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Abstract 
 

This thesis investigates the problem of estimating the effectiveness and cost-effectiveness of 

prescribed medications in the presence of patient non-adherence, which is a major issue when making 

reimbursement decisions.  Poor reimbursement decisions can have significant negative consequences 

for both patient outcomes and costs. 

This research aimed to develop a methodological framework to account for the impact of non-

adherence on the cost-effectiveness of chronic medications in the context of health technology 

assessments (HTA) using time-to-event outcomes. Such a framework did not exist when this research 

started. The framework put forward in this thesis was informed by four linked stages of this research: 

(1) a systematic review of methodological papers that identified 12 non-adherence adjustment 

methods and assessed their suitability for use in HTA; (2) a simulation study that assessed the 

performance of four adjustment methods in 90 scenarios; (3) a case study that applied two generalised 

methods (g-methods) to a trial of maintenance immunosuppressants in kidney transplantation in 

order to produce cost-effectiveness estimates based on external ‘real world’ non-adherence data; and 

(4) the development of an analytical framework for incorporating non-adherence into cost-

effectiveness models.  

The review suggests that g-methods and pharmacometrics-based methods using pharmacokinetics 

and pharmacodynamics (PKPD) analysis appear to be more appropriate to estimate effectiveness in 

the presence of real-world non-adherence. The simulation study demonstrates that g-methods and 

per-protocol (PP) analysis are the best-performing methods for adjusting estimates of treatment 

effectiveness for non-adherence compared to intention-to-treat analysis, although the PP estimand is 

not theoretically appropriate. The case study findings show reduced net health benefits and increased 

cost per patient when real-world non-adherence is taken into account. The framework provides 

guidance on the steps that could be followed to account for real-world non-adherence when 

undertaking cost-effectiveness analyses. Future research is recommended to use the framework in 

different case studies for evaluation.     
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Chapter 1: Thesis introduction and background 

1.1 Introduction  

Economic evaluations and Health Technology Assessments (HTA) are increasingly used to inform 

decision making around the adoption of new treatments worldwide. An economic evaluation typically 

assesses the cost-effectiveness (value for money) of a new treatment compared to standard 

treatment using evidence on both clinical effectiveness and costs of adopting each treatment option. 

In practice, clinical effectiveness evidence usually comes from randomised controlled trials (RCTs) 

where the intention-to-treat (ITT) analysis is typically used as a conventional analytical approach. The 

ITT analysis mixes the benefit of receiving the treatment among adherent patients with the lack of (or 

suboptimal) benefit among patients who experience non-adherence, which may generate biased 

estimates of treatment effectiveness compared to that seen in standard clinical practice. In addition, 

non-adherence to treatment would be expected to alter the costs borne by the health service. In the 

HTA context, decision makers are generally concerned with costs and effectiveness in standard clinical 

practice (or the ‘real world’) as an important issue. Both clinical effectiveness and costs have a direct 

impact on cost-effectiveness; and therefore, adjustment of effectiveness and costs for non-adherence 

is needed if adherence in standard clinical practice differs from that observed in RCTs. 

The subject of this doctoral research study is the development of a methodological framework to 

account for the impact of non-adherence in the context of HTAs in chronic conditions. The focus is on 

methods for adjusting the causal effect of treatment on time-to-event outcomes and cost-

effectiveness. This involves a systematic review to identify non-adherence adjustment methods and 

the application of these in a simulation study and a case study on maintenance immunosuppressive 

therapy after kidney transplantation. Although the focus is on kidney transplantation, I envisage that 

the methodological framework will be applicable in any chronic disease area with a time-to-event 

outcome. Chronic conditions are chosen because non-adherence to medications taken over a long 

period of time is more likely to have a substantial impact on costs and outcomes. Non-adherence to 

medication was raised as an issue in a recent NICE appraisal of immunosuppression following kidney 

transplant and this was thought to provide an important and topical case study. Given that this was 

based on time-to-event outcomes, my work has focussed on this, however, it is recognised that the 

same issue will be relevant to all forms of patient outcomes (e.g. continuous and categorical 

outcomes). However, non-adherence is also an important issue in acute conditions, and the 

methodological framework may also be applicable in these conditions where a time-to-event outcome 

is used. Many aspects of the methodological framework put forward in this thesis will be applicable 
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for handling non-adherence in instances in which a time-to-event outcome is not used and this is 

discussed in further detail in Chapter 7.   

This introductory chapter defines non-adherence and key concepts used throughout the thesis; 

specifies the problem and its importance; identifies the gaps in the health economics literature; and 

outlines the research questions, and the aim and objectives of the study.     

1.2 Definition of non-adherence to medications  

Adherence to medication is defined as ‘the process by which patients take their medications as 

prescribed’.1 An influential taxonomy of adherence to medications set out by Vrijens et al.1 (see Figure 

1) identifies three components: (a) initiation of the treatment (when the first dose is taken by the 

patient); (b) implementation of the dosing regimen (to what extend the actual dosage of a patient 

corresponds to the prescribed dosing regimen); and (c) discontinuation (end of therapy).1 Based on 

this taxonomy, non-adherence can occur in one or a combination of three situations: late or non-

initiation, sub-optimal implementation, and/or early discontinuation (non-persistence).1, 2 A number 

of other terms are commonly used in the literature to describe non-adherence including ‘non-

compliance’ and ‘non-concordance’.3 Whilst some authors suggest differences between the precise 

meanings of these different terms, for the purpose of this thesis, I will treat them as being synonymous 

with non-adherence, and the Vrijens et al. ‘ABC’ taxonomy will be used as standard. The acronym ABC 

stands for ‘Ascertaining Barriers to Compliance’ project, which is an international research 

collaboration in the field of adherence to medications that led to the development of the taxonomy.  

Figure 1: Adherence to medications taxonomy 

 

Adapted from Vrijens et al.1 
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There are some arguments in the literature considering other medication-taking behaviours such as 

treatment switching as a type of non-adherence. The counter-argument to this is that switching 

prescribed medication is a different type of change in therapy as it must be initiated by a medical 

practitioner. Another related term is 'early discontinuation' which happens before the end of 

prescribing by the patient's own behaviour, which I would consider as non-adherence (see Figure 1). 

Evidence suggests that patients’ preferences to adhere to their prescribed medications are 

consistently affected by side effects, age and experience.4 Adherence may also be affected by the 

impact of a specific disease, the complexity of the dosing regimen,4 and potentially other medications 

taken by the patient (i.e. polypharmacy).5  

It is important to measure adherence using the three components specified by the ABC taxonomy 

(initiation, implementation, persistence) and to be explicit about what is being measured.1 For 

instance, initiation and persistence can be measured using time-to-event variables (i.e. time to 

initiation and time to discontinuation). Conversely, implementation as a continuous process requires 

a different approach to quantify. Implementation can be measured as a summary statistic using 

proportions of prescribed doses taken over a particular period. However, summary statistics have 

their own limitations and can sometimes be misleading, especially if the medication adherence trend 

over a longer period of time is considered important. As an alternative, longitudinal comparisons using 

a medication event-monitoring device such as the medication event monitoring system (MEMS), as 

an example, can provide a better estimate of non-adherence at the implementation stage. 

In practice, there have been considerable inconsistencies in measuring non-adherence, with many 

researchers considering it as a unidimensional problem.6 Many tools are available for measuring 

medication adherence including both subjective and objective measures. Existing medication 

adherence measures can be broadly classified into five groups:7  

(i) Direct measures such as drug concentration levels in the blood 

(ii) Measures involving secondary data analysis such as the medication possession ratio (MPR) 

calculated as the days of medication supply for all prescription refills divided by the days 

of the interval period 

(iii) Electronic measures such as MEMS 

(iv) Pill counting 

(v) Measures involving clinical assessments and self-reporting such as questionnaires.  
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Other high-level groupings are: (a) objective versus subjective measures; (b) cross-sectional versus 

longitudinal measures; and (c) direct versus indirect measures.7 There are different approaches for 

calculating each of these adherence measures. For instance, MPR can be calculated using the fixed 

MPR approach (FMPR) using a fixed days interval as a denominator, or the variable MPR (VMPR) using 

the time between the initiation of therapy and the end of supply for the last acquisition as a 

denominator.8 Each tool has its own strengths and weaknesses; hence, no perfect measure of 

adherence exists, and this may lead to measurement error.           

1.3 Definition of key concepts  

A number of key concepts are used throughout this thesis; it is, therefore, important to define these 

from the outset. The concepts include: counterfactual outcome; causal effect; estimand and estimator; 

confounding; directed-acyclic graphs (DAGs); selection bias; censoring; and drug forgiveness. These 

concepts are briefly introduced in the following subsections. 

1.3.1 Counterfactual outcome  

The counterfactual outcome framework was originally developed by Neyman9 and Rubin10 for 

estimating the effect of time-fixed treatments (which do not vary over time), and further extended by 

Robins11, 12 to time-varying treatments (which vary over time). To introduce the counterfactual 

outcome, suppose we want to estimate the effect of treatment A on outcome Y for individual i 

compared to no treatment. The ideal way is to compare the ‘observed’ outcome on individual i if s/he 

had received the treatment with the outcome that would have been observed if the same individual 

had not received the treatment. We cannot observe treated and untreated outcomes for an individual 

patient (except in a crossover trial design), and whichever one we do not observe is the ‘counterfactual 

outcome’. Hence, the counterfactual outcome for each individual can be defined as the outcome that 

would have been observed under a hypothetical condition (e.g. if the individual had not received the 

treatment or vice versa).  

1.3.2 Causal effect  

Estimating the causal effect of treatment is the main objective of most epidemiological studies using 

data from RCTs. However, we cannot estimate the causal effect for an individual patient, but we can 

estimate the average causal effect (ACE) of treatment for people like that individual - this is known as 

the population causal effect.  
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The population causal effect is the primary interest in estimating clinical effectiveness, and I refer to 

this as the ‘causal effect’, or ACE, throughout this thesis. It is worth noting that the term ‘population’ 

can refer to different groups of individuals depending on the causal question and objectives of the 

study. The causal effect may involve a ‘direct’ effect of the exposure (e.g. residence in mouldy dwelling) 

on the outcome (e.g. depression). It may also involve an ‘indirect’ effect of the exposure on the 

outcome via an intermediate variable (e.g. the indirect effect of mouldy dwelling on depression via 

affecting physical health). The total effect combines direct and indirect causal effects. The term ‘causal 

inference methods’ is used in this thesis to refer to the methods originating in the causal inference 

literature and this is further clarified in Chapter 2.    

1.3.3 Estimand, estimator and estimate 

The ‘estimand’ is defined as the parameter of interest that we can use to make inferences about a 

population using a sample from that population.13 In the context of RCTs, the estimand can be defined 

using four attributes:14, 15 (i) the population (patients of interest targeted by the scientific question); 

(ii) the outcome variable or endpoint (e.g. time to incidence of graft loss); (iii) the specification of how 

to deal with intercurrent events (e.g. include compliers only); and (iv) the population-level summary 

of the outcome variable, that is, the measurement of the causal effect of the intervention (e.g. hazard 

ratio [HR]). Using the examples given above, a possible estimand would be the HR relating to graft 

survival in the compliers only. The estimand is also known as the ‘target of inference’. 

In contrast, the ‘estimator’ is the method of estimation (e.g. maximum-likelihood estimator [MLE]) 

that can be applied to any sample from a population to produce a numerical value for the estimand. 

The estimate is the numerical value of the estimand obtained from a particular sample (e.g. HR=0.78).  

1.3.4 Confounding  

Confounding is a major risk for causal inference in epidemiological studies (including RCTs), and failure 

to control for it may lead to a biased estimate of the ACE of treatment. To better understand the 

concept of confounding, I use the example in Figure 2 representing the causal effect of azidothymidine 

(AZT) treatment (an antiretroviral drug used for prevention and management of human 

immunodeficiency virus [HIV]/acquired immunodeficiency syndrome [AIDS]) on the survival of HIV-

positive patients with time-independent and time-dependent confounding variables (see Figure 2). In 

this example, Figure 2A shows ‘age’ as a time-independent confounder. In this figure, AZT treatment 
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has a direct causal effect on mortality (as indicated by the arrow). However, this causal relationship is 

confounded by age which is a common cause of the exposure (adherence to AZT treatment) and the 

outcome (death). In this case, the analyst should adjust for age using traditional methods such as 

stratification or regression analysis.  

Figure 2B shows time-dependent confounding where the cluster of differentiation 4 (CD4 count - a 

measure of the immune system functionality used in HIV/AIDS diagnosis) is considered as a time-

varying confounder for the effect of AZT treatment on death. CD4 count is a time-dependent 

confounder because: (a) CD4 count affects AZT prescribing, and AZT treatment affects CD4 count; and 

(b) CD4 count predicts survival outcome (time to death). In this case, standard methods for estimating 

the ACE of time-varying AZT treatment on survival may produce biased estimates, and therefore, more 

advanced methods are needed.  

Figure 2: Time-independent and time-dependent confounding 

 

Note: In Figure 2A, confounding refers to time-independent confounding 

 

Sterne and Tilling16 characterised the confounding bias by CD4 count and its implications using three 

possible analytical strategies:  

(i) Crude analysis (without controlling for CD4) will produce a biased estimate because AZT 

is more likely to be given to patients with higher CD4 count who tend to experience a 

higher death rate 

(ii) Controlling for CD4 count at baseline will also produce a biased estimate because it 

ignores the fact that patients who actually initiate the treatment after baseline are more 

likely to be those who had higher CD4 count (immunosuppressed patients). 
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(iii) Controlling for time-dependent CD4 count is problematic because the causal effect of AZT 

is partly mediated via time-updated CD4 count (Figure 2B) and controlling for it will block 

the indirect causal effect AZT→CD4→Death causal path resulting in an underestimate of 

the total treatment effect of AZT treatment.           

1.3.5 Directed-acyclic graphs  

DAGs, which are generally known as ‘causal graphs’, are a graphical representation used in causal 

inference to conceptualise the causal links between the treatment, outcome and other variables.13 To 

illustrate the concept of DAGs, I use a generic example (see Figure 3) conceptualising the causal effect 

of treatment A on outcome Y, with two other random variables L and U representing measured and 

unmeasured confounders, respectively. The nodes in the DAG representing variables A, L, Y, and U are 

called ‘vertices’. The variable A (for example) is called an ‘ancestor’ of variable Y because it has a 

‘directed’ path arrow leading to variable Y, and therefore, Y is called a ‘descendant’ of A. The 

unmeasured confounder U (e.g. genetics) occurs prior to treatment A and the outcome Y assuming 

that time goes from left to right as illustrated in the DAG. 

Figure 3: Directed-acyclic graph (DAG) 

 

    

This causal DAG has five arrows representing directed causal relationships. For example, treatment A 

has a direct (non-mediated) causal relationship with outcome Y, that is the causal effect of interest. 

Each arrow connecting two vertices (variables) in the DAG is called an ‘edge’ or an ‘arc’. Causal DAGs 

are ‘acyclic’ because there are no loops which imply that a variable in the DAG cannot have a direct or 
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indirect causal effect on itself (i.e. no cycles). The A→Y causal path is called a ‘frontdoor path’, and this 

causal relationship is confounded by variable L via a ‘backdoor path’ AL→Y. The backdoor path is also 

called a ‘non-causal path’ through which an association probability can flow from A to Y via L, creating 

a confounding bias and the analyst can control for this by conditioning on L (see Section 1.3.4). 

Similarly, AU→Y is an open backdoor path which can create confounding bias, but in this case, we 

cannot control for it because U is unmeasured. To address this problem, the investigator may find an 

intermediate variable M that mediates the U→A or U→Y causal relationships and control for M in order 

to control for the confounding effect of U. This indicates that investigators need to identify and collect 

sufficient data on all variables that have important causal relationships in the causal network as 

conceptualised by their particular DAG. The main disadvantage of DAGs is that they describe causal 

relationships based on discrete times which may not reflect the continuous process of cause-effect 

relationships, but DAGs can include time-varying events as an attempt to overcome this 

shortcoming.17 Despite this limitation, causal DAGs can be useful in identifying important variables 

that need to be measured for use in estimating an unbiased causal effect of treatment.  

1.3.6 Selection bias       

Selection bias is another risk for causal inference caused by an association link which may be created 

by the process of selecting individuals included in the analysis.13  In this section, I introduce two specific 

types of selection bias: (i) ‘conditioning on a collider bias’; and (ii) ‘confounding by indication’. 

Conditioning on a collider bias is a specific type of selection bias that is distinct and often confused 

with confounding bias.18 To introduce this concept, I use the causal DAG presented in Figure 4 

representing a direct causal effect of treatment A on outcome Y via the frontdoor path A→Y. The 

variable L is a descendant of treatment A and unmeasured variable U. Consequently, the causal effects 

of A and U collide on L, and in this case, L is called a ‘collider’. This means that probability does not 

flow and there is no association between U and A in Figure.  

In this particular DAG, variables L and U have no confounding effect on the causal effect of A on Y 

because the backdoor path A→LU→Y is already blocked by the collider variable L. In other words, 

conditioning on L will essentially create a backdoor path from A to Y through LU. This indicates that 

the analyst should not condition on L because conditioning on it will open the closed backdoor path 

creating selection bias - this is called conditioning on a collider bias. Therefore, it is very important to 

investigate each variable in the causal network to ensure that it does not meet the conditions of being 

a collider before inclusion in the adjustment model.  
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Figure 4: A causal DAG illustrating conditioning on a collider bias 

 

 

Confounding by indication is another form of selection bias which is common in the context of clinical 

decision analysis. This is best described using the causal DAG in Figure 5. In this DAG, the causal effect 

of treatment (Aspirin) on the outcome (risk of stroke) will be confounded because Aspirin treatment 

is commonly prescribed to patients with heart disease, which is both an indication for Aspirin 

treatment and a risk factor for the outcome (stroke). That is because both heart disease and stroke 

are affected by the common cause atherosclerosis (see Figure 5).13 Confounding by indication is also 

known as ‘channelling’, a term commonly used to describe confounding bias in specific situations 

where the selection bias is due to patient risk factors that influence doctors to prescribe a particular 

treatment within a class of drugs.13 

Figure 5: A causal DAG illustrating confounding by indication 
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1.3.7 Censoring 

In epidemiological research, survival analysis is used to estimate the ACE of treatments on time-to-

event outcomes. Censoring is an important issue in analysing RCT data with a time-to-event outcome. 

An individual is said to be censored at a particular time point when data on the time-to-event outcome 

is unknown due to reasons such as loss to follow up or non-occurrence of the outcome before the end 

of the study. End of study censoring is known as ‘administrative censoring’ which is likely to be non-

informative in RCTs. Administrative censoring can be addressed using standard methods of survival 

analysis that allow for data from censored observations to be included in the analysis.19 Standard 

parametric survival models assume that censoring is ‘non-informative’, that is the survival-time 

outcome is prognostically independent of censoring. In other words, patients censored at a particular 

time point have the same probability of experiencing the event of interest compared to uncensored 

patients at the time of censoring.19 ‘Informative censoring’, on the other hand, implies that the survival 

outcome and time-to-censoring are dependent, for example, if a patient is censored when they 

stopped taking the treatment (discontinued) or switched to another treatment.19, 20 This is also 

referred to as ‘dependent censoring’ which is likely to introduce confounding bias when standard 

survival analysis methods are used.19 Because censoring happens over time, potential time-dependent 

confounding is an issue, and therefore, more advanced methods than standard regression adjustment 

may be needed to address this particular problem.  

1.3.8 Drug forgiveness 

Drug forgiveness is defined as the number of consecutive doses that can be missed by a patient while 

still maintaining the intended therapeutic effect.21, 22 To determine the drug forgiveness, the analyst 

needs to define the adherence level above which the therapeutic effect will be maintained (i.e. 

adherence threshold). The adherence threshold can be objectively determined using the PKPD 

characteristics of the drug. However, there is no universal adherence threshold that applies to all drugs 

as this will be drug/disease-specific. For drugs with a short duration of action, there may be no 

adherence threshold (i.e. adherence threshold equals 100%). Formally, drug forgiveness (F) can be 

calculated as the difference between the postdose duration of beneficial action of the medication (D) 

and the prescribed dosing interval (I) using the following equation.21, 23  

𝐹 = 𝐷 − 𝐼                   [1] 



32 
 

1.4 What is the problem?  

This section describes the impacts of non-adherence on clinical outcomes, treatment costs and cost-

effectiveness based on existing evidence. The difference in adherence levels in the real world 

compared to trials and the problem faced in HTA (due to impacts on costs, effects, different adherence 

levels) is provided. 

1.4.1 Existing evidence 

Non-adherence to prescribed medications is a major and intractable problem in health care, with 

significant negative consequences for both clinical outcomes and health care costs.24, 25 To identify the 

relevant evidence, I undertook a literature review that identified 43 papers - see Appendix A1 for 

details of the search strategy and sifting. This review was used to provide a summary of the existing 

evidence on the impact of non-adherence on clinical outcomes, costs and cost-effectiveness (see 

Section 1.4.2 and 1.4.3). The differences between adherence levels in clinical trials and the real world 

are discussed in Section 1.4.4.    

1.4.2 Impact of non-adherence on clinical outcomes  

Non-adherence to prescribed treatment may have a major negative impact on clinical outcomes by 

affecting the link between the process of healthcare provision and the outcome.26 The clinical 

consequences of non-adherence may be determined from the complex interplay of three factors: (i) 

the type(s) of non-adherence; (ii) the nature of the disease, and (iii) the pharmacokinetics (PK) and 

pharmacodynamics (PD) of the drug.27  In simple terms, PK is the study of the drug’s path through the 

body in terms of absorption, distribution, metabolism and excretion (i.e. what the body does to the 

drug). PD is the study of the biochemical and physiological effect of the drug (i.e. what the drug does 

to the body).28 A review of 10 cohort studies on diabetes mellitus revealed an increase in hospital 

admissions of 10.3% and 15% when the MPR, a measure of adherence, was lower than 80% and 40%, 

respectively.29 Kidney transplantation is an important chronic condition where the implications of non-

adherence to maintenance immunosuppressive therapy are significant. These may include: rejection 

of the transplanted kidney; return to dialysis, and potentially death.30 
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1.4.3 Impact of non-adherence on cost-effectiveness   

The economic consequences of non-adherence are driven by the reduced efficacy of the drug leading 

to an increased probability of therapeutic failure, and consequently, impacts on cost-effectiveness.27 

In the USA, crude estimates reported the prevalence of non-adherence as 30-50% of all patients on 

chronic medications, with the total cost of all non-adherence estimated at $100 billion annually.25 The 

cost of non-adherence to just 10 medications was estimated between $396 and $792 million per 

year.25  

In England, findings from a modelling study aimed at estimating the impact of non-adherence for five 

conditions were striking.31 These conditions were: asthma; hypertension; diabetes; schizophrenia and 

cardiovascular diseases. In this study, non-adherence was found to be associated with both increased 

cost and deterioration in health outcomes. For many of these conditions, the treatment cost alone 

associated with non-adherence was estimated to be more than £100 million per year.31 The study 

suggests that investment to improve adherence appears to be a strong case in asthma and 

schizophrenia in particular, where the expected annual cost savings to the NHS are significant (£130 

million and £190 million, respectively).31 If there is a high level of discontinuation (non-persistence) to 

an expensive medicine, there may be savings that outweigh the costs of reduced benefit. Many 

treatments are marginal/not cost-effective, and not taking them e.g. in patients who do not perceive 

a benefit, could be cost-saving. 

I have identified a relevant systematic review (Hughes et al.32) which outlines a number of methods 

used for modelling non-adherence in cost-effectiveness analyses. However, there are three main 

limitations associated with the Hughes et al.32 review: (i) it is more than 10 years old, and newer 

methods may have been proposed since its publication; (ii) the literature search was run on two 

databases only (MEDLINE and NHS EED); and (iii) the review scope was restricted to 

pharmacoeconomic evaluations and therefore does not capture relevant papers from the clinical and 

statistical literature unless they also relate to pharmacoeconomic evaluations. These approaches and 

their limitations are discussed in Section 1.6.2.  

1.4.4 Adherence levels in clinical trials and the real world 

RCTs are considered the gold standard for providing unbiased estimates of the ACE of treatment as a 

key component of economic evaluations for HTA. However, a key issue with the evidence from RCTs 

is their generalisability to routine clinical practice.33 A major factor which could impact on treatment 
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effectiveness is patient non-adherence. Evidence suggests that adherence levels in the real world are 

likely to differ from clinical trials34 – this leads to uncertainty in the actual effectiveness of treatments. 

The term ‘real world’ (and its popularisation in the pharmaceutical literature) is increasingly used in 

the context of health care decision making and I use it interchangeably with ‘normal clinical practice’ 

in this thesis. In this context, non-adherence varies depending on the type of treatment, disease area, 

and health-care setting.33, 35 For instance, in a case study of statins, adherence levels based on 

evidence from pivotal trials with 4 to 6 years follow-up were estimated to range from 81% to 99%, 

whereas in pragmatic studies in community settings, the level of adherence ranged from 21% to 87%.33  

1.5 Why is it important?    

In the context of HTA, it is also well recognised that most health economic models do not adequately 

address the issue of non-adherence.33 In many cases, non-adherence observed in RCTs is either 

assumed to be applicable outside of a clinical trial setting or addressed using very simplistic 

approaches (e.g. assuming a proportionate reduction in treatment effect with non-adherence rate). 

The key issue is that the simplistic approaches are unlikely to produce robust and externally valid 

estimates of the treatment effect due to the complexities associated with patterns of non-adherence 

and their link to time-dependent confounding and clinical outcomes. This could lead to any associated 

cost-effectiveness analysis producing misleading results which may lead to the wrong decisions being 

made about the allocation of scarce healthcare resources. 

In the HTA context, resource allocation decisions are usually made for a specified population defined 

by the scope for each decision problem. In this context, HTA needs to consider effectiveness under 

real-world conditions, where non-adherence levels typically differ from those observed in clinical trials. 

With this analytical requirement in mind, methods for adjusting estimates of treatment effect in the 

presence of patient non-adherence needs to be assessed for suitability for use in HTA. This will require 

defining features of HTA that will influence the choice of methods (e.g. population estimates and 

relevance to clinical practice in the real world). This is better defined as the ‘appropriateness’ of non-

adherence adjustment methods for the HTA context and this concept is further developed in  Chapter 

3, Section 3.7.    
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1.6 What are the potential solutions?  

1.6.1 Existing evidence: accounting for non-adherence in estimating the clinical 

effectiveness of treatments   

ITT and Per-Protocol (PP) analyses are the most common analytical approaches used for estimating 

the ACE of treatment using data from RCTs. However, ITT analysis may fail to produce an unbiased 

estimate if the estimand of interest is the effectiveness of the treatment in the presence of non-

adherence in standard clinical practice. PP is a different analytical approach as it answers the question 

of effectiveness according to adherence to the trial protocol (which may or may not include patient 

non-adherence to the assigned treatment as defined by the estimand). PP is an unbiased estimate of 

the effectiveness of following the trial protocol, conditional on the assumption that protocol violations 

are non-informative. If this assumption is violated, then the analyst should consider alternative 

methods to adjust for non-adherence. In the methodological literature, several papers have 

introduced alternative methods for correcting estimates of the causal effect of treatments in the 

presence of non-adherence. For instance, proposed adjustment methods include the g-computation 

algorithm, g-estimation, inverse probability weighting, structural nested models and marginal 

structural models.13 Many of these methods have been described and/or compared empirically,36, 37 

in simulation studies and case studies.38-40 Latimer reported a systematic review of methods for 

adjusting the causal effect of treatments in the presence of treatment switching which has identified 

a range of relevant methods.41 However, to the best of my knowledge, there is no existing systematic 

review of the alternative methods explicitly used for adjusting estimates of the causal effect of 

treatment for non-adherence on time-to-event outcomes. This research contributes to filling the gap 

and provides new evidence on this area (see Chapter 2).        

1.6.2 Existing evidence: accounting for non-adherence in estimating the cost-

effectiveness of treatments    

The health economics literature has adopted five different methodological approaches for correcting 

estimates of the cost-effectiveness of treatments for non-adherence, as characterised by Hughes and 

colleagues (see Table 1).32 The classification of these approaches is not perfect, and there is substantial 

overlap between the categories. The classification was partly based on the implementation of 

methods in pharmacoeconomic evaluations (including trial-based and model-based analyses) rather 

than on adjusting for the impact of non-adherence on treatment effects. Nevertheless, this was very 
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helpful in identifying current practices for modelling non-adherence in the health economics literature. 

These methods are described in Table 1. 

These existing approaches are mostly based on attempting to handle the non-adherence problem 

using structural assumptions in economic models, rather than by estimating the causal effect. In the 

health economics literature, the ‘traditional’ method is to apply a sensitivity analysis around treatment 

effect and costs.  Generally, these approaches share the same characteristics and limitations. The key 

limitation is making strong assumptions about the causal relationship between patient non-adherence 

and treatment effect. For example, some approaches assigned reduced treatment effects 

proportional to the level of non-adherence (e.g. 20% reduction in treatment effect for 20% lower 

levels of adherence). This does not take into account the complexity of the relationship between 

medication adherence and treatment effect as discussed in Section 1.4.2. Consequently, those 

simplistic approaches are more likely to produce misleading cost-effectiveness results, leading to 

suboptimal allocation of scarce health resources for the NHS and other healthcare systems around the 

world. The summary of each approach is described in Table 1 including the design of the economic 

model, the disease area where the model was applied and how non-adherence was incorporated into 

the economic model. The PKPD modelling approach is more promising and the theoretical 

characteristics and application of this method are further discussed in Chapter 2. 



37 
 

Table 1: Summary of methodological approaches used to account for the impact of non-adherence on cost-effectiveness 
Methodological 
approach 

Description of the methodological approach Disease area in which 
the methodological 
approach was used 

The economic 
model design used   

Incorporation of non-adherence into the economic model    

Regression-based 
covariate adjustment 

By modelling adherence as an interaction term, 
the regression coefficient could be used to 
estimate the incremental net benefit of 
treatment at different levels of adherence.  

Urge incontinence 42 
and Tuberculosis 43  

The net benefit 
regression model, 
32 empirical 
treatment effect 
model 42 or 
structural mean 
model 44 

Including adherence metrics as a covariate in a regression 
model using individual patient-level data on costs, health 
outcomes and adherence. 32, 45  

Categorization of 
patients into clusters 
with different levels of 
adherence  

Modelling relapse rates as a function of non-
adherence and treatment effect; or 
spontaneous remission rate for those who 
discontinued treatment after a specified period 
and higher remission rates for premature 
discontinuation. 46   

Schizophrenia, 47 
Severe depression, 46, 

48 Childhood attention 
deficit hyperactivity 
disorder 49  

Decision tree 
model 

Differentiating modelled patients to broad strata of adhered 
and non-adhered, or by different levels of adherence (i.e. 
≥80%, 50% – 80% and <50%) based on tablet counts or other 
measures of adherence. 46, 47 Branches of the decision tree may 
be used to model different levels of adherence. This approach 
requires data on the relationship between adherence and the 
outcome based on evidence from the literature   

Incorporating non-
adherence as a 
modifier in deriving the 
rate of transition 
between health states   

Adjustment of disease progression rates by 
level of adherence; proportionate reduction in 
outcomes with non-adherence rate and 
assuming therapeutic failure for non-adhered 
patients.  

Urge incontinence 
related with 
overactive bladder, 50 
Idiopathic epilepsy and 
epileptic syndromes, 51 
and Tuberculosis 52 

Markov model  For each cycle in a Markov model, a proportion of patients with 
a specified level of non-adherence experience a higher 
probability of disease progression compared to those who 
adhered to the assigned treatment 27. Movement between the 
modelled health states is determined by a set of transition 
probabilities with non-adherence modelled as one parameter 
in deriving transition rates     

Specifying non-
adherence as an event 
within time-based 
simulation models 

The model simulates time-dependent 
adherence variable based on patient history 
where patients were considered as either 
‘adhered’ or ‘non-adhered’.53 Patients with 
greater adherence were assigned a decreased 
probability of suffering a relapse. 

Schizophrenia 53 Discrete event 
simulation model 
(DES) 

Within the DES model, patients are specified as entities and 
non-adherence as time-based events. 35, 54 This approach 
allows patient attributes to be assigned which could be altered 
over time based on continuous measures of non-adherence. 
DES also allow for the interaction between non-adherence, 
time and individual patient characteristics to be modelled        

Characterising non-
adherence effect on 
the Pharmacokinetics 
(PK) and 
Pharmacodynamics 
(PD) parameters  

Quantifying variability in drug exposure 
according to different adherence profiles for 
time-averaged and trough drug concentrations 
(i.e. Cavg and Cmin) and the percentage of days 
spent below Cmin (PK); 55, 56 and quantifying 
adherence effect (as a covariate) on dose-
response (PD).57  

Kidney transplantation 
55 and HIV/AIDS 58 

PKPD modelling Individual doses for each patient are simulated according to a 
particular pattern of adherence or different adherence profiles, 
and the PK and PD consequences are then propagated for 
estimating the reduction in treatment effect. 27, 33, 58, 59 
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There are limitations associated with the identified approaches summarised in Table 1. Generally, they 

are different ways of attempting to model the impact of non-adherence using structural models 

(Decision trees or Markov models) based on simplifications that might not reflect the complexity of 

the relationship between non-adherence levels and treatment effect. The key issue is that they make 

strong assumptions about the causal links between adherence levels and treatment effect rather than 

adjusting the treatment effect for non-adherence to obtain valid estimates for incorporation into the 

economic model. Moreover, guidance is needed to provide researchers with the data requirements 

and analytical steps to properly adjust for the impact of non-adherence in economic evaluations for 

HTA. This gap in the health economics literature has motivated me to undertake this doctoral study 

as a contribution to resolve this issue.    

1.6.3 The gaps in the methodological literature 

Despite the increased attention to modelling non-adherence in the literature, Muszbek and 

colleagues3 suggest that the impact of non-adherence on the cost-effectiveness of medications is 

inconclusive, and therefore, further research is warranted to resolve the issues. Despite this, methods 

to account for non-adherence in economic evaluations remain underdeveloped, with no consensus 

on the appropriate approach to deal with the key issues.  

The National Institute for Health and Care Excellence (NICE) produces evidence-based guidance to 

NHS England on the clinical effectiveness and cost-effectiveness of health technologies including 

pharmaceuticals. The  NICE Guide to the Methods of Technology Appraisal (2013) recommends that 

the value of additional benefits from the mode of treatment delivery through its impact on adherence 

should be quantified.60 However, the guide does not mention any preferred method(s) for modelling 

non-adherence. There seems to be a gap in the health economics literature on conceptualising and 

modelling the link between non-adherence and treatment effectiveness, and hence, the impact on 

cost-effectiveness. 

1.7 Aim, objectives and research questions   

1.7.1 Research questions 

This doctoral research study aims to address the following research questions: 
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a. What are the key methodological approaches used to account for the impact of non-

adherence on the effectiveness and cost-effectiveness of health technologies used in chronic 

conditions with time-to-event outcomes? 

b. What is the relative performance of the alternative methods in estimating the impact of non-

adherence on treatment effectiveness? 

c. How should economic evaluations incorporate the impact of non-adherence using evidence 

from both RCTs and real-world data? 

1.7.2 Aim 

The aim of this doctoral research study is to develop a methodological framework to account for non-

adherence to prescribed chronic medications with time-to-event outcomes when undertaking 

economic evaluations for HTA. 

1.7.3 Objectives   

a. To undertake a systematic review to identify relevant non-adherence adjustment methods 

used in analyses of clinical effectiveness and cost-effectiveness (Chapters 2-3).  

b. To assess the relative performance of alternative adjustment methods using simulated RCT 

datasets (Chapters 4-5).  

c. To adapt an economic model as a case study for estimating the adherence-adjusted cost-

effectiveness of immunosuppressants used as maintenance therapy for kidney 

transplantation in adults (Chapter 6). 

d. To develop a methodological framework outlining the appropriate methods for incorporating 

non-adherence into economic evaluations for HTAs (Chapter 7). 

1.8 Expected contributions of the thesis  

The main contribution of this research study will be the development of the methodological 

framework. This framework will help to improve the overall quality of economic models used for 

estimating the cost-effectiveness of prescribed chronic medications with time-to-event outcomes. The 

framework will provide guidance to academic researchers and the pharmaceutical industry for 

choosing the appropriate method to incorporate non-adherence into cost-effectiveness analysis, 

providing better evidence for healthcare decision makers such as NICE Technology Appraisal 

Committees. Better evidence about adherence-adjusted cost-effectiveness will lead to improvements 

in healthcare decision making, patients’ quality of life, reduction in mortality risk and cost savings to 
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the NHS and other healthcare systems, and ultimately improvements in population health through 

better healthcare resource allocation.  

Other expected contributions include: (i) systematic review evidence on methods for adjusting 

estimates of the causal effect of treatment in the presence of non-adherence for time-to-event 

outcomes; (ii) simulation evidence on the relative performance of alternative adjustment methods; 

and (iii) new evidence on the long-term adherence-adjusted cost-effectiveness of 

immunosuppressants used after kidney transplantation for adults in the UK based on data from an 

RCT and the real-world used within a decision-analytic model. 

1.9 Thesis structure  

This thesis is structured into eight chapters including this introductory chapter. Chapter 2 reports 

methods identified to adjust estimates of treatment effectiveness in the presence of patient non-

adherence based on a systematic review of methodological papers. Chapter 3 compares the 

alternative non-adherence adjustment methods based on existing evidence identified by the 

systematic review. Chapter 4 describes the design and implementation of the simulation study. 

Chapter 5 presents and discusses the results of the simulation study. Chapter 6 presents the case study 

on kidney transplantation. Chapter 7 presents the methodological framework put forward in this 

thesis to account for the impact of non-adherence on the cost-effectiveness of prescribed chronic 

medications. Chapter 8 provides a recap of the thesis and highlights the contributions in the context 

of the health economics literature, and draws the overall conclusions. 
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Chapter 2: Systematic review of statistical methods for adjusting 

estimates of treatment effectiveness and cost-effectiveness for 

patient non-adherence 

2.1 Introduction 

Part of this chapter is reproduced from Alshreef et al.61 This is an open access article distributed under 

the terms of the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/), which permits 

unrestricted use, distribution, and reproduction in any medium. The text includes minor additions and 

formatting changes to the original".   

This chapter presents a systematic review which was undertaken to identify the key methodological 

approaches used to account for the impact of patient non-adherence on the causal effect of 

treatments. The intention of the review was to systematically identify each relevant method published 

in the methodological literature. The review followed the ‘Comprehensive Pearl Growing’ (CPG) 

search technique62 as described in Section 2.3.2.1. The review also followed guidance from the Centre 

for Review and Dissemination (CRD) on undertaking systematic reviews.63 

This chapter is structured as follows. Section 2.1 (this section) introduces the topic and set out the aim 

and objectives of the review. Section 2.2 specifies the review question. The review methods are then 

introduced in Section 2.3, including the review protocol, search strategy, selection criteria, quality 

assessment, data extraction and data synthesis. The results of the review are presented in Section 2.4. 

These include the search results and details of included and excluded papers. A taxonomy of methods 

for adjusting estimates of treatment effectiveness for non-adherence in the context of time-to-event 

outcomes is proposed in Section 2.5. A summary of estimands and key assumptions of identified 

methods is presented in Section 2.6. A narrative synthesis of the identified adjustment methods is 

provided in Sections 2.7-2.10. The discussion and conclusions of the review are presented in Section 

2.11.   

In the methodological literature, a range of methods has been proposed for adjusting the causal effect 

of treatments36, 37, 64 and cost-effectiveness27, 32 in the presence of patient non-adherence. Most of 

these methods that have been developed attempt to estimate what treatment effectiveness would 

have been in the absence of non-adherence, a term that is often referred to as “adjusting” in this 

thesis. In the HTA context, the analyst needs to consider effectiveness under real-world conditions, 

where non-adherence levels typically differ from those observed in trials and I use the term 

https://creativecommons.org/licenses/by/4.0/
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“accounting for” to refer to this in this thesis. However, it should be noted that the terms are 

sometimes used interchangeably.  

Some methods are not making adjustments at all such as ITT analysis. Other methods use the CACE 

estimand by simply estimating the effect in compliers. The standard IPCW is estimating the effect in 

the population, had they all complied. However, in the HTA context we are interested in methods that 

estimate the effect in the presence of non-adherence (e.g. real-world adherence levels), so that 

adjusted effectiveness estimates can be used in economic models. In other words, I am interested in 

finding methods that give the relevant effect estimates that allow the analyst to make adjustments 

for different adherence levels. However, all methods identified are reviewed with this analytical 

requirement in mind and then the appropriateness of each method to the HTA context is assessed in 

the next Chapter (Chapter 3). The subset of appropriate methods is then carried forward for assessing 

their relative performance in the simulation study (Chapters 4-5) and further applied in a case study 

(Chapter 6).    

Several papers have compared some of these methods empirically, in simulation studies and/or case 

studies. However, to the best of my knowledge, this is the first systematic review which has attempted 

to identify all the existing methods for adjusting the causal effect of treatments for non-adherence in 

the context of time-to-event outcomes. 

The aim was to undertake a systematic review to identify relevant non-adherence adjustment 

methods used for estimating clinical effectiveness and cost-effectiveness. The focus is on adjusting for 

the impact of non-adherence using individual patient-level data (IPD) in the context of RCTs and cost-

effectiveness analyses. 

The objectives were: 

• To identify potentially relevant papers used in the methodological literature to adjust the 

causal effects of treatments and/or cost-effectiveness in the presence of non-adherence. 

• To select relevant papers to be included in the review for narrative synthesis using the 

selection criteria (see Section 2.3.4). 

• To appraise the papers included in the review using a framework for critical appraisal of 

methodological papers. 

• To identify relevant methods for adjusting for non-adherence and extract the key 

characteristics for each method identified. 

• To undertake a narrative synthesis for each method identified and develop a taxonomy of 

non-adherence adjustment methods.       
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2.2 Review question  

The review question was: “What methods have been proposed in the methodological literature to 

account for the impact of non-adherence to treatments on clinical effectiveness and cost-

effectiveness?” Specifically, the review was focused on methodological papers reporting methods to 

adjust for non-adherence in estimating the causal effect of treatment and cost-effectiveness for time-

to-event outcomes.      

2.3 Review methods 

2.3.1 Review protocol 

A review protocol was developed setting out the methods used for undertaking this review. The 

review protocol was agreed with the supervisory team and advisors (Professor Dyfrig Hughes [DH], 

Professor Ian White [IW], Dr James Fotheringham [JF] and Dr Ruth Wong [RW]). The protocol was 

published on the CRD’s international prospective register of systematic reviews (PROSPERO) 

database.65 The review methods were pre-specified in the protocol to reduce the risk of bias in 

conducting the review. The review therefore strictly followed the published version of the protocol 

and no protocol amendments were made during the review process. The search strategy is 

summarised in Section 2.3.2, and more details are published in the protocol (available from 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018095544).  

2.3.2 Search strategy 

The search strategy involved a scoping search, database searching, citation searches and reference list 

checking and advice from methodological experts. These strategies are described in the following 

subsections.     

2.3.2.1 Pearl growing iterative search technique 

The CPG search technique was used to identify potentially relevant papers. The CPG process was 

described by Schlosser et al.62 and involved the following steps: 

a) The search started with a compilation of nine relevant papers (“pearls”). 1, 26, 32, 36, 53, 57, 66-68 

These pearls were identified from a citation search for three key papers26, 32, 69 and a scoping 

search using terms extracted from these papers. The three papers were originally identified 

as highly cited publications which address the problem of non-adherence and further agreed 

http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018095544
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with an expert in the area of medication adherence research – Professor Dyfrig Hughes (the 

first author of the previous review32); 

b) Relevant electronic databases were determined to specify where the identified pearls are 

indexed. This was done using the Ulrichweb tool  http://ulrichsweb.serialssolutions.com/  

c) I determined how each pearl is indexed (by the journal) in database ‘X’ including MeSH 

heading, author-assigned keywords and index terms. This analysis was done using the Yale 

MeSH Analyzer http://mesh.med.yale.edu/ and the Online-Utility Text Analyzer 

https://www.online-utility.org/text/analyzer.jsp;  

d) Steps (c) was repeated in other databases;  

e) Other relevant pearls in database X were found by undertaking two search iterations using 

new search terms identified from the papers identified in steps (c) and (d); and 

f) The search was terminated when the point of saturation was reached (when retrieval of 

relevant articles diminishes). This diminishing rule was applied after discussion with the 

supervisory team, as specified by the protocol.  

2.3.2.2 First search iteration  

The first iteration of searching started with terms and MeSH headings identified from the analysis of 

pearls.1, 26, 32, 36, 53, 57, 66-68 These included terms relating to patient adherence (compliance) to 

treatments. Specifically, the adherence terms used were: compliance, adherence, 

pharmacoadherence, persistence, persistency, concordance, initiation, implementation, 

noncompliance, nonadherence, nonpersistence, discontinuation, pharmionics, therapeutic alliance, 

patient irregularity or treatment refusal. MeSH headings and methods terms used were: “models, 

statistical” or “models, structural” or “models, economic” or “models, econometric” or “models, 

biological”. The full search strategy applied in the first iteration is provided in Appendix A2.   

Six databases (Medline, Embase, Cochrane Library, EconLit, Scopus, Web of Science) were searched for 

potentially relevant papers published in English from inception to an end date between 9th February 

to 8th May 2018 (see Appendix A2 for the exact end date used for each database). The database 

searches were complemented by citation searches and reference list checking for all relevant papers 

identified at that stage. The citation searching and reference list checking were conducted using the 

Web of Science database.     

2.3.2.3 Second search iteration 

The search strategy for the second iteration was informed by the results from the first search iteration. 

Specifically, the new pearls identified were analysed using the MeSH and Text Analysers70, 71 as 

http://ulrichsweb.serialssolutions.com/
http://mesh.med.yale.edu/
https://www.online-utility.org/text/analyzer.jsp
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outlined in Stage (c) of the CPG search process. Consequently, new search terms were identified and 

used in the second iteration database searching (e.g. “survival analysis”, “proportional hazards 

models”, “logistic models”). In addition, two methodological terms were recommended by expert 

advisors (“causal inference” and “pharmacometric”). All new terms incorporated in the second 

iteration search strategy are provided in Appendix A3.  

As specified by the CPG search process (step c), I determined how each pearl identified (by the end of 

the first iteration of searches) was indexed in databases. Based on discussions of the indexing analysis 

results with the supervisory team (informed by the review protocol and expert advice), I decided to 

limit the second iteration searches to four databases (Medline, Embase, Web of Science and 

MathSciNet). This meant that three databases searched in the first iteration were excluded (Cochrane 

Library, EconLit and Scopus) and a new database (MathSciNet) was included. EconLit and Cochrane 

were excluded because no/few relevant papers were identified from these databases in the first 

iteration. Scopus was excluded to minimise duplicates as all papers identified by this database were 

also indexed in the Web of Science database. MathSciNet was included because many relevant papers 

were indexed on this database; therefore, it was added to avoid missing relevant papers. Science 

Citation Index was identified as a relevant database, but it was not included because it is a subset of 

the Web of Science.       

The four databases were searched for potentially relevant papers published in English from inception 

to the end date of 22nd May, or 23rd May 2018 (see Appendix A3 for exact end dates). The second 

iteration database searches were complemented by citation searches and reference list checking for 

the new relevant papers identified. 

2.3.2.4 Second reviewer and expert advice  

My primary PhD Supervisor (Professor Simon Dixon) double-checked a set of papers which were 

initially marked as “excluded” based on the inclusion and exclusion criteria. This was followed by 

discussion and agreement on decisions to exclude or include each one of these papers.    

As a final check to ensure that no relevant methods were missed by search, the list of identified papers 

was checked by two expert advisors. The expert advisors were: (i) Professor Ian White (Institute of 

Clinical Trials & Methodology, University College London); and (ii) Professor Dyfrig Hughes (Centre for 

Health Economics and Medicines Evaluation, Bangor University). The expert advisors recommended 

an additional list of potentially relevant papers which were further assessed against the inclusion and 

exclusion criteria. 
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2.3.3 Data management 

EndNote bibliographic software (version X8.2) was used for managing references retrieved from 

different sources. This included removing duplicates, finding and storing full-text articles, coding 

records into groups and combining records identified from all sources in a single library for use in data 

synthesis and referencing. 

2.3.4 Selection criteria 

The selection of papers included for narrative synthesis was conducted in two stages: (i) records 

retrieved from all sources were screened by titles and abstracts; and (ii) potentially relevant full-text 

articles were assessed for eligibility. The PRISMA flow chart was used for reporting the selection 

process.72 The inclusion and exclusion criteria (as specified by the review protocol) were applied for 

selecting the relevant papers included in the review (see Table 2).  

Table 2: Inclusion and exclusion criteria for the selection of papers included in the review 

No Inclusion criteria Exclusion criteria 

1 Peer-reviewed methodological papers which 

describe the method(s) in detail such that they 

can be applied without the need for further 

assumptions;* 

Non-peer reviewed reports, books or book 

chapters, theses, or other grey literature; 

2. Methods explicitly applied to adjust for non-

adherence in estimating treatment-effects for 

survival-time outcomes and/or cost-

effectiveness; 

Papers which merely apply previously developed 

method(s) without any additional extension to the 

original method(s)+; 

3. Papers published from databases inception to 

date; and 

Methods which are not explicitly applied to adjust 

for non-adherence to treatments 

4. Papers published in the English language Methods based on aggregated data such as meta-

analysis; or 

5.  Theoretical papers with no application of the 

method. 

* This criterion is not objective and required a judgement on my part informed by expert advice 

+ This implies that the first paper proposing the method is included and any paper published afterwards with 

the application of the method without any methodological extension is excluded. Although these papers were 

excluded, I retained them because they might have explained the method better than the first paper and 

further used a subset of these papers for comparison of identified methods presented in Chapter 3.   
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2.3.5 Quality assessment 

To the best of my knowledge, there is no existing tool for assessing the quality of methodological 

papers. A framework was adapted from Latimer 41 and used to critically appraise the papers included 

in this review (Table 3). This framework was also used to extract the key characteristics for each 

method identified by the review. 

Table 3: Framework for critical appraisal of the methodological papers included in the review 

Domain Issues considered  

Origin of the method Was the method originally developed to adjust for non-adherence? 

If not, what was the original context and how the method was adapted? 

Does the method represent an extension to another method adjusting for 
non-adherence? 

Theoretical suitability How does the method work? 

What are the key assumptions? 

What are the potential biases? 

Why might the method not be appropriate? 

What are the advantages and disadvantages associated with the method? 

What are the similarities and differences of the method compared to other 
methods identified? 

Application Has the method been applied to adjust for non-adherence in a case 
study/simulation study? 

What disease/condition is applied in the case/simulation study? 

What is/are the intervention(s) assessed in the case/simulation study? 

What were the results compared to traditional methods (ITT, PP, AT), if 
compared with these methods? 

 Adapted from Latimer (2012)41  

2.3.6 Data extraction 

A standardised data extraction form was developed to extract the basic information and the key 

characteristics for each method identified. The basic information extracted included: author; year of 

publication; journal; and the number of citations (Web of Science). The key characteristics included 

the details for each component included the framework presented in Table 3. In addition, I also 

extracted information about the disease area in which the method was applied (i.e. case study and/or 

simulation study), the interventions assessed and the primary outcome.        
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2.3.7 Data synthesis  

A narrative data synthesis approach was followed for each relevant method identified. This included 

a description and discussion of the key characteristics of the method based on three domains (origin, 

theoretical suitability and practical application (see Sections 2.7-2.10). The extensions identified for 

each method are also described and discussed in Sections 2.7-2.10. A taxonomy of methods to adjust 

for non-adherence for time-to-event outcomes is proposed in this thesis (Section 2.5). A comparison 

of methods based on existing evidence is discussed in Chapter 3. 

2.4 Results of the review 

2.4.1 Search results  

The searches identified a total of 4472 records from all rounds of the iterative search process applied 

in this review. The PRISMA flow diagram (Figure 6) shows the number of records identified from all 

sources during the first and second search iterations. The dashed lines illustrate that the citation 

searches and reference list checking were done for relevant papers identified from the database 

searching only. The only exception was papers labelled as ‘comparisons’ papers which were 

considered relevant for that purpose. The red numbers and dashed lines in Figure 6 represent records 

identified from the second search iteration.    

The PRISMA diagram shows the number of records excluded at the title and abstract screening, full-

text eligibility assessment and a final number of records included for qualitative synthesis. Details of 

the included papers are provided in Section 2.4.2.1. The number of full-text articles excluded is also 

provided in the PRISMA diagram.    
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Figure 6: PRISMA flow diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRISMA= preferred reporting items for systematic reviews and meta-analyses. Numbers in red represent records from the 2nd 
stage of searches. The dashed lines show that citation searches and references lists checking were done for pearls identified 
from databases searching. Papers excluded for the reason of ‘‘comparison of known methods’’ are included in the citation 
searches and references lists checking as these were considered relevant for this purpose. 
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2.4.1.1 Results from the first iteration 

The first search iteration of databases identified 1520 records; plus 9 records (original pearls) which 

were identified from the initial citation search of key papers and expert recommendations. After the 

removal of duplicates, 1156 unique records were screened by title and abstract resulting in 1079 

records being excluded. The full-text papers for the remaining records (n=77) were retrieved and 

assessed for eligibility. Seven of these papers met the inclusion criteria.  

Results from the citation searching and reference list checking generated 895 unique records after the 

removal of duplicate records. Based on the title and abstract screening, 870 records were excluded 

resulting in 25 records. A further 19 records were excluded because they did not meet the inclusion 

criteria leading to 6 new papers identified as relevant for inclusion in the review. A total of 13 relevant 

papers were identified from the first search iteration (databases=7; citation search and reference 

checking=6).    

2.4.1.2 Results from the second iteration 

The second search iteration on four databases identified 1757 records; 993 of these were unique 

records. The latter were screened by title and abstract resulting in 960 records being excluded. The 

full text of the 33 remaining records were assessed against the eligibility criteria leading to a further 

32 exclusions, and only 1 record was included from the second iteration databases searching.  

The subsequent citation searching and reference list checking generated 291 unique records of papers. 

After excluding 281 records at the title and abstract screening stage, full-texts for the remaining 10 

records were retrieved and assessed for eligibility. This resulted in 9 further exclusions and 2 inclusions. 

Hence, a total of 3 records were identified from the second search iteration (databases=1; citation 

search and reference checking=2).  

The diminished number of relevant papers identified in the second search iteration (n=3) from a large 

volume of records screened (n=1284) was used to inform the discussion with the supervisory team to 

stop further searching. The stopping rule (the point of saturation beyond which no further searching 

was done) was pre-specified by the review protocol.65 By the end of this stage, a total of 16 relevant 

papers were identified from the first and second iterations of searches combined.            
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2.4.1.3 Papers suggested by expert advisors  

The two expert advisors (IW and DH) and my PhD supervisor (Dr Nicholas Latimer) suggested a 

combined list of 42 potentially-relevant papers after checking the final list of included papers. After 

further investigation, 29 of these papers had already been identified by the searches and excluded as 

they did not meet the review inclusion criteria. Papers which were excluded at title screening were 

revisited with full-text retrieved and assessed for eligibility. The main reason for exclusion was that 

the method did not relate to the analysis of time-to-event outcomes (i.e. continuous, binary, 

categorical outcomes). The details of all papers excluded as well the methods discussed in these 

papers are provided in Appendix B, Table 32-34.     

The remaining papers suggested by expert advisors which were not picked up by the searches (n=13) 

were retrieved and full-text assessed against the eligibility criteria. At the end of this process, 4 

additional papers met the eligibility criteria and therefore were included in the review. Of those, one 

paper was an article in press that has not been published when the search was conducted and hence 

not picked up by databases search. One paper was not picked up by the databases search because the 

outcome was not a time-to-event but further included on the basis of assessing cost-effectiveness 

using the PKPD-based method with non-adherence incorporated in the analysis. The other two papers 

were picked up by the searches but excluded at the title screening stage as the adherence related 

term is not mentioned in the title.  

2.4.1.4 Summary of results from all sources 

A final list of 20 relevant papers was included for narrative synthesis in this review. The number of 

papers included by the source is summarised in Table 4.   

Table 4: Summary of the number of papers included by the source of identification 

Source Number of papers 
included  

First database search 7 

First citation searches and reference list checking 6 

Second-iteration database search 1 

Second citation searches and reference list checking 2 

Expert advice 4 

Total 20 
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2.4.2 Details of included and excluded papers 

2.4.2.1 Included papers 

The basic information of included papers is shown in Figure 7 and 8. The year of publication ranged 

from 1992 to 2018 with one or two papers published per year over the past three decades, and some 

years with no papers included (Figure 7). The number of citations per paper since publication is shown 

in Figure 8. This is considered as a proxy measure of impact indicating the extent by which the method 

may have been used in practice. Robins and Finkelstein followed by Hernan et al. were the most cited 

papers. These two papers proposed Marginal Structural Models (MSMs) with Inverse Probability of 

Censoring Weighting (IPCW) and Inverse Probability of Treatment Weighting (IPTW), respectively. Pink 

et al., who propose a Pharmacokinetics and Pharmacodynamics (PKPD) based method had a relatively 

high number of citations, despite it having been recently published (see Figure 8). Three out of 20 

included papers looked at adjusting for non-adherence in cost-effectiveness analysis with the 

remaining 17 papers focused on methods for adjusting estimates of treatment effect. This provides 

further evidence about the gap in the health economics literature in terms of methods for accounting 

for non-adherence in economic evaluations.        

Figure 7: Years of publication for papers included in the review 
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Figure 8: Number of citations per paper included since the publication date 
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2.4.2.2 Excluded papers 

A total of 130 of the potentially relevant papers were excluded at the full-text eligibility assessment 

stage. The details of the excluded papers are provided in Appendix B, Table 32. 

2.5 Taxonomy of methods identified to adjust for non-adherence  

A taxonomy of methods for adjusting estimates of treatment effectiveness for non-adherence in the 

context of time-to-event outcomes is proposed in Table 5. The purpose of the taxonomy is to increase 

understanding of the concept behind each method and its relation to other methods in terms of 

estimands and estimators. The initial structure of the taxonomy was revised based on consultations 

with advisors (DH, JF) and an expert in causal inference methods (IW).  

In the proposed taxonomy, methods are broadly classed into four groups: (1) simple methods which 

do not appropriately adjust for non-adherence (e.g. exclude not adhered patients from the analysis); 

(2) principal stratification methods for estimating the Complier Average Causal Effect [CACE] 

estimand;73 (3) generalised methods (g-methods) which are based on the counterfactual outcome 

framework originally developed by Neyman9 and Rubin10 for estimating the effect of time-fixed 

treatments, and further extended by Robins11, 12 for time-varying treatments; and (4) pharmacometric-

based methods as a unique approach using pharmacokinetics and pharmacodynamics (PKPD) analysis 

commonly used in clinical trials for evaluating newly developed pharmacological interventions. The 

estimand and key assumptions used by each method are provided in Table 6. I provide an overview of 

methods in each group in the following subsections. Each method identified is described in detail in 

Sections 2.7-2.10. However, an overview of methods included in each group of the taxonomy is 

provided in the following subsections. 

2.5.1 Simple methods 

Simple methods include ITT, PP and As-Treated (AT) analysis. The ITT and PP represent the 

conventional methods applied in practice in analysing clinical trials data. The ITT analysis strategy is to 

include all patients randomised regardless of non-adherence, protocol deviation, switching or any 

other post-randomisation event. The intention is to maintain the prognostic balance between 

treatment arms as generated by the original randomisation. PP is another simple method which 

includes a subset of the study population who complied with the study protocol. The intention is to 

estimate the efficacy of the treatment among those who followed the protocol. The PP analysis 

strategy, therefore, excludes protocol non-compliers, though different definitions of protocol 
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deviations are used. The AT analysis estimates the ACE among individuals who actually received the 

treatment; therefore, it does not respect the randomisation in the trial.       

2.5.2 Principal stratification methods 

This group covers five methodological approaches. The methods are based on the ‘principal 

stratification framework’ proposed by Frangakis and Rubin.73 The methods are considered an 

extension to traditional methods, and they are based on stratifying patients into different classes of 

adherence. These methods can be used to estimate the ACE within principal strata (e.g. compliers). 

The methods covered by this group are: (i) Cox PH model with Partial Likelihood Estimator (PLE); (ii) 

Markov Compliance Class (MCC) model in a Three-Stage Method (3SM); (iii) Weighted Per-Protocol 

(Wtd PP) analysis using a PH model with an Expectation-Maximisation (EM) Estimator; (iv) Compliers 

PROPortional Hazards Effect of Treatment (C-PROPHET) model; and (v) Instrumental Variable (IV) 

methods.        

2.5.3 G-methods  

G-methods are largely based on the counterfactual outcome framework and include different models 

compared to those introduced in the previous two categories. This includes three methods and their 

extensions: (i) MSM with IPCW/IPTW; (ii) Structural Nested Failure Time Models (SNFTMs) with g-

estimation; and (iii) Rank-Preserving Structural Failure Time Models (RPSFTMs) with g-estimation. 

SNFTMs and RPSFTMs belong to a broader class of models known as Structural Nested Models (SNMs).  

2.5.4 Pharmacometrics-based methods 

This class includes one method, the Pharmacokinetics and Pharmacodynamics (PKPD) based method, 

which is a unique approach based on pharmacometrics analysis commonly used in clinical trials 

evaluating newly developed pharmacological interventions. This is a mechanism-based method for 

modelling varying adherence patterns to estimate adherence-adjusted causal effects.    
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Table 5: Taxonomy of methods for adjusting for non-adherence in the context of time-to-event 
outcomes 

Methods group Method sub-

category 

 

Method/Extension Reference    

Simple methods ITT * Intention-To-Treat (ITT) analysis Yu et al., 201574 

PP Per-Protocol (PP) analysis 

 

Wu et al., 201575 

AT As-Treated (AT) analysis Korhonen et al., 199939 

Principal 

stratification 

methods  

CPH with PLE Cox Proportional Hazards (CPH) Model 

with Partial likelihood Estimator (PLE) 

Cuzick et al., 200776 

MCC Markov Compliance Class (MCC) Model 

in a Three-Stage Method (3SM) 

Lin et al., 200777 

Wtd PP Weighted Per-Protocol (Wtd PP) analysis 

using a Proportional Hazards Model with 

an Expectation-Maximisation (EM) 

Estimator  

Li and Gray, 201678 

C-PROPHET Compliers PROPortional Hazards Effect 

of Treatment (C-PROPHET) 

Loeys and Goetghebeur, 

200379 

IV Instrumental variable (IV) with 

Likelihood Estimator 

Baker, 199880 

 

IV with Plug-in Non-Parametric Empirical 

Maximum Likelihood Estimation 

(PNEMLE)  

Nie et al., 201181 

 

Transformation Promotion Time Cure 
Model with MLE to estimate the 
Compliers Average Causal Effect (CACE) 
and the Compliers Effect on Survival 
Probability (CESP) 

Gao and Zheng, 201782 

 

G-methods MSMs  Marginal Structural Models (MSMs) with 

Inverse Probability of Censoring 

Weighting (IPCW) 

Robins and Finkelstein, 

200066 

 

MSM Extension: MSMs with Inverse 

Probability of Treatment Weighting 

(IPTW) 

Hernan et al., 200183 

SNFTMs Structural Nested Failure Time Models 

(SNFTMs) with g-estimation 

Robins et al., 199284 

RPSFTMs 

 

Rank-Preserving Structural Failure Time 

Models (RPSFTMs) with g-estimation 

Loeys et al., 200185 

 

RPSFTM Extension: Incorporating 

covariates to improve the precision of 

estimators  

Korhonen and 

Palmgren, 200286 

RPSFTM Extension: Improving the 

efficiency of the estimators  

Loeys and Goetghebeur, 

200287 
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RPSFTM Extension: Allowing for 

dependent censoring 

Matsui, 200488 

 

RPSFTM Extension: Choice of model and 

impact of recensoring 

White and 

Goetghebeur, 199889 

Pharmacometrics-

based methods  

PKPD Pharmacokinetics and 

Pharmacodynamics (PKPD) based 

method 

Pink et al., 201490 

 

PKPD Extension: Modelling varying 

implementation and persistence types 

of non-adherence  

Hill-McManus et al. 

201891 

* ITT does not adjust for non-adherence but included in the taxonomy as a “do nothing” approach (i.e. 

ignoring non-adherence)   

 

2.6 Summary of estimands and key assumptions of identified methods 

The estimand for each method identified and key assumptions are summarised in Table 6. The main 

point is that different estimands are used making comparability across alternative methods 

problematic. For example, the ITT effect of treatment assignment in the entire study population 

cannot be compared with an estimate from the IV CACE estimand which is restricted to the subgroup 

of compliers. 
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Table 6: Estimands, causal interpretations and key assumptions for non-adherence adjustment methods 

Method Estimand* Estimand Attribues  Causal Interpretation of the Estimate  Key Assumptions    

ITT 

 

The effect of 

treatment 

assignment (not 

the effect of 

treatment itself) 

Entire study population; ignoring 

events such as non-adherence 

and dropout 

The average causal effect of treatment assignment on 

the survival outcome in a particular study (regardless of 

adherence, dropout, etc…) 

The randomisation assumption (i.e. 

group membership is randomly 

assigned), which implies that groups 

are comparable or exchangeable.  

PP 

 

The effect of 
following the study 
protocol  

Sub-population of the protocol 
compliers in the study; excluding 
protocol non compliers from the 
analysis set 

The average causal effect of treatment on the survival 
outcome in individuals who adhered to the protocol in 
terms of eligibility, adherence, outcome assessment, 
etc...  

The groups of patients who adhered 

to the protocol in each arm are 

comparable after covariate 

adjustment.  

AT The effect of 

treatment actually 

received  

Sub-population of patients who 

initiated treatment; with 

patients who switched treatment 

analysed with the group they 

switched to regardless of 

randomisation  

The average causal effect of treatment on the survival 

outcome among individuals who actually received the 

treatment in the experimental group (including control 

group patients who switched on to the experimental 

treatment) compared to those who actually received 

the standard treatment (or those actually not received 

the treatment in placebo-controlled trials) regardless of 

treatment assignment  

The group of patients who received 

the treatment is comparable to those 

who did not, regardless of their 

treatment assignment after covariate 

adjustment. 

CPH with PLE The complier 

average causal 

effect (CACE) 

Sub-population who adhered to 

the protocol; excluding patients 

who did not adhere to the 

protocol in each arm of the study  

The average treatment effect on the survival outcome 

in the compliers sub-population (patients who adhered 

to the protocol)  

Covariates included in the model are 

independent of adherence 

MCC CACE As above As above - The Markov assumption  

- Time-varying adherence depends on 

the history of adherence  

- Latent and ignorable missing data 

mechanism 



59 
 

Wtd PP  CACE As above As above The patient population consists of 
three (possibly latent) subgroups: 
‘ambivalent’, ‘insisters’ and ‘refusers’ 

C-PROPHET CACE As above As above  The exclusion restriction assumption 

IV CACE As above As above 

 

 

- The exclusion restriction 

assumption 

- Randomisation has no effect on the 

probability of adherence to 

treatment 

- Monotonicity assumption  

MSMs with 

IPCW/IPTW 

The effect of 

treatment had 

everyone 

remained 

adherent to the 

protocol  

 

 

 

 

 

 

Entire study population; had 

everybody adhered to the 

protocol with perfect adherence 

to the prescribed dosing regimen 

(or had everybody adhered to 

the protocol at an alternative 

level of adherence to the 

prescribed dosing regimen than 

what was observed in the trial 

(e.g. real-world adherence level)  

The average causal effect of treatment that would have 

been observed if everybody adhered to the protocol. 

MSMs estimate the average treatment effect in the 

entire population, but the causal effect in a subset of 

the population (defined by a combination of variables L) 

can also be estimated. The IPCW estimand can also be 

interpreted as a comparison of the potential 

(counterfactual) outcomes under different levels of 

adherence in the same group of subjects.      

- No unmeasured confounders  

- Positivity assumption  

SNFTMs with g-

estimation 

The effect of 

treatment had 

everyone 

remained 

adherent to the 

protocol  

 

As above The average treatment effect that would have been 

observed if everybody adhered to the protocol (or 

remained at a particular adherence level such as real-

world adherence level). SNFTMs can be used to 

estimate the average causal effect in a subset of the 

population defined by a combination of factors (L), e.g. 

men, patients aged >60 years, etc…   

- No unmeasured confounders 

- Survival times and treatment-free 

survival times are proportional by 

an unknown factor that depends on 

the exposure 
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RPSFTMs with g-

estimation 

The effect of 

treatment had 

everyone 

remained 

adherent to the 

protocol  

 

As above The average treatment effect that would have been 

observed if everybody adhered to the protocol 

compared to none treated.  

- The randomisation assumption 

- The common treatment effect 

assumption 

- Survival times and treatment-free 

survival times are proportional by 

an unknown factor that depends on 

the exposure 

PKPD method The effect of 

following a 

particular 

adherence pattern 

in the study 

population 

Entire study population; given a 

particular pattern of adherence 

to the prescribed dosing regimen 

The average causal effect of treatment if individuals 

followed a particular adherence pattern. 

- The exclusion restriction 

assumption 

- Correctly specified model (there are 

at least 2 components to this - the 

link between adherence and PKPD 

and the link between PKPD 

(surrogate) and the final endpoint  

* The estimand is the parameter of interest defined using four attributes: (i) the population, (ii) the outcome variable or endpoint, (iii) the specification of how to deal with 
intercurrent events (e.g. include compliers only), and (iv) the population-level summary of the outcome variable. The description of the estimand in this table is focused on 
two attributes (the population and specification of how to deal with intercurrent events)) as the other two attributes (the outcome variable and the population-level summary 
of the outcome variable) are expected to be similar in the context of time-to-event outcomes.
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Narrative synthesis of identified methods   

The following sections provide the narrative synthesis of the identified non-adherence adjustment 

methods. The sections describe the identified methods (categorised based on the proposed taxonomy 

(Table 5) including their extensions. Details are not given for ITT and PP as they are so commonly used, 

but all subsequent methods are described in terms of their origins, theoretical characteristics and 

applications. The latter provides the application of the method in a case study, simulation studies or 

both. These were reported as demonstrative case studies in the included methods papers. No 

additional case studies or simulation studies were included to describe these methods. The methods 

that I subsequently chose not to take forward (including their extensions) are only described briefly, 

whereas the more relevant methods are described in more detail.  

2.7 Simple methods 

This section describes the identified non-adherence adjustment methods including their extensions. 

Details are not given for ITT and PP as they are so commonly used, but all subsequent methods are 

described in terms of their origins, theoretical characteristics and applications.  

2.7.1 Intention-To-Treat analysis  

In the ITT analysis approach, individuals are analysed as randomised regardless of whether they 

adhered to their assigned treatments or not.74 The treatment effect estimated from an ITT analysis 

will reflect observed adherence levels but does not include any causal link between adherence and 

treatment effect. The focus is to maintain randomisation. ITT analysis produces an unbiased estimate 

of the observed treatment strategies; however, the question is whether these strategies represent 

the estimand of interest in answering the scientific question. If there is non-adherence, and the analyst 

needs to know what the effect is with a different level of adherence (e.g. real-world adherence level), 

then ITT analysis does not answer the question we are interested in and so will likely not give an 

accurate estimate of the effect they are interested in.  

In RCTs with non-adherence, the ITT analysis is likely to mix the benefit of treatment among individuals 

with a high level of adherence with the absence of (or suboptimal) benefits among those with a low 

level of adherence.75, 78 Therefore, in a situation where there exists non-adherence to the assigned 

treatment, the ITT analysis may not be the appropriate analytical approach. In RCTs with time-to-event 

endpoints, the conventional model used to estimate treatment effects is the Cox Proportional Hazards 
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(CPH) model.92 In this context, the Kaplan-Meier (KM) non-parametric survival model is commonly 

used for creating survival curves using the fraction of patients surviving for a certain amount of time 

after receiving the treatment. 

2.7.2 Per-Protocol analysis  

The PP analysis approach excludes protocol non-compliers from the analysis.75 The idea is to estimate 

the efficacy of treatment among patients who adhered to the study protocol. The main concern is that 

excluding some patients from the analysis may undermine the prognostic balance generated by the 

randomisation which may introduce selection bias. This is likely to be the case if non-adherence is not 

random, i.e. if non-adherence is influenced by other patient characteristics and prognostic factors. 

Therefore, estimates using unadjusted PP analysis may produce biased estimates as a result of failure 

to adjust for confounding by measured and unmeasured factors. Even if prognostic factors which are 

associated with non-adherence are correctly identified, the standard PP analysis will introduce bias if 

there is time-dependent confounding. The key issue with PP analysis is that the estimand is not 

marginalised to the entire study population, therefore, the method does not answer the question of 

interest.  

The limitations of the PP (and ITT) analysis approach in adjusting for non-adherence is well established 

in a wide body of the causal inference methodological literature.38, 39 The key limitations include 

difficulty in adjusting for time-dependent confounding and potential bias introduced by excluding 

patients from the analysis when using PP analysis to estimate treatment effect in the presence of non-

adherence.  As ITT and PP are widely used as conventional methods for estimating treatment effects, 

it is, therefore, important to know how their estimates differ from other non-adherence adjustment 

methods. Therefore, I will present estimates based on these methods (where reported in the reviewed 

papers). It is worth noting that the results estimated by the alternative methods may not be directly 

comparable to ITT and PP due to different estimands. 

When there exists time-dependent confounding, more complex methods are needed to adjust the 

causal effect of treatments in the presence of non-adherence. These include g-methods such as MSMs 

and SNMs; these methods are introduced in Section 2.9.  
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2.7.3 As-Treated analysis 

2.7.3.1 Origin of the method  

The As-Treated analysis approach was first introduced by Kohren et al.39 to adjust for patient non-

adherence in the analysis of trial data from the Alpha-Tocopherol Beta Carotene Lung Cancer 

Prevention Study (ATBC study) as described in further detail in Section 2.7.3.3.      

2.7.3.2 Theoretical characteristics 

As-Treated (AT) analysis is a simplistic approach for estimating the ACE of treatment in the context of 

RCTs. The method estimates the causal effect among patients who actually received the treatment 

compared to those who did not receive the treatment, regardless of randomisation, therefore, it does 

not respect the randomisation in the trial. The main issue is that the group who actually received the 

treatment is unlikely to be comparable to the group who do not, making this approach prone to 

selection bias. The method has been used to adjust for non-adherence at the initiation stage, mostly 

for time-fixed treatments.  

2.7.3.3 Application in a simulation study and case study    

Kohren et al.39 applied the AT approach for adjusting for non-adherence using a simulation study and 

further application using real data in a case study. The simulation study was designed to mimic a two-

arm trial (active treatment vs placebo) with a sample size of 1000 and simulations repeated 500 times. 

Scenarios assessed included an outcome-dependent case where the survival time depends on patients 

receiving the active treatment (time on treatment) and an independent case scenario. The simulated 

dataset also included a case with baseline unmeasured confounders as common causes of the survival-

time outcome and the exposure. The method was compared with ITT and RPSFTM with g-estimation.    

The results from this simulation study found that the AT approach can produce misleading estimates 

when a non-adherence-dependent outcome exists in the data. In contrast, RPSFTM produced a valid 

causal effect, under the assumptions made by this approach, even in scenarios with outcome-

dependent non-adherence. The paper concluded that RPSFTM with g-estimation would be the best 

alternative in these situations.  

In addition, the investigators applied the three methods in a case study using real data from the ATBC 

study. In brief, the study compared the causal effect of beta carotene versus placebo on the survival 

of lung cancer patients. The level of persistence non-adherence observed in the study was estimated 
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as 25%. The AT estimated an HR of 2.13 (95% CI: 1.93-2.3) compared with an ITT HR of 0.92 (95% CI: 

0.86-0.99) and an RPSFTM with g-estimation HR of 0.93 (95% CI: 0.87-0.99). The results from the case 

study are consistent with the findings from the simulation study, which concludes that the AT analysis 

may produce misleading results when estimating the ACE in the presence of non-adherence.  

2.8 Principal stratification methods 

2.8.1 Cox Proportional Hazards Model with Partial Likelihood Estimator 

2.8.1.1 Origin of the method 

The Cox PH model with Partial Likelihood Estimator (PLE) approach was originally proposed by Cuzick 

et al. to adjust for the non-initiation type of non-adherence for binary outcomes.93 In the context of 

RCTs with time-to-event outcomes, the standard Cox PH model is widely used for estimating the ACE 

of treatment.92 The method was extended by Cuzick et al.76 to deal with non-adherence and the 

description of the method below is based on this paper.  

2.8.1.2 Theoretical characteristics of the method  

The CPH model with PLE is a method for adjusting for non-adherence while respecting the 

randomisation (randomisation-based). This is a semi-parametric model where the treatment effect on 

the distributions of failure times is the parametric part. A simple (non-iterative) version of the method 

can be used when there are no covariates to adjust for (or if the analyst decides not to adjust for them). 

This simple version is considered as a generalisation of the classical Mantel-Haenszel (MH) estimator.76 

The more general PLE version of the method was developed to incorporate covariates assuming that 

they are independent of adherence. The method is designed to incorporate time-independent 

covariates. An extended version of this method which can incorporate time-dependent confounders 

is introduced in Section 2.8.2.  

The concept of this method is based on patient stratification by adherence status (i.e. binary 

adherence) and then incorporating covariates to adjust for confounding under a strong assumption 

that covariates are independent of adherence. The method can be applied to estimate the treatment 

effect based on the CACE estimand. The method works by stratifying the study population into 

different classes and then estimating the ACE by comparing the outcomes between different strata of 

interest (e.g. compliers). The method can also be used to adjust for non-adherence in situations where 

non-adherence is dependent on covariates, but this approach requires a more complex estimator.  An 

important assumption is that covariates are independent of adherence (which might be unrealistic). 
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Therefore, the method can be generalised to situations where non-adherence is dependent on 

covariates.      

To introduce the basic model, the method classifies patients (randomised in a two-arm trial) into three 

classes: (a) insisters (individuals who always want the new treatment; (b) ambivalent (individuals who 

accept any treatment offered to them); and (c) refusers (individuals who refuse the new treatment, if 

randomised into the intervention group). Each class is divided into two groups at random for receiving 

the new treatment (T) or the control (C). This is best explained in Figure 9 which was adapted from 

Cuzick et al.76 to aid the explanation. Because it is not possible to determine each individual’s latent 

adherence class, we can only observe the following four groups in the RCT data (also see Figure 9): 

− CT (yellow) – insisters assigned to the control arm 

− CC (green) – ambivalent and refusers assigned to the control arm 

− TT (blue) – insisters and ambivalent assigned to the treatment arm   

− TC (orange) – refusers assigned to the treatment arm.  

Figure 9: Groups of patients by compliance class and randomisation group 

 Randomised to: 

Control arm Treatment arm 

 

Insisters 

 

 

CT 

 

 

TT 

 

Ambivalent 

 

 

CC 

 

TT 

 

Refusers (non-

compliers) 

 

CC 

 

TC 

  

In the basic model provided by Cuzick et al.76 an individual with covariates (k, z0, z) will have a hazard 

function presented in equation [2].  

exp(𝛾𝑇𝑧0 + 𝛽𝑧 + 𝛾𝑘) 𝜆(𝑡)        [2] 
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where λT is the treatment effect in compliers (CACE estimand) expressed in terms of the hazard at 

time t for a cumulative hazard function Λk(t) (this is only observable for ambivalent class), 𝛾𝑘 is the 

adherence class of the kth individual, z0 is a vector of baseline covariates, and z is a set of time-

dependent covariates. In some cases, it should also be noted that z0 and k are not observed in the RCT 

data.   

The method proposed three different estimators to estimate the CACE: (i) no covariates adjustment 

using the CPH estimator or using the iterative approaches of Mantel-Haenszel weights (MH) or 

efficient one-step weights (EW); (ii) using covariates which are considered as independent of class 

membership; and (iii) using covariates correlated with class membership. The latter two methods rely 

on the partial likelihood estimator (PLE) or full likelihood estimator (FL). Further details about the 

technical properties of these estimators are reported in Cuzick et al.76  

The method makes three assumptions:  

(a) The proportional hazards assumption, which implies that cumulative hazard functions are 

proportional in the absence of treatment; that is the treatment effect (HR) must be constant 

over time; 

(b) Independent (non-informative) censoring; and  

(c) Covariates included in the model are independent of adherence.  

In terms of potential bias, the proposed method is generally powerful in producing unbiased estimates 

of causal effect when there are no, or minor, deviations from its assumptions.76 However, the method 

may produce biased estimates of treatment effect in extreme cases (extremely unequal proportions 

of insisters and refusers).76 This was found in a simulation study designed to test this method.76 

Moreover, the EW and MH approaches are less powerful when there is a high level of non-adherence 

in the trial population.76 The findings from the simulation study suggest that the EW approach has no 

substantial benefits compared to the MH approach.   

The method has some advantages and disadvantages. The FL approach performs well across different 

classes of non-adherence for scenarios with both small sample size and large sample size. PLE is easy 

to compute and also showed good performance except in a situation where there is a high insister or 

refuser effect. The method can be applied for adjusting for non-adherence in the context of two-arm 

RCTs as well as placebo-controlled RCTs. Moreover, the method can easily handle ties between 

censored observations and un-censored observations by making an additional assumption that un-

censoring occurred first.  The main limitation of this method is the difficulty of modelling time-varying 
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treatments and other forms of non-adherence beyond initiation (i.e. implementation and persistence 

non-adherence). This is formally possible, but the causal interpretation of estimates from these 

models is difficult. Finally, the CACE estimand used by this approach is problematic and not 

appropriate for the HTA context as discussed earlier.  Therefore, I do not provide detail on the more 

advanced applications of this method (time-dependent covariates and other forms of non-adherence) 

as the method does not give estimates that are useful for an HTA perspective.       

2.8.1.3 Application in a simulation study 

The method was applied in a simulation study for evaluating its performance.76 This involved a detailed 

study for assessing the performance of five estimators proposed by this method (i.e. PH, MH, EW, PL 

and FL estimators). The simulation study was conducted for evaluating the ACE of hypothetical 

treatments on survival time outcome. The study was done for two main scenarios of sample sizes (200 

and 2000 observations) for a two-arm RCT design with a dual assignment. The simulation study also 

considered three scenarios of covariate structures (no covariates, covariates independent of 

randomisation, and two covariates).  

The simulation study showed that the treatment effect was underestimated by the standard CPH 

model. An underestimation was also reported for models with weighted estimators without 

adjustment for covariates. Further details about the performance of the proposed estimators in 

different scenarios are reported in Cuzick et al.76  

2.8.2 Markov Compliance Class Model in a Three-Stage Method 

2.8.2.1 Origin of the method 

The Markov Compliance Class (MCC) model was originally developed by Lin et al.94 using the 

compliance class model framework of Imbens and Rubin.95 In Lin et al., the method was extended to 

adjust for time-varying non-adherence in the context of longitudinal studies where patients are 

randomised at baseline and randomisation is maintained over time.  

2.8.2.2 Theoretical characteristics 

The method is based on specifying two possible adherence classes and several follow-up time points, 

e.g. five-time points resulting in a total of 32 (25) adherence patterns. A stratification strategy can then 

be used to stratify adherence patterns into super-classes (low compliers, decreasing compliers and 

high compliers). This can then be used to estimate the ACE of treatment accounting for the non-
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adherence superclass variable. CACE is the estimand used by this method which means the treatment 

effect estimated cannot be marginalised to the entire study population. A nested MCC model was 

extended to incorporate baseline covariates (patient characteristics) as predictors of time-varying 

adherence.77        

The MCC model relies on the following key assumptions: 

a. Time-varying adherence depends on the history of adherence  

b. Missing data mechanism is latent and ignorable 

c. Data are missing at random conditional on adherence class and the covariates.     

The MCC method works by searching for relevant individual patient-level baseline predictors of the 

superclass strata that describe time-varying adherence patterns and assess the relationship of these 

super-classes and the outcome. The analysis follows three stages:  

(a) Principal stratification of patients to describe time-varying adherence patterns;  

(b) An incomplete data model to compute the “posterior predictive distributions” of the 

adherence superclass. In this stage, the ‘latent’ adherence superclasses are treated as 

missing data, and a multiple imputation technique is applied using the Markov Chain 

Monte Carlo (MCMC) simulations to compute the posterior distributions; and 

(c) A complete data model to relate the imputed adherence superclass to baseline covariate 

and the survival outcome, which is a model that gives the CACE estimand.      

As reported in Lin et al.94, the method can be used to estimate the CACE estimand among the 

compliers superclass. Model [3] can then be used to account for the relationship between adherence 

and survival time at time t. 

