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SUMMARY 

The Design of structures under dynamic loading is a demanding subject in safety of 

engineering design since conventional static failure criteria are unable to deal with 

structures under transient loading. This work is a contribution to this significant 

phenomenon to investigate the response and failure of structures to pulse loading. An 

experimental rig has therefore been designed to achieve the target. A series of 

experiments has then been carried out to investigate the structural failure under pulse 

loading using a shock tunnel. A non-linear transient analysis of plates and cylindrical 

structures under pulse loading has also been performed using ANSYS finite element 

code in order to introduce a failure criterion for these specific conditions. A large- 

scale heat exchanger under pressure pulse loading was also analysed experimentally 

and numerically. The impulsive load has been chosen to be above the static design 

pressure to investigate the effects of impulsive load and its duration on the plate 

failure. A critical curve is presented to determine the critical pulse loading and its 

duration for structures. The relations between the transient pressure loading, its 

duration and the natural frequency of the structure are also explored. It is indicated 

that the value of the impulsive load on structures may exceed the static design 

pressure without structural failure. Both experimental work and numerical analyses 

suggest that the design criteria for structures under dynamic loading are more flexible 

than those under static loading in which no freedoms in deviation of any simple yield 

criterion exist. It is concluded that using a proper failure criterion for any specific 

problem can increase safe working region of the structures which leads to economical 

and safe dynamic design of structures. 
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Nomenclature 

4 angle 

p density 

w frequency 

v Poisson's ratio 

s strain 

a stress 

o yield stress 

a mid-surface radius 

C damping matrix 

d diameter 

E elastic modulus 

E: tangent modulus 

f natural frequency 

h thickness 

I impulse 

K stiffness matrix 

1 length 

m mass 

Af mass matrix 

P pressure 

Q Shear force 

T fundamental period 

t time 

u velocity 
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w displacement 

x Coordinate in X direction 

y Coordinate in Y direction 

z Coordinate in Z direction 
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1. Introduction 

1.1 Introduction 

Dynamic loading such as accidental explosions can occur in a variety of different 

circumstances which may lead to the failure of structures such as pressure vessels. 

Generally, such loading can cause catastrophic damage and failure to engineering 

structures. Therefore, the study of shell dynamics and its response to transient 

loading may enhance the structural safety of vessels and pressure vessels. 

The use of shells and pressure vessels is widespread in industry. In many cases the 

vessels are gas filled and are operated at high pressure. However, external explosions 

may occur which will subsequently cause the shell structure to be under dynamic 

loading. There are also some liquid filled shells, such as heat exchangers, which 

experience lower pressure than the gas filled tubes which are fixed inside the shell. 

Failure of one or more tubes for any reason, such as corrosion or fretting, will 

overpressurise the shell to failure due to internal impulsive loading. 
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In the above cases, the question arises as to whether the shell can withstand 

overpressure for the short duration of transient loading when the shell structures are 

designed for the static pressure which is less than that dynamic load. In this event it 

becomes necessary to investigate the shell behaviour more accurately by considering 

a fuller analysis of the spatial and temporal variation of pressure and its link with shell 

dynamics. 

As will be seen in the literature review, analytical studies of the dynamics of shells 

have been carried out for many years, and due to the complex kinematics of the 

response, these have often focused on small displacements and a high degree of 

symmetry in the geometry and applied loads, which enable a priori judgement of the 

form of solution. 

Numerical methods however offer freedom to examine more realistic geometries 

incorporating elements which break the symmetry and permit material non-linearities, 

which are important in the true representation of the strain behaviour and application 

of failure criteria. 

This work is concerned with extending the understanding of the way in which failure 

criteria for metal vessels can be related to the transient pressure loadings and the 

vessel design pressure. 

In other words, the main objective of the research is to investigate the way in which 

the maximum allowable pressures of structures vary with the time duration of the 

loads in a transient state in order to introduce the dynamic failure criteria for 

structures. 
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1.2 Objectives and methodology 

The main objective of the current research is to investigate the response and 

behaviour of the structures to impulsive pressure loading and to predict the structural 

response using the finite element method and compare the results to the experimental 

ones in order to validate the results. It has also been the aim of the work to explore 

the limits which must be applied to pressure transients, in terms of pulse width and 

amplitude, in order to remain within a safe working envelop. In other words, it is 

attempted to find out or introduce the best possible failure criteria for the structures 

under such loading. 

In this work, the elastic, plastic and elasto-plastic response of the structure due to 

pressure pulse loading will be discussed. 

The ANSYS finite element code is used to predict the response of the structure under 

pressure loading and also numerically investigate the structural failure. In order to 

show the capability of ANSYS code to handle the structures under pressure pulse 

loading a case study whose experimental results are available is carried out and the 

results are compared with the experimental ones. 

ANSYS 5.5 has been used for all analysis using Pentium 11 450 MHz with 128 RAM. 

The typical running time for each analysis was approximately 24 hours. Shell 82 

element was used in all cases. ANSYS was the tool to perform pre-processing, 

solution and also post-processing parts of analyses. 

Two sources of experimental data have been used in the current research. A set of 

experimental data has been collected at the laboratory scale using a shock tube to 
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generate the pressure pulses with different pulse width and amplitudes and using as 

test-pieces a range of plates and small cylindrical vessels. In order to build up a data 

base to interpret the structural behaviour and failure due to pressure pulse loading, 

the following approach has been taken. First, simple circular plates made of 

aluminium were used as test pieces in the shock tube to investigate the plate 

behaviour under the shock load and the results were compared with the calculated 

stresses and strains using ANSYS finite element code. A small cylindrical vessel was 

then constructed and used with the shock tube as a test piece to measure the stresses 

and strains and to demonstrate the failure limits of the system. The finite element 

model of the cylindrical vessel was also studied in ANSYS and the results were 

compared with the experimental work. 

The study has also made use of the second source of experimental results from a 

Joint Industry Project (The Institute of Petroleum, 2000), EPSRC under the 

management of the Institute of Petroleum involving internal tube rupture tests on a 

large scale heat exchanger shell made of steel as a real large scale industrial case. 

A parallel numerical study using ANSYS code has also modelled some large scale 

case studies to confirm the capability of the code to analyse the large scale industrial 

cases. The numerical results for the these cases were compared with the available 

experimental results which will be discussed in details. The numerical analysis of the 

above heat exchanger was also carried out and the results were compared with the 

experimental ones. 
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From these experimental and numerical results at both the laboratory and large scale, 

a methodology is proposed to define the safe working envelope for the structures 

under pressure pulse loading. 

1.3 Conclusions 

The overall objective of the present research is to understand and interpret the 

structural response due to pressure pulse loading. Therefore, the work reports results 

at the laboratory and full scale, of the response of structures to transient pressure 

loads. 

The overall strategy of the work is based on developing a good understanding of the 

structural behaviour to pressure pulse loading by a step by step investigation of 

response of structures from simple plates to a complicated heat exchanger shell to the 

pulse load. 

A properly selected failure criterion for structures under pressure pulse loading will 

increase the safe working region and economical benefits in structural design. 
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2. Literature review 

2.1 Introduction 

The study of safe dynamic design of structures is vital because a thorough 

understanding of structural responses to dynamic loading assists the design process 

and also leads to improved structural safety. It also helps to predict structural 

behaviour under dynamic loading and also to introduce appropriate failure criteria for 

process plant structures such as shells and plates subjected to impulse loading. 

Maximum allowable stresses of structures are usually determined when the structures 

are under static loading. However, dynamic loading plays a very important role in 

practice, since according to existing failure criteria (ASME, 1983), the structures 

should be designed for the maximum applied dynamic pressure even when the static 

pressure is less than the dynamic value. 
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The importance of the research is revealed by the study carried out by Gaylord and 

Mainstone (1980) who showed that the most common accidental loads are explosion 

blast loads by the investigation of data on tall buildings. Dynamic loads imposed by 

impulsive loads on structures, such as vessels, can be internal or external ones. 

External explosion loads drastically affect the structure of pressure vessels, as 

evidenced by the study of Tinawi et al. (1993) on the damage to the base of a tank 

from blast loading. The evidence is that in July 1990, a series of five blasts took place 

about 200 m from two liquified natural gas (LNG) tanks belonging to Gaz 

Metropolitain in Montreal which caused the damage because of the external pressure 

pulse. Internal transient loads may also lead to the failure of the heat exchangers 

shells as the analysis of potential overpressure of a heat exchanger shell due to a 

ruptured tube was also studied. (Fowler et al., 1969) 

The next section focuses on the review of the literature on the structural response to 

dynamic transient loading of plates and shells to impulsive loading, of solid-liquid 

interactions, such as the dynamic response of submerged shells to pulse loading, and 

also their associated failure criteria. This review is important as it builds up the 

background study of the plates and shells to pressure pulse loading. 

2.2 Impulsive loading 

First the impulsive loading and structures are discussed in general and then the 

responses of structures to impulsive loading will be presented. 
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2.2.1 Impulsive loads and structures 

The detonation of high explosives is independent of atmospheric oxygen and occurs 

very rapidly within a very small space. Within this small space large quantities of very 

high temperature gas are produced and consequently is accompanied by a very high 

pressure rise. A shock wave is thus generated which spreads from the source of the 

explosion at a speed well in excess of the speed of sound. Bulson (1986) and 

Horoschun (1992) stated that the pressure which is associated with the shock, varies 

with time exponentially. The general form of this pressure-time profile is illustrated in 

Fig. 2.1. 

Pressure 

Pmax. 

Patm. ýý__.. _... __. _. _. _... _ 

Time 

Fig. 2.1. Pressure-time profile of explosions for high explosives 

Gas explosions represent an accelerative source where combustion of a premixed gas 

cloud, i. e. fuel-air or fuel/oxidiser causes rapid increase of pressure. Gas explosions 

can occur inside process equipment or pipes, in buildings or ofd shore modules, in 

open process areas or in unconfined areas. 
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Gas explosions represent an accelerative source where combustion of a premixed gas 

cloud, i. e. fuel-air or fuel/oxidiser causes rapid increase of pressure. Gas explosions 

can occur inside process equipment or pipes, in buildings or off-shore modules, in 

open process areas or in unconfined areas. 
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Bulson (1986) presented an exponential equation which satisfies the above curve. He 

also stated that the maximum pressure (Pm ), which is also called peak over 

pressure, is dependent on the distance of the reference point (the point which the 

maximum pressure is measured) from the centre of the explosion. This distance is an 

important factor for blast-resistant design which was studied by Dharaneepathy et al. 

(1995). In other words the design of structures subjected to over pressure caused by 

an explosion depends on the distance of the structure to the centre of the explosion 

which is called critical distance. These investigators concluded that the critical 

distance should be used as the design distance, particularly for tall structures. They 

also advised that the blast wave can have a spherical or a cylindrical shock front 

depending on the distance between the explosion source and the location of the 

structures. 

When the structural responses due to impulsive loads are investigated, the time 

duration of the above curve is probably the most important consideration in the 

study. Galambos (1988) indicates that if the time duration is sufficiently long, the 

stress can be considered constant throughout the structure so that a stress wave does 

not exist through the structure. However, if the duration is short and also, the strain 

rate of the structure is sufficiently high, elasto-plastic wave propagation may be 

present in the structure. For relatively slow loading rates and long durations, the 

fundamental mode, similar to the static configuration, dominates the shape. However 

for higher loading rates and shorter durations, the higher modes are excited. For 

instance in the impulsively loaded column, if the duration of the load is sufficiently 

long, the axial load can be considered constant along the length, being a function of 

time only. If the duration is sufficiently short, the longitudinal wave must be 
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considered in the analysis and if in addition to the duration being short, the strain rate 

is sufficiently high as well the stress wave may be present as well, and the 

consideration of material strain rate sensitivity may be required. 

Abrahamson and Lindberg (1971) studied the critical pulse load characterisation in 

terms of peak load and impulse which is basically a consideration of the time duration 

of pulse loading. They came to the conclusion that pulse load can be considered as an 

`impulsive load', where the time duration of the load is very short. In this case, the 

load may be regarded as producing an instantaneous initial velocity in the structure 

under the load. The studies of Pegg (1991) and Schwer et al. (1988) are two 

examples of considering instantaneous initial velocity for impulse loading, whereas 

Jiang and Oslon (1991) and Ruiz et al. (1989) applied the impulsive load. On the 

other hand, if the time duration of pulse load is sufficiently long, it is treated as a 

`quasi-static' case. In other words, if the time duration is short compared to 

structural response time, the pulse load is `impulse', and if the time duration is long, 

the load is `quasi-static'. The same conclusions were also obtained by the very recent 

study of Pegg (1994). In this work, dynamic pulse buckling of cylindrical structures 

with different radius to thickness ratios was numerically investigated. It was 

concluded that dynamic pulse buckling occurs in higher-order modes and therefore 

the details of modelling such as the chosen elements can affect the results. If the pulse 

duration is very long, the lower modes of the structure are excited and the response is 

quasi-static. 

In the above mentioned study, Pegg (1991) investigated the dynamic pulse buckling 

of cylinders of various radius to thickness ratios and found out that if the ratio is less 

than about 30 the plastic deformation is observed however if the ratio is more than 
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about 240 the response will be elastic buckling. Schwer et al. (1988) also modelled 

the impulsive load as the initial velocity in the study of a metal tank under external 

impulsive spot load and found a good agreement between experimental results and 

numerical results produced by the finite element code DYNA3D to predict the 

behaviour of the tank. 

As mentioned above, Jiang and Oslon (1991) and Ruiz et al. (1989) applied step 

loading on their studies. The former developed a nonlinear analysis procedure based 

on finite strip analysis for cylindrical shell structures under blast loading and 

compared the results with the finite difference method. The latter was on the elastic 

response of thin-wall cylindrical vessels to blast loading to compare the difference 

between axisymmetric buckling and lateral buckling and showed the predicted 

deformation for the second case using the numerical finite element code ABAQUS. 

As stated above, different researchers (Pegg, 1991; Holmes and Kirkpatrick, 1988; 

Jiang and Oslon, 1991; Ruiz et al., 1989) have used various models (velocity or 

pressure) of pulse loading in their works. In order to investigate the differences 

among the pulse load shapes and their effects on structures, Abrahamson and 

Lindberg (1971) carried out a study using rectangular, triangular and exponential 

pulses. They indicated that rectangular (step load), triangular, and exponential 

modelling of pulse loading give similar responses from structures for impulsive (short 

duration) and quasi-static (long duration) loads. However discrepancies are observed 

when the duration of the load is somewhere between the above mentioned cases 

where elasto-plastic response of structures is present. 
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General attempts, such as the work of Xu and Kirkvik (1991), which discusses a 

design philosophy to consider dynamic loading and material ductility in design, have 

been performed to investigate problems involving explosions and structures. 

Although some general attempts have been made, detailed analyses considering all 

non-linearities of the materials and loading shapes are required to predict the true 

behaviour of plates and shells to impulsive loading. It is because too many factors 

such as the structural and loading shape of the application affect the structural 

response and behaviour to dynamic loading in the transient analysis. Therefore their 

associated failure criteria, which is the concern of this study, will be different from 

the static cases because of the present of non-linearities. 

2.2.2 Structural responses to impulsive loading 

In order to carry out the complex investigation of shell behaviour to dynamic loading, 

the study of the simpler cases such as plate responses to impulsive loading can build 

up useful background of the subject. 

The failure of circular plates subjected to impulsive velocities was investigated by 

Teeling-Smith and Nurick (1991). These investigators conducted a series of 

experiments on fully clamped circular mild steel plates subjected to a uniformly 

distributed impulse. They identified three modes of failures i. e. mode I (large ductile 

deformation), mode II (tensile-tearing and deformation) and mode III (transverse 

shear). An energy analysis was used on their test results which enables an energy 

balance equation relating input, deformation, tearing and disc energy to be calculated. 
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Their analysis of the experimental data produced equations to determine the 

deflection-thickness ratio as a function of impulse. Liang et al. (1991) also studied the 

dynamic analysis of plates to shock loadings. They used the finite element method 

with inclusion of the large deflection effects in transient analysis. If the rotations are 

large in elements but mechanical strains are small, then the large deflection effects 

must be considered in analysis. It was concluded that the response may remain in the 

elastic range and the plates may have an elastic oscillation behaviour which depends 

on the plate thickness and the shock load. The elastic behaviour of the structure 

means the final displacement of the plate is zero and no final deflection will remain 

when there is no continuation of loading. 

