), with

the guideline choice of M = 3
4

√
R again appearing to yield competitive results. As R and

T increase, and our choice of M becomes larger with larger R (increasing the smoothing

window), the MSEs improve and REv-LSW2 estimation performs dramatically better than

LSW. This is again in line with our asymptotic results. Also, we note here that the spectra

in Simulation 2 do not behave in quite the slowly evolving manner across replicates as

detailed in Definition 2.1.1, nevertheless the REv-LSW methodology still performs well at

estimating the spectra and capturing the evolutionary behaviour across replicates.

As with Simulation 1, we also provide histograms for the MSEs over 100 simulations

involving R = 128 replicates of length T = 256. Figure 19 highlights how increasing

the smoothing window improves the performance of our REv-LSW method and leads to

better estimates. In this setting, Table 2 shows how the LSW model performs better in

comparison to REv-LSW(1) when M = 4 but as M increased, the REv-LSW(1) model soon
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Figure 17: Simulation 2 time-scale plots for replicates (trials) 20, 60 and 108, respectively the
first, second and third columns. Estimates are averaged over 100 realisations. Top: true spectra;
Middle: estimates from the LSW method averaged over all replicates; Bottom: estimates using
REv-LSW(1).
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Figure 18: Simulation 2 time-replicate spectral plots in level 7. Estimates are averaged over 100
realisations. Top: true spectra; Middle: estimated spectra from the LSW method averaged over all
replicates; Bottom: estimates using REv-LSW(1).
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outperformed LSW. This can also be visualised nicely through the histograms in Figure 20,

where we can see the switch in performance of the models and the MSE improvement with

the increase of M .

Mean squared errors (×1000)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

64 128 4 19.37 18.09 33.91 1.97 10.69 1.85

7 19.49 18.21 28.04 8.85 14.10 8.79

10 19.39 18.11 33.34 19.57 23.24 19.44

12 19.20 17.92 36.49 24.87 27.88 24.69

256 4 16.87 15.81 29.63 1.66 9.10 1.47

7 16.97 15.91 24.48 7.71 12.17 7.60

10 16.89 15.83 29.11 17.13 20.29 17.03

12 16.74 15.68 31.86 21.79 24.43 21.69

128 128 4 18.55 17.94 32.12 0.51 9.10 0.37

7 18.65 18.04 20.06 1.09 6.32 1.06

10 18.74 18.13 16.51 2.97 6.75 2.99

12 18.78 18.17 16.50 5.12 8.31 5.15

256 4 16.23 15.69 28.27 0.39 7.85 0.21

7 16.32 15.77 17.61 0.90 5.39 0.80

10 16.39 15.84 14.48 2.54 5.77 2.48

12 16.43 15.88 14.46 4.42 7.14 4.38

Mean squared errors (×1000)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

256 512 4 14.13 13.89 25.00 0.25 6.85 0.08

7 14.16 13.93 15.04 0.19 4.15 0.09

10 14.20 13.97 10.87 0.27 3.10 0.20

12 14.23 13.99 9.30 0.40 2.78 0.35

1024 4 12.72 12.50 22.58 0.23 6.15 0.07

7 12.75 12.54 13.58 0.17 3.73 0.08

10 12.78 12.57 9.82 0.24 2.79 0.17

12 12.81 12.59 8.41 0.37 2.50 0.31

512 512 4 13.99 13.87 25.06 0.26 6.84 0.08

7 14.01 13.89 15.03 0.16 4.10 0.05

10 14.02 13.90 10.74 0.12 2.94 0.05

12 14.04 13.91 9.03 0.12 2.49 0.05

1024 4 12.59 12.48 22.58 0.23 6.14 0.06

7 12.60 12.50 13.55 0.14 3.69 0.04

10 12.62 12.51 9.69 0.11 2.64 0.04

12 12.63 12.52 8.15 0.10 2.23 0.04

Table 2: MSE and squared bias results, averaged over all time-scale points and replicates for
Simulation 2 and N = 100 runs. ‘LSW’ denotes the classical approach of averaging over the
replicates. ‘REv-LSW1’ denotes our proposed approach using localised replicate smoothing. ‘REv-
LSW2’ denotes our proposed approach using localised replicate and time smoothing. Our proposed
methods ‘REv-LSW1’and ‘REv-LSW2’ use a replicate smoothing window of length (2M + 1), while
the time-smoothing for ‘LSW’ and ‘REv-LSW2’ is automatically chosen.

Simulation 3

For this simulation we present the behaviour of our proposed methodology on a process with

a challenging spectral structure, as shown in Figure 21. We generate N = 100 realisations
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Figure 19: Histograms of the MSEs on the estimates from the REv-LSW model over 100 runs for
Simulation 2. Smoothing over replicates with M = 12 (red); with M = 4 (blue).
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Figure 20: Histograms of the MSEs obtained over 100 runs for Simulation 2 with R = 128 and T =
256. Smoothing over replicates with M = 4 (left); with M = 12 (right). Red: MSEs of REv-LSW(1)
estimates; Blue: MSEs of LSW estimates.
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of a REv-LSW process consisting of R = 256 replicates, each of length T = 256 = 28 and

with spectral structure at scales 5 and 6, defined as

Sj(z, ν) =


4(1− ν) cos2

(−1
3 π + 4

3πz
)
, for j = J(T )− 3, z ∈ (65/256, 1), ν ∈ (0, 1)

4 cos2 ((4π + 10ν)z) , for j = J(T )− 2, z ∈ (0, 128/256), ν ∈ (0, 1)

0, otherwise,

(48)

where z = k/T and ν = r/R for k = 0, . . . , T − 1 and r = 0, . . . , R − 1. The process

places spectral content at scale j = 5, manifest through a decreasing amplitude of the

cosine across the last 192 replicates, and at scale j = 6, where the periodicity of the cosine

increases across the first 128 replicates.
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Figure 21: True evolutionary wavelet spectra for replicates (trials) 40, 128 and 200 of Simulation 3.

A concatenated realisation of this process is shown in Figure 22. We note that this

process departs somewhat from the requirement that the amplitudes evolve slowly over

both rescaled time (z) and replicate (ν) dimensions, however we show that despite this the

methodology still performs well.

Spectral estimates have been computed using discrete non-decimated wavelets built by

means of Daubechies Least Asymmetric family with 6 vanishing moments (Daubechies,

1992). For the REv-LSW method, local averaging involved windows of 9 replicates

corresponding to M = 4 and we note that numerical MSE results in Table 3 highlight

that we chose to visually present here some of our least performant results. The LSW and

REv-LSW(1) spectral estimates appear in Figure 23, along with the truth.

From the figures we get a visual clarification that the REv-LSW model is doing a

good job at capturing the evolving characteristics of the spectra across replicates and the

leakage across the neighbouring levels j = 5 and 6 is minor. They also highlight that

when neglecting the possibility of evolutionary behaviour over replicates, when it is in fact

present as seen for levels 5 and 6 in the top row plots of the true spectrum, the LSW model

struggles to reflect this and either under or over-estimates, as seen in the middle row plots.

The bottom row plots show that the REv-LSW1 estimates do indeed pick up the evolution

over replicates. Figures 24 and 25 further support the evidence for evolutionary behaviour

of the spectral quantities both across time and replicates.

Asymptotically, the MSEs associated to our methods decay much faster than for the

LSW and as we increase the local averaging window length (2M + 1), the performance

52



−
6

−
2

0
2

4
6

Replicates 1 to 7

0 256 512 768 1024 1280 1536 1792
−

6
−

2
0

2
4

6

Replicates 125 to 131

31744 32000 32256 32512 32768 33024 33280 33536

−
6

−
2

0
2

4
6

Replicates 250 to 256

63744 64000 64256 64512 64768 65024 65280 65536

Time

R
ep

lic
at

e 
pr

oc
es

s

Figure 22: Realisation of a REv-LSW process with spectra defined in equation (48) for Simulation
3.

of our the REv-LSW methodology improves. A replicate window length of (2M + 1)

determined by the choice M = 3
4

√
R appears to work well across all our investigations.
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Figure 23: Simulation 3 time-scale plots for replicates (trials) 40, 128 and 200, respectively the
first, second and third columns. Estimates are averaged over 100 realisations. Top: true spectra;
Middle: estimates from the LSW method averaged over all replicates; Bottom: estimates using
REv-LSW(1).

Histograms of the MSEs over the 100 simulations are shown in Figure 26 and again

give evidence of the improved performance as R, T and M are increased. To numerically

strengthen our visual inference, we examine the MSEs and squared bias results in Table 3

(and thus implicitly the variance in the estimates across the N = 100 runs). The best

results in terms of lowest MSEs are obtained by REv-LSW2, despite REv-LSW2 incurring
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Figure 24: Simulation 3 time-replicate spectral plots for level 5. Estimates are averaged over 100
realisations. Top: true spectra; Middle: estimated spectra from the LSW method averaged over all
replicates; Bottom: estimates using REv-LSW(1).
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Figure 25: Simulation 3 time-replicate spectral plots for level 6. Estimates are averaged over 100
realisations. Top: true spectra; Middle: estimated spectra from the LSW method averaged over all
replicates; Bottom: estimates using REv-LSW(1).
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a somewhat higher bias than REv-LSW1. Both our methods have a substantially lower

bias than the LSW.
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Figure 26: Histograms of the MSEs on the estimates from the REv-LSW model over 100 runs for
the simulation 3. Red: smoothing over replicates with M = 12; Blue: smoothing over replicates
with M = 4.

Mean squared errors (×100)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

256 128 4 17.55 17.27 22.31 2.53 11.52 3.88

12 16.74 16.46 9.45 2.40 6.54 3.82

256 4 14.21 13.95 19.62 1.04 8.46 1.29

12 13.48 13.22 7.58 0.92 3.83 1.23

512 4 12.25 12.01 17.59 0.53 7.15 0.52

12 11.59 11.35 6.51 0.42 2.85 0.48

Mean squared errors (×100)

LSW REv-LSW1 REv-LSW2

R T M mse bias2 mse bias2 mse bias2

512 256 4 14.29 14.14 19.68 1.05 8.49 1.28

12 13.89 13.76 7.62 0.92 3.81 1.22

512 4 12.30 12.18 17.61 0.53 7.15 0.52

12 11.96 11.84 6.54 0.42 2.85 0.48

1024 4 10.92 10.81 15.83 0.32 6.29 0.25

12 10.61 10.50 5.78 0.22 2.38 0.21

Table 3: MSE and squared bias results, averaged over all time-scale points and replicates for
Simulation 3 and N = 100 runs. ‘LSW’ denotes the classical approach of averaging over the
replicates. ‘REv-LSW1’ denotes our proposed approach using localised replicate smoothing. ‘REv-
LSW2’ denotes our proposed approach using localised replicate and time smoothing. Our proposed
methods ‘REv-LSW1’and ‘REv-LSW2’ use a replicate smoothing window of length (2M + 1), while
the time-smoothing window for ‘LSW’ and ‘REv-LSW2’ is automatically chosen.

Remark 2.2.2 (Empirical investigation into departures from normality). In

Remark 2.1.9 we pointed out that the estimation results hold under the assumption of

Gaussian innovations. An empirical investigation using innovations that follow a Student

distribution with 5, 7 and 10 degrees of freedom, demonstrates the robustness of the

estimation theory developed in Section 2.1.3. Table 4 below shows that while the heavy

tails unsurprisingly impact the quality of estimation, they do not overturn the conclusions

upheld under the assumption of Gaussian innovations.
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Table 4: MSEs (×100) averaged over all time-scale point and trials with true spectra as defined
in Simulation 3 (Section 2.2). For N = 100 runs, simulations are obtained from Student’s t-
distribution with degrees of freedom 5, 7 and 10. ‘LSW’ denotes the classical approach of averaging
over the replicates. ‘REv-LSW2’ denotes our proposed approach using localised replicate and time
smoothing.

DF = 5 DF = 7 DF = 10

R T M LSW REv-LSW2 LSW REv-LSW2 LSW REv-LSW2

128 256 4 19.17 12.68 13.65 11.37 12.34 8.28

7 16.86 14.54 13.11 8.48 11.80 6.14

10 16.34 12.82 12.58 7.50 11.27 5.52

12 16.00 12.34 12.24 7.32 10.93 5.46

2.3 Concluding remarks

In this chapter we proposed a novel wavelet-based methodology that successfully cap-

tures nonstationary process characteristics for time series collected across replicates. The

desirable properties of the REv-LSW model were evidenced by simulation studies, demon-

strating the improved estimation in comparison to the classical LSW approach that would

dismiss the experimental timeline and simply average over all the replicates. This work

has demonstrated the dangers of approaching replicate time series as identical process

realisations and the misleading results this can yield when studying the process dynamics

across the replicate domain. Crucial to the proposed statistical model was the assumption

of replicate uncorrelation, a limiting assumption we drop in the proposed methodology of

the following chapter.

Furthermore, recall that the methodology is developed to analyse ordered replicate time

series and thus smoothness between successive replicates is assumed. We point out that

the practitioner should exhibit care in their approach and ensure that indeed a natural

replicate ordering is present. Should this not be the case, clustering and then averaging

within each cluster could provide a preferred, appropriate approach (Hargreaves et al., 2018;

Ting et al., 2018). Further work beyond this thesis could investigate when the smoothness

assumption between replicates breaks. In this scenario, it may be of benefit to include a

measure of ‘stochastic closeness’ when performing local averaging over the replicates, and

if appropriate, weights could be included in the smoothing process.

A next natural step would be to investigate the REv-LSW local (partial) autocorrelation

function (for the LSW setup, see Killick et al. (2020)). An extension to this work would be

to develop the REv-LSW methodology in a multivariate setting (Sanderson et al. (2010);

Park et al. (2014)).
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3 Methodology incorporating the potential for replicate co-

herence

So far, a serious limitation of previous work is the assumption that the replicate time

series are uncorrelated. We now develop the theory to allow for cross-replicate dependence

by means of a between-replicate coherence structure. This is a major innovation of this

work, as to the best of our knowledge this methodology is the first that simultaneously

accounts for correlation across replicates while also embedding potential nonstationarity in

multiple time scales: locally within a replicate and globally across replicates in the entire

experiment. Additionally, the lack of between-replicate dependence can also be naturally

incorporated by our proposed framework, as a particular case.

The chapter proceeds as follows. Section 3.1 (i) introduces our proposed meta-process

model that allows for correlation between replicates while accounting for intra- and cross-

replicate nonstationarity, and (ii) develops its associated estimation theory. The generality

of this new model allows us to treat the absence of cross-replicate dependence, a funda-

mental assumption underpinning Chapter 2, as its particular manifestation. Section 3.2

details simulation studies that showcase the behaviour of the proposed methodology and

demonstrates the advantage of accounting for between- replicate behaviour characterisation,

as well as across time and within- replicate characteristics. We conclude the chapter in

Section 3.3.

3.1 REv-LSW model embedding replicate coherence

Definition 3.1.1. We define a sequence of stochastic processes {Xr;R
t;T }, with time t =

0, . . . , T − 1 where T = 2J(T ) and replicate r = 0, . . . , R − 1 where R = 2J(R) to be a

replicate-evolving locally stationary wavelet (REv-LSW) as in Definition 2.1.1 with the

properties given there and the following amendments:

2. (replacing property 2) Additional to {ξrj,k}j,k being orthonormal within replicate

r, we have E[ξrj,kξ
r′
j′,k′ ] = δj,j′δk,k′ρ

r,r′;R
j,k;T , where {ρr,r

′;R
j,k;T }k determine the dependence

structure between replicates r and r′, at each scale j. Note that the within-replicate

orthonormality induces
∣∣∣ρr,r′;Rj,k;T

∣∣∣ ≤ 1 for all j, k and r, r′, with equality when r = r′.

The assumption of uncorrelated replicates amounts to ρr,r
′;R

j,k;T = δr,r′ for all j, k.

3. (replacing property 3(a) equation (36))

∞∑
j=1

∣∣∣W̃j(z, ν)W̃j(z, ν
′)
∣∣∣ <∞ uniformly in z ∈ (0, 1), ν, ν ′ ∈ (0, 1). (49)

4. (additional property) For each scale j ≥ 1, there exists a Lipschitz continuous function

in rescaled time z and rescaled replicate arguments ν and ν ′, denoted by ρj(z, ν, ν
′),

which constrains the innovation covariance structure and fulfills the assumptions

below, as follows

(a) Let Qν,ν
′

j denote the bounded Lipschitz constant corresponding to the time

dimension at particular (rescaled) replicates ν and ν ′, at scale j. Similarly, denote
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by P zj the bounded Lipschitz constant corresponding to the replicate dimension

at a particular (rescaled) time (z), at scale j. Denote Qj = supν,ν′∈(0,1)Q
ν,ν′

j ,

Pj = supz∈(0,1) P
z
j and assume they are uniformly bounded in j. Further assume

that
∞∑
j=1

2jQj <∞ and

∞∑
j=1

2jPj <∞.

(b) There exist sequences of bounded replicate-specific constants {C̃r,r
′

j }r,r′ and
time-specific constants {D̃k

j }k, such that for each T and R respectively, the

covariances are forced to vary slowly across time within a replicate and across

replicates, in the sense that

sup
k=0:T−1

∣∣∣∣ρr,r′;Rj,k;T − ρj

(
k

T
,
r

R
,
r′

R

)∣∣∣∣ ≤ C̃r,r
′

j

T
, ∀j, r, r′ (50)

sup
r,r′=0:R−1

∣∣∣∣ρr,r′;Rj,k;T − ρj

(
k

T
,
r

R
,
r′

R

)∣∣∣∣ ≤ D̃k
j

R
, ∀j, k. (51)

Denote C̃j = supr,r′ C̃
r,r′

j and D̃j = supk D̃
k
j and assume the sequences {C̃j},

{D̃j} fulfill
∑∞

j=1 2
jC̃j <∞ and

∑∞
j=1 2

jD̃j <∞.

Remark 3.1.2 (rescaled replicate dependence). Note that from equations (50) and

(51) we directly obtain for each T and R

sup
r,r′=0:R−1

sup
k=0:T−1

∣∣∣∣ρr,r′;Rj,k;T − ρj

(
k

T
,
r

R
,
r′

R

)∣∣∣∣ = O(C̃jT
−1) +O(D̃jR

−1).

Hence for some rescaled time z and rescaled replicates ν and ν ′, we have in the limit

ρj(z, ν, ν
′) = lim

T→∞
R→∞

(
ρ
⌊νR⌋,⌊ν′R⌋;R
j,⌊zT ⌋;T

)
,

where ⌊zT ⌋ and ⌊νR⌋ denote the largest integer less than or equal to zT and νR, respectively.

For a scale j and (rescaled) time z, the quantity ρj(z, ν, ν
′) thus gives a measure of

the dependence between (rescaled) replicates ν and ν ′, and it is zero for uncorrelated

replicates. We remind the reader that previous methodology was developed under the

working assumption of uncorrelated replicates, now therefore viewed as a particular case.

3.1.1 Replicate evolutionary wavelet spectrum and coherence

As we do not work directly with the time- and trial-specific multiscale transfer functions

{W̃j(· , · )}j (as is common in both Fourier and wavelet-based spectral domain analysis),

we proceed (in same vein as Chapter 2) by defining a scale-dependent measure for the time

and replicate contribution to the overall process variance. Additionally, this measure now

incorporates the potential for a cross-replicate contribution to the overall process variance

through the existence of between-replicate dependence.

Next, we develop a novel evolutionary wavelet spectrum capable to extract nonstation-

arity both in time and within- and between- replicates, a feat the current LSW model

quantities are not designed to cope with.
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Definition 3.1.3. For a REv-LSW process {Xr;R
t;T } as in Definition 3.1.1, we define its

replicate evolutionary wavelet spectrum as follows.

1. The within-replicate evolutionary wavelet spectrum at scale j, rescaled replicate ν,

rescaled within-replicate time z agrees with that previously defined in equation (40),

given by

Sj(z, ν) =
∣∣∣W̃j(z, ν)

∣∣∣2 .
2. The between-replicate evolutionary wavelet spectrum defined at scale j, rescaled time

z within rescaled replicates ν and ν ′ is given by

Sj(z, ν, ν
′) = W̃j(z, ν)W̃j(z, ν

′)ρj(z, ν, ν
′).

Note in the above notation that the spectrum corresponding to any rescaled repli-

cates ν = ν ′ is the within-replicate spectrum, ı.e. Sj(z, ν, ν) = Sj(z, ν). (Alternatively,

|W̃j(z, ν)| = (Sj(z, ν, ν))
1/2.) Also note that under the assumption of uncorrelated repli-

cates (trials) of Fiecas and Ombao (2016), the between-replicate spectrum is zero, ı.e.

Sj(z, ν, ν
′) = 0,∀ ν ′ ̸= ν.

In the REv-LSW setup, we thus quantify the between-replicate dependence by means

of

ρj(z, ν, ν
′) =

Sj(z, ν, ν
′)

{Sj(z, ν)Sj(z, ν ′)}1/2
, (52)

and we shall refer to it as the locally stationary between-replicate coherence, with values

ranging from −1, indicating an absolute negative correlation, to 1 indicating an absolute

positive correlation. Uncorrelation across replicates amounts to ρj(z, ν, ν
′) = 0, ∀ ν ′ ̸= ν.

In addition to the within-replicate local covariance as defined in Definition 2.1.6, below

we introduce the local covariance function associated to a REv-LSW process that captures

between-replicate dependence. We remind the reader that this quantity is defined for

completeness and in order to aid our theoretical developments (and proofs) but we will not

extensively pursue this quantity as our focus is on analysis within the spectral domain.

Definition 3.1.4. For a REv-LSW process {Xr;R
t;T } as in Definition 3.1.1, the between-

replicate local covariance at rescaled time z ∈ (0, 1) within rescaled replicates ν and ν ′,

both in (0, 1), at time-lag τ ∈ Z is given by

c(z, ν, ν ′; τ) =

∞∑
j=1

Sj(z, ν, ν
′)Ψj(τ).

where Ψj(τ) =
∑

k∈Z ψj,k(0)ψj,k(τ) denotes the scale j autocorrelation wavelet. Observe

that c(z, ν, ν; τ) = c(z, ν; τ), ∀ ν, and under the previous assumption of uncorrelated repli-

cates, c(z, ν, ν ′; τ) = 0, ∀ ν ′ ̸= ν.

Note that |c(z, ν, ν ′; τ)| <∞ follows directly from the coherence range between −1 and

1, and from the uniform bounds in lag (τ) and rescaled replicates (ν, ν ′) for both the

limiting amplitudes and the autocorrelation wavelets (see equation (49)).

The local covariance defined above can be shown to be an approximation of the process

covariance corresponding to particular rescaled replicate(s), as follows.
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Proposition 3.1.5. For a REv-LSW process {Xr;R
t;T } with properties as in Definition 3.1.1,∣∣∣cov(X⌊νR⌋;T

⌊zT ⌋;T , X
⌊ν′R⌋;T
⌊zT ⌋+τ;T )− c(z, ν, ν ′; τ)

∣∣∣ = O(T−1) +O(R−1),

uniformly in τ at (rescaled) time z and replicates ν, ν ′.

Proof. The proof appears in Appendix A.3.1 and uses the approximation properties in

Definition 3.1.1 of the REv-LSW process.

3.1.2 Estimation theory

In the same manner as our framework built under the assumption of uncorrelated replicates,

our estimation procedure begins by computing the raw wavelet periodogram and then builds

upon this through smoothing methods in order to establish a within- and between-replicate

spectral estimator with desirable asymptotic properties. We again note that an estimator

for the meta-process local autocovariance, both within- and between-replicates, can be

constructed by replacing the unknown spectrum in Definition 3.1.4 with a well-behaved

spectral estimator. The development and investigation of the local covariance is beyond the

current interest of this work and is left for further research, with potential for investigation

into the partial covariance (see Killick et al. (2020)).

Definition 3.1.6. For a scale j and time k, we define the raw wavelet periodogram between

replicates r and r′ of a REv-LSW process to be

I
(r,r′);R
j,k;T = dr;Rj,k;Td

r′;R
j,k;T ,

where dr;Rj,k;T =
∑T−1

t=0 X
r;R
t;T ψj,k(t) are the process empirical wavelet coefficients constructed

using a family of discrete non-decimated wavelets, {ψj,k(t)}j,k.

Note that when r = r′, the above becomes the previously defined within-replicate raw

wavelet periodogram given by

Ir;Rj,k;T =
∣∣∣dr;Rj,k;T ∣∣∣2 .

We also define a transformed spectral quantity βj(z, ν, ν
′) =

∑∞
l=1Aj,lSl(z, ν, ν

′), where

Aj,l = ⟨Ψj ,Ψl⟩ =
∑

τ∈ZΨj(τ)Ψl(τ) is the inner product matrix of the autocorrelation

wavelets. When the (rescaled) replicates ν and ν ′ coincide, we simplify the notation and

we equivalently refer to βj(z, ν) := βj(z, ν, ν). The invertibility of the matrix A and

boundedness of its inverse norm (Nason et al., 2000) ensure that finding a well-behaved

estimator of the meta-process wavelet spectrum S is equivalent to finding a well-behaved

estimator for the spectral quantity β. Hence we next focus on estimating β and note

that the theoretical results below are derived under the Gaussianity assumption (see

Remark 2.1.9 in Chapter 2).

Proposition 3.1.7. For a REv-LSW process {Xr;R
t;T } as in Definition 3.1.1, the replicate

raw wavelet periodogram has the following asymptotic properties for any fixed scale j and

rescaled time z, within rescaled replicates ν and ν ′:

Expectation

E
[
I
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

]
= βj

(
z, ν, ν ′

)
+O(2jT−1) +O(R−1), (53)
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Variance

var
(
I
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

)
= βj (z, ν, ν)βj

(
z, ν ′, ν ′

)
+ β2j

(
z, ν, ν ′

)
+O(22jT−1) +O(2jR−1).

Proof. The proof appears in Appendix A.1.1.

From Proposition 3.1.7 and in similar fashion to their non-coherence counterparts, the

raw periodogram is asymptotically unbiased for β, but inconsistent due to its asymptotically

non-vanishing variance. We now introduce smoothing to obtain consistency and then correct

for bias.

Definition 3.1.8. We define a replicate-smoothed estimator for the rephrased spectral

quantity βj(
k
T ,

r
R ,

r′

R ) to be

Ĩ
(r,r′);R
j,k;T = (2M + 1)−1

M∑
s=−M

I
(r+s,r′+s);R
j,k;T , (54)

where (2M + 1) is the length of the smoothing window and M is an integer such that as

T,R→ ∞, we have that M → ∞ and M/R→ 0.

Proposition 3.1.9. Under the properties of Definition 3.1.1 and the additional assumption

supz,ν∈(0,1)
∑

η∈Z
∣∣c(z, ν, ν + η

R ; τ)
∣∣ = O(1) for any time lag τ, the replicate-smoothed

wavelet periodogram in equation (54) has the following asymptotic properties for any

fixed scale j and rescaled time z within rescaled replicates ν, ν ′:

Expectation

E
[
Ĩ
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

]
= βj

(
z, ν, ν ′

)
+O(MR−1) +O(2jT−1),

Variance

var
(
Ĩ
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

)
= O(22jM−1) +O(2jR−1) +O(M2R−2).

Proof. Appendix A.1.2 contains the proof which manipulates the amplitude properties

across replicates as opposed to those across time in the presence of cross-replicate depen-

dence.

The bias of the smoothed periodogram becomes asymptotically negligible, while its vari-

ance tends to zero for any fixed fine enough scale j (with 2j = o
(
min

{
T,R, (2M + 1)1/2

})
)

as T , R and M → ∞ and M/R → 0. Then correcting for the bias will yield a desirable

spectral estimator, as follows.

