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ABSTRACT 

A number of recent fires in single-storey warehouses have drawn attention to a 

current lack of understanding about the structural response of industrial portal frame 

structures to elevated temperatures. This research project has investigated the 

subject by conducting fire tests on a scaled model and by computer modelling using 
the non-linear finite element program VULCAN. This program has been developed 

in-house by the University of Sheffield and is capable of modelling the behaviour of 
three-dimensional steel and composite frames at elevated temperatures. It has been 

validated throughout its development. An initial investigation was conducted to 

validate the program for analysing inclined members, which form part of a pitched- 

roof portal frame, but for which it was not initially developed. Additional features 

were implemented into the program where necessary. 

A series of indicative fire tests was conducted at the Health and Safety Laboratories, 

Buxton. A scaled portal frame model was designed and built, and three major fire 

tests were conducted in this structure. In the third of these tests the heated rafters 

experienced a snap-through failure mechanism, in which fire hinges could clearly be 

identified. The experimental results were then used for validating the numerical 

results produced by VULCAN analyses. The correlations were relatively close, both 

for predictions of displacements and failure temperatures. This gave increased 

confidence in using VULCAN to conduct a series of parametric studies. The 

parametric studies included two- and three-dimensional analyses, and a number of 

parameters were investigated, including the effects of vertical and horizontal load, 

frame geometry, heating profiles and base rotational stiffness. The influence of 

secondary members was investigated in the three-dimensional studies using different 

fire scenarios. 

A simplified calculation method has been developed for estimating the critical 

temperatures of portal frames in fire. The results compare well with predictions from 

VULCAN. The current guidance document for portal frames in boundary conditions 
has been reviewed, and the concept of performance-based design for portal frame 

structures has been discussed. 
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Notation 

(Only the general notations used during this thesis are presented here. Symbols 

which have only been used once and are of a more specific nature have been clearly 

explained where they arise in the text. ) 

Si Displacement 

C Strain 

7I Strength reduction factor at elevated temperature 

a Stress 

0,0 Rotation 

01 Column base rotation 

At, I31, N, Temperature dependent Ramberg-Osgood parameters 

A Cross section area 

E Young Modulus 

lip Perimeter of section exposed to fire 

Iitz, Iyy Second moment area about major/minor axis 

M, Internal moment 

Alp Plastic moment resistance 

Wi External Load 

XIl 
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Chapter 1: Introduction 

1 Introduction 

Over half of the total market share of the constructional steelwork fabricated in the 

United Kingdom is used in single-storey buildings. Portal frame construction is the 

most common form of these single-storey buildings found on any modem industrial 

estate, due to the fact that it is simple and cost-efficient. A steel portal frame 

structure is a rigid plane frame with assumed full continuity at the intersections of the 

column and rafter members. In the United Kingdom it is usual to design such 

structures plastically. However, steel is very vulnerable in fire due to its high thermal 

conductivity, losing strength and stiffness rapidly compared to other materials. The 

steel industry has invested much research in finding better solutions this major 
disadvantage, such as alternative design methods, new protective materials, 
improvement to steel properties etc. A number of recent fires in single-storey 

warehouses" have drawn attention to a current lack of understanding about the 

structural response of industrial portal frame structures to elevated temperatures. 

Regulatory requirements state that all buildings require a minimum degree of fire 

resistance to fulfil two main objectives: 

" To ensure life safety, which includes allowing the occupants to leave and fire 

fighting personnel to enter if necessary. 

" To minimise property or financial losses, and delay the spread of fire to adjoining 

property. 

Structures designed using ambient-temperature steel properties are usually required 

to be insulated so that their temperatures remain sufficiently low in the event of fire. 

This is the most common method at present, but is a prescriptive method. 

Alternatively, high-temperature properties of steel can be taken into account in 

design, considering the load ratio, temperature gradient, dimensions and stress 
distribution. 

The fire safety of all buildings in England and Wales is governed by the provisions 

of Approved Document B8. The regulations in the document apply only to structural 

elements used in: 

9 Buildings, or parts of buildings, of more than one storey; 

" Single-storey buildings built close to a property boundary. 
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Therefore, there may be no need for fire resistance for portal frame structures. In 

fact, it is stated in the document that: 

"It is considered technically and economically feasible to design the 

foundation and its connection to the portal frame so that it would transmit the 

overturning moment caused by the collapse, in a fire, of unprotected rafters, purlins 

and some roof cladding while allowing the external wall to continue to perform its 

structural function. " 

The Steel Construction Institute has therefore published a document9 which gives 

guidance on designing the column bases to resist rafter collapse. The basis of the 

method is a plastic collapse model of the rafter in fire, and will be elaborated later in 

this chapter. 

1.1 Fire Concepts 

Pre flashover 

Ignition Smouldering phase 

Post flashover 

Heating 

Figure 1.1 Development of a natural fire 

Cooling 

In considering the occurrence of a typical fire, Figure 1.1 shows the diagram of a 

natural fire curve, where four stages are defined. The first (ignition) stage is most 

important to allow early detection and suppression, whereas the risk to life or 

property is not very high in this phase. When the fire develops into the second 
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(smouldering) stage, there will be progressive smoke production from combustible 

materials, causing danger to the occupants. The structural damage is still small at this 

phase until a critical point, known as flashover, is reached depending on the fire load 

density and ventilation. This indicates that the fire is out of control, and the post- 

flashover temperatures typically rise to between 600°C and 1000°C. At this point, it 

is no longer possible for fire fighting to be effective, except to protect the 

neighbourhood. When the combustible materials finish burning, the temperature will 
begin to decrease, and this is hence defined as the cooling stage. 

Fire in a portal frame warehouse can be different from natural fires in commercial 
buildings, depending on the material stored in the warehouse, which subsequently 
becomes the fuel for the fire. Provided there is sufficient ventilation, the fire growth 

rate and the ultimate temperature achieved are solely dependent of the type of 

material available for burning. DD240 Part 1, Application of Fire Safety 

Engineering Principles to Fire Safety in Buildings (1997) 11, published by British 

Standards Institute gives values of effective fire load density, expressed in 

megafoules per square metre of floor area, which is directly related to the effective 

calorific values of different materials. Table 1.1 shows several examples: 

Material Calorific 

(MJ/kg) 

Value Material Calorific Value 

(MJ/kg) 

Paper, cardboard 17 Epoxy 34 

Cotton 18 Polystyrene 40 

Methanol 20 Liquid gasoline 44 

Polyester 31 Paraffin wax 47 

Table 1.1 Calorific values of typical materials 

It is specified in the same code that industrial storage units have to be designed for an 

ultra-fast fire growth rate, where 1000 kW will be produced in 75 seconds (compared 

to 300 seconds for the medium fire growth rate required. for offices and dwelling). 

However, the concept of flashover applies most clearly to fires in relatively small 

enclosures, whereas a portal frame warehouse will normally occupy a larger space 

without many compartments. It will require a longer time for flashover to take place, 

and this only happens after a substantial local fire has developed. A. J. O'Meagher12 
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(1992) has introduced a "developing fire" concept, where a fire begins at a particular 
location over a finite time period, and then spreads outwards to other parts of the 

building. The portal frames are therefore heated locally and the affected area will 
increase as the fire develops, causing an increased length or number of portals to be 

heated. 

The concept implies that parts of a structural frame which are near to the fire will 

become very hot, and hence the local material strength will decrease substantially; 

whereas the rest of frame remains cooler and the strength is not affected. The 

validity of this concept is inferred from post-fire observations of single-storey 

buildings and from knowledge of how structures behave under elevated temperature. 

1.2 Steel Properties at Elevated Temperature 

One of the major advantages of using steel for structural applications is its good 

strength-to-weight ratio. However, steel begins to lose strength at about 200°C and 

continues to lose strength at a much faster rate from 400°C to 750°C. Above this 

temperature, the degradation of the remaining strength continues at a slower rate 

until approximately 1500°C, at which melting point is reached. 

1.2 
EC3 - 0.5% strain 
EC3 - 1.5% strain 
EC3 - 2.0% strain 
BS5950 - 0.5% Strain 

BS5950 - 1.5% Strain 

"""BS5950 - 2.0% Strain 

0.4 t---------------------------------- \ti X ______________________, 

0+ 
0 100 200 300 400 500 600 700 800 900 1000 

Temperature (°C) 

Figure 1.2 Strength reduction factors for structural steel at elevated 

temperatures 
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Recent design codes BS5950 Part 813 and EC3 Part 1.215 have published strength 

reduction factors of steel at different strain levels. The reduction factors are defined 

as the residual strength of steel at a certain temperature, relative to its strength at 

ambient temperature. They vary at different strain limits because there is a gradual 

increase in strength with strain at elevated temperature after yielding, unlike at 

ambient temperature where a yield stress plateau is obtained. Figure 1.2 shows a 

comparison of the strength reduction factors between the codes for Grade 43 steel. 

The actual stress-strain data of steel published in BS5950 and EC3 are based on the 

high temperature stress-strain tests conducted by Kirby and Preston" (1988). A 

Ramberg-Osgood'6 type of equation has been used as one of mathematical models to 

represent this stress-strain behaviour, and most of the computer analyse performed in 

this research adopt this model for calculation. The curves for Grade 43 steel are 

shown in Figure 1.3. 

300 1 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 

Strain 

t 20°C 
A 200°C 

400°C 

500°C 

ý"- 600°C 

700°C 

NOT 

Figure 1.3 Stress-strain characteristics for Grade 43 steel at elevated 

temperatures. 

The Ramberg-Osgood model16 modifies strain at a given stress by the use of three 

temperature-dependent parameters -Ar, B ,r and N-1. The equation is as follows: 

ET = 
6T 

+0.01 
6T 

aAT bB.,. 
(1.01) 

H,. 
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Where e1 and o, represent strain and stress respectively at temperature t, and 

E 
a_180x10' 

b= ßy 
250 

and 

AT= 180xlO' 

BT = 0.00134T2 -0.26T+254.67 
NT = 237 -1.58T 

AT= (194-0.14t)x103 

BT= 242 

NT= 15.3 x 10-'(400 - T)3*1 T =15.3x10-'(400-T)3*` +6 

AT = (295.33 - 0.3933T)x 103 

BT= 492.667 - 0.6266T 

NT= 6 

AT = (30.5 - 0.015T)x 10' 

BT= 306 - 0.36T 

NT = 0.04t - 22 

for 20°C <_ T: 5 100°C 

for 100°C < T: 5 400°C 

for 400°C < T: 5 700°C 

for 700°C < T: 5 800°C 

Similar stress-strain data is published in EC3 Part 1.215 where the mathematical 

model is represented by one elliptical and two linear equations, and stresses are 

calculated from given strains. This model is based on the same experimented results 

from Kirby and Preston (1988); therefore the stress-strain curves are very close to the 

Ramberg-Osgood model. 

While considering the stress-strain behaviour of steel at elevated temperature, creep 

is one of the factors that need to be considered. Creep is defined as a visco-elastic 

strain which occurs with the passage of time under a constant stress state, at a rate 

which in controlled by the temperature. Research has been conducted into the effect 

of creep and at the different heating rates likely to be encountered in actual building 

fires. Witteveen'8 (1977) concluded from his earlier test results that with heating 
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rates ranging from 5° to 50°C per minute, and at temperatures not exceeding 600°C, 

no significant effect of creep was found. Aribert and Abdel Aziz'9 (1987) reported 

creep effect becomes significant at temperatures in excess of 545°C. The stress- 

strain data shown in Figure 1.3 is obtained with a consistent heating rate of 10°C per 

minute, which is believed to a good representation of real fires in average buildings. 

Thermal elongation of steel in fire is critical to structural behaviour. Its main effects 

are thermal bowing and induced internal compression. The rate of thermal expansion 
increases almost linearly as temperature increases until about 720°C at which the 

microstructure undergoes a phase-change. As the steel absorbs energy and adopts a 
denser internal structure, thermal elongation stays constant up to 860°C and then 

starts increasing again. The variation of thermal expansion with temperature 

published in EC3 Part 1.2 is shown in Figure 1.4. 

1.60E-02 

1.40E-02 ------------------------------------------------- 

1.20E-02 --------------------------------------------------- 

1.00E-02i------------------------------------------ c ---------------- 

.4 rn 8.00E-03 ------------------------------- =. C 

.2 W 
6.00E-03 - ------------------------ 

4.00E-03 + ----------------- 

2.00E-03 +-------- 

0.00E+00 
0 100 200 300 400 500 600 700 800 900 1000 

Temperature (°C) 

Figure 1.4 Thermal elongation of steel at elevated temperature. 

The thermal elongation used throughout this research follows the EC3 data as shown 

below: 

=-2.416x10-4 +1.2x10-ST+0.4x10-8T2 for 20°C<T<-750°C 
1 

Al 
=1.1x10-2 I 

for 750°C < T<_ 860°C 
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ý 
=-6.2x10-3 +2. Ox10-ST 

1 
for 860°C < T< 1200°C 

(1.02) 

where, 

I= original length at 20°C 

Al = the thermal induced expansion 

T= temperature of steel 

The specific heat of steel may be defined as the heat stored in a unit mass of steel for 

a unit temperature rise in °K. It increases slowly as temperature rises up to 700°C, 

when the steel's internal lattice structure changes and causes the specific heat to 

increase rapidly around 735°C, and reduces to almost the original level after that. 

The model of specific heat published by EC3 is shown below: 

Cs = 425+7.73x10-'T-1.69x10-3T3 +2.22x10-6T3 J/kgK 

for 20°C <_ T: 5 600°C 

13002 
CS = 666 +3 

,2 
J/kgK for 600°C < T: 5 735°C 

738-T 

C. =545+ 
17820 

J/kgK 
T-731 

for 735°C < T: 5 900°C 

Cs = 650 J/kgK for 900°C < T: 5 1200°C 

(1.03) 

where 

Cs = thermal conductivity 

T= steel temperature 

Thermal conductivity of steel reduces as temperature increases up to 800°C, beyond 

which it stays unchanged. It is measured by the amount of heat in unit time passing 
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through a unit cross-sectional area of steel subject to a unit temperature gradient, 
EC3 part 1.2 gives the values as: 

XQ =54-3.33x10-2T W/mK 

A, = 27.3 W/mK 

for 20°S T: 5 800°C 

for 800°C < T: 5 1200°C 

(1.04) 

where 

As = specific heat 

t= steel temperature 

The density of steel is almost independent of temperature, and is given by EC3 part 

1.2 as 7850 kg/m3. Similarly, Poisson's ratio is taken as 0.3. 

1.3 Steel Portal Frame Design and Construction 

Single-storey portal frames can be constructed in many different shapes, Figure 1.5 

illustrates various types that are used as main frames. They can be designed with 

elastic or plastic methods. Either way the connections between the columns and 

rafters must be capable of transmitting moments between the members. 

If an elastic analysis is chosen, then computer software is normally used to help in 

solving a series of analyses with multiple load cases. Once individual member forces 

have been calculated, where both the column and rafters will normally be subject to a 

combination of moment and compression, they should be designed as normal beam- 

columns according to BS5950 Part 114. Special considerations are given to lateral- 

torsional buckling, where allowance is made for the restraining effects of purlins, 

sheeting rails and cladding attached to the outer flanges of the main frame members. 

However, since the mid 1950s, portal frame construction in the U. K. has been widely 
based on the principles of plastic design. Often the frames are the basic pitched-roof 

variety shown in Figs. 1.05 (b) and (c), of which the pinned base is more popular 

with designer as it avoids high foundation cost, as well as the complexity of forming 

a rigid connection. 
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Figure 1.5 Different types of portal frames. (a) flat roof; (b) pinned base; (c) 
fixed base; (d) different sections with haunches; (e) lean-to frame; (f)north light; 
(g) monitor roof; (h) portal with crane; (i) tied portal 

Plastic analyses involve identifying all possible collapse mechanisms of the portal 
frames and consider the lowest value of the collapse load when suitable sections are 
chosen. Further checks are performed to ensure that no other form of failure 

prevents the attainment of this collapse mechanism. Several publications 20,24 which 
deal with the detail design of portals by this method can be found, due to the 

popularity of this form of construction. 

In this research, initial studies were conducted on flat-roof portal frames (Figure 1.5 
(a)) and further studies were concentrated on basic pitched-roof portal frames with 
pinned and fixed bases (Figure 1.5 (b) and (c)). 

1.3.1 Portal Frames in Fire 

When fire starts in a single-storey portal frame structure, the rafter will be heated and 

expand, causing outward deflection of the eaves. As the fire develops further, the 

strength of the rafter will decrease substantially, and the rafter has to support only 
dead load from its self-weight, purlins, cladding and insulation. Rafter collapse will 

eventually take place, associated with some torsional instability due to the loss of 

purlins. The rafter, at this stage, is acting partially as a catenary with tensile force 
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pulling the tops of columns inwards. Total collapse happens when sufficient hinges 

form in the portal frames, either on columns or rafters, to create a mechanism. 
12 There has been limited research done on portal frames in fire, . Current fire 

resistance design concentrates almost entirely on the prevention of fire spread 

beyond the building of origin by ensuring that column base connections retain 

sufficient rigidity to prevent collapse of the boundary wall. The U. K. regulatory 

authorities require the designer either to provide fire protection for the rafters, or to 

ensure that the base of the column would resist the forces caused by the rafter 

collapse in fire. 

The only guide for designers in the U. K. to follow when considering portal frames in 

fire is the publication from The Steel Construction Institute: The Behaviour of Steel 

Portal Frames in Boundary Conditions (1990?. The main purpose of this 

publication is to satisfy the U. K. authorities' concern that fires may spread to another 

building. Several assumptions was made in the document in order to derive the 

simplified equations given: 

" Both columns will lean inwards by one degree. 

" The rafter elongation is 2%, which includes thermal expansion and various 

deformations. 

" The steel yield strength at failure caused by fire is equal 0.065 of the normal 

strength. 

" The haunch length is equal to 10% of the span. 

Although some of these assumptions are arguable, the method is believed to produce 

conservative results and is widely accepted. The equations are given as follows: 

Vertical reaction = 0.5W f SL + dead weight of wall (1.05) 

Horizontal Reaction =KWf SGA - 
CM 

p 
G 

(1.06) 

Overturning moment =K Wf SGY A+ 
B -M v 

GY 
- 0.06 (1.07) 

Where, 

G, Y and L are the dimensions shown in Figure 1.6. 
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Wf = load at time of collapse 

S= distance between frame centres (m) 

Mp = plastic moment of resistance 

K= Modification factor 

0= cos-(0.97 cos 00) = original rafter pitch 

6o = final rafter pitch 

A= 
1+1 

4tan6 96 

B= 
e-GZ 

8G 

C=0.255cos00 
sin 0 

-ý Y 

11 
ýýT 

L 
T 

Figure 1.6 Frame dimensions 

Some of the parameters in the equation are created to simplify the original formulas 

so that the result from the simplified method is near to the real solution. The 

parameters are calibrated against frames with spans greater than 12m. In calculating 

the required base overturning moment, it is also suggested that a minimum positive 
10% of the plastic moment resistance of the column should always be considered, if 

the values calculated from the equation are less. 

O'Meagher et al (1992) 12 has conducted research into single-storey industrial 

buildings in fire for the Australian Institute of Steel Construction, as a supplement to 

the Building Code of Australia (BCA). They concluded that the application of fire- 

protection to the columns of the steel portal frames would have no influence on the 
deformation mode or their fire resistance. There is also no need to fire-protect the 

roofs of the supporting steelwork when designed according to BCA. Parametric 

studies were conducted using a finite element program ABAQUS 26,27 on 20 portal 
frames with different spans, load and heating profile. It was found the most of these 
failed with an acceptable failure mode. 
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1.4 Structural Computer Modelling 

Modelling of structural behaviour using the finite element method by computer has 

been very popular in recent years. The main reasons is the relatively high cost of 

conducting real structural tests. Once computer modelling has been showed to be 

capable of analysing real structures with acceptable accuracy, large-scale parametric 

studies can be performed to investigate the influences of particular factors on 

structural behaviour. The method has become particularly feasible due to the 
improved performance, in terms of speed and storage, of modem desktop computers. 

VULCAN, a non-linear finite element program developed at the University of 
Sheffield, was used throughout this research for the purposes of computer modelling 
for validation and parametric studies. 

1.4.1 VULCAN 

The development of VULCAN is based on another program, INSTAF, which was 

written by EI-Zanaty and Murray at the University of Alberta in 198028. INSTAF is 

capable of analysing two-dimensional steel frames at ambient temperature, 

incorporating the geometrical non-linearity, penetration of material yielding into the 

cross section and spread of inelastic zones along member lengths. The code was 

written in the FORTRAN programming language. By 1990, El-Rimawi and Saab 29 ' 30 

from the University of Sheffield had successfully included the effect of thermal 

distribution due to fire into INSTAF, and a Ramberg-Osgood representation was 

used for the stress-strain data. After that, Najar'9 further developed the program to 

allow three-dimensional behaviour be analysed. Bailey3l added the capability to 

include semi-rigid connections introduced as spring elements, continuous concrete 

slab represented by shell elements, strain reversal in cooling and flexural shear forces 

to allow lateral-torsional buckling. Most recently, Huang 33,36 further extended the 

shell elements into a layered formulation which gives a better representation of 

concrete cracking. As the program can only analyse I-shaped symmetric cross 

sections, Cai39 has included the capability to analyse asymmetric beams. Validation 

of the program has been carried out at each stage of development. 
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In the VULCAN model, beam-column elements are represented by two-noded line 

elements. The basic finite element model presented by El-Zanaty and Murray in the 

original INSTAF adopted the non-linear large displacement-strain equation as: 

Ez=llö+2[ýll0)2-+ -(Vö)2]-yVo Ii- llö+ 
`VoJ 

]+Y2(vD2[1+ 

(V 2 1-iVö)2 (1 
oý 

ý 

(1.08) 

where, 

Ez = strain in z direction 

it, vo, vo are the first and second derivatives of the deflection components shown in 

Figure 1.7. 
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Lb 

Figure 1.7 Notation for strain displacement equation 

Within this model, each node has five degrees of freedom. When Na ar extended 
the capability into three-dimensional analysis an extra term w' was added, associated 

with three additional degrees of freedom in the local coordinates. This gives a total 

of eleven degrees of freedom per node in global coordinates. Every effort was made 
to retain the higher-order terms to enable geometrical non-linearity to be represented 

properly. 

A physical beam-column member is separated into a number of finite elements, 
interconnected at nodal points. The displacements of these nodal points are to be 
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solved within the structural analysis. Shape functions are then used to define the 

displacements within an element bounded by nodal points. Displacements at any 

point along the element can therefore be defined, and the state of strain can be found 

by using the large-displacement equation (1.08). 

As is typical in finite element analysis, equilibrium is enforced between boundary 

stresses and the external loads. The Principle of Virtual Work is applied, and the 

equation is shown as: 

dW =f azaezav -ýQ){aý} =0 
v 

where, 

QZ = axial stress 

8ez = virtual axial strain (derivation from equation 1.08) 

(Q) = row vector of external loads 

{aq}= column vector of imposed virtual displacements 

(1.09) 

The standard stiffness relationship given by a typical finite element procedure is 

shown as: 

[K]{q}= {Q} 

where, 

[K] = tangent stiffness matrix 

{q} = vector of nodal displacement 

{ Q) = vector of nodal forces 

(i. io) 

In VULCAN, Gaussian integration42 is applied to evaluate terms in equation 1.09. 

An iterative method of solution is required due to the non-linearities, and therefore 

the Newton-Raphson solution procedure was adopted. 

The spring elements introduced by Bailey fit within the same finite element theory 

used for beam-column elements, except that their rotational stiffness properties are 
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modified in the analysis to simulate the behaviour of moment connections. Shell 

elements have only five degrees of freedom at each node in local-coordinates, 

representing displacements in three dimensions and rotations about two bending 

axes. Shell elements are not used within this project and the details can be found in 

relevant publications. 

At present, extensive research is in progress to improve the modelling of 

connections, conducted by Al-Jabri 40,41 and Spyrou. Geometrical nonlinearity of 

shell elements is under development by Allam37'38 and Huang 34,3s 

1.4.2 The Application of VULCAN 

Since there is no user-interface for VULCAN, a textual input file needs to be created 

to define a structural problem. The input file will specify the structure as a series of 

nodes connected by a number of beam-column, spring and shell elements with 
different material properties, together with heating criteria. Most recently, 
Shepherd 32 has reformulated the input format, using blocks of data with labels so that 

the measuring of each of the numerical values can be identified easily. 

VULCAN will read the input file and perform the structural analysis, recording the 

results in a separate output file. Similarly, output results are written into blocks, and 
the user can select the required results on particular nodes to be written into different 

files so that a speadsheet program can process the results efficiently. Shepherd 43 has 

created an interactive graphical software tool called SHOWGRID, which can read 
the input and output files and displayed the arrangement and results graphically. The 

option to display the deflected shapes from output files as series of animations is 

available. 

1.5 Layout and Scope of Research 

This research was conducted in conjunction with the Health and Safety Uboratories 

at Buxton. The main objective of the research was to investigate the behaviour of 

steel portal frames in fire. Previous research concentrated mostly on the boundary 

conditions, and it was believed that other aspects of the behaviour n-dght control the 

way in which the fire develops, the modes of failures and the probability of its 

control by fire fighters. Necessary investigations were also conducted onto the 
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capabilities of VULCAN as a computer modelling tool and some changes were made 

to improve its performance. 

A general introduction to steel properties, portal frame behaviour in fire and the 
finite element program VULCAN have been presented in this chapter. Particular 

attention has been given to the widely accepted portal frame document published by 

SCI, which was produced to satisfy the U. K. authorities. 

In the next chapter, the feasibility of using VULCAN to analyse portal frames is 

investigated, concentrating particularly on the analysis of sloping members since 

pitched roofs are necessary. Modifications done to the VULCAN are also presented. 

As part of the research project, experiments were conducted at Buxton in which a 

scale model of a steel portal frame was constructed and tested under fire. Chapter 3 

describes in detail the indicative tests and three major fire tests performed, along 

with the test results. The following chapter compares the test results with computer 

analyses performed by VULCAN. The test results obtained are discussed, as are the 

significance of the comparison as well as the physical observations. VULCAN 

analysis is also validated against the test results. 