ℎ(𝑡|𝑈𝑖 = 𝑘) = ℎ0(𝑡)exp (𝛽𝑘𝐼(𝑈𝑖 = 𝑘))     [3] 

where 𝛽𝑘 for one of the adherence superclasses is assumed 0 for identification (reference superclass) 

and 𝑈𝑖  is individual i’s latent adherence superclass for a 𝑘 number of superclasses. Lin et al.94 also 

provided formulae for estimating the survival function using the Kaplan-Meier model for computing 

the hazard rate when there are no covariates. As a limitation, the method cannot deal with time-

dependent confounding.  

In a two-arm RCT setting, Lin et al.94 specified the following four possible adherence classes. These 

classes are considered as latent because they are not observable at baseline. 
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(i) Adherers who would always adhere to the treatment they were randomised to;  

(ii) Always takers who want to receive the new treatment regardless of their randomisation;  

(iii) Never-takers who choose to be in the control arm regardless of their randomisation; and  

(iv) Defiers who always take the opposite treatment they were assigned to receive.  

In terms of situations where the MCC method might not be appropriate to use, one was identified 

relating to the pattern of non-adherence. That is when the number of subjects experiencing a 

particular adherence pattern is too small; the method may produce estimates which are not clinically 

meaningful. In these situations, inference will be sensitive to the modelling assumptions. To avoid this, 

broader adherence superclasses should be used.  

While the MCC method allows us to assess the relationship between baseline covariates, adherence 

and the survival outcome, the method does not allow the analyst to understand the reason why 

particular adherence patterns lead to poor health outcomes. Similar to previously described methods 

(principal stratification methods), the method estimates a treatment effect for each latent adherer 

class of patients (e.g. compliers) which would make it difficult for policymakers to make decisions 

based on evidence estimated by this method. This is because they are not identifiable at baseline. As 

a limitation, the method can not deal with time-dependent confounding.   

2.8.2.3 Application in a case study 

The MCC method was applied in a case study on depression. This was applied using data from the 

Prevention of Suicide in Primary Care Elderly Collaboration Trial (PROSPECT) study. Using this study 

data, three initial latent adherence classes were assumed, but one class was found to be very small 

leading to clinically non-meaningful estimates, and therefore, excluded. This left only two latent 

superclasses in the analysis (increasing compliers and high compliers) which were assessed for five 

follow-up time points (4, 8, 12, 18 and 24 months). The analysis showed that a beneficial effect 

(improved survival) among compliers compared to non-compliers (HR=0.32; CI:0.15-0.68). Further 

details about this case study are reported in Lin et al.77  This case study shows that the method has 

been applied, but no information was provided about the performance of the method.  

2.8.3 Weighted Per-Protocol using PH Model with EM Estimator 

2.8.3.1 Origin of the method 

Li and Gray78 proposed the Weighted Per-Protocol (Wtd PP) by extending the approach introduced in 

Section 2.8.2. This method is focused on the ambivalent class with two main contributions: (i) 
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proposing a Wtd PP estimator by using time-varying weights in the in the PH model; and (ii) proposing 

an EM algorithm to maximise the FL and PL which were originally considered by Cuzick et al.76 The 

method was developed to adjust for time-dependent confounders which are associated with non-

adherence. 

2.8.3.2 Theoretical characteristics  

The theoretical characteristics of this method are similar to the CPH approach introduced in Section 

2.8.2; therefore, I briefly describe the advantages and disadvantages in this section. The key advantage 

of the Wtd PP approach is its ability to update the baseline risk over time by using a weighted Cox 

model. In other words, the method attempts to estimate the ACE of treatment weighted by time-

varying confounders included in the model. In addition, the method proved to be robust in modelling 

misspecification in both insisters and refusers classes as no distributional assumptions are imposed 

among these two groups in the analysis.  

2.8.3.3 Application in a case study 

The Wtd PP approach was tested in a simulation study which showed good performance in terms of 

bias; but in most situations, the method proved less efficient than the likelihood estimator. Details 

about the simulation study are reported in Li and Gray.78 The method was further applied in a case 

study on breast cancer for evaluating combination chemotherapy, CMFP (cyclophosphamide, 

methotrexate, 5-fluorouracil, prednisone) versus observation. The analysis included 424 patients with 

analysable data with 11% non-adherence level in the CMFP arm and 16% in the observation arm. The 

Wtd PP estimated an HR of 0.48 compared to 0.40 and 0.41 estimated by unweighted PP and ITT 

analysis, respectively. Further details about this case study are reported in Li and Gray.78     

2.8.4 Compliers PROPortional Hazards Effect of Treatment (C-PROPHET) 

2.8.4.1 Origin of the method 

The Compliers PROPortional Hazards Effect of Treatment (C-PROPHET) method was proposed for 

estimating the ACE of treatment actually received. The method was originally developed by Loeys and 

Goetphebeur79 to adjust for the initiation type of non-adherence in an RCT context. The estimand 

which could be estimated by this method is CACE.96 C-PROPHET is considered as a semi-parametric 

model with the parametric side being the effect of the exposure on the survival times distributions.       
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2.8.4.2 Theoretical characteristics  

The concept of this method is that the analyst could identify adherent patients (compliers) at baseline 

and estimate the treatment effect in this group, adjusting for baseline covariates. If individual patients 

who actually adhered to the assigned treatment can be predicted at baseline in the intervention and 

control arm of an RCT, then one could fit a PH model for this subgroup of the study population to 

estimate the treatment effect. The ACE estimated by this method is not marginalised to the entire 

study population, which is a limitation.  

The C-PROPHET model assumes that the hazard of survival time (Ti) is as provided in equation [4]: 

𝜆(𝑡|𝑍𝑖 = 1, 𝐸1𝑖 = 1) =  𝜆(𝑡|𝑍𝑖 = 0, 𝐸1𝑖 = 1)exp(𝜓0)       [4] 

where Zi is the randomisation variable for individual i (𝑍𝑖 = 1  for the intervention group, 𝑍𝑖 = 0 for 

the control group), 𝐸1𝑖 represents the principal stratum at the treatment initiation stage. The 

parameter 𝜓0 denotes the causal proportional hazards effect in the subpopulation of compliers. This 

is the parameter of interest that is called C-PROPHET.79  

The C-PROPHET method relies on the ‘jack-knife’ resampling technique to produce a finite sample 

correction of the point estimate.79 The jack-knife technique showed a conservative estimate of 

variance (with 1% standard error) and high coverage (the percentage of simulations where the 95% CI 

includes the true outcome) based on a simulation study used to evaluate the performance of the C-

PROPHET method.   

The C-PROPHET method relies on four key assumptions:79 

(a) The randomisation assumption; 

(b) No access to the new treatment in the control arm (this assumes “treatment-free” outcome 

when an individual is randomised to the control arm); 

(c) The “exclusion restriction assumption” which is also known as the “absence of indirect effect” 

assumption that is randomisation affects the survival outcome only through the exposure; 

and  

(d) The independent censoring assumption.      

Regarding potential biases associated with the C-PROPHET method, the violation of assumptions 

(particularly the exclusion restriction assumption) is the main risk for bias. The method can 

incorporate baseline covariates; however, the causal effect of time-varying treatments with more 
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levels of adherence cannot be estimated using the C-PROPHET model. This is a limitation given the 

time-varying nature of the non-adherence problem, and this is considered as a situation where the 

method may not be appropriate to use.   

Analysis using the C-PROPHET method is easy to communicate which is an advantage. However, the 

estimates are only valid if the exclusion restriction assumption holds. This assumption is likely to hold 

in double-blinded RCTs, but this may not hold in single-blinded or non-masked RCT designs. On the 

positive side, the C-PROPHET method does not require the application of artificial censoring as it does 

not construct individual counterfactual outcomes. The method rather works by fitting adherence-

specific distributions of observed outcomes to estimate the treatment effect.  

On the negative side, the C-PROPHET cannot be used to deal with time-dependent non-adherence. 

The method is restricted to the binary initiation type of non-adherence and therefore may not be 

applicable to adjust for ‘sub-optimal implementation’ or ‘non-persistence’ types of non-adherence. 

The method relies on the non-informative censoring assumption, and if this assumption does not hold, 

then the method may produce biased results.         

2.8.4.3 Application in simulation and case studies 

The C-PROPHET approach was applied in both a simulation study and a case study. The simulation 

study was used to evaluate the performance of C-PROPHET compared with an RPSFTM proposed by 

Robins and Tsiatis.37 In the reported simulation study, 21 sequences of data were generated under 

three situations: (i) a situation where only the PH model specified in Section 2.8.4.2 holds; (ii) only the 

Robins and Tsiatis model holds; and (iii) both models hold. The simulation study used a sample size of 

150 observations randomised in a 1:1 ratio between the intervention and control arms, with 400 

simulations (repetitions). The data-generating mechanism used an exponential distribution for failure 

times and varying causal effects with adherers having a better prognosis compared to non-adherers. 

The generated data also included a time-varying hazard which was changed at 20, 40 and 50 months 

from baseline.   

The simulation study showed that the C-PROPHET model and the RPSFTM model are generally similar 

in terms of producing unbiased results with the C-PROPHET estimator producing a smaller empirical 

standard error. The method showed high coverage of the 95% CI with a 1% standard error 

demonstrating conservative variance estimates based on the jack-knife technique. The method also 

showed a high reduction in mean square error (MSE) in the situation (ii) where the RPSFTM model 
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only holds but larger MSE in the situation (i) where the PH model only holds. Further details about the 

asymptotic properties of the estimator are reported in Loeys and Goetphebeur.79  

The method was further applied in a case study on colorectal cancer using data from an RCT comparing 

surgical resection followed by chemotherapy administered via an atrial device (intervention arm) 

compared with surgical resection alone (standard treatment arm). The ITT analysis estimated a causal 

effect (in terms of an HR) of 1.26. The C-PROPHET estimate of the causal effect was 1.43 - this is the 

proportional hazards effect among compliers, i.e. the estimate from the CACE estimand).79 Although 

these are two different estimates, they are not directly comparable due to different estimands. This 

point is relevant to the simulation study undertaken in this research and will be discussed further in 

subsequent chapters.  

It should be noted that the RCT used in the case study was un-blinded which raises questions about 

the possibility of violating the exclusion restriction assumption. However, the authors reported that 

they have no reason to believe that has happened. The danger of violating the exclusion restriction 

assumption is based on an intuitive suspicion that individuals assigned to the intervention arm may 

have received more attention. If that is the case, then this may have had a direct effect on survival 

outcomes that is not caused through treatment received. 

2.8.5 Instrumental Variable Methods 

2.8.5.1 Origin of the method 

The Instrumental Variable (IV) approach is an overarching term for a set of methods which could be 

used to recover the ACE of treatment in the presence of “unmeasured confounders”. IV methods have 

traditionally been used by econometricians based on original work by Wright (1928) and Golderberger 

(1972) in the context of structural equation modelling (SEM). This approach has been adapted by 

Angrist et al.64 with further work by Imbens and Rubin97 to adjust for non-adherence using the 

counterfactual outcome framework. The IV method was developed to estimate the ACE of treatment 

received, rather than treatment assignment employed by the ITT analysis. The technique was 

originally developed in a non-time-to-event endpoint context, and further extended to time-to-event 

outcomes.  

If the investigators are interested in estimating the causal effect but are no longer prepared to assume 

no unmeasured confounding because they have not collected data on potential confounders, then the 

IV approach provides an attractive alternative. The key characteristic of this method is that it does not 
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rely on the strong assumption of no unmeasured confounding. However, instead, it relies on the 

exclusion restriction assumption, which is described in the next section.   

Three versions of the IV approach have been identified for adjusting for non-adherence in the context 

of time-to-event outcomes: (i) IV with Likelihood Estimator;80 (ii) IV with Plug-in Non-Parametric 

Empirical Maximum Likelihood Estimator (PNEMLE);81 and (iii) Transformation promotion time cure 

model with MLE to estimate the CACE and the compliers effect on survival probability (CESP) 

estimands.82 I discuss method (i) in Sections 2.8.5.2and 2.8.5.3 and further discuss the two extensions 

in Section 2.8.5.4. 

2.8.5.2 Theoretical characteristics 

The concept of this method is based on SEM where the ACE can be estimated in two steps. The key 

assumption to all IV methods is the requirement to identify a pre-exposure ‘un-confounded’ 

instrumental variable that satisfies the “exclusion restriction assumption”, that is the IV affects the 

survival outcome only through its effects on the exposure. This is best explained by a causal DAG, as 

presented in Figure 10. In this DAG, the instrumental variable Z affects the outcome Y only through 

the exposure A (e.g. adherence to the assigned treatment). The absence of an arrow from Z to Y 

indicates no direct causal effect of the IV on the outcome which satisfies the exclusion restriction 

assumption. The variable U represents an unmeasured confounder (e.g. genetics). The exclusion 

restriction assumption is likely to hold in double-blinded RCTs where randomisation is used as an 

instrument. The IV variable must be un-confounded; this condition implies that Z is independent of U. 

Figure 10: Instrumental variable causal DAG 
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The IV method works by adjusting for binary non-adherence for estimating the causal effect using the 

CACE estimand. This can simply be done using a two-stage estimating process which can be applied 

easily in standard software. (a) estimate the effect of the Z on treatment initiation to predict A for 

each individual patient; and (b) estimate the effect of the predicted treatment initiation on the 

outcome Y, which will produce the causal effect of A on Y among the compliers subpopulation.    

The approach of Baker80 approach used the randomisation factor, denoted (Z) in the DAG. This is best 

explained by imagining an RCT where individuals are randomised to the intervention group (Z=1) or 

control group (Z=0). Individuals in the intervention group who immediately initiate treatment are 

denoted T1 and those who refuse to initiate treatment denoted (T0). Individuals randomised to the 

control arm are also denoted T0. The method works by considering an experiment classifying 

individuals in the trial population into four groups (similar to the classification used by Lin et al. for the 

MCC method) using a variable (R) to indicate the subject type as outlined below:  

N - Never-takers (T0 if either Z=0 or Z=1)  

C – Adherers (T1 if Z=1 and T0 if Z=0) 

D – Defiers (T0 if Z=1 and T1 if Z=0)  

A – Always takers (T1 if either Z=1 or Z=0)    

Because the randomisation variable R can be considered as a baseline covariate, its distribution will 

be independent of Z and therefore R can be used as an IV. Under specific assumptions (outlined below) 

the maximum likelihood estimation is formulated using cause-specific hazards. This is used to compute 

the probability of having the cause-specific event of interest (e.g. breast cancer death) at time t for 

each latent adherence type. Then the joint probability of receiving the treatment at time t across 

adherence types should be estimated (e.g. the sum of the joint probabilities of T0 among N and C types 

conditional on Z=1). Then the treatment effect in terms of the difference in hazards or hazards ratio 

can be computed. It is worth noting that individuals in group D and some individuals in group A are 

actually switching treatment rather than exhibiting non-adherence. This issue was observed in a 

number of methodological papers included in this review. Group D is excluded from the analysis by 

the “monotonicity assumption” associated with this method (see next paragraph).   

In the context of survival analysis, The IV method makes the following assumptions: 

(a) The exclusion restriction assumption (discussed above) 

(b) The randomisation assumption 

(c) Randomisation has no effect on the probability of adherence to treatment  

(d) Monotonicity assumption which excludes defiers 
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(e) Independence of failure time and censoring times 

(f) Only compliers and never takers are included in the model     

The exclusion restriction is a strong assumption which is difficult to evaluate systematically. However, 

evaluation of this assumption could add credibility to the adherence-adjusted causal effect estimated 

using the IV method. There are a number of formal tests which can be used to evaluate the IV 

assumptions such as the “IV inequality test” which can detect extreme violations.        

Regarding potential biases, the method considers death from competing risks as a type of non-

ignorable missing data, and this might be problematic. This is because, in some cases, death from the 

cause of interest and death from other competing risks may both depend on treatment adherence, 

making the reliance on the randomisation assumption more vulnerable to bias.   

The IV method with the likelihood estimator is easy to apply, and if the assumptions hold, the method 

can produce a valid estimate of causal effect in the presence of non-adherence. However, the method 

estimates the CACE estimand which is not marginalised to the entire study population. The method is 

widely accepted in the economic literature, and its results would be easy to communicate. The MLE 

used in this method can produce negative estimates of hazards. This problem can be avoided by fitting 

a polynomial logistic model of the cause-specific hazards. The polynomial model can also smooth 

estimates over time. As a disadvantage, the method may be inefficient in some cases. The reason for 

this asymptotic inefficiency relates to the standard IV approach observed in non-survival analysis 

settings. Another disadvantage is that, finding an instrumental variable that meets all the criteria of a 

valid IV can be challenging. More importantly, the method uses the CASE estimand which might not 

be relevant to HTA policymakers and this is a limitation (This is discussed in further detail in Chapter 

3).   

2.8.5.3 Application in a case study 

The IV method with likelihood estimator was applied in a case study for estimating the ACE of breast 

cancer screening on survival using secondary data from the Health Insurance Plan for Greater New 

York (HIP) study.80 The HIP study had a sample size of 60,000 women randomised to screening 

(intervention group) and usual care (control group). The analysis estimated the causal effect in terms 

of life-years saved adjusted for initiation type of non-adherence. Baker80 further applied a polynomial 

model to estimate adherence-adjusted cost-effectiveness. Further details are reported in Baker’s 

paper.80  
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2.8.5.4 IV extensions  

IV with Plug-in Non-Parametric Empirical Maximum Likelihood Estimator (PNEMLE)  

The IV with Plug-in Non-Parametric Empirical Maximum Likelihood Estimator (NELME) was developed 

by Nie et al.81  This is an extension to the standard IV approach for improving efficiency by making use 

of the mixture structure in the data without making any assumptions on outcome distributions. The 

mixture structure was previously used by Imbens and Rubin in a latent compliance class model. The 

method classifies individuals in a two-arm RCT into four adherence classes (always takers, compliers, 

never takers and defiers) as previously defined. This means there will be a mixture of compliers and 

never takers in the control arm. The method relies on the same assumptions reported in Section 

2.8.5.2. 

The PNEMLE approach assumes the following survival functions for compliers in the intervention 

group denoted as Ss1(V) and control group denoted as Sc0(V), while never-takers have a similar survival 

function in both groups denoted as Snt(V).   

𝑆𝑇|𝑅 = 1(𝑉) = 𝜋𝑐𝑆𝑐1(𝑉) + (1 − 𝜋𝑐)𝑆𝑛𝑡(𝑉)        [5] 

𝑆𝑇|𝑅 = 0(𝑉) = 𝜋𝑐𝑆𝑐0(𝑉) + (1 − 𝜋𝑐)𝑆𝑛𝑡(𝑉)        [6] 

where πc is the fraction of compliers in the intervention group.  

The PNEMLE estimator works by imposing a constraint in the estimation such that the probabilities of 

survival among never-takers at that particular time point are similar in both arms. Based on this 

constraint, and assuming that the proportions of compliers are similar in the two arms, the following 

three analytical steps should be followed to estimate the difference in survival probability among 

compliers (in the two arms) at a specific time point:  

(a) Estimate the survival probability among compliers in the intervention group [Sc1(V)], the 

survival probability for never takers Snt(V) in the two groups, and the observed proportion 

of compliers in the intervention group πc. The first two parameters can be estimated using 

the Kaplan-Meier estimator.  

(b) Estimate survival probability Sc0(V) in the control arm using the non-parametric empirical 

likelihood estimation.  

(c) Estimate the treatment effect using estimates from steps (a) and (b).  
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The PNEMLE method was evaluated in a simulation study and also applied in a case study showing 

how the analytical steps should be applied. A two-arm RCT data with a sample size of 2000 patients 

and 1000 simulations were used. The simulation study was restricted to include only compliers and 

never takers. Generally, the PNEMLE performed well compared to the standard IV method in terms of 

unbiasedness and efficiency. Relative bias was 11.1% in the worst situations, and the PNEMLE is 

proved to be at least as efficient as the standard IV approach, and in many cases more efficient (28% 

reduction in RMSE).81 An advantage is that PNEMLE does not rely on parametric assumptions used in 

accelerated failure time models. As a disadvantage, a finite sample size bias was observed in the 

simulation study. Further details about the asymptotic properties of the PNEMLE estimator are 

reported in Nie et al.81   

Nie et al.81 reported that they had not investigated a situation whereby the probability of non-

adherence depends on baseline covariates. This is a serious concern as adherence is more likely to 

depend on baseline patient characteristics such as comorbidity and it is not clear if this method would 

produce an unbiased estimate under these situations. This issue falls under a broader methodological 

question of estimating causal effect under dependence. However, in theory, IV methods have the 

advantage of not relying on the no unmeasured confounding assumption.  

In the case study, the PNEMLE estimator was applied to the HIP study (an RCT designed for estimating 

the effectiveness of breast cancer screening on survival).81 The PNEMLE method produced very similar 

estimates and confidence intervals compared to the standard IV method. The PNEMLE estimated a 

12.3% higher probability of survival over 10 years among compliers who received treatment compared 

to those who adhered to receiving controls.81 The ITT estimates are smaller than PNEMLE indicating 

that the level of non-adherence in the HIP study was very high. However, the estimands from the two 

approaches are not directly comparable to the ITT. This is because the ITT estimates the effect of 

treatment assignment on the survival outcome; while the PNEMLE estimates the effect of treatment 

actually received. 

 IV using transformation promotion time cure model    

Gao and Zheng82  proposed a semi-parametric causal transformation model with MLE for estimating 

the CACE and CESP estimand in a two-arm RCT setting with non-initiation (all-or-nothing) non-

adherence. This models the individual’s survival time in the intervention and control group, 

conditional on covariates and latent adherence type based on a key assumption that censoring time 

and survival time are independent. 
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The method makes the same IV assumptions described by Angrist et al.64 and Nie et al.81 – see Section 

2.8.5.2. The randomisation assumption used is a weaker version conditional on covariates to allow for 

confounders to be taken into consideration. The method makes an additional assumption known as 

the “conditional non-null compliance class” assumption which implies the existence of compliers in 

the data. The cured individuals considered by the CACE are assumed to have infinite survival time.     

For the potential outcome (event time) detonated by Tz, the conditional survival function in the 

transformation promotion time cure model is provided by the following formula: 

𝑆𝑧 (𝑡|𝑋𝑖 = ∑ 𝐺(𝑣(𝛽𝑘
𝑐3

𝑘=1
+ 𝜂𝑘1

𝑐 𝑧 + 𝜂𝑘2
𝑐𝑇𝑋𝑖) 𝐹0(𝑡) 𝐼(𝑈𝑖 = 𝑘)        [7] 

where 𝑣(.) is an unknown link function, G(.) is an unknown transformation function, 𝐹0 denotes a 

baseline distribution function and 𝐼(. ) represents the indicator function. The parameter of interest 

𝜂𝑘1
𝑐  is the causal effect in class K, 𝜂𝑘2

𝑐  is a vector of parameters that relates the covariates to the 

survival function and 𝛽𝑘
𝑐 is the intercept in the regression output.     

Based on the causal model in the above formula, the CACE estimand for cured patients is given by the 

following equation: 

𝐶𝐴𝐶𝐸(𝑥) = 𝑆1(∞|𝑈 = 2, 𝑋 = 𝑥) − 𝑆0(∞|𝑈 = 2, 𝑋 = 𝑥)         [8] 

Considering the CESP estimand for un-cured patients, the complier survival probability is given by this 

equation: 

𝐶𝐸𝑆𝑃(𝑡; 𝑥) = 𝑆1(𝑡|𝑈 = 2, 𝑋 = 𝑥, 𝑇 < ∞) − 𝑆0(𝑡|𝑈 = 2, 𝑋 = 𝑥 𝑇 < ∞)       [9] 

However, the estimand specified by the above formulas is the effects at the individual patient level, 

conditional on covariates. Once the individual effects are estimated, then a population-level causal 

effect can be estimated using the following unconditional versions of equations.   

𝐶𝐴𝐶𝐸(𝑥) = 𝐸𝑥[𝑆1(∞|𝑋) − 𝑆0(∞|𝑋)|𝑈 = 2]         [10] 

𝐶𝐸𝑆𝑃(𝑡) = 𝐸𝑥[𝑆1(𝑡|𝑋, 𝑇 < ∞) − 𝑆0(𝑡|𝑋, 𝑇 < ∞)|𝑈 = 2]       [11] 

where 𝐸𝑥 is an expectation parameter related to the distribution of X.  

This method was evaluated in a simulation study and further applied to real data in a case study. The 

mixture structure in the data and infinite-dimensional parameters in the model resulted in 

computational difficulties. These difficulties were dealt with using the EM algorithm proposed by this 

method to estimate the parameters. The CACE and CESP estimators used by this method were proved 
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to be consistent as well as asymptotically normal. The method showed reasonable performance and 

resulted in estimates closer to the “true” values and coverage was close to nominal levels. More 

details about the asymptotic properties of CACE and CESP estimators are reported in Gao and Zheng.82   

The model was further demonstrated by the application in the HIP study data with a sample size of 

60,696 women randomised to receive screening (intervention group, n= 30,131) or usual care (control 

group, n= 30,565). The analysis using the causal transformation model showed that the intervention 

(screening) has a beneficial effect on survival and cure rate, conditional on covariates. The CACE 

estimated that compliers (women who adhered to the screening intervention) have a 17.97% higher 

probability of being cured compared to women who adhered to usual care (no screening). For CESP, 

the causal effect among non-cured women who adhered to the assigned screening intervention has a 

3.82% higher probability of survival over 3 years follow up compared to women who received usual 

care (conditional on being uncured).     

2.9 G-methods 

2.9.1 Marginal Structural Models with Inverse Probability of Censoring 

Weighting 

2.9.1.1 Origin of the method 

The inverse probability of censoring weighting (IPCW) is a method that can be used to address 

informative censoring. It can be used to address non-adherence by censoring non-adherers and then 

using IPCW for estimating the ACE of treatment using MSMs. Exchangeability in an RCT context implies 

that individuals in one randomised group are comparable to the other group (i.e. they have the same 

baseline risk had they received treatment assigned to the other group). The IPCW approach relies on 

‘conditional exchangeability’, meaning that the outcome is independent of everything except the 

treatment, conditional on variables included in the model. The MSM estimates the marginal 

(unconditional) effect, that is the ACE of treatment across the study population, had everyone adhered 

to the assigned treatment.  

The IPCW is a form of a generic method known as inverse probability weighting (IPW). IPCW was 

originally developed by Robins and Rotnitzky98 to adjust for ‘dependent censoring’ by incorporating 

data on time-dependent confounders. The Robins and Rotnitzky98 paper was excluded because it was 

focused on continuous and binary outcomes, which are both outside the scope of this review. 

Therefore, the description of the IPCW approach reported here is mainly based on the Robins and 
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Finkelstein paper, as it focused on time-to-event outcomes.66 The IPCW method focuses on two key 

aspects: (i) the individual’s weight is inversely proportional to an estimate of the conditional 

probability of remaining uncensored up to time t; and (ii) this estimate is obtained by fitting a time-

dependent Cox PH model for censoring incorporating time-dependent prognostic factors. In other 

words, if we are concerned about informative censoring, we weight patients to avoid the related 

selection bias. Patients with similar characteristics to people who are censored are up-weighted to 

account for themselves and for the censored patients, thereby avoiding the selection bias associated 

with the censoring. In order for the method to work, the analyst needs data on baseline and time-

dependent variables so that we can appropriately weight people who have not been censored 

according to their similarity to people who have been censored. 

2.9.1.2 Theoretical characteristics 

In the context of non-adherence, the IPCW method can be used to obtain a valid treatment effect by 

adjusting for baseline and time-dependent prognostic factors that predict both non-adherence and 

the survival outcome (i.e. confounders). To adjust for confounding in causal analysis, the analyst 

should adjust for all baseline and time-dependent confounders. The issue is that theoretically baseline 

confounders can be adjusted for using simple regression; however, time-dependent confounders 

cannot be adjusted for using simple methods. The IPCW is a method that can attempt to remove 

selection bias caused by such time-dependent confounders.  

The IPCW makes the key assumption of ‘no unmeasured confounders’ which is also known as the 

assumption of ‘ignorability of censoring’. Under this assumption and the exchangeability condition, 

the IPCW method can produce an adherence-adjusted treatment effect. The IPCW adjustment is 

based on the counterfactual-outcome framework (introduced in Section 1.3.1) for estimating 

weighted survival times in people who have not been censored. The analysis involves censoring 

patients at the first time they become non-adherent, which is likely to introduce informative censoring. 

The application of IPCW weighting attempts to remove this informative censoring by up-weighting 

individuals with characteristics similar to those who have been censored based on the exchangeability 

assumption. IPCW also requires a positivity assumption which implies that the probability of non-

adherence is non-zero. The method assumes that adherence is binary which could be considered as a 

limitation of accounting for implementation non-adherence.   

The IPCW estimation involves four steps:  

(i) Censor observations at the time of non-adherence;  
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(ii) Model the probability of censoring (non-adherence) for each individual patient at each 

time interval k  adjusting for baseline and time-dependent confounders;  

(iii) Compute the probability of remaining uncensored for each individual patient up to time 

t; and  

(iv) Use the inverse probabilities of remaining uncensored as weights in a weighted analysis 

which can be applied to any survival analysis (e.g. MSM) to estimate the ACE of treatment. 

In step (ii), it is very important to fit non-adherence models (e.g. logistic models) 

separately for each randomisation arm, as the reasons for non-adherence (or censoring) 

may differ by treatment assigned to each arm.  

The IPCW weights produced from the inverse probabilities will be ‘unstabilised’ which are valid but 

not efficient. According to Robins and Finkelstein, ‘stabilised’ weights should be used instead because 

weighting can be inefficient compared to straightforward regression adjustment if only baseline 

variables are important. To estimate the stabilised weights, the analyst should first construct the un-

stabilised weight (�̂�𝑖𝑡) for each individual i in time interval t by multiplying all the probabilities of 

remaining uncensored (adhered) up to time t using the following equation.  

�̂�𝑖𝑡 = ∏
1

1−𝑝𝑖𝑘

𝑡
𝑘=0                    [12] 

where  �̂�𝑖𝑘 is the predicted probability of non-adherence in time interval k given the randomisation 

group and adjusting for baseline covariate and time-dependent covariates. The stabilised weights for 

each individual (�̂�𝑖𝑡
𝑠𝑡𝑎𝑏) can then be estimated using equation [13].  

�̂�𝑖𝑡
𝑠𝑡𝑎𝑏 = ∏

1

1−�̂�𝑖𝑘

𝑡
𝑘=0 / ∏

1

1−𝑝0𝑖𝑘

𝑡
𝑘=0 =  ∏

1−𝑝0𝑖𝑘

1−𝑝𝑖𝑘

𝑡
𝑘=0                [13] 

where �̂�0𝑖𝑘  is the probability of non-adherence given the randomisation group and adjusting for 

baseline covariates only. �̂�0𝑖𝑘  should be estimated using the same model applied to obtain �̂�𝑖𝑘 in the 

denominator of the stabilised weights equation, but without including time-dependent covariates. In 

the stabilised model [13], baseline variables cancel out as they are in the numerator and denominator, 

so if time-dependent variables are actually not important, the weights will just be equal to 1. Then, 

because the baseline variables are included in the outcomes model, the method collapses to just a 

straightforward regression adjustment. 

A pseudo-population should then be created by weighting each individual in the study population 

using the stabilised weights obtained from equation [13]. The last step is fitting the outcome model 

adjusting for baseline covariates that have been used in the numerator of the stabilised weights in 
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equation [13]. The IPCW Kaplan-Meier estimator and Cox partial likelihood estimators (or any other 

survival analysis) can be fitted to obtain survival curves and estimates of HR weighted by the inverse 

of the conditional probability of remaining uncensored using stabilised weights. This estimation will 

produce a valid treatment effect adjusted for non-adherence.  

One problem with applying this approach is that it is impossible to formally test whether there are no 

unmeasured confounders, however, there are some strategies which can be followed to assess 

whether it is a feasible assumption given the data. Reviewing the literature and developing a causal 

DAG can help understand the relationships between covariates in order to identify known important 

variables which are potential confounders. To identify the prognostic factors of interest, one could fit 

a model (e.g. time-dependent Cox model of failure) which includes all potential confounders and then 

keep only those which are statistically significant. There are some limitations to this approach – for 

example, a prognostic factor can be important without being statistically significant. In other words, 

the analyst should just include anything believed to be prognostic irrespective of significance. Another 

approach is to run tests of independence between the potential confounders, the exposure and the 

outcome to determine if there are common causes.      

In terms of advantages, the IPCW method (similar to the other g-methods) theoretically has a greater 

power to detect the effect of treatment in the presence of non-adherence compared with the 

standard ITT-analysis approach. The method may allow us to estimate a valid causal effect at different 

counterfactual (non-observed) levels of adherence if the assumptions hold. The main limitation of 

IPCW is the assumption of no unmeasured confounders, which cannot be proven empirically.      

2.9.1.3 Application in a case study 

Robins and Finkelstein66 applied the IPCW approach to adjust for non-adherence using data from the 

AIDS Clinical Trial Group 021 study to estimate the treatment effect of Aerosolised Pentamidine (AP) 

(versus Bactrim) on overall survival. The study enrolled 310 patients with time to pneumocystis carinii 

pneumonia (PCP) recurrence used as a primary outcome and survival as a secondary outcome. The 

IPCW analysis used stabilised weights and both the IPCW Kaplan-Meier and IPCW Cox partial likelihood 

estimators were used in two separate analyses. The analysis included three time-dependent 

prognostic factors: haemoglobin levels, Karnovsky score (a measure of functional status), and asthenia 

score (a measure of weight loss and lean body mass). The three prognostic factors that met the 

conditions of being confounders were selected by fitting a stratified time-dependent Cox model for 

failure - the investigators only kept these three factors which were significant at the p=0.12 level. As 

reported, it seems that this was the sole criterion used to assess whether the confounding conditions 
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were not met and the cut-off point seems rather arbitrary. After checking the data, the investigators 

eliminated three other potential prognostic factors – white cell count, PCP episodes and CD4 count 

from the adjustment as they did not meet the conditions of being confounders. This means they were 

not common causes of the exposure and the outcome.  

Robins and Finkelstein66 undertook four causal analyses: (a) standard ITT analysis with censoring 

applied at the point of the patient being lost to follow-up or end of follow-up; (b) applying dependent 

censoring at the point of the patient being lost to follow-up and treatment switching; (c) applying 

dependent censoring at the point of the patient being lost to follow-up, switching and discontinuation 

(for non-medical reasons); and (d) applying dependent censoring at the point of patient being lost to 

follow-up, switching and discontinuation (for any reason).   

Robins and Finkelstein66 applied the IPCW log-rank test for adjusting for dependent censoring which 

takes into account data on the included time-dependent confounders. The IPCW partial likelihood 

estimate of mortality HR (AP compared to Bactrim) was 0.84 (IPCW 95% confidence interval [CI]: 0.21-

1.57, z-value of IPCW log-rank test=2.55).66 The ITT estimate of HR was 0.63 (95% CI: -0.1-1.5, z-value 

of log-rank test=1.7).66 The IPCW estimate shows that the log-rank z-score is greater than 1.96 and the 

95% CI excludes zero which implies that there is strong evidence that Bactrim has a beneficial effect 

on survival compared to AP therapy. This was not the case in the ITT estimates where the 95% CI 

includes zero, although the estimated IPCW HR is not expected to be numerically higher than the ITT 

estimate. If the assumptions hold, the IPCW estimates imply that Bactrim therapy has a beneficial 

causal effect on survival, but that the standard ITT analysis failed to detect it. If the estimand of 

interest is the causal effect of treatment in the presence of patient non-adherence, then the ITT 

estimate is not comparable to the IPCW estimate. The key point is that IPCW has a different estimand, 

that is the causal effect that would have been observed had everyone adhered to the assigned 

treatment; whereas ITT estimates the effect of treatment assignment in that particular study.  

An additional issue that is raised by the Robins and Finkelstein study is the importance of the way in 

which censoring is specified within the analysis. It should be noted that the different ways of specifying 

censoring in analyses (b), (c) and (d) produced different estimates of the causal effect; and therefore, 

it is crucial to specify a censoring mechanism that meets the definition of non-adherence introduced 

in Section 1.2. 

2.9.1.4 MSMs Extensions: Inverse Probability of Treatment Weighting (IPTW) 

Origin of the IPTW method 
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Hernan et al.83 introduced an MSM with the inverse-probability of treatment weighting (IPTW) as 

another class of estimators. This method relates to IPCW as they both belong to the broader IPW 

approach. IPTW was originally developed for estimating the ACE of treatments from observational 

data with time-dependent confounders. Similar to IPCW, the IPTW approach is based on the 

counterfactual-outcome framework and is mainly focused on time-varying treatments. The method 

also relies on conditional exchangeability. The key feature of this method is that it allows for modelling 

longitudinal adherence patterns where patients follow erratic adherence behaviours in terms of 

implementing the prescribed dosing regimen (i.e. on/off adherence patterns).     

Hernan et al.83 argued that even if the no unmeasured confounding and model misspecification 

assumptions hold, standard ITT analysis estimates of the ACE of time-varying treatments would be 

biased if two conditions are met: (a) there exist time-dependent prognostic factors that predict the 

survival outcome and subsequent treatment, simultaneously; and (b) treatment history is a predictor 

of subsequent risk level. If these two conditions are met, then the proposed IPTW estimator can be 

used instead of standard (unweighted) analysis for estimating an unbiased causal effect of treatments 

in the presence of patient non-adherence.   

IPTW theoretical characteristics 

In the IPCW approach (introduced in Section 2.9.1), individuals were censored after they first become 

non-adherent to their assigned treatment and they remain censored for the rest of the study follow-

up. This approach might not be appropriate in situations time-varying non-adherence to prescribed 

chronic medications. As an alternative approach, one could allow individuals to become adherent 

again following a period of being recorded as non-adherent - this can be modelled using the IPTW 

approach. The time-varying adjustment procedure offered by the IPTW approach could be used to 

adjust for non-adherence at the implementation stage. In other words, IPTW works in the same way 

as IPCW except that non-adherers are not censored, but their non-adherence indicator just switches 

to “1” when they are non-adherent and then back to “0” when they become adherent again over time.  

Another characteristic relating to IPTW (and IPCW) is the concept of treatment ‘causal exogeneity’ 

which is important for understanding the interpretation of causal parameters obtained from a 

correctly specified MSM. Assessing whether the treatment is causally exogenous requires ‘statistical 

exogeneity’ to be met, that is the probability of initiating the treatment at time t is independent of the 

history of time-dependent confounders up to time t, conditional on the history of treatment (i.e. 

adherence to the treatment before time t).   
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IPTW makes the no unmeasured confounders assumption as used by IPCW (see Section 2.9.1.2). IPTW 

assumes non-informative censoring and no model misspecification given covariates measured in the 

past and treatment history.83 As an aside, if we have varying adherence over time, and informative 

censoring, one could potentially combine IPCW and IPTW to adjust for both problems in the causal 

analysis.  

The analytical steps are similar to those described for IPCW, and the main difference is the censoring 

mechanism as described above. To introduce the MSM with IPTW model, I use an example from 

Hernan et al. for estimating the joint causal effect of AZT and PCP prophylaxis therapy on mortality of 

HIV-positive patients. The marginal structural Cox model specified by Hernan et al. is provided in 

equation [14]: 83 

λ𝑇𝑎,̅�̅�≡0
(𝑡|𝑉) = λ0(𝑡)exp [𝛽1𝑎1(𝑡) + 𝛽2𝑎2(𝑡) + 𝛽3

′ 𝑉]           [14] 

where, λ𝑇𝑎,̅�̅�≡0
is individual’s failure time if he had received treatment regimen �̅� under the ignorable 

(non-informative) censoring assumption. The ignorable censoring assumption implies that the 

conditional hazard of censoring at time k is independent of failure times given the past AZT treatment 

�̅�1(𝑘 − 1) , prophylaxis history �̅�2(𝑘 − 1)  and the history of time-dependent prognostic factors 

before k. V is a vector of pre-treatment (baseline) covariates and exp(𝛽1) and exp(𝛽2) are the causal 

parameters of interest for AZT treatment and PCP prophylaxis therapy, respectively. The IPTW 

estimate of the parameter β can be obtained using a weighted-logistic-regression model with weights 

calculated using the following formula:83 

𝑊(𝑡) = ∏
𝑓[𝐴(𝑘)|�̅�(𝑘−1),𝑉]

𝑓[𝐴(𝑘)|�̅�(𝑘−1),�̅�(𝑘)]
𝑡
𝑘=0                  [15] 

where A indicates whether the patient is on treatment or prophylaxis, �̅�(𝑘 − 1) is the treatment 

history and �̅�(𝑘) is the history of measured time-dependent confounders up to and including time k. 

It is worth noting that V was not included in the denominator because it is a subset of covariates �̅�(𝑘), 

so it is already included. Under the assumptions, a consistent IPTW estimator of the causal parameter 

can be obtained by multiplying the individual’s probability of remaining alive and uncensored at time 

t by 𝑊(𝑡) x 𝑊†(𝑡), where83 

𝑊†(𝑡) = ∏
𝑃𝑟[𝐶(𝑘)=0|𝐶̅(𝑘−1)=0,�̅�(𝑘−1),𝑉,𝑇>𝑘]

𝑃𝑟[𝐶(𝑘)=0|𝐶̅(𝑘−1)=0,�̅�(𝑘−1),𝐿(𝑘),𝑇>𝑘]
𝑡
𝑘=0            [16] 

𝑊†(𝑡) is the inverse probability of un-censoring up to time t divided by the probability estimated 

without including time-dependent predictors of censoring, but only including treatment history and 
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baseline covariates. The calculated weights should then be used to create a pseudo-population in 

which the treatment and prophylaxis therapy are statistically and causally exogenous. The causal 

effects (estimate of parameter β) should then be estimated using the MSM specified in equation [14].  

MSMs with IPCW/IPTW estimators have the advantage that they are considered as a natural extension 

to standard models (e.g. standard logistic models, time-dependent Cox models) which makes it 

convenient to communicate their causal effect estimations.83 This is because once a pseudo-

population is created with the weights, any standard survival analysis can then be performed to 

estimate a valid causal effect. IPTW can be used to adjust for non-adherence in situations where 

individuals are allowed to become adherent again following a period of non-adherence. However, the 

additional information gained by modelling re-adherence could be offset by the additional variability 

introduced in the model, which is a disadvantage.66 Additional assumptions may also be introduced 

when modelling re-adherence. 

IPTW application of in a case study 

Hernan et al.83 applied the IPTW approach in a case study using data from the Multicentre AIDS Cohort 

Study (MACS) to estimate the joint causal effect of AZT and PCP prophylaxis therapy on mortality of 

HIV-positive men. The MACS study enrolled more than 5000 participants with a median follow-up of 

67 months. However, Hernan and colleagues restricted their causal analysis to 2168 participants who 

had no diagnosis of AIDS and had not initiated AZT treatment or PCP prophylaxis therapy at the time 

of starting their follow-up.  

As a first step in the analysis, the investigators assessed if conditions (a) and (b), introduced above, 

are true given the data. As a reminder, (a) existence of time-dependent prognostic factors that predict 

the outcome and subsequent treatment; and (b) treatment history is a predictor of subsequent risk 

level. To determine whether condition (a) holds, they fitted an unweighted time-dependent Cox 

model that included baseline and time-dependent covariates (CD4 count and PCP), AZT and 

prophylaxis variables. The model was used to assess whether CD4 count and PCP were independent 

predictors of the survival outcome (death). The model estimated an HR of 3.77 (p<0.001) for PCP 

before time t.83 For low CD4 count and moderate CD4 count (with respective values of <200 and 200-

500 relative to a normal value of ≥500), the corresponding estimates of HRs were 16.5 and 3.48 

(p<0.001 for both estimates), respectively.83 To assess if the current CD4 count and PCP were 

predictors of subsequent treatment, they fitted two models for AZT treatment initiation and 

prophylaxis therapy (pooled logistic models) including baseline covariates (V), PCP and CD4 count as 

time-dependent covariates. The treatment initiation model resulted in estimated HRs of 2.18, 3.38 
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and 2.56 (p<0.001 for all) corresponding to PCP incidence, low CD4 count and moderate CD4 count 

covariates, respectively.83 In the prophylaxis initiation model, the corresponding HRs obtained were 

1.87, 4.94 and 2.82 (p<0.001 for all estimates). These results imply that condition (a), that there exist 

time-dependent prognostic factors that predict the survival outcome and subsequent treatment, 

holds in the MACS dataset.  

To identify confounders, they fitted a logistic model to estimate the probability of developing PCP in 

time t given baseline and time-dependent covariates, AZT treatment and prophylaxis history at time 

t-1. The model estimated HRs of 1.03 (p=0.64) and 0.77 (p<0.001) for AZT treatment and prophylaxis 

therapy, respectively.83 This means that prophylaxis is a predictor of subsequent treatment, that is a 

protective factor for PCP which informs subsequent treatment initiation. This result implies that 

condition (b) also holds in the MACS dataset. Subsequently, the authors concluded that the standard 

ITT analysis could not be used for estimating a valid causal effect. The problem associated with 

condition (a) is that standard ITT analysis does not allow for adjusting for time-dependent covariates 

(CD count and PCP) which implies confounding bias. Regarding condition (b), the incorporation of 

current CD4 count and PCP as covariates in standard analysis implies bias because these variables are 

affected by previous treatment.  

As both conditions (a) and (b) hold in the dataset, Hernan et al.83 have applied an MSM with IPTW 

estimator as introduced above. The IPTW weighted analysis produced a mortality HR of 0.67 (95% CI: 

0.46-0.98) for individuals who initiated the AZT treatment compared to those who did not initiate the 

treatment. For prophylaxis therapy, the estimated HR was 1.14 (95% CI: 0.79-1.64) which represents 

an adjusted treatment effect.83 The causal interpretation of the result is that AZT treatment has a 

beneficial effect in reducing mortality of HIV-positive men. In contrast, the HRs estimated by the 

unweighted (ITT) analysis was 1.85 (95% CI: 1.49-2.30) and 1.58 (95% CI: 1.31-1.89) for AZT treatment 

and prophylaxis therapy.83 This result clearly shows that failure to adjust for time-dependent 

prognostic factors (i.e. CD count and PCP) in standard ITT analysis has resulted in failure to detect the 

beneficial effect of AZT treatment. 

2.9.2 Structural Nested Failure Time Models with G-estimation  

2.9.2.1 Origin of the method 

Structural Nested Failure Time Models (SNFTMs) were originally developed by Robins et al.84 SNFTMs 

belong to the wider class of SNMs. The method is based on the counterfactual outcome framework 

(introduced in Section 1.3.1). SNFTMs were originally proposed to adjust the causal effect of treatment 
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for time-dependent risk factors, in general. The method was further applied to adjust for non-

adherence for time-to-event outcomes in the context of observational studies and RCTs. The method 

uses the g-estimation technique (described in the next sub-section) to estimate the parameters of 

interest in the SNFTM.  

2.9.2.2 Theoretical characteristics  

The SNFTM relates the individual’s observed time of the event (e.g. time of death) and observed 

treatment history to the counterfactual outcome (the time at which the individual would have died) 

if the treatment had been withheld. This approach will be essential to control for potential bias in 

which there exists a confounder (prognostic factor) for the survival time outcome that: (i) influences 

subsequent treatment exposure; and (ii) itself can be predicted by previous treatment received (i.e. 

time-dependent confounder). Adjusting for such confounders using traditional methods such as Cox 

PH models will produce biased estimates.13    

The method makes the assumption of “no unmeasured confounders” to estimate the causal effect of 

treatment conditional on confounding variables. According to Robins et al.,84 SNFTMs makes two 

further assumptions: (a) the causal model for the effect of the treatment on survival outcome is 

correctly specified; and (b) the recorded treatment data are accurate (no measurement errors). It may 

be difficult to verify or test if these assumptions hold. This is used in an AFT mode assuming treatment 

effect can be summarised as a time ratio (as opposed to an HR). It also assumes that adherence is 

binary which could be considered as a limitation of accounting for implementation non-adherence.   

To explain how the method works for adjusting for non-adherence, I use a simple SNFTM. The simple 

treatment effect model using the SNFTM can be written as follows: 

𝑌(0)~ ∫ 𝑒𝜓𝐴(𝑡)𝑌

0
𝑑𝑡            [17] 

where 𝑌(𝑡)  denotes the counterfactual outcome at time t (survival time), ~ means “has the same 

distribution as”, multiplied by a factor 𝑒𝜓  if treatment is withheld, and the observed treatment 

variable 𝐴(𝑡) =1 if the individual initiated treatment and 𝐴(𝑡) =0 if not. 

If the individual is alive at time t, the counterfactual survival time is provided by equation [18] below.  

𝑌(𝑡) − 𝑡 ~ ∫ 𝑒𝜓𝐴(𝑡)
𝑌

𝑡

𝑑𝑡 𝑔𝑖𝑣𝑒𝑛 (𝐿𝑡 , 𝐴𝑡)             [18] 
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where 𝐿𝑡, is the recorded history of time-dependent covariates up to time t, 𝐴𝑡  is the history of 

treatment received, 𝑒𝜓 is an unknown parameter representing the factor by which the individual’s 

remaining survival time is expanded or contracted by initiating treatment (adhered) at time t. The 

unknown parameter 𝑒𝜓 is the “acceleration factor [AF]” with negative value means a beneficial effect 

of the treatment. This is the parameter of interest that should be estimated using the g-estimation 

procedure.     

The g-estimation technique uses a class of estimators known as the “g-estimators”. The g-estimation 

is considered as a generalisation and improvement of the g-formula (g-computation algorithm) and 

the associated G-null test previously proposed by Robins (1986) and Robins and Greenland (1992). In 

the SNFTM framework, g-estimation is used to search for 𝜓  value which adds the least to the 

prediction model of treatment initiation. This means we search for a value of �̂� that results in a 𝜓 

term having a coefficient of zero in the model for treatment initiation (i.e. treatment initiation is 

independent of counterfactual outcomes).  

The no unmeasured confounding assumption implies that Y(t) (the potential outcome at time t) does 

not add to the prediction model for treatment initiation at time t. To formally explain the g-estimation 

procedure, let us assume the treatment effect model in equation [19].99 The analyst could fit a logistic 

regression model to obtain the coefficients in equation [20].  

𝑌𝑡~ 𝑋𝜓(𝑡)  𝑔𝑖𝑣𝑒𝑛 (𝐴𝑡 , 𝐿𝑡)        [19]  

𝑃[𝐴(𝑡)]  = 𝛽0(𝑡) + 𝛽1𝐴(𝑡 − 1) + 𝛽2𝐿(𝑡) + 𝛽3𝑋𝜓      [20] 

where 𝑌𝑡  is the observed survival time, ~ means has the same distribution as, 𝑋𝜓(𝑡)  is the 

counterfactual outcome, 𝐴𝑡 is the past treatment, 𝐿𝑡 is the history of covariates and 𝑃[𝐴(𝑡)] is the 

probability of initiating the treatment at time t.  

G-estimation is used to search for 𝜓 value which adds the least to the prediction model (i.e. treatment 

initiation is independent of counterfactual outcomes). This means searching for a value of �̂� that 

results in a 𝑋𝜓 term having a coefficient  𝛽3 = zero in model [20]. That value of 𝜓 provides the best 

estimates of counterfactual survival times adjusted for non-adherence.  

To help further explain the g-estimation technique, I use Figure 11, which was adapted from Latimer 

et al.100 to aid the explanation. This example from a hypothetical RCT illustrates the g-estimation 

process using the experimental group. The g-estimation process involves the following three steps, as 
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described by Latimer et al.100 in the context of treatment switching and further adapted to explain the 

application in the context of adjusting for non-adherence using a SNFTM: 

a) In the first step, for each individual patient in the experimental group, survival time is split into 

two parts: time ‘on’ the treatment when the patient adheres to the assigned treatment 

(denoted as 𝑇𝑜𝑛𝑖
), and time ‘off’ the treatment (denoted as 𝑇𝑜𝑓𝑓𝑖

) when the patient did not 

adhere to the treatment (see Figure 11a).    

b) In the second step, assuming the abovementioned method assumptions hold, survival time is 

calculated as a function of time on and time off the treatment given the history of covariates 

(baseline and time-dependent confounders). In this step, g-estimation technique is used to 

estimate the ‘true’ treatment effect adjusted for patient non-adherence. G-estimation 

involves finding the value of ψ that results in treatment initiation being independent of 

counterfactual survival times. This is done through a ‘grid search’ of a range of possible values 

of the treatment effect, plugging each value of ψ into the counterfactual survival model, then 

plugging the resulting counterfactual survival times into a prediction model for treatment 

initiation (which includes all other prognostic covariates) and finding the value that adds the 

least to the prediction model (see Figure 11b). That value represents the best estimate of 

treatment effect which could be used to obtain eψ as an acceleration factor (AF) - the 

parameter of interest to be used to adjust for non-adherence in the next step. In practice, the 

g-estimation could be applied using standard software (e.g. Stata).16, 101 

c) In this final step, the best value of the AF that gives the true treatment effect could then be 

used to adjust survival time for non-adherence for each patient in the experimental group. A 

similar approach could be applied to the control group (in case of two active treatments) to 

obtain the average treatment effect in terms of contrast, adjusted for patients’ non-

adherence (i.e. adjusted survival times in the experimental group compared to adjusted 

survival times in the control group had there been no non-adherence in both groups).  
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Figure 11: SNFTM with g-estimation adjustment analysis illustrated 

 

Source: Adapted from Latimer et al.100 This is an open access article distributed under the terms of the CC-BY 4.0 

license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and 

reproduction in any medium. 

SNFTMs are powerful in estimating the ACE of treatment in the presence of non-adherence taking into 

account how treatment effects depend on pre-treatment patient characteristics. It should be noted 

that the estimand used by SNFTM is for the entire study population, not just the compliers. The main 

limitation of SNFTMs is the potential biases related to the no unmeasured confounding assumption, 

which cannot be formally tested. 

2.9.2.3 Application in a case study 

Robins et al.84 applied the SNFTM to a case study to assess the effect of prophylaxis therapy [high- 

versus low-dose AZT treatment for PCP on survival (time-to-death) of HIV-positive patients. The 

analysis used data from the AIDS Clinical Trial Group 002 RCT, which involved an embedded 

observational study designed to estimate the ACE of PCP prophylaxis on survival outcome. The analysis 
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was restricted to the low-dose AZT arm. Patients who remained alive and at risk at 10 months from 

randomisation were split into two groups depending development of PCP at 8 months. This was 

interesting because PCP will be a confounder for the outcome between 8-10 months. That means 

patients who develop PCP at 8 months have a higher probability of dying at 10 months and at the 

same time, they are more likely to receive treatment between 8 and 10 months because PCP is a 

predictor of treatment initiation. An SNFTM with g-estimation was applied to estimate the causal 

effect using the analytical steps described in Section 2.9.2.2. 

The causal effect of prophylaxis on survival obtained using the SNFTM was a fractional change in life 

expectancy with a 95% CI of -0.18 to 0.16, indicating that there is no evidence of beneficial effect for 

PCP prophylaxis therapy. As the confidence interval includes zero, this finding means that PCP 

prophylaxis increases survival by 18% or decreases survival by 18% at the 0.05 confidence level.84  

Robins et al.84 did not provide comparative data with no adjustment using traditional methods such 

as ITT analysis. However, Robins36 provided empirical comparisons focused on robustness, plausibility, 

and strength of the assumptions used by this method compared to alternative methods for adjusting 

for non-adherence (see Chapter 3, Section 3.3).     

2.9.3 Rank-Preserving Structural Failure Time Models with G-estimation 

2.9.3.1 Origin of the method 

Rank-Preserving Structural Failure Time Models (RPSFTMs) were originally developed by Robins and 

Tsiatis 37 to adjust for non-adherence. This is a randomisation-based method for adjusting for non-

adherence using the counterfactual outcome framework. The RPSFTMs are semi-parametric, 

structural (or strong) versions of the accelerated failure time models (AFTMs) with time-dependent 

covariates. They are called “structural” because they directly model the counterfactual survival 

outcome from observed data. RPSFTMs belong to the broader class of SNMs which also include 

SNFTMs introduced in Section 2.9.2.  

Loeys et al.85 extended the RPSFTMs for adjusting for non-adherence in the context of cluster 

randomised trials (CRTs) and time-to-event outcomes. The argument is that cluster randomisation 

design could potentially involve different selective adherence levels on top of differences observed at 

the individual level. The description of this method is mainly based on Loeys et al.85, and the extensions 

to this method are introduced in Section 2.9.3.4. 
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2.9.3.2 Theoretical characteristics 

The RPSFTM works by developing a large sample for the rank estimators, deriving the optimal 

estimator, and then constructing some partially-adaptive estimators with efficiency approaching that 

of the optimal estimator. Loeys et al.85 proposed two models to account for clustering: (a) structural 

failure time model; and (b) structural model using “Wald” test in three working models. The three 

working models proposed in the second approach are: (i) standard estimation ignoring clustering; (ii) 

robust approach with the same model in (i); and (iii) a marginal model with a gamma distribution.  

RPSFTMs requires recensoring, which implies that the treatment effect may not represent the entire 

follow-up period as it is weighted towards an early stage of follow-up. Recensoring is used to address 

bias via informative censoring. However, this may be problematic as it involves discarding more 

information, especially when the treatment effect size is large. This is a key limitation of this method.   

In an RCT context, the RPSFTM works to adjust for non-adherence using the randomisation factor and 

the observed survival time and treatment history. The method splits the observed event time for 

patient i into two parts: time on treatment (Ti,on) and time off treatment (Ti,off). The observed time-to-

event 𝑇𝑖 can be computed using equation [21]: 

𝑇𝑖  =  𝑇𝑖,𝑜𝑛 + 𝑇𝑖,𝑜𝑓𝑓                        [21] 

To estimate the treatment effect, the simple model multiplies only the Ti,on part of the observed time, 

and therefore, the simplest outcome model becomes as follows: 

𝑇𝑖
0  =  𝑇𝑖,𝑜𝑓𝑓 + exp(𝜓) ×  𝑇𝑖,𝑜𝑛                       [22] 

where exp(𝜓) is the acceleration factor introduced in Section 2.9.2.2. The g-estimation procedure can 

then be used to find the value of 𝜓 using a grid search which can be applied using standard software 

(e.g. Stata).  

The RPSFTMs approach makes the following assumptions for estimating the causal effect: 

(a) The randomisation assumption; 

(b) Equal treatment effect regardless of timing for receiving the treatment, but relative to the 

time treatment was taken. This is known as the assumption of “common treatment effect”; 

(c) The treatment of one individual has no influence on the outcome of another individual; and 
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(d) Survival times and treatment-free survival times are proportional by an unknown factor that 

depends on the exposure.    

A simple RPSFTM (equation 23) can be constructed to estimate the counterfactual survival time 

(𝑇𝑖
0).37, 87 

𝑇𝑖
0 = ∫ exp [−𝜓𝑍𝑖𝐴𝑖(𝑡

𝑇𝑖

0

)]𝑑𝑡            [23] 

where 𝑍𝑖  is the randomisation variable, 𝐴𝑖  is a binary adherence variable which equals 1 when a 

patient initiated the treatment and 0 otherwise, 𝑇𝑖 is the observed survival time and the factor 

exp(𝜓) is the causal effect (the value by which survival time is shrunk or expanded as an effect of 

the treatment). At the “true” value of the parameter 𝜓 (which we can find using g-estimation), the 

counterfactual survival between randomised groups will be equal and that value of 𝜓 would be the 

point estimate of the treatment effect.  

In the context of RPSFTM, g-estimation searches for the value of psi that gives equal average untreated 

survival times between randomised groups. It is designed specifically for use in a randomised context 

and uses randomisation as an instrument which means that it does not require the no unmeasured 

confounding assumption, but is reliant on exclusion restriction (randomisation assumption) and 

common treatment effect. These are the key differentiators compared to SNFTM. Moreover, in 

common with other g-methods, RPSFTM assumes binary non-adherence which might not be the best 

approach for implementation non-adherence.  

In terms of disadvantages, the “equal treatment effect” assumption is particularly problematic as it 

might not hold in many situations. In addition, misspecified models may produce biased results, and 

in some cases, the analyst may face convergence problems when the g-estimation search for the best 

value of psi. In a situation where there is no clustering effect, the models proposed by this method 

may underestimate the treatment effect. Failure to include relevant baseline covariates relating to 

either clustering or individuals may produce estimates biased toward zero. However, based on the 

simulation study reported by Loeys et al.,85 this bias is likely to be small. On the other hand, and under 

certain conditions, incorporating cluster-specific covariates may overestimate the variability 

producing conservative estimates. A key limitation of the RPSFTM is that it can only work for adjusting 

for non-adherence in a placebo-controlled trial making it inappropriate to account for non-adherence 

in RCTs evaluating two active treatments. This is not the case for the other g-methods (IPCW and 

SNFTM).        
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2.9.3.3 Application in a simulation study and a case study 

The RPSFTM was evaluated using a simulation study and further applied to a case study. The case 

study used data from a placebo-controlled CRT to assess the causal effect of Vitamin A supplements 

on the short-term survival of infants (aged <6 months) with Vitamin A deficiency. The study recruited 

9178 infants from 261 wards (villages in Nepal) used as clusters with 6 4-monthly visits. The causal 

analysis was adjusted for treatment initiation type of non-adherence. The application in the case study 

showed how the RPSFTM could be used to account for clustering with differential levels of non-

adherence with a marginal approach (ignore clustering) and frailty approaches (adjust for clustering) 

used in the analysis. ITT analysis was also performed for comparison.   

The non-adjusted ITT results using KM estimator showed no beneficial effect on 4-months, although 

the results show a significant effect in the longer term (24 months). The RPSFTM results from the 

different causal analysis performed produced slightly different estimates compared to non-adjusted 

ITT analysis. However, only one causal analysis where the point estimate �̂�  had a lower bound of the 

95% CI greater than zero was found, indicating beneficial effect. Further details about the case study 

are reported in Loeys et al.85     

The simulation study was designed to assess two approaches: (i) a marginal approach (ignoring 

clustering or robust approach); and (ii) a frailty approach (adjusting for cluster effect on adherence). 

The main findings from the simulation study suggest a larger (but non-significant) effect of clustering 

using the RPSFTM compared to unadjusted ITT analysis. The study showed that the RPSFTM 

performed well under controlled conditions. Further details about the findings of the simulation study 

are reported in Loeys et al.85 The paper concluded that researchers should adjust for clustering and 

non-adherence when estimating treatment effect in CRT, which can be done using an RPSFTM without 

affecting the causal interpretation or adding any further complications to the analyses.   

2.9.3.4 RPSFTMs Extensions 

Incorporating baseline covariates to improve the precision of estimators  

The RPSFTM approach was extended by Korhonen and Palmgren 86 to include baseline covariates for 

improving the precision of estimators of the structural effect. Based on the counterfactual outcome 

framework, the extended method works by estimating the causal effect via a parametric expression 

incorporating adherence-related covariates back-transformed to the original variables. From a range 

of estimated values from the procedure, the parameter of interest which best achieves equal 

distributions between the two arms is the point estimate. The extension was proposed to address the 
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issue of reduced power caused by non-adherence, and this approach attempts to recover power in 

the structural analysis by incorporating baseline covariates.  

In terms of potential biases using this extended approach, there is a trade-off between more bias and 

less variability as a result of adjusting for prognostic factors.  Korhonen and Palmgren 86 propose rules 

of thumb for situations where efficiency may be gained by adjusting for prognostic covariates. 

However, if there is a strong association between adherence and prognosis (i.e. worse prognosis leads 

to less adherence), then this version of the RPSFTM may not be appropriate. Another situation where 

the method might not be appropriate is related to the role of several structural parameters (e.g. the 

effect of nuisance estimation from the control [NEC]) in the presence of an interaction effect between 

baseline covariates and adherence. The latter situation is an area that may need further research. 

Furthermore, the analyst may face complications because not all back-transformed datasets retain 

the proportional HR between the study arms.  

This extended version of the RPSFTM approach was assessed in a simulation study. The key evidence 

from the assessment proved that this extension could substantially improve efficiency compared to g-

estimation with no baseline covariate adjustment. The method was further applied in a case study on 

leukaemia. This was done using data from the alpha-tocopherol beta-carotene (ATBC) double-blinded 

RCT which was conducted in Finland. The study evaluated the causal effect of bone marrow 

transplantation versus conventional chemotherapy. The causal effect using this approach was 

reported as a 7.4% reduction in survival compared to 5.9% obtained from ITT analysis.  

Improving the efficiency of the estimators  

Loeys and Goethgebeur87 introduced a further extension in the same line proposed by Korhonen and 

Palmgren 86 as an attempt to improve efficiency by adjusting for covariates. They proposed estimating 

equations that combine the effect of covariates in one arm (control arm) with log-likelihood estimates 

of causal effect using data from a two-arm trial. The authors further assessed the proposed extension 

in a simulation study. They concluded that the efficacy gains would depend on the selective nature of 

non-adherence. Further details and the results are reported in Loeys and Goethgebeur.87    

Allowing for dependent censoring   

Matsui88 proposed a further extension to the RPSFTM approach to allow for censoring to depend on 

the underlying event processes that would have been observed if patients adhered to the assigned 

treatment. The extended approach allows the analyst to distinguish dependent censoring from 
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censoring due to random loss to follow up (random non-adherence) for improving adjustment for non-

random non-adherence. In this approach, the idea is to adjust for baseline covariates (that are good 

predictors of non-adherence) to capture the non-random underlying mechanism of non-adherence 

and censoring. However, the proposed approach might not be appropriate in a situation with non-null 

parameter values where the un-censored event time and uncensored dependent-censoring time are 

re-censored. At that point, the method will lose efficiency as compensation to gain unbiasedness. To 

gain more efficiency in this situation, an MSM with IPCW would be an alternative approach. 

This extended approach was applied in a simulation study and a case study on acute myeloid 

leukaemia. This was undertaken using data from the acute myeloid leukaemia (AML) two-arm RCT. 

The study evaluated macrophages colony-stimulating factor (M-CSF) versus placebo for time to blood 

count recovery outcome. The estimated HR using the proposed approach was 0.65 (95% CI: 0.57-0.81) 

– this was similar to estimates produced by the Robins and Tsiatis standard RPSFTM. In contrast, the 

ITT produced an HR of 0.68 (95% CI: 0.58-0.81), which is likely to be an underestimate of the treatment 

effect if the causal link between non-adherence and the outcome is taken into account.   

Choice of model and impact of re-censoring 

White and Goetghebeur 89 extended the RPSFTMs to estimate the causal effect relating to several 

treatments, focusing on the choice of model and dealing with censoring and re-censoring. The method 

used a similar approach described in the previous papers (including covariates); and therefore, the 

description here is limited to the issue of model choice and re-censoring. The paper presented three 

models: (i) univariate model with no censoring, (ii) considered censoring at the next stage, and (iii) 

multivariate model (incorporating treatment-related covariates). The method chooses a re-censoring 

time for all individuals such that the censoring becomes non-informative. The multivariate model can 

be used to incorporate covariates related to non-adherence such as side effects. The paper presented 

a case study and provided some guidance for the choice of covariates to go into the model.  

Regarding potential biases, if the effect of the randomised group is not constant, then re-censoring 

may produce a biased causal effect even if there is a balance between study arms. Model 

misspecification is another risk for producing misleading results. The univariate model (with no 

covariates) may not produce a valid causal effect when non-adherence is taken into account, and the 

results may be similar to ITT analysis. Further details about the results estimated from the case study 

are reported in White and Goetghebeur.89                  
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2.10 Pharmacometrics-based methods      

2.10.1 Pharmacokinetics and Pharmacodynamics-based Method 

2.10.1.1 Origin of the method 

This is a novel method which was designed to simulate a clinical trial based on pharmacokinetics-

pharmacodynamics (PKPD) modelling to estimate the effectiveness of various dosing algorithms and 

incorporating non-adherence. The method is based on pharmacometrics analysis of the dose-

exposure-response relationship, which was extended to incorporate adherence data for estimating 

adherence-adjusted effectiveness. 

The PKPD method was originally adapted by Pink et al.90 to estimate time within the therapeutic range 

(Cmin - Cmax range of drug concentration levels in the body) for different dosing algorithms of the 

assigned treatment. The method was further extended by Hill-McManus et al.91 to adjust for the 

impact of varying non-adherence (implementation and persistence) on the effectiveness of 

treatments. The description of this method is based on Pink et al.90 with the Hill-McManus et al.91  

extension discussed in Section 2.10.1.4.  

2.10.1.2 Theoretical characteristics 

The PKPD–based method could be used to model all types of non-adherence for estimating treatment 

effectiveness. The methods require model development and fitting using appropriate data, typically 

collected during each phase of clinical drug development, as well as a simulation based on different 

patterns of adherence, dosing schedules, and patient characteristics where covariate effects are 

relevant. The method works by linking the output from the PK model to the PD model for estimating 

the outcome in terms of a biomarker. Pink et al.90 described the PKPD linked model in a two-stage 

process: (a) simulate clinical trial data of different dosing algorithms (or adherence levels) based on a 

PKPD model that generates an output parameter (e.g. time within anticoagulant international 

normalised ratio (INR) therapeutic range); (b) estimate the link between INR-range and risk of 

cardiovascular events using evidence from the literature. The PKPD simulation reported by Pink et al. 

was based on published population single-compartment pharmacokinetics (PK) model and a kinetic-

pharmacodynamics (PD) model with two 3-state transit compartment chain, and the last state of each 

chain models the effect site.90 Further details of the PKPD model are reported in Hamberg et al.102  

The PKPD method works by incorporating variable dose implementation as an input function in the 

PKPD model. To reflect the real-world patterns of warfarin use, non-adherence was incorporated by 
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making two assumptions: (i) a fixed proportion of prescribed doses were missed at random (random 

non-adherence); and (ii) assumed a normal distribution for the timing of dosing with a standard 

deviation of 2 hours.  

The PKPD method relies on the “exclusion restriction” assumption, that is treatment assignment 

(randomisation) affects the outcome only through its effects on the exposure. The PKPD approach 

proposed by Pink et al. also assumed that patients who discontinued treatment have switched to the 

control arm. This latter assumption is less relevant to my definition of non-adherence, but this needs 

to be dealt with in the analysis. The key advantage of this method is that it provides an alternative to 

RCTs for estimating effectiveness for counterfactual levels of adherence to medications using evidence 

from the real world and the literature. In other words, the method could be based on simulations 

informed by data from existing trial estimates. Another advantage is that the method can be used to 

adjust for implementation and persistence types of adherence. A further advantage is that the method 

could potentially be used to account for non-binary implementation non-adherence.     

In terms of disadvantages, the method relies heavily on PKPD data which might not be routinely 

available in RCTs or observational studies. Another challenge is that calibrating a PKPD model is based 

mostly on phase I and II trial data with findings from the phase III trial and all the required data might 

not be available. While I have access to PK data in the context of immunosuppressive therapy after 

kidney transplantation (the area of my case study in Stage 3 of this research), this is unlikely to be the 

case for other disease areas, and this may limit the generalisability of this method to other chronic 

conditions. It might be difficult to apply the PKPD method in disease areas where there is no valid 

surrogate, or where that surrogate relationship might not hold for a treatment with a different 

mechanism of action. If the analyst has any reason to believe that the exclusion restriction assumption 

is violated, then a sensitivity analysis might help to explore potential bias. In addition, the PKPD 

method also requires an accurate/unbiased estimate of the link between drug concentration and 

patient outcomes.  

Other potential biases could come from indirect comparisons needed to include all treatment options 

in the model using evidence (e.g. distributions) from different studies. Also, the short-term nature of  

PKPD data tends to create an even greater reliance on extrapolation methods to estimate long-term 

effectiveness than for conventional outcomes. A further limitation relates to model misspecification 

and the two-stage process as potential sources for added uncertainty, which is very difficult to assess 

using a single measure of uncertainty.   
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2.10.1.3 Application in case studies 

Pink et al.90 applied this method in estimating the effectiveness of pharmacogenetics-guided warfarin 

compared with clinically-guided warfarin and other treatments for patients with AF. The PKPD output 

parameter used was the anticoagulant INR.  Data were simulated for 5000 hypothetical patients and 

INR measurements were generated to produce proportions of time (below, within and above) the 

therapeutic range for 3-months follow-up. Both initial doses and maintenance doses were simulated 

for each patient based on demographic and clinical variables. The result showed that time within range 

from the PKPD simulations produced a relative risk RR of 1.00047 of thromboembolic events and RR 

of 0.94100 of bleeds for pharmacogenetics-guided warfarin versus with clinically-guided warfarin. 

Further details are reported in Pink et al.90 

2.10.1.4 PKPD Extension: Modelling varying implementation and persistence 

non-adherence  

The PKPD method was extended by Hill-McManus et al.91 for modelling varying non-adherence 

(implementation and persistence). The theoretical characteristics are similar to those described above, 

and the main feature of this extension is the incorporation of both implementation and persistence 

measures of adherence in the analysis. As such, it is compatible with the adherence taxonomy 

described in Section 1.2.  

This version of the method used a published PKPD model which was extended to simulate the time 

course of serum Uric Acid (sUA) concentration for patients with varying levels of adherence to 

allopurinol for the treatment of gout, using NONMEM® PKPD software. The investigators modelled 

the plasma concentration of oxypurinol (an active metabolite of allopurinol) using a one-compartment 

PK model with first-order absorption and elimination kinetics. The PD model was based on a simple 

direct effect sigmoid Emax model provided in equation [24].91 

𝐸𝑢𝑟𝑎𝑡𝑒 = 𝐸0 − 𝐸𝑚𝑎𝑥 ∗
𝐶𝑜𝑥𝑦

𝜆

𝐶50
𝜆+𝐶𝑜𝑥𝑦

𝜆           [24] 

where Eurate is the serum urate level, E0 is the baseline sUA concentration, Emax is the maximum possible 

reduction in sUA concentration, Coxy is the oxypurinol plasma concentration, C50 is the oxypurinol 

plasma concentration at half the maximum reduction, and λ is a shape parameter known as the Hill 

coefficient. 
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Hill-McManus et al.91 simulated PKPD data for 500 patients using 4 options of dual urate-lowering 

therapy (ULT). These included Allopurinol 300mg, Allopurinol 300mg + optional lesinurad 200mg, 

febuxostat 80mg and febuxostat 80 mg plus lesinurad 200mg. Three patterns of medication adherence 

(100%, 80% and 50% levels of dose implementation) were modelled. The PKPD data was simulated for 

120 days including the first 30 days used to reach steady-state concentration. The main finding from 

the study is that the percentage of patients achieving target sUA concentrations decreases with lower 

levels of adherence. At an adherence level of 80%, the percentages for allopurinol and febuxostat 

were 35.7% and 71.3%, respectively. At a 50% adherence level, the percentages fell to 12.7 and 25.1%, 

respectively. Further details are reported in Hill-McManus et al.91     

2.11 Discussion and conclusions  

A comprehensive pearl growing and iterative search technique were used across seven electronic 

databases to identify relevant methodological papers for adjusting the causal effect of treatment in 

the presence of non-adherence for time-to-event outcomes. Citation searching and reference list 

checking for each “pearl” identified were used to complement the databases searching. In total, 20 

relevant papers covering 12 methods and 8 extensions to those methods were identified and included 

in the narrative synthesis reported in Sections 2.7-2.10 of this chapter.  

A taxonomy is proposed broadly categorising the identified methods into four different classes: (a) 

traditional methods: ITT, PP and AT; (b) principal stratification methods: Cox PH model with PLE, MCC 

in a three-stage method and Wtd PP with EM estimator; C-PROPHET, IV; (c) g-methods:  MSMs with 

IPCW/IPTW, SNFTMs and RPSFTMs with g-estimation; and (d) Pharmacometrics-based methods 

(PKPD). Each of these methods was described in terms of its origin (if originally developed to adjust 

for non-adherence or represents an extension to another method); theoretical characteristics 

(including how it works to adjust for non-adherence, key assumptions, advantages and disadvantages 

and potential biases); and application in a simulation study and/or a case study.  

Each method makes specific assumptions and has associated limitations, and many of these 

assumptions are non-testable. The “no unmeasured confounding” assumption is a key assumption 

used by MSMs and SNFTMs. It should be noted that even if the authors of the identified papers do not 

talk about no unmeasured confounding if the method relies upon using covariates to control for 

differences between groups, the analyst would need no unmeasured confounding assumption. If this 

assumption seems implausible for a particular dataset, then the analyst may choose an alternative 

method (such as IV, C-PROPHET or PKPD) which does not rely on this assumption. However, IV and C-

PROPHET rely on another key assumption, the exclusion restriction assumption which is likely to hold 
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in a double-blinded RCT design when randomisation is used as an instrument. The choice of the non-

adherence adjustment method will partly depend on the trade-offs based on the assumptions used 

by the alternative methods.       

Existing evidence from simulation studies showed that the g-methods (SNM, MSM, and RPSFTM) plus 

C-PROPHET and IV methods have generally performed well in terms of asymptotic properties of the 

estimators. However, violation of any of the assumptions they make or failure to incorporate relevant 

time-fixed and time-varying confounders may produce biased results. While it is important to think 

about which covariates should be included, the analyst should also think carefully about which 

covariates should not be included. The latter is particularly important to avoid confounding by 

indication bias, or “conditioning on a collider” bias when using simple methods. Many tools were 

proposed for identifying and evaluating relevant covariates including tests of independence and causal 

DAGs informed by evidence from data, or the literature might help. The PKPD-based method is also 

promising, but the data requirements might be an issue for application in research practice. Problems 

of comparability across alternative methods, due to different estimands, was also identified as a key 

issue. The type of estimand is an important aspect when selecting methods for estimating causal 

effects for use in an HTA context. This is further discussed in Chapter 3. 

One of the limitations of this review relates to the screening process at the title stage. A higher number 

of papers were excluded at that stage because the title was not relevant. While this might be an issue, 

the final list of included papers was checked by two expert advisors. In addition, the review has been 

published in a leading academic journal and presented at an international conference, with neither 

prompting any communications relating to additional relevant methods.61  

In conclusion, a range of statistical methods is available for adjusting the causal effect of treatments 

in the presence of non-adherence for time-to-event outcomes. Each method makes specific 

assumptions and has associated limitations. G-methods and PKPD methods are promising to adjust 

for non-adherence in estimating the real-world effectiveness of treatments. G-methods rely on 

adherence being binary which might not be the best approach for implementation non-adherence.            
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Chapter 3: Comparison of non-adherence adjustment methods and 

appropriateness to the context of health technology assessment 

3.1 Introduction 

Part of this chapter is reproduced from Alshreef et al.61 This is an open access article distributed under 

the terms of the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/), which permits 

unrestricted use, distribution, and reproduction in any medium. The text includes minor additions and 

formatting changes to the original".  

This chapter compares the identified non-adherence adjustment methods based on existing evidence 

from the literature. Section 3.2 summarises the set of papers used for comparing methods. Section 

3.3 discusses methods compared using empirical evidence. Section 3.4 discusses methods compared 

in simulation studies. Section 3.5 discusses methods compared using real data in case studies. Section 

3.6 discusses comparisons based on both simulation and read-data case studies reported in the same 

paper. Section 3.7 assesses the appropriateness of non-adherence adjustment methods for the 

context of HTA. Provides the selection of methods for assessment in the Simulation study. Section 3.8 

presents the selection of methods for assessment in the Simulation study. Section 3.9 provides 

conclusions of the comparisons.        

3.2 Existing evidence comparing non-adherence adjustment methods   

A set of nine papers that compared some of the identified methods in a simulation study, a case study 

or both, specifically in the context of non-adherence, was identified from the systematic review 

reported in Chapter 2. These papers were excluded from the set of 20 papers identified by the review 

on the basis that they report method(s) already known without any extension. However, the papers 

provide a better understanding of the performance of each method compared to alternative methods 

based on existing evidence. Table 7 shows the methods compared by each paper including the type 

of study, disease area, interventions compared and the outcome.  
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Table 7: Comparison of methods in a simulation study or case study, disease area, interventions 
compared and the outcome 

No Reference  Method Type of 
study  

Disease 
area 

Interventions 
compared  

Outcome 

1 Robins, 199836 MSMs with 
IPCW, 
SNFTMs 
with g-
estimation 

Empirical None None None 

2 Odondi and 
McNamee, 
2010103 

ITT, IV, C-
PROPHET 

Simulation 
study 

Hypothetical Active treatment vs 
control 

Time to event 

3 Lee et al., 
1991104 

ITT, AT Case study Epilepsy Phenobarbital vs 
placebo 

Time to 
seizure 
recurrence  

4 Mark and 
Robins, 1993105 

CPH, 
RPSFTMs 

Case study CHD Special intervention 
involves stepped 
care protocol vs 
usual care by 
community 
physicians  

Time to death 
(all-cause 
deaths, all 
CHD deaths)  

5 Robins and 
Greenland, 
1994106 

RPSFTMs Case study AIDS High-dose AZT vs 
Low-dose AZT 

Time to death 

6 Yamaguchi and 
Ohashi (2004)107 

SNFTMs, 
MSMs 

Case study Lung cancer CDDP+CPT-11 (CPT-
P) vs CDDP+VDS 
(VDS-P) 

Time to death 

7 Kubo et al., 
201538 

ITT, MSMs 
with IPCW, 
RPSFTMs 

Case study CVD Cinacalcet versus 
Placebo 

Time to 
primary 
composite 
endpoint CVD 
event 

8 Cain and Cole, 
2009108 

ITT, MSMs 
with IPCW 

Simulation 
study, 
Case study 

AIDS  Highly Active Anti-
Retroviral Therapy 
(HAART) vs 
combination ART 

Time to death 

9 Zhang et al., 
201140 

ITT, MSMs 
with IPCW 

Simulation 
study, 
Case study 

Non-ST-
segment 
elevation 
acute 
coronary 
syndromes 

Enoxaparin versus 
Unfractionated 
heparin (UFH) 

Time to all-
cause death 
or myocardial 
infarction 

3.3 Methods compared empirically   

In 1998, Robins36 published a comprehensive paper describing and comparing alternative g-methods 

for adjusting for non-adherence in the context of equivalence trials. The paper discussed SNMs and 

MSMs (among other methods) using empirical examples. The paper was focused on comparing the 

methods in terms of plausibility and robustness in correcting the causal effect for non-adherence. The 

paper also assessed the strength of assumptions used by each method. The paper provided an 
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overview of programming and computational burden for each method and suggested that this should 

be considered when selecting the appropriate analytical approach. The assumption for correcting for 

non-adherence relates to whether non-adherence is random (ignorable) or not, conditional on the 

history of baseline covariates and post-randomisation time-dependent prognostic factors. The choice 

of the appropriate model will depend, largely, on whether the conditions are met in the data. The 

paper was focused on random (ignorable) non-adherence; but, since this paper was published, many 

of the identified methods were further developed to adjust for “non-random” non-adherence, which 

is of primary interest within this thesis.    

3.4 Methods compared in simulation studies  

In 2010, Odondi et al.103 published findings from a simulation study that assessed a wide range of 

methods for adjusting for non-adherence in the context of survival analysis. Six variants of methods 

were compared: (i) ITT Cox PH model ignoring non-adherence; (ii) Cox PH model adjusting for non-

adherence using simple regression adjustment; (iii) Cox time-dependent PH model incorporating time-

dependent covariates; (iv) C-PROPHET; (v) RPSFTM; (vi) and the IV method. The study assumed that 

once a patient becomes non-adherent, they remain so for the rest of the study follow-up; this may 

not be realistic in the context of time-varying chronic medications. In addition, the treatment effect 

was assumed to be homogenous in the simulation models (i.e. the true HR was assumed to be either 

0.5 or 1).  

The simulation study design involved a two-arm RCT with active treatment and control using a sample 

size of 1000 patients and a follow-up of 24 months. Simulated scenarios included ‘random’ and ‘non-

random’ non-adherence as well as an alternative adherence measure factor using all-or-nothing non-

adherence (binary variable) or partial non-adherence (time-dependent variable). The causal 

parameter of interest was the HR and three performance measures were used: (i) bias, (ii) 95% CI 

coverage (the proportion of times that 95% CI contains the true parameter value), and (iii) root mean 

square errors (RMSE), which is a measure of overall accuracy incorporating bias and variability 

measures.  

The main results of the simulation study showed that the simple regression adjustment produced a 

small bias of -0.007 on the HR scale when adjusting for random time-dependent non-adherence.103 

However, the bias increased to -0.057 in the non-random non-adherence scenario.103 In contrast, the 

results showed no important bias produced by C-PROPHET and RPSFTM under both random and non-

random non-adherence scenarios. However, the good performance in unbiasedness came at a price 

in terms of RMSE and coverage. The paper concluded that the RPSFTM performed the best in terms 



107 
 

of unbiasedness and coverage; however, the method had the largest RMSE. In contrast, C-PROPHET 

coverage was the poorest. The key findings of this simulation study support the importance of 

incorporating relevant prognostic factors (confounders) when adjusting for non-adherence. 

3.5 Methods compared in case studies   

Lee et al.104 compared AT with ITT using data from a two-arm double-blind RCT for estimating the 

causal effect of phenobarbital vs placebo on recurrence of febrile seizures in young children. The study 

had a sample size of 217 patients with clinic visits at 6 weeks followed by 6-monthly visits up 30 

months follow up from baseline. The study considered three definitions of actual treatment received: 

(i) full adherence to the assigned treatment; (ii) adequate drug load estimated as average daily drug 

level over six-month time intervals; and (iii) adequate drug load defined as daily phenobarbital load of 

≥10 mg/ml for one year prior to the two-year clinic visit.          