Proposition 3.1.10. Under the assumptions of Proposition 3.1.9, the following is an

asymptotically unbiased and consistent estimator for the unknown wavelet spectrum for

each fixed scale j and rescaled time z within rescaled replicates ν, ν ′

Ŝj(z, ν, ν
′) =

J∑
l=1

A−1
j,l Ĩ

(⌊νR⌋,⌊ν′R⌋);R
l,⌊zT ⌋;T , (55)
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where A−1
j,l is the (j, l) entry of the inverse of the inner product matrix A of the autocor-

relation wavelets and J = ⌊αJ(T )⌋ with α ∈ (0, 1), provided that M/R → 0 as T,R and

M → ∞.

Proof. Appendix A.1.3 contains the proof which hinges on the properties of the replicate-

smoothed periodogram shown in Proposition 3.1.9 above.

This paves the way towards proposing the between-replicate coherence estimator

ρ̂j(z, ν, ν
′) =

Ŝj(z, ν, ν
′){

Ŝj(z, ν)Ŝj(z, ν ′)
}1/2

, (56)

where the involved spectral quantities are consistently estimated as proposed in Proposi-

tion 3.1.10 and the use of the same smoothing windows guarantees that the values of the

resulting coherence estimator are indeed quantities between −1 and 1.

Proof. See proof in Appendix A.3.2.

The following proposition shows that the step of examining ρ̂j(z, ν, ν
′) is theoretically

justified.

Proposition 3.1.11. Under the assumptions of Proposition 3.1.9, the coherence estimator

in (56) is asymptotically consistent for the true coherence ρj(z, ν, ν
′) at each fixed scale j

and rescaled time z within rescaled replicates ν, ν ′.

Proof. See Appendix A.1.4.

Remark 3.1.12 (replicate and time smoothing). As discussed in Remark 2.1.15 for

our modelling with uncorrelated replicates, the addition of smoothing across the time

dimension can improve the variance results given in Proposition 3.1.9 leading to faster

convergence. Specifically, for a replicate-smoothing window of length (2M + 1), and a

time-smoothing window of length (2MT + 1) such that MT → ∞ and MT /T → 0 (the

reader may also refer to Park et al. (2014)) and chosen as usual under LSW modelling (see

e.g. Nason (2013)), we define the replicate- and time-smoothed periodogram

˜̃I
(r,r′);R
j,k;T = (2M + 1)−1(2MT + 1)−1

M∑
s=−M

MT∑
t=−MT

I
(r+s,r′+s);R
j,k+t;T (57)

to act as an estimator for the transformed spectral quantity βj(
k
T ,

r
R ,

r′

R ). We next show

that this estimator has desirable asymptotic properties, leading to faster convergence than

its counterpart involving only replicate-smoothing.

Proposition 3.1.13. For a REv-LSW process as in Definition 3.1.1 and satisfying the addi-

tional assumption of autocovariance summability, supz,ν∈(0,1)
∑

n∈Z
∑

η∈Z
∣∣c(z, ν, ν + η

R ;n)
∣∣ =

O(1), the smoothed replicate- and time-specific wavelet periodogram defined in equation (57)

has the following asymptotic properties for any fixed scale j and rescaled time z within

rescaled replicates ν, ν ′:
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Expectation

E
[
˜̃I
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

]
= βj(z, ν, ν

′) +O(MTT
−1) +O(MR−1) +O(2jT−1),

Variance

var
[
˜̃I
(⌊νR⌋,⌊ν′R⌋);R
j,⌊zT ⌋;T

]
= O(22j(MTM)−1) +O(22jM−1

T M2R−2).

Proof. Appendix A.1.5 contains the proof which makes use of the smoothing in both

directions.

The replicate- and time- smoothed periodogram can then be used to further build a

well-behaved estimator of the unknown replicate wavelet spectrum S by means of

ˆ̂
Sj(z, ν, ν

′) =

J∑
l=1

A−1
j,l

˜̃I
(⌊νR⌋,⌊ν′R⌋);R
l,⌊zT ⌋;T .

It is straightforward to show that this is also asymptotically unbiased and consistent for

Sj(z, ν, ν
′), in the same manner as in the proof of Proposition 3.1.10.

3.2 Coherence illustration via simulation

We shall now investigate through simulation the performance of our proposed methodology

for coherence estimation. We use the mean squared error (MSE) and squared bias of the

estimates for ρ̂, averaged over all time-scale points and replicates, as a measure of accuracy

and in this context are defined as

MSE(ρ̂) = (R∗ J T )−1
∑

r,r∗,j,k

[
1

N

N∑
n=1

(
ρ̂
(n)
j

(
k

T
,
r

R
,
r∗

R

)
− ρj

(
k

T
,
r

R
,
r∗

R

))2
]
,

Bias2(ρ̂) = (R∗ J T )−1
∑

r,r∗,j,k

(
1

N

N∑
n=1

ρ̂
(n)
j

(
k

T
,
r

R
,
r∗

R

)
− ρj

(
k

T
,
r

R
,
r∗

R

))2

,

where due to the symmetry of the coherence matrix, we have used R∗ = R(R+ 1)/2 and

r∗ = r′ ≥ r, and N denotes the number of simulation runs. As in Section 2.2, we also adopt

here J = J(T ). Note these measures also allow us to infer the variance across simulations.

We display the behaviour of our estimators on the following simulated examples.

Simulation 1

We simulate N = 100 realisations of a REv-LSW process with R = 256 replicates that

feature dependence, measured at T = 512 = 29 time points. The within-replicate wavelet

spectra are defined by a sine wave whose periodicity and magnitude evolve slowly over the

replicates in such a way that the spectral characteristics of neighbouring replicates do not

look too dissimilar whilst there is a noticeable difference between replicates further apart

(for their mathematical expression, see Simulation 1, Section 2.2 of Chapter 2). Here we

have J(T ) = 9 and the spectral characteristics are placed in level j = J(T ) − 4 = 5. In

63



addition to these characteristics, we also define the between-replicate spectral structure by

means of defining their (true) coherence at each level j and location k. For level j = 5, we

choose a coherence of 0.7 between all replicates over the first 256 locations and zero (no)

coherence over the last 256 locations. All other levels have no coherence between replicates.

Visual representations of this dependence structure appear in Figure 27 (left panels). For

j = 5 and k = 1, . . . , 256, the non-zero coherence matrices are defined as follows

(
ρj(

k

T
,
r

R
,
r′

R
)

)
r,r′

=


ρ1,15,k ρ1,25,k · · · ρ1,R5,k

ρ2,15,k

. . .
. . .

...
...

. . .
. . . ρR−1,R

5,k

ρR,15,k · · · ρR,R−1
5,k ρR,R5,k

 =


1 0.7 · · · 0.7

0.7
. . .

. . .
...

...
. . .

. . . 0.7

0.7 · · · 0.7 1


where we have (abusively) let ρj(

k
T ,

r
R ,

r′

R ) = ρr,r
′

j,k to ease notation.

Using the spectral estimation methodology proposed in Section 3.1.2, we obtain coher-

ence estimates visually represented in Figure 27 (right panels) for replicate 50 (top row)

and replicate 200 (bottom row). The non-decimated wavelet transform was computed using

discrete wavelets built by means of Daubechies least asymmetric family with 10 vanishing

moments and a window of 9 replicates (M = 4) was chosen for the local replicate-smoothing.
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Figure 27: Simulation 1 coherence plots for replicates 50 (top row) and 200 (bottom row) over
rescaled time and replicates in level 5. Left : true coherence; Right : coherence estimates averaged
over 100 simulations.

It is apparent that the coherence structure is being picked up by the modelling framework

in Section 3.1.2 in terms of the locations and the positiveness of the defined true coherence.

We do however note that the intensity of the estimated coherence is not quite as strong

as the true coherence. Table 5 reports the numerical MSE and squared bias results for

two smoothing approaches: the first involves smoothing only over a window of replicates;

the second involves local averaging through replicates and time. These results highlight

that our correction procedure that aims to ensure positive spectral estimates has the

undesired effect of increasing the MSEs and introducing bias as R and T increase, just as
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reported in a bivariate coherence estimation framework by Sanderson et al. (2010). The

improved performance via replicate- and time-smoothing is consistently shown throughout

the results, with further decreases in the MSE when the smoothing window is increased

from 15 replicates (M = 7) to 25 replicates (M = 12).

R T M mse1 bias21 mse2 bias22

128 256 7 17.29 7.41 15.16 9.66

12 15.06 7.42 14.04 9.66

128 512 7 17.64 8.11 16.01 10.66

12 15.29 8.01 14.73 10.52

256 512 7 18.06 8.27 16.34 10.85

12 15.85 8.18 15.18 10.75

Table 5: Simulation 1: MSE and squared bias (×100), averaged over all time-scale points and
replicates and N = 100 runs. Subscripts 1 and 2 denote the models with smoothing over replicates
only and replicate-time smoothing, respectively.

Simulation 2

For N = 100 runs, we simulate a REv-LSW process with R = 256 replicates that feature

dependence, measured at T = 512 = 29 time points with J(T ) = 9. The within-replicate

locally stationary wavelet spectra are as defined in Simulation 1 above. In addition to

the within-replicate spectral characteristics, we also define a challenging between-replicate

spectral structure by means of defining their (true) coherence at each level j and location

k. For level j = J(T ) − 4 = 5 and time k = 1, . . . , 256 we define the non-zero replicate

coherence matrices as follows: the first 128 replicates have a strong positive coherence

(0.99) with one another, however this coherence becomes negative (-0.71) with the last 128

replicates. A (weaker) positive coherence (0.5) also exists between the last 128 replicates.

Over the last 256 locations, we set the coherence to be zero. The expressions of the non-zero

coherence matrices are given as

(
ρj(

k

T
,
r

R
,
r′

R
)

)
r,r′

=



ρ1,15,k · · · ρ1,1285,k ρ1,1295,k · · · ρ1,R5,k
...

. . .
...

...
. . .

...

ρ128,15,k · · · ρ128,1285,k

... · · · ρ128,R5,k

ρ129,15,k · · · · · · ρ129,1295,k · · · ρ129,R5,k
...

. . .
...

...
. . .

...

ρR,15,k · · · ρR,1285,k ρR,1295,k · · · ρR,R5,k



=



1 0.99 · · · 0.99 −0.71 · · · · · · −0.71

0.99
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . 0.99
...

. . .
. . .

...

0.99 · · · 0.99 1 −0.71 · · · · · · −0.71

−0.71 · · · · · · −0.71 1 0.5 · · · 0.5
...

. . .
. . .

... 0.5
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . 0.5

−0.71 · · · · · · −0.71 0.5 · · · 0.5 1


,
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where we have (abusively) let ρj(
k
T ,

r
R ,

r′

R ) = ρr,r
′

j,k to ease notation. The illustrative true

coherence structures for replicates 50 (top row) and 200 (bottom row) can be visualised in

Figure 28 (left panels).

Coherence estimates obtained using the methodology proposed in Section 3.1.2 are

represented in Figure 28 (right panels) for replicates 50 (top row) and 200 (bottom row).

Non-decimated discrete wavelets built using Daubechies least asymmetric family with

10 vanishing moments and local averaging over a window of 9 replicates (M = 4) were

employed.
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Figure 28: Simulation 2 coherence plots for replicates 50 (top row) and 200 (bottom row) over
rescaled time and replicates in level 5. Left : true coherence; Right : coherence estimates averaged
over 100 simulations.

In terms of correctly estimating the coherence structure switch over times and replicates,

as well as identifying the positive or negative character of the coherence, the proposed

estimation procedure does a good job. We do however note that the estimated coherence

intensity does exhibit some bias, which we may attribute to the smoothing performed in

order to address the practical computation considerations (see Remark 3.2.1). Nevertheless,

we could argue that the model does give a good indication for the degree of the positiveness

of the coherence, approximately 0.99 and 0.5 for replicates 50 and 200 respectively (right

panels of Figure 28).

As with Simulation 1, we report Simulation 2 numerical MSE and squared bias results

in Table 6. For both simulations, the results paint the same picture. As we increase the

replicate smoothing window (such that M/R→ 0) the performance of our models improves

in terms of MSEs, and the double smoothing over replicate and time further reduces the

MSEs. The price to pay for double smoothing as usual is a slightly higher bias (than

when using averaging over replicates only). In order to ensure that our spectral estimates

are positive, our correction procedure uses the correction matrix A−1 truncated at zero.

Inevitably this introduces bias, evident through the increasing MSEs as R and T increase.
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R T M mse1 bias21 mse2 bias22

128 256 7 18.10 9.02 15.50 10.71

12 14.53 8.22 13.05 9.64

128 512 7 18.91 10.56 16.72 12.37

12 15.10 9.40 13.95 10.92

256 512 7 20.82 11.58 18.40 13.60

12 17.78 10.93 16.43 12.81

Table 6: Simulation 2: MSE and squared bias (×100), averaged over all time-scale points and
replicates and N = 100 runs. Subscripts 1 and 2 denote the models with smoothing over replicates
only and replicate-time smoothing, respectively.

Simulation 3

For this final simulation, we consider a coherence structure closer to the experimental

data we will analyse in Chapter 4. We simulate for N = 100 runs, a REv-LSW process

with R = 256 replicates that feature dependence, measured at T = 512 = 29 time points

with J(T ) = 9. The within-replicate locally stationary wavelet spectra are as defined in

Simulation 1 above. At each level j and location k, we define the true coherence structure

to exhibit a local between-replicate dependence across a moving window of neighbouring

replicates. Specifically, for level j = J(T )− 4 = 5 and all time points k = 1, . . . , 256 we

define the non-zero replicate coherence matrices as follows. For replicates r = 31, ..., (R−30),

over a moving window of 61 replicates, the immediate 10 neighbouring replicates either

side of replicate r have a moderate positive coherence (0.8) and the following 20 (40 total)

neighbouring replicates will have a mild positive coherence (0.4). For all other replicates

we set the coherence to be zero. For replicates towards the edge, r < 31 or r > (R− 30),

the window of replicates with the above defined coherence decreases correspondingly to

the domain edge being approached. An expression for the non-zero coherence matrices are

given as follows.

For replicates r = 31, ..., (R − 30), the rows and columns of the non-zero coherence

matrices can be expressed as(
ρj(

k

T
,
r

R
,
r′

R
)

)
r,r′

=
[
ρr,15,k · · · ρr,r−30

5,k · · · ρr,r−10
5,k · · · ρr,r5,k · · · ρr,r+10

5,k · · · ρr,r+30
5,k · · · ρr,R5,k

]
=
[
0 · · · 0 0.4 · · · 0.4 0.8 · · · 0.8 1 0.8 · · · 0.8 0.4 · · · 0.4 0 · · · 0

]
where we have (abusively) let ρj(

k
T ,

r
R ,

r′

R ) = ρr,r
′

j,k to ease notation. Figure 29 (left panels)

illustrates the true coherence structures for replicates 50 (top row) and 200 (bottom row).

Figure 29 (right panels) illustrate the coherence estimates obtained via the REv-

LSW model using discrete wavelets built from Daubechies least asymmetric family with 10

vanishing moments for the non-decimated wavelet transform. Local replicate-smoothing was

computed over a window of 9 replicates (M = 4). It is clear to see that the neighbouring

between-replicate dependence has been captured by the estimation, with a noticeable

distinction between both the mild (0.4) and moderate (0.8) positive coherence values.

However, as noticed within the estimates for Simulation 2 (at rescaled replicates 0.5 in
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Figure 28), there is a slight loss of coherence structure within the estimates, which occurs

naturally as a result of the local replicate-smoothing.

In Table 7 we report the numerical MSEs and squared bias results for Simulation 3.

Our numerical results are much more favourable than our previous results for Simulations

1 and 2, with MSEs falling faster as both R and T → ∞. Note that this is likely due to the

much reduced coherence structure (previous simulations had between-replicate dependence

defined for all replicates), although we do not investigate this here. Estimation via replicate-

and time-smoothing again demonstrates improved performance alongside increasing the

replicate smoothing window (2M + 1) for M = 7, 12.
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Figure 29: Simulation 3 coherence plots for replicates 50 (top row) and 200 (bottom row) over
rescaled time and replicates in level 5. Left : true coherence; Right : coherence estimates averaged
over 100 simulations.

R T M mse1 bias21 mse2 bias22

128 256 7 19.34 3.48 13.77 4.08

12 15.45 3.92 11.58 4.53

128 512 7 18.99 3.46 13.63 4.09

12 15.12 3.87 11.44 4.51

256 512 7 18.42 1.85 12.39 2.15

12 14.39 1.97 9.95 2.27

Table 7: Simulation 3: MSE and squared bias (×100), averaged over all time-scale points and
replicates and N = 100 runs. Subscripts 1 and 2 denote the models with smoothing over replicates
only and replicate-time smoothing, respectively.

Remark 3.2.1 (practical implementation). From the theoretical model construction,

the within-replicate spectra are positive quantities. However, our spectral estimates may

take values that are negative or close to zero after correction, and this in turn can cause

problems when normalising for coherence estimation. In order to bypass this issue, we

choose to correct our raw wavelet periodogram estimates before smoothing. The theoretical

properties of the coherence estimator show that using replicate-smoothing does yield an

68



estimator with good properties, albeit its rate of convergence is dependent on the smoothing

window width (2M + 1). A local averaging window over time for smoothing each replicate

before applying smoothing over replicates could also be employed, just as proposed for

spectral estimation in Section 3.1.2. Another avenue to ensure that spectral estimates are

positive, would be to truncate the correction matrix A−1 at zero, although this approach

does introduce bias. In their work on bivariate channel coherence estimation, Sanderson

et al. (2010) reported better results when additionally employing smoothing over scales.

We conjecture that this is also applicable for our work as a further step, to be done after

smoothing through time. However, we do not pursue this approach here and leave the

further numerical treatment for future research.

3.3 Concluding remarks

This chapter extends the work of Chapter 2 through developing our proposed novel wavelet-

based methodology to allow for between-replicate dependence. Through simulation studies,

we have demonstrated that the estimation theory for the locally stationary between-

replicate coherence yields desirable results. This work strengthens the message that

approaching replicate time series as identical process realisations (e.g. classical LSW) can

lead to misleading results when studying the process dynamics across the replicate domain.

Notably, the proposed statistical model and associated estimation theory encompass meta-

processes that feature dependence between replicates, and the assumption of replicate

uncorrelation, if appropriate, is dealt with by the proposed methodology as a particular case.

A next natural step would be to investigate the REv-LSW local (partial) autocorrelation

function (for the LSW setup, see Killick et al. (2020)). A further extension would be to

develop the REv-LSW methodology in a multivariate setting (Sanderson et al. (2010); Park

et al. (2014)) and to additionally define and investigate the variate replicate-coherence, as

seen for the bivariate case of the hippocampus and nucleus accumbens data in Fiecas and

Ombao (2016) and Gorrostieta et al. (2011).
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4 Analysis of Macaque Local Field Potentials

We now perform our REv-LSW spectral analysis on the dataset of local field potentials

(LFPs) (recorded at approximately 1000Hz) from the hippocampus (Hc) and nucleus

accumbens (NAc) over the course of an associative learning experiment involving a single

macaque monkey in a neurobiology laboratory at the Massachusetts General Hospital

(dataset courtesy of Prof. H. Ombao, see Declaration). Due to their roles in the consolidation

of memory information and the processing of rewarding stimuli, the Hc and NAc have been

studied in relation to learning tasks for monkeys, rats and humans (Wirth et al., 2003;

Gorrostieta et al., 2011; Fiecas and Ombao, 2016; Abela et al., 2015; Seger and Cincotta,

2006). Our analysis offers not only confirmations to the results of previous studies, but also

provides additional insights to the understanding of the dynamics of the LFPs through

capturing the evolutionary characteristics of brain processes within and across the trials of

the experiment, in a scale-dependent manner, through the use of the wavelet transform.

Notable benefits of our model in contrast to previous Fourier-based methodology (Fiecas

and Ombao, 2016) are (i) its flexibility to embed potential between-trial dependence, and

(ii) its superior time-localisation, as we will see next.

4.1 Experimental data description and overview of implemented method-

ology

Each trial (replicate) consists of T = 2048 time points, corresponding to approximately 2

seconds of data. The design of the experiment rigorously splits each trial into four time

blocks of 512 milliseconds each, ensuring that the timeline matched from trial to trial,

as follows. For the first block the macaque fixated on a screen; a picture (one of four)

was then presented on the screen for the next time block; this was followed by an empty

screen for the next interval; for the last 512 milliseconds the macaque was presented with

a picture of four doors, one of which associated with the picture visual from the second

time block. The macaque’s task was to select the correct door using a joystick. Correct

and incorrect selections were signified via a visual cue and a juice reward was given each

time a correct selection was made. The macaque had to learn the associations through

repeated trials. The data has been grouped into sets of ‘correct’ and ‘incorrect’ responses,

in order to investigate how the contributions of the Hc and NAc to the learning process

differ between groups (Gorrostieta et al., 2011). The groups containing the correct and

incorrect responses consist of 241 and 264 trials, respectively. We carry out the analysis on

R = 256 trials (replicates). To ensure comparability of the wavelet spectra across trials,

each trial is standardised to have mean zero and unit variance. Concatenated plots of the

LFPs for the correct responses appear in Figures 30 and 31, and for the incorrect responses

in Figures 32 and 33 below.

For both the correct and incorrect sets of the hippocampus (Hc) trial data, we com-

pute the wavelet periodograms using non-decimated discrete wavelets built by means

of Daubechies Least Asymmetric wavelet family with 10 vanishing moments. Similarly,

for both sets of the nucleus accumbens (NAc) trial data we again choose Daubechies

Least Asymmetric wavelet family, but however we now opt for a coarser choice of wavelet

with 6 vanishing moments to reflect the behaviour of the signal. In accordance with our
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Figure 30: Concatenated series of the hippocampus (Hc) data in the correct response trials
(replicates).
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Figure 31: Concatenated series of the nucleus accumbens (NAc) data in the correct response trials
(replicates).

simulation study findings, to obtain an asymptotically unbiased and consistent estimator

for the trial evolutionary wavelet spectrum, we smooth the wavelet periodograms using a

local averaging window over 21 trials (M = 10 neighbouring trials) and then correct for

bias. For completeness, we also run the analysis to include a time-smoothing step before

locally averaging across trials, as this was shown to lead to better performance (see the

simulation study in Section 2.2). Confidence intervals using B = 100 bootstraps are also

reported. To obtain a dyadic number of replicates necessary for estimation, here, 256,

71



−
4

−
2

0
2

4

Replicates 1 to 7

0 2048 4096 6144 8192 10240 12288 14336

−
4

−
2

0
2

4

Replicates 111 to 117

225280 227328 229376 231424 233472 235520 237568 239616

−
4

−
2

0
2

4

Replicates 221 to 227

450560 452608 454656 456704 458752 460800 462848 464896

Time

R
ep

lic
at

e 
pr

oc
es

s

Figure 32: Concatenated series of the hippocampus (Hc) data in the incorrect response trials
(replicates).
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Figure 33: Concatenated series of the nucleus accumbens (NAc) data in the incorrect response
trials (replicates).

for the correct response groups, we mirror the last 15 trials. This is for computational

purposes only, and we naturally discard the corresponding estimates from our discussions

and plots. For comparison, we additionally report the LSW estimator embedding averaging

over all replicates. (Note that averaging over all replicates here refers to the averaging over

the first 241 and 256 correct and incorrect response trials, respectively.)

In order to explore the consistency of the results, the analysis has also been repeated

using wavelets with different vanishing moments and varying smoothing windows across
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the replicates, which yielded extremely similar results to those reported here.

In the following remarks, we provide evidence that the Gaussian assumption is tenable

for both the correct and incorrect trials of the macaque data, and detail the sampling

procedure to construct confidence intervals used to validate our results.

Remark 4.1.1 (evidence for normality of macaque data). We now explore the tenabil-

ity of the Gaussian assumption, as suggested by Fryzlewicz (2005) and also demonstrated

by Hargreaves et al. (2019). For each trial, we propose to standardise the (zero-mean)

process using a localised estimate of the standard deviation. The estimate was obtained by

means of taking the square root of the estimated lag zero localised autocovariances (Nason,

2013). Further, we have found similar results when obtaining the estimate by means of a

localised Gaussian kernel with bandwidth chosen using the methods of Fryzlewicz (2005).

For the correct and incorrect trials respectively, in Figures 34 and 35, we report Q–Q plots

of standardised series against the normal quantiles. These correspond to trials displaying

typical behaviour for Hc and NAc series, both from the correct and incorrect sets. The

plots show that the normality assumption holds, with only some slight departures for NAc

records.
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Figure 34: Q-Q plots of the Hc (top row) and NAc (bottom row) data in the correct trials
(replicates). Left column: replicate 121; Right column: replicate 231.

Remark 4.1.2 (bootstrapped confidence intervals). As means to quantify the validity

of our results, we construct pointwise in time (for each level j) confidence intervals for

the wavelet spectrum and coherence via bootstrap sampling. As also argued by Morris

(2015); Chau and von Sachs (2016) (although in a functional context), to avoid subsequent

inference using erroneous confidence bands it is crucial to allow for potential cross-trial

dependence. Thus, to construct pointwise confidence intervals, we use the REv-LSW

process Definition 3.1.1 that embeds cross-trial dependence. We take the square root

of our REv-LSW(2)-spectral estimates,
ˆ̂
Sj(

k
T ,

r
R) to replace the within-trial amplitudes

ωr;Rj,k;T of the non-decimated wavelets ψj,k(t) (see equation (40)) for each trial r, within-trial
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Figure 35: Q-Q plots of the Hc (top row) and NAc (bottom row) data in the incorrect trials
(replicates). Left column: replicate 11; Right column: replicate 231.

time k and scale j. Furthermore, to allow for cross-trial dependence (see property 2 of

Definition 3.1.1) we obtain estimates, ρ̂j(
k
T ,

r
R ,

r′

R ), of the innovation dependence structure

between trials r and r′.

Then for each b = 1, . . . , B bootstraps, we simulate a bootstrapped sample REv-LSW

process {X(b);r;R
t;T } following Definition 3.1.1

X
(b);r;R
t;T =

∞∑
j=1

∑
k∈Z

ˆ̂
Sj

(
k

T
,
r

R

) 1
2

ψj,k(t)ξ̃
(b);r
j,k ,

with r = 0, . . . , R− 1 trials across time t = 0, ..., T − 1. Within each trial r, the innovations

{ξ̃(b);rj,k }j,k are assumed to be a set of orthonormal random variables, while the between-trial

innovation dependence is established through the estimated coherence ρ̂j above. Recall

that under the assumption of uncorrelated trials, the dependence structure amounts to

ρr,r
′;R

j,k;T = δr,r′ for all j, k.

For each bootstrap b = 1, . . . , B, we obtain a bootstrapped REv-LSW(2) estimate,

{ ˆ̂S(b)
j ( kT ,

r
R ,

r′

R )}, of the spectral quantities underlying the simulated process {X(b);r;R
t;T }.

Repeating this for B bootstraps will then yield a bootstrap distribution for the smoothed

wavelet periodograms, from which pointwise confidence intervals for the spectrum can be

constructed in the usual manner by taking the respective quantiles. We expect that on

average (over the bootstraps) the true spectral evolutionary characteristics are captured

and that these characteristics are displayed in the lower and upper confidence bootstrap

bounds, thus validating the identified spectral patterns of process evolution.

4.2 Capturing the within- and between- trial evolutionary dynamics

In the following results, we demonstrate the versatility of the REv-LSW model in capturing

time- and replicate-localisations of evolving spectral characteristics within the correct and
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incorrect trials of the hippocampus (Hc) and nucleus accumbens (NAc) throughout the

associative learning experiment.

