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ABSTRACT

A number of recent fires in single-storey warehouses have drawn attention to a
current lack of understanding about the structural response of industrial portal frame

structures to elevated temperatures. This research project has investigated the
subject by conducting fire tests on a scaled model and by computer modelling using
the non-linear finite element program VULCAN. This program has been developed
In-house by the University of Sheffield and is capable of modelling the behaviour of
three-dimensional steel and composite frames at elevated temperatures. It has been

validated throughout its development. An initial investigation was conducted to

validate the program for analysing inclined members, which form part of a pitched-
roof portal frame, but for which i1t was not initially developed. Additional features

were 1implemented into the program where necessary.

A series of indicative fire tests was conducted at the Health and Safety Laboratories,
Buxton. A scaled portal frame model was designed and built, and three major fire
tests were conducted 1n this structure. In the third of these tests the heated rafters
experienced a snap-through failure mechanism, in which fire hinges could clearly be
identified. The experimental results were then used for validating the numerical
results produced by VULCAN analyses. The correlations were relatively close, both

for predictions of displacements and failure temperatures. This gave increased

confidence in using VULCAN to conduct a series of parametric studies. The

parametric studies included two- and three-dimensional analyses, and a number of
parameters were investigated, including the effects of vertical and horizontal load,
frame geometry, heating profiles and base rotational stiffness. The influence of

secondary members was 1investigated in the three-dimensional studies using different

fire scenarios.

A simplified calculation method has been developed for estimating the critical
temperatures of portal frames in fire. The results compare well with predictions from
VULCAN. The current guidance document for portal frames in boundary conditions

has been reviewed, and the concept of performance-based design for portal frame

structures has been discussed.
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Notation

(Only the general notations used dunng this thesis are presented here. Symbols

which have only been used once and are of a more specific nature have been clearly

explained where they anse in the text.)

0, Displacement

£ Strain

1 Strength reduction factor at elevated temperature
C Stress

0,0 Rotation

Q. Column base rotation

A, B, N, Temperature dependent Ramberg-Osgood parameters

A Cross scction area

E Young Modulus

H, Perimeter of section exposed to fire

Lixo lyy Second moment area about major/minor axis
M, Internal moment

M, Plastic moment resistance

W; External Load
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Chapter 1: Introduction

1 Introduction

Over half of the total market share of the constructional steelwork fabricated in the
United Kingdom 1s used in single-storey buildings. Portal frame construction is the
most common form of these single-storey buildings found on any modern industrial

estate, due to the fact that 1t 1s simple and cost-efficient. A steel portal frame
structure 1s a rigid plane frame with assumed full continuity at the intersections of the
column and rafter members. In the United Kingdom it is usual to design such
structures plastically. However, steel 1s very vulnerable in fire due to its high thermal

conductivity, losing strength and stiffness rapidly compared to other materials. The

steel industry has invested much research in finding better solutions this major
disadvantage, such as altemative design methods, new protective materials,
improvement to steel properties etc. A number of recent fires in single-storey
warchouses'”’ have drawn attention to a current lack of understanding about the

structural response of industnal portal frame structures to elevated temperatures.

Regulatory requirements state that all buildings require a minimum degree of fire

resistance to fulfil two main objectives:

¢ To ensure life safety, which includes allowing the occupants to leave and fire

fighting personnel to enter if necessary.

e To minimise property or financial losses, and delay the spread of fire to adjoining
property.

Structures designed using ambient-temperature steel properties are usually required
to be insulated so that their temperatures remain sufficiently low in the event of fire.
This 1s the most common method at present, but is a prescriptive method.
Alternatively, high-temperature properties of steel can be taken into account in

design, considering the load ratio, temperature gradient, dimensions and stress

distnbution.