The dynamic large deflection analysis of plates subjected to transient shock loading 

was also studied analytically by Manoach (1994). In this study two kinds of 

nonlinearities, i. e. geometry and material nonlinearities, were investigated. It was 

found that the geometry nonlinearity leads to reinforcement of plate stiffness and 

decreases the vibration period and amplitude, while the material nonlinearity tends to 

soften and increase the period and amplitude of vibration. A numerical method was 

introduced to study non-linear plate problems. The behaviour and failure of plates to 

impulse loading was also investigated recently by Wierzbicki and Nurick (1996). In 

this study, a theoretical approach was applied to investigate the effect of localised 

impulse loads on the plate behaviour. They introduced a profile to show the final 

deflection and obtained a good correlation between the predicted and measured 

normalised deflection profile. A rigid-plastic membrane was assumed in their analysis. 

Using an elastic-perfectly plastic (rigid-plastic) stress/strain model was confirmed by 

Jones (1989) to be an acceptable approximation for the case when the pulse duration 
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is short relative to the natural period. An elastic-perfectly plastic model of the 

material means that the material behaves in the elastic region up to a certain point and 

after that it will have a permanent deflection during and after applying the load and 

this deflection will be the same in both conditions. Although the above attempts were 

carried out on the plate responses to the pressure impulsive loading, no specific 

dynamic failure criteria have been introduced, which is the concern of this present 

study. 

As was mentioned above the shell behaviour, which is the concern of this study, is 

more complex than the plate response to shock loading. The design of vessels under 

dynamic loading is governed by the determination of maximum resulting stresses of 

the shell due to the dynamic transient pressure. 

If a vessel is subjected to an internal explosion pressure, the maximum allowable 

stress can be obtained by applying the formula given by Nicholas (1971). It is 

dependent on the maximum allowable stress of the structure under static loading. In 

this very early work, the effect of time duration of internal explosion load is also 

observed. It was also considered that the internal pressure is uniform. However the 

external explosion or spot loading will be discussed in the present work. The works 

of Mal'tsev et al. (1984) and of Duffy et al. (1993) also concern pressure vessels 

under internal explosive loading. In the first study the authors gave data from an 

experimental study of the process of deformation of an air-filled thin-walled spherical 

shell under the action of a blast wave from centrally positioned concentrated charges; 

they also carried out a frequency analysis of the vibrational modes excited in the shell 

and estimate the level of the flexural and membrane stresses acting in it. It was 

concluded that flexural vibration modes, the maximum stresses from which are 
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comparable in absolute value with the maximum membrane stresses, provide a 

significant contribution to the stress-strain state of a thin spherical shell. In the second 

study Duffy et al. (1993) presented a correlation of the experimentally recorded 

dynamic response of a spherical containment vessel with theoretical finite element 

calculations. Pressure-time loading on the inner wall of the vessel was recorded for 

each test using pressure transducers. Resulting dynamic response of the vessel was 

recorded for each test using strain gages mounted at selected locations on the outer 

surface of the vessel. The response of the vessel was primarily elastic. A finite 

element model of the vessel was run using DYNA3D, and comparison between 

experiments and analysis were generally good for frequency and strain magnitude at 

most locations. Comparisons of experimental and calculated pressure-time histories 

were less satisfactory. 

It should be mentioned that maximum allowable stress of the pressure vessels under 

internal static loading can be found in textbooks such as Spence and Tooth (1994). 

All above works deal with the vessels under internal uniform pressure loading, 

however the investigation to introduce a proper failure criterion for shell structures 

subjected to non-uniform transient pressure loading is often required and this is also 

considered in the present work. 

The design of externally pressurised vessels and also non-uniform internally 

pressurised vessels involves quite different problems from those arising in the design 

of internally uniform pressurised vessels. The difference arises in part from the 

greater importance of elastic and plastic buckling in the externally pressurised case 

and also non-linearity in both externally pressurised and non-uniform internally 

pressurised (such as internal spot loading) cases. According to the pressure vessels 
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ASME standard (1983), the maximum allowable stress of the pressure vessels under 

external pressures can be determined for the vessels under static uniform pressure. In 

other words, safe static design of the pressure vessels under external pressures is 

presented, however there is no standard to determine the maximum allowable stress 

of the pressure vessels under non-uniform transient loading. Although some general 

investigations such as the study of Brown and Nolan (1985) have been carried out on 

the subject, detailed studies are required to standardise the safe dynamic design of 

pressure vessels under non-uniform transient pressure loading. In the above study, 

the resistance of common chemical plant items to blast loadings was investigated by 

subjecting scale models of cylindrical plant items to simulated vapour cloud 

explosions. The effects of the magnitude of the peak pressure and the total impulse of 

the wave were examined and the stiffening of vessels was suggested. 

As previously mentioned, the time duration of the applied load is an important factor 

in determining the structural response due to impulsive loading. Anderson and 

Lindberg (1968) proposed a theory of dynamic pulse buckling which was developed 

for cylindrical shells subjected to uniform lateral pressure pulses. They considered a 

wide range of the time duration of pulse loading from a very short, ideal impulse, to a 

duration so long that the pulse is quasi-static. They also presented a profile called the 

critical curve for cylindrical shells to specify the shell's response to pulse loading. A 

general critical curve which shows the relation between the applied dynamic pressure 

with impulse (P. dt) is plotted in Fig. 2.2. 
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Fig. 2.2. Critical curve of cylindrical structures 

The above curve is the generalised for dynamic buckling of cylindrical shells under 

uniform lateral pulse loads. In this condition, a cylindrical shell, acted upon by a 

uniform external pressure pulse, develops compressive hoop stresses that resist 

inward motion. The compressive hoop stresses cause elements of the shell that have 

an initial departure from circularity to be thrust ahead of the average motion and 

elements that have an initial outward departure to be thrust behind. It turns out that 

certain mode numbers of the initial departure from circularity grow faster than others 

and this determines the buckling pattern. The lower branch (elastic) of the curve 

indicates that the P-I combinations for which the initial non-uniformities grow by a 

factor of large value for `I ' during the inward elastic motion. The upper branch 

(plastic) indicates the combinations for which the non-uniformities grow by factor of 

large value for `P', during inward motion beyond the elastic range. In other words, in 
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a physical sense, the mode numbers are much greater for the plastic branch of the 

curve than for the elastic one as the high modes of the structure is excited. 

They also studied the effect of shell parameters on the above curve. The variations of 

the value of the length to diameter ratio (1/d) of the cylindrical shells affect only the 

elastic branch of the curve, so that increasing 1/d causes the elastic buckling with a 

lower impulse. The reason is that in the plastic range the modes are so high that the 

ends of the cylinder have little effect. However, their experimental works showed that 

the behaviour of the cylindrical shell structures under pulse loading strongly depends 

on the value of the radius to thickness ratio (a/h). The elastic behaviour moves to 

plastic, as the value of a/h decreases. They found that (a/h)=24 and (a/h)=270 gives 

the plastic and elastic responses, respectively. Pegg (1991) also obtained similar 

results. He found that if (a/h)<60, the response of the cylindrical shell due to pulse 

loading is plastic, and, if (a/h)>260, the response is perfectly elastic. He also observed 

that if 60<(a/h)<260, the behaviour of the shell is elasto-plastic. 

Some attempts have focused on the elastic behaviour of shell structures under pulse 

loading. Lindberg (1964) produced a theory of elastic pulse buckling for long shells 

subjected to non-uniform loading. He finally introduced the critical instantaneous 

velocity, under impulsive loading, which causes elastic pulse buckling. In this very 

early work, a theory was introduced which predicted that the wrinkles around the 

cylinder under the pulse load occur at a wave length which depends on the magnitude 

of the pressure pulse as well as on the cylinder parameters. To and Wang (1993) 

analysed the response of non-uniform shell structures to pulse loading. They carried 

out finite element analysis for the shell with the dimensions (large a/h) which gave 

perfectly elastic behaviour. Ruiz et al. (1989) also studied the behaviour of a thin wall 
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cylindrical vessel with (a/h)=2000 which is perfectly elastic. They applied two types 

of loading namely rotationally non-uniform and sideways pulse loads. The results of 

both cases were obtained experimentally. The former was compared to the analytical 

approach proposed by themselves, simulating the load as a rectangular pressure pulse 

and good agreement was observed. The latter was analysed by the ABAQUS finite 

element code because of the non-linearity of the case and a comparison with the 

experimental results was also made. Both above cases proved the elastic behaviour 

for very thin-walled cylindrical shells. It should be mentioned that in the above work, 

the lateral pulse was modelled as a cosine distribution model which is the most 

common approach. In this model the pressure is applied to the cylinder as a factor of 

the cosine of the angle of the cylinder which means the pressure is the maximum in 

the face to the load and minimum in the sides and back of the cylinder as the pressure 

is laterally applied. Wierzbicki and Hoo Fatt (1993), Prantil et al. (1986) and 

Kirkpatrick and Holmes (1989) also used the cosine model in their works. 

Some other studies have also been carried out to investigate the behaviour of shell 

structures under pulse loading into the plastic region . Abrahamson and Goodier 

(1962) presented the plastic flow pulse buckling theory for cylindrical shells which 

covers low radius to thickness ratios. They predicted the final shape of the cylinders 

with low radios to thickness ratio under pulse loading. Wierzbicki and Hoo Fatt 

(1993) also proposed a model for the analysis of cylindrical shells with low radius to 

thickness ratios under dynamic loading. They in fact determined the deflections of the 

shells under lateral impulsive loading analytically so that the response was perfectly 

plastic. In another study, Hoo Fatt and Wierzbicki (1992) worked on the dynamic 

plastic response of a ring-stiffened cylindrical shell subjected to high intensity 
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pressure loading and introduced an approximate analytical solution for the plastic 

response of shells. The analytical solution was developed based on a simple 

computational model and some experimental observations of the final damaged 

structure. Their analytical model showed good agreement with a limited amount of 

experimental data. The work of Kormi and Duddell (1991) is another study which 

was performed to find the critical pressure value for a 10 ps step load in the plastic 

region of a cylindrical shell on using numerical method to demonstrate the power of 

the finite element method in modelling the response of structures to abnormal loads. 

All the above mentioned investigations are about the elastic and plastic response 

behaviour of shell structures subjected to impulsive loading, whereas most practical 

cases have the elasto-plastic response to dynamic loading which introduce the 

complications. Therefore this creates the need for the present investigations in order 

to introduce the dynamic failure criteria for shell structures subjected to impulsive 

loading. 

Elasto-plastic behaviour of structures presents complexities throughout the analyses 

of such problems. The response of midrange radius to thickness ratio shells to pulse 

loading, when the radius to thickness ratio is between 60 and 260 [60<(a/h)<260] 

which covers many practical cases, is not particularly well predicted by either elastic 

pulse or plastic flow buckling theory. It is thus required to apply a numerical 

approach such as a non-linear finite element solution to investigate these cases. Oslon 

(1991) proposed the finite strip method for dynamic blast loading on shell structures. 

He analysed a cylindrical shell under lateral blast loading, as an example, compared 

his results with the results obtained by both finite element and finite difference 

methods. It should be mentioned that the finite difference method for the inelastic 
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shell response to an impulsive load was applied by Underwood (1972). Jiang and 

Oslon (1991) used the above method and applied it to some problems using both step 

and exponential loading. They also compared their own results with the available 

experimental data and good agreement between the two was obtained. The above 

method was further developed recently by Jiang and Oslon (1993) so that the 

formulation of new super element for non-linear dynamic analysis of shell structures 

was proposed. In the conventional finite element modelling, the complex structures 

usually require a large number of elements and very expensive computer runs. 

However in the their new super element, the structure was first divided into some 

sub-structures and then elements were defined and analysed. The results obtained by 

the above new formulation showed satisfactory performance of the new super 

element method when the final deflection results were compared to the results 

obtained by finite strip and finite difference methods. 

The elasto-plastic response of shells under external pulse loading has been also 

investigated experimentally. Schwer et al. (1988) studied failure analysis of an 

impulsively spot loaded tank with different impulses and 200 gs duration of impulse. 

The study was also carried out numerically using DYNA3D finite element computer 

code for pressurised and unpressurised tanks. The pressurised shell indicated that 

fracture occurred after a complex sequence of loading in the shell consisting of axial 

tension followed by compression. Prantil et al. (1986) also did an experiment to 

obtain the response of a cylindrical shell with the radius to thickness ratio (a/h) equal 

to 257 under lateral impulse load with 50 µs duration. They compared the results 

with a numerical method and found that initial imperfections in both shell geometry 

and loading should be considered in numerical methods in order to obtain realistic 
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results. Initial imperfections in a cylindrical shell with radius to thickness ratio (a/h) of 

240 subjected to impulsive external load were considered in a finite element analysis 

by Kirkpatrick and Holmes (1988). Both idealised and measured shape imperfections 

were considered in the above study. The load imperfections were also included in the 

analysis. Shape imperfections and load imperfections were simulated mathematically. 

The above investigators found that measured shape imperfections with 

mathematically modelled load imperfections gave the best results compared to their 

experiments. Kirkpatrick and Holmes (1989) also performed an experiment to 

determine the effects of initial imperfections on the cylindrical shell subjected to an 

impulsive half-cosine external load applied with explosives. The experiment was 

carried out for the cylinder with (a/h)=240 and consequently an elasto-plastic 

response was observed, as expected. They also used the DYNA3D computer code to 

analyse the problem numerically with and without considering imperfections. The 

results obtained by considering initial imperfections in thickness of the shell, showed 

good agreement with experiment. Some mathematical models, such as the model 

presented by Ben-Haim (1993), have been proposed to simulate the imperfections. 

Making an imperfection such as a discontinuity in the shell thickness can also be 

useful in some design. The investigation of Stanley and Ganesan (1995) showed that 

the maximum stress and displacement can be reduced by introducing a certain 

discontinuity on the shell thickness. 

Although the above discussed investigations are on the elasto-plastic response of 

shell structures to pressure impulsive loading, no appropriate failure criteria have 

been used to predict the failure of the structures to enhance and assure the pressure 

vessels safety. This work aims to investigate the response and also explore a proper 
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methodology for failure criteria and design strategies for the vessels under non- 

uniform pressure transient loading, since most reported works carry a high symmetry 

in both geometry and loading. 

2.3 Fluid-structure interaction 

Submerged shell structures subjected to transient pressure loading may deform to an 

unacceptably large amplitude. Such situations may arise in submarine structures 

subjected to under water explosions. Other examples are piping systems and pressure 

vessels in the nuclear and chemical industries, which may undergo local damage or 

failure due to an accidental internal release of energy. 

Molyneaux et al. (1993) carried out an investigation to observe the impact responses 

of circular cylindrical shells to pressure pulse loading resulting from an under water 

explosion in the interior of the shell. Their model was analysed using DYNA3D, 

incorporating both hydrodynamic and large structural deformation treatments. From 

the numerical study, it was concluded that the maximum transient stress obtained 

from the strain-rate-dependent model is higher than that obtained from the strain- 

rate-independent model as the dynamic yield stress is increased when the strain rate 

effect is included. The response of the cylindrical shells to external impulsive 

hydrostatic pressure was also studied by Pegg (1994). The weakness of his study was 

that the hydrostatic pressure and impulsive loading were considered separately but 

applied simultaneously. However, the propagation of the shock wave through the 

fluid environment is very significant and requires to be taken into account. The work 

39 



of Mustafa et al. (1993) is another study of dynamic buckling of submerged circular 

cylindrical structures subjected to an external pressure impulse. They also applied 

numerical analysis, using the ABAQUS finite element code, and discovered that the 

predominant harmonic of the buckling response increases both with the cylinder 

length and with the radius to thickness ratio of the cylinder. Lewis et al. (1994) 

introduced a new calculation with coupled finite element and finite volume methods 

to predict the response of a submerged circular cylindrical vessel to pressure loading. 