4.2.1 Results for the hippocampus

The proposed spectral estimates for the correct and incorrect sets of trials appear below

in Figures 36 and 37, respectively. The bottom row plots show the REv-LSW(2)-spectral

estimates averaged across 30 replicates to illustrate the process behaviour in the beginning,

middle and end of the experiment. These demonstrate (i) the sequenced activation of

within-trial time blocks and (ii) the evolutionary behaviour of the wavelet spectrum along

the course of the experiment. These features are also captured by the lower and upper 95%

bootstrap confidence bounds for the spectral characteristics, as illustrated by Figures 38

and 39, thus rendering further confidence in the results that follow. Note that crucially

these bounds incorporate the between-trial dependence, and thus differ from those obtained

under the assumption of uncorrelated trials.

For both correct and incorrect datasets, the ‘activity’ is primarily captured within the

coarser levels of the wavelet periodograms, approximately corresponding to frequencies

2-8Hz. Of these, the theta band frequencies 4-8Hz are typical of slow activity, known for

their association to hippocampal activity in mammals and to promote memory (Buzsaki,

2006). Fiecas and Ombao (2016) report the low frequency range 1-12Hz to account for

most variability in the Hc data. Our analysis offers a finer characterisation that does

not fully support activation of low delta waves (under 2Hz), known to be typical of deep

sleep, and shows weak alpha band (8-12Hz) and low beta band (12-16Hz) alertness at

certain time blocks within each trial. Due to its construction, the REv-LSW model was

able to capture the process evolutionary behaviour across trials, and thus overcomes the

limitations of analyses using the standard LSW model. The LSW-based estimates do

capture the evolution of the statistical properties within a trial but cannot characterise

these changes across trials in the entire experiment. The REv-LSW estimates have the

capacity to highlight the individual time blocks as they activate through the course of the

experiment, an insight invisible to LSW and weakly represented in the Fourier approach of

Fiecas and Ombao (2016).

For the correct Hc trials, the REv-LSW model captures the bulk of ‘activity’ in

frequencies 2-8Hz. In early replicates this is fairly even through time, while for middle

replicates the bursts of activity shift centrally within time, thus coinciding with the second

block of the macaque being shown the visual stimulus and possibly with the expectation of

the picture to continue being shown. For the final trials, the activity is clearly localised

around time-point 500 (corresponding to the visual exposure) and towards the final quarter

of time (corresponding to the time when the macaque made the correct association). When

compared to a Fourier approach, our wavelet-based analysis thus brings to the fore novel

information that links the experimental time blocks to Hc activation. Specifically, as the

correct trials progress, the activity in the Hc is evident at the visual cue time and also at

the selection task time, thus suggesting learning of the picture associations.

Although we cannot compare the correct and incorrect trials like-for-like, we are still

able to see evidence of evolutionary behaviour across the incorrect trials. As the experiment

progresses, there is evidence of less spectral activity in the incorrect trials, with a brief Hc
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Figure 36: Time-scale hippocampus (Hc) plots for the correct trials. Spectral estimates are
shown for the average over 30 replicates in the beginning, middle and end of the experiment. Top:
estimates from the LSW method averaged over all replicates; Bottom: REv-LSW method with
smoothing over time and replicates.
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Figure 37: Time-scale hippocampus (Hc) plots for the incorrect trials. Spectral estimates are
shown for the average over 30 replicates in the beginning, middle and end of the experiment. Top:
estimates from the LSW method averaged over all replicates; Bottom: REv-LSW method with
smoothing over time and replicates.

activation in the visual exposure block for the middling trials, and a burst of Hc activity

localised in the last time block, when the task is carried out, for the end trials. The

spectrum suggests that whereas the Hc displays prolonged activity in the second time

block for the correct trials (corresponding to the picture being presented), this feature is

not as marked in the incorrect trials and thus the macaque is not making the association

between the picture presented and the selection task. Scientific literature has shown (Seger
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Figure 38: Time-scale 95% bootstrap confidence bounds for the hippocampus (Hc) spectrum for
the correct trials. Spectral estimate bounds are shown for the average over 30 replicates in the
beginning, middle and end of the experiment. Top: upper bound; Bottom: lower bound. Estimation
is via the REv-LSW method with smoothing over time and replicates, and takes into account
across-trial correlation.
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Figure 39: Time-scale 95% bootstrap confidence bounds for the hippocampus (Hc) spectrum
for the incorrect trials. Spectral estimate bounds are shown for the average over 30 replicates
in the beginning, middle and end of the experiment. Top: upper bound; Bottom: lower bound.
Estimation is via the REv-LSW method with smoothing over time and replicates, and takes into
account across-trial correlation.

and Cincotta, 2006) that during a learning experiment, activity in the Hc decreases as

associations/rules are learned but would spike upon their application. The capacity of our

model to extract localised information in time and within/ between-trial, thus highlights
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novel traits that suggest that the macaque in this experiment has not yet fully learned the

associations, but evidence of learning is indeed present.

Figure 40 further illustrates that spectral evolution through time is captured by both

the LSW and REv-LSW models. As the experiment progresses, the REv-LSW model

identifies that across the correct trials the Hc displays (within-trial) time dependent peaks

of activity that gradually span the course of the experiment. As we previously noted, the

final trials display more Hc activity towards the visual exposure (time-point 500) and task

times of the experiment, than the starting trials do, again indicating a learning process. In

contrast, the incorrect trials display a much less structured behaviour, with time-dependent

activity distributed more evenly across the replicates.
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Figure 40: Time-replicate plots of the hippocampus (Hc) average spectra across 2-8Hz for the
correct (Top) and incorrect (Bottom) trials. Left : estimates from the LSW method averaged over
all replicates; Right : estimates from the REv-LSW method with smoothing over time and replicates.

4.2.2 Results for the nucleus accumbens

The resulting (REv-)LSW spectral estimates appear below in Figures 41 and 42 for the

correct and incorrect sets of trials, respectively. These plots are to be understood in

the same manner as those for the hippocampus. Reassuringly, the estimated spectral

characteristics are also rendered by the lower and upper 95% bootstrap confidence bound

plots, as illustrated by Figures 43 and 44. Fiecas and Ombao (2016) find that the bulk of

variability in the NAc is accounted for by (high) beta band frequencies (20-30Hz), while we

place this in the wider range of beta band waves 16-30Hz, associated to focussed activity.

Our analysis also offers evidence for low gamma frequency waves (31-60Hz), typical of

working memory activation (Iaccarino et al., 2016). Additional to Fourier analysis, the

REv-LSW model also shows that nonstationarity across time is clearly present, as well as

some spectral evolution across the trials. Although not as obvious as for the Hc, for the

beginning and middle replicates of the correct group, NAc activity is manifest towards the

trial start and end, while for the final replicates activity is captured in the final quarter of
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time. A similar pattern of behaviour is displayed by the incorrect group of trials. Also

note that the NAc activity decreases in intensity from the beginning to end replicates for

both groups.
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Figure 41: Time-scale nucleus accumbens (NAc) plots for the correct trials. Spectral estimates are
shown for the average over 30 replicates in the beginning, middle and end of the experiment. Top:
estimates from the LSW method averaged over all replicates; Bottom: REv-LSW method with
smoothing over time and replicates.
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Figure 42: Time-scale nucleus accumbens (NAc) plots for the incorrect trials. Spectral estimates
are shown for the average over 30 replicates in the beginning, middle and end of the experiment.
Top: estimates from the LSW method averaged over all replicates; Bottom: REv-LSW method with
smoothing over time and replicates.

The NAc is part of the ventral striatum and plays a role in the processing of rewarding

stimuli. The activity seen in the final 512 milliseconds can be attributed to the macaque

expecting and receiving the juice reward in the correct trials, or expectation of reward in
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Figure 43: Time-scale 95% bootstrap confidence bounds for the nucleus accumbens (NAc) spectrum
for the correct trials. Spectral estimate bounds are shown for the average over 30 replicates in the
beginning, middle and end of the experiment. Top: upper bound; Bottom: lower bound. Estimation
is via the REv-LSW method with smoothing over time and replicates, and takes into account
across-trial correlation.
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Figure 44: Time-scale 95% bootstrap confidence bounds for the nucleus accumbens (NAc) spectrum
for the incorrect trials. Spectral estimate bounds are shown for the average over 30 replicates
in the beginning, middle and end of the experiment. Top: upper bound; Bottom: lower bound.
Estimation is via the REv-LSW method with smoothing over time and replicates, and takes into
account across-trial correlation.

the incorrect trials. The impact of reward expectation (Schultz et al., 1992; Hollerman

and Schultz, 1998; Mulder et al., 2005) could also explain the activity we see at the trial

start for the beginning replicates and its observed periodicity across the experiment. Upon
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receiving no reward in an incorrect trial, the NAc activity decreases and with it the reward

expectation falls for the next trial. Our analysis reflects the results of other studies on

learning experiments (Hollerman and Schultz, 1998; Fiecas and Ombao, 2016) that highlight

that the activity in the ventral striatum decreases as the stimuli are learned.

Figure 45 also reinforces our previous comments. Evolution in the spectra across time

is captured by both models, with the NAc activity displaying periodic patterns, while

the REv-LSW estimation highlights a decrease in NAc activity along the trials of the

experiment.
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Figure 45: Time-replicate plots of the nucleus accumbens (NAc) average spectra across 16-60Hz
for the correct (Top) and incorrect (Bottom) trials. Left : estimates from the LSW method averaged
over all replicates; Right : estimates from the REv-LSW method with smoothing over time and
replicates.

Remark 4.2.1. Our analysis demonstrates how the simplifying assumption of trials that

are identical realisations of the same process, leading one to draw conclusions solely based

on averaging across all replicates, could cause an important understanding in the process

evolution through the experiment to be missed. Our proposed REv-LSW methodology

captures the spectral time and within- and between-trial evolutionary behaviour, thus

yielding new scale-based results and advancing the findings of Fiecas and Ombao (2016)

in the Fourier domain. We next explore the existence and strength of between-trial

dependencies, and demonstrate the untenable position of the trial uncorrelation assumption.

4.3 Capturing between-trial dependence

Let us now investigate between-trial dependencies, which under the REv-LSW framework

are readily quantified by the locally stationary between-trial coherence, a quantity defined

in (52).
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4.3.1 Results

Hippocampus.

For the Hc activity, the REv-LSW 95% bootstrap confidence bounds that allow for cross-

trial dependence indicate that the presence of coherence across trials cannot be discounted,

for both correct and incorrect groups. When investigating the estimated Hc trial coherence

we have not found any substantial evidence of between-trial dependence. Given that the

Hc is associated with memory recall, it is not unrealistic to expect to find some evidence of

between-trial dependence. However as discussed previously, our analysis shows evidence

of learning but suggests that the macaque has not fully learned the associations. This

could explain the lack of between-trial dependence captured in our analysis for the Hc. For

completeness, in Figure 46 we display the estimated Hc trial coherence (absolute value)

at level 4 (4-8Hz) for trials 20 and 200 in both the correct and incorrect groups. Upon

inspection of the plots, there is no behaviour to suggest a between-trial dependence exists

and furthermore there are no clear differences between the estimated coherence structures

of a beginning trial (trial 20) and end trials (trial 200).
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Figure 46: Level 4 absolute value coherence for Hc correct (top) and incorrect (bottom) trials.
Left : trial 20; right : trial 200.

Nucleus accumbens.

For the NAc, our analysis finds evidence of a moderate dependence across neighbouring

trials at the beta band frequencies (16-30Hz), known to be responsible for brain activity

related to reward feedback mechanisms. The estimated NAc trial coherence (absolute

value) is shown in Figure 47 at level 6 for trials 20, 100 and 200 in the incorrect group and

for correct trial 200, depicting typical behaviour. Some burst areas are present, indicating

a moderate neighbouring trial coherence, with most meaningful values either side of 0.4

and a few above 0.5. For the beginning and middling incorrect trials, this is apparent

in the time periods leading up to and inclusive of the trial task phase, upon which the

macaque would receive a juice reward if the task was done correctly. The 95% bootstrap

confidence bounds for the trial coherence characteristics (exemplified in Figure 48) indeed
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reinforce the presence of between-trial dependence.
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Figure 47: Level 6 absolute value coherence for NAc incorrect trials: 20 (top left), 100 (top right)
and 200 (bottom left); and for NAc correct trial 200 (bottom right).
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Figure 48: Lower (left) and upper (right) 95% bootstrap confidence bounds for the level 6 absolute
value coherence for NAc incorrect trial 100 (top) and correct trial 200 (bottom).

Remark 4.3.1. Our analysis provides novel evidence in the temporal and scale (frequency)-

dimensions that mild to moderate dependence is exhibited in both the correct and incorrect

trials. This is primarily evident in the final correct trials, potentially as the manifest result

of learning, and at the onset of the incorrect trials as the likely result to the expectation

of reward. This finding impacts our understanding of the experiment, and should not be

ignored or assumed nonexistent from the onset of the analysis. In comparison with our

findings, for this particular data, Chau and von Sachs (2016) also illustrate the presence of

between-trial correlation. The authors identified a stronger structure between neighbouring
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replicates in the beginning and end of the experiment, although for an accumulation

of individual trial timelines and frequencies of interest. Indeed, being able to identify

and quantify the extent of changes across trials in the entire experiment, not only has a

qualitative impact on our understanding of the meta-process evolution, but also carries

a substantive quantitative impact through e.g. producing incorrect spectral confidence

bands (Chau and von Sachs, 2016), and thus potentially yielding misleading results (Morris,

2015).

Remark 4.3.2. Within the neuroscience literature (e.g. Gorrostieta et al. (2011)), depen-

dence between brain regions is also of interest, with coherence measures setup between

channels of interest (here, Hc and NAc). Such measures have not formed the scope of

our work here, but in relating our replicate-coherence results to the reported evolutionary

coherence between the Hc and NAc, the dependence we observed at the beginning of NAc

correct trial 200 (approximately rescaled replicate 0.8) is reminiscent of the dependence

between Hc and NAc captured at rescaled replicate-time 0.8 by Fiecas and Ombao (2016).

This could also offer an explanation to the lack of evidence found for a between-trial

dependence within the Hc. For this experiment, the actions of the macaque could depend

on the expectation of the juice reward, in which case a coherence between the Hc and NAc

may exist. However, between-trial dependence within the Hc may only come into existence

once the macaque has learned the associations without the need of a reward stimulus.

4.4 Concluding remarks

The application to real data from the neurosciences carried out in this chapter, has given

substantial evidence for the desirable properties achievable through our proposed novel

wavelet-based methodologies detailed in Chapters 2 and 3. Unlike the approach of treating

replicate time series as identical process realisations, the REv-LSW model has successfully

captured nonstationary process characteristics for the hippocampus (Hc) and nucleus

accumbens (NAc) across both trial and time dimensions. For both the Hc and NAc, we

have extracted localised information in time within- and between-trials, suggesting that

the macaque monkey) learns through the experiment. Furthermore, for the NAc we have

captured evidence reflecting that over the course of a learning experiment activity in the

ventral striatum (thus NAc) decreases (see also Hollerman and Schultz (1998); Fiecas and

Ombao (2016)). A crucial development within our proposed methodology is accounting

for between-trial dependence. When assessing for a potential coherence structure between

trials within the Hc, our results did not find strong evidence for between-trial dependence,

while still not being able to completely discount it. For the NAc, evidence of a moderate

between-trial dependence across neighbouring trials was found, highlighting how the actions

of the macaque could be influenced by expectation (e.g. of a juice reward). Thus, the

results of our neuroscience data analysis give a thorough demonstration for the performance

and advantages of the REv-LSW model. However, the methodology itself is not restricted

to use within this field, and we envisage its utility in other experimental areas where

wavelet spectral analysis has proved to be ideally suited, e.g. circadian biology (Hargreaves

et al., 2018, 2019). As previously stated, development of the REv-LSW methodology in

a multivariate setting (Sanderson et al. (2010); Park et al. (2014)) with the addition of

defining a variate trial-coherence, would allow for a multivariate analysis between channels,
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for example in the bivariate case of the hippocampus and nucleus accumbens data.
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5 Testing for variability in the spectra across the replicate

dimension

So far we have established how taking into consideration the potential for an evolution in

the spectral characteristics over replicates, improves the estimation and identifies additional

information about the process dynamics of a replicated time series over the replicate

dimension. In a practical sense, before investigating a replicate time series for evolutionary

behaviour, potentially through visualising plots of estimated spectra for various replicates,

it would be of value to have an indication of whether a spectral evolution across the

replicates exists. We refer to the meta-process evolution along the ordered replicates as a

replicate-effect. Thus, in this chapter we will propose two tests to establish and identify a

replicate-effect, a location-specific test and a global test.

5.1 Overview of existing spectral domain hypothesis testing

The idea of testing for the presence of time-varying dynamics of a process within the

spectral domain has existed for some time. One of the earliest tests for overall second

order nonstationarity of a time series, is the ‘PSR’ test proposed by Priestley and Subba

Rao (1969), which evaluates the log of their evolutionary spectra estimates through a

two-factor analysis of variance at different moments of time. von Sachs and Neumann (2000)

constructed a stationarity test which estimates the evolutionary (Fourier) spectrum through

localised periodograms. They then make use of the capability of Haar wavelets to capture

discontinuities across the spectral density, thus identifying any deviation from covariance

stationarity. Expanding on the work of Priestley and Subba Rao (1969), Ahamada and

Boutahar (2002) attain an alternative test statistic and demonstrate their test on an

application to exchange rates. Paparoditis (2009, 2010) compute sample spectral densities

(local periodograms) on a moving window of observations and compare these estimates

via an L2 measure of deviation to a spectral density estimate obtained for the overall

time series. A testing procedure to identify whether two locally stationary time series

are costationary was proposed by Cardinali and Nason (2010). They utilise a parametric

bootstrap (see Davison and Hinkley (1997)) resampling procedure to obtained pseudo-test

statistic values from processes under the null hypothesis that the estimated spectrum is

constant as a function of time. Several of the Fourier tests of stationarity are based on

selecting segments of the time series for comparison and Dwivedi and Subba Rao (2011)

draw attention to the sensitivity of the test to the choice of segment length and how the

number of segments can impact the rate of convergence to the asymptotic distribution.

They thus propose to overcome these problems through a test of stationarity over the entire

time series which aims to assess whether the power across differing Fourier frequencies is

asymptotically uncorrelated. Whilst many of the above mentioned tests were constructed

with Fourier spectra in mind, Nason (2013) proposed a test of similar nature to von Sachs

and Neumann (2000) that utilises Haar wavelet coefficients in order to investigate the

constancy over scales of the wavelet spectrum instead of Fourier frequencies. Taylor et al.

(2014) extend the work of Cardinali and Nason (2010) developing a test of stationarity for

spatial processes and apply their test to a texture analysis problem. Cho (2016) uses an

unsystematic sub-sampling approach to assess localised second-order nonstationarity over
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pairs of random intervals and propose a test statistic that maximises the difference in the

spectral characteristics over the interval pairs. The unsystematic approach evades the need

for dyadic constraints on the sub-samples, as is the case for the Haar wavelet coefficients

in Nason (2013).

To the best of our knowledge, within the current literature there exist very limited

testing procedures for the existence of evolutionary spectral characteristics across multiple,

or replicate, time series. Perhaps the closest methods that could be framed to compare

the (non)stationary characteristics between multiple time series lie within spectral com-

parison for classification. Fryzlewicz and Ombao (2009) provide a general procedure to

classify processes into groups through comparing the estimated wavelet spectrum with the

spectral characteristics associated to each group. This procedure was improved upon by

Krzemieniewska et al. (2014) who introduce a variance correction to account for potential

within-class variation of the spectra for each pair of wavelet scale j and location k. Harg-

reaves et al. (2019) were first to develop a hypothesis test which aims to establish whether

the associated evolutionary wavelet spectra of two (classification) groups are significantly

different. Of the little literature that exists specifically for the testing of spectral evolution

over the replicate domain, Fiecas and Ombao (2016) propose a Fourier-based resampling

procedure under the framework of log-linear models. Their procedure echoes the functional

regression problem of testing the equality of the curves in the time domain (for exam-

ple see Dette and Neumeyer (2001)). Functional regression approaches often deal with

replicate time series data by projecting it into the Fourier or wavelet domain where the

spectral representations become subject to modelling. For an introduction to functional

regression and more specifically functional linear models see Ramsay and Silverman (2005),

additionally Morris (2015) provides an updated review on current methods in the field.

When testing for differences between curves in the spectral domain, techniques are centred

around functional ANOVA (see Ramsay and Silverman (2005)). Shumway (1988) (or

more recently Shumway and Stoffer (2017)) computed individual test statistics for each

given frequency (in the Fourier domain) to detect differences in the Fourier spectra of

the mean curves. The individual test statistics were combined in Fan and Lin (1998) to

form an overall test based on the adaptive Neyman test to identify differences between

two groups of curves, which they then generalise to compare multiple groups of curves

through an adaptive high-dimensional ANOVA. Developments of functional (F)ANOVA

methods have been established in the wavelet domain (WANOVA) by Raz and Turetsky

(1999); Vidakovic (2001) and McKay et al. (2013), with the second highlighting that the

decorrelation properties of wavelet transformations (Chang and Stein (2013)) are beneficial

for regularisation. Atkinson et al. (2017) note the favourable properties of WANOVA

to smooth, reduce dimensionality and decorrelate time series data and thus develop a

WANOVA-based model validation process. In the setting of locally stationary processes

(Dahlhaus, 1997), Guo et al. (2003) propose a smoothing spline (SS-)ANOVA model fitted

to time-varying log-periodograms constructed using SLEX basis functions (see Ombao et

al. (2002)). Martinez et al. (2013) study differences in regional bat mating chirps through a

Bayesian functional mixed model and employ the approach described in Morris et al. (2011)

of mapping the localised Fourier power spectra of the chirps (the functional responses) into

the wavelet domain.
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This chapter proceeds as follows. Section 5.2 (i) introduces the proposed location-

specific test of replicate-effect under the assumption that replicates are uncorrelated, and

(ii) simulation studies demonstrate the performance of the test and the advantages it

brings to the analysis. In Section 5.3, (i) we give the details of the proposed global test

of replicate-effect constructed under the assumption that replicates are uncorrelated, and

(ii) the test performance is assessed through simulation studies. Section 5.4 recalls the

neuroscience real data study and we apply our proposed tests of replicate-effect to the

macaque dynamic brain processes data. We conclude the chapter in Section 5.5.

5.2 Location-specific test for replicate-effect

Recalling Definition 2.1.1 in Chapter 2, our REv-LSW process is defined to allow for a slow

evolution (to allow for meaningful estimation and asymptotics) of the process amplitudes

over replicates, controlled by the Lipschitz continuous transfer function W̃j(z, ν). Thus,

we propose the location-specific test that is capable of identifying both the replicates and

time locations within replicates where spectral evolution is present. To test whether this

evolution is indeed manifest within the spectral quantities, we formulate the null hypothesis

that the wavelet spectrum is constant over rescaled replicate-time ν ∈ (0, 1) and test this

for each rescaled time z = k/T .

Thus we propose to test that

Hk
0 : Sj

(
k

T
, ν

)
is constant as a function of ν, ∀j versus

Hk
A : ∃j⋆ such that Sj⋆

(
k

T
, ν

)
is non-constant over ν ∈ (0, 1).

For subsequent ease, we shall make use of the spectral quantity βj
(
k
T , ν

)
=
∑

lAj,lSl
(
k
T , ν

)
,

a quantity analogous to that introduced by Fryzlewicz and Nason (2006) and previously

introduced in Chapter 2. We recall, that finding a well-behaved estimator for S is equivalent

to finding a well-behaved estimator for β, due to the invertibility of the matrix A and

boundedness of its inverse norm. As such, the within-replicate raw periodogram Ir;Rj,k;T is

an asymptotically unbiased estimator for β (see Proposition 2.1.10). For a given time k,

it can be immediately verified that our testing problem above can be re-framed as the

pointwise testing problem

Hk
0 : βj

(
k

T
, ν

)
is constant as a function of ν, ∀j versus

Hk
A : ∃j⋆ such that βj⋆

(
k

T
, ν

)
is non-constant over ν ∈ (0, 1).

While smoother wavelets may be preferred over Haar wavelets for spectral estimation

due to their potential superior convergence rates, conversely, Haar wavelets are a suitable

tool for detecting departures from constancy (von Sachs and Neumann, 2000). In the spirit

of von Sachs and Neumann (2000); Nason (2013), we propose to assess the constancy of

βj(
k
T , · ) by assessing the departures of its Haar wavelet coefficients from 0.

We therefore proceed to define the Haar wavelet coefficients of the spectral function
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βj(
k
T , · ) at scale j = 1, . . . , J and time k = 0, . . . , T − 1 as

η
(j,k)
i,p =

∫ 1

0
βj

(
k

T
, ν

)
ψHi,p(ν)dν, (58)

where ψHi,p(ν) denote the Haar wavelet at (Haar) scale i = 1, ..., J ′ and (Haar) location

p = 1, . . . , 2i − 1. Crucially, note that the Haar wavelet is operating over the (rescaled)

replicate dimension, as opposed to the time dimension, thus J ′(R) = log2(R). From the

Haar wavelet property
∫ 1
0 ψ

H(ν)dν = 0, it directly follows that the Haar wavelet coefficients

in equation (58) are zero under the null hypothesis Hk
0 .

Our null hypothesis now amounts to Hk
0 : η

(j,k)
i,p = 0 for all j, i, and p. If for any k there

exists a scale j⋆ and Haar scale and location (i⋆, p⋆) such that η
(j⋆,k)
i⋆,p⋆ ̸= 0, then we conclude

that βj
(
k
T , ·
)
is not constant and there exists a replicate-effect, ı.e., the spectral quantities

are indeed evolving over replicates and an REv-LSW approach to modelling the data is to

be preferred over a blanket-approach across all replicates.

Before proposing a test statistic, let us first make the following assumptions that follow

in a similar vein to Nason (2013).

Assumption 1. We consider Haar wavelet coefficients η
(j,k)
i,p at coarser scales i = O(log2(R))

for the asymptotic control of bias.

Assumption 2. (a) For a fixed time k, supν

∣∣∣W̃j(
k
T , ν)

∣∣∣ <∞, at all scales j.

(b) For a fixed time k, infν

∣∣∣W̃j(
k
T , ν)

∣∣∣ ≥ ϵ for some ϵ > 0 and all scales

j.

(c) i. For a fixed time k, the transfer function W̃j(
k
T , ν) has at most

uniformly bounded variation across the replicate dimension (ν),

at all scales j.

ii. By Definition 2.1.1 of an REv-LSW process, for each scale

j ≥ 1, there exists a Lipschitz continuous transfer function

W̃ ∗
j (z, ν) which forces the amplitudes to evolve slowly over

rescaled time (z) and replicate (ν) dimensions. For a fixed time

k,
∣∣∣W̃ ∗

j (
k
T , ν)

∣∣∣ ≤ ∣∣∣W̃j(
k
T , ν)

∣∣∣, thus ensuring that Assumption

2(c)i holds.

In order to estimate the Haar wavelet coefficients in equation (58), we replace the spectral

quantity βj
(
k
T , ν

)
by means of its asymptotically unbiased estimator (see Proposition

2.1.10), ı.e., the corresponding raw periodogram I
⌊νR⌋;R
j,k;T . For a given time k, we thus

proceed to use its associated wavelet periodograms at all scales j and over all replicates

r = ⌊νR⌋. For notational simplicity, we denote these quantities as Irj,k.