The fire safety of all buildings in England and Wales is governed by the provisions

of Approved Document B®. The regulations in the document apply only to structural

elements used in:

e Buildings, or parts of buildings, of more than one storey;

o Single-storey buildings built close to a property boundary.
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Therefore, there may be no need for fire resistance for portal frame structures. In

fact, it 1s stated in the document that:

“It is considered technically and economically feasible to design the
foundation and its connection to the portal frame so that it would transmit the
overturning moment caused by the collapse, in a fire, of unprotected rafters, purlins

and some roof cladding while allowing the external wall to continue to perform its

structural function.”

The Steel Construction Institute has therefore published a document’ which gives
guidance on designing the column bases to resist rafter collapse. The basis of the
method is a plastic collapse model of the rafter in fire, and will be elaborated later 1n

this chapter.

1.1 Fire Concepts
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Figure 1.1 Development of a natural fire

In considering the occurrence of a typical fire, Figure 1.1 shows the diagram of a
natural fire curve, where four stages are defined. The first (ignition) stage 1s most

important to allow early detection and suppression, whereas the risk to life or

property is not very high in this phase. When the fire develops into the second
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(smouldering) stage, there will be progressive smoke production from combustible
materials, causing danger to the occupants. The structural damage is still small at this
phase until a critical point, known as flashover, is reached depending on the fire load
density and ventilation. This indicates that the fire is out of control, and the post-
flashover temperatures typically rise to between 600°C and 1000°C. At this point, it
is no longer possible for fire fighting to be effective, except to protect the
neighbourhood. When the combustible materials finish burning, the temperature will

begin to decrease, and this is hence defined as the cooling stage.

Fire in a portal frame warehouse can be different from natural fires in commercial
buildings, depending on the material stored in the warehouse, which subsequently
becomes the fuel for the fire. Provided there is sufficient ventilation, the fire growth
rate and the ultimate temperature achieved are solely dependent of the type of
material available for burning. DD240 Part 1, Application of Fire Safety
Engineering Principles to Fire Safety in Buildings (1997) "1 published by British
Standards Institute gives values of effective fire load density, expressed in

megajoules per square metre of floor area, which 1is directly related to the effective

calorific values of different materials. Table 1.1 shows several examples:

Material Calonific Value | Material Calorific Value
(MJ/kg) (MJ/kg)

Paper, cardboard Epoxy 34
Cotton Polystyrene 40

Methanol Liquid gasoline 44

Polyester Paraffin wax 47

Table 1.1 Calorific values of typical materials

It is specified in the same code that industrial storage units have to be designed for an
ultra-fast fire growth rate, where 1000 kW will be produced in 75 seconds (compared

to 300 seconds for the medium fire growth rate required for offices and dwelling).

However, the concept of flashover applies most clearly to fires in relatively small
enclosures, whereas a portal frame warehouse will normally occupy a larger space
without many compartments. It will require a longer time for flashover to take place,

and this only happens after a substantial local fire has developed. A.J. O’Meagher"

3
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(1992) has introduced a “developing fire” concept, where a fire begins at a particular
location over a finite time period, and then spreads outwards to other parts of the
building. The portal frames are therefore heated locally and the affected area will

increase as the fire develops, causing an increased length or number of portals to be

heated.

The concept implies that parts of a structural frame which are near to the fire will
become very hot, and hence the local material strength will decrease substantially;
whereas the rest of frame remains cooler and the strength is not affected. The
validity of this concept 1s inferred from post-fire observations of single-storey

buildings and from knowledge of how structures behave under elevated temperature.

1.2 Steel Properties at Elevated Temperature

One of the major advantages of using steel for structural applications is its good
strength-to-weight ratio. However, steel begins to lose strength at about 200°C and
continues to lose strength at a much faster rate from 400°C to 750°C. Above this
temperature, the degradation of the remaining strength continues at a slower rate

until approximately 1500°C, at which melting point 1s reached.