Mark and Robins 105 and Robins and Greenland 106 both compared the RPSFTM with the standard Cox 

PH model. Mark and Robins105 used data from the Multiple Risk Factor Intervention Trial (MRFIT) for 

assessing the effectiveness of a cigarette cessation intervention on survival while controlling for time-

dependent confounders (e.g. angina). Robins and Greenland 106 used data from AIDS Clinical Group 

002 RCT (introduced in Section 2.9.2.2). Both papers concluded that the RPSFTM performs well while 

the standard Cox model produced biased estimates when there exists non-adherence to the assigned 

treatment. Further details about these comparisons are published elsewhere.105, 106   

Yamaguchi and Ohashi 107 compared SNFTM, MSM and ITT methods in a case study on non-small-cell 

lung cancer using data from a superiority trial. The analysis was used to estimate the counterfactual 

causal effect (survival differences) that would have been observed had every randomised individual 

received the radiotherapy treatment (second-line treatment). The HR from the ITT analysis was 0.97, 

while SNFTM (assuming a Weibull distribution) produced an HR of 0.50. It is clear that the ITT provides 

a different estimate of the causal effect; however, this is not directly comparable to the SNFTM or 

MSM estimates due to different estimands. Further details about this case study are reported in 

Yamaguchi and Ohashi.107          

Finally, Kubo et al.38 have recently published a paper comparing a range of methods for estimating the 

causal effect of cinacalcet using real data from a double-blinded placebo-controlled RCT (EVOLVE trial). 

The EVOLVE trial had a sample size of 3883 participants with extensive discontinuation non-adherence 

levels of 67% and 71% in the intervention arm and the control arm, respectively. Methods compared 

and their corresponding estimates of the HR for death were: ITT=0.93, IPCW=0.85, and 

RPSFTM=0.85.38 Although the ITT analysis produced slighted higher estimate indicating a bias towards 
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the null, it was not clear if the investigators have fully explored and adjusted for relevant baseline and 

time-dependent covariates. Further details are reported in Kubo et al.38         

3.6 Methods compared in both simulation and case studies   

Cain and Cole108 reported the first simulation evidence that evaluated the IPCW compared with ITT 

analysis in the context of time-to-event outcomes and non-adherence. The simulation study design 

involved a two-arm RCT comparing highly-active antiretroviral therapy (HAART) to placebo using a 

sample size of 1000 men and 2000 simulations draws. Scenarios assessed included 100%, 80% and 60% 

levels of non-random adherence to the assigned treatment. The findings from the simulation study 

showed good performance of the IPCW estimator (in terms of unbiasedness and RMSE) compared to 

ITT in scenarios with imperfect adherence. However, bias and imprecision appear to increase as the 

level of non-adherence increases. This indicates that in situations where the level of non-adherence is 

high, the method might not work properly. In other words, bias and impression appear to increase as 

adherence level decreases.   

Cain and Cole108 also reported the application of IPCW and ITT in a case study using data from the AIDS 

Clinical Trial Group 320 comparing HAART with a regimen of combination ART. The trial recruited 1156 

patients aged at least 16 years with an HIV positive test and immunosuppressed with a maximum of 

52 weeks follow-up. The authors reported that they adjusted for two time-varying covariates; CD4 cell 

count and a summary measure of HIV-related symptoms. They also reported adjustment for time-

fixed covariates in the model; particularly, age, gender, race, ethnicity, CD4 count at baseline, and 

whether the patient was on Zidovudine for more than one year before randomisation. IPCW was 

applied where patients were censored at the first time they become non-adherent or when they were 

lost to follow-up. The IPCW adjusted HR estimates was 0.46 (95% CI: 0.25-0.85) compared the ITT 

unadjusted HR estimates of 0.75 (95% CI: 0.43-1.31).108 The adjusted analysis shows the treatment 

effect had everyone in the trial adhered to the assigned treatment. The finding suggests that the IPCW 

adjusted estimates were 63-13% farther from the ITT estimates. These results are only valid if the 

IPCW assumptions hold and the method has worked. The results clearly show that the ITT approach 

has underestimated the actual treatment effect as the method is designed to estimate the effect of 

treatment assignment rather than the effect of treatment itself. The authors concluded that IPCW 

could be used to help in adjusting for non-adherence in treatment effect estimates. 

In 2011, Zhang et al40 published a paper that compared the same methods (IPCW and ITT) that led to 

similar conclusions. The methods were applied in the SYNERGY trial, an open-label multicentre RCT of 

9,487 patients compared two anticoagulant drugs (enoxaparin versus unfractionated heparin) with 12 
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months follow-up. The primary time-to-event outcome was a composite endpoint defined as time to 

all-cause death or myocardial infarction within 30 days of randomisation. The IPCW adjusted HR 

estimate was 1.08 (95% CI: 0.92-1.22) compared to ITT estimates of 1.06 (95% CI: 0.92-1.26). In 

addition, the authors investigated a modified version of IPCW designed to incorporate “augmentation” 

(proposed by Robins 1994) for improving the precision of the estimator. The result of the modified 

IPCW adjusted HR was 1.07 (95% CI: 0.91-1.25).40 The authors concluded that the efficiency gain is not 

worth the increased complexity. Further details are reported in Zhang et al.40      

3.7 Appropriateness of non-adherence adjustment methods to the 

HTA context 

The concept of the appropriateness of non-adherence adjustment methods to the HTA context was 

introduced in Chapter 1, Section 1.5.  However, the concept needs to be developed further in order 

to make a more robust assessment of ‘appropriateness’. In this regard, I have identified three criteria 

for assessing the appropriateness of the alternative adjustment methods. The criteria were: (a) the 

suitability of the estimand (as described below); (b) the types of non-adherence the method is capable 

of dealing with; and (c) whether it is possible to use the method to account for real-world non-

adherence levels.  

In the HTA context, resource allocation decisions are usually made for a specified population defined 

by the scope for each decision problem. The estimands of interest are those covering the entire study 

population (as specified by the RCT eligibility criteria), and this should be identifiable at baseline for 

resource allocation decision making. Therefore, estimands focused on latent subgroups of patients 

(e.g., compliers) may not be appropriate for the HTA context. Often there are issues in NICE appraisals 

because the RCT populations do not reflect NHS populations. This is another reason that the HTA 

needs to consider probably different adherence levels in the real world compared to trials. In addition, 

HTA probably prefers a treatment effect from a full selected trial population compared to a treatment 

effect from a select group within a selected trial population. Therefore, presenting the cost-

effectiveness results with real-world adherence levels accounted for alongside the cost-effectiveness 

results based on standard ITT unadjusted analysis will provide useful information for HTA bodies (such 

as NICE) and Technology Appraisal committees.  

The appropriateness for HTA is provided in Table 8. The table shows how each identified method is 

assessed against the selection criterion with more details provided in the notes column. The results 

based on the criteria applied for assessing appropriateness (suitability of the estimand, type of non-

adherence and possibility to account for real-world non-adherence levels) for each of the identified 
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adjustment methods is provided in Table 8. Five methods (ITT, MSMs, SNFTMs, RPSFTMs and PKPD) 

generate the estimand that is appropriate for HTA (covering the entire study population), with only 

three of these being capable of accounting for all types of non-adherence (MSMs, SNFTMs and PKPD). 

Five methods are thought to be capable of re-estimating effectiveness for real-world levels of non-

adherence. When looking across all three facets of estimating effectiveness for HTA, g-methods and 

PKPD appear to be more appropriate. 

Table 8: Appropriateness of estimand for the HTA context, types of non-adherence, possibility to 
account for real-world adherence levels and suitability of the effectiveness estimates for HTA using 
the alternative adjustment methods 

Method Appropriateness 

of estimand for 

HTA context * 

Type of non-adherence which can 

be adjusted for using the method 

Possibility to 

account for 

real-world 

non-

adherence 

levels‡ 

Suitability 

of the 

method 

for use in 

HTA 

Notes 

Initiation, 

Implementation, 

Persistence 

Random, 

Explainable 

non-random, 

No-random† 

ITT Yes None None No No - The estimand is 

marginalised to the 

entire population. 

- Cannot estimate 

counterfactual 

estimands (i.e. 

treatment 

effectiveness given 

adherence levels in 

the real world). 

PP No Initiation, 

implementation, 

persistence  

Random No No - The estimand is not 
marginalised to the 
entire population.  
- Excluding the 

protocol non-

compliers may break 

the randomisation 

balance leading to 

selection bias if 

protocol non-

compliance is related 

to the underlying 

prognosis. 

AT No Initiation Random No No -  Does not respect 
the randomisation 
balance which may 
lead to selection 
bias. 
-  Cannot estimate 
counterfactual 
estimands 
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CPH with 

PLE 

No Initiation Random, 

Explainable 

non-random 

No No - The CACE estimand 
used by all five 
methods is not 
marginalised to the 
entire population.  
- The compliers class 
is a latent group of 
patients which is not 
identifiable at 
baseline, making it 
difficult for 
policymakers to 
make resource 
allocation decisions 
based on CACE 
estimand. 
- IV can estimate 
effectiveness given 
real-world adherence 
level based on the 
counterfactual 
outcome framework 

MCC No Initiation, 

Implementation 

Random No No 

Wtd PP No Initiation Explainable 

non-random 

No No 

C-PROPHET No Initiation Non-random No No 

IV No Initiation, 

Implementation, 

persistence 

Non-random Yes No 

MSMs Yes Initiation, 

implementation, 

persistence 

Explainable 

non-random 

Yes Yes - Effectiveness 

estimates are 

marginalised to the 

entire study 

population. 

- Can be used to 

account for real-

world adherence 

levels  

- RPSFTM only 

estimates the “all 

treated” vs “non-

treated” estimand 

making it applicable 

to adjust for 

“initiation” type of 

adherence only. 

SNFTMs Yes Initiation, 

implementation, 

persistence 

Explainable 

non-random 

Yes Yes 

RPSFTMs Yes Initiation Non-random Yes Yes 

PKPD Yes Initiation, 

implementation, 

persistence 

Explainable 

non-random 

Yes Yes - The estimand is 

marginalised to the 

entire population. 

- Can estimate 

effectiveness given 

different adherence 

patterns. 

* In the HTA context, the estimand of interest includes the entire study population and this should be identifiable at 

baseline for resource allocation decision making.  

† This column specifies the type of non-adherence that each adjustment method is capable of dealing with in terms of 

random (non-selective) non-adherence, explainable non-random (selective) non-adherence (i.e. non-adherence 

explainable by observed covariates),  or no-random (selective) non-adherence.  

‡ In the HTA context, methods for adjusting trial data for non-adherence needs to be capable of re-estimating treatment 

effectiveness for any given level of adherence (e.g. real-world adherence levels).  
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The main differences between the four classes of methods (as categorised by the proposed taxonomy) 

are the estimands, assumptions, and the types of non-adherence that each method is capable of 

dealing with. Simple methods are only valid in the presence of random (non-selective) non-adherence. 

Principal stratification methods are capable of adjusting for some types of non-adherence, but their 

estimands seem inappropriate for the HTA context based on the criteria I set out in the first paragraph 

of this section. Both g-methods and PKPD can deal with real-world non-adherence and their estimands 

are appropriate for HTA. G-methods are similar in terms of their capability for adjusting effectiveness 

estimates for counterfactual non-adherence levels. In other words, can be used to re-estimate the 

treatment effect taking into account a predicted adherence within the RCT dataset and this is 

explained further in Chapter 6.  However, PKPD is a unique method that uses a different approach 

compared to g-methods.  

In practice, the analyst could apply g-methods to individual patient-level data from an RCT to re-

estimate treatment effectiveness (adjusted for real-world predicted non-adherence) for populating 

cost-effectiveness models. The analytical approach is described further in Chapter 6. Real-world 

adherence levels could be estimated from registry data or observational studies. All g-methods could 

be applied using standard software (e.g. SAS, Stata or R).16, 109-111 While g-methods could be applied to 

real RCT datasets, the PKPD approach relies on simulating an RCT dataset based on a specified pattern 

of non-adherence (e.g. real-world adherence), and then uses the simulated data for generating the 

adjusted estimates. This would require data (including PKPD data) collected at different phases of 

clinical drug development. PKPD method can be applied using specialist software (e.g. NONMEM) or 

standard software (e.g. R) for simulating the dataset.112   

The PKPD approach also, typically, require additional modelling in order to link the Pharmacometrics 

measures to the clinical and patient-based outcomes necessary for HTA. It is also about the 

specification of the surrogate-final endpoint relationship which may be difficult. This adds an 

additional layer of complexity and uncertainty.  It would also require a shift away from the preference 

in HTA of using Phase III trial data. Consequently, there is sufficient uncertainty around its 

appropriateness for HTA to exclude it from the simulation study and this has been identified as a key 

area for further research.   

3.8 Selection of methods for assessment in the simulation study 

A subset of the identified methods was carried forward for assessment of performance in the 

simulation study (Stage 3). The selection was based on the appropriateness of the non-adherence 

adjustment to the HTA context (see Section 3.7 for greater detail). The application of the assessment 
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criteria on the adjustment methods is provided in Table 9. One of the key requirements for selecting 

methods to be carried forward is the ability to use the methods to adjust effect estimates accounting 

for real world adherence levels. 

Based on this selection criterion, five methods were considered for assessment in the simulation study 

(ITT, MSMs, SNFTMs, RPSFTMs and PKPD). RPSFTM and PKPD were further excluded from further 

assessment in the simulation study. The RPSFTM only works for adjusting for initiation non-adherence 

in placebo-control RCTs. The method cannot deal with implementation or persistence non-adherence.  

However, the planned simulation study was focused on comparing two active treatments informed by 

the design of an RCT assessing maintenance immunosuppressive therapy in kidney transplantation 

(tacrolimus versus cyclosporine regimens). Therefore, the RPSFTM model was excluded as it was not 

possible to directly compare it with the alternative adjustment methods in this particular simulation 

study. Attempting to develop a simulation study that links PKPD, to covariates and clinical outcomes, 

such that it can be directly compared to the other adjustment methods was deemed to be too complex 

for the timescales of a doctoral study. However, the application of the PKPD method for adjusting 

cost-effectiveness for different levels of non-adherence was assessed in a recent doctoral thesis by 

Hill-McManus et al (see Section 2.10.1.4).91 

A final list of four methods was selected to be carried forward for assessment in the simulation study 

comprising ITT, PP, MSMs, and SNFTMs. Based on the selection criterion, PP analysis was considered 

as not appropriate for the HTA context; however, it was included in the simulation study as it was 

thought to provide a useful benchmark given its widespread use.
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Table 9: Selection of methods for assessment in the simulation study based on the appropriateness to 
HTA context 

Method(s) Appropriateness for 
the HTA context 

Selected for 
assessment in 
the simulation 
study 

Notes 

ITT Yes Yes The standard ITT method was selected for 
inclusion as a do-nothing strategy (comparator 
against the alternative adjustment methods.  

PP No Yes Although there are some concerns about the 
relevance of PP analysis for HTA, I decided to 
include this method in the simulation study as it 
is commonly used as a conventional method of 
analysis in RCTs.  The main concerns are:   
- The estimand is not marginalised to the entire 
population.  
- Excluding the protocol non-compliers may 
break the randomisation balance leading to 
selection bias if protocol non-compliance is 
related to the underlying prognosis. 

AT No No Does not respect the randomisation balance 
which may lead to selection bias.    

CPH, MCC,  

Wtd PP, IV  

C-PROPHET 

No No - The estimand is not marginalised to the entire 
population.  
- The compliers class is a latent group of 
patients which is not identifiable at baseline, 
making it difficult for policymakers to make 
resource allocation decisions based on CACE 
estimand. 

MSM with 

IPCW, 

SNFTM with 

g-estimation 

 

Yes Yes This is a subset of g-methods in the taxonomy 
which meets the three criteria regarding the 
appropriateness for the HTA context 

RPSFTM with 

g-estimation 

Yes No RPSFTM only estimates the “all treated” vs 
“non-treated” estimand making it applicable to 
adjust for “initiation type of adherence only. 
The causal effect estimated by RPSFTM is 
marginalised to the entire population, but the 
method only works for a placebo-controlled RCT 
design.  

PKPD Yes No The method requires a different simulation 
study design and DGMs and it is not possible to 
directly compare it with the alternative 
adjustment methods within the planned 
simulation study. The method has been 
assessed for adjusting for different levels of 
non-adherence in a recent doctoral thesis by 
Hill-McManus et al.91   
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3.9 Conclusions 

In summary, this chapter compared the adjustment methods based on a review of nine studies and 

these identified several important issues, including different performance in situations with high levels 

of non-adherence, computation burden and convergence problems in simulations. I then assessed the 

appropriateness of the methods for HTA based on a set of three criteria. Using the evidence from 

Chapter 2, the comparative evidence in this chapter and the assessment of appropriateness for HTA, 

I identified four methods to examine in a simulation study (Chapters 4-5). 

As a limitation, I recognise that the choice of criteria and the assessment of methods against them 

involve an element of subjectivity and others may not agree with them. 
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Chapter 4: Simulation study assessing the performance of non-

adherence adjustment methods: Study design and methods  

4.1 Introduction 

Chapter 3 compared non-adherence adjustment methods based on existing empirical evidence, 

simulation studies and case studies. A subset of the identified methods was selected for assessment 

of performance in a simulation study based on their appropriateness to the HTA context.61 This 

chapter presents the design and methodology of the simulation study to assess the performance of 

these methods across a range of realistic scenarios. Sections 4.2-4.7 describe the design of the 

simulation study using the ADEMP (Aims, Data-generating mechanisms, Estimands, Methods, 

Performance measures) structural approach for planning simulation studies.113 Section 4.8 outlines 

the steps undertaken to perform the simulation study. The results of the simulation study are 

presented and discussed in Chapter 5.  

The simulation study was based on evaluating the treatment effect of hypothetical maintenance 

immunosuppressive drugs on graft survival for kidney transplantation in adults. A series of patient-

level RCT datasets were simulated and non-adherence was applied within these datasets based on 

different profiles of non-adherence identified from the literature.55, 114 Simulation studies are 

performed using computer-intensive procedures for different purposes including assessing the 

performance of statistical methods in estimating outcomes relative to a known truth.113, 115 Whilst not 

perfect, simulation studies have been widely used to test the performance of a variety of statistical 

methods.113 We can “assess” statistical methods by applying them to real-world data (RWD), for 

example, by seeing if they converge, but we do not know if they give us a correct result or not, because 

in real-world data we do not know the “truth”. 

4.2 Simulation study design overview 

The simulation study plan is based on guidelines published by Burton et al.115 and Morris et al.113 The 

pre-specified protocol for the simulation study is presented in the subsequent sections describing the 

design of the simulation study. This protocol was developed using the ADEMP structural approach for 

planning simulation studies.113  

In the following sub-sections, I state the aim of the simulation study, then describe the data-

generating process through the development of a directed acyclic graph (DAG), followed by the 
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identification of covariates and specification of adherence and time-to-event models. I then describe 

the selection of a series of scenarios over which the performance of the different methods is assessed. 

4.3 Aim of the simulation study 

The simulation study aimed to assess the performance of alternative non-adherence adjustment 

methods in estimating the treatment effect using simulated RCT datasets with a time-to-event 

outcome. The simulation study was designed to answer the following research question: “What is the 

relative performance of the alternative methods in estimating the impact of non-adherence on 

treatment effectiveness?”. The simulation study provides evidence on the relative performance of 

methods across a range of realistic scenarios with different types and levels of patient non-adherence.  

4.4 Data-generating mechanisms 

The data-generating mechanisms (DGMs) refer to how the simulated data were created. These involve 

the specification of the pattern of non-adherence, prognostic variables, distributions, covariate 

correlation structures and random number generators. It was important to simulate baseline and 

time-dependent variables that were strongly prognostic and strongly related to adherence so that I 

can properly try to test the alternative adjustment methods in such circumstances (irrespective of 

what the variables are). However, in reality, there will be more variables in the dataset, things would 

be more complex, and these assumptions and simplification were necessary to test the performance 

of methods.   

Complex DGMs were used to allow the assessment of alternative non-adherence adjustment methods 

across a range of pre-specified scenarios. The scenarios covered alternative representations of factors 

thought to influence estimated efficacy, including its associated uncertainty. The factors are; type of 

non-adherence, level of non-adherence, sample size, and the pattern of hazards (as represented by 

an underlying graft survival model, effect size, relationship between treatment effect and adherence 

level and the existence of any time-dependent treatment effect). The choice of these factors and the 

levels chosen for each are described in Section 4.4.6. A parametric simulation approach was used to 

compare the performance of each method against a known “truth”, as specified in Section 4.7.  

4.4.1 Directed acyclic graph (DAG) 

The DAG presented in Figure 12 shows the relationships between covariates incorporated in the data-

generating model, including randomisation, baseline and time-varying covariates, non-adherence and 
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graft survival outcome. The DAG was used to conceptualise and guide the process of simulating the 

datasets. The variables included in simulating the datasets are described in this section and defined 

below the figure. The DAG comprises nodes denoted Z, A, L and Y, representing the abovementioned 

variables at different time points. The DAG also include edges (arrows) representing the relationship 

between these variables. In this Figure, Z is the randomisation variable, A, L and Y represent non-

adherence, baseline and time-dependent confounders and graft loss outcome, respectively. The non-

adherence variable A also represents treatment, as essentially treatment is the inverse of non-

adherence. In this DAG, time is assumed to flow from left to right and therefore the process starts 

with the randomisation variable (Z) followed by As and Ls and each one of them affecting the Y 

outcome at the end (see Figure 12).  

In the DAG figure, the randomisation variable Z is assumed to affect the initiation of treatment and 

non-adherence only occurs after that. Ls affect subsequent As and the outcome and the Ls themselves 

are affected by previous As, representing time-dependent confounding. For example, time-varying 

confounder L1 influences both the probability of non-adherence A2 and graft survival outcome Y and 

was also influenced by previous treatment A1. Baseline covariates and the values of time-dependent 

confounders at baseline, both denoted as L0, are common causes which means they influence both 

graft survival outcome and non-adherence between baseline and the first follow-up time point A1. The 

primary outcome Y is time to graft loss with administrative censoring at the end of the study (12 

months) and this is influenced by the values of baseline and time-dependent covariates. The variable 

relationships are modelled such that they satisfy the conditions of time-dependent confounding (see 

Chapter 1, Section 1.3.4). This is important because time-dependent confounding is expected to be 

present in reality.   
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Figure 12: A DAG representing variable relationships in the data-generating model for 
implementation non-adherence 

 

Z= is randomisation  

L0= is a vector of baseline covariates that includes age. L0 also include values of time-varying covariates 

measured at baseline. 

L1, L2 = updated time-varying covariate (BMI) at 4 and 8 months, respectively.  

A0, A1, A2, A3= time-varying non-adherence at baseline, between baseline and 4 months, 4- 8 months and 8-12 

months, respectively.    

4.4.2 The pattern of non-adherence and simulation factors 

The pattern of non-adherence to medications is an important aspect of the simulation study’s design. 

The simulation study needed to be capable of reflecting real-world non-adherence; I attempted to 

achieve this by simulating different levels of non-adherence (e.g. high/low implementation) that differ 

by treatment arm as non-adherence is likely to be influenced by treatment and dosing regimen.  

To consider the pattern of non-adherence for the simulation study design, I held a one-hour meeting 

with two clinicians (WM and JF, Consultant Nephrologists, Northern General Hospital, Sheffield 

Teaching Hospitals NHS Foundation Trust). The main topics discussed included: the important patterns 

of non-adherence to immunosuppressants in adult kidney transplant patients; patient characteristics 

which may predict non-adherence patterns; biomarkers and prognostic factors associated with non-

adherence and graft loss; and measurement of adherence in clinical trials and the real world.  

 



120 
 

The meeting highlighted the following issues: 

• Sub-optimal implementation was identified as the most important type of non-adherence 

followed by non-persistence (treatment discontinuation).  

• Treatment initiation was considered less important as patients initiate their 

immunosuppression therapy under clinical supervision within the hospital.  

• Age, graft rejection, comorbidity, time since transplantation, and donor-specific antibodies 

(DSA) which are associated with the quality of matching were identified as important 

prognostic factors. Patients aged 18-24 years old were known as having the worst levels of 

adherence to immunosuppressive medications. 

• Comorbidity may also influence non-adherence due to psychological issues and practical 

issues (e.g. polypharmacy).  

• Patient weight (or high BMI) was identified as an important time-varying factor that may affect 

both adherence and graft survival.  

Based on the discussion with the clinicians complemented with evidence from the literature, a subset 

of the identified factors was chosen for incorporation as covariates in the simulated datasets. These 

were age as a baseline covariate and BMI as a time-dependent confounder. The main reason for 

including two baseline and time-dependent confounders was simplicity. Including more variables 

requires ever more assumptions about relationships between variables, which could distract from the 

focus of the study, which is investigating the performance of the methods in the presence of time-

dependent confounding. Based on the DGMs applied in this simulation study, it is possible to simulate 

time-dependent confounding with just one time-dependent variable. The correlation between these 

factors and graft loss were based on evidence from the literature and assumptions. All three types of 

non-adherence (initiation, implementation, persistence) were considered and included in this 

simulation study. The coefficient of variation (CV%) for drug concentration levels was considered as 

reasonable for measuring implementation non-adherence as it is widely used and accepted in the area 

of kidney transplantation. 

In the simulation study design, patients non-adhering at the previous time point were assumed to 

remain non-adherent for the rest of the study follow-up. This rules out MSM with IPTW from the 

simulation study as patients were not allowed to reinitiate the treatment after the first instance of 

implementation non-adherence. This assumption does not affect the other types of non-adherence 

(initiation and persistence).  
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4.4.3 Simulating baseline covariates and randomisation assignment 

I simulated datasets for a two-arm, RCT with 1:1 random allocation, a time-to-event outcome and 

non-adherence metrics. The data were simulated to mimic an RCT evaluating the effectiveness of 

maintenance immunosuppressive drugs for adult kidney transplant patients (incidence cases) with 12 

months of follow up.116  

Data generation in this particular simulation study starts with specifying the number of observations 

(sample size) followed by creating a baseline covariate (age) which was simulated using coefficient 

values based on distributions from the literature and further assumptions. Then, the values of the 

time-dependent covariate (BMI) at baseline was generated. This is followed by randomisation to 

assign observations to the experimental group or control group using “randomize”, a user-written 

command in Stata for performing the randomisation procedure checking for the balance of baseline 

covariates between the two groups.117 Age and BMI at baseline variables were used to test for balance 

between the two arms in the randomisation procedure.       

4.4.4 Simulating non-adherence and time-varying covariates 

Patient non-adherence metrics in the simulated datasets followed the ABC taxonomy.1 Non-

adherence was simulated for three-time intervals (baseline to 4 months, 4 - 8 months, and 8 – 12 

months). The time intervals were assumed to mimic follow-up time points in a clinical trial. Time-

dependent covariates were measured at baseline and two follow-up time points (4 months and 8 

months). A key problem with non-adherence is that it is associated with post-randomisation events – 

an experience of adverse drug reactions (ADRs), difficulties of pill burden, and behavioural 

characteristics that change over time, and might not be readily predicted at baseline. This means it is 

crucial to account for time-dependent predictors of time-varying non-adherence in the analysis.   

Time-varying covariates (L’s) and non-adherence variables (A’s, implementation, persistence, or 

initiation; depending on the scenario) were generated sequentially for each follow-up time point. For 

each time point, the non-adherence variable by treatment group was simulated first using the general 

equation [25]. This was dependent on the history of time-varying covariates and non-adherence at 

the previous time point (t-1). The “rbinomial(n,p)” function in Stata was used for generating binary 

time-varying non-adherence where n is the number of trials and p is the probability of non-adherence.    

𝐴𝑡 = 𝑟𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) 𝑖𝑓 (𝐿0 = 𝑥 & 𝐿𝑡−1 = 𝑚 & 𝑍 = 𝑔)              [25] 
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where 𝐴t is non-adherence between the previous follow-up time point up to time t (e.g. 4-8 months), 

𝐿0 is baseline covariate (Age) with x=1 if age ≤ 24 years and 0 otherwise, 𝐿t−1 is the history of time-

varying confounder (BMI) measured at the previous time point t-1 (e.g. 4 months) with m= 1 if BMI>30 

and 0 otherwise, and Z is the randomisation variable with g=1 for the experimental group and g=0 for 

the control group.  

As an example, for generating non-adherence between 4 and 8 months (𝐴2) in the experimental group, 

I used the following five lines of code in Stata. This simulates non-adherence assuming people with 

age ≤ 24 years at baseline and high BMI (>30) at 4 months have a 45% chance of non-adherence during 

the time interval 4 to 8 months. This risk is reduced to 30% if they have a high BMI but aged > 24 years 

and 15% risk if aged ≤ 24 years but normal BMI. For people with normal BMI and aged > 24, the 

probability of non-adherence is 7.5%.   

 gen A2=rbinomial(1,0.45) if (Age==1 & BMI1==1 & Z==1)     

 replace A2=rbinomial(1,0.30) if (Age==0 & BMI1==1 & Z==1)     

 replace A2=rbinomial(1,0.15) if (Age==1 & BMI1==0 & Z==1)    

 replace A2=rbinomial(1,0.075) if (Age==0 & BMI1==0 & Z==1) 

 replace A2=1 if A1==1     

𝐴2 was set equal to 1 if 𝐴1=1 assuming patients non-adhering at the previous time point remained 

non-adherent for the rest of the study follow-up.  

Time-dependent confounding variables were simulated using the general equation [26], which 

incorporates the history of time-dependent confounders at the previous time point and non-

adherence, assuming similar risk across treatment groups. The latter assumption allowed for time-

dependent confounding to be influenced by previous non-adherence and the value of time-dependent 

confounders at the previous time point as illustrated in the DAG (Figure 12). 

𝐿𝑡 = 𝑟𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) 𝑖𝑓 (𝐴𝑡 = 𝑛 & 𝐿𝑡−1 = 𝑚)                 [26] 

where 𝐿t is time-updated covariate at time t, 𝐴t represents non-adherence during the interval t-1 up 

to time t with m=1 means non-adhering patient and 0 otherwise, 𝐿t−1 is the history of time-varying 

confounder (BMI) at the previous time point t-1 with m= 1 if BMI>30 and 0 otherwise. 

To generate BMI at 8 months (𝐿2) for example, the following lines of code were used in Stata:  

 gen L2=rbinomial(1,0.90) if (A2==1 & BMI1==1) 

 replace L2=rbinomial(1,0.30) if (A2==0 & BMI1==1) 
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 replace L2=rbinomial(1,0.60) if (A2==1 & BMI1==0) 

 replace L2=rbinomial(1,0.20) if (A2==0 & BMI1==0) 

As can be seen, 𝐴2 was used in the above equations to simulate 𝐿2 as it represents non-adherence 

history for the time interval from month 4 up to month 8, which is likely to influence BMI at 8 months, 

as illustrated by the DAG (Figure 12). Whereas for time-varying covariate BMI, I used values from the 

previous time point BMI1  (i.e. BMI at month 4) as they represent the history of the confounding 

covariate at the previous follow-up time point.      

4.4.5 Graft survival time data-generating models 

Crowther and Lambert (2013)118 proposed a framework for simulating survival data under exponential, 

Gompertz and Weibull distributions. This framework was used as a basis for specifying the data-

generating models simulating the survival data in this study. The generated datasets were checked to 

ensure their resemblance to realistic situations before using the simulated datasets for assessing non-

adherence adjustment methods. This was achieved by using summary statistics, Kaplan-Meier survival 

curves and model fitting statistics. 

Two graft survival-time data-generating models were chosen to simulate the RCT datasets: (i) a 

standard parametric survival model with Weibull distribution; and (ii) a two-component parametric 

survival model with a mixture Weibull-Weibull distribution. The two models were chosen to improve 

transferability beyond kidney transplantation where the shape of the survival curves differ by disease 

area and intervention. Both a standard parametric survival model and a two-component model were 

used in the simulation as specified by each scenario (Appendix C). For the two-component model, a 

visual examination of fit suggested that a Weibull-Weibull mixture model is most appropriate for 

mimicking the case study trial data used in Chapter 6.     

To generate the truth, graft survival time outcomes were simulated using the survsim Stata command 

by incorporating all baseline and updated time-varying covariates at all time-points except without 

non-adherence variables (i.e. the values of the L’s are based on perfect adherence). This parametric 

survival model was used to generate the “true” graft survival outcomes. The model required the 

specification of shape and scale parameters which were specified using evidence from the literature 

such that the generated survival times mimic graft survival times observed in trials in the context of 

immunosuppression after kidney transplantation. The hazard function was transformed onto the 

survival time scale based on a user-defined function within the survsim model.118 
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𝐻(𝑡) = ℎ0(𝑡)exp [𝛽0𝐿0 + (𝛽1𝐿1) × (0 ≤ 𝑡 < 0.33) + (𝛽2𝐿2) × (0.33 ≤ 𝑡 < 0.66)]      [27] 

where 𝐿0 is a vector of baseline covariates and of time-dependent covariate at baseline, 𝐿1 is time-

dependent covariate updated at 4 months, and 𝐿2  is time-dependent covariate updated at 8 months 

of the study follow-up. 𝛽0  represents the coefficients for baseline covariates, and  𝛽1 𝑎𝑛𝑑 𝛽2  are the 

coefficients for time-dependent covariates at 4 and 8 months, respectively. The values of time-

dependent covariates at 12 months were not included in the model as these will not influence graft 

survival at 12 months (the study end date), although these would influence graft survival beyond the 

trial follow-up. Model [27] was used to generate the true estimates by simulating very large datasets 

using one million iterations for each scenario.  

Then, time-varying non-adherence (A1, A2 and A3) were incorporated as covariates into the survsim 

model to generate RCT datasets for testing the alternative non-adherence adjustment methods in the 

causal analysis – Model [28].  

𝐻(𝑡) = ℎ0(𝑡)exp [𝛽0𝐿0 + (𝛽1𝐿1) × (0 ≤ 𝑡 < 0.33) + (𝛽1𝑎1𝐴1) × (0 ≤ 𝑡 < 0.33) + (𝛽2𝐿2) × (0.33 ≤ 𝑡 < 0.66) +

(𝛽2𝑎2𝐴2) × (0.33 ≤ 𝑡 < 0.66) + ( 𝛽3𝑎3𝐴3) × (0.66 ≤ 𝑡 < 1)]                                                                            [28] 

where 𝛽1𝑎1, 𝛽2𝑎2 and 𝛽3𝑎3 are the coefficients for time-varying non-adherence with values influencing 

the relationship between non-adherence and graft survival as they interact with baseline and time-

dependent covariates within the graft survival time data-generating model.    

The only difference between Model [28] and Model [27] is the incorporation of non-adherence 

variables (A1, A2 and A3) corresponding to measurements at the time up to 4, 8 and 12 months as these 

are measures of non-adherence from the previous time point. For example, A3 represents non-

adherence during the time interval between month 8 and month 12. The idea is to assess how each 

method performs in estimating the true value of the outcome and treatment as obtained from Model 

[27] (i.e. the outcome that would have been seen with no non-adherence) by applying the alternative 

non-adherence adjustment methods to the datasets affected by non-adherence generated by Model 

[28]. Time-dependent effects were incorporated (in some scenarios) by specifying the “tde” option 

within the survsim Stata command. 

To implement Model [28] in Stata for generating graft survival times, I used the survsim command, 

incorporating baseline and time-dependent covariates, time-varying non-adherence, and the 

treatment effect in a delayed entry model.118, 119 In this model, delayed entry times at which the impact 

of particular variable start to affect the time-to-event outcome were specified. These were specified 

using a common time (#) for all observations in the dataset based on follow-up time points. For 

example, the impact BMI at 4 months (hBMI1) affects graft loss between 4 and 8 months, and this was 
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specified using the command time (0.3333333:<=#t:<0.6666667) expressed in years. These were 

implemented to produce biologically plausible graft survival data using the following code:  

survsim stime event, loghazard(-1.2 :+ 0.2:*#t :- 0.03:*#t:^0.5 :+ 0.05:*#t:^-0.5 :* (hBMI0:* 0.35) :* /// 

(0:<=#t:<0.3333333) :+ (MNA0:* 0.40) :* (0:<=#t:<0.3333333) :+ (hBMI1:* 0.35) :*  /// 

(0.3333333:<=#t:<0.6666667) :+ (MNA1:* 0.40) :* (0.3333333:<=#t:<0.6666667) :+ ///           

(hBMI2:* 0.35) :* (0.6666667:<=#t:<=1) :+ (MNA2:* 0.40) :* /// (0.6666667:<=#t:<=1)) ///            

cov(trt -0.75 age 0.25) tde(trt 0.15) maxt(1)                                                                                                                   [29]                                                                                                                      

where MNA represent medication non-adherence and hBMI represents high body mass index, (i.e. 

BMI ≥30). The “tde” involves the time-dependency of the treatment effect. In some scenarios, the 

treatment effect was constant over time, whilst in others, the 0.15 parameter value was used, which 

results in a 15% reduction in treatment effect over time. Parameter values in Model 29 were varied to 

produce datasets across a range of realistic scenarios specified by the simulation study protocol (see 

Section 4.4.6 for parameter values). The simulated datasets were used for assessing the performance 

of alternative non-adherence adjustment methods.  

Before applying the methods, for patients who experienced graft loss in the trial, the values of time-

dependent covariates were set to missing after the event time. This was undertaken to mimic the 

practice in many clinical studies of ending data collection upon the occurrence of the event related to 

the primary outcome measure. 

4.4.6 Parameter values and distributions   

To generate biologically plausible RCT datasets, the parameters' values for the DGMs (described in 

Sections 4.1-4.4) were specified.  The following factors were varied to specify the scenarios simulated: 

sample size, non-adherence metrics (implementation, persistence, and initiation), baseline hazard 

function for the survival-time data-generating model, the relationship between adherence level and 

graft survival, time-dependent treatment effects and treatment effect size. These were chosen based 

on discussions with two clinicians (WM and JF) and complemented with evidence from the literature. 

The seven factors were varied in a partly factorial design to specify a range of realistic scenarios in the 

simulation study. The rationale for specifying the sample size for the simulations and baseline hazard 

function is provided in the subsequent subsections. The parameter values for the levels of non-

adherence, the correlation between non-adherence and outcome and the other factors in the 

simulations were assumed to test the methods in arrange of scenarios based on varying the values of 

these factors.   



126 
 

The levels specified for each factor are provided in Table 10 and the full listing of scenarios is given in 

Appendix C. A partly factorial design was used resulting in 90 across the three types of non-adherence 

(Initiation= 38, implementation=34, persistence=18) scenarios assessed in the simulation study. More 

scenarios were specified for initiation and implementation non-adherence as these are considered 

the most important types across chronic disease and this will aid the transferability of findings from 

the simulation study. The specification of scenarios is described in more detail in Section 4.4.7.  

Table 10: Factors included in the simulation study scenarios 

Fa
ct

o
r 

le
ve

l Sample 

size 

Type of non-

adherence 

Non-adherence 

(implementation/ 

persistence / 

initiation 

Graft 

survival time 

data-

generating 

model 

(DGM) 

Relationship 

between 

treatment 

effect and 

adherence 

level 

Time-

dependent 

treatment 

effect 

Treatment 

effect size  

1 Large Implementation High  Standard 
parametric 
survival 
model 
(PSM) – 
Weibull 
distribution  

Strong Yes Large 

2 Small Persistence Low  
 

Two-
component 
parametric 
survival 
model - 
Weibull-
Weibull 
(Mixture) 
distribution  

Weak No Small 

3 - Initiation  - - - - - 

 

The parameter values for each factor that were used to simulate the dataset are specified in the 

following subsections (4.4.6.1 to 4.4.6.6).  

4.4.6.1 Sample size  

To specify the number of observations in the simulated datasets, the sample size for large studies 

(n=450) was assumed based on the 75th percentile sample size among 40 trials (Appendix D, Table 36). 

These were clinical trials conducted in the area of maintenance immunosuppression after kidney 

transplantation, as identified by a published systematic review and included in a network meta-

analysis (NMA).120   
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A small sample size (n=120) was assumed for some scenarios which were based on the 25th percentile 

sample size among the same list of trials (Appendix D, Table 36). Initially, I planned to use a sample 

size of 90 but based on testing, that resulted in a very high number of failed simulations. This was 

largely due to non-convergence associated with the nature of how some non-adherence adjustment 

methods work (i.e. g-methods). This issue is discussed later in this thesis.  

4.4.6.2 Non-adherence metrics 

Non-adherence was simulated using binary covariates for implementation, persistence or initiation 

(depending on the scenario specifications). Initiation and persistence use a binary variable that reflects 

the non-adherence event at a particular time point; whilst implementation reflects non-adherence to 

the prescribed regimen during a particular time interval (e.g. 4 to 8 months).   

For implementation, non-adherence is often measured by the coefficient of variation (CV%), which is 

a validated measure of adherence in kidney transplant recipients that has been demonstrated to be 

associated with graft loss.121, 122 A higher CV% indicates a more erratic level of medication-taking 

behaviour, and therefore, a higher level of non-adherence. At least three data points of drug 

concentration levels are needed to calculate the CV% for each individual patient for each time interval, 

which then needs to be combined with a cut-off point for CV% above which the patient will be 

categorised as non-adherent. Implementation non-adherence was simulated as a binary variable 

without simulating concentration levels and/or CV% and then converting it to a binary variable.   

Implementation non-adherence is expected to be more prevalent, but to have less impact on the graft 

survival outcome. Therefore, that is what I simulated in the implementation scenarios, by changing 

the numbers used for non-adherence probability and the effect of non-adherence on graft survival 

times in the DGMs.   

The probabilities of non-adherence at each time interval (% of non-adherence) were simulated such 

that the overall non-adherence patterns are classified as high/low. These were numerically defined as 

relative values depending on the type of non-adherence (e.g. 10% low implementation non-adherence 

and 40% high implementation non-adherence). The probability of non-adherence in the control arm 

was different to the experimental arm. This mimics the usual pattern of non-adherence seen in clinical 

trials. The values for the probability of non-adherence were assumed with values varied depending on 

follow-up time points and the type of non-adherence evaluated in each set of scenarios (See Appendix 

C for an example of these parameter values).   
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4.4.6.3 Baseline hazard function 

Two DGMs (Standard parametric survival model (PSM) with Weibull distribution and Two-component 

parametric survival model with Weibull-Weibull (Mixture) distribution) were used to generate graft 

survival times (Figures 13-14). For each model, a user-defined log hazard function with polynomial 

fractions and delayed entry was specified.118 The shape of the KM survival curves generated by the 

standard PSM was sharply decreasing in hazards as shown from the analysis of a simulated dataset 

with 1000 observations. The shape of the KM survival curves generated by the mixture Weibull-

Weibull model with similar patient characteristics is shown in Figure 14. Despite the similar patient 

characteristics, the mixture model produces survivor functions that drop a lot more slowly, so may be 

considered to represent less severe disease. The mixture model mimics graft survival curves observed 

in clinical trials conducted in kidney transplantation. The two models were used in this simulation to 

boost the transferability of findings beyond kidney transplantation as shape parameters for survival 

data varies across disease areas.    

Figure 13: KM curves using standard parametric survival model with Weibull distribution 
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Figure 14: KM curves using two-component parametric survival model with Weibull-Weibull 
(Mixture) distribution 

 

 

For the standard PSM, the parameter values used in the user-defined log hazard function were: 

loghazard(-1.2:*0.2:*#t:^(0.2:-1). For the two-component mixture model, the parameters values for 

the hazard function were: loghazard(-1.2 :+ 0.2:*#t :- 0.03:*#t:^0.5 :+ 0.05:*#t:^-0.5). To implement 

these complex hazard functions, the Mata code was combined with the survsim command in Stata in 

a way that allowed for incorporating time-dependent covariates and non-adherence. The “moremata” 

Stata package was used to apply the models. The technical details and the full code used to simulate 

the datasets are provided in Appendix (G). 

4.4.6.4 Relationship between non-adherence and graft survival 

A parameter was used to represent the correlation coefficient as a measure of how strong the 

relationship between non-adherence and the time-to-event outcome (time-to-graft loss) was. The 

value of this parameter was specified as a coefficient within the survsim model such that the 

relationship is classed as “strong” or “weak” depending on the scenario. For a strong relationship, a 

value of 0.40 was used across implementation non-adherence scenarios. For persistence and initiation 
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non-adherence, higher values were used ranging between 0.42 to 0.55 to simulate a stronger impact 

on graft survival. For the weak relationship, a value of 0.22 was used in implementation non-

adherence scenarios with alternative values ranging between 0.22 to 0.38 used in persistence and 

initiation non-adherence scenarios. These parameter values were assumed to achieve the desired 

Kaplan-Meier (KM) survival curves and hazard ratios (HRs). The strength values (strong/weak) are 

relative and these were determined using simple regression analysis on the simulated datasets. 

Different values of coefficients were used depending on the type of non-adherence to reflect different 

impacts on the survival outcome as discussed in Section 4.4.6.2.      

4.4.6.5 Time-dependent treatment effect 

The time-dependent treatment effect was incorporated in some scenarios as specified in Appendix C. 

In these scenarios, the parameter value was 0.15 allowing for a 15% time-dependent linear reduction 

in the effect of the treatment. This value was assumed to achieve the desired KM curves and HRs. 

Therefore, scenarios with no time-dependent treatment effect assumed a 0% time-dependent 

reduction in treatment effect, and constant HR.          

4.4.6.6 Treatment effect size 

The treatment effect size was specified based on HRs. Graft survival times were simulated such that 

the generated HR is around 0.55 indicating a beneficial treatment effect reducing the graft loss event 

rate by 45%. This large treatment effect is representative of comparing a very effective drug to a less 

effective drug (e.g. tacrolimus versus standard-dose cyclosporine regimens in some scenarios). In 

scenarios where a small/moderate treatment effect size was simulated, an HR of around 0.70 was 

generated representing other comparisons such as low-dose cyclosporine versus standard-dose 

cyclosporine.      

4.4.6.7 Informative censoring 

The simulation assumed no “non-administrative” censoring due to loss of follow-up and no missing 

data. Although these are common issues in real RCTs, there are established methods in the 

methodological literature to handle them. This assumption allowed the simulation to focus on 

addressing the issue of non-adherence without the need to simultaneously address other inter-

current events. However, in practice, the analyst should consider these issues and apply the 

appropriate methods alongside the best performing non-adherence adjustment methods.   



131 
 

4.4.6.8 Application of coefficient values within scenarios 

To simulate the datasets, a range of other parameters were specified in the form of coefficient values 

incorporated into the simulation program. These include coefficients for generating baseline and time-

dependant covariates, time-varying non-adherence and graft survival times. In the simulated datasets, 

both baseline and time-dependent confounders (age and BMI) were included as covariates. The 

coefficient values used within the simulation program for generating time-varying non-adherence, 

baseline covariates, time-dependent confounders and graft survival times were kept constant across 

simulations. The rationale is to focus on varying the values of the key factors (specified in Table 10) to 

evaluate their influence on methods performance.           

To explain how the simulation program is implemented in Stata Software, let us take Scenario 2 as an 

example. The parameter values and distributions specified for generating the datasets in this scenario 

are presented in Table 11.  

Table 11: Parameter values for simulated RCT datasets - Scenario 2 

Parameter  Value for Scenario 2 Distribution/function  Source of value 

Sample size 450 - Analysis based 
on Table 36 
(Appendix D) 

Age 18-24 (55%), 25-75 (45%) Conditional random variable Assumed 

Treatment group 0= Control, 1= Experimental Randomly assigned in 1:1 
ratio 

- 

Non-adherence -
implementation : 0-4 months  

Control:  
30% if (age ≤24 & hBMI0=1) 
20% if (age >24 & hBMI0=1) 
10% if (age ≤24 & hBMI0=0) 
5% if (age >24 & hBMI0=0) 
 
Experimental: 
22.5% if (age ≤24 & hBMI0=1) 
15% if (age >24 & hBMI0=1) 
10% if (age ≤24 & hBMI0=0) 
5% if (age >24 & hBMI0=0) 

Binomial random variable - 

Non-adherence -
implementation: 4-8 months 

Control:  
60% if (age ≤24 & hBMI0=1) 
40% if (age >24 & hBMI0=1) 
20% if (age ≤24 & hBMI0=0) 
10% if (age >24 & hBMI0=0) 
 
Experimental: 
45% if (age ≤24 & hBMI0=1) 
30% if (age >24 & hBMI0=1) 
15% if (age ≤24 & hBMI0=0) 
7.5% if (age >24 & hBMI0=0) 

Binomial random variable - 

Non-adherence -
implementation: 8-12 months 

Control:  
60% if (age ≤24 & hBMI0=1) 
40% if (age >24 & hBMI0=1) 
20% if (age ≤24 & hBMI0=0) 
10% if (age >24 & hBMI0=0) 

Binomial random variable - 
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Experimental: 
45% if (age ≤24 & hBMI0=1) 
30% if (age >24 & hBMI0=1) 
15% if (age ≤24 & hBMI0=0) 
7.5% if (age >24 & hBMI0=0) 

Probability of high BMI (≥30) at 
baseline  

(1,0.60) Binomial random variable - 

Probability of high BMI (≥30) at 
Month 4  

Control & Experimental: 
90% if (age ≤24 & hBMI0=1) 
30% if (age >24 & hBMI0=1) 
60% if (age ≤24 & hBMI0=0) 
20% if (age >24 & hBMI0=0)  

Binomial random variable - 

Probability of high BMI (≥30) at 
Month 8  

Control & Experimental: 
90% if (age ≤24 & hBMI0=1) 
30% if (age >24 & hBMI0=1) 
60% if (age ≤24 & hBMI0=0) 
20% if (age >24 & hBMI0=0) 

Binomial random variable - 

Baseline hazard function    loghazard(-1.2 :+ 0.2:*#t :- 
0.03:*#t:^0.5 :+ 0.05:*#t:^-0.5) 

User-written hazard function 
using a two-component 
parametric survival model - 
Weibull-Weibull (Mixture) 
distribution 

 

Coefficients for generating graft 
survival time  

𝛽0𝐿0 (Age) = 0.25 
𝛽0𝐿0 (hBMI0) = 0.35 
(𝛽1𝐿1(hBMI1) = 0.35 
(𝛽2𝐿2(hBMI2) = 0.35 
(𝛽1𝑎1  (A1) = 0.40 
(𝛽2𝑎2  (A2) = 0.40 
(𝛽3𝑎3  (A3) = 0.40 
Treatment effect= -0.75 
Time-dependent effect= 0 

Implemented within the 
“survsim” model in Stata 

 

Administrative censoring (End 
of study) in Years 

1.0   

𝛽0, the coefficient for baseline covariates and the value of time-dependent covariates at baseline (𝐿0);  𝛽1 , the coefficient 

for time-dependent covariates at 4 months (𝐿1); 𝛽2 , the coefficient for time-dependent covariates at 8 months (𝐿2); 𝛽1𝑎1, 

𝛽2𝑎2 and 𝛽3𝑎3, the coefficients for implementation non-adherence between baseline at 4 months (A1), 4 to 8 months (A2) 

and 8 to 12 months (A3);  hBMI0, high Body Mass Index at baseline; hBMI1, high Body Mass Index at Month 4; hBMI1, high 

Body Mass Index at Month 8. A1, Implementation non-adherence between baseline and 4 months; A2, Implementation non-

adherence between 4 and 8 months; A3, Implementation non-adherence between 8 and 12 months.    

 

The parameter values presented in Table 11 were incorporated into the simulation program and 

survsim model to produce graft survival times in the absence of non-adherence. The Kaplan-Meier 

survival curves produced from one simulated dataset with a sample size of 2000 and perfect 

adherence using the relevant parameter values (Table 11) are presented in Figure 15. This step was 

run 1 million times to produce the truth for one scenario in the full simulation program. Figure 16 

shows KM survival curves with non-adherence incorporated.  
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Figure 15: Graft survival curves from the simulated dataset in the absence of non-adherence - 
Scenario 2 

 

Figure 16: Graft survival curves from the simulated dataset in the presence of non-adherence - 
Scenario 2 
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To illustrate the impact of non-adherence and prognostic characteristics on graft survival over time, 

KM survival curves were generated based on analysis of the above-mentioned dataset. These include 

the impact of age (Figure 17), BMI  (Figures 18-20), and non-adherence (Figures 21-23). 

Figure 17: Impact of age on simulated graft survival time 
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Figure 18: Impact of baseline BMI on simulated graft survival time 

 

 

Figure 19: Impact of BMI at 4 months on simulated graft survival time 
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Figure 20: Impact of BMI at 8 months on simulated graft survival time 

 

 

Figure 21: Impact of 0-4 month’s implementation non-adherence on graft survival 
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Figure 22: Impact of 4-8 month’s implementation non-adherence on graft survival 

 

 

Figure 23: Impact of 8-12 month’s implementation non-adherence on graft survival 
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4.4.7 Simulation program 

Data were simulated using Stata MP 15 (64-bit) and the ‘Mersenne twister’ random-number generator 

(mt64s) was used to set a ‘stream’ of random numbers for parallel runs. The input seed number for 

each stream of random numbers was ‘13183’. Parallel simulations were run on different cores of High 

Performing Computers (HPC) for more efficiency. This was performed using the Sheffield Advanced 

Research Computer (ShARC) facilities. The “simulate” approach in Stata was used to perform a Monte 

Carlo simulation.   

The Shared-Memory Parallelism (SMP) approach with eight processor cores per scenario was used 

within ShARC to run 16 scenario sets simultaneously for 1 million iterations each. These scenarios 

represent RCT datasets in the absence of non-adherence to generate the truth. For scenarios with 

non-adherence, the SMP with four processor cores was used to run 90 scenarios for applying non-

adherence adjustment methods with 1900 simulations each. These scenarios were divided into three 

sets based on the type of non-adherence (implementation=38, persistence=18, initiation=34). Each 

scenario set was run as a single job with multiple threads (each represents a single scenario) using the 

SMP parallel computing environment. This meant the full set of simulations were run in four separate 

jobs, including one job for estimating the truth.  

The parallel computing approach has allowed the simulation program to run within 96 hours for truth 

scenarios and 6-10 hours for scenarios applying the non-adherence adjustment methods. This 

approach saved significant computation time and allowed the simulation program to be run in an 

efficient way given the large number of scenarios evaluated.  

The “survsim” command in Stata was used for simulating biologically plausible graft survival data.118 

This was complemented by additional programming to simulate non-adherence data which was 

associated with covariates and the graft survival outcome.119 Then, I used the “simsum” command in 

Stata for reporting the results of the simulation study in a more efficient way.123 This involved using 

tables and graphs (e.g. nested loop plots for presenting results from the performance measures).124  

The simulation program involves the following datasets which were generated and stored in a pre-

specified directory within the University of Sheffield HPC facilities: 

(a) Simulated truth datasets: these are datasets with nobs generated by different DGMs with 1 

million iterations, which were used to generate the truth for each set of scenarios.  
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(b) Simulated datasets with non-adherence: these are datasets with nobs generated by different 

DGMs, and to which the alternative adherence-adjustment methods were applied to estimate 

the treatment effect (𝜃).   

(c) Estimates: these are datasets with nsim summaries (e.g. 𝜃 ) from repetitions for each 

combination of DGM, scenario and method. 

(d) Performance measures: these are datasets that contain the estimated performance measures 

for each combination of scenario, DGM and method.  

(e) Monte Carlo Standard Errors (SEs) of estimates: These include Monte Carlo SE estimates of 

the estimands and performance measures. 

In summary, the simulation program was run for a total of 90 scenarios (Appendix C) that were defined 

by a partial factorial design using sample size (2 levels), type on non-adherence (3 types), non-

adherence levels (2 levels), graft survival time data-generating model (2 types), the strength of the 

relationship between non-adherence level and graft survival outcomes (2 levels), the existence of a 

time-dependent treatment effect (yes/no) (2 levels) and treatment effect size (2 levels). The 

simulation considered each type of non-adherence for each scenario, and therefore, the three types 

of non-adherence (initiation, implementation, persistence) were not combined for assessment in a 

single dataset.   

4.5 Estimands 

The primary estimand of interest is treatment effect using the difference in restricted mean survival 

time [RMST]125 between treatment groups, had there been no non-adherence. I also recorded 

experimental group RMST and control group RMST and include them as estimates for secondary 

estimands. In addition, the population-level HRs were estimated and reported, but these were not 

used for assessing methods performance. This is mainly because there is no guarantee that the 

proportional hazards assumption will hold in each scenario, which means the HR is a potentially 

misleading summary statistic. In practice, investigators and analysts are interested in different 

estimands depending on the purpose of each particular study. Therefore, the secondary estimands 

were included in this simulation to ensure that the non-adherence adjustment methods could be used 

to produce estimates associated with these estimands.     

The difference in RMST was chosen as the primary estimand because unlike the HR it is not affected 

by the proportional hazards assumption. This was calculated using the stpm2 Stata command, with 

the standsurv post estimation command. This involves fitting flexible parametric models (FPM) to the 

graft survival data estimated by each method under the hypothetical assumption of zero non-
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adherence and calculating the RMST using these models, restricted to the 1-year end-of-follow-up 

timepoint. The FPMs also produced the RMSTs in the control and intervention groups alongside their 

standard errors. HRs were generated using a Cox proportional hazards model using the “stcox” 

command in Stata. The specification of the models is discussed in more detail in Section 4.6.    

4.6 Methods assessed  

Each simulated RCT dataset was analysed using each of the following methods:  

(a) Intention-To-Treat (ITT) analysis  

(b) Per-Protocol (PP) analysis 

(c) Marginal Structural Model (MSM) with IPCW Estimator 

(d) Structural Nested Failure Time Model (SNFTM) with G-estimation. 

The application of four alternative methods to datasets simulated in 90 scenarios meant that 360 

different causal analyses were performed (four methods x 90 scenarios). The use of the University of 

Sheffield HPC facilities for running parallel simulations, as described before, helped efficiently 

undertake the simulation study.   

The non-adherence adjustment methods assessed were described in more detail in Chapter 2 

including the estimands, estimators and key assumptions. However, for the sake of clarity, the 

application of each method to adjusting for non-adherence in the simulation study is briefly described 

in the following subsections.  

4.6.1 ITT 

The ITT method does not attempt to adjust for non-adherence. In this particular simulation, the ITT 

method estimates RMSTs in the presence of the estimated level of non-adherence in the simulated 

data, whilst the PP and g-methods (described in the subsequent sections) reflect an adjustment to 

non-adherence. All methods are compared against their abilities to estimate the same truth 

(difference in RMST in the absence of non-adherence) using the performance measures described in 

Section 4.7.  

The ITT analysis involves fitting a flexible parametric survival model (FPM) to both treatment groups 

combined (i.e. with treatment group as a covariate) using the “stpm2” user-written command in Stata. 

Fitting one FPM to the treatment groups combined (rather than fitting a separate model to each 

treatment arm) assuming a proportional treatment effect. The FPM model was adjusted for age as a 
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baseline covariate using 2 degrees of freedom in the model specification. This was based on testing a 

range of values for the degrees of freedom and the appropriate option was selected based on model 

fit criteria using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 

The stpm2 model specification was similar across alternative methods for a fair comparison.  

The vce(robust) option was included in the model to produce robust standard errors. Then, the 

“standsurv” post estimation command was used to produce the difference in RMSTs between 

treatment groups alongside the standard error and confidence intervals around the estimates. The 

standsurv command was simultaneously used to produce estimates for the secondary estimands in 

terms of RMST by treatment arm alongside standard error and confidence interval around these 

estimates. 

In addition, the ITT analysis involved applying a CPH model using the “stcox” command. The model 

was adjusted for baseline covariates to produce HRs alongside the standard error and 95% confidence 

intervals.  

4.6.2 PP 

The PP analysis strategy was applied by excluding non-adherent patients from the analysis dataset. 

This was applied by censoring all non-adherent patients at the first time of non-adherence. Then the 

stpm2, standsurv and stcox commands were applied in the same way as described in the ITT analysis 

(Section 4.6.1).     

4.6.3 MSM with IPCW estimator 

The application of MSM with IPCW estimator starts with creating a time-dependent non-adherence 

indicator for each time interval within the dataset (i.e. 0-4 months, 4-8 months, and 8-12 months). 

Then, a time-dependent outcome for graft loss was created using the same time intervals. To derive 

the IPCWs, four non-adherence logistic models were fitted (two models per treatment arm). The 

impact of BMI (as a time-dependent confounder) dependent on time is an important predictor so the 

interaction of confounders with time was incorporated into the IPCW weighting models. 

In these non-adherence models, I used logistic regression to predict non-adherence given baseline 

covariate and time in the control arm (Non-adherence Model 1). Non-adherence Model 2 was then 

fitted on the control group with both baseline and time-dependent covariates with interaction terms 
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included in the model specification. Non-adherence Model 3 and Model 4 were fitted in the same way 

on the experimental group. Following the application of each logistic regression (non-adherence 

models), the “predict” command was used to estimate the probability of non-adherence for each 

patient observation included in the regression. These were then used to calculate the probability of 

remaining uncensored (i.e. the probability of adherence) by subtracting the probability of non-

adherence from 1. This was undertaken at the individual patient-level using the estimates obtained 

from each of the non-adherence models.         

To generate stabilised weights, I divided the probability of remaining uncensored (adherent) obtained 

from Model 1 by the probability of adherence generated from Model 2. This produced the IPCW 

stabilised weights for the control group. Similarly, I divided the probability of remaining uncensored 

generated from Model 3 by the one obtained from Model 4 to derive the IPCW stabilised weights for 

the experimental group. Then, I declared the data as survival data by using the “stset” command 

incorporating the stabilised weights. A pseudo-population dataset was created using the stabilised 

IPCW weights and this represents a population in which there was zero non-adherence. Then, I applied 

the stpm2 parametric survival model (including the standsurv post-estimation command) and Cox 

proportional hazards model, as described above, to obtain the required estimates. The model used 

robust standard errors to get 95% confidence intervals that take into account the weighting of the 

data and the clustering of individuals. 

4.6.4 SNFTM with G-estimation 

The application of the g-estimation method was implemented as follows. First, I specified baseline and 

time-varying confounders for inclusion in the g-estimation model. This involved specifying age as a 

baseline covariate and BMI as a time-dependent confounder. The time-to-event indicator (time-

dependent graft loss) was made time-dependent in the dataset. Then, time-lagged non-adherence 

variables were generated using individual patient-level adherence data for each time interval. 

Subsequently, I declare the dataset as survival data using stset command clustering observations by 

patient ID.   

Second, I estimated the Acceleration Factor (AF) as the effect of time-dependent non-adherence on 

graft survival time outcome. This was done for each treatment arm separately using the “stgest3” 

command, which is a Stata program for implementing g-estimation in an SNFTM.101 The stgest3 model 

specification included baseline and time-dependent confounders using the model(all) option which 

includes all observations and the outcome(mgale) option for handling how the potential outcome is 
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entered into the g-estimation model. The latter is a new technique using the martingale potential 

outcome that brings together the time to event (time-to-graft loss) and censoring indicators together 

to improve performance. The stgest3 model incorporated the interaction of confounders with time in 

the same way applied to the IPCW weighting models.  

Third, I used the estimated AF to adjust graft survival times by treatment arm allowing for recensoring.  

This results in estimated graft survival times that would have been observed if there had been non 

non-adherence. 

Finally, the stset command was applied again and the stpm2, standsurv and stcox models were used 

for generating the required estimates, as explained in previous subsections. The CIs obtained do not 

factor in the fact the data have been adjusted, and therefore, are likely to underestimate uncertainty, 

with implications for coverage. 

4.7 Performance measures 

The performance assessment was focused on the following key properties of the estimators: bias, 

accuracy, coverage, and both empirical and model-based standard errors.  In addition, to quantify 

simulation uncertainty over nsim, I have estimated the Monte Carlo standard errors (MCSE) of the 

estimated performance measures. The formulae for computing the performance measures are 

provided below.    

− Bias is a measure of accuracy and was evaluated using absolute and percentage bias. The 

absolute bias was calculated using the following formula.  

𝐵𝑖𝑎𝑠 =
1

𝑛𝑠𝑖𝑚
∑ 𝜃𝑖 −

𝑛𝑠𝑖𝑚

𝑖=1

𝜃                 [30] 

− Mean Squared Error (MSE) is a measure of overall accuracy because it includes both bias and 

variability measures. This is presented as a percentage of the true value. Formally, it is the sum 

of the squared bias and variance of 𝜃 which can be computed using the following formula.  

𝑀𝑆𝐸 =
1

𝑛𝑠𝑖𝑚
∑ (𝜃𝑖 − 𝜃)2

𝑛𝑠𝑖𝑚

𝑖=1

            [31] 

− Coverage is defined as the probability that a CI contains 𝜃  (i.e. the proportion of times that 95% 

CI contains the true value of the estimated parameter). For a two-sided interval, coverage was 

computed using the following formula.  

𝐶𝑜𝑣𝑒𝑟𝑔𝑎𝑒 =
1

𝑛𝑠𝑖𝑚
∑ 1(𝜃𝑙𝑜𝑤,𝑖 ≤ 𝜃 ≤ 𝜃𝑢𝑝𝑝,𝑖

𝑛𝑠𝑖𝑚

𝑖=1

)           [32] 
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- Empirical standard error (EmpSE) for 𝜃 is an estimate of the long-run standard deviation of 𝜃 

over the nsim. The EmpSE was computed using the following formula. 

𝐸𝑚𝑝𝑆𝐸 = √
1

𝑛𝑠𝑖𝑚 − 1
∑ (𝜃 − �̅�)2

𝑛𝑠𝑖𝑚

𝑖=1

              [33] 

- Average model-based standard error (ModSE) for 𝜃 is the average of the estimated SEs which 

targets the estimated empirical standard error. The ModSE was computed using the following 

formula. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑜𝑑𝑆𝐸 = √
1

𝑛𝑠𝑖𝑚 − 1
∑ 𝑉𝑎�̂�

𝑛𝑠𝑖𝑚

𝑖=1

(𝜃𝑖)             [34] 

Both EmpSE and ModSE were expressed as a percentage of the true value of the treatment effect (i.e. 

Difference in Restricted Mean Survival Times). 

The number of simulations or repetitions (nsim) used to simulate datasets, reported previously in 

Section 4.4.7, was 1900. The central issue when considering the optimal nsim is the MCSE where the 

main performance measures should be estimated to a satisfactory degree of precision. As one of the 

key performance measures of interest is coverage, the following formula was used to calculate the 

optimal number of simulations.  

𝑛𝑠𝑖𝑚 =
𝐸(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒)𝑥 ((1 − 𝐸(𝐶𝑜𝑣𝑒𝑟𝑔𝑎𝑒)

(𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑆𝐸𝑟𝑒𝑞)2
           [35] 

I assumed 0.5 % MCSE to be satisfactory for 95% coverage, which produces an nsim value of 1900. This 

was used as the number of simulations across all scenarios. The minimum and maximum MCSE for 

each scenario across all methods is presented alongside the detailed results in Chapter 5.  

The analysis of the estimates datasets starts by generating the number of successful iterations out of 

1900 simulations. This is followed by calculating successful estimations relating to model convergence 

for each method. For some methods, multiple models need to converge in order to achieve successful 

estimation for one iteration. For IPCW, convergence for each of the four non-adherence models was 

captured (see Section 4.6.3). In addition, two further models (stpm2 and stcox) need to converge for 

successful estimation of the difference in RMST and HRs to be achieved. For SNFTM with g-estimation, 

successful estimation involves the convergence of the “stgest3” model in each treatment arm, 

followed by the convergence of the stpm2 and stcox models.  All these convergence events were 
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captured and reported in the estimates datasets and summarised as successful simulation and 

successful estimation in the results. 

Then, the estimates datasets were analysed using the simsum Stata command to generate the 

performance results for comparing non-adherence adjustment methods across scenarios. The results 

from all scenarios were compiled and saved in separate datasets (depending on the type of non-

adherence) for data visualisation and reporting. These are presented using nested loop plots for 

comparing methods performance using the seven factors specified in the study design as descriptors. 

The ranking of methods based on best performance was assessed and presented using tables. The 

latter covered the five performance measures specified above. The analysis also involved generating 

the mean estimates (by method) for each estimand across the successful estimations and these are 

presented using tables in this chapter.     

4.8 Steps of the simulation study  

In summary, the simulation study involves the following steps: 

a. RCT datasets were simulated using 1 million iterations with prognostic baseline and time-

dependent confounding and graft survival outcomes. The average treatment effect generated 

from the analysis of these datasets represents the "true" treatment effect. The true treatment 

effect was estimated using the difference in restricted means survival time [RMST]125 as a 

primary estimand. The true values were also obtained for secondary estimands (HR, RMST in 

the control and experimental groups). 

b. RCT datasets were simulated using 1900 iterations and a similar DGM specified in (a) with the 

only difference being the presence of non-adherence (implementation, persistence or 

initiation variables). In these datasets, the probability of non-adherence was associated with 

the prognostic baseline (age) and time-dependent (BMI) characteristics.  

c. The alternative four methods were applied to adjust for patient non-adherence in the dataset 

simulated in (b) to estimate the adherence-adjusted treatment effect. The key estimates 

generated from this step include the difference in RMSTs, standard errors and confidence 

intervals for the difference in RMSTs, and indicators for model convergence (including four 

non-adherence models used by IPCW and two g-estimation models used by the SNFTM). The 

estimates datasets also included similar estimates for the secondary estimands (HR, RMST in 

the experimental and control groups).    
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d. Each estimates dataset was analysed using the “simsum” Stata package for assessing the 

performance of each method. The performance of each method was assessed based on five 

measures: (i) bias, by comparing the predicted with the true mean difference in RMST; (ii) 

mean square error to assess variability; (iii) coverage based on the number of simulations 

where the 95% confidence interval includes the true mean outcome; (iv); EmpSE to assess the 

precision of the estimator; and (v) average ModSE. In addition, the Monte Carlo standard error 

was produced to assess simulation uncertainty in each scenario.   

A flow diagram showing the main steps and operations of the simulation study is presented in Figure 

24. 

Figure 24: Simulation steps flow diagram 
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Chapter 5: Simulation study assessing the performance of non-

adherence adjustment methods: Results, discussion and conclusions  

5.1 Introduction 

Chapter 4 presented the design and methodology of the simulation study for assessing the 

performance of the alternative methods across all types of non-adherence scenarios.  This chapter 

presents the results of the simulation study, discusses the findings and provides the conclusions. 

Section 5.2 presents the results of the simulation study and provides new evidence for using the best-

performing methods to estimate treatment effects adjusted for patient non-adherence. Section 5.3 

discusses the results of the simulation study and presents the conclusions. 

5.2 Results of the simulation study  

5.2.1 Overview of the results 

The reporting adheres to published international guidelines for reporting simulation studies and 

medication adherence research.113, 126  Firstly, the true values of the estimates are reported (Section 

5.2.2), which are then followed by the performance results based on the primary estimand (difference 

in RMST expressed in years) across the 90 scenarios by the three types of non-adherence (Sections 

5.2.3-5.2.5). Section 5.2.6 presents the results for the secondary estimands.    

To summarise and interpret the findings of the simulation study, I use tables and graphs to illustrate 

the pattern across each group of scenarios using the specification factors as descriptors. These factors 

include sample size, graft survival time data-generation model, level of non-adherence, the 

relationship between non-adherence and graft survival outcome, time-dependent treatment effect 

and treatment effect size.  

I use nested loop plots to present the performance of all methods and to illustrate how the parameter 

values influenced the estimates across all scenarios.124, 127 I use tables to summarise the number of 

times each method performed the best across each set of scenarios (defined by the type of non-

adherence) for each performance measure. These included bias, percent bias, MSE, ModSE, EmpSE 

and coverage as specified in the simulation study protocol (Chapter 4, Section 4.7).  
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5.2.2 The truth 

The truth represents what would be observed with zero non-adherence, and that is what each of the 

adjustment analyses is designed to estimate. The true values of the estimates were generated from 

the analysis of large datasets with 1 million iterations for each scenario. These values included the 

truth for the primary estimand (the difference in RMSTs) and the secondary estimands (HR and RMST 

in the control and experimental groups) across 16 scenarios. Each scenario generates the truth for a 

set of scenarios for the application of adjustment methods as these scenarios varied by the type and 

level of non-adherence while the truth remains similar among each set. For example, Scenarios 1, 3 

and 5 have a similar sample size, DGM, treatment effect size and they only differ in the level of 

implementation non-adherence and the strength of the relationship between treatment effect and 

non-adherence. Therefore, the three scenarios have a similar value of truth (See Appendix C details 

across all scenarios). 

Figure 25 presents the distributions within the datasets used to generate the truth for the difference 

in RMST. In this figure, scenarios 1-8 illustrate the distribution of the true survival times obtained from 

datasets with a large sample size (n=450). Scenarios 9-12 represent small size datasets (n=120).
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Figure 25: Distribution of the true difference in RMSTs (the primary estimand) across all scenarios 

 

Key: 

1= 
n=450, standard PSM – 
Weibull DGM, no tde, large 
TE size 

2= 
n=450, two-component 
Weibull Mixture DGM, no 
tde, large TE size 

3= 
n=450, two-component 
Weibull Mixture, no tde, 
small TE size 

4= 
n=450, two-component 
Weibull Mixture, no tde, 
small TE size 

5= 
n=450, Standard PSM – 
Weibull, tde=0.15, Small TE 
size 

6= 
n= 450, Two-component 
Weibull Mixture, tde=0.15, 
Small TE size 

7= 
n=450, standard PSM – 
Weibull, tde=0.15, large TE 
size 

8= 
n=450, two-component 
Weibull, Mixture, tde=0.15, 
large TE size 

9= 
n=120, standard PSM – 
Weibull, no tde, large TE 
size 

10= 
n=120, two-component 
Weibull Mixture, no tde, 
large TE size 

11= 
n=120, standard PSM – 
Weibull, no tde, Small TE 
size 

12= 
n=120, two-component 
Weibull Mixture, no tde, 
small TE size 

13= 
n=120, standard PSM – 
Weibull, tde=0.15, small TE 
size 

14= 
n=120, two-component 
Weibull Mixture, tde=0.15, 
small TE size 

15= 
n=120, standard PSM - 
Weibull, tde=0.15, large TE 
size 

16= 
n=120, two-component 
Weibull Mixture, tde=0.15, 
large TE size 

TE= treatment effect, tde= time-dependent effect
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Figure 26 and 27 show the distribution of the data which were used to produce the true RMSTs by 

treatment group.  

Figure 26: Distribution of the true RMST by treatment arm across scenarios - Standard parametric 
survival model with Weibull distribution  

 

Key: 

1= 
n=450, standard PSM – Weibull DGM, no tde, large TE size 

3= 
n=450, standard PSM – Weibull, no tde, small TE size 

5= 
n=450, Standard PSM – Weibull, tde=0.15, Small TE size 

7= 
n=450, standard PSM – Weibull, tde=0.15, large TE size 

9= 
n=120, standard PSM – Weibull, no tde, large TE size 

11= 
n=120, standard PSM – Weibull, no tde, Small TE size 

13= 
n=120, standard PSM – Weibull, tde=0.15, small TE size 

15= 
n=120, standard PSM - Weibull, tde=0.15, large TE size 

TE= treatment effect, tde= time-dependent effect 
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Figure 27: Distribution of the true RMST by treatment arm across scenarios - Two-component Weibull 
Mixture model 

 

Key 

2= 
n=450, two-component Weibull Mixture DGM, no tde, 
large TE size 

4= 
n=450, two-component Weibull Mixture, no tde, small TE 
size 

6= 
n= 450, Two-component Weibull Mixture, tde=0.15, Small 
TE size 

8= 
n=450, two-component Weibull, Mixture, tde=0.15, large 
TE size 

10= 
n=120, two-component Weibull Mixture, no tde, large TE 
size 

12= 
n=120, two-component Weibull Mixture, no tde, small TE 
size 

14= 
n=120, two-component Weibull Mixture, tde=0.15, small 
TE size 

16= 
n=120, two-component Weibull Mixture, tde=0.15, large 
TE size 

TE= treatment effect, tde= time-dependent effect 
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The true parameters values for each scenario alongside their standard errors are presented in Table 

12. For the difference in RMST, the true treatment effect ranged between 0.05 and 0.21 years across 

16 scenario sets. For the HRs, the true treatment effect ranged between 0.45 and 0.74.    

Table 12: True values of parameters for primary and secondary estimands assuming perfect 
adherence 

Scenario 
Set 

Difference 
in RMST 

SE of the 
difference 
in RMST 

RMST 0 
SE of 
RMST0 

RMST1 
SE of 
RMST1 

HR SE of HR 

1 0.11 0.030 0.61 0.023 0.72 0.021 0.65 0.080 

2 0.06 0.024 0.81 0.020 0.87 0.017 0.65 0.113 

3 0.17 0.029 0.61 0.023 0.78 0.020 0.48 0.063 

4 0.09 0.023 0.81 0.020 0.90 0.015 0.48 0.091 

5 0.16 0.029 0.61 0.022 0.76 0.020 0.52 0.067 

6 0.09 0.024 0.81 0.020 0.89 0.015 0.52 0.096 

7 0.09 0.030 0.61 0.022 0.70 0.021 0.69 0.084 

8 0.05 0.025 0.81 0.019 0.86 0.017 0.70 0.119 

9 0.11 0.057 0.61 0.043 0.72 0.041 0.66 0.158 

10 0.06 0.047 0.80 0.038 0.87 0.032 0.67 0.229 

11 0.17 0.056 0.61 0.043 0.78 0.038 0.49 0.125 

12 0.10 0.045 0.80 0.038 0.90 0.028 0.50 0.184 

13 0.16 0.056 0.61 0.043 0.76 0.039 0.53 0.132 

14 0.09 0.046 0.81 0.038 0.89 0.029 0.54 0.194 

15 0.09 0.057 0.61 0.043 0.70 0.041 0.71 0.166 

16 0.05 0.048 0.81 0.038 0.86 0.033 0.72 0.241 

RMST0: restricted mean survival time in the control group; RMST1: restricted mean survival time in the experimental 

group; HR: hazard ratio; SE: standard error. 

Key: similar to the key provided under Figure 25.  

 

5.2.3 Performance of methods across implementation non-adherence 

scenarios  

This section presents the results of methods performance across the 38 scenarios adjusting for 

implementation non-adherence in the control and experimental arms of the simulated RCT datasets 

(Scenarios 1-38). The detailed results across all implementation scenarios including the minimum and 

maximum MCSE are provided in Appendix E, Table 37. 
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Table 13 summarises the performance results for each method in terms of five performance measures 

specified in the study protocol (i.e., bias, MSE, ModSE, EmpSE and coverage). The performance results 

were computed as percentages of the truth for the comparison.        

The results show that SNFTM with g-estimation was the best performing method in terms of producing 

the least bias (expressed as percent bias) in 21 out of 38 scenarios. MSM with IPCW performed best 

in 9 scenarios followed by PP which performed best in the remaining 8 scenarios. ITT performed the 

worst in all scenarios in terms of bias. In terms of MSE, the performance results favoured PP and ITT 

methods.  

SNFTM performed best in all 38 scenarios in terms of ModSE. The EmpSE favoured ITT in all scenarios, 

whereas MSE favoured PP. However, this should be interpreted with caution because ITT performance 

lagged behind IPCW and SNFTM in terms of bias percent and ModSE. Coverage percent represents the 

proportion of times that the 95% confidence interval contains the true value of the estimated 

parameter (i.e. the difference in RMST). Although a robust standard error around the difference in 

RMST was estimated using the vce(robust) option within the FPM model, the coverage data generated 

seems less reliable. Coverage percent favoured IPCW and PP in 19 out of 38 scenarios each. ITT 

performed the worst in terms of bias, ModSE and coverage across all implementation scenarios. The 

detailed performance results alongside the mean estimates, standard errors and 95% confidence 

intervals across all implementation scenarios are provided in Appendix E.  The subsequent subsections 

describe the performance of the alternative methods for each measure across scenarios using nested 

loop plots.  

Table 13: Best-performing methods by performance measure across implementation non-adherence 
scenarios (1-38)  

Method Bias  MSE 
Model-based 
SE  

Empirical SE Coverage 

ITT 0 13 0 38 0 

PP 8 22 0 0 19 

IPCW 9 2 0 0 19 

SNFTM 21 1 38 0 0 

 

5.2.3.1 Bias 

Bias was evaluated and presented in terms of absolute bias and percent bias (i.e. a percentage of the 

true value of the estimated parameter).  
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Figure 28 shows the nested loop plot illustrating the performance of methods in terms of percent bias 

across the implementation non-adherence scenarios. The parameterisation of each scenario is 

summarised at the bottom of the figure. For instance, the sample size used in the simulated datasets 

was 450 for scenarios 1-18, and a small sample size of 120 was implemented in scenarios 19-38. 

SNFTM and IPCW performed the best across most scenarios although in scenarios with large 

treatment effect size (7-14 and 27-34) there is a modest increase in its percent bias. The level of non-

adherence has some influence on percent bias, but g-methods (SNFTM and IPCW) generally handled 

the variation in non-adherence better than other methods. PP performed best in 8 out of 38 scenarios 

and generally produced results closer to g-methods in terms of bias. As can be seen in the graph, it 

should be noted that the levels of bias between IPCW, SNFTM and PP were often very similar. The 

MCSE for the three methods are also close to each other (detailed MCSEs are provided in Appendix E). 

When looking at each of these methods, the MCSE ranged between 0.07-0.17% for PP, 0.07-0.22% for 

IPCW and 0.07-0.17% for SNFTM across all implementation scenarios.  

ITT was always the worst-performing method as it produced a higher bias percent (as an overestimate) 

reaching more than 50% in some cases (see Figure 28). ITT bias was amplified by a larger treatment 

effect size. Generally, levels of percent bias ranged between 7-38% for the IPCW, PP, SNFTM (20% on 

average), but between 20-75% for ITT (40% on average). 

The relationship between non-adherence and graft survival outcome had a small but noticeable 

influence on IPCW and SNFTM performance with a stronger relationship increasing bias, although 

these methods handled this factor better than all other methods.  

Looking across all factors, it is clear that treatment effect size is one of the factors contributing to 

higher bias percentages for ITT with a stronger relationship increasing bias. The level of non-adherence 

impact on bias is demonstrated by the nature of the lines in the nested loop plot.  Other factors 

contributing to bias include the type of survival time DGM (see Figure 28). 
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Figure 28: Percentage bias in the estimation of the difference in RMSTs across implementation non-
adherence scenarios 

 

 

Figure 29 illustrates methods performance in terms of absolute bias. Generally, bias was very small 

for g-methods and PP; however, in scenarios with a small treatment effect, this has resulted in 

relatively higher bias percentages as shown in Figure 28. 

G-methods produced a small bias of 0.019 years (7 days) on average (12 months follow-up) across all 

38 implementation non-adherence scenarios, followed by PP that resulted in it an average bias of 

0.020 (7.4 days). In contrast, ITT resulted in a higher bias of 0.036 years (13.1 days) across the same 

implementation non-adherence scenarios.  
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Figure 29: Bias in the estimation of the difference in RMSTs across implementation non-adherence 

scenarios 

 

 

5.2.3.2 Mean square error 

The performance of methods based on MSE is presented in Figure 30. MSE is a useful performance 

measure because it combines both bias and variability in a single measure. The methods’ performance 

in terms of MSE is presented as a percent of the truth (Figure 30).  PP and g-methods produced the 

lowest MSE across scenarios with an average MSE of 1.7% for large sample size and this remained 

below 3% in most of these scenarios. In contrast, ITT produced much higher MSE with higher values 

up to 4.5% in some cases.  

Interestingly, ITT showed improved MSE performance in scenarios with a smaller sample size 

(Scenarios 19-38) with g-methods and PP lagging behind in these scenarios. There is some fluctuation 

in MSE performance resulting from a combination of treatment effect size with other factors such as 

the level of non-adherence and the relationship between non-adherence and graft survival outcome 

(see Figure 30). PP analysis produced good MSE performance compared to the alternative methods, 

although the method struggled to cope in scenarios with a small sample size, as did g-methods.
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Figure 30: MSE in the estimation of the difference in RMSTs across implementation non-adherence 
scenarios 

 

 

5.2.3.3 Model-based standard error 

The performance of adjustment methods in terms of ModSE across the implementation non-

adherence scenarios is presented in Figure 31. These figures are reported as a percentage of the truth 

to aid the comparisons of methods across the range of scenarios. As illustrated in the nested loop plot 

(Figure 31), scenarios with a smaller sample size (19-38) produced higher ModSE.  

For ModSE, SNFTM performed the best in all the implementation non-adherence scenarios with IPCW 

and PP showing lower performance across scenarios. ITT always produced ModSE higher than SNFTM 

but better than IPCW and PP in most cases with higher ModSE % in scenarios with a small sample size. 