They also compared the predicted response with the experiment with good 

agreement. 

Non-linear dynamic fluid-structure interaction for shell structures have also been 

studied analytically. The very recent work of Brevart and Fuller (1996) is an example 

which focused on elastic cylindrical shells. In this investigation the time domain 

response of an infinite fluid-filled pipe to an impulsive line force was derived, based 

on the shell equations fully coupled to the interior acoustic field and computing a 

double Fourier integration in the wave number and frequency domain. The transient 

radial velocity of the shell was used to compute the coupled pressure field in the fluid 

and investigate the instantaneous intensity vectors in the fluid field. These vectors, 

evaluated in the near field of the shell wall at several distances from the input force 

for increasing time, which gave insight into the exchange of energy between the 

structure and the fluid as the various waves propagate through the system. 

The study of O'Regan and DiMaggio (1990) is another attempt which uses a high 

degree of symmetry in the transient loading. To determine the dynamic response of 

submerged structures with complex internal geometry to shock loading, it is often 

necessary to uncouple the equations of motion of the infinite surrounding fluid from 
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those of the structure by means of acoustic approximations. In this work a method 

was developed that can be used to compute the motion of the structure. 

Some investigations have also been performed on the dynamic response of stiffened 

cylindrical shells to the transient pressure shock wave considering fluid-structure 

interaction. Xu and Huang (1991) applied the finite difference method to study the 

effect of stiffening the cylinder on the submerged shell response to external transient 

pressure loading. However experimental data is required to validate their results. 

Pedron and Combescuse (1995) also carried out an analytical approach to the 

response of elastic stiffened cylindrical shells to the transient lateral pressure 

produced by an under water explosion which forms a non-uniform loading. They 

came to the conclusion that the theory developed by Anderson and Lindberg (1968) 

is well adapted for the shell structures and pressure pulse in the fluid environment for 

an infinite elastic stiffened shell submitted to quasi-static or quasi impulsive lateral 

loads. The issue of imperfection is another key subject and which was studied by Shin 

and Hooker (1994) for ring-stiffened long circular cylinders submerged in the fluid. 

The parametric studies on the effect of the initial geometric imperfections to the 

damage response patterns of submerged structures were investigated in their 

research. The type of the submerged structure investigated was the ring-stiffened 

long circular cylinders submerged in the fluid. The numerical analyses were 

performed to look into the details of damage response patterns of ring-stiffened 

cylindrical shells. 

As can be observed, most investigations apply a high degree of symmetry and also 

elastic or plastic response. More investigation is inevitably needed to predict the 
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behaviour and failure of submerged shell structures to non-uniform transient pressure 

loading with elasto-plastic response which is discussed in the present research. 

2.4 Failure criteria 

Existing failure criteria deal with the static loads and pressures and use Von Mises 

and Tresca failure criteria. However some attempts have been made to introduce new 

failure criteria and design strategies for structures under dynamic impulsive loading. 

Before looking at the literature available on this subject, it seems to be useful to 

briefly explain Von Mises and Tresca failure criteria. 

The following equations respectively express Von Mises and Tresca failure criteria 

for the structure under loading: 

Von Mises: Max ýQ, 
-U2 I, I472 - Q3 I' IQ3 - a, I} = ao (2.1) 

Tresca: lýýl -QZ 
ý2- Uý 
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ao : yield stress of the material 

at & a2 & a3 : principal stresses 

In two dimensional cases the above equations become: 

Von Mises: 22 Qi -Q1Q2 +Q2 = Qp (2.3) 
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The first equation (Von Mises) is that of an ellipse, and is the trace of the intersection 

of the circular cylinder with the (ai, a2) plane. Similarly, the Tresca hexagon of the 

second equation lies within the Von Mises ellipse. It is therefore obvious that both 

criteria predict the same limit ßi=62 =ao in equal biaxial tension and that of course 

both give the same breakdown limit ao in simple tension. 

Geefken et al. (1988) performed some experiments on unpressurised and pressurised 

cylindrical vessels to identify the structural response to external radial impulsive 

loads. It was observed that for unpressurised shells the response modes consisted of 

dynamic pulse buckling followed by large inward deflections of the loaded surface. In 

shells with high internal pressure, the dynamics are the same but the final deflection is 

outward. They developed the shell load-damage relationships to predict the failure by 

formulating the energy balance equations. Their failure criterion, which is based on 

the experiments and formulations, suggests that the failure occurs when the sum of 

the two principal strains reaches 14%. This failure criterion is specific to the tensile 

tests carried out in their experiments. Although a good agreement was obtained in 

their experiment and analyses, a more general failure criterion, that can be expressed 

for thin shells, may be obtained by carrying on their analysis further. Holmes and 

Kirkpatrick (1988) also investigated the failure of metal tanks to external impulsive 

spot loading. They also suggested that a sum of axial and hoop strain of 14% is 

sufficient to fail the geometry which they studied. The same results are also reported 

by Holmes et al. (1988) in another publication on the ductile failure of shells under 

transient pressure histories. Baltov et al. (1993) also investigated the failure of thin 

cylindrical shells under high intensity external impulsive loading in which the volume 

damage can occur. The failure and damage of thin metal shells in their study was 
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based on the following three criteria: (I) strength criterion - if the damage limit to 

fracture of the material is reached, (II) deformation criterion - if the limit of the shell 

admissible deflection is reached, (III) stability criterion - if an unbounded increase of 

the deflection velocity occurs for a relatively small increase of the external loading. 

They used the finite element method to analyse the response of the thin shell and 

subsequently introduced curves regarding the above failure criteria. 

The failure by plastic response of cylindrical shells to impulsive loading has also been 

investigated. Li and Jones (1995) conducted a theoretical approach to predict the 

critical conditions for transverse shear failure of a short cylindrical shell, which is 

made from rigid, perfectly plastic material. They combined their theoretical results 

with an elementary failure criterion, a yield criterion, to predict the failure of the shell. 

The results from their theoretical work for the maximum permanent displacements of 

impulsively loaded fully clamped cylindrical shells were compared with the 

experimental data. Zhao et al. (1995) also studied the response and failure of rigid, 

perfectly plastic structures to transient pressure loading with finite-deflections in the 

structures. They also used the approximate yield surface criterion to predict the 

damage and failure of the structures. The rectangular shape for the pulse load was 

used in this work and it was concluded that the other shapes may be used applying 

the approximate yield surface criterion. 

In the very recent work of Wierzbicki and Nurick (1996), from MIT, on plate 

behaviour under localised impulsive loading, it was reported that a long-range goal of 

their research is to predict the magnitude of the critical impulse to failure of the plate. 

This report obviously reveals the need of the research on the failure criteria for 

structures under impulse loading which is carried out on the present study. 
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2.5 Conclusions 

The review of the research subject undertaken has particularly focused on cylindrical 

shells and their associated failure criteria. The review has shown that there is no 

standard for the safe design of pressure vessels under impulsive loading. In other 

words, the concern of all existing failure criteria is the static pressure and therefore 

the dynamic cases are considered under the static failure criteria. As reviewed above, 

some attempts have been carried out to investigate the behaviour and responses of 

vessels subjected to impulsive loading, but none of them has proposed the maximum 

allowable stresses for safe design. Another point is that the time variation of the 

dynamic loading has not been fully considered to determine a suitable failure criterion 

for safe dynamic design. However time duration of the dynamic loading on structures 

is a significant factor in determining the failure criterion of structures. 

Therefore, the overall goal of the research is to provide a methodology for design of 

process plant structures, particularly plates and shells, under impulsive loading by 

investigating the effect of time duration and the maximum applied pressure of impulse 

loads on the maximum allowable stresses of the structures. 

In other words, the plastic and elastic response and behaviour of cylindrical shell 

structures under highly uniform impulsive loading have been covered in the literature, 

whereas the elasto-plastic behaviour subjected to non-uniform impulse loading 

requires more investigation. Therefore, the objective of this research is to introduce a 

suitable design strategy for elasto-plastic response of plates and shell structures under 

impulsive loading. 
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First the elastic and plastic theories for cylindrical shell structures under impulsive 

loading will be explained, then a series of numerical analyses will be carried out and 

the results will be compared with the existing experimental results. The experimental 

procedure will then be presented and consequently the results and discussion for the 

failure criteria will be covered. Finally the conclusions will be drawn. 
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3. Theory 

3.1 Introduction 

Dynamic behaviour of structures is a very broad subject that includes not only the 

different types of loading such as vibratory and pulse loads, but also interaction of 

structures with other media, such as in heat exchangers shells and submerged 

structures subjected to impulsive loading in the water. 

The structural response to pulse loading is obviously different from that to vibratory 

loading. The main distinction between structural response to transient and to 

oscillatory load is that the pulse load is characterised by its amplitude, shape, and 

duration. In vibration buckling of structures, the amplitudes of vibration caused by an 

oscillating load become unacceptably large at critical combinations of load amplitude, 

load frequency, and structure damping, whereas in pulse buckling, the structure 
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deforms to an unacceptably large amplitude as the result of the transient response to 

the applied load. 

Since this work concentrates on the structural response and behaviour to impulsive 

loading, the elastic and plastic pulse buckling theories of shells first explained in this 

chapter. 

3.2 Shells pulse buckling 

Dynamic buckling of shells under external radial pulse loads was experimentally 

investigated by Lindberg (1964). A very thin shell (a/h=480) was loaded by an 

impulsive radial pressure over one side of the shell. The final shape of the shell 

showed a very high mode number of buckling (in terms of number of buckles) since 

the number of buckles around the circumference was between 50 to 100. The same 

experiment was carried out on a much thicker cylinder (a/h=19) and it was found that 

the radial velocity required to produce buckling was much higher than the previous 

case. The hoop strain was several percent, well into the plastic range, which resulted 

in another form of pulse buckling, which is called dynamic plastic flow buckling. The 

permanent wrinkles in the first case (a/h=480), elastic buckling, were found by late- 

time plastic hinges following the elastic buckling. Whereas in plastic flow buckling, 

the buckles form while the material throughout the entire wall thickness is flowing 

plastically from hoop compression. Resistance to buckling therefore comes from the 

plastic tangent modulus rather than from the elastic modulus. The tangent modulus in 

metals is typically about 100 times smaller than the elastic modulus. Therefore the 
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buckle wavelengths, which are proportional to the square root of the modulus 

(Lindberg and Florence, 1987), are about 10 times shorter than the elastic buckling. 

As mentioned earlier, in the preceding chapter, there are two theories, namely plastic 

flow pulse buckling theory (Abrahamson and Goodier, 1962) and plastic pulse 

buckling theory (Lindberg, 1964), which present the analytical solution for plastic 

and elastic response of shells under impulsive loading. 

3.2.1 Plastic theory 

The wavelengths of buckles for impulsive loading are short compared with the shell 

length, therefore buckling from impulsive load is assumed to be independent of the 

axial coordinate. This gives an adequate description of buckling in the main span of 

the shell, where the buckle amplitudes are greatest and nearly constant along the 

length. With this simplification, the complexities of plastic flow buckling can be 

analysed with a reasonably simple theory. 

For mathematical simplicity, the strain-hardening (tangent modulus) is taken to be 

constant. Dynamic plastic flow buckling with a strain-hardening modulus that 

decreases continuously with increasing compression strain will be discussed later in 

this chapter. 

Cylindrical shells subjected to uniform impulsive external pressures of sufficient 

intensity exhibit a characteristic behaviour as indicated in Fig. 3.1. The circle 

represents the original size (outer surface), and the thick black somewhat crumpled 

circle inside is the deformed shape at the end of the shell. It shows a general radius 
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reduction with wrinkles in a manner sufficiently regular to permit a count of the 

number of crests and troughs. 

original size 

Fig. 3.1. Original and deformed shapes of idealised cylinder under uniform external 

impulsive loading 

This section presents a theory of the formation of wrinkled shape, developed by 

Abrahamson and Goodier (1962), based on the dynamics of a metal shell that 

deforms plastically with a constant strain-hardening. It is considered that for a 

cylindrical shell loaded in such a manner, that all elements receive a large initial radial 

velocity simultaneously. In the absence of imperfections, the material flows into a 

uniform cylindrical shell of smaller radius (and thicker wall) until the initial kinetic 

energy has been absorbed in the work of plastic deformation. But with the inevitable 

small imperfections in the uniformity of initial velocity around the shell and the 

imperfections in the material properties and the shape (geometrical imperfections), 

there will be perturbations from this uniform converging motion. It would complicate 

matters to include all sorts of imperfections together. Instead, the basic problem is 
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taken as that of a geometrically and materially perfect cylindrical shell, with a slight 

imperfection in the uniformity of the initial velocity. There is consequently a 

departure from the circular form throughout the motion, but this is regarded as 

always small. 

Neglecting rotary inertia, it can be shown from the element of shell (unit axial length 

of shell) in Fig. 3.2. that 

Q-ý, (3.1) 

Q being the shear force and d4 the arc element corresponding to d9. 

Fig. 3.2. Element of shell in motion 

where M is defined by: 

where 

M=E, I (3.2) 

I= l hs 
12 

and Et is tangent modulus and h is the shell thickness. 

The dynamic equation for the radial motion is 
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aQ+sa9, =-maZW 

aa, aa, ar 2 (3.3) 

where w is the radial inward displacement, m is the mass per unit run of 

circumference and t is time. 

For the curvature 

+x öý, a 

where K is the curvature which is defined by 

II d2w 
K=- +W 

a2 d92 

(3.4) 

(3.5) 

Putting equation (3.4) in equation (3.3), eliminating Q by means of equation (3.1) 

and M by means of (3.2), one finds that w satisfies the equation 

Et I (94w ä2w 11 02w = ä2w +a+S-+a+w- -M -71 (3.6) 
a4 (/84 ae2 a a2 l/e2 

2 

It is convenient to change to dimensionless inward radial displacement and time 

w EI 1Eht 
u=-, T= `4t=ý. 

a ma 12 paa 

where p is density, and to introduce the dimensionless constant 

2Sa2=12Sa2=12Qa2 
2 EtI Eth Eth 

where 

(3.7) 

(3.8) 
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S ý_- h 
(3.9) 

which is approximately the yield stress in simple compression. Then the equation 

(3.6) can be written in the form of 

9'u 
+ (1 + SZ )ý2 +s 2 U+ ý2 = -SZ (3.10) 

This is for a cylindrical shell that initially is perfectly circular. If instead it departs 

from the circular form by an initial displacement w, (O) in the unstressed state, and if 

one uses w(8, t) for the additional inward radial displacement during the motion, 

equations (3.1), (3.2) and (3.3) remain unchanged, but equation (3.4) becomes 

ý= 1+ 1 °2 +1 (w, +w) 
öa, a aZ o'19Z 

(3.11) 

and using the remaining equations (3.7) and (3.8) with the new meaning of w and u, 

equation (3.10) changes to 

ýu+(1+s2)a2eu+sZu+ýu 
=-s2 1+u, +d 

Zez 

(3.12) 

The above equation concerns the effect of velocity perturbations from impulsive 

loading discontinuities which allows one to calculate and determine the final shape of 

a cylindrical shell under impulsive loading with the plastic response where the strain- 

hardening is assumed to be constant. An example of using this equation and 

comparison with the experimental results are given by Lindberg and Florence (1987). 

In this example a buckled cylinder was produced with the experimental set-up using 

the explosive. A precise comparison of the experiment with the theory is not possible 
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because the nonuniformities in the experimental velocity distributions, which are 

required for the theory, are unknown. Instead, the number of buckles observed 

around the cylinder, which is independent of the nonuniformities, was compared with 

the theoretical results and qualitative comparisons were made of experimental and 

theoretical amplitudes and permanent strains showing good agreement. 