Hence at time k and scale j, the estimates of the Haar wavelet coefficients are given by

η̂
(j,k)
i,p = 2−i/2

2i−1−1∑
l=0

I2
ip−l
j,k −

2i−1∑
q=2i−1

I2
ip−q
j,k

 (59)

where again i = 1, ..., J ′ and p = 1, ..., 2i − 1 and we point out that the Haar wavelet

transform is taken over replicates.
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Proposition 5.2.1. Under Assumptions 1 and 2, η̂
(j,k)
i,p is asymptotically normal and has

the following properties for all j, i and p, and for a fixed k

1. E
[
η̂
(j,k)
i,p

]
= η

(j,k)
i,p +O(2jT−1R1/2) +O(R−1/2),

2. var
(
η̂
(j,k)
i,p

)
= 2R−1

∫ 1
0 β

2
j

(
k
T , ν

) (
ψHi,p(ν)

)2
dν +O(22j(RT )−1) +O(2jR−2).

Proof. The proof follows the steps presented in Proposition 1 of Nason (2013) and the

results in our Proposition 2.1.10 in Chapter 2.

Proposed test statistic

Under the null hypothesis Hk
0 , von Sachs and Neumann (2000, Theorem 3.1) guarantees

that the interval coverage rates achieved when replacing (σ
(j,k)
i,p )2 = var

(
η̂
(j,k)
i,p

)
by an

estimator (σ̂
(j,k)
i,p )2 are asymptotically equivalent to those attained by means of a normal

distribution. Nason (2013) also use this result in their development.

Recalling that for a fixed time k, under the null hypothesis that βj
(
k
T , ·
)
is constant

over the rescaled replicate dimension, implies that η
(j,k)
i,p = 0 for all j, i, and p. This leads

us to propose testing for Hk
0 via the test statistics

T
(j,k)
i,p =

η̂
(j,k)
i,p

σ̂
(j,k)
i,p

, at all j, i, p,

where
(
σ̂
(j,k)
i,p

)2
is an estimator for (σ

(j,k)
i,p )2 = var

(
η̂
(j,k)
i,p

)
. The test statistics for all original

scales j, Haar scales i and Haar locations p are then compared with a critical value obtained

from the normal distribution.

One way to estimate (σ
(j,k)
i,p )2 is by taking

(σ̂
(j,k)
i,p )2 = 2−i

2i−1−1∑
l=0

var(I2
ip−l
j,k ) +

2i−1∑
q=2i−1

var(I2
ip−q
j,k )

 , (60)

where we make use of the fact that the replicates are uncorrelated, hence cov(Irj,k, I
r′
j,k) = 0

for r ̸= r′.

Under the null hypothesis, we could also estimate (σ
(j,k)
i,p )2 by replacing the unknown

β2j (k/T, ν) in property 2 of Proposition 5.2.1 by an average of the squared raw wavelet

periodograms
(
Irj,k

)2
across all replicates r (denote it as

(
Ij,k
)2
). This gives

(σ̂
(j,k)
i,p )2 = 2R−1

(
Ij,k
)2 ∫ 1

0
ψHi,p(ν)

2dν = 2R−1
(
Ij,k
)2
, (61)

where we have used the unit norm property of Haar wavelets at all i and p, and we define(
Ij,k
)2

= R−1
∑

r

(
Irj,k

)2
.

As we proposed to test many hypotheses, we deal with the multiple hypothesis testing

by taking a false discovery rate approach (Benjamini and Hochberg, 1995) or, for a stricter

procedure, the Bonferonni correction (Nason, 2013). Additionally we note that the number

of hypothesis test carried out per location is dependent on how many original wavelet
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scales j and Haar wavelet scales j′ we choose to test over, such that

#{tests per location} = #{original j scales} ∗#{Haar j′ scales}, (62)

and we recall that a choice of coarser Haar wavelet scales are selected due to Assumption 1.

5.2.1 Simulation study for the location-specific testing methodology

Here we present some simulated examples to assess the capability of our test of constancy.

Each simulation follows a REv-LSW process as in Definition 2.1.1 for various R and T .

From our test, we aim to identify the locations k where the null hypothesis Hk
0 : η

(j,k)
i,p = 0

is rejected for some j, i, and p and employ the false discovery rate with 5% nominal size to

control the number of false rejections. For each of the simulations, we choose to test over

the finest (J − 3) original scales and Haar scales j′ = 1, ..., J∗, where J∗ = (J ′−⌈J ′/2⌉+1)

and ⌈x⌉ denotes the smallest integer greater than or equal to x. Thus, the number of

hypothesis tests per location (equation (62)) is determined by (J − 3)× J∗, recalling that

J = log2(T ) and J ′ = log2(R). For each time location, we obtain empirical power/size

estimates through counting the number of times the test correctly/incorrectly identifies a

breach in spectral constancy. In practice we may only be concerned with whether the test

successfully identifies an evolution in the spectral quantities over the replicates of a REv-

LSW process. As such, to quantify global test performance, we provide statistical measures

of a binary classification test on average over 100 simulations. The precise formulas for

these measures are given in Table 8, where a ‘positive’ is understood to be a location that

is identified by the test as rejecting the null hypothesis of constancy across replicates, and

a ‘negative’ is understood to be a location that fails to reject the null hypothesis. The

reported results were obtained through estimating the variance (equation (60)), which was

found to give the most favourable estimates for the empirical power and size values.

Binary Classification rates

Rate Formula

True Positive Rate (TPR) tp
tp+fn

True Negative Rate (TNR) tn
tn+fp

False Discovery Rate (FDR) fp
tp+fp

False Omission Rate (FOR) fn
tn+fn

Fowlkes-Mallows Index (F-M)
√

tp
tp+fp · TPR

Accuracy (ACC) tp+tn
tp+tn+fp+fn

Prevalence Threshold (PT)

√
TPR(−TNR+1)+TNR−1

TPR+TNR−1

Table 8: List of binary classification rate formulas where ‘tp’ and ‘fp’ denote the true and false
positives, and ‘tn’ and ‘fn’ denote the true and false negatives.
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Simulation 1

The following variations are constructed using the same underlying squared sine spectral

characteristics and different burst values are introduced to assess how well the location-

specific test identifies locations that exhibit a spectral evolution across the (rescaled)

replicates. For rescaled time z = k/T and replicates ν = r/R, variations of simulation 1

are defined as follows:

1A. Firstly, we aim to evaluate the test size. Specifically, we want to get a sense of

how the test performs in the absence of any evolution in the true spectra across the

replicates, hence we define the true spectra to be

Sj(z, ν) =

sin2 (2πz) , for j = J(T )− 4, z ∈ (0, 1), r ∈ (0, 1)

0, otherwise.

1B. We now introduce a burst value for the spectra which is contained in the first T/2

locations and defined for the second half of the replicates. We mathematically define

the true spectra as a function of R and T for simulation 1B as follows

Sj(z, ν) =



sin2 (2πν) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 12)

and z ∈ (12 + 1
T , 1), ν ∈ (12 + 1

R , 1)

‘burst’, for j = J(T )− 4, z ∈ (0, 12), ν ∈ (12 + 1
R , 1)

0, otherwise,

(63)

with the ‘burst’ taking values of 1, 2 and 5. A visual representation of the true spectra

with a burst value of 2 can be seen in the left plot of Figure 49. For a simulation with

R = 256 and T = 512, the first 128 replicates each have a sine squared behaviour

through all 512 locations, but the second 128 replicates have a burst in the first 256

locations and picks up the sine squared behaviour in the last 256 locations.

1C. For this simulation we reproduce the spectra defined in 1B but reduce the locations

containing a burst to the first T/4, such that

Sj(z, ν) =



sin2 (2πz) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 12)

and z ∈ (14 + 1
T , 1), ν ∈ (12 + 1

R , 1)

2, for j = J(T )− 4, z ∈ (0, 14), r ∈ (12 + 1
R , 1),

0, otherwise.

(64)

A visualisation of the true spectra appears in Figure 49 (right) for a simulation with

R = 256 and T = 512.

We will next investigate the power and size of the proposed test within this simulated

setup.

Results 1A. For R = 256 and T = 512, we display the empirical size estimates in plot

(a) of Figure 50 where we identify the locations expected to break the null hypothesis of
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constancy by a horizontal line at 1 and the locations that are constant across replicates

(and thus should not reject the null) are identified by a horizontal line at 0. In addition

to plot (a), the binary classification measures given in Table 9 demonstrate that the test

is extremely capable of correctly identifying all the locations that do not breach the null

hypothesis of no replicate-effect, we show that this is true for choices of T = 256 to 512

and R = 128 to 256. In Table 9, the true negative rates (TNR) measure the proportion of

negatives correctly identified by the test and the accuracy (ACC) gives the proportion of

the locations correctly identified as either positive or negative. Note that here, we report

fewer measures due to the absence of true positives (locations with differing spectra across

replicates) and for the same reason we observe that the TNR=ACC.

Results 1B. Recall that our aim is to verify whether the spectra for the first 256

locations are identified as not constant across the replicate dimension. For burst values

of 1 and 2, we present the empirical power and size estimates for each time location in

Figure 50, plots (b) and (c) respectively. Upon inspection of the plots, we notice a dip in

the power level around replicate 128, which results from the spectra of the squared sine

and the burst becoming closer in value. For a burst of 1, the test clearly breaks down as

the difference between spectra approaches zero. Next, it is evident that the majority of

false rejections for the simulation with burst value of 2 are observed at the true rejection

region boundaries. This can be attributed to the artificial power leakage introduced during

estimation of the spectra. Additionally, we also investigated a burst value of 5, which

resulted in the empirical power estimates all lying on the horizontal line at 1. On the

whole, the individual location power and size estimates suggest that the test performs very

well over the 100 simulations when the difference between the spectra of the squared sine

and burst characteristics is larger than 1, so it can be identified.

Binary classification measures, as defined in Table 8, are reported for this simulation in

Table 10 for the different burst values, T = 256 to 512 and R = 128 to 256. Considering

each burst individually, it is apparent in each case that the test performance improves as R

and T increases, which is of no surprise given the improved spectral estimation as R and T

→ ∞ (see Proposition 2.1.13 in Section 2.1). This improvement is seen in the true positive

rates (TPR), which we recall measure the proportion of actual positives correctly identified

by the test. Furthermore the false discovery rates (FDR) and false omission rates (FOR),

which respectively measure the proportion of identified positives and identified negatives

that are false, are also decreasing with R and T increasing. The Fowlkes-Mallows index

(F-M) measures the similarity between the TPR and the proportion of identified positives

that are true (the positive predictive rate), where greater similarity is indicated by a higher

index value. The accuracy (ACC) measure of the test gives the proportion of the locations

correctly identified as either positive or negative. Note however that the ACC alone can be

a misleading tool since it is not explicit whether the positives or negatives are contributing

more to the accuracy. When comparing across the bursts, the measures show that the

test gets better at identifying the true positives as the burst increases (greater difference

between spectra) at a cost of a slight worsening of the true negative rate (TNR). This, as

mentioned previously, is due to the power leakage across locations during estimation. Also,

the measures give further evidence to the test struggling to identify a difference between

the defined burst (of 1) and sine squared spectra of less than 1, while there is significant

93



improvement in the measures as the burst is increasing (e.g. 2). Finally, in Figure 51 we

visually supplement the above results with a receiver operator characteristic (ROC) plot,

which plots the TPR against the false positive rate (FPR), with the latter measuring the

proportion of actual negatives incorrectly identified as positive, i.e., (1 - TNR). This plot

summarises how an increase in R and T , and furthermore how the difference in value of the

spectra between replicates (greater burst) lead to an improvement in the performance of

the test amounting to correctly identifying the locations that indeed present evolutionary

spectral characteristics over the replicates.

Results 1C. For this simulation with a burst value of 2, power and size estimates can

be visualised in plot (d) of Figure 50 and in Table 11 we report statistical measures on the

overall test. The results for this test are very favourable, with the majority of true positive

and negative locations being identified. In comparison to simulation 1B (with a burst value

of 2), here the spectral leakage across locations at the location rejection boundary has less

impact due to a smaller difference between spectra across replicates for these locations.
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Figure 49: Time-replicate plot of the true spectra in level 5 with ‘burst’= 2 for simulation 1B (left)
and simulation 1C (right).

Binary classification measures

R T TNR sdTNR ACC

128 256 0.9918 0.0078 0.9918

256 256 0.9941 0.0058 0.9941

256 512 0.9921 0.0049 0.9921

Table 9: Binary classification measures averaged over 100 runs for simulation 1A. Note that
TNR=ACC
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Figure 50: Simulation 1 empirical power and size estimates for each location over 100 runs.
(a): simulation 1A; (b): simulation 1B with ‘burst’= 1; (c): simulation 1B with ‘burst’= 2; (d):
simulation 1C with ‘burst’= 2.
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Figure 51: ROC plot for simulation 1B. It is desirable to see the improved TPR as R and T
increase whilst also highlighting improved test performance on greater burst values. Furthermore
the minimal impact on FPR is also a desirable find.
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Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.4980 0.0327 0.8591 0.0185 0.2107 0.3685 0.6267 0.6786 0.3467

256 256 0.5625 0.0282 0.8398 0.0167 0.2130 0.3422 0.6652 0.7012 0.3476

256 512 0.5634 0.0223 0.8696 0.0139 0.1833 0.3341 0.6782 0.7165 0.3244

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.85 0.0571 0.8295 0.0177 0.1610 0.1503 0.8441 0.8397 0.3092

256 256 0.9777 0.0218 0.8173 0.0102 0.1518 0.0260 0.9106 0.8975 0.3017

256 512 0.9752 0.0197 0.8460 0.0095 0.1333 0.0280 0.9193 0.9106 0.2842

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 1 0 0.8085 0.0117 0.1551 0 0.9192 0.9043 0.3042

256 256 1 0 0.8028 0.0088 0.1592 0 0.9170 0.9014 0.3074

256 512 1 0 0.8361 0.0070 0.1379 0 0.9285 0.9181 0.2881

Table 10: Binary classification measures averaged over 100 runs for simulation 1B. Top: ‘burst’= 1;
middle: ‘burst’= 2; bottom: ‘burst’= 5. Prevalence = 0.5.

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.9013 0.0540 0.9775 0.0140 0.0522 0.0322 0.9235 0.9584 0.1297

256 256 0.9842 0.0222 0.9688 0.0124 0.0722 0.0053 0.9553 0.9726 0.1477

256 512 0.9769 0.0230 0.9799 0.0078 0.0505 0.0077 0.9629 0.9791 0.1227

Table 11: Binary classification measures averaged over 100 runs for simulation 1C with ‘burst’= 2.
Prevalence = 0.25.
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Simulation 2

We now introduce a more demanding spectral structure of the meta-process, where the

different behaviour is manifest in the middling replicates and time locations. The simulated

true spectra are defined by

Sj(z, ν) =



cos2 (2πz) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 38) ∪ (58 + 1
R , 1)

and z ∈ (0, 38) ∪ (58 + 1
T , 1), ν ∈ (38 + 1

R ,
5
8)

‘burst’, for j = J(T )− 4, z ∈ (38 + 1
T ,

5
8), ν ∈ (38 + 1

R ,
5
8)

0, otherwise,

(65)

where the burst is now defined for fewer replicates, and in rescaled arguments z = k/T

and ν = r/R. For a simulation with R = 256 and T = 512, we can visualise the spectral

characteristics in Figure 52 featuring a squared cosine behaviour in all replicates except for

the middle R/4 = 64 (here, replicates 97 to 160), which have a burst across the middle

T/4 = 128 locations (here, locations 193 to 320). It is for these locations that we would

expect to see rejections of the null hypothesis of constancy across the replicate dimension.

Rescaled Time

R
es

ca
le

d 
R

ep
lic

at
es

0.8

0.6

0.4

0.2

0

0.2 0.4 0.6 0.8 1

0.5

1.0

1.5

2.0

Figure 52: Time-replicate plot of the true spectra in level 5 for simulation 2.

From Figure 53, where the horizontal lines at 1/0 identify the locations expected to be

rejected/not rejected, it can be seen how again the test breaks down when the burst is 1

(and thus the difference between spectra over replicates is at most 1). For burst values of

2 and then 5 we see much improvement in the number or true positives being correctly

identified (rejected) but as previously noted, higher bursts correspond to more negatives

incorrectly identified by the test at the location rejection boundaries.
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Figure 53: Simulation 2 empirical power and size estimates for each location over 100 runs. Top left :
‘burst’= 1; top right : ‘burst’= 2; bottom left : ‘burst’= 5. Bottom right : ROC plot for simulation 2.

The statistical measures in Table 12 confirm the impact of increasing the burst, with

TPR increasing and TNR decreasing. Whilst other measures remain favourable, we do note

the increase in the FDR from a burst of 2 to 5, such that approximately 30% of identified

positives are false. This increase moves with the decrease in TNR. However, keeping in

mind the goal of the test, the jump up in TPR suggests all true positives are identified at

a burst of 5 and despite the increase in FDR, the higher F-M index values indicate there is

greater similarity between the identified positives and true positives clusters. Note that

the presence of ‘na’ values is a result of the test failing to make any positive identifications

on some runs of the simulation (see how the formulas in Table 8 can only be computed if

tp = fp = 0). The ROC plot is displayed in Figure 53 (bottom right) and gives a visual

comparison of the TPR and FPR for simulations with differing R, T and burst intensities.

It is evident from the plot that the test performance improves (TPR increases) as R, T

and the burst intensities increase. We note that this is at the expense of a minor increase

in the FPR, which can be attributed to the impact of spectral leakage from the greater

burst intensities.

98



Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.0230 0.0277 0.9828 0.0145 na 0.2489 na 0.7429 na

256 256 0.03 0.0315 0.9835 0.0127 na 0.2474 na 0.7451 na

256 512 0.0420 0.0238 0.9861 0.0075 0.4443 0.2446 0.1492 0.7500 na

512 512 0.0946 0.0382 0.9817 0.0093 0.3279 0.2351 0.2477 0.7599 na

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.4325 0.1160 0.9503 0.0258 0.2318 0.1651 0.5721 0.8209 0.2485

256 256 0.7159 0.0979 0.9318 0.0233 0.2071 0.0914 0.7519 0.8779 0.2334

256 512 0.7520 0.0667 0.9581 0.0139 0.1341 0.0790 0.8060 0.9066 0.1884

512 512 0.9627 0.0222 0.9228 0.0233 0.1857 0.0132 0.8849 0.9328 0.2177

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.9816 0.0233 0.8577 0.0322 0.2919 0.0071 0.8331 0.8887 0.2736

256 256 0.9988 0.0057 0.8193 0.0117 0.3448 0.0005 0.8089 0.8642 0.2982

256 512 0.9995 0.0019 0.8468 0.0176 0.3104 0.0002 0.8301 0.8850 0.2808

Table 12: Binary classification measures averaged over 100 runs for simulation 2. Top: ‘burst’= 1;
middle: ‘burst’= 2; bottom: ‘burst’= 5. Prevalence = 0.25. The ‘na’ values are a result of the test
failing to make any positive identifications (such that tp = fp = 0 in Table 8) on some runs of the
simulation.

Simulation 3

For our third simulation we dramatically reduce the number of replicates and locations

that we define to have changing spectral characteristics. The spectra are defined as follows

Sj(z, ν) =



cos2 (2πz) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 38) ∪ (48 + 1
R , 1)

and z ∈ (0, z∗ − 1
16) ∪ (z∗ + 1

16 + 1
T , 1), ν ∈ (38 + 1

R ,
4
8)

‘burst’, for j = J(T )− 4, z ∈ (z∗ − 1
16 + 1

T , z
∗ + 1

16), ν ∈ (38 + 1
R ,

4
8)

0, otherwise.

(66)

where z∗ = ⌊0.6T ⌋/T and in rescaled time z = k/T and ν = r/R. For a simulation with

R = 256 and T = 512 we again have a squared cosine behaviour in all the replicates except

for R/8 = 32 (here, replicates 97 to 128) where we have defined a burst of 1 in the spectra

over T/8 = 64 locations (here, 276 to 339). Figure 54 gives a visual representation of the

spectra defined for both burst intensities of 1 and 5.

From the empirical power and size estimates shown in Figure 55, it is evident that the

closeness in spectra of the squared cosine and the burst value of 1 is again causing the test

to struggle to reject the null hypothesis at the locations across which an evolution over

the replicates exists. For burst values of 2 and 5, the test sufficiently rejects the correct

locations, but present again is the effect at the location rejection boundaries.

As with the previous simulations, the measures shown in Table 13 improve for higher

values of R and T , and furthermore for an increasing burst. Recalling that we have defined

an evolution in the spectra over a much smaller window of replicates and locations, it is
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Figure 54: Time-replicate plots of the true spectra in level 5 for simulation 3. left : ‘burst’= 1;
right : ‘burst’= 5.

●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●
●●●●●●

●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●
●●●
●●
●●●●

●
●●
●
●●●●●●●●●●●●●●●●●

●●

●●●●

●
●
●●
●
●●●●●●●

●●●●●
●●●●

●
●
●●
●
●●●●

●●●●●
●
●●●●●

●●●●●●●
●
●●●●

●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●

●●
●●●●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●

●
●●●
●●●
●●
●●
●
●

●●
●●

●
●●

●
●
●●
●

●

●●

●●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●●

●

●
●●
●

●
●●
●●●●

●
●●

●
●●●

●

●●●●

●

●

●

●●
●
●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locations

p
o
w

e
r/

s
iz

e

●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●
●●●●●●

●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●
●●●
●●
●●●●

●
●●
●
●●●●●●●●●●●●●●●●●

●●

●●●●

●
●
●●
●
●●●●●●●

●●●●●
●●●●

●
●
●●
●
●●●●

●●●●●
●
●●●●●

●●●●●●●
●
●●●●

●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●

●●
●●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●
●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●●
●
●
●

●●●●

●

●

●

●
●●

●
●

●

●●
●
●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●
●
●●

●●●
●

●

●

●●
●
●

●●

●
●

●
●
●
●●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locations

p
o
w

e
r/

s
iz

e

●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●
●●●●●●

●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●
●●●
●●
●●●●

●
●●
●
●●●●●●●●●●●●●●●●●

●●

●●●●

●
●
●●
●
●●●●●●●

●●●●●
●●●●

●
●
●●
●
●●●●

●●●●●
●
●●●●●

●●●●●●●
●
●●●●

●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●

●●
●●●●

●
●
●●●●●●●

●
●●
●●

●●
●●

●●●

●

●

●

●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locations

p
o
w

e
r/

s
iz

e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

●

Burst 1
Burst 2
Burst 5
R=128 T=256
R=256 T=256
R=256 T=512

●

●

●

Figure 55: Simulation 3 empirical power and size estimates for each location over 100 runs. Top left :
‘burst’= 1; top right : ‘burst’= 2; bottom left : ‘burst’= 5. Bottom right : ROC plot for simulation 3.

understandable that the measures for bursts 2 and 5 are slightly lower than in previous

simulations, nevertheless the test still performs well despite the more challenging structure.
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We display the corresponding ROC plot in Figure 55 (bottom right) which again highlights

the improved performance from increases in R and T and furthermore the impact of greater

burst intensity.

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.0538 0.0665 0.972 0.0185 na 0.1220 na 0.8572 na

256 256 0.0684 0.0632 0.9633 0.0177 0.7636 0.1213 0.1229 0.8515 na

256 512 0.1769 0.0664 0.9697 0.0130 0.5180 0.1081 0.2879 0.8706 0.2943

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.4284 0.1293 0.9226 0.0235 0.5398 0.0810 0.4408 0.8609 0.2997

256 256 0.6041 0.0901 0.9054 0.0186 0.5077 0.0587 0.5442 0.8677 0.2833

256 512 0.7473 0.0703 0.9243 0.0152 0.4045 0.0375 0.6662 0.9022 0.2405

Binary classification measures

R T TPR sdTPR TNR sdTNR FDR FOR F-M ACC PT

128 256 0.8216 0.0629 0.8825 0.0148 0.4894 0.0280 0.6472 0.8748 0.2742

256 256 0.8569 0.0543 0.8795 0.0093 0.4864 0.0227 0.6632 0.8767 0.2727

256 512 0.9402 0.0294 0.8964 0.0086 0.4295 0.0094 0.7322 0.9019 0.2490

Table 13: Binary classification measures averaged over 100 runs for simulation 3. Top: ‘burst’= 1;
middle: ‘burst’= 2: bottom: ‘burst’= 5. Prevalence = 0.125. The ‘na’ values are a result of the
test failing to make any positive identifications (hence tp = fp = 0 in Table 8) on some runs of the
simulation.

Simulation 4

We now evaluate the power of the test by means of a simulation which does not provide

a burst but instead displays slowly evolving spectral characteristics over both (rescaled)

time and replicates of a REv-LSW process. We define the spectra as follows

Sj(z, ν) =

4ν sin2 (2πz(1 + 2ν)) , for j = J(T )− 4, z ∈ (0, 1), ν ∈ (0, 1)

0, otherwise,
(67)

recalling that z = k/T and ν = r/R in rescaled arguments. Figure 56 displays the true

spectra for a simulation with R = 256 and T = 512. For this simulation all locations have

a degree of varying spectra over the replicates and therefore we would like the test to reject

all locations. This is the opposite scenario to Simulation 1A.

Figure 57 displays the empirical power estimates for the simulation with different R

and T . It is clear that the test struggles for the simulation with R = 128 but performs

well when the number of replicates increases to R = 256. This, as noted previously, is

due to improved estimation of the spectra as R, T → ∞. For both R = 128 and R = 256,

note that the power estimates at locations preceding location 0.2T are poor indicating

the test is having difficulty to identify a breach in the null hypothesis of constancy of the

spectra over replicates. Comparing these locations where the test struggles to the true

spectra across replicates around a rescaled time of 0.15 in Figure 56, the results suggest

that the spectra evolve too slowly over the replicates to be picked up by the test. Recall
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Figure 56: Time-replicate plot of the true spectra in level 5 for simulation 4.

that the test struggled in previous simulations when the difference between the burst and

sine/cosine spectra was of 1 or less.
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Figure 57: Simulation 4 empirical power estimates for each location over 100 runs. left : R=128,
T=256; right : R=256, T=512.

In Table 14 we report the statistical measures on the test as a whole. Note that there

are fewer rates reported due to the absence of true negatives (locations with constant

spectra across replicates). Also note how the increase in replicates to R = 256 much

improves the TPR and the F-M index, which we recall gives a measure of the similarity

between the identified positives and true positives.

Simulation 5

Stepping up the challenge given by simulation 4, we now introduce an evolving spectral

structure for two neighbouring wavelet scales and further investigate the power of the

proposed test. The spectra are defined as follows
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Binary classification measures

R T TPR sdTPR F-M ACC

128 256 0.4944 0.0716 0.7012 0.4944

256 256 0.8470 0.0375 0.9201 0.8470

256 512 0.8954 0.0226 0.9462 0.8954

Table 14: Binary classification measures averaged over 100 runs for simulation 4.

Sj(z, ν) =


4(1− ν) cos2

(−1
3 π + 4

3πz
)
, for j = J(T )− 3, z ∈ (14 + 1

T , 1), ν ∈ (0, 1)

4 cos2 ((4π + 10ν)z) , for j = J(T )− 2, z ∈ (0, 12), r ∈ (0, 1)

0, otherwise,

(68)

recalling that z = k/T and ν = r/R in rescaled arguments. The true spectra for a

simulation with R = 256 and T = 512 can be seen in Figure 58. Once again we expect

the test to make rejections for all locations. For different R and T , the empirical power

estimates are displayed in Figure 59. The results here follow in similar vein to simulation

4, such that as estimation improves asymptotically with R, T → ∞, the performance of

the test improves. Furthermore we again have evidence that the test does not always

correctly reject when the evolution of the spectra over the replicates is too slow, specifically

between rescaled time points (approximately) between 0 and 0.05 and between 0.15 and

0.2 in Figure 58, comparable with the same rescaled time points in Figure 59. Statistical

measures on the global test performance are given in Table 15 where again fewer rates are

reported due to the absence of any true negatives. Both the TPR and F-M demonstrate

the test performs well, with improvements obtained with increases in R and T .
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Figure 58: Time-replicate plots of the true spectra in levels 7 (top) and 6 (bottom) for simulation
5.
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Binary classification measures

R T TPR sdTPR F-M ACC

128 256 0.4916 0.0568 0.6999 0.4916

256 256 0.7980 0.0207 0.8933 0.7980

256 512 0.8042 0.0162 0.8967 0.8042

Table 15: Binary classification measures averaged over 100 runs for simulation 5.