—*—EC3 - 0.5% strain
—®—EC3 - 1.5% strain
—4&—EC3 - 2.0% strain

% --BS5950 - 0.5% Strain
- %®--BS5950 - 1.5% Strain
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L B .. e R R R R B I IR T T BT B R I T B e — — I R T T T T T T T T T T T e

Strength Reduction Factor
o
ey
“

g T —
0 100 200 300 400 500 600 700 800 900 1000
Temperature (°C)

Figure 1.2 Strength reduction factors for structural steel at elevated

temperatures
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Recent design codes BS5950 Part 8" and EC3 Part 1.2" have published strength
reduction factors of steel at different strain levels. The reduction factors are defined
as the residual strength of steel at a certain temperature, relative to its strength at
ambient temperature. They vary at different strain limits because there is a gradual
increase in strength with strain at elevated temperature after yielding, unlike at
ambient temperature where a yield stress plateau is obtained. Figure 1.2 shows a

comparison of the strength reduction factors between the codes for Grade 43 steel.

The actual stress-strain data of steel published in BS5950 and EC3 are based on the
high temperature stress-strain tests conducted by Kirby and Preston'’ (1988). A
Ramberg-Osgood'® type of equation has been used as one of mathematical models to
represent this stress-strain behaviour, and most of the computer analyse performed in

this research adopt this model for calculation. The curves for Grade 43 steel are

shown in Figure 1.3.

300
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— ——200°C
4
250 = 400°C
, |7+ s00C
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Figure 1.3 Stress-strain characteristics for Grade 43 steel at elevated

temperatures.

The Ramberg-Osgood model'® modifies strain at a given stress by the use of three

temperature-dependent parameters — Ar, Br and Nt. The equation is as follows:

N
. =(a(: ]J'O'O{b(: ) (1.01)
T
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Where €, and o, represent strain and stress respectively at temperature t, and

E
q=—
180x10?

O,

b=——
250
and

A, =180x10’
B, =0.00134T* —0.26T +254.67
N =237-1.58T for 20°C £ T <100°C

A, =(194-0.14t)x10’
B, =242

N. =15.3x1077(400-T)*' +6 for  100°C < T £ 400°C

A, =(295.33-0.3933T)x10’
B, =492.667 -0.6266T
N =6 for  400°C < T <700°C

A, =(30.5-0.015T)x10’
B, =306-0.36T
N, =0.04t —22 for  700°C < T <800°C

Similar stress-strain data is published in EC3 Part 1.2"° where the mathematical
model is represented by one elliptical and two linear equations, and stresses are
calculated from given strains. This model is based on the same experimented results

from Kirby and Preston (1988); therefore the stress-strain curves are very close to the

Ramberg-Osgood model.

While considering the stress-strain behaviour of steel at elevated temperature, creep
is one of the factors that need to be considered. Creep is defined as a visco-elastic
strain which occurs with the passage of time under a constant stress state, at a rate

which in controlled by the temperature. Research has been conducted into the effect
of creep and at the different heating rates likely to be encountered in actual building

fires. Witteveen'® (1977) concluded from his earlier test results that with heating

6
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rates ranging from 5° to S0°C per minute, and at temperatures not exceeding 600°C,
no significant effect of creep was found. Aribert and Abdel Aziz'” (1987) reported

creep effect becomes significant at temperatures in excess of 545°C. The stress-
strain data shown in Figure 1.3 is obtained with a consistent heating rate of 10°C per

minute, which is believed to a good representation of real fires in average buildings.

Thermal elongation of steel in fire 1s critical to structural behaviour. Its main effects
are thermal bowing and induced internal compression. The rate of thermal expansion
increases almost linearly as temperature increases until about 720°C at which the
microstructure undergoes a phase-change. As the steel absorbs energy and adopts a
denser internal structure, thermal elongation stays constant up to 860°C and then
starts increasing again. The variation of thermal expansion with temperature

published in EC3 Part 1.2 is shown 1n Figure 1.4.
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Figure 1.4 Thermal elongation of steel at elevated temperature.