In addition to sample size, treatment effect size, time-dependent treatment effect and the 

relationship between non-adherence and graft survival outcome are the factors that had a noticeable 

influence on ModSE performance. A larger treatment effect size (Scenario 7-14 and 27-34) contributed 

to generating higher ModSE across methods, although SNFTM remained the best performing method 

in all of these scenarios.             
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Figure 31: Model-based SE in the estimation of the difference in RMSTs across implementation non-
adherence scenarios 

 

 

5.2.3.4 Empirical standard error  

The EmpSE represents the standard deviation of the estimates across the successful simulations (out 

of 1900 iterations). The performance of methods in terms of EmpSE across the implementation 

scenarios is illustrated  in Figure 32. The results favoured ITT across scenarios, however, this should 

be interpreted with caution because ITT has generated the highest bias and produced the worst 

ModSE performance across all implementation non-adherence scenarios. Nevertheless, EmpSE 

performance is reported to provide the full picture in terms of the simulation results and to comply 

with the study protocol. 
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Figure 32: Empirical SE in the estimation of the difference in RMSTs across implementation non-
adherence scenarios 

 

 

5.2.3.5 Coverage 

Figure 33 reports coverage percent for each method across 38 implementation non-adherence 

scenarios. Coverage percent represents the proportion of times that the 95% confidence interval 

contains the true value of the estimated parameter (i.e. the difference in RMST). Coverage 

performance data favoured IPCW and PP across scenarios with coverage percent reaching more than 

90% in most cases. In contrast, ITT produced lower coverage especially in scenarios with large sample 

size. SNFTM struggled in terms of coverage in scenarios with small sample size. 
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Figure 33: Coverage in the estimation of the difference in RMSTs across implementation non-
adherence scenarios 

 

 

5.2.4 Performance of methods across persistence non-adherence scenarios 

This section presents the results of methods performance across 18 scenarios adjusting for persistence 

non-adherence (Scenarios 39-56) as specified in the simulation study protocol. First, I present a 

summary table highlighting the results in terms of the number of times each method performed the 

best across the 18 scenarios. Then, the results by performance measure are presented and interpreted 

using nested loop plots in the subsequent subsections. The detailed results are provided in Appendix 

E.     

Table 14 shows that SNFTM performed best across 7 of the 18 scenarios evaluated in terms of bias 

followed by IPCW (6 scenarios) and PP (5 scenarios). Often the results were very close between g-

methods and PP. ITT was the worst-performing method across all persistence non-adherence 

scenarios. MSE favoured PP and ModSE showed SNFTM as the best performing method across all 

scenarios. EmpSE favoured ITT in 17 out of 18 scenarios with PP performing best in the remaining one 

scenario. Results using EmpSE as a performance measure should be interpreted with caution by 
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looking into the results from all other measures at the same time. In terms of coverage, IPCW was the 

best performing method in 11 out of 18 scenarios with PP performed better in the remaining 7 

scenarios. ITT and SNFTM lagged behind in terms of coverage. The subsequent subsections illustrate 

methods performance across scenarios and the influence of the seven factors incorporated in the 

design of the simulation study across scenarios.                  

Table 14: Best-performing methods by performance measure across persistence non-adherence 
scenarios (39-56)  

Method Bias rank MSE rank 
Model-based 
SE rank 

Empirical SE 
rank 

Coverage 
rank 

ITT 0 4 0 17 0 

PP 5 12 0 1 7 

IPCW 6 0 0 0 11 

SNFTM 7 2 18 0 0 

 

5.2.4.1 Bias  

Figure 34 illustrates methods performance in terms of percent bias across the persistence non-

adherence scenarios in both the control and experimental arms. G-methods (SNFTM and IPCW) 

performed well across 13 out of the 18 scenarios with PP producing better results in 5 scenarios with 

a small sample size. In all scenarios, the difference between g-methods and PP method is very small. 

When looking at MCSE (reported in Appendix E), the MCSE are also close with values ranging from 

0.07 to 0.17% for PP, 0.07-0.23% for IPCW and 0.07-0.18% for SNFTM across all persistence scenarios. 

Figure 34 shows that small sample size has a negative impact on the performance of g-methods 

leading to higher bias compared to the simple censoring method (PP). SNFTM, IPCW and PP produced 

lower bias in direction of overestimation with bias percent around 20% although this is slightly higher 

(around 30%) in scenarios with a small sample size. ITT generated substantially high bias, in most 

scenarios reaching up to 60% of the true value.  Generally, levels of percent bias ranged between 9-

39% for the IPCW, PP, SNFTM (26% on average), but between 16-72% for ITT (47% on average).
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Figure 34: Percentage bias in the estimation of the difference in RMSTs across persistence non-
adherence scenarios 

 

 

In terms of absolute bias, g-methods produced a small bias of 0.023 years (8.3 days) on average (12 

months follow-up) across all 18 persistence non-adherence scenarios. PP produced results that were 

very close to the g-method with an average absolute bias of 0.023 (8.4 days). In contrast to a higher 

bias of 0.04 years (14.7 days) produced by ITT across the same scenarios. The nested loop plot (Figure 

35) clearly shows that ITT was the worst-performing method across all scenarios in terms of bias in 

the direction of over-estimation. As in percent bias, the type of baseline hazard function specified by 

the DGM has an impact on the size of bias produced by each method. The combined effect of the 

simulation specification factors (shown as descriptors) on bias is illustrated.  

In summary, g-methods (SNFTM and IPCW) were the best performing method in terms of percent bias 

(compared to alternative methods) in adjusting treatment effect for persistence non-adherence, 

although it produced higher bias in some scenarios when the results are compared with 

implementation non-adherence. PP did well in most scenarios as it produced performance results 

closer to g-methods (better in some cases) with ITT always produced the worst performance in terms 

of bias.     
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Figure 35: Bias in the estimation of the difference in RMSTs across persistence non-adherence 
scenarios 

 

 

5.2.4.2 Mean square error 

Figure 36 illustrates the results of methods performance in terms of MSE. The values are expressed as 

a percentage of the truth to aid comparison using the nested loop plots. As shown in the figure, PP 

permed best especially in scenarios with a small sample size. The IPCW performance was influenced 

by the combination of sample size and treatment effect size with a small sample size and low 

persistence leading to a higher MSE percentage.   

SNFTM, IPCW and PP generally did well in scenarios with a large sample size (n=450) with MSE below 

2.5 % in most scenarios. In these scenarios, ITT produced higher MSE with clear fluctuation influenced 

by survival time DGM and level of non-adherence. MSE performance results were influenced by 

sample size, with IPCW performing worst in scenarios with a small sample size with MSE values 

reaching up to 10 % of the truth. PP performed better than ITT in most scenarios (See Figure 36) 
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Figure 36: MSE in the estimation of the difference in RMSTs across persistence non-adherence 
scenarios 

 

 

5.2.4.3 Model-based standard error 

Figure 37 shows the performance results in adjusting for persistence non-adherence using ModSE. 

SNFTM with g-estimation performed the best across all persistence non-adherence scenarios with the 

most noticeable trend relating to sample size. In scenarios with a large sample size of 450 observations 

(39-49), SNFTM performed better than scenarios with a small size of 120 (50-56). The impact of a small 

sample size on ModSE was much bigger for IPCW with substantially higher values in scenarios with a 

small sample size. Large treatment effect size (in combination with small sample size) led to an even 

higher ModSE percentage for IPCW.  
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Figure 37: Model-based SE in the estimation of the difference in RMSTs across persistence non-
adherence scenarios 

 

 

5.2.4.4 Empirical standard error  

Figure 38 illustrates methods performance using EmpSE across the 18 persistence non-adherence 

scenarios (39-56). These results show ITT as the best performing method followed by PP with SNFTM 

and IPCW produced higher EmpSE. These results should be interpreted with caution as discussed in 

Section 4.9.3.4.   
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Figure 38: Empirical SE in the estimation of the difference in RMSTs across persistence non-adherence 

scenarios 

 

 

5.2.4.5 Coverage 

Figure 39 presents coverage percent showing the probability that the 95% confidence interval 

contains the true value of the estimated parameter (i.e. the difference in RMST) across the successful 

simulations. IPCW performed best in most scenarios but PP did better in scenarios with large 

treatment effect size. IPCW and PP coverage was generally very high reaching more than 90% in most 

cases. SNFTM lagged behind IPCW and PP in terms of coverage, but the method still produced better 

performance compared to ITT, which was the worst across all scenarios. Coverage was affected by the 

DGM with ITT resulted in coverage lower than 60% in some cases.            
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Figure 39: Coverage in the estimation of the difference in RMSTs across persistence non-adherence 
scenarios 

 

 

5.2.5 Performance of methods across initiation non-adherence scenarios 

The performance results of adjustment methods across 34 initiation non-adherence scenarios (57-90) 

are presented in this section. An overview of the results summarising the number of times each 

method ranked first on each performance measure is provided. This is followed by highlighting the 

results in the subsequent subsections in terms of performance measures (bias, MSE, ModSE, EmpSE 

and coverage) using nested loop plots. The detailed results for the performance of adjustment 

methods across all initiation non-adherence scenarios are presented in Appendix E.    

Table 15 summarises the results based on the number of times each method performed the best 

compared to the alternative methods assessed across initiation scenarios. SNFTM performed the best 

in terms of bias and ModSE compared to simple methods and IPCW in adjusting estimates of 

treatment effect for initiation non-adherence across scenarios, although PP produced better MSE in 

most scenarios. In terms of bias percent, SNFTM performed the best in 19 out of 34 scenarios with PP 

performed the best in 11 scenarios. EmpSE error favoured simple methods with ITT performing best; 
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however, this should be interpreted with caution because ITT produced higher bias in most scenarios. 

Coverage also favours SNFTM in 21 out of 34 scenarios with PP performed best in 10 scenarios and 

ITT in three scenarios.  Often there was very little to choose between IPCW, SNFTM and PP as the 

performance are very close.            

Table 15: Best-performing methods by performance measure across initiation non-adherence 
scenarios (57-90) 

Method Bias rank MSE rank 
Model-based 
SE rank 

Empirical SE 
rank Coverage rank 

ITT 3 3 0 29 3 

PP 11 26 0 5 10 

IPCW 1 0 0 0 21 

SNFTM 19 5 34 0 0 

 

5.2.5.1 Bias  

Figure 40 illustrates bias expressed as a percentage of the true difference in RMST across 34 initiation 

non-adherence scenarios. SNFTM with g-estimation produced the smallest bias compared to the 

alternative methods in most scenarios. In contrast, to the performance results in implementation and 

persistence non-adherence, PP did better than IPCW in terms of bias percentage.  Similar to the other 

types of non-adherence, the difference between IPCW, SNM and PP is very small. MCSE data also 

show close results for the three methods with numbers ranging between 0.06-0.18 for PP, 0.07-0.27 

for IPCW and 0.7-0.20% across all initiation scenarios.  Bias performance fluctuated, largely dependent 

on the data-generating model, sample size and treatment effect size. 

In contrast, ITT performance was worse than g-methods and PP in terms of bias across all but three 

scenarios. The direction of bias produced by all methods was in the positive region compared 

suggesting an overestimation, although the direction of bias changed to negative (suggesting an 

under-estimation) in some scenarios (83-86). This change was influenced by a combination of small 

sample size, large treatment effect size and time-dependent treatment effect. In scenarios with a large 

sample size (57-74), the average bias percentage produced by SNFTM was 14.7% in contrast with an 

average bias of 52.1% generated by the ITT analysis. PP resulted in a low bias percentage (closer to g-

methods) in the positive region of the nested loop plot indicating over-estimation in most scenarios.  

SNFTM with g-estimation produced better performance in scenarios with a large sample size with bias 

percent closer to zero in most cases (see Figure 40). In addition to the small sample size, the other 

main influencer of bias seems to be the treatment effect size with a larger effect size leading to higher 
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bias, although g-methods and PP handled treatment effect size better than ITT in all scenarios. 

Generally, levels of percent bias ranged between -34 to 110% for the IPCW, PP, SNFTM (35% on 

average), but between -18 to 200% for ITT (75% on average).     

Figure 40: Percentage bias in the estimation of the difference in RMSTs across initiation non-
adherence scenarios 

 

 

Figure 41 presents performance as absolute bias with results largely similar to percent bias as 

discussed above. SNFTM produced the smallest bias of 0.035 years (12.8 days) on average compared 

to the alternative methods across the 34 initiation non-adherence scenarios with even smaller bias in 

scenarios with a large sample size (0.015 years [5.4 days]). This is followed by PP and IPCW that 

generated absolute bias of 0.036 (13.1) and 0.036 (13.2), respectively. In contrast, ITT was the worst-

performing method as it resulted in a higher bias of up to 0.064 years (23.3 days) across the same 

scenarios. That is 82% higher bias compared with bias produced by SNFTM with g-estimation. 
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Figure 41: Bias in the estimation of the difference in RMSTs across initiation non-adherence scenarios 

 

 

5.2.5.2 Mean square error 

Figure 42 shows the results using MSE as a performance measure. G-methods (SNFTM and IPCW) 

resulted in very low MSE (expressed as parentage of the true difference in RMST) compared to ITT 

across scenarios with a large sample size. For these methods, MSE percent was less than 9.7% with an 

average of 2.1% across compared with an average MSE of 3.7% for ITT across the same scenarios. G-

methods struggled in terms of MSE performance in scenarios with a small sample size combined with 

high treatment effect size as a key contributing factor. ITT was the worst-performing method across 

most scenarios with an MSE of more than 25% in some scenarios with a small sample size. ITT did 

better in scenarios with a small sample size, small treatment effect size and time-dependent 

treatment effect (Scenarios 83-86). The influence of each factor combined with other factors specified 

in the simulation study design is illustrated by the descriptors in the nested loop plots (see Figure 42).  
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Figure 42: MSE in the estimation of the difference in RMSTs across initiation non-adherence scenarios 

 

 

5.2.5.3 Model-based standard error 

Methods performance based on ModSE (as a percentage of the truth) is presented in Figure 43. SNFTM 

with g-estimation showed better performance compared to the alternative methods across all 34 

initiation non-adherence scenarios. ModSE in scenarios with a large sample size (n=450) is better than 

scenarios with a small sample size as illustrated in the nested loop plot (Figure 43). IPCW produced 

higher ModSE in scenarios with a small sample size (Scenarios 75-90). Similar to implementation and 

persistence non-adherence, treatment effect size had a large influence on methods performance 

when it comes to adjusting treatment effect for initiation non-adherence.    
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Figure 43: Model-based SE in the estimation of the difference in RMSTs across initiation non-
adherence scenarios 

 

 

5.2.5.4 Empirical standard error  

Figure 44 illustrates the performance of methods using EmpSE across 34 initiation non-adherence 

scenarios. As shown, ITT and PP produced better results compared to g-methods with IPCW generated 

higher EmpSE in scenarios with a small sample size. As discussed earlier, the EmpSE results should be 

interpreted with caution and read alongside the results of the other performance measures.  
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Figure 44: Empirical SE in the estimation of the difference in RMSTs across initiation non-adherence 
scenarios 

 

 

5.2.5.5 Coverage 

Figure 45 reports coverage percent generated by each method across the 34 initiation non-adherence 

scenarios. IPCW performed best across 21 out of 34 scenarios with a very high coverage percentage 

up to 95% (87.2 % on average). This was followed by PP and then SNFTM with ITT produced the worst 

coverage across scenarios. The level of non-adherence was a noticeable contribution to the magnitude 

of coverage for ITT in particular lower levels of initiation non-adherence leading to lower coverage 

percentage.       
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Figure 45: Coverage in the estimation of the difference in RMSTs across initiation non-adherence 
scenarios 

 

 

5.2.6 Results for secondary estimands 

The results in terms of estimates for the secondary estimands are reported in Appendix F (Tables 39-

41). These include RMST in the control arm, RMST in the experimental arm and HRs alongside their 

standard errors across 90 scenarios. As discussed in Chapter 4 (Section 4.7), the results from secondary 

estimands were not used for assessing methods performance or comparing non-adherence 

adjustment methods. However, these estimates are reported alongside their associated standard 

errors to show that alternative non-adherence methods could be used to produce these estimates. 

Another reason for generating these estimates was to see if they highlighted any differences in 

interpretation of the results – e.g. if one method did well for the difference in RMST, but that was as 

a result of over-predicting RMST for control and experimental separately, then this would suggest that 

although the method seemed good based on the primary estimand, actually it was not good because 

it is predicting worse absolute survival. Looking at the results from the secondary estimands, there is 

no evidence anything like that was apparent from the simulations.   
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5.3 Discussion and conclusions   

5.3.1 Summary 

The findings of this simulation study demonstrated the importance of adjusting the treatment effect 

for patient non-adherence in the context of survival analysis and HTA. In this study, RCT datasets with 

non-adherence, prognostic characteristics and a time-to-event outcome were simulated to assess the 

performance of alternative methods. The study included all types of non-adherence (implementation, 

persistence and initiation) across a range of 90 realistic scenarios. Scenarios represent different types 

and levels of non-adherence, sample size, the pattern of hazards, treatment effect size, the 

relationship between treatment effect and non-adherence and the existence of any time-dependent 

treatment effect. The simulation assumed no informative censoring (other than that related to non-

adherence) and no missing data. Non-adherence adjustment methods were assessed using five 

performance measures (bias, MSE, ModSE, EmpSE and coverage). Performance was presented using 

these measures as percentages of the truth for each scenario assessed. Both absolute and percentage 

bias were presented in the results section. Presenting the results in terms of absolute bias shows the 

scale in term values but the comparison of methods performance is better when using percent bias. 

The study assessed four non-adherence adjustment methods with three of these methods identified 

as appropriate for the HTA context.61 The fours methods include two g-methods (SNFTM and IPCW) 

and two simple methods (ITT and PP), with the PP analysis strategy included as a benchmark 

comparator.   

The main results show that g-methods performed better than the ITT method in terms of bias across 

most implementation and persistence non-adherence scenarios with marginal differences compared 

to the PP method. The simulation results show that IPCW produced better coverage in most scenarios 

across the three types of non-adherence (implementation, persistence and initiation). This was 

followed by PP and SNFTM with ITT producing the worst coverage performance in all but three of all 

scenarios assessed across all types of non-adherence. EmpSE favoured simple methods across 

scenarios; however, this should be interpreted with caution when considering performance results 

from other measures such as bias and coverage.
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5.3.2 Key findings 

G-methods were found to be the best performing method for adjusting treatment effectiveness in the 

presence of implementation non-adherence in terms of bias and ModSE. For bias, g-methods and PP 

had very similar patterns in the performance results and the differences between them were very 

marginal. The findings show slight changes with higher bias results associated with small sample sizes. 

The better performance of the PP method is more likely to be related to the strength of the 

relationship between prognostic characteristics, non-adherence and the survival outcome in the 

simulated datasets (see below for further discussion). Coverage performance was better for IPCW in 

50% of implementation scenarios (mostly in scenarios with a large sample size) followed by PP. 

However, coverage did not favour SNFTM, although the method has performed the best in terms of 

bias and ModSE.   

In scenarios with implementation non-adherence, bias ranged between 7-38% for the IPCW, PP, 

SNFTM (20% on average), but between 20-75% for ITT (40% on average) suggesting that all adjustment 

methods reduced percentage bias by about half compared to ITT, but some reasonable level of 

percentage bias did remain. SNFTM produced the lowest bias in most scenarios (21 out of 38) followed 

by IPCW (9 out of 38), although bias was higher in scenarios with large treatment effect size. Methods 

performance varied with variation in the values of other factors such as sample size and treatment 

effect size, with small sample size and large treatment effect size both leading to higher bias. The level 

of non-adherence and the relationship between non-adherence and graft survival outcomes were 

found to influence the performance of methods in terms of MSE, ModSE and EmpSE across 

implementation scenarios. For these performance measures, the sample size was the most noticeable 

influencing factor with a small sample size leading to a higher percentage of these measures (i.e. lower 

performance compared to scenarios with a large sample size). PP analysis produced a good 

performance in terms of MSE and coverage, although the method lagged behind g-methods in terms 

of bias and ModSE across implementation non-adherence scenarios. On the other hand, the findings 

show that ITT was the worst-performing method in terms of bias, ModSE and coverage across all 

implementation non-adherence scenarios. The findings show that ITT produced 47% higher bias (on 

average across all implementation non-adherence scenarios) compared with g-methods. 

In scenarios with persistence non-adherence, the performance of methods was largely comparable to 

implementation, although the results show higher percent bias in some persistence scenarios. G-

methods were the best performing methods in terms of bias, ModSE and coverage. Bias ranged 

between 9-39% for the IPCW, PP, SNFTM (26% on average), but between 16-72% for ITT (47% on 
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average) suggesting that all adjustment methods reduced percentage bias by about half compared to 

ITT, but some reasonable level of percentage bias did remain. ITT was always the worst-performing 

method when these measures were used to assess performance across 18 persistence non-adherence 

scenarios. The findings show that ITT led to 76.2% higher bias (on average across all persistence non-

adherence scenarios) compared to g-methods. Although bias was the key performance measure in 

this simulation study, MSE is also important because it combines bias with variability, with the latter 

considered as particularly important to address uncertainty in an HTA context. MSE favoured PP; 

however, the performance results are very close to those produced by g-methods in most persistence 

scenarios with large sample size, with ITT produced a significantly higher MSE percentage across the 

board. In scenarios with small sample size, IPCW produced a higher MSE percentage with even higher 

percentages in scenarios with a large treatment effect size. EmpSE favoured simple methods in 

persistence scenarios; however, this should be interpreted with caution, as discussed in Section 5.3.1. 

In scenarios with initiation non-adherence, SNFTM with g-estimation was the best performing method 

in terms of bias in most scenarios, with the best performance in terms of ModSE across all initiation 

non-adherence scenarios. The next best performing method found was PP followed by MSM with 

IPCW estimator. Bias ranged between -34 to 110% for the IPCW, PP, SNFTM (35% on average), but 

between -18 to 200% for ITT (75% on average) suggesting that all adjustment methods reduced 

percentage bias by about half compared to ITT, but some reasonable level of percentage bias did 

remain. PP was found to produce better performance in terms of MSE, although the results were very 

close to g-methods in scenarios with a large sample size. The study demonstrated that SNFTM with g-

estimation outperformed the alternative methods in 19 out of 34 initiation non-adherence scenarios 

(mostly in scenarios with a large sample size). The treatment effect size was the next contributing 

factor in influencing bias produced by g-methods as a large treatment effect size led to larger bias, 

particularly in combination with a small sample size. However, SNFTM struggled in terms of coverage 

performance in which IPCW was the best-performing method in 21 out of 34 scenarios. The level of 

non-adherence was a key contributing factor for coverage performance with very high levels of non-

adherence leading to poor coverage performance. PP performed well in terms of MSE and bias, 

although the method lagged behind SNFTM in terms of bias across initiation non-adherence scenarios. 

ITT produced higher bias, higher MSE and lower coverage across all initiation scenarios. The findings 

show that ITT led to 82% higher bias compared to SNFTM with g-estimation.             

Another important research finding relates to PP analysis as the method performed well in many 

scenarios producing good performance closer to g-methods in terms of MSE. The method also did very 

well in terms of coverage and was found to be the best-performing method in 50% of implementation 
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scenarios (similar to IPCW). The latter finding was mostly associated with scenarios with a small 

sample size where IPCW struggled in coverage performance. Based on further investigations carried 

out in this study, this finding seems to relate to the impact of the time-dependent confounder on graft 

survival times. In the simulated scenarios where patients with worse prognostic characteristics (i.e. 

high BMI and aged below 24 years) are more likely to non-adhere to the dosing regimen, but over time 

more of these patients are likely to experience the event. Therefore, fewer patients are left to non-

adhere, and ultimately in the end I get a mixture of poor and good prognosis patients non-adhering, 

and the relationship between non-adherence and prognostic characteristics is weakened over time. 

This issue may result in the IPCW having weights that are all close to 1, so it does not do much on top 

of the simple censoring (PP) analysis in these particular scenarios. This means that because there is 

not a strong relationship between prognosis and adherence, the PP approach is not very biased. This 

issue may require more complex DGMs and this could be an important area for future research.  

A potential reason might be related to the DGM as only three time-points were simulated, and so 

maybe it was difficult for consistent relationships to show up in each simulated dataset, given 

variability. The impact of the number of data points is another important consideration for the design 

of future simulation studies. The abovementioned reasons might potentially explain why similar 

results between PP and the g-methods were generated in many scenarios, which perhaps would not 

have been expected based upon the advantages of the g-methods and based on findings in previous 

simulation studies. In circumstances such as those simulated in this study, when the pool of "at-risk of 

non-adhering" patients changes over time, the confounding might even out (at first worse prognostic 

patients non-adhering, then over time better prognostic patients non-adhering) might lead to a case 

where the bias in a simple censoring approach is low. In this case, methods applying a simple censoring 

mechanism such as PP might work. Future research is required to further investigate this issue.   

Although complex simulation methods were used in this simulation study to generate RCT datasets 

for testing the alternative methods, the DGMs in some scenarios may not sufficient in generating 

substantial time-dependent confounding to test the limitations of the PP method in this context.  This 

means the relationship between prognosis and non-adherence was not strong enough for the g-

methods to generate superior performance compared to the PP method. The g-methods did not 

improve much compared to PP and this could be because of the change in the patient mix over time, 

perhaps because there were only three-time intervals, or perhaps a mixture of these reasons.  

However, the simulation study was complex enough to assess the performance of g-methods 

compared to ITT analysis across all types of non-adherence. The study provides clear evidence in 
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favour of g-methods against ITT analysis.  The latter analysis is not possible to perform using the PP 

simple method. The implications of this finding are discussed further in the methodological framework 

developed in this thesis (Chapter 7). It should be noted that, unlike g-methods and ITT, the suitability 

of the estimand used by PP is not theoretically appropriate for HTA because the estimand is not 

marginalized to the entire study population. In other words, it is not comparing like with like in terms 

of estimates generated by the methods.  

The overall pattern of performance results across all the scenarios is that ITT is the worst performing 

method, with a quite high percentage bias; and IPCW, SNFTM, PP all reduce this bias by about half (or 

more) and produce very similar results to one another.  

5.3.3 Comparison with other studies 

Existing evidence from relevant simulation studies showed comparable results, although the design 

and non-adherence metrics used in these simulation studies were different. For instance, Cain and 

Cole (2009)108 published the first simulation evidence in the methodological literature that compared 

IPCW and ITT analysis in adjusting for non-adherence in the context of survival analysis. The study 

aimed to correct for the effect of time-varying non-adherence on estimating the effect of a 

hypothetical highly active antiretroviral therapy on time to the incidence of AIDS or death. The study 

assessed methods performance in three scenarios defined by different levels of non-adherence (0% 

assuming perfect adherence, 20% and 40% non-adherence) by performing 2000 iterations for each 

scenario.108 The sample size used was 1000 with a standard Weibull distribution used for generating 

survival times in the simulated datasets. Bias and MSE were reported as performance measures with 

findings showed that the g-method (IPCW) was the best-performing method in terms of unbiasedness. 

The paper reported that bias and imprecision increase as the level of non-adherence increased. This 

is similar to findings from my current simulation study, although the magnitude of bias differs, 

potentially due to the different estimands, DGMs, non-adherence metrics and other parameter values. 

In their study, HR was used as a primary estimand whereas; I used difference in RMSTs for assessing 

methods performance. For example, their study reported bias and RMSE as absolute numbers; 

whereas, I used bias percent and MSE as percentage of the truth.      

Other existing simulation evidence includes a study reported by Zhang et al. in which they compared 

the same methods (IPCW vs ITT).40 The study aimed to assess methods performance on adjusting for 

treatment discontinuation (i.e. persistence type of non-adherence). The study assessed hypothetical 

treatments comparing two anticoagulants with a time-to-event outcome. The study design assumed 
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a large dataset (n=2000) and simulated 2000 iterations with time to discontinuation as a measure of 

time-varying non-adherence. The simulated datasets included baseline covariates, time-dependent 

confounders, censoring of event time, and time-varying non-adherence, with simple Bernoulli 

distributions, used to generate randomisation assignment. The paper reported an average non-

administrative censoring of 32% over the study follow-up. The key findings are similar to those 

reported by Cain and Cloe with IPCW generated the best performance in terms of bias and coverage. 

IPCW produced an average estimate of -0.492 in contrast with an ITT estimate of -0.334 compared 

with the true parameter value of -0.500 in terms of the log HR. The reported coverage performance 

was 96% for IPCW and 14.1% for ITT analysis.40 Although, a different study design was used (including 

the estimand), the findings of this study are similar to my simulation study with IPCW outperforms ITT 

analysis in adjusting treatment effect for persistence non-adherence. However, the magnitude of 

coverage differs and this is likely to be due to differences in DGMs and sample size. My study findings 

show that a smaller sample size leads to poor performance, but the advantage is that it is more 

generalisable than findings arbitrarily chosen sample size as in the two existing studies discussed in 

this section. It was not possible to compare the findings related to PP method because the two 

relevant existing studies (discussed above) did not include PP analysis in the alternative methods 

assessed. 

The g-methods evaluated here have also been tested in several simulation studies for adjusting 

effectiveness in the presence of treatment switching.101, 128, 129 There are some arguments in the 

published literature considering treatment switching as a type of persistence non-adherence. 

However, the counter-argument is that switching prescribed medication is a different type of change 

in therapy, as it must be initiated by the prescriber (e.g. the medical practitioner). Whereas 

persistence non-adherence, which happens before the end of prescribing by the patient's own 

behaviour, would be considered as non-adherence. Latimer and colleagues published several papers 

providing evidence on the performance of these methods in the context of treatment switching and 

survival analysis.  

The findings from these studies show that g-methods were superior to simple methods in terms of 

performance using a range of performance measures including bias and coverage. For instance, 

Latimer et al.101 published findings from a simulation study aimed to assess the performance of IPCW, 

RPSFTM and ITT (among other methods). The authors simulated RCT datasets in the presence of 

treatment switching (from the control onto the experimental group) with a time-to-vent outcome and 

time-dependent confounding. The primary estimand was RMST in the control group that would have 

been observed in absence of treatment switching. The findings from the simulations demonstrated 
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that both g-methods (IPCW and RPSFTM) performed well in terms of handling the effects of time-

dependent confounding. However, IPCW struggled in situations with high percentages of switching 

and a modest sample size.                 

5.3.4 Strengths and limitations 

This simulation study is superior to the comparable existing studies in many aspects. The study design 

was based on international guidelines for planning simulation studies and followed a pre-specified 

study protocol.1, 113, 115 These include using a new taxonomy of medication non-adherence using the 

initiation, implementation and persistence framework (i.e. ABC taxonomy). The study included the 

simple censoring PP method, which was not considered in the existing comparable studies, and this 

has produced interesting findings as discussed further down this section. Moreover, a range of five 

performance measures and four estimands were included in this study, which is more than used in 

many previous studies. The study also used a nested loop plot to assess performance patterns using 

different performance measures and study factors across all scenarios assessed.   

Robust data-generating mechanisms were used to simulate biologically plausible survival data with 

baseline covariates, time-dependent confounders, time-varying non-adherence and a robust 

randomisation assignment procedure. The relationships between prognostic variables, non-

adherence and the survival outcome followed a DAG which was developed in this study based on 

discussions with clinicians, external advisors and evidence from the literature. The user-written 

baseline hazard functions used for simulating survival data in a delayed entry model allowed for 

simulating a range of RCT datasets (with reasonable levels of complexity) for testing the alternative 

non-adherence adjustment methods.  

Other strengths associated with this simulation study include the incorporation of seven important 

factors in a partly factorial simulation study design that has contributed to widening the range of 

scenarios assessed. These factors covered sample size, type of non-adherence, level of non-adherence, 

baseline hazard function, the relationship between patient non-adherence level and survival outcome, 

time-dependent treatment effect and treatment effect size. Using two types of baseline hazard 

functions (standard FPM and two-component mixture FPM) contributes to improving the 

generalisability of findings to other disease areas beyond kidney transplantation. Using five key 

performance measures within the best available tools (e.g. the simsum Stata Package) with the nested 

loop plots have facilitated the presentation and interpretation of the results. The simulation reporting 

adheres to published international guidelines for reporting simulation studies and medication 
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adherence research.118, 126  Presenting the results in terms of absolute bias shows the scale in term 

values but the comparison of methods performance is better when using percent bias. 

There are limitations associated with this study, and these are discussed here. It is difficult to 

accurately simulate the complexities of real-world disease pathways and biomarkers; therefore, 

simplification is inevitable, and this simulation study is not an exception. Key simplifications include 

the number of baseline and time-dependent confounders simulated in the datasets. In this study, only 

one baseline covariate (age) and one time-dependent confounder (BMI) were included as a 

simplification to simulate meaningful relationships between covariates, non-adherence and graft loss. 

However, in real RCT datasets, there are likely to be more confounders. The interaction between 

multiple confounders, non-adherence and survival outcomes might lead to different outcomes to 

those generated in simulated datasets and this might influence performance. In the simulated 

datasets, I assumed no “non-administrative censoring” and no missing data; therefore, the findings 

do not take these inter-current events into account. However, these problems were properly 

investigated in the methodological literature; and it could be argued that accounting for non-

administrative censoring and missing data in real practice should be considered alongside the non-

adherence adjustment methods assessed in this simulation study.      

The Rank-Preserving Structural Failure Time Model (RPSFTM) with g-estimation was identified as 

appropriate for the HTA context. However, the method can only be applied for RCT designs with a 

placebo control arm (see Chapter 2 for more details about how the method works). I have discussed 

this with Professor Ian White and considered designing a special set of scenarios for testing this 

method as all the 90 scenarios simulated datasets compared two active treatments with non-

adherence applied on each arm. Based on further considerations, I decided to exclude this method 

from assessment in the current simulation study. 

Unsuccessful data simulation and non-convergence problems were captured by the simulation 

program with the latter possibly being related to the degrees of freedom specified in the flexible 

parametric survival model (FPM), although this has been rare in this particular simulation study. I 

considered using a different approach by allowing the FPM to choose a smaller degree of freedom if 

the originally specified one results in non-convergence. However, the concern is that the modified 

model is likely to produce different results influenced by the model specification rather than non-

adherence which is not desirable. Therefore, I decided to record results from the failed simulations as 

missing and move to the next iteration. The argument is that if the "preferred" FPM model does not 

converge, the results are less comparable to other simulations where the preferred model does 
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converge. Nevertheless, the degree of freedom used in the FPM specification was chosen based on 

assessing a range of values using AIC and BIC criteria for model fitting. In trials with very small sample 

sizes, the application of g-methods to adjust for non-adherence might lead to non-convergence 

problems and therefore the analyst needs to consider this as a potential issue when designing their 

analysis plan. The non-convergence issue was also associated with the data-generation methods 

including the randomisation and survsim commands that have resulted in several unsuccessful 

simulations and this should be considered as a limitation. However, enough successful simulations 

were achieved to assess the alternative non-adherence adjustment method for each scenario 

assessed in this simulation study. 

Another limitation relates to the coverage performance results. Although a robust SE around the 

difference in RMST was generated, the coverage data seems less reliable. As an alternative approach, 

bootstrapping might be needed on top of robust SE to improve coverage performance estimates. 

While this approach has not been specified in the study protocol; and therefore not applied, it might 

be worth considering it in the design of future simulations if better coverage performance is desirable.  

For ITT and PP no adjustments are made, and the SEs and CIs generated are robust. For IPCW weights 

are used to get a pseudo-population, but also use robust SE which account for these weights. For 

SNFTM robust SEs deal with the clustering of the data but do not recognise that the FPM is applied to 

an adjusted dataset, therefore, the uncertainty associated with the adjustment is not recognised. For 

SNFTM, adequate confidence intervals (CIs) and coverage could be obtained bootstrapping the entire 

adjustment analysis, which in a simulation study is very computationally intensive. In this particular 

simulation, I would need to sample the simulated dataset 1000 times (for example), apply the SNFTM 

and FPM in each sample, record the RMST in each sample, then take CIs across the 1000 samples to 

get the CI for 1 simulation. Then do that 1900 times for 1 scenario and this will be equivalent to 

1900*1000 SNFTM analyses for 1 scenario. This computational burden was the main reason for not 

applying bootstrapping in this simulation study.    

It is important to assess the sensitivity of each method performance to their departure from key 

assumptions. The “no-unmeasured confounding” is a key assumption used by g-methods (SNFTM and 

IPCW). As a limitation, the assumption of non-unmeasured confounding was not assessed in this 

simulation study. This is because only one time-dependent confounder was simulated, thereby making 

it impossible to run analyses with fewer covariates. However, the analyst should consider this to 

ensure that the assumption of no-unmeasured confounding is met when applying g-methods in their 

studies in practice. PP analysis could be considered as a baseline for this. The method does not correct 

for differences between non-adherers and adherers, and so, represents IPCW had IPCW not included 



184 
 

any covariates or if the relationship between prognosis and non-adherence is not being very strong. 

Future research needs to consider including more than one baseline and time-dependent confounders 

to allow for testing the assumption of non-unmeasured confounding. 

Other limitations include the values of parameters and coefficients used for simulating the datasets. 

While these were based on the literature with values calibrated to achieve KM survival curves that 

mimic data from RCT evaluated immunosuppression in kidney transplantation, the performance of 

methods in scenarios with different parameter values is unknown. I tried to vary the values of certain 

parameters and factors including sample size, treatment effect size, the relationship between non-

adherence and graft survival to improve generalisability. However, for practical reasons covering all 

possible options was not possible as it requires a fully factorial study design and more resources which 

are beyond the scope of this thesis. Nevertheless, the findings of this simulation study provide new 

evidence for choosing the appropriate method across a range of realistic scenarios.  This also opens a 

range of possibilities for future research (simulation studies) for testing non-adherence adjustment 

methods in other scenarios with different DGMs, longer follow-up and different parameters values. 

Special attention should be given to the robustness of methods for generating substantial time-

dependent confounding if the simple censoring method (PP) is considered among the alternative 

methods to be assessed. Finally, assuming binary adherence used by the adjustment methods is 

another limitation which is more relevant to adjusting for implementation non-adherence.     

5.3.5 Conclusions 

In conclusion, the findings of the simulation study demonstrated that g-methods (MSM with IPCW and 

SNFTM with g-estimation) are the best-performing methods in terms of unbiasedness and ModSE for 

adjusting estimates of treatment effect in the presence of implementation and persistence non-

adherence in RCTs with time-to-event outcomes. For initiation non-adherence, SNFTM is the best-

performing method in terms of unbiasedness and ModSE. The findings demonstrated that g-methods 

produce higher coverage compared to ITT in most scenarios across all types of non-adherence. The 

study provides new evidence comparing four statistical methods covering two g-methods (IPCW and 

SNFTM) and two simple methods (ITT and PP) across a range of implementation, persistence and 

initiation non-adherence scenarios. The simulation study provided evidence on nuances on 

relationships between prognostic variables, patient mix, and adherence to medication over time, and 

the ability of g-methods to model these relationships. The study findings also demonstrated that the 

PP analysis method performed well in many scenarios with good performance in terms of MSE and 

coverage, although the PP estimand is different from the ITT and g-methods estimands.  
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The findings favour SNFTM in most scenarios across all types of non-adherence, but it should be noted 

that the method might produce high bias in scenarios with high levels of non-adherence and/or large 

treatment effect size, although this is more likely to be lower than the potential bias produced by the 

alternative methods. The findings demonstrated that IPCW is the best performing method in terms of 

producing higher coverage in most scenarios across all types of non-adherence. 
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Chapter 6: A case study on the application of non-adherence 

adjustment methods in kidney transplantation  

6.1  Introduction  

This chapter presents the case study to show how the adjustment methods can be applied using real 

RCT data combined with real-world non-adherence levels to generate adherence-adjusted cost-

effectiveness estimates of immunosuppressive regimens in kidney transplantation. Section 6.2 

presents the aim of the case study. Sections 6.3 provides an overview of the methods used in the case 

study including the overall study design, interventions compared, study population, directed-acyclic 

graph (DAG) and analytical steps. Section 6.4 describes the SYMPHONY trial dataset used in analysis 

including patients’ characteristics, baseline and time-dependent confounding and adherence to 

medications in the trial. Section 6.5 presents a review of implementation non-adherence to 

immunosuppressive therapy in the real world based on existing evidence from the literature. Section 

6.6 presents the analysis of the SYMPHONY dataset using the standard ITT (unadjusted analysis) and 

the analyses using g-methods to adjust the treatment effectiveness for real-world implementation 

non-adherence levels. Section 6.7 describes the economic model and cost-effectiveness analysis. The 

section describes the economic analysis undertaken for estimating adherence-adjusted cost-

effectiveness of immunosuppressants using an adapted economic model. Section 6.8 presents the 

results of the case study. Section 6.9 discusses the findings and provides the conclusions of the case 

study.  

The case study built on the work undertaken in Stage 1 (Systematic review)61 and Stage 2 (Simulation 

study) of this PhD research project, as applied to maintenance immunosuppressants for kidney 

transplantation in adults. This disease area was chosen for three main reasons: (1) significant 

implications of non-adherence for patients (i.e. graft loss, return to dialysis and potentially death); (2) 

significant cost implications to the NHS; and (3) availability of both RCT and real-world data with 

adherence to medications metrics.  

The original idea behind this case study was to investigate the implications of differential adherence 

levels to a new once-daily modified-release tacrolimus formulation compared to a twice-daily 

immediate-release tacrolimus formulation among kidney transplant recipients.130 The tacrolimus 

once-daily formulation was rejected in the recent update of NICE Technology Appraisal (TA481).120 

The original plan was to obtain individual-patient level data (IPD)  from the UK Renal Registry (UKRR) 

in terms of drug concentration levels to estimate real-world non-adherence for the two tacrolimus 
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formulations. And then use the adherence estimates from the UKRR database within an RCT dataset 

from the OSAKA study (a trial that compared once-daily versus twice-daily tacrolimus formations).131 

However, my requests for both the UKRR and the OSAKA datasets have been rejected by the data 

owners; and therefore, a change to the original plan was made. Based on consultations with two 

clinicians (WM and JF), the plan was changed to use published estimates of real-world non-adherence 

to the twice-daily tacrolimus regimen compared to the standard and low-dose cyclosporine regimens 

within the SYMPHONY trial dataset (see Section 6.4 for more detail about this trial).116  

Given the potential weakness of the UKRR dataset, the new plan may not be inferior to the original 

plan. Among others, the UKRR data limitations are: (a) centres started submitting data on drug 

concentration levels as part of their 2016 data (from January 2017) but it is likely to be a number of 

years before all centres do; (b) the data is collected as part of the PatientView extract (an online portal 

that takes data from renal unit's records at least once a day and links to useful information about the 

patient’s kidney condition and its treatment); and (c) PatientView data is only available on people who 

have signed up to PatientView (i.e. around half of the transplant patients) and these patients may not 

be representative of all kidney transplant patients as they are signing up to check their own blood 

results online.  

The selection of the SYMPHONY trial was also informed by advice from the clinicians. The regimens 

compared in the case study (and SYMPHONY trial) represent the current standard maintenance 

immunosuppressive regimens in the NHS and other health care systems around the world. SYMPHONY 

is the largest RCT that evaluated calcineurin inhibitors (CNIs; cyclosporine and tacrolimus). A third trial 

dataset (the 3C study)132 was also pursued, but this was abandoned due to contractual problems 

encountered by the investigators due to their dataset also including data from NHS Digital (and for 

which they did not have the rights to share with a third party).   

Non-adherence in patients after having kidney transplantation can be so serious that the transplanted 

kidney may be rejected or lost, the patient may need to return to intensive treatment (kidney dialysis) 

or they may even die. Well-designed and conducted RCTs are used as the best way of assessing 

treatment effects.133 However, there is a debate around whether evidence from trials can reflect 

normal healthcare practice. A major factor that could impact on treatment effect is patient non-

adherence to the prescribed dosing regimen.  The key point is that adherence in RCTs may not reflect 

normal adherence in the real world, and therefore, estimates of effectiveness from trials may not be 

externally valid. This is particularly important when the medications are prescribed for a longer period 

(i.e. lifetime) as in the case of maintenance immunosuppressive therapy after kidney transplantation.   
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6.2  Aim of the case study 

The case study aimed to assess the cost-effectiveness of maintenance immunosuppressive therapy 

for kidney transplantation in adults, adjusting for patient non-adherence to the prescribed dosing 

regimens. The analysis used adherence data from the real world to adjust effectiveness data from an 

RCT to produce estimates of real-world effectiveness, which were then applied within an existing 

decision-analytic model. The purpose of the case study is to show how the best-performing methods 

from the simulation study could be applied using real data and to identify any issues associated with 

applying the methods to unsimulated data.  

Given the nature of the patient population and intervention, only implementation non-adherence is 

relevant.  Furthermore, based on the results of the simulation study this meant that only g-methods 

were considered relevant to the HTA context of the study. ITT values were estimated as they represent 

the current approach adopted by NICE. IPCW was chosen to re-estimate effectiveness in the base-case 

analysis with SNFTM applied in a secondary analysis. There was not much to choose between the two 

methods based on performance in the simulations so I did the adjusted analysis using them both.  

6.3 Methods overview  

To apply non-adherence adjustment methods, the required RCT data should include demographic 

information, adherence metrics, and relevant prognostic confounders. The SYMPHONY trial is a study 

that meets these criteria. The details of this trial are published elsewhere,116 but these are briefly 

described in Section 6.4. 

6.3.1 Case study design 

The overall design of the case study is a cost-utility analysis where the results are expressed in terms 

of total discounted costs, total discounted QALYs, incremental costs and QALYs, and net health 

benefits (NHBs). Actual adherence to maintenance immunosuppressive therapy in the real world was 

obtained from a review of the literature (see Section 6.5). This information was used to re-estimate 

the clinical effectiveness based on the assumption that adherence in the trial population was the same 

as observed in the real world. The clinical effectiveness estimates were then used within an adapted 

decision-analytic model to estimate the adherence-adjusted cost-effectiveness of these drugs over a 

patient lifetime horizon. I obtained NHS Research Ethics Approval for this case study (REC reference: 

19/LO/0847). 
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An existing health-economic model was adapted to estimate adherence-adjusted cost-effectiveness 

comparing standard-dose cyclosporine, low-dose cyclosporine and low-dose tacrolimus (referred to 

as ‘tacrolimus’) as maintenance immunosuppressants for adult kidney transplant patients in the UK. 

The economic model was originally built by the Peninsula Technology Assessment Group (PenTAG) 

which underpinned the recent update of NICE Technology Appraisal guidance (TA481).120 The model 

has been adapted in this study to incorporate treatment effectiveness estimates produced from my 

analysis of the SYMPHONY data. The economic model is described in greater detail in Section 6.7. 

6.3.2 Interventions 

The interventions assessed in this case study are the following maintenance immunosuppressive 

regimens as used in the SYMPHONY study and the adapted economic model: 

• Group A: Standard-dose cyclosporine (Neoral or Sandimmune, Novartis) plus mycophenolate 

mofetil (CellCept, Roche) and corticosteroids (CsA+MMF+ST).  

• Group B: Basiliximab induction and low-dose cyclosporine plus mycophenolate mofetil and 

corticosteroids (Bas+CsA+MMF+ST).  

• Group C: Basiliximab induction and low-dose immediate-release tacrolimus (Prograf, Astellas 

Pharma) plus mycophenolate mofetil and corticosteroids (Bas+Tac+MMF+ST).  

All three alternative treatment regimens included the maintenance immunosuppressive drugs, 

cyclosporine (standard-dose or low-dose) or tacrolimus, in combination with mycophenolate mofetil 

and corticosteroids.  An induction agent, basiliximab, was also used for groups B and C. In the adapted 

economic model, basiliximab was used as an induction agent for the low-dose cyclosporine and 

tacrolimus regimens; whereas, in the SYMPHONY trial, daclizumab was used as an induction agent.  

Although these are two different drugs, a recent meta-analysis of six RCTs concluded that “the safety 

and efficacy of daclizumab and basiliximab are similar in kidney transplant recipients”.134 The study 

also indicated that basiliximab is more cost-effective than daclizumab.134 Therefore, basiliximab was 

considered as the induction agent of interest in the analysis as used in the original economic model. 

The new induction agent was also accepted by NICE in their updated Technology Appraisal guidance 

(TA481).   

Although the treatment regimens include multiple drugs, non-adherence data were only collected for 

the maintenance immunosuppressive agents within each regimen; and therefore, the analysis did not 

consider the impact of multiple adherence to all medications within each regimen. Measuring multiple 

medication adherence (MMA) has been identified as an issue in a recent report of the ISPOR 
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(International Society for Pharmacoeconomics and Outcomes Research ) Medication Adherence and 

Persistence Special Interest Group.135  Therefore, adjusting for MMA in cost-effectiveness estimates 

could be an interesting area for future research. The maintenance immunosuppressive therapies of 

interest (tacrolimus and cyclosporine) are described in more detail in the following subsections: 

6.3.2.1  Tacrolimus 

Immediate-release tacrolimus is a maintenance immunosuppressant used for the prophylaxis of graft 

rejection in adult transplant patients.120 It is administered orally as capsules, twice a day, with a 

recommended initial dose of 0.1 to 0.3 mg/kg/day which is usually reduced over time to maintain the 

target levels.116, 120 The common brand names are Prograf, Adoport, Capexion, Perxis, Tacni and 

Vivadex.  

6.3.2.2 Cyclosporine 

Cyclosporine is an immunosuppressant that may be used alone or in combination with other 

medication, as maintenance therapy after kidney transplantation in adults.120 The recommended dose 

is 2-6 mg/kg/day administered as twice-daily capsules and reduced gradually to maintenance with a 

lower dose when used concomitantly with other immunosuppressive therapy (e.g. corticosteroids).120             

6.3.3 Study population 

The study population included adult patients aged 18 and over receiving maintenance 

immunosuppressive therapy (tacrolimus or cyclosporine) after incident kidney transplantation. The 

study population was selected based on the decision problem assessed in the latest NICE Technology 

Appraisal model (TA481). No subgroup analysis was undertaken in this case study. 

6.3.4 Directed-acyclic graph (DAG) 

A DAG for the case study was drawn based on evidence from the literature and discussion with 

clinicians (Figure 46). In the DAG, time flows from left to right and therefore the sequence of variable 

measurements are based on this convention.13 The DAG illustrates the randomisation variable (Z) to 

the left-hand side assigning patients to each of the three immunosuppressive regimens assuming 

perfect initiation of the treatments. The implementation non-adherence only occurs after that for a 

follow-up of 365 days post-transplantation. The confounders Ls affect subsequent adherence (As) and 

the time to graft loss outcome (Y); and the Ls themselves are affected by previous As, representing 

time-dependent confounding. Baseline covariates and the values of time-dependent confounders at 
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baseline (both denoted as L0) are common causes which means they influence both graft survival 

outcome and non-adherence between baseline and the first follow-up time point A1, as illustrated in 

the DAG. The justification for the identification of baseline and time-dependent confounders was 

discussed earlier in Chapter 4, Section 4.4. Figure 46 shows the relationships between all the variables 

used in the analysis. No potential collider variables were identified (for more detail see Chapter 1, 

Section 1.3.6).    

Figure 46: Directed-acyclic graph (DAG) for SYMPHONY dataset  

 

Z= is randomisation variable; L0= is a vector of baseline covariates that includes age and gender and also 

include values of time-varying covariates measured at baseline; L3, L6 = updated time-varying covariate (BMI 

and acute rejection) at 3 and 6 months, respectively; A0, A0-3, A3-6, A6-12= time-varying non-adherence at 

baseline, between baseline and 3 months, 3-6 months and 6-12 months, respectively.    

6.3.5 Analytical steps 

The case study involved the following analytical steps: 

1) Identification of estimates of medication adherence levels in the real world using data from the 

literature. This was focused on implementation non-adherence measured using CV% relating to 

blood concentration levels for immunosuppressants (i.e. tacrolimus and cyclosporine). 

2) The predicted non-adherence levels were obtained by adjusting the CV% cut-off used for 

determining the presence of non-adherence, such that the overall adherence level in the trial 

matched real-world estimates. 
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3) Re-estimation of the relative clinical effectiveness of immunosuppressive regimens (tacrolimus 

versus low-dose cyclosporine versus standard-dose cyclosporine) using data from the SYMPHONY 

trial, adjusted according to the predicted real-world adherence levels (this is described in more 

detail in the next paragraph). The adjusted analysis was performed using g-methods (MSM with 

IPCW applied in the base-case analysis and SNFTM with g-estimation used as a secondary analysis). 

The clinical effectiveness estimates included graft survivor functions censored for death with a 

functioning graft (DWFG). A standard ITT unadjusted analysis was also performed and the results 

are presented alongside estimates from the adjusted analysis.   

4) Adaptation of the health economic model for estimating long-term adherence-adjusted cost-

effectiveness of immunosuppressive therapy for adult kidney transplant recipients in the UK. The 

economic model was originally developed for the latest NICE Technology Appraisal (TA481). 

Unadjusted cost-effectiveness results using effectiveness estimates from the standard ITT analysis 

was also performed and presented alongside the adjusted analysis for comparisons.   

The predicted non-adherence levels were obtained using adherence levels observed in the 

SYMPHONY trial in terms of CV% and a new cut-off point such that the overall proportion of non-

adhered patients matches real-world estimates. People with higher CV% based on the observed trial 

records of drug concentration levels have a higher probability of being non-adhered in the predicted 

dataset. The analysis for re-estimating treatment effectiveness conducted in this case study was 

adjusted for patient characteristics and prognostic factors that may cause confounding bias. These 

were variables that had a common cause on the exposures and the outcome of interest. Baseline and 

time-dependent confounders were identified using the process described in Chapter 4 (Section 4.4.2).  

In brief, the process was based on the DAG which was drawn based on evidence from the literature 

and discussions with clinicians (see Figure 46). Simple regression was used to check the relationships 

between confounders and adherence to medications in the dataset. These will be subject to potential 

bias themselves, hence they are just a check and the main choices were made based on the DAG. 

Statistical significance was not used to determine the inclusion of the potential confounders as the 

assessment was mainly based on the values of the coefficients from the regression output required to 

show some degree of associations. This confirmatory step was used to satisfy the conditions of 

baseline or time-dependent confounding as described in Chapter 1 (Section 1.3.4). 
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6.4 The SYMPHONY trial data 

The SYMPHONY study was a prospective, randomised, open-label, multicentre study of 1,645 kidney-

transplant recipients with a 12-month follow-up. The study evaluated the clinical effectiveness of four 

immunosuppressive regimens involving standard-dose cyclosporine, low-dose cyclosporine, 

tacrolimus and low-dose sirolimus. The analysis undertaken in this case study included three arms 

with the sirolimus regimen excluded. The main reason for excluding the sirolimus regimen was that 

the treatment is rarely used in the NHS as a maintenance immunosuppressive therapy in kidney 

transplantation. In addition, unlike tacrolimus and cyclosporine, evidence suggests that the intra-

patient variability (IPV) obtained from drug concentration levels for sirolimus is unreliable and may 

not be appropriate for use as a proxy measure of adherence. Moreover, sirolimus has a much longer 

half-life, so level variation will inevitably be less even in non-adherent patients. 

In this context, IPV is defined as the amount of fluctuation in drug blood concentration within an 

individual patient over a particular period during which the dose of the drug has not changed.136 

Patients with higher IPV indicates a higher level of non-adherence. As the sirolimus arm was excluded, 

data from 1,190 patients was included in the analysis (standard-dose cyclosporine [n= 390]; low-dose 

cyclosporine [n= 399]; tacrolimus [n= 401]). The SYMPHONY trial was undertaken across 83 centres in 

15 countries (Australia, Austria, Belgium, Brazil, Canada, Czech Republic, Germany, Greece, Israel, 

Mexico, Poland, Spain, Sweden, Turkey, and the United Kingdom).116 

The SYMPHONY dataset was provided by F. Hofmann-La Roche Ltd. based on a data-sharing 

agreement (DSA) signed between Roche and the University of Sheffield. Written permissions for using 

the SYMPHONY dataset in this case study were also obtained from Professor Philip Halloran, University 

of Alberta, Canada (Co-sponsor of the SYMPHONY trial) and Ulf Malmqvist, Region Skane, Sweden 

(Sponsor representative of the SYMPHONY trial). 

The SYMPHONY dataset was provided in an anonymised individual patient-level format including the 

raw data. The key study documentation was also provided in a redacted format including the study 

protocol, data definition document, case report forms (CRFs), statistical analysis plan (SAP), clinical 

study report (CSR), and the anonymisation orientation document. The individual patient-level datasets 

were checked for consistency against the CSR and the published report before the case study analysis 

was conducted.116 Minor data queries were checked with the SYMPHONY trial statistician and resolved 

based on their advice. The dataset matches the CSR and published reports apart from minor deviations 

resulting from the data anonymisation process performed by the Roche Global Patient-level Data 

Sharing team. The trial dataset is described in the following sub-sections.  
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6.4.1 Baseline characteristics 

Table 16 provides information on the key baseline characteristics from the analysis of the SYMPHONY 

dataset. The values for each variable were checked against the published data and CSR. These data 

checks were done to ensure that the adherence-adjusted analysis was performed on a dataset that is 

consistent with the published trial data (see Table 16, “Notes” column).   

Table 16: Key baseline characteristics of the study population 

 Group A: 

Standard-dose 

cyclosporine 

(n=390) 

Group B:     Low-

dose cyclosporine 

(n=399) 

Group C:    

Tacrolimus 

(n=401) 

Notes 

Age (Years) 

Mean (SD) 

46.7(13.2) 47.9(12.8) 46.8(13.7) Slightly different from Ekberg et 

al.116 due to anonymization [i.e. 

patients <21 or >89 years old 

were aggregated] 

Male (%) 62.3 66.4 65.8 Consistent with Ekberg et al. 

Race (%) - - - Variable dropped as part of the 

anonymisation 

Type of donor (%)     

        Deceased 65.6 64.3 63.0 Consistent with Ekberg et al. 

        Living related 28.5 26.9 31.8 Consistent with Ekberg et al. 

        Living unrelated  5.9 8.8 5.3 Consistent with Ekberg et al. 

Donor age (years) 

Mean (SD) 

47.8(13.2) 48.5(13.0) 48.4(12.6) Slightly different due to 

anonymisation 

Donor with expanded 

criteria (%) 

16.9 18.0 17.7 Consistent with Ekberg et al 

 Note: Group D (low-dose sirolimus) was dropped from the original dataset as this regimen is not included in 

the case study 

6.4.2 Baseline and time-dependent confounding 

The identified baseline confounders were age and gender. Age (in years) was recorded as a continuous 

variable and gender as a dichotomous variable in the trial dataset. Time-dependent confounders were 

BMI and acute rejection, with BMI included in the analysis as a continuous variable and acute rejection 

as a binary variable. BMI was calculated from the height and weight records in the SYMPHONY dataset.    
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6.4.3 Adherence to medications in the trial  

6.4.3.1 Description of adherence to medication data 

Adherence to medications in the SYMPHONY trial was based on the drug concentration level data for 

tacrolimus and cyclosporine. The drug concentration trough levels were measured at 10 planned visits 

(baseline; 1, 2, 4, 6 and 8 weeks; and 3, 6, 9 and 12 months post-transplantation). In addition, extra 

data on drug concentration levels were measured at additional visits to the clinics over the 12-months 

follow-up. The analysis of adherence data in the case study was based on a combined dataset that 

included measurements at protocol visits plus records from additional visits.  

A total of 18,873 trough level records were available across the three arms of the SYMPHONY trial. 

Trough levels data were used for calculating the coefficient of variation (CV%) as a proxy measure of 

implementation non-adherence. Figure 47-50 show the mean trough levels over 12 months post-

transplantation for cyclosporine and tacrolimus, respectively.      
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Figure 47: Mean cyclosporine trough levels over the study follow-up (Protocol visits data) 

 

Figure 48: Mean tacrolimus trough levels over the study follow-up (Protocol visits data)  
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Figure 49: Mean cyclosporine trough levels over the study follow-up (All data) 

 
Note: ‘All data’ refers to trough levels measured at the study protocol visits plus extra trough levels recorded 

over the study follow-up. Some patients have more than one trough level record per-protocol visit window; in 

this case, the average value was used based on the SAP document for SYMPHONY.  

Figure 50: Mean tacrolimus trough levels over the study follow-up (All data) 

 
Note: All data means trough levels measured at protocol visits + extra trough levels recorded over the study 

follow-up.  
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Figure 51 shows the distribution of trough levels data from protocol visits and extra visits by the date 

of assessment and treatment arm. These data were combined such that all the trough level data 

recorded between 3 and 12 months were used in the analysis for calculating adherence in the 

SYMPHONY trial.  

Figure 51: Intra-patient variability for immunosuppressants by treatment group 

 

Data shown are the trough level records used in the analysis (including records from protocol visits and extra 

visits) 

 

Of the 18,873 available trough level records, a total of 11,049 records measured between baseline 

and 3 months were excluded from the analysis. The exclusion was based on recommendations from 

published guides and discussions with clinicians.137, 138 The justification for excluding trough levels 

recorded between 0-3 months post-transplantation include several factors including fluctuations due 

to infections, and intravenous steroid treatments see (Figures 47-50).139 Therefore, a total of 7,824 

drug concentration records measured between 3 and 12 months post-transplantation (as a more 

stable period) were included in the final analysis. Discarding trough levels data recorded between 0-3 

months post-transplantation is consistent with the studies that analysed the real-world adherence 
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data. Among others, the key reasons for discarding data include fluctuations due to infections and 

intravenous steroid treatments.139 

Figures 52 and 53 show the mean trough levels for data included in the analysis by the treatment arm. 

These represent the adherence observed in the SYMPHONY trial. These are data used for calculating 

the CV% and prediction of real-world non-adherence levels as described in Section 6.5.   

Figure 52: Mean cyclosporine trough levels (3-12 months) 

 

All data (protocol visits + extra records) measured between 3 to 12 months was used for calculating the 

coefficient of variation (CV%)
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Figure 53: Mean tacrolimus trough levels (3-12 months) 

 

The total and mean numbers of trough level records and the sampling frequency for each treatment 

group are provided in Table 17. This represents the adherence data used in the analysis.  

Table 17: Mean number of trough level records excluding patients with less than three records (3-12 
months) 

Treatment group Number of patients 

with less than 3 

records of trough 

levels: n (%) 

Total number of 

trough level 

records   

Mean number of 

records per patient 

Standard-dose cyclosporine (n=390) 83 (21.3) 2325 7.6 

Low-dose cyclosporine (n=399) 68 (17.0) 2409 7.3 

Low-dose tacrolimus (n=401) 48 (12.0) 2701 7.7 

 

6.4.3.2 Calculating the coefficient of variation from trough levels data 

Pharmacological treatments usually work if their concentration levels in the blood are maintained 

within a minimum and maximum window known as the ‘therapeutic index’ (the ratio of the highest 

dose that is acceptably safe to the lowest which is sufficient for the drug to be effective). The dose 
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that the patient needs to take regularly is usually calculated to maintain the drug concentration within 

that therapeutic window until the end of prescribing. However, due to patient non-adherence, the 

drug concentration level will fluctuate as a result of erratic use of the prescribed dosing regimen. This 

may lead to a situation where the drug concentration falls below that recommended level and 

ultimately results in a therapeutic failure. This fluctuation is usually measured using intra-patient 

variability (IPV) as part of therapeutic drug monitoring (TDM) as a standard in clinical practice for 

particular medications. Higher IPV indicates non-adherence to the prescribed dosing regimen 

depending on the cut-off point which differs by drug or classes of drugs.         

IPV is defined as fluctuation in drug trough concentration levels for an individual patient over a 

specified follow-up period in which the dose was not changed. IPV is commonly quantified using the 

coefficient of variation (CV) for the pre-dose blood concentration of the immunosuppressant known 

as trough concentration (C0). Trough levels are routinely used in practice for TDM of medications with 

a low therapeutic index such as cyclosporine and tacrolimus. The percentage of CV (CV%) for C0 can 

be calculated using the following formula:139   

𝐶𝑉% = {
[(𝑋𝑚𝑒𝑎𝑛 − 𝑋1) + (𝑋𝑚𝑒𝑎𝑛 − 𝑋2) … . . +(𝑋𝑚𝑒𝑎𝑛 − 𝑋𝑛)]

𝑛
} /𝑋𝑚𝑒𝑎𝑛 × 100          [36] 

where 𝑋𝑚𝑒𝑎𝑛 is the average of all available trough concentrations (C0) records measured over the 

analysis time, 𝑛 is the number of records, 𝑋1  is the individual’s first trough level record, 𝑋2  is the 

second record, etc…  There are other formulas used in the literature to calculate CV%, but no clinically 

relevant differences have been demonstrated between the formula.  

Once the CV% for each patient is calculated, a cut-off point is required to determine patient adherence 

to the prescribed dosing regimen. Patients with a CV% higher than the cut-off point are considered 

non-adherent in terms of implementation of the prescribed dosing regimen. Different approaches are 

commonly used in practice to determine the cut-off point including median CV and simultaneous 

measurement of adherence such as electronic monitoring. The key points are that standard cut-offs 

are widely accepted and that these vary by drug due to their different PKPD characteristics and 

forgiveness profiles.  

Calculating CV% in the trial 

In the base-case analysis, the CV% was calculated by dividing the analysis time into three separate 

time intervals. These were baseline to 3 months, 3-6 months and 6-12 months post-transplantation. 

Dividing the last time interval into two equal intervals of 3 months each was considered; however, this 
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was not applied. The main reason for this was the smaller frequency of trough level measurements 

during that period compared to the first 6 months resulting in higher proportions of patients with 

missing CV% which is not desirable. Nevertheless, some patients had missing data in terms of the 

calculated CV% in the primary analysis. In this case, patients who had fewer than three trough level 

records during specific follow-up time intervals did not provide sufficient data to calculate their CV% 

for that particular time interval. In these cases, the CV% could not be calculated as per the 

recommendations of published guides for the reasons mentioned in Section 6.4.3. No adjustment was 

applied for those patients effectively assuming they adhered to the prescribed dosing regimens which 

might not be the case.   

Three sensitivity analyses relating to the approach for addressing discarded adherence data and real-

word non-adherence estimates were conducted. The first sensitivity analysis used differential 

adherence levels based on a small study that used real-world data.140  In that study, implementation 

adherence was higher for tacrolimus compare to cyclosporine with non-adherence levels of 26.7% and 

36.4%, respectively. To perform this sensitivity analysis, a different cut-off point of CV% was used such 

that the predicted non-adherence proportions for each treatment arm are similar to those observed 

in the real-world study. The second sensitivity analysis assumed perfect adherence during the first 3 

months post-transplantation as the trough levels data recorded during this period were discarded due 

to concerns of reliability as discussed above. The third sensitivity analysis adjusted for non-adherence 

for the period 6-12 months only (effectively discarding adherence data measured between baseline 

and 6 months). The latter approach is consistent with the real-world estimates of non-adherence and 

the level of missing adherence data for the last 6 months was lower than the interval 3-6 months due 

to longer follow-up. The last 6 months period also represents a more stable immunosuppression 

follow-up based on the CV% for trough levels. 

A sensitivity analysis assuming that patients with no or less than three trough level records for each 

interval were considered but not performed. The justification was that a higher proportion of patients 

falls into that category and performing a sensitivity analysis with such a strong assumption will risk 

producing misleading cost-effectiveness results.       

6.4.3.3 Primary and secondary outcome data 

The primary outcome used in SYMPHONY was the estimated glomerular filtration rate (eGFR) 12 

months after transplantation as defined in the study protocol. Secondary outcomes included time to 

biopsy-proven acute rejection (BPAR), graft survival, allograft dysfunction, treatment failure and death. 

In this case study, graft survival was the outcome of interest used in the analysis. The selection of graft 
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survival was made to match the outcome used in the adapted economic model for estimating the 

long-term adherence-adjusted cost-effectiveness of immunosuppressants in kidney transplantation. 

The primary and secondary outcomes data were used as additional checks for data consistency 

(alongside baseline characteristics). 

The SYMPHONY graft survival data show that the total number of patients who lost their graft during 

the first year post-transplantation, including death, was 91 (standard-dose cyclosporine= 41, low-dose 

cyclosporine=27, tacrolimus=23). Data on graft survival censored for death with a functioning graft 

(DWFG) shows that the total number of graft loss was 67 (standard-dose cyclosporine = 31, low-dose 

cyclosporine= 22, tacrolimus= 14). All these numbers are consistent with the SYMPHONY CSR report.  

6.4.3.4 Missing data 

Missing data were checked and handled in the analysis performed in this case study. Missing data 

were particularly important if they are considered to affect the “no unmeasured confounding 

assumption” relied upon by adjustment methods applied in this case study. The SYMPHONY dataset 

was checked for missing data for the key variables used in the analysis. These include baseline 

covariates (age and gender) and time-dependent confounders (BMI and acute rejection). 

Out of the 1,190 patients included in the analysis, 42 patients (Group A= 11, Group B= 11, Group B= 

20) had missing age values. For BMI values at baseline, a total of 157 patients (Group A= 55, Group B= 

43, Group B= 59) had missing data mainly due to missing weight values. Missing data for age and BMI 

at baseline were imputed using the mean values. For baseline covariates, using means instead of 

multiple imputation methods was considered more appropriate to maintain the prognostic balance, 

between treatment groups, generated by the randomisation procedure. There were no missing values 

for gender and acute graft rejection at baseline; and therefore, no imputation was required. 

The imputation of missing values for time-dependent confounders at 3 and 6 months follow-up post-

transplantation was handled using the last observation carried forward (LOCF) method. The LOCF 

imputation used all the available data from the study visits rather than data from the three analysis 

time points used in this case study. This meant that the nearest available observation was used to 

impute missing values. Alternative approaches for handling missing data for time-dependent 

confounding were considered (including mean values and multiple imputations) and the LOCF was 

selected as the most appropriate option for this particular case study. The decision was justified 

because BMI does not usually change much over a short period making the last observation value 

more likely to hold. In addition, missing data on time-dependent acute rejection was minimal.  
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6.5 Non-adherence to medications in the real world 

A review was conducted to identify real-world estimates of IPV using the CV for tacrolimus and 

cyclosporine in kidney transplantation. The objective was to identify relevant papers that reported 

real-world estimates of CV% for trough concentrations as a proxy measure of non-adherence to 

tacrolimus and cyclosporine A (CsA) in kidney transplantation.  

6.5.1 Review to identify real-world adherence levels 

A citation search and reference list checking was undertaken on five key papers identified based on 

discussions with two clinical experts (WM and JF).137-139, 141-143 In addition, a targeted author search on 

“Kahan, B. OR Johnston A.” was performed based on advice from a clinical expert (WM). The citation 

search and reference list checking was undertaken using the Web of Science electronic database. 

Papers were included if they reported CV estimates for tacrolimus and/or cyclosporine regimens for 

adult kidney transplant recipients with a minimum follow-up of 12 months. Papers that reported CV 

for Sandimune® (the old cyclosporine formulation) were excluded because they are not similar to the 

formulation assessed in SYMPHONY and are no longer used in current clinical practice.       

6.5.2 Real-world studies included 

The search generated 703 records after the removal of duplicates. Following title screening, 647 

records were excluded. A further 43 papers were excluded at the abstract screening stage and the 

remaining 13 papers were reviewed in full text.  A final list of two relevant papers was included in the 

review.139, 144 A summary of estimates obtained from the included papers is provided in Table 18. 

.  

6.5.2.1 Tacrolimus real-world non-adherence level 

The Whalen et al.139 study assessed variability in a tacrolimus regimen that is consistent with 

SYMPHONY, using data from the West of Scotland Electronic Renal Patient Record. Tacrolimus trough 

levels were measured at clinic visits. The analysis used tacrolimus trough levels (C0) measured 6 to 12 

months after kidney transplantation. The median CV of 15% was used as a cut-off point assigning 190 

patients (50.5%) to the high variability group, suggesting implementation non-adherence. The key 

estimates are provided in Table 18. These estimates were used for predicting the real-world 
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implementation non-adherence for each individual patient allocated to tacrolimus in the SYMPHONY 

dataset.  

The real-world adherence data is comparable to the SYMPHONY data in terms of frequency of 

sampling for trough level records. Sampling frequency refers to the number of available drug 

concentration records over a particular follow-up period. The sampling frequency ranged between 

6.93-10.02 records (on average) in the real-world data compared to 7.3-7.7 records on average in the 

SYMPHONY dataset. Moreover, both the SYMPHONY trial and the real-world study included incident 

transplant recipients only and discarded trough levels data recorded at the first 3-6 months 

(depending on the analysis) providing more assurance that the two estimates of adherence levels are 

comparable.      

6.5.2.2 Cyclosporine real-world non-adherence level 

Jorga et al.144 assessed the IPV of low-dose cyclosporine trough levels (C0) among 102 stable kidney 

transplant recipients (minimum of 6 months post-transplantation) recruited from an outpatient clinic 

in the UK. The mean age of the study population was 50 years and the mean weight was 75 kg. The 

study found that 50% of patients were above the cut-off point for the CV of 26% for C0. Estimates from 

this study were used as real-world non-adherence to cyclosporine in the adjusted analysis. No study 

was identified for the standard dose cyclosporine, therefore, it was assumed that they are similar to 

the low-dose formulation which is a conservative assumption. Non-adherence to the standard dose 

cyclosporine in the real world is likely to be higher than low-dose formulation due to the higher level 

of toxicity. However, this is a minor issue for the case study as the key difference in adherence levels 

are between the tacrolimus and cyclosporine regimens.    

The real-world adherence data on cyclosporine is also comparable to the SYMPHONY trial data as both 

included incident transplant recipients and discarded the trough concentration levels recorded during 

the first 3-6 months. However, Jorga et al. does not provide the sampling frequency and therefore it 

was not possible to compare it with SYMPHONY dataset in this aspect.    
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Table 18: Estimates of real-world non-adherence to tacrolimus and cyclosporine  

Author 

(Year of 

publication) 

Tacrolimus/ 

Cyclosporine 

Study 

population 

Study 

context 

Sample 

size (n) 

IPV 

assessment 

period 

CV% 

cut-

offa 

CV% estimates Impact on 

clinical 

outcomes 

Whalen et 
al. (2017) 

Tacrolimus Adult 
kidney 
transplant 
between 
January 
2007 and 
December 
2011 

West of 
Scotland, 
UK 

376 6-12 
months 

15%  
 

− Percentage 
of patients 
in the low 
variability 
(LV) group 
(defined as 
CV% C0 < 
15%)= 
49.5% 

− Percentage 
of patients 
in the high 
variability 
(HV) group 
(CV% C0 ≥ 
15)= 50.5% 

Reduced risk 
of rejection-
free survival 
among HV 
patients 
compared 
with LV 
patients at 12 
months 
follow-up 
(HR=1.953; 
95% CI: 1.234-
3.093; p-
value=0.0054). 
   

Jorga et al. 
(2004) 

Cyclosporine 
A  (CsA, 
Neoral®) 

Adult 
kidney 
transplant 
between 
January 
2003 and 
January 
2004 

UK 102 12 months 
(minimum 
6 months 
post-
transplant)   

26%  − Percentage 
of patients 
in the high 
variability 
(HV) group 
(defined as 
CV% C0 > 
26%) = 
50%  

Impact on 
clinical 
outcomes not 
assessed in 
this phase of 
the study 
 

Note: C0 = trough concentration (i.e. the drug concentration in a whole blood sample measured immediately 

before the next dose); Cav = average concentration (i.e. dosing interval corrected value). 

a: This cut-off point was based on the median IPV among all patients. 

 

6.6 Re-estimation of treatment effectiveness 

6.6.1 Predicting real-world adherence within SYMPHONY dataset 

The real-world implementation non-adherence for each individual patient for each time interval was 

predicted using the CV from observed trough levels measured in the SYMPHONY trial. The prediction 

was based on the pharmacokinetics data (trough levels) using a new cut-off point for CV% with 

SYMPNHY to achieve the adherence levels in the real world. In other words, I identified a new cut-off 

point of CV% for trough levels recorded in SYMPHONY above which every patient with higher CV% 

falls into the non-adherence group in the predicted adherence indicator. The predication method 
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satisfies two conditions: (a) the percentage of non-adherent patients matches the real-world non-

adherence level; and (b) patients with poor prognosis (aged<24 years, male, high BMI and/or 

experienced acute rejection) have a higher probability of being non-adherent in the predicted 

adherence data. The predicted adherence indicator (a binary adherence variable) is then used in the 

application of g-methods to produce the adjusted effectiveness estimates for the economic model 

(see Section 6.6.2). The main advantage of this prediction approach is that is based on an objective 

measure of adherence using pharmacokinetics data measured within the trial. This prediction 

approach was informed by discussions with two clinicians (WM and JF).   

Table 19 provides the real-world predicted non-adherence as a percentage of patients by treatment 

arm for the base-case analysis. The CV% cut-off point required to achieve the real-world estimates is 

also provided in the Table. The percentage of non-adherent between 3-6 months is low because a 

large proportion of patients do not have the minimum three data points required to calculate the CV% 

based on trough levels recorded in the trial. These patients were assumed adherent and will result in 

an underestimate of real-world predicted non-adherence within the SYMPHONY dataset. For the 

interval between 6 and 12 months, sufficient data on trough levels were available and therefore, non-

adherence predicted for that interval could be considered as the best estimate of real-world 

adherence. This matches the analysis from the identified papers of real-world adherence levels as 

both studies estimated non-adherence for 6 months only (6-12 months post-transplantation) as 

discussed in Section 6.5.2.       

Table 19: Real-world predicted non-adherence by treatment arm 

 Treatment arm 

CV% cut-off for 
predicting real-world 
adherence 

Percentage patient 
predicted as non-
adherent  

Non-adherence between 3-6 months 

Standard-dose cyclosporine 32.51 13.60 

Low-dose cyclosporine 28.94 12.96 

Tacrolimus 24.25 15.65 

Non-adherence between 6-12 months 

Standard-dose cyclosporine 26.02 41.64 

Low-dose cyclosporine 25.69 39.78 

Tacrolimus 24.39 43.94 
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6.6.2 Adjusted and unadjusted analysis  

The SYMPHONY dataset was first analysed using the standard ITT analysis to produce unadjusted 

effectiveness estimates. The adjusted analysis was performed using IPCW in the base case analysis 

and SNFTM and secondary analysis. The IPCW adjustment method was chosen to re-estimate 

effectiveness in the base-case analysis for this case study because its performance on coverage was 

superior to SNFTM across the relevant implementation non-adherence scenarios. In those scenarios, 

the IPCW produced about 10% higher coverage (about 85% coverage on average) compared to SNFTM 

which has produced around 75% coverage on average. The IPCW adjusted analysis used CV% 

estimates to predict the real-world non-adherence for each individual patient in each time interval in 

the dataset.  

Clinical effectiveness estimates from these sensitivity analyses were obtained using the IPCW 

adjustment method. The effectiveness was estimated in a form of graft survivor functions including 

the SEs and 95% confidence intervals around the estimates. The choice of the form was influenced by 

how treatment effectiveness was incorporated into the original economic model145. The sensitivity 

analyses in terms of estimating adherence-adjusted treatment effectiveness were performed using 

three alternative approaches for addressing missing adherence data. The sensitivity analyses were as 

follows:    

• Using differential non-adherence levels (as non-adherence percentages) based on a small 

single-centre study used real world data from Serbia (tacrolimus= 26.7%, cyclosporine= 

36.4%).140  

• Assuming perfect adherence between baseline and 3 months as the trough concentration 

levels data was discarded for this interval as discussed in Section 6.4.3. 

• Adjusting for non-adherence between 6 and 12 months only as a more stable time interval for 

trough level records. 

As expected, the real-world non-adherence levels identified from the review (Section 6.5) were higher 

than adherence levels observed in the SYMPHONY trial, although these are not very different between 

the tacrolimus and cyclosporine regimens. In other words, adherence to the real world is worse than 

adherence observed in the trial. Therefore, the differential adherence sensitivity analysis was 

performed to see the impact on the adjusted cost-effectiveness results compared to the base-case 

analysis. Clinical effectiveness estimates from these three sensitivity analyses were obtained using the 

IPCW adjustment method.  
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The clinical effectiveness results from the analysis performed including unadjusted and adjusted 

analyses are presented in Section 6.8.1. The adjusted survivor functions obtained from the sensitivity 

analyses were used in the adapted economic model to obtain the adherence-adjusted cost-

effectiveness estimates (see Section 6.7 for more detail about the economic analysis).  

The real world predicted adherence levels within the SYMPHONY dataset (described in Section 6.6.1) 

were used for applying the IPCW using the four steps described in Chapter 4 (Section 4.6.3). In brief, 

the IPCW analytical steps applied in this case study were: First, I censored observations at the 

beginning of the interval when they are predicted to be non-adherent in the real world. Note this is 

the point that makes their graft survival outcome worse as a contribution to the weighted pseudo-

population. Second, I modelled the probability of non-adherence using 18 logistic models comprising 

6 models for each arm (two models for each of the three intervals). These models were applied using 

the real-world predicted non-adherence with baseline confounders (age, gender); and again with both 

baseline and time-dependent confounders (age, gender, BMI, acute rejection) for generating the 

stabilised weights. Third, I computed the inverse probability of remaining uncensored and the 

stabilised IPCW weights. Finally, I applied survival analysis on the pseudo-population to obtain the 

adjusted graft survivor functions including the SEs and 95% confidence intervals around these 

estimates. Graft survival functions were censored for DWFG for running the economic model. I also 

generated the KM graft survival curves and RMSTs by the treatment arm.    

The key thing that makes the accounting for real-world adherence levels was the use of predicted non-

adherence in generating the IPCW weights. Because the predicted non-adherence was influenced by 

the confounders as a result of being generated from the objective pharmacokinetics data recorded in 

the trial (i.e. trough levels with different CV% threshold) it ended up creating a pseudo-population 

with people predicted to be non-adherent having a negative contribution on the overall average graft 

survival. That is because the part after the censoring point was the part that had a good outcome in 

the absence of real-world non-adherence as opposed to having a worse outcome in the simulations. In 

other words in this analysis approach, I censored those who were predicted to become non-adherent 

in the real world and found patients who remain unescorted and up-weighted to account for 

themselves and those censored.  

A secondary analysis using the SNFTM with g-estimation was applied for estimating adjusted estimates 

of treatment effectiveness. This secondary analysis was undertaken for two main reasons. (1) 

Although the IPCW coverage performance was better than SNFTM in the simulation study, there was 

uncertainty around the coverage performance data, and given it is similar performance in terms of 

bias and ModSE, SNFTM could be considered as an alternative option; and (2) the analysis provides 
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additional information on the application of SNFTM (which was found to be the best-performing 

method across many scenarios) using real data in this case study. The latter will aid the transferability 

to other disease areas where the SNFTM might be the best option for adjusting for real-world non-

adherence in future studies.     

In the SNFTM adjusted analysis, I followed the following steps: First, I used the predicted non-

adherence as a binary lagged variable within the g-estimation incorporating all confounders (age, 

gender, BMI and acute rejection) in the stgest3 model by treatment arm. This step resulted in an 

acceleration factor (AF) which I used to shrink graft survival for those predicted non-adherent. This is 

the step where the negative contribution to the overall average graft survival comes as opposed to 

the positive contribution in the simulation study. In other words, the truncated part is the part that 

had a better outcome in the absence of real-world non-adherence (i.e. because graft survival observed 

in the trial was still the one used in the analysis dataset). This step ended up generating an estimated 

average graft survival that is worse than the one observed in the trial as produced by the ITT. Then, I 

generated the adjusted graft survivor functions censored for DWFG for running the economic model 

and the KM graft survival curves and RMSTs by treatment arm. The key contributing factor is the 

objective prediction of real-world non-adherence in the trial dataset that led to the truncation of a 

good part of graft survival for those predicted to be non-adherent. This ended up with worse 

outcomes (on average) as a result of accounting for real-world non-adherence.   

As another secondary analysis, the clinical effectiveness in terms of RMSTs was estimated. These were 

not used in the economic model but were generated to provide more information in terms of 

comparing adjusted and unadjusted effectiveness estimates using the SYMPHONY trial dataset.    

6.7 The economic model and cost-effectiveness analysis 

The economic analysis was performed using the adapted model for estimating adherence-adjusted 

cost-effectiveness of immunosuppressive therapy for adult kidney transplant recipients. The 

economic model including the adaptation, cost-effectiveness analysis and consideration of the impact 

on non-adherence on direct drug costs are described in the following subsections  

6.7.1 Economic model 

The economic model was originally built by the PenTAG group for assessing a range of 16 

immunosuppressive regimens to update of NICE Technology Appraisal guidance (TA481).120, 145 The 

overall structure of the case study involved an adaptation of this economic model which was focused 



211 
 

on the re-estimated treatment effectiveness in terms of graft loss in the first 12 months post-

transplantation (see Section 6.7.2 for more detail on model adaptation). The structure of the economic 

model (Figure 54) was a discrete-time state transition model with three principal health states 

(functioning graft, graft loss, death) with up to two re-transplantations allowed.145 The cycle length 

was 3 months and a 50-year time horizon was used in the economic analysis (up to a maximum cohort 

age of 100 years). The main outcome used in the economic evaluation was QALYs with graft survival 

and patient survival as key other outcomes used in the cost-utility analysis. The economic analysis uses 

the NHS and Personal Social Service perspective with both costs and QALYs discounted at 3.5% per 

year. Costs associated with each treatment option for each health state within the original economic 

model were estimated using various sources and these estimates were not updated in this case study.     