●●●●●●●●●
●●

●

●

●

●

●●

●

●
●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●●●●●●●
●●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●

●●
●

●

●

●
●

●●

●●

●●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●
●●

●

●
●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●
●
●
●

●

●

●●
●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●
●
●
●

●
●
●

●●

●

●●●
●●

●
●●

●

●

●●●●

●

●

●
●
●●

●

●●
●

●

●

●

●●

●
●
●

●

●
●●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●●●●●

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locations

p
o
w

e
r/

s
iz

e

●●●●●●●●●●●●●●
●
●●●
●●
●

●
●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●●●●●

●●●●●

●●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●●

●
●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●●
●●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●
●●
●●

●●●●
●
●
●●
●
●
●●●
●●
●
●●●

●
●●
●●●●

●
●●●
●

●

●●●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●

●●●
●●

●

●

●●

●●●

●

●

●

●

●

●

●
●●●●●●

●

●
●
●●●
●●
●●
●
●

●

●
●
●
●●●

●

●
●●●●●●

●
●●
●●●
●●
●●
●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●

●●●

●
●●
●
●

●
●●●
●●
●●
●●

●●●
●
●
●

●

●
●

●●

●●●
●

●●●
●
●
●
●

●
●●●
●
●●
●●●●

●

●●

●

●
●●
●
●●

●
●
●●
●

●●
●●●

●
●
●●

●●●
●

●

●

●
●●

●

●
●●
●●
●●●
●●●●

●

●
●●●
●●

●●●
●
●●●

●
●
●●

●
●
●●●●●

●●●
●●●
●
●
●
●

●

●●
●
●●

●●●●●

●●●
●
●●●
●

●
●
●●
●●
●
●

●●

●

●

●

●

●

●●●●

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Locations

p
o
w

e
r/

s
iz

e

Figure 59: Simulation 5 empirical power estimates for each location over 100 runs. left : R=128,
T=256; right : R=256, T=512.

Concluding remarks

Overall, the simulation study has shown that the location-specific test can correctly identify

whether there exists spectral evolutionary behaviour over the replicates. When there is

in fact spectral constancy across the replicates, the test successfully identifies the lack

of replicate-effect. We recall that the test falsely identified spectral evolution over the

replicates at the location rejection boundaries due to power leakage during estimation.

However despite this, we note that in order for this to occur, there must exist an evolution

in the spectra over the replicates for some locations. We recommend the use of this test if

the analysis aim is to gain an indication as to whether there is any evolution in the spectral

characteristics over replicates. However, this test goes further and is also able to give a

good identification of the times and replicates at which an evolutionary behaviour over

the spectra exists. Whilst the location-specific test is most informative, the next section

proposes a global test for replicate-effect, offering the user a direct diagnostic as to whether

a replicate-effect exists as opposed to assessing the individual locations.

5.3 A global approach to testing for replicate-effect

Recall that so far we aimed to identify those times k for which the null hypothesis,

Hk
0 : Sj

(
k
T , ν

)
is constant as a function of ν, ∀j, holds. However, depending on the context,

one might find it more useful to test the overall null hypothesis H0 : Sj
(
k
T , ν

)
is constant

as a function of ν, ∀j, k. In this setting, we are again modelling under the assumption that

replicates are uncorrelated.

In order to propose an appropriate test statistic for this over-arching hypothesis, let us
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first consider the following measure for the spectral departure from constancy through the

replicate-dimension for a particular time k (rescaled time z = k
T ) and within each scale j,

T (Sj(z, · )) =
∫ 1

0

(
Sj (z, ν)− S̄j (z)

)2
dν,

where we denote by S̄j (z) =
∫ 1
0 Sj (z, ν) dν (see also Cardinali and Nason (2010) for an

alternative context where such a measure proved successful).

The average spectral departure from constancy across all scales may then be measured

by

Tave

(
{Sj (z, · )}j

)
= J−1

J∑
j=1

T (Sj (z, · )) ,

where we recall that J(T ) = log2(T ). Furthermore, one could quantify the overall spectral

departure not only across all scales but also through time, which for brevity we denote

Tave (S), as follows

Tave (S) =

∫ 1

0
Tave

(
{Sj (z, · )}j

)
dz, (69)

= J−1
J∑
j=1

∫ 1

0
T (Sj (z, · )) dz.

Under the null hypothesis (H0) defined above, note that all measures above are 0.

Conversely, since the spectral quantities are positive it is straightforward to show that if

the aggregated measure Tave (S) in (69) is 0, then the null hypothesis of spectral constancy

through replicates at all times also holds. Hence we shall treat significant departures from

0 as indicative of departures from the null hypothesis.

As the true replicate wavelet spectra are unknown, we estimate the measures of spectral

departure from constancy above by means of their sample equivalents, built upon a well-

behaved spectral estimator (see for instance Proposition 2.1.16 in Section 2.1). Hence we

obtain

T
(
Ŝj,k

)
= varν

(
Ŝj

(
k

T
, ν

))
, as an estimate for T

(
Sj

(
k

T
, ·
))

,

Tave

({
Ŝj,k

}
j

)
= J−1

J∑
j=1

varν

(
Ŝj

(
k

T
, ν

))
, for Tave

({
Sj

(
k

T
, ·
)}

j

)
,

Tave

({
Ŝj,k

}
j,k

)
= (JT )−1

T−1∑
k=0

J∑
j=1

varν

(
Ŝj

(
k

T
, ν

))
, for Tave (S) ,

where in the above Ŝj
(
k
T , ν

)
is our proposed smoothed and corrected wavelet periodogram

at rescaled replicate ν and varν denotes the usual empirical variance, here taken over

replicates within each scale j and at each time k.

Although under the null hypothesis the distribution of the test statistic Tave

(
Ŝ
)
is

unknown, since we have shown that for all replicates ν,
{
Ŝj
(
k
T , ν

)}
j,k

is a consistent

estimator for the true spectrum
{
Sj
(
k
T , ν

)}
j,k
, the bootstrap approach of Davison and
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Hinkley (1997) is a valid alternative which we propose to use here (see also Cardinali and

Nason (2010)). In order to allow for parametric resampling, we carry out the bootstrap

simulations under a Gaussian innovations assumption, which we note that is a non-limiting

assumption as discussed in Chapter 2 (Remark 2.1.9). The statistical significance of the

observed test statistic is then established by means of a Monte Carlo approach used to

generate pseudo-test statistics values from a process with properties akin to those of the

original process under the null hypothesis. The resulting p-value is then simply computed

using a count of these pseudo-test statistics that exceed the value of the observed test

statistic.

The proposed algorithm to test whether a replicate-effect is present, appears detailed

in Algorithm 1 below.

Proposed BootReplicateTest algorithm:

Assume we observe a REv-LSW process as in Definition 2.1.1 and we want to assess whether a replicate-effect
exists.

0. Obtain a well-behaved spectral estimator Ŝj(k/T, r/R), ∀j, k, r.
1. For each scale j and time k, under the null hypothesis of constancy through replicates, compute the

average scale- and time- specific periodogram,
¯̂
Sj(

k
T
) = R−1 ∑R−1

r=0 Ŝj(k/T, r/R).

2. Compute the test statistic Tave

({
Ŝj(

k
T
, · )

}
j

)(
= Tobs;k

ave

)
across all times k, and aggregate these

into

Tobs
ave = ((R− 1)JT )−1 ∑J

j=1

∑T−1
k=0

∑R−1
r=0

(
Ŝj(k/T, r/R)− ¯̂

Sj(
k
T
)
)2

.

3. Iterate for b = 1 to B bootstraps:

• for each scale j, simulate a REv-LSW process {Xr;R
t;T }(b) with squared amplitudes given by

¯̂
Sj(

k
T
) for all r,

• compute the corresponding test statistic T
(b)
ave corresponding to the simulated data.

4. Compute the test p− value = (1 +#{T(b)
ave ≥ Tobs

ave})/(B + 1).

Algorithm 1: Proposed bootstrap test for assessing the existence of a replicate evolution
across and REv-LSW process.

5.3.1 Simulation study for the global testing methodology

Our attention now turns to investigating the performance of our global testing approach.

For various combinations of R = 64 to 256 and T = 128 to 512, we carry out the proposed

testing procedure with smoothing performed over both the replicate and time domains, thus

yielding the most accurate and consistent estimate of the wavelet spectrum as documented

in Remark 2.1.15. We do this for N = 100 runs with B = 100 bootstraps within each run.

Additionally it has been shown that the length of the replicate smoothing window, (2M+1),

and thus our choice of M , can lead to improved estimation, however for the following

simulations we maintain a value of M = 4 but keep in mind that our test performance

could improve with a different choice for M . Furthermore, unlike for the location-specific

test where Haar wavelets alone were suitable for estimation, here it is preferable to choose

the wavelet family most reflective of the process smoothness as this will yield the best
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spectral estimators. For each simulation we report empirical size and power estimates

obtained through counting the number of times the test rejects the null hypothesis of

constancy (over replicates) at a significance level of 5%.

5.3.1.1 Simulations to investigate size

We first aim to assess how the test performs in the absence of any spectral evolution

across the replicates. To do so we consider the following setups. We purposely include

processes that we know depart from the REv-LSW assumptions, in order to probe the test

performance outside of this framework.

s1. Simulated processes as detailed in Simulation 1A of Section 5.2.1.

s2. (a) An autoregressive AR(1) process, Xr;R
t = γXr;R

t−1 + ϵrt , with AR parameter

γ = 0.9, independent standard normal innovations.

(b) As above but with AR parameter γ = −0.3.

One concatenated realisation of the meta-process, viewed as a series of length RT ,

can be seen in Figure 60.
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Figure 60: Concatenated series of a replicate process simulated from s2(a).

s3. (a) A time-varying autoregressive AR(1) process, Xr;R
t = γtX

r;R
t−1 + ϵrt , with AR

parameter γt evolving linearly within each replicate from 0.9 to -0.9, with

independent standard normal innovations.

(b) As above but with AR parameter γt evolving constantly from 0.3 to -0.3.

One concatenated realisation of the meta-process, viewed as a series of length RT ,

can be seen in Figure 61.

Results. We compute our spectral estimates using the discrete non-decimated wavelets

built by means of Daubechies Least asymmetric wavelet family with 10 vanishing moments
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Figure 61: Concatenated series of a replicate process simulated from s3(a).

(DLA10) (Daubechies, 1992) for s1, whilst Haar wavelets were chosen for s2(a,b) and

s3(a,b). These choices of wavelet were made in order to reflect the behaviour of the process,

for instance DLA10 may be chosen for smooth processes whereas Haar wavelets may be

preferable for choppier processes. In Table 16 we report the empirical size estimates. For

the majority of the simulations, the size estimates are less than the 5% nominal size and

thus indicate that the test does a good job of not incorrectly rejecting the hypothesis that

spectra are constant across the replicate dimension. The one exception is simulation s3(a),

for which the size values range from 27% to 60%.

Size

R T s1 s2a s2b s3a s3b

64 128 0 0.01 0.03 0.27 0.05

128 128 0 0.03 0.04 0.33 0.08

128 256 0 0 0.02 0.4 0

256 256 0 0.01 0.01 0.6 0.01

256 512 0 0.01 0 0.6 0

Table 16: Empirical size values computed over 100 runs for simulations s1 - s3(a,b). Spectral
estimation was via the REv-LSW model with smoothing over replicates and time.

It is not obviously clear why the global test is struggling with simulation s3(a) however a

similar scenario occurs for the simulations using the Haar wavelet-based test of stationarity

proposed by Nason (2013) on a single AR(1) process with an AR parameter of -0.9. Nason

(2012) investigates this scenario and draws attention to the possible ‘volatility clustering’

exhibited by the process which is comparable to behaviour seen in financial time series and

GARCH models (e.g. see Chapter 3 of Tsay (2010)). For a series of length T = 512, Nason

(2012) finds that the empirical size value of approximately 20% decreases with decreasing

the AR parameter to -0.8, down to an empirical size of approximately 4%.

For simulation s3(a), Figure 61 displays the gradual volatility clustering occurring
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over time within each replicate, with the clustering becoming more apparent as the AR

parameter approaches -0.9. As with Nason (2012), an improvement in the empirical size

values can be obtained through decreasing the negativeness of the AR parameter. When

the AR parameter γt is defined to evolve linearly from 0.9 to -0.9, for R = 128 and T = 256

the empirical size in Table 16 is shown to be 40%. Setting the AR parameter to evolve

linearly from 0.9 to -0.8 yields an empirical size value of 18%, further still reducing if

the parameter is set to evolve linearly from 0.9 to -0.7, down to an empirical size of 12%.

If we consider R = 256 and T = 512, the empirical size is shown to be 60% when the

AR parameter evolves linearly from 0.9 to -0.9. When set to evolve to -0.8, we obtain

an empirical size of 28%, while evolution to -0.7 yields an empirical size of 16%. The

additional estimated size values have not fallen below 5%, however they do demonstrate

that the test dramatically improves when we set the AR parameter to evolve to a lesser

extreme than -0.9, analogous to the results found in Nason (2012).

5.3.1.2 Simulations to investigate power

To examine how well our global test identifies a breach in constancy of the spectral

estimates over replicates, or in other words whether there exists spectral evolution over the

replicates, we consider the following setups, including process that both adhere to (p1-p3)

and fall outside of (p4-p5) REv-LSW assumptions.

p1. Simulated processes as detailed in Simulation 1B of Section 5.2.1 with burst values

of 1 (b1) and 2 (b2) .

p2. Simulated processes as detailed in Simulation 4 of Section 5.2.1.

p3. Simulated processes as detailed in Simulation 5 of Section 5.2.1.

p4. (a) A ‘replicate-varying’ autoregressive AR(1) process, Xr;R
t = γrXr;R

t−1 + ϵrt , with

AR parameter γr evolving linearly from 0.9 to -0.9, with independent standard

normal innovations.

(b) As above but with AR parameter γr evolving linearly from 0.3 to -0.3.

One concatenated realisation of the meta-process, viewed as a series of length RT ,

can be seen in Figure 62.

p5. (a) A ‘time-replicate-varying’ autoregressive AR(1) process, Xr;R
t = γrtX

r;R
t−1 + ϵrt ,

with independent standard normal innovations and the AR parameter γrt evolves

linearly across both time and replicate dimensions, visually represented as follows

γr;Rt;T =



0.9 · · · γ1t · · · −0.9
...

...
...

γr1 . . .
... . . . γrT

...
...

...

−0.9 · · · γRt · · · 0.9


,

with t = 0, ..., T − 1 and r = 0, ..., R − 1. For each row, the AR parameter

evolves in equal increments of |γr1 − γrT |/T across the columns. For each column

t, the AR parameter evolves in equal increments of |γ1t − γRt |/R across the rows.
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Figure 62: Concatenated series of a replicate process simulated from p4(a).

(b) As above but with matrix elements 0.9 and -0.9 being replaced with 0.3 and

-0.3 respectively.

One concatenated realisation of the meta-process, viewed as a series of length RT ,

can be seen in Figure 63.
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Figure 63: Concatenated series of a replicate process simulated from p5(a).

Results. We compute our spectral estimates using discrete non-decimated wavelets

chosen to best reflect the behaviour of the process. The discrete non-decimated wavelets

were built by means of Daubechies Least asymmetric wavelet family with 10 vanishing

moments for p2 and 6 vanishing moments for p3, whereas Haar wavelets were chosen for
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Power

R T p1b1 p1b2 p2 p3 p4a p4b p5a p5b

64 128 0.05 0.38 0.97 1 1 0.97 1 0.3

128 128 0.08 0.97 1 1 1 1 1 0.76

128 256 0.23 1 1 1 1 1 1 0.97

256 256 0.79 1 1 1 1 1 1 1

256 512 0.99 1 1 1 1 1 1 1

Table 17: Empirical power values computed over 100 runs for simulations p1 - p5(a,b). Spectral
estimation was via the REv-LSW model with smoothing over replicates and time.

the more volatile processes p1(b1,b2), p4(a,b) and p5(a,b). In Table 17 we report the

empirical power estimates, which suggest the test performs well for most setups. The

values for simulation p1(b1) is the only concern when R is low, however this was not

unexpected considering the previous results of the location-specific test for the same setup

(see Simulation 1B, Section 5.2.1). We recall that there the test broke down when the

difference between spectra across the replicates assumed values less than 1. However, the

power values do improve as our sample size increases (R, T → ∞).

Concluding remarks

The simulation study has demonstrated that the global test, through encapsulating the

spectral characteristics of the whole REv-LSW process, is capable of answering the general

question of ‘does a replicate-effect exist’. However, the unfavourable empirical size values

for simulation s3(a) have demonstrated that the test can fail when the process veers too far

from the smooth evolution assumptions of an REv-LSW process (see Remark 2.1.2). As

the global test relies on obtaining consistent estimates of the spectra, we apply both time

and replicate smoothing, which can introduce edge effects at the time and replicate domain

edges, respectively. Our methodology so far does not address how to handle replicate

edge effects and so even though the global test performs well already, there is room for

improvement. For instance, we could consider a method that internally reflects the replicate

time series at the edges in the replicate domain and then cut these artificial replicates after

estimation. Alternatively, as in Fryzlewicz and Ombao (2009) we might perform the test

on a suitably selected subset of the wavelet scales j, locations k and replicates r. Both the

global and location-specific tests have proven to be successful within the simulation studies

and the next section will illustrate the tests when applied to real data.
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5.4 Analysis of Macaque Local Field Potentials: Test of replicate-effect

Our simulation studies have given a thorough demonstration on the performance of both

the location-specific and global tests aiming to identify the existence of replicate spectral

evolution across the experimental timeline. Under the assumption of uncorrelated replicates,

we now illustrate both tests on the macaque brain processes data introduced and analysed

in Chapter 4. We recall that our real data analysis was carried out over sets of trials

grouped chronologically for correct and incorrect responses of the macaque. Each trial was

of length T = 2048 (hence J = 11) and each group (correct and incorrect) consisted of

R = 256 (hence J ′ = 8) trials, thus forming our replicated time series that we model using

the REv-LSW framework developed in Chapter 2.

5.4.1 Correct trials for the hippocampus

In Chapter 4 we estimated the spectral characteristics of the Hc correct trials by means

of non-decimated discrete wavelets from Daubechies Least Asymmetric family with 10

vanishing moments (DLA10), applied smoothing over both time and replicate domains

with a replicate local averaging window over 21 trials (M = 10 neighbouring trials), and

finally we corrected for bias. The process evolutionary behaviour was captured visually in

Figure 37 (Chapter 4). The question we are aiming to answer is whether or not there is

sufficient evidence to deem that spectral evolution across the trials (replicates) is indeed

manifest and thus the macaque’s memory recall evolves through the experiment. We will

apply both the location-specific and global tests, and if appropriate, identify the times and

trials for which the memory recall becomes manifest.

Location-specific test

For our location-specific test, recalling its construction, we compute our spectral estimates

using Haar wavelets instead of DLA10 and additionally as smoothing is not required for

this testing procedure we note that the estimated spectra are the raw wavelet periodograms.

For each location there are a total of 40 hypothesis tests over 8 original scales and 5 Haar

scales (recall equation (62)) and we are in the field of multiple hypothesis testing which we

deal with by taking an FDR approach.

In plot (a) of Figure 64 we present a visualisation of the number of locations identified

by the test as rejecting the null hypothesis of spectral constancy over the trials. The total

number of locations rejected was 1153. Here, a location is classed as rejected if any one of

the hypothesis tests for that location is rejected. This approach is a little naive and at

most tells us that our test ‘successfully’ identifies numerous locations across the experiment

that exhibit spectral evolution over the trials. What qualifies as a ‘successful’ identification

is open to interpretation, for instance whether 1 rejection out of 40 hypothesis tests is

satisfactory to classify a location as having a significant replicate-effect. Thus, plot (b) of

Figure 64 gives a more informative visualisation through displaying the percentage of the

40 hypothesis tests that were rejected for each location, while in plot (c) we threshold the

percent values at 25%. By considering the percentage of tests rejected, we can identify

the locations that give a strong indication of a replicate-effect which could then be the

focus for further analysis. Comparing plot (b) with the spectral estimates in Figure 37
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corroborates the evolutionary patterns we see there. Interestingly, the test highlights

locations around timepoint 512, which we recall corresponds to the visual exposure time

block, and in the final quarter time block which we recall corresponds to the macaque

making correct associations. Thus the test appears to confirm the experimental design,

identifying the locations where we would expect a replicate-effect to be present. However,

we reinforce our previous point on the flexibility of choosing a threshold that would decide

whether a location should be deemed as ‘successfully’ rejecting the null hypothesis and

currently this is left to the discretion of the user. It is not unreasonable to assume that

if a significant replicate-effect exists for one location, then the spectral characteristics of

neighbouring locations may echo a similar replicate-effect. As such, in plots (d), (e) and

(f) of Figure 64 we choose to only display the locations rejected that are in the vicinity of

four (two each side) rejected locations. This process of eliminating the weakly rejected

locations (displayed throughout plots (a)-(f)) gives a way to identify the locations with the

strongest evidence for the existence of a replicate-effect.

As well as identifying the locations where a replicate-effect exists, the location-specific

test is also capable of indicating the trials for which the replicate-effect was detected.

In Figure 65, for specific time locations 560 (left) and 1610 (right), indicative of the

experimental blocks corresponding to picture exposure and exercised choice respectively,

we plot the observed data as a time series across the replicate domain. The double headed

arrows indicate the replicates for which evolutionary spectra were detected, with the width

determined by the support of the underlying Haar wavelet. The right-hand axis gives the

wavelet scale j of the spectral estimates tested and the vertical position of the arrow within

each wavelet scale indicates the Haar scale i with the topmost arrow corresponding to the

finest of the Haar scales tested. Both locations, 560 and 1610, have over 50% of hypothesis

tests rejected under the FDR control, with the majority of rejections occurring over the

final 128 replicates, indicating memory recall activation towards the end of the experiment.

Many rejections occur for a narrower window of 16 replicates (256/24, where 4 is the finest

Haar scale tested) at the end of the replicates for location 560 and around replicate 135 for

location 1610.

Global test

For our global test, we want to obtain the best estimates for the spectral characteristics and

thus we use the estimation procedure inclusive of smoothing and correction, as described

above. To test for a global replicate-effect we proceed as follows. For B = 100 bootstraps,

we bootstrap the process under the null hypothesis that assumes spectral constancy over the

replicates,
¯̂
Sj(

k
T ), and estimate the corresponding process spectra. Next, we then compute

the test p-value by means of step 4 in BootReplicateTest (of algorithm 1). For the correct

trials of the Hc data we obtain a p-value of < 0.01 which gives a strong indication that a

replicate-effect exists, in agreement to the findings of the location-specific tests. Figure 66

displays the histograms of the bootstrap test statistics benchmarked against the observed

test statistics.
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Figure 64: Location-specific rejection plots for the replicate-effect test carried out on the correct
trials of the hippocampus (Hc) dataset. (a): binary plot where a vertical line to 1 indicates that
the test identified the location as rejecting the null hypothesis of constancy; (b): percentage of
hypothesis tests rejected for each location; (c): percentage of hypothesis tests rejected for each
location thresholded at 25%; (d): as in (a) but only for rejected locations with two rejected
neighbour locations each side; (e): as in (b) but only for rejected locations with two rejected
neighbour locations each side; (f): as in (c) but only for rejected locations with two rejected
neighbour locations each side. The scale for plots (b), (c), (e) and (f), indicates the percentage of
rejections out of 40 hypothesis tests per location.
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Figure 65: Replicate domain plots for correct hippocampus trials at times 560 (left) and 1610
(right). Trials where replicate-effect detections were made are indicated by the double headed
arrows, and the corresponding wavelet scales j = 3, ..., 9 are indicated on the right axis. Within
each wavelet scale, the vertical position of the arrow indicates in ascending order the Haar scales
i = 0, ..., 4.
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Figure 66: Histogram of the bootstrap test statistics for the global replicate-effect test carried out
on the correct trials of the hippocampus (Hc) dataset.
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5.4.2 Correct trials for the nucleus accumbens

Previously in Chapter 4, we estimated the spectral characteristics of the NAc correct trials

by means of non-decimated discrete wavelets from Daubechies Least Asymmetric family

with 6 vanishing moments (DLA6), applied both time and replicate (M = 10) smoothing,

and finally corrected for bias. The evolutionary behaviour was captured visually in Figure 41

(Chapter 4). We are aiming to assess whether or not the macaque has learned to process

the reward as the experiment progresses. Moreover, if the macaque has indeed learned, we

would like to identify the specific trial(s) over which the evidence of learning is manifest.

Location-specific test

For our location-specific test, we compute unsmoothed spectral estimates from the raw

periodograms using Haar wavelets instead of DLA6. Similar to the location-specific tests

for the hippocampus, for each location there are a total of 40 hypothesis tests and we

tackle the multiple-hypothesis testing by using the FDR procedure. The test identified 344

locations as breaking the null hypothesis of spectral constancy over the replicates and we

plot these locations in plot (a) of Figure 67. Once again we learn that several locations

were identified by the test and whilst this is important, further information is gained by

considering the percentage of the 40 hypothesis tests per location visualised in plot(b).

Evidently, there are far fewer locations with a higher number of rejections than 1 in 40.

It appears that for the NAc, whilst the test gives evidence of a replicate-effect for some

locations, the potential evolution of the spectra across the replicates is not as substantial

as was identified for the Hc. We observe that locations around timepoint 512, the start

of the second experimental time block, are also identified by the test for the NAc, which

is interesting as this observation is not as clear in the spectral estimates of Figure 41,

top row. However, when inspecting the top right plot of Figure 45 (Chapter 4), a small

spike in activity can be observed towards the end of the rescaled replicates at around

timepoint 512 (0.25 in rescaled time). This demonstrates how our location-specific test

can be utilised as an essential tool to screen the locations that are ‘successfully’ (decided

through interpretation of the percentage of hypothesis tests rejected) rejected by the test

as displaying a potential replicate-effect. We then carry out further analysis on the spectral

characteristics at these locations, instead of simply plotting and comparing the within-trial

evolutionary wavelet spectra. To gain further clarity on which rejected locations give the

strongest evidence for the existence of spectral evolution over the replicates, we eliminate

weakly rejected locations and display the results through plots (a)-(f) in Figure 67. Quite

clearly, the impact of thresholding the rejected locations drastically narrows down the

locations of most interest. In fact plot (f) indicates that there was no local window of (5)

neighbouring locations with 25% or more significant Haar wavelet coefficients (rejected

hypothesis tests).