3.2.1.1 Strain hardening 

In order to study the actual behaviour of shells to impulse loads, it is necessary to use 

a more accurate description of strain hardening than the constant hardening modulus 

EE used above. Tests on several alloys (Payton, 1961) show that an accurate 

description for strain hardening is given by 

Q QlE=B OSESEy 

Ey +K(s- ey)................................... sZ 1Er +K(s- 8r)................................... sZ 
(3.13) 

Where Er is the tangent modulus, E is Young's modulus, ey is the yield strain, and K 

is a parameter that describes the post-yield shape of the stress-strain curve. Large 

values of K describes stress-strain curves in which tangent modulus drops quickly 

after yield. Examples of stress-strain curves from the above formula are given in Fig. 

3.3. Large values of K describe curves with abrupt yield, for which the tangent 

modulus drops quickly after yield. Small values describe more rounded curves with 

substantial strain hardening. 
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Fig. 3.3. Examples of stress-strain curves 

3.2.1.2 Pressure impulse 

Applying the short duration pressure (P*) rather than ideal impulse (initial velocity) 

and also considering stress-strain relationship described in equation (3.13), the plastic 

equation of motion, equation 3.12, (Anderson and Lindberg, 1968) becomes 

C%aZl 2 Oýu 2 
äu 

+(1+S )+S 1[+ (_1 &2 
= 7 

zr 

_ -s2 1+ ui + 
de? 

+I 
a2 

a 
Eh 

P (3.14) 
\ ý3 
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ý; i 

In order to treat a continuously changing tangent modulus, which varies from the 

elastic modulus at small strains to much smaller values given by equation (3.13) for 

plastic strains, the dimensionless time r is that used above, for an ideal impulse, and 

additional dimensionless parameters, in equation (3.14), are introduced as follows: 

Ct T=- 

Q 

where 

and 

C2=E 

P 

2=hz g2 = 

Et 
2= (TO 

12a2 'E's a2Et 

where co is the circumferential membrane stress. 

(3.15) 

(3.16) 

And a dimensionless form of the external pressure P*, including small non-uniform 

perturbations, is given by (Anderson and Lindberg, 1968), 

3.2.2 Elastic theory 

P(e'T)=I EhJP*(9'z) (3.17) 

The experimental results from Lindberg and Florence (1987) showed that when 

cylindrical shells are projected inward by an impulsive pressure, a characteristic form 

of dynamic wrinkling occurs at wavelengths determined by material tangent modulus 
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in plastic radial flow. In experiments on a very thin cylindrical shell (a/h=480), carried 

out by Lindberg (1964), it was observed that buckle wavelengths were six times 

those predicted by the plastic flow buckling theory. In these shells it was found that 

the duration of elastic motion was long enough that elastic buckles formed with 

amplitudes much larger than any initial imperfections at the plastic wavelengths. The 

elastic buckling also quickly reduced the average hoop stress so that radial plastic 

flow, which would have occurred in the absence of any velocity or displacement 

perturbations, never occurred. As a result, buckling was restricted to the elastic 

modes. Radial impulse above that for elastic unperturbed hoop motion served only to 

provide energy eventually absorbed by plastic hinges at the elastic buckle 

wavelengths. 

A theoretical analysis of dynamic elastic pulse buckling, developed by Lindberg 

(1964) is presented in this section. Because the motion is elastic, another form of 

dynamic buckling can also occur which is called autoparametric vibration buckling. 

This is a special form of vibration buckling in which elastic vibrations in the hoop 

mode become unstable. At radial impulse well below that required to produce pulse 

buckling wrinkles as just described, the shell vibrates in and out in the hoop mode. 

Because of inevitable imperfections, flexural modes with natural frequencies near half 

that of the hoop mode begin to grow in amplitude by extracting energy from the 

hoop mode. Eventually, nearly all the energy can be transferred to a flexural mode. 

This vibration buckling is not discussed here and the elastic pulse buckling theory is 

only presented in this section. 
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The notation adopted is shown in Fig. 3.4. The governing equation of motion for the 

elastic model are obtained using shallow-shell Donnel equations (Batdorf, 1947 and 

Lindberg, 1964) with the addition of inertia terms. 

Fig. 3.4. Coordinates and shell nomenclature 

As in the static buckling analysis of cylindrical shells, the uniform radial deformation 

is assumed to be independent of the length and end conditions, but it is required that 

the superimposed flexural deformations satisfy the end constraints. This assumption 

allows the equation of motion to be separated into individual uncoupled equations for 

each mode. 

The equation of equilibrium in the radial direction is 

DV4w+Nx 
r 

(w+wi)+2 
äse ý(w+wi)+ 

is 
i ýz 

(w+w, )+ 
No 

+ph a 
w-P*=0 

a 

where, 

(3.18) 
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and Nx, Nxa N9 are the membrane forces with the sign convention chosen so that 

compression is considered positive, D is the flexural rigidity of the shell wall, and Pý 

the Laplacian operator: 

D_ 
Eh3 

12(1- v2 ) 

92 
402 Q2 

ý2 
+ 

a2,602 

(3.19) 

(3.20) 

The force No is taken as the sum of two parts, one caused by the uniform radial 

deformation and the other caused by flexural deformation; thus 

_ 
Eh wo ä2F NB 

1- v2 a+ CÄC 2 (3.21) 

where F is the stress function for the membrane forces produced by flexural 

deformations and wo is the uniform radial deformation. The membrane forces Nx and 

N0 are assumed to be independent of the uniform radial motion, and for the flexural 

motion are given in the usual manner in terms of F: 

N- d'F (3.22) _. 
a2CV2 

ö2F 
Nxe 

aö9ý 
(3.23) 
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and F is obtained by the compatibility condition between the mid-surface strains as 

follows: 

V4F_CEh 
ä2w 

az 
(3.24) 

A series of experiments has been performed by Lindberg and Florence (1987) to 

demonstrate the essentials of the theory are correct. They used the explosive to apply 

the pressure to a cylindrical vessel for a number of loading durations. They found that 

the results from long duration loading compare well with the theory. However if the 

duration is very short the plastic theory should be used. 

3.3 Conclusions 

Analytical solutions of cylindrical shell structures to uniform pressure pulse loading 

were explained in this chapter. Abrahamson and Goodier (1962) plastic theory and 

Lindberg (1964) elastic theory were presented with a number of assumptions in order 

to simplify the theories. However to predict and determine the actual response and 

behaviour of shell structures to pulse loads, it is necessary to consider all 

imperfections i. e. loading, geometry and material defects. Therefore analytical 

solutions of the dynamics of shells are not complete and accurate enough due to the 

complex kinematics of the response which leads to the requirement of a high degree 

of symmetry in the geometry and applied loads. However these developed theories 

enable a priori judgement of the form of solution. The elasto-plastic response of shell 

is too complex to allow a proper analytical solution. 
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Numerical methods such as finite element analysis provide a powerful and fast 

method of analysing non-linear problems when the structures are subjected to large 

deformations. It also enables the analysis of shell structures with imperfections and 

non-uniformity in the shell shape and pressure impulsive loading. Therefore the finite 

element method provides the freedom to solve very complex structural problems due 

to its division into thousands of elements. 

A series of non-linear transient finite element analyses, using the ANSYS finite 

element code, on various geometries subjected to pressure impulsive loading will be 

presented in the next chapter. 

61 



4. NUMERICAL ANALYSES 

4.1 Introduction 

The review of the studies of transient dynamic response of cylindrical shell structures 

for different radius to thickness ratios and also the plastic and elastic theories for 

cylindrical structures under transient pressure loading have been carried out in the 

preceding chapters. In order to investigate the effects of dynamic pressure loading on 

shell structures, a plastic, elastic and elasto-plastic analysis, using the ANSYS finite 

element code, are performed in this chapter. The effects of the various pulse models 

and also pulse duration on the response of the structure to transient loading are also 

investigated. 

As explained in earlier in the literature review and referred to in Anderson and 

Lindberg (1968), the response of the shell structure can be plastic, elastic or elasto- 

plastic depending on the radius to thickness ratio. For the elastic and plastic cases, an 
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external pressure transient load is applied whereas the internal spot (localised) 

pressure transient load is considered for the elasto-plastic case. The results are 

compared with experimental available results from the literature. 

4.1.1 ANSYS finite element code 

ANSYS is a general purpose finite element programme. Many different types of 

problems may be analysed using the code. Some examples would include: structural, 

thermal, magnetic field, electric field, and fluids analyses. ANSYS is also a self 

contained programme in that the Pre-processor (model definition), Processor 

(solver), and Post-processor (output) are all integrated into a single code. 

All models including 3D finite element models in this chapter are solved using 

ANSYS which has a wide range of capabilities including the transient dynamic 

analysis. 

4.1.2 Transient dynamic analysis 

Transient dynamic analysis, also called time-history analysis, is a technique used to 

determine the dynamic response of a structure under the action of any general time- 

dependent loads. This type of analysis may be used to determine the time-varying 

displacements, strains, stresses, and forces in a structure as it responds to any 

combination of static, transient, and harmonic loads. The time scale of the loading is 

such that the inertia or damping effects are considered to be important. In this 
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chapter, this type of analysis is used to determine the response of shell structures to 

pressure transient loading. 

The basic equation of motion solved by a transient dynamic analysis is 

[M]{u} + [C]tu }+ [K] u= {F(t)} (4.1) 

where 

IM]: mass matrix 

[C] : damping matrix 

[Ký : stiffness matrix 

{u}: 
nodal acceleration vector 

{u}: nodal velocity vector 

u nodal displacement vector 

{F(t)} : load vector 

At any time t, these equations can be thought of as a set of "static" equilibrium 

equations that also take into account inertia forces, [M]tu}, and damping forces, 

[cif+ 
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4.2 Plastic response 

In order to observe the plastic response of the cylindrical vessels to blast loading, a 

case study, for which experimental results as well as finite difference and finite strip 

analyses results have been reported, is analysed here by the ANSYS code. As will be 

seen, the response of the above mentioned pressure vessel is perfectly plastic. 

The main objective of this section is firstly to observe the plastic response of the shell 

structure and more importantly is to show that the results obtained by the present 

analysis are in a good agreement with the other available results, which assist the 

further investigations. 

4.2.1 Descriptions 

The transient analysis of a cylindrical vessel structure under external explosive 

loading using the finite element method is investigated here. The experimental results 

of the case, which is analysed here, have been obtained from Lindberg and Sliter 

(1969) and a finite difference analysis has been carried out by Underwood (1972). 

The finite strip analysis of the case has been also reported by Jiang and Oslon (1991). 

The parameters and the loading conditions of the case are as follows: 
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4.2.1.1 Parameters 

Material: Aluminium 

Length: 1= 15.24 cm 

Radius: a=7.62 cm 

Thickness: h=0.3175 cm 

Modulus of elasticity: E=6.8 x 10 4 MPa 

Tangent modulus: E, =0 MPa 

Yield stress: cry = 2.8 x 10 2 MPa 

Density: p= 30479 kg/m3 

Poisson's ratio: v=0.3 

4.2.1.2 Loading 

R 

Blast Load 

The ends of cylinder were taken as clamped. The shell was loaded by a spherical 

explosive charge off to one side of the shell in the experiment (Lindberg and Sliter, 

1969). The following experimental formula was fitted to the experimentally measured 

peak pressures on a rigid cylinder which is used in the present finite element analysis: 

P(e, r) =((PR-PJ cosZ8+P, 1Po(r) -9056s90 (4.2) 

P(B, t) = Pj Po(t) Iol >90 (4.3) 
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where 

Po(t) = exp. [-tlto] (4.4) 

and to =I/ PR 
. Here I is the unit impulse measured at 0=0 and PR and PI are the 

reflected and incident pressure, respectively. 

The analysis has been carried out for PR = 56.53 MPa, P, = 8.27 MPa and to = 31 

µsec. These data were suggested by Lindberg and Sliter (1969) to satisfy the above 

equation for the experimentally applied pressure in their experiments. 

Fig. 4.1 and Fig. 4.2, respectively, show the pressure-time profile for the above case 

when 0=0 and also pressure around the cylinder for t= 31 psec. 
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Fig 4.1. Pressure-time profile for 0=0 

25 
7 

30 35 

67 



3.054 
3.052 

3.05 
3.048 
3.046 

ý 3.044 
3.042 
3.04 

3.038 
3.036 
3.034 

-100 -50 0 50 100 

Angle (degree) 

Fig. 4.2. Pressure profile around the cylinder when t= 31 microseconds 

4.2.1.3 Nonlinearity 

The radius to thickness ratio of the cylinder is: a'h = 3/0.125 =24. Therefore, 

according to chapter 1, the response of this cylindrical vessel to blast loading is 

perfectly plastic. 

The stress-strain relationship of the material has been assumed to be elastic-perfectly 

plastic as shown in Fig. 4.3. This assumption was used by Lindberg and Sliter (1969), 

Underwood (1972) and Jiang and Oslon (1991) for the analysis. 
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Fig. 4.3. Stress-strain relationship for the material 

4.2.2 Results and comparisons 

Strain 

A non-linear transient finite element analysis on the cylindrical vessel under explosive 

loading is now presented. 192 eight-noded shell elements (Shell 82) were used to 

model the structure and exponential modelling was used for the loading. 

The modal analysis of the pressure vessel was first undertaken to determine its 

natural frequencies as there is no analytical solution to calculate the fundamental 

frequency for this case. This enables the calculation of the proper integration time 

step for the transient analysis of the case. Integration time step (ITS) was then 

calculated by the ANSYS (finite element code) recommended 1/(20f) formula where 

'f' is the fundamental frequency of the structure. The fundamental frequency of the 

case was determined by Jiang and Oslon (1991) to be 3270 Hz. The above named 
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frequency was obtained equal to 3265.6 Hz by the present analysis which is very 

close to the reported value. 

Fundamental frequency (Hz) 

Finite strip (Jiang and Oslon, 1991) Finite element (present study) 

3270 3265.6 (192 shell elements) 

2943.7 (160 shell elements) 

2379.3 (128 shell elements 

Table 4.1. The comparison of the calculated fundamental frequencies 

The transient analysis of the case was then carried out by the ANSYS code. The 

undeformed and permanently deformed shapes of the cylinder are shown in Fig. 4.4. 

Safe Dynamic Design of Structures 

Fig. 4.4. Undeformed and permanently deformed (after removing the load) shapes - 

for load defined by equations 4.2 - 4.4 
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Fig. 4.5 and Fig. 4.6 show the circumferential and longitudinal distributions of the 

permanent radial displacements from the present analysis as well as the other reported 

ones. Permanent deformation means the final shape of the structure after removing 

the load from structure. It can be seen that the results of finite strip analysis are not in 

good agreement with the experimental results near the ends of the cylinder, and, the 

finite difference analysis does not give good results near the middle of the shell 

compared to the experimental results. Although the finite strip method and finite 

difference method have been acceptable methods compared to experiments (Jiang and 

Oslon, 1993) as the above comparisons were made, the present finite element method 

performs better results compared to the experimental one which means the results 

from the current analysis represent good results both in the corners and the middle of 

the graph. 
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Finally, Fig. 4.7 and Fig. 4.8 show the transient responses (radial displacements versus 

time) for 0=0 along the length of the cylinder, and also for z=l/2 around the 

cylinder which indicate that the final deflections are not the same as the maximum 

displacements as there is an applied load when the maximum displacement occurs 

whereas the final deflections correspond to the no load condition. 

Fig. 4.6. shows the circumferential distributions of the permanent radial displacements 

which some of the permanent displacement can be seen from Fig. 4.8. 