Figure 54: Model structure 

 

FG= functioning graft, GL= graft loss, dashed arrow represent primary non-functioning graft, green arrows 

represent pre-emptive re-transplantation.  

Source: Reproduced from Jones-Hughes et al.120 This is an open access article distributed under the terms of the 

CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, 

and reproduction in any medium. This includes minor additions and formatting changes to the original. 

6.7.2 Adaptation of the economic model and extrapolation  

The long-term treatment effect was estimated by extrapolating the adherence-adjusted treatment 

effect based on the analysis of SYMPHONY data undertaken in this study. The adherence-adjusted 

treatment effect was applied to the initial period of 12 months (the trial follow-up). The extrapolation 

beyond 12 months was based on data from the UK Transplant Registry dataset as used in the original 

model. The economic model adaptation involved using estimates from SYMPHONY data analysis in 

terms of graft survivor functions (censored for DWFG) at baseline, 3, 6, 9 and 12 months. These 

estimates of graft survivor functions replaced the values in the original economic model up to 12 

months. Beyond that, I did not apply the SYMPHONY estimates in the original to the post-12month 

survival models because the risk comes from somewhere else. The risk for graft survival beyond 12 



212 
 

months come from the UKTR data that already reflects real world adherence levels. All other 

parameters, including drug costs, were not updated in the adapted model. By leaving everything else 

the same in the economic model, I was able to assess the sole impact of adjusting for real-world non-

adherence levels versus not adjusting.  

The IPCW adjusted graft survival curves in the first 12 months from SYMPHONY and the extrapolation 

is shown in Figure 55. The post-12 months' curves reflect graft survival from the UKTR data. These 

extrapolated estimates, as well as estimates of graft survival obtained from SYMPHONY, were used to 

populate the adapted economic model for estimating the relative cost-effectiveness of 

immunosuppressants. The model was run using 10,000 probabilistic sensitivity analysis (PSA) 

iterations to produce the cost-effectiveness estimates. The results in terms of NHBs were calculated 

at the cost-effectiveness thresholds of £20,000 per QALYs as described in the NICE Methods Guide.60 

The cost-effectiveness estimates are presented in terms of total discounted costs and QALYs, 

incremental costs and QALYs, and net health benefits (NHBs). The IPCW analysis is compared with the 

ITT analysis of the SYMPHONY data.  

 Figure 55: Graft survival extrapolation from the IPCW adjusted analysis  

 

DWFG= death with functioning graft, CSA= Cyclosporine, MMF= mycophenolate, BAS= basiliximab, TAC= 

tacrolimus   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

G
ra

ft
 s

u
rv

iv
al

 (
ce

n
so

re
d

 f
o

r 
D

W
FG

)

Time since transplantation (years)

CSA+MMF BAS+CSA+MMF BAS+TAC+MMF



213 
 

6.7.3 Impact of non-adherence on direct drug costs 

The impact of non-adherence on drug costs was considered for the adapted economic model. This 

issue has been investigated in other disease areas but no evidence was identified on 

immunosuppressive therapy after kidney transplantation. Consultations with two clinicians (WM and 

JF) and a Clinical Pharmacist (DG, Papworth Hospital NHS Foundation Trust, Papworth Everard, 

Cambridge) were conducted to investigate if drug costs for non-adhered patients are likely to differ 

from those adhered to in real practice. Based on the discussions, it seems that the NHS is likely to incur 

the full drug cost since patients are likely to get their prescriptions dispensed but not fully use their 

medications as prescribed as a result of non-adherence. Consequently, it was decided to use the full 

drug cost in the adapted economic model. However, it should be noted that this assumption might 

not be generalisable to other disease areas or other health care systems. 

6.8 Results of the case study  

6.8.1 Re-estimation of treatment effectiveness 

The results in terms of unadjusted and adjusted clinical effectiveness estimates are presented in the 

following subsections.   

6.8.1.1 Unadjusted analysis using ITT 

The graft survivor functions estimated for the ITT analysis of SYMPHONY data at baseline, 3, 6, 9 and 

12 months are presented in Table 20. The survivor function estimates show that the probability of 

graft survival among patients in the two interventions groups (low-dose cyclosporine and tacrolimus) 

were higher than the standard-dose cyclosporine group. The probability of graft survival in the 

tacrolimus group was better than those of the low-dose cyclosporine group. These estimates from the 

unadjusted analysis are used to replace the values of survivor functions in the adapted economic 

model.       
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Table 20: ITT graft survivor functions censored for DWFG (unadjusted analysis) 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine 

  Baseline 390 0 1 - - 

  Month 3 354 23 0.9404 0.012 0.9117    0.9600 

  Month 6 342 4 0.9297 0.0131 0.8991    0.9512 

  Month 9 339 0 0.9297 0.0131 0.8991    0.9512 

  Month 12 325 4 0.9186 0.014 0.8863    0.9421 

Low-dose cyclosporine 

  Baseline 399 0 1 - - 

  Month 3 379 12 0.9696 0.0086 0.9471    0.9826 

  Month 6 368 4 0.9592 0.01 0.9343    0.9748 

  Month 9 362 3 0.9514 0.0109 0.9248    0.9687 

  Month 12 344 3 0.9434 0.0117 0.9153    0.9624 

Tacrolimus 

  Baseline 401 0 1 - - 

  Month 3 379 11 0.9724 0.0082 0.9506    0.9846 

  Month 6 372 1 0.9697 0.0086 0.9473    0.9827 

  Month 9 365 0 0.9697 0.0086 0.9473    0.9827 

  Month 12 349 2 0.9642 0.0094 0.9403    0.9787 
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The Kaplan-Meier (KM) curves on graft survival (censored for DWFG) obtained from the unadjusted 

ITT analyses of the SYMPHONY data is presented in Figure 56. The survival curves show that the 

tacrolimus regimen was superior to both low-dose and standard-dose cyclosporine regimens.     

Figure 56: Graft survival censored for DWFG – ITT unadjusted analysis  

 

Note: CsA= cyclosporine 
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6.8.1.2 Adjusted analysis using MSM with IPCW (base-case adjusted analysis)  

The IPCW estimates of graft survivor functions (censored for DWFG) including the SEs and 95% 

confidence intervals are presented in  

Table 21. These adjusted estimates were used in the adapted economic model to estimate the real-

world adherence-adjusted cost-effectiveness of the alternative regimens.  

Table 21: IPCW graft survivor functions censored for DWFG (base-case adjusted analysis) 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine 

  Baseline 390 0 1 - - 

  Month 3 329.9 29.06 0.9203 0.0142 0.8874    0.9439 

  Month 6 294.1 6.96 0.8993 0.0159 0.8631    0.9263 

  Month 9 192.0 0 0.8993 0.0159 0.8631    0.9263 

  Month 12 181.9 2.99 0.8851 0.0177 0.8452    0.9152 

Low-dose cyclosporine 

  Baseline 399 0 1 - - 

  Month 3 352.2 15.00 0.9595 0.0102 0.9337    0.9754 

  Month 6 321.1 4.82 0.9454 0.0119 0.9165    0.9645 

  Month 9 210.6 3.24 0.9311 0.0141 0.8974    0.9541 

  Month 12 193.7 2.99 0.9177 0.0159 0.8801    0.9438 

Tacrolimus 

  Baseline 401 0 1 - - 

  Month 3 346.8 17.13 0.9534 0.011 0.9262    0.9707 

  Month 6 313.1 2.96 0.9446 0.012 0.9154    0.9639 

  Month 9 193.0 0 0.9446 0.012 0.9154    0.9639 

  Month 12 182.9 0 0.9446 0.012 0.9154    0.9639 
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Figure 57 shows the KM curves on graft survival censored for DWFG from the adjusted IPCW analysis. 

The graphs are based on the survival analysis applied to the pseudo-population generated from the 

IPCW weights. The KM graphs show that the tacrolimus regimen still produces better graft survival 

compared to the alternative regimens, although the scale of health benefits is slightly lower when 

real-world implementation non-adherence was taken into account.   

Figure 57: Graft survival censored for DWFG – IPCW adjusted base-case analysis  

 

Note: The risk table shows numbers in decimals as a pseudo-population was used in the IPCW adjusted survival analysis    
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Figure 58 illustrates the graft survival from the standard ITT unadjusted analysis compared with the 

IPCW adjusted analysis.    

Figure 58: Graft survival from the standard ITT unadjusted analysis and IPCW adjusted analysis 

 

SD CsA= standard-dose cyclosporine, LD CsA= low-dose cyclosporine 

Note: For the IPCW graft survival curve, the number at risk include decimals because the adjusted analysis is 

based on a pseudo-population of adherent patients up weighted to represent the entire study population   
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Table 22 provides the graft survivor functions comparing the ITT unadjusted estimates with the IPCW 

adjusted estimates by treatment arm.  

Table 22: Unadjusted ITT estimates versus IPCW adjusted estimates of graft survivor functions 

  Time ITT IPCW 

% 
difference 
between 
IPCW and 
ITT 

Standard-dose cyclosporine 

  Baseline 1 1 0 

  Month 3 0.9404 0.9203 -2.14  

  Month 6 0.9297 0.8993 -3.27  

  Month 9 0.9297 0.8993 -3.27  

  Month 12 0.9186 0.8851 -3.65  

Low-dose cyclosporine 

  Baseline 1 1 0 

  Month 3 0.9696 0.9595 -1.04  

  Month 6 0.9592 0.9454 -1.44  

  Month 9 0.9514 0.9311 -2.13  

  Month 12 0.9434 0.9177 -2.72  

Tacrolimus 

  Baseline 1 1 0 

  Month 3 0.9724 0.9534 -1.95  

  Month 6 0.9697 0.9446 -2.59  

  Month 9 0.9697 0.9446 -2.59  

  Month 12 0.9642 0.9446 -2.03  

 

The coefficients generated from the 18 non-adherence models (logistic models to generate the IPCW 

weights) are provided in Appendix I, Table 43. Table 23 provides the IPCW weights including un-

stabilised and stabilised weights generated from weighting models. In this table, the number of 

observations represents the uncensored observations for the three-time intervals, which are weighted 

to create the pseudo-population to which the survival analysis was applied to produce the adjusted 

clinical effectiveness estimates.      
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Table 23: Un-stabilised and stabilised IPCW weights by treatment arm 

Treatment arm n Mean SD Min Max 

Weights (un-stabilised) 

Standard-dose cyclosporine 866 1.2570 0.2997 1.0188 2.2339 

Low-dose cyclosporine 916 1.2571 0.2874 1.0066 2.2934 

Tacrolimus  885 1.2982 0.3334 1.0411 2.3500 

Stabilised weights 

Standard-dose cyclosporine 866 0.9998 0.0196 0.8436 1.0887 

Low-dose cyclosporine 916 0.9997 0.0297 0.9135 1.2285 

Tacrolimus  885 1.0001 0.0156 0.8664 1.0842 

 

6.8.1.3 Sensitivity analysis 

The IPCW estimates of graft survivor functions from sensitivity analyses are presented in Table 24. The 

graft survivor functions from the IPCW adjusted base-case analysis are also included for comparisons. 

The detailed results of graft survivor functions from all sensitivity analyses including SEs and the 95% 

confidence intervals around the estimates are provided in Appendix I, Table 44-46 

Table 24: Graft survivor functions from sensitivity analyses (IPCW adjusted analysis) 

 

 
 
 
Time 

 
 
Base-
case 

 
 
Differential 
MNA 

Assuming 
perfect 
adherence 
between 0-3 
months 

Adjusting 
for MNA 
between 6-
12 months 
only 

Standard-dose cyclosporine 
 Baseline 1 1 1 1 
 Month 3 0.9203 0.9203 0.9205 0.9205 
 Month 6 0.8993 0.9 0.8995 0.8993 
 Month 9 0.8993 0.9 0.8995 0.8993 
 Month 12 0.8851 0.8882 0.8853 0.8855 

Low-dose cyclosporine 
 Baseline 1 1 1 1 
 Month 3 0.9595 0.9595 0.9595 0.9595 
 Month 6 0.9454 0.9456 0.9454 0.9449 
 Month 9 0.9311 0.9335 0.9311 0.9311 

  Month 12 0.9177 0.9221 0.9177 0.9181 

Tacrolimus 
 Baseline 1 1 1 1 
 Month 3 0.9534 0.9534 0.9538 0.9538 
 Month 6 0.9446 0.9502 0.9449 0.9448 
 Month 9 0.9446 0.9502 0.9449 0.9448 

  Month 12 0.9446 0.9502 0.9449 0.9448 
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Graft survival censored for DWFG from sensitivity analysis using differential real-world non-adherence 

is presented in Figure 59.  

Figure 59: Graft survival censored for DWFG from sensitivity analysis - Differential real-world non-
adherence levels  
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Figure 60 shows graft survival (censored for DWFG) from the IPCW sensitivity analysis assuming 

perfect adherence between baseline and 3 months post-transplantation.  

Figure 60: Graft survival censored for DWFG - Sensitivity analysis assuming perfect adherence 
between 0- 3 months 
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Figure 61 shows graft survival (censored for DWFG) from the IPCW sensitivity analysis adjusting for 

non-adherence between 6 and 12 months only. 

Figure 61: Graft survival censored for DWFG - Sensitivity analysis adjusting for non-adherence 
between 6-12 months only 

 

 

 

6.8.1.4 Adjusted Secondary analysis using SNFTM with G-estimation 

The treatment effectiveness results in terms of graft survivor functions obtained from the secondary 

adjusted analysis using the SNFTM with g-estimation is presented in Table 25.  The graft survival from 

the secondary SNFTM analysis is provided in Figure 62. The AF (value of psi) and the causal survival 

ratio (the value by which graft survival shrunk based on the impact of non-adherence) are provided in 

Appendix I, Table 47.  
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Table 25: SNFTM graft survivor functions censored for DWFG (secondary adjusted analysis) 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine 

  Baseline 0 0 1 - - 

  Month 3 331 31 0.9178 0.0142 0.8852    0.9415 

  Month 6 295 7 0.8973 0.0158 0.8615    0.9242 

  Month 9 180 0 0.8973 0.0158 0.8615    0.9242 

  Month 12 171 3 0.8821 0.0178 0.8420    0.9126 

Low-dose cyclosporine 

  Baseline 0 0 1 - - 

  Month 3 353 15 0.9609 0.0099 0.9359    0.9762 

  Month 6 321 5 0.9464 0.0117 0.9180    0.9651 

  Month 9 196 4 0.931 0.0139 0.8978    0.9536 

  Month 12 181 3 0.9165 0.016 0.8788    0.9428 

Tacrolimus 

  Baseline 0 0 1 - - 

  Month 3 349 18 0.9529 0.0109 0.9262    0.9701 

  Month 6 313 3 0.9439 0.0119 0.9151    0.9631 

  Month 9 180 2 0.9377 0.0126 0.9077    0.9583 

  Month 12 171 0 0.9377 0.0126 0.9077    0.9583 

 

Figure 62: Graft survival censored for DWFG - secondary analysis using SNFTM with g-estimation  
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6.8.1.5 RMST estimates from IPCW, SNFTM and ITT analyses   

The effectiveness results in terms of RMSTs based on IPCW compared to ITT estimates are provided 

in Table 26. RMST estimates from SNFTM compared to ITT estimates are provided in Table 27. These 

estimates were not used in the economic model, but they provide more information in terms of 

comparing adjusted and unadjusted effectiveness estimates. The results demonstrated that 

accounting for real-world adherence levels reduces the RMSTs by 1.65 to 2.53% compared to ITT 

analysis.   

Table 26: Graft restricted mean survival times: unadjusted ITT estimates versus IPCW adjusted 
estimates 

Treatment arm 
RMST (SE) – ITT 
(Days) 

RMST (SE) – IPCW 
(Days) 

Difference in 
RMSTs 
between 
IPCW and ITT 
(Days) 

Difference in 
RMSTs 
between 
IPCW and ITT 
(%) 

Standard-dose cyclosporine 341.80 (3.888) 333.15 (4.649) -8.65 -2.53 

Low-dose cyclosporine 349.53 (2.027) 342.28 (2.518) -7.26 -2.08 

Tacrolimus  354.73 (2.363) 348.86 (3.238) -5.87 -1.65 

 

Table 27: Graft restricted mean survival times: unadjusted ITT estimates versus SNFTM adjusted 
estimates 

Treatment arm 
RMST (SE) – ITT 
(Days) 

RMST (SE) – SNFTM 
(Days) 

Difference in 
RMSTs 
between 
SNFTM and 
ITT (Days) 

Difference in 
RMSTs 
between 
SNFTM and 
ITT (%) 

Standard-dose cyclosporine 341.80 (3.888) 333.17 (4.607) -8.62 -2.52 

Low-dose cyclosporine 
349.53 (2.027) 341.25 (2.498) -8.28 -2.37 

Tacrolimus  354.73 (2.363) 347.35 (3.346) -7.38 -2.08 

 

Figure 63 provides the RMSTs generated from IPCW, SNGTM and ITT by treatment group for 

comparison. The results show that ITT analysis overestimates treatment effectiveness when 

accounting for real-world adherence levels. The results also show that IPCW and SNFTM produce 

similar results using real data and this is consistent with the findings from the simulation study.     
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Figure 63: Graft restricted mean survival times from IPCW, SNFTM and ITT by treatment group 

  

6.8.2 Cost-effectiveness results 

The results in terms of treatment of cost-effectiveness estimates (unadjusted and adherence-adjusted 

estimates) are presented in the following subsections.   

6.8.2.1 Unadjusted cost-effectiveness results 

Table 28 presents the total lifetime discounted costs and QALYs, incremental costs and QALYs from a 

fully incremental analysis and NHBs for the three alternative immunosuppressive regimens from the 

unadjusted ITT analysis. The results from the unadjusted analysis show that the tacrolimus regimen is 

the most cost-effective option producing an NHB of 6.64 QALYs over the patient lifetime at the 

willingness to pay (WTP) threshold of £20,000 per QALY. This is followed by low-dose cyclosporine and 

standard-dose cyclosporine regimens producing NHBs of 6.10 and 5.75 QALYs per patient, respectively.   

The results show tacrolimus regimen dominated low-dose and standard-dose cyclosporine (both 

cyclosporine regimens were more costly and less effective compared with tacrolimus). 
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Table 28: Net health benefits and incremental costs and QALYs from the ITT unadjusted analysis 

Regimen 
Total 
discounted cost 

Total 
discounted 
QALYs 

NHB      
(WTP £20K 

Incremental 
costs 

Incremental 
QALYs 

Bas+Tac+MMF+ST £90,830.29 11.0015 6.4600 - - 

Bas+CsA+MMF+ST £97,713.35 10.9871 6.1015 £6,883.06 -0.0143 

CsA+MMF+ST £101,636.32 10.8342 5.7524 £3,922.97 -0.1529 

Bas= Basiliximab, Tac= tacrolimus, MMF= mycophenolate, ST= corticosteroids, NHB= net health benefit, WTP= 

willingness to pay, QALYs= quality-adjusted life years. 

6.8.2.2 Adherence-adjusted cost-effectiveness results from IPCW   

Table 29 presents the adherence-adjusted cost-effectiveness results generated from the IPCW 

estimates. The results show that the NHBs estimated from the real-world adherence-adjusted analysis 

are smaller than those obtained from the ITT unadjusted analysis. For the tacrolimus regimen, the 

NHBs estimated from the adjusted analysis is reduced by 0.0596 QALYs per patient. For the low-dose 

cyclosporine regime, the reduction on NHBs when adjusting for real-world non-adherence is 0.0721 

QALYs per patient.  

The total discounted cost per patient is higher for the tacrolimus regimen (the most cost-effective 

option). For the tacrolimus regimen, the total discounted cost increased by £2,429 per patient when 

the real-world non-adherence levels are taken into account. The results show that the total discounted 

costs are also higher for other alternative regimens and the NHBs are smaller when adjusting for real-

world non-adherence levels (see Table 29). The percentage change in NHBs compared to ITT is 

provided in Section 6.8.2.3 alongside all sensitivity analysis for comparison. There was no change in 

the cost-effectiveness conclusions predicted by the original model. 

Table 29: Net health benefits and incremental costs and QALYs from IPCW adjusted analysis 

Regimen 

Total 
discounted 
cost 

Total 
discounted 
QALYs 

NHB      (WTP 
£20K 

Incremental 
costs 

Incremental 
QALYs 

Bas+Tac+MMF+ST £93,259.20 10.9419 6.2790 - - 

Bas+CsA+MMF+ST £100,697.51 10.9150 5.8801 £7,438.31 -0.0270 

CsA+MMF+ST £105,407.90 10.7455 5.4751 £4,710.39 -0.1695 

Bas= Basiliximab, Tac= tacrolimus, MMF= mycophenolate, ST= corticosteroids, NHB= net health benefit, WTP= 

willingness to pay, QALYs= quality-adjusted life years. 

When compared to the ITT unadjusted analysis, the IPCW adjusted cost-effectiveness results show a 

noticeable impact of real-world non-adherence on the incremental results. For low-dose cyclosporine 
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versus standard-dose cyclosporine regimens, an increase of 8.1% in incremental costs and a reduction 

of 88.2% in incremental QALYs were found compared to the ITT unadjusted analysis. For tacrolimus 

versus low-dose cyclosporine regimens, an increase of 20.1% in incremental cost and a reduction of 

10.8% in incremental QALYs were found from the real-world adjusted estimates compared to the ITT 

unadjusted analysis.  

6.8.2.3 Adherence-adjusted cost-effectiveness results from sensitivity analyses  

Table 30 present the IPCW adjusted cost-effectiveness results from the sensitivity analyses with the 

results from the adjusted base-case analysis provided at the top of the table from comparison. The 

table also shows the percentage change in NHBs in the adjusted analysis compared to the ITT analysis. 

The case study findings demonstrated that accounting for real-world adherence levels lead to a 

reduction in the expected health benefits when adherence levels in the real world are worse than 

those observed in the trial.    

Table 30: Net health benefits and incremental costs and QALYs from sensitivity analyses 

Regimen 
Total 
discounted cost 

Total 
discounted 
QALYs 

NHB      
(WTP £20K) 

Incremental 
costs 

Incremental 
QALYs 

% Change 
in NHBs 

Base-case analysis (IPCW adjusted) 

Bas+Tac+MMF+ST £93,259.20 10.9419 6.2790 - - -2.80  

Bas+CsA+MMF+ST £100,697.51 10.9150 5.8801 £7,438.31 -0.0270 -3.63  

CsA+MMF+ST £105,407.90 10.7455 5.4751 £4,710.39 -0.1695 -4.82  

Sensitivity analysis: Using differential real-world non-adherence levels 

Bas+Tac+MMF+ST £92,512.17 10.9522 6.3266 - - -2.06  

Bas+CsA+MMF+ST £100,095.06 10.9218 5.9170 £7,582.89 -0.0304 -3.02  

CsA+MMF+ST £104,925.53 10.7489 5.5026 £4,830.48 -0.1729 -4.34  

Sensitivity analysis: Assuming perfect adherence between 0-3 months  

Bas+Tac+MMF+ST £93,149.31 10.9586 6.3012 - - -2.46  

Bas+CsA+MMF+ST £100,615.43 10.9301 5.8993 £7,466.13 -0.0286 -3.31  

CsA+MMF+ST £105,285.48 10.7604 5.4962 £4,670.04 -0.4031 -4.45  

Sensitivity analysis: Adjusting for non-adherence between 6-12 months only 

Bas+Tac+MMF+ST £93,172.47 10.9473 6.2886 - - -2.65  

Bas+CsA+MMF+ST £100,551.69 10.9213 5.8937 £7,379.22 -0.0260 -3.41  

CsA+MMF+ST £105,233.75 10.7513 5.4896 £4,682.06 -0.4040 -4.57  

NHB= net health benefit, WTP= willingness to pay, Bas= basiliximab, TAC= tacrolimus, CsA= cyclosporine, 

MMF= mycophenolate, ST= corticosteroids, QALYs= quality-adjusted life years. IPCW= inverse probability of 

censoring weighting.   
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6.8.2.4 Adjusted cost-effectiveness results from SNFTM with g-estimation   

Table 31 present the adjusted cost-effectiveness results from the SNFTM secondary analysis. The table 

shows the percentage change in NHBs compared to the results from the ITT analysis.  The results are 

very close to the IPCW estimates (see Section 6.8.2.2).   

Table 31: Net health benefits and incremental costs and QALYs from SNFTM adjusted analysis 

Regimen 

Total 
discounted 
cost 

Total 
discounted 
QALYs 

NHB      
(WTP £20K 

Incremental 
costs 

Incremental 
QALYs 

% change 
in NHBs 

Bas+Tac+MMF+ST £93,979.35 10.9443 6.2453     -3.32 

Bas+CsA+MMF+ST £100,720.43 10.9299 5.8939 £6,741.08 -0.0143 -3.40 

CsA+MMF+ST £105,617.05 10.7555 5.4747 £4,896.62 -0.1744 -4.83 

Bas= Basiliximab, Tac= tacrolimus, MMF= mycophenolate, ST= corticosteroids, NHB= net health benefit, WTP= 

willingness to pay, QALYs= quality-adjusted life years. 

6.9 Discussion and conclusions  

6.9.1 Summary of findings from the case study  

The case study applied the g-methods (IPCW and SNFTM) for estimating the adherence-adjusted cost-

effectiveness of immunosuppressive therapy among adult kidney transplant recipients in the UK. The 

analysis used individual-patient level data from SYMPHONY (a large multicentre RCT with data from 

1,190 patients) combined with real-world implementation non-adherence levels for assessing three 

immunosuppressive regimens commonly used in the UK. The regimens assessed consisted of 

standard-dose cyclosporine, low-dose cyclosporine and tacrolimus as the maintenance 

immunosuppressants for which the non-adherence adjustment was applied in this analysis.  

In this case study, graft survival functions were re-estimated by applying the g-methods on the 

SYMPHONY dataset. The IPCW adjusted estimates were used in the base-case economic analysis with 

SNFTM used in a secondary analysis to show how this adjustment method could be applied in real 

data. Further sensitivity analyses were performed using three different ways to deal with non-

adherence data recorded during the first 6 months post-transplantation.  The analyses used the CV% 

which was calculated from the trough levels data recorded in the SYMPHONY trial and combined these 

with real-world adherence levels to predict non-adherence for each individual patient in the trial 

dataset. Real-world adherence was predicted by using a new cut-off point for CV% above which 

patients were classified as non-adhered such that the overall probability of non-adherence in the 

predicted dataset matches the levels observed in the real world. Causal analysis using g-methods was 

then applied to produce the adherence-adjusted effectiveness estimates. Subsequently, the adjusted 
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effectiveness estimates were used in an adapted economic model to produce the adherence-adjusted 

cost-effectiveness of the alternative immunosuppressive regimens.  

The cost-effectiveness results generated from the adjusted analysis were compared with estimates 

from the unadjusted ITT analysis of SYMPHONY trial data. The key findings show that unadjusted ITT 

analysis overestimates the NHBs and underestimates the total cost for all regimens. As an alternative 

approach, the g-methods provides a practical framework for correcting the cost-effectiveness 

estimates by taking into account the real-world adherence levels for each regimen. The case study 

demonstrated that it is possible to incorporate different levels of real-word adherence using the g-

methods. This provides better cost-effectiveness evidence for resource allocation decision making 

relating to maintenance immunosuppressive therapy by taking into account their real-world 

adherence levels. This analysis framework is potentially transferable to other disease areas where 

non-adherence to the prescribed dosing regimens is identified as an issue.    

The key findings of the case study show reduced net health benefits and increased costs per patient 

for the alternative regimens when real-world implementation non-adherence levels are taken into 

account in the cost-effectiveness analysis. The findings demonstrated that using estimates of 

treatment effectiveness adjusted for real-world non-adherence alters the results in terms of total 

lifetime discounted costs and QALYs and incremental costs and QALYs, although the cost-effectiveness 

conclusions have not changed in this particular case study. The tacrolimus regimen remains the most 

cost-effective immunosuppressive therapy in kidney transplantation, although the NHB estimated by 

the IPCW adjusted analysis is predicted to be smaller by 0.0596 QALYs with £2,429 higher cost per 

patient compared to the standard ITT analysis when the real-world adherence levels are taken into 

account.  

The analysis showed that the adjustment methods make graft survival worse by accounting for the 

potentially higher levels of the predicted real-world non-adherence. This is consistent with the whole 

hypothesis that adherence levels in the real world are worse than trials and by accounting for it; we 

expect the treatment effectiveness to be worse than the ITT estimates. This is demonstrated by the 

findings of the case study presented in this chapter. The findings demonstrate that accounting for real-

world non-adherence in the SYMPHONY trial dataset resulted in reductions in the expected graft 

survival times by about 6-9 days (depending on the treatment group) during the first 12 months post-

transplantation. The impact on cost-effectiveness was reduced net health benefits with a higher cost 

per patient when the real-world adherence levels are taken into account. For low-dose cyclosporine 

versus standard-dose cyclosporine, the impact amounted to an 8.1% increase in incremental costs and 

88.2% reduction in incremental QALYs compared to the unadjusted ITT analysis. For tacrolimus versus 
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low-dose cyclosporine regimens, the incremental cost per patient was higher by 20.1% with a 10.8% 

reduction in incremental QALYs compared to the ITT estimates.  

In the economic model, the knock-on effects of non-adherence on costs are more likely to come from 

the worse outcome, which may result in higher total costs. This happens automatically in the economic 

model because people move to a different health state that has higher costs (e.g. graft loss health 

state) and a lower utility in terms of quality of life as a result of moving to kidney dialysis intensive 

treatment on a regular basis.  

6.9.2  Strengths and limitations of the case study  

There are strengths and limitations of this case study. The main strengths include the application of 

the adjustment methods (selected based on the new evidence of performance from the simulation 

study reported in Chapter 5) using data from a large well-conducted RCT using data from 1,190 

patients with 12 months follow-up. The SYMPHONY trial dataset included the variables of interest 

required for the application of g-methods including measurement of the important baseline covariates 

(age and gender), time-dependent confounders (BMI and acute rejection) and a time-to-event 

outcome (i.e. time to graft loss). Based on the DAG (described in Section 6.3.4), it seems the important 

time-dependent confounders were collected in SYMPHONY; and therefore, the assumption of no 

unmeasured confounding is likely to be met. This is an important point for consideration in the design 

of future studies intending to adjust for non-adherence. Data on patient survival (time to death) was 

also available in the SYMPHONY dataset and this allowed for estimating the probability of graft survival 

censored for DWFG to match the parameters used in the adapted economic model.  

The availability of individual patient-level records on trough levels for the three immunosuppressants 

measured at 10 study protocol visits as well as extra visits to clinics allowed for the real-world non-

adherence to be predicted in a way that takes into account the relationships between adherence and 

important prognostic characteristics observed in the trial. These included time updated BMI and acute 

rejections. Recent estimates of real-world adherence levels using CV% from two UK studies that 

assessed SYMPHONY-style tacrolimus and low-dose cyclosporine regimens provided the data required 

for predicting real-world adherence within the SYMPHONY dataset. This allowed for the planned 

causal analysis to be performed on a randomised dataset for producing valid adherence-adjusted 

effectiveness estimates (i.e. the intended estimates) to populate the economic model. Another 

important strength of the case study was using an adaptation of a validated economic model which 

underpinned the recent update of NICE Technology Appraisal guidance for immunosuppressive 

therapy for adults in the UK (TA481).120 
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There are some limitations of the cases study. The CV% was used as a measure of adherence in the 

case study, although it is not the perfect or most recommended measure for implementation 

adherence and this may be considered as a limitation. The main reason for using CV% in this case study 

was that trough levels was the only adherence data measured in the SYMPHONY trial. Indeed, this 

also influenced the choice of CV% as a measure of real-world adherence so that the prediction within 

the SYMPHONY dataset could be performed. Moreover, CV% is commonly used and well accepted as 

a proxy measure of adherence in many disease areas including kidney transplantation. The real-world 

estimates of standard-dose cyclosporine were not identified from the review and this was assumed 

similar to the low-dose cyclosporine which is a conservative assumption.   

When considering the generalisability of the findings from this case study to adjust for non-adherence 

beyond kidney transplantation, a range of adherence measures are available for consideration 

depending on the disease area, type of medications assessed and study population. Based on 

preliminary findings from an ongoing ESPACOMP (International Society for Medication Adherence) 

Delphi panel, the following adherence measures are recommended for each type of non-adherence:146 

• Initiation adherence: prescription refill data or questionnaires 

• Implementation adherence: Electronic monitoring devices (e.g. Medication Event Monitoring 

System [MEMS])  

• Persistence adherence: questionnaires or Medication Possession Ratio (MPR)  

Initiation and persistence types of non-adherence are generally expressed as binary variables derived 

from the abovementioned measures, and these could be implemented for adjusting effectiveness and 

cost-effectiveness in a similar way applied in the simulation study (Chapters 4-5). While 

implementation non-adherence data such as trough levels could be analysed to derive a binary 

variable as applied in this case study, alternative approaches might be needed to transform data 

collected by other types of adherence measures, such as MEMS, to a binary variable to allow for 

adjustment methods to be applied.  

Another limitation associated with using CV% is the ability to use a different measure of adherence to 

predict real-world adherence levels within the randomised dataset. The approach used was discussed 

with clinical advisors and they considered that it would provide a realistic prediction of real-world 

adherence within the trial dataset. However, this approach implicitly assumes that the 

pharmacokinetics data collected in the trial is a good predictor of real-world adherence (patients with 

higher CV% in the trial are more likely to become non-adherent in the real world) which may not hold. 

It is also very difficult to assess the accuracy of the prediction and this is likely to be an issue for other 

prediction methods. 
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As an alternative approach, the marginal standardisation method might be considered in scenarios 

where trough levels data (such as the data used in this case study) is not available.147 The marginal 

standardisation method is considered a special case of the g-computation method.147 While this 

method has not been tested in this case study due to the type of adherence data available in 

SYMPHONY, the method relies on predicting the marginal probabilities of non-adherence for each 

individual patient over the distribution of observed confounders and a counterfactual adherence level. 

This could be applied by setting the probability of adherence to a counterfactual value (real-world 

adherence) for all patients in the RCT dataset. Then, confounder-adjusted logistic regression could be 

fitted using the observed data to compute the predicted probabilities of non-adherence for all patients 

at the observed values of confounders and the newly assigned (counterfactual) adherence level. This 

will create real-world predicted probabilities of adherence in the RCT dataset and then estimates of 

effectiveness could be obtained by applying the same approach used in this case study.  

Another limitation relates to medication adherence data recorded in the trial during the first 3 months 

post-transplantation. To calculate the CV% from trough levels in SYMPHONY, at least three data points 

within each time interval (e.g. 0-3, 3-6 and 6-12 months post-transplantation) is required to generate 

a valid adherence estimate. This means for each individual patient in trial, a minimum of nine equally 

distributed trough level records is required. In SYMPHONY, some patients do not meet this data 

requirement and as a result, missing CV% was generated for those patients. Moreover, for all patients, 

the trough levels data recorded between baseline and 3 months post-transplantation were discarded 

based on recommendations from published guides and discussions with two clinicians. The 

implications were that all patients in the SYMPHONY dataset had missing CV% generated at the first 

interval (baseline to 3 months). The decision for discarding that data was due to several factors 

including fluctuations due to infections and intravenous steroid treatments.139 The implication of 

these two related issues is that non-adherence adjustment was not applied for those patients which 

effectively means assuming they adhered to implement the prescribed treatment and this should be 

considered as a limitation. However, three sensitivity analyses were performed to address the issue. 

The key learning point from this issue highlights the importance of collecting medication adherence 

data in the trial to allow for the non-adherence adjusted analysis to be performed properly and avoid 

making such assumptions.   

The issue of multiple medication adherence (MMA) was not addressed in this case study which could 

be considered as a limitation given that multiple treatments were used within each 

immunosuppressive regimen assessed in the case study. Addressing MMA in the analyses undertaken 

in this case study was not possible because adherence data for the other medications (BAS, MMF, ST) 

were not collected in the SYMPHONY trial. This issue of dealing with MMA has been identified as an 
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area with no consensus exists in the health economics literature as characterised by a recent ISPOR 

special interest group report.135 This can be considered as an area for future research when it comes 

to accounting for non-adherence to multiple medications on the cost-effectiveness of prescribed 

chronic medications.   

Dichotomised adherence variable was incorporated in the adjusted analyses using the g-methods in 

which a patient was either adhered on not adhered. However, there are alternative approaches used 

in the health economics literature for incorporating implementation non-adherence, although these 

were not related to the g-methods. These include stratifying patients by different levels of adherence 

(e.g. >80%, 60-80%, or <60% as characterised earlier) and then assign reduced treatment effects for 

patients with lower levels of adherence. This approach might not be appropriate given the way the 

dosing schedules are designed to maintain the drug concentration with the therapeutic window to 

achieve the intended therapeutic effect. In other wards for particular medications, adherence below 

80% is more likely to result in a therapeutic failure rather than a reduced treatment effect. This 

approach was heavily criticised in the medication adherence literature. MEMS is the recommended 

measure of implementation adherence (based on the ESPACOMP Delphi panel) which is different from 

the CV% used in this case study.146 The analysis of medication adherence data collected using MEMS 

tools is generally presented in a form of percentages of tablets used over a specific time interval. Then 

a cut-off point will be required to assign each patient above the threshed to a binary non-adherence 

variable in the same way applied in this case study using the CV%. The key point is the requirement 

for objective determination of the cut-off point to avoid introducing bias in the analysis. However, this 

approach has not been empirically assessed in this case study, and therefore, incorporating 

implementation non-adherence as a non-binary variable could be an interesting area for future 

research. Another related limitation is that the censoring mechanism used in the adjusted analysis has 

not previously been tested. This was based on the predicted non-adherence as opposed to censoring 

patients who actually did not adhere to the treatment in the trial. Further research should also 

consider assessing the censoring mechanism alongside the real-world non-adherence prediction 

methods, ideally in a well-conducted simulation study.      

Although the discarded medication adherence data recorded between 0-3 months post-

transplantation could be considered as a limitation of this case study, three approaches were used in 

terms of sensitivity analyses to address the issue. These analyses suggested that the adherence-

adjusted cost-effectiveness results generated from the base-case analysis are robust. This indicates 

that the data on CV% from SYMPHONY based on trough levels measured between 3 and 12 months 

were adequate for performing the planned adjusted analyses in this case study. Furthermore, and 

based on discussion with clinicians, it could be argued that most graft losses that occur at the first 
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three months post-transplantation (the interval where we do not have usable trough levels data) are 

more likely to be due to technical rejections rather than non-adherence to the prescribed 

immunosuppressive therapy. 

Missing data on the baseline and time-dependent confounders could be considered as a limitation, 

although this was a minor issue in the SYMPHONY dataset. With age missing data of only 3.5% (42 out 

of 1,190 patients) and BMI at baseline missing data of  13.2% (157 out 1,190 patients) which are evenly 

distributed by treatment arm. Missing data also applies to time-dependent confounders where BMI 

was the main variable that had missing data. Nevertheless, missing data for baseline and time-

dependent confounders were imputed using acceptable approaches; and therefore, the risk of 

introducing bias as a result of missing data is minimal in this particular case study. The data imputation 

allowed for the full dataset of all patients randomised in the three relevant arms of the SYMPHONY 

trial to be included in both adjusted and unadjusted analyses.   

In this case study, the LOCF method was used to impute missing data relating to time-dependent 

confounders and this was considered the most appropriate option for this particular case study. To 

aid transferability of this analysis for other disease areas where the LOCF method might not be 

appropriate, the alternative approaches are briefly discussed here with references provided from the 

methodological literature further information. Missing data is a common problem in clinical trials and 

real-world data and the methodological literature on dealing with this issue is well established.148-151 

Guidance and tools to address the issue which could be considered including multiple imputations and 

complete case analysis.150  

Finally, subgroup analyses are commonly performed in the analysis of clinical trials; however, this was 

not planned for this case study. The main issue with subgroup analyses is that trials are generally not 

powered to detect a difference in treatment effect based on a smaller sample size specifying a 

subgroup of participants. Therefore, evidence from subgroup analysis is unlikely to be used to inform 

resource e allocation decision making in health care. However, these subgroup analyses are commonly 

used to inform future research where the technology might show potential for working better among 

a specific group of the study population. In the simulation study, the performance of the g-methods 

was negatively affected by the small sample size leading to higher bias. G-methods may also run into 

convergence problems when a small sample size is used as observed in the simulation study. This is 

likely to be the case for subgroup analyses, although this has not been assessed in this case study (see 

Chapter 5). 
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6.9.3 Conclusions  

Based on the analysis undertaken in this case study, a number of conclusions can be drawn about the 

application of g-methods for estimating adherence-adjusted clinical effectiveness and cost-

effectiveness of prescribed chronic medications. First, adjusting for real-world implementation non-

adherence for immunosuppressive regimens commonly used in the UK did result in reduced estimates 

of health benefits and increased costs per patient compared to using the standard ITT estimates in 

cost-effectiveness analysis. The impact of real-world non-adherence on incremental results was 

noticeable in this case study. For low-dose cyclosporine versus standard-dose cyclosporine, the impact 

amounted to an 8.1% increase in incremental costs and 88.2% reduction in incremental QALYs 

compared to the unadjusted ITT analysis. For tacrolimus versus low-dose cyclosporine regimens, the 

impact was higher in terms of increased incremental cost by 20.1% with a 10.8% reduction in 

incremental QALYs compared to the unadjusted ITT analysis.  

Second, g-methods provide a practical framework for incorporating real-world adherence levels to 

predict the cost-effectiveness of alternative regimes using individual patient-level data from an RCT 

dataset. Availability of the required data including measurements of adherence to the prescribed 

medications, baseline and time-dependent confounding within the RCT dataset as well as data on real-

world adherence levels is crucial to implementing the adherence-adjusted analysis. Third, the type of 

non-adherence measure (e.g. CV% based on PK data) represents a key element in predicting real-

world adherence in this particular case study and there is some uncertainty in the prediction method. 

Finally, missing data, including data on adherence to medication as well as baseline and time-

dependent confounding represent a risk as g-methods rely on data from these variables to produce 

valid estimates of adherence-adjusted effectiveness and cost-effectiveness results. Predicted non-

adherence between 6 and 12 months post-transplantation was close to real-world estimates; however, 

potential differences between an adherer in the adjusted trial dataset, compared to an adherer in the 

real world, is possible given that I had to change the CV% cut-off in the trial to get the desired non-

adherence.  
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Chapter 7: A methodological framework to account for the impact of 

non-adherence on the cost-effectiveness of prescribed chronic 

medications 

7.1 Introduction  

Chapter 6 presented the application of g-methods in a case study for estimating adherence-adjusted 

cost-effectiveness of immunosuppressive therapy in kidney transplantation using data from the 

SYMPHONY trial and real-world non-adherence within an adapted economic model. Evidence 

generated from the simulation study (Chapter 5) was used for selecting the appropriate non-

adherence adjustment methods for application in the case study. The MSM with IPCW and SNFTM 

with g-estimation (g-methods) were applied in the case study. The chapter described the analytical 

steps and considerations for applying these g-methods using real data. 

This chapter presents the work undertaken in Stage 4 of this doctoral research project aimed to 

develop a methodological framework to account for the impact of non-adherence on the cost-

effectiveness of prescribed chronic medications. In this context, a “methodological framework” is 

defined as a tool to guide researchers through a sequence of steps and considerations for estimating 

adherence-adjusted cost-effectiveness to inform resource allocation decision making in health care.152 

The methodological framework provides a set of recommendations based on new evidence generated 

and presented in this thesis complemented with existing evidence from the literature. The purpose of 

the adjustment is to allow the estimation of treatment effects associated with adherence levels from 

outside the trial (i.e. real-world adherence levels), and this has a direct impact on the cost-

effectiveness estimates. The chapter aims to answer the following research question: “How should 

economic evaluations incorporate the impact of non-adherence using evidence from both RCTs and 

the real world?”  

This chapter puts forward a seven-stage methodological framework to account for the impact of real-

world non-adherence on the cost-effectiveness of prescribed chronic medications. The framework is 

relevant to the context of survival analysis (studies with time-to-event outcomes) and HTA; and 

therefore, does not address studies with continuous or categorical outcomes.  

The methodological framework is built on the work undertaken in Chapters 2-6. It has also been 

informed by other literature in the medical and health economics research fields. The latter was used 
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to inform important considerations as part of the framework (e.g. study population and the impact of 

non-adherence on direct drug costs). 

This chapter is structured into the following sections. Section 7.2 describes the methods used for 

developing the methodological framework. Section 7.3 presents the methodological framework 

including the essential recommendations and considerations that could be followed to adjust for 

patient non-adherence in future economic evaluations. Section 7.4 provides the implications of the 

framework for health economics analysis plans (HEAPs). Section 7.5 discusses the methodological 

framework including the strengths and limitations and suggests key areas for future research.  

7.2 Methods for developing the methodological framework  

McMeeken et al.152 published a recent paper entitled “How methodological frameworks are being 

developed: evidence from a scoping review”. The authors reviewed a set of 30 papers published in the 

last 10 years that reported a range of approaches for developing methodological frameworks. The 

authors concluded that no formal guidance exists, but three phases were suggested to inform the 

development of future methodological frameworks based on an overall consensus on approaches 

found from their scoping review. The development of the methodological framework presented in 

this chapter was informed by that review including the three-phase development process. 

The methods used for developing the methodological framework followed the following three phases: 

1) identifying existing frameworks and evidence to inform the development of the methodological 

framework; 2) developing the methodological framework; 3) informing the methodological 

framework using a case study on kidney transplantation. Phase 3 also discusses the transferability of 

the methodological framework to other disease areas. The following subsections describe the 

methods used for developing the methodological framework in greater detail. 

7.2.1 Identifying evidence to inform the methodological framework   

The process started with identifying evidence to inform the development of the methodological 

framework. This phase has two parts comprising: (a) a review to identify any existing methodological 

frameworks; and (b) a review of methodological findings from Chapters 2-6 of this thesis (i.e. the 

systematic review, the simulation study and the case study). These two parts are described in more 

detail in the following subsections. 
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7.2.1.1 Review to identify existing frameworks  

To identify any existing methodological frameworks, a scoping review was conducted at an early stage 

when the plan of investigation for this doctoral research project was developed in 2017. The review 

was based on a citation search which was undertaken using Web of Science and Scopus electronic 

databases for three key papers (identified as relevant and highly cited papers in the literature) which 

address the issue of non-adherence.26, 32, 69 The review identified five methodological approaches used 

for incorporating non-adherence in cost-effectiveness analysis as characterised by Hughes and 

colleagues.32 In this context, a framework is different from an approach. A framework implies some 

set of steps that need to be followed to achieve a particular outcome. In contrast, the approaches 

identified by that review were all separate ways of attempting to account for non-adherence in 

pharmacoeconomic evaluations. These methodological approaches are partly based on structural 

model designs (e.g. Markov models and Decision trees) for implementation in pharmacoeconomic 

evaluations rather than on adjusting for non-adherence in treatment effectiveness estimates (see 

Chapter 1, Section 1.6.2).  

Given the limitations of these approaches discussed in Chapter 1 (Sections 1.4 and 1.6), the early 

scoping review concluded that no methodological framework exists. Nevertheless, the findings from 

the scoping review helped in shaping the design of the systematic review of methodological papers 

undertaken and reported in this thesis (Chapter 2).   

To update the findings from the early scoping review, a new literature review was carried out in 2021 

to identify any existing methodological frameworks. A search strategy was developed and used to 

identify existing frameworks for addressing patient non-adherence to medications in the context of 

economic evaluation and HTA. The search was conducted using OVID MEDLINE(R) and Web of Science 

databases from inception to June 2021. The search used three sets of relevant terms which were 

combined with “AND”: (1) terms for the framework (framework, methodology, guidelines, 

recommendations, or methods); (2) a comprehensive list of medication adherence terms similar to 

those used in the methodological systematic review reported in Chapter 2 of this thesis, and (3) terms 

for HTA (cost-effectiveness or economic evaluation or health technology assessment). All of these 

terms were limited to the title in the search to help identify relevant articles with a focus on 

methodological frameworks to account for non-adherence in the HTA context. The search terms used 

were informed by those used in the early scoping review, complemented with additional terms based 

on the McMeeken et al.152 paper. The detailed search terms used in the updated review and the results 
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in terms of the number of records generated from each step of the searches are provided in Appendix 

A.  

The database searches generated a total of 41 records of potentially relevant papers (MEDLINE(R) = 

12, Web of Science = 29). Following de-duplication, a total of 31 potentially relevant papers was 

identified. Twenty-five records were excluded at the title screening stage, and then the abstracts for 

the remaining six records were reviewed. One abstract was identified as relevant.153 The abstract is 

entitled “Framework for real-world economic evaluation by incorporating implementation 

parameters” and was published in 2016. This was a conference abstract and no full paper related to 

the abstract was identified. This abstract was missed by the early scoping review but has been picked 

up by the updated review because additional terms that were informed by the recently published 

guide were used as part of this iterative process.152  

The abstract authors proposed a framework to allow step-wise considerations of net benefits 

assuming three possible scenarios (perfect world, real-world and improved world) in terms of 

implementation adherence. The proposed framework specifically aimed to aid early-stage economic 

evaluations using three hypothetical scenarios. The first scenario (perfect world) was designed to 

predict if the treatment could be cost-effective. The second scenario aims to predict cost-effectiveness 

in real-world adherence levels. The third scenario aims to predict a situation between perfect 

adherence and real-world adherence levels. Interestingly, the “clinical trial world”, which is probably 

somewhere between perfect and real worlds was missing from this framework, because in reality that 

is the starting point with trial outcomes that the analyst would want to adjust up (to perfect) or won 

(to real) from. Furthermore, the authors reported using a Markov model to test their proposed 

framework in evaluating direct hearing aid provision versus provision by referral, incorporating patient 

adherence and professional uptakes as parameters in the economic model. The abstract reported cost 

savings based on the predicted improvement in adherence and concluded that the framework could 

help in terms of using real-world economic evaluations to inform policy decisions.  

The proposed framework falls into the category of structural approaches to incorporate adherence in 

economic models. This is similar to the approaches identified earlier when the proposal for this 

doctoral research project was developed (as discussed above). The limitations of these approaches 

were discussed in greater detail in Chapter 1 (Section 1.4 and 1.6), and these limitations informed the 

motivation for undertaking this doctoral research. In brief, these approaches make simplistic 

assumptions about the causal relationships between non-adherence and treatment effect which may 

produce misleading cost-effectiveness estimates. This is because the impact of non-adherence on the 
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treatment effect is very complex and more likely to be determined by the interplay between several 

factors including the type and levels of non-adherence, the nature of the disease, the prognostic 

characteristics and characteristics of the medication (e.g. PKPD). Also, it is not consistent over time – 

for example, a patient may start with 95% adherence in the first year, but be lower than this in the 

next year. Therefore, more complex methods are needed to deal with different types of adherence 

and multiple time-invariant and time-variant confounding factors.   

To investigate further, an author search was conducted to establish whether the first author of the 

relevant abstract had published any methodological framework at any point in time that addresses 

the issue of non-adherence. The author search was undertaken via Web of Science on “Grutters JP” 

153 without any restrictions in terms of dates or other search terms. A total of 14 papers were found 

by the author search and after title screening, no relevant paper reporting a methodological 

framework was identified.   

In summary, no existing relevant methodological framework was identified from the reviews. 

Therefore, the gap in the methodological literature in terms of accounting for non-adherence in 

economic evaluation remains. 

7.2.1.2 Recommended non-adherence adjustment methods to inform the 

methodological framework   

The recommendation of non-adherence adjustment methods in the framework is based on findings 

from three linked studies undertaken in this research as reported in Chapters 2-6 and these are briefly 

summarised in this section.  

First, a systematic review of the methodological literature identified 12 statistical methods for 

adjusting estimates of treatment effectiveness for patient non-adherence. The review concluded that 

four methods (g-methods [IPCW, SNFTM, RPSFTM] and PKPD) appear to be more appropriate to 

estimate treatment effects in the presence of real-world non-adherence.61 

Second, a simulation study assessed a subset of two g-methods (IPCW and SNFTM) and two simple 

methods and excluded the RPSFTM and PKPD methods. The PKPD method was excluded, as it requires 

the specification of the surrogate-final endpoint relationship which adds an additional layer of 

complexity and uncertainty. This needs a different set of DGMs rather than those applied in the 

simulation study, therefore, it was not possible to directly compare it with IPCW and SNFTM and this 

has been identified as a key area for further research. The RPSFTM only works to adjust for non-

adherence for one-arm studies or studies with a placebo control arm. However, the simulation study 



242 
 

was designed to assess the performance of adjustment methods in RCTs with two active treatments 

and hence the RPSFTM was also excluded from the assessment in the simulation study. In the end, 

two g-methods (IPCW and SNFTM) and two simple methods (ITT and PP) were assessed in the 

simulation study. The key findings show both g-methods are the best performing methods for 

adjusting estimates of treatment effectiveness for non-adherence.  

Third, a case study that applied the two best-performing g-methods (IPCW and SNFTM) and estimated 

the adherence-adjusted cost-effectiveness of immunosuppressants in kidney transplantation (see 

Section 7.2.3)  

Therefore, the methodological framework was informed by evidence from the findings of these three 

linked studies. The recommendation for using the non-adherence adjustment methods as part of the 

methodological framework is provided in Section 7.3.4. The framework is meant to be “live” and 

updated as and when further research is done (see Section 7.5.3) as I have not been able to cover 

everything within this doctoral research project.   

7.2.2 Developing the methodological framework 

Seven stages were identified as key elements to outline the methodological framework. The stages 

were formulated from the practical experience of applying the adjustment methods in this doctoral 

research. This was further informed by the design of existing methodological frameworks developed 

to address other issues to improve the quality of economic models in the HTA context.154, 155 The initial 

outline of the methodological framework was discussed with supervisors and based on comments, a 

second version of the framework was shared for further comments. The second version of the 

framework was further discussed with a clinician (WM) and a leading expert in medication adherence 

research (DH). All comments received were used to update the methodological framework and the 

final version is presented in this chapter.       

The methodological framework put forward in this thesis involves seven stages: (1) understanding the 

clinical context; (2) identifying and measuring the relevant types of non-adherence; (3) specifying 

other data requirements and making assumptions explicit; (4) selecting the appropriate non-

adherence adjustment method (5); adjusting treatment effectiveness for real-world non-adherence 

levels; (6) considering the impact of non-adherence on direct treatment costs; and (7) estimating and 

reporting adherence-adjusted cost-effectiveness of treatments. A description of the seven stages and 

the recommendations within each stage are presented in Section 7.3. 
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7.2.3 Informing the methodological framework using a case study 

A case study on kidney transplantation (Chapter 6) was used to jointly formulate and apply the 

framework using real data.  The case study was used to show how the methods could be applied in 

practice to produce cost-effectiveness estimates adjusted for real-world non-adherence. The study 

used individual patient-level data (IPD) from a large multicentre RCT (The SYMPHONY trial) with real-

world adherence levels estimates obtained from the literature within an adapted economic model. 

The case study was used to inform the development of the methodological framework presented in 

this chapter. 

A key feature of the methodological framework is its potential transferability to other disease areas. 

Although the framework was developed and applied to a single case study in kidney transplantation, 

it is transferable to other chronic diseases where non-adherence to prescribed regimens is identified 

as an important issue and provided that the endpoint is time-to-event.  However, I argue that most 

aspects of the framework would still be appropriate for use in studies with non-time-to-event 

outcomes, although the analyst will need different methods to make the non-adherence adjustment 

to the treatment effectiveness estimates (e.g. different variants of g-methods).156  

The methodological framework will apply to all types of non-adherence as characterised by the ABC 

medication adherence taxonomy (initiation, implementation, persistence), and therefore, it is fully 

aligned with that widely used taxonomy.1 The recommendations and considerations in the 

methodological framework are generic; therefore, will apply to virtually any chronic disease with long-

term use of prescribed pharmacological interventions where non-adherence is identified as an issue. 

However, it should be noted that the methodological framework has not yet been applied to other 

disease areas. The application of the methodological framework to other disease areas is encouraged 

and this thesis and the publications that will come out of it will form useful resources to aid the 

transferability. This in turn will help in evaluating the methodological framework in practice; however, 

this evaluation falls outside the scope of this thesis and represents an area for further research.   

7.3 A seven-stage methodological framework to account for the 

impact of non-adherence on the cost-effectiveness of chronic 

medications  

The methodological framework is presented in Figure 64. The stages in the methodological framework 

flow diagram are linked with arrows illustrating the process that could be followed to adjust for real-

world non-adherence levels in economic evaluations. Although the stages are generally sequential in 
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terms of the steps that need to be followed, iterations may be necessary as illustrated by the arrows 

shown on both sides of the framework diagram (see Figure 64). The stages of the methodological 

framework are described in further detail in Sections 7.3.1 to 7.3.7 below.  

The recommendations indicate specific measures that need to be taken based on findings from this 

research; whereas considerations identify important issues that may be considered with further 

measures taken based on what the investigator/analyst find in their particular study. For example, as 

a recommendation, the DAG should be drawn in for each study to apply this framework. An example 

of a consideration relates to the impact of non-adherence on drug costs where this will be 

drug/disease-specific; so the economist should consider it and include it if applicable. In the 

subsequent explanations, recommendations are italicised to make them more prominent.   

The considerations and recommendations cover the whole process of designing and analysing RCTs 

for adjusting for non-adherence in economic evaluations. These are split into two parts: (a) Stages 1-

3 cover nine recommendations for the RCT design (e.g. deciding what adherence measure is relevant 

and then collecting data on it, deciding what variables are relevant and collecting data on them); and 

(b) Stages 4-7 cover eight recommendations for analysing RCTs after data collection and these also 

apply to analysing existing RCT datasets (e.g., selecting and applying the appropriate adjustment 

method to produce adherence-adjusted effectiveness and cost-effectiveness estimates). Therefore, 

considerations and recommendations covered in Stages 1-3 should be undertaken at an early stage, 

ideally when the study is designed to ensure that the data required to perform the adherence-

adjusted analysis is collected correctly. Some recommendations in Stage 3 are relevant to both study 

design and analysis and therefore the arrows are pointing to both parts in the framework diagram.    
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Figure 64: A seven-stage methodological framework to account for the impact of non-adherence on 
the cost-effectiveness of chronic medications in the context of time-to-event outcomes 
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7.3.1 Stage 1: Understanding the clinical context 

The first stage in the methodological framework involves understanding the clinical context to help 

inform the study design in terms of adjusting for non-adherence in the analysis. This stage involves 

four recommendations as shown in the methodological framework flow diagram (Figure 64). These 

are described in the following subsections.  

a)    Understand the nature of the disease and the characteristics of the study population 

These may include prognosis, comorbidities and patients age groups with a focus on understanding 

how these prognostic characteristics may influence patient adherence to the prescribed dosing 

regimens of the medications used to treat these diseases or conditions. The age distribution of the 

study population is particularly important as different age groups are likely to have different patterns 

of adherence for certain types of treatments such as maintenance immunosuppressive therapy after 

kidney transplantation. For example, in the case study, it was noted that patients aged 19-24 years 

have significantly higher probabilities of non-adherence to immunosuppressants compared to older 

patients (25-44 years).157 Age-related non-adherence differences are also evident in other disease 

areas such as chronic heart failure.158 Furthermore, polypharmacy for patients with comorbidities is 

an important factor for consideration as it has a significant impact on medication adherence 

behaviours. The key point is that polypharmacy can lead to higher levels of non-adherence because 

patients have greater numbers of tablets to take which increases the chance of missing doses.159 

Moreover, it is important to bear in mind that medication adherence is more likely to be determined 

by individual beliefs and social influences.2 

Another important consideration is specifying the estimand of interest (defined in Chapter 1, Section 

1.3.3) that the study investigators intend to use to make inferences about the study population.14, 15 

Specification of the estimand of interest is particularly important as it forms a key element in terms of 

the characteristics of the appropriate adjustment methods. Specifying the estimand of interest 

involves four attributes: 1) the population, 2) the outcome variable or endpoint, 3) the specification 

of how to deal with intercurrent events, and 4) the population-level summary of the outcome 

variable.61 

This recommendation should be informed by reviewing the existing evidence from the relevant 

literature and discussions with clinicians, patient groups and other stakeholders involved in specifying 

the decision problem (e.g. NICE).  
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b)    Review the medications characteristics and dosing regimens and their potential impact on 

adherence levels 

Medication characteristics include the PKPD information for the prescribed regimens and the dosing 

schedule that the patient needs to follow to achieve the intended treatment effect. The medication 

PKPD characteristics have a direct impact on the relationship between non-adherence and treatment 

effect. 

Another important consideration relates to the dosing schedule of the prescribed treatments. 

Different treatments have varying dosing schedules depending on the formulation (e.g. once daily 

[OD], twice a day [BD] or three times a day [TDS]) and some evidence suggests that the dosing 

schedule have a direct impact on patient adherence levels with multiples doses a day leading to 

potentially higher levels of non-adherence. For example, findings from a recent clinical trial of 219 

patients found that implementation adherence to once-daily modified-release tacrolimus was 88.2% 

compared to 78.8% for twice-daily immediate-release tacrolimus formulation among kidney 

transplant recipients.130 However, this is complicated and some have argued that missing 11.8% of 

doses of a once-daily drug is worse than missing 21.2% of doses of a twice-daily drug, in terms of drug 

exposure. 

The relationship between non-adherence and the treatment effect is very complex; therefore, 

understanding the medications characteristics and dosing regimens will help to inform the selection 

of the appropriate data collection tools at the study design stage. Particularly, it will inform the 

selection of the appropriate tools for measuring medication adherence in the trial and the real world 

required to undertake the adjusted analysis. For example, if the drugs have a very low therapeutic 

index with therapeutic drug monitoring used as a normal in clinical practice then trough levels data 

might be available and in that case, CV% could be used as a measure of adherence. Although, this 

might not be the most accurate measure for implementation adherence, using electronic monitoring 

devices (e.g. MEMS) is rarely applicable in routine clinical practice. If the medications under 

consideration are regularly dispensed using prescription refills and the data from electronic patient 

records available for access by the analyst for both the trial and the real-world settings, then the MPR 

might be used.160 This choice of the appropriate measure of adherence could be achieved by reviewing 

the relevant literature and/or discussions with clinicians and clinical pharmacists at the study design 

stage. It should also be noted that CV% might not be validated as a proxy measure of adherence in 

many medications outside the domain of CNIs.  
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Another important characteristic of medications is drug forgiveness profiles and their potential impact 

on adherence levels. The concept of drug forgiveness (defined in Chapter 1, Section 1.3.8) is 

characterised by a threshold of adherence level above which the intended therapeutic effect of the 

treatment is maintained.21 However, the arbitrary choice of threshold (e.g. 80%) has been heavily 

criticised in the literature, and is likely to be inappropriate for most medicines. The adherence 

threshold could be determined objectively based on pharmacokinetic data such as CV% of trough 

concentration levels as applied in the case study.   

There is a relationship between drug forgiveness and the impact of non-adherence on clinical 

outcomes.21, 22 In other words, the outcome in the context of sub-optimal implementation is 

dependent on forgiveness. However, the drug forgiveness profile differs between medication classes 

and that is why it is important to understand it for all the medications under consideration for non-

adherence adjustment. For example, patient non-adherence to drugs with a low therapeutic index 

(the ratio of the highest dose that is acceptably safe to the lowest which is sufficient for the drug to 

be effective) such as tacrolimus and cyclosporine (assessed in the case study) and oral contraceptive 

pills have far more negative consequences on treatment effect compared to drugs with a high 

therapeutic index such as aspirin.  Understanding the relationship between adherence levels and drug 

forgiveness provides additional information about the strength of the relationship between non-

adherence and treatment effect. This in turn will inform the selection of the appropriate method 

based on the performance evidence reported in chapter 5. This is based on is some evidence from the 

simulation study that shows a stronger relationship leads to higher bias especially when combined 

with a smaller sample size although there was no significant difference between SNFTM and IPCW 

(See Stage 5 of the framework for more information).          

c)    Check if adherence levels in the real world are likely to differ from the clinical trial 

Evidence suggests that adherence levels in the real world are likely to differ from clinical trials and 

that is why HTA needs to account for real-world adherence levels in cost-effectiveness analysis as this 

methodological framework aims to achieve.34 If adherence levels in the real world are similar to those 

observed in the trial, then predicting real-world adherence may not be necessary. There might also be 

some situations where adherence levels in the real world are better than those observed in trials, for 

instance, when an adherence improvement intervention is applied after the clinical effectiveness 

evidence from trials was published. In this situation, the prediction of real-world adherence levels in 

the RCT dataset may also be applied using the methods proposed in this methodological framework. 

Therefore, it is important to understand the difference in adherence levels between trials and the real 

world for the study population and medications under consideration.  
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There is also the issue of how the analyst knows what adherence levels to a new drug would be if it is 

not yet available in the real world. In this case, the analyst could apply this recommendation based on 

expert opinion or adherence to similar drugs in terms of formulations and dosing regimens that might 

be used. If adherence levels in the real world and the trial are not different, or if they cannot be 

estimated due to lack of data, there is no need to go any further for that particular case.      

d)    Draw the DAG 

It is recommended to draw the DAG (Directed-Acyclic Graph) at the study design stage to 

conceptualise the causal links between adherence, baseline and time-dependent confounders, and 

the outcome of interest (i.e. time-to-event).13 The DAG illustrates the assumptions about the 

relationships between these variables in the dataset. This should be the basis for identifying the data 

requirements in terms of the important variables and follow-up time points to allow for the 

adherence-adjusted analysis to be undertaken. The task for drawing the DAG will require evidence 

from the literature about the important prognostic factors and their relationships with non-adherence 

and the outcome of interest. The evidence from the literature could be complemented by discussions 

with clinicians to understand these causal relationships. More importantly, there is a clear role for the 

patient and public involvement (PPI) to play here given that adherence is a behaviour issue. The task 

of drawing the DAG will be based on an iterative process between this stage and the preceding two 

stages, which are all relating to the study design stage. This is clearly illustrated by the arrow to the 

left-hand side of the framework diagram (Figure 64). 

7.3.2 Stage 2: Identifying and measuring the relevant types of non-adherence  

This second stage involves two recommendations as described below. 

a) Determine the types of non-adherence that are relevant to the decision problem   

The methodological framework is aligned with the ABC medication adherence taxonomy and the 

associated operational definition.1, 161 Based on an understanding of the clinical context, the important 

types of non-adherence (initiation, implementation and/or persistence) that may be present should 

be identified. The framework applies to the three types of non-adherence. However, some types of 

non-adherence may be more important than others for a particular study population, and therefore, 

may not warrant the incorporation in the adjustment analysis. For instance, based on the practical 

application of the adjustment methods in the case study, initiation non-adherence to 

immunosuppressants was considered less important in kidney transplantation as most patients 
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initiate the prescribed treatment and dosing is supervised during the inpatient stay. For this study 

population, in particular, implementation was identified as the most important type of non-adherence 

and that is why it was the only type of non-adherence included in the case study.  

For other diseases or conditions, different types of non-adherence or a combination of more than one 

type of non-adherence might be important for incorporation into the adjusted effectiveness and cost-

effectiveness analyses. This information could be identified from the relevant literature and/or 

discussion with clinicians and other stakeholders. For example, both persistence and implementation 

non-adherence to treatments were identified as important for the management of type 2 diabetes 

(T2D). In this example, Guerci et al revealed that persistence and implementation of non-adherence 

to T2D medications can have profound negative consequences to patients such as the increased risk 

of complications in the long term and mortality.162 In addition, economic consequences are also likely 

which may include higher healthcare resource utilisation and increased costs. In this case, it might be 

important to adjust for both persistence and implementation non-adherence in cost-effectiveness 

analysis.       

b) Identify and measure adherence to medications in the trial and the real world 

To apply the methodological framework for adjusting for non-adherence, IPD data on adherence to 

medications in the trial is required alongside data on confounders and the time-to-event outcome. 

The recommended adherence measure for each type of adherence included in the study should be 

used. Depending on the type of non-adherence being investigated, the study design should consider 

the appropriate follow-up time points and time intervals such that the adherence data is aligned with 

time-dependent confounders’ data. These are important points for consideration at the early stage of 

the study design.     

Data on adherence levels in normal healthcare practice will be required so that real-world adherence 

levels could be predicted for each patient in the trial dataset. Real-world adherence data could come 

from observational studies or Registry databases. While IPD data on real-world adherence will be 

useful, this could come from published estimates if these are aligned with the adherence data 

collected in the trial in terms of type of non-adherence, adherence measure, length of follow-up and 

follow-up time points. The latter approach was applied in the kidney transplantation case study to 

which this methodological framework was applied.  

A range of adherence measures is available including subjective and objective measures. These include 

pill count, electronic medication packaging (EMP) devices, self-reporting and assessment by 
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clinicians.7 Using an invalidated measure of adherence could introduce a risk of bias in the analysis, 

which may result in generating misleading adherence-adjusted cost-effectiveness estimates. 

Therefore, it is important to choose a validated measure to capture data on adherence to medications 

for each type of non-adherence included in the study. This recommendation applies to the 

measurement of adherence in clinical trials and the real world, which are both essential for the 

adjusted analysis. It should be noted that real-world data on MEMS is exceedingly hard to find; and 

the more invasive the measure.  

The following adherence measures are recommended for each type of non-adherence based on 

preliminary findings from an ongoing ESPACOMP Delphi panel:146  

− Initiation: prescription refill data or questionnaires 

− Implementation: Electronic monitoring devices (e.g. MEMS) 

− Persistence: prescription-based MPR 

7.3.3 Stage 3: Specifying other data requirements and making assumptions 

explicit 

The third stage covers three recommendations as described below. The framework has implications 

for HEAPs that have been identified as an important development and these are provided in Section 

7.4.    

a)    Identify and measure all baseline and time-dependent confounders 

Identification of all potential baseline and time-dependent confounders is crucial to generate valid 

adherence-adjusted effectiveness and cost-effectiveness estimates. This step will ensure that the 

collected data satisfies the assumption of “no unmeasured confounding” relied upon up by the 

adjustment methods recommended in this methodological framework (i.e. g-methods). The task of 

identifying confounders will be based on the DAG drawn in the previous step. The potential 

confounders could then be assessed when the data becomes available at the analysis stage as a 

confirmatory step. Assessment of the potential confounders could also be done using datasets from 

previous studies conducted on the same study population if the analyst has access to such IPD data.  

To my knowledge, there is no way for testing for “unmeasured confounding assumption” and the 

analyst can only work with the data that have been collected – hence that is why it is important to 

consider this at the RCT design stage as recommended by this framework. There are several 

approaches to test for confounding using IPD data. These may include fitting simple regressions 
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between these potential confounders, non-adherence variables and the outcome of interest and 

checking the regression output tables. However, these simple regressions could be biased themselves, 

so the analyst should rely on expert opinion and DAGs with these regressions used as confirmatory 

checks for selecting the final list of confounders to include the adjusted analysis. For this approach, 

the inclusion of the final confounding variables must not be restricted to prognostic factors with 

relationships that generate statistically significant associations, but instead, some degree of 

association would be sufficient to include the confounder in the adjusted analysis.  

The key data items required to apply the framework include randomisation variable, baseline 

characteristics, follow-up time points,  medication adherence data (initiation, implementation and/or 

persistence), baseline and time-dependent data for any potentially prognostic variables, loss to follow-

up, patient survival, and time-to-event outcomes. In addition, data on medication adherence levels in 

the real world (either IPD or summary estimates) are also required to perform the adjusted analysis.  

b)    Specify appropriate methods to deal with missing data 

Missing data is a common problem in clinical trials, observational data and real-world data. However, 

the methodological literature on dealing with missing data is well established with published guidance 

and tools to address the issue that could be considered and ultimately followed.148-151 The selection of 

method for handling missing data will depend on the assumption around the missing data mechanism. 

Generally, these are classified as missing completely at random (MCAR), missing at random (MAR), 

and missing not at random (MNAR).151 These may include multiple imputations, last observation 

carried forward (LOCF), imputation using mean values from the available data, or complete case 

analysis.150 The important variables to investigate for missing data include medication adherence data, 

baseline covariates and time-dependent confounders including their values at baseline. 

The key point is that the analyst will need information on “confounders”, that is prognostic 

characteristics that inform non-adherence and the outcome. In some instances in other contexts (e.g. 

adjusting for treatment switches instigated by clinicians), if a lab test for a particular prognostic 

variable was not carried out, it can simply be analysed as missing and/or use LOCF to impute the value 

of that test as if the information on that prognostic variable was not available to a clinician it cannot 

be a confounder. However, that will be different in the context of non-adherence, where a prognostic 

variable that was not measured by a hospital test could still influence a patient’s decision not to adhere 

to the prescribed treatment. This will need careful consideration to select the appropriate method to 

deal with missing data for performing the adjusted analysis.   



253 
 

c)    Specify the appropriate methods for analysing adherence data  

Depending on the type of measure used to capture medication adherence data, methods for analysing 

adherence data should be specified based on the ABC taxonomy and the associated operational 

definitions.1, 161 For instance, if adherence data is collected using drug trough level records (as used in 

the case study), the analysis may involve calculating the IPV for each patient at each time interval and 

then the CV% for that interval need to be calculated. Then, a cut-off point will be required to assign a 

binary non-adherence indicator to each patient with a CV% above that threshold so that it could be 

used as a proxy measure of adherence in the adjusted analysis. Dichotomising a continuous variable 

measuring implementation adherence is not the best strategy but the adjustment methods 

recommended within this framework require a binary variable which could be considered as a 

limitation.  Other types of adherence data such as prescription refill data, pill count and data captured 

by MEMS will all require data analysis to produce the adherence variable required for adjusted analysis. 

The ESPACOMP Medication Adherence Data Analysis Working Group has recommended some tools 

and recommendations for standardising and analysing adherence data and this could be considered 

among other sources.     

7.3.4 Stage 4: Selecting the appropriate non-adherence adjustment method 

The fourth stage involves two steps as described below. 

a) Consider the relevant factors in the study  

This step recommends considering the relevant factors listed below as they apply to the study. This 

will help in selecting the appropriate non-adherence adjustment method as described in the next 

recommendation.   

• Sample size 

• Type(s) of non-adherence 

• Level of non-adherence 

• Treatment effect size 

Although there is some evidence of impact from the above-mentioned factors, alongside other factors 

such as the relationship between non-adherence and treatment effect and existence of time-

dependent treatment effect, on the performance of g-methods, a significant impact was evident for 
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the sample size, the type and level of non-adherence and treatment effect size (See Chapter 5 for 

more detail). 

b) Select the recommended non-adherence adjustment method based on the performance 

evidence 

For implementation and persistence non-adherence, both SNFTM and IPCW are recommended for 

use although the bias associated with SNFTM was slightly higher in the simulation study reported in 

Chapter 5. In studies where a large treatment effect size is expected/observed, the SNFTM with g-

estimation is likely to be the best option, based on the results of the simulation study. A smaller sample 

size is expected to lead to more bias compared to data from large studies, but there is no evidence to 

prefer one g-method over the other based on the simulation evidence reported in this thesis. In 

addition to the findings of the simulation study, there is some evidence (and theoretical rationale) for 

why IPCW is more sensitive than SNFTM with small sample sizes (because it involves weighing, and 

when you get high weights the method becomes prone to higher error and convergence problems).128 

Some other minor differences might influence the selection between IPCW and SNFTM when 

considering the combination of factors listed in (a) above for each particular study. However, it should 

be noted that both g-methods perform well and neither is superior for all situations based on the 

simulation evidence reported in Chapter 5.     

For initiation non-adherence, SNFTM with g-estimation is recommended followed by IPCW, although 

both methods could be applied as the performance differences between them are minor. In studies 

with larger sample sizes, SNFTM would be the best option especially when the anticipated treatment 

effect size is large. However, it should be noted that the performance evidence generated from the 

simulation study showed that IPCW produces better coverage than SNFTM, although the performance 

results were very close in terms of unbiasedness and ModSE. There has been some uncertainty around 

this particular finding and there is an argument that SNFTM coverage could have been better if 

bootstrapping was applied in the simulation. While the simulation demonstrated that both IPCW and 

SNFTM have generally performed well, often it was generally not clear exactly which method will be 

best, and so it will be necessary to apply both and compare results. Therefore, it is recommended that 

both adjustment methods should be applied, if possible, and then further assess the adjusted results 

as described in Stage 5 of this framework.   
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7.3.5 Stage 5: Adjusting treatment effectiveness for real-world non-adherence 

levels  

The fifth stage of the framework involves adjusting treatment effectiveness for real-world non-

adherence levels using the following three steps.    

a) Predict real-world non-adherence for each patient in the trial dataset 

This analytical step will use real-world adherence levels estimated in Stage 2. The prediction of real-

world non-adherence will be based on the adherence data observed in the trial taking into account 

the prognostic relationship between adherence level and the confounding variables in the dataset. 

The prediction should be performed such that the overall proportion of non-adhered patients matches 

the real-world estimates. As a sense-check, the analyst should look at the predicted non-adherence 

to make sure the prediction has face validity. For example, the predicted data should show that 

patients with a poor prognosis (in terms of the prognostic confounding variables) are more likely to 

fall into the non-adhered group. There are different ways for doing this step depending on the 

measure of adherence used in the dataset and the available data. For instance, when trough levels 

data is available (as in used the kidney transplantation case study) a new cut-off point for the CV% 

could be used to predict real-world non-adherence in the RCT dataset.    

An alternative approach for predicting real-world non-adherence in the trial dataset is to apply the 

marginal standardisation method.147 This method is considered as a special case of g-computation 

(described in more detail in Chapter 6, Section 6.9.2). In brief, the method predicts the marginal 

probabilities of non-adherence for each patient over the distribution of the confounders and the 

counterfactual adherence level (e.g. real-world adherence level). Then, confounder-adjusted logistic 

regression could be used to compute the predicted probabilities of non-adherence in the trial dataset. 

This method has not been applied in the case study, as a more appropriate prediction method for that 

particular case study was applied utilising drug concentration levels that were available within the 

SYMPHONY trial dataset. Therefore, more research will be valuable here to assess the appropriateness 

of this prediction method when applying the framework in other case studies in the future.        

b) Apply the selected g-method to obtain adherence-adjusted effectiveness estimates   

This step involves applying the g-method (IPCW or SNFTM) to the trial dataset (including the real-

world predicted non-adherence) to generate valid adherence-adjusted clinical effectiveness estimates. 

The detailed analytical steps for applying each of the g-methods (including the Stata code) are 

provided in Chapters 4-6.    
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c) Assess the results of the adjustment method for reliability   

Following the application of the selected adjustment method in the previous step, the analyst should 

assess the adjusted effectiveness results generated for reliability. For example, the analyst might apply 

IPCW and get large weights, making it very unreliable. On the other hand, when applying the SNFTM, 

the g-estimation might not work. Furthermore, the results could be very sensitive to different model 

specifications. The latter is particularly relevant to the untestable assumption of no unmeasured 

confounding relied upon by the adjustment method. Discussion with clinical experts is key here as 

explained as part of the process for drawing the DAG (see Section 7.3.1).    

Sullivan et al. have recently published a paper providing recommendations for reporting adjusted 

analysis in the context of treatment switching.163 Some of their recommendation relating to the 

application of IPCW are relevant to the context of adjusting for non-adherence and these have been 

adapted for consideration to assess the adherence-adjusted results using this framework. These 

include: (a) checking whether stabilised or un-stabilised weights were used; (b) checking the 

specification of the statistical models used to calculate the weights (e.g. pooled logistic models); (c) 

checking how missing data on the baseline and time-dependent confounders were dealt with in the 

weighting models; (d) checking and documenting the coefficients and the associated SEs and 95% 

confidence intervals generated from the weighting models; and (e) summarising the distribution of 

weights used to create the pseudo-population for the applying the adjusted survival analysis.  

For the SNFTM with g-estimation, assessing the results may include checking how multiple 

observations per individual patient are dealt with in the model (e.g. including all observations which 

may risk overstating statistical significance or using first observation to get statistical significance right 

at the expense of precision). Other checks may include checking whether grid search (or interval 

bisection search) was used to run the g-estimation and checking the results using the Z graph to ensure 

that the g-estimation process has worked properly.            

7.3.6 Stage 6: Considering the impact of non-adherence on direct treatment 

costs  

Stage six of the framework involves two considerations as described below.  

a) Consider the impact of non-adherence on drug costs 

There are arguments in the literature as to whether direct treatment costs could be lower as a result 

of patient non-adherence to their prescribed medications.164 The argument is that patients do not 
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take enough quantities of the prescribed treatments by not getting their prescriptions dispensed. This 

means there could be cost savings because fewer packs are dispensed. The counter-argument is that 

most patients get their regular prescriptions dispensed, but ended up not using these treatments as a 

result of non-adherence which leads to wastage. In other words, patients may not take the drugs 

according to the recommended schedule, but the full costs of used and unused medicines are incurred 

by the NHS (or the payer in other healthcare systems). This assumption is unlikely to apply as much to 

non-persistence when prescriptions are most likely to stop being dispensed; and certainly not to non-

initiation. The latter argument is particularly relevant to immunosuppressants in the kidney 

transplantation case study reported in Chapter 6 in this thesis. This assumption was based on 

discussions with two clinicians (WM and JF) and a clinical pharmacist (DG). In the UK NHS, this means 

the healthcare system will not save costs as a result of patient non-adherence to their prescribed 

treatments in particular disease areas such as immunosuppressants used after kidney transplantation 

or antihypertensive drugs. Hence, the full drug costs were used in the economic analysis undertaken 

in the case study.    

However, it should be noted that the impact of non-adherence on drug costs will depend on many 

factors including the disease area, the type of non-adherence and the class of medications and how 

the pharmacological treatments are financed in a particular health care system. Therefore, this should 

be considered when adjusting for non-adherence in cost-effectiveness analysis and any assumptions 

fully justified. 

b) Consider the impact of non-adherence on other direct treatment costs  

This point relates to considering the impact of patient non-adherence on other direct treatment costs 

(other than drugs). This may include administration costs for medications administered by a 

healthcare professional (e.g. in visits to the clinics). Patients who do not attend their appointments to 

get their prescribed medications administered may incur other direct treatment costs (e.g. cost of 

unattended visits). Again this will depend on how the health care system is organised and financed. 

All these cost-consequences resulting from patient non-adherence should be considered to make 

informed decisions on whether or not to include them in the economic analysis. This is a very real cost, 

probably hard to measure. For example in the context of kidney transplantation, non-adherent 

patients are more likely to miss the clinic appointments, but they also fail to attend for blood tests, 

forget to omit their tacrolimus before the drug level which then needs to be repeated and all these 

incur costs to the health system. This consideration could be achieved by consultations with 

pharmacists, patient groups, clinicians and other stakeholders. 
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The impact of non-adherence on other non-direct costs such as fewer adverse events, but maybe 

worse control of the disease and, therefore, more general practitioner (GP)/hospital appointments is 

very important. However, the assumption is that this will come out of the economic model through 

different transition probabilities to different health states after adjusting the treatment effectiveness 

for non-adherence. Also very relevant is the healthy adherer effect – people who are most adherent 

to medications are likely to be adherent to a good diet and healthy living and vice versa, meaning 

greater ill-health (and associated costs) among non-adherent patients for reasons other than not 

taking their medicines.       

7.3.7 Stage 7: Estimating and reporting adherence-adjusted cost-effectiveness 

of treatments   

Stage seven of the methodological framework involves estimating and reporting the results from the 

adherence-adjusted cost-effectiveness analysis. This covers the following four recommendations. 

a) Use the adjusted effectiveness estimates within the economic model 

This will depend on the estimand of interest as estimated by the adjustment method. The form of the 

treatment effect estimates generated from the analysis will depend on how the economic model is 

conceptualised and structured.   

The adjusted effectiveness estimates may be obtained in a form of adjusted hazard ratios (HRs), 

restricted mean survival times (RMSTs) or survivor functions depending on how the economic model 

is conceptualised. For example, in the kidney transplantation case study to which was carried out to 

inform the development of this methodological framework, treatment effectiveness was incorporated 

in a form of adjusted graft survivor functions for each of the alternative treatment options estimated 

at baseline, 3, 6, 9 and 12 months.   