The thermal elongation used throughout this research follows the EC3 data as shown

below:

éll-=—2.416><10"‘+1.2><10"T+0.4><10"3T2 for  20°C <T<750°C
Al ,

T =L1x10 for  750°C < T < 860°C
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% =-6.2x%107+2.0x10"°T for 860°C < T £1200°C

(1.02)
where,
| = oniginal length at 20°C
Al = the thermal induced expansion
T = temperature of steel

The specific heat of steel may be defined as the heat stored in a unit mass of steel for
a unit temperature rise 1in °K. It increases slowly as temperature rises up to 700°C,
when the steel’s internal lattice structure changes and causes the specific heat to
increase rapidly around 735°C, and reduces to almost the original level after that.

The model of specific heat published by EC3 is shown below:

C, =425+7.73x107'T-1.69x107°T> +2.22x10°T’ J/kgK

for 20°C < T £600°C

C, =666+ 13002 J/kgK for 600°C < T £735°C
738=T
C. =545+ 17820 J/kgK for 735°C < T £900°C
T-731
C, =650 J/kgK for 900°C < T £1200°C
(1.03)

where

C, = thermal conductivity

T = steel temperature

Thermal conductivity of steel reduces as temperature increases up to 800°C, beyond

which it stays unchanged. It is measured by the amount of heat in unit time passing
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through a unit cross-sectional area of steel subject to a unit temperature gradient,

EC3 part 1.2 gives the values as:

A, =54-333x102T W/mK for 20° < T £800°C

A, =27.3 W/mK for 800°C < T £1200°C
(1.04)

where

A, = specific heat

t = steel temperature

The density of steel is almost independent of temperature, and 1s given by EC3 part
1.2 as 7850 kg/m’. Similarly, Poisson’s ratio is taken as 0.3.

1.3 Steel Portal Frame Design and Construction

Single-storey portal frames can be constructed in many different shapes, Figure 1.5
illustrates various types that are used as main frames. They can be designed with

elastic or plastic methods. Either way the connections between the columns and

rafters must be capable of transmitting moments between the members.

If an elastic analysis is chosen, then computer software i1s normally used to help in

solving a series of analyses with multiple load cases. Once individual member forces
have been calculated, where both the column and rafters will normally be subject to a
combination of moment and compression, they should be designed as normal beam-

columns according to BS5950 Part 1'*. Special considerations are given to lateral-
torsional buckling, where allowance is made for the restraining effects of purlins,

sheeting rails and cladding attached to the outer flanges of the main frame members.

However, since the mid 1950s, portal frame construction in the U.K. has been widely
based on the principles of plastic design. Often the frames are the basic pitched-roof

variety shown in Figs. 1.05 (b) and (c), of which the pinned base is more popular

with designer as it avoids high foundation cost, as well as the complexity of forming

a rigid connection.
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(a) (b) Q

Figure 1.5 Different types of portal frames. (a) flat roof; (b) pinned base; (c)

fixed base; (d) different sections with haunches; (¢) lean-to frame; (f)north light;

(g) monitor roof; (h) portal with crane; (i) tied portal

Plastic analyses involve identifying all possible collapse mechanisms of the portal

frames and consider the lowest value of the collapse load when suitable sections are
chosen. Further checks are performed to ensure that no other form of failure
prevents the attainment of this collapse mechanism. Several publications®®** which

deal with the detail design of portals by this method can be found, due to the

popularity of this form of construction.

In this research, initial studies were conducted on flat-roof portal frames (Figure 1.5

(a)) and further studies were concentrated on basic pitched-roof portal frames with

pinned and fixed bases (Figure 1.5 (b) and (c)).