Once the validation of VULCAN has been done, the software is used to perform a 

series of parametric studies, investigating various factors. Chapter 5 describes the 
first series of parametric studies in which two-dimensional frames are investigated. 

The parameters concerned are the load ratios, frame geometries, heating profiles, 

effect. of horizontal load and rotational stiffness. The next series of parametric 

studies involve analyses on three dimensional full scale frame, where the effects of 
the secondary elements are included with different fire scenarios. The three 
dimensional parametric studies are presented in Chapter 6. Discussions on the 

studies are given at the ends of these two chapters respectively. 

In Chapter 7a simplified method to estimate the critical temperatures of portal 
frames in fire is proposed. Its purpose is to enable practising engineers to perform 

quick hand calculations to obtain the failure temperature, with acceptable accuracy. 

Examples of calculation are also presented. 

Further discussions on other aspects of the research are presented in Chapter 8. 

These include looking at aspects required by the original research proposal and 
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review of the current guide for portal frame with boundary conditions. A more 

general view on performance based design approach is also briefly discussed. 

Finally, general conclusions are drawn in the final chapter, along with 

recommendations for future research. 
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2 Preliminary Studies on VULCAN and Portal Frames in Fire 

A preliminary investigation into the use of VULCAN has been conducted, giving 

priority to rationalising the finite element code for use in analysing structural 

elements not aligned with the primary axes. The study was necessary because the 

most common form of portal frame is constructed with a sloping roof. Such 

applications had not been addressed in any previous studies. 

These studies also investigate the Ramberg-Osgood stress-strain curve adopted in 

VULCAN and the modelling of semi-rigid connections at elevated temperatures. 
The solution procedure adopted by VULCAN and its significance is also briefly 

discussed. Some initial studies of the behaviour of goal-post (flat-roof) portal frames 

using VULCAN followed at the end of the chapter. 

2.1 Rationalisation of VULCAN 

When a VULCAN analysis is conducted, the structure is divided into a finite number 

of elements prior to the actual calculation, and each element is connected between 

two nodal points. Each node is associated with II degrees of freedom, namely 
8V 8W At & &V 

displacements (u v and w), rotations (&, 
8Y and strains ( 8z , 8Y and & 

), as 

well as twisting and warping. The nine basic degrees of freedom (omitting twisting 

and warping) are shown in Figure 2.1. 

Figure 2.1 Nodal degrees of freedom in VULCAN 
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The strain degrees of freedom are retained so that the effect of geometrical non- 
linearity and large displacement behaviour of structures can be modelled more 

accurately by the development of plastic hinges through spread of yield. These 

strains are defined in local co-ordinates, and then transformed to the global 
directions. Therefore, the global strain degrees of freedo-n can be fixed or freed in 

the input file when setting up finite element analysis. However, if a structural 

member is not placed parallel to a global axis (e. g. an inclined member), the logic of 

whether to free or to fix the global strain degrees of freedom is rather uncertain. 

2.1.1 The Effect of Strain Degrees of Freedom 

In order to investigate the effect of the strain degrees of freedom, a simple cantilever 
beam has been set up to compare the behaviour under large displacement. The yield 

stress of the beam has been artificially changed to an infinite value so that the large- 

displacement criteria can be met. This is a load-deflection analysis which does not 
involve elevated temperature. The results of the analyses are shown in Figure 2.2. 
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Figure 2.2 Cantilever beam - large displacement test 
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It can be seen that the difference in displacement between the free- and fixed-strain 

cases is not significant until the vertical displacements exceed 500mm, which is 

equivalent to span/12. The failure criterion of a single structural element under fire 

test is often taken as span/30, although inspections from full-scale fire tests on real 

buildings such as the Cardington composite frame have suggested that a real 

structure can sustain displacement well beyond the span/30. 

Figure 2.3 shows the difference in percentage terms between the free- and fixed- 

strain cases. The difference between horizontal displacements is more than 50% at 
60OOkN, where the vertical displacement reaches approximately span/2. 

-Horizontal Displacement 

-Vertical Displacement 

iiiiiii 

0 1000 2000 3000 4000 5000 6000 7000 8000 
Load (kN) 

Figure 2.3 Comparison of fixed and free strain degree of freedom 

The strain degree of freedom has been shown to affect significantly the analysis at 
large displacement. It will be beneficial to retain these degrees of freedom to model 

second-order effects while analysing portal frames. 

2.1.2 Inclined Structural Element 

Within the cantilever beam analysis with free strain in Section 2.1.1, the horizontal 

strain degree of freedom (&) was freed whereas the other two strain degrees of 
45Z 

freedom were fixed. This is because the beam element was parallel with the Z axis 

and therefore the local and global axes are in line. However, when analysing an 
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inclined member, the global strain degrees of freedom have either to be free or fixed 

before the local stiffness matrix is assembled. 

A simple test was carried out to investigate the issue. A two-dimensional goal-post 

portal frame was set up and modelled using VULCAN. The same frame was then 

rotated by 30' so that all the members were inclined to the global axes. Both layouts 

are shown in Figure 2.4. If VULCAN can handle the transformation correctly, it is 

expected that both the normal and rotated portal frames should demonstrate the same 
behaviour and give the same amount of vertical displacement. 

ý 

W 

0.1 w 
I Vertical 

Displacement 

Frame A 
Figure 2.4 The layout of the models 

Each of the frames was modelled in 2 different ways, using 14 and 28 elements 

respectively. This enables a more complete comparison between them. The results 

are shown in Figure 2.5. It is seen from the plot that, if the strain degrees of freedom 

are introduced into the inclined portal frame B, the results obtained are not 

consistent, even between the cases using different numbers of elements. When strain 

effects are fixed, all the results are consistent. This indicates that having the global 

strain degree of freedom free does not represent the boundary conditions accurately 

for the inclined member. 

Further analyses were conducted with different combinations of numbers of elements 
for the rafters and columns, as well as testing various boundary conditions, 

particularly at the connections. 
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Figure 2.5 Comparison of the normal and rotated goal-post portal frames 

Table 2.1 below shows the cases of combinations used for further investigation. 

Each case was analysed with free and fixed strain degrees of freedom on both the 

normal and rotated frame. 

Case 1 4 elements for each columns and 6 elements for each rafters. 

Case 2 8 elements for each columns and 12 elements for each rafters. 

Case 3 1 elements for each columns and 6 elements for each rafters. 

Case 4 1 elements for each columns and 12 elements for each rafters. 

Table 2.1 Combinations of different numbers of elements 

It was realised that, at the connection between the column and rafter, both the 

vertical and horizontal strains are free at this particular node. However, the second- 

order effect at the connection is thought have little effect on the structural behaviour. 

Therefore, all the cases were analysed again with free strain at the rafter-to-rafter and 

column-to-column nodes, but all strain degrees of freedom were fixed at the rafter- 

to-column joint nodes. 

it was found, in all the cases, that the results from the non-rotated frame were 

consistent. Figure 2.6 plots all the vertical displacements at mid-span from the cases 

of the rotated frame B. 
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Figure 2.6 Vertical displacement for strain investigation of Frame B 

0 

From the displacement plot, some inconsistency can be seen in results when the 

strain degree of freedom is allowed. It also gives different displacements when 

different combinations of element numbers are used. However, when the strains are 
fixed at the connection nodes and left free elsewhere, then all cases give very similar 

results. These analyses also reach higher displacement levels compared to the fixed- 

strain cases. 

It is therefore reasonable to model the inclined members with the strain degree of 
freedom fixed at the joints without compromising the geometrical non-linearity given 
by VULCAN analysis. The approach can be applied to the analysis of pitched-roof 

portal frames, where the strain degree of freedom of the node at the beam-to-rafter 

and rafter-to-rafter apex connection will be fixed. The secondary effect can be 

included at the nodes between connections. 

Further tests on pitched-roof portal frames using this approach were conducted and it 

was found that results produced were consistent. All the analyses conducted for the 

parametric studies in the later chapters have adopted the same approach in modelling 

the frames. 
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2.2 Modification of Ramberg-Osgood Model 

While investigating the strain degree of freedom in the previous study, some analyses 

were conducted at elevated temperatures. With certain boundary conditions it was 

found that the deflection paths output by VULCAN were not reasonable, particularly 

at around 700'C. Figure 2.7 shows some of the vertical displacements at the apex of 

a pitched-roof portal frame produced by VULCAN. It is obvious that the 

displacement curves have discontinuities at about 700'C, which do not seem 

structurally reasonable. 

Figure 2.7 VULCAN analysis 

It was thought that this phenomenon was related to the form of the existing 
Ramberg-Osgood stress-strain curves adopted in VULCAN. The Ramberg-Osgood 

mode19 for stress-strain curves of steel at elevated temperatures modifies the strains 

at a given stress by the use of three temperature-dependent parameters, namely A,, B, 

and Nt. VULCAN uses this model for the analysis of structural behaviour at elevated 

temperatures. 

The Ramberg-Osgood equation is given as 

6T ßT 
)Nr 

ET = 
AT 

+ 
BT 

where e, and or, represent strain and stress respectively at temperature t. 

(2.1) 
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Figure 2.8 Coefficients for the Ramberg-Osgood Equation for steel 

Figure 2.8 shows the value of each parameter in Eq. 2.1 as a function of temperature. 

Note that At and Bt have previously been smoothed at 400'C by Shepherd 32 
. The 

green lines are the original Ramberg-Osgood curves for the coefficients At and Bt; it 

can be seen that there is a sudden change at 700'C. 

In order to smooth the curves around 700'C, polynomials were derived to impose a 

gradual change on the coefficients between 650'C and 750'C, and these are shown 

as the red and blue lines in Figure 2.8. The minimal polynomials required to match 

the value and gradient of each coefficient are cubics, which are expressed between 

650' and 750'C as 

A, = -0.01129522917 t3 + 25.04696979 t2 - 18637.68776 t+ 4673770.117 

(2.2) 

Bt = 0.000000094 t; + 0.001356 t2 -2.222025 t +1024.0875 (2.3) 

From Figure 2.9 it can be seen that the stress-strains curves for the original Ramberg- 

Osgood model just below 700'C are more closely bunched than above 700'C. 

Figure 2.10 shows the modified model where the gaps between curves reduce 

Smoothed BT 

NT 

Smoothed AT 

Orignal Romberg-Osgood Curve 
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continuously. Therefore, there will not be a sudden change in the behaviour of steel 

during the analysis. 

I{IIIIýI 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 

Strain 

0.02 

Figure 2.9 The original Ramberg-Osgood stress-strain curves for S275 steel 
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Figure 2.10 The modified (Smoothed) Ramberg-Osgood stress-strain curves for 

S275 steel 
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The modified Ramberg-Osgood curves are denoted as Smoothed Ramberg-Osgood 

curves. The cases shown in Figure 2.7 were re-analysed using the smoothed curves. 

and the results are plotted in Figure 2.11. It can be seen that the apparent 

discontinuity at 700'C in Figure 2.7 has almost been eliminated. It is felt that the 

smoothed model gives a more logical representation of stress-strain behaviour in a 

temperature range where metallurgical changes are not believed to affect the 

mechanical behaviour. It will also be beneficial to the convergence of the analysis if 

sudden changes are avoided. 
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Figure 2.11 Portal frame analysis with Smoothed Ramberg-Osgood stress-strain 

curves 

2.3 Rotational Stiffness of Semi-Rigid Connection 

By changing the external boundary conditions, pinned and rigid connections within a 

structure can be modelled by VULCAN. However, most of the practical connections 
designed and built in real buildings are not truly pinned or rigid joints but have semi- 

rigid characteristics. They are known as semi-figid connections, and their behaviour 
44,46 has been the subject of ongoing research, particularly at elevated temperatures 

When Bailey 31 et al included spring elements in VULCAN, their function was to 

represent the semi-figid behaviour of connections. The pre-existing spring element 

could be modelled by: 
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Specifying a rotational stifffiess value, which remains constant at elevated 
temperature; or 

Choosing the existing "flush-end-plate" or "extended end plate" model, for which 
the degradation of the rotational stiffness at elevated temperature was determined 

from a series of fire teStS46,47 on a specific size of beam-column connections. 

In order to have the flexibility to model various types and sizes of connection 
especially for the modelling of column bases in this research work, it was necessary 
to develop a new semi-rigid routine so that an initial rotational stiffness could be 

specified and reduced accordingly as temperatures increase. 

The mathematical expressions for the existing "flush-end-plate" and "extended-end- 

plate" in VULCAN can again be represented by the Ramberg-Osgood expression as 

Mý 
ýzS = 

Mý 
+ 

Nr 

c AT BT 
(2.4) 

where 0, is the rotation in radians 

M, is the corresponding applied moment 

AT, BT and NT are the temperature-dependent coefficients. 

Leston-Jones 43 44 has conducted some elevated temperature moment-rotation tests on 

connections, and adopted the same expression to represent the results by curve-fitting 
AT9 BT and NT- Studies were also performed to investigate the effect on ftme 

behaviour. The same approach has also been adopted by Al-Jabri46 who conducted a 

subsequent study of the influence of elevated-temperature connection behaviour on 

overall frame behaviour. 

Among the three temperature-dependent coefficients within the Ramberg-Osgood 

expression, At has the dominant influence on the initial tangent for the curve whereas 
the maximum plateau value is mainly dependent on BT. NT controls the curvature 
between the initial slope and the plateau. 

Once the moment-rotation curve for ambient temperature has been determined by 

experiment or numerical modelling (e. g. by using the component method proposed in 

Eurocode 3 Annex J) it can be represented mathematically by the Ramberg-Osgood 
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expression, choosing suitable coefficients. The initial rotational stiffness (- 
80, 

of 

the connection can represented by the coefficient At and yielding of the connection 

can be represented by BT- 

When the coefficients are obtained, they can then be reduced accordingly to 

represent the elevated temperature characteristic. The reduction factors for the 

stress-strain relationship of steel at elevated-temperature given by Eurocode3 Part 1.2 

have been chosen to represent the degradation of the semi-rigid connections, as 

shown in Table 2.2. 

Temperature (*C) Reduction factor for AT 

(raken as kE, 6 
from EC3 Part 1.2) 

Reduction factor for BT 
Craken as ky. 9 ftom EC3 Part 1.2) 

20 1.0 1.0 
100 1.0 1.0 
200 1.0 0.9 
300 1.0 0.8 
400 1.0 0.7 
500 0.78 0.6 
600 0.47 0.31 
700 0.23 0.13 
800 0.11 0.09 
900 0.06 0.0675 
1000 0.04 0.045 

1100 0.02 0.0225 
1200 0 0 

Table 2.2 Reduction factors for the semi-rigid connection 

As NT represents the curving between the initial slope and the plateau, Leston-Jones 

made it constant in his degradation model and stated that NT does not degrade with 

increasing temperatures. AI-Jabri had a similar finding from his experiments. 

Therefore, NT was not degraded in the rotational stiffness model at elevated 

temperature. 

A spreadsheet was created to assist in determining the values of AT, BT and NT at 

ambient temperature from a given moment-rotation curve. These values can then be 

entered into VULCAN so that the appropriate semi-rigid characteristic at elevated 

temperature can be modelled. For example, to model a semi-rigid column base the 

ambient temperature moment-rotation curve can be determined using the component 

method and represented by the Ramberg-Osgood expression. The coefficients AT, 
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BT and NT are then used by VULCAN to produce appropriate rotations at particular 

moment and temperature levels. 
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Figure 2.12 Comparison between Bailey's and EC3 degradation model 
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Figure 2.13 Comparison between Leston-Jones' and EC3 degradation model 
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The degraded moment-rotation curves can be plotted from the spreadsheet and 

compared against the models proposed by Bailey, which was the pre-existing model 
in VULCAN, and Leston-Jones is curve-fit from his experimental results. Figures 

2.12 and 2.13 show the comparisons. 

Although some of the results are not close in the comparions, the new rotational 

stiffness model is believed to provide a comprehensive numerical method 

representing the degradation of semi-rigid connections at elevated temperature. The 

model has now been introduced into VULCAN. However, it is beyond the scope of 

this research project to further investigate the validity of the model for all ranges of 

connections, including various sizes and types. 

2.4 Solution Procedure for VULCAN 

An iteration process is commonly used in non-linear finite element programs to 

obtain a solution, which is usually the displacements from a given set of applied 
forces, using the stiffness matrix of the element. There are a number of solution 

procedures available to be adopted with the finite element method. The Newton- 

Raphson method is one of the favourite choices, due to its relative simplicity and 
high accuracy within a common set of problem types. 

VULCAN currently adopts the Newton-Raphsoný9 method to obtain a displacement 

solution at given load level, and from that other unknowns are calculated. The whole 

process is to be repeated at each higher temperature (with reduced stress-strain 

curves) so that the series of elevated temperature solutions is determined. This type 

of solution procedure is normally adequate for most practical problems, unless it is 

necessary to find solutions beyond limit points. 
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Figure 2.14 Newton-Raphson solution procedure 

Figure 2.14 shows a typical solution path in a one-dimensional manner. It can be 

seen that each iteration step is governed by the load increment, and the changes in 

displacement become larger when approaching the desired solution, hence becoming 

less easily convergent. If the tangent stiffness changes from positive to negative, the 

iteration process will diverge and fail to produce an answer. The solution nearest to 

zero tangent stiffness (the limit point) will be the final solution and is taken as the 

failure point for the structural system. 

In some circumstances where the overall structural system experiences a snap- 
through or snap-back behaviour, the response of the structure is prompt and the 
displacement increases dramatically as the internal forces decrease due to the sudden 
loss of stiffness. However, the structure manages to regain stability after the snap- 
through and continues to deflect further in a stable fashion as load increases. The 

Newton-Raphson method is not usually able to follow such a the displacement path, 

and often takes the limit point as the "failure" of the structure. Figure 2.15 illustrates 

the phenomenon. 
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Figure 2.15 Snap-through behaviour 

Snap-through behaviour can happen to pitched-roof portal frames. The columns of 

the portal frame restrain the rafters from deflecting when loaded or heated in fire, 

thus generating horizontal compression forces up to a point where the rafter angle is 

sufficiently shallow for the apex to dive vertically in a dramatic fashion. The portal 
frame can then regain stability for a further load range before collapsing. 

Other solution procedures are available to overcome the problem, but usually involve 

a longer iteration process. Crisfield 50 proposed a modified Rik's approach to 

overcome limit points and to be able to solve for convoluted load-deflection paths. 
This is applied in conjunction with the Newton-Raphson method by introducing an 

extra constraint equation. Other possible solution procedures include the 
Displacement Control Method49 , which displacement increment steps are applied 

rather than load increment steps. Arc-Length method 51 * involves controlling a norm 

of all degrees of freedom to achieve a more stable solution procedure and to handle 

snap-through behaviour. 

Shepherd 32 et al have recently conducted an investigation into various solution 

procedures and the possibility of implementing extra options to be used in 

conjunction with the existing Newton-Raphson method for VULCAN. It was found 

that the Arc-Length method is indeed suitable to be included into VULCAN analysis. 
Simple structural tests were set up to test these alternative solution procedures. 
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To date the Arc-Length method has not been fully implemented in VULCAN. 

Hence post-snap-through behaviour of the pitched-roof portal frame can not be 

predicted by the finite element program. 

2.5 Initial Studies of Portal Frames in Fire 

The objective of this section is to test the capability of VULCAN in analysing portal 
frame structures. The study was conducted prior to an extensive rationalisation of 
the code, and therefore the strain degrees of freedom were fixed so that reliable 

analytical results could be obtained for moderate deflections. Several models were 

set up to examine the response predicted by the program with different cases of 
frames and heating zones. Only 2-dimensional frames were examined, without 
haunches at the eaves or apex. In most cases only a small proportion of the frame 

was heated, rather than assuming that the fire covered the entire width of the frame. 

2.5.1 Goal-Post Portal Frame 

Figure 2.16 shows the general layout of the model which was set up, and Figure 2.17 

shows the elements used to represent it. Several different heating regimes were 
imposed, and the details of these are provided in Table 2.3. 

From the analysis using VULCAN, results in terms of displacements, rotations and 

strains at each node were obtained. A graph of the mid-span deflections of the roof 
beam against temperature is shown in Figure 2.18 to allow examination of the trends 
in behaviour of the heated frame in the different heating regimes. A typical deflected 

shape, amplified with respect to the original dimensions, is also presented in Figure 

2.19. 
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Figure 2.16 General layout of the goal-post portal frame 
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Figure 2.17 Element layout 
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Profile No. Heated Element 

E4, E5 

E4, E5, E6 

3 E3, E4, E5 

4 E3, E4, E5, E6 

5 E5 

6 E5, E6 

7 E5, E6, E7, E8, E9, E 10 

8 Whole frame was heated 

Table 2.3 The Heating Regimes 

0 
-100 + 

100 

tl 
2 

--0-3 
4 

_.. ý 5 
6 

8 

Temperature (°C) 
200 300 400 500 600 700 

-260 
Displacement (mm) 

Figure 2.18 Vertical displacement at the beam mid-span for different heating 

regimes 
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Figure 2.19 Deflected shapes of the goal-post portal frame heated to profile no. I 

For the deflected shapes shown in Figure 2.19, elements 4 and 5 are heated and 
hence expand, causing the initial upward displacement at the eaves. As the column 
bases of the frame are fixed against rotation, this provides further restraint to the 

frame, which effectively pushes the left-hand eaves joint further in the upward 
direction. Subsequently, due to the material degradation at high temperature, the 

mid-span of the beam deflects downwards and continues to deflect until the first 

plastic hinge is formed. Steel starts to degrade rapidly after 400'C, and this 

phenomenon can be seen in Figure 2.18, in which the mid-span deflection increases 

considerably above this temperature. 

It can be concluded that the behaviour of this rectangular three-member frame as 

analysed by VULCAN is perfectly logical. 

2.5.2 Pitched-Roof Portal Frame 

It was decided to conduct a test similar to that on the goal-post frame on a pitched- 

roof portal frame, to see whether similar behaviour occurred. 
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2.5.2.1 Fixed-Base Frame 

The initial approach was to examine a pitched-roof portal frame with both column 
bases fixed. A larger, more representative, span of 30m was used. The general 
layout is shown in Figure 2.20. 

4 
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hl6 

Figure 2.20 General layout of the pitched-roof portal frame with fixed bases 
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Figure 2.21 Finite element model of the pitched-roof portal framc with fixed 
bases 

Profile No. Heated Element(s) 
I E7, E8 
2 E7, E8, E9 
3 E7, E8, E9, EIO 
4 E7, E8, E9, EIO, Ell 
5 E7, E8, E9, El 0, Ell, El 2 
6 E22, E23 
7 E21, E22, E23, E24 

18 E20, E21, E22, E23, E24, E25 

Table 2.4 Heating regimes for the pitched-roof portal frame with fixed bases 
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The predicted displacements at the apex are plotted in Figure 2.22. Note that heating 

profiles 1,2,3,4 and 5 are cases in which the top left eaves of the frame was heated, 

whereas profiles 6,7 and 8 are cases in which the apex was heated. These are cases 

where the apex acts as a "smoke reservoir" and hence it is heated symmetrically. 
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Figure 2.22 Vertical displacement at the apex under different heating profiles. 

From Figure 2.22, it can be seen that the comer-heated frames have a trend of 
deflection which is very similar from one case to another, but is quite different from 

the cases which are heated in the region of the apex. Several deflected shapes of the 

frame are shown in Figure 2.23 and Figure 2.24. 

For the cases where the eaves region is heated it can be seen that, as the heated zone 

temperature increases, the rafter near to the heated comer experiences higher 

deflection, which is to be expected. Similarly to the goal-post portal frame described 

earlier, the fixity of the bases against rotation provides restraint to the frame against 

severe sway displacement. Inevitably there is a slight upward displacement of the 

heated comer due to thermal expansion of the column. 

From Figure 2.22 it can be seen that in the centrally heated cases the apex displaces 

upward gradually as temperature increases. This can be explained by inspection of 
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the deflected shapes plotted in Figure 2.25. The fixed bases provide stiffness which 

prevents the column from being pushed outwards, and hence prevents downward 

deflection at the apex. At the same time, thermal expansion again forces the apex to 

deflect upward. However, the centres of both of the rafters deflect gradually 

downward due to material degradation while being heated. 
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Figure 2.23 Deflected shapes of pitched-roof fixed-base frame under heating 

profile no. 1 

Normal Frame 
20'C 
5(X)"C 
614.4'C 

LeO00010 

m 
1 

me 00 lm MM 
m mMI 

N Ne m0ý ýV 

Not to scale. Deflections 35 times exaggerated 
III 

Figure 2.24 Deflected shapes of pitched-roof fixed-base frame under heating 

profile no. 5 
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Figure 2.25 Deflected shapes of pitched-roof fixed-base frame under heating 

profile no. 7 

2.5.2.2 Pinned-Base Frame 

Having realised that fixed bases have a considerable effect on the frame while it is 

being heated, and also because in reality most industrial portals are designed with 

nominally pinned bases, a similar frame was then modelled with pinned bases to both 

columns. A similar layout to that used in Figure 2.20 was used, except that slightly 

smaller equal point loads of 70 kN were applied to the mid-points of both rafters. An 

identical set of heating regimes was used so that the results could be compared 
directly. Figure 2.26 shows the graph of predicted vertical displacement at the apex 

against temperature. 

When the bases are not restrained against rotation, it is predictable that the frame will 

suffer higher horizontal eaves displacements. In addition, vertical displacements at 

each node are higher compared to the fixed-base model. In this case the whole frame 

deflects downwards despite the effect of thermal expansion of the rafters. This kind 

of structure can be considered as more vulnerable when exposed to fire. 
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Figure 2.26 Vertical displacement at the apex of pitched-roof portal frame with 
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Figure 2.27 Deflected shapes of pitched-roof pinned-base frame under heating 

profile no. 5 
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In typical industrial portal frames it is difficult and not usually cost-efficient to 

provide fixed bases, and it is obviously impossible to create a pure pinned base 

which gives no rotational restraint at all. Therefore, it is worth investigating typical 

rotational stiffnesses for the bases used in portal frame construction so that 

appropriate data can be tested in VULCAN analysis. 