It is significant to note that if the analysis is carried out for the longer period of time, 

the final deflection of the points in Fig. 4.7. and Fig. 4.8. will not be altered. 

x (cm) Experiment 
(cm) 

Finite Strip 
(cm) 

Finite 
Difference 

(cm) 

Present (Finite 
Element) (cm) 

0 0 0 0 0 
1.9 -0.638 -0.340 -0.747 -0.736 

3.81 -1.204 -0.943 -1.044 -1.074 
5.71 -1.422 -1.494 -1.117 -1.244 
7.62 -1.498 -1.676 -1.148 -1.320 
9.52 -1.422 -1.494 -1.117 -1.244 
11.43 -1.204 -0.943 -1.044 -1.074 
13.33 -0.638 -0.340 -0.747 -0.736 
15.24 0 0 0 0 

Table 4.2. Permanent deformation at 0=0 vs. meridional location 

73 



v 
I 
* o LO 0 LOO 

N IA NO 
OO NM 
II II II II II xN 
NNNNN 

iý ýv 

Q 

_I 

LQ 

LM 

N LM 

LýN 

Ld N 

I, - N 

m 

U 
a) 

ý.. i 
G) 

ý 
... 
H 

N 

N 

a a) 

U 

ý. _, v 
w 0 
c 
rn 
0 

17 NN 
1f Co 00 

O 
OOO9O9 

aý 
0 
U_ 

Ný (O 
"ý 

ýý .ý. c 

() w 03 
0) 



., 
o I[) 0 1f) oQ 
CO d C7 ýoý Uunuuý * 
c0 c0 ta 0 (a 
ý. .ý.. .-.. mm a) a) a) 

0 
tr .CtLxN 
t+ f+ rt+ - f+ Vý 

i 11 

( 

-N 

I 
Läý 

ý Lý 

L1 

LM 

N LM 

_N Iý 

_N 

U 
N 
U) 

ý 
0 

E 
.. r 
E"'ý 

L- N 

'0 Iýý 

N 

iv 

w 
co m 

ý 
U 

a .. 
ý v7 

w 0 

ýoNNv 
{O oo ONv 10 U 

UOOOOOO 
Uý 
cd C 

r. e-,. 
9. 

.., Am 
As 
(n 



4.2.3 Discussions 

A case study has been carried out using ANSYS and the results have been compared 

to existing experimental, finite difference and finite strip results. The results obtained 

from the present finite element analysis are very close to the experimental results, 

whereas there are considerable discrepancies between both the finite difference and 

the finite strip results and the experimental results. 

Differences may be due to the idealised analysis. In other words, the geometry and 

loading imperfections in both shell geometry and loading should be considered in the 

numerical analysis. However, as observed, the results of the present analysis are in 

reasonable agreement with the experimental ones. 

4.2.4 Large structures 

In order to extend the code validation process to vessels of chemical plant size 

experiencing pulse loading, numerical analysis is applied to one of the vessel designs 

associated with the Flixborough incident (Gugan, 1979). 

The exponential modelling refers back to equations (4.2) and (4.3). 192 eight-noded 

shell elements were used for the analysis. The finite element model of the cylinder is 

quite similar to the one in Fig. 4.4. The tank is made of carbon steel with the 

following parameters: 

Material: Carbon steel, Length: 1=609.6 cm., Radius: a=304.8 cm., Thickness: h=6.09 

cm., Modulus of Elasticity: E=2.06x 105 MPa, Tangent Modulus: Et =0 MPa, Yield 

76 



Stress: ay=3.44x102 MPa, Density: p=8200 kg/m3, Poisson's patio: v=0.3, PR = 

4.8 MPa, PI = 1.03 MPa and to = 3.1 msec. 

As it can be seen from the above values, the stress-strain of the material is assumed to 

be elastic-perfectly plastic in this case too. Therefore the stress-strain curve of the 

material is similar to Fig. 4.3. 

The modal analysis was first carried out and the fundamental frequency was 

determined to be 62.62 Hz. The transient response for the critical node (0 =0&z= 

1/2 = 304.8 cm. ) is illustrated in Fig. 4.9. 

The main objective of the above analyses was to ensure the capability of ANSYS 

program to be used for dynamic analysis. The above aluminium and steel cases 

showed that by just simplifying the analyses without considering the imperfections 

ANSYS can present reasonable results compared to the experimental ones and also in 

the large and small case studies. Therefore ANSYS is to be used through the research 

here to study the dynamic behaviour of structures. The detailed experimental results 

for the large case are not available to discuss and compare with numerical results. 
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4.3 Pulse modelling and duration 

In this section, the effect of different type of impulsive load modelling and load 

duration on the shell structural behaviour due to pressure transient loading are 

investigated. All analyses for this study are carried out for the plastic response of the 

shell which were performed in the last section on the aluminium case in section 

4.2.1.1. (Fig. 4.4). 

4.3.1 Pulse models 

Various modelling techniques for explosion modelling are now discussed here. So 

far, the explosive loading has been modelled as an exponential curve. Triangular and 

rectangular modelling are now considered, and a comparison of the effects of these 

three types of load modelling, i. e. triangular, rectangular and exponential, on the 

response of the cylindrical vessel is made. In order to achieve this purpose, P0(t) 

requires to be changed in equation (4.4), so that `I', which is the total impulse, is 

equal for all cases. In other words: 

where 

Po(t) = exp. [-t/to] (4.5) 

to = 31 µsec. 

I= P0(t). dt = exp. [-t/to]. dt = Po(max. ). to (4.6) 

The duration of the other two types of modelling namely rectangular and triangular 

were chosen so that the impulse, V, is equal for all cases. 
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These three shapes are illustrated in Fig. 4.10. 

Explosive Loading Shapes 
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Fig. 4.10. Explosive loading shapes 

The above three shapes of explosive loading were applied to the small cylindrical 

vessel which was analysed in the last section (Section 4.2.2) with the plastic 

response, and consequently, the following transient displacements, for 0=0 and z= 

1/2 = 7.62 cm., were obtained. Fig. 4.11. shows the comparison amongst the response 

of the shell to the different load types. 

Changing the shape of explosion modelling does not change the behaviour of the 

structure in terms of plasticity however it does affect the final deflection of the 

structure which is shown in Fig. 4.11. 
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A comparison of the above results reveals that the triangular and rectangular 

modelling give a greater value of the maximum displacement of the structure than the 

exponential modelling. It should be noted that the exponential modelling is the 

representative of explosions (Bulson, 1986 and Horoschun, 1992). This comparison 

of the effects of pulse shape on the response of the structures can be very significant 

in practical work where measurement and control of the shape of explosive loading 

can be very difficult. 

4.3.2 Pulse duration 

Following the analyses of the cylindrical structure, the effects of the duration of the 

explosion are now investigated by changing to in equation (4.4) for the exponential 

modelling: 

P0(t) = exp. [-t/t0] (4.7) 

The maximum displacement of the shell occurs in the position with 0=0& 

z=1/2=3.62 cm., which is the critical point of the analyses. Therefore, the transient 

analyses of this point for different values of to were carried out and the results of the 

effects of the load duration on the maximum displacement and on the time during this 

maximum displacement occurs, are illustrated in Fig. 4.12 and Fig. 4.13, respectively. 
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Fig. 4.12. Effects of load duration on the maximum displacement 

400 
Time 

for 

Max. 200 

(microsec. 

31 50 70 
Duration, to (microsec) 

Fig. 4.13. Effects of load duration on the time to the max. displacement occurs 

It can be observed that by increasing the duration of the impulsive load, both the 

maximum displacement, and the time at which the maximum displacement occurs, 

increase. 
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It can be also seen that both above curves change approximately linearly. It is noted 

that the changes in Fig. 4.13. are of less significance as the curve is relatively flat. 

However Fig. 4.12. shows an increase of maximum displacement by increasing the 

pulse duration. This is consistent with an increase in impulse as the pulse duration 

increases. 

4.4 Elastic response 

The maximum pressure would be expected in process plant explosions around 1 bar 

(1x105 Pa. ). The tanks which are used in process plants have very thin walls and 

consequently the radius to thickness ratio of them is likely to be higher than 60 which 

means the response of such structures to explosions is not plastic. A tank with flat 

head (Radius=l. 5 m., Length=3 m., Thickness=] cm. ) was analysed under explosive 

loading (P. ý=1 bar). Only the bottom end of the tank is clamped. The material 

properties and loading are the same as the earlier case discussed on 4.2.1.1 and 

4.2.1.1. The load applied from one side of the cylinder. The top head of the cylinder is 

closed with the flat head. The only difference here is to consider dampin which will 

be discussed shortly. 

Results of the analysis will be shown in section 4.4.2. after discussing damping which 

is required for the analysis. (Fig. 4.14 & Fig. 4.15. ) 
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4.4.1 Damping 

The source of damping can be inherent or added. Only inherent damping need be 

considered in the current analysis. There are mainly two types of damping, i. e. 

frequency dependent (viscous and dry friction) and hysteretic (material damping). 

In order to calculate the damping matrix of the system, [C], the Rayleigh damping 

equation is used which is defined by 

[C]=a[M]+ß[K] (4.8) 

where 

[M]: mass matrix 

[K]: stiffness matrix 

The values of a and 8 are not generally known directly, but are calculated from 

modal damping ratios, 4, which are defined by the ratio of actual damping to critical 

damping for the particular mode of vibration, i. If a is the natural circular frequency 

of mode i, a and /3 satisfy the relation 

t; =al2w; +ßw f2 (4.9) 

In dynamic cases chosen should be the dominant a frequencies to calculate a and /3, 

otherwise the damping values will not be realistic. 
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4.4.2 Results and discussions 

The modal analysis of the system, which the details were presented in the beginning 

of the section (section 4.4. ), was first performed and the natural frequency was 

determined to be 0.343 Hz. However higher modes of the structure are excited in 

response to pulse loading. When it is subjected to pulse loading, high modes of 

structures will be present. The fuller explanation will be covered later in results and 

discussion. The transient analysis of the structure in this case without considering 

damping, using ANSYS, showed that the range of response frequencies is 15-25 Hz. 

Consequently, 15 Hz and 25 Hz are chosen to calculate a and ß, using the above 

indicated equation (4.9) having a damping ratio of 0.05 for steel structures. 

The transient dynamic analysis of the vessel was then carried out using the finite 

element model of the vessel shown in Fig. 4.14. The transient response of the 

structure, for the middle point at one side which is the critical point, considering 

damping, is illustrated in Fig. 4.15. As can be observed, the final deflection of the 

structure is zero. This means the structure does not fail if the failure criterion is 

considered to be based on final displacement. 
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4.5 Elasto-plastic response 

The transient analysis of a cylindrical structure subjected to internal impulsive spot 

loading, which gives elasto-plastic response, using the ANSYS is discussed in this 

section. To the knowledge of the author to the date, there is no work available on the 

response of cylindrical shell structures subjected to internal impulsive spot loading. 

4.5.1 Descriptions 

A 6-metre tube having a diameter of 1 metre made of steel (yield stress = 344 MPa), 

subjected to internal impulsive spot loading is analysed here. The spot, which has a 

diameter of 0.5 metre is located in one side on the middle of the tube. The tube was 

designed for 1 MPa internal static pressure under yield condition using the ASME 

boiler and pressure vessel code (ASME, 1983). In order to model the structure in 

ANSYS, 1512 shell elements with plasticity, large deflection, and large strain 

capabilities are used as is illustrated in Figure 4.16. Both ends of the cylinder are 

assumed to be clamped. The internal pressure of 10 MPa for the duration of 10 ms 

was applied to the spot which is shown in Fig. 4.16. 
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Fig. 4.16. Finite element model of the circular cylindrical shell structure 

The cylindrical vessel under impulsive loading is expected to have large deformations 

and thus large displacements and rotations which were taken into account by 

invoking the non-linear strain-displacement relationships where higher-order 

derivatives of displacements and rotations are included. Nonlinearity of the material is 

assumed to follow the bilinear isotropic hardening which means both elastic and 

plastic parts of stress-strain curve are linear. This option uses the Von Mises yield 

criterion, as explained earlier, to assess the failure of the structure under the specified 

loading conditions. 

The modal analysis of the tube was first undertaken to determine the natural 

frequency of the structure. This enables the calculation of the proper integration time 

step for the transient analyses. Integration time step was then calculated by the 

ANSYS recommended '1/20f' formula where `f" is the natural frequency of the 

structure (Kohnke, 1992). Rectangular impulsive loading is used for the analysis so 

that the load suddenly increases to the maximum (4 MPa) value and then remains for 

the limited duration (10 msec) and finally returns to zero. The above value is just an 
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example of different values for pressure and duration used in the analysis to 

investigate the failure of the structure which will be discussed later in this chapter. 

Fig. 4.17. shows the pressure-time profile for the analysis. 

6T 
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4 ä 

i3 

N 
m 
CL 2 

14 

0123456789 10 11 12 
Time (msec) 

Fig. 4.17. Pressure-time profile 

4.5.2 Results and Discussions 

The fundamental frequency of the structure was determined by modal analysis to be 

66.7 Hz (Period: 15 cosec) which leads to the calculation of the integration time step 

11/20f' or the analysis which equals 0.75 msec. 

The transient response of the centre of the spot, namely displacement and equivalent 

stress, obtained from the non-linear transient analysis with 4 MPa pressure and 10 

msec duration, are shown in Fig. 4.18. and Fig. 4.19, respectively. 

91 



'_`ýti. 

ýý 

ýý 
'ý_ 

1 
ti 
ý 

Pep 

ý 

0 nýv1ýMN "-ý C vý ON 00 

r 

/ 

/ 
I 
I 

L 

ý 

I 

. 

.. J 

ýý 
ý 

"'tiý 

A 

O 
ýt 

V, 3 M 

O 
M 

V') N 

0 fV 

ý 
ý 

0 
ý 

W) 

0 

ý U 
I 

ý 

.ý 
E-ý 



ýý 
L 

0 ýý 
00 

ýýN 
'0 V' 

MN0 

A 

0 
IT 

W) 
M 

0 M 

V) N 

CD CV 

ý 
ý 

0 
ý 

W) 

jo 



As can be observed, Fig. 4.18, the displacement of the point increases to a maximum 

value and then damps to a final deflection which is not zero. As the pressure is 

applied to the structure, the structure starts to responds in direction of the applied 

load. However the structural stability and damping push the elements back to stabilise 

the situation. This forward and backward of the elements around the reference line 

which is the final deflection will continue until the structure reaches the final 

stabilisation. As explained earlier, a combination of the structural modes are excited 

in dynamic response and the fundamental frequency of the structure plays an 

important role in the analyses. If the pulse duration is very short compared to the 

fundamental period, the response of the structure is perfectly plastic but a long pulse 

duration results in an elastic response (Abrahamson and Lindberg, 1971). For the 

present analysis, the duration is very close to the period of the structure so that the 

response is consequently elasto-plastic. The above explanation is correct when the 

structure is under the equal pulse in all cases. 

The maximum stress, Fig. 4.19, in the structure reaches a value which is higher than 

the yield stress. However the structure does not fail under this condition according to 

the ANSYS finite element code. The reason is that the pulse duration is too short to 

cause the failure so that the load is not categorised in static loading. It expresses that 

the structure can endure stresses higher than yield stress for less than a critical 

duration, in other words the dynamic yield criteria are different form the static ones. 

In order to observe the effects of the duration of pulse loading on the response of the 

shell, a series of analyses on the model with different pulse duration have been carried 

out to indicate the relationship between the pulse loading duration with time at which 

the maximum displacement and stress occur. It was found that the maximum 
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displacement of the centre of the spot, which is the critical point of analyses, occurs 

at 10.6 msec regardless of the pulse duration as long as the response is in elasto- 

plastic region. Therefore, the maximum displacement in time, in elasto-plastic 

response, does not depend on the pulse duration, however the final deflection which 

occurs in the plastic region depends on the pulse duration which is due to the stress 

wave through the structure. Consequently, the role of the natural frequency of the 

structure is explored which basically provides the information on the structural 

response to indicate whether the response is elastic, plastic or elasto-plastic which is 

due to the pulse duration (Lindberg and Florence, 1987). 

4.5.3 Failure Criterion 

A series of analyses were then carried out to observe the response of the structure to 

internal impulsive spot loading with the value of 2-10 MPa and 2-50 msec duration. 

The failure of the structure, for each case, was checked by applying Von Mises 

criterion by calculating all principal stresses and checking Equation 2.1. to determine 

the failure point of the structure. 