As another example in a different disease area, HRs including the 95% confidence intervals are used 

to incorporate the treatment effectiveness in a 6-health-state Markov model to assess the cost-

effectiveness of docetaxel and paclitaxel-containing chemotherapy regimens (taxanes) compared with 

standard (non-taxane) treatment for adjuvant treatment of early breast cancer.165, 166 While the 

treatment effect was not adjusted for real-world adherence levels in that economic model (as in most 

economic evaluations), the example show a different form of treatment effectiveness incorporated in 

economic models. In other words, HRs were used in this example compared with graft survivor 

functions used in the case study economic model.       
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b) Report the results from adjusted analysis alongside results from the standard ITT analysis 

It is recommended that the cost-effectiveness estimates from the adherence-adjusted analysis are 

reported alongside results from the standard ITT analysis. If the adherence-adjusted cost-

effectiveness estimates were considered the most important for the resource allocation decision-

making, then reporting the adjusted analysis as primary analysis with ITT reported as secondary 

analysis might be preferred. It is also good practice to report the type of medication adherence 

incorporated in the adjusted analysis including the operational definition for each type, method of 

measurement and results of non-adherence levels in the trial and the real world as recommended by 

other existing guidelines.126, 161    

c) Perform and report sensitivity analyses with different adherence levels 

It is also recommended that sensitivity analyses with different adherence levels, given that the analyst 

may not be able to predict real-world adherence levels accurately (especially for new drugs). 

Furthermore, the analyst could also consider a threshold analysis (i.e. what percentage adherence 

would be needed for the drug to be cost-effective). The latter will provide useful additional 

information for decision-makers in terms of investing in interventions (e.g. patient education) to 

improve medication adherence in the real world.167   

d) Report the strengths and limitations  

It is important to report the strengths and limitations of the adjusted analysis and these will vary 

between studies. These may include the assumptions used to perform the adjusted analysis and the 

sensitivity of the results to deviations from those assumptions. Among others, these may include the 

assumption of no unmeasured confounding, the quality of medication adherence data, adherence 

measurement errors, and missing data. This will improve transparency in the application of the 

methodological framework.   

Prerequisites to apply the framework  

To apply the methodological framework, three prerequisites need to be met, otherwise, the 

framework cannot be used. These are: (a) identification and measurement of patient non-adherence 

based on the temporal phases of initiation, implementation and persistence as defined by the ABC 

taxonomy; (b) identification and measurement of baseline and time-dependent confounders, and (c) 

access to IPD data from an RCT with adherence metrics and prognostic characteristics plus real-world 

adherence data.  
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7.4 Implications for health economics analysis plans 

The methodological framework has implications for HEAPs that have been identified as an important 

development. The key items within the framework that may be specified within a HEAP are listed 

below: 

• Detail the DAG illustrating the causal relationships between adherence, baseline and time-

dependent confounders and the outcome with the diagram included in the HEAP document. 

• Specify the estimand, including the population-level summary form for estimating the 

adherence-adjusted treatment effectiveness for incorporation into the economic model.  

• Specify the types of non-adherence included.   

• Justify and describe the tool for measuring adherence in the trial and the real world (if 

applicable). 

• Specify the methods for dealing with missing data on adherence metrics and confounders. 

• Outline how the impact of non-adherence on direct treatment costs will be estimated (if 

applicable). 

• Describe any planned sensitivity analyse (e.g. analyses using different levels of adherence)  

• Describe how the adherence-adjusted effectiveness and cost-effectiveness results will be 

reported. 

7.5 Discussion, areas for future research and conclusion  

7.5.1 Summary of the methodological framework  

This chapter presented a seven-stage methodological framework to account for the impact of non-

adherence on the cost-effectiveness of prescribed chronic medications. The framework provides 

guidance on the steps that could be followed at the study design stage, and the analysis and reporting 

stage for adjusting the cost-effectiveness treatments for real-world adherence levels.  

In summary:  

a) The methodological framework was developed in a systematic way using a recently published 

“how-to” guide. 

b) The framework involves seven stages with Stages 1-3 covering recommendations for RCT designs 

and Stages 4-7 covering recommendations for analysing RCTs to produce adherence-adjusted 

effectiveness and cost-effectiveness estimates.    
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c) The stages cover a series of considerations and 17 recommendations with the difference 

between them being recommendations indicate specific measures that need to be taken based 

on findings from this research; whereas considerations, specify important issues that may be 

considered with further actions taken based on what the investigators/analyst find in their 

particular study. 

d) The framework has implications for HEAPs that have also been identified; particularly, to specify 

the plan for adherence-adjusted analysis in these documents.   

e) The framework is intended to be “live” in nature as it needs to be informed by further research 

in terms of application in different case studies for evaluation and extension to incorporate 

additional adjustment methods and endpoints.  

The methodological framework put forward in this thesis is expected to help in improving the overall 

quality of economic models used for estimating the cost-effectiveness of chronic medications in the 

context of time-to-event outcomes and HTA. The main contribution of the methodological framework 

is that it builds on four linked studies reported in this thesis to provide a systematic approach for 

incorporating real-world non-adherence in economic evaluations.  

The methodological framework is aligned with the widely used ABC medication adherence taxonomy 

characterised by three types (initiation, implementation, persistence) to aid the application of the 

framework in future economic evaluations.  

The framework recommends g-methods (IPCW and SNFTM) for obtaining valid clinical effectiveness 

estimates adjusted for patient adherence for incorporation into the economic model to estimate 

adherence-adjusted cost-effectiveness of treatments. The recommendations for using g-methods was 

informed by performance evidence generated from the simulation study reported in this thesis. It 

should be noted that the other two methods (RPSFTM and PKPD) appear to be appropriate for HTA 

but these methods have not been assessed in the simulation study and this should be considered as a 

limitation.     

The development of the methodological framework was informed by a recently published guide on 

“how to develop methodological frameworks”.152  

7.5.2 Strengths and limitations 

The methodological framework has several strengths. First, the development of the framework was 

informed by a recently published guide on how to develop a methodological framework which itself 

was based on a review of 30 papers involving some form of a methodological framework that has been 
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developed in the last 10 years. Second, the framework was developed based on evidence from four 

linked studies reported in this thesis. Third, the framework was developed from the points of view of 

an investigator and an analyst in providing practical recommendations and considerations that could 

be followed from the study design stage to reporting the findings for any study with a time-to-event 

outcome considering to account for real-world non-adherence in the cost-effectiveness of chronic 

medications. Finally, the framework aimed at providing a set of recommendations and considerations 

that could be followed systematically to adjust for non-adherence in economic evaluations, although 

some of these recommendations might not be applicable or feasible to implement for each particular 

study.   

There are some limitations associated with the methodological framework. First, the framework is 

focused on studies time-to-event outcomes, and therefore, could not be used in studies with other 

types of outcomes or endpoints (e.g. continuous or categorical outcomes) if those are the primary 

outcomes of interest. However, most of the considerations and recommendations in the framework 

would remain the same non-time-to-event outcomes. The analytical methods would differ, and 

therefore, some other factors that determine how the methods are applied may differ.  Second, ideally, 

new methodological frameworks are evaluated using multiple case studies and/or Delphi panels and 

this has not been undertaken in this study. A Delphi panel exercise was considered at the stage of 

developing the NIHR Doctoral Research Fellowship application that has led to funding this PhD, but it 

was excluded to keep the scope of the project manageable within the maximum three years allowed 

by this funding stream. However, the framework was applied to a case study in kidney transplantation 

which in itself informed the formulation of the framework. In addition, an earlier version of the 

methodological framework was discussed with supervisors, a clinician (WM, a Consultant 

Nephrologist) and a leading expert in medication adherence research (DH). Finally, two methods 

identified as appropriate for the HTA context (PKPD and RPSFTM) are not included in the 

recommended list of adjustment methods as these were not directed assessed in the simulation study.  

The PKPD method was excluded as it requires a different set of DGMs from those applied in the 

simulation study, therefore, it was not possible to directly compare it with IPCW and SNFTM. The 

RPSFTM only works to adjust for non-adherence in one-arm studies or studies with placebo-control 

arms; however, the simulation study was designed to assess the performance of adjustment methods 

in RCTs with two active treatments, and hence, the method was excluded from the simulation study 

and the methodological framework.  

The PKPD method has been assessed to adjust the cost-effectiveness of treatments for varying levels 

of patient non-adherence in a recent doctoral thesis by Hill-McManus et al,91 and therefore, it is 
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available as an option for consideration. However, it should be noted that the PKPD performance 

versus g-methods has not been assessed in this doctoral research which could be considered as a 

limitation. Future research is recommended to directly assess the performance of the PKPD method 

versus g-methods for potential addition as a recommended adjustment method in a future extension 

of the framework. 

An important limitation is the fact that many chronic disease treatments have no direct or indirect 

assessment of adherence, even in RCTs. Application of the framework when medication adherence 

data both in the RCT and the real world is not available will not be possible. This limitation is relevant 

to applying the framework in post hoc analysis to the great majority of clinical scenarios where 

adherence measures are not used or available. The absence of this data is common and will be a 

limitation of how widely this framework can be applied. The framework addressed this in the flow 

diagram prospective study design to ensure that the data required to account for non-adherence are 

considered at the study design stage and collected in the trial. 

7.5.3 Areas for future research 

Although the methodological framework has been applied in a single case study on kidney 

transplantation as part of this doctoral research project, it has not yet been applied in other case 

studies. The kidney transplantation case study involved a range of analyses including obtaining 

estimates of real-world adherence levels, analysis of adherence data from a large multicentre RCT, 

predicting real-world adherence for each patient in the trial dataset, estimating adherence-adjusted 

effectiveness estimates and incorporating these estimates in an economic model for producing 

adherence-adjusted cost-effectiveness. Given the practical experience of applying the framework in 

the kidney transplantation case study, the framework is potentially applicable to other case studies 

and disease areas where non-adherence to prescribed medications is identified as an issue. Therefore, 

future research is recommended in terms of other cases studies to apply this methodological 

framework. The intention of encouraging future applications in other studies is to evaluate and refine 

the framework as it continues to improve based on application in practice. I will look for opportunities 

to apply this methodological framework in future projects and other researchers are also encouraged 

to apply the framework in their studies.  

Another recommended area for key future research involves assessing non-adherence adjustment 

methods for studies with other types of outcomes or endpoints (i.e. continuous and categorical 

outcomes). This will contribute to the improvement of the methodological framework over time and 
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ultimately address challenges and shortcomings for much wider types of studies in the context of 

economic evaluation and HTA.  

Further research is recommended to assess the performance of PKPD and RPSFTMs in a direct 

comparison with IPCW and SNFTM using a well-conducted simulation study. This will provide 

performance evidence for the potential addition of these methods as alternative adjustment methods 

in the future extension of the framework.  

Alternative methods for predicting non-adherence such as the marginal standardisation method is 

recommended.147 This will provide further information in terms of the accuracy of the predicted real-

world adherence levels within the RCT dataset. 

Assessing the impact of using alternative adherence measures (e.g. MEMS, MPR) and the value of 

collecting better adherence data in the trial and the real world is also recommended as an important 

area for future research. There is an ongoing Delphi panel supported by the ESPACOMP and the final 

report from that panel might provide specific recommendations in terms of what measure should be 

used for each type of non-adherence.  Therefore, the analyst may consider recommendations from 

that panel report when it becomes available.   

7.5.4 Conclusion  

To conclude, the systematic approach put forward through this methodological framework may help 

in capturing the important elements that need to be considered at an early stage of the study design. 

The framework provides guidance for academic researchers (health economists and economic 

modellers) and the pharmaceutical industry at the analysis and reporting stage to account for real-

world non-adherence levels in economic evaluations for HTA. This will lead to better cost-

effectiveness evidence to inform resource allocation decision making, and ultimately leads to 

improvements in population health. 
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Chapter 8: Discussions, recommendations and conclusions 

8.1 Introduction  

This chapter provides a recap of the full thesis, highlights the contributions in the context of other 

research, provides the recommendations for accounting for non-adherence in cost-effectiveness 

models and draws the overall conclusions. Section 8.2 provides a review of the principal aim of this 

doctoral research and addresses the research questions outlined in the introductory chapter. The 

section summarises the key findings from all previous chapters (Chapter 1-7) to make coherent 

recommendations to account for the impact of non-adherence on the cost-effectiveness of prescribed 

chronic medications. Section 8.3 provides a summary of the contributions made by this thesis in the 

context of the health economics literature. Section 8.4 discusses the strengths and limitations of this 

research. Section 8.5 provides the recommendations in a form of a methodological framework and 

the plan for dissemination for use in other studies. Section 8.6 outlines the directions for future 

research and possible extension to the current methodological framework. Section 8.7 provides the 

conclusions on the whole thesis. 

8.2 Thesis overview 

The overall aim of this doctoral research study was to develop a methodological framework to account 

for patient non-adherence to prescribed medications for chronic conditions when undertaking 

economic evaluations for HTA. The focus is on methods for adjusting estimates of treatment 

effectiveness for real-world non-adherence levels in studies with time-to-event outcomes and further 

incorporation in cost-effectiveness analysis to produce better evidence for resource allocation 

decision-making in health care.  

This research involved four linked stages: (1) a systematic review of methodological papers that 

identified 12 non-adherence adjustment methods and assessed their suitability for use in the context 

of HTA; (2) a simulation study that assessed the relative performance of a subset of four adjustment 

methods across a range of 90 scenarios using simulated RCT datasets; (3) a case study that applied the 

g-methods and estimated adherence-adjusted estimates of the cost-effectiveness of maintenance 

immunosuppressive therapy for adult kidney transplant recipients in the UK; and (4) the development 

of the methodological framework put forward in this thesis to account for the impact of real-world 

non-adherence on the cost-effectiveness of prescribed medications.  
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This thesis is comprised of eight chapters (including this final chapter) and addressed three research 

questions as summarised in the following paragraphs with a particular focus on the methodological 

framework presented in Chapter 7.   

Chapter 1 

Chapter 1 set out the content and structure of the thesis. The chapter defined non-adherence to 

medications (based on the ABC taxonomy) and the key concepts used throughout the thesis (including 

estimands, confounding, and DAGs). Then, the problem of patient non-adherence to medications and 

its importance in the context of HTA was explained. This was followed by identifying the gap in the 

literature in terms of methodological frameworks for correcting the clinical effectiveness and cost-

effectiveness of treatments for patient non-adherence. The research questions addressed in this 

thesis and the objectives of the doctoral research were outlined. The chapter then outlined the 

potential solutions by summarising the existing evidence in terms of accounting for non-adherence in 

estimating the clinical effectiveness and cost-effectiveness of treatments. The chapter concluded by 

putting the research questions into context and outlined the expected contribution of this research. 

Chapter 2 

Chapters 2 and 3 presented the work undertaken in Stage 1 of this research (the systematic review). 

Chapter 2 addressed research question 1: “What are the key methodological approaches used to 

account for the impact of non-adherence on the effectiveness and cost-effectiveness of health 

technologies used in chronic conditions with time-to-event outcomes?”. 

The chapter presented 12 methods and 8 extensions to those methods identified for adjusting 

estimates of treatment effectiveness for patient non-adherence in the context of time-to-event 

outcomes and HTA.61 These methods were identified from a systematic review of methodological 

papers using the ‘pearl growing’ technique and 2-stage iterative search approach across seven 

databases. Only three out of 20 included papers looked at methods for adjusting cost-effectiveness 

estimates for non-adherence with the remaining 17 papers focused on methods for adjusting 

estimates of treatment effect. This provided further evidence about the gap in the health economics 

literature in terms of methods for accounting for non-adherence in cost-effectiveness models. 

The chapter also put forward a new taxonomy of methods to increase understanding of the concept 

behind each identified method and its relation to other methods in terms of estimands and estimators. 

In the proposed taxonomy, adjustment methods are broadly classed into four groups: (1) simple 

methods that do not appropriately adjust for patient non-adherence, (2) principal stratification 
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methods for estimating the CACE estimand, (3) g-methods which are based on the counterfactual 

outcome framework, and (4) pharmacometrics-based methods using PKPD analysis. The chapter 

described the identified non-adherence adjustment methods (including their extensions) based on a 

narrative synthesis undertaken in this research. The description of methods covered the origin of the 

method, theoretical characteristics and application in a simulation study and/or a case study.  The 

chapter highlighted that not all methods produce the same estimand and that each method makes 

specific assumptions (e.g. the no unmeasured confounding assumption and the exclusion restriction 

assumption) with associated limitations.    

Chapter 3  

Chapter 3 compared the alternative adjustment methods based on existing evidence identified by the 

systematic review. This included methods compared empirically, in simulation studies and/or cases 

studies based on evidence from the literature and the narrative synthesis undertaken. The chapter 

assessed the appropriateness of adjustment methods for the HTA context based on three criteria 

developed in this doctoral research. The criteria were: (i) the suitability of the estimand for HTA, (ii) 

the types of non-adherence the method is capable of dealing with, and (iii) whether it is possible to 

use the method to account for real-world non-adherence. The chapter concluded that g-methods 

(MSM with IPCW, SNFTM with g-estimation, and RPSFTM with g-estimation) and PKPD method are 

more appropriate than the alternative methods for adjusting estimates of treatment effectiveness for 

real-world non-adherence. The chapter also provided justification for the selection of a subset of four 

methods for further assessment in a simulation study (Chapters 4-5). These included two g-methods 

(IPCW and SNFTM) and two simple methods (ITT and PP). I recognise that the choice of criteria and 

the assessment of methods against them involve an element of subjectivity, but I argue the list of 

selected methods is the product of my interpretation of evidence relating to the needs of resource 

allocation decision-makers and the relative merits of statistical methods identified. 

Chapter 4 

Chapters 4 and 5 presented the work undertaken in Stage 2 of this research (the simulation study). 

Chapter 4 described the design and implementation of the simulation study using the ADEMP 

structural approach for planning simulation studies. The simulation study was designed to assess the 

performance of a subset of non-adherence adjustment methods identified in Stage 1 across a range 

of 90 scenarios with 1900 simulations each. The chapter provided the specification of scenarios 

assessed in the simulations based on the DGMs that covered alternative representations of factors 

covering the type of non-adherence (initiation, implementation and persistence), level of non-
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adherence, sample size, the pattern of hazards, treatment effect size, relationship between treatment 

effect and adherence level, and the existence of any time-dependent treatment effect. The chapter 

outlined the detailed steps undertaken to run the simulations and provided the Stata code for 

implementing the simulation program.  

Chapter 5 

Chapter 5 addressed research question 2: “What is the relative performance of the alternative 

methods in estimating the impact of non-adherence on treatment effectiveness?”  

The chapter provided new simulation evidence on the performance of non-adherence adjustment 

methods across a range of 90 scenarios across the three types of non-adherence. Methods 

performance was assessed according to the bias, MSE, EmpSE, ModSE, and overage with the 

difference in RMSTs used as a primary estimand. The simulation study demonstrated that g-methods 

(SNFTM and IPCW) are the best-performing methods in terms of unbiasedness and ModSE for 

adjusting estimates of treatment effect in the presence of implementation and persistence non-

adherence. For initiation non-adherence, SNFTM was found to be the best-performing method in 

terms of unbiasedness and ModSE. The findings also showed that the PP method performed well in 

many scenarios, although its estimand is different from the ITT and g-methods estimands as it is not 

marginalised to the entire study population. However, it should be noted that the performance of 

IPCW, SNFTM and PP are very close and often there are only minor differences, depending on the type 

of non-adherence and performance measure. The findings from the simulations demonstrated that 

ITT was generally the worst method when estimating treatment effect in the presence of non-

adherence because the purpose of the ITT is not to adjust for non-adherence based on the estimand. 

The latter finding is generally consistent with existing simulation evidence in the methodological 

literature and my prior expectations. 

Chapter 6     

Chapter 6 presented the work undertaken in Stage 3 of this research (the case study). The chapter 

focused on the application of g-methods using a real dataset from a large multicentre RCT (SYMPHONY 

trial) with data from 1,190 patients and 12 months follow-up. The chapter described the methods and 

analytical steps used for re-estimating the treatment effectiveness adjusted for real-world non-

adherence levels and presented the estimated effectiveness results. The chapter then described the 

incorporation of adjusted effectiveness estimates into an adapted economic model to account for the 

impact of real-world non-adherence to immunosuppressants among adult kidney transplant 
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recipients in the UK. The case study estimated that the low-dose tacrolimus regimen (the current 

standard treatment in the NHS) is predicted to be less effective with a higher cost per patient when 

the real-world adherence levels are taken into account. The incremental cost per patient was higher 

by 20.1% with a 10.8% reduction in incremental QALYs compared to the ITT analysis. However, in this 

case study, adjusting for real-world adherence did not change the original conclusions of the economic 

analysis, as low-dose tacrolimus remains highly cost-effective, irrespective of whether the adjustment 

is applied.  

Chapter 7 

Chapter 7 addressed research question 3: “How should economic evaluations incorporate the impact 

of non-adherence using evidence from both RCTs and real-world data? 

The chapter presented the work undertaken in Stage 4 of this research (development of the 

methodological framework). The chapter put forward a new methodological framework to account 

for the impact of real-world non-adherence on the cost-effectiveness of prescribed chronic 

medications in studies with time-to-event outcomes. The chapter described the three phases used to 

develop the framework comprising: (1) a review to identify existing frameworks, (2) development of 

the methodological framework, and (3) transferability of the framework to other disease areas beyond 

the kidney transplantation case study. The chapter then described the seven stages of the 

methodological framework covering 17 recommendations and considerations from the study design 

stage to the application of the g-methods to adjust for real-world non-adherence levels in economic 

evaluations for HTA and reporting. The chapter concluded with the recommendations for the next 

steps, including the plan for disseminating the methodological framework and key areas for future 

research. The latter specified the directions for future research in terms of adding other adjustment 

methods to the framework that have not been assessed in this research and addressing other types 

of outcomes/endpoints (i.e. continuous and categorical outcomes).  

Further observations 

The current approaches used in health economic modelling tend to rely on simplistic approaches to 

attempt to model the impact of patient non-adherence in economic evaluations. These approaches 

were discussed in greater detail in Chapters 1 and 7, but generally, they share the same characteristics 

and limitations in terms of making strong assumptions about the causal relationship between patient 

non-adherence and treatment effect. For example, some approaches assigned reduced treatment 

effects proportional to the level of non-adherence (e.g. 20% reduction in treatment effect for 20% 
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lower levels of adherence). This is a very risky approach as it does not take into account the complexity 

of the relationship between medication adherence and treatment effect. The latter is more likely to 

be affected by many factors such as the PKPD characteristics of the medications and drug forgiveness 

profiles that differ between drugs. Consequently, these simplistic approaches are more likely to 

produce misleading cost-effectiveness results, which may lead to suboptimal allocation of scarce 

health resources for the NHS and other healthcare systems around the world.  

As an alternative approach, the methodological framework presented in this thesis provides a 

systematic approach and a practical step-by-step guide to model the impact of non-adherence on the 

cost-effectiveness of prescribed medications. Rather than relying on the abovementioned simplistic 

approaches used in the health economics literature, the development of the present methodological 

framework was underpinned by the work undertaken in the four stages of this research as reported 

in Chapters 1-7. The framework was built on the key principle that non-adherence to medications is 

primarily a clinical issue and accounting for it in economic evaluations should first be based on 

adjusting the clinical effectiveness estimates. Then, the impact of patient non-adherence on direct 

treatment costs (including drug costs) should also be considered and accounted for, if applicable, as 

recommended by the framework. 

To apply the methodological framework, three prerequisites need to be met, otherwise, the 

framework cannot be used. These prerequisites are: (a) identification and measurement of patient 

non-adherence should be based on the temporal phases of initiation, implementation and persistence 

as defined by the ABC taxonomy; (b) identification and measurement of baseline and time-dependent 

confounders is crucial for adjusting the clinical and cost-effectiveness of treatments for patient non-

adherence, and (c) access to individual patient-level data from an RCT with adherence metrics and 

prognostic characteristics is essential for undertaking the adjusted analysis to account for real-world 

adherence levels in economic evaluations.  

The application of the methodological framework will require a change in practice in terms of the way 

non-adherence to medications is incorporated into health economic models. It may also require 

earlier consideration of data requirements at the study design phase of trials. This means moving away 

from approaches that rely on making strong assumptions about the causal relationship between non-

adherence and treatment effects that risk producing misleading cost-effectiveness evidence towards 

a systematic approach that relies on considering all the essential elements provided by the framework 

proposed in this thesis. The systematic approach provided by the framework covers the essential 

recommendations and considerations from the study design stage (including the collection of data 
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required to adjust for patient non-adherence) to the analysis stage by applying the g-methods to 

model the relationship between non-adherence and treatment effectiveness to the final stage 

reporting of reporting the adherence-adjusted cost-effectiveness results. This framework will help to 

generate more robust clinical effectiveness estimates for further incorporation into the economic 

model to produce cost-effectiveness estimates adjusted for real-world non-adherence levels.    

The methodological framework is intended to provide key stakeholders with the logical steps and tools 

required to design their studies in a way that make them amenable to adjustments for changes in 

adherence levels observed in the trial (e.g. if lower adherence levels in the real world are likely). In 

this context, the framework targets a specific group of stakeholders including clinical trialists, health 

economists and economic modellers involved in the design of clinical trials and associated economic 

evaluations. The framework also targets analysts involved in designing, building and populating health 

economic models for HTA (i.e. researchers from academia including the technology assessment 

groups (TAGs), Health Economics and Outcomes Research (HEOR) consultancy firms and the 

pharmaceutical industry) to help improve the overall quality of economic models. 

The methodological framework is characterised by two main aspects: (a) recommendations and 

considerations related to the design of data collection before the trial starts, where the economist 

believes that adherence in the real world is likely to differ from what will happen in that trial; and (b) 

recommendations and considerations for applying non-adherence adjustment methods after the trial 

has finished for producing the intended cost-effectiveness estimates. The detailed recommendations 

and considerations within the seven stages of the framework are outlined based on these two aspects 

as illustrated in the framework flow diagram and the associated descriptions reported in Chapter 7.  

The dissemination plan (reported in Section 8.6) will make this framework more accessible to the 

abovementioned groups to ensure that the correct steps could be followed to account for non-

adherence in future economic evaluations.     

8.3 Contribution to knowledge  

Previous research 

When this project started, the gap in the health economics literature in terms of incorporating the 

impact of non-adherence on the cost-effectiveness of treatments was evident. This gap was identified 

based on an early scoping review undertaken in 2017 as reported in Chapter 1. A need for further 

research to resolve this issue was identified at that stage and that ultimately motivated me to develop 

my doctoral research fellowship application that led to undertaking this research.3, 33 Based on a recent 
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review undertaken in 2021 as part of Stage 4 of this research, I concluded that no methodological 

framework exists to address this important issue. Therefore, it seems the gap in the methodological 

literature in terms of accounting for non-adherence in economic evaluation remains.  

The current status of research in this area included six approaches relied upon by health economists 

and economic modellers for adjusting the cost-effectiveness of treatments for patient non-adherence. 

Five of these approaches were identified by the first scoping review as described in Chapter 1. A 

further sixth approach was identified by the 2021 review conducted to identify any existing 

frameworks to inform the development of the present methodological framework as reported in 

Chapter 7.153 It should be noted that these six approaches are trying to model the impact of non-

adherence using structural models (Decision trees or Markov models) based on simplifications and 

strong assumptions about the causal links between adherence levels and treatment effect rather than 

adjusting the treatment effectiveness for patient non-adherence using complex methods (e.g. g-

methods) to obtain valid estimates.  

In this context, a methodological framework is different from an approach. A framework would usually 

imply some set of steps that need to be followed to achieve a particular outcome. In contrast, the 

approaches identified by that review were all separate ways of trying to account for non-adherence 

in cost-effectiveness models. Thus, the existing approaches do not provide a systematic process that 

a methodological framework provides to address non-adherence in economic evaluations. The 

limitations of these approaches are discussed in greater detail in Chapters 1 and 7.   

To put this research into context by summarising the status of existing evidence, I summarise the 

progress made in the health economics literature over the past two decades in this paragraph. The 

methodological challenges in terms of the need for improved modelling of the impact of patient non-

adherence in economic evaluations were first raised by Hughes and colleagues in a paper published 

in PharmacoEconomics in 2001.27 Seven years later and despite the increased attention to modelling 

the impact of non-adherence, Muszbek and colleagues published a paper in the International Journal 

of Clinical Practice in 2008 that updated the status of research and suggested that the evidence was 

inconclusive and that further research is warranted to resolve the issue.3 In 2016, Hughes and 

colleagues published another paper in PharmacoEconomics that provided a recent update in terms of 

methodological challenges at that point and concluded that further research is still needed for 

improvement.33 I met with the first author of that paper (DH, who is also an advisor for this doctoral 

research) and he provided useful insights and comments on the design of this research. DH also 

provided further advice on the systematic review work (Chapters 2-3) during a one-week study visit 
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to Bangor University which was arranged in 2018 as part of the training element of my NIHR fellowship 

project. DH also commented on an early version of the methodological framework and provided 

insights that led to further improvements.  

Furthermore, regarding the existing research around the relevant adjustment methods, Latimer and 

colleagues assessed the g-methods in several simulation studies for adjusting treatment effectiveness 

in the presence of treatment switching.101, 128, 129 The simulations assessed the performance of IPCW,  

SNFTM, PP and ITT (among other methods) and demonstrated that IPCW and SNFTM are superior to 

ITT and PP as reported in Chapter 5. Although the context of treatment switching is different from 

medication adherence, the adjustment methods that can be used are similar in both settings. The key 

point from those papers is that g-methods work to adjust for other important problems such as 

treatment switching, and this is generally consistent with the findings from research reported in this 

thesis. In relation to this point, if the analyst is adjusting for non-adherence, then censoring needs to 

reflect non-adherence as opposed to other causal mechanisms, such as switching. However, if the trial 

includes both non-adherence and switching, the analysis suggests that both could be modelled 

simultaneously using g-methods. This idea has not been tested in this research and could be an 

interesting area for future research.    

In conclusion, there is a gap in the health economics literature in terms of assessment methods to 

model the impact of model non-adherence in economic evaluations. In addition, the current status of 

research in this area suggests that no framework exists to account for non-adherence in cost-

effectiveness analysis.    

Contribution of this work  

Motivated by the evident gap in the health economics literature in this area, this thesis: 

a) Put forward a seven-stage methodological framework to account for the impact of patient 

non-adherence on the cost-effectiveness of prescribed chronic medications in the context of 

time-to-event outcomes and HTA. The methodological framework is expected to improve the 

overall quality of health economic models by providing guidance to clinical trialists, academic 

researchers (including health economists and economic modellers) and the pharmaceutical 

industry to account for real-world non-adherence levels in cost-effectiveness analyses. This 

will provide better evidence for healthcare decision-makers which will lead to improvements 

in decision making, and ultimately lead to improvements in population health through better 

resource allocation in health care.  



274 
 

b) Identified 12 methods and 8 extensions to those methods for adjusting estimates of treatment 

effectiveness for patient non-adherence, and assessed their suitability for use in the context 

of HTA.61 The review was published in Medical Decision Making and concluded that g-methods 

and PKPD are the most appropriate methods to account for real-world adherence levels in 

HTA.61 

c) Proposed a new taxonomy of methods for adjusting estimates of treatment effectiveness for 

patient non-adherence in the context of studies with time-to-event outcomes.61 The 

taxonomy is expected to increase understanding of the concepts behind each non-adherence 

adjustment method in terms of estimands and estimators.   

d) Provided new simulation evidence on the performance of four alternative non-adherence 

adjustment methods (two g-methods and two simple methods) across a range of 90 scenarios 

across all types of non-adherence (initiation, implementation and persistence). The simulation 

is superior to previous comparable studies; it was based on international guidelines for 

planning simulation studies,113, 115 aligned with the influential ABC taxonomy for medication 

adherence,1 included the simple censoring PP method, used five performance measures and 

four estimands and a nested loop plot to assess performance patterns. Overall, the findings 

demonstrated that g-methods performed consistently better than ITT in terms of 

unbiasedness and ModSE across all types of non-adherence.     

e) Applied the g-methods in a case study and provided new evidence on the adherence-adjusted 

cost-effectiveness of maintenance immunosuppressive therapy for adult kidney transplant 

recipients in the UK taking into account their adherence levels in the real world. The case study 

demonstrated that the impact of lower levels of adherence to these treatments in the real 

world leads to a reduction in the NHBs and an increase in the average cost per patient when 

the results are compared with the estimates from the standard ITT analysis.               

8.4 Strengths and limitations  

There are a number of strengths and limitations of this research. In terms of the strengths, the 

development of the methodological framework put forward in this thesis was informed by a recent 

guide on how to develop a methodological framework.152 Based on that guide, a new literature review 

was undertaken in 2021 to identify any existing methodological framework as discussed in Chapter 7. 

The review used more search terms and strategies (compared with the initial scoping review) based 

on learning from previous stages of this research and the recent guidance by McMeeken et al.152 paper. 

In the new review, two major databases (MEDLINE[R] and Web of Science) were searched 
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systematically and the review concluded that no methodological framework exists. Thus, the 

methodological framework put forward in this thesis is likely to be the first one that could be followed 

to account for real-world non-adherence levels in economic evaluations using the g-methods. 

Another key strength is that the development of the methodological framework was informed by a 

systematic approach that utilised four linked studies undertaken in this doctoral research as 

summarised in Section 8.2. The key strengths of each stage of this research are highlighted in the 

following paragraphs.   

In Stage 1, the systematic review of methodological papers reported in Chapter 2 used novel iterative 

search techniques and followed international guidelines, with methods that were pre-specified in a 

published protocol.62 The findings from the systematic review, and the associated work in terms of 

assessing the suitability adjustment method for the HTA context (Chapter 3), have informed the design 

of the simulation study.   

In Stage 2, the simulation study (Chapters 4-5) followed a pre-specified protocol and the study design 

was based on the best available international guidelines.1, 113, 115  The simulation study design was 

aligned with the ABC medication adherence taxonomy to facilitate transferability.1 The simulations 

provided evidence on nuances on relationships between prognostic variables, patient mix, and 

adherence to medication over time, and the ability of g-methods to model these relationships. The 

recommendations from the simulations were applied in the case study. 

In Stage 3, the case study in kidney transplantation (Chapter 6) provided a practical example of 

applying the g-methods for generating adherence-adjusted estimates of clinical effectiveness and 

cost-effectiveness of treatment. The study used individual patient-level data from the SYMPHONY 

study (a large, multicentre RCT with data from 1,190 patients and 12 months follow-up) which is 

considered as one of the strengths of this research.116 The impact of real-world non-adherence on the 

cost-effectiveness of treatments was assessed by incorporating the adjusted clinical effectiveness 

estimates in a validated economic model that underpinned the recent update of NICE Technology 

Appraisal guidance for immunosuppressive therapy for adults in the UK (TA85).120 

In Stage 4, the development of the methodological framework (Chapter 7) was informed by the work 

undertaken in Stages 1-3. This was further complemented by a discussion with two clinicians and a 

leading expert in medication adherence research. The comments received from these experts on an 

early version of the methodological framework were used to amend the framework to the version 

presented within this thesis.   
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The research reported in this thesis has some limitations. First, only one case study was used to inform 

the development of the methodological framework. Application in multiple case studies was 

considered at an early stage when the application for the doctoral fellowship that led to funding this 

research was developed. However, the final plan of investigation implemented in this research 

included a single case study as reported in Chapter 6 to ensure that this doctoral research project is 

completed within the funded period. Nevertheless, the development of the methodological 

framework was informed by the practical experience of applying the adjustment methods in the 

kidney transplantation case study. This was complemented by the consultations with clinicians and an 

expert in medication adherence research as discussed above. The McMeeken et al.152 guide for 

developing a methodological framework suggested undertaking an evaluation of the framework by 

application in studies and/or evaluation based on a Delphi panel.  

Another limitation is that the adjustment methods recommended in the methodological framework 

are only applicable to studies with time-to-event outcomes. This is because the methods identified by 

the systematic review (Chapter 2) and further assessed in the simulation study (Chapters 4-5) are 

focused on time-event outcomes and therefore the framework does not apply to continuous or 

categorical outcomes. However, I argue that most aspects of the current methodological framework 

put forward in this thesis would still be appropriate for non-time-to-event outcomes, although the 

analyst will need to use different methods to make the non-adherence adjustment to the treatment 

effectiveness estimates. In most cases, these will be different variants of the same methods 

recommended in the present framework. These may include structural nested mean models [SNMM], 

structural nested distribution models [SNDM] and structural nested logistic models [SNLM]).156 

However, these methods have not been assessed in this research and therefore this should be 

considered as a limitation. Apart from the recommended adjustment methods, most of the 

recommendations and considerations outlined in the framework to adjust for non-adherence in 

studies with time-to-event outcomes are likely to also be applicable to studies with non-time-to-event 

outcomes.  

A further limitation relates to the exclusion of the PKPD method from the assessment in the simulation 

study. The PKPD method was identified as appropriate to adjust for real-world non-adherence in the 

HTA context;61 however, it was excluded from the simulations because it requires a different study 

design in terms of DGMs in order to directly compare it with the g-methods. The PKPD method has 

been assessed to adjust the cost-effectiveness of treatments for varying levels of patient non-

adherence in a recent doctoral thesis by Hill-McManus et al.91 The method was applied in a case study 

that assessed the impact of non-adherence on the cost-effectiveness of 4 options of dual urate-



277 
 

lowering therapy (ULT) using three patterns of medication adherence (100%, 80% and 50% adherence 

levels) using a linked PKPD model. That research has demonstrated that the method could be used for 

adjusting the cost-effectiveness estimates for real-world adherence levels. Therefore, the PKPD 

method is available as an option for consideration as an alternative adjustment method based on 

evidence from the Hill-McManus work. However, it should be noted that the PKPD performance 

versus g-methods has not been assessed in this doctoral research which could be considered as a 

limitation. Future research is recommended to directly assess the performance of the PKPD method 

versus g-methods for potential addition to the methodological framework.  

Other limitations include using only one method for predicting real-world non-adherence, dealing with 

intermittent non-adherence, the performance of g-methods in the presence of unmeasured 

confounding, non-convergence issues and availability of medication adherence data in RCTs. These 

issues are briefly discussed in this paragraph. First, in the case study, only one method for predicting 

non-adherence was tested (i.e. adjusting the CV% cut-off point). This limitation is discussed further in 

Section 8.6 as further research is needed on it. Second, implementation non-adherence using a non-

binary variable was not examined and this will apply to a significant proportion of patients. The key 

point is that using a binary variable to capture implementation non-adherence risks losing information 

if granular data on intermittent non-adherence (e.g. from MEMS) is available for the analyst. Third, 

the performance of g-methods in the presence of unmeasured confounders seems important but this 

has not been assessed in the simulation study which should be considered as a limitation. Fourth, the 

issue of non-convergence with small sample sizes was not fully investigated beyond the small sample 

size of 120 patients in an RCT. Therefore, using g-methods for analysing trial data with a smaller 

sample size might be problematic and this issue needs further investigation in future simulation 

studies. Fifth, in many chronic disease treatments, primary licensing RCTs have not routinely included 

assessments of adherence and data on real-world adherence data is limited. In these situations, it will 

be challenging to apply the framework in the absence of adherence data. This should be considered 

as a limitation on how widely this framework could be used in practice. The last issue is particularly 

relevant to economic evaluations using existing RCT datasets.  

Finally, multiple medication adherence (MMA) has been identified as an important issue when 

considering adjusting for non-adherence for regimens that include a combination of multiple 

treatments.135 This issue relates to “polypharmacy” which is a major issue in many disease states and 

has a contribution to medication adherence behaviours which is too complicated to address. For 

example, in the SYMPHONY trial used in the case study, non-adherence to MMF used as part of the 

immunosuppressive regimen evaluated in the trial may have been better or worse than with the CNI 
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(i.e. tacrolimus or cyclosporine). This issue was identified as a limitation in the case study since 

adherence data on the other medications within the maintenance immunosuppressive regimens were 

not collected in the SYMPHONY trial. This is likely to be the case in many studies, and therefore, the 

issue warrants further research to specify methods for measuring MMA. Further research to assess 

how these could be incorporated into the present methodological framework should also be 

considered as an important area for future research.       

8.5 Recommendations 

The main recommendations from this work are provided in a form of a methodological framework 

that I put forward in Chapter 7, which I will not repeat here. Wider recommendations to apply the 

framework are provided in this section. These are of relevance to clinical trialists, the pharmaceutical 

industry, health economists and economic modellers involved in the design of clinical trials that are 

intended to investigate the clinical effectiveness and cost-effectiveness of pharmacological 

interventions for the treatment of chronic diseases or conditions. The recommendations are outlined 

below.  

First, although the development of the methodological framework was informed by a single case study 

in kidney transplantation, the framework is potentially transferable to other disease areas. Therefore, 

future applications across a range of case studies in different disease areas will provide more 

information about the applicability of the framework in those contexts. An evaluation of the 

framework will be needed to test its validity and transferability to other disease areas. Therefore, I 

recommend and encourage the abovementioned stakeholders to apply the framework in their own 

studies. This recommendation applies to studies with time-to-event outcomes intending to account 

for real-world non-adherence levels in economic evaluations.         

Second, although the framework is focused on chronic medications, I argue that many of its 

recommendations will be applicable to other studies assessing the cost-effectiveness of medication 

used in the treatment of non-chronic diseases as well as non-pharmacological interventions where an 

appropriate measurement of adherence, prognostic characteristics and a time-to-event outcome are 

collected in the trial.  Therefore, I recommend using the framework to consider the relevant elements 

as they apply to each particular study at the design, analysis and/or reporting stages. This in turn will 

provide additional information relating to the application of the framework in practice which in turn 

will help in evaluating and refining the framework for future improvements.    

Finally, I recommend that health economists and economic modellers should document the process 

of their plan to adjust for non-adherence at the study designs stage. To achieve this, I recommend 
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using the health economics analysis plan (HEAP) as a vehicle to document these processes to aid the 

discussion with other stakeholders involved including clinicians, statisticians and resource allocation 

decision-makers.     

8.6 Areas for further development and future research  

Areas for future research that emerged from each of the four studies undertaken in this research 

(Stages 1-4) have been reported within each chapter. In this section, I focus on those relating to the 

further development of the work presented in this doctoral thesis.            

Dissemination and evaluation of the methodological framework 

The development of the methodological framework was informed by a recent guide for developing a 

methodological framework, literature reviews, a simulation study and a case study. However, further 

evaluation is recommended for improvements in the future once the current framework is applied in 

practice in multiple case studies. The current framework will be disseminated widely to make it more 

accessible to clinical trialists, academic researchers and the pharmaceutical industry in order to be 

considered and used in their future studies. The wider dissemination will be achieved via peer-

reviewed publications from the work that informed the development of the framework (i.e. simulation 

study, case study and the development of the methodological framework). The dissemination plan 

also includes publishing a tutorial-style paper showing how the g-methods could be applied in practice 

with detailed analytical steps and analysis code which will be based on the work undertaken in the 

simulation study and case study as reported in Chapters 4-6 of this thesis. The systematic review work 

was published in Medical Decision Making journal,61 and the following further manuscripts are in 

preparation based on this work, including the target journals: 

Alshreef A, Latimer N, Tappenden P, Dixon S. Assessing methods for adjusting estimates of treatment 

effectiveness for patient non-adherence in the context of time-to-event outcomes and health 

technology assessment: a simulation study. Medical Decision Making. (In preparation). 

Alshreef A, Tappenden P, Latimer N, McKane W, Fotheringham J, Dixon S. A case study assessing the 

cost-effectiveness of maintenance immunosuppressive therapy for kidney transplantation in adults: 

accounting for non-adherence using data from a randomised trial and the real world within a decision-

analytic model. Value in Health. (In preparation).  

Alshreef A, Tappenden P, Latimer N, McKane W, Hughes D, Dixon S. A methodological framework to 

account for the impact of non-adherence on the cost-effectiveness of prescribed chronic medications. 

Value in Health. (In preparation). 
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Furthermore, I am planning to look for opportunities to present the framework at various workshops, 

meetings and national and international conferences. These will include seminars to health economics 

groups at various universities. Presentations at other universities and conferences would be a good 

opportunity for peer review and would also help identify possible participants for an expert workshop 

or Delphi exercise to revise the Framework and prioritise areas for future work. I will also deposit my 

PhD thesis as an open-access document in the White Rose Online Research repository.  

Although the case study was focused is on kidney transplantation, I envisage that the methodological 

framework will apply to any chronic disease area in studies with a time-to-event outcome. Therefore, 

I will look for opportunities to apply the framework in future case studies in other disease areas and 

other researchers are also encouraged to apply the methodological framework in their studies. The 

application of the framework across a range of case studies will provide additional information to 

evaluate it with the intention of refining and further improvement. The evaluation could be achieved 

by conducting in-depth interviews with investigators and researchers who apply the framework in 

their own studies in the future.    

Extending the framework to incorporate other adjustment methods 

Two adjustments methods (PKPD and RPSFTM with g-estimation) were identified as appropriate for 

use in HTA but not fully recommended in the methodological framework.  The two methods represent 

viable options for inclusion in the framework, but they were excluded from the simulation study as 

discussed earlier, and therefore, further research is required regarding the assessment of their 

performance. The PKPD has been assessed in a recent doctoral thesis as discussed earlier; however, it 

was not directly assessed for performance against the g-methods. Similarly, the RPSFTM was identified 

as appropriate for adjusting for real-world adherence levels, but its performance in this context was 

not assessed in the simulation study reported in Chapters 4-5. Therefore, both methods are currently 

in the framework for further consideration. The implications will be minimal as two g-methods (IPCW 

and SNFTM) are recommended in the current framework based on the simulation evidence. Overall, 

the potential addition of PKPD and RPSFTM falls into the category of key areas for future research and 

possible extensions to the current framework.       

Extending the framework to cover other types of outcomes 

The current framework is focused on studies with time-to-event outcomes. The intention is to extend 

the framework in the future by adding other adjustment methods to account for non-adherence in 

the context of other outcomes including continuous and categorical outcomes. The advantage is that 
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many of the elements in the current framework will apply to studies other outcomes. The argument 

is that the current framework could still be applied in those contexts but the limitation is that other 

variants of g-methods (e.g. SNMM and SNDM) and other methods may be needed to do the 

adjustments for non-adherence.156 Therefore, future research is warranted to assess the performance 

of these methods in a well-conducted simulation study. It is my intention that the current 

methodological framework will evolve to incorporate other appropriate adjustment methods and 

outcomes. This will ensure that the framework will cater for most types of studies used to evaluate a 

wide range of medications across different disease areas and conditions.   

Further research to assess methods for predicting real-word non-adherence  

Only one method for predicting real-world non-adherence levels was used based on CV% of trough 

levels measured within the trial. There is a limitation associated with using CV% as the method cannot 

be used to predict real-world adherence levels within the randomised dataset if trough levels data are 

not available. As an alternative approach, the marginal standardisation method might be considered 

in scenarios where trough levels data are not available.147 The marginal standardisation method is 

considered a special case of the g-computation method and has the potential to add value to the 

methodological framework. Therefore, further research is needed to assess these methods and 

potentially alternative prediction methods could also be identified and assessed. The censoring 

mechanism based on the predicted non-adherence should also be considered for assessment in future 

research alongside the prediction method, ideally in a well-conducted simulation study.   

Further research to assess adjustment for multiple medication adherence 

Assessing the impact of MMA on the clinical effectiveness and cost-effectiveness of prescribed chronic 

medications was identified as a key area for future research. The issue is that there is no consensus 

on how MMA could be measured as characterised by a recent report of the ISPOR Medication 

Adherence and Persistence Special Interest Group.135 Once this issue is resolved, future research 

should consider how to deal with MMA in the methodological framework which will lead to further 

improvements.   

8.7 Conclusions 

The overall aim of this research was to develop a methodological framework to account for patient 

non-adherence to prescribed chronic medications with time-to-event outcomes when undertaking 

economic evaluations for HTA. The methodological framework has been developed and reported in 
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this thesis to provide a systematic approach for incorporating real-world non-adherence in economic 

evaluations.  

When this research started, there was no methodological framework to account for the impact of 

non-adherence on the cost-effectiveness of medications. The research reported in this thesis has 

attempted to fill that gap and provides a significant contribution to the health economic literature. 

The framework is based on using more complex methods (g-methods) for adjusting estimates of 

treatment effectiveness in the presence of patient non-adherence and further account for it in cost-

effectiveness models to produce better evidence for resource allocation decision making in health 

care.  

The systematic approach put forward through this framework should help in capturing the important 

elements that need to be considered at an early stage of the study design to account for real-world 

adherence levels in economic evaluations when these differ from adherence levels observed in the 

trial. The framework should also help in avoiding inconsistencies between economic studies 

incorporating patient non-adherence at the analysis and reporting stage. This will lead to standardised 

and comparable adherence-adjusted cost-effectiveness estimates in the medium- to long term.  

The methodological framework provides practical recommendations for investigators, analysts and 

the pharmaceutical industry interested in accounting for patient non-adherence in their studies. The 

key benefits of the framework will be realised at the study design stage and when the trial is completed 

and the analysis begins and final results are reported. At the study design stage, the benefits involve 

the identification of the key data requirements include medication adherence data and information 

about baseline and time-dependent confounding, which are essential for undertaking the adjusted 

analysis. At the analysis stage, the framework provides a systematic approach including the selection 

of the appropriate adjustment methods and analytical steps that should be followed to account for 

real-world non-adherence levels. The framework is aligned with the temporal phases of medication 

adherence (initiation, implementation and persistence) as defined by the ABC taxonomy to aid 

transferability and consistency with existing international guidelines.1         

The main contribution of this original research is that the framework put forward in this thesis 

provides guidance for academic researchers (health economists and economic modellers) and the 

pharmaceutical industry to account for real-world non-adherence levels in economic evaluations for 

HTA. The framework will contribute to improvement in the overall quality of economic models used 

for estimating cost-effectiveness. This will lead to better cost-effectiveness evidence to inform 
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resource allocation decision making, improvements in patients’ quality of life, cost savings to 

healthcare systems and ultimately leads to improvements in population health.
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Appendices  

Appendix A: Search strategies used in the scoping and systematic 

reviews 

A1: Search strategy used for identifying existing evidence 

Citation search using Web of Science and Scopus electronic databases for three key papers (identified 

as relevant and highly cited papers in the literature) which address the issue of non-adherence.26, 32, 69 

This search generated 1156 records which were screened by title to identify the relevant papers. 

Articles were included if they had one of the following terms in the title: ‘economic evaluation’, ‘cost-

effectiveness’, ‘chronic disease’ or ‘chronic condition’. Following title screening, 1066 records were 

excluded. A further 67 records were excluded based on abstract screening and the remaining 23 

articles were reviewed in full text. An additional 20 papers were identified through hand searching 

reference lists of included studies and snowballing (tracking down references) and experts’ advice; 

and therefore, 43 papers in total were reviewed. 
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A2: First search iteration used in the systematic review 

Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid 

MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) 1946 to February 9 2018 

 

# Terms Results 

1 (compliance or adherence or pharmacoadherence or persistence or persistency or 
concordance or initiation or implementation or noncompliance or nonadherence 
or nonpersistence or discontinuation or pharmionics or therapeutic alliance or 
patient irregularity or treatment refusal).ti. 

120596 

2 *Models, Structural/ 2122 

3 *models, statistical/ 28208 

4 *models, economic/ or *models, econometric/ 4387 

5 1 and (2 or 3 or 4) 245 

Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid 

MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) 1946 to March 28 2018 – Adding “Models, 

Biological” MeSH heading.  

 

3rd April 2018 

1 (compliance or adherence or pharmacoadherence or persistence or persistency or 
concordance or initiation or implementation or noncompliance or nonadherence or 
nonpersistence or discontinuation or pharmionics or therapeutic alliance or patient 
irregularity or treatment refusal).ti. 

121991 

2 *Models, Structural/ 2128 

3 *Models, Statistical/ 28482 

4 *models, economic/ or *models, econometric/ 4416 

5 *Models, Biological/ 97476 

6 1 and (2 or 3 or 4) 249 

7 1 and 5 625 

8 limit 7 to humans 324 

9 8 not 6 316 

 

Embase 1974 to 2018 March 30 

3rd April 2018 

1 (compliance or adherence or pharmacoadherence or persistence or persistency or 
concordance or initiation or implementation or noncompliance or nonadherence or 
nonpersistence or discontinuation or pharmionics or therapeutic alliance or patient 
irregularity or treatment refusal).ti. 

159985 

2 *structural model/ 153 

3 *statistical model/ 21073 

4 *economic model/ 491 

5 *biological model/ 56706 

6 1 and (2 or 3 or 4) 143 

7 1 and 5 381 

8 limit 7 to human 156 

9 6 or 8 298 

 



297 
 

Cochrane Library 

3rd April 2018 

 

#1 (compliance or adherence or pharmacoadherence or persistence or persistency or 
concordance or initiation or implementation or noncompliance or nonadherence or 
nonpersistence or discontinuation or pharmionics or therapeutic alliance or patient 
irregularity or treatment refusal):ti  (Word variations have been searched) 

12301 

#2 MeSH descriptor: [Models, Structural] this term only 25 

#3 MeSH descriptor: [Models, Statistical] this term only 1577 

#4 MeSH descriptor: [Models, Economic] this term only 1578 

#5 MeSH descriptor: [Models, Econometric] this term only 470 

#6 MeSH descriptor: [Models, Biological] this term only 2370 

#7 #1 and (#2 or #3 or #4 or #5)  52 

#8 #1 and #6  16 

#9 #7 or #8  67 

 

Econlit 1886 to May 3, 2018 

8th May 2018 

 

1 (compliance or adherence or pharmacoadherence or persistence or persistency or 

concordance or initiation or implementation or noncompliance or nonadherence or 

nonpersistence or discontinuation or pharmionics or therapeutic alliance or patient 

irregularity or treatment refusal).ti. 

8632 

2 model*.ti. 90932 

3 (structural or statistical or economic or econometric or biological).ti. 114247 

4 1 and 2 and 3 31 

 

Web of Science 

8th May 2018 

# 1 TITLE: ((compliance or adherence or pharmacoadherence or persistence or 
persistency or concordance or initiation or implementation or 
noncompliance or nonadherence or nonpersistence or discontinuation or 
pharmionics or therapeutic alliance or patient irregularity or treatment 
refusal))  

256,870  

# 2 TITLE: (model*)  1,892,481  

# 3 TITLE: ((structural or statistical or economic or econometric or biological))  706,793  

# 4 #3 AND #2 AND #1  240  

 

 

Scopus 

8th May 2018 

#1 ( TITLE ( ( compliance  OR  adherence  OR  pharmacoadherence  OR  
persistence  OR  persistency  OR  concordance  OR  initiation  OR  
implementation  OR  noncompliance ) )  OR  TITLE ( ( nonadherence  OR  
nonpersistence  OR  discontinuation  OR  pharmionics  OR  therapeutic  
AND alliance  OR  patient  AND irregularity  OR  treatment  AND refusal ) ) )   

321,353 

#2 TITLE ( model* )  2,338,498 
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#3 TITLE ( ( structural  OR  statistical  OR  economic  OR  econometric  OR  biol
ogical ) )  

905,167 

#4 ( ( TITLE ( ( compliance  OR  adherence  OR  pharmacoadherence  OR  
persistence  OR  persistency  OR  concordance  OR  initiation  OR  
implementation  OR  noncompliance ) )  OR  TITLE ( ( nonadherence  OR  
nonpersistence  OR  discontinuation  OR  pharmionics  OR  therapeutic  
AND alliance  OR  patient  AND irregularity  OR  treatment  AND 
refusal ) ) ) )  AND  ( TITLE ( model* ) )  AND  ( TITLE ( ( structural  OR  
statistical  OR  economic  OR  econometric  OR  biological ) ) )   

323 
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A3: Second search iteration used in the systematic review 

Ovid MEDLINE(R) Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid 

MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) 1946 to May 16, 2018 

22nd May 2018 

1 (compliance or adherence or pharmacoadherence or persistence or persistency 
or concordance or initiation or implementation or noncompliance or 
nonadherence or nonpersistence or discontinuation or pharmionics or 
therapeutic alliance or patient irregularity or treatment refusal).ti. 

123742 

2 *Models, Structural/ 2129 

3 *Models, Statistical/ 28851 

4 *models, economic/ or *models, econometric/ 4476 

5 *Models, Biological/ 98419 

6 1 and (2 or 3 or 4) 250 

7 1 and 5 634 

8 limit 7 to humans 329 

9 8 not 6 321 

10 *Survival Analysis/ 2666 

11 *Proportional Hazards Models/ 1811 

12 *Linear Models/ 2498 

13 *Logistic Models/ 1675 

14 Biometry/mt [Methods] 4244 

15 Randomized Controlled Trials as Topic/sn [Statistics & Numerical Data] 4789 

16 Cost-Benefit Analysis/sn [Statistics & Numerical Data] 981 

17 Economics, Pharmaceutical/sn [Statistics & Numerical Data] 144 

18 or/10-17 17625 

19 pharmacometric*.tw. 388 

20 causal inference.tw. 1455 

21 proportional hazards.ti. 411 

22 structural model*.ti. 1624 

23 proportional hazards model*.ab. 20752 

24 structural nested model*.ab. 27 

25 marginal structural model*.ab. 518 

26 structural proportional hazards.ab. 3 

27 structural accelerated failure.ab. 7 

28 compliance class model*.ab. 2 

29 preserving structural failure.ab. 31 

30 rank preserving structural.ab. 31 

31 accelerated failure time.ab. 479 

32 or/19-31 25187 

33 18 or 32 41976 

34 1 and 33 616 

35 limit 34 to humans 523 

36 35 not 9 520 

 

 

 



300 
 

Embase 1974 to 2018 May 21 

22nd May 2018 

1 (compliance or adherence or pharmacoadherence or persistence or persistency 
or concordance or initiation or implementation or noncompliance or 
nonadherence or nonpersistence or discontinuation or pharmionics or 
therapeutic alliance or patient irregularity or treatment refusal).ti. 

162336 

2 *structural model/ 160 

3 *statistical model/ 21307 

4 *economic model/ 506 

5 *biological model/ 57036 

6 1 and (2 or 3 or 4) 146 

7 1 and 5 385 

8 limit 7 to human 157 

9 6 or 8 302 

10 *survival analysis/ 645 

11 *proportional hazards model/ 1385 

12 10 or 11 2017 

13 pharmacometric*.tw. 568 

14 causal inference.tw. 1544 

15 proportional hazards.ti. 418 

16 structural model*.ti. 1691 

17 proportional hazards model*.ab. 32565 

18 structural nested model*.ab. 26 

19 marginal structural model*.ab. 681 

20 structural proportional hazards.ab. 3 

21 structural accelerated failure.ab. 9 

22 compliance class model*.ab. 2 

23 preserving structural failure.ab. 98 

24 rank preserving structural.ab. 98 

25 accelerated failure time.ab. 552 

26 or/13-25 37594 

27 1 and (12 or 26) 702 

28 27 not 9 691 

 

Web of Science 

22nd May 2018 

 

# 1 TITLE: ((compliance or adherence or pharmacoadherence or persistence or 
persistency or concordance or initiation or implementation or noncompliance 
or nonadherence or nonpersistence or discontinuation or pharmionics or 
therapeutic alliance or patient irregularity or treatment refusal))  

257,485 

# 2 TITLE: (model*)  1,896,217 

# 3 TITLE: ((structural or statistical or economic or econometric or biological))  708,343 

# 4 #3 AND #2 AND #1  240 

# 5 TI=("survival analysis")  3,080 

# 6 TI=("proportional hazards model*")  513 

# 7 TI=("linear model*")  6,683 

# 8 TI=("logistic model*")  789 
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# 9 TOPIC: (pharmacometric*)  464 

# 10 TS=("causal inference")  3,246 

# 11 TI=("proportional hazards")  823 

# 12 TI=("structural model*")  4,117 

# 13 TI=("proportional hazards model*")  513 

# 14 TOPIC: ("proportional hazards model*")  20,669 

# 15 TOPIC: ("structural nested model*")  43 

# 16 TOPIC: (“marginal structural model*”)  1,192 

# 17 TOPIC: (“structural proportional hazards”)  3 

# 18 TOPIC: ("structural accelerated failure")  9 

# 19 TOPIC: ("compliance class model*")  4 

# 20 TOPIC: ("preserving structural failure")  37 

# 21 TOPIC: ("rank preserving structural")  38 

# 22 TOPIC: ("accelerated failure time")  849 

# 23 #22 OR #21 OR #20 OR #19 OR #18 OR #17 OR #16 OR #15 OR #14 OR #13 OR 
#12 OR #11 OR #10 OR #9 OR #8 OR #7 OR #6 OR #5  

40,195 

# 24 #23 AND #1  575 

# 25 #24 not #4  519 

 

MathSciNet 

23rd May 2018 

27 records 

 

1.  "Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation )" 

7806 Compliance 
in title 

2.  "Title=(noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics)" 

91 

3.  'Title=("therapeutic alliance" or "patient irregularity" or "treatment 
refusal")' 

0 

4.  "Title=(model*)" 21005 Model in 
title 5.  "Title=(structural or statistical or economic or econometric or 

biological)" 
36577 

6.  “Review Text=(survival analysis or proportional hazards model* or 
linear model* or logistic model*)" 

507 Second 
iteration 

model 
terms 

7.  "Review Text=(pharmacometric* or “causal inference“)" 439 

8.  "Review Text=(proportional hazards or structural model* or 
proportional hazards model* or structural nested model*)" 

22 

9.  'Review Text=(marginal structural model* or structural proportional 
hazards or structural accelerated failure or compliance class model*)' 

0 

10.  "Review Text=(preserving structural failure or rank preserving 
structural or accelerated failure time)" 

5 

11.  "Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation ) AND 
Title=(model*) AND Title=(structural or statistical or economic or 
econometric or biological)" 

16 1st search 

12.  "Title=( noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics) AND Title=(model*) AND 

3 
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Title=(structural or statistical or economic or econometric or 
biological)" 

13.  Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation ) AND 
Review Text=(survival analysis or proportional hazards model* or linear 
model* or logistic model*)" ' 

1 2nd search 
(a) 

14.  'Title=(noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics) AND Review Text=(survival analysis or 
proportional hazards model* or linear model* or logistic model*)' 

0 

15.  "Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation ) AND 
Review Text=(pharmacometric* or “causal inference“)" 

3 2nd search 
(b) 

16.  'Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation ) AND 
Review Text=(proportional hazards or structural model* or 
proportional hazards model* or structural nested model*)' 

0 

17.  'Title=(compliance or adherence or pharmacoadherence or persistence 
or persistency or concordance or initiation or implementation ) AND 
Review Text=(preserving structural failure or rank preserving structural 
or accelerated failure time)' 

0 

18.  "Title=(noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics) AND Review Text=(pharmacometric* 
or “causal inference“)" 

3 

19.  'Title=(noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics) AND Review Text=(proportional 
hazards or structural model* or proportional hazards model* or 
structural nested model*)' 

0 

20.  "Title=(noncompliance or nonadherence or nonpersistence or 
discontinuation or pharmionics) AND Review Text=(preserving 
structural failure or rank preserving structural or accelerated failure 
time)" 

1 

21.  or/11-20 27  
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Appendix B: Details of included and excluded papers  

Table 32: Details of included papers: application of methods in a simulation study or a case study, disease area and interventions assessed 

ID Reference  Method Type of study  Disease area Interventions compared  Outcome 

01 Robins et al., 199284 SNFTM Case study AIDS Low- versus high dose AZT Time to death 

02 Baker, 199880 IV with LE Case study Breast cancer Screening vs usual care Cost-effectiveness 

03 White and Goetghebeur, 199889 RPSFTM Case study Hypertension Diuretics, beta-blockers or placebo Time to CV death 

04 Korhonen et al., 199939 AT Case study Lung cancer Alpha-tocopherol vs beta-carotene 
supplementation 

Time to incidence of 
lung cancer 

05 Robins and Finkelstein, 200066 MSW (IPCW) Case study AIDS Bactrim vs Aerosolised Pentamidine  Time to death 

06 Hernan et al., 200183 MSM (IPTW) Case study AIDS AZT and PCP Prophylaxis vs no treatment initiation Time to death 

07 Loeys et al., 200185 RPSFTM Simulation study, 
Case study 

Vitamin A 
deficiency  

Vitamin A supplement vs placebo Time to death 

08 Korhonen and Palmgren, 200286 RPSFTM Simulation study, 
Case study 

Lung cancer Beta-carotene supplement vs placebo  Treatment-free survival 

09 Loeys and Goetghebeur, 200287 RPSFTM Simulation study, 
Case study 

Leukaemia Bone marrow transplantation vs conventional 
chemotherapy  

Time to death 

10 Loeys and Goetghebeur, 200379 C-PROPHET Simulation study, 
Case study 

Colorectal cancer Surgical resection followed by chemotherapy vs 
surgical resection alone  

Time to death 

11 Matsui, 200488 RPSFTM Simulation study, 
Case study 

Acute myeloid 
leukaemia  

Macrophage colony-stimulating factor vs placebo  Time to blood count 
recovery 

12 Cuzick et al., 200776 CPH with PLE Simulation study hypothetical Hypothetical Survival time 

13 Lin et al., 200777 MCC Case study Depression Meeting with health specialist vs usual care  Time to death 

14 Nie et al., 201181 IV with PNEMLE Simulation study, 
Case study 

Breast cancer Screening with three annual follow up visits vs 
usual care 

Time to death 

15 Pink et al., 201490 PKPD Simulation study Atrial fibrillation  Warfarin vs Apixaban vs Rivaroxaban vs Dabigatran INR, cost-effectiveness 

16 Yu et al., 201574 ITT Simulation study, 
Case study 

Breast cancer Four yearly screenings vs 
Usual care 

Time to death 

17 Wu et al., 201575 PP Simulation study, 
Case study 

Depression Active treatment vs placebo Time to first remission  

18 Li and Gray, 201678 Wtd PP Simulation study, 
Case study 

Breast cancer CMFP (cyclophosphamide/methotrexate/ 
fluorouracil/prednisone) vs observation 

Disease-free survival 

19 Gao and Zheng, 201782 IV with MLE Simulation study, 
Case study 

Breast cancer Screening vs usual care Time to death 

20 Hill-Mcmanus et al. 201891 PKPD Simulation study Gout Dual urate-lowering therapy (ULT) with allopurinol 
vs febuxostat 

SuA level, Cost-
effectiveness 
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• Details of excluded papers 

A total of 130 papers were excluded at the full-text eligibility assessment stage. The numbers of 

excluded papers by reason of exclusion are presented in Table 33. The leading reasons for exclusion 

are non-time-to-event outcomes (continuous outcomes=36, binary outcomes=31). Other common 

reasons for exclusion are: application of methods already known without extension (n=27), and 

methods adjusting for the impact of non-adherence on PKPD only without assessing patient outcomes 

(n=13) as they do not meet the second inclusion criterion. 

The methods discussed in each excluded paper were identified and reported in Table 33. The majority 

of excluded papers discussed IV methods (n=21), AT analysis (n=18), and SNMs (n=17). Bayesian 

inference methods, the traditional PP analysis and C-PROPHET were represented in the least number 

of excluded papers (5, 4 and 2, respectively). Papers reported other methods (n=16) included less 

common methods such as the Generalised Endogenous Treatment (GET) model, the Grizzle Model 

(GM) and the Generalised Grizzle Model (GGM).  See Table 34 for the number of papers excluded per 

each method identified.    

Table 33: Details of excluded papers: number of papers by reason for exclusion 

Reason for exclusion  Number of 

excluded papers 

Continuous outcomes 36 

Binary outcomes 31 

Categorical outcomes 8 

No patient outcome 16 

PKPD only without assessment of patient outcomes  13 

Economic evaluations  12 

Application of Known method without extension 27 

Non-methodological papers 6 

Not peer-reviewed abstracts  3 

Not met the definition of non-adherence 5 

Assessed associations, not causation  2 

Theoretical papers with no application in a simulation or a case 

study 

2 

Comparisons of known methods 9 

Note: Papers may be excluded for more than one reason  
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Table 34: Methods discussed in the excluded papers 

Method Number of 

excluded papers 

Structural Nested Models (SNMs) 17 

Marginal Structural Models (MSMs) 7 

Inverse Probability of Censoring 

Weighting (IPCW) 

8 

Accelerated Failure Time Models 
(AFTMs) and Rank-Preserving 
Structural Failure Time Models 
(RPSFTMs) 

7 

G-estimation 7 

Instrumental Variable (IV) methods  21 

Compliers Average Causal 

Effect (CACE)  

12 

Compliers PROPortional Hazards of 
Treatment (C-PROPHET) Model 

2 

Cox Proportional Hazards (CPH) 

Models  

9 

Bayesian inference methods  5 

Pharmacokinetics and 
Pharmacodynamics (PKPD)  Methods  

12 

Intention-To-Treat (ITT) Analysis  8 

Per-Protocol (PP) analysis  4 

As Treated (AT) analysis  18 

Economic models  12 

Other methods  16 

Non-causal model  11 

Note: papers may have discussed more than one method. Other methods include a range of heterogeneous 

methods which are not common among methods identified in this review 
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Appendix C: Specification of scenarios evaluated in the simulation study 

Table 35: Specification of scenarios assessed in the simulation across implementation, persistence and 
initiation non-adherence  

A
d

ju
st

m
en

t 
Sc

en
ar

io
 N

o
. 

Tr
u

th
 S

ce
n

ar
io

 N
o

. 

Sample 
size 

Survival time Data-generating 
Model (DGM) 

Type and level of 
non-adherence 

Relationship 
between 
treatment 
effect and 
non-
adherence 

Time-
dependent 
treatment 
effect 

Treatment 
effect size  

Non-adherence 
adjustment methods 
assessed 

1 1 450 Standard PSM - Weibull 
Low 
implementation  

Strong No Small ITT, PP, IPCW, SNFTM 

2 2 450 
Two-component Weibull 
Mixture 

Low 
implementation  

Strong No Small ITT, PP, IPCW, SNFTM 

3 1 450 Standard PSM - Weibull 
High 
implementation 

Weak No Small ITT, PP, IPCW, SNFTM 

4 2 450 
Two-component Weibull 
Mixture 

High 
implementation 

Weak No Small ITT, PP, IPCW, SNFTM 

5 1 450 Standard PSM - Weibull 
Low 
implementation  

Weak No Small ITT, PP, IPCW, SNFTM 

6 2 450 
Two-component Weibull 
Mixture 

Low 
implementation  

Weak No Small ITT, PP, IPCW, SNFTM 

7 3 450 Standard PSM - Weibull 
High 
implementation 

Strong No Large ITT, PP, IPCW, SNFTM 

8 4 450 
Two-component Weibull 
Mixture 

High 
implementation 

Strong No Large ITT, PP, IPCW, SNFTM 

9 3 450 Standard PSM - Weibull 
Low 
implementation  

Strong No Large ITT, PP, IPCW, SNFTM 

10 4 450 
Two-component Weibull 
Mixture 

Low 
implementation  

Strong No Large ITT, PP, IPCW, SNFTM 

11 5 450 Standard PSM - Weibull 
High 
implementation 

Strong Yes Large ITT, PP, IPCW, SNFTM 

12 6 450 
Two-component Weibull 
Mixture 

High 
implementation 

Strong Yes Large ITT, PP, IPCW, SNFTM 

13 5 450 Standard PSM - Weibull 
Low 
implementation  

Strong Yes Large ITT, PP, IPCW, SNFTM 

14 6 450 
Two-component Weibull 
Mixture 

Low 
implementation  

Strong Yes Large ITT, PP, IPCW, SNFTM 

15 7 450 Standard PSM - Weibull 
High 
implementation 

Weak Yes Small ITT, PP, IPCW, SNFTM 

16 8 450 
Two-component Weibull 
Mixture 

High 
implementation 

Weak Yes Small ITT, PP, IPCW, SNFTM 

17 7 450 Standard PSM - Weibull 
Low 
implementation  

Weak Yes Small ITT, PP, IPCW, SNFTM 

18 8 450 
Two-component Weibull 
Mixture 

Low 
implementation  

Weak Yes Small ITT, PP, IPCW, SNFTM 

19 9 120 Standard PSM - Weibull 
High 
implementation 

Strong No Small ITT, PP, IPCW, SNFTM 

20 10 120 
Two-component Weibull 
Mixture 

High 
implementation 

Strong No Small ITT, PP, IPCW, SNFTM 

21 9 120 Standard PSM - Weibull 
Low 
implementation  

Strong No Small ITT, PP, IPCW, SNFTM 

22 10 120 
Two-component Weibull 
Mixture 

Low 
implementation 

Strong No Small ITT, PP, IPCW, SNFTM 

23 9 120 Standard PSM - Weibull 
High 
implementation 

Weak No Small ITT, PP, IPCW, SNFTM 

24 10 120 
Two-component Weibull 
Mixture 

High 
implementation 

Weak No Small ITT, PP, IPCW, SNFTM 

25 9 120 Standard PSM - Weibull 
Low 
implementation  

Weak No Small ITT, PP, IPCW, SNFTM 

26 10 120 
Two-component Weibull 
Mixture 

Low 
implementation 

Weak No Small ITT, PP, IPCW, SNFTM 
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27 11 120 Standard PSM - Weibull 
High 
implementation 

Strong No Large ITT, PP, IPCW, SNFTM 

28 12 120 
Two-component Weibull 
Mixture 

High 
implementation 

Strong No Large ITT, PP, IPCW, SNFTM 

29 11 120 Standard PSM - Weibull 
Low 
implementation  

Strong No Large ITT, PP, IPCW, SNFTM 

30 12 120 
Two-component Weibull 
Mixture 

Low 
implementation 

Strong No Large ITT, PP, IPCW, SNFTM 

31 13 120 Standard PSM - Weibull 
High 
implementation 

Strong Yes Large ITT, PP, IPCW, SNFTM 

32 14 120 
Two-component Weibull 
Mixture 

High 
implementation 

Strong Yes Large ITT, PP, IPCW, SNFTM 

33 13 120 Standard PSM - Weibull 
Low 
implementation  

Strong Yes Large ITT, PP, IPCW, SNFTM 

34 14 120 
Two-component Weibull 
Mixture 

Low 
implementation  

Strong Yes Large ITT, PP, IPCW, SNFTM 

35 15 120 Standard PSM - Weibull 
High 
implementation 

Weak Yes Small ITT, PP, IPCW, SNFTM 

36 16 120 
Two-component Weibull 
Mixture 

High 
implementation 

Weak Yes Small ITT, PP, IPCW, SNFTM 

37 15 120 Standard PSM - Weibull 
Low 
implementation  

Weak Yes Small ITT, PP, IPCW, SNFTM 

38 16 120 
Two-component Weibull 
Mixture 

Low 
implementation  

Weak Yes Small ITT, PP, IPCW, SNFTM 

39 1 450 Standard PSM - Weibull Low persistence Strong No Small ITT, PP, IPCW, SNFTM 

40 2 450 
Two-component Weibull 
Mixture 

Low persistence Strong No Small ITT, PP, IPCW, SNFTM 

41 1 450 Standard PSM - Weibull High persistence Weak No Small ITT, PP, IPCW, SNFTM 

42 2 450 
Two-component Weibull 
Mixture 

High persistence Weak No Small ITT, PP, IPCW, SNFTM 

43 4 450 
Two-component Weibull 
Mixture 

High persistence Strong No Large ITT, PP, IPCW, SNFTM 

44 3 450 Standard PSM - Weibull Low persistence Strong No Large ITT, PP, IPCW, SNFTM 

45 4 450 
Two-component Weibull 
Mixture 

Low persistence Strong No Large ITT, PP, IPCW, SNFTM 

46 5 450 Standard PSM - Weibull High persistence Strong Yes Large ITT, PP, IPCW, SNFTM 

47 6 450 
Two-component Weibull 
Mixture 

High persistence Strong Yes Large ITT, PP, IPCW, SNFTM 

48 5 450 Standard PSM - Weibull Low persistence Strong Yes Large ITT, PP, IPCW, SNFTM 

49 6 450 
Two-component Weibull 
Mixture 

Low persistence Strong Yes Large ITT, PP, IPCW, SNFTM 

50 10 120 
Two-component Weibull 
Mixture 

High persistence Strong No Small ITT, PP, IPCW, SNFTM 

51 12 120 
Two-component Weibull 
Mixture 

High persistence Strong No Large ITT, PP, IPCW, SNFTM 

52 12 120 
Two-component Weibull 
Mixture 

Low persistence Strong No Large ITT, PP, IPCW, SNFTM 

53 16 120 
Two-component Weibull 
Mixture 

High persistence Weak Yes Small ITT, PP, IPCW, SNFTM 

54 15 120 Standard PSM - Weibull Low persistence Weak Yes Small ITT, PP, IPCW, SNFTM 

55 16 120 
Two-component Weibull 
Mixture 

Low persistence Weak Yes Small ITT, PP, IPCW, SNFTM 

56 14 120 
Two-component Weibull 
Mixture 

High persistence Strong Yes Large ITT, PP, IPCW, SNFTM 

57 1 450 Standard PSM - Weibull Low initiation Strong No Small ITT, PP, IPCW, SNFTM 

58 2 450 
Two-component Weibull 
Mixture 

Low initiation Strong No Small ITT, PP, IPCW, SNFTM 

59 1 450 Standard PSM - Weibull High initiation Weak No Small ITT, PP, IPCW, SNFTM 

60 2 450 
Two-component Weibull 
Mixture 

High initiation Weak No Small ITT, PP, IPCW, SNFTM 

61 1 450 Standard PSM - Weibull Low initiation Weak No Small ITT, PP, IPCW, SNFTM 

62 2 450 
Two-component Weibull 
Mixture 

Low initiation Weak No Small ITT, PP, IPCW, SNFTM 

63 3 450 Standard PSM - Weibull High initiation Strong No Large ITT, PP, IPCW, SNFTM 
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64 4 450 
Two-component Weibull 
Mixture 

High initiation Strong No Large ITT, PP, IPCW, SNFTM 

65 3 450 Standard PSM - Weibull Low initiation Strong No Large ITT, PP, IPCW, SNFTM 

66 4 450 
Two-component Weibull 
Mixture 

Low initiation Strong No Large ITT, PP, IPCW, SNFTM 

67 5 450 Standard PSM - Weibull High initiation Strong Yes Large ITT, PP, IPCW, SNFTM 

68 6 450 
Two-component Weibull 
Mixture 

High initiation Strong Yes Large ITT, PP, IPCW, SNFTM 

69 5 450 Standard PSM - Weibull Low initiation Strong Yes Large ITT, PP, IPCW, SNFTM 

70 6 450 
Two-component Weibull 
Mixture 

Low initiation Strong Yes Large ITT, PP, IPCW, SNFTM 

71 7 450 Standard PSM - Weibull High initiation Weak Yes Small ITT, PP, IPCW, SNFTM 

72 8 450 
Two-component Weibull 
Mixture 

High initiation Weak Yes Small ITT, PP, IPCW, SNFTM 

73 7 450 Standard PSM - Weibull Low initiation Weak Yes Small ITT, PP, IPCW, SNFTM 

74 8 450 
Two-component Weibull 
Mixture 

Low initiation Weak Yes Small ITT, PP, IPCW, SNFTM 

75 9 120 Standard PSM - Weibull High initiation Strong No Large ITT, PP, IPCW, SNFTM 

76 10 120 
Two-component Weibull 
Mixture 

High initiation Strong No Large ITT, PP, IPCW, SNFTM 

77 9 120 Standard PSM - Weibull Low initiation Strong No Large ITT, PP, IPCW, SNFTM 

78 10 120 
Two-component Weibull 
Mixture 

Low initiation Strong No Large ITT, PP, IPCW, SNFTM 

79 9 120 Standard PSM - Weibull High initiation Weak No Large ITT, PP, IPCW, SNFTM 

80 10 120 
Two-component Weibull 
Mixture 

High initiation Weak No Large ITT, PP, IPCW, SNFTM 

81 9 120 Standard PSM - Weibull Low initiation Weak No Large ITT, PP, IPCW, SNFTM 

82 10 120 
Two-component Weibull 
Mixture 

Low initiation Weak No Large ITT, PP, IPCW, SNFTM 

83 13 120 Standard PSM - Weibull High initiation Strong Yes Small ITT, PP, IPCW, SNFTM 

84 14 120 
Two-component Weibull 
Mixture 

High initiation Strong Yes Small ITT, PP, IPCW, SNFTM 

85 13 120 Standard PSM - Weibull Low initiation Strong Yes Small ITT, PP, IPCW, SNFTM 

86 14 120 
Two-component Weibull 
Mixture 

Low initiation Strong Yes Small ITT, PP, IPCW, SNFTM 

87 15 120 Standard PSM - Weibull High initiation Weak Yes Large ITT, PP, IPCW, SNFTM 

88 16 120 
Two-component Weibull 
Mixture 

High initiation Weak Yes Large ITT, PP, IPCW, SNFTM 

89 15 120 Standard PSM - Weibull Low initiation Weak Yes Large ITT, PP, IPCW, SNFTM 

90 16 120 
Two-component Weibull 
Mixture 

Low initiation Weak Yes Large ITT, PP, IPCW, SNFTM 

Note: For each set of scenarios numbered in the first column, there will be one large dataset (truth scenario numbered in the second 

column) which be simulated using 1 million 
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Appendix D: Simulation study supplementary tables 

Table 36: Sample size for clinical trials assessed maintenance immunosuppression after kidney 
transplantation 

Author (Year) n 

Grinyo 2009 1529 

Vincenti 2010 686 

Waller 2002 102 

Laskow 1996 120 

Baboolal 2002 51 

Campos 2002 166 

Margreiter 2002 560 

Sadek 2002 477 

Mayer 1997 448 

Tricontinental MMF renal study 1996 497 

Yang 1999 60 

Schaefer 2006 80 

Hardinger 2005 200 

Rowshani 2006 126 

Weimer 2006 81 

Tedesco-Silva 2010 783 

Barsoum 2007 113 

Anil Kumar 2005 150 

Mendez 2005 361 

Sampaio 2008 100 

Martinez-Mier 2006 41 

Nafar 2012 100 

Anil Kumar 2008 200 

Vincenti 2005 218 

Ferguson 2011 89 

Flechner 2002 61 

Vacher-Coponat 2012 289 

Büchler 2007 145 

Charpentier 2003 83 

Merville 2004 71 

Durrbach 2010 578 

Lorber 2005 583 

Bertoni 2011 106 

Gallon 2006 83 

Guba 2010 140 

Lebranchu 2009 192 

Vítko 2005 588 

Larson 2006 162 

Chadban 2013 126 

Flechner 2011 450 
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Appendix E: Performance of methods across scenarios     

Table 37: Performance of methods across implementation non-adherence scenarios 

N
o

. 