2.6 Conclusion 

An investigation of the finite element code VULCAN has been performed so that it 

can be used to analyse portal frames with sloping members, without sacrificing the 
higher-order terms which are likely to affect the analysis at high displacements. 

Further work has been conducted to refine the Ramberg-Osgood stress-strain curves 
in VULCAN. Degradation of semi-rigid connections at elevated temperatures using 
the EC3 steel strength and stiffness reduction factors was included into VULCAN. 

Various types connection can be represented provided the ambient-temperature 
behaviour is available. 

Preliminary studies of the behaviour of portal frames were performed using 
VULCAN. The plots of the portal frame deflections at elevated temperatures were 
found to be logical, giving confidence in the capability of VULCAN to analyse such 

structures. 

The overall studies were aimed to provide a refined numerical tool to model portal 
frame behaviour in fire. VULCAN will be applied to modelling the experimental 

results obtained from the fire tests conducted at Buxton, hence validating the 

analytical results. The finite element code will also be used to conduct a series of 

parametric studies and validation of the simple calculation technique proposed later 

in the thesis. 
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3 Indicative Fire Tests 

As part of the research project sponsored by Health and Safety Laboratories to 
investigate the behaviour of industrial portal frames, a series of fire tests on a scale- 

model portal frame were planned to be conducted at the Health and Safety 

Laboratory at Buxton. The laboratory had relatively little experience in conducting 
fire tests on real structures and it was proposed first to conduct a series of indicative 

tests on steel panels prior to the portal frame tests. 

The 115 scale portal frame structure will be described at a later stage. It is intended 

to represent the behaviour of real portal frames in fire, mainly by ensuring that the 

geometry and load level are realistic compared to contemporary construction. 

This chapter will describe the indicative panels and their significance in detail. 

3.1 Introduction 

This section describes the indicative fire tests conducted on the 60' and Ilt" 

November 1997. The tests involved a steel panel, supported by Z-purlins and I- 

beams and heated by a gas flame. The purpose of these tests was to give a general 
indication of the temperature distributions to be expected in the region of the purlins 

and cladding panels. 

The opportunity was taken to investigate the instrumentation available at Health and 
Safety Laboratories for this type of experiment. It was necessary to record the 

atmosphere and steel temperatures throughout the test, which can be recorded by 

thermocouples conventionally. The use of a thermal imaging camera was 
introduced, enabling the temperatures of any part visible to the camera to be recorded 

and distinguished using colour coding. The benefit of using the thermal imaging 

camera was to reduce the number of thermocouples required and to maximise the 
information obtained from the tests. 

It was essential to ensure that all data required were recorded and available for each 
fire test, as it is costly and time-consurning to repeat a fire test. 

Figure 3.1 shows a picture of the panel before the experiment. The surfaces of the 

steel panels, beams and purlins were all painted black so that the surface ernissivity 
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was close to unity, thus allowing the use of the thermal imaging camera to show the 

surface temperatures during the test. 

Figure 3.1 The indicative test panel 

Three tests were perfonned, using different fire intensities and durations. 

3.2 Design of the Indicative Panel 

Given the purpose of conducting the indicative tests, the structural performance of 

the panels was not the critical factor and therefore the panels were supported in the 

most convenient way possible. 

Figure 3.2,3.3 and 3.4 show the design of the panel for the indicative tests. Since 

the members do not support any loading other than self-weight, the smallest size of 

UB section was used. The panel was suspended from chains at the four comers to 

the roof of the shed in which the experiment took place. 

Figure 3.2 Front view (left) and Elevation (right) of the panel 
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MONT VEW 

Figure 3.3 Plan View of the indicative 

Figure 3.4 Isometric sketch of the connection details 

Structural details: Rafter size: 127x76xl3 UB 

A= 16.5 cm' 

1,,,, = 473 cný 

Mass per metre = 13.0 kg 

Hp/A = 325 (4 sided profile) 

Purlin size: 142x58xl. 8 Z pulins 

A=8.53 cm 2 

lxx = 74.1 CM4 

Mass per metre = 6.7 kg 

Roof Cladding: H. H. 

Robertson (UK) Ltd., 

IBR9 

Thickness = 0.6 mm 
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3.3 The First Indicative Test 

The first test was carried out on 6h November 1997. Six thermocouples were used in 

this test; Figure 3.5 shows the positions relative to the fire. None of the 

thermocouples were welded onto the steel, which means that they were only 

measuring the air temperatures around the steel. The steel surfaces were viewed 

using the thermal imaging camera, so that temperature distributions could be 

obtained. 

Figure 3.5 Positions of thermocouples 

The gas flame burned for about 3 minutes with a gas flow of 100 litres/min. 

Thermocouples 1,2 and 3 measured the temperatures around the Z-purlins; 4,5 and 

10 measured temperatures around the I-beam. 

Figure 3.6 shows a picture taken during the test. Figure 3.7 plots the recorded 

temperatures of each thermocouple against time. A computer prograrn, TASEF52' 

written in Fortran77 code was then used to predict the temperature distribution of the 

steel purlins from the gas temperatures, and the results were compared against those 

indicated by the thermal camera images. Figure 3.8 illustrates the results from the 

program. Figure 3.9 is a thermal image of the whole panel towards the end of the 

test. Figure 3.10 shows the condition of the panel and the purlin after the test. 
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Figure 3.6 The first indicative panel test 
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Figure 3.7 Temperatures recorded from the first indicative panel test 
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Figure 3.8 Comparison between results from TASEF and thermal images 

Figure 3.9 An example of the thermal image 
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Figure 3.10 Panel and the purlin condition after 1st Test 

The results of TASEF show generally lower steel temperatures profile compared to 

those indicated from thermal images, but the margin of difference is acceptable. This 

gives confidence that TASEF is capable of predicting steel temperatures 2- 

dimensionally with good accuracy. However, from inspection after the test, it could 
be seen that some of the black paint on the purlin and underside of the panel had 

fallen off due to the intense heat. The emissivity of the purlin may therefore vary 

throughout the test. Hence, there may be some reason to doubt the accuracy of the 

thermal images in representing the real element temperatures. 

There was no significant structural damage to the panels after the test. This is logical 

since the beams and purlins were not loaded and they were not restrained at their 

ends. 

3.4 The Second Indicative Test 

Further indicative tests were conducted at Buxton on 2l't November 1997, in which 

2 thermocouples were welded onto the steel Fbeam, enabling the actual temperatures 

of the steel to be recorded in order to compare against the temperatures given by the 

thermal images from the camera. 

The design of the panel for these second and third tests was identical to the first. The 

positions of the thermocouples were slightly changed, as some of them were to 

measure steel temperature instead of the air temperature. Figure 3.11 shows the 
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positions in detail. Thermocouples 1,2 and 3 were placed near to the Z-purlins; 9, 

10 and 12 were placed near to the I-beam, and II and 16 were actually welded onto 

the top and bottom flanges of the beam respectively. 

Figure 3.11 Position of thermocouples for the second and third indicative tests 

For the second test, a baffle was put underneath the centre of the panel so that the gas 

flame and the heat flow were essentially 2-dimensional and hence concentrated on 

the heating of the sections of which thermocouples were placed. Fig. 3.12 illustrates 

the set-up of the baffle in a picture taken before the test was carried out. For this 

experiment the steel temperature was expected to be high, as most of the heat 

released was collected and concentrated within the baffle. 160 lit/rnýin of gas flow 

was maintained throughout the test, which lasted for about 5 minutes. 

Although the baffle was designed to contain the fire and heat, the actual fire was so 

intense during the test that the flame extended out of the baffle. As a result, the beam 

section with the welded-on thermocouple was fully engulfed in the fire for most of 

the time. Therefore the temperatures surrounding the beam thermocouples can be 

expected to be similar to those recording temperatures around the Z-purlin. 

Figure 3.14 shows the steel beam engulfed in flame during this test. 
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Figure 3.12 Set-up of the second test with baffle in place 
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Figure 3.13 Set-up of the haffle for the second test 
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Figure 3.14 The second indicative test 
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Figure 3.15 Temperature distribution recorded from the second indicative test 

Figure 3.15 shows the recorded temperatures for each thermocouple. A separate 

computer program, FIRES-T3 53 
, was obtained and made executable in Fortran77 

code. The program is capable of predicting steel temperatures, given the surrounding 

atmosphere temperature, and can perform a 3-dimensional analysis. With the gas 

temperature data from the test, FIRES-T3 was used to predict the temperatures of the 

I-beam section on which thermocouples were placed. Figure 3.16 shows the 
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comparison between the experimental results and the output from FIRES-T3. The 

temperature readings from the thermal images are plotted with an indication of their 

range of error. This is because the thermal images can only show refined colour 

variation due to thermal changes to an accuracy of ±5%. Temperatures of the steel 

surface obtained from the thermocouples are plotted to the same figure so that 

comparison can be made and hence the accuracy of the thermal images assessed. 
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3.5 The Third Indicative Test 

As soon as the panel had cooled after the second indicative test, the baffle was 

removed and the third test was conducted. 

The arrangement of the thermocouples was unchanged, and the same gas bumer was 

used. A slight reduction in gas flows was made for this test, and a discharge of 150 

lit/min was applied. It was expected that the fire would spread over the whole panel, 

and the heat was not contained. Therefore, the steel temperatures in this test were 

expected to be much lower. 

Figure 3.18 shows the penetration of fire onto the steel panel. 

Figure 3.18 The third indicative panel test 

The temperature data taken from the thermocouples is plotted in Figure 3.19. It can 
be seen that the gas temperatures near the I-beam are much lower than those around 

the purlin which was engulfed in the flame. The beam steel temperatures closely 
follow the gas temperature. 

The gas temperatures were again fed into the program FIRES-T3 for prediction of 

the steel temperatures. Figure 3.20 compares the recorded thermocouple 

temperatures against the analysis from FIRES-T3. The reading from the thermal 

images is also plotted in the figure with bars indicating the range of error. 

Figure 3.21 shows the condition of the purlin and beam after the tests. The black 

paint on the surface of the hottest part of purlin was seen to have fallen off, and the 
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purlin was slightly distorted by the intense heat. No further significant darnage was 

observed. 
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Figure 3.19 Temperature distributions recorded from the third indicative test 
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Figure 3.20 Comparison between thermal imaging temperatures and FIRES-T3 

analysis - third indicative test 
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Figure 3.21 Condition of panel after the fire tests 

3.6 Discussion on Indicative Panel Tests 

The first test was significant in developing the experimental techniques to be used 

and generating some thoughts for the fire tests, for instance on the use of the thermal 

imaging camera and the necessity of having thermocouples to record steel 

temperatures. The temperatures read from the thermal images from the first test 

were encouraging when compared against the analytical results obtained from the 

computer program TASEF. 

In order to ensure the accuracy of the thermal imaging camera, some further testing 

was conducted. In the following second and third tests, the top and bottom flange 

temperatures were checked by some thermocouples welded onto these elements. 

While examining the steel temperatures taken from these tests, it was found that the 

bottom flange of the beam was hotter than the top flange during the second test, 

whereas the reverse condition was found for the third test. The rationalisation is that 

the baffle installed only in the second test effectively channelled most of the heat 

from the gas flame and heated the beam intensively. The heat was then transferred to 

the panel through the top flange and lost to the surrounding environment through 

convection and radiation. In the third test, where the baffle was removed, the heat 

was distributed to the surroundings evenly and the panel formed a shield to collect 
hot gases underneath it. The rate of heat loss beneath the panel was greater than the 

convection and radiation through the air above it. It is believed that a layer of hot air, 
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with thickness of approximately 10% of the height from the fire to the panel, was 
formed beneath the panel. Therefore, the top flange was hotter than the bottom 

flange. 

During a warehouse fire, the condition of the second test may be expected if an 
intense fire is ignited and flash-over takes place with high fuel load. However, if a 

small local fire occurs, the fire condition of the third test may be predicted. However, 

from the structural point of view, the temperature difference between the top and 
bottom flange is not significant enough to cause any thermal bowing to take place in 

the beam. It is therefore suggested that an evenly distributed temperature profile can 
be adopted across the section in analysing the structural behaviour. 

On the other hand, comparing steel temperatures taken from the thermocouples and 

analytical results for the second and third tests, these temperatures compares well 

with each other. Analytical tools can predict steel temperature from the surrounding 

air temperature with relatively good accuracy, provided sufficiently accurate data is 

obtained for input. 

The temperatures measured in the second test are more precisely predicted by 

FIRES-T3 compared to results from the third test. This is because there was more 

uncertainty about fire conditions in the third test. This was conducted without the 

baffle, and hence variations in the wind condition, the emissivity of the fire, etc can 

affect the analysis. This fire condition and the heat transfer mechanism for the 

second test are more stable and predictable. The overall results are considered 

acceptable. 

it can be seen from Figures 3.16 and 3.20 that temperature values indicated by the 

thermal images were generally higher than those recorded from the thermocouples. 

There is little reason to doubt the accuracy of the thermocouples, since they compare 

well with the analytical predictions. The reason suggested for the apparently higher 

temperature readings from thermal imaging is that the layer of hot gases collecting 

underneath the panel may have been recorded by the thermal image camera and 

interpreted as the steel temperature. The black paint on the steel surface was flaking 

off throughout the test but the thermal imaging camera has assumed an unchanged 

emissivity throughout the test. 
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The general rule of radiation is governed by heat leaving a surface due to both 

reflection and emission, and on reaching a second surface, experiencing reflection as 

well as absorption. When the approximation of a blackbody is assumed, the process 

can be simplified by eliminating reflection from the equation. As soon as the black 

paint on the beam peels off, the thermal image camera can be over-estimating the 

temperature by recognising the natural colour of the beam as a high temperature 

surface. However, it is rather difficult to quantify the level of errors, and amount of 

paint which came off during the test. 

Consequently, a decision was made to abandon the use of the thermal imaging 

camera in the following tests, and conventional thermocouples were used instead. 

3.7 Design of the Portal Frame Warehouse 

Following the indicative panel tests conducted at Buxton, a 115 scaled portal frame 

structure was built and tested under fire conditions. Displacements and temperature 

were measured and recorded with reference to time during these experiments. The 

experience from the indicative tests was beneficial in the setting up of the testing 

apparatus. 

The major purpose of the frame model tests was to observe the collapse behaviour of 

a portal frame at elevated temperature, and the numerical data were used to validate 

the analytical results produced by VULCAN. 

It was intended to design the portal frame to BS 5950, with the appropriate load level 

and resistance. The designed structure is a scaled-down model of a portal frame of 
30m span and 12m column height with a scale reduction of 1: 5. The rafter pitch is 

14.90 

Figure 3.22 shows the layout of the structure, as designed by the author. It was later 

realised that even with the smallest UB section available, this would still be too 

strong to be adopted with the given geometry and self-weight to achieve a reasonable 
design. It was therefore decided to add extra imposed loading to the roof, so that the 

total loading (including the self-weight) was equivalent to a load ratio of 0.2 on the 

internal portal frames. This load level was an estimate of the extreme case likely to 

be encountered during a fire in reality. 
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A fire was to be ignited below internal portal frame, and temperatures were measured 

along the rafters and columns. Displacements would be taken at the ridge and eaves 

of the heated portal frame. It was planned to investigate different fire scenarios, with 
the details of the portal frame design being improved if necessary so that a typical 

portal frame structure could be modelled. 

Further details on the instrumentation and the tests themselves will be described in 

Chapter 4, along with the results and numerical modelling. 

3.8 Conclusion 

Three indicative tests were conducted prior to the fire tests on scaled portal frame 

structures which were planned for the research project. These indicative tests were 

mainly aimed at examining the temperature distributions around frame members and 

purlins in the roof-space of a portal frame subjected to a local fire. Experience on 

conducting structural fire tests was also gained. It was found that the steel 

temperatures could be predicted with acceptable accuracy by existing thermal 

analysis software. This is significant in that it allows structural fire analysis to be 

conducted with reasonable confidence that the temperature distributions in the 

steelwork are representative of reality. 

A 1: 5 scale model of a portal frame structure was designed and constructed for the 

actual fire tests. The following chapter will give details on these experiments. 

61 



Chapter 3: Indicative Fire Tests 

"E 
lý, 
Z. T 

0 3: 

r0 

N Co -0 cý 

*ii m) m0E x -i r- E to .c0 0 rl' «o «a 

.0m0 E-E 
'2' E 

CL cz Li C, 4 

800 
I 

103 

loj 

loj 

2000 

a 

-o 
a 
-a 

x 

z 

!2 
14.9* 

IL 
t 
0 

CL 

o r 

11 

C- 

6c 00 

14 Sý IIII LLJ 

11 3:: 

800 

60 
1 
00 0 
1 L. 

a) 
E 
0 V) 

I 

2000 1- 

I 

I 

I 

Figure 3.22 General layout of the experiment structure 
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4 Fire Tests on a Scaled Portal Frame and Computer Modelling 

Following the series of indicative fire tests described in Chapter 3, a scaled portal 
frame warehouse model was constructed at the Health and Safety Laboratory, 

Buxton to be tested under fire. The portal frame has been designed and shown in 

Chapter 3. The main purpose of conducting these tests was to investigate the 

structural behaviour of steel portal frames at elevated temperature. Figure 4.1 shows 

the completed portal frame structure model. A goal post frame was constructed 

outside the test structure, which acted as a reference datum for the purpose of 

measuring displacements. 

Figure 4.1 The Warehouse Model 

Three major fire tests were conducted on the internal frame. This chapter describes 

these experiments in detail, and shows the recorded test results. The structural 

behaviour will then be modelled with VULCAN after the test so that the results can 

be compared and validated. 

4.1 The Testing System and Instrumentation 

This section describes the setting-up of the series of fire tests on the portal frame 

structure, including the instrumentation used for measuring the temperatures and 

deflections. A gravity loading system was included, since it was necessary to add 

extra loading to the frame to represent typical portal frame action. 
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4.1.1 Temperatures Measurement 

With the experience gained from the previous indicative test it was decided to adopt 

conventional thermocouples for measuring the steel and gas temperatures. It was 
important to record accurate temperature profiles across the portal frame under test 

so that they could be applied to the computer modelling. 

Figure 4.2 shows the positions of the thermocouples used in the tests. Sl to S16 

denote the thermocouples welded onto the steel. Thermocouples S4, S5, S6 and S9, 

SIO and Sll were welded onto the top, mid-web and bottom flange of the steel 

section at the eaves and apex respectively. The other steel thermocouples were 

welded onto the web at the various positions shown. Other thermocouples, Gasl, 2 

and 3 measured the atmosphere temperature at the two eaves and the apex. 

Gas 2 

Figure 4.2 Positions of thermocouples 

All thermocouples were connected to a data logger away from the test structure, 

using insulated wires and cables. Care was taken to ensure that the measurements 

would not be affected by heat during the experiment. 

it was recognised that temperature measurement on the purlins spanning between 

portal frames could be potentially useful. However the purlins were very thin and 
hence it was difficult to weld on the thermocouples. It is relatively accurate to 

assume that the purlin temperature is nearly equal to the gas temperature under these 

circumstances. 
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4.1.2 Displacement Measurement 

Three position sensors were acquired for the purpose of displacement measurement. 
The position sensor is an accurate electromechanical device which translates linear 

motion into a proportional electrical signal that can be recorded by data logger. It 

consists of a measuring cable which winds onto a machined calibrated cable drum. 

The drum is mounted onto a shaft which is tensioned by a coil spring providing 

constant pull-in force to maintain cable tension and control. 

In operation, the free end of the measuring cable is attached to the measurement 

point of the portal frame, where the sensor then converts the linear cable movement 
into a rotary motion as it winds on or off the cable drum. The motion is then 

converted into an electrical output signal which can be calibrated and read as 
displacement measurement. The particular position sensor was manufactured by 

ASM with a model number of WSIO-1000-IOV-LIO. The measurement range is Im 

with a 0-10 V signal condition and linearity of ±0.1%. 

With three position sensors available, it was decided to measure the horizontal 

movements of the two eaves and the vertical movement of the apex. The devices 

were fixed and secured on the reference frame and calibration of movements was 
done before every test. 

4.1.3 The Loading System 

As described in the previous chapter, it was necessary impose some extra vertical 
load onto the portal frame so that a representative loading level could be achieved. 

For a normal industrial portal frame warehouse the extreme loading case likely to be 

encountered during a real fire was estimated to be 0.2 of the failure load. In order to 

represent this accurately, the most practical way was to impose three point loads, at 

the apex and the two mid-points of the rafters respectively. This is relatively similar 

to the representation of a uniformly distributed load. 

The extra loading was achieved by hanging a barrel filled with water onto the portal 

frame rafters at each loading point. The amount of water was controlled to the 

intended load level. The barrels were covered by additional insulation during the fire 

tests in order to prevent loss of water due to evaporation in the heated environment. 

Figure 4.3 shows the set-up of the loaded frame. This same loading system was 
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adopted for all fire tests conducted and was proven to be a relatively efficient 

solution for the purpose. 

Figure 4.3 The Loading system for the portal frame 

4.1.4 Base Connection 

It was intended to create nominally pinned base connections for the test frame, but 

also to represent a practical portal frame. The test frame was constructed with a base 

plate welded onto the column and placed onto four bolts which were embedded into 

a rectangular concrete footing. The concrete footing supports one side of all the 

portal frame columns. 
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Figure 4.4 Dimensions of base connection 
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The base plate was 150mm x 200mm with a thickness of l2rnrn. The bolts are 
12mm in diameter. Figure 4.4 shows the actual dimensions of the base plate. In 

order to create a pinned effect, only the two outer bolts were fastened with nuts while 

the inner bolts were released freely. This enabled the column to rotate outward 

easily when the rafters expanded. It was not totally obvioi, s that this represented well 

a pinned base, but a typical industrial portal frame would have a base with four bolts 

and this would be regarded as a pinned base. It was intended to review the base 

condition after the first test if any refinement was necessary. 

Figure 4.5 Base connection 

4.1.5 Lateral Support 

Each frame constructed for the portal frame structure was cross braced with steel 

strip. In addition, purlins were placed at spacing of 1.5m and Im on the rafters and 

columns respectively to support the cladding profiles. The purlins were 120mm deep 

by 50mm wide with thickness of approximately 1.5mm. Figure 4.6 shows the lateral 

support system. 

67 



Chapter 4. - Fire Tests on a Scaled Portal Frame and Computer Modelling 

Figure 4.6 Lateral support s3 stem 

4.2 The First Experiment - Heating of the Whole Rafter 

This test aimed to produce a fire extending across the whole rafter. The initial 

thought was to have the temperature along the entire rafters increased evenly until 

the portal frame failed. Hence a line fire was produced to achieve the intended 

heating profile. 

Due to the nature of the testing environment, which was situated within the HSL and 

office compound, smoke releases were a concern and it was intended to keep the test 

as short as possible. It was decided to use liquid heptane as the burning fuel, which 

can produce a high level of heat with a relatively low level of smoke, and is 

relatively easy to handle. 

A separate support system was made to hold a long rectangular metal tray which was 

used to contain the burning fuel. The independent framework was to ensure that its 

self-weight was not added to the portal frame. The metal tray was raised about 1.5 

metres above ground level. The intention was to concentrate heating on the rafters 

with majority of the column lengths remaining relatively cool. The entire setup can 
be seen in Figure 4.3. 
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It can be seen from the same figure that the entire front gable sheeting had been 

removed (as compared to Figure 4.1). This was to provide sufficient ventilation for 

the burning fuel. A preliminary test had been conducted in the presence of a front 

cladding with an opening of 1.5m by 1.5m. Due to the lack of ventilation, only part 

of the liquid heptane ignited, but the majority evaporated and incinerated just outside 

the opening where more oxygen was available. Consequently, high temperatures 

within the portal frame compartment could not be achieved. 

When sufficient ventilation was available, all the heptane fuel was ignited and burnt 

underneath the rafters, and efficiently heated the section. Figure 4.7 shows the initial 

stage of the fire. The smoke produced was solely due to burning of the plastic 

coating on the cladding, which created a slight concern from the local occupants. 

Figure 4.7 Early stage of the first test 

However, the fire was more susceptible to the surrounding air movements with the 

large opening. At a late stage in the test it was realised that there was some difficulty 

in controlling the burning rate due to the ventilation condition. It was almost 

impossible to heat up the rafter evenly as the fire and heat were drawn naturally to 

the apex of the frame, and a small amount of wind could deflect the effect of the fire 

so that the heating became asymmetric. 

The fire lasted only for about 10 minutes, although 120 litres of heptane were used. 

Some parts of the steel were heated to just over 900'C, and a certain extent of 

deflection was observed and recorded. However, the frame did not collapse totally. 
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Figure 4.8 Recorded temperatures during the first test 
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4.2.1 Experimental Results 

Figure 4.8 and 4.9 plot temperature and deflection against time respectively. The 

positions of the thermocouples can be found in Figure 4.2. The Standard ISO 834 

fire curve has been plotted in the temperature graph as a reference for the heating rate 

during the test. 

1200 
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Figure 4.9 Recorded displacements during the first test 

From the temperature plots, the hottest part of the portal frame was the apex and the 

temperature gradually reduced towards the two eaves (Steel 3 and Steel 14). Heating 

was more intense across the fight rafter due to the air movement, which resulted in a 

higher temperature at the right eaves. The column sections below the level of the 

heating tray remained below 150'C, as recorded by steel 1,2,15 and 16. Cooling 
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started to take place as soon as the fuel finished burning, after approximately 600 

seconds. 

The temperature difference between the top and bottom flanges at the apex was 

almost negligible, but a temperature gap of up to 55' was seen at the left eaves. The 

top flange was hotter than the bottom flange at both locations. Figure 4.10 compares 

the temperatures at these locations. 
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Figure 4.10 Temperature comparison between top and bottom flanges 

From the displacement plot (Figure 4.9), the apex can be seen to deflect upwards 

initially until 400 seconds, when it started to deflect downward. This agrees with the 

preliminary studies conducted in Chapter 2, in which the apex was identified as 

having an upward deflection due to the restraint by columns before a snap-through 

took place. 