Plots in Figure 68 give an indication of the replicates for which an evolution in the

wavelet spectra was detected for specific time locations 565 (left) and 1865 (right), indicative

of the visual exposure and task times of the experiment, respectively. A description for

the plots’ construction was previously given in the discussion for the hippocampus. Both

locations 565 and 1865 have under 25% of hypothesis tests rejected under the FDR control.
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Figure 67: Location-specific rejection plots for the replicate-effect test carried out on the correct
trials of the nucleus accumbens (NAc) dataset. (a): binary plot where a vertical line to 1 indicates
that the test identified the location as rejecting the null hypothesis of constancy; (b): percentage
of hypothesis tests rejected for each location; (c): percentage of hypothesis tests rejected for
each location thresholded at 25%; (d): as in (a) but only for rejected locations with two rejected
neighbour locations each side; (e): as in (b) but only for rejected locations with two rejected
neighbour locations each side; (f): as in (c) but only for rejected locations with two rejected
neighbour locations each side. The scale for plots (b), (c), (e) and (f), indicates the percentage of
rejections out of 40 hypothesis tests per location.
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Of these, most rejections occur over the final 128 replicates, indicating response to reward

expectation towards the end of the experiment. Few rejections occur for a narrow window

of 16 replicates (256/24, where 4 is the finest Haar scale tested) at the end of the replicates

for location 565 and around replicate 220 for location 1865.
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Figure 68: Replicate domain plots for correct nucleus accumbens trials at times 565 (left) and
1865 (right). Trials where replicate-effect detections were made are indicated by the double headed
arrows, and the corresponding wavelet scales j = 7, 8, 9 are indicated on the right axis. Within
each wavelet scale, the vertical position of the arrow indicates in ascending order the Haar scales
i = 0, ..., 4.

Global test

For the global test, we obtain our spectral estimates with smoothing and correction applied.

We carry out the global test on the NAc dataset and following algorithm 1 we obtain a

p-value of 1, hence not enough evidence is present to deem a significant replicate-effect

exists along the macaque’s NAc response across the experiment. We plot the histogram of

the bootstrap test statistics in Figure 69, highlighting these are larger than the observed

test statistics. This indicates a greater variability in the spectral estimates under the null

hypothesis of no replicate-effect than in the original dataset.

To attempt to understand why the test does not identify a global replicate-effect, in

Figure 70 we examine the spectral estimates of the correct NAc trials, the averaged (over

replicates) NAc spectral estimates
¯̂
Sj(

k
T ), and the spectral estimates computed for one

bootstrapped process. The test statistics that we compute give a measure for the difference

between the averaged spectral estimates (2nd row) and; (for Tobs
ave) the spectral estimates

(top row); (for T
(b)
ave) the bootstrap spectral estimates (3rd row). Visually it is clear how

T
(b)
ave computed for the estimated spectra of one bootstrap process (displayed in Figure 70)

is larger than Tobs
ave. This observation thus supports the outcome of not enough evidence

being present to suggest a global replicate-effect exists for the correct trials of the NAc.

Note, the averaged bootstrap spectral estimates (simulated under the null hypothesis) are

similar both to their ‘truth’ and original NAc estimates (see Figure 70, bottom row versus

2nd and top rows), thus leading us towards two points to discuss.
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Figure 69: Histogram of the bootstrap test statistics for the global replicate-effect test carried out
on the correct trials of the nucleus accumbens dataset.

Firstly, recall that the simulation study for both location-specific and global tests

highlighted a weaker test performance when the spectral evolution across the replicates

is very slow (e.g. simulation 1B in Section 5.2.1 and simulation p1 (b1) in Section 5.3.1).

Similarly, the Haar wavelet based test of stationarity of Nason (2012, 2013) struggled to

identify nonstationarity for their models P2 and P3 which both contained wavelet spectra

defined to evolve very slowly over time. This is likely the situation here, as displayed in

Figure 70 (top row). Secondly, recall that both the localised and global tests, are developed

under the assumption of uncorrelated replicates. However, the NAc analysis in Chapter 4

(Section 4.3) uncovered the existence of a potential coherence along the replicate dimension,

thus this dataset is likely evading this underpinning assumption.

5.4.3 Concluding remarks on the real data analysis

We have applied both the location-specific and global tests on the correct trials of the

macaque hippocampus (Hc) and nucleus accumbens (NAc) datasets. Both test are capable

of identifying the existence of a replicate-effect across the spectral estimates for the Hc,

with the addition of the location-specific test identifying both the replicates (trials) and

time locations within a replicate where activity was captured by the REv-LSW model. For

the NAc, the location-specific test identified locations that rejected the null hypothesis of

spectral constancy over the replicate domain, but the global test did not find evidence for a

significant effect to be present. Our further investigation into this highlights the sensitivity

of the test to the slowness of the spectral evolution over the replicates. Additionally, in

Chapter 4 (Section 4.3) we allowed for the possibility of correlation between trials in the

models for the real data, and there we estimated the coherence structure. We recall that

there was little evidence found to suggest correlation between trials existed within the Hc

data however we did identify correlation for the NAc data. We note that both our tests

were constructed under the uncorrelated trials assumption, which appears reasonable for

the Hc data based on our analysis of the coherence, but less so for the NAc data which

was found to show evidence of a replicate coherence. For the global-test, inclusion of an

estimated coherence structure between trials could improve the bootstrap simulation and

estimation, therefore an important next step in the methodology would be to develop novel

tests that incorporate between-trial correlation.
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Figure 70: Time-scale nucleus accumbens (NAc) plots for the correct trials computed for the
global test of replicate-effect. Spectral estimates are shown for the average over 30 replicates in the
beginning, middle and end of the experiment. Top: spectral estimates of the correct NAc trials;
2nd : averaged spectral estimates across the experiment, under the assumption of spectral constancy
over the replicates; 3rd : spectral estimates corresponding to one bootstrap process; bottom: spectral
estimates averaged over 100 bootstrap realisations.

5.5 Concluding remarks

In this chapter we have proposed two wavelet-based tests for the existence of a replicate-

effect along a replicate time series consisting of individual time series (replicates) that

feature nonstationarities across both time and replicate-dimensions. The replicate-effect is

to be understood as a measure of the departure from constancy of the process spectral

characteristics across the replicates, framed here by means of a REv-LSW meta-process

representation. Through simulation studies and an application to real data from the

neuroscience, both tests have been shown to perform successfully, with weaker performance

identified for processes with very slowly evolving amplitudes.

So, which test should we use? From the results, a natural order presents itself, with

the global test offering a way to determine whether over all wavelet scales and times,

a significant replicate-effect exists. Hence our recommendation is that the global test

could be used as a first step in an analysis of the characteristics of a replicate time series

modelled as a REv-LSW process. Its purpose could simply be a clarification tool. The

location-specific test would then provide a more in-depth assessment through carrying out

multiple hypothesis tests of replicate-effect for each location. Informed by the application

context, the user can determine which locations are significantly rejected by the test
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through assessing the percentage of the multiple hypothesis test per location that reject

the null hypothesis of spectral constancy over the replicates.

Crucial to the proposed tests of replicate-effect is the assumption of uncorrelated

replicates, hence naturally a next step would be to develop the tests for replicate-effect that

incorporate the potential for dependence between replicates. A different direction would

be to gain a further understanding into how many significant Haar wavelet coefficients

(multiple hypothesis test rejections) would be sufficient to deem a location as significantly

rejected by the location-specific test.
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6 Conclusions and further work

This thesis has proposed a novel wavelet-based model that provides a stochastic represen-

tation to a meta-process of ordered replicates and simultaneously captures evolutionary

dynamics of a nonstationary process within individual replicates and across all replicates.

Additionally, we have proposed two tests for deciding whether a replicate-effect is present

over the meta-process. The methodology developed throughout this thesis has been mo-

tivated by the specific neuroscience application that records the brain process dynamics

of a macaque monkey during an associative learning experiment. The results obtained

for the analysis of the macaque data have demonstrated the major advantages of the

model proposed in this thesis, such that (i) the model captures evolutionary brain process

characteristics localised across replicates and locally in time within each replicate, and (ii)

it takes into account the correlation of brain signals across all trials of the experiment. We

now give a summary of the main contributions developed in Chapters 2, 3 and 5, alongside

a discussion of their application to the macaque learning experiment in Chapters 4 and 5.

We also highlight potential avenues for future work, where some suggestions are a natural

next step theoretically and others have been brought to light through the real data analysis.

REv-LSW model under the assumption of uncorrelated replicates

In Chapter 2 we proposed the replicate-evolving locally stationary wavelet (REv-LSW)

model that captures the evolutionary process characteristics across time within an individual

replicate and across all replicates. The methodology in this chapter is developed under the

assumption that replicates are uncorrelated, an assumption also made in Fiecas and Ombao

(2016). The REv-LSW model provides a wavelet-based solution to overcome the misleading

results obtained from approaching replicate time series as identical process realisations.

Underpinned by the LSW framework of Nason et al. (2000) and adopting the concept of

rescaled time (Dahlhaus, 1997) in the replicate domain, we developed novel evolutionary

wavelet quantities and associated estimation theory. Additionally, to obtain well-behaved,

consistent spectral estimates we employed local smoothing solely across replicates and

further considered smoothing across both replicates and time (within each replicate).

Through simulation studies we demonstrated the advantage of the proposed REv-LSW

model against the classical approach of estimating each replicate spectrum independently

and then studying the average spectrum over all replicates. Visually, the REv-LSW model

successfully captured evolution in the spectra across the replicates, identifying new features

that were unattainable through the classical approach. Additionally, we reported quantifi-

able measures, such as the mean squared errors (MSE), to assess the performance of our

model. The MSEs proved the better performance of the REv-LSW model and furthermore

gave evidence of improved spectral estimates via smoothing over both replicates and time.

The MSEs also validated our asymptotic estimation theory, showing improved results as

T,R→ ∞.

REv-LSW model embedding cross-replicate dependence

A serious limitation of the methodology developed in Chapter 2 and also in the Fourier-

based approach of Fiecas and Ombao (2016), is the assumption of uncorrelated replicates.
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Thus, in Chapter 3 we developed the theory to allow for cross-replicate dependence by

means of a between-replicate coherence structure. Naturally, the proposed general model

incorporates the scenario of uncorrelated replicates as a particular case. The associated

estimation theory encompasses between-replicate variation through estimation of the

between-replicate evolutionary wavelet spectrum, which in turn allows us to estimate the

replicate-coherence structure.

The simulation studies proved that the between-replicate coherence can be well estimated

and in doing so, provides novel, useful information about the replicate evolution. Thus,

allowing for replicate-coherence in the REv-LSW model further strengthens the argument

against approaching replicate time series as identical realisations (e.g. classical LSW).

The MSEs obtained for the between-replicate coherence estimates again demonstrated

the improved performance via replicate- and time-smoothing with further decreases in

the MSE when the replicate-smoothing window (2M + 1) is increased. Additionally, the

MSEs highlighted that the correction procedure, necessary to ensure spectral estimates are

positive, has the undesired effect of increasing the MSEs and introducing bias as T,R→ ∞.

However, Sanderson et al. (2010) reported similar effects for their bivariate coherence

estimation framework and so it is unsurprising to see these effects echoed in our results.

In Chapter 4 we applied the wavelet-based REv-LSW methodology developed in

Chapters 2 and 3 to the hippocampus (Hc) and nucleus accumbens (NAc) brain process

data recorded during the macaque associative learning experiment. The results provided

substantial evidence for the existence of evolutionary spectra in both the Hc and the NAc.

Crucially, the proposed REv-LSW model has been developed to account for between-trial

dependence and we were able to identify a moderate between-trial dependence across

neighbouring trials for the NAc. Furthermore, validation of our results was given through

bootstrapped confidence intervals for the wavelet spectrum and between-trial coherence. In

relation to the experiment, our analysis has extracted localised information in time within-

and between-trials, suggesting that the macaque is learning over the trials of the experiment.

Additionally, the dampening of NAc activity over the experiment suggests that the macaque

has learned to process reward as the experiment progresses. The moderate between-trial

dependence captured within the NAc suggests that expectations (e.g. of a juice reward)

can influence the actions of the macaque across neighbouring trials. Note, such inference

would not have been attainable through performing the analysis on the macaque data using

the classical LSW approach. The application to a neuroscience problem is just one example

of the utility of the methodology developed in this thesis. We foresee the methodology

to be advantageous within other experimental areas where wavelet spectral analysis has

proved to be ideally suited, e.g. circadian biology (Hargreaves et al., 2018, 2019), .

A next step for further research would be to investigate the REv-LSW local (partial)

autocorrelation function as introduced for the LSW setup by Killick et al. (2020), which

could present additional information on the underlying structure of the replicate time

series.

A natural extension of the REv-LSW model would be to develop the methodology for

multivariate replicate time series and the review of Fiecas and Ombao (2016) in Chapter

1 gives a flavour of how this could be achieved using Fourier methods. Wavelet-based

multivariate methods have been developed by Sanderson et al. (2010) and Park et al.
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(2014). A multivariate approach would allow us to additionally define and investigate the

variate replicate-coherence, providing an analysis between channels as seen for the bivariate

case of the hippocampus and nucleus accumbens data in Fiecas and Ombao (2016) and

Gorrostieta et al. (2011).

During the simulation studies and macaque data analysis, we commented on the choice

of M that determines the length of the replicate-smoothing window. We recommended a

window length of (2M + 1) with M = 3
4

√
R based on our findings. Future work could see

the development of an automatic replicate-smoothing bandwidth selector, analogous to the

AutoBestBW function in the locits package (Nason, 2013) developed for use in R.

Another avenue for future research stems from the discussion on practical implementa-

tion in Remark 3.2.1 (Chapter 3). We noted that one possibility to ensure that spectral

estimates are positive, would be to truncate the correction matrix A−1 at zero. However,

as seen in the simulation studies and macaque data analysis, this approach introduced bias.

Sanderson (2010) and Sanderson et al. (2010) investigated other approaches and reported

better results when additionally employing smoothing over scales. We conjecture that this

is also applicable for our work as a further step, to be done after smoothing through time,

and assessment of the improved estimation this approach could bring to our methodology

makes for interesting future research.

Ordered replicates and thus smoothness assumptions underpin the local averaging

approach proposed in this thesis. Further work could investigate estimation when the

smoothness assumptions falter. However, in the case that the smoothness between replicates

breaks and there is no need for an ordering, clustering methods (Hargreaves et al., 2018;

Ting et al., 2018) could provide a preferred and appropriate analysis.

A further avenue for research would be to investigate a flexible REv-LSW model hinged

upon a replicate-adaptive wavelet construction, which would in turn further tune the

spectral and coherence estimates.

Tests of replicate-effect

Chapter 5 introduces two novel hypothesis tests to assess whether a significant replicate-

effect is manifest across replicates of the meta-process, with both tests underpinned by

the methodology developed in Chapter 2. The location-specific test provides a detailed

investigation for the presence of a replicate-effect, identifying the replicates, r, for which

evolutionary spectra are detected and furthermore identifying the specific times, k, for

which a replicate-effect is manifest. The global test serves the purpose to give an overall

diagnostic as to whether a replicate-effect exists as opposed to assessing the individual

time locations.

For well-behaved processes, the simulation studies for both tests demonstrated their

applicability and their favourable performance was evidenced through relevant quantifiable

measures. For both tests we identified a test sensitivity when the process exhibits very

slowly varying amplitudes across replicates, however Nason (2012, 2013) reported similar

findings for the wavelet-based test of stationarity developed within.

Application of both tests to the correct trials of the macaque hippocampus (Hc) and

nucleus accumbens (NAc) datasets corroborated the results on the real data obtained in

Chapter 4. The macaque data analysis in Chapter 5 demonstrated the utility of the tests

124



as tools to first assess a replicate time series for the presence of a replicate-effect. For the

Hc, the global test gave a strong indication (p-value < 0.01) that a replicate-effect exists.

The location-specific test gave a further informative assessment, identifying the trials for

which the replicate-effect was detected and additionally at which times within a trial the

replicate-effect is manifest. Interestingly, the time points identified by the test coincided

with the experimental time blocks corresponding to picture exposure and choice making.

For the NAc, the location-specific test detected the presence of a replicate-effect for some

locations but the global test did not find evidence for the existence of a significant effect.

Recalling that the tests were developed under the assumption of uncorrelated replicates,

we made note that this assumption appears reasonable for the Hc based on finding little

evidence for correlation between trials of the Hc data in Chapter 4. However, for the NAc

evidence of a replicate coherence was found.

Both proposed tests of replicate-effect have been developed under the crucial assumption

that replicates are uncorrelated. Naturally, a next step for future research would be to

develop the tests of replicate-effect that incorporate the potential for dependence between

replicates, underpinned by the methodology developed in Chapter 3. It would then be

interesting to assess how well the tests that incorporate replicate-dependence are able to

find evidence for the existence of a replicate-effect in the NAc.

The macaque data analysis also highlighted that future work could be to investigate

the number of significant Haar wavelet coefficients (multiple hypothesis test rejections)

that would be sufficient to deem a location as significantly rejected by the location-specific

test.
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A Appendix: Proofs

A.1 Proofs of results on the asymptotic behaviour of proposed estimators

In this chapter, we give details of the proofs in Chapters 2 and 3 using the notation

described therein. In order to ease repetition between proofs, we have chosen to present the

proofs that would allow for the coherence/non-coherence counterpart to easily be obtained

following similar steps.

For ease we recall here that the auto- and cross-correlation wavelets are defined for τ ∈ Z
as Ψj(τ) =

∑
k∈Z ψj,k(0)ψj,k(τ) and Ψj,l(τ) =

∑
k∈Z ψj,k(0)ψl,k(τ) respectively, where in

general ψj,k(τ) = ψj,k−τ are compactly supported discrete wavelets as defined in Nason

et al. (2000). Note that from their construction, Ψj(−τ) = Ψj(τ) and Ψj,l(−τ) = Ψl,j(τ),

and both have compact support with length of order 2j , 2j + 2l respectively (Nason et al.,

2000; Sanderson et al., 2010).

In what follows, wherever the summation domain is not specified, it is to be understood

as Z for time indices (e.g. k, n, τ) and as Z⋆+ (strictly positive integers) for scale indices

(e.g. j, j′, l).

We also recall the autocorrelation wavelet inner product matrices, defined as

Aj,l =
∑
τ

Ψj(τ)Ψl(τ) =
∑
τ

|Ψj,l(τ)|2 ,

Aτ
j,l =

∑
n

Ψj(n)Ψl(n+ τ) =
∑
n

Ψj,l(n)Ψj,l(n+ τ),

with properties Aj,l ≥ 0, Aj,l = Al,j ,
∑

j 2
−jAj,l = 1 (Fryzlewicz et al., 2003).

In the proofs that follow we make use of the results in the following lemmas, whose

proofs appear in Appendix A.2. Note, these results are obtained in the presence of cross-

replicate dependence but also hold for their non-coherence counterpart as described in the

proofs.

Lemma A.1.1. Under the assumptions of Definition 3.1.1, we have at each scale j and for

every rescaled time and replicates, z and ν, ν ′ respectively,
∑∞

l=1Aj,lSl (z, ν, ν
′) = O(2j).

Lemma A.1.2. Under the assumptions of Definition 3.1.1, we have at each scale j

and for every rescaled time and replicates, z and ν, ν ′ respectively, and time-lag τ,∑∞
l=1A

τ
j,lSl (z, ν, ν

′) = O(2j).

Lemma A.1.3. Under the assumptions of Definition 3.1.1, we have at scales j, j′ and for

every rescaled time and replicates, z and ν, ν ′ respectively, and time-lag τ,

∞∑
l=1

∣∣∣∣∣∑
n∈Z

Ψj,j′(n)Ψl(n+ τ)Sl
(
z, ν, ν ′

)∣∣∣∣∣ = O(2(j+j
′)/2).

Additionally, for the results embedding replicate dependence, we make use of the following

lemmas.

Lemma A.1.4. Under the assumptions of Definition 3.1.1, we have a sequence {Bj} of

uniformly bounded Lipschitz constants in j with
∑

j 2
jBj <∞ such that for any replicates
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r, r′ and times k, n∣∣∣∣W̃j
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T
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ρj

(
k

T
,
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R
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r′

R

)∣∣∣∣ ≤ |n|BjT−1. (70)

Note that the above result means that the replicate spectrum Sj(· , ν, ν ′) is Lipschitz
continuous in the rescaled time argument within rescaled replicates ν, ν ′.

Lemma A.1.5. Under the assumptions of Definition 3.1.1, we have a sequence {B′
j} of

uniformly bounded Lipschitz constants in j with
∑

j 2
jB′

j <∞ such that for any replicates

r, r′ and times k, n∣∣∣∣W̃j

(
k

T
,
r + s

R

)
W̃j

(
k

T
,
r′ + s

R

)
ρj

(
k

T
,
r + s

R
,
r′ + s

R

)
−W̃j

(
k

T
,
r

R

)
W̃j

(
k

T
,
r′

R

)
ρj

(
k

T
,
r

R
,
r′

R

)∣∣∣∣ ≤ |s|B′
jR

−1. (71)

Note that the above result effectively states that the replicate spectrum Sj(z, ν+· , ν ′+· )
is Lipschitz continuous in the rescaled replicate arguments.

A.1.1 Proofs of Propositions 2.1.10 and 3.1.7

Proof of Proposition 3.1.7 (Expectation) in the presence of cross-replicate

dependence

Using Definition 3.1.1 of the REv-LSW process and its replicate raw periodogram (equa-

tion (53)), we obtain

E[I
(r,r′);R
j,k;T ] = E[dr;Rj,k;Td

r′;R
j,k;T ]

= E

[{∑
t

Xr;R
t;T ψj,k(t)

}{∑
t

Xr′;R
t′;T ψj,k(t

′)

}]

= E

[{∑
t

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tψl,m(t)ξ
r
l,mψj,k(t)

}

×

{∑
t′

∞∑
l′=1

∑
m′∈Z

ωr
′;R
l′,m′;Tψl′,m′(t′)ξr

′
l′,m′ψj,k(t

′)

}]

=
∑
t

∑
t′

∞∑
l=1

∞∑
l′=1

∑
m∈Z

∑
m′∈Z

ωr;Rl,m;Tω
r′;R
l′,m′;Tψl,m(t)ψl′,m′(t′)ψj,k(t)ψj,k(t

′)E
[
ξrl,mξ

r′
l′,m′

]

=
∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

{∑
t

ψl,m(t)ψj,k(t)

}2

,
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since E[ξrl,mξ
r′
l′,m′ ] = δl,l′δm,m′ρr,r

′;R
l,m;T and so l = l′ and m = m′. Letting n := m− k yields

E[I
(r,r′);R
j,k;T ] =

∞∑
l=1

∑
n∈Z

ωr;Rl,n+k;Tω
r′;R
l,n+k;Tρ

r,r′;R
l,n+k;T

{∑
t

ψl,n+k−tψj,k−t

}2

,

=
∞∑
l=1

∑
n∈Z

{
Sl

(
n+ k

T
,
r

R
,
r′

R

)
+O(C ′

lT
−1) +O(D′

lR
−1)

}
(Ψj,l(−n))2 ,

where above we also used the definition of the cross-correlation wavelets, as well as the

result in Proposition 3.1.5 proof, recalled below∣∣∣ω⌊νR⌋;R
j,⌊zT ⌋;T ω

⌊ν′R⌋;R
j,⌊zT ⌋;T ρ

⌊νR⌋,⌊ν′R⌋;R
j,⌊zT ⌋;T − Sj(z, ν, ν

′)
∣∣∣ = O(C ′

jT
−1) +O(D′

jR
−1), (72)

where C ′
j and D

′
j can be shown to also fulfill equations of the type in Definition 3.1.1, 3c

and 4b.

Then, by Lemma A.1.4 and using a substitution n := −n it follows that

E[I
(r,r′);R
j,k;T ] =

∞∑
l=1

∑
n∈Z

(
Sl

(
k

T
,
r

R
,
r′

R

)
+O(|n|BlT−1) +O(C ′

jT
−1) +O(D′

jR
−1)

)
(Ψj,l(n))

2 ,

=

∞∑
l=1

∑
n∈Z

(
Sl

(
k

T
,
r

R
,
r′

R

)
(Ψj,l(n))

2

)

+

∞∑
l=1

∑
n∈Z

{
O(|n|BlT−1) +O(C ′

lT
−1) +O(D′

lR
−1)
}
(Ψj,l(n))

2 , thus

=
∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(T−1)

∞∑
l=1

∑
n∈Z

Bl|n| (Ψj,l(n))
2

+O(T−1)
∞∑
l=1

∑
n∈Z

C ′
l (Ψj,l(n))

2 +O(R−1)
∞∑
l=1

∑
n∈Z

D′
l (Ψj,l(n))

2 .

The order terms above can be established as follows. Since the number of terms in the

wavelet cross-correlation is finite and bounded as a function of n (Nason et al., 2000) and

the length of the compact support of Ψ2
j,l is bounded by K(2j + 2l) for some constant K

(Sanderson et al., 2010), we have∑
l

∑
n

Bl|n|O(T−1)Ψ2
j,l(n) ≤ O(T−1)

∑
l

(2j + 2l)BlAj,l,

≤ O(2jT−1)
∑
l

BlAj,l +O(T−1)
∑
l

2lBlAj,l,

= O(2jT−1), (73)

where we used
∑

lBlAj,l =
∑

l 2
lBl2

−lAj,l ≤
∑

l′ 2
l′Bl′

∑
l 2

−lAj,l <∞ since
∑

l 2
lBl <∞
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and
∑

l 2
−lAj,l = 1 (Fryzlewicz et al., 2003), and

T−1
∑
l

2lBlAj,l = 2jT−1
∑
l

2lBl2
−jAj,l,

≤ 2jT−1
∑
l

2lBl
∑
j′

2−j
′
Aj′,l

 ,

= O(2jT−1),

again as
∑

l 2
lBl <∞ and

∑
j 2

−jAj,l = 1.

Using the definition of the A matrix, Aj,l =
∑

nΨ
2
j,l(n), in the next order term, we

obtain ∑
l

∑
n

D′
lO(R−1)Ψ2

j,l(n) = O(R−1)
∑
l

2lD′
l2

−lAj,l,

≤ O(R−1)
∑
l′

2l
′
D′
l′

∑
l

2−lAj,l,

= O(R−1)

where we used
∑

l 2
lD′

l <∞ and
∑

l 2
−lAj,l = 1 (Fryzlewicz et al., 2003). Using the same

set of arguments and the condition
∑

l 2
lC ′
l <∞, we also have

∑
l

∑
nC

′
lO(T−1)Ψ2

j,l(n) =

O(T−1).

Hence, retaining the maximum order terms, we have

E[I
(r,r′);R
j,k;T ] =

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(2jT−1) +O(R−1),

which concludes the expectation part of the proof.

Proof of Proposition 3.1.7 (Variance) in the presence of cross-replicate depen-

dence

For ease of notation let Xr;R
t;T = Xr

t and dr;Rj,k;T = drj,k.

E
[
I
(r,r′);R
j,k;T I

(r,r′);R
j′,k′;T

]
= E

[
drj,kd

r′
j,kd

r
j′,k′d

r′
j′,k′

]
= E

[∑
t

Xr
t ψj,k(t)

∑
t′

Xr′
t′ ψj,k(t

′)

×
∑
h

Xr
hψj′,k′(h)

∑
h′

Xr′
h′ψj′,k′(h

′)

]
=
∑
t

∑
t′

∑
h

∑
h′

ψj,k(t)ψj,k(t
′)ψj′,k′(h)ψj′,k′(h

′)E
[
Xr;R
t;T X

r′;R
t′;T X

r;R
h;TX

r′;R
h′;T

]
.

(74)

Using the result of Isserlis (1918) for zero-mean Gaussian random variables, we have

E
[
Xr
tX

r′
t′ X

r
hX

r′
h′

]
= E

[
Xr
tX

r′
t′

]
E
[
Xr
hX

r′
h′

]
+E [Xr

tX
r
h]E

[
Xr′
t′ X

r′
h′

]
+E

[
Xr
tX

r′
h′

]
E
[
Xr′
t′ X

r
h

]
,

(75)
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and substituting (75) into (74) gives that E
[
I
(r,r′);R
j,k;T I

(r,r′);R
j′,k′;T

]
= α+ β + γ.