1.3.1 Portal Frames in Fire

When fire starts in a single-storey portal frame structure, the rafter will be heated and
expand, causing outward deflection of the eaves. As the fire develops further, the

strength of the rafter will decrease substantially, and the rafter has to support only
dead load from its self-weight, purlins, cladding and insulation. Rafter collapse will

eventually take place, associated with some torsional instability due to the loss of

purlins, The rafter, at this stage, 1s acting partially as a catenary with tensile force

10
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pulling the tops of columns inwards. Total collapse happens when sufficient hinges

form in the portal frames, either on columns or rafters, to create a mechanism.

9,12

There has been limited research done on portal frames in fire Current fire

resistance design concentrates almost entirely on the prevention of fire spread
beyond the building of origin by ensuring that column base connections retain

sufficient rigidity to prevent collapse of the boundary wall. The U.K. regulatory
authorities require the designer either to provide fire protection for the rafters, or to

ensure that the base of the column would resist the forces caused by the rafter

collapse 1n fire.

The only guide for designers in the U.K. to follow when considering portal frames in

fire is the publication from The Steel Construction Institute: The Behaviour of Steel

Portal Frames in Boundary Conditions (1990)°. The main purpose of this
publication is to satisfy the U.K. authorities’ concern that fires may spread to another

building. Several assumptions was made in the document in order to derive the

simplified equations given:
e Both columns will lean inwards by one degree.

e The rafter elongation is 2%, which includes thermal expansion and various

deformations.

o The steel yield strength at failure caused by fire is equal 0.065 of the normal
strength.
e The haunch length is equal to 10% of the span.

Although some of these assumptions are arguable, the method 1s believed to produce

conservative results and is widely accepted. The equations are given as follows:

Vertical reaction =0.5W,SL + dead weight of wall (1.05)
CM
Horizontal Reaction =K|W,SGA - R (1.06)
B CY
Overturning moment =K|W,SGY| A el M, - 0.06 (1.07)
Where,

G, Y and L are the dimensions shown in Figure 1.6.

11
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W = load at time of collapse
S = distance between frame centres (m)
M, = plastic moment of resistance

K = Modification factor

0 =cos ™' (0.97cos8,) = original rafter pitch

6, = final rafter pitch

A= p—
4tan@ 96
2 2 Y
B=L G
8G
C = 0.255¢c0s6,
sin@

Figure 1.6 Frame dimensions

Some of the parameters in the equation are created to simplify the original formulas
so that the result from the simplified method is near to the real solution. The
parameters are calibrated against frames with spans greater than 12m. In calculating
the required base overturning moment, it is also suggested that a minimum positive

10% of the plastic moment resistance of the column should always be considered, if

the values calculated from the equation are less.

O’Meagher et al (1992)'° has conducted research into single-storey industrial
buildings in fire for the Australian Institute of Steel Construction, as a supplement to
the Building Code of Australia (BCA). They concluded that the application of fire-
protection to the columns of the steel portal frames would have no influence on the
deformation mode or their fire resistance. There is also no need to fire-protect the
roofs of the supporting steelwork when designed according to BCA. Parametric
studies were conducted using a finite element program ABAQUS %%* on 20 portal
frames with different spans, load and heating profile. It was found the most of these

failed with an acceptable failure mode.

12
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1.4 Structural Computer Modelling

Modelling of structural behaviour using the finite element method by computer has
been very popular in recent years. The main reasons is the relatively high cost of
conducting real structural tests. Once computer modelling has been showed to be
capable of analysing real structures with acceptable accuracy, large-scale parametric

studies can be performed to investigate the influences of particular factors on

structural behaviour. The method has become particularly feasible due to the

improved performance, in terms of speed and storage, of modern desktop computers.

VULCAN, a non-linear finite element program developed at the University of
Sheffield, was used throughout this research for the purposes of computer modelling

for validation and parametric studies.