It can be seen from the same graph that the left eaves (Disp 1) hardly moved during 

the test but the fight eaves (Disp 3) had a more substantial outward movement due to 

the expansion of rafters. This could be due to the fact that the fight-hand side of the 

portal frame was heated more intensively during the test. There was some indication 

the fight eaves was pulled in during the cooling stage after approximately 700 

seconds. 

4.2.2 Post-test Inspection 

On inspecting the portal frame visually after the test, it was found that the whole of 

each rafter had been deflected into an S-shape in the vertical plane. The mid-span 

purlin point (which is also one of the three loaded positions) appeared to be the point 
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with zero curvature. The upward bowing of the half rafter near to the eaves may be 

explained by the temperature difference between top and bottom flange recorded by 

from the thermocouples. However, the extent of damage due to this phenomenon is 

insignificant. 

On the hotter half of the frame, the rafters had deformed laterally to a certain extent 

with a slight rotation. This is due to the fact that the top flange was restrained by the 

purlin, where as the bottom flange was free to deform. 

These were the only significant deformations observed and the rafters as a whole had 

not failed in a collapse mode. The purlins were believed to have given a substantial 

level of horizontal restraint to the rafter. Figure 4.11 shows the shapes of the 

deformed rafters. 

Figure 4.11 The Rafter deformations after the first test 

4.2.3 Computer Analysis 

The first fire test was modelled with the finite element program VULCAN. Due to 

the nature of the test, in which only one portal frame was heated and the others 

remained relatively cool, a two dimensional analysis should be sufficient at this stage 

for the purpose of comparison. The cross bracing between columns should provide 
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significant lateral restraint. especially since most of the columns stayed cool below 

the burning tray. 

The temperature profile for the model was input as obtained from the thermocouples; 

this was considered sufficient to represent the overall test situation accurately. 

However, one of the major uncertainties for the modelling was to predict the 

rotational stiffnesses of the base connection. It is believed that significant stiffness 

exists at the base. although the connections had been made as simple as possible. It 

was found during the analysis that the base rotational stiffness affects the amount of 
deflection significantly. 

Two analyses were therefore conducted. one with a pinned-base assumption and the 

other with a semi-rigid connection of 2 kNnVmrad. This figure is considered to be a 

reasonable finite value between the imaginary fixed and pinned assumptions used by 

the program. from the previous investigation into the base stiffness. 

The results in terms of displacement from the VULCAN analysis were plotted 

against temperature and compared against the expenmental figures. The reference 

temperature was taken as the highest temperature in the steel. and the comparison 

was made at the apex and the two eaves. Figure 4.12,4.13 and 4.14 show the 

comparison at left eaves. right eaves and apex respectively. 
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Figure 4.13 Horizontal displacements at right eaves 
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Figure 4.14 Vertical displacements at apex 
It can be seen from the comparisons that the serni-rigid base analysis follows more 

closely the experimental results. especially at the apex and in terms of the 

temperature at which downward displacement started to take place. The difference 

between the pinned-base and semi-rigid-base portal frame behaviour can be seen 

quite clearly. 

Although the cooling effect has not been modelled using VULCAN. it can be seen 
from the experimental curves that permanent strains within the test frame were 

apparently present. The frame could be near to the failure stage if it had been heated 

further. 
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Using the analytical results from VULCAN, the internal forces throughout the frame 

could be obtained. With the moment and compression force within the rafter section, 

a minor-axis buckling calculation can be done. The simple calculation is to 

investigate the apparent lateral bending or buckling seen on the rafters after the test 

(Figure 4.11). 

From the calculations it was shown that minor-axis buckling could take place when 

the steel temperature exceeded 720'C. However, the calculation is based on the 

assumption that the supports of the rafters do not move during the test, while small 

amount of horizontal deflection was recorded. It can be concluded that minor-axis 
buckling of rafters can take place, but that it did not adversely affect the overall 
behaviour of the portal frame in fire. 

4.3 The Second Experiment - Edge Fire Test 

As planned according to the testing schedule, a second test was to be conducted soon 

after the first test. Since collapse did not take place in the previous test, it was 

considered unnecessary to rebuild the structure for subsequent testing. The adjacent 

internal bay of the portal frame structure, which had not sustained any deformation 

during the first test, was used for this second fire test. 

This test was intended to heat just one edge of the portal frame, simulating the effect 

of a local fire in a warehouse. It was also thought useful to investigate the 

temperature distribution along the columns as the fire grows. 

Since the previous fire test had only lasted for about 10 minutes, it was considered 

appropriate to arrange a longer-lasting fire so that the steel in the fire zone could stay 

at the maximum temperature for a longer period of time. It was again intended to 

create a collapse mechanism in this test, and preliminary studies indicated that the 

steel temperature would have to reach over 1000*C if a collapsing portal frame was 

to be seen. 

It was therefore decided to use timber cribs as the fuel, replacing the burning tray and 

heptane. The timber cribs were stacked in aI xI x 2m shape, placed underneath the 

rafters of the test frame at the left-hand edge. The cribs were estimated to have a 

burning-time of more than an hour. 
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The front of the structure was again left open again for ventilation purposes. The 

testing conditions and all measurement devices were similar to the first test. All the 

measuring devices, including the reference frame outside the portal frame, were 

moved to the location of the new test frame. 

Figure 4.15 shows the tesi. It can be seen that flame front extended almost to the 

apex of the structure, with the entire left-hand column engulfed in fire. 

'M -, 1, jr 

Figure 4.1-5 The second fire test: Early stages 

The entire test lasted for well over 40 minutes before the fire was manually 

extinguished. The compartment temperature achieved a state of equilibrium after 

approximately 10 minutes, when the heat input balanced the loss of heat to the 

surroundings. This equilibrium state prevented a further increase in temperature. 

The hottest part of the steel achieved a similar temperature to the fire atmosphere and 

stayed unchanged for approximately 30 minutes. Most of the rafter achieved an 

equilibrium temperature which continued for at least 30 minutes. 

The maximum steel temperature recorded was about 800'C. With this temperature, it 

was not surprising to see no collapse mechanism of the portal frame during the test. 

Beside this, there was no significant asymmetric movement or deformation observed 

throughout the test, although one half of the frame was much hotter than the other. A 

decision was made to terminate the test after the fire had burned for 40 minutes. 
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4.3.1 Experimental Results 

Figure 4.16 plots the steel and gas temperatures recorded during the fire test, along 

with the Standard ISO 834 fire curve. The gas temperature of the hottest part 

matches the ISO curve well, by pure coincidence. 

-Stool I 

-Stool 2 
Sl**13 
S1091,11 

-Stool 5 

-Stool 6 
Stool 7 

-Stool 8 
Stool 9 
Stool 10 
Stool II 
Stool 12 
Stool 13 
Stool 14 
Stool 15 
Stool 16 

-Gas 1 
Gas 2 
Gas 3 
ISO Curve 

0 500 1000 2000 2500 3000 3500 4000 
Time (s) 

1500 

Figure 4.16 Temperatures recorded throughout the second fire test 

While comparing the gas temperatures at the three different positions, it was found 

that the apex within the compartment was the hottest part, with a maximum 

temperature of 870'C. This effect was first encountered during the indicative test 

where the steel sheeting collected the hot gas and channelled it to the higher part of 

the structure, rather than the eaves. The unheated eaves remained relatively cool, 

with a maximum temperature just below 320'C. 

Comparing the top and bottom flange temperatures at apex and eaves, the difference 

between them was almost negligible. This is because the rate of heating is relatively 

slow with the burning cribs, compared to the rapid ignition of the heptane used in the 

previous test. The longer-lasting test also enabled the temperature to be distributed 

more evenly to the entire section rather than just heated locally. 

The temperature distribution along the column near the fire was rational. The mid- 

section temperature was very similar to that at the top of the column; the bottom of 

the column heated more slowly but eventually caught up with the top part. As for the 

cooler half of the frame, temperatures reduced as the distance from fire increased, 

with the bottom of the column temperature remaining close to ambient temperature. 
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Figure 4.17 shows the displacements measured during the fire test. Since only one 

side of the portal was heated vigorously, the vertical displacement was predictably 

smaller compared to the first test. The vertical displacement at the apex was 

approximately 80mm, and the heated eaves (Disp 3) sustained a larger horizontal 

deflection than the cooler eaves. The cooler eaves sustained negligible movement 

throughout the test. 
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Figure 4.17 Recorded displacements for the second fire test 

4.3.2 Post-test Inspection 

Although this fire lasted longer than the first test, the temperatures were not as 

severe. Due to the asymmetric heating of the frame there was a slight swaying to the 

left, which could not be detected visually. 

Apart from this, the local deformations observed were very similar to those in the 

first test, where the most apparent visual deformation was lateral bending over the 

hottest part of the rafters, buckling between purlin points. This could be anticipated 

since the previous calculation on combined bending and compression had indicated 

that minor-axis buckling could take place at temperature in excess of 750T. Again, 

an S-shape deformation in the vertical plane could be seen on the rafters. Figure 4.18 

shows the lateral deformation of the rafters. 

it is interesting to see that even when the majority of the column was heated to 

approximately 700'C, there was no visible local or overall deformation of the 

column. Its post-test condition was almost intact apart from some char marks. 
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Similarly, the cladding and purlins did not sustain any significant damage, in the 

sense that they stayed intact on the roof and the side faqade throughout the test. 

Minor twisting and bending were seen on the purlins. However, the cladding and 

purlins were relatively lightly loaded compared to their normal state when used in a 

real portal frame warehouse. 

f 

Figure 4.18 Lateral deformation of rafter from the second fire test 

The detail of the deformed shape and the amount of displacement sustained was 

recorded by measuring after the frame had cooled down. 

4.3.3 Computer Analysis 

The test was again modelled with VULCAN, applying the same assumptions as in 

the previous modelling. The temperatures recorded from the testing were fed into 

the input file as closely as possible. The same frame was modelled with pinned base 

and semi-figid base connections. 
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The vertical displacements at the apex and the horizontal displacements at the two 

eaves were extracted from the analytical output. These were then plotted on the 

same graph together with the experimental data, so that the comparison could be 

seen. Figure 4.19,4.20 and 4.21 show the plots, in which the displacements have 

been plotted against the highest temperatures in the steel so that a more 

comprehensive comparison can be made. 
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Figure 4.21 Vertical displacement at apex 
From the displacement plots, once again it was found the analysis with semi-figid 
base connections compares better with the experimental results. The vertical 
displacement at the apex in particular closely follows the test data. Since the portal 

frame was modelled two-dimensionally, the effects of other lateral elements such as 

purlins and cladding were ignored in the analysis. 

Both the purlins and cladding are relatively flexible in the vertical direction, and 

therefore would not contribute much in resisting vertical deflection of the portal 

frame. However, the horizontal interaction provided by the cladding and purlins 

could be more significant in preventing the free horizontal expansion of rafters. The 

combination of purlins, cladding and cross bracing is rather complicated and 

virtually impossible to model. This may explain why VULCAN predicted the 

vertical displacements more accurately in both tests. 

overall, the comparison is satisfying, and the capability of VULCAN is further 

validated. 

4.4 The Third Test - Overall Rafter Heated 

It was rather disappointing not to have a structural collapse in the previous two tests. 

It was planned to have the following test reproducing the heating scenario of the first 

one, (i. e. overall rafters heated). Several refinements were made to the test frame to 
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investigate some parameters influencing the portal frame behaviour; namely the base 

rotational stiffness and minor axis bending of rafters observed in the previous tests. 

It was also more important to achieve a collapse mechanism in the fire test. 

4.4.1 Alteration to the Testing System 

The main reasons for not achieving a collapse mechanism previously were 

considered to be insufficient heating of the steel and underestimation of the effect of 

base rotational stiffness. 

in order to achieve a higher temperature for the steel, it was decided to put some 
insulation on the roof of the structure. A high temperature could then be maintained 

over a longer period to enable the entire rafter section to be heated evenly. The 

majority of the length of the rafters would have to reach an average of 900"C to have 

a more significant failure. 

The use of liquid heptane as fuel is efficient in heating, and a controllable fuel supply 

system was devised as shown in Figure 4.22. The liquid heptane reached the 

burning tray at a rate controlled by its natural pressure difference through the 

connecting pipe, and a valve was fitted onto the pipe so that more fuel could be 

provided during the fire if necessary. This was to ensure a continuous combustion 

until collapse of the frame occurred. The burning tray was slightly tilted so that the 

heptane could reach the end remote from the feeding point. 

Supply of 
Heptane 

Pressure 
difference 

I ( 

Figure 4.22 Fuel supplying system 
On the portal frame itself, the two internal frames were rebuilt after the first two 

tests. An attempt was made to achieve pinned base conditions to the greatest extent 

possible for the test frame. This was intended to eliminate the uncertainty from the 

VULCAN analysis. 
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To enable free rotation at the base, a bar of approximately 6mm diameter was placed 

underneath the base plate of the column. All the nuts were loosened so that the base 

plate could rotate freely. Figure 4.23 shows the details. 
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Figure 4.23 Base connection details 

To counteract the lateral buckling found in the exposed rafter zone between purlins, 

it was decided to weld one steel strip between frames mid-way between adjacent 

purlin points, parallel to the purlins. The steel strip was attached to the top flanges of 

the rafters by welding, and reduced the effective buckling length of the rafter about 

its minor axis. However, having artificially created a pinned base for the columns, 

the axial thrust within the rafters was expected to be lower due to the reduced 

restraint at the column tops. 

4.4.2 The Test 

With the testing experience gained from the previous two fire tests, the setting-up of 

this test went relatively smoothly. A video camera was used to record the entire 

experiment. The fire was ignited with a shallow depth of heptane in the burning tray. 

The entire burning tray was soon ignited, heating the full length of the rafters. 

Supply of heptane was required occasionally. 

Shortly after 5 minutes into the test, the apex was seen to be starting to deflect 

downward. Without much warning a little later, the apex underwent a vertical dive 

and the entire rafters were seen to collapse rapidly. This was the snap-through 

failure always predicted by VULCAN analysis. The alterations proposed for this test 

had proven to be significant in creating a collapse mechanism. Figure 4.24 shows a 

picture taken shortly after the snap-through failure, where the name was still fiercely 

heating the steel. 

-'I 
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Figure 4.24 Snap-through failure during the third fire test 

4.4.3 Experimental Results 

Figure 4.25 plots the temperatures recorded by the thermocouples during the test. 

The results can be compared against the ISO 834 fire temperature, although the fire 

only lasted for approximately 500 seconds. In fact, the displacement plot shown in 

Figure 4.27 indicates that the snap-through took place at approximately 280 seconds 

after ignition. Average gas temperature stayed at around 900'C. 

With such a short-lived but intense fire, the column section below the fire was not 

exposed to much radiation and remained near to ambient temperature throughout the 

test. The steel above the burning tray was totally engulfed in flame once the fire was 
ignited. This was shown from the gas temperature curves, which fall in the same 

temperature region across the whole portal frame for the duration of the test. 
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Figure 4.25 Recorded temperatures from the third test 

With this intense heating, steel temperatures along the rafters were relatively even. 

The eaves area appeared to be heating slightly behind the mid-section of the rafters, 

since the eaves were less exposed to the fire. The temperature difference between 

the top and bottom flanges was not significant as a result of the totally engulfing fire. 

Maximum steel temperature reached just below 1040'C at thermocouple S 12, which 

is just right to the apex. It was later found from the inspection after test that a plastic 

(fire) hinge had formed in this region. 

From the plot of displacements shown in Figure 4.26, the apex did not deflect until 

300 seconds into the test, when it started to deflect downward quickly and eventually 

dived vertically. Both eaves were initially deflected outward due to the steel 

expansion until the snap-through took place, after which they were both pulled 

inward (the reversal of displacement shown in the curves) by the rafters in catenary 

action. 
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Such catenary actions induced in the rafters are well recognised. In fact, the SCI 

publication written by Newman9 has called for a larger foundation to be designed for 

portal frames with sensitive boundary conditions. Portal frame columns in these 

cases are required to remain stable so that they can continue to support the fire- 

resisting faqade. This publication is widely recognised by Building Control and has 

become a design requirement. 
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Figure 4.26 Recorded displacements from the third test 

if the horizontal displacement graph is investigated more closely, it can be seen that 

the right-hand eaves (Disp 3) has been pulled in by a bigger margin than the left 

eaves (Disp 1). In fact, the reversal effect on the left eaves is much gentler compared 

to the sharp effect at the right eaves. This indicates that the failure of the portal 

frame was not induced by a "beam mechanism", but was more likely a "combined 

mechanism". (Obviously the sway mechanism has been ruled out, given the loading 

details. ) 

A detailed study on failure modes of portal frames in fire has been conducted, and 

parametric studies are presented in Chapter 5. 

0 
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4.4.4 Post-test Inspection 

An inspection of the collapsed frame was carried out after the steel had cooled down. 

A collapse mechanism had been produced in which the rafters had deflected 

considerably. In fact, the rafters only stopped deflecting when the water-filled barrel 

touched ground and relieved the vertical load on the rafters. The formation of plastic 

hinges on the rafters could be clearly seen. Two hinges were seen to be located near 

to the eaves, one at each side. An additional hinge could be seen to be forming just to 

the left of the loading point on the left-hand rafter of the portal frame. 

Figure 4.27 Collapse of the portal frame (top) and fire hinges formed during the 
test (bottom) 

if the temperatures were uniform along the rafters, bending moments could create 

four plastic hinges in the snap through situation (two near to the apex and two near to 

the eaves). However, three hinges is sufficient to induce a snap-through failure in 

combined mechanism. The form of failure mechanism will be investigated at a later 

stage in these studies. 
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Figure 4.27 shows the collapsed shape of the portal frame It can be seen from this 
figure that the steel rafter section has rotated by approximately 90' about its axis, 

starting a short distance from the right-hand eaves (at the position of the third plastic 
hinge formed). The section at this position had detached from the purlins and steel 

strips which normally provided the restraint against rotation. Such phenomena could 
happen to industrial portal frames in fire. The purlin section used for the test frame 

is relatively large compared to the rafter section, and the restraint provided by purlins 
in a normal portal frame structure will be less compared to the test situation. The 

rafters will be subject to minor axis bending as soon as this rotation takes place, and 
become more vulnerable at elevated temperatures. 

On the other half of the portal frame the purlin was still attached to the rafters and 

this rotation did not take place. It is believed that the purlins could help substantially 
in providing restraint, although they were seen to have deformed rather badly. 

Despite the massive deformation sustained by the rafters of the portal frame the 

columns had remained relatively undamaged. Due to the low level of restraint from 

the column bases, these bases effectively only resist horizontal force, without 

resisting bending. It was shown from the thermocouples that the steel of the columns 

remains almost unheated throughout the transient testing period. 

While inspecting the roof cladding, it was found that this was not ripped through 

during the test, but actually managed to maintain its integrity throughout the test. 
There was no observation of fire penetration of the roof cladding, even when the 

portal frame had collapsed. This may be of interest if further research is to be done 

on the behaviour of steel cladding in fire. 

The vertical cladding on the side fagade did not sustain any damage. Similarly, the 

cross bracing did not appeared to have deformed. 

Overall, the failure of the portal frame was primarily due to the collapse of the 

rafters. Higher temperatures and less stiffness at the base connection were the major 

causes for the differences seen between this test and the first one. 
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4.4.5 Computer Analysis 

VULCAN analysis was again brought into use for modelling of the third test. There 

was little uncertainty regarding the base rotational stiffness for the test frame as it 

must be very close to a pinned base due to the special arrangements made. 

When a two-dimensional analysis was conducted, it was found that the computer 

program predicted an earlier failure than happened in the test. The remaining factor 

which was not modelled was the existence of secondary members, in particular the 

Z-purlins which had a section depth of 120mm. Although the thickness of the 

purlins was onlyl. 5mm, they can contribute to the vertical stiffness of the rafters. 

A three-dimensional model was set up with purlins simply supported between the 

adjacent portal frames and attached to the test frame. Figure 4.28 shows the set-up of 

the model. The purlins were modelled with only two elements each since their 

detailed behaviour was not the major concern. 

Figure 4.28 Three-dimensional VULCAN model on the third test 

The results from the computer analyses were plotted against temperature together 

with the experimental results. Figure 4.29,4.30 and 4.31 show the comparisons; the 

reference temperature is that of the hottest part of the steel. It can be seen from the 

graphs that three-dimensional analysis, including the purlins, predicted the failure 

temperature more accurately than the two-dimensional modelling. This again 

demonstrates that the purlins were beneficial in resisting fire collapse of the tested 

portal frame structures. 

Figure 4.32 shows the predicted shape of the test frame just before failure, using an 

enlarged vertical displacement scale 
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Apparently the VULCAN analysis was terminated once the snap-through failure took 

place, and hence large-displacement movement after failure could not be followed. 

However, the deflection shown is indeed very similar to the deformation of the portal 

frame in the test, with the plastic hinge locations matching up with the deformed 

shape seen in Figure 4.27. 

The horizontal displacement predicted by VULCAN was marginally greater than the 

experimental results. The rationalisation of this may be that the cross bracing and 

sheeting rails (Z-purlins) attached to the columns were providing additional 

horizontal restraint which has not been modelled to the column movement. 

Furthermore, these secondary elements were attached to the adjacent frames which 

remained relatively cool during the test. 

Given the minor uncertainty about the effect of the secondary elements, the 

VULCAN prediction was considered satisfactory in analysing this structural system. 
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Figure 4.32 Deflected shape predicted by VULCAN (3-dimensional view) 

4.5 Further Discussion 

One of the issues highlighted by the three fire tests conducted at Buxton is the effect 

of the secondary elements in fire. These may be insignificant and negligible in the 

context of ambient-temperature behaviour, but their influence is certainly greater at 

elevated temperature. 

However, this observation may be over-optimistic given that there are two major 

differences in these secondary elements in the test compared with full-scale 

structures:: 

1. The sizes of the secondary elements were relatively large compared to the rafters 

size in the test frame. 

2. The immediately adjacent portal frames remained relatively cool in the test, 

which provided the necessary supports to the purlins, both vertically and 
horizontally. 

Because of the very local heating, unless there is a total bum-out of the entire portal 

frame structure, there will always be some cooler portal frames which can provide 

extra strength to the hotter ones. A total flashover within a large compartment is 

however rarely seen, statistic figures and discussions 12,54.55,56 are available for further 

investigation. 
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There are new recommendations in the latest edition of Approved Document B57 

calling for restrictions on compartment size in retail warehouses. The maximum 
2 

compartment size allowed without providing sprinklers has been reduced to 2000m 

In these tests, the effect of unheated portal frames adjacent to the fire compartment 

could significantly add stability to the heated frames. 

4.6 Conclusion 

Three comprehensive fire tests were conducted on the scaled portal frame structure at 
Buxton. The results and observations have been presented, along with a comparison 

against displacements given by the VULCAN finite element model. The analytical 

results are close to the experimental data taken from the tests, which provides 

confidence in using VULCAN to analyse portal frames. Parametric studies were 

therefore planned to investigate further their behaviour at elevated temperatures 

using VULCAN. 

The results and post-test investigations have been described and their significance 

has been discussed, including the effect of base rotational stiffness, the lateral 

buckling of rafters, rotation of rafters and the effect of the secondary elements. 

Having seen no collapse mechanism in the first two tests, significant alterations were 

made to the set-up of the third test, which led to a total collapse of the test frame. 

The third test was the most significant, yielding some valuable information. 

The failure mode of the portal frame in the third test was examined, and the evidence 

suggested that a combined mechanism had formed, leading to failure. Further 

investigation will be conducted within the parametric studies. 

In general the tests were successful, with no major faults encountered, despite the 

complication of recording data, setting up the correct loading and creating the 

intended fire scenarios. 
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5 Parametric Studies 1 -Two Dimensional Analysis 

Much of the work illustrated in the previous chapters has demonstrated that the finite 

element model VULCAN can be used to predict the behaviour of steel portal frames 

in fire with reasonable accuracy. Further understanding of portal frame behaviour 

can be gained by investigating various factors that affect the failure in a fire. Such 

investigations can be conducted by using VULCAN to analyse series of portal frames, 

changing the desired factor only in each study so that the resulting effect can be 

clearly detected and discussed. Such analyses are known as parametric studies. 

The major benefit of parametric studies is to avoid conducting large numbers of 

experiments which can be difficult to control and highly expensive. More detailed 

studies can also be done by concentrating on just one area at a time. The studies will 

concentrate on pitched-roof portal frames, as these are the most common form of 

modem construction for single storey warehouses. 

In order to simplify the studies and minimise the computer run time, two-dimensional 

portal frames are initially defined and analysed, investigating the effect of load ratio, 

span and height of the portal frames, heating profiles in real fires, horizontal wind 
forces, base-rigidity and the angle of the pitched roof Out-of-plane failure and the 
interaction between adjacent portal frames are not considered. The frame is allowed 

to deflect out of its plane but no external out-of-plane forces (transverse load) are 
included in the analyses. The pinned column bases, where applicable, are only 

allowed to rotate in-plane. 

The failure point of the portal frame is defined as the point where an uncontrollably 
large displacement occurs in a relatively small temperature increment, causing a snap- 

through of the rafters. The analyses do not continue to model the post-snap-through 

phase, even if stability is regained later by other means. 

The results and discussions are presented in this chapter. They are then related to 

another series of parametric studies presented in Chapter 6, where three-dimensional 

portal frames are analysed. 
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5.1 The Effect of Load Ratio 

The effect of vertical load on the behaviour of plane portal frames in fire is 

investigated in this section. The vertical load is applied as a uniformly distributed 

load on the roof, defined using a load ratio -the ratio of applied load to the ultimate 
load capacity of the portal frame. A typical pitched roof portal frame, which spans 
30m with column height of 7m is defined and is then designed to resist typical 
loading. The height of the apex is Ilm, which results a rafter inclination of 14.91. 

Haunches have not been included in the design since they do not influence the overall 
behaviour of the portal frame (plastic hinges will form at the ends of the haunches 

instead of the nearest point to the eaves). 

Plastic analysis and design are used to determine the section sizes of the rafters and 

columns, and pinned bases are assumed during the analysis. Figure 5.1 summarises 

the layout of the portal frame used for the parametric studies. 