Su
cc

es
sf

u
l 

n
si

m
 

Tr
u

th
 

Method 
Mean 
estimate 

SE of 
mean 

95% Confidence 
interval 

Bias 
Bias 
(%) 

MSE 
(%) 

Model 
SE (%) 

Empirical 
SE (%) 

Coverage 
(%) Su

cc
es

sf
u

l 
es

ti
m

at
io

n
 

(%
) 

Lower Upper 

1 1872 0.108 
ITT 

        
0.135  

     
0.032  

     
0.072  

     
0.197  

     
0.026  

     
24.26  

        
1.54  

     
29.37       28.86  

        
86.49  

    
100.00  

PP 
        

0.131  
     

0.037  
     

0.059  
     

0.202  
     

0.022  
     

20.61  
        

1.68  
     

33.74       33.53  
        

90.33  
    

100.00  

IPCW 
        

0.128  
     

0.037  
     

0.056  
     

0.201  
     

0.020  
     

18.24  
        

1.62  
     

34.05       34.14  
        

91.08  
    

100.00  

SNFTM 
        

0.129  
     

0.031  
     

0.067  
     

0.190  
     

0.020  
     

18.52  
        

1.84  
     

28.81       36.85  
        

83.49  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.07  

           
0.86   -  

2 1874 0.063 
ITT   

     
0.030  

     
0.046  

     
0.164  

     
0.042  

     
66.06  

        
4.18  

     
47.48       47.26  

        
71.08  

    
100.00  

PP 
        

0.083  
     

0.033  
     

0.019  
     

0.146  
     

0.019  
     

30.43  
        

2.29  
     

51.47       51.82  
        

90.72  
    

100.00  

IPCW 
        

0.084  
     

0.033  
     

0.018  
     

0.149  
     

0.020  
     

31.94  
        

2.43  
     

52.57       53.09  
        

90.72  
    

100.00  

SNFTM 
        

0.082  
     

0.028  
     

0.028  
     

0.136  
     

0.019  
     

30.07  
        

2.40  
     

43.46       53.71  
        

82.55  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.67   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

           
1.05   -  

3 1863 0.108 
ITT 

        
0.136  

     
0.031  

     
0.075  

     
0.196  

     
0.027  

     
25.18  

        
1.56  

     
28.49       28.39  

        
85.72  

    
100.00  

PP 
        

0.124  
     

0.034  
     

0.056  
     

0.192  
     

0.016  
     

14.34  
        

1.27  
     

31.80       31.13  
        

93.34  
    

100.00  

IPCW 
        

0.123  
     

0.035  
     

0.054  
     

0.192  
     

0.015  
     

13.66  
        

1.34  
     

32.50       32.38  
        

92.22  
    

100.00  

SNFTM 
        

0.121  
     

0.031  
     

0.061  
     

0.181  
     

0.013  
     

11.60  
        

1.41  
     

28.22       34.20  
        

88.35  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.07  

           
0.86   -  

4 1855 0.063 
ITT 

        
0.091  

     
0.027  

     
0.038  

     
0.145  

     
0.028  

     
44.12  

        
2.34  

     
42.90       41.74  

        
83.29  

    
100.00  

PP 
        

0.074  
     

0.029  
     

0.016  
     

0.132  
     

0.010  
     

16.54  
        

1.51  
     

46.53       45.93  
        

93.96  
    

100.00  

IPCW 
        

0.074  
     

0.030  
     

0.015  
     

0.134  
     

0.011  
     

17.49  
        

1.62  
     

48.06       47.48  
        

94.07  
    

100.00  

SNFTM 
        

0.072  
     

0.026  
     

0.021  
     

0.122  
     

0.008  
     

13.34  
        

1.49  
     

40.82       46.58  
        

90.84  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.04  

           
0.55   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.87   -  

5 1859 0.108 
ITT 

        
0.131  

     
0.031  

     
0.070  

     
0.192  

     
0.022  

     
20.51  

        
1.33  

     
28.70       28.34  

        
88.81  

    
100.00  

PP 
        

0.123  
     

0.036  
     

0.052  
     

0.194  
     

0.015  
     

13.57  
        

1.38  
     

33.52       33.05  
        

92.79  
    

100.00  

IPCW 
        

0.121  
     

0.037  
     

0.049  
     

0.193  
     

0.012  
     

11.42  
        

1.36  
     

33.92       33.57  
        

93.01  
    

100.00  
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SNFTM 
        

0.120  
     

0.031  
     

0.060  
     

0.180  
     

0.012  
     

10.74  
        

1.65  
     

28.33       37.52  
        

84.51  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.07  

           
0.84   -  

6 1845 0.063 
ITT 

        
0.091  

     
0.028  

     
0.036  

     
0.146  

     
0.028  

     
43.56  

        
2.41  

     
44.09       43.63  

        
83.31  

    
100.00  

PP 
        

0.073  
     

0.031  
     

0.012  
     

0.135  
     

0.010  
     

15.79  
        

1.72  
     

49.49       49.66  
        

93.82  
    

100.00  

IPCW 
        

0.075  
     

0.032  
     

0.011  
     

0.138  
     

0.011  
     

17.74  
        

1.86  
     

51.05       51.20  
        

93.88  
    

100.00  

SNFTM 
        

0.072  
     

0.026  
     

0.021  
     

0.124  
     

0.009  
     

14.41  
        

1.80  
     

41.26       51.38  
        

87.59  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.05  

           
0.56   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.00  

        
0.00  

        
0.05  

           
0.87   -  

7 1840 0.169 
ITT 

        
0.209  

     
0.031  

     
0.148  

     
0.270  

     
0.040  

     
23.94  

        
1.52  

     
18.39       18.08  

        
75.22  

    
100.00  

PP 
        

0.198  
     

0.034  
     

0.131  
     

0.264  
     

0.029  
     

17.29  
        

1.18  
     

20.13       19.96  
        

86.63  
    

100.00  

IPCW 
        

0.196  
     

0.035  
     

0.128  
     

0.264  
     

0.027  
     

16.07  
        

1.16  
     

20.57       20.75  
        

87.61  
    

100.00  

SNFTM 
        

0.196  
     

0.030  
     

0.136  
     

0.255  
     

0.027  
     

16.02  
        

1.17  
     

17.93       20.94  
        

82.17  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.77   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

           
1.01   -  

8 1841 0.095 
ITT 

        
0.148  

     
0.028  

     
0.094  

     
0.203  

     
0.054  

     
56.71  

        
3.88  

     
29.49       29.63  

        
51.33  

    
100.00  

PP 
        

0.120  
     

0.029  
     

0.062  
     

0.177  
     

0.025  
     

26.28  
        

1.54  
     

31.01       30.57  
        

87.34  
    

100.00  

IPCW 
        

0.120  
     

0.030  
     

0.061  
     

0.179  
     

0.025  
     

26.77  
        

1.62  
     

31.79       31.53  
        

87.51  
    

100.00  

SNFTM 
        

0.119  
     

0.026  
     

0.068  
     

0.170  
     

0.024  
     

25.64  
        

1.55  
     

27.40       31.31  
        

81.31  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.77   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
1.16   -  

9 1845 0.169 
ITT 

        
0.202  

     
0.031  

     
0.140  

     
0.263  

     
0.033  

     
19.65  

        
1.25  

     
18.65       18.82  

        
81.52  

    
100.00  

PP 
        

0.198  
     

0.036  
     

0.128  
     

0.268  
     

0.029  
     

17.34  
        

1.25  
     

21.27       20.94  
        

87.37  
    

100.00  

IPCW 
        

0.194  
     

0.036  
     

0.123  
     

0.265  
     

0.026  
     

15.26  
        

1.17  
     

21.46       21.46  
        

89.05  
    

100.00  

SNFTM 
        

0.195  
     

0.030  
     

0.136  
     

0.255  
     

0.027  
     

15.79  
        

1.34  
     

18.07       23.41  
        

80.05  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.73   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06  

           
0.93   -  

10 1822 0.095 
ITT 

        
0.150  

     
0.029  

     
0.094  

     
0.207  

     
0.056  

     
58.88  

        
4.14  

     
30.59       30.15  

        
51.54  

    
100.00  

PP 
        

0.120  
     

0.031  
     

0.059  
     

0.181  
     

0.025  
     

26.69  
        

1.70  
     

33.09       32.97  
        

86.66  
    

100.00  

IPCW 
        

0.121  
     

0.032  
     

0.058  
     

0.184  
     

0.026  
     

27.61  
        

1.82  
     

33.80       34.08  
        

85.84  
    

100.00  

SNFTM 
        

0.120  
     

0.026  
     

0.068  
     

0.171  
     

0.025  
     

26.25  
        

1.90  
     

27.85       36.32  
        

76.89  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.80   -  
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max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

           
1.17   -  

11 1826 0.155 
ITT 

        
0.195  

     
0.031  

     
0.135  

     
0.256  

     
0.040  

     
26.04  

        
1.63  

     
20.02       19.27  

        
74.92  

    
100.00  

PP 
        

0.185  
     

0.034  
     

0.119  
     

0.252  
     

0.030  
     

19.46  
        

1.28  
     

21.93       21.08  
        

86.04  
    

100.00  

IPCW 
        

0.183  
     

0.035  
     

0.115  
     

0.251  
     

0.028  
     

18.08  
        

1.28  
     

22.39       22.38  
        

87.51  
    

100.00  

SNFTM 
        

0.182  
     

0.030  
     

0.122  
     

0.241  
     

0.027  
     

17.33  
        

1.40  
     

19.56       24.62  
        

79.30  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.77   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06  

           
1.01   -  

12 1829 0.087 
ITT 

        
0.141  

     
0.028  

     
0.086  

     
0.196  

     
0.054  

     
61.47  

        
4.21  

     
32.11       32.20  

        
51.67  

    
100.00  

PP 
        

0.113  
     

0.029  
     

0.055  
     

0.171  
     

0.026  
     

29.38  
        

1.79  
     

33.75       34.42  
        

84.96  
    

100.00  

IPCW 
        

0.114  
     

0.030  
     

0.054  
     

0.173  
     

0.026  
     

29.87  
        

1.89  
     

34.62       35.63  
        

84.64  
    

100.00  

SNFTM 
        

0.112  
     

0.026  
     

0.060  
     

0.163  
     

0.024  
     

27.57  
        

1.82  
     

29.83       36.30  
        

79.33  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.84   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
1.17   -  

13 1855 0.155 
ITT 

        
0.188  

     
0.031  

     
0.126  

     
0.250  

     
0.033  

     
21.30  

        
1.31  

     
20.26       19.80  

        
82.32  

    
100.00  

PP 
        

0.185  
     

0.036  
     

0.115  
     

0.256  
     

0.030  
     

19.64  
        

1.38  
     

23.17       22.43  
        

86.85  
    

100.00  

IPCW 
        

0.182  
     

0.036  
     

0.111  
     

0.253  
     

0.027  
     

17.48  
        

1.31  
     

23.36       23.27  
        

88.73  
    

100.00  

SNFTM 
        

0.182  
     

0.031  
     

0.122  
     

0.242  
     

0.027  
     

17.49  
        

1.47  
     

19.69       25.39  
        

78.81  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.73   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06  

           
0.95   -  

14 1825 0.087 
ITT 

        
0.143  

     
0.029  

     
0.086  

     
0.200  

     
0.055  

     
63.10  

        
4.47  

     
33.29       33.62  

        
51.40  

    
100.00  

PP 
        

0.114  
     

0.031  
     

0.053  
     

0.176  
     

0.027  
     

30.80  
        

2.04  
     

36.01       37.17  
        

84.60  
    

100.00  

IPCW 
        

0.115  
     

0.032  
     

0.052  
     

0.178  
     

0.028  
     

31.90  
        

2.17  
     

36.83       38.29  
        

85.04  
    

100.00  

SNFTM 
        

0.113  
     

0.026  
     

0.061  
     

0.165  
     

0.026  
     

29.59  
        

2.22  
     

30.28       40.84  
        

74.30  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.83   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

           
1.17   -  

15 1801 0.093 
ITT 

        
0.121  

     
0.031  

     
0.061  

     
0.182  

     
0.028  

     
30.44  

        
1.94  

     
33.18       34.06  

        
83.73  

    
100.00  

PP 
        

0.110  
     

0.034  
     

0.043  
     

0.178  
     

0.017  
     

18.71  
        

1.70  
     

37.07       38.42  
        

90.62  
    

100.00  

IPCW 
        

0.110  
     

0.035  
     

0.041  
     

0.180  
     

0.017  
     

18.72  
        

1.78  
     

37.90       39.51  
        

90.34  
    

100.00  

SNFTM 
        

0.107  
     

0.031  
     

0.047  
     

0.167  
     

0.014  
     

15.05  
        

2.02  
     

32.93       44.14  
        

83.95  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

           
0.69   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07  

           
0.87   -  

16 1811 0.054 
ITT 

        
0.081  

     
0.027  

     
0.028  

     
0.135  

     
0.027  

     
49.10  

        
2.77  

     
50.23       51.79  

        
82.11  

    
100.00  
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PP 
        

0.065  
     

0.030  
     

0.007  
     

0.123  
     

0.011  
     

19.81  
        

1.90  
     

54.50       55.64  
        

92.88  
    

100.00  

IPCW 
        

0.065  
     

0.031  
     

0.006  
     

0.125  
     

0.011  
     

20.33  
        

2.03  
     

56.17       57.60  
        

93.21  
    

100.00  

SNFTM 
        

0.064  
     

0.026  
     

0.013  
     

0.114  
     

0.009  
     

16.77  
        

2.03  
     

47.74       58.76  
        

87.24  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.00  

        
0.00  

        
0.05  

           
0.90   -  

17 1854 0.093 
ITT 

        
0.116  

     
0.031  

     
0.055  

     
0.177  

     
0.023  

     
24.78  

        
1.69  

     
33.42       34.68  

        
86.79  

    
100.00  

PP 
        

0.110  
     

0.036  
     

0.039  
     

0.181  
     

0.017  
     

17.94  
        

1.83  
     

39.05       40.50  
        

91.48  
    

100.00  

IPCW 
        

0.108  
     

0.037  
     

0.036  
     

0.180  
     

0.015  
     

15.87  
        

1.83  
     

39.54       41.36  
        

91.91  
    

100.00  

SNFTM 
        

0.105  
     

0.031  
     

0.045  
     

0.166  
     

0.012  
     

13.07  
        

2.33  
     

33.08       48.36  
        

81.45  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.63   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07  

           
0.90   -  

18 1803 0.054 
ITT 

        
0.081  

     
0.028  

     
0.026  

     
0.136  

     
0.027  

     
49.22  

        
2.80  

     
51.57       52.30  

        
84.03  

    
100.00  

PP 
        

0.065  
     

0.031  
     

0.003  
     

0.127  
     

0.011  
     

19.71  
        

2.17  
     

57.88       59.98  
        

92.62  
    

100.00  

IPCW 
        

0.066  
     

0.032  
     

0.003  
     

0.130  
     

0.012  
     

21.80  
        

2.34  
     

59.58       61.94  
        

92.68  
    

100.00  

SNFTM 
        

0.064  
     

0.026  
     

0.013  
     

0.116  
     

0.010  
     

18.37  
        

2.58  
     

48.15       66.38  
        

83.47  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

           
0.61   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.00  

        
0.00  

        
0.06  

           
0.87   -  

19 1625 0.108 
ITT 

        
0.146  

     
0.059  

     
0.031  

     
0.261  

     
0.038  

     
34.69  

        
4.39  

     
54.26       53.37  

        
90.65  

    
100.00  

PP 
        

0.134  
     

0.065  
     

0.007  
     

0.261  
     

0.026  
     

23.72  
        

4.38  
     

59.71       58.99  
        

92.98  
    

100.00  

IPCW 
        

0.133  
     

0.081  
-   

0.025  
     

0.291  
     

0.025  
     

22.91  
        

7.01  
     

75.13       77.12  
        

92.43  
    

100.00  

SNFTM 
        

0.133  
     

0.058  
     

0.020  
     

0.246  
     

0.024  
     

22.43  
        

4.74  
     

53.33       62.24  
        

88.55  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.02  

        
0.01  

        
0.10  

           
0.63   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.03  

        
0.03  

        
0.15  

           
0.79   -  

20 1773 0.064 
ITT 

        
0.111  

     
0.057  

     
0.000  

     
0.222  

     
0.047  

     
74.61  

        
8.41  

     
89.19       87.62  

        
87.65  

    
100.00  

PP 
        

0.086  
     

0.060  
-   

0.031  
     

0.203  
     

0.022  
     

35.25  
        

6.19  
     

93.96       92.24  
        

93.74  
    

100.00  

IPCW 
        

0.087  
     

0.073  
-   

0.056  
     

0.230  
     

0.024  
     

37.26  
        

9.42  
  

116.33    115.96  
        

93.17  
    

100.00  

SNFTM 
        

0.088  
     

0.052  
-   

0.015  
     

0.191  
     

0.024  
     

38.13  
        

6.70  
     

82.77       95.38  
        

87.70  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.58   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.02  

        
0.03  

        
0.12  

           
0.78   -  

21 1671 0.108 
ITT 

        
0.134  

     
0.062  

     
0.013  

     
0.255  

     
0.026  

     
23.57  

        
3.95  

     
56.97       55.63  

        
92.22  

    
100.00  

PP 
        

0.130  
     

0.071  
-   

0.009  
     

0.269  
     

0.022  
     

20.29  
        

4.79  
     

65.54       63.33  
        

94.61  
    

100.00  

IPCW 
        

0.126  
     

0.084  
-   

0.038  
     

0.290  
     

0.018  
     

16.25  
        

6.91  
     

77.87       78.23  
        

94.14  
    

100.00  
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SNFTM 
        

0.128  
     

0.060  
     

0.010  
     

0.246  
     

0.020  
     

18.22  
        

5.33  
     

55.81       67.79  
        

87.49  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.01  

        
0.01  

        
0.10  

           
0.55   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.02  

        
0.02  

        
0.15  

           
0.81   -  

22 1776 0.064 
ITT 

        
0.107  

     
0.059  

-   
0.008  

     
0.222  

     
0.044  

     
68.52  

        
8.31  

     
92.41       91.58  

        
88.40  

    
100.00  

PP 
        

0.085  
     

0.064  
-   

0.040  
     

0.209  
     

0.021  
     

33.54  
        

6.88  
  

100.40       98.53  
        

92.91  
    

100.00  

IPCW 
        

0.086  
     

0.074  
-   

0.059  
     

0.232  
     

0.023  
     

36.06  
        

9.60  
  

118.64    117.56  
        

93.35  
    

100.00  

SNFTM 
        

0.085  
     

0.053  
-   

0.019  
     

0.190  
     

0.022  
     

34.36  
        

7.46  
     

84.15    102.80  
        

85.92  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.01  

        
0.01  

        
0.10  

           
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.02  

        
0.04  

        
0.13  

           
0.83   -  

23 1697 0.108 
ITT 

        
0.132  

     
0.060  

     
0.015  

     
0.249  

     
0.024  

     
22.26  

        
3.62  

     
55.15       53.41  

        
93.93  

    
100.00  

PP 
        

0.120  
     

0.067  
-   

0.011  
     

0.251  
     

0.012  
     

11.10  
        

4.09  
     

61.80       60.48  
        

95.05  
    

100.00  

IPCW 
        

0.117  
     

0.083  
-   

0.045  
     

0.279  
     

0.009  
        

8.11  
        

6.91  
     

76.83       79.47  
        

92.52  
    

100.00  

SNFTM 
        

0.117  
     

0.059  
     

0.001  
     

0.233  
     

0.009  
        

7.94  
        

4.32  
     

54.57       62.65  
        

90.93  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.01  

        
0.01  

        
0.10  

           
0.53   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.03  

        
0.03  

        
0.15  

           
0.70   -  

24 1785 0.064 
ITT 

        
0.092  

     
0.053  

-   
0.012  

     
0.196  

     
0.029  

     
45.37  

        
5.75  

     
83.84       83.66  

        
91.32  

    
100.00  

PP 
        

0.076  
     

0.058  
-   

0.037  
     

0.188  
     

0.012  
     

18.92  
        

5.50  
     

90.89       91.14  
        

94.17  
    

100.00  

IPCW 
        

0.076  
     

0.071  
-   

0.063  
     

0.214  
     

0.012  
     

19.24  
        

8.48  
  

112.64    113.96  
        

93.61  
    

100.00  

SNFTM 
        

0.076  
     

0.050  
-   

0.023  
     

0.174  
     

0.012  
     

19.15  
        

5.79  
     

79.29       93.52  
        

89.41  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.55   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

           
0.73   -  

25 1739 0.108 
ITT 

        
0.130  

     
0.060  

     
0.012  

     
0.248  

     
0.022  

     
20.22  

        
3.64  

     
55.69       54.32  

        
93.27  

    
100.00  

PP 
        

0.121  
     

0.070  
-   

0.017  
     

0.259  
     

0.013  
     

11.86  
        

4.60  
     

65.17       64.10  
        

94.59  
    

100.00  

IPCW 
        

0.116  
     

0.082  
-   

0.045  
     

0.277  
     

0.008  
        

7.11  
        

6.62  
     

76.44       77.87  
        

94.08  
    

100.00  

SNFTM 
        

0.120  
     

0.059  
     

0.004  
     

0.236  
     

0.012  
     

10.82  
        

5.43  
     

54.88       69.99  
        

87.18  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.01  

        
0.01  

        
0.10  

           
0.54   -  

max 
MCSE  -   -   -   -   -  

        
0.20  

        
0.02  

        
0.02  

        
0.14  

           
0.80   -  

26 1806 0.064 
ITT 

        
0.092  

     
0.055  

-   
0.015  

     
0.199  

     
0.029  

     
45.19  

        
5.98  

     
85.99       85.84  

        
91.36  

    
100.00  

PP 
        

0.075  
     

0.061  
-   

0.045  
     

0.195  
     

0.011  
     

17.80  
        

5.96  
     

96.52       95.20  
        

94.13  
    

100.00  

IPCW 
        

0.077  
     

0.071  
-   

0.063  
     

0.217  
     

0.013  
     

21.00  
        

8.30  
  

113.50    112.36  
        

94.46  
    

100.00  

SNFTM 
        

0.076  
     

0.051  
-   

0.024  
     

0.175  
     

0.012  
     

19.16  
        

6.43  
     

80.08       98.81  
        

87.38  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.54   -  
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max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

           
0.78   -  

27 1622 0.169 
ITT 

        
0.210  

     
0.060  

     
0.093  

     
0.328  

     
0.042  

     
24.81  

        
3.18  

     
35.56       35.64  

        
88.10  

    
100.00  

PP 
        

0.199  
     

0.066  
     

0.070  
     

0.327  
     

0.030  
     

17.77  
        

3.08  
     

39.04       38.92  
        

91.68  
    

100.00  

IPCW 
        

0.194  
     

0.082  
     

0.033  
     

0.355  
     

0.025  
     

15.10  
        

4.70  
     

49.14       50.61  
        

91.55  
    

100.00  

SNFTM 
        

0.196  
     

0.058  
     

0.082  
     

0.310  
     

0.028  
     

16.37  
        

3.16  
     

34.61       40.07  
        

87.85  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.02  

        
0.01  

        
0.11  

           
0.69   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.03  

        
0.03  

        
0.15  

           
0.81   -  

28 1801 0.095 
ITT 

        
0.149  

     
0.054  

     
0.043  

     
0.256  

     
0.054  

     
56.94  

        
6.04  

     
57.35       55.72  

        
83.73  

    
100.00  

PP 
        

0.119  
     

0.057  
     

0.008  
     

0.231  
     

0.024  
     

25.40  
        

3.93  
     

60.19       59.07  
        

92.73  
    

100.00  

IPCW 
        

0.120  
     

0.070  
-   

0.017  
     

0.257  
     

0.025  
     

26.05  
        

5.66  
     

74.42       72.58  
        

94.16  
    

100.00  

SNFTM 
        

0.120  
     

0.050  
     

0.022  
     

0.219  
     

0.025  
     

26.53  
        

4.19  
     

53.03       60.86  
        

88.01  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.12  

        
0.01  

        
0.01  

        
0.09  

           
0.55   -  

max 
MCSE  -   -   -   -   -  

        
0.16  

        
0.02  

        
0.03  

        
0.12  

           
0.87   -  

29 1727 0.169 
ITT 

        
0.203  

     
0.061  

     
0.084  

     
0.322  

     
0.034  

     
20.39  

        
2.96  

     
36.05       36.62  

        
90.21  

    
100.00  

PP 
        

0.198  
     

0.069  
     

0.063  
     

0.334  
     

0.030  
     

17.71  
        

3.38  
     

41.19       41.11  
        

91.60  
    

100.00  

IPCW 
        

0.191  
     

0.082  
     

0.030  
     

0.351  
     

0.022  
     

13.02  
        

4.57  
     

48.76       50.42  
        

91.84  
    

100.00  

SNFTM 
        

0.195  
     

0.059  
     

0.080  
     

0.310  
     

0.027  
     

15.78  
        

3.54  
     

34.85       43.01  
        

84.83  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.02  

        
0.01  

        
0.11  

           
0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.20  

        
0.03  

        
0.02  

        
0.14  

           
0.86   -  

30 1819 0.095 
ITT 

        
0.151  

     
0.056  

     
0.041  

     
0.262  

     
0.056  

     
58.73  

        
6.63  

     
59.34       59.32  

        
83.34  

    
100.00  

PP 
        

0.120  
     

0.061  
     

0.001  
     

0.240  
     

0.025  
     

26.55  
        

4.60  
     

64.22       64.30  
        

92.58  
    

100.00  

IPCW 
        

0.122  
     

0.071  
-   

0.017  
     

0.261  
     

0.027  
     

28.42  
        

6.35  
     

75.06       76.58  
        

92.35  
    

100.00  

SNFTM 
        

0.122  
     

0.051  
     

0.022  
     

0.222  
     

0.027  
     

28.18  
        

4.95  
     

53.90       66.43  
        

86.64  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.61   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.02  

        
0.12  

           
0.87   -  

31 1608 0.155 
ITT 

        
0.193  

     
0.060  

     
0.075  

     
0.311  

     
0.038  

     
24.30  

        
3.32  

     
38.79       39.38  

        
89.49  

    
100.00  

PP 
        

0.183  
     

0.066  
     

0.054  
     

0.313  
     

0.028  
     

18.25  
        

3.41  
     

42.55       43.21  
        

91.79  
    

100.00  

IPCW 
        

0.178  
     

0.083  
     

0.015  
     

0.340  
     

0.023  
     

14.65  
        

5.44  
     

53.93       57.39  
        

90.72  
    

100.00  

SNFTM 
        

0.179  
     

0.059  
     

0.065  
     

0.294  
     

0.024  
     

15.71  
        

3.57  
     

37.86       45.33  
        

87.56  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.02  

        
0.01  

        
0.11  

           
0.68   -  

max 
MCSE  -   -   -   -   -  

        
0.22  

        
0.03  

        
0.03  

        
0.16  

           
0.82   -  

32 1802 0.088 
ITT 

        
0.139  

     
0.055  

     
0.031  

     
0.246  

     
0.051  

     
57.78  

        
6.22  

     
62.40       61.23  

        
84.74  

    
100.00  
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PP 
        

0.110  
     

0.057  
-   

0.003  
     

0.222  
     

0.022  
     

24.90  
        

4.21  
     

65.53       64.65  
        

93.17  
    

100.00  

IPCW 
        

0.112  
     

0.070  
-   

0.024  
     

0.249  
     

0.025  
     

27.90  
        

6.47  
     

80.46       81.18  
        

92.44  
    

100.00  

SNFTM 
        

0.111  
     

0.051  
     

0.012  
     

0.210  
     

0.024  
     

26.77  
        

4.49  
     

57.77       66.34  
        

88.57  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

           
0.85   -  

33 1665 0.155 
ITT 

        
0.186  

     
0.061  

     
0.067  

     
0.306  

     
0.031  

     
20.23  

        
3.15  

     
39.25       40.31  

        
90.81  

    
100.00  

PP 
        

0.184  
     

0.070  
     

0.047  
     

0.320  
     

0.029  
     

18.50  
        

3.77  
     

44.94       45.71  
        

91.95  
    

100.00  

IPCW 
        

0.179  
     

0.082  
     

0.018  
     

0.339  
     

0.024  
     

15.25  
        

5.25  
     

53.18       56.16  
        

91.77  
    

100.00  

SNFTM 
        

0.182  
     

0.059  
     

0.066  
     

0.297  
     

0.027  
     

17.22  
        

3.96  
     

38.03       47.52  
        

85.59  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.02  

        
0.01  

        
0.11  

           
0.67   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.03  

        
0.03  

        
0.15  

           
0.86   -  

34 1811 0.088 
ITT 

        
0.140  

     
0.057  

     
0.029  

     
0.251  

     
0.052  

     
59.19  

        
6.72  

     
64.69       64.38  

        
85.26  

    
100.00  

PP 
        

0.111  
     

0.061  
-   

0.009  
     

0.231  
     

0.023  
     

26.26  
        

4.84  
     

69.99       69.44  
        

93.43  
    

100.00  

IPCW 
        

0.114  
     

0.071  
-   

0.025  
     

0.254  
     

0.026  
     

30.13  
        

6.84  
     

81.68       82.94  
        

93.04  
    

100.00  

SNFTM 
        

0.111  
     

0.051  
     

0.011  
     

0.212  
     

0.023  
     

26.74  
        

5.23  
     

58.58       72.37  
        

86.20  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.58   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.02  

        
0.12  

           
0.83   -  

35 1633 0.093 
ITT 

        
0.117  

     
0.060  

     
0.000  

     
0.234  

     
0.024  

     
25.76  

        
4.61  

     
64.08       65.45  

        
91.92  

    
100.00  

PP 
        

0.105  
     

0.067  
-   

0.026  
     

0.235  
     

0.012  
     

12.61  
        

5.26  
     

71.66       74.12  
        

93.63  
    

100.00  

IPCW 
        

0.102  
     

0.083  
-   

0.061  
     

0.265  
     

0.009  
        

9.40  
        

8.89  
     

90.23       97.30  
        

92.84  
    

100.00  

SNFTM 
        

0.101  
     

0.059  
-   

0.015  
     

0.217  
     

0.008  
        

8.13  
        

5.83  
     

63.55       78.75  
        

87.94  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.01  

        
0.01  

        
0.11  

           
0.60   -  

max 
MCSE  -   -   -   -   -  

        
0.22  

        
0.03  

        
0.03  

        
0.16  

           
0.81   -  

36 1785 0.055 
ITT 

        
0.084  

     
0.053  

-   
0.020  

     
0.189  

     
0.030  

     
54.11  

        
6.78  

     
97.86       97.44  

        
91.71  

    
100.00  

PP 
        

0.068  
     

0.058  
-   

0.045  
     

0.181  
     

0.013  
     

24.05  
        

6.22  
  

105.96    104.03  
        

94.57  
    

100.00  

IPCW 
        

0.067  
     

0.071  
-   

0.071  
     

0.206  
     

0.013  
     

23.50  
        

9.18  
  

131.19    127.61  
        

95.46  
    

100.00  

SNFTM 
        

0.067  
     

0.050  
-   

0.031  
     

0.166  
     

0.013  
     

23.23  
        

6.43  
     

92.57    106.01  
        

90.76  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.49   -  

max 
MCSE  -   -   -   -   -  

        
0.16  

        
0.02  

        
0.03  

        
0.12  

           
0.69   -  

37 1754 0.093 
ITT 

        
0.113  

     
0.060  

-   
0.005  

     
0.230  

     
0.019  

     
20.80  

        
4.37  

     
64.59       65.32  

        
93.16  

    
100.00  

PP 
        

0.105  
     

0.070  
-   

0.032  
     

0.243  
     

0.012  
     

13.25  
        

5.58  
     

75.58       76.28  
        

94.18  
    

100.00  

IPCW 
        

0.102  
     

0.082  
-   

0.060  
     

0.263  
     

0.009  
        

9.42  
        

8.09  
     

89.01       92.73  
        

93.22  
    

100.00  
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SNFTM 
        

0.102  
     

0.059  
-   

0.015  
     

0.218  
     

0.008  
        

9.04  
        

5.96  
     

63.86       79.48  
        

86.89  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.01  

        
0.01  

        
0.10  

           
0.56   -  

max 
MCSE  -   -   -   -   -  

        
0.21  

        
0.03  

        
0.02  

        
0.15  

           
0.81   -  

38 1822 0.055 
ITT 

        
0.084  

     
0.055  

-   
0.024  

     
0.191  

     
0.029  

     
53.09  

        
7.18  

  
100.39    101.67  

        
91.44  

    
100.00  

PP 
        

0.069  
     

0.061  
-   

0.051  
     

0.189  
     

0.015  
     

26.77  
        

7.34  
  

112.64    112.86  
        

93.91  
    

100.00  

IPCW 
        

0.072  
     

0.071  
-   

0.068  
     

0.211  
     

0.017  
     

31.10  
     

10.13  
  

132.08    132.67  
        

93.58  
    

100.00  

SNFTM 
        

0.068  
     

0.051  
-   

0.031  
     

0.168  
     

0.014  
     

24.77  
        

7.70  
     

93.42    116.21  
        

87.54  
    

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

           
0.56   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

           
0.77   -  

 

Table 38: Performance of methods across persistence non-adherence scenarios 
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Lower Upper 

39 1817 0.108 
ITT    0.131  

     
0.032  

     
0.068  

     
0.195  

     
0.023  

     
21.18  

     
29.29  

     
29.71  

        
1.42  

      
88.77  

        
100.00  

PP    0.130  
     

0.035  
     

0.060  
     

0.199  
     

0.021  
     

19.52  
     

32.04  
     

32.61  
        

1.53  
      

90.64  
        

100.00  

IPCW    0.127  
     

0.036  
     

0.057  
     

0.198  
     

0.019  
     

17.54  
     

33.20  
     

33.31  
        

1.53  
      

91.19  
        

100.00  

SNFTM    0.128  
     

0.031  
     

0.067  
     

0.190  
     

0.020  
     

18.34  
     

37.35  
     

28.94  
        

1.88  
      

83.32  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07  

         
0.87   -  

40 1812 0.063 
ITT    0.104  

     
0.030  

     
0.044  

     
0.163  

     
0.040  

     
63.44  

     
47.61  

     
48.02  

        
3.98  

      
73.01  

        
100.00  

PP    0.083  
     

0.031  
     

0.022  
     

0.145  
     

0.020  
     

31.76  
     

49.19  
     

49.72  
        

2.17  
      

90.89  
        

100.00  

IPCW    0.084  
     

0.032  
     

0.021  
     

0.147  
     

0.021  
     

33.00  
     

50.09  
     

50.69  
        

2.28  
      

90.89  
        

100.00  

SNFTM    0.083  
     

0.028  
     

0.029  
     

0.138  
     

0.020  
     

31.64  
     

53.45  
     

43.74  
        

2.44  
      

82.73  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.68   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

         
1.04   -  

41 1824 0.108 
ITT    0.138  

     
0.031  

     
0.077  

     
0.200  

     
0.030  

     
27.46  

     
28.52  

     
28.91  

        
1.70  

      
83.94  

        
100.00  

PP    0.127  
     

0.034  
     

0.061  
     

0.193  
     

0.019  
     

17.22  
     

30.50  
     

31.06  
        

1.33  
      

91.94  
        

100.00  

IPCW    0.129  
     

0.035  
     

0.059  
     

0.198  
     

0.020  
     

18.73  
     

33.08  
     

32.62  
        

1.57  
      

90.52  
        

100.00  

SNFTM    0.125  
     

0.031  
     

0.064  
     

0.185  
     

0.016  
     

15.21  
     

32.62  
     

28.46  
        

1.40  
      

88.43  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.64   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

         
0.86   -  
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42 1811 0.063 
ITT    0.099  

     
0.028  

     
0.044  

     
0.154  

     
0.035  

     
55.87  

     
43.08  

     
44.37  

        
3.15  

      
76.59  

        
100.00  

PP    0.078  
     

0.029  
     

0.021  
     

0.135  
     

0.015  
     

23.85  
     

45.39  
     

45.95  
        

1.66  
      

92.55  
        

100.00  

IPCW    0.078  
     

0.030  
     

0.019  
     

0.138  
     

0.015  
     

23.69  
     

47.62  
     

48.07  
        

1.79  
      

92.44  
        

100.00  

SNFTM    0.078  
     

0.026  
     

0.026  
     

0.129  
     

0.014  
     

22.57  
     

45.95  
     

41.72  
        

1.66  
      

88.85  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.05  

         
0.62   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
1.00   -  

43 1830 0.095 
ITT    0.147  

     
0.028  

     
0.092  

     
0.203  

     
0.053  

     
55.57  

     
30.78  

     
29.76  

        
3.82  

      
52.51  

        
100.00  

PP    0.120  
     

0.029  
     

0.064  
     

0.176  
     

0.025  
     

26.89  
     

30.76  
     

30.21  
        

1.58  
      

85.57  
        

100.00  

IPCW    0.120  
     

0.030  
     

0.062  
     

0.178  
     

0.025  
     

26.69  
     

32.20  
     

31.40  
        

1.66  
      

86.07  
        

100.00  

SNFTM    0.120  
     

0.026  
     

0.069  
     

0.171  
     

0.025  
     

26.68  
     

31.81  
     

27.53  
        

1.63  
      

80.11  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.81   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
1.17   -  

44 1809 0.169 
ITT    0.195  

     
0.032  

     
0.133  

     
0.257  

     
0.027  

     
15.78  

     
18.72  

     
18.84  

        
1.01  

      
86.07  

        
100.00  

PP    0.196  
     

0.035  
     

0.128  
     

0.263  
     

0.027  
     

16.04  
     

20.32  
     

20.54  
        

1.13  
      

88.23  
        

100.00  

IPCW    0.192  
     

0.035  
     

0.123  
     

0.262  
     

0.024  
     

14.18  
     

21.16  
     

20.93  
        

1.09  
      

89.17  
        

100.00  

SNFTM    0.194  
     

0.031  
     

0.134  
     

0.254  
     

0.026  
     

15.17  
     

22.57  
     

18.13  
        

1.25  
      

80.71  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
0.73   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06  

         
0.93   -  

45 1813 0.095 
ITT    0.148  

     
0.029  

     
0.090  

     
0.206  

     
0.053  

     
56.25  

     
31.27  

     
31.00  

        
3.92  

      
55.16  

        
100.00  

PP    0.121  
     

0.030  
     

0.062  
     

0.181  
     

0.027  
     

28.17  
     

31.70  
     

32.03  
        

1.70  
      

86.38  
        

100.00  

IPCW    0.122  
     

0.031  
     

0.062  
     

0.183  
     

0.027  
     

28.89  
     

32.60  
     

32.63  
        

1.80  
      

85.05  
        

100.00  

SNFTM    0.122  
     

0.027  
     

0.069  
     

0.174  
     

0.027  
     

28.36  
     

34.27  
     

28.09  
        

1.87  
      

78.49  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.81   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.05  

         
1.17   -  

46 1804 0.155 
ITT    0.192  

     
0.031  

     
0.130  

     
0.253  

     
0.037  

     
23.60  

     
19.26  

     
20.17  

        
1.44  

      
78.88  

        
100.00  

PP    0.183  
     

0.033  
     

0.119  
     

0.248  
     

0.028  
     

18.34  
     

20.44  
     

21.38  
        

1.17  
      

86.92  
        

100.00  

IPCW    0.184  
     

0.035  
     

0.116  
     

0.252  
     

0.029  
     

18.79  
     

22.21  
     

22.46  
        

1.31  
      

86.31  
        

100.00  

SNFTM    0.181  
     

0.030  
     

0.121  
     

0.241  
     

0.026  
     

16.77  
     

22.08  
     

19.61  
        

1.19  
      

82.59  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
0.79   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

         
0.96   -  

47 1827 0.087 
ITT    0.140  

     
0.028  

     
0.084  

     
0.195  

     
0.052  

     
59.65  

     
32.72  

     
32.39  

        
4.05  

      
54.30  

        
100.00  

PP    0.114  
     

0.029  
     

0.057  
     

0.170  
     

0.026  
     

29.81  
     

33.03  
     

32.89  
        

1.73  
      

85.77  
        

100.00  

IPCW    0.113  
     

0.030  
     

0.055  
     

0.172  
     

0.026  
     

29.61  
     

34.39  
     

34.25  
        

1.80  
      

86.75  
        

100.00  
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SNFTM    0.113  
     

0.026  
     

0.061  
     

0.164  
     

0.025  
     

28.76  
     

33.81  
     

30.01  
        

1.72  
      

81.17  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05  

         
0.79   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
1.17   -  

48 1818 0.155 
ITT    0.183  

     
0.032  

     
0.120  

     
0.245  

     
0.028  

     
17.85  

     
20.14  

     
20.50  

        
1.12  

      
85.31  

        
100.00  

PP    0.183  
     

0.035  
     

0.115  
     

0.251  
     

0.028  
     

18.05  
     

21.62  
     

22.39  
        

1.23  
      

87.02  
        

100.00  

IPCW    0.180  
     

0.035  
     

0.111  
     

0.249  
     

0.025  
     

16.10  
     

22.64  
     

22.83  
        

1.20  
      

89.05  
        

100.00  

SNFTM    0.181  
     

0.031  
     

0.121  
     

0.241  
     

0.026  
     

16.82  
     

25.03  
     

19.79  
        

1.41  
      

80.42  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
0.73   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06  

         
0.93   -  

49 1828 0.087 
ITT    0.140  

     
0.030  

     
0.083  

     
0.198  

     
0.053  

     
60.51  

     
34.42  

     
33.76  

        
4.24  

      
55.91  

        
100.00  

PP    0.115  
     

0.030  
     

0.056  
     

0.175  
     

0.028  
     

31.81  
     

35.85  
     

34.87  
        

2.01  
      

84.08  
        

100.00  

IPCW    0.116  
     

0.031  
     

0.055  
     

0.177  
     

0.028  
     

32.46  
     

36.97  
     

35.55  
        

2.12  
      

84.14  
        

100.00  

SNFTM    0.115  
     

0.027  
     

0.062  
     

0.167  
     

0.027  
     

31.15  
     

38.46  
     

30.59  
        

2.14  
      

75.93  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05  

         
0.85   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06  

         
1.16   -  

50 1768 0.064 
ITT    0.109  

     
0.057  

-   
0.003  

     
0.221  

     
0.046  

     
71.96  

     
88.23  

     
89.93  

        
8.23  

      
87.16  

        
100.00  

PP    0.086  
     

0.058  
-   

0.028  
     

0.200  
     

0.023  
     

35.59  
     

90.05  
     

91.69  
        

5.95  
      

93.50  
        

100.00  

IPCW    0.086  
     

0.076  
-   

0.062  
     

0.234  
     

0.023  
     

35.58  
  

122.69  
  

120.91       10.36  
      

92.39  
        

100.00  

SNFTM    0.089  
     

0.053  
-   

0.015  
     

0.192  
     

0.025  
     

39.38  
     

92.71  
     

83.32  
        

6.44  
      

88.69  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.02  

        
0.04  

        
0.13  

         
0.80   -  

51 1774 0.095 
ITT    0.148  

     
0.055  

     
0.040  

     
0.256  

     
0.053  

     
55.21  

     
56.87  

     
57.94  

        
5.98  

      
84.50  

        
100.00  

PP    0.120  
     

0.056  
     

0.011  
     

0.229  
     

0.025  
     

25.87  
     

58.60  
     

58.76  
        

3.90  
      

92.84  
        

100.00  

IPCW    0.121  
     

0.072  
-   

0.021  
     

0.263  
     

0.026  
     

26.88  
     

78.90  
     

77.66  
        

6.61  
      

93.20  
        

100.00  

SNFTM    0.122  
     

0.051  
     

0.023  
     

0.222  
     

0.027  
     

28.52  
     

60.33  
     

53.38  
        

4.24  
      

87.37  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.60   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.02  

        
0.04  

        
0.13  

         
0.86   -  

52 1823 0.095 
ITT    0.149  

     
0.057  

     
0.037  

     
0.261  

     
0.054  

     
56.51  

     
59.34  

     
60.27  

        
6.39  

      
83.87  

        
100.00  

PP    0.122  
     

0.059  
     

0.006  
     

0.238  
     

0.027  
     

28.33  
     

61.59  
     

62.29  
        

4.37  
      

92.38  
        

100.00  

IPCW    0.126  
     

0.071  
-   

0.013  
     

0.265  
     

0.031  
     

32.15  
     

75.95  
     

75.47  
        

6.47  
      

92.20  
        

100.00  

SNFTM    0.125  
     

0.052  
     

0.023  
     

0.226  
     

0.030  
     

31.09  
     

62.82  
     

54.51  
        

4.67  
      

86.56  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.62   -  



320 
 

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

         
0.86   -  

53 1806 0.055 
ITT    0.092  

     
0.055  

-   
0.016  

     
0.200  

     
0.037  

     
68.58  

  
102.42  

  
101.13  

        
8.29  

      
88.93  

        
100.00  

PP    0.074  
     

0.057  
-   

0.038  
     

0.186  
     

0.019  
     

35.50  
  

105.81  
  

104.69  
        

6.79  
      

93.24  
        

100.00  

IPCW    0.073  
     

0.074  
-   

0.072  
     

0.219  
     

0.019  
     

34.46  
  

139.05  
  

138.41       11.20  
      

93.51  
        

100.00  

SNFTM    0.074  
     

0.052  
-   

0.027  
     

0.175  
     

0.019  
     

35.37  
  

108.38  
     

94.93  
        

7.09  
      

89.76  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.58   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.02  

        
0.04  

        
0.13  

         
0.74   -  

54 1615 0.093 
ITT    0.112  

     
0.061  

-   
0.008  

     
0.232  

     
0.019  

     
20.33  

     
65.25  

     
65.76  

        
4.35  

      
93.25  

        
100.00  

PP    0.107  
     

0.068  
-   

0.026  
     

0.240  
     

0.014  
     

14.84  
     

73.61  
     

73.20  
        

5.25  
      

94.37  
        

100.00  

IPCW    0.101  
     

0.085  
-   

0.065  
     

0.267  
     

0.008  
        

8.57  
     

97.63  
     

91.76  
        

8.94  
      

92.57  
        

100.00  

SNFTM    0.106  
     

0.060  
-   

0.012  
     

0.223  
     

0.013  
     

13.72  
     

75.62  
     

64.44  
        

5.50  
      

88.73  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.01  

        
0.01  

        
0.11  

         
0.57   -  

max 
MCSE  -   -   -   -   -  

        
0.23  

        
0.03  

        
0.03  

        
0.16  

         
0.79   -  

55 1831 0.055 
ITT    0.089  

     
0.057  

-   
0.023  

     
0.201  

     
0.034  

     
63.03  

  
104.51  

  
104.53  

        
8.13  

      
89.84  

        
100.00  

PP    0.072  
     

0.060  
-   

0.046  
     

0.190  
     

0.017  
     

32.04  
  

110.67  
  

110.55  
        

7.24  
      

93.72  
        

100.00  

IPCW    0.074  
     

0.073  
-   

0.068  
     

0.216  
     

0.019  
     

35.18  
  

136.64  
  

134.17       10.86  
      

93.77  
        

100.00  

SNFTM    0.073  
     

0.052  
-   

0.030  
     

0.176  
     

0.018  
     

33.62  
  

112.27  
     

96.30  
        

7.49  
      

88.91  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.56   -  

max 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.03  

        
0.12  

         
0.73   -  

56 1799 0.088 
ITT    0.139  

     
0.055  

     
0.031  

     
0.247  

     
0.051  

     
58.19  

     
61.85  

     
62.99  

        
6.33  

      
85.49  

        
100.00  

PP    0.112  
     

0.056  
     

0.002  
     

0.222  
     

0.024  
     

27.33  
     

63.11  
     

64.01  
        

4.15  
      

93.00  
        

100.00  

IPCW    0.114  
     

0.073  
-   

0.029  
     

0.256  
     

0.026  
     

29.44  
     

85.19  
     

84.16  
        

7.13  
      

93.36  
        

100.00  

SNFTM    0.114  
     

0.051  
     

0.014  
     

0.214  
     

0.026  
     

29.67  
     

64.45  
     

58.22  
        

4.42  
      

89.61  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09  

         
0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.02  

        
0.04  

        
0.13  

         
0.83   -  
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Table 39: Performance of methods across initiation non-adherence scenarios 
N

o
. 

Su
cc

es
sf

u
l 

n
si

m
 

Tr
u

th
 

Method 

Mean 

estima
te 

SE of 
mean 

95% Confidence 
interval 

Bias 
Percent 
bias MSE 

Model 
SE 

Empiric
al SE 

Coverage 
(%) Su

cc
es

sf
u

l 
es

ti
m

at
io

n
 

(%
) 

Lower 
Uppe
r 

57 1815 0.108 
ITT 

     
0.162  

     
0.032  

     
0.100  

     
0.225     0.054  

     
49.83  

        
3.61  

     
29.27  

     
29.14     59.23  

        
100.00  

PP 
     

0.132  
     

0.035  
     

0.063  
     

0.201     0.023  
     

21.64  
        

1.62  
     

32.29  
     

32.09     89.86  
        

100.00  

IPCW 
     

0.131  
     

0.037  
     

0.058  
     

0.204     0.023  
     

21.08  
        

1.79  
     

34.41  
     

34.78     90.58  
        

100.00  

SNFTM 
     

0.129  
     

0.030  
     

0.069  
     

0.188     0.020  
     

18.54  
        

1.97  
     

28.10  
     

38.38     80.77  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        0.69   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07        1.15   -  

58 1830 0.063 
ITT 

     
0.126  

     
0.029  

     
0.068  

     
0.184     0.063  

     
99.11  

        
7.54  

     
46.57  

     
45.66     44.04  

        
100.00  

PP 
     

0.079  
     

0.030  
     

0.020  
     

0.138     0.016  
     

24.88  
        

1.77  
     

47.71  
     

46.73     91.97  
        

100.00  

IPCW 
     

0.080  
     

0.032  
     

0.018  
     

0.142     0.017  
     

26.30  
        

1.97  
     

50.01  
     

49.18     91.53  
        

100.00  

SNFTM 
     

0.081  
     

0.026  
     

0.029  
     

0.133     0.017  
     

27.61  
        

2.17  
     

41.67  
     

51.63     82.79  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.64   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.05        1.16   -  

59 1805 0.108 
ITT 

     
0.136  

     
0.031  

     
0.076  

     
0.196     0.027  

     
25.11  

        
1.56  

     
28.19  

     
28.38     85.32  

        
100.00  

PP 
     

0.118  
     

0.033  
     

0.052  
     

0.183     0.009  
        

8.69  
        

1.11  
     

30.77  
     

30.82     94.35  
        

100.00  

IPCW 
     

0.119  
     

0.035  
     

0.050  
     

0.188     0.011  
        

9.78  
        

1.32  
     

32.66  
     

33.46     92.96  
        

100.00  

SNFTM 
     

0.113  
     

0.030  
     

0.054  
     

0.172     0.004  
        

4.07  
        

1.33  
     

27.72  
     

34.86     87.76  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.54   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06        0.83   -  

60 1837 0.063 
ITT 

     
0.088  

     
0.026  

     
0.036  

     
0.139     0.024  

     
38.14  

        
2.00  

     
41.57  

     
41.27     85.57  

        
100.00  

PP 
     

0.068  
     

0.028  
     

0.013  
     

0.122     0.004  
        

6.57  
        

1.23  
     

44.00  
     

43.54     94.83  
        

100.00  

IPCW 
     

0.069  
     

0.029  
     

0.011  
     

0.126     0.005  
        

8.21  
        

1.38  
     

46.15  
     

45.89     95.05  
        

100.00  

SNFTM 
     

0.066  
     

0.025  
     

0.017  
     

0.115     0.003  
        

4.55  
        

1.30  
     

39.48  
     

45.12     91.29  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.04        0.51   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.82   -  

61 1805 0.108 
ITT 

     
0.148  

     
0.031  

     
0.088  

     
0.209     0.040  

     
36.91  

        
2.36  

     
28.50  

     
28.51     73.74  

        
100.00  

PP 
     

0.123  
     

0.035  
     

0.055  
     

0.191     0.014  
     

13.33  
        

1.31  
     

32.09  
     

32.13     93.19  
        

100.00  

IPCW 
     

0.122  
     

0.037  
     

0.050  
     

0.193     0.013  
     

12.37  
        

1.42  
     

33.72  
     

34.01     93.52  
        

100.00  

SNFTM 
     

0.116  
     

0.030  
     

0.057  
     

0.175     0.007  
        

6.83  
        

1.68  
     

27.82  
     

38.72     85.04  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.58   -  
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max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07        1.04   -  

62 1814 0.063 
ITT 

     
0.102  

     
0.027  

     
0.048  

     
0.155     0.038  

     
60.72  

        
3.46  

     
43.26  

     
42.18     72.66  

        
100.00  

PP 
     

0.071  
     

0.029  
     

0.013  
     

0.128     0.007  
     

11.34  
        

1.43  
     

46.35  
     

46.15     93.88  
        

100.00  

IPCW 
     

0.071  
     

0.031  
     

0.011  
     

0.132     0.008  
     

12.60  
        

1.59  
     

48.67  
     

48.54     94.38  
        

100.00  

SNFTM 
     

0.069  
     

0.025  
     

0.020  
     

0.119     0.006  
        

9.59  
        

1.57  
     

40.04  
     

48.93     88.81  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.04        0.54   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        1.05   -  

63 1817 0.169 
ITT 

     
0.213  

     
0.031  

     
0.152  

     
0.273     0.044  

     
26.21  

        
1.70  

     
18.27  

     
18.00     70.83  

        
100.00  

PP 
     

0.188  
     

0.033  
     

0.123  
     

0.252     0.019  
     

11.32  
        

0.83  
     

19.43  
     

19.12     91.25  
        

100.00  

IPCW 
     

0.188  
     

0.035  
     

0.119  
     

0.257     0.020  
     

11.69  
        

1.00  
     

20.96  
     

21.40     90.53  
        

100.00  

SNFTM 
     

0.185  
     

0.029  
     

0.127  
     

0.242     0.016  
        

9.50  
        

0.93  
     

17.51  
     

21.47     85.58  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06        1.07   -  

64 1811 0.095 
ITT 

     
0.149  

     
0.027  

     
0.095  

     
0.203     0.054  

     
57.27  

        
3.88  

     
28.96  

     
28.65     49.31  

        
100.00  

PP 
     

0.109  
     

0.028  
     

0.055  
     

0.163     0.014  
     

15.13  
        

0.99  
     

29.11  
     

28.54     91.99  
        

100.00  

IPCW 
     

0.110  
     

0.029  
     

0.053  
     

0.166     0.015  
     

16.07  
        

1.10  
     

30.49  
     

30.12     91.44  
        

100.00  

SNFTM 
     

0.112  
     

0.025  
     

0.063  
     

0.160     0.017  
     

17.79  
        

1.19  
     

26.36  
     

30.58     84.54  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.04        0.64   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        1.17   -  

65 1803 0.169 
ITT 

     
0.230  

     
0.032  

     
0.168  

     
0.293     0.062  

     
36.57  

        
2.84  

     
18.87  

     
18.66     51.36  

        
100.00  

PP 
     

0.201  
     

0.034  
     

0.134  
     

0.269     0.033  
     

19.37  
        

1.30  
     

20.41  
     

19.86     84.36  
        

100.00  

IPCW 
     

0.200  
     

0.037  
     

0.128  
     

0.272     0.031  
     

18.51  
        

1.41  
     

21.87  
     

22.19     85.14  
        

100.00  

SNFTM 
     

0.198  
     

0.030  
     

0.139  
     

0.256     0.029  
     

17.42  
        

1.55  
     

17.71  
     

24.78     74.43  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        0.84   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07        1.18   -  

66 1796 0.095 
ITT 

     
0.181  

     
0.030  

     
0.123  

     
0.240     0.087  

     
91.45  

        
8.88  

     
31.55  

     
31.83     18.21  

        
100.00  

PP 
     

0.120  
     

0.030  
     

0.062  
     

0.179     0.026  
     

26.97  
        

1.62  
     

31.44  
     

31.37     87.92  
        

100.00  

IPCW 
     

0.121  
     

0.031  
     

0.061  
     

0.182     0.027  
     

28.15  
        

1.77  
     

32.79  
     

32.78     87.31  
        

100.00  

SNFTM 
     

0.124  
     

0.026  
     

0.073  
     

0.175     0.030  
     

31.35  
        

2.23  
     

27.54  
     

37.00     73.16  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.77   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06        1.05   -  

67 1801 0.155 
ITT 

     
0.200  

     
0.031  

     
0.139  

     
0.260     0.045  

     
28.74  

        
1.85  

     
19.91  

     
19.12     69.91  

        
100.00  
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PP 
     

0.175  
     

0.033  
     

0.110  
     

0.239     0.020  
     

12.61  
        

0.89  
     

21.21  
     

20.38     91.39  
        

100.00  

IPCW 
     

0.176  
     

0.035  
     

0.106  
     

0.245     0.021  
     

13.35  
        

1.10  
     

22.83  
     

23.08     91.12  
        

100.00  

SNFTM 
     

0.172  
     

0.030  
     

0.114  
     

0.230     0.017  
     

11.09  
        

1.01  
     

19.11  
     

23.00     85.56  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.66   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.06        1.08   -  

68 1812 0.087 
ITT 

     
0.142  

     
0.028  

     
0.088  

     
0.196     0.054  

     
62.21  

        
4.27  

     
31.55  

     
31.76     48.45  

        
100.00  

PP 
     

0.102  
     

0.028  
     

0.048  
     

0.157     0.015  
     

16.95  
        

1.19  
     

31.71  
     

32.77     91.11  
        

100.00  

IPCW 
     

0.103  
     

0.029  
     

0.046  
     

0.160     0.016  
     

18.17  
        

1.31  
     

33.27  
     

34.20     90.78  
        

100.00  

SNFTM 
     

0.105  
     

0.025  
     

0.056  
     

0.155     0.018  
     

20.51  
        

1.41  
     

28.72  
     

34.51     83.28  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.67   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        1.17   -  

69 1777 0.155 
ITT 

     
0.217  

     
0.032  

     
0.155  

     
0.280     0.062  

     
40.25  

        
3.15  

     
20.53  

     
20.26     49.75  

        
100.00  

PP 
     

0.188  
     

0.034  
     

0.120  
     

0.256     0.033  
     

21.28  
        

1.42  
     

22.24  
     

21.46     84.86  
        

100.00  

IPCW 
     

0.188  
     

0.037  
     

0.116  
     

0.260     0.033  
     

21.21  
        

1.58  
     

23.81  
     

23.87     85.31  
        

100.00  

SNFTM 
     

0.185  
     

0.030  
     

0.126  
     

0.244     0.030  
     

19.36  
        

1.67  
     

19.31  
     

26.48     74.51  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.01  

        
0.00  

        
0.05        0.84   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.01  

        
0.07        1.19   -  

70 1776 0.087 
ITT 

     
0.174  

     
0.030  

     
0.115  

     
0.233     0.087  

     
99.21  

        
9.66  

     
34.36  

     
34.73     18.30  

        
100.00  

PP 
     

0.115  
     

0.030  
     

0.056  
     

0.174     0.027  
     

31.43  
        

1.88  
     

34.25  
     

34.18     84.91  
        

100.00  

IPCW 
     

0.116  
     

0.031  
     

0.055  
     

0.177     0.029  
     

32.82  
        

2.07  
     

35.72  
     

35.90     84.63  
        

100.00  

SNFTM 
     

0.119  
     

0.026  
     

0.067  
     

0.170     0.031  
     

35.68  
        

2.59  
     

30.00  
     

41.12     70.55  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.85   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.06        1.08   -  

71 1791 0.093 
ITT 

     
0.120  

     
0.031  

     
0.061  

     
0.180     0.027  

     
29.45  

        
1.89  

     
32.88  

     
34.19     83.70  

        
100.00  

PP 
     

0.103  
     

0.033  
     

0.037  
     

0.168     0.010  
     

10.45  
        

1.40  
     

35.90  
     

37.36     92.74  
        

100.00  

IPCW 
     

0.104  
     

0.036  
     

0.035  
     

0.174     0.011  
     

12.05  
        

1.68  
     

38.21  
     

40.71     92.35  
        

100.00  

SNFTM 
     

0.098  
     

0.030  
     

0.039  
     

0.157     0.005  
        

5.04  
        

1.76  
     

32.34  
     

43.18     85.37  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.08  

        
0.00  

        
0.00  

        
0.05        0.61   -  

max 
MCSE  -   -   -   -   -  

        
0.09  

        
0.01  

        
0.00  

        
0.07        0.87   -  

72 1794 0.054 
ITT 

     
0.078  

     
0.026  

     
0.026  

     
0.130     0.023  

     
43.13  

        
2.36  

     
48.71  

     
49.87     85.56  

        
100.00  

PP 
     

0.059  
     

0.028  
     

0.004  
     

0.114     0.004  
        

7.95  
        

1.56  
     

51.50  
     

52.95     94.15  
        

100.00  

IPCW 
     

0.060  
     

0.029  
     

0.002  
     

0.117     0.005  
        

9.87  
        

1.76  
     

53.97  
     

56.03     93.65  
        

100.00  
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SNFTM 
     

0.058  
     

0.025  
     

0.009  
     

0.107     0.003  
        

6.19  
        

1.70  
     

46.23  
     

55.54     89.97  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.06  

        
0.00  

        
0.00  

        
0.05        0.55   -  

max 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.83   -  

73 1796 0.093 
ITT 

     
0.134  

     
0.031  

     
0.073  

     
0.194     0.041  

     
43.54  

        
2.89  

     
33.20  

     
34.74     73.22  

        
100.00  

PP 
     

0.108  
     

0.035  
     

0.040  
     

0.177     0.015  
     

16.46  
        

1.67  
     

37.40  
     

39.02     91.59  
        

100.00  

IPCW 
     

0.108  
     

0.037  
     

0.037  
     

0.180     0.015  
     

16.37  
        

1.83  
     

39.28  
     

41.18     91.76  
        

100.00  

SNFTM 
     

0.101  
     

0.030  
     

0.041  
     

0.160     0.007  
        

8.01  
        

2.10  
     

32.49  
     

46.84     83.02  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.08  

        
0.00  

        
0.00  

        
0.05        0.65   -  

max 
MCSE  -   -   -   -   -  

        
0.10  

        
0.01  

        
0.00  

        
0.07        1.04   -  

74 1804 0.054 
ITT 

     
0.092  

     
0.028  

     
0.039  

     
0.146     0.038  

     
69.97  

        
4.12  

     
50.61  

     
51.84     71.56  

        
100.00  

PP 
     

0.062  
     

0.029  
     

0.004  
     

0.120     0.007  
     

13.67  
        

1.84  
     

54.24  
     

56.57     93.18  
        

100.00  

IPCW 
     

0.063  
     

0.031  
     

0.002  
     

0.123     0.009  
     

15.67  
        

2.01  
     

56.80  
     

58.78     93.35  
        

100.00  

SNFTM 
     

0.061  
     

0.025  
     

0.011  
     

0.110     0.006  
     

11.40  
        

2.02  
     

46.84  
     

59.93     87.20  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.07  

        
0.00  

        
0.00  

        
0.05        0.59   -  

max 
MCSE  -   -   -   -   -  

        
0.08  

        
0.01  

        
0.00  

        
0.05        1.06   -  

75 1421 0.108 
ITT 

     
0.210  

     
0.060  

     
0.093  

     
0.328     0.102  

     
94.27  

     
12.99  

     
55.20  

     
55.71     58.69  

        
100.00  

PP 
     

0.185  
     

0.064  
     

0.060  
     

0.309     0.076  
     

70.48  
        

9.22  
     

58.86  
     

59.53     76.07  
        

100.00  

IPCW 
     

0.181  
     

0.090  
     

0.004  
     

0.358     0.073  
     

67.10  
     

13.57  
     

84.52  
     

89.62     82.30  
        

100.00  

SNFTM 
     

0.180  
     

0.057  
     

0.068  
     

0.292     0.072  
     

66.31  
        

9.02  
     

52.72  
     

62.74     71.01  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.03  

        
0.01  

        
0.11        1.01   -  

max 
MCSE  -   -   -   -   -  

        
0.26  

        
0.05  

        
0.05  

        
0.18        1.31   -  

76 1638 0.064 
ITT 

     
0.150  

     
0.054  

     
0.045  

     
0.256     0.087  

  
136.73  

     
16.33  

     
84.76  

     
83.75     62.39  

        
100.00  

PP 
     

0.110  
     

0.054  
     

0.004  
     

0.216     0.046  
     

73.08  
        

7.88  
     

85.19  
     

84.10     86.87  
        

100.00  

IPCW 
     

0.113  
     

0.073  
-   

0.030  
     

0.256     0.050  
     

77.95  
     

12.96  
  

117.25  
  

119.68     88.95  
        

100.00  

SNFTM 
     

0.115  
     

0.049  
     

0.020  
     

0.210     0.052  
     

81.47  
        

8.83  
     

76.70  
     

85.22     78.75  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.02  

        
0.01  

        
0.09        0.78   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.03  

        
0.05  

        
0.13        1.20   -  

77 1344 0.108 
ITT 

     
0.230  

     
0.062  

     
0.109  

     
0.350     0.121  

  
112.02  

     
16.92  

     
56.89  

     
55.47     50.67  

        
100.00  

PP 
     

0.201  
     

0.067  
     

0.070  
     

0.332     0.093  
     

85.41  
     

11.80  
     

61.67  
     

60.00     70.54  
        

100.00  

IPCW 
     

0.202  
     

0.090  
     

0.026  
     

0.378     0.093  
     

86.19  
     

16.60  
     

83.67  
     

88.88     78.79  
        

100.00  

SNFTM 
     

0.199  
     

0.058  
     

0.086  
     

0.311     0.090  
     

83.26  
     

12.37  
     

53.20  
     

67.02     61.38  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.04  

        
0.01  

        
0.12        1.11   -  
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max 
MCSE  -   -   -   -   -  

        
0.26  

        
0.06  

        
0.04  

        
0.19        1.36   -  

78 1714 0.064 
ITT 

     
0.183  

     
0.058  

     
0.069  

     
0.297     0.119  

  
187.89  

     
27.78  

     
91.97  

     
91.81     46.27  

        
100.00  

PP 
     

0.123  
     

0.058  
     

0.009  
     

0.237     0.060  
     

93.79  
     

10.86  
     

91.96  
     

91.13     82.73  
        

100.00  

IPCW 
     

0.128  
     

0.075  
-   

0.019  
     

0.275     0.064  
  

101.39  
     

15.98  
  

119.64  
  

121.95     84.89  
        

100.00  

SNFTM 
     

0.129  
     

0.050  
     

0.030  
     

0.228     0.065  
  

102.40  
     

12.73  
     

79.75  
     

97.72     70.89  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.02  

        
0.01  

        
0.10        0.87   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.04  

        
0.03  

        
0.13        1.20   -  

79 1398 0.108 
ITT 

     
0.207  

     
0.059  

     
0.092  

     
0.322     0.099  

     
91.07  

     
12.23  

     
54.39  

     
54.72     60.09  

        
100.00  

PP 
     

0.182  
     

0.063  
     

0.058  
     

0.307     0.074  
     

68.42  
        

8.83  
     

58.62  
     

58.89     77.11  
        

100.00  

IPCW 
     

0.180  
     

0.088  
     

0.007  
     

0.353     0.071  
     

65.85  
     

13.24  
     

82.62  
     

88.82     81.60  
        

100.00  

SNFTM 
     

0.178  
     

0.057  
     

0.067  
     

0.289     0.070  
     

64.26  
        

8.63  
     

52.44  
     

61.94     71.39  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.03  

        
0.01  

        
0.11        1.04   -  

max 
MCSE  -   -   -   -   -  

        
0.26  

        
0.05  

        
0.05  

        
0.18        1.31   -  

80 1701 0.064 
ITT 

     
0.140  

     
0.052  

     
0.038  

     
0.242     0.077  

  
120.46  

     
13.47  

     
82.09  

     
81.81     68.96  

        
100.00  

PP 
     

0.107  
     

0.053  
     

0.002  
     

0.211     0.043  
     

67.67  
        

7.28  
     

84.24  
     

82.95     88.07  
        

100.00  

IPCW 
     

0.109  
     

0.072  
-   

0.032  
     

0.250     0.045  
     

71.53  
     

12.19  
  

115.61  
  

118.61     89.18  
        

100.00  

SNFTM 
     

0.110  
     

0.048  
     

0.017  
     

0.203     0.046  
     

73.12  
        

7.89  
     

75.42  
     

84.15     81.25  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09        0.76   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.03  

        
0.05  

        
0.13        1.12   -  

81 1471 0.108 
ITT 

     
0.227  

     
0.058  

     
0.113  

     
0.340     0.118  

  
109.24  

     
15.96  

     
53.52  

     
52.94     47.31  

        
100.00  

PP 
     

0.195  
     

0.064  
     

0.070  
     

0.320     0.087  
     

80.07  
     

10.52  
     

58.89  
     

57.44     71.65  
        

100.00  

IPCW 
     

0.193  
     

0.083  
     

0.029  
     

0.356     0.084  
     

77.95  
     

13.50  
     

77.73  
     

79.97     79.95  
        

100.00  

SNFTM 
     

0.191  
     

0.055  
     

0.083  
     

0.298     0.082  
     

76.02  
     

10.32  
     

50.67  
     

61.21     64.17  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.15  

        
0.03  

        
0.01  

        
0.11        1.04   -  

max 
MCSE  -   -   -   -   -  

        
0.23  

        
0.05  

        
0.03  

        
0.16        1.30   -  

82 1715 0.064 
ITT 

     
0.168  

     
0.056  

     
0.059  

     
0.277     0.105  

  
165.09  

     
22.19  

     
87.68  

     
87.61     52.24  

        
100.00  

PP 
     

0.116  
     

0.057  
     

0.005  
     

0.228     0.053  
     

83.14  
        

9.36  
     

90.08  
     

88.46     85.66  
        

100.00  

IPCW 
     

0.120  
     

0.073  
-   

0.024  
     

0.263     0.056  
     

88.39  
     

13.85  
  

116.82  
  

118.28     86.60  
        

100.00  

SNFTM 
     

0.120  
     

0.049  
     

0.024  
     

0.217     0.057  
     

89.57  
     

10.34  
     

77.74  
     

90.85     75.80  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.02  

        
0.01  

        
0.10        0.82   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.03  

        
0.03  

        
0.13        1.21   -  

83 1313 0.155 
ITT 

     
0.127  

     
0.060  

     
0.009  

     
0.245  - 0.028  

-   
17.85  

        
3.07  

     
38.85  

     
40.79     90.94  

        
100.00  
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PP 
     

0.105  
     

0.065  
-   

0.022  
     

0.232  - 0.050  
-   

32.28  
        

4.51  
     

42.00  
     

43.19     86.75  
        

100.00  

IPCW 
     

0.110  
     

0.092  
-   

0.071  
     

0.291  - 0.045  
-   

28.96  
        

7.49  
     

60.33  
     

63.20     90.47  
        

100.00  

SNFTM 
     

0.103  
     

0.059  
-   

0.012  
     

0.218  - 0.052  
-   

33.55  
        

4.85  
     

37.80  
     

44.77     80.50  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.17  

        
0.02  

        
0.01  

        
0.12        0.79   -  

max 
MCSE  -   -   -   -   -  

        
0.27  

        
0.05  

        
0.05  

        
0.19        1.09   -  

84 1680 0.088 
ITT 

     
0.091  

     
0.054  

-   
0.015  

     
0.197     0.003  

        
3.94  

        
3.17  

     
61.70  

     
59.96     95.00  

        
100.00  

PP 
     

0.061  
     

0.055  
-   

0.047  
     

0.170  - 0.026  
-   

30.04  
        

4.13  
     

63.19  
     

61.62     91.96  
        

100.00  

IPCW 
     

0.066  
     

0.076  
-   

0.082  
     

0.214  - 0.022  
-   

25.05  
        

7.51  
     

90.32  
     

89.02     92.83  
        

100.00  

SNFTM 
     

0.063  
     

0.050  
-   

0.034  
     

0.161  - 0.024  
-   

27.71  
        

4.12  
     

56.84  
     

62.65     89.23  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.01  

        
0.01  

        
0.09        0.53   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.03  

        
0.28  

        
0.14        0.76   -  

85 1416 0.155 
ITT 

     
0.150  

     
0.059  

     
0.035  

     
0.265  - 0.005  

-      
3.43  

        
2.32  

     
37.95  

     
38.51     94.99  

        
100.00  

PP 
     

0.118  
     

0.065  
-   

0.009  
     

0.246  - 0.037  
-   

23.60  
        

3.71  
     

42.01  
     

42.82     92.02  
        

100.00  

IPCW 
     

0.127  
     

0.087  
-   

0.043  
     

0.297  - 0.028  
-   

17.91  
        

5.66  
     

56.38  
     

57.70     93.01  
        

100.00  

SNFTM 
     

0.117  
     

0.057  
     

0.006  
     

0.227  - 0.039  
-   

24.83  
        

4.26  
     

36.53  
     

46.18     83.12  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.01  

        
0.01  

        
0.11        0.58   -  

max 
MCSE  -   -   -   -   -  

        
0.24  

        
0.03  

        
0.03  

        
0.17        1.00   -  

86 1715 0.088 
ITT 

     
0.117  

     
0.058  

     
0.004  

     
0.230     0.029  

     
32.90  

        
4.77  

     
65.76  

     
65.94     91.08  

        
100.00  

PP 
     

0.069  
     

0.059  
-   

0.046  
     

0.185  - 0.019  
-   

21.28  
        

4.15  
     

67.38  
     

65.40     93.29  
        

100.00  

IPCW 
     

0.075  
     

0.076  
-   

0.075  
     

0.225  - 0.013  
-   

14.41  
        

7.11  
     

88.28  
     

88.87     93.46  
        

100.00  

SNFTM 
     

0.072  
     

0.051  
-   

0.028  
     

0.172  - 0.015  
-   

17.62  
        

4.28  
     

58.33  
     

67.54     88.80  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.14  

        
0.01  

        
0.01  

        
0.10        0.60   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.02  

        
0.03  

        
0.13        0.76   -  

87 1415 0.093 
ITT 

     
0.192  

     
0.059  

     
0.076  

     
0.307     0.098  

  
105.75  

     
14.32  

     
63.36  

     
64.81     59.51  

        
100.00  

PP 
     

0.168  
     

0.064  
     

0.043  
     

0.292     0.075  
     

80.27  
     

10.45  
     

68.31  
     

69.15     77.24  
        

100.00  

IPCW 
     

0.170  
     

0.090  
-   

0.006  
     

0.346     0.077  
     

82.73  
     

17.15  
     

97.71  
  

107.61     81.30  
        

100.00  

SNFTM 
     

0.164  
     

0.057  
     

0.053  
     

0.276     0.071  
     

76.34  
     

10.11  
     

61.23  
     

70.93     73.29  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.03  

        
0.01  

        
0.11        1.04   -  

max 
MCSE  -   -   -   -   -  

        
0.27  

        
0.06  

        
0.05  

        
0.19        1.30   -  

88 1696 0.055 
ITT 

     
0.134  

     
0.052  

     
0.031  

     
0.236     0.079  

  
144.81  

     
16.26  

     
95.94  

     
93.99     67.57  

        
100.00  

PP 
     

0.100  
     

0.053  
-   

0.005  
     

0.205     0.046  
     

83.39  
        

8.82  
     

98.43  
     

96.00     87.32  
        

100.00  

IPCW 
     

0.103  
     

0.073  
-   

0.039  
     

0.245     0.048  
     

88.60  
     

14.93  
  

136.37  
  

139.73     88.72  
        

100.00  
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SNFTM 
     

0.104  
     

0.048  
     

0.010  
     

0.198     0.049  
     

90.09  
        

9.75  
     

88.21  
     

98.76     79.48  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.12  

        
0.02  

        
0.01  

        
0.09        0.77   -  

max 
MCSE  -   -   -   -   -  

        
0.19  

        
0.03  

        
0.07  

        
0.13        1.14   -  

89 1461 0.093 
ITT 

     
0.210  

     
0.060  

     
0.092  

     
0.328     0.117  

  
125.65  

     
18.83  

     
64.83  

     
66.60     50.65  

        
100.00  

PP 
     

0.179  
     

0.066  
     

0.049  
     

0.309     0.086  
     

92.41  
     

12.98  
     

71.35  
     

73.49     73.03  
        

100.00  

IPCW 
     

0.181  
     

0.089  
     

0.007  
     

0.356     0.088  
     

94.85  
     

17.72  
     

96.69  
  

100.20     80.08  
        

100.00  

SNFTM 
     

0.174  
     

0.057  
     

0.062  
     

0.287     0.081  
     

87.31  
     

12.89  
     

61.50  
     

78.87     65.23  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.16  

        
0.04  

        
0.01  

        
0.11        1.04   -  

max 
MCSE  -   -   -   -   -  

        
0.24  

        
0.06  

        
0.04  

        
0.17        1.31   -  

90 1778 0.055 
ITT 

     
0.164  

     
0.056  

     
0.054  

     
0.273     0.109  

  
199.64  

     
27.52  

  
102.59  

  
102.85     49.72  

        
100.00  

PP 
     

0.110  
     

0.057  
-   

0.002  
     

0.223     0.056  
  

102.37  
     

11.58  
  

105.29  
  

103.65     84.25  
        

100.00  

IPCW 
     

0.115  
     

0.074  
-   

0.030  
     

0.259     0.060  
  

110.13  
     

16.95  
  

137.57  
  

137.61     87.01  
        

100.00  

SNFTM 
     

0.114  
     

0.049  
     

0.017  
     

0.210     0.059  
  

108.28  
     

12.66  
     

90.82  
  

107.13     72.48  
        

100.00  

min 
MCSE  -   -   -   -   -  

        
0.13  

        
0.02  

        
0.01  

        
0.09        0.80   -  

max 
MCSE  -   -   -   -   -  

        
0.18  

        
0.03  

        
0.04  

        
0.13        1.19   -  
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Appendix F: Results for secondary estimands 

Table 40: Results for secondary estimands across implementation non-adherence scenarios 

No. Method 
True 
RMST0 

RMST0 
estimate 

SE of 
mean 
RMST0 

True 
RMST0 

RMST1 
estimate 

SE of 
mean 
RMST1 

True 
RMST0 HR 

Estimate 
SE of mean 
HR 

1 
ITT 

0.608 
0.471 0.023 

0.716 
0.606 0.023 

0.649 
0.630 0.071 

PP 0.537 0.027 0.668 0.025 0.624 0.085 

IPCW 0.545 0.027 0.673 0.026 0.627 0.087 

SNFTM 0.547 0.023 0.676 0.023 0.625 0.074 

2 
ITT 

0.806 
0.684 0.023 

0.869 
0.790 0.020 

0.649 
0.614 0.088 

PP 0.758 0.025 0.841 0.021 0.628 0.121 

IPCW 0.757 0.026 0.840 0.021 0.625 0.121 

SNFTM 0.759 0.022 0.841 0.022 0.627 0.103 

3 
ITT 

0.608 
0.534 0.023 

0.716 
0.670 0.022 

0.649 
0.608 0.071 

PP 0.573 0.026 0.697 0.024 0.624 0.085 

IPCW 0.580 0.026 0.703 0.024 0.622 0.088 

SNFTM 0.583 0.023 0.704 0.023 0.628 0.077 

4 
ITT 

0.806 
0.748 0.022 

0.869 
0.839 0.018 

0.649 
0.597 0.095 

PP 0.785 0.023 0.859 0.019 0.629 0.122 

IPCW 0.784 0.024 0.858 0.020 0.629 0.124 

SNFTM 0.788 0.021 0.860 0.021 0.635 0.109 

5 
ITT 

0.608 
0.516 0.022 

0.716 
0.647 0.022 

0.649 
0.626 0.072 

PP 0.566 0.027 0.689 0.025 0.631 0.089 

IPCW 0.572 0.027 0.693 0.025 0.634 0.091 

SNFTM 0.579 0.023 0.699 0.023 0.634 0.077 

6 
ITT 

0.806 
0.733 0.022 

0.869 
0.824 0.019 

0.649 
0.616 0.095 

PP 0.781 0.025 0.855 0.020 0.639 0.129 

IPCW 0.779 0.025 0.853 0.021 0.637 0.128 

SNFTM 0.785 0.021 0.857 0.021 0.639 0.109 

7 
ITT 

0.608 
0.496 0.023 

0.777 
0.705 0.022 

0.484 
0.462 0.056 

PP 0.549 0.026 0.747 0.023 0.459 0.065 

IPCW 0.556 0.026 0.752 0.023 0.458 0.067 

SNFTM 0.555 0.023 0.751 0.023 0.459 0.059 

8 
ITT 

0.806 
0.707 0.023 

0.901 
0.855 0.017 

0.482 
0.440 0.071 

PP 0.766 0.024 0.885 0.017 0.454 0.092 

IPCW 0.764 0.025 0.884 0.018 0.454 0.094 

SNFTM 0.766 0.022 0.885 0.022 0.453 0.082 

9 
ITT 

0.608 
0.471 0.023 

0.777 
0.672 0.022 

0.484 
0.487 0.057 

PP 0.536 0.027 0.734 0.024 0.467 0.068 

IPCW 0.543 0.027 0.738 0.025 0.470 0.070 

SNFTM 0.546 0.023 0.741 0.023 0.467 0.059 

10 
ITT 

0.806 
0.684 0.023 

0.901 
0.835 0.018 

0.482 
0.465 0.072 

PP 0.758 0.026 0.878 0.019 0.466 0.098 

IPCW 0.757 0.026 0.878 0.019 0.466 0.098 
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SNFTM 0.760 0.022 0.880 0.022 0.467 0.083 

11 
ITT 

0.609 
0.497 0.023 

0.764 
0.693 0.022 

0.518 
0.488 0.058 

PP 0.550 0.026 0.735 0.023 0.485 0.067 

IPCW 0.557 0.026 0.740 0.023 0.485 0.070 

SNFTM 0.558 0.023 0.740 0.023 0.489 0.062 

12 
ITT 

0.807 
0.707 0.023 

0.894 
0.848 0.018 

0.517 
0.464 0.074 

PP 0.766 0.024 0.879 0.018 0.481 0.096 

IPCW 0.765 0.025 0.878 0.018 0.482 0.098 

SNFTM 0.767 0.022 0.879 0.022 0.486 0.086 

13 
ITT 

0.609 
0.472 0.023 

0.764 
0.660 0.022 

0.518 
0.513 0.060 

PP 0.537 0.027 0.722 0.024 0.493 0.071 

IPCW 0.544 0.027 0.726 0.025 0.496 0.072 

SNFTM 0.548 0.023 0.730 0.023 0.495 0.062 

14 
ITT 

0.807 
0.684 0.023 

0.894 
0.827 0.019 

0.517 
0.490 0.074 

PP 0.759 0.026 0.873 0.019 0.490 0.101 

IPCW 0.757 0.026 0.872 0.020 0.490 0.101 

SNFTM 0.761 0.022 0.874 0.022 0.492 0.086 

15 
ITT 

0.610 
0.534 0.023 

0.703 
0.655 0.022 

0.694 
0.643 0.074 

PP 0.573 0.026 0.683 0.024 0.661 0.088 

IPCW 0.579 0.026 0.689 0.024 0.658 0.091 

SNFTM 0.583 0.023 0.690 0.023 0.668 0.081 

16 
ITT 

0.807 
0.749 0.022 

0.862 
0.830 0.018 

0.696 
0.640 0.100 

PP 0.786 0.024 0.851 0.019 0.672 0.128 

IPCW 0.785 0.024 0.850 0.020 0.673 0.130 

SNFTM 0.790 0.021 0.853 0.021 0.677 0.115 

17 
ITT 

0.610 
0.517 0.023 

0.703 
0.633 0.022 

0.694 
0.662 0.075 

PP 0.566 0.027 0.675 0.025 0.667 0.093 

IPCW 0.571 0.027 0.679 0.025 0.670 0.095 

SNFTM 0.580 0.023 0.685 0.023 0.676 0.081 

18 
ITT 

0.807 
0.734 0.022 

0.862 
0.815 0.019 

0.696 
0.655 0.099 

PP 0.782 0.025 0.847 0.020 0.679 0.135 

IPCW 0.780 0.025 0.846 0.021 0.676 0.135 

SNFTM 0.787 0.021 0.851 0.021 0.680 0.115 

19 
ITT 

0.608 
0.496 0.042 

0.716 
0.642 0.042 

0.662 
0.605 0.130 

PP 0.549 0.048 0.683 0.044 0.620 0.154 

IPCW 0.565 0.058 0.699 0.057 0.626 0.203 

SNFTM 0.559 0.043 0.692 0.043 0.621 0.140 

20 
ITT 

0.805 
0.702 0.044 

0.868 
0.813 0.038 

0.674 
0.589 0.173 

PP 0.762 0.047 0.848 0.038 0.630 0.232 

IPCW 0.758 0.056 0.845 0.048 0.648 0.288 

SNFTM 0.763 0.042 0.851 0.042 0.623 0.205 

21 
ITT 

0.608 
0.471 0.044 

0.716 
0.605 0.045 

0.662 
0.640 0.140 

PP 0.537 0.052 0.667 0.049 0.637 0.170 

IPCW 0.554 0.061 0.680 0.058 0.653 0.212 

SNFTM 0.550 0.044 0.678 0.044 0.640 0.149 
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22 
ITT 

0.805 
0.679 0.045 

0.868 
0.786 0.040 

0.674 
0.624 0.175 

PP 0.755 0.050 0.840 0.041 0.647 0.246 

IPCW 0.750 0.057 0.837 0.048 0.665 0.286 

SNFTM 0.757 0.042 0.843 0.042 0.647 0.210 

23 
ITT 

0.608 
0.538 0.044 

0.716 
0.671 0.043 

0.662 
0.622 0.142 

PP 0.577 0.050 0.697 0.046 0.645 0.172 

IPCW 0.594 0.060 0.711 0.058 0.660 0.226 

SNFTM 0.589 0.044 0.706 0.044 0.651 0.156 

24 
ITT 

0.805 
0.744 0.042 

0.868 
0.836 0.035 

0.674 
0.614 0.190 

PP 0.782 0.046 0.858 0.037 0.656 0.250 

IPCW 0.778 0.054 0.854 0.047 0.684 0.312 

SNFTM 0.786 0.040 0.862 0.040 0.653 0.222 

25 
ITT 

0.608 
0.515 0.043 

0.716 
0.646 0.043 

0.662 
0.636 0.142 

PP 0.566 0.052 0.687 0.048 0.650 0.179 

IPCW 0.582 0.060 0.698 0.056 0.670 0.220 

SNFTM 0.580 0.044 0.701 0.044 0.651 0.155 

26 
ITT 

0.805 
0.730 0.043 

0.868 
0.822 0.037 

0.674 
0.630 0.189 

PP 0.779 0.048 0.854 0.039 0.666 0.265 

IPCW 0.774 0.055 0.851 0.046 0.682 0.305 

SNFTM 0.783 0.041 0.859 0.041 0.662 0.225 

27 
ITT 

0.608 
0.496 0.044 

0.776 
0.707 0.042 

0.493 
0.465 0.110 

PP 0.549 0.050 0.748 0.044 0.466 0.128 

IPCW 0.568 0.061 0.762 0.055 0.474 0.173 

SNFTM 0.559 0.044 0.755 0.044 0.465 0.116 

28 
ITT 

0.805 
0.705 0.045 

0.900 
0.854 0.034 

0.500 
0.450 0.142 

PP 0.765 0.047 0.884 0.034 0.474 0.189 

IPCW 0.761 0.056 0.881 0.043 0.492 0.236 

SNFTM 0.766 0.042 0.886 0.042 0.469 0.167 

29 
ITT 

0.608 
0.471 0.044 

0.776 
0.674 0.043 

0.493 
0.491 0.112 

PP 0.536 0.052 0.735 0.047 0.475 0.135 

IPCW 0.554 0.061 0.744 0.054 0.488 0.168 

SNFTM 0.549 0.044 0.744 0.044 0.475 0.117 

30 
ITT 

0.805 
0.681 0.045 

0.900 
0.832 0.036 

0.500 
0.477 0.143 

PP 0.757 0.050 0.877 0.037 0.488 0.200 

IPCW 0.753 0.057 0.875 0.042 0.502 0.231 

SNFTM 0.758 0.043 0.880 0.043 0.481 0.168 

31 
ITT 

0.609 
0.499 0.044 

0.764 
0.691 0.042 

0.528 
0.500 0.116 

PP 0.550 0.050 0.734 0.044 0.499 0.135 

IPCW 0.568 0.061 0.746 0.056 0.512 0.184 

SNFTM 0.562 0.045 0.742 0.045 0.503 0.124 

32 
ITT 

0.806 
0.707 0.045 

0.894 
0.846 0.034 

0.537 
0.484 0.150 

PP 0.768 0.047 0.877 0.034 0.512 0.200 

IPCW 0.764 0.056 0.876 0.043 0.522 0.246 

SNFTM 0.768 0.042 0.880 0.042 0.505 0.177 

33 
ITT 

0.609 
0.473 0.044 

0.764 
0.659 0.043 

0.528 
0.524 0.118 
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PP 0.538 0.052 0.722 0.047 0.508 0.142 