Let us first consider

E
[
Xr
tX

r′
t′

]
= E

[{ ∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tψl,m(t)ξ
r
l,m

}{ ∞∑
l′=1

∑
m′∈Z

ωr
′;R
l′,m′;Tψl′,m′(t′)ξr

′
l′,m′

}]

=
∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tψl,m(t)
∞∑
l′=1

∑
m′∈Z

ωr
′;R
l′,m′;Tψl′,m′(t′)E

[
ξrl,mξ

r′
l′,m′

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T ψl,m(t)ψl,m(t

′), (76)

since E
[
ξrl,mξ

r′
l′,m′

]
= δl,l′δm,m′ρr,r

′;R
l,m;T and so (76) is obtained for l = l′ and m = m′.

Then the first term in equation (75) becomes

E
[
Xr
tX

r′
t′

]
E
[
Xr
hX

r′
h′

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T ψl,m(t)ψl,m(t

′)

×
∞∑
e=1

∑
f∈Z

ωr;Re,f ;Tω
r′;R
e,f ;Tρ

r,r′;R
e,f ;T ψe,f (h)ψe,f (h

′).

Thus the first term in equation (74), α, can be written as

α =
∑
t

∑
t′

∑
h

∑
h′

ψj,k(t)ψj,k(t
′)ψj′,k′(h)ψj′,k′(h

′)E
[
Xr
tX

r′
t′

]
E
[
Xr
hX

r′
h′

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

∑
t

ψl,m(t)ψj,k(t)
∑
t′

ψl,m(t
′)ψj,k(t

′)

×
∞∑
e=1

∑
f∈Z

ωr;Re,f ;Tω
r′;R
e,f ;Tρ

r,r′;R
e,f ;T

∑
h

ψe,f (h)ψj′,k′(h)
∑
h′

ψe,f (h
′)ψj′,k′(h

′)

=
∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

{∑
t

ψl,m(t)ψj,k(t)

}2

×
∞∑
e=1

∑
f∈Z

ωr;Re,f ;Tω
r′;R
e,f ;Tρ

r,r′;R
e,f ;T

{∑
h

ψe,f (h)ψj′,k′(h)

}2

.

Using the result from the expectation part of the proof, namely

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

{∑
t

ψl,m(t)ψj,k(t)

}2

=
∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(2jT−1) +O(R−1),

we can re-write
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α =

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(2jT−1) +O(R−1)

)

×

( ∞∑
e=1

Aj′,eSe

(
k′

T
,
r

R
,
r′

R

)
+O(2j

′
T−1) +O(R−1)

)
,

=

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

))( ∞∑
e=1

Aj′,eSe

(
k′

T
,
r

R
,
r′

R

))
+O(2j+j

′
T−1) +O(2max{j,j′}R−1),

where the last equality follows from Lemma A.1.1.

In the same manner as for (76), we can show that

E [Xr
tX

r
h]E

[
Xr′
t′ X

r′
h′

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r;R
l,m;Tρ

r,r;R
l,m;Tψl,m(t)ψl,m(h)

×
∞∑
l′=1

∑
m′∈Z

ωr
′;R
l′,m′;Tω

r′;R
l′,m′;Tρ

r′,r′;R
l′,m′;Tψl′,m′(t′)ψl′,m′(h′),

E
[
Xr
tX

r′
h′

]
E
[
Xr′
t′ X

r
h

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T ψl,m(t)ψl,m(h

′)

×
∞∑
l′=1

∑
m′∈Z

ωr;Rl′,m′;Tω
r′;R
l′,m′;Tρ

r,r′;R
l′,m′;Tψl′,m′(t′)ψl′,m′(h).

Using the general property ρr,r;Rl,m;T = 1 for any l,m, r, the second term in (74), β, can

be written

β =
∑
t

∑
t′

∑
h

∑
h′

ψj,k(t)ψj,k(t
′)ψj′,k′(h)ψj′,k′(h

′)E [Xr
tX

r
h]E

[
Xr′
t′ X

r′
h′

]
=

∞∑
l=1

∑
m∈Z

(
ωr;Rl,m;T

)2∑
t

ψl,m(t)ψj,k(t)
∑
h

ψl,m(h)ψj′,k′(h)

×
∞∑
l′=1

∑
m′∈Z

(
ωr

′;R
l′,m′;T

)2∑
t′

ψl′,m′(t′)ψj,k(t
′)
∑
h′

ψl′,m′(h′)ψj′,k′(h
′). (77)

Making the substitution m = n+ k and using the approximation (72), we can write

first term in the product (77) as follows

βI =
∞∑
l=1

∑
n∈Z

(ωr;Rl,n+k;T )
2
∑
t

ψl,n+k−tψj,k−t
∑
h

ψl,n+k−hψj′,k′−h

=

∞∑
l=1

∑
n∈Z

{
Sl

(
n+ k

T
,
r

R

)
+O(D′

lR
−1) +O(C ′

lT
−1)

}∑
t

ψl,n−tψj,−t
∑
h

ψl,n+k−hψj′,k′−h

=

∞∑
l=1

∑
n∈Z

{
Sl

(
k

T
,
r

R

)
+O(|n|L′

lT
−1) +O(D′

lR
−1) +O(C ′

lT
−1)

}
×
∑
t

ψl,n−tψj,−t
∑
h

ψl,n+k−hψj′,k′−h,

where in the last equality we have used the Lipschitz continuity of Sl(· , r/R, r/R).
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Making the substitution u = h− t, gives∑
n∈Z

∑
t

ψl,n−tψj,−t
∑
h

ψl,n+k−hψj′,k′−h =
∑
u

Ψj,j′(u)Ψl(u− k + k′),

where Ψj,j′(τ) =
∑

k ψj,kψj′,k−τ defines the cross-scale autocorrelation wavelets. The sums

of wavelet products above were manipulated as follows,∑
n∈Z

∑
t

ψl,n−tψj,−t
∑
h

ψl,n+k−hψj′,k′−h =
∑
n∈Z

∑
t

ψl,n−tψj,−t
∑
u

ψl,n+k−u−tψj′,k′−u−t

=
∑
u

∑
t

ψj,−tψj′,k′−u−t
∑
n∈Z

ψl,n−tψl,n+k−u−t

=
∑
u

Ψj,j′(u− k′)Ψl(u− k),

=
∑
u

Ψj,j′(u)Ψl(u− k + k′),

where for the last equality we used a substitution u := u − k′. Equivalently, using the

first result in the proof of Lemma A.1.3, the above could have been directly written as∑
uΨj,l(u)Ψj′,l(u− k + k′).

Hence the first term in the product in equation (77) can be written as

βI =
∞∑
l=1

∑
u

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R

)
+O(2(j+j

′)/2T−1) +O(R−1), since

βI =
∞∑
l=1

Sl

(
k

T
,
r

R

)∑
n∈Z

∑
t

ψl,n−tψj,−t
∑
h

ψl,n−hψj′,−h

+
∞∑
l=1

∑
n∈Z

{
O(D′

lR
−1) +O(C ′

lT
−1) +O(|n|L′

lT
−1)
}∑

t

ψl,n−tψj,−t
∑
h

ψl,n+k−hψj′,k′−h,

=

∞∑
l=1

∑
u∈Z

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R

)
+ I + II + III.
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The term I can be bounded as follows

|I| =

∣∣∣∣∣∑
l

O(DlR
−1)

∑
u

Ψj,l(u)Ψj′,l(u− k + k′)

∣∣∣∣∣ ,
≤ O(R−1)

∑
l

(
Dl

∑
u

∣∣Ψj,l(u)Ψj′,l(u− k + k′)
∣∣) , then using Cauchy Schwarz inequality

≤ O(R−1)
∑
l

D′
l

(∑
u

|Ψj,l(u)|2
)1/2(∑

u

∣∣Ψj′,l(u− k + k′)
∣∣2)1/2

,

= O(R−1)
∑
l

D′
l(Aj,l)

1/2(Aj′,l)
1/2, from the definition of Aj,l,

= O(R−1)
∑
l

(D′
lAj,l)

1/2(D′
lAj′,l)

1/2,

≤ O(R−1)

(∑
l

D′
lAj,l

)1/2(∑
l

D′
lAj′,l

)1/2

, using again Cauchy Schwarz inequality

≤ O(R−1), since we saw in the expectation proof part that
∑
l

D′
lAj,l = O(1).

Similarly, |II| =
∣∣∑

lO(C ′
lT

−1)
∑

uΨj,l(u)Ψj′,l(u− k + k′)
∣∣ = O(T−1).

We now bound the term III,

|III| ≤
∑
l

O(LlT
−1)

(
2l + 2min{j,j′}

)∑
u

∣∣Ψj,l(u)Ψj′,l(u− k + k′)
∣∣ ,

≤ O(T−1)
∑
l

Ll

(
2l + 2min{j,j′}

)
(Aj,l)

1/2(Aj′,l)
1/2, as above

= O(T−1)
∑
l

Ll2
l(Aj,l)

1/2(Aj′,l)
1/2

+ O(T−1)
∑
l

Ll2
min{j,j′}(Aj,l)

1/2(Aj′,l)
1/2,

≤ O(T−1)2(j+j
′)/2
∑
l

Ll2
l(2−j/2A

1/2
j,l )(2

−j′/2A
1/2
j′,l )

+ O(T−1)2(j+j
′)/2
∑
l

Ll(Aj,l)
1/2(Aj′,l)

1/2, as 2min{j,j′} ≤ 2(j+j
′)/2.

The term
∑

l Ll2
l(2−j/2A

1/2
j,l )(2

−j′/2A
1/2
j′,l ) ≤

(∑
l Ll2

l2−jAj,l
)1/2 (∑

l Ll2
l2−j

′
Aj′,l

)1/2
from

the Cauchy-Schwarz inequality, and using
∑

j 2
−jAj,l = 1 and

∑
l 2
lLl < ∞, we obtain

its O(1) bound. The term
∑

l Ll(Aj,l)
1/2(Aj′,l)

1/2 ≤ (
∑

l LlAj,l)
1/2 (∑

l LlAj′,l
)1/2

= O(1)

since we already established that
∑

l LlAj,l <∞ in the expectation part of the proof. Thus

term III is bounded by O(2(j+j
′)/2T−1).

The same arguments can be employed for the second product term in equation (77),
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hence we can express β as

β =

( ∞∑
l=1

∑
u

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R

)
+O(2(j+j

′)/2T−1) +O(R−1)

)

×

( ∞∑
l′=1

∑
u′

Ψj,j′(u
′)Ψl′(u− k + k′)Sl′

(
k′

T
,
r′

R

)
+O(2(j+j

′)/2T−1) +O(R−1)

)
,

=

( ∞∑
l=1

∑
u

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R

))( ∞∑
l′=1

∑
u′

Ψj,j′(u
′)Ψl′(u− k + k′)Sl′

(
k′

T
,
r′

R

))
+O(2(j+j

′)/2+(j+j′)/2T−1) +O(2(j+j
′)/2R−1),

where to establish the last equality we used Lemma A.1.3.

The third term in (74), γ, can be established using a similar argument as follows.

γ =
∑
t

∑
t′

∑
h

∑
h′

ψj,k(t)ψj,k(t
′)ψj′,k′(h)ψj′,k′(h

′)E
[
Xr
tX

r′
h′

]
E
[
Xr′
t′ X

r
h

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

∑
t

ψl,m(t)ψj,k(t)
∑
h′

ψl,m(h
′)ψj′,k′(h

′)

×
∞∑
l′=1

∑
m′∈Z

ωr;Rl′,m′;Tω
r′;R
l′,m′;Tρ

r,r′;R
l′,m′;T

∑
t′

ψl′,m′(t′)ψj,k(t
′)
∑
h

ψl′,m′(h)ψj′,k′(h)

=

( ∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

∑
t

ψl,m(t)ψj,k(t)
∑
h

ψl,m(h)ψj′,k′(h)

)2

.

Using the approximation in (72) at time m = n + k and from the spectrum Lipschitz

continuity around time k, the wavelet substitution then yields

γ =

( ∞∑
l=1

∑
u

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R
,
r′

R

)
+O(2(j+j

′)/2T−1) +O(R−1)

)2

, hence

=

( ∞∑
l=1

∑
u

Ψj,j′(u)Ψl(u− k + k′)Sl

(
k

T
,
r

R
,
r′

R

))2

+O(2(j+j
′)/2+(j+j′)/2T−1) +O(2(j+j

′)/2R−1),

where the order terms are obtained using the same arguments as for the term βI above

and Lemma A.1.3.

Putting these results together, we have that

E
[
I
(r,r′);R
j,k;T I

(r,r′);R
j′,k′;T

]
= α+ β + γ,

and for j = j′ and k = k′, using the result in Lemma A.1.1 and keeping the highest order
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terms, the variance is shown to be

var
(
I
(r,r′);R
j,k;T

)
= E

[
I
(r,r′);R
j,k;T I

(r,r′);R
j,k;T

]
−E

[
I
(r,r′);R
j,k;T

]
E
[
I
(r,r′);R
j,k;T

]
,

=

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(2jT−1) +O(R−1)

)2

+

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R

))( ∞∑
l=1

Aj,lSl

(
k

T
,
r′

R

))
+O(22jT−1) +O(2jR−1),

+

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

))2

+O(22jT−1) +O(2jR−1)

−

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

))2

+O(22jT−1) +O(2jR−1),

=

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R

))( ∞∑
l=1

Aj,lSl

(
k

T
,
r′

R

))

+

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

))2

+O(22jT−1) +O(2jR−1).

Proof of Proposition 2.1.10 (Expectation) under the uncorrelated replicates

assumption

The proof follows similar steps to the expectation proof of its coherence counterpart, using

the properties given in Definition 2.1.1 of the REv-LSW process and the quantities defined

under the assumption of uncorrelated replicates. Note that I
(r,r);R
j,k;T = Ir;Rj,k;T .

Proof of Proposition 2.1.10 (Variance) under the uncorrelated replicates as-

sumption

The proof follows similar steps to the variance proof of its coherence counterpart, using

the properties given in Definition 2.1.1 of the REv-LSW process and the quantities defined

under the assumption of uncorrelated replicates.

A.1.2 Proofs of Propositions 2.1.13 and 3.1.9

Proof of Proposition 2.1.13 (Expectation) under the uncorrelated replicates

assumption

From the definition of the replicate-smoothed periodogram in (43), we have

E
[
Ĩr;Rj,k;T

]
= (2M + 1)−1

M∑
s=−M

E
[
Ir+s;Rj,k;T

]
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and substituting the asymptotic result for the expectation E
[
Ir+s;Rj,k;T

]
(see equation (42)),

we further obtain

E
[
Ĩr;Rj,k;T

]
= (2M + 1)−1

M∑
s=−M

{ ∞∑
l=1

Aj,lSl

(
k

T
,
r + s

R

)
+O(2jT−1) +O(R−1)

}
.

Using the Lipschitz continuity of the spectrum Sj(k/T, · ) in replicate-dimension, we obtain

E
[
Ĩr;Rj,k;T

]
= (2M + 1)−1

M∑
s=−M

{ ∞∑
l=1

Aj,l

(
Sl

(
k

T
,
r

R

)
+O(|s|NlR

−1)

)
+O(2jT−1) +O(R−1)

}

= (2M + 1)−1
M∑

s=−M

{ ∞∑
l=1

Aj,lSl

(
k

T
,
r

R

)
+O(|s|R−1)

∑
l

NlAj,l +O(2jT−1) +O(R−1)

}

=

∞∑
l=1

Aj,lSl

(
k

T
,
r

R

)
+O(MR−1) +O(2jT−1),

where we have used that
∑

lNlAj,l <∞ as
∑

l 2
lNl <∞ and

∑
l 2

−lAj,l = 1.

Proof of Proposition 2.1.13 (Variance) under the uncorrelated replicates as-

sumption

The definition of the replicate-smoothed periodogram in (43) coupled with the variance

result for the raw periodogram in Proposition 2.1.10, yields

var
(
Ĩr;Rj,k;T

)
= (2M + 1)−2

M∑
s=−M

var
(
Ir+s;Rj,k;T

)

= (2M + 1)−2
M∑

s=−M

2

( ∞∑
l=1

Aj,lSl

(
k

T
,
r + s

R

))2

+O(22jT−1) +O(2jR−1)

 , thus

var
(
Ĩr;Rj,k;T

)
= (2M + 1)−2

M∑
s=−M

2

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R

)
+O(|s|R−1)

∑
l

NlAj,l

)2


+ (2M + 1)−2
M∑

s=−M

{
O(22jT−1) +O(2jR−1)

}
= O(M−1)

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R

))2

+ (2M + 1)−2
M∑

s=−M

{
O(2j |s|R−1) +O(|s|2R−2)

}
+O(22j(MT )−1) +O(2j(MR)−1), from Lemma A.1.1 and as

∑
l

NlAj,l <∞.

Retaining the largest order terms, it then follows that

var
(
Ĩr;Rj,k;T

)
= O(22jM−1) +O(2jR−1) +O(MR−2) +O(22j(MT )−1) +O(2j(MR)−1),

= O(22jM−1) +O(2jR−1) +O(MR−2).

136



The expectation and variance results show that for fixed coarse enough scales j (to guard

against asymptotic bias and non-vanishing variance), the proposed replicate-smoothed

periodogram is an asymptotically consistent estimator for the spectral quantity β, as it is

asymptotically unbiased and its variance converges to zero as T → ∞, R→ ∞, M → ∞
and M/R→ 0.

Proof of Proposition 3.1.9 (Expectation) in the presence of cross-replicate

dependence

The proof follows similar steps to the expectation proof of its non-coherence counterpart,

using the replicate-smoothed periodogram in (54) and the asymptotic result for the

expectation in Proposition 3.1.7.

Proof of Proposition 3.1.9 (Variance) in the presence of cross-replicate depen-

dence

Using the replicate-smoothed periodogram definition under equation (54), we obtain

var
(
Ĩ
(r,r′);R
j,k;T

)
= (2M + 1)−2

M∑
s=−M

M∑
s′=−M

cov
(
I
(r+s,r′+s);R
j,k;T , I

(r+s′,r′+s′);R
j,k;T

)

= (2M + 1)−2
M∑

s=−M

M−s∑
η=−M−s

cov
(
I
(r+s,r′+s);R
j,k;T , I

(r+s+η,r′+s+η);R
j,k;T

)
(78)

where we have let η = s′ − s.

Let us now take

cov
(
I
(r+s,r′+s);R
j,k;T , I

(r+s+η,r′+s+η);R
j,k;T

)
= E

[
dr+sj,k d

r′+s
j,k dr+s+ηj,k dr

′+s+η
j,k

]
−E

[
dr+sj,k d

r′+s
j,k

]
E
[
dr+s+ηj,k dr

′+s+η
j,k

]
= E

[
dr+sj,k d

r+s+η
j,k

]
E
[
dr

′+s
j,k dr

′+s+η
j,k

]
+E

[
dr+sj,k d

r′+s+η
j,k

]
E
[
dr

′+s
j,k dr+s+ηj,k

]
, (79)

where we have use Isserlis’ theorem (Isserlis, 1918) in the last equality.

Using the expectation of the replicate wavelet periodogram in Proposition 3.1.7 and

the result in Lemma A.1.5, we can rewrite the terms in equation (79) as follows.

E
[
dr+sj,k d

r+s+η
j,k

]
= E

[
I
(r+s,r+s+η);R
j,k;T

]
=

∞∑
l=1

Aj,lSl

(
k

T
,
r + s

R
,
r + s+ η

R

)
+O(2jT−1) +O(R−1),

=

∞∑
l=1

{
Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
+O(|s|B′

lR
−1)

}
+O(2jT−1) +O(R−1),

=

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
+O(2jT−1) +O(|s|R−1),
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where we have also used the Lipschitz constants’ property
∑

l 2
lB′

l < ∞ that yields∑
lB

′
lAj,l <∞.

Using the same steps, we also have

E
[
dr

′+s
j,k dr

′+s+η
j,k

]
= E

[
I
(r′+s,r′+s+η);R
j,k;T

]
=

∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
+O(2jT−1) +O(|s|R−1).

Similarly, from the expectation of the wavelet periodogram in Proposition 3.1.7 and

the spectrum Lipschitz continuity in rescaled replicate, it can be shown that

E
[
dr+sj,k d

r′+s+η
j,k

]
= E

[
I
(r+s,r′+s+η);R
j,k;T

]
=

∞∑
l=1

Aj,lSl

(
k

T
,
r + s

R
,
r′ + s+ η

R

)
+O(2jT−1) +O(R−1),

=
∞∑
l=1

Aj,lSl

(
k

T
,
r + s

R
,
r + s+ η

R

)
+O(2jT−1) +O(|r − r′|R−1),

and using the same arguments as above, one obtains

E
[
dr+sj,k d

r′+s+η
j,k

]
=

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
+O(2jT−1) +O(|s|R−1),

under the condition that the replicates r, r′ are such that |r − r′| <∞.

Similarly,

E
[
dr

′+s
j,k dr+s+ηj,k

]
=

∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
+O(2jT−1) +O(|s|R−1).

Thus we can write the covariance in equation (79) as follows

cov
(
I
(r+s,r′+s);R
j,k;T , I

(r+s+η,r′+s+η);R
j,k;T

)
= E

[
dr+sj,k d

r+s+η
j,k

]
E
[
dr

′+s
j,k dr

′+s+η
j,k

]
+E

[
dr+sj,k d

r′+s+η
j,k

]
E
[
dr

′+s
j,k dr+s+ηj,k

]
= 2

( ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
+O(2jT−1) +O(|s|R−1)

)

×

( ∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
+O(2jT−1) +O(|s|R−1)

)
. (80)

Using this expression in equation (78), the variance of the replicate-smoothed wavelet

periodogram is

var
(
Ĩ
(r,r′);R
j,k;T

)
= O(M−2)

M∑
s=−M

M−s∑
η=−M−s

[term I + term II + term III + term IV + term V + term VI] ,

(81)
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where the individual terms are

‘term I’ =
∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

) ∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
,

‘term II’ =

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
O(2jT−1),

‘term III’ =
∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)
O(|s|R−1),

‘term IV’ =
∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
O(2jT−1),

‘term V’ =

∞∑
l=1

Aj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
O(|s|R−1),

and

‘term VI’ = O(|s|2R−2) +O(2j |s|(TR)−1) +O(22jT−2).

In order to assess the order of the individual terms in the variance sum, first note that

under the assumption supz,ν∈(0,1)
∑

η∈Z
∣∣c(z, ν, ν + η

R ; τ)
∣∣ = O(1) for any τ, we obtain for

time k, replicate r and replicate-lag η that
∑

η∈Z
∣∣∑∞

l=1Aj,lSl
(
k
T ,

r
R ,

r+η
R

)∣∣ = O(2j), since

using the definition of the A matrix and of the local covariance we have

∑
η∈Z

∣∣∣∣∣
∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r + η

R

)∣∣∣∣∣ =∑
η∈Z

∣∣∣∣∣∑
τ∈Z

( ∞∑
l=1

Sl

(
k

T
,
r

R
,
r + η

R

)
Ψl(τ)

)
Ψj(τ)

∣∣∣∣∣ ,
=
∑
η

∣∣∣∣∣∑
τ

c

(
k

T
,
r

R
,
r + η

R
; τ

)
Ψj(τ)

∣∣∣∣∣ ,
≤
∑
τ

(
|Ψj(τ)|

∑
η

∣∣∣∣c( kT , rR, r + η

R
; τ

)∣∣∣∣
)
,

= O(1)
∑
τ

|Ψj(τ)| = O(2j),

where we used the triangle inequality and the autocorrelation wavelet property
∑

τ |Ψj(τ)| =
O(2j).

Using Lemma A.1.1 and the property above, we readily obtain that term I in the variance

equation is of order O(22jM−1); terms II and IV, are both of order O(22j(MT )−1); and

terms III and V are both of order O(2jR−1).

Now considering the final order term VI, we have

O(M2R−2) +O(2jM(TR)−1) +O(22jT−2).
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Putting these results together in the variance equation (81), we obtain

var
(
Ĩ
(r,r′);R
j,k;T

)
= O(22jM−1) +O(22j(MT )−1) +O(2jR−1)

+O(M2R−2) +O(2jM(TR)−1) +O(22jT−2),

= O(22jM−1) +O(2jR−1) +O(M2R−2).

A.1.3 Proofs of Propositions 2.1.14 and 3.1.10

Proof of Proposition 3.1.10 in the presence of cross-replicate dependence

As M,T → ∞, for each j, z and ν, ν ′, the consistency result Ŝj(z, ν, ν
′)

P→ Sj(z, ν, ν
′)

follows from the consistency results Ĩ
(⌊νR⌋,⌊ν′R⌋);R
l,⌊zT ⌋;T

P→ βl(z, ν, ν
′) for all fine enough scales l

(as shown in Proposition 3.1.9) and then using the continuous mapping theorem (Billingsley,

1999) for the continuous function g(x1, . . . , xJ) =
∑J

l=1A
−1
j,l xl that defines their linear

combination with coefficients given by the matrix A−1 entries.

Additionally, using the properties of the matrix A, we obtain the estimator asymptotic

unbiasedness from the linearity of the expectation operator and from the asymptotic

unbiasedness of the corrected periodogram, as follows

E(Ŝj(z, ν, ν
′)) = E

(
J∑
l=1

A−1
j,l Ĩ

(⌊νR⌋,⌊ν′R⌋);R
l,⌊zT ⌋;T

)
,

=
J∑
l=1

A−1
j,l E

(
Ĩ
(⌊νR⌋,⌊ν′R⌋);R
l,⌊zT ⌋;T

)
, then from the expectation part of Proposition 3.1.9

=

J∑
l=1

A−1
j,l

(
βl(z, ν, ν

′) +O(2lT−1) +O(MR−1)
)
, and using the definition of β

=
J∑
l=1

A−1
j,l

∑
l′

Al,l′Sl′(z, ν, ν
′) +

J∑
l=1

A−1
j,l

(
O(2lT−1) +O(MR−1)

)
,

=
∑
l′

(
J∑
l=1

A−1
j,l Al,l′

)
Sl′(z, ν, ν

′) +
J∑
l=1

A−1
j,l

(
O(2lT−1) +O(MR−1)

)
,

=
∑
l′

(
A−1A

)
j,l′
Sl′(z, ν, ν

′) +

J∑
l=1

A−1
j,l

(
O(2lT−1) +O(MR−1)

)
,

= Sj(z, ν, ν
′) +O(Tα−1) +O(MR−1),

where we used the boundedness of A−1
j,l and

∑J
l=1 2

l = O(Tα).

In fact, it can be shown that for Haar wavelets, the above approximation rate is

O(T−1/2) +O(MR−1) since A−1
j,l = O(2−(j+l)/2) (Nason et al., 2000).

Proof of Proposition 2.1.14 under the uncorrelated replicates assumption

The proof follows similar steps to the proof of its coherence counterpart, using the quantities

defined under the assumption of uncorrelated replicates.

140



A.1.4 Proof of Proposition 3.1.11

It follows directly from the continuous mapping theorem (Billingsley, 1999) and the consis-

tency results for the corrected replicate-smoothed periodogram in (55), ı.e. Ŝj(z, ν, ν
′)

P→
Sj(z, ν, ν

′) as M,T,R→ ∞ and M/R→ 0.