Uniform Distributed Load 
n1yYYYYYYYY-[YYY-Yy-YYY- 

-4. 40.00 
14.9* 

Rafter Size 
457xl9lx89 UB 

70'00 

Column Size 
533x2lOx92 UB 

-30000 H 
Figure 5.1 Parametric Studies - Load Ratios 

Once the geometry of the problem had been set up within VULCAN, different levels 

of vertical loading were then applied to the rafter, varying the load ratio from 0.1 to 

0.8. A very small horizontal force was used to avoid the possibility of bifurcation 

buckling. 
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In order to investigate the effect of load ratio, the fire scenario remains identical in 

each analysis. The chosen fire scenario, based on the most common cases, included 

the whole rafter being heated uniformly but the column remaining cold. This simply 

represents a fire within a large warehouse where the pitched roof provides a heat and 

smoke reservoir, and hence increases in temperature, whereas the columns remain 

relatively cold below the smoke zone. 

When the portal frame warehouse is close to a boundary, and the boundary distance 

does not provide sufficient separation from adjacent buildings, the cladding is 

required to have a minimum of 60 minutes' fire resistance. This results in a 

requirement for the columns which support the cladding to have adequate fire 

resistance. Therefore the column temperatures will be relatively low compared to 

those of the rafters. 

The results from this study are plotted in Figure 5.2, in terms of the vertical 

displacement at the apex. The apex initially deflects upwards due to the thermal 

expansion of the rafter and the restraint to this expansion from the columns; when the 

steel properties begin to reduce significantly as temperature increases, the rafters 

become softer until the point where snap-through takes place, which has been defined 

failure as by VULCAN. The failure temperature for a load ratio of 0.1 is about 

8001C. This reduces steadily as the load level is increased, reaching 4000C at a load 

ratio of 0.8. 

The spread of the eaves, which is defined as the difference between the horizontal 

displacements of the eaves, is plotted against temperature in Figure 5.3 for each load 

case. 

The plot of eaves spread indicates that the two eaves connection continuously deflect 

further away from each other due to thermal expansion and rafter rotation, and 

demonstrate a rotational failure of the frame (as described in the previous chapters) as 

soon as the snap-through of the rafters takes place. The spread of eaves will remain 

more or less constant if a sway failure occurs, in which both eaves move in the same 

direction with about the same magnitude. The frames do not experience sway failure 

at any load level in these analyses, even though pinned bases are assumed. The 

significance of the base conditions will be explored in later sections. 
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Temperature 
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Figure 5.2 Vertical Displacement at Apex 
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Figure 5.3 Spread of Eaves 
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From the analysis, it is obvious that load ratio has a considerable impact on the failure 

temperatures of portal frames; in this case there is approximately 400'C difference 

between the highest and lowest failure temperature. However, as the portal frames 

are usually designed to resist a combination of factored dead load, imposed snow load 

and wind load, the higher load ratios can be discounted during a fire. Fire limit state 
design from BS 5950 Part 8 13 allows snow load to be discounted completely, wind 
load to be discounted completely if the column height is less than 8m, or a factor of 
0.33 to be applied to it otherwise. Although the imposed load may be accounted for 

in the ambient temperature design, it is likely that majority of such loads will not exist 

at high temperatures. 

Therefore, the range of practical load ratios in fire for a portal frame does not vary 
from 0.1 to 0.8, but falls in the region between 0.05 and 0.25. In this series of 

parametric studies, the failure temperatures lie between 640'C and 8001C. 

5.2 The Effect of Span and Column Height 

The load ratio is found to have a significant influence on failure temperature from the 

previous analyses on a single portal frame. Different geometries of frames are 
investigated in this section, looking at the influence of geometry on failure 

temperatures. 

A series of portal frames with various spans and column heights were designed using 

plastic analysis and design. The other parameters of the portal frames, such as the 
heating profile and boundary conditions were kept constant in the analyses. 

The first series of portal frames comprises 10 frames with a constant column height of 
7m with overall spans of 15m, 20m, 25m, 30m, 35m, 40m, 50m, 60m, 70m and 80m. 

They are designed to resist normal loading, i. e. a vertical factored load of 10.14 kN/m 

on the rafter. A load ratio in fire of 0.2 was used for this series of analyses. Table 5.1 

summarises the details of these frames. 

The vertical displacements at the apex of each frame are plotted in Figure 5.4. Snap- 

through failure is clearly detected, especially for the larger span portal frames. The 

failure temperature of each frame lies close to 7001C, which indicates that the load 

ratio of 0.2 dominates the failure temperatures. A larger variety of frame geometries 
is required to investigate this further. 
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Span 
(M) 

Column Section 
(Grade 43) 

Rafter Section 
(Grade 43) 

Roof 
Inclination 

0.2 Load 
Ratio 

(kN/m) 
60 914x3O5x2Ol UB 914x3O5x2Ol UB 7.59' 2.51 

50 838x292xl76 UB 762x267xl73 UB 9.090 2.67 

40 6lOx3O5xl49 UB 6lOx229xl25 UB 11.31' 2.47 

35 6lOx229xll3 UB 533x2lOxlO9 UB 12.88" 2.48 

30 533x2lOx92 UB 457x 19 1 x89 UB 14.93' 2.42 

25 457xl52x6O UB 457xl52x6O UB 17.74' 2.29 

20 457xl52x52 UB 406xl4Ox46 UB 11.3 1 2.2) 3 

15 305xlO2x33 UB 305xlO2x33 UB 14.93' 2.16 

Table 5.1 Portal Frames with Fixed Column Height of 7m 

Temp ('C) 

Figure 5.4 Vertical Displacement at Apex - Variable Span 

The next series of portal frames was designed to have a constant span of 30m but with 

the column heights varying from 3m to 15m at one-metre intervals. A summary of 

the frames is shown in Table 5.2. 
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Height 
(M) 

Column Section 
(Grade 43) 

Rafter Section 
(Grade 43) 

Roof 
Inclination 

0.2 Load 
Ratio 

(Min) 
3 457x 19 1 x74 UB 457x 19 1 x74 UB 14.91 2.60 

4 457x 19 1 x82 UB 457x 19 1 x82 UB 14.9' 2.6 0 

5 457xl9lx82 UB 457x 19 1 x82 UB 14.9' 2.46 

6 533x2 I Ox82 UB 533x2lOx82 UB 14.9' 2.61 

8 533x2 I Ox82 UB 533x2lOx82 UB 14.90 2.49 

9 533x2 I Ox82 UB 533x2 I Ox82 UB 14.9' 2.4 4 

10 10 533x2 I Ox82 UB 533x2 I Ox82 UB 14.90 2.40 

11 

E 

111 533x2 I Ox82 UB 533X21 OX82 UB 14.9' 2.38 

12 533x2lOx82 UB 533X21OX82 UB 14.9' 2.34 

13 533x2lOx82 UB 533x2lOx82 UB 14.9' 2.32 

14 533x2lOx82 UB 533X2 I OX82 UB 14.9' 2.31 

15 533x2lOx82 UB 533x2 I Ox82 UB 14.9' 2.29 

Table 5.2 Portal Frames with Fixed Span of 30m 

-3m 
4m 
5m 

-6m 
g 7m 

-8m 
-9m 
-lom 
--llm 
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14m 
15m 

Temp ("C) 

Figure 5.5 Vertical Displacement of Apex - Variable Column Heights 

100 



Chapter 5: Parametric Studies I -Two Dimensional Anal. vsis 

Figure 5.5 plots the results from the analyses, in terms of the vertical displacements at 

the apex. Combining the results from the previous series of analyses, it is 

demonstrated that the upward movement of the apex (before snap-through takes 

place) is larger for the frames with higher span/height ratio. However, all the frames 

fail at approximately 700'C, even though the span/height ratio varies frorn 2 to 12. 

The failure mechanism is similar in all the frames, comprising a rotational movement 

as described earlier. 

Parametric Studies - Span and Column Height 

Load Ratio = 0.2 

Load Ratio = 0.4 

Load Ratio = 0.5 

Load Ratio = 0.7 

4 No 
Combination of Analyses 
Conducted 

Series I 
Constant Height of 7m 

Span 15m - 80m 

Series 2 
Constant Span of 30m 

Height 3m - 15m 

Series 3 
Constant Height of 4m 

Span 12m - 36m 

Series 4 

Constant Span of 50m 
Height 6m - 16m 

Figure 5.6 Parametric studies on Span and Column Height of Portal Frames 

101 



Chapter 5: Parametric Studies I -Two Dimensional Anat. vsis 

I 

For the third sefies of portal frames the column height was made constant at 4m and 

the span was varied from 12m to 36m in 4m intervals. This was followed by a fourth 

series of frames with constant span of 30m and column heights ranging from 6m to 

16m in 2m intervals. Both series were again analysed at a load ratio of 0.2. 

Similar findings to the earlier analyses were obtained from the third and fourth series 

of parametric studies. The conclusion can almost be drawn that a portal frame with 
load ratio of 0.2 will have a critical temperature of approximately 700'C provided that 

the rafter is heated and bases are pinned. 

The whole set of analyses was repeated using different levels of loading. Figure 5.6 

summarises the failure temperatures from these studies. 

A total of 136 portal frame analyses were conducted within this investigation and all 

showed the same failure mechanism. The failure temperature from each analysis is 

plotted in Figure 5.7, against the span-to-height ratio of the portal frame. 
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Figure 5.7 Failure Temperatures of Portal Frames 

10 12 

The failure temperatures at a given load level were very comparable. This illustrates 

the consistency of failure temperatures being influenced by the load ratio but not by 

the frame geometry. The scatter within a given load ratio increased as the load ratio 
increased. For the 0.7 load ratio, the difference between the highest and lowest failure 

temperature is approximately 50'C. 
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The range of failure temperatures from the analyses are plotted against load ratios in 

Figure 5.8, and they are also compared against the limiting temperatures extracted 
from BS 5950: Part 8 13 and Eurocode 3 15 

. The limiting temperature for the BS 5950 

category 'Member in bending not supporting concrete slabs: protected member' can 
be seen to form an approximate lower bound for the analytical results. 

The nature of the analyses, in which rafters are heated but the columns stay relatively 

cold, has similarities with simple beams, except that rafters are inclined members. It 

has been seem that the limiting temperature data given in the Codes can provide a 

quick, approximate indication of the failure temperatures of portal frames given a 

similar heating scheme. 
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Figure 5.8 Failure temperatures for frames plotted against load ratio. 

5.3 The Effect of Different Fire Scenarios 

Analyses in the previous sections adopted the built-in assumption that the entire rafter 
is heated but the columns remain cold in a fire. A different fire scenario will 
inevitably create a different heating scheme for the portal frame. Especially in a 

large warehouse building, a fire can be localised and only heat a portion of the 

building. In a high rack-storage warehouse, a line fire across the building will lead to 

either a relatively small section of the frame being heated or the entire frame 

increasing in temperature. 
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Figure 5.9 illustrates the different heating schemes considered in the next parametric 

studies. Profile (a) represents the typical fire scenario used in the previous analyses, 

where a combination of fire and smoke heat up the rafters. In the most severe fire 

case of total bum-out of the entire storage accommodation, all the steel members will 

be heated as shown in Profile (b). Profiles (c), (d), (e) and (f) consider localised fires 

at different locations, i. e. near edges, mid-span and mid-rafters. These cases lead to 

some localised heating of portions of the rafters. 

As the portal frame is loaded vertically, the bending moment experienced by the 

rafters will be negative (hogging) at the eaves, reducing gradually and changing to 

positive (sagging) in the region of the apex. The maximum moment is expected to be 

near to the eaves, and the mid-rafter zones are expected to experience least moment. 

ooooýýýýý 
AkIl 

Heating Profile (a) Heating Profile (b) 

t9- 
Heating Profile (c) Heating Profile (d) 

Heating Profile (e) Heating Profile (f) 

Figure 5.9 Heating Profiles of Portal Frames in Various Fire Scenarios 

The portal frame under investigation is 30m in span and 7m in height to the eaves (as 

previously defined in Section 5.1 ). The analyses do not concentrate on the geometry 
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of the frame but on the vertical load applied, given that the load ratio seems to be the 

dominant factor affecting the frame behaviour. 

Figures 5.10 and 5.11 show the results of the studies at load ratios 0.2 and 0.7 

respectively. The vertical displacements at the apex are plotted against the steel 

temperatures in the heated zone. Comparing the heating profiles (a) and (b) for which 

the difference is the heating of the column, very similar behaviour is seen. This also 

applies when comparing profiles (c) and (d). This indicates that the heating of 

columns does not lead to very much worse or more critical failure behaviour of portal 

frames, provided that the out-of-plane deformation is prevented since the analyses are 

two-dimensional. 
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Figure 5.10 Apex Displacement for Various Fire Scenarios - Load Ratio 0.2 
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Figure 5.11 Apex Displacement for Various Fire Scenarios - Load Ratio 0.7 

It is shown from the results that the portal frame will fail at a lower temperature if the 

whole of both rafter is heated, compared to a localised heating profile. The deflection 

at the apex is also more severe due to the obvious snap-through failure of the rafters. 

If the comparison is made between the locally heated frames only (heating profiles 

(c), (d), (e) and (f)), the deformation of the portal frame, in terms of both failure 

temperature and deflection, is more severe for heating profiles (c) and (d) compared to 

(e) and (f). This is due to the higher moment experienced at the eaves, as discussed 

earlier. Although the moment will be redistributed due to the change of geometry 

while deforming, the bending moment diagram remains similar throughout the 

temperature range. Therefore, the comer fire is always more severe than other 

localised fires, and the introduction of haunches at the eaves will certainly enable the 

formation of plastic hinges to be pushed further away from the eaves. 

It should be noted that in a warehouse where skylights are provided, these tend to 

open in the early stages of a fire and provide ventilation to the building. It is likely 

that the hot smoke will escape through the skylight and only the top of the building 

(near the apex) forms a reservoir. This tends to cause heating profile (e) to form and 

this is likely to happen for most smouldering fires. However, It is not likely to be 

critical for the structural behaviour of the portal frame. 
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Figure 5.12 Spread of Eaves for Heating Profile (a) 

When the failure mode of the portal frame is investigated for each fire scenario, it is 

found that sway failures do not take place. The plot of spread of eaves for the most 

severe fire scenario (heating profile (a)) is shown in Figure 5.12; the eaves are found 

to move further from each other as snap-though occurs, once again forming the 

rotational failure mechanism. 

5.4 The Effect of Wind (Horizontal) Load 

In order to contain the fire within the building in which it originated, sway failure of 

portal frames is not permitted. Sway failure is more likely to occur in the presence of 

horizontal wind force. However, under the current BS 5950 Part 8 provisions, the fire 

condition is considered as an accidental limit state. Therefore, it is considered 

unlikely that a fire will coincide with the maximum design wind force. This allows 

wind load to be omitted for buildings less than 8m, or wind load to be reduced by 

two-third otherwise. 

107 



Chapter 5: Parametric Studies I -Two Dimensional Analysis 

Considering a portal frame warehouse with frames spaced at 6m centres with the 

typical portal frame dimensions of Section 5.1, the wind load was calculated using a 

typical wind speed, wind speed factor and ground roughness. The most onerous case 

of internal and external pressure coefficients was also adopted, in which both columns 

are subject to a net wind pressure in the same direction. Figure 5.13 shows the values 

of wind load, calculated without adopting the fire limit state partial safety factor of 

0.33. 

15m 

wind 

+4.50 kN/m 7 61 

I 

wind 

+4.05 kN/m 

Figure 5.13 Wind Load 

Analyses were conducted using this wind load, varying the vertical load on the rafters. 

The vertical load is represented as a load ratio for the portal frame, with a maximum 

load ratio of 0.4 being used since it is not practical to have high vertical load for portal 

frames in fire. The results from the analyses, expressed in terms of the spread of 

eaves, are plotted in Figure 5.14. The analyses were repeated applying a wind load 

with the recommended reduction factor of 0.33, and the results are plotted in Figure 

5.15. 
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Figure 5.14 Spread of Eaves - Analyses with Full Wind Load 
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Figure 5.15 Spread of Eaves - Analyses with 0.33 Wind Load Factor 

From the plot of eaves spread, there is no evidence that the portal frames are subject 

to sway failure. In fact, the horizontal distance between the eaves increases as the 

portal frames approach failure, suggesting that the failure mode in wind conditions is 

similar to that under purely vertical loading. 

The introduction of reduced wind load makes little difference to the failure 

temperatures of the portal frames, compared to the effect of vertical load. This again 

demonstrates the dominant influence of the vertical load. 
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in the parametric studies, wind pressure has been applied only to the vertical faqade of 

the portal frame building. If the roof is constructed with profiled steel sheeting, it is 

reasonable to assume that it stays in place during the fire. Hence the wind will create 

an internal uplift pressure, resulting in a reduction in vertical load on the rafters. 
Therefore, the vertical load ratio is expected to be even less than the normal loading at 
fire limit state, if wind forces are considered. Figure 5.16 demonstrates the effect of 

wind load. For a typical portal portal frame with span larger than 30m, moment B is 

always dominant compared to moment A. This results in less overturning moment at 

the column base, and hence less likelihood of sway failure. 

Wind force 

=+ I 
M+(:! t1l) 

Moment A Moment B 

Figure 5.16 Wind Uplift effect on Portal Frame 

However, if the recommendation from BS 5950 Part 8 is adopted, wind load cases are 

only required to apply to buildings which have a height to eaves of more than 8m. If 

pinned bases are adopted in the design of tall portal frames with column height larger 

than 8m, it is often required to provide a bigger steel section to satisfy the horizontal 

deflection criterion of the columns, due to the increased wind loading. Therefore, it is 

often found that wind loading is the less onerous case in the fire limit state for typical 

portal frame buildings. In consequence the lack of extensive research and reasoning 

behind the 8m recommendation given in BS5950 Pt 8 does not necessarily lead to 

major concern for portal frame buildings. 

The purpose of these parametric studies is to investigate the likelihood of the 

occurrence of sway failure of a portal frame. A particularly slender frame was 

chosen, applying different levels of horizontal force combined with low vertical 

loading. The span of the frame is 15m and the height to eaves is 7m, which results in 
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a span/height ratio of 2.14. The frame is again designed using plastic analysis, and a 

vertical load ratio of 0.2 is adopted. The horizontal load is added to the frame as a 

percentage of the total vertical load, applied as a point load on one of the eaves. The 

typical wind force for a portal frame is approximately 20% of the 0.2 load ratio 

loading. 

The results from the analysis are plotted in terms of the spread of the eaves in Figure 

5.17. The results show a strong indication that the frame will have a rotational failure 

at a low horizontal force (<50%). The final analysis shown is the case where 80% of 

wind load is applied with half the vertical load (i. e. a vertical load ratio of 0.1). The 

results indicate a sway failure in which the spread of eaves does not experience 

4runaway'. 
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Figure 5.17 Spread of Eaves - The Effect of Horizontal Forces 

Sway failure of a portal frame is theoretically possible . However, the analysis on the 

last case was based on a slender frame with extremely high horizontal force and low 

vertical load. This is not realistic for a portal frame building under normal 

circumstances. With a higher vertical load combining a horizontal force at one side, 

the P-8 will enable the column that resists the horizontal force to rotate more than the 

other column, creating the rotational failure mode. 

0 
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Figure 5.18 Deflected Shape of Portal Frame, 80% Horizontal Load, 0.2 Vertical 

Load ratio. 

Figure 5.18 shows deflected shapes for one of the analyses, with 80% horizontal load 

and 0.2 load ratio. The plot of spread for this particular analysis did not indicate a 

clear non-sway failure mode until the end of the analysis. From the final deflected 

shape, the left column has rotated slightly more than the fight column, which suggests 

that the frame will eventually fail by the excessive rotation of the left column and the 

fight eaves will be pulled inwards eventually. This is also evident from the plot of 

spread from Figure 5.17, as the spread experiences "run-away" just before failure, 

compared to the case with half vertical load (0.1 load ratio) which experiences sway 

failure. 

5.5 The effect of Base Rotational Stiffness 

The analyses in the previous sections have adopted the assumption of pinned bases to 

the columns of the portal frames. Although the same assumption is widely used by 

engineers while designing portal frames, a connection with the column base plate 

bolted down to the concrete foundation is the common practice in specifying the 

details of these bases. These connections do not actually allow free rotation at the 

base. In fact, it has been shown from research and experiments 58,59,60,61 that such 

connections will provide significant rotational stiffness to the columns. 
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Jaspart and Vandegans 5.4 conducted a series of experiments on column bases with two 

and four bolts, varying the axial load and base plate thickness. The rotational 

stiffnesses found ranged between IX102 to IX104 kNnVrad. 

Sensitivity of the portal frame behaviour to the base rotational stiffness is investigated 

in the next series of analyses. A typical portal frame of 30m span and 7m column 
height was set up with spring elements at the bases of both columns. The rotational 

stiffness of the spring is varied between I and Ix 109 kNm/rad, rather than the ideally 

pinned and rigid connections predefined in the program. The vertical load on the 

frame is 0.2 of the failure load, the entire rafters are assumed heated uniformly and 

the columns remain relatively cool. Figure 5.19 plots the vertical displacements at the 

apex against temperature for the various rotational stiffnesses. 
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Figure 5.19 Vertical Displacement at Apex - Effect of Base Rotational Stiffness 

The analyses show that rotational stiffnesses up to IX102 kNm/rad do not affect the 

portal frame behaviour as compared to "pinned", and a rotational stiffness of more 

than IX106 kNm/rad can be considered as "figid". The portal frame behaviour is most 

sensitive to stiffnesses between IX102 and IX105 kNm/rad. 

When the rotational stiffness is low, the restraint to the column is low and the rafter 

expansion causes the eaves to deflect outward. As the strength of rafters reduces at 

higher temperatures, the rafters deflect downward until snap-through takes place. 

When the column restraint is large due to higher rotational stiffness, the eaves can no 
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longer deflect outward as much, and instead the apex is pushed upward and the rafters 

experience greater axial force. As the rafters reach the snap-through point, the loss of 

stability happens more rapidly as the column restraint force contributes to the loss of 

stability of the rafter. 

In the case of VULCAN analysis, the program stops at the limit point where snap- 

through starts, and is not able to predict the downward pattern. However, the pre- 
failure curve has clearly demonstrated the trend of the snap-through action. 

The next series of parametric studies repeats the original study in Section 5.1 in which 

the load ratios are varied, but the column bases are changed to semi-rigid connections 

with rotational stiffness of lxlO4kNnVrad. It was shown from Figure 5.19 that this 

stiffness lies almost in the middle of the range of behaviour between pinned and rigid 
bases. 

Figure 5.20 and 5.21 show the vertical displacement at the apex and the spread of 

eaves for this case. The shape of the curves is similar to the results from Section 5.1 

(Figures 5.2 and 5.3) except that the numerical values of failure temperatures and 
displacements differ. The failure temperatures for the frames with semi-rigid bases 

are higher, and the upward deflections at the apex are greater, with smaller values of 

horizontal eaves spread. This is due to the restraint effect explained earlier. 

From the vertical displacement plot of the 0.1 load ratio case, the first indication of 

failure appears at approximately 800'C. This failure temperature is in line with the 

other cases in this series of analysis. However, due to the semi-rigid pinned bases and 

the low level of vertical load, the snap-through is not as dramatic as the other cases 

and VULCAN has managed to bring the analysis to a further stage, which can not be 

usually picked up by VULCAN. As temperature approaches 1000'C, the snap- 

through is more dramatic and VULCAN can not follow the sudden vertical dive of the 

apex. The three final solutions (indicated by the dots) of the analysis show the 

evidence of this dive. 
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Figure 5.20 Vertical Displacement at Apex - Semi-Rigid Base with Various Load 
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Figure 5.22 compares the actual failure temperatures of the pinned and semi-rigid 

cases, and although no clear trend is indicated, semi-rigid bases do clearly lead to an 

average 10% improvement. However, the 22% improvement shown at 0.1 load level 

could be due to the VULCAN analysis continuing beyond the normal first failure 

stage. 
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Figure 5.22 Comparison of failure temperatures with pinned and semi-rigid 
bases 

0 

Further analyses with semi-figid bases were conducted on various frame geometries 

and similar findings were obtained. 

It should be noted that the value of rotational stiffness chosen in the parametric 

studies is the average stiffness on a normal connection. Various methods of 
5" 61 

determining the actual rotational stiffness can be found based on current research 

However, the calculation for these stiffnesses would normally consider the interaction 

between the steel and concrete foundation only. The interaction between the soil and 

the foundation is little known. The fact that a relatively high factor of safety is often 

adopted in a foundation design has led to difficulty in determining the overall 
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rotational stiffness of the complete base. Therefore, the assumption of a pinned 

connection is considered always to be safe. 

There is also very limited research and knowledge about the effect of elevated 

temperature a the rotational stiffness of base connections. However, it is reasonable 

to consider that the base connection would normally remain relatively cold in a fire 

due to its position. If the temperature of the connection remains below 4000C, its 

rotational stiffness may not be affected a great deal. 

5.6 Conclusion 

A range of parameters which affect the behaviour of portal frames have been 

investigated, including the load ratio, span and height, heating profiles, horizontal 

load and rotational stiffness at the bases. The studies involve two-dimensional 

numerical analyses on the portal frames at elevated temperatures. 

The load ratio was found to have the greatest effect on the failure temperature of the 

frame. Frames with various geometries will fail at almost the same temperature 

according to their load ratios. When the results are summarised, it is found that the 

limiting temperatures for a particular category of beams from BS 5950 Pt. 8 can be 

used as an approximation for determining the failure temperature. 

The failure modes of portal frames in fire were investigated. It was found from the 

analyses that none of the frames had a sway failure mode except one case in which 

extremely high horizontal force and low span-height ratio was adopted. This case is 

thought to be unrealistic and would not exist in practice. Therefore, wind loading 

does not normally produce a critical case for portal frames in fire, in particular for 

large-span frames. 
4N 

When the heating profile of the portal frame has been investigated, it was found that 

the heating of columns does not affect the failure temperatures significantly. in the 

event of a local fire, the heating scheme in which the eaves are heated was found to be 

the most critical case. 