14.1 VULCAN

The development of VULCAN is based on another program, INSTAF, which was
written by El-Zanaty and Murray at the University of Alberta in 1980%. INSTAF is
capable of analysing two-dimensional steel frames at ambient temperature,
incorporating the geometrical non-linearity, penetration of matenal yielding into the
cross section and spread of inelastic zones along member lengths. The code was
written in the FORTRAN programming language. By 1990, El-Rimaw1 and Saab*’~°
from the University of Sheffield had successfully included the effect of thermal

distribution due to fire into INSTAF, and a Ramberg-Osgood representation was

used for the stress-strain data. After that, Najjar'> further developed the program to
allow three-dimensional behaviour be analysed. Bailey’' added the capability to
include semi-rigid connections introduced as spring elements, continuous concrete
slab represented by shell elements, strain reversal in cooling and flexural shear forces
to allow lateral-torsional buckling. Most recently, Huang™"° further extended the
shell elements into a layered formulation which gives a better representation of
concrete cracking. As the program can only analyse I-shaped symmetric cross
sections, Cai> has included the capability to analyse asymmetric beams. Validation

of the program has been carried out at each stage of development.

13
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In the VULCAN model, beam-column elements are represented by two-noded line
elements. The basic finite element model presented by El-Zanaty and Murray in the

original INSTAF adopted the non-linear large displacement-strain equation as:

1 752 732
e, =+ + )] - ] 1+ e -l-yz(v:y[1+—-—-———("°) ]

- |2 (1-)%)
(1.08)

where,

€, = strain 1n z direction

u,,v,,v, are the first and second derivatives of the deflection components shown in

Figure 1.7.

-
—_——° w7

N

r . 1 ]

el i ) [~
\
O
S " — g
Y
L,

Figure 1.7 Notation for strain displacement equation

Within this model, each node has five degrees of freedom. When Najjar extended
the capability into three-dimensional analysis an extra termw’ was added, associated
with three additional degrees of freedom in the local coordinates. This gives a total
of eleven degrees of freedom per node in global coordinates. Every effort was made

to retain the higher-order terms to enable geometrical non-linearity to be represented
properly.

A physical beam-column member is separated into a number of finite elements,

interconnected at nodal points. The displacements of these nodal points are to be

bt T S S ) SOV N et 1t G, b A A e e A el NN i R e T R R T e R o ¥ A JPR e i T W B bt PP i A il g SRR e g B
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solved within the structural analysis. Shape functions are then used to define the
displacements within an element bounded by nodal points. Displacements at any

point along the element can therefore be defined, and the state of strain can be found

by using the large-displacement equation (1.08).

As is typical in finite element analysis, equilibrium is enforced between boundary
stresses and the external loads. The Principle of Virtual Work 1s applied, and the

equation is shown as:

W= [ ,,av -(Q} 3} =0 (1.09)
14

where,

o, = axial stress

d¢, = virtual axial strain (derivation from equation 1.08)

(Q) = row vector of external loads

{9q}= column vector of imposed virtual displacements

The standard stiffness relationship given by a typical finite element procedure 1s

shown as:

[Kl{q}={Q} (1.10)
where,

[K] = tangent stiffness matrix

{q} = vector of nodal displacement

{Q} = vector of nodal forces

In VULCAN, Gaussian integration*® is applied to evaluate terms in equation 1.09.
An iterative method of solution is required due to the non-linearities, and therefore

the Newton-Raphson solution procedure was adopted.

The spring elements introduced by Bailey fit within the same finite element theory

used for beam-column elements, except that their rotational stiffness properties are

15



Chapter 1: Introduction

modified in the analysis to simulate the behaviour of moment connections. Shell
elements have only five degrees of freedom at each node in local-coordinates,
representing displacements in three dimensions and rotations about two bending

axes. Shell elements are not used within this project and the details can be found in

relevant publications.

At present, extensive research is in progress to improve the modelling of

40,41

connections, conducted by Al-Jabn and Spyrou. Geometrical nonlinearity of

shell elements is under development by Allam®’~® and Huang™*.