Von Mises failure criterion was applied to assess the structural failure for the present 

case. However the non-linear transient analyses of the shell structure under internal 

transient spot loading with different values for pressure and duration can produce a 

fail-safe curve which indicates a safe region for the cylindrical structure under 

impulsive spot loading without structural failure. This fail-safe curve for the present 

case is illustrated in Fig. 4.20. 
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Duration (ms) Presure (MPa) 

2 10.1 

10 5.8 

30 4.2 

50 2.3 

Table 4.3. Fail-safe data for the cylindrical structure 
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Fig. 4.20. The fail-safe curve for the cylindrical structure 

To obtain the fail-safe curve, the duration was assumed to be constant for example 10 

ms and the applied pressure was increased for example from 4.5 MPa until the failure 

occurred. This procedure was carried out for a number of the duration to obtain the 

maximum allowable pressure for each duration. These are represenred in Table 4.3. 

and shown graphically in Fig. 4.20. 
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When the pulse duration is short the structural response will be different as the high 

mode are excited however when the pulse duration is long in the above curve the 

response is static and the static design pressure will be the maximum allowable 

pressure for the structure. 

4.6 Conclusions 

The plastic, elastic and elasto-plastic responses of cylindrical shell structures 

subjected to pressure transient loading were studied numerically. 

In the plastic response, the response of the cylindrical vessel with the radius to 

thickness ratio equal to 24 whose response is perfectly plastic was analysed. The 

results were compared with existing experimental results as well as the finite 

difference and finite strip analyses results. It was found that comparison between the 

results from the present finite element analysis with the experimental results gave 

better agreement compared to the results from the other two methods, i. e. finite 

difference and finite strip, with the experimental one. Three different types of 

modelling for the explosion, i. e. triangular, rectangular and exponential, were also 

considered to investigate the effects of the explosion modelling on the structural 

response. It was found that the exponential modelling is more realistic, compared to 

the experiments, than the other two types of modelling considered in this chapter. 

The effects of impulsive loading duration on the response of the structure under 

external transient pressure loading in the plastic response region were also 

investigated. It was found that by increasing the duration of the transient pressure 
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loading, both the maximum displacement, and the time during the maximum 

displacement occurs, increase. 

The elastic response of a large cylindrical structure was also investigated numerically 

and was found that the consideration of damping is so significant to allow the 

numerical analysis produce the correct results. 

In elasto-plastic response of the shell structure, the non-linear transient analysis of a 

cylindrical shell structure due to an internal impulsive spot loading was carried out 

numerically. The response of the shell was found to be elasto-plastic since the pulse 

duration was close to the period of the structure. Von Mises failure criterion was 

applied to investigate the failure of the structure. According to the analysis carried 

out by ANSYS code, it was found that a dynamic pressure greater than the yield 

pressure can be applied to the structure without failure if the impulse duration is less 

than a critical value. The critical value must be determined for any structure under 

specific conditions. It was also observed that the maximum displacement of the 

structure occurs at a certain time regardless of the pulse duration as long as the 

structural response is elasto-plastic. A series of analyses for different values for the 

maximum pressure and its duration has also been carried out to find a safe-fail curve 

for the structure. It can be concluded that the design criteria under transient pressure 

are different since the dynamic yield criteria are different from static ones. 

In the next chapter the experimental procedure will be explained and the failure 

criteria will be experimentally investigated in order to validate the finite element 

predictions for structures under high transient pressures. 
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5. Experimental procedure 

5.1 Introduction 

A series of experiments, using a shock tube, have been carried out to validate a 

number of aspects of the numerical analysis and demonstrate the numerical analysis 

ability to predict the structural response and behaviour due to pressure pulse loading. 

A simple shock tube provides a means by which gas flows and pressure can be 

generated for short periods of time by suddenly bursting a diaphragm (bursting disc) 

separating a high pressure gas from a low pressure section. 

Shock tubes have been extensively been used to study different phenomena in 

physics, chemistry and aeronautics. The shock tube in the present experiments is used 

to generate the impulsive loading which can be applied to the structures. 
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In this chapter, the fundamentals of shock tube are first discussed, and then the 

experimental set up and instrumentation will be presented in detail. Finally, the 

procedure will be explained. 

5.2 Shock tube 

A simple shock tube consists of a high pressure driver section and a low pressure 

driven section of equal bore, separated by a diaphragm which can be burst by 

increasing the driver pressure. On removing the diaphragm, a compression wave is 

therefore formed and travels into the low pressure driven section. The shock tube is 

shown in Fig. 5.1. 

The driver and driven sections are normally filled by gas. However for certain 

applications the driven section can be filled with water to provide the necessary pulse 

shapes. For low pressures required in the driven section the air is used. However to 

obtain high pulse pressures in the driven section water is used. The reason is that in 

the air-air case the air in the driven section is not compressed and therefore a big 

pressure drop will be observed when the diaphragm is ruptured due to the bursting 

pressure in the driver section. 

A contact surface separating the expanding driver gas from the media in the driven 

section, follows the shock down the tube at a slower speed. Following behind the 

shock, the high pressure gas expands into the driven section, the contact surface in 

effect, pushing the air in the direction of the shock with the velocity depending on the 
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original pressure ratio across the diaphragm. The shock tube theories are explained 

by (Ferri, 1961). 

Test pieces can be located at the downstream end of the driven section. Maximum 

pressure and pulse duration can also altered by some means which will be discussed 

later in this chapter. 

Fig. 5.1. Shock tube used for the present experiments 

Bursting disc 

Driver I)rircn 

u 

Fig. 5.2. Schematic diagram of shock tube 
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5.2.1 Pressure and duration control 

Control of the pressure duration (At) and also the maximum pressure (Po) are quite 

significant in the experimental work. Because the response of the structure due to a 

certain pressure with different duration or certain duration with different maximum 

pressure will be investigated in order to find out the failure condition. 

To obtain low pressure in the driven section, the gas-gas system is used which means 

both driver and driven sections are filled with the air. From the last section, there is a 

simple technique to increase the pressure in the driven section. It can easily be 

obtained by increasing the pressure in the driver section. In other words if the 

bursting disk (diaphragm) is appropriately selected the proper pressure can be 

achieved in the driven section. The subject of bursting disks will be covered in depth 

later on in this chapter. In order to have higher pressure in the driven section, as 

mentioned before, the gas-water is used. There are two options here to control the 

maximum pressure in the driver section. First choice is to change the driver section 

pressure, by selecting an appropriate bursting disk, as the previous case. Another 

approach is to use a secondary disc after bursting disc with a hole in the middle of 

this disc whose hole diameter enables to control the pressure in the driven section. 

Therefore by changing the diameter of the hole, the pressure in the driven section can 

be controlled as the amount of the air (wave) through the water will be changed and 

the pressure rate will be under control. 

Another important factor to control is the time duration of the pressure pulse by 

keeping the maximum pressure constant in order to investigate the effect of the pulse 

width on the structural response. In the gas-gas case, reducing the driver section 
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approach is to use a secondary disc after bursting disc with a hole in the middle of 

this disc whose hole diameter enables to control the pressure in the driven section. 

Therefore by changing the diameter of the hole, the pressure in the driven section can 
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the pressure rate will be under control. 

Another important factor to control is the time duration of the pressure pulse by 

keeping the maximum pressure constant in order to investigate the effect of the pulse 

width on the structural response. In the gas-gas case, reducing the driver section 
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length is a good technique to control the pressure duration (pulse width) as there is 

an expansion wave after the shock which depends on the length of the driver section. 

Therefore by changing the length of the driver section the pulse width can be 

controlled as a shorter length gives a shorter pulse width. In the case of high 

maximum pressure which the gas-water system is used, changing the driver section 

volume to a very small sizes causes low pressure in the driven section of the shock 

tube. Therefore another technique is used which is to change the position of the test 

pieces to get different pulse durations. The control of the pulse width in this case is 

basically obtained by the expansion wave exit from the end of the tube. In other 

words an increase in the testing time (pressure duration) is available by using the 

expansion wave exit from the end of the driven section. 

5.3 Instrumentation 

In this section the facilities and instrumentation which were used for the present 

experiments are described. The schematic diagram of the overall experimental set-up 

is depicted in Fig. 5.3. 
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5.3.1 Shock tube 

A single-pulse shock tube, Fig. 5.1., constructed of flanged sections of 10 cm. 

diameter cold-rolled steel pipe was used for the experimental studies. The sections 

were bolted together, using neoprene O-rings to provide the necessary seals. Both 

high-pressure and low-pressure sections had a wall thickness of 3 cm. and were 

hydraulically tested to a pressure of 200 MPa. 

At the end of the driver section a diaphragm (bursting disc) is installed. The clamping 

section to hold the diaphragm is operated by mechanical means. High-pressure air 

was used for all experiments. 

5.3.2 Gas-handling system 

A compressor was used to pressurise the gas entering the driver section. This facility 

enables more control of the maximum pressure in the high-pressure section using a 

pressure gauge and a valve prior to high-pressure section. There were also two 

solenoid valves before the driver section which offer more control and safety of high- 

pressure gas handling. All control systems were located in the control room to 

enhance the safety of the work. 

5.3.3 Bursting disc 

An aluminium diaphragm, bursting disc, cut with two right-angle grooves was used 

between the driver and driven sections. The depth of the grooves and the thickness of 
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the bursting discs determine the maximum pressure which can be reached in the 

driver section. A diaphragm, before and after opening, is shown in Fig. 5.4. 

Fig. 5.4. Bursting disc before and after opening 

To obtain a very low peak pressure in the driven section due to the low pressure in 

the driver section in the air-air configuration, very thin aluminium foils were used. In 

this case there was no need for the cross in the middle of the bursting sheets as the 

thickness value was already small. The following table shows the experimental results 

for this case where aluminium sheets were used as the bursting disk. 

Sheet thickness (mm) Bursting pressure (kPa) Peak pressure (kPa) 

0.3 413 150 

0.6 813 250 

0.9 1210 400 

Table 5.1. Experimental data for bursting sheet characterisation (air-air system) 
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Disk thickness 

(MM) 

Cross depth 

(MM) 

Bursting pressure 

(kPa) 

Peak pressure 

(kPa) 

0.5 0.3 690 200 

1.0 0.3 900 300 

1.2 0.5 1650 800 

1.3 0.5 1800 1000 

2.0 0.5 3100 2000 

2.0 0.66 2400 1400 

2.6 0.86 3380 2500 

3.2 1.0 4800 2800 

3.2 0.8 5500 3800 

3.2 0.6 6200 4000 

6.4 0.58 15800 8000 

6.4 0.92 14000 7000 

Table 5.2. Experimental data for bursting disk characterisation (air-water system) 

As mentioned earlier, to obtain a high peak pressure in the driven section air-water 

system was implemented. Bursting disks, all made from aluminium, with different 

thickness and cross depth were experimented to find out the bursting pressure and 
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obtained peak pressure in the driven section. The results from these experiments are 

summarised in Table 5.2. 

5.3.4 Test section 

A T-section was made and located in the driven section. The test piece was placed at 

the end of T-section. Having the T-section also allows this to be located in different 

positions in the driven section in order to control the pulse duration as previously 

discussed. Fig. 5.5. shows the T-section which is already attached to the shock tube. 

Fig. 5.5. Test section 
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5.3.5 Pressure determinations 

Since the available testing time for the shock tube is quite short, all instrumentation 

must consequently be designed for the fast response time. Four piezoelectric pressure 

gauges were used to measure the pressure in different points in the driven section. 

The sensing elements, in these gauges, are quartz. One static pressure transducer 

was located in the entrance of the driver section to trace the bursting pressure of the 

diaphragm. This static pressure transducer is made by Entran Ltd and its pressure 

range is 0-17 MPa. The other pressure transducers are made by Kistler Ltd for the 

dynamic cases. The pressure range for these transducers is 0-15 MPa for a very short 

time up to I ms. One of these pressure gauges was placed just after the diaphragm in 

order for triggering for the data logging system (On-line reading) and finally two 

pressure sensors were located both sides of the end of T-section to obtain the 

pressure-time profile which was applied to the test-piece. 

Fig. 5.6. Dynamic pressure transducer calibrator 
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An instrument, which is shown in Fig. 5.6., was designed in order to calibrate the 

dynamic pressure transducers to give the correct results. To calibrate the fast 

transducers, first, by opening the first valve the storage was pressurised up to a 

certain pressure which can be read by the static pressure gauge. Then the second 

valve was suddenly opened to allow the dynamic pressure transducer to read. The 

first data value read by dynamic pressure transducer within first 1 ms (as the Kistler 

pressure transducers are designed for the dynamic measurement up to 1 s. ) should be 

the same as the value that the static pressure gauge obtained. All fast (dynamic) 

pressure transducers were calibrated by this facility. 

5.3.6 Strain measurement 

The plastic deformation was expected in the experiments since the study is concerned 

with the failure of the structures. Therefore very short post-yield gauges were used to 

measure the dynamic strain of various points of the studied structures. A Wheat- 

stone bridge, 4 V. battery and also an amplifier, Fig. 5.7., were used to measure the 

strains by means of the data logging system. A plate (test piece) with attached strain 

gauge is illustrated in Fig. 5.8. 
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Fig. 5.7. Schematic diagram of strain measurement 

Fig. 5.8. Strain gauge set-up 
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5.3.7 Data logging system 

High frequency recording was required for all tests since the testing time was 

extremely short. Therefore a fast computer and an eight-differential channel 

acquisition card, with 100 kHz speed, were used to record the data from pressure 

transducers and strain gauges. In order to correct any possible offsets in data 

collection processing, pre-triggering was also used. It means that 25% of the data 

was collected prior to the actual trigger point. Amplifiers were also used, which were 

connected to the strain gauges and pressure transducers, before the acquisition card. 

Fig. 5.9. shows the control room including the control panel and the data logging 

system. 

i] 

Fig. 5.9. Control room 
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5.4 Procedure 

This section aims to explain the step by step procedure of running the shock tube. 

Fig. 5.3. is used with the following procedure. 

5.4.1 Start-up procedure 

" Place the bursting disc between the driver and driven section 

" Close the pressure relief valve in the driver section 

" Attach the strain gauge to the test piece and then locate it at the end of T-section 

" Set up the computer programme to collect data from the pressure transducers and 

strain gauges 

" Switch on the solenoid valve (control valve) on the control panel which is placed 

before the driver section. 

" Open the manual driver section valve to allow the high pressure air enter the tube 

" Increase the pressure in the driver section until the bursting disc ruptures. 

5.4.2 Shut down procedure 

" Turn off the control valves 

" Open the driver section relief valve 
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" Close the air bottle 

" Transfer the data for analysis 

5.5 Conclusions 

The experimental procedure and some aspects of the principles of the shock tube 

were described in this chapter. The experimental set-up was designed to achieve the 

objective of the experiments which is to apply impulsive loading with various peak 

pressures and duration. 

The results of the experiments, carried out using the described facilities, will be 

presented in the next chapter. The comparisons between the obtained experimental 

results and calculated numerical ones will also be made and discussed in the following 

chapter. 
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6. Results and Discussion 

6.1 Introduction 

Understanding of the complex structural behaviour under the spatial pressure pulse 

loading requires the primary analysis and practice on the simple geometry. In order to 

build up the proper investigation of cylindrical structures subjected to pulse loading, a 

simple geometry is first used to explore the relations of the pulse width and the 

maximum pressure and the structural natural frequencies. 

In order to validate the results of the numerical analyses, a series of experiments were 

first performed on a simple geometry (circular plates) to explore the failure of the 

structure and more complicated cylindrical structures under pulse loading were then 

investigated and this chapter also presents a general approach to structural failure due 

to pressure pulse loading. 
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6.2 Circular plate 

The first step was to determine the accuracy of the numerical work in reproducing 

the experimental results. Therefore, a circular plate under pressure pulse loading was 

first investigated as a first step before further investigation on more complex 

structures such as cylindrical vessels. 