The extra rotational stiffness of normally pinned bases is shown to be beneficial to the 

failure temperature of the portal frame compared to the normal assumption of pinned 
bases. However the overall rotational stiffness, in particular the interaction between 

the foundation and the soil, is little known and research on the effect of elevated 
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temperature on the connection is limited. Therefore, it is difficult to quantify the 

actual benefit of the semi-rigid behaviour of the column base. 
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6 Parametric Studies 2- Three Dimensional AnalYsis 

Following the series of 2-dimensional parametric studies on portal frame behaviour 

in fire, it was Proposed to extend the analyses to 3-dimensional behaviour using the 

finite element program VULCAN. In previous studies, a relatively small model with 
just one portal frame bay had been set up to model one of the scaled frame fire tests 

at Buxton. It gave an indication of VULCAN's capability for the analyses. A more 

complete 3-dimensional analysis is now attempted in this study. Inevitably the 3- 

dimensional model will be much larger, and hence prolonged analysis time is 

required. The details of the model will be described in the following Section 6.1. 

6.1 The 3-Dimensional Model and Assumptions 

It is necessary to include the secondary members within the 3-dimensional model, 

and it is important how they are modelled. The major secondary members which 

contribute to the portal frame behaviour are the Z-purlins found in most industrial 

construction. The purlins are normally made of cold-formed galvanised steel, spaced 

close to each other (typically 1.5 - 2.0 metres apart). They are designed to resist the 

vertical load from roof and to restrain horizontal movement or minor-axis buckling 

of the main portal frame rafters. 

However, the purlins are weak in minor-axis buckling. Under fire conditions, they 

are heated rapidly due to their minimal thickness and high HýA ratio. The bending 

resistance in fire is therefore almost negligible, and the fire tests at Buxton have 

given evidence of this. Nevertheless, the purlins were recognised to provide a certain 

degree of restraint to the rafters, through their tension capacity as interconnecting 

members. 

Therefore although VULCAN analysis does not model the local behaviour of steel 

members, (i. e. local buckling and twisting) this was not considered essential in fire. 

In order to simulate the tension resistance of purlins, the Z-shape can be replaced by 

the I-shape traditionally used in VULCAN, approximating the width of the 

top/bottom flange as the width of the I member and adopting the same depth and 

thickness throughout. 
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Figure 6.1 Simulation of Z-purlin in VULCAN 

With such a thin and relatively deep section, the purlins are usually fixed to the roof 

cladding and support the vertical load. The interlocking roof cladding, spanning 
between purlins, nevertheless provides lateral restraint so that they do not buckle 

about the minor axis. This is particularly important in fire conditions because the 

expansion within the heated purlins alone could cause minor-axis failures of the 

sections in the early stages. 

The potential problem was recognised when a preliminary VULCAN model was set 

up while excluding the consideration of any roof cladding effect. The analyses could 

not be extended to high temperatures because of the failure of purlins at an early 

stage. The difficulty was overcome by subsequently including imaginary members 

that connect the purlins together. These imaginary members span between purlins 

and lie parallel to the portal rafters. They have minimal area and thickness (IOxIO 

mm H section with Imm thickness) and only act in tension, simulating the effect of a 

roof cladding restraint. 

Figure 6.2 shows the set-up of the finite element model, including the mesh 

representing the combination of purlins and roof cladding. The mesh enables the 

simulation of an orthotropic surface with the primary vertical resistance coming from 

the Z-purlins. The entire mesh will behave as a continuum and this is thought to be 

close enough in representing the real structure. Since both the purlins and the 

imaginary members are relatively small in section, the effects of connection on the 

entire portal frame are negligible, and therefore spring elements were not introduced. 

The figure shows that the model only consists of three portal frames. Although it is 

not a full industrial warehouse shed, the model should be sufficient to generate 

representative results for the studies. The model consists of 237 nodes and 350 

elements. The computer time required for a single analysis was much longer than for 
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a 2-dimensional analysis. 

Figure 6.2 VULCAN Model of 3-Dimensioani Portal Frame Warehouse 

6.1.1 3-Dimensional VULCAN Model 

In order to start the investigation of the 3-dimensional behaviour, a typical industrial 

portal frame layout was used. The span of the portal frames adopted is 30m and the 

frame centres are spaced 6m apart. The height to eaves is 7m with the roof pitched at 

14.90. The generic dimensions have often been adopted in the 2-dimensional 

parametric studies conducted previously. The same section sizes were again adopted 

and the assumption of no haunches remains. 

It was decided to compare the 3-dimensional analysis with the previous -)- 
dimensional case as the basis of the studies. The basic model shown in Figure 6.2 

was adopted and the details are presented in the following section. 

6.2 Case 1- Entire Roof Heated 

Using the model described previously, a fire scenario involving heating of the entire 

roof member will be modelled in this section. The columns in this case are assumed 

to be protected and remain relatively cool. A conservative assumption of pinned 

bases is adopted so that like-against-like comparison to a 2-D analysis can be done. 

A uniformly distributed load of 0.4 kN/M2 has been applied to the entire roof, spread 
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evenly between nodes. The load is equivalent to a load ratio of 0.2 on the central 

portal frame. Additional load has been applied to the portal frames at the two edges 

so that all three frames experience the same load level of 0.2 of their ultimate 

capacity. This is a typical load level encountered during the fire condition, after 
discounting the possibility of snow load. 
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Figure 6.3 shows the deflected shape predicted by VULCAN analysis as temperature 

increases, interpreted by the program SHOWGRID. The elements are plotted in red 

and blue colours, representing heated and unheated members. The deflection has 

been scaled five times to exaggerate the deformation of the structure. 

At 200C the entire structure is hardly deflected and remains in almost the same shape 

whilst temperature increases up to approximately 500"C. At this point the portal 
frames still show little sign of deformation, but the secondary elements, the purlins in 

particular, have deflected significantly compared to the main frames. This agrees 

with the observations from the experiments, where purlins lost strength much earlier 

than the portal frame. 

The secondary elements continue to lose strength as temperature increases, until at 

6600C the roof behaves like a piece of paper hung on top of the portal frames. As 

the roof becomes 'softer' in the fire, the portal frame begins to deflect, in exactly the 

same mode as is predicted in the 2-dimensional analyses. The deflections of the 

three portal frames are almost uniform and parallel to each other. The rafters 

eventually deflect excessively, with the apex displacing rapidly in the vertical 

direction and the 'snap-through' phenomenon is predicted at around 717"C. 

From the deflected shape shown above, the VULCAN modelling is predicting 

reasonably the portal frame behaviour in the 3-dimensional model. Using the mesh 

system to represent the roof structure generated the expected deformation. The same 

analysis was repeated with higher load intensity, equivalent to a load ratio of 0.5 on 

the portal frames. The same deflected shape was predicted with a lower failure 

temperature. 

The vertical displacements at the apex predicted by these two analyses were plotted 

against temperature, and comparisons were made to the previous 2-dimensional 

analyses. The apex displacement of the 3-dimensional analysis was taken at the 

middle point of the central frame. Figure 6.4 shows the comparisons. 

It can be seen from the plot that there is little difference between the results from the 

two- and three-dimensional analyses. They predicted almost exactly the same failure 

temperatures and amounts of deflection. This is the expected result, because the 

entire roof is heated and there should not be any extra strength gained from simply 

modelling the structure in 3-dimensional mode. The secondary elements in this case 
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were only providing lateral restraint to the main portal frames. The purlin spacing 

has actually provided sufficient restraint to the rafters against buckling about the 

minor axis. The imaginary members were providing exactly the same restraint to the 

purlins as they would in reality, given the roof cladding interaction. 
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Figure 6.4 Vertical displacement at apex - 2D vs. 3D analysis 
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However, the forces within the imaginary members are not comparable with a real 

cladding. These members should not be used to represent the cladding without 

further investigation into cladding behaviour. The fact that they were not heated in 

the analysis simply assumes that the cladding is infinitely strong and will not split in 

the fire condition. In reality, the roof cladding may fail due to high temperatures, or 

may even fall off as the purlins deform excessively. 

However, if the roof cladding fails in the event of a real fire, the portal frame may 

benefit from this situation. The load level on the portal frame will further reduce by 

losing the cladding self-weight and possibly a significant amount of services. The 

steel temperatures are likely to reduce as additional ventilation becomes available 

(assuming flashover has already taken place, as it would if the entire rafter is heated 

to the failure temperature). On the other hand, the failure of cladding may increase 

the life-safety risk of fire fighters, but whether or not the fire fighters remain in the 
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building the post-flashover stage is questionable. The issue will be further discussed 

later. 

6.2.1 Further Analysis 

The 3-dimensional analyses have demonstrated that portal frame behaviour can be 

well represented by 2-dimensional modelling, provided that sufficient lateral restraint 

is given to the rafters and a fire scenario with the entire roof heated is modelled. 

Further analysis may be useful so that several major research issues can be further 

investigated, including gaining a further understanding of the influence of secondary 

elements on the modelling, and studying the effect of different fire scenarios on both 

the portal frames and the roof mesh. Investigation of secondary element behaviour 

will involve extensive research, both analytically and experimentally, on local effects 

and possibly thin plate element behaviour at high temperatures. This is not covered 

within the current research project. 

It was therefore decided to extend the 3-dimensional parametric studies into 

modelling different fire scenarios of local heating. The forces within the secondary 

elements will be investigated as a preliminary study into the more complex territory 

of cladding behaviour. 

6.3 Case 2- Local Fire Scenarios 1 

Using the same 3-dimensional model set up previously, this study will look at the 

effect of the central portal frame being heated while the other two frames remain at 

ambient temperature and provide additional support. The study will look at the 

effect of unprotected columns and unheated purlins. A load ratio of 0.2 has been 

adopted throughout. Figure 6.5 summarises the four cases analysed by VULCAN, 

with red coloured elements representing the heated members. The cases are: 

(a) All purlins heated, columns remain cold. 

(b) All purlins heated, columns heated. 

(c) Half of the purlins heated, columns remain cold 

(d) Half of the purlins heated, columns heated. 
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Figure 6.5 Local fire scenarios 

All four cases were analysed with VULCAN and the deflected shape was generated 

and inspected using SHOWGRID. A visual inspection identifies any errors created 

during the modelling and assists in understanding the process of deformation. Figure 

6.6 shows the deflected procedure predicted by the analysis for fire scenario (c), with 

the displacement scaled by a factor of 5. 

In fact, it was found that the portal frame behaviour in each fire scenario is always 

dominated by expansion of the secondary elements at the initial heating stage, i. e. 

prior to 600"C. The rafters then start to lose their strength, followed by more 

rigorous deformation as temperature increases. 

Although the final deformation shape at 880'C shown in Figure 6.6 does not clearly 

indicate a snap-through failure of the heated portal frame, the plot of vertical 

displacement at the apex shows the excessive vertical displacements with negligible 

horizontal movement. The plot is shown in Figure 6.7 along with the results from 

other fire scenarios, including Case I from Section 6.2 where the entire roof rafters 

were heated. 
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Figure 6.6 Deflected shape - fire scenario (c) 
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Figure 6.7 Vertical displacements at apex - Load ratio 0.2 

The deflection plot shows that the heating of columns once again has little effect on 

the overall behaviour of the portal frame, whether the purlins are heated fully or 

partially. The major deformation always occurs at the rafters, especially with the low 

load ratio and long-span portal frames. 

However, the effects of the purlins are rather interesting. Comparing the results from 

fire scenario (a) with Case I of the previous section, the effect of the adjacent cool 

frames is minor and does not take place until the final stage before failure is about to 

occur. With half the purlins remaining unheated in fire scenario (c), the heated portal 

frame actually gains significant strength from the adjacent frames, through the purlin 

sections. It is evident that additional strength was gained in this case, and the 

VULCAN analysis was extended beyond 950'C, compared to the original 760'C, 

with reduced vertical displacements. 

Although the rate of displacement actually reduces towards the end of the analysis, 

the termination point is thought to be tensile failure of the purlins, which will almost 

certainly lead to an immediate failure of the heated portal frame. Numerical 

instability is expected in this region where a large number of purlins may find their 

failure points at the same time. 
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6.3.1 Internal Forces within Purlins 

Having seen the effects of purlins on the portal frame behaviour in fire, it became of 
interest to investigate the internal forces generated during the heating phase. The 

exercise is another major benefit of conducting parametric studies, which can not be 

easily parallelled in fire tests. 

it is generally agreed that the purlin section is rather weak in bending due to its 

minimal thickness. It will therefore mainly contribute in tension, holding the heated 

frame's separation from adjacent unheated ones, and axial forces are therefore the 

main subject of this investigation. 

Knowing that the axial force within a particular purlin section will be uniform 
throughout its length, the internal forces of purlins at various positions are plotted. 
Figure 6.8 and 6.9 plot the forces for fire scenarios (a) and (c) respectively, where the 

purlin locations are indicated. Positive forces represent compression and vice versa. 

Both plots show that the purlins initially resist compression forces during the 

expansion of the purlins. The forces peak at different temperatures for each purlin 
location. The compressions then reduce to near zero or even drop into the tension 

zone at some stage before failure at high temperatures. The variation of compression 
forces and their peaks are very much relevant to the movement of the heated portal 
frame. 

It can be seen that the purlin connecting eaves of adjacent portal frames (member 

261) displays the highest amount of compression. This is because the eaves have 

more restraint to movement compared with the apex, where a relatively high amount 

of upward deflection was detected due to expansion. Adding on to this is the effect 

of the entire mesh interaction. The purlins are provided with restraint by the 

members representing the cladding, from which only one-sided restraint is available 
for the purlins at the eaves. When sufficient deformation is gained within the purlin 

connecting the eaves, the compression starts to reduce. 

The force path for the purlin connecting the near apex (member 205) is rather 
different. There are minimal forces in the initial stage of heating because it was free 

to expand due to the upward displacement of the apex. Compression only takes 

place when the rate of deflection for the portal frame decreases. Eventually when the 

i 
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snap-through of the portal frame takes place, the compression reduces to zero and 

tension begins. 

it is worth noticing that all purlins are resisting tension just before failure, although 

the tension force is small, and this enables the portal frame to gain additional strength 

from the adjacent frames as mentioned earlier. 
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Figure 6.8 Axial forces within purlins - Fire Scenario (a) 
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Figure 6.9 Axial forces within purlins - Fire Scenario (c) 
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The purlins' internal forces for the two different fire scenarios show similar patterns. 
The forces are higher for fire scenario (a) due to the higher amount of expansion. 
Interestingly the purlins connecting eaves points dip down into the tension zone at 

one stage in fire scenario (c) and have to resist a significant amount of tension. The 

tension force peak remains more or less at the same ooint where the analysis for fire 

scenario (a) terminates. This could be the main contribution of the unheated purlins 

and the way in which the additional strength of the portal frame is gained. The eaves 

are simply held back from moving inward when the snap-through of rafters is about 

to take place. 

Figure 6.10 shows the forces in the purlin connecting the adjacent eaves (Member 

261) for the four fire scenarios analysed in for this study. Again the effect of the 

heated columns is negligible. The peak of the compression forces for fire scenarios 

(c) and (d) is approximately 200T, lagging behind due the extra strength gained 

from the unheated purlins. The tension zone effect described earlier can be clearly 

seen, and little additional strength was gained for cases (a) and (b) when the purlins 

could resist little very tension (refer to Figure 6.7). 
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6.4 Case 3- Local Fire Scenario 2 

Figure 6.11 Case 3- Two bay heated 

PF 3 
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200 

0 

This section describes the analysis conducted for the fire case where only two of the 

portal frames are heated. The lateral movement of the heated portal frame will be the 

main subject of the investigation. The same 3-dimensional model was again used for 

the analysis, whilst the load was increased to a load ratio of 0.5. Figure 6.11 shows 

the heating profile assumed and the deformation process of the portal frame 

structure. 

The deflections were again scaled five times to exaggerate the deformation of the 

structure. The deformations of the two heated portal frames, PH and PF2, are 

excessive while the unheated frame PF3 remains stable throughout the heating phase. 

Although a snap-through failure seems to take place, PH has also rotated in plan 

(laterally), being pulled in by the purlins and the unheated PF3. It is therefore of 

interest to plot the displacements at the apex of PFI. This is shown in Figure 6.12, in 

which the vertical displacement is compared against the 2-dimensional analysis. 
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Figure 6.12 Apex displacement of PF1 

700 

The plot shows that the failure temperature predicted for the 3-dimensional case is 

similar to the 2-dimensional analysis. It is also obvious that a snap-through 

phenomenon has occurred. However, the rate of the out-of-plane displacement also 

indicates that the frame is about to be pulled over by the purlins (i. e. run-away of the 
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displacements). This is due to the rigid unheated frame at the far end. Such a 

phenomenon was not noticed previously. 

The phenomenon could be transient or could even exist within the analysis only. 
One may argue that the purlins are simply not strong enough to create such a failure. 

in fact, the analytical assumption that the connections between purlins and rafters do 

not fail in fire conditions may be too onerous and may be responsible for this 

observation. Further research on this area is recommended. 

6.5 Case 4- Local Fire Scenario 3 

The final case analysed within this study is to look at a very small portion of the 

portal frame structure heated due to a minor fire. The analysis is mainly done to 

visually inspect the deformation and to demonstrate the capability of VULCAN in 

the 3-dimensional analysis. Figure 6.13 shows the deformation sequence. 
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841'C 

Figure 6.13 Case 4- Corner fire 

It can be seen that the deformation is actually minor. The final failure temperature is 

predicted to be 841'C, compared to 713'C from a 2-dimensional analysis. The 

improved performance is again due to the unheated portions of the purlins. Apart 

from this, the deformation pattern is similar to that from the 2-dimensional analysis. 

6.6 Discussion and Conclusion 

Although only four cases of fire scenarios are presented in this study, a lot of effort 

has been expended in identifying the final shape of the model used, through a process 

of trial and error. For example, there were a number of failures in reaching 

reasonable analytical results before the introduction of the imaginary members 

between purlins. The problem of numerical failure was also often encountered due 

to the use of the slender section sizes while a high-temperature overall analysis was 

desired. Using a lower temperature or a larger section for secondary elements are 

simply unjustifiable. 

For all the effort made to achieve the 3-dimensional analysis, one of the immediate 

conclusions that can be made is that the 2-dimensional analysis is probably sufficient 

for most analytical purposes, provided that the worst fire scenario of an entire heated 

structure is to be considered. The inclusion of the secondary elements will only 

improve the performance of portal frames in fire if the adjacent frames are not 

heated. 
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Although the internal forces within the purlins may not be quantified precisely within 

the VULCAN analyses due to the assumptions of cormcctions and the imaginary 

members, the plot actually gives a good indication of the actual reaction within the 

secondary members. The purlin members that connect between eaves are thought to 

be particularly significant as they restrain the eaves from moving inwards during the 

phase of snap-through. This is evident from the plot of internal forces. 

However, this can only happen if the purlins remain sufficiently strong to perform 

this task in fire. This is rather unlikely given the thin section and high HýA ratio. 

Eaves beams can often be incorporated within a high-bay portal frame structure to 

support the cladding. They could be taken into account for this purpose. 

The analyses within Section 6.3 demonstrate that the heating of columns has little 

effect on the overall behaviour of portal frames. It is actually a common industrial 

practice to fire-protect portal frame columns in boundary conditions. However, 

VULCAN can not predict local buckling and twisting deformations. The local 

deformation, if it takes place, may have some effect on the fire resisting 

walls/claddings that the columns support. These walls/cladding are required to stay 

in place for the designated period so that external spread of flame is prohibited. 

Having said that a 2-dimensional analysis is probably sufficient if the worst fire 

scenario is under consideration, it is often assumed the worst-case scenario is a fire 

that heats up the entire roof, including the rafters and secondary elements. The 

analysis in Section 6.4, where two of the three portal frames are heated, has 

demonstrated that the effect of the heated frame may cause sideways overturning of 

the heated frame. There is little evidence that this has ever taken place in reality but 

it demonstrates the importance of considering various fire scenarios as potential 

worst cases. A more sophisticated approach might be to consider developing fires 

within a large portal frame warehouse where cooling and heating may happen at the 

same time at different locations. This could have a detrimental effect on collapse if 

the appropriate fire heating profile is adopted. 

In conclusion, the 3-dimensional analyses conducted within the study may not 

represent well the true interaction behaviour of the cladding and purlins in a real fire 

situation. However the study has brought up several issues where further 

investigation would seem useful. The analyses also complete the series of parametric 
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studies on portal frame behaviour in fire, as proposed within the research 

programme. 
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7 Development of Simplified Estimation of Critical Temperatures 

for Portal Frames in Fire 

Much of portal frame behaviour in fire has been illustrated and discussed in the 

previous chapters. The characteristic failure mode has been shown in experiments 

and further explored in parametric studies. The introduction of the concept of "fire 
hinges" at the critical temperature has been discussed. The formation of fire hinges 

is due to the reduced plastic moment capacity of the steel section at elevated 
temperature. It is recognised that the concept can be applied relatively quickly and 

safely to estimate the critical temperatures of portal frames in fire. 

Structures of this type are not usually required by legislation to have a minimum fire 

resistance period. However, if a portal frame building has a separation from the 

adjacent building which is less than required (depending on the size of the fagade), 

the relevant external wall of the building is required to have sufficient fire resistance 
to prevent fire spread across the boundary17 - Hence the columns supporting the 

external wall (the vertical cladding fagade) would require a fire resistance of 60 

minutes and a moment-resisting foundation to resist the overturning moment 

generated in fire. Alternatively, the entire portal frame can be designed for a fire 

resistance of 60 minutes 2. In this case, the proposed estimation method is thought to 
be useful to enabled a practising engineer to estimate simply the limiting 

temperatures of a portal frame or to check against the results generated by a 

sophisticated computer program. 

This chapter describes the simplified approach based on Plastic Theory, which 

enables calculation of the failure temperatures of steel portal frames for different 

load cases and at different load levels, by inserting fire hinges at appropriate 
locations. Different fire scenarios, including both localised and completely 
developed fires, are considered for a range of frame geometries. Particular attention 
is given to pitched-roof portal frames due to the popularity of this form of 

construction. 

The results from this simplified approach are compared against analytical results 
from the non-linear finite element program, VULCAN. Worked examples of the 

simplified calculations will be shown. 
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7.1 The Simplified Method 

Since the mid-1950s portal frame design in the U. K. has been widely based on the 

principles of Plastic Theory, using a balance of internal and external work for 

strength calculation. Often these are designed as basic pitched-roof frames with 

pinned column-bases, avoiding high foundation cost, as well as the complexity of 

forn-dng a rigid base connection. Detailed illustrations of this design method can be 

found in many standard teXtS20,24,62. 

The simplified approach presented here simply follows the work balance procedure. 

The frame eventually creates sufficient plastic hinges. as loads increase to form a 

mechanism which may include pre-existing hinged connections. Given a compatible 

set of small displacements of this mechanism caused by articulation of the hinges, 

the work done by the external loads in displacing is balanced by the work done by 

the internal plastic moments in rotation of their plastic hinges. The equilibrium work 

balance equation can be expressed as: 

I: Wj, 5j (External work done) = IMPOP (Internal work done) 
(7.1) 

Once a failure mechanism has been identified, the appropriate failure load can be 

found from equation (7-1). Finding the correct mechanism, which occurs at the 

minimum value of this collapse load, involves testing all possible collapse 

mechanisms of the portal frame. 

The relationship does not change under fire conditions, and thus the work equation 

will still be valid. However, the external work done is clearly dependent on the 

loading in the fire limit state, which can be determined from codes of practice for 

structural fire resistant design such as the British Standard BS5950 Part 8 13 
. As 

explained in the earlier chapters, the vertical dead load in fire is usually the dominant 

external load, since design imposed loading is considerably reduced by the partial 

safety factor for this accidental limit state. 

The compatible internal work done is however induced by the forming of plastic 
hinges. Because of the elevated temperature, the yield stress of steel is reduced and 

this results in a reduction of the plastic moment capacity of the steel section. Such 
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hinges are regarded as "fire hinges". By inserting these fire hinges into the portal 

frame, the level of reduction in plastic moment capacity required in order to achieve 

a failure mechanism at a given fire limit state load can be found. The strength 

reduction factors of steel at elevated temperature are given in fire resistance codes 
15 

such as BS5950 Part 8 or the draft Eurocode EC3 Part 1.2 . Provided that the fire 

hinges are assumed to form in steel members which are at the same temperatures, it 

is possible to calculate the reduction factors required for the collapse mechanism to 

form in fire. The steel temperature giving this reduction can be found, and this is the 

failure temperature of the portal frame. If a fire resistance time is required, then the 

relationship between atmosphere temperature and steel temperature can be modelled 

simply using the incremental approaches given in Eurocode I Part 2.2 63 for either 

exposed or passively protected steelwork. If the IS0834 64 standard fire curve is 

assumed, as is conventional in fire testing of components, fire resistance times can be 

interpolated. 

7.2 Application of the Simplified Method 

Since the simplified method is based on the concept of plastic analysis, the procedure 
is best illustrated by some examples. This section will demonstrate the application of 

the simplified method described earlier to some typical portal frames. The initial 

cases will consider a fire which heats up the entire rafter of a simple goal-post frame 

and a pitched-roof frame. Further examination will consider its applicability to 

localised heating of frames. 

The results from these worked examples will be validated in the later sections. 

7.2.1 Goal-Post Portal Frame - Entire Rafter Heated 

A typical goal-post portal frame with pinned bases was set up as shown in Figure 7.1. 

The loading has been simplified as point loads. For the given problem, there are only 

two possible failure mechanisms at ambient temperature. When the entire rafter is 

heated in fire, a similar mechanism is produced, in which fire hinges are positioned 

at the rafters. The shapes of the failure modes, the "sway" and the "combined" 

mechanisms, are shown in Figure 7.2. 
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In the following calculations, the internal and external work done for cach 

mechanism will be shown, in term of the reduction factor of the strength of steel at 

elevated temperature, which is denoted as il. 

Vertical Load, V 

Horizontal 
-. - bý Loaci, H--pr 

I 

Heated Rafters 

2L 

T-, - --, -db- , 

Figure 7.1 Goal-Post Portal Frame with Rafters Heated 
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Sway Mechanism 

The external work done HLO 

The internal work done i7M P 
(0 + 0) 

where Mp is the plastic resistance moment of the rafter section at ambient 

temperature, 17 is the strength reduction factor and 0 is the angle of rotation in 

radians. 