IPCW 0.555 0.061 0.734 0.055 0.514 0.174 

SNFTM 0.551 0.044 0.733 0.044 0.505 0.123 

34 
ITT 

0.806 
0.683 0.045 

0.894 
0.823 0.037 

0.537 
0.510 0.151 

PP 0.760 0.050 0.871 0.037 0.524 0.213 

IPCW 0.755 0.057 0.870 0.043 0.532 0.243 

SNFTM 0.763 0.042 0.874 0.042 0.521 0.180 

35 
ITT 

0.609 
0.538 0.044 

0.702 
0.655 0.042 

0.706 
0.663 0.149 

PP 0.578 0.050 0.683 0.045 0.690 0.181 

IPCW 0.594 0.060 0.696 0.059 0.710 0.242 

SNFTM 0.592 0.044 0.693 0.044 0.700 0.166 

36 
ITT 

0.806 
0.745 0.042 

0.861 
0.829 0.036 

0.722 
0.648 0.198 

PP 0.784 0.046 0.852 0.037 0.688 0.259 

IPCW 0.781 0.054 0.848 0.047 0.713 0.322 

SNFTM 0.789 0.040 0.856 0.040 0.689 0.231 

37 
ITT 

0.609 
0.519 0.044 

0.702 
0.632 0.043 

0.706 
0.680 0.151 

PP 0.569 0.052 0.674 0.048 0.693 0.189 

IPCW 0.582 0.060 0.684 0.056 0.711 0.231 

SNFTM 0.583 0.044 0.685 0.044 0.701 0.165 

38 
ITT 

0.806 
0.731 0.043 

0.861 
0.814 0.037 

0.722 
0.666 0.197 

PP 0.779 0.048 0.849 0.039 0.693 0.272 

IPCW 0.775 0.055 0.846 0.046 0.704 0.310 

SNFTM 0.785 0.041 0.854 0.041 0.696 0.234 
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Table 41: Results for secondary estimands across persistence non-adherence scenarios 

No. Method 
True 
RMST0 

RMST0 
estimate 

SE of 
mean 
RMST0 

True 
RMST1 

RMST1 
estimate 

SE of 
mean 
RMST1 

True HR 

HR 
Estimate 

SE of mean 
HR 

39 
ITT 

0.608 
0.477 0.023 

0.716 
0.608 0.023 

0.649 
0.639 0.072 

PP 0.537 0.026 0.667 0.025 0.626 0.083 

IPCW 0.545 0.026 0.673 0.025 0.628 0.086 

SNFTM 0.547 0.023 0.675 0.023 0.627 0.075 

40 
ITT 

0.806 
0.683 0.023 

0.869 
0.787 0.020 

0.649 
0.621 0.090 

PP 0.756 0.025 0.839 0.020 0.625 0.116 

IPCW 0.755 0.025 0.839 0.021 0.624 0.117 

SNFTM 0.757 0.022 0.841 0.022 0.625 0.103 

41 
ITT 

0.608 
0.520 0.023 

0.716 
0.658 0.022 

0.649 
0.608 0.071 

PP 0.563 0.025 0.690 0.023 0.620 0.081 

IPCW 0.572 0.026 0.701 0.025 0.611 0.086 

SNFTM 0.571 0.023 0.696 0.023 0.623 0.075 

42 
ITT 

0.806 
0.730 0.022 

0.869 
0.828 0.019 

0.649 
0.590 0.092 

PP 0.776 0.023 0.854 0.019 0.620 0.115 

IPCW 0.774 0.024 0.853 0.020 0.624 0.120 

SNFTM 0.778 0.021 0.855 0.021 0.621 0.105 

43 
ITT 

0.806 
0.707 0.023 

0.901 
0.854 0.018 

0.482 
0.446 0.072 

PP 0.764 0.024 0.884 0.017 0.454 0.089 

IPCW 0.763 0.024 0.883 0.018 0.459 0.094 

SNFTM 0.764 0.022 0.884 0.022 0.454 0.082 

44 
ITT 

0.608 
0.477 0.023 

0.777 
0.672 0.023 

0.484 
0.500 0.059 

PP 0.537 0.026 0.733 0.024 0.472 0.066 

IPCW 0.544 0.026 0.737 0.024 0.474 0.069 

SNFTM 0.546 0.023 0.740 0.023 0.469 0.059 

45 
ITT 

0.608 
0.683 0.023 

0.777 
0.831 0.019 

0.484 
0.476 0.073 

PP 0.755 0.025 0.877 0.018 0.465 0.093 

IPCW 0.754 0.025 0.876 0.019 0.465 0.094 

SNFTM 0.756 0.022 0.878 0.022 0.464 0.082 

46 
ITT 

0.609 
0.503 0.023 

0.764 
0.694 0.022 

0.518 
0.495 0.059 

PP 0.550 0.025 0.733 0.022 0.489 0.066 

IPCW 0.558 0.026 0.742 0.024 0.482 0.071 

SNFTM 0.557 0.023 0.738 0.023 0.491 0.062 

47 
ITT 

0.807 
0.707 0.023 

0.894 
0.847 0.018 

0.517 
0.470 0.075 

PP 0.765 0.024 0.878 0.017 0.481 0.093 

IPCW 0.763 0.024 0.876 0.019 0.486 0.098 

SNFTM 0.765 0.022 0.878 0.022 0.484 0.086 

48 
ITT 

0.609 
0.478 0.023 

0.764 
0.660 0.023 

0.518 
0.524 0.061 

PP 0.538 0.026 0.721 0.024 0.498 0.069 

IPCW 0.545 0.026 0.725 0.024 0.501 0.072 

SNFTM 0.547 0.023 0.728 0.023 0.498 0.062 

49 
ITT 

0.807 
0.683 0.024 

0.894 
0.823 0.019 

0.517 
0.500 0.076 
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PP 0.756 0.025 0.871 0.019 0.491 0.097 

IPCW 0.754 0.025 0.870 0.019 0.491 0.098 

SNFTM 0.757 0.022 0.872 0.022 0.492 0.086 

50 
ITT 

0.805 
0.702 0.045 

0.868 
0.812 0.038 

0.674 
0.595 0.176 

PP 0.761 0.046 0.847 0.037 0.629 0.224 

IPCW 0.757 0.057 0.843 0.052 0.670 0.318 

SNFTM 0.761 0.042 0.850 0.042 0.620 0.203 

51 
ITT 

0.805 
0.703 0.045 

0.900 
0.851 0.034 

0.500 
0.458 0.145 

PP 0.763 0.046 0.883 0.033 0.475 0.183 

IPCW 0.758 0.058 0.879 0.046 0.498 0.250 

SNFTM 0.763 0.042 0.885 0.042 0.467 0.166 

52 
ITT 

0.805 
0.679 0.046 

0.900 
0.828 0.037 

0.500 
0.486 0.146 

PP 0.753 0.048 0.876 0.036 0.483 0.190 

IPCW 0.748 0.058 0.874 0.043 0.493 0.228 

SNFTM 0.753 0.043 0.878 0.043 0.473 0.164 

53 
ITT 

0.806 
0.727 0.044 

0.861 
0.819 0.037 

0.722 
0.637 0.190 

PP 0.774 0.045 0.848 0.037 0.671 0.241 

IPCW 0.769 0.057 0.842 0.051 0.708 0.330 

SNFTM 0.775 0.041 0.849 0.041 0.673 0.221 

54 
ITT 

0.609 
0.503 0.044 

0.702 
0.615 0.044 

0.706 
0.687 0.151 

PP 0.558 0.050 0.665 0.047 0.691 0.179 

IPCW 0.576 0.061 0.677 0.059 0.722 0.243 

SNFTM 0.569 0.044 0.675 0.044 0.691 0.160 

55 
ITT 

0.806 
0.707 0.044 

0.861 
0.796 0.038 

0.722 
0.667 0.191 

PP 0.768 0.047 0.840 0.039 0.688 0.254 

IPCW 0.764 0.056 0.838 0.047 0.708 0.307 

SNFTM 0.769 0.042 0.842 0.042 0.685 0.222 

56 
ITT 

0.806 
0.705 0.045 

0.894 
0.844 0.035 

0.537 
0.486 0.151 

PP 0.764 0.046 0.876 0.034 0.507 0.192 

IPCW 0.759 0.058 0.873 0.046 0.529 0.261 

SNFTM 0.764 0.042 0.878 0.042 0.500 0.174 
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Table 42: Results for secondary estimands across initiation non-adherence scenarios 

No. Method 
True 
RMST0 

RMST0 
estimate 

SE of 
mean 
RMST0 

True 
RMST0 

RMST1 
estimate 

SE of 
mean 
RMST1 

True 
RMST0 HR 

Estimate 
SE of mean 
HR 

57 
ITT 

0.608 
0.482 0.023 

0.716 
0.645 0.023 

0.649 
0.565 0.065 

PP 0.561 0.027 0.693 0.024 0.609 0.083 

IPCW 0.570 0.028 0.701 0.025 0.607 0.090 

SNFTM 0.573 0.023 0.701 0.023 0.614 0.074 

58 
ITT 

0.806 
0.690 0.023 

0.869 
0.816 0.019 

0.649 
0.538 0.081 

PP 0.777 0.025 0.856 0.019 0.616 0.118 

IPCW 0.775 0.025 0.855 0.020 0.614 0.123 

SNFTM 0.775 0.021 0.856 0.021 0.613 0.104 

59 
ITT 

0.608 
0.555 0.023 

0.716 
0.691 0.022 

0.649 
0.599 0.071 

PP 0.591 0.025 0.709 0.023 0.631 0.085 

IPCW 0.598 0.026 0.717 0.025 0.625 0.091 

SNFTM 0.603 0.023 0.716 0.023 0.641 0.079 

60 
ITT 

0.806 
0.765 0.021 

0.869 
0.853 0.017 

0.649 
0.590 0.097 

PP 0.798 0.023 0.866 0.018 0.641 0.122 

IPCW 0.796 0.023 0.865 0.019 0.639 0.127 

SNFTM 0.801 0.020 0.867 0.020 0.644 0.113 

61 
ITT 

0.608 
0.525 0.023 

0.716 
0.673 0.022 

0.649 
0.580 0.068 

PP 0.581 0.027 0.704 0.023 0.624 0.086 

IPCW 0.588 0.027 0.710 0.025 0.623 0.092 

SNFTM 0.596 0.023 0.712 0.023 0.638 0.079 

62 
ITT 

0.806 
0.739 0.022 

0.869 
0.841 0.018 

0.649 
0.566 0.090 

PP 0.792 0.024 0.863 0.019 0.636 0.125 

IPCW 0.790 0.025 0.862 0.020 0.635 0.129 

SNFTM 0.795 0.020 0.865 0.020 0.639 0.111 

63 
ITT 

0.608 
0.515 0.023 

0.777 
0.727 0.021 

0.484 
0.445 0.055 

PP 0.574 0.026 0.761 0.022 0.464 0.065 

IPCW 0.580 0.027 0.768 0.023 0.459 0.072 

SNFTM 0.581 0.023 0.765 0.023 0.466 0.060 

64 
ITT 

0.806 
0.721 0.023 

0.901 
0.870 0.017 

0.482 
0.418 0.070 

PP 0.784 0.023 0.893 0.016 0.461 0.093 

IPCW 0.783 0.024 0.893 0.017 0.460 0.098 

SNFTM 0.781 0.021 0.893 0.021 0.456 0.084 

65 
ITT 

0.608 
0.460 0.023 

0.777 
0.690 0.022 

0.484 
0.440 0.053 

PP 0.548 0.027 0.749 0.023 0.452 0.064 

IPCW 0.556 0.028 0.756 0.024 0.449 0.070 

SNFTM 0.558 0.023 0.755 0.023 0.453 0.058 

66 
ITT 

0.806 
0.658 0.024 

0.901 
0.839 0.018 

0.482 
0.408 0.064 

PP 0.765 0.025 0.886 0.017 0.451 0.092 

IPCW 0.764 0.026 0.885 0.018 0.450 0.095 

SNFTM 0.760 0.022 0.885 0.022 0.447 0.080 

67 
ITT 

0.609 
0.516 0.023 

0.764 
0.715 0.021 

0.518 
0.471 0.058 
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PP 0.575 0.026 0.749 0.022 0.493 0.068 

IPCW 0.581 0.027 0.757 0.024 0.486 0.075 

SNFTM 0.582 0.023 0.754 0.023 0.495 0.063 

68 
ITT 

0.807 
0.721 0.023 

0.894 
0.863 0.017 

0.517 
0.443 0.073 

PP 0.785 0.023 0.887 0.017 0.492 0.098 

IPCW 0.783 0.024 0.886 0.018 0.492 0.102 

SNFTM 0.782 0.021 0.887 0.021 0.485 0.088 

69 
ITT 

0.609 
0.461 0.023 

0.764 
0.678 0.022 

0.518 
0.463 0.055 

PP 0.549 0.027 0.737 0.023 0.479 0.067 

IPCW 0.556 0.028 0.744 0.024 0.475 0.073 

SNFTM 0.559 0.023 0.744 0.023 0.481 0.060 

70 
ITT 

0.807 
0.658 0.024 

0.894 
0.832 0.019 

0.517 
0.428 0.066 

PP 0.765 0.025 0.880 0.017 0.474 0.095 

IPCW 0.763 0.026 0.879 0.019 0.473 0.098 

SNFTM 0.760 0.022 0.879 0.022 0.471 0.083 

71 
ITT 

0.610 
0.556 0.023 

0.703 
0.676 0.022 

0.694 
0.638 0.075 

PP 0.592 0.026 0.695 0.023 0.674 0.089 

IPCW 0.598 0.026 0.702 0.025 0.668 0.096 

SNFTM 0.604 0.023 0.702 0.023 0.685 0.083 

72 
ITT 

0.807 
0.766 0.021 

0.862 
0.844 0.018 

0.696 
0.632 0.102 

PP 0.799 0.023 0.858 0.018 0.687 0.129 

IPCW 0.797 0.023 0.857 0.020 0.685 0.134 

SNFTM 0.802 0.020 0.859 0.020 0.690 0.118 

73 
ITT 

0.610 
0.525 0.023 

0.703 
0.659 0.022 

0.694 
0.616 0.071 

PP 0.580 0.027 0.689 0.023 0.664 0.090 

IPCW 0.587 0.027 0.695 0.025 0.660 0.096 

SNFTM 0.597 0.023 0.698 0.023 0.682 0.083 

74 
ITT 

0.807 
0.739 0.022 

0.862 
0.832 0.018 

0.696 
0.603 0.094 

PP 0.793 0.024 0.855 0.019 0.681 0.132 

IPCW 0.791 0.025 0.854 0.020 0.677 0.135 

SNFTM 0.796 0.020 0.857 0.020 0.685 0.117 

75 
ITT 

0.608 
0.517 0.045 

0.716 
0.727 0.041 

0.662 
0.456 0.110 

PP 0.577 0.050 0.761 0.042 0.478 0.132 

IPCW 0.593 0.066 0.774 0.061 0.495 0.213 

SNFTM 0.588 0.044 0.768 0.044 0.482 0.123 

76 
ITT 

0.805 
0.717 0.045 

0.868 
0.867 0.033 

0.674 
0.429 0.141 

PP 0.782 0.046 0.892 0.032 0.481 0.191 

IPCW 0.777 0.058 0.890 0.045 0.509 0.284 

SNFTM 0.779 0.041 0.895 0.041 0.462 0.168 

77 
ITT 

0.608 
0.460 0.045 

0.716 
0.690 0.043 

0.662 
0.446 0.104 

PP 0.549 0.052 0.750 0.044 0.460 0.128 

IPCW 0.563 0.067 0.765 0.060 0.461 0.189 

SNFTM 0.562 0.044 0.761 0.044 0.459 0.115 

78 
ITT 

0.805 
0.653 0.047 

0.868 
0.836 0.036 

0.674 
0.418 0.127 

PP 0.762 0.049 0.885 0.033 0.465 0.186 
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IPCW 0.756 0.060 0.884 0.044 0.480 0.252 

SNFTM 0.758 0.043 0.886 0.043 0.454 0.161 

79 
ITT 

0.608 
0.531 0.044 

0.716 
0.737 0.040 

0.662 
0.454 0.110 

PP 0.583 0.049 0.765 0.042 0.479 0.133 

IPCW 0.598 0.065 0.778 0.059 0.492 0.208 

SNFTM 0.594 0.044 0.772 0.044 0.483 0.123 

80 
ITT 

0.805 
0.735 0.043 

0.868 
0.875 0.032 

0.674 
0.437 0.146 

PP 0.787 0.045 0.894 0.031 0.486 0.195 

IPCW 0.782 0.057 0.891 0.044 0.519 0.291 

SNFTM 0.788 0.040 0.898 0.040 0.470 0.173 

81 
ITT 

0.608 
0.482 0.043 

0.716 
0.709 0.040 

0.662 
0.439 0.100 

PP 0.561 0.050 0.756 0.042 0.464 0.125 

IPCW 0.576 0.062 0.769 0.055 0.471 0.182 

SNFTM 0.576 0.042 0.767 0.042 0.464 0.113 

82 
ITT 

0.805 
0.684 0.046 

0.868 
0.853 0.034 

0.674 
0.418 0.131 

PP 0.773 0.048 0.889 0.033 0.473 0.192 

IPCW 0.767 0.059 0.887 0.044 0.495 0.261 

SNFTM 0.772 0.042 0.892 0.042 0.458 0.166 

83 
ITT 

0.608 
0.532 0.044 

0.776 
0.660 0.042 

0.493 
0.640 0.145 

PP 0.584 0.050 0.689 0.044 0.686 0.176 

IPCW 0.598 0.065 0.708 0.066 0.687 0.274 

SNFTM 0.595 0.044 0.698 0.044 0.689 0.163 

84 
ITT 

0.805 
0.739 0.043 

0.900 
0.830 0.036 

0.500 
0.624 0.191 

PP 0.793 0.045 0.854 0.036 0.710 0.261 

IPCW 0.787 0.056 0.853 0.051 0.740 0.381 

SNFTM 0.793 0.040 0.857 0.040 0.700 0.235 

85 
ITT 

0.608 
0.483 0.043 

0.776 
0.633 0.042 

0.493 
0.600 0.128 

PP 0.561 0.050 0.680 0.044 0.657 0.165 

IPCW 0.572 0.062 0.699 0.061 0.635 0.227 

SNFTM 0.576 0.042 0.693 0.042 0.659 0.149 

86 
ITT 

0.805 
0.688 0.046 

0.900 
0.805 0.038 

0.500 
0.584 0.169 

PP 0.779 0.048 0.848 0.037 0.691 0.259 

IPCW 0.773 0.058 0.848 0.050 0.705 0.347 

SNFTM 0.778 0.041 0.851 0.041 0.679 0.225 

87 
ITT 

0.609 
0.532 0.044 

0.764 
0.723 0.041 

0.528 
0.486 0.116 

PP 0.583 0.049 0.751 0.042 0.514 0.140 

IPCW 0.594 0.065 0.764 0.061  - 0.220 

SNFTM 0.594 0.044 0.758 0.044 0.517 0.129 

88 
ITT 

0.806 
0.736 0.043 

0.894 
0.869 0.032 

0.537 
0.459 0.151 

PP 0.789 0.045 0.889 0.032 0.513 0.202 

IPCW 0.783 0.057 0.886 0.045  - 0.303 

SNFTM 0.789 0.040 0.892 0.040 0.499 0.181 

89 
ITT 

0.609 
0.485 0.045 

0.764 
0.695 0.042 

0.528 
0.471 0.110 

PP 0.564 0.052 0.744 0.043 0.501 0.139 

IPCW 0.576 0.066 0.758 0.060 0.494 0.199 
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SNFTM 0.580 0.044 0.754 0.044 0.505 0.126 

90 
ITT 

0.806 
0.684 0.046 

0.894 
0.847 0.034 

0.537 
0.434 0.134 

PP 0.774 0.048 0.885 0.033 0.497 0.199 

IPCW 0.768 0.059 0.883 0.044 0.513 0.268 

SNFTM 0.774 0.042 0.887 0.042 0.487 0.174 
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Appendix G: Code used in the simulation program 

The code used to run the simulation study in Stata MP (version 15.1) is presented below. The first set 

of code is for generating the truth for Scenario 1 with factor specifications as follows: sample size 

(n=450), standard PSM DGM, perfect implementation non-adherence, no time-dependent treatment 

effect and large treatment effect size. These factors were amended to run the simulation program for 

each scenario as specified in Appendix A. The second set of code incorporate non-adherence and 

applies the alternative adjustment methods with factors amended across 90 scenarios.     

Simulation program to generate the truth 

*** Install Stata packages*** 
ssc install randomize 
ssc install survsim 
ssc install moremata 
ssc install rcsgen 
ssc install stpm2 
ssc install simsum 
net from https://www.pclambert.net/downloads/standsurv 
install stgest3  // manual installation  
install nlplot     // manual installation  
 
*** Truth 1*** 
clear 
capture program drop truth1 
program define truth1, rclass 
version 15.1 
scalar drop _all 
 
*** Run the simulation code to produce RCT datasets with perfect adherence and estimates dataset 
quietly { 
  local nobs 450    // number of observations in each simulated data set 
  set varabbrev off 
   
 set coeftabresults off //  runs faster 
    drop _all 
  
    *** declare sample size 
    set obs `nobs' 
  
 * Generate baseline covariates 
 gen id= _n 
 gen random = uniform() 
 gen age = cond(random < 0.55, 1, 0) 
  
 * Generate time-varying covariate at baseline 
 gen hBMI0 = rbinomial(1,0.60) 
  
 * Randomise observation to two groups "1= experimental and 2= control" 
 randomize, groups(2) balance(age hBMI0) 
 recode _assignment (1 = 0) (2 = 1), gen(trt) 
  
 ** Generate hBMI at 4 months influenced by MNA0 and hBMI0  
 gen hBMI1=rbinomial(1,0.30) if hBMI0==1 
 replace hBMI1=rbinomial(1,0.20) if hBMI0==0 
  
 ** Generate hBMI at 8 months influenced by MNA1 and hBMI1  
 gen hBMI2=rbinomial(1,0.30) if hBMI1==1 
 replace hBMI2=rbinomial(1,0.20) if hBMI1==0 
  
*** DGMs for generating survival times using survsim with a user-defined hazard function incorporating both baseline and time-dependent 
covariates  
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 capture: survsim stime event, loghazard(-1.2:*0.2:*#t:^(0.2:-1) :* (hBMI0:* 0.35) :* (0:<=#t:<0.3333333) :+ (hBMI1:* 0.35) :* /// 
  (0.3333333:<=#t:<0.6666667) :+ (hBMI2:* 0.35) :* (0.6666667:<=#t:<=1)) cov(trt -0.45 age 0.25) maxt(1) 
   
     * Declare the data to be survival data 
     stset stime, failure(event=1) id(id) 
   
  replace hBMI1=. if stime<= float(0.3333333) 
  replace hBMI2=. if stime<= float(0.6666667) 
   
  ***Estimate the truth 
  capture stcox trt 
  if (e(converged)>0) return scalar conv_hr=1 
     else return scalar conv_hr= 0 
  if (_rc>0) return scalar error_hr=1 
     else return scalar error_hr=0 
  if (e(converged)>0) { 
           return scalar hr=exp(_b[trt]) 
     return scalar hr_se=exp(_b[trt])*_se[trt] 
  } 
  else { 
           return scalar hr=. 
     return scalar hr_se=. 
  } 
   
  capture stpm2 trt, scale(h) df(2) lininit nolog eform 
  if (e(converged)>0) return scalar conv_rmst=1 
     else return scalar conv_rmst= 0 
  if (_rc>0) return scalar error_rmst=1 
     else return scalar error_rmst=0 
  if (e(converged)>0) { 
    gen tt1 = 1 in 1 
    standsurv, at1(trt 0) at2(trt 1) ci se timevar(tt1) contrast(difference) rmst atvars(rmst_trt0 
rmst_trt1) contrastvar(rmst_diff)  
    summ rmst_diff, meanonly  
    return scalar rmstdiff= r(mean) 
    summ rmst_diff_se, meanonly  
    return scalar rmstdiff_se= r(mean) 
    summ rmst_diff_lci, meanonly  
    return scalar rmstdiff_lci= r(mean) 
    summ rmst_diff_uci, meanonly  
    return scalar rmstdiff_uci= r(mean) 
    summ rmst_trt0, meanonly  
    return scalar rmst0= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt0_se=r(mean) 
    summ rmst_trt0_lci, meanonly  
    return scalar rmst0_lci= r(mean) 
    summ rmst_trt0_uci, meanonly  
    return scalar rmst0_uci= r(mean) 
    summ rmst_trt1, meanonly  
    return scalar rmst1= r(mean) 
    summ rmst_trt1_se, meanonly 
    return scalar rmst_trt1_se=r(mean) 
    summ rmst_trt1_lci, meanonly  
    return scalar rmst1_lci= r(mean) 
    summ rmst_trt1_uci, meanonly  
    return scalar rmst1_uci= r(mean)  
  } 
  else { 
    return scalar rmstdiff=. 
    return scalar rmstdiff_se=. 
    return scalar rmstdiff_lci=. 
    return scalar rmstdiff_uci=. 
    return scalar rmst0=. 
    return scalar rmst_trt0_se=. 
    return scalar rmst0_lci=. 
    return scalar rmst0_uci=. 
    return scalar rmst1=. 
    return scalar rmst_trt1_se=. 
    return scalar rmst1_lci=. 
    return scalar rmst1_uci=. 
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  } 
} 
end 
 
set rng mt64s   // set the  stream 64-bit Mersenne Twister  
set rngstream 11        //set the stream of rng 
simulate hr=r(hr)  /// 
hr_se=r(hr_se) /// 
conv_hr=r(conv_hr) /// 
error_hr=r(error_hr) /// 
rmstdiff= r(rmstdiff) /// 
rmstdiff_se = r(rmstdiff_se) /// 
rmstdiff_lci= r(rmstdiff_lci) /// 
rmstdiff_uci= r(rmstdiff_uci) /// 
rmst0= r(rmst0) /// 
rmst_trt0_se= r(rmst_trt0_se) /// 
rmst0_lci= r(rmst0_lci) /// 
rmst0_uci= r(rmst0_uci) /// 
rmst1= r(rmst1) /// 
rmst_trt1_se= r(rmst_trt1_se) /// 
rmst1_lci= r(rmst1_lci) /// 
rmst1_uci= r(rmst1_uci) /// 
conv_rmst=r(conv_rmst) /// 
error_rmst=r(error_rmst), /// 
reps(1000000) seed(13183) saving(estimates1, replace): truth1 
 
use estimates1, clear 
gen idrep= _n   // generate idrep number 
order idrep, first 
gen dgm= 1   // generate dgm number 
order dgm, after(idrep) 
 
***rename variable names to sensible names 
rename rmst_trt0_se rmst0_se 
rename rmst_trt1_se rmst1_se 
 
*** Order variables in the estimates dataset 
order hr, after(rmst1_uci) 
order hr_se, after(hr) 
order conv_hr, after(error_rmst) 
order error_hr, after(conv_hr) 
 
*** Label variables and values 
label variable idrep "Rep num" 
label variable dgm "Data-generating mechanism" 
label variable rmstdiff "Difference in Restricted Mean Survival Times" 
label variable rmstdiff_se "Standard Error of the Difference in Restricted Mean Survival Times" 
label variable rmstdiff_lci "RMST 95% CI: Upper bound" 
label variable rmstdiff_uci "RMST 95% CI: Lower bound" 
label variable rmst0 "Restricted Mean Survival Time 'Control Group'" 
label variable rmst0_se "Standard Error of RMST 'Control Group'" 
label variable rmst0_lci "RMST 95% CI: Lower bound 'Control Group'" 
label variable rmst0_uci "RMST 95% CI: Upper bound 'Control Group'" 
label variable rmst1 "Restricted Mean Survival Time 'Exp Group'" 
label variable rmst1_se "Standard Error of RMST 'Exp Group'" 
label variable rmst1_lci "RMST 95% CI: Lower bound 'Exp Group'" 
label variable rmst1_uci "RMST 95% CI: Upper bound 'Exp Group'" 
label variable hr "Hazard Ratio" 
label variable hr_se "Standard Error of Hazard Ratio" 
label variable conv_hr "HR model converged" 
label variable error_hr "Error - HR model" 
label variable conv_rmst "RMST model converged" 
label variable error_rmst "Error - RMST model" 
label define nylab 0 "No" 1 "Yes" 
label values conv_hr conv_rmst error_hr error_rmst nylab 
label define dgmlab 1 "Standard PSM - Weibull" 2 "Two-component Weibull Mixture" 
label values dgm dgmlab 
 
*** Save the truth estimates dataset 
save truth1, replace 
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Simulation program to apply non-adherence adjustment methods  

*** Non-Adherence Adjustment: Scenario 1 ***  
clear 
capture program drop mysimc1 
program define mysimc1, rclass 
version 15.1 
scalar drop _all 
 
**Run the simulation to produce non-adherence adjusted estimates dataset 
quietly { 
  local nobs 450  // number of observations in each simulated data set 
  set varabbrev off 
   
 set coeftabresults off //  runs faster 
    drop _all 
  
    * declare sample size 
    set obs `nobs' 
  
 * Generate baseline covariates 
 gen id= _n 
 gen random = uniform() 
 gen age = cond(random < 0.55, 1, 0) 
  
 * Generate time-varying covariate at baseline 
 gen hBMI0 = rbinomial(1,0.60) 
  
 * Randomise observation to two groups "1= experimental and 2= control" 
 randomize, groups(2) balance(age hBMI0) 
 recode _assignment (1 = 0) (2 = 1), gen(trt) 
  
 * MNA0: Generate time-varying non-adherence (implementation) and covariates at follow-up time 1 (Month 4 for tdc, 0-4 
Months for MNA) 
 *** Exp Group 
 *** This assumes people with high BMI and age <24 have 22.5% chance of MNA.  
 *** This risk is reduced to 15% if they have high BMI but age> 24 and 10% risk if age<24 but normal BMI 
 *** For people with normal BMI and age>24, the probability of MNA is 5% 
 gen MNA0=rbinomial(1,0.225) if (age==1 & hBMI0==1 & trt==1)       
 replace MNA0=rbinomial(1,0.15) if (age==0 & hBMI0==1 & trt==1)       
 replace MNA0=rbinomial(1,0.10) if (age==1 & hBMI0==0 & trt==1)       
 replace MNA0=rbinomial(1,0.05) if (age==0 & hBMI0==0 & trt==1)  
  
 *** Control Group 
 *** This assumes people with high BMI and age <24 have 30% chance of MNA (higher than in the control group).  
 *** This risk is reduced to 20% if they have high BMI but age> 24 and 10% risk if age<24 but normal BMI 
 *** For people with normal BMI and age>24, the probability of MNA is 5% 
 replace MNA0=rbinomial(1,0.30) if (age==1 & hBMI0==1 & trt==0)       
 replace MNA0=rbinomial(1,0.20) if (age==0 & hBMI0==1 & trt==0)       
 replace MNA0=rbinomial(1,0.10) if (age==1 & hBMI0==0 & trt==0)       
 replace MNA0=rbinomial(1,0.05) if (age==0 & hBMI0==0 & trt==0)  
  
 ** Generate hBMI at 4 months influenced by MNA0 and hBMI0  
 *** This assumes people high BMI at baseline and non-adhered between 0-4 months will have 90% chance to have high BMI at 
Month 4 and this risk is reduced to 30% among adhered 
 *** People with normal BMI at baseline with MNA0=1 have 60% chance of moving to high BMI category and this risk is reduced 
to 20% among adhered people  
 *** The strength of the relationship between previous hBMI/MNA and subsequent hBMI is assumed to be constant over time  
 *** The strgenth of hBMI/MNA relationships is assumed to be similar between the two arms 
 gen hBMI1=rbinomial(1,0.90) if (MNA0==1 & hBMI0==1) 
 replace hBMI1=rbinomial(1,0.30) if (MNA0==0 & hBMI0==1) 
 replace hBMI1=rbinomial(1,0.60) if (MNA0==1 & hBMI0==0) 
 replace hBMI1=rbinomial(1,0.20) if (MNA0==0 & hBMI0==0) 
  
  
 * MNA1: Generate time-varying non-adherence and covariates at follow-up time 2 (Month 8 for tdc, 4-8 Months for MNA) 
 *** EXP GROUP 
 *** This assumes people with high BMI and age <24 have 45% chance of MNA.  
 *** This risk is reduced to 30% if they have high BMI but age> 24 and 15% risk if age<24 but normal BMI 
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 *** For people with normal BMI and age>24, the probability of MNA is 7.5% 
 gen MNA1=rbinomial(1,0.45) if (age==1 & hBMI1==1 & trt==1)       
 replace MNA1=rbinomial(1,0.30) if (age==0 & hBMI1==1 & trt==1)       
 replace MNA1=rbinomial(1,0.15) if (age==1 & hBMI1==0 & trt==1)       
 replace MNA1=rbinomial(1,0.075) if (age==0 & hBMI1==0 & trt==1)  
  
 *** Control Group 
 *** This assumes people with high BMI and age <24 have 60% chance of MNA.  
 *** This risk is reduced to 40% if they have high BMI but age> 24 and 20% risk if age<24 but normal BMI 
 *** For people with normal BMI and age>24, the probability of MNA is 10% 
 replace MNA1=rbinomial(1,0.60) if (age==1 & hBMI1==1 & trt==0)       
 replace MNA1=rbinomial(1,0.40) if (age==0 & hBMI1==1 & trt==0)       
 replace MNA1=rbinomial(1,0.20) if (age==1 & hBMI1==0 & trt==0)       
 replace MNA1=rbinomial(1,0.10) if (age==0 & hBMI1==0 & trt==0) 
 replace MNA1=1 if MNA0==1 
  
 ** Generate hBMI at 8 months influenced by MNA1 and hBMI1  
 ** Similar probabilities as hBMI1 at 4 months 
 gen hBMI2=rbinomial(1,0.90) if (MNA1==1 & hBMI1==1) 
 replace hBMI2=rbinomial(1,0.30) if (MNA1==0 & hBMI1==1) 
 replace hBMI2=rbinomial(1,0.60) if (MNA1==1 & hBMI1==0) 
 replace hBMI2=rbinomial(1,0.20) if (MNA1==0 & hBMI1==0) 
  
 * MNA2: Generate time-varying non-adherence at follow-up time 3 (8-12 Months) 
 *** EXP GROUP 
 *** This assumes people with high BMI and age <24 have 45% chance of MNA.  
 *** This risk is reduced to 30% if they have high BMI but age> 24 and 15% risk if age<24 but normal BMI 
 *** For people with normal BMI and age>24, the probability of MNA is 7.5% 
 gen MNA2=rbinomial(1,0.45) if (age==1 & hBMI2==1 & trt==1)       
 replace MNA2=rbinomial(1,0.30) if (age==0 & hBMI2==1 & trt==1)       
 replace MNA2=rbinomial(1,0.15) if (age==1 & hBMI2==0 & trt==1)       
 replace MNA2=rbinomial(1,0.075) if (age==0 & hBMI2==0 & trt==1) 
  
 *** Control Group 
 *** This assumes people with high BMI and age <24 have 60% chance of MNA 
 *** This risk is reduced to 40% if they have high BMI but age> 24 and 20% risk if age<24 but normal BMI 
 *** For people with normal BMI and age>24, the probability of MNA is 10% 
 replace MNA2=rbinomial(1,0.60) if (age==1 & hBMI2==1 & trt==0)       
 replace MNA2=rbinomial(1,0.40) if (age==0 & hBMI2==1 & trt==0)       
 replace MNA2=rbinomial(1,0.20) if (age==1 & hBMI2==0 & trt==0)       
 replace MNA2=rbinomial(1,0.10) if (age==0 & hBMI2==0 & trt==0)  
 replace MNA2=1 if MNA1==1 
  
 *** Generate admin censoring time at 1 year (End of study follow-up) 
 gen admin = 1 
  
 * DGMs for generating survival times using survsim with a user-defined hazard function incorporating both baseline and time-
dependent covariates 
                    * The model use coefficient values of 0.35 for BMI and 0.40 for non-adherence  
  capture: survsim stime event, loghazard(-1.2:*0.2:*#t:^(0.2:-1) :* (hBMI0:* 0.35) :* (0:<=#t:<0.3333333) :+  /// 
   (MNA0:* 0.40) :* (0:<=#t:<0.3333333) :+ (hBMI1:* 0.35) :* (0.3333333:<=#t:<0.6666667) :+ /// 
  (MNA1:* 0.40) :* (0.3333333:<=#t:<0.6666667) :+ (hBMI2:* 0.35) :* (0.6666667:<=#t:<=1) :+ /// 
  (MNA2:* 0.40) :* (0.6666667:<=#t:<=1)) cov(trt -0.45 age 0.25) maxt(1) 
   
     *** Declare the data to be survival data 
     stset stime, failure(event=1) id(id) 
   
  replace hBMI1=. if stime<= float(0.3333333) 
  replace hBMI2=. if stime<= float(0.6666667) 
   
  replace MNA2 = . if stime<0.6666667 
  replace MNA1 = . if stime<0.3333333 
   
  **************************************** 
  * Method 1: ITT 
  **************************************** 
  preserve 
  capture stcox trt age 
  if (e(converged)>0) return scalar conv_hr_method1=1 
     else return scalar conv_hr_method1= 0 
  if (_rc>0) return scalar error_hr_method1=1 
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     else return scalar error_hr_method1=0 
   
  if (e(converged)>0) { 
           return scalar hr_method1=exp(_b[trt]) 
     return scalar hr_se_method1=exp(_b[trt])*_se[trt] 
  } 
  else { 
           return scalar hr_method1=. 
     return scalar hr_se_method1=. 
  } 
   
  capture stpm2 trt age, scale(h) df(2) lininit nolog eform vce(robust) 
  if (e(converged)>0) return scalar conv_rmst_method1=1 
     else return scalar conv_rmst_method1= 0 
  if (_rc>0) return scalar error_rmst_method1=1 
     else return scalar error_rmst_method1=0 
   
  if (e(converged)>0) { 
    gen tt1 = 1 in 1 
    standsurv, at1(trt 0) at2(trt 1) ci se timevar(tt1) contrast(difference) rmst atvars(rmst_trt0 
rmst_trt1) contrastvar(rmst_diff)  
    summ rmst_diff, meanonly  
    return scalar rmstdiff_method1= r(mean) 
    summ rmst_diff_se, meanonly  
    return scalar rmstdiff_se_method1= r(mean) 
    summ rmst_diff_lci, meanonly  
    return scalar rmstdiff_lci_method1= r(mean) 
    summ rmst_diff_uci, meanonly  
    return scalar rmstdiff_uci_method1= r(mean) 
    summ rmst_trt0, meanonly  
    return scalar rmst0_method1= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt0_se_method1=r(mean) 
    summ rmst_trt0_lci, meanonly  
    return scalar rmst0_lci_method1= r(mean) 
    summ rmst_trt0_uci, meanonly  
    return scalar rmst0_uci_method1= r(mean) 
    summ rmst_trt1, meanonly  
    return scalar rmst1_method1= r(mean) 
    summ rmst_trt1_se, meanonly 
    return scalar rmst_trt1_se_method1=r(mean) 
    summ rmst_trt1_lci, meanonly  
    return scalar rmst1_lci_method1= r(mean) 
    summ rmst_trt1_uci, meanonly  
    return scalar rmst1_uci_method1= r(mean)  
  } 
  else { 
    return scalar rmstdiff_method1=. 
    return scalar rmstdiff_se_method1=. 
    return scalar rmstdiff_lci_method1=. 
    return scalar rmstdiff_uci_method1=. 
    return scalar rmst0_method1=. 
    return scalar rmst_trt0_se_method1=. 
    return scalar rmst0_lci_method1=. 
    return scalar rmst0_uci_method1=. 
    return scalar rmst1_method1=. 
    return scalar rmst_trt1_se_method1=. 
    return scalar rmst1_lci_method1=. 
    return scalar rmst1_uci_method1=. 
  } 
   
  **************************************** 
  * Method 2: PP 
  **************************************** 
  restore, preserve 
  gen eventPP = event  
  gen stimePP = stime 
  gen ctime=. 
  replace ctime= float(0.6666667) if MNA2==1 
  replace eventPP=0 if MNA2==1 
  replace stimePP=ctime if MNA2==1 
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  replace ctime= float(0.3333333) if MNA1==1 
  replace eventPP=0 if MNA1==1 
  replace stimePP=ctime if MNA1==1 
  replace ctime= float(0.0000001) if MNA0==1 
  replace eventPP=0 if MNA0==1 
  replace stimePP=ctime if MNA0==1 
  stset stimePP, failure(eventPP) id(id) 
   
  capture stcox trt age 
  if (e(converged)>0) return scalar conv_hr_method2=1 
     else return scalar conv_hr_method2= 0 
  if (_rc>0) return scalar error_hr_method2=1 
     else return scalar error_hr_method2=0 
   
  if (e(converged)>0) { 
           return scalar hr_method2=exp(_b[trt]) 
     return scalar hr_se_method2=exp(_b[trt])*_se[trt] 
  } 
  else { 
           return scalar hr_method2=. 
     return scalar hr_se_method2=. 
  } 
   
  capture stpm2 trt age, scale(h) df(2) lininit nolog eform vce(robust) 
  if (e(converged)>0) return scalar conv_rmst_method2=1 
     else return scalar conv_rmst_method2= 0 
  if (_rc>0) return scalar error_rmst_method2=1 
     else return scalar error_rmst_method2=0 
   
  if (e(converged)>0) { 
    gen tt1 = 1 in 1 
    standsurv, at1(trt 0) at2(trt 1) ci se timevar(tt1) contrast(difference) rmst atvars(rmst_trt0 
rmst_trt1) contrastvar(rmst_diff)  
    summ rmst_diff, meanonly  
    return scalar rmstdiff_method2= r(mean) 
    summ rmst_diff_se, meanonly  
    return scalar rmstdiff_se_method2= r(mean) 
    summ rmst_diff_lci, meanonly  
    return scalar rmstdiff_lci_method2= r(mean) 
    summ rmst_diff_uci, meanonly  
    return scalar rmstdiff_uci_method2= r(mean) 
    summ rmst_trt0, meanonly  
    return scalar rmst0_method2= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt0_se_method2=r(mean) 
    summ rmst_trt0_lci, meanonly  
    return scalar rmst0_lci_method2= r(mean) 
    summ rmst_trt0_uci, meanonly  
    return scalar rmst0_uci_method2= r(mean) 
    summ rmst_trt1, meanonly  
    return scalar rmst1_method2= r(mean) 
    summ rmst_trt1_se, meanonly 
    return scalar rmst_trt1_se_method2=r(mean) 
    summ rmst_trt1_lci, meanonly  
    return scalar rmst1_lci_method2= r(mean) 
    summ rmst_trt1_uci, meanonly  
    return scalar rmst1_uci_method2= r(mean)  
  } 
  else { 
    return scalar rmstdiff_method2=. 
    return scalar rmstdiff_se_method2=. 
    return scalar rmstdiff_lci_method2=. 
    return scalar rmstdiff_uci_method2=. 
    return scalar rmst0_method2=. 
    return scalar rmst_trt0_se_method2=. 
    return scalar rmst0_lci_method2=. 
    return scalar rmst0_uci_method2=. 
    return scalar rmst1_method2=. 
    return scalar rmst_trt1_se_method2=. 
    return scalar rmst1_lci_method2=. 
    return scalar rmst1_uci_method2=. 
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  } 
   
  ***************************************** 
  * Method 3: IPCW 
  ****************************************** 
  restore, preserve 
   
  *Reshape data from wide format to long format 
  reshape long hBMI MNA, i(id) j(time) 
   
  *** Create time-dependent non-adherence for this interval 
  gen visit=time 
  replace time=float(0.3333333) if time==1 
  replace time=float(0.6666667) if time==2 
  drop if time>stime 
  gen timeend = min(stime,time+0.3333333)  
 
  *IPCW Step 1: Censor observations for non-adherence and reformat the data 
  ********************************************************************* 
   
  * Generate Non-adherence indicator and time of non-adherence (in years) 
  gen xoind=MNA  
  gen xotime=. 
  replace xotime= 0 if xoind==1 & visit==0 
  replace xotime= float(0.3333333) if xoind==1 & visit==1 
  replace xotime= float(0.6666667) if xoind==1 & visit==2 
  by id: egen xotime1 = min(xotime) 
  replace xotime=xotime1 
  drop xotime1 
   
  gen xotdo=0 
  replace xotdo= 1 if (xotime>=time) & (xotime<time+float(0.3333333)) & (xoind==1) 
  replace xotdo= . if (xotime<time) & (xoind==1) 
   
  *** Create time-dependent outcome for graft loss (txlosstdo) in each interval (0-4 months, 4-8 months, 8-12 months) 
  gen txlosstdo = 0 
  replace txlosstdo = 1 if event==1 & timeend==float(stime) 
   
  *** Stset the data 
  stset timeend, time0(time) failure(txlosstdo) 
   
  * Create dummies for being the first and last observation per patient 
  by id: gen firstobs = _n==1 
  by id: gen lastobs  = _n==_N 
   
  ***Note, things change over time as case mix of patients changes. 
  gen t1 = 0 
  replace t1=1 if visit==0 
  gen t2 = 0 
  replace t2=1 if visit==1 
  gen t3 = 0 
  replace t3=1 if visit==2 
   
  ***Note that the impact of hBMI depends on age, and vice versa. So need interactions 
  by id: gen cat1 = 0 
  by id: replace cat1 = 1 if (age==0 & hBMI==0) 
  by id: gen cat2 = 0 
  by id: replace cat2 = 1 if (age==1 & hBMI==0) 
  by id: gen cat3 = 0 
  by id: replace cat3 = 1 if (age==0 & hBMI==1) 
  by id: gen cat4 = 0 
  by id: replace cat4 = 1 if (age==1 & hBMI==1) 
   
  ***Then make cat time interaction 
  by id: gen cat1t1 = cat1*t1 
  by id: gen cat2t1 = cat2*t1   
  by id: gen cat3t1 = cat3*t1 
  by id: gen cat4t1 = cat4*t1 
   
  by id: gen cat1t2 = cat1*t2 
  by id: gen cat2t2 = cat2*t2   
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  by id: gen cat3t2 = cat3*t2 
  by id: gen cat4t2 = cat4*t2 
   
  by id: gen cat1t3 = cat1*t3 
  by id: gen cat2t3 = cat2*t3   
  by id: gen cat3t3 = cat3*t3 
  by id: gen cat4t3 = cat4*t3 
   
  *IPCW Step 2: Model the probability of being censored over time  
                                         *********************************************************************** 
  *Use logistic regression to predict non-adherence given baseline covariates in the control arm (Non-adherence Model 
1) & 
  *Estimate the probability of non-adherence for each patient-observation included in the regression 
  logistic xotdo age time if trt==0  
  if (e(converged)>0) return scalar conv_mna1_method3=1 
     else return scalar conv_mna1_method3= 0 
  if (_rc>0) return scalar error_mna1_method3=1 
     else return scalar error_mna1_method3=0 
  if (e(converged)>0) { 
  predict pn_mna if e(sample), pr 
  } 
   
  *Use logistic regression to predict non-adherence given the interaction between baseline and time-updated 
covariates in the control arm (Non-adherence Model 2) & 
  *Estimate the probability of non-adherence for each patient-observation included in the regression 
  logistic xotdo cat1t1 cat2t1 cat3t1 cat4t1 cat1t2 cat2t2 cat3t2 cat4t2 cat1t3 cat2t3 cat3t3 cat4t3 time if trt==0 
  if (e(converged)>0) return scalar conv_mna2_method3=1 
     else return scalar conv_mna2_method3= 0 
  if (_rc>0) return scalar error_mna2_method3=1 
     else return scalar error_mna2_method3=0 
  if (e(converged)>0) { 
  predict pd_mna if e(sample), pr 
  } 
   
  *Use logistic regression to predict non-adherence given baseline covariates in the experimental arm (Non-adherence 
Model 3)  
  *Estimate the probability of non-adherence for each patient-observation included in the regression 
  logistic xotdo age time if trt==1 
  if (e(converged)>0) return scalar conv_mna3_method3=1 
     else return scalar conv_mna3_method3= 0 
  if (_rc>0) return scalar error_mna3_method3=1 
     else return scalar error_mna3_method3=0 
  if (e(converged)>0) { 
  predict pn1_mna if e(sample), pr 
  } 
   
  *Use logistic regression to predict non-adherence given the interaction between baseline and time-updated 
covariates in the experimental arm (Non-adherence Model 4)  
  *Estimate the probability of non-adherence for each patient-observation included in the regression 
  logistic xotdo cat1t1 cat2t1 cat3t1 cat4t1 cat1t2 cat2t2 cat3t2 cat4t2 cat1t3 cat2t3 cat3t3 cat4t3 time if trt==1 
  if (e(converged)>0) return scalar conv_mna4_method3=1 
     else return scalar conv_mna4_method3= 0 
  if (_rc>0) return scalar error_mna4_method3=1 
     else return scalar error_mna4_method3=0 
  if (e(converged)>0) { 
  predict pd1_mna if e(sample), pr 
  } 
   
  replace pn_mna = pn1_mna if trt==1 
  replace pd_mna = pd1_mna if trt==1 
  drop pn1_mna pd1_mna 
   
  *IPCW Step 3: For each individual at each time, compute the inverse probability of remaining uncensored 
                     
******************************************************************************************************* 
  *Estimate the probabilities of remaining uncensored 'adhered' and the IPCW weights 
  sort id time 
  gen num = 1-pn_mna if firstobs 
  replace num = num[_n-1] * (1-pn_mna) if !firstobs 
   
  gen denom = 1-pd_mna if firstobs 
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  replace denom = num[_n-1] * (1-pd_mna) if !firstobs  
   
  gen weight = 1/denom 
  gen sweight = num/denom 
   
  **Decalre the data as survival data with stablised weight incorporated and time0 specified for clustering 
  stset timeend txlosstdo if xotdo==0 [iw=sweight], time0(time) 
   
  *IPCW Step 4: Obtain IPCW RMST & HR estimates 
 
 ****************************************************************************************************** 
  ** Obtain HR using Cox model 
  capture stcox trt age 
  if (e(converged)>0) return scalar conv_hr_method3=1 
     else return scalar conv_hr_method3= 0 
  if (_rc>0) return scalar error_hr_method3=1 
     else return scalar error_hr_method3=0 
   
  if (e(converged)>0) { 
           return scalar hr_method3=exp(_b[trt]) 
     return scalar hr_se_method3=exp(_b[trt])*_se[trt] 
  } 
  else { 
           return scalar hr_method3=. 
     return scalar hr_se_method3=. 
  } 
   
  ** Obtain IPCW RMST estimates using stpm2 model 
  capture stpm2 trt age, scale(h) df(2) lininit nolog eform vce(robust) 
  if (e(converged)>0) return scalar conv_rmst_method3=1 
     else return scalar conv_rmst_method3= 0 
  if (_rc>0) return scalar error_rmst_method3=1 
     else return scalar error_rmst_method3=0 
   
  if (e(converged)>0) { 
    gen tt1 = 1 in 1 
    standsurv, at1(trt 0) at2(trt 1) ci se timevar(tt1) contrast(difference) rmst atvars(rmst_trt0 
rmst_trt1) contrastvar(rmst_diff)  
    summ rmst_diff, meanonly  
    return scalar rmstdiff_method3= r(mean) 
    summ rmst_diff_se, meanonly  
    return scalar rmstdiff_se_method3= r(mean) 
    summ rmst_diff_lci, meanonly  
    return scalar rmstdiff_lci_method3= r(mean) 
    summ rmst_diff_uci, meanonly  
    return scalar rmstdiff_uci_method3= r(mean) 
    summ rmst_trt0, meanonly  
    return scalar rmst0_method3= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt0_se_method3=r(mean) 
    summ rmst_trt0_lci, meanonly  
    return scalar rmst0_lci_method3= r(mean) 
    summ rmst_trt0_uci, meanonly  
    return scalar rmst0_uci_method3= r(mean) 
    summ rmst_trt1, meanonly  
    return scalar rmst1_method3= r(mean) 
    summ rmst_trt1_se, meanonly 
    return scalar rmst_trt1_se_method3=r(mean) 
    summ rmst_trt1_lci, meanonly  
    return scalar rmst1_lci_method3= r(mean) 
    summ rmst_trt1_uci, meanonly  
    return scalar rmst1_uci_method3= r(mean)  
  } 
  else { 
    return scalar rmstdiff_method3=. 
    return scalar rmstdiff_se_method3=. 
    return scalar rmstdiff_lci_method3=. 
    return scalar rmstdiff_uci_method3=. 
    return scalar rmst0_method3=. 
    return scalar rmst_trt0_se_method3=. 
    return scalar rmst0_lci_method3=. 
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    return scalar rmst0_uci_method3=. 
    return scalar rmst1_method3=. 
    return scalar rmst_trt1_se_method3=. 
    return scalar rmst1_lci_method3=. 
    return scalar rmst1_uci_method3=. 
  } 
   
  ************************************* 
  *Method 4: SNFTM with G-estimation 
  ************************************* 
  restore  
  *** Reshape data from wide format to long format 
  reshape long hBMI MNA, i(id) j(time) 
 
  gen visit=time 
  replace time=float(0.3333333) if time==1 
  replace time=float(0.6666667) if time==2 
  drop if time>stime 
  gen timeend = min(stime,time+0.3333333)  
   
  *** Create vist variable to go into the stgest3 model 
  replace visit=3 if visit==2 
  replace visit=2 if visit==1 
  replace visit=1 if visit==0 
   
  *** Generate Non-adherence indicator and time of first non-adherence event 
  gen xoind=MNA  
  gen xotime=. 
  replace xotime= 0 if xoind==1 & visit==1 
  replace xotime= float(0.3333333) if xoind==1 & visit==2 
  replace xotime= float(0.6666667) if xoind==1 & visit==3 
  by id: egen xotime1 = min(xotime) 
  replace xotime=xotime1 
  drop xotime1 
   
  *** Create time-dependent outcome for graft loss (txlosstdo) in each interval (0-4 months, 4-8 months, 8-12 months) 
  gen txlosstdo = 0 
  replace txlosstdo = 1 if event==1 & timeend==float(stime) 
   
  *** stset the data 
  stset timeend, failure(txlosstdo) id(id) 
   
  by id: gen adlag = xoind[_n-1] 
  replace adlag=0 if adlag==. 
   
  *** Estimate the Acceleration Factor as the effect of time-dependent non-adherence (MNA) on survival time 
  *** This should be done for each arm separately using the interaction between baseline and time-dependent 
covariates 
   
  ***Note, things change over time as casemix of patients changes. 
  gen t1 = 0 
  replace t1=1 if visit==0 
  gen t2 = 0 
  replace t2=1 if visit==1 
  gen t3 = 0 
  replace t3=1 if visit==2 
   
  *** Note that the impact of hBMI depends on age, and vice versa. So need interaction 
  by id: gen cat1 = 0 
  by id: replace cat1 = 1 if (age==0 & hBMI==0) 
  by id: gen cat2 = 0 
  by id: replace cat2 = 1 if (age==1 & hBMI==0) 
  by id: gen cat3 = 0 
  by id: replace cat3 = 1 if (age==0 & hBMI==1) 
  by id: gen cat4 = 0 
  by id: replace cat4 = 1 if (age==1 & hBMI==1) 
   
  *** Then make cat time interaction 
  by id: gen cat1t1 = cat1*t1 
  by id: gen cat2t1 = cat2*t1   
  by id: gen cat3t1 = cat3*t1 
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  by id: gen cat4t1 = cat4*t1 
   
  by id: gen cat1t2 = cat1*t2 
  by id: gen cat2t2 = cat2*t2   
  by id: gen cat3t2 = cat3*t2 
  by id: gen cat4t2 = cat4*t2 
   
  by id: gen cat1t3 = cat1*t3 
  by id: gen cat2t3 = cat2*t3   
  by id: gen cat3t3 = cat3*t3 
  by id: gen cat4t3 = cat4*t3 
   
  *** Estimate Accelaration Factor as the effect of time-dependent non-aderehcne on survivial time 
  *** This should be done for each arm seperatley and calulate admin censoring 
  preserve 
  drop if trt==0 
   
  ***Run the g-estimation on the Exp group 
  capture stgest3 xoind cat1t1 cat2t1 cat3t1 cat4t1 cat1t2 cat2t2 cat3t2 cat4t2 cat1t3 cat2t3 cat3t3 cat4t3 adlag, 
visit(visit) lasttime(admin) range (-5 5) model(all) outcome(mgale) test(cluster) nograph nolist nocheckobs replace 
  if (e(converged)>0) return scalar conv_stgest1_method4=1 
     else return scalar conv_stgest1_method4= 0 
  if (_rc>0) return scalar error_stgest1_method4=1 
     else return scalar error_stgest1_method4=0 
  if (e(converged)>0) { 
  di r(trcaus) 
  scalar af1 = r(trcaus) 
  scalar survadminc1 = admin/af1 
  } 
   
  restore, preserve 
  drop if trt==1 
   
  ***Run the g-estimation on the Control group 
  stgest3 xoind cat1t1 cat2t1 cat3t1 cat4t1 cat1t2 cat2t2 cat3t2 cat4t2 cat1t3 cat2t3 cat3t3 cat4t3 adlag, visit(visit) 
lasttime(admin) range (-5 5) model(all) outcome(mgale) test(cluster) nograph nolist nocheckobs replace 
  if (e(converged)>0) return scalar conv_stgest0_method4=1 
     else return scalar conv_stgest0_method4= 0 
  if (_rc>0) return scalar error_stgest0_method4=1 
     else return scalar error_stgest0_method4=0 
  if (e(converged)>0) { 
  di r(trcaus)  
  scalar af0 = r(trcaus) 
  scalar survadminc0 = admin/af0 
  } 
   
  ** Adjust stime and event usnig the AF generated from the g-estimation** 
  restore 
  sort id 
  collapse (max) trt age stime event admin xotime xoind, by(id) 
   
  *** Control group 
  gen cfact = (xotime + ((stime-xotime)/(af0))) if (trt==0 & xoind==1) 
  replace cfact = stime if (trt==0 & xoind==0) 
  gen dcfact = event if trt==0 
  replace dcfact=0 if (cfact>admin & trt==0) 
  replace cfact = admin if (cfact>admin & trt==0) 
   
  *** Exp group 
  replace cfact = (xotime + ((stime-xotime)/(af1))) if (trt==1 & xoind==1) 
  replace cfact = stime if (trt==1 & xoind==0) 
  replace dcfact = event if trt==1 
  replace dcfact=0 if (cfact>admin & trt==1) 
  replace cfact = admin if (cfact>admin & trt==1) 
   
  ***Stset the data specifying the exit time to 1 year (follow-up time) 
  stset cfact, failure(dcfact) id(id) 
   
  capture stcox trt age 
  if (e(converged)>0) return scalar conv_hr_method4=1 
     else return scalar conv_hr_method4= 0 
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  if (_rc>0) return scalar error_hr_method4=1 
     else return scalar error_hr_method4=0 
   
  if (e(converged)>0) { 
           return scalar hr_method4=exp(_b[trt]) 
     return scalar hr_se_method4=exp(_b[trt])*_se[trt] 
  } 
  else { 
           return scalar hr_method4=. 
     return scalar hr_se_method4=. 
  } 
   
  capture stpm2 trt age, scale(h) df(2) lininit nolog eform vce(robust) 
  if (e(converged)>0) return scalar conv_rmst_method4=1 
     else return scalar conv_rmst_method4= 0 
  if (_rc>0) return scalar error_rmst_method4=1 
     else return scalar error_rmst_method4=0 
   
  if (e(converged)>0) { 
    gen tt1 = 1 in 1 
    standsurv, at1(trt 0) at2(trt 1) ci se timevar(tt1) contrast(difference) rmst atvars(rmst_trt0 
rmst_trt1) contrastvar(rmst_diff)  
    summ rmst_diff, meanonly  
    return scalar rmstdiff_method4= r(mean) 
    summ rmst_diff_se, meanonly  
    return scalar rmstdiff_se_method4= r(mean) 
    summ rmst_diff_lci, meanonly  
    return scalar rmstdiff_lci_method4= r(mean) 
    summ rmst_diff_uci, meanonly  
    return scalar rmstdiff_uci_method4= r(mean) 
    summ rmst_trt0, meanonly  
    return scalar rmst0_method4= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt0_se_method4=r(mean) 
    summ rmst_trt0_lci, meanonly  
    return scalar rmst0_lci_method4= r(mean) 
    summ rmst_trt0_uci, meanonly  
    return scalar rmst0_uci_method4= r(mean) 
    summ rmst_trt1, meanonly  
    return scalar rmst1_method4= r(mean) 
    summ rmst_trt0_se, meanonly 
    return scalar rmst_trt1_se_method4=r(mean) 
    summ rmst_trt1_lci, meanonly  
    return scalar rmst1_lci_method4= r(mean) 
    summ rmst_trt1_uci, meanonly  
    return scalar rmst1_uci_method4= r(mean)  
  } 
  else { 
    return scalar rmstdiff_method4=. 
    return scalar rmstdiff_se_method4=. 
    return scalar rmstdiff_lci_method4=. 
    return scalar rmstdiff_uci_method4=. 
    return scalar rmst0_method4=. 
    return scalar rmst_trt0_se_method4=. 
    return scalar rmst0_lci_method4=. 
    return scalar rmst0_uci_method4=. 
    return scalar rmst1_method4=. 
    return scalar rmst_trt1_se_method4=. 
    return scalar rmst1_lci_method4=. 
    return scalar rmst1_uci_method4=. 
  } 
} 
end 
 
set rng mt64s           // set the  stream 64-bit Mersenne Twister  
set rngstream 11       //set the stream of rng 
simulate hr_method1=r(hr_method1)  /// 
hr_se_method1=r(hr_se_method1) /// 
conv_hr_method1=r(conv_hr_method1) /// 
error_hr_method1=r(error_hr_method1) /// 
rmstdiff_method1= r(rmstdiff_method1) /// 
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rmstdiff_se_method1=r(rmstdiff_se_method1) /// 
rmstdiff_lci_method1= r(rmstdiff_lci_method1) /// 
rmstdiff_uci_method1= r(rmstdiff_uci_method1) /// 
rmst0_method1= r(rmst0_method1) /// 
rmst_trt0_se_method1= r(rmst_trt0_se_method1) /// 
rmst0_lci_method1= r(rmst0_lci_method1) /// 
rmst0_uci_method1= r(rmst0_uci_method1) /// 
rmst1_method1= r(rmst1_method1) /// 
rmst_trt1_se_method1= r(rmst_trt1_se_method1) /// 
rmst1_lci_method1= r(rmst1_lci_method1) /// 
rmst1_uci_method1= r(rmst1_uci_method1) /// 
conv_rmst_method1=r(conv_rmst_method1) /// 
error_rmst_method1=r(error_rmst_method1) /// 
hr_method2=r(hr_method2)  /// 
hr_se_method2=r(hr_se_method2) /// 
conv_hr_method2=r(conv_hr_method2) /// 
error_hr_method2=r(error_hr_method2) /// 
rmstdiff_method2= r(rmstdiff_method2) /// 
rmstdiff_se_method2=r(rmstdiff_se_method2) /// 
rmstdiff_lci_method2= r(rmstdiff_lci_method2) /// 
rmstdiff_uci_method2= r(rmstdiff_uci_method2) /// 
rmst0_method2= r(rmst0_method2) /// 
rmst_trt0_se_method2= r(rmst_trt0_se_method2) /// 
rmst0_lci_method2= r(rmst0_lci_method2) /// 
rmst0_uci_method2= r(rmst0_uci_method2) /// 
rmst1_method2= r(rmst1_method2) /// 
rmst_trt1_se_method2= r(rmst_trt1_se_method2) /// 
rmst1_lci_method2= r(rmst1_lci_method2) /// 
rmst1_uci_method2= r(rmst1_uci_method2) /// 
conv_rmst_method2=r(conv_rmst_method2) /// 
error_rmst_method2=r(error_rmst_method2) /// 
conv_mna1_method3=r(conv_mna1_method3) /// 
error_mna1_method3=r(error_mna1_method3) /// 
conv_mna2_method3=r(conv_mna2_method3) /// 
error_mna2_method3=r(error_mna2_method3) /// 
conv_mna3_method3=r(conv_mna3_method3) /// 
error_mna3_method3=r(error_mna3_method3) /// 
conv_mna4_method3=r(conv_mna4_method3) /// 
error_mna4_method3=r(error_mna4_method3) /// 
hr_method3=r(hr_method3)  /// 
hr_se_method3=r(hr_se_method3) /// 
conv_hr_method3=r(conv_hr_method3) /// 
error_hr_method3=r(error_hr_method3) /// 
rmstdiff_method3= r(rmstdiff_method3) /// 
rmstdiff_se_method3=r(rmstdiff_se_method3) /// 
rmstdiff_lci_method3= r(rmstdiff_lci_method3) /// 
rmstdiff_uci_method3= r(rmstdiff_uci_method3) /// 
rmst0_method3= r(rmst0_method3) /// 
rmst_trt0_se_method3= r(rmst_trt0_se_method3) /// 
rmst0_lci_method3= r(rmst0_lci_method3) /// 
rmst0_uci_method3= r(rmst0_uci_method3) /// 
rmst1_method3= r(rmst1_method3) /// 
rmst_trt1_se_method3= r(rmst_trt1_se_method3) /// 
rmst1_lci_method3= r(rmst1_lci_method3) /// 
rmst1_uci_method3= r(rmst1_uci_method3) /// 
conv_rmst_method3=r(conv_rmst_method3) /// 
error_rmst_method3=r(error_rmst_method3) /// 
conv_stgest1_method4=r(conv_stgest1_method4) /// 
error_stgest1_method4=r(error_stgest1_method4) /// 
conv_stgest0_method4=r(conv_stgest0_method4) /// 
error_stgest0_method4=r(error_stgest0_method4) /// 
hr_method4=r(hr_method4)  /// 
hr_se_method4=r(hr_se_method4) /// 
conv_hr_method4=r(conv_hr_method4) /// 
error_hr_method4=r(error_hr_method4) /// 
rmstdiff_method4= r(rmstdiff_method4) /// 
rmstdiff_se_method4=r(rmstdiff_se_method4) /// 
rmstdiff_lci_method4= r(rmstdiff_lci_method4) /// 
rmstdiff_uci_method4= r(rmstdiff_uci_method4) /// 
rmst0_method4= r(rmst0_method4) /// 
rmst_trt0_se_method4= r(rmst_trt0_se_method4) /// 
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rmst0_lci_method4= r(rmst0_lci_method4) /// 
rmst0_uci_method4= r(rmst0_uci_method4) /// 
rmst1_method4= r(rmst1_method4) /// 
rmst_trt1_se_method4= r(rmst_trt1_se_method4) /// 
rmst1_lci_method4= r(rmst1_lci_method4) /// 
rmst1_uci_method4= r(rmst1_uci_method4) /// 
conv_rmst_method4=r(conv_rmst_method4) /// 
error_rmst_method4=r(error_rmst_method4), /// 
reps(1900) seed(13183) saving(estimatesc1, replace): mysimc1 
 
use estimatesc1, clear 
gen idrep= _n   // generate idrep number 
order idrep, first 
 
***reshape estimates data to long format 
reshape long hr_method hr_se_method conv_hr_method error_hr_method /// 
rmstdiff_method rmstdiff_se_method rmstdiff_lci_method rmstdiff_uci_method rmst0_method rmst_trt0_se_method /// 
rmst0_lci_method rmst0_uci_method rmst1_method rmst_trt1_se_method rmst1_lci_method rmst1_uci_method /// 
conv_mna1_method error_mna1_method conv_mna2_method error_mna2_method conv_mna3_method /// 
error_mna3_method conv_mna4_method error_mna4_method conv_stgest1_method error_stgest1_method /// 
conv_stgest0_method error_stgest0_method conv_rmst_method error_rmst_method, i(idrep) j(method) 
 
***rename variable names to sensible names 
rename hr_method hr 
rename hr_se_method hr_se 
rename conv_hr_method conv_hr 
rename error_hr_method error_hr 
rename rmstdiff_method rmstdiff 
rename rmstdiff_se_method rmstdiff_se 
rename rmstdiff_lci_method rmstdiff_lci 
rename rmstdiff_uci_method rmstdiff_uci 
rename rmst0_method rmst0 
rename rmst_trt0_se_method rmst0_se 
rename rmst0_lci_method rmst0_lci 
rename rmst0_uci_method rmst0_uci 
rename rmst1_method rmst1 
rename rmst_trt1_se_method rmst1_se 
rename rmst1_lci_method rmst1_lci 
rename rmst1_uci_method rmst1_uci 
rename conv_mna1_method conv_mna1 
rename error_mna1_method error_mna1 
rename conv_mna2_method conv_mna2 
rename error_mna2_method error_mna2 
rename conv_mna3_method conv_mna3 
rename error_mna3_method error_mna3 
rename conv_mna4_method conv_mna4 
rename error_mna4_method error_mna4 
rename conv_stgest1_method conv_stgest1 
rename error_stgest1_method error_stgest1 
rename conv_stgest0_method conv_stgest0 
rename error_stgest0_method error_stgest0 
rename conv_rmst_method conv_rmst 
rename error_rmst_method error_rmst 
 
*** Order vars 
order rmstdiff_se, after(rmstdiff) 
order hr, after(rmst1_uci) 
order hr_se, after(hr) 
order conv_stgest1 error_stgest1 conv_stgest0 error_stgest0, after(error_mna4) 
order conv_hr, after(conv_rmst) 
order error_hr, after(conv_hr) 
 
*** Label variables and values 
label variable idrep "Rep num" 
label variable method "Method" 
label variable hr "Hazard Ratio" 
label variable hr_se "Standard Error of Hazard Ratio" 
label variable rmstdiff "Difference in RMST" 
label variable rmstdiff_se "Standard Error of the Difference in RMST" 
label variable rmstdiff_lci "RMST 95% CI: Upper bound" 
label variable rmstdiff_uci "RMST 95% CI: Lower bound" 
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label variable rmst0 "Restricted Mean Survival Time 'Control Group'" 
label variable rmst0_se "Standard Error of RMST 'Control Group'" 
label variable rmst0_lci "RMST 95% CI: Lower bound 'Control Group'" 
label variable rmst0_uci "RMST 95% CI: Upper bound 'Control Group'" 
label variable rmst1 "Restricted Mean Survival Time 'Exp Group'" 
label variable rmst1_se "Standard Error of RMST 'Exp Group'" 
label variable rmst1_lci "RMST 95% CI: Lower bound 'Exp Group'" 
label variable rmst1_uci "RMST 95% CI: Upper bound 'Exp Group'" 
label variable conv_hr "HR model converged" 
label variable error_hr "Error - HR model" 
label variable conv_rmst "RMST model converged" 
label variable error_rmst "Error - RMST model" 
label variable conv_mna1 "Non-adherence model(1) converged" 
label variable error_mna1 "Error - Non-adherence model(1)" 
label variable conv_mna2 "Non-adherence model(2) converged" 
label variable error_mna2 "Error - Non-adherence model(2)" 
label variable conv_mna3 "Non-adherence model(3) converged" 
label variable error_mna3 "Error - Non-adherence model(3)" 
label variable conv_mna4 "Non-adherence model(4) converged" 
label variable error_mna4 "Error - Non-adherence model(4)" 
label variable conv_stgest1 "G-estimation converged 'Exp Group'" 
label variable error_stgest1 "Error - G-estimation 'Exp Group'" 
label variable conv_stgest0 "G-estimation converged 'Control Group'" 
label variable error_stgest0 "Error - G-estimation 'Control Group'" 
label define nylab 0 "No" 1 "Yes" 
label values conv_hr conv_rmst error_hr error_rmst nylab 
label values conv_mna1 error_mna1 conv_mna2 error_mna2 conv_mna3 error_mna3 nylab 
label values conv_mna4 error_mna4 conv_stgest1 error_stgest1 conv_stgest0 error_stgest0 nylab 
label define methodlab 1 "ITT" 2 "PP" 3 "IPCW"  4 "SNFTM" 
label values method methodlab 
 
***Save labelled estimates dataset 
save adjusted1, replace 
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Appendix H: Search strategies used to identify existing 

methodological frameworks  

The literature search strategy used to identify any existing frameworks for addressing non-

adherence in the context of HTA is provided in this section. The search was run on OVID 

MEDLINE(R) and Web of Science databases. The search used the following terms and yielded 

the number of recorded reported in the last column. This was complemented with an author 

search via Web of Science on Grutters JP who published a relevant conference abstract in 

Value in Health. 

Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed 

Citations and Daily 1946 to June 21, 2021 

 

# Terms  Results  

1 (compliance or adherence or pharmacoadherence or persistence or 

persistency or concordance or initiation or implementation or noncompliance 

or nonadherence or nonpersistence or discontinuation or pharmionics or 

therapeutic alliance or patient irregularity or treatment refusal).m_titl. 

157078 

2 framework.m_titl. 40921 

3 methodology.m_titl 21597 

4 guidance.m_titl. 18391 

5 recommendations.m.titl 38489 

6 methods.m.titl 165392 

7 2 or 3 or 4 or 5 or 6 283329  

8 1 and 7 4433 

9 (cost-effectiveness or economic evaluation or health technology 

assessment).m_titl. 

28300 

10 8 and 9 12 

 

 Web of Science 1964 to 2021  

# Terms  Results  

1 TI=(compliance or adherence or pharmacoadherence or persistence or 

persistency or concordance or initiation or implementation or noncompliance or 

513,851 
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nonadherence or nonpersistence or discontinuation or pharmionics or 

therapeutic alliance or patient irregularity or treatment refusal).m_titl. 

2 TI=(framework or methodology or guidance or recommendations or methods)  8,790,201 

3 #2 AND #1  42,623 

4 TI=(cost-effectiveness or economic evaluation or health technology assessment) 59,719 

5 #4 AND #3 29 

 

Author search (Web of Science), June 21, 2021 

# Terms  Results  

1 AU=(Grutters JP)  14 
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Appendix I: Case study supplementary tables  

Table 43 provides the coefficients from the IPCW weighing models. This covers 18 non-adherence 

(logistic) models across the three treatment arms with 6 models per arm (2 models for each interval 

one incorporated baseline confounders only and the other incorporated both baseline and time-

dependent confounders. The predicted probabilities generated from these models were used to 

generate the stabilised weights for the IPCW adjusted analysis.  

  Table 43: The Coefficients from the non-adherence models by treatment arm and time interval 

Model 
No. Interval Covariate Coefficient SE [95% Confidence interval 

              

Group A: Standard-dose cyclosporine 

Non-adherence models with baseline confounders only 

1 0-3 months Age 1.013 0.0172 0.980 1.048 

1 0-3 months Gender 2.375 1.2364 0.856 6.589 

              

2 3-6 months Age 1.021 0.0174 0.988 1.056 

2 3-6 months Gender 0.939 0.4047 0.404 2.186 

              

3 6-12 months Age 0.978 0.0093 0.960 0.996 

3 6-12 months Gender 0.894 0.2224 0.549 1.455 

              

Group A: Standard-dose cyclosporine 

Non-adherence models with baseline and time-dependent confounders 

4 0-3 months Age 1.010 0.0181 0.975 1.046 

4 0-3 months Gender 2.392 1.2471 0.861 6.646 

4 0-3 months BMI 1.039 0.0602 0.928 1.164 

4 0-3 months Acute rejection 1.000 - - - 

              

5 3-6 months Age 1.019 0.0177 0.985 1.055 

5 3-6 months Gender 0.956 0.4140 0.409 2.234 

5 3-6 months BMI 1.033 0.0574 0.926 1.151 

5 3-6 months Acute rejection 0.732 0.3797 0.265 2.023 

              

6 6-12 months Age 0.978 0.0094 0.960 0.997 

6 6-12 months Gender 0.882 0.2205 0.540 1.440 

6 6-12 months BMI 0.975 0.0299 0.918 1.035 

6 6-12 months Acute rejection 0.958 0.5663 0.301 3.052 

              

Group B: Low-dose cyclosporine 

Non-adherence models with baseline confounders only 
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7 0-3 months Age 1.004 0.0163 0.973 1.036 

7 0-3 months Gender 1.742 0.8331 0.683 4.448 

              

8 3-6 months Age 1.005 0.0172 0.972 1.040 

8 3-6 months Gender 0.827 0.3661 0.347 1.969 

              

9 6-12 months Age 0.997 0.0091 0.979 1.015 

9 6-12 months Gender 1.388 0.3426 0.856 2.252 

              

Group B: Low-dose cyclosporine 

Non-adherence models with baseline and time-dependent confounders 

10 0-3 months Age 1.010 0.0169 0.977 1.044 

10 0-3 months Gender 1.818 0.8756 0.707 4.672 

10 0-3 months BMI 0.932 0.0555 0.829 1.047 

10 0-3 months Acute rejection 1.000 - - - 

              

11 3-6 months Age 1.008 0.0174 0.975 1.043 

11 3-6 months Gender 0.845 0.3770 0.353 2.026 

11 3-6 months BMI 0.950 0.0559 0.847 1.066 

11 3-6 months Acute rejection 0.178 0.1842 0.024 1.349 

              

12 6-12 months Age 0.995 0.0093 0.977 1.014 

12 6-12 months Gender 1.360 0.3379 0.836 2.213 

12 6-12 months BMI 1.020 0.0287 0.965 1.078 

12 6-12 months Acute rejection 1.448 0.6145 0.630 3.326 

              

Group C: Tacrolimus 

Non-adherence models with baseline confounders only 

13 0-3 months Age 1.009 0.0145 0.981 1.038 

13 0-3 months Gender 1.225 0.5065 0.545 2.755 

              

14 3-6 months Age 1.014 0.0149 0.985 1.044 

14 3-6 months Gender 0.846 0.3392 0.385 1.856 

              

15 6-12 months Age 0.992 0.0084 0.975 1.008 

15 6-12 months Gender 0.692 0.1625 0.436 1.096 

              

Group C: Tacrolimus 

Non -adherence models with baseline and time-dependent confounders 

16 0-3 months Age 1.004 0.0152 0.975 1.035 

16 0-3 months Gender 1.222 0.5057 0.543 2.750 

16 0-3 months BMI 1.045 0.0491 0.953 1.146 

16 0-3 months Acute rejection 1.000 - - - 

              

17 3-6 months Age 1.012 0.0155 0.982 1.043 
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17 3-6 months Gender 0.838 0.3368 0.382 1.842 

17 3-6 months BMI 1.020 0.0518 0.923 1.127 

17 3-6 months Acute rejection 0.727 0.4597 0.210 2.511 

              

18 6-12 months Age 0.991 0.0086 0.974 1.008 

18 6-12 months Gender 0.689 0.1620 0.434 1.092 

18 6-12 months BMI 1.012 0.0281 0.959 1.069 

18 6-12 months Acute rejection 0.760 0.4790 0.221 2.614 

Note: the coefficient for acute rejection at for the interval 0-3 months was automatically omitted from the model 
as no acute rejection was recorded at baseline (day zero of kidney transplantation)   

 

Table 44-46 provides the estimates of graft survivor functions from the IPCW adjusted sensitivity 

analyses including the SEs and 95% confidence intervals.  

Table 44: Graft survivor function from sensitivity analysis - Differential real-world non-adherence 
levels 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine (Control) 

  Baseline 390 0 1 - - 

  Month 3 329.91 29.0616 0.9203 0.0142 0.8874   0.9439 

  Month 6 307.94 7.0263 0.9 0.0158 0.8641    0.9264 

  Month 9 230.01 0 0.9 0.0158 0.8641    0.9268 

  Month 12 220.00 2.98 0.8882 0.017 0.8499    0.9173 

Low-dose cyclosporine 

  Baseline 399 0 1 - - 

  Month 3 352.15 14.9974 0.9595 0.0102 0.9337    0.9754 

  Month 6 334.07 4.9516 0.9456 0.0119 0.9169    0.9646 

  Month 9 248.66 3.23 0.9335 0.0135 0.9014    0.9554 

  Month 12 231.75 2.99 0.9221 0.0148 0.8873    0.9465 

Low-dose tacrolimus 

  Baseline 401 0 1 - - 

  Month 3 346.84 17.1325 0.9534 0.011 0.9262    0.9707 

  Month 6 296.29 0.9995 0.9502 0.0114 0.9222   0.9683 

  Month 9 255.15 0 0.9502 0.0114 0.9222    0.9683 

  Month 12 241.87 0 0.9502 0.0114 0.9222   0.9683 
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Table 45: Graft survivor function from IPCW sensitivity analysis - Assuming perfect adherence 
between 0- 3 months 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine (Control) 

  Baseline 390 0 1 - - 

  Month 3 330 29 0.9205 0.0142 0.8876   0.944 

  Month 6 294.1 6.96 0.8995 0.0159 0.8633    0.9265 

  Month 9 192 0 0.8995 0.0159 0.8633    0.9265 

  Month 12 181.9 2.99 0.8853 0.0177 0.8454    0.9154 

Low-dose cyclosporine 

  Baseline 399 0 1 - - 

  Month 3 352 15 0.9595 0.0102 0.9337    0.9754 

  Month 6 321.1 4.82 0.9454 0.0119 0.9164    0.9645 

  Month 9 210.6 3.24 0.9311 0.0141 0.8973    0.9541 

  Month 12 193.7 2.99 0.9177 0.0159 0.8801    0.9438 

Low-dose tacrolimus 

  Baseline 401 0 1 - - 

  Month 3 347 17 0.9538 0.011 0.9267    0.971 

  Month 6 313.1 2.96 0.9449 0.012 0.9159    0.9641 

  Month 9 193 0 0.9449 0.012 0.9159    0.9641 

  Month 12 182.9 0 0.9449 0.012 0.9159    0.9641 
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Table 46: Graft survivor functions from sensitivity analysis - Adjusting for non-adherence between 6-
12 months only 

  Time 
Beg. 
Total  

Fail 
Survivor 
Function 

SE 
95% Confidence 
Interval 

Standard-dose cyclosporine 

  Baseline 390 0 1 - - 

  Month 3 330 29 0.9205 0.0142 0.8876   0.944 

  Month 6 294 7 0.8993 0.0159 0.8631    0.9264 

  Month 9 197.08 0 0.8993 0.0159 0.8631    0.9264 

  Month 12 186.98 2.99 0.8855 0.0176 0.8458    0.9155 

Low-dose cyclosporine 

  Baseline 399 0 1 - - 

  Month 3 352 15 0.9595 0.0102 0.9337    0.9754 

  Month 6 321 5 0.9449 0.012 0.9158    0.9641 

  Month 9 217.79 3.24 0.9311 0.0141 0.8976    0.9539 

  Month 12 200.91 2.99 0.9181 0.0157 0.881    0.9539 

Tacrolimus 

  Baseline 401 0 1 - - 

  Month 3 347 17 0.9538 0.011 0.9267    0.971 

  Month 6 313 3 0.9448 0.012 0.9157   0.9264 

  Month 9 202.95 0 0.9448 0.012 0.9157    0.964 

  Month 12 193.85 0 0.9448 0.012 0.9157    0.964 

 

Table 47: Causal parameter psi and causal survival time ratio from the g-estimation by treatment 
group 

Treatment group 
Causal parameter 
psi   

Causal survival time 
ratio 

Standard-dose cyclosporine -2.57 13.04 

Low-dose cyclosporine - 2.85 17.29 

Tacrolimus -4.11 60.82 

 

 

 

 

 

 

 