Therefore a comparison of the experimental and numerical work on a circular plate 

under pulse loading will first be made, and then the relation between the pulse width 

and the fundamental frequency of the plate will be explored and finally an 

experimental fail-safe curve for a circular plate will be presented. 

Circular plate structures made of aluminium with the diameter of 10 cm and various 

thicknesses were made and placed in the T-section of the experimental set-up which 

was explained earlier. 

6.2.1 Experimental and numerical Validation 

As discussed in the preceding chapter, the applied peak pressure and also the 

pressure pulse width can be controlled by some means such as changing the bursting 

disk thickness and the location of T-section. 

An example of pressure-time profile, which was produced by the shock tube, using 

pressure transducer, is plotted in Fig. 6.1. As can be observed, the pressure rises 

quickly to the maximum value and then decays to the very low pressure that can be 

chosen to be zero by making suitable venting arrangements. 
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Fig. 6.1. Pressure-time profile produced by the shock tube. 

Pressure pulses obtained in this way and similar to Fig. 6.1. were applied to the plate 

located in the T-section and the displacement of the centre of the plate was measured 

by means of attached strain gauge. 

In order to compare the results of the above experiment with the numerical analysis, 

the stress-strain curve of the material is also needed. Therefore, the tensile test of the 

available aluminium plate which was used for the experimental work, was first carried 

out. The test involves straining the test piece by tensile force, generally to fracture, 

for the purpose of determining the stress-strain curve. 

Four test pieces under tensile testing standards (British Standard Institution, 1990) 

was made which is shown in Fig. 6.2. According to the above standard (BS EN 10 

002-1) the test piece has gripped ends which are wider than the parallel length. The 
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parallel length shall be connected to the ends by means of transition curves with a 

radius of at least 12 mm. The width of these ends shall be at least 20 mm and not 

more than 40 mm. Test pieces were cut in the university laboratory and Mayes 

tensile machine was used to carry our four tests. The results of stress-strain curves 

for the experiments are shown in Fig. 6.3. 

"STS 6.0 A 
D1C lf 1!! 6 
OS: tS: 06 
PLOT  0. 
AREAS 
Typs 10E 

ZV -1 
DIET-104. i 
CZNT102D BIDDtY 

Fig. 6.2. test piece for the tensile test 
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Fig. 6.3. Experimental stress-strain curves for aluminium. 

Exp. 1 
Exp. 2 

- Exp. 3 

- Exp. 4 

A series of experiments, using the shock tube facilities which were explained in the 

preceding chapter, was then carried out to observe the response of the aluminium 

plates to the pulse pressure loads. Three examples with the plastic, elasto-plastic and 

elastic response are presented here and compared with the numerical results. The 

reason for choosing different response regimes of the plate for the experiments and 

analyses was to determine if the present numerical work based on finite element 

method is capable of predicting the actual behaviour of the structure due to pressure 

pulse loading. The results of each case will be compared to the experimental ones. 

The elastic response in the plate case means that the final deflection of the centre of 

the plate after applying the pressure pulse will be zero. In other words there will be 

no final deflection in the elastic case. The elasto-platic case means that the response 

of the plate is somewhere in the transition part of the stress-strain curve where, after 

removing the pressure pulse from the structure a residual remains. In the plastic case, 

the response behaviour of the structure is well into the plastic region as by removing 
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the applied pressure from the plate structure there will be no changes in the final 

deflection. 

In order to model the structure in ANSYS, 2352 shell elements with plasticity, large 

deflection, and large strain capabilities are used as illustrated in Fig. 6.4. 

Fig. 6.4. Finite element model of plate. 

In order to perform the numerical transient analyses for the plates, the fundamental 

frequencies of the plate for three different thickness namely 1.2 mm, 2 mm and 3.25 

mm, using ANSYS and the measured density, 2276.5 kg/m3, were first determined by 

modal analyses to be 1149.4 Hz, 1910.3 Hz and 3084 Hz, respectively. These 

determinations lead to the calculation of the integration time step `1/20f' for the 

transient analyses. 
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The modal analysis is basically used to determine the natural frequencies and mode 

shapes of a structure. The natural frequencies and mode shapes are important 

parameters in the design of a structure for dynamic loading as explained in the 

literature review. Modal analysis helps in determining vibration characteristics of 

structures. 

The equation of motion to determine the natural frequencies of the structure for an 

un-damped system is: 

[MýuI+[K u ={0} 

where 

[m]: mass matrix 

[KI: stiffness matrix 

nodal acceleration vector 

{u}: 
nodal displacement vector 

For a linear system, free vibration will be harmonic of the form: 

(6.1) 

"}= 
{Sp}, cos W, t (6.2) 

where, 

{SO}4 : eigenvector representing the mode shape of the ith natural frequency 
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a).: ith natural circular frequency (radius per unit time) 

t: time 

Therefore equation (6.1) becomes: 

w; [m]+ [K]){p}; = {0} (6.3) 

The solution of the above equation will determine the natural frequencies of the 

structure which was performed using ANSYS numerical analysis. 

As mentioned above the modal analysis here will lead to the calculation of the time 

step in the dynamic analysis. 

The numerical analysis for each case was then carried out using the experimental 

obtained pressure-time profile for each case. 

Fig. 6.5., Fig. 6.6. and Fig 6.7. show the comparison of the experimental and 

numerical results for the strain of the middle of the plate for plastic, elasto-plastic and 

elastic response, respectively, where ̀ D' is the diameter, ̀h' is the thickness and ̀ T' 

is the period of the structure. 

As can be observed in Fig. 6.5., Fig. 6.6. and Fig. 6.7. good agreements are met 

between experimental and numerical results. 

There is a small discrepancy between experimental and numerical results in Fig. 6.6., 

which is the transition case. As in the elastic region, the strain follows the load trace, 

this discrepancy may be caused by the experimental error in determining the 

mechanical properties i. e. stress-strain curve of the available aluminium as the 
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transition part of the curve plays a very important role in the structural behaviour in 

the elasto-plastic case. 
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Fig. 6.5. Comparison of the transient strain (plastic response) of the middle of the 

aluminium plate to pulse pressure loading (D=10 cm, h=1.2 mm, T=0.87 ms). 
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Fig. 6.6. Comparison of the transient strain (elasto-plastic) of the middle of the 

aluminium plate to pulse pressure loading (D=10 cm, h=2 mm, T=0.52 ms). 
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Fig. 6.7. Comparison of the transient strain (elastic response) of the middle of the 

aluminium plate to pulse pressure loading (D=10 cm, h=3.25 mm, T=0.32 ms). 
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The above comparisons demonstrate the accuracy and agreement of experimental and 

numerical results for various conditions which gives some justification for the finite 

element approach in more complicated geometries. 

6.2.2 Pulse width and fundamental frequency 

The discussion on the preceding section showed that numerical analysis is a relatively 

good approach to predict the response and behaviour of the structures subjected to 

the pressure pulse loading. 

The pressure duration in all above cases is much larger than the fundamental period 

of the plates. This indicates that the structure has enough time to respond to the 

pressure pulse. Since the objective of the research is to investigate the dynamic failure 

of the structure, the structures subjected to pressure pulses where the pulse width is 

shorter than period of the structure will be discussed later in this chapter. 

Prior to the investigation of this phenomenon which will be experimentally studied in 

the next section, the spectral analysis of the structure is now discussed and the 

relation between the pulse width and the fundamental frequency of the structure is 

explored. 

In order to observe the plate response to different pressure pulse widths compared to 

the fundamental period of the plate, numerical investigations were carried out using 

two examples with long and short pulse widths. 
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6.2.2.1 Long pulse 

A clamped circular aluminium plate with 20 cm diameter and 2 mm thickness under 

10 kPa rectangular pressure pulse with the pulse width equal to 2 ms was modelled 

and analysed using ANSYS. 

In order to compare the pulse width and the period of the plate, the modal analysis of 

the case, as explained earlier, was first undertaken to determine the natural 

frequencies. 

Table 6.1. shows the frequency table for the first 8 modes. 

MODE FREQUENCY (Hz) 

1 543.3 

2 1038.7 

3 1038.7 

4 1686.8 

5 1713. 

6 1975.3 

7 2477.2 

8 2477.2 

Table 6.1. Plate frequencies of the clamped circular aluminium plate with 20 cm 

diameter and 2 mm thickness. 

126 



The spectra of the centre of the plate under the defined condition is shown in Fig. 

6.8. As can be observed the fundamental frequency of the plate is mainly excited and 

the reason is the pressure pulse width (2 ms) is long and in this case the same as the 

period of the structure (2 ms). 

o. oals 
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Fig. 6.8. The spectra of the strain in the middle of the aluminium plate (diameter: 20 

cm, thickness: 2 mm, period: 2 ms) under rectangular pressure pulse (pressure: 10 

kPa, pulse width: 2 ms) 
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6.2.2.2 Short pulse 

To observe the response to the short pulse, a clamped circular aluminium plate with 

20 cm diameter and 0.5 mm thickness under 1 kPa rectangular pressure pulse with 

the pulse width equal to 1 ms was also modelled and analysed using ANSYS. 

In order to compare the pulse width and the period of the plate, the modal analysis 

was also first undertaken for this case. Table 6.2. shows the frequency table for the 

first 18 modes for this case. 

MODE FREQUENCY (Hz) 

1 124.4 

2 260.0 

3 260.0 

4 422.7 

5 429.4 

6 495.1 

7 621.4 

8 621.4 

9 763.0 

10 763.0 

11 841.6 

12 852.2 

13 1046.0 

14 1077.4 

15 1103.2 

16 1103.2 
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17 

18 

1146.6 

1385.5 

Table 6.2. Plate frequencies of the clamped circular aluminium plate with 20 cm 

diameter and 0.5 mm thickness. 

The spectra of the centre of the plate under defined condition is shown in Fig. 6.9. As 

can be observed the higher frequency of the plate is excited and the reason is the 

pressure pulse width (1 ms) is very short compared to the period of the structure 

(8ms). 
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Fig. 6.9. The spectra of the strain in the middle of the aluminium plate (diameter: 20 

cm, thickness: 0.5 mm, period: 8 ms) under rectangular pressure pulse (peak 

pressure: 1 kPa, pulse width: 1 ms) 

6.2.2.3 Conclusions 

It was observed that by decreasing the pressure pulse width to very short pulses 

compared to the period of the plate structure, the higher modes are excited. It must 

also be mentioned that the excited modes in spectra must follow that symmetry of the 

pressure pulse shape and therefore the plate modes with non-symmetric shapes will 

not be excited although they are of high modes. In other words if the pressure is 

applied to the one side of the plate (which is the case here), the structural modes with 

non-symmetric shapes can not be excited as the applied pressure to the plate forces 

the symmetry for the deformed shape of the plate. 

In the next section the failure of the plate subjected to the different pressure pulse 

widths and values are investigated. 

6.2.3 Plate failure 

The failure of the clamped circular plate structure made of aluminium with the 

diameter of 20 cm and 0.5 mm thickness under pressure pulse loading is investigated 

here. 
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The static design pressure of the plate is first determined and then a comparison of 

experimental and numerical results for the plate under a pressure pulse loading with a 

pulse width well under the period of the plate is made and finally an experimental fail- 

safe curve for the plate subjected to the pressure pulse loading is generated. 

6.2.3.1 Static design pressure 

The static allowable pressure for the aluminium plate first needs to be determined in 

order to observe if the plate can withstand pressures higher than this static pressure 

under pulse loading later in this chapter. 

The solution for a static uniformly loaded circular plate with a clamped edge with 

large deflection was studied and presented (Timoshenko and Woinowsky-Krieger, 

1959) which is used here to determine the allowable static pressure for the case. 

The following equations (Timoshenko and Woinowsky-Krieger, 1959) are used to 

determine the design pressure. 

w° +0.471(w°3 =0.171ýCh) lhJ lJ 

Qy = 0.976E w? 

a 

where, 

wo: final deflection in the middle of the plate 

h: thickness p: pressure 

(6.4) 

(6.5) 
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E. modulus of elasticity a: radius 

ay : yield stress 

and in the present case, 

h=5x10-4 m E=69x109Pa 

a= 0.1 m ay = 146x 106 Pa 

Using equations (6.3) and (6.4), the maximum allowable static pressure to yield is: 

p= 9827.6 Pa (6.6) 

Therefore the maximum allowable static pressure for the clamped aluminium plate is 

9827.6 Pa. The response of the plate under a higher pulse pressure will be discussed 

and compared in the next section. 

6.2.3.2 Comparison 

As can be observed in the last section, the maximum allowable static pressure is 

9827.6 Pa. However pressure around 30000 Pa was experimentally applied to the 

plate within about 2 ms and no failure occurred according to the plastic deformation 

of the middle of the plate which can be observed in Fig. 6.11. Therefore it can be 

seen that the pressure as high as 3 times of the static design pressure can be applied 

to the structure without failure. 

In order to show the capability of ANSYS in analysing transients where the pulse 

width is less than the fundamental period of the structure, the numerical response of 

132 



the plate under the defined conditions are also shown in Fig. 6.10. As small 

discrepancy between numerical and experimental results exists which may be due to 

the error in the material properties in terms of stress-strain curve. However the delay 

of the structural response in respect to the loading is very well predicted by using the 

numerical analysis. This gives some confidence that the numerical analysis can be 

used to investigate the failure of structures under the pressure pulse loading and 

present a viable alternative to large scale experimental tests. 
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Fig. 6.10. Comparison of the transient strain (short pulse width compared to the 

period) of the middle of the aluminium plate to pulse pressure loading (D = 20 cm, 

h= 0.5 mm, T=8ms) 
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Fig. 6.11. The experimental results of the transient strain (short pulse width 

compared to the period) of the middle of the aluminium plate to pulse pressure 

loading (D = 20 cm, h=0.5 mm, T=8 ms) 

6.2.3.3 Experimental fail-safe curve 

A number of experiments have been carried out with different peak pressures and 

duration to investigate the failure of the plate under pressure pulse loading. As 

mentioned and observed, the plate structure can withstand pressures higher than the 

static limit pressure. This is now determined by experiment in this section. 

Choosing various thicknesses of diaphragm (bursting disc) gives the freedom for the 

maximum peak pressure applied and also by changing the driver section length, the 

pressure duration can also be altered. 
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A complete set of conditions for different experimental work on the plate is 

summarised in Table 6.3. 

The failure criterion being applied is based on the final deflection of the middle of the 

plate. If there is no plastic deformation in the middle of the plate, which is the 

maximum displacement, it is assumed that the structure is in the no fail region under 

that particular applied pressure history. 

Referring back to Fig. 6.11, as can be seen, the final strain in the middle of the plate is 

zero which means no failure of the plate under this pressure history. 

The circular plates were prepared from the aluminium sheet (Grade: 1050) whose 

tensile tests were performed. 22 plates, 6 plates with 10 cm diameter and 16 plates 

with 20 cm diameters, were made and tested. Each plate is identified with the plate 

number in Table 6.3. and a few test on each of them were carried out until the plastic 

deformation was performed or a fault was detected. The test number of each plate 

was indicated in the table with the alphabetical order e. g. a, b. From the experiments, 

it was found that the fail -safe curve can not be produced for the plate with 10 cm 

diameter as the shock tube was not able to create the enough pressure within a short 

time to fail the plate. However the fail-safe date for 20 cm. Plate is shown in Table 

6.4. 
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Duration (ms) Presure (MPa)(numerical) 

2 30 (28) 

4.5 22(23) 

7 18{21) 

10 15 (12) 

16 9 {8} 

Table 6.4. Experimental and numerical fail-safe data for 20 cm. Aluminium plate 

A fail-safe curve can also be introduced from Table 6.3. based on the final deflection 

of the middle of the plate. The variables in the curve are the maximum applied 

pressure (peak pressure) and the pressure duration (pressure pulse width). 

The fail-safe curve for the plate structure under specified conditions is shown in Fig. 

6.12. It is obvious from the fail-safe curve that pressures as high as around 2.5 times 

the static designed pressure can be applied without failure. 