Equating the internal and external work and rearranging the equation, 

Fire Hinoe 

-I ? 20 

V/1 
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1= 
HL 

2MP 
(7.2) 

Cornhined Mechanism 

The external work done = HLO + VLO 

The internal work done = i7M p 
(20 + 20) 

Equating internal and external work and rearranging the equation, 

17 = 
(H + V)L (7.3) 

I 4MP 

By adopting some realistic numerical values, the limiting temperature of the frame 

can be obtained: 

If L--10m, H= lOkN and V= 30kN, and a section of 305xl65x4OUB Grade 43 is 

used throughout, where Mp = 172kNm: 

q=0.291 for the sway mechanism or 

il = 0.581 for the combined mechanism. 

Applying the concepts of plastic analysis, clearly the combined mechanism will be 

the first failure mode. For the calculated reduction factor of 0.581, the limiting 

temperature of the frame is 516'C. This is obtained from BS 5959 Pt 8 Table 1, in 

which a 0.5% strain level is adopted. It is conservative to adopt this level of strain, 

and the significance of adopting another strain level will be discussed later. 

Using the same geometry and section but a different load pattern, in which H= IRN 

and V=I OkN, results in: 

0.436 for the sway mechanism or 

0.363 for the combined mechanism. 

In this case, the sway mode is the first failure mode, and this results 

temperature of 575'C. 

7.2.2 Goal-Post Portal Frame - Localised Heating Profile 

in a critical 

Considering a localised fire near to right-hand column of the portal frame, the right 

eaves region now has the highest temperature, but the other parts of the frame will 
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stay relatively cool. As a result, a fire hinge will form near to the right eaves. In 

order to create a failure mechanism the fourth hinge has to exist, and this will be a 
normal plastic hinge, assuming no significant loss of strength due to the localised 
fire. The failure once again employs the collapse mechanism shown in Figure 7.2. 
For the sway mechanism, one plastic hinge forms near to the left eaves and a fire 

hinge forms near to the right eaves. In the case of a combined mechanism, the 

plastic hinge will forrn near the mid-span of the rafter. 

Using the same simplified approach: 

Sway Mechanism 

The external work done HLO 

The internal work done i7MPO + MPO 

Equating internal and external work and rearranging the equation, 

17 = 
HL 
MP 

Combined Mechanism 

The external work done= HL 0+ VL 0 

The internal work done = i7M p 20 +Mp 20 

Equating internal and external work and rearranging the equation, 

(H + V)L 
2 

77 
M 

2 

(7.4) 

(7.5) 

Using the same frame geometry as in Section 7.2.1 with H=I OkN and V= 30kN: 

q= -0.419 for sway mechanism or 

q=0.163 for combined mechanism. 

Since the sway mechanism produces a reduction factor of less than 0, this failure 

mode will not exist. The combined mechanism gives a critical temperature of 
720'C. 
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7.2.3 Pitched-Roof Portal Frame - Entire Rafter Heated 

In this section, the simplified method will be applied to determine the failure 

temperatures for the common form of industrial pitched-roof portal frame with 

pinned bases. 

Under fire conditions the most common collapse mechanism for pitched-roof portal 

frames has been found from previous parametric studies to be a rotational failure of 

part of the roof section, which is also the usual failure mode under vertical roof load 

at ambient temperature. 

Considering a widespread fire which results in heating of the whole of a portal frame 

the collapse mechanism is illustrated in Figure 7.3, with fire hinges forming at the 

apex and eaves. 
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Figure 7.3 Failure mechanism and location of fire hinges - frame heated overall 

The external work done weO 

The internal work done Mp il(O +0+0+ 0) 

where Mp is the plastic resistance moment of the rafter section at ambient 

temperature, il is the reduction factor and 0=h, + 2h2 
0. 

h, 

Equating internal and external work and rearranging the equation, 
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we 

MP(3+ 
h, +2h2 

h, 

(7.6) 

Using a portal frame of fairly practical dimensions, (h, = 7m, h2 =4m, L= 15m) and 

loading, designed for ambient temperature limit states with dead, imposed and wind 

loads, a realistic column section would be 533x2 I Ox92UB G43 and the rafter section 

would be 457xl9lx89UB G43 without haunches. This is the same portal frame 

previously designed for the parametric studies. An estimation of the vertical load at 

the fire limit state using BS5950 partial safety factors would be 2.4kN/m. 

Substituting these values into equation (7.6) gives il = 0.190, corresponding to a 

BS5950 Pt8 failure temperature, at 0.5% strain, of 697'C. 

A further check was performed to calculate the critical temperatures assuming other 
failure modes (i. e. the sway mechanism and the panel mechanism), and it was found 

that the rotational mechanism is the first failure mode. 

7.2.4 Pitched-Roof Portal Frame - Localised Heating Profile 

Considering next a localised fire near to one of the portal frame columns, the eaves 

region now has the highest temperature. The failure once again employs the 

rotational collapse mechanism shown in Figure 7.3, with one plastic hinge forming 

near to the apex and a fire hinge forming in the rafter near to the heated eaves. Using 

the same simplified approach: 

The external work done weO 

The internal work done MP [0 + 770 + i7(o + 0)] 

Equating the internal and external work as in the former example, the reduction 

factor can be shown to be 

77 = 

we 
mp M 

1+ 
h, +2h2 

h, h1 

(7.7) 
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Adopting the same portal frame parameter values as for the previous case, the 

reduction factor value turns out to be negative. The significance of this will be 

discussed in later sections. If a higher load level of 6kN/m is applied with the same 

frame geometry, the calculated il value is 0.140 and the failure temperature is 7350C. 

7.3 Validation of the Simplified Method 

Although the concept behind the simplified method and its applicability are not 

complicated, it is necessary to prove the validity of the technique. The portal frames 

used in the worked examples are now set up and analysed with VULCAN so that the 

results can be compared. More detailed validation has been performed on the 

pitched-roof portal frame, including various load levels and geometries, since this 

form of construction is the more common. 

7.3.1 Goal-Post Portal Frame - Entire Rafters Heated 

The individual goal-post portal frame used in Section 7.2.1 was set up and analysed, 

and the results are compared against the results calculated by the simplified method. 

Various load combinations have been analysed, and the cases are presented in Table 

7.1. 

Vertical Load 
(kN) 

Horizontal 
Load (kN) 

Simplified 
Method 

Vulcan 
Analysis 

Case 1 20 10 575'C 610*C 

Case 2 30 10 516'C 555'C 

Case 3 40 to 451'C 497C 

Case 4 10 15 575'C 620'C 

Table 7.1 Comparison of Critical Temperatures on Goal-Post Portal Frame - 
Entire Rafters Heated 

Among these load combinations, Case 4 experiences a sway failure mode and the 

others fail by the combined mechanism. It can be seen that the simplified method 

produces conservative results compared to VULCAN. However the critical 

temperatures given by BS5950 Pt8 are based on a strain level of 0.5%. When a 

higher level of strain is adopted (i. e. 1% by interpolation and 1.5%) the calculated 
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results are much closer to the VULCAN analysis. These are summarised in Table 

7.2. 

Simplified 
Method, 0.5% 

Strain 

Simplified 
Method, 1.0% 

Strain 

Simplified 
Method, 1.5% 

Strain 

Vulcan 
Analysis 

Case I 575C 5940C 6091C 6100C 

Case 2 5160C 5400C 561 *C 555'C 

Case 3 451'C 488'C 513*C 497'C 

Case 4 575'C 594'C 6090C 6200C 

Table 7.2 

7.3.2 Goal-Post Portal Frame - Localised Heating Profile 

A similar validation procedure has been conducted with the localised heating profile 

on one of the eaves of the goal-post portal frame. The same portal frame and load 

combinations were used, and the results are shown in Table 7.3. 

Simplified 
Method, 0.5% 

Strain 

Simplified 
Method, 1.0% 

Strain 

Simplified 
Method, 1.5% 

Strain 

Vulcan 
Analysis 

Case I 1055'C 

Case 2 720'C 732'C 743'C 723'C 

Case 3 568"C 588C 603"C 596"C 

Case 4 OC 

Negative reduction factor obtained which does not yield critical temperature. 

Table 7.3 Comparison of Critical Temperatures on Goal-Post Portal Frame 

Localised Heating Profile 

Once again the results of Cases 2 and 3 compare well with the VULCAN analysis. 

However, the calculations for Cases I and 4 produce negative results for the 

reduction factors for both the sway and combined mechanisms. This indicates that, 

even when the strength of the fire hinge drops to zero, this is not sufficient to 

produce a failure mechanism. This will be discussed in detail later in Section 7.4. 
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7.3.3 Pitched-Roof Portal Frame - Entire Rafters Heated 

A series of VULCAN analyses were performed using the portal frame layout from 

the worked examples in Section 7.2.3 (span 30m, column height 7m, eaves-to-apex 
height 4m), applying different load levels and obtaining the failure temperatures. 

The load levels are presented in terms of their proportion of the failure load of the 

frame at ambient temperature, known as the Load Ratio. The results are compared 

against those calculated from the simplified approach in Table 7.4. Equation (7.6) 

was adopted for the simplified approach calculation. 

Load 
Ratio 

Load 
(kN/m) 

Simplified 
Method, 

0.5%Strain 

Simplified 
Method, 

I. O%Strain 

Simplified 
Method, 

1.5%Strain 

VULCAN 
Analysis 

Case 5 0.1 1.21 778'C 794'C 818'C 803'C 

Case 6 0.2 2.42 697'C 71PC 723*C 715'C 

Case 7 0.3 3.62 642'C 656*C 669'C 664'C 

Case 8 0.4 4.83 598T 615'C 629'C 620'C 

Case 9 0.5 6.04 556'C 578'C 594*C 576T 

Case 10 0.6 7.25 519'C 542T 563'C 532'C 

Case 11 0.7 8.46 4760C 5070C 530'C 4890C 

Case 12 0.8 9.60 421T 469'C 497'C 439'C 

Table 7.4 Comparison of failure temperatures from VULCAN and simplified 

approach - Pitched-Roof Frame with Entire Rafter Heated. 

Once again it can be seen that the simplified approach compares well with the finite 

element results. Further analyses were conducted to investigate the validity of the 

proposed method with various frame geometries, changing the spans and heights. 

The load has been maintained at a Load Ratio of 0.2. The cases and results are 

summarised in Table 7.5. 

It can be seen that the critical temperatures of the frames of different geometries fall 

into the same region. This agrees with the finding from the previous parametric 

studies, that portal frames with the same Load Ratio fail at similar temperatures, even 

when the simplified approach is used. The simplified approach gives results close to 

the VULCAN analysis, especially when the strength reduction is based on a strain 

level of 1 . 0%. 
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Span 
2L 
(m) 

Column 
Height 
hi (m) 

Eaves 
to Apex 
h2 (m) 

Simplified 
Method, 

0.5% 
Strain 

Simplified 
Method, 

1.0% 
Strain 

Simplified 
Method, 

1.5% 
Strain 

VULCAN 
Analysis 

Case 13 20 7 4 708'C 721'C 7320C 7170C 

Case 14 40 7 4 6980C 7120C 7240C 7110C 

Case 15 60 7 4 6970C 7110C 7230C 700'C 

Case 16 30 11 4 6920C 7040C 7170C 7060C 

Case 17 30 15 4 6920C 703'C 7160C 703T 

Case 18 8 4 0.8 691'C 703'C 7160C 7050C 

Table 7.5 Comparison of failure temperatures from VULCAN and simplified 

approach - Various Geometries. 

Among all the cases in this section, the failure mechanism of the frame is the 

rotational mode. It was recognised that sway failure rarely dominates in fire for 

practical frames under realistic loading conditions. However, the simplified 

approach can also be applied to predict a sway failure mechanism for pitched-roof 

portal frames, by inserting the fire hinges near the two eaves. Consider the case 

where a horizontal uniformly distributed load of 2.8kN/m is applied to each column 

of a portal frame (similar frame geometry to that used in Table 7.4), but with no 

vertical load. The horizontal load is a realistic wind load determined from BS6399 

7.5 with the fire limit state load factors from BS5950 Pt8. This will force a sway 

failure mechanism due to lack of the zero vertical load. The results are shown in 

Table 7.6. 

Horizontal Vertical Simplified Simplified Simplified VULCAN 
Load Load Method, Method, Method, Analysis 

(kNIm) 0.5% Strain 1.0% Strain 1.5% Strain 

Case 19 2.8 0 753 782 766 780'C 

Table 7.6 Sway Mechanism for Pitched Roof Portal Frame. 

7.3.4 Pitched-Roof Portal Frame - Localised Heating Profile 

The final series of validations repeat the cases taken from Table 7.4 but with a 

localised heating profile at one of the eaves. Equation (7.7) was applied for the 

calculation using the simplified approach. 
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Load 
Ratio 

Load 
(kN/m) 

Simplified 
Method, 

0.5% Strain 

Simplified 
Method, 

1.0% Strain 

Simplified 
Method, 

1.5% Strain 

VULCAN 
Analysis 

Case 5 0.1 1.21 Negative Negative Negative 1063'C 

Case 6 0.2 2.42 Negative Negative Negative 860'C 

Case 7 0.3 3.62 Negative Negative Negative 796'C 

Case 8 0.4 4.83 Negative Negative Negative 749'C 

Case 9 0.5 6.04 7341C 756'C 745'C 713*C 

Case 10 0.6 7.25 635'C 661'C 648'C 650'C 

Case 11 0.7 8.46 564'C 600'C 585'C 589'C 

Case 12 0.8 9.60 502'C 5491C 527'C 526C 

Table 7.7 Comparison of failure temperatures from VULCAN and simplified 

approach - Pitched Roof Frame with Localised Heating Profile. 

Similarly to the localised-heating cases from the goal-post portal frames, the lower 

load levels give negative reduction factors. The other cases compare well with the 

VULCAN analysis. 

7.4 Discussion 

It can be seen from the validation that the simplified approach generally produces 

results close to the VULCAN analysis. It should be noted that the failure behaviour 

predicted by VULCAN differs between one case and another. Figure 7.4 shows the 

VULCAN predictions for the two different cases of the entire rafter heated and the 

localised heating profile. It can be seen that the case where the entire rafter is heated 

has a less sudden failure profile compared to the other case. As a result VULCAN 

can follow the failure process up to high displacements. 

The critical temperatures from VULCAN shown in all the validations within Section 

7.3 are the final equilibrium points of the analysis, (i. e. Points 2 and 3 as shown in 

Figure 7.1). However, the simplified method is based on a small-displacement 

approach. This is likely to produce some discrepancies between failure temperatures 

obtained from the two approaches. 
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Figure 7.4 Apex Vertical Displacement - Typical Failures Predicted by 

VULCAN 

7.4.1 Strain Level 

According to BS5950 Pt8 "tiny non-composite inembers in bending which tire 

unprotected, or protected with fire protection inaterials which have denionstrated 

their ability to retnain intact, should not exceed a strain level of 1.5%. " It can be 

seen from the validations that, if the reduction factors at 1.5% strain are adopted, the 

results are always close to, or exceed, the temperatures predicted by VULCAN. If 

the 0.5% strain level is considered, it always produces lower critical temperatures 

compared to VULCAN. Therefore, it is reasonable to treat these as the upper and 
lower bounds of the critical temperatures. 

Since there are other uncertainties within the frame and the fire conditions, it is 

difficult to propose a single solution as a definitive failure temperature of the frame, 

and the upper and lower bounds will provide the range for further comparisons. 

7.4.2 Negative Reduction Factor 

In some cases, especially for portal frames with localised heating profile and a low 

level of loading, negative reduction factors were derived from the simplified 

approach. This obviously does not lead to any critical temperature. In the localised 

fire scenafio, after the formation of one fire hinge the low level of applied loading is 

100 200 300 400 

-Entire Rafter Heated 

- Localised Heating Profile 
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not sufficient to cause the formation of a further, full-strength plastic hinge. A 

failure mechanism cannot be achieved, even when the fire hinge strength drops to 

zero. In such cases a VULCAN analysis continues until a much more localised hinge 

pattern occurs causing run-away deformation. 

In reality, it is not likely that a single spot within the frame will be heated up to a 
high temperature while the adjacent area remains unheated. It is reasonable to assess 

the real fire hazard condition, to determine the next most likely position for the 
formation of fire hinges, and to calculate the critical temperature based on the new 

mechanism. The simplified approach could be further developed to investigate this 

specialised area. However, the usual worst case considered in practice will involve 

the rafters being heated overall and the simplified approach is seen to be sufficient to 

predict the critical temperatures. 

7.4.3 Validity of the Concept of Fire Hinges 

The typical pitched-roof frame with pinned bases requires two extra hinges to form a 
failure mechanism. For the rotational failure mode described to occur under fire 

conditions, the two hinges will form near the apex and one of the eaves, and both of 

these will be fire hinges in the case where the entire rafter is heated. If the concept of 
inserting fire hinges is valid, a different fire scenario, with only the locality of the 

apex and one eaves connection heated, should produce a similar failure mechanism 

and failure temperature identical to scenario where the entire rafter is heated. 

These two heating scenarios were modelled on the same portal frame using 
VULCAN in order to verify this argument. The results of the analyses are shown in 

Figure 7.5, in which the vertical displacements at the apex are plotted. The scenario 

where the entire rafter is heated has a higher upward displacement before the snap- 

through takes place, due to its greater expansion, and thus higher internal force. 

However, the analyses show that both frames fail at the almost same temperature. In 

other words, whether or not the central part of the individual rafter member is heated 

has very little effect on the failure temperature. 
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Temperature (OC) 

Figure 7.5 Vertical Displacement at Apex 

It can be concluded that, if the portal frames are heated locally at the critical points, 

the failure temperature can be as low as in the worst fire case. If the critical points 

are protected from heating, this will create a different failure mechanism and higher 

critical temperature. 

7.4.4 Practical Issues 

While calculating the critical temperatures, the approach has ignored the use of 

haunches at the eaves of the portal frame. Such frames should be capable of being 

treated in the same way, but the position of one of the hinges is moved away from 

the eaves to the haunch-end, both at ambient temperature and in the fire case. 

if the failure temperatures shown in Table I are compared with the limiting 

temperatures of isolated members given by Table 5 of BS5950 Pt8, it is seen that the 

values for "members in bending not supporting a concrete slab" form a lower bound 

to the critical temperatures of the portal frames in overall heating. 

Although most practical portal frames are designed with pinned bases, the real base 

connections and foundations actually provide some degree of rotational stiffness to 

the column bases. Four holding-down bolts are normally used to secure such a base 

to the foundation, and it is believed that this provides a certain amount of restraint 

which enables portal frames to perform better in fire than their idealisation suggests. 
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VULCAN has also been used to study the effect of semi-rigid base connections, and 
it was found that critical temperatures of portal frames were increased significantly. 
This has not been considered in this proposed approach, but the current approach has 

the advantage for design of giving more conservative results. 

7.4.5 Benefits of the Simplified Approach 

As has been mentioned, the practical Load Ratio of a typical portal frame at fire limit 

state is normally approximately 0.2 or even less. Using the proposed simplified 

approach, a practising engineer can estimate the critical temperatures of a particular 
frame. The critical temperature of such a frame is dominated by the load level, in 

which case it is found to fail at a steel temperature in the region of 7000C. 

if the portal frame is to be fire-protected, the thickness of the protection material 

would normally be based on a critical temperature of 5500C. Knowing that the 

critical temperature of the frame is actually around 7000C, the fire-protection 

thickness can be reduced significantly. However, it is the fact that the portal frame 

will only be required by regulation to achieve certain fire resistance when there is a 
boundary condition, and this requirement is usually 60 minutes 7.1 

. The unprotected 

steel temperature will be in excess of 9001C for 60 minutes exposure using the 

Standard BS476 standard fire curve. Therefore, a structural fire engineering 

approach is not likely to enable the total elimination of the fire protection 

requirement. 

7.5 Conclusion 

An application of the normal principles of plastic analysis of portal frames has been 

attempted here, with the variation that fire hinges, which have a reduced plastic 

moment capacity, are introduced into the work-balance equation and the ultimate 

goal is to estimate the critical steel temperature in fire. The calculated results have 

been compared with VULCAN analyses, and the comparisons have shown that the 

proposed method gives a reasonably good estimation of the failure temperatures, 

particularly for the most usual and most critical fire scenario in which the frame is 

heated overall. 

In cases where a very localised part of a portal frame is subjected to fire the approach 

has not predicted any failures at very low load levels. This is a relatively specialised 
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area, where the proposed approach could be further developed. However, for the 

most usual fire case it provides a practical method of estimating critical steel 

temperatures, and by further interpolation a method of estimating fire resistance 

times in terms comparable to those used in design codes for isolated members. 

The significance of the simplified approach has been discussed, and the approach 

could potentially reduce the fire protection thickness required under the current 

regulatory system. 
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8 Discussion 

The main purpose of this chapter is to present and discuss several issues in relation to 

the behaviour of portal frames in fire, on which some investigation has been 

conducted which has not been covered in the previous studies presented. These are 

not directly in line with the studies of portal frame behaviour in fire but concem 

other issues surrounding the topic. It is aimed firstly to review the main initial 

purpose of the research project, and then to discuss the current guidance available for 

designers. 

One of the most significant recent developments in the use of fire engineering 

approaches in design of buildings is to consider the concept of performance-based 
design. The latest EuroCode 63. includes the provision to assess realistic fire 

temperatures likely to be encountered in a real building fire. This is known as the 

Natural Fire Concept, and this section will discuss its implications for portal frame 

structures. 

8.1 Initial Research Objectives 

The research project was supported by the Health and Safety Laboratories (HSL), 

Buxton with the aim of investigating the behaviour of industrial warehouses in 

response to internal fires of any size. HSL was particularly interested in the 

structural behaviour and on how this affects the venting of smoke in the event of a 

fire, especially on the occasions when highly toxic smoke is produced as a result of 

the fire. 

The research has been focused mainly on the behaviour of the main portal frames, 

including the setting-up of experimental model and finite element analyses. It was 

apparent that cladding behaviour in fire differs greatly from the main frame 

behaviour, especially in the context of computer modelling. The detailed behaviour 

of cladding cannot in fact be modelled by VULCAN, due to the beam-slab set-up of 

the finite element program. 

The cladding is very much, if not totally, dependent on its supporting purlins, and it 

has been seen from the fire tests that the purlins are vulnerable in fire. The purlins 

can buckle and twist in the early stages of a fire and this may result in the cladding 

failing, or even falling off the building. 
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Skylights are very often installed as part of industrial warehouse structures. The 

skylight is normally made of PVC or a similar type of material which softens and 

melts at relatively low temperatures, before any significant deformation of purlins 

can take place. 

It was evident from the parametric studies that, given the relatively low load levels at 

the fire limit state, portal frames do not fail before the frame temperatures reach at 
least 6500C (see Figure 5.22). This includes the built-in assumption of pinned 

column bases and could be rather conservative, even for the simple base connections 

commonly adopted for portal frames. In the fire tests conducted at Buxton it was 

quite difficult to create a collapse scenario for the portal frame model, and roof 
insulation had to be introduced in the final test to enable a high temperature to be 

reached. It is almost certain that high ventilation will be available before any 

structural collapse of main frames is seen. Similarly, any toxic smoke produced in a 
fully developed fire is unlikely to be contained within the warehouse structure 

throughout the fire period. 

The behaviour of purlins and cladding was briefly modelled within the 3-dimensional 

parametric studies in Chapter 6. A mesh was created to represent the overall roof 

structure, but distortion and failure of cladding can not be predicted. The 

representation of cladding used was artificially assumed to be unheated to enable the 

analyses to reach high temperatures. It seems likely that further investigations into 

the precise behaviour of cladding will be complex because of a number of variables 

which are unpredictable in nature, such as the fixings and the interlock of cladding of 

various profiles under the influence of heating, in conjunction with applied load. 

Much knowledge about portal frame behaviour was gained from the fire tests and 

parametric studies. The common failure mode found throughout the research was 

snap-through of the rafters. This has been very well predicted by the VULCAN 

analyses, both in 2- and 3-dimensional parametric studies. However, the analyses 

terminate immediately as the snap-through occurs. In the fire test conducted at 

Buxton, in which snap-through was seen, the frame did not deflect further because 

the additional loading barrels hanging from the rafters came into contact with the 

ground and thus released the applied load. In future research it would be of interest 

to track the deflection past the limit-point, although equilibrium paths then become 

unstable. It is logical to predict that these will re-stabilise at higher deflection, and 
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this needs to be investigated if the problem of masonry wall collapse is to be properly 
investigated. 

It has been assumed in industry that catenary action generated by the sagging rafters 
is sufficient to pull-in the portal frame columns, resulting in collapse of the entire 

structure. This is the basic assumption within the SCI publication regarding portal 
frame behaviour in boundary conditions 9, which is commonly adopted throughout 

the UK. Consequently further design consideration will have to be given to such 
behaviour. 

However, the author has had numerous discussions with researchers and has scanned 
incident reports for the UK, as reported in "Fire Prevention" magazine, dating back 

to 1990. There was little evidence from these searches that total collapse of an 
industrial portal frame, including column pull-in, is ever seen to happen. Qualitative 

explanations can be given, and this subject will be discussed further in the following 

sections. 

With the studies conducted in this research programme it is possible to look into the 

validity of the well-known SCI document mentioned above, and to relate this back to 

the current UK Building Regulations requirements. The next section aims to review 
the document and discuss its implications. 

8.2 Current Guidance Document 

In order to prevent spread of flame from one building to another, it is required under 
the UK Building Regulations to design a fire-resisting fagade for buildings which are 
in "boundary conditions". These are defined as cases where the spatial separation is 

insufficient to ensure that only low levels of radiation are received by the adjacent 
buildings. The fire-resisting fagade has to satisfy the requirements of insulation, 

integrity and stability for the designated period of time. 