1.4.2 The Application of VULCAN

Since there 1s no user-interface for VULCAN, a textual 1input file needs to be created
to define a structural problem. The input file will specify the structure as a series of
nodes connected by a number of beam-column, spring and shell elements with
different material properties, together with heating criteria.  Most recently,

Shepherd* has reformulated the input format, using blocks of data with labels so that

the measuring of each of the numerical values can be identified easily.

VULCAN will read the input file and perform the structural analysis, recording the
results in a separate output file. Similarly, output results are written into blocks, and
- the user can select the required results on particular nodes to be written into different
files so that a speadsheet program can process the results efficiently. Shepherd43 has
created an interactive graphical software tool called SHOWGRID, which can read

the input and output files and displayed the arrangement and results graphically. The

option to display the deflected shapes from output files as series of animations is

avatlable.

1.5 Layout and Scope of Research

This research was conducted in conjunction with the Health and Safety Laboratories
at Buxton. The main objective of the research was to investigate the behaviour of
steel portal frames 1n fire. Previous research concentrated mostly on the boundary
conditions, and 1t was believed that other aspects of the behaviour might control the
way in which the fire develops, the modes of failures and the probability of its

control by fire fighters. Necessary investigations were also conducted onto the
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capabilities of VULCAN as a computer modelling tool and some changes were made

to improve its performance.

A general introduction to steel properties, portal frame behaviour in fire and the
finite element program VULCAN have been presented in this chapter. Particular
attention has been given to the widely accepted portal frame document published by

SCI, which was produced to satisfy the U.K. authorities.

In the next chapter, the feasibility of using VULCAN to analyse portal frames is

investigated, concentrating particularly on the analysis of sloping members since

pitched roofs are necessary. Modifications done to the VULCAN are also presented.

As part of the research project, experiments were conducted at Buxton in which a
scale model of a steel portal frame was constructed and tested under fire. Chapter 3
describes in detail the indicative tests and three major fire tests performed, along
with the test results. The following chapter compares the test results with computer
analyses performed by VULCAN. The test results obtained are discussed, as are the

significance of the comparison as well as the physical observations. VULCAN

analysis is also validated against the test results.

Once the validation of VULCAN has been done, the software is used to perform a
series of parametric studies, investigating various factors. Chapter 5 describes the
first series of parametric studies in which two-dimensional frames are investigated.

The parameters concerned are the load ratios, frame geometries, heating profiles,
effect of horizontal load and rotational stiffness. The next series of parametric

studies involve analyses on three dimensional full scale frame, where the effects of
the secondary elements are included with different fire scenarios. The three
dimensional parametric studies are presented in Chapter 6. Discussions on the

studies are given at the ends of these two chapters respectively.

In Chapter 7 a simplified method to estimate the critical temperatures of portal
frames in fire 1s proposed. Its purpose is to enable practising engineers to perform
quick hand calculations to obtain the failure temperature, with acceptable accuracy.

Examples of calculation are also presented.

Further discussions on other aspects of the research are presented in Chapter 8.

These include looking at aspects required by the original research proposal and
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review of the current guide for portal frame with boundary conditions. A more

general view on performance based design approach is also briefly discussed.

Finally, general conclusions are drawn in the final chapter, along with

recommendations for future research.
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2 Preliminary Studies on VULCAN and Portal Frames in Fire

A preliminary investigation into the use of VULCAN has been conducted, giving
priority to rationalising the finite element code for use in analysing structural
elements not aligned with the primary axes. The study was necessary because the
most common form of portal frame is constructed with a sloping roof. Such

applications had not been addressed in any previous studies.

These studies also investigate the Ramberg-Osgood stress-strain curve adopted in
VULCAN and the modelling of semi-rigid connections at elevated temperatures.

The solution procedure adopted by VULCAN and its significance is also briefly

discussed. Some initial studies of the behaviour of goal-post (flat-roof) portal frames
using VULCAN followed at the end of the chapter.

2.1 Rationalisation of VULCAN

When a VULCAN analysis 1s conducted, the st<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>