It should be noted that an experimental fail-safe curve for 10 cm. Plate could not be 

produced as the shock tube was not able to generate high pressures to fail the small 

plate. 
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Fig. 6.12. The experimental fail-safe curve for the aluminium plate (D=20 cm, h=0.5 

mm) under pressure pulse loading 
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6.3 Cylindrical vessel 

Heat exchanger shell under a pressure pulse loading due to burst of high pressure 

tubes, inside the shell, has been experimentally tested and the results of experimental 

work will first be compared to numerical results. A small scale version of this heat 

exchanger subjected to pulse pressures greater than design pressure will then be 

investigated and a fail-safe curve will be explored for this case in the same manner as 

for the plate geometry. 

6.3.1 Heat exchanger 

The heat exchanger used is shown in Fig. 6.13 and was of a shell and tube 

construction, with a 10 mm thick, 740 mm diameter shell and with a yield pressure of 

80 bar. The tube bundle, shown in Fig. 6.14 contained 564 tubes with 19.06 mm 

diameter and straight length of approximately 3600 mm. A large scale heat exchanger 

filled with water, made of steel which is depicted in Fig. 6.13. This was 

experimentally tested under pressure pulse loading by the induced failure of high 

pressure pipes inside the shell, Fig. 6.14, up to 150 bar to the burst. The shell was 

fitted with a6 inch nominal bore nozzle to carry a graphite bursting disc with a 

10±5% bar burst pressure, and a single 8 inch nominal bore nozzle to simulate part of 

the water system. 
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Fig. 6.13. Heat exchanger 

145 



Fig. 6.14. High pressure pipes inside the heat exchanger 

The pressure traces in different points close to the shell were then measured which 

are used to model the heat exchanger in order to compare the numerical and 

experimental results. Fig. 6.15. shows the dimensions of the shell and associated pipe 

work and Fig. 6.16. shows the positions of the internal pressure transducers and 

strain gauges used to monitor pressures and strains in the experiment. 
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A series of experiments were carried out by HSE (Health and Safety Executive) for 

different tube side pressures and the pressure and strain history were monitored at the 

points indicated in Fig. 6.16. The results were then given to analyse using the finite 

element method. The finite element modelling for one of these cases corresponding to 

a tube pressure of 146 bar in which the failure location was 0.7 m from the header 

end of the shell and 0.05 m from the wall is now presented in the next section. 

6.3.1.1 Numerical modelling 

The finite element model of the heat exchanger with 2592 shell elements with 

plasticity and large deflection effects is shown in Fig. 6.17. The dynamic model of 

experimental pressure profiles which are changing in amplitude and duration along 

the heat exchanger were modelled to obtain the numerical strains and responses of 

various points in the shell. 

The following material properties were used for the analysis: 

Modulus of elasticity: E= 206 x 109 Pa 

Tangent modulus: Et =0 Pa 

Yield stress: ßY = 335 x 106 Pa 

Density: p= 8242.4 kg/m' 

Poisson's ratio: v=0.3 

The pressure-time profile for a point 10 in Fig. 6.16., close to the head of the heat 

exchanger, as an example, is plotted in Fig. 6.18. 
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Fig. 6.17. Finite element model of heat exchanger 
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Fig. 6.18. Pressure-time profile in heat exchanger 
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It should be again reminded that the pressure time profiles decrease in peak pressure 

further from the source as well as a time shift associated with the finite transient time 

of waves through the tube and baffle structure. 

Following the rupture and bubble growth around the failure site, the pressure builds 

throughout the structure with appropriate time differences associated with distance 

from the burst. On bursting disc operation, believed to occur within 1-5 msec of the 

local failure pressure being reached, the expansion wave acts to negate the rising 

pressure, resulting in a rapid fall to an equilibrium value associated with longer term 

liquid venting. Of particular interest is the initial transient since the greatest pressures 

arise during this time and may present a greater threat to the structure than the longer 

duration lower pressure venting process. 

Pulse widths for the transient depend on the location relative to the relief device but 

for full scale equipment, can be expected to be in the range 5-10 msec. These 

durations are comparable with the periods of the fundamental modes of the structure 

indicating that there are likely to be design benefits when their effects are assessed 

dynamically. The modal analysis of the heat exchanger indicated that the fundamental 

period is 9.8 msec and, as can be seen from Fig. 6.18., pressure pulse widths are 

around 2-5 msec. 

In order to observe the location of the maximum stress and also overall stress 

condition after the applied load, the stress contours of heat exchanger at the time that 

the maximum pressure is applied which is 5 ms are shown in Fig 6.19. and Fig. 6.20. 
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6.3.1.2 Experimental and numerical comparison 

In order to have a realistic comparison between the experimental and numerical 

results, the applied surface pressure in the numerical work was allowed to vary with 

distance along the shell for each element and with time according to the following 

procedure. The shell was divided axially into four sections and within each section, 

the applied time profile was that corresponding to the profile at the start of the 

section. The peak pressure applied however, was allowed to vary in a linear manner 

along the section between the starting value for that section and the starting value for 

the next. The shell was also divided into 40 circumferential strips along its length. 

The numerical analysis of the heat exchanger was then carried out and the strain 

results were obtained. As an example of the reasonable agreement between 

experimental and numerical results, the strain history of point 9 in Fig. 6.16. which is 

between the nozzles in the heat exchanger is shown in Fig. 6.21. 

As can be observed the general shape of the traces are quite similar, however more 

fluctuations can be observed in the experimental compared to the numerical results 

and this is due to the sampling rate in the numerical calculation being 2% of the 

experimental one due to reduction of the CPU time in analysis. 

The analysis for the first 8 ms of the experiment was modelled with higher sampling 

rare to demonstrate the above expression. The results for this case is shown in Fig. 

6.22. 
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Fig. 6.21. Numerical and experimental strain history of point 9 (Fig. 6.16. ) between 

nozzles in heat exchanger (T: Theoretical, E: Experimental, h: hoop, 1: longitudinal) 
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Fig. 6.22. Numerical and experimental strain history of point 9 (Fig. 6.16. ) between 

nozzles in heat exchanger (T: 'Theoretical, E: Experimental, 1: longitudinal) 
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6.3.1.3 Numerical fail-safe curve 

Although the series of tube rupture tests carried out on the exchanger did not 

produce pressure pulse amplitudes and width of sufficient magnitude to take the shell 

to yield, the numerical analysis has indicated a level of agreement with measured 

strains, and these calculations have been extended to establish a failure limit curve for 

the heat exchanger in a similar manner as for the simple plate geometry. In these 

cases, for a particular chosen pulse width, the pressure pulse amplitude was increased 

until the failure criterion was satisfied at some point on the shell and this combination 

was then chosen as one pair of coordinates on the limit curve. The resulting limit 

curve is shown in Fig. 6.23. for a selected number of pulse widths. The behaviour is 

similar to the plate case and indicates that pressure pulses of amplitude several times 

the static yield value can be tolerated, according to the chosen fail criterion, 

providing pulse widths are short enough. 

35 

30 

v 
25 

a 
20 

äi 15 

CL 10 

Static yield pressure 

05 10 15 20 25 30 35 40 

Duration (ms) 

Fig. 6.23. Numerical limit curve for the heat exchanger 
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6.3.2 Shell failure 

Shell failure was also investigated experimentally to determine the fail-safe limit curve 

for a small shell. The small shell was made of aluminium with 1.34 m in length, 100 

mm in radius and 2.87 mm in thickness was attached to the T-section of shock tube 

to investigate its failure under pulse loading. 

Whole length = 1340 mm Conical length = 100 mm Diameter = 200 mm 

Thickness = 2.87 mm 

The shell was made from a tube for the straight part and a conical part was 

constructed using a plate under no heat treatment. The manufacturing was stress free 

for the whole process. The conical shape part was welded to the tube to complete the 

test piece for the tests. Only one shell was made and all experiments were carried out 

on one test piece. 

The shell is a small scale version (1: 3.7) of the heat exchanger which was described in 

the preceding section. The photograph of the shell attached to the shock tube is 

shown in Fig. 6.24. The dimensions of the shell is shown in Fig. 6.25 
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Fig. 6.24. Small scale of heat exchanger 

6.3.2.1 F. E. modelling 

The finite element model of the shell, clamped at the end, with 2592 shell elements 

with large deformation and non-linearities is shown in Fig. 6.25. 

The modal analysis of the shell was carried out using finite element method to 

determine the fundamental period of the shell. The pulse width should be chosen less 

than the period of the shell to investigate the failure of the shell with pulse pressures 

higher than the static design pressure. 

The modal analysis of the shell showed that the fundamental frequency of the shell is 

165 Hz, corresponding to a fundamental period of 6 ms. 

158 



1240 mm 

4 

Shell Analysis 

1340mm 

Fig. 6.25. Finite element model of the shell 

6.3.2.2 Static design pressure 

N 

N 

In order to investigate the shell response to the pulse loading for the pressures higher 

than the static design pressure, the static design load should be first determined. 

The following formula is used to determine the static design pressure (Spenece and 

Tooth, 1994): 

'- 6'' 1t o- 
r 

where, 

(6.7) 
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Yield stress: ßY = 130 x 106 Pa 

Thickness: t=2.87 mm 

Radius: r= 100 mm 

Therefore, 

Po = 3.731 106 Pa 

In the next section the failure of the shell will be investigated experimentally. 

6.3.2.3 Experimental failure of shell 

A series of experiments have been also carried out using the shock tube facilities to 

observe the effect of the pressure pulse loading on the shell and its failure. The 

operating conditions and main results of the experimental work are summarised in 

Table 6.5. 

From the above results the fail-safe curve for the shell has been made which is shown 

in Fig. 6.26. As there was only one shell (test piece) available for the experimental 

works and the shell was deformed under the final tests, therefore only five 

experimental data points could be obtained to construct the fail-safe curve for this 

case. 
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It is also can be observed that the pressure as high as approximately 2.5 times of 

static design pressure can also be applied to the shell without failure if the pulse width 

is short enough compared to the fundamental period of the shell which is 6 msec. 

The numerical fail-safe data were also obtained from ANSYS analysis and were also 

added to Fig. 6.26. for comparison. 

Table 6.6. shows the comparison between the experimental and numerical fail-safe 

date for the shell. 
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Fig. 6.26. Fail-safe limit curve for the shell 
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Duration (ms) Experimental pressure (MPa) Numerical Pressure (MPa) 

2 8.5 8.9 

3 6.5 6.2 

4.5 5.5 5.1 

6 4.5 4.8 

12 3.5 3.3 

Table 6.6 Comparison between the experimental and numerical fail-safe data of shell 

166 



6.4 Conclusions 

The structural behaviour due to pressure pulse loading for a number of geometries 

have been investigated and discussed in this chapter. A logical way to predict and 

determine the failure modes for the complex structures has been approached by 

experimenting and analysing from a very simple but basic plate structure. It was to 

build up and fully understand the structures response to sudden loading such as 

pressure pulse loading in this research. 

A fail-safe limit curve was shown for a number of geometries using experimental 

facilities and also numerical works. The limit curves showed that the pressure as high 

as approximately 2.5 times of static design pressure for the structure can be applied 

without failure if the pulse width of the pressure pulse loading is short and less than a 

certain limit. 

It was also indicated that the present finite element numerical method could relatively 

present a good prediction for the structure response to pressure pulses. 

The main conclusions of the present work and also the recommendations for the 

further work are discussed in the next chapter. 
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7. Conclusions and recommendations 

7.1 Introduction 

The overall objective of this work was to investigate the structural behaviour under 

pulse loading and to provide a methodology for design of process plant structures, 

particularly plates and shells, under impulsive loading by investigating the effect of 

time duration and the maximum applied pressure of impulse loads on the maximum 

allowable stresses of the structures. 

The aim of this chapter is to present the overall conclusions to the work. Some 

recommendations are also presented for the further work. 
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7.2 Conclusions 

The survey on the existing literature revealed that there is no standard failure 

criterion for the structures or components subjected to dynamic loading such as 

impact and pressure pulse loading. The reason was found to be the complexity of the 

case and also the involvement of nonlinearities in such problems. 

As discussed and showed there are analytical solutions for elastic and plastic 

problems when the structure is under the pressure pulse loading however the 

complexity of the matter arise when the structural response to pressure pulse loading 

is subjected to the transition part of the material behaviour in stress-strain curve. As 

the material properties also play important roles of determining the material response 

to the pressure pulses it was found that the nonlinearities of the material should be 

wisely and realistically chosen. 

In order to investigate the response and behaviour of the structures to pressure pulse 

loading an experimental set-up was made and also numerical finite element method 

was used to predict the strain histories of the structures. A simple geometry i. e. 

circular plate first was experimented under pressure pulse loading with different peak 

pressures and also various pulse width by means of changing a few factors in the 

experimental shock tube used in the present research. Then the cylindrical vessels and 

also a full scale heat exchanger was experimentally investigated under high pressure 

loading caused by bursting internal high pressure tubes. 

Numerical works have also been carried out in parallel to predict the structures 

response to the pressure pulse loading. From the comparisons of the experimental 
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results with results form the numerical works, it was found that the numerical finite 

element method could predict the structural behaviour to pressure pulse loading. It 

should be mentioned that the modelling must be made properly to predict and obtain 

realistic results compared to the practical cases. 

A fail-safe limit curve was also provided experimentally and numerically for various 

cases namely circular plates, small cylindrical structure and full size heat exchanger 

subjected to pressure pulse loading. These curves which deduced from a number of 

experimental works and numerical runs revealed that the pressures higher than static 

design pressures can be applied to the structures if the pulse width is short and 

remains in the safe region of the limit curve. 

The above fail-safe curve should be determined for different cases as the dynamic 

response of the structures are different from case to case and depend on too many 

factors, as discussed through this research, including the nonlinearities. 

The study has demonstrated the usefulness of applying the finite element method to 

examine and investigate any complex structures under dynamic condition. This has 

relevance in many applications where high pressure exist and may lead to spike in low 

pressure units under abnormal conditions. In some cases the transient will arise due 

to intervention of the protection device, whilst in others, such as external explosions, 

it is a feature then this can be translated to an engineering benefit in any subsequent 

risk analysis. 

It can be concluded that the design criteria for structures under dynamic loading can 

be more flexible since the dynamic yield criteria are different from static ones and the 

introduced fail-safe curve may enhance the structural safety. 
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7.3 Recommendations 

The investigation of structural behaviour under pressure pulse loading was carried 

out. However there are some factors, which play important roles in dynamic 

behaviour of structures. 

The following recommendations can be the subject of the further research: 

Stress-strain curve of material could be different for the dynamic case 

compared to the static one. In other words, the strain rate of materials varies 

from static to dynamic. Therefore the study of stress-strain curve can be 

carried out. 

- As structures behave differently under impact loading such as projectile, 

structural failure due to impact loading higher than static design load can be 

investigated. 

- Temperature has a crucial effect on material strength and nonlinearity. The 

mechanical damage and failure of structures should be studied under high 

temperature. 

- Heterogeneous materials such as composites are widely used. Their behaviour 

under shock loading may result economical design. 

- Various failure criteria such as ones based on displacement, stress and energy 

can be compared to obtain the better design codes. 
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In terms of application area, there are few industrial applications, which can be 

mentioned for the future research. One of the popular applications is explosion in 

process plants and its effect on pressure vessels, which was covered here. The 

following applications may be of interest for the future research: 

- High-pressure pipes in pipelines may burst and cause the high pressure 

loading on the adjacent pipes and components. This can be studied in detail. 

- Under water explosion is another application, which can be investigated 

considering the submarine structures. 

- Micro-channels can be used under high-pressure environment. The study of 

failure investigation of micro-channels can lead to determining the failure of 

micro size structures. 

Aerospace and aircraft structures are another application, which can be 

exposed to high pressure loading and explosions that may be considered for 

the future research. 

At last, not least, the accuracy and capability of numerical methods such as finite 

element analysis to predict the failure and behaviour of very complex structures can 

be investigated. 

This research area has very wide applications and it is still a novel subject area in 

engineering design to enhance the safe dynamic design of structures. 
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