Approved Document B: Fire Safey57 is used to interpret the fire safety requirements 

of the Building Regulations 1991. For single-storey portal frame structures in 

boundary conditions, it refers to the SCI publication9 for advice. The content of this 

SCI publication has been mentioned previously in Section 1.3.1, in which a 

simplified method has been described to calculate the base overturning moment in 

fire conditions. Engineers either have to fire-protect the entire portal frame or to 
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design the foundation and base connections to resist such moments. The latter 

solution is the more commonly adopted, and often results in much bigger foundations 

being designed for portal frames in boundary conditions. 

The simplified method has actually been derived from a basic mathematical model 

which is also described in the SCI publication. The mathematical model assumed 

that deformation of the portal frame in fire is symmetrical about the vertical line 

through the apex, and takes into consideration the column movements, expansion and 

the reduced moment capacity of the rafters. The assumed deflected shape is shown in 

Figure 8.1, and this actually agrees with the deformation predicted by VULCAN in 

the parametric studies. 

I 
I 

1 
�I 

I 
I 
I 

Figure 8.1 Model for calculation of overturning moment 

Using the same mathematical model, a spreadsheet can be created to calculate the 

resulting overturning moment at the column bases. An investigation of the 

relationships between the column rotation, rafter temperature and resultant 

overturning moment has been conducted. The portal frame model designed for the 

3-dimensional parametric studies has again been adopted for the investigation. 

Assuming a constant rafter elongation of 2%, as suggested within the SCI guidance, 

the resultant base overturning moment can be plotted against the amount of column 

rotation at various rafter temperatures. The plot is shown in Figure 8.2 for a single- 

bay portal frame without consideration of wind load. It can be seen that the 

overturning moment reduces as the column rotates further. Similarly the overturning 

moment is less for a reduced rafter temperature. A similar pattern of reduction of 

moment can be found for all types of portal frames, including multi-bay frames and 

cases where additional wind load is present. 
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in the simplified method proposed within the SCI guidance, I' of column rotation is 

recommended and a moment reduction factor of 0.065 for both fire hinges has been 

adopted, which is equivalent to a rafter temperature of 880'C. Reference is made to 

BS5950 Part 8: Table I- Strength reduction factors for steel complying with grades 

43 and 50 of BS4360, at 1.5% strain level. Consequently these values of column 

rotation and rafters temperatures have been recognised throughout the industry. 

Obviously using different assumptions, if they can be justified, can significantly 

reduce the design overturning moment. 

300 1 

0 2 4 

Recommended value from the 
simplified method of SCI 
guidance- V@ 880'C. 

68 10 
Column rotation (*degree) 

Rafter Temperatures 
945'C 
NOT 
NOT 
850'C 
NOT 

12 14 

Figure 8.2 Base overturning moment vs. column rotation and rafter 
temperatures 

8.2.1 Practicality 

16 

The graph plotted in Figure 8.2 was generated by an Excel spreadsheet which is 

linked to the design parameters. The plot is simple but can be extremely useful for 

structural or foundation engineers when designed for overturning moment under fire 

conditions. The latest EuroCode 3 (Annexes J and L) allows engineers to design for 

semi-rigid connections and to estimate the rotational stiffness and moment resistance 

of base connections. Structural engineers can simply design a base connection which 

can accommodate higher rotation (assuming the base connections do not lose much 

strength in fire) and hence the foundation size can be reduced to resist a lower 

overturning moment. Using the example given in Figure 8.2, if a column rotation of 
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50 can be allowed instead of the conventional assumption of 10, the overturning 

moment can be reduced from 264 to 194kNm, a reduction in 26%. 

Alternatively, the column rotation can be gained from the rotation of the entire 

foundation (if a pad foundation is used). This will have to involve determining the 

interaction between the soil and foundation, and careful selection of partial safety 

factors for soil and loading. 

Further movement of columns may be possible due to their bending under the fire 

condition, but this is rather difficult to predict accurately. With a combination of 

these factors, a bigger column rotation than the recommended P given in the SCI 

documents is thought to be achievable. 

On the other hand an alternative recommendation, other than designing for a larger 

foundation, is to fire-protect the rafters. This has not been commonly used in the 

past because of the associated cost. Conventionally, the entire frame will have to be 

fi 68 fire-protected so that the steel temperature does not exceed 550'C in ire . For high- 

bay portal frame structures, it is also more difficult to reach and apply fire protection 

to the rafters. 

However, an engineer can accurately determine the moment resistance of the existing 
foundation (which does not take into account the fire moment) and, given the results 

from the spreadsheet shown earlier, determine the limiting temperature for 

overturning of the column to take place. Using the example shown in Figure 8.2, if 

the existing foundation can already resist an overturning moment of 180kNm, the 

columns can not be pulled over until the rafters reach 800'C. This can be seen as the 

limiting temperature for the rafters to cause failure of the columns. The thickness of 

fire protection can therefore be reduced accordingly from a limiting temperature of 

5500C to 8000C. 

If an inturnescent type of protection system is adopted, this may only require a 

minimal thickness which can be applied in one layer, so that it can be applied to the 

rafters in a reduced construction time, reducing both labour and material costs. 

All the discussion in this section obviously involves accommodating a significant 

amount of column movement so that the base overturning moment can be reduced. 

The approach is only suitable for the construction of external fagades using steel 

profile cladding systems which can sustain high deflection. If masonry construction 
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is used for the fagade, further consideration should be given to the stability of walls. 
This is complicated by the thermal behaviour of masonry walls and is not covered 

within the scope of the present research. 

The proposed approaches can however be validated with VULCAN analysis if the 

finite element program can be improved to predict the post-snap-through phase of the 

portal frame deflections. 

8.2.2 Internal Fire Spread 

The SCI guidance on portal frames in boundary conditions addresses the issue of 
fi external spread of flame. It is thought that consideration of internal ire spread, 

which could be affected by portal frame behaviour, has somehow been overlooked. 
It is not unusual to construct a compartment wall within an industrial warehouse, to 

separate different ownership or types of occupancy (e. g. inclusion of an office block 

within a warehouse). Figure 8.3 shows some common systems for constructing 

compartment walls. 

Figure 8.3 Compartment walls - separation of different ownership (top) or 
types of occupancy (bottom) 
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In these situations, the compartment walls will have to satisfy the same criteria of 
insulation, integrity and stability. Obviously if the rafters deflect excessively in the 

vertical direction in fire conditions, the stability and integrity of walls can no longer 

be maintained. The problem is often neglected, and simply enlarging the foundation 

does not provide a solution. 

A simple solution is to design the compartment wall to resist an extra point load. 

This may not be easy when it comes to the assessing a realistic point load, and may 

result in an unrealistically thick wall. Movement joints around the wall-to-rafter 
interaction is not possible because the vertical deflection could be massive when a 

snap-through takes place. 

Fire-protecting the rafters can be a possible solution, but again careful selection of a 
limiting temperature is necessary. Even with the conventional assumption of 550'C, 

the rafters could have deflected significantly, both upwards during expansion and 

downwards when they lose strength. Alternatively, it is possible to include 

additional vertical props at the point of wall-to-rafter interaction to carry the 

downward load from the rafter. Appropriate fire protection will have to be applied to 

the props. 

It seems that there is no easy design solution. More importantly this is a crucial issue 

of which designers should be aware and take account. 

8.3 Performance-based Design - Natural Fires 

The concept of performance-based design for buildings under fire conditions has 

been raised frequently both in academia and the construction industry, and this is 

thought to be the future direction of fire engineering. Perfon-nance-based design will 
look at the real behaviour of structures under real fire conditions. This research has 

already investigated the real structural behaviour of portal frames under fire 

conditions, but real fire temperatures are rarely discussed. 

When a prescriptive code specifies the requirement of fire resistance periods of the 

order of 30,60,90 and 120 minutes, the gas temperatures are assumed uniform and 

follow the furnace test temperatures which can be represented by the equation below. 

The simple curve is known as the Standard Fire Curve from BS 476: 

T= 20 + 345 log(8t + 1) (8.01) 
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where, 

T= Gas temperature in *C 

t= Time in seconds 

This Standard Fire Curve was specifically developed to represent fully-developed 

room fires, and this may not represent a large warehouse fire. A typical industrial 

warehouse will have a much higher ceiling and more free flow of internal air which 

will produce fire temperatures very different from those in a small room fire. 

A real fire, more commonly known as a natural fire, characteristic is mainly 
dependent on the following factors: 

Fire load - amount and type. 

Distribution of fire load. 

Ventilation, e. g. size of windows etc. 

Geometry of the structure - size and shape. 

Thermal characteristics of the enclosure boundaries. 

Other less important factors include the humidity of the atmosphere. 

For an industrial warehouse, the fire load could range from medium to very high 

density. Ventilation is even more difficult to predict. The opening of a skylight, if it 

happens at an early stage, could introduce a large amount of ventilation, but 

additional ventilation can be brought about by failure of roof cladding, which is less 

easy to predict. 

An approach to prediction of natural fire temperatures is available within EuroCode 

163. The approach is only validated for relatively small compartment (i. e. a floor area 

of500m 2 or less). It assumes that flashover takes place at the start of the calculation 

and the entire compartment is a single temperature zone. An investigation of the 

natural fire temperatures within a medium-sized industrial warehouse has been 

conducted using the EuroCode I approach. Although the model is not validated for 

such large compartment sizes, it is thought that it could provide indications of the 

various influencing factors. The calculation procedure has been formulated into a 

spreadsheet format for ease of use. 

A compartment of 30m x 60m. x 9m height has been adopted, which can be 

approximated to the 3-dimensional model set-up for the parametric studies. 
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Ventilation of 10% and 20% of the floor area has been assumed in two separate 

cases. In terms of fire load density, the draft British Standard DD240 provides 

information for the storage purpose-group with a value of 18WMj/M2 
, assuming an 

80% fractile. An average fire load density for this purpose-group is 1180 Mj/1112. 

This is considered a rather severe fire load as it is equivalent to 100kg of wood per 

square metre. A reduced fire load Of 900Mj/M2 is considered in a separate 

calculation. This is equivalent to the fire load level of a retail area, again assuming 

an 80% fractile. The geometry of the structure and the material of the boundary 

enclosures have been kept constant. The results of the calculations are plotted in 

Figure 8.4. 

1400 
-- Natural Fire-1800MJ/m2-20% vent 

Natural Fire-1 SOOMJ/m2-1 0% vent 

0 
60 mins 

Time 

90 mins 

Figure 8.4 Natural fires vs. standard fire curve 

30 mins 120 mins 

it is worth mentioning that the natural fire scenario could well be very onerous 

because it assumes that all the fire load is consumed simultaneously as soon as 

sufficient ventilation is available. In reality, the fire will start locally and spread to 

the entire warehouse. However, with such a massive floor area within the 

warehouse, it is not impossible to have total bum-out in one localised area whilst the 

fire is starting in another. Therefore it could be misleading to rule immediately that 

natural fire temperatures are more severe than the standard fire curve. 

In fact, the assumption of flashover within the entire warehouse is questionable. 

Flashover often takes place in a small enclosure, but is rarely seen in a huge space. 

166 



Chapter 8. - Discussion 

Flashover in a localised area within a warehouse is possible. With such intense local 

heating, the roof cladding would fail and introduce extra ventilation and cooling to 

the area. A more sophisticated natural fire model will be required for such 

circumstances. 

Despite all these provisions, the results for the natural fire calculation give a good 
indication of the effects of fire load and ventilation. With larger amounts of 

ventilation available the fire would have grown faster and reached higher 

temperatures. However, such a fire will bum out sooner and cool down quicker. 
With the same amount of ventilation a higher fire load density simply results in a 
longer and hotter fire. 

The results shown are rather interesting if perfon-nance-based design is to be adopted. 
The 2-dimensional parametric studies suggest that the most common failure mode of 

a portal frame under fire condition is the "combined" mechanism with the formation 

of two fire hinges, one near to the apex and one near to the opposite eaves. In the 

construction of typical portal frames for industrial warehouses, it is generally 

economic to adopt a minimum span of 35-40m. This indicates the formation of two 
fire hinges which will be at least 17-20m apart. 

One should question the probability of a series of portal frames being heated 

uniformly across half the span to a high temperature. Any adjacent frames that are 
less intensely heated would no doubt provide additional strength to the vulnerable 

ones and enable redistribution of loading. In fact, if a portal frame is to be heated to 
its failure temperature, the purlins and cladding are likely to have fallen off by this 

stage, and the only load that the portal frame is likely to support is its self-weight. 

This offers one qualitative explanation for the earlier situation where no total 

collapse of the portal frame structure was seen. It is the author's opinion that 

performance-based design, which includes a proper risk assessment, could lead to 
future solutions which disregard the possibility of portal frame rafters pulling over 

the columns under fire conditions. 

8.4 Conclusion 

The previous studies have purely focused on the structural behaviour of portal frames 

in fire. This discussion chapter offers a chance to divert attention to other areas of 
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consideration, and to enable the entire picture of "portal frames in fire" to be drawn. 

One of the most important factors identified was the ventilation available in the event 

of a fire. 

Introduction of early ventilation to an industrial portal frame warehouse fire can lead 

to diluted toxic smoke being released from a chemical fire. This was one of the main 
initial concerns for Health and Safety Laboratories. Besides, ventilation is the key 

factor in allowing a faster bum-out and hence a more intense fire; this will also result 
in a faster rate of cooling within the fire compartment. With a large amount of 

ventilation available, the rate of heating of the steel frames will be reduced and delay 

the structural failure, if it is to take place. 

Using the mathematical model described in the SCI guidance, it is found that 

engineers can achieve a more economical design for portal frames with boundary 

conditions, compared to simply following the guidance's recommendation. There is 

however the issue of internal compartment walls which should be noted in design. 

The concept of performance-based design has been discussed with the main 

emphasis on natural fire calculations. This leads to consideration of risk assessment 

(i. e. the probability for a total collapse of the portal frame structure to occur). The 

main aims have been to provide some possible directions for future development of 

the design of portal frames in boundary conditions. 

168 



Chapter 9: Conclusion 

9 Conclusions 

This research on portal frame behaviour in fire has been based on two main 

foundations: the fire tests at Buxton and parametric studies using the finite element 

program VULCAN. Subsequent development of the simplified calculation method 

and other discussions have been elaborated and built from these grounds. This 

chapter outlines the main conclusions drawn from the work and gives 

recommendations for further research. 

9.1 Fire Tests 

A scaled model portal frame was designed and built at Buxton, for which the 
designated load level was made equivalent to a typical industrial frame at the fire 
limit state. Three major fire tests were conducted 'on the scale model. Several 
indicative tests on isolated cladding panels were conducted prior to these tests in 

order to investigate test method and to establish correct use of instrumentation. 

in the first two tests, the rafters were not heated to their collapse temperature. The 

main reasons were the relatively large amount of ventilation which kept the steel 

cool, and a lack of insulation to the roof sheeting. Lateral deformation was the most 

obvious deformation observed after these tests. Significant measures were taken in 

the third test, including insulating the roof of the model, in order to enable a collapse 

mechanism to take place as a final stage in the testing programme. The heated frame 

collapsed completely in this test, and a failure mechanism was formed. 

Considerable understanding was gained from the post-fire investigations on the 

deformed structure. The secondary elements, especially the Z-purlins which are used 

to support the cladding, were initially thought to be weak, and deformed at an early 

stage of any significant fire. In the third test, however, the purlins showed some 

strength, in providing additional support to the heated rafters by acting in tension, 

and also enabling some load to be distributed to the adjacent cool frames. This effect 

was further demonstrated later in the three-dimensional parametric studies. 

In all the fire tests, lateral deformation was observed in the rafters, in which a double 

curvature was formed. This was again influenced by the restraint provided by the 

purlins, and the curvature was markedly larger in the bottom flanges of the rafters 

than in the top flanges, which were more directly restrained by the attached purlins. 
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Thus, it seems that lateral buckling failure of rafters under fire conditions can be 

prevented by providing sufficient purlin restraints. Design checks can be made by 

assuming the purlin-spacing as the effective length for minor-axis buckling to occur, 

and the relative moment capacity of rafters can be calculated using the reduced 

strength at designated temperatures. 

The other significant observation from the fire tests was the typical collapse 

mechanism of the portal frames. In the third test, the rotational stiffness of the 

column base was set at an insignificant level, so that a pinned base could safely be 

assumed. The collapse mode of the portal frame was found to be a combined 

mechanism, similar to the failure mechanism at ambient temperature. This was 

predicted by the VULCAN analysis, in which plastic hinges forming at high 

temperature could be seen clearly, as well as from the deformed structure after the 

test. 

One of the main benefits of conducting real fire tests is that the data can be used to 

calibrate the numerical results from computer modelling. With the steel 

temperatures and displacements recorded during the tests, the numerical data was 

compared against VULCAN analyses. It was found that VULCAN results compared 

relatively well with the experimental data, especially for the third test where the 

uncertainty about the column base stiffnesses had been eliminated. These 

comparisons led to increased confidence in the use of VULCAN analysis in 

modelling portal frame behaviour at elevated temperature. The subsequent part of 
the research relies heavily on the use of VULCAN to enable the proposed parametric 

studies to be conducted, as well as in establishing the simple calculation method 

presented in Chapter 7 for the prediction of portal frame failure temperatures in fire. 

9.2 Parametric Studies 

Initial studies were conducted to investigate the suitability of VULCAN analysis for 

modelling portal frame performance in fire. A major effort was made to ensure that 

the program could handle sloping members, to represent the inclined rafters of 

typical portal frame warehouses. 

The parametric studies were conducted in two separate stages, composed of two- and 

three-dimensional analyses. The two-dimensional numerical model is relatively 
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small, with less nodes and elements, and therefore a large number of analyses can be 

conducted relatively quickly. A variety of influencing factors could therefore be 

considered within the two-dimensional parametric studies, such as the load ratio, 
frame geometry, heating profiles, effect of horizontal load and base rotational 

stiffness. 

With the inclusion of secondary members in the three-dimensional modelling, each 

model was significantly larger and each analysis was longer. The analysis can easily 
be subject to instability due to the very small section sizes used for the representation 

of purlins and cladding elements. Therefore only a limited number of analyses were 

conducted, and the main investigation concerned the effects of different fire 

scenarios. 

From the two-dimensional analyses it was found that a considerable majority of the 
failure modes induced under fire condition involved a combined mechanism. Sway 

failure was only found in a series of analyses where the horizontal forces were 
dominant, with pinned bases assumed for the columns. The separate probabilities of 
the occurrence of fire and high wind, and the much lower probability of a 

simultaneous occurrence of both, make such a case extremely unlikely. In more 
usual cases the combined mechanism will occur, regardless of vertical load levels 

and frame geometries. 

In order to mobilise the combined mechanism under fire conditions, two fire hinges 

(plastic hinges with reduced moment capacity due to elevated temperature) are 

required to form, near to the apex and eaves respectively. Once this has taken place 

as the portal frame continues to heat up, the snap-through phenomenon will take 

place and an additional fire hinge will form near to the other eaves. VULCAN 

analysis terminates as soon as the snap-through occurs, since the apex deflects 

downwards rapidly with a stiffness which becomes negative, and the solution 

procedure can no longer handle such a response. 

The dominant factor which influences the critical temperature at which snap-through 

takes place is the load ratio of the rafters. Frames with various geometries were 

found to have similar failure temperatures under the same load levels. In fact, the 

limiting temperatures given in BS5950 Part 8 can be utilised as a reference for the 

upper and lower bound of failure temperatures for portal frames, assuming that the 
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entire rafter is heated up uniformly. This fire scenario was found to be the most 

onerous heating profile. The heating of columns seems to have negligible effect on 

the failure temperature. A local fire always causes the frame to fail at a higher 

temperature, especially for a fire which only affects the mid-section of a rafter (i. e. 
the quarter-point of the entire span) or the region near to the apex. 

The effect of rotational stiffness at the column bases is always a debatable issue. 

Firstly, when a portal frame is designed to have pinned bases at ambient temperature, 

the actual "pinned" connection often comprises four holding down bolts securing the 

base plate to the concrete foundation. Such a connection detail was found to behave 

more as a semi-rigid connection, with significant rotational stiffness, rather than as a 

pinned connection. If the base connections of a portal frame remain relatively cool 
in fire, this will improve the failure temperature of the frame by up to 20% for cases 

similar to those analysed within this research, depending on load levels and the 

actual stiffnesses of the bases. However, it is normal practice to account for a worst- 

case fire scenario, which often assumes that the connections are heated. Obviously 

the rotational stiffness will reduce as the temperature of the connection increases. It 

is questionable whether the base connections will be heated to the same temperature 

as the rafters under any fire conditions, and logic suggests that they will actually 

remain much cooler. VULCAN was subsequently developed to account for the 

reduction of connection rotational stifffiess at elevated temperature in accordance 

with the strength and stiffness reduction factors from EC3. This is described in 

Chapter 2. 

While setting up the three-dimensional model for the parametric studies, the 

secondary roof elements were simulated with a mesh. The mesh was found to give 

an acceptable representation of the purlins and roof cladding. However it cannot 

represent any failure that is likely to occur, since local effects are not modelled 

within VULCAN. 

The benefits of having adjacent cool frames were again demonstrated in the analyses, 
in which the purlins acted in tension to hold up the highly deformed rafters. The 

plots of internal forces within the mesh give further evidence for this argument. 

However, if the worst fire scenario is assumed, in which the entire roof and all rafters 

are heated uniformly to high temperature, the portal frame deflections and failure 
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temperature are similar to the results from a two-dimensional analysis. In other 

words, a two-dimensional analysis is probably sufficient for fires which engulf the 

whole building. However, it is rather unlikely that a large portal frame warehouse 
will experience flashover throughout the entire compartment, and thus cause all the 

rafters to heat up to the same temperature. It is beyond the scope of this research to 
investigate such issues, but it is part of the essential risk analysis which should 
eventually inform performance-based design codes for such structures. 

9.3 Further Investigation 

A simplified method has been developed to estimate the critical temperatures of 

portal frames in fire, based on Plastic Theory and the insertion of fire hinges into the 

frame. The results from the simplified method have been compared against the two- 

dimensional VULCAN analysis and a good correlation was achieved. A lower- 

bound solution can be calculated using an appropriate strain level. However, the 

method sometimes does not produce an immediate result if a localised fire with low 

load ratio is considered, and only one fire hinge is assumed. A different failure 

mechanism has to be explored by inserting plastic or fire hinges at various positions. 
The process may have to be repeated many times before finding a true solution. The 

simplified method can be useful for determining the limiting temperatures of portal 
frames, and can lead to a reduced fire protection requirement. 

An attempt has been made to review the current guidance document for portal frames 

in boundary conditions. The relationship between column rotation and overturning 

moment was explored. Using design combinations of appropriate connection details 

and frame limiting temperatures, the required measures to prevent total collapse of a 

portal frame in fire could be reduced. 

The significance of a real fire which occurs in a large portal frame warehouse was 

also discussed. The high amount of ventilation which is usually present becomes a 

very important factor, having effects on both steel temperatures and the movement of 
toxic smoke in the event of a fire. The behaviour of the secondary elements, 

particularly cladding, in fire plays an important role in deciding how much 

ventilation can be available. 
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Performance-based design is becoming a global concept based on real (natural) fire 

temperatures and structural response under such temperatures, incorporating a certain 
degree of risk assessment in generating partial safety factors. A real fire analysis 

may be able to prove that flashover within the entire warehouse compartment is 

unlikely, and therefore that some frames will remain cooler and provide the 

additional support required to those in the immediate vicinity of the fire. With an 

appropriate risk assessment, it is the author's opinion that such an approach can lead 

to removal of the current measures required for portal frames in boundary conditions 
in the fire limit state. 

9.4 Recommendations for Further Work 

As a result of the work conducted during this project, there are several areas in which 
further research could lead to better understanding of the total structural response for 

pitchcd-roof portal frames in fire. 

The fire tests and numerical modelling of pitched-roof portal frames were both 

terminated as soon as the snap-through of rafters took place. This is regarded as a 

major structural failure and is usually the end-point for most structural analysis. 
However there is a possibility that portal frame can reach a second equilibrium state 
after snap-through and that total collapse may not occur. If such behaviour can be 

proven, or even designed for, a huge saving could result from the omission of fire 

protection or large foundations. Further development of VULCAN to predict such 
behaviour is essential, so that parametric studies can be conducted for various types 

of frame. This may be possible by providing alternative solution procedures such as 
the Arc-Length Method, which are formulated to follow equilibrium paths through 

regions of transient instability. Further testing of portal frames to include heating of 

all frames to the post-snap-through phase will be beneficial for investigation and 

validation of such upgrades to the program. 

The assumption of pinned column bases is always conservative for portal frame 

structures. Further understanding of the overall issue of base response characteristics 

can replace the current conservatism, without losing any advantages to the portal 
frame behaviour in fire. Such studies should include investigation of the interaction 

between the soil and the foundation, as well as the thermal response (i. e. the likely 
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maximum temperature reached) of the base connection in a warehouse fire, and the 

thermal degradation of the connection characteristics. 

Further investigation on the behaviour of secondary members such as purlins and 

cladding at elevated temperature are not possible using VULCAN, unless a way can 
be found of accounting for local effects such as flange and web buckling. The 

prediction of local effects could also lead to investigation of the interaction between 

columns and the wall cladding. Columns are required by the Building Regulations to 

be protected if they are supporting the fire-resisting cladding. Local failures within 

columns will undoubtedly jeopardise the integrity of the cladding which they 

support. 

Finally, it is necessary to take advantage of the global development of performance- 
based design, which often leads to the use of less onerous but more realistic fire 

conditions. Structural behaviour has to be integrated within this approach to attain 

the maximum benefits for an overall scheme. 

9.5 Concluding Remarks 

This research provides a comprehensive overview of pitched-roof portal frame 

behaviour in fire, for which relatively little research has previously been carried out. 
The research has investigated a number of factors which affect the structural 

response, and has suggested alternative approaches to improve its performance. 
Further research is necessary to provide better understanding and further benefits. 

The finite element program VULCAN has proved to be a powerful tool for 

modelling structural response at elevated temperatures. Such tools enable deeper 

investigations than are possible using prescriptive or codified methods, and reduce 

the need for conducting physical experiments. Further use of the program can 

undoubtedly provide a valuable contribution to future research on the performance of 

structures in fire, and in the development of more rational design processes. 
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