A.1.5 Proofs of Propositions 2.1.16 and 3.1.13

Proof of Proposition 3.1.13 (Expectation) in the presence of cross-replicate

dependence

From the definition of the replicate- and time- smoothed periodogram in (57), we have

E
[
˜̃I
(r,r′);R
j,k;T

]
= (2M + 1)−1(2MT + 1)−1

M∑
s=−M

MT∑
t=−MT

E
[
I
(r+s,r′+s);R
j,k+t;T

]

and substituting the asymptotic result for the expectation E
[
I
(r+s,r′+s);R
j,k+t;T

]
(see for instance

equation (53)), we further obtain

E
[
˜̃I
(r,r′);R
j,k;T

]
= (2M + 1)−1(2MT + 1)−1

M∑
s=−M

MT∑
t=−MT

{ ∞∑
l=1

Aj,lSl

(
k + t

T
,
r + s

R
,
r′ + s

R

)

+ O(2jT−1) +O(R−1)

}
.

Now using the results in Lemmas A.1.4 and A.1.5, we have

E
[
˜̃I
(r,r′);R
j,k;T

]
= (2M + 1)−1(2MT + 1)−1

M∑
s=−M

MT∑
t=−MT

{ ∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)}

+ (2M + 1)−1(2MT + 1)−1
M∑

s=−M

MT∑
t=−MT

∞∑
l=1

Aj,l
{
O(|t|BlT−1) +O(|s|B′

lR
−1)
}

+O(2jT−1) +O(R−1),

= (2M + 1)−1(2MT + 1)−1
M∑

s=−M

MT∑
t=−MT

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)

+ (2M + 1)−1(2MT + 1)−1
M∑

s=−M

MT∑
t=−MT

{
O(|t|T−1)

∑
l

BlAj,l +O(|s|R−1)
∑
l

B′
lAj,l

}
+O(2jT−1) +O(R−1),

=

∞∑
l=1

Aj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(MTT

−1) +O(MR−1) +O(2jT−1),

where we have used that
∑

lBlAj,l <∞ and
∑

lB
′
lAj,l <∞ as previously shown, and as

usual we retained the highest order terms.
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Proof of Proposition 3.1.13 (Variance) in the presence of cross-replicate depen-

dence

Let us now take the variance of the replicate- and time- smoothed periodogram in equa-

tion (57),

var
(
˜̃I
(r,r′);R
j,k;T

)
= (2MT + 1)−2

MT∑
t=−MT

MT−t∑
δ=−MT−t

cov
(
Ĩ
(r,r′);R
j,k+t;T , Ĩ

(r,r′);R
j,k+t+δ;T

)
,

= (2MT + 1)−2(2M + 1)−2

×
MT∑

t=−MT

MT−t∑
δ=−MT−t

M∑
s=−M

M−s∑
η=−M−s

cov
(
I
(r+s,r′+s);R
j,k+t;T , I

(r+s+η,r′+s+η);R
j,k+t+δ;T

)
,

(82)

where we also used the definition of the replicate-smoothed periodogram in equation (54)

and we recall that in general I
(r,r′);R
j,k;T = dr;Rj,k;Td

r′;R
j,k;T .

Using Definition 3.1.1 of the REv-LSW process and its corresponding replicate raw

periodogram, let us derive in general

E[dr;Rj,k;Td
r′;R
j,k+δ;T ] = E

[{∑
t

Xr;R
t;T ψj,k(t)

}{∑
t

Xr′;R
t′;T ψj,k+δ(t

′)

}]

= E

[{∑
t

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tψl,m(t)ξ
r
l,mψj,k(t)

}

×

{∑
t′

∞∑
l′=1

∑
m′∈Z

ωr
′;R
l′,m′;Tψl′,m′(t′)ξr

′
l′,m′ψj,k+δ(t

′)

}]
, hence,

E[dr;Rj,k;Td
r′;R
j,k+δ;T ] =

∑
t

∑
t′

∞∑
l=1

∞∑
l′=1

∑
m∈Z

∑
m′∈Z

ωr;Rl,m;Tω
r′;R
l′,m′;Tψl,m(t)ψl′,m′(t′)ψj,k(t)ψj,k+δ(t

′)E
[
ξrl,mξ

r′
l′,m′

]
=

∞∑
l=1

∑
m∈Z

ωr;Rl,m;Tω
r′;R
l,m;Tρ

r,r′;R
l,m;T

{∑
t

ψl,m(t)ψj,k(t)

}{∑
t′

ψl,m(t
′)ψj,k+δ(t

′)

}
,

since E[ξrl,mξ
r′
l′,m′ ] = δl,l′δm,m′ρr,r

′;R
l,m;T and so l = l′ and m = m′. Letting n := m− k yields

E[dr;Rj,k;Td
r′;R
j,k+δ;T ] =

∞∑
l=1

∑
n∈Z

ωr;Rl,n+k;Tω
r′;R
l,n+k;Tρ

r,r′;R
l,n+k;T

{∑
t

ψl,n+k−tψj,k−t

}{∑
t′

ψl,n+k−t′ψj,k−t′+δ

}
,

=
∞∑
l=1

∑
n∈Z

{
Sl

(
n+ k

T
,
r

R
,
r′

R

)
+O(C ′

lT
−1) +O(D′

lR
−1)

}
(Ψj,l(−n)Ψj,l(δ − n)) ,

where above we also used the definition of the cross-correlation wavelets, as well as the

result in (72).
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Then, by Lemma A.1.4 and using a substitution n := −n it follows that

E[dr;Rj,k;Td
r′;R
j,k+δ;T ] =

∞∑
l=1

∑
n∈Z

(
Sl

(
k

T
,
r

R
,
r′

R

)
+O(|n|BlT−1) +O(C ′

lT
−1) +O(D′

lR
−1)

)
×Ψj,l(n)Ψj,l(n+ δ),

=
∞∑
l=1

∑
n∈Z

(
Sl

(
k

T
,
r

R
,
r′

R

)
Ψj,l(n)Ψj,l(n+ δ)

)

+
∞∑
l=1

∑
n∈Z

{
O(|n|BlT−1) +O(C ′

lT
−1) +O(D′

lR
−1)
}
Ψj,l(n)Ψj,l(n+ δ),

=
∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(T−1)

∞∑
l=1

∑
n∈Z

Bl|n|Ψj,l(n)Ψj,l(n+ δ)

+O(T−1)

∞∑
l=1

∑
n∈Z

C ′
lΨj,l(n)Ψj,l(n+ δ) +O(R−1)

∞∑
l=1

∑
n∈Z

D′
lΨj,l(n)Ψj,l(n+ δ).

The order terms in the sum above can be established as follows. Since the number of

terms in the wavelet cross-correlation is finite and bounded as a function of n (Nason

et al., 2000) and the compact support length of Ψ2
j,l is bounded by K(2j + 2l) for some

constant K (Sanderson et al., 2010), we have using first the triangle inequality and then

the Cauchy-Schwarz inequality∣∣∣∣∣∑
l

∑
n

Bl|n|O(T−1)Ψj,l(n)Ψj,l(n+ δ)

∣∣∣∣∣
≤ O(T−1)

∑
l

(2j + 2l)Bl
∑
n

|Ψj,l(n)Ψj,l(n+ δ)|,

≤ O(T−1)
∑
l

(2j + 2l)Bl

(∑
n

Ψ2
j,l(n)

)1/2(∑
n

Ψ2
j,l(n+ δ)

)1/2

,

= O(T−1)
∑
l

(2j + 2l)BlA
1/2
j,l A

1/2
j,l , from the definition of A

= O(2jT−1),

using the same argument as for equation (73).

Using the definition of the Aδ matrix, we obtain∑
l

∑
n

C ′
lO(T−1)Ψj,l(n)Ψj,l(n+ δ) = O(T−1)

∑
l

C ′
lA

δ
j,l,

where {C ′
l} satisfy

∑
l 2
lC ′
l <∞. Similarly,

∑
l

∑
nD

′
lO(R−1)Ψj,l(n)Ψj,l(n+δ) = O(R−1)

∑
lD

′
lA

δ
j,l,

where {D′
l} satisfy the condition

∑
l 2
lD′

l <∞.

Hence, taking the highest order terms, we obtain in general

E[dr;Rj,k;Td
r′;R
j,k+δ;T ] =

∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r′

R

)
+O(2jT−1)+O(T−1

∑
l

C ′
lA

δ
j,l)+O(R−1

∑
l

D′
lA

δ
j,l).

(83)

In what follows we consider the individual covariance terms in equation (82), and using
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Isserlis’ result (Isserlis, 1918) and the expectation terms (83) with k := k + t, we have

cov
(
I
(r+s,r′+s);R
j,k+t;T , I

(r+s+η,r′+s+η);R
j,k+t+δ;T

)
= E

[
dr+sj,k+td

r+s+η
j,k+t+δ

]
E
[
dr

′+s
j,k+td

r′+s+η
j,k+t+δ

]
+E

[
dr+sj,k+td

r′+s+η
j,k+t+δ

]
E
[
dr

′+s
j,k+td

r+s+η
j,k+t+δ

]
,

= 2

( ∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)
+O(|t|T−1

∑
l

BlA
δ
j,l) +O(2jT−1) +O(|s|R−1

∑
l

D′
lA

δ
j,l)

)

×

( ∞∑
l=1

Aδj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
+O(|t|T−1

∑
l

BlA
δ
j,l) +O(2jT−1) +O(|s|R−1

∑
l

D′
lA

δ
j,l)

)
,

(84)

where for the last equality we used the results in Lemmas A.1.4 and A.1.5.

Hence the variance of the replicate- and time- smoothed wavelet periodogram in

equation (82) is composed of terms of the following form

‘term I’ =

∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

) ∞∑
l=1

Aδj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)
,

‘term II’ =
∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)
O(|t|T−1

∑
l

BlA
δ
j,l) +

∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)
O(2jT−1)

+
∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)
O(|s|R−1

∑
l

D′
lA

δ
j,l),

‘term III’ = O(|t|T−1
∑
l

BlA
δ
j,l)O(|t|T−1

∑
l

BlA
δ
j,l) +O(|t|T−1

∑
l

BlA
δ
j,l)O(|s|R−1

∑
l

D′
lA

δ
j,l)

+O(|s|R−1
∑
l

D′
lA

δ
j,l)O(|s|R−1

∑
l

D′
lA

δ
j,l),

‘term IV’ = O(|t|T−1
∑
l

BlA
δ
j,l)O(2jT−1) +O(2jT−1)O(2jT−1) +O(2jT−1)O(|s|R−1

∑
l

D′
lA

δ
j,l).

In order to determine the order of the terms above, let us first establish some useful results

in the following lemmas, whose proofs appear in Appendix A.2 .

Lemma A.1.6. (a) For any sequence {Bl} with
∑

l 2
lBl <∞, terms of the form below

fulfil ∑
δ∈Z

∣∣∣∣∣
∞∑
l=1

BlA
δ
j,l

∣∣∣∣∣ = O(2j).

(b) For any sequences {Bl} and {B′
l} with

∑
l 2
lBl <∞,

∑
l 2
lB′

l <∞, we have

∑
δ∈Z

∣∣∣∣∣
∞∑
l=1

BlA
δ
j,l

∣∣∣∣∣
∣∣∣∣∣
∞∑
l=1

B′
lA

δ
j,l

∣∣∣∣∣ = O(22j).

Lemma A.1.7. Under the assumption supz,ν∈(0,1)
∑

n∈Z
∑

η∈Z
∣∣c(z, ν, ν + η

R ;n)
∣∣ = O(1),
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we have the following properties.

(a) For any time k and replicate r, we have
∑

δ∈Z
∑

η∈Z

∣∣∣∑∞
l=1A

δ
j,lSl

(
k
T ,

r
R ,

r+η
R

)∣∣∣ =
O(2j).

(b) For any time k and replicates r and r′, we have

∑
δ∈Z

∑
η∈Z

∣∣∣∣∣
∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)∣∣∣∣∣
∣∣∣∣∣
∞∑
l=1

Aδj,lSl

(
k

T
,
r′

R
,
r′ + η

R

)∣∣∣∣∣ = O(22j).

(c) For any time k, replicate r and for any sequence {Bl} satisfying
∑

l 2
lBl < ∞, we

have ∑
δ∈Z

∑
η∈Z

∣∣∣∣∣
∞∑
l=1

Aδj,lSl

(
k

T
,
r

R
,
r + η

R

)∣∣∣∣∣
∣∣∣∣∣
∞∑
l=1

BlA
δ
j,l

∣∣∣∣∣ = O(22j).

From Lemma A.1.7, using property (b) we obtain that ‘term I’ in the variance sum in

equation (82) is O(22j(MTM)−1). Further, the order of ‘term II’ can be obtained from

properties (a) and (c), as

(2MT + 1)−2(2M + 1)−2O(22j)

MT∑
t=−MT

M∑
s=−M

{
O(|t|T−1) +O(T−1) +O(|s|R−1)

}
and its order is O(22j)(O((MT )−1) +O((MTMT )−1) +O((MTR)

−1)).

To determine the order of ‘term III’ in the variance sum (82), using Lemma A.1.6,

property (b) leads to the third term in the variance sum to be rephrased as

(2MT+1)−2(2M+1)−2O(22j)

MT∑
t=−MT

M∑
s=−M

M−s∑
η=−M−s

{
O(|t|2T−2) +O(|t||s|(TR)−1) +O(|s|2R−2)

}
,

thus yielding O(22j)(O(MTT
−2) +O(M(TR)−1) +O(M−1

T M2R−2)). Further, for ‘term

IV’ in the variance, property (a) can be employed to yield

(2MT+1)−2(2M+1)−2O(22j)

MT∑
t=−MT

M∑
s=−M

M−s∑
η=−M−s

{
O(|t|T−2) +O(MTT

−2) +O(|s|(TR)−1)
}

thus resulting in O(22j)(O(T−2) +O(M(MTTR)
−1)).

Hence

var
(
˜̃I
(r,r′);R
j,k;T

)
= O(22j(MTM)−1)

+O(22j)(O((MT )−1) +O((MTMT )−1) +O((MTR)
−1))

+O(22j)(O(MTT
−2) +O(M(TR)−1) +O(M−1

T M2R−2))

+O(22j)(O(T−2) +O(M(MTTR)
−1))

= O(22j(MTM)−1) +O(22jM−1
T M2R−2).
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Proof of Proposition 2.1.16 (Expectation) under the uncorrelated replicates

assumption

The proof follows similar steps to the expectation proof of its coherence counterpart, using

the replicate- and time- smoothed periodogram in (45) and the asymptotic result for the

expectation in Proposition 2.1.10.

Proof of Proposition 2.1.16 (Variance) under the uncorrelated replicates as-

sumption

Using both definitions of the replicate- time- smoothed periodogram (equation (45)) and

the replicate-smoothed periodogram (equation (43)), we have

var
(
˜̃Ir;Rj,k;T

)
= var

(2MT + 1)−1
MT∑

t=−MT

Ĩr;Rj,k+t;T

 ,

= (2MT + 1)−2
MT∑

t=−MT

MT−t∑
δ=−MT−t

cov
(
Ĩr;Rj,k+t;T , Ĩ

r;R
j,k+t+δ;T

)
,

= (2MT + 1)−2(2M + 1)−2
MT∑

t=−MT

MT−t∑
δ=−MT−t

M∑
s=−M

cov
(
Ir+s;Rj,k+t;T , I

r+s;R
j,k+t+δ;T

)
.

Further building on results in equation (84) with η = 0 and Lemmas (A.1.6) and (A.1.7),

following the same arguments as in the general variance proof, we obtain

var
(
˜̃Ir;Rj,k;T

)
= O(22j(MTM)−1)

+O(22j)(O((MT )−1) +O((MTMT )−1) +O((MTR)
−1))

+O(22j)(O(MTM
−1T−2) +O((TR)−1) +O(M−1

T MR−2))

+O(22j)(O(M−1T−2) +O((MTTR)
−1))

= O(22j(MTM)−1) +O(22jM−1
T MR−2).

146



A.2 Proofs for lemmas of Appendix A.1

A.2.1 Proof of Lemma A.1.1

∣∣∣∣∣∑
l

Aj,lSl
(
z, ν, ν ′

)∣∣∣∣∣ =
∣∣∣∣∣∑
l

∑
τ

Ψj(τ)Ψl(τ)Sl
(
z, ν, ν ′

)∣∣∣∣∣ from the definition of the matrix A

=

∣∣∣∣∣∑
τ

(∑
l

Sl
(
z, ν, ν ′

)
Ψl(τ)

)
Ψj(τ)

∣∣∣∣∣
=

∣∣∣∣∣∑
τ

c
(
z, ν, ν ′; τ

)
Ψj(τ)

∣∣∣∣∣ from the local autocovariance definition

≤
∑
τ

∣∣c (z, ν, ν ′; τ)∣∣ |Ψj(τ)| using the triangle inequality

= O(2j),

where we used |c (z, ν, ν ′; τ)| < ∞ for all ν, ν ′, τ and
∑

τ |Ψj(τ)| = O(2j) (Nason et al.,

2000).

A.2.2 Proof of Lemma A.1.2

∣∣∣∣∣∑
l

Aτ
j,lSl

(
z, ν, ν ′

)∣∣∣∣∣ =
∣∣∣∣∣∑
l

∑
n

Ψj(n)Ψl(n+ τ)Sl
(
z, ν, ν ′

)∣∣∣∣∣ from the definition of the matrix Aτ

=

∣∣∣∣∣∑
n

(∑
l

Sl
(
z, ν, ν ′

)
Ψl(n+ τ)

)
Ψj(n)

∣∣∣∣∣
=

∣∣∣∣∣∑
n

c
(
z, ν, ν ′;n+ τ

)
Ψj(n)

∣∣∣∣∣ from the local autocovariance definition

≤
∑
n

∣∣c (z, ν, ν ′;n+ τ
)∣∣ |Ψj(n)| using the triangle inequality

= O(2j),

where we used |c (z, ν, ν ′;n+ τ)| <∞ for all τ, ν, ν ′, n and
∑

n |Ψj(n)| = O(2j).

A.2.3 Proof of Lemma A.1.3

Let us first show that for any τ and scales j, j′, l, we have∑
n∈Z

Ψj,j′(n)Ψl(n+ τ) =
∑
u∈Z

Ψj,l(u)Ψj′,l(u+ τ).

This can be seen by re-expressing the right hand of the equality above by means of the
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definition of the cross-correlation wavelets, hence obtaining

∑
u

Ψj,l(u)Ψj′,l(u+ τ) =
∑
u

(∑
p

ψj,pψl,p−u

)∑
p′

ψj′,p′ψl,p′−u−τ

 ,

=
∑
p

∑
p′

ψj,pψj′,p′

(∑
u

ψl,p−uψl,p′−u−τ

)
,

=
∑
p

∑
p′

ψj,pψj′,p′Ψl(p− p′ + τ),

=
∑
n

∑
p′

ψj,n+p′ψj′,p′

Ψl(n+ τ), where n := p− p′,

=
∑
n

Ψj,j′(n)Ψl(n+ τ).

Using the above equality, we use the fact that the spectrum is positive and now take

the triangle inequality

∑
l

Sl
(
z, ν, ν ′

) ∣∣∣∣∣∑
n

Ψj,l(n)Ψj′,l(n+ τ)

∣∣∣∣∣ ≤∑
l

Sl
(
z, ν, ν ′

)∑
n

∣∣Ψj,l(n)Ψj′,l(n+ τ)
∣∣ ,

≤
∑
l

Sl
(
z, ν, ν ′

)(∑
n

Ψ2
j,l(n)

)1/2(∑
n

Ψ2
j′,l(n+ τ)

)1/2

,

=
∑
l

Sl
(
z, ν, ν ′

)
A

1/2
j,l A

1/2
j′,l , from the definition of matrix A

≤

(∑
l

Aj,lSl
(
z, ν, ν ′

))1/2(∑
l′

Aj′,l′Sl′
(
z, ν, ν ′

))1/2

,

= O(2(j+j
′)/2),

where for the last two inequalities above we used the Cauchy-Schwarz inequality and for

the last equality we used the result in Lemma A.1.1.

A.2.4 Proof of Lemma A.1.4

Under the assumptions of Definition 3.1.1, the functions W̃j(· , ν), W̃j(· , ν ′) and ρj(· , ν, ν ′)
are Lipschitz continuous in rescaled time, with Lipschitz constants Lνj , L

ν′
j and Qν,ν

′

j respec-

tively. Equivalently, this can be written as
∣∣∣W̃j((k + n)/T, ν)− W̃j(k/T, ν)

∣∣∣ ≤ |n|LνjT−1,∣∣∣W̃j((k + n)/T, ν ′)− W̃j(k/T, ν
′)
∣∣∣ ≤ |n|Lν′j T−1 and |ρj((k + n)/T, ν, ν ′)− ρj(k/T, ν, ν

′)| ≤

|n|Qν,ν
′

j T−1.

From standard Lipschitz function theory, the product of the Lipschitz continuous

functions defined on a compact interval is also Lipschitz continuous with Lipschitz

constant the maximum of the individual constants. Hence working across replicates

and denoting Bj = supν,ν′ max{Lνj , Lν
′
j , Q

(ν,ν′)
j }, we readily obtain that Sj(· , ν, ν ′) =

W̃j(· , ν)W̃j(· , ν ′)ρj(· , ν, ν ′) is Lipschitz continuous (the result in equation (70)) with con-

stants {Bj}. The properties of the {Bj} follow immediately from the similar properties of

the individual Lipschitz constants Lj = supν L
ν
j and Qj = supν,ν′ Q

ν,ν′

j .
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A.2.5 Proof of Lemma A.1.5

Under the assumptions of Definition 3.1.1, for any rescaled time z and trials (repli-

cates) respectively ν ′, ν, the limiting coherence functions ρj(z, · , ν ′) and ρj(z, ν, · ) are

Lipschitz continuous with Lipschitz constants {P zj } and are defined on a compact in-

terval. Then it immediately follows that there exists a bounded constant C such that

|ρj(z, ν + a, ν ′ + a)− ρj(z, ν, ν
′)| ≤ C P zj |a| for any a such that ν + a, ν ′ + a ∈ (0, 1).

Specifically, the Lipschitz continuity assumption in rescaled trial-dimension implies that

for each z we have
∣∣∣W̃j(z, (r + s)/R)− W̃j(z, r/R)

∣∣∣ ≤ |s|N z
j R

−1,
∣∣∣W̃j(z, (r

′ + s)/R)− W̃j(z, r
′/R)

∣∣∣
≤ |s|N z

j R
−1 and |ρj(z, (r + s)/R, (r′ + s)/R)− ρj(z, r/R, r

′/R)| ≤ |s|P zj R−1 at any repli-

cates r, r′ and s.

Then, from standard Lipschitz function theory it follows that their product Sj(z, ν+· , ν ′+· ) =
W̃j(z, ν+· )W̃j(z, ν

′+· )ρj(z, ν+· , ν ′+· ) is also Lipschitz continuous (the desired result in

equation (71)) with constants B′
j = supzmax{N z

j , P
z
j }. The properties of the {B′

j} follow

immediately from the similar properties of the individual Lipschitz constants Nj = supz N
z
j

and Pj = supz P
z
j .

A.2.6 Proof of Lemma A.1.6

(a) The desired result follows since

∑
δ

∣∣∣∣∣∑
l

BlA
δ
j,l

∣∣∣∣∣ =∑
δ

∣∣∣∣∣∑
l

Bl
∑
n

Ψj(n)Ψl(n+ δ)

∣∣∣∣∣ from the definition of the matrix Aδ

≤
∑
l

Bl
∑
δ

∑
n

|Ψj(n)Ψl(n+ δ)| using the triangle inequality

=
∑
l

Bl
∑
n

(
|Ψj(n)|

∑
δ

|Ψl(n+ δ)|

)
≤ K

∑
l

2lBl
∑
n

|Ψj(n)|

= O(2j),

where we used (in order) that
∑

δ |Ψl(n+ δ)| = O(2l),
∑

n |Ψj(n)| = O(2j) and∑
l 2
lBl <∞.

(b) This follows directly from the above.

We also note here that
∣∣∣∑∞

l=1 2
−lAδj,l

∣∣∣ = O(1) for any integer δ, which can be obtained
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by taking ∣∣∣∣∣∑
l

2−lAδj,l

∣∣∣∣∣ =
∣∣∣∣∣∑
l

2−l
∑
n

Ψj(n)Ψl(n+ δ)

∣∣∣∣∣ ,
=

∣∣∣∣∣∑
n

Ψj(n)
∑
l

2−lΨl(n+ δ)

∣∣∣∣∣ ,
=

∣∣∣∣∣∑
n

Ψj(n)δ0,n+δ

∣∣∣∣∣ ,
= |Ψj(−δ)| = O(1)

where we used
∑

l 2
−lΨl(n+ δ) = δ0,n+δ as shown in Fryzlewicz et al. (2003).

A.2.7 Proof of Lemma A.1.7

(a) Using the definitions of the Aδ matrix and of the local covariance we have

∑
δ

∑
η

∣∣∣∣∣∑
l

Aδj,lSl

(
k

T
,
r

R
,
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,

= O(1)
∑
τ

|Ψj(τ)| = O(2j),

where we used the triangle inequality and the autocorrelation wavelet property∑
τ |Ψj(τ)| = O(2j).

(b) Using
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= O(22j),

where for the last equality we used the property (a).

(c) It follows directly from property (a) and equation (85).
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A.3 Further proofs

A.3.1 Proof of Propositions 2.1.7 and 3.1.5

Proof of Proposition 2.1.7 under the uncorrelated replicates assumption

As the REv-LSW process is defined to have zero-mean, we have cov
(
X
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)
and using the REv-LSW process definition in equation (35), we

obtain
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∣∣∣ and using the local covariance defini-

tion as well as the amplitude approximations in equation (41), we obtain
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where the last equality follows as the terms
∑
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j Dj <∞, and similarly∑
j

∑
n(CjT

−1)ψj,n(0)ψj,n(τ) = O(T−1) using
∑

j Cj <∞; the last term∣∣∣∑j

∑
n(Lj |n|T−1)ψj,n(0)ψj,n(τ)

∣∣∣ ≤ O(T−1)
∑

j 2
jLj , since there are at most order 2j

non-zero terms in the wavelet product, Ψj(τ) = O(1) and we assumed
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j 2
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also Nason et al. (2000)).

Proof of Proposition 3.1.5 in the presence of cross-replicate dependence

For the general case, the proof follows immediately from the amplitude and coherence

approximation properties in Definition 3.1.1 of the REv-LSW process, which yield∣∣∣ω⌊νR⌋;R
j,⌊zT ⌋;T ω

⌊ν′R⌋;R
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jT
−1) +O(D′

jR
−1),

where C ′
j and D

′
j can be shown to also fulfill equations of the type in Definition 3.1.1, 3c

and 4b.

As the limiting amplitudes (W̃j(· , ν), W̃j(· , ν ′)) and coherence (ρj(· , ν, ν ′)) are Lipschitz
continuous functions in rescaled time for rescaled trials ν, ν ′ and are defined on a compact

interval, it follows from standard Lipschitz function theory that their product (Sj(· , ν, ν ′))
is also Lipschitz continuous in rescaled time, as shown in Lemma A.1.4. The desired

conclusion then follows using the same type of arguments as employed for uncorrelated

trials above.

A.3.2 Proof of estimated coherence limits for equation (56)

Let us first show that
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Recalling that we use the same smoothing window and using the definitions of the

trial-smoothed periodogram in (54) and of the raw periodogram in (53), the above is

equivalent to having to show that(∑
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which indeed follows from the Cauchy-Schwarz inequality.

Since the components in the estimated between-trial coherence equation (56) are of the

form Ŝj(
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where the last inequality resulted from the Cauchy-Schwarz inequality. Hence the values of

the squared estimated between-trial coherence have the property
∣∣∣ρ̂(r,r′);Rj,k;T

∣∣∣ ≤ 1.
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