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Abstract

This thesis focuses on building a goal-oriented dialogue system with deep learning

models. Current commercial dialogue systems such as Apple Siri or Google Alexa,

although they are able to make simple daily conversations and finish tasks like

open an app or play music, they are still obviously quite far away from being able

to make complex conversations and doing difficult tasks such as replacing manual

customer services. Dialogue systems in commercial use requires a massive amount

of manually defined rules and expert knowledge.

The aim of this Thesis is explore the possibility of building a goal-oriented

dialogue system by deep learning models, and the task is divided into three sub-

tasks: 1. Sentence encoding, which tries to encode the text data into numerical

vectors that can be input into neural networks and preserve as much information as

possible, we will use tools such as word embedding, GRU, BERT, etc. 2. Dialogue

state tracking tracks the topics and goals of dialogue, we designed a memory

network-based dialogue state tracker. 3. Sentence generator, which generates

system response to the user.

As a result of this thesis, we designed an end-to-end task-oriented dialogue

system based on a memory network structure, which includes a memory-based

dialogue state tracker and text generator. Our experiment shows that memory

architecture can boost performance in both dialogue state tracking tasks and dia-

logue text generation tasks.

In conclusion, we find that deep learning approaches are useful for dialogue

system tasks. Compared with the rule-based method, the deep learning method

does not require much expert work and has better generality. But as shown in our

experiment, the overall success rate of dialogue task completion is around 60%, so

there is still a big gap between the state-of-the-art and dialogue system addthat

is good enough for commercial use. We conclude that the current statistical NLP

approach is not enough to achieve a significantly better dialogue system, unless

more sophisticated approaches such as logic and reasoning are more thoroughly

introduced to the model.
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Chapter 1

Introduction

Those most challenging problems in artificial intelligence are sometimes un-

officially called ”AI-complete” or ”AI-hard” problems, similar with NP-hard

problem. Solving these problems are considered equivalent to achieve strong

AI[24], which means to build an AI system that is as intelligent as a human.

Dialogue system is undoubtedly one of them.

A dialogue system, also known as a conversational agent, is a computer

system intended to converse with a human with a coherent structure. It is

one of the core tasks in the Natural Language Processing (NLP) field and has

been studied and commercially applied for many years. In the past, dialogue

system was mainly built in rule-based approaches, such as ELIZA [62] or

A.L.I.C.E. (Artificial Linguistic Internet Computer Entity [61]). In recent

years, neural networks based end-to-end approaches have become the most

popular tools for dialogue systems [54] [63].

There are mainly two types of dialogue system tasks: open dialogue and

11
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task-oriented dialogue systems. The open domain dialogue system aims to

give proper response to any user input, including day-to-day dialogue, greet-

ings, etc. The training data for an open dialogue system is usually large un-

labelled dialogue corpus, such as [33]. On the other hand, the task-oriented

dialogue system aims to solve specific requests from users, such as restauran-

t/hotel booking. Its training data set is usually labeled and domain-specific.

Question answering task is also a sort of dialogue system, and the underlying

techniques are similar.

In this thesis, we mainly focus on a task-oriented dialogue system. We

choose it because the open dialogue system is a much tougher challenge com-

pared with task-oriented dialogue system, and is very difficult to evaluate.

There are no benchmarks and labels for day-to-day conversations, and differ-

ent expressions can have exactly the same meaning. Automatic evaluation

for this task may only be possible after strong AI is developed when the

machine can fully understand the meaning of a text, which is an AI-hard

problem. On the other hand, the task-oriented dialogue system is more spe-

cific, has labels for automatic evaluation, therefore the target of the model

is more explicit.

A typical task-oriented dialogue systems usually consist of an encoder, a

dialogue state tracker, and a response generator. The first step is feeding the

previous conversations into the encoder and converting the text conversation

into a numerical vector representation. The dialogue state tracker then pre-

dicts current dialogue state which represents the topic or user. In the end,

generate the output sentence by the generator.
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The main contributions of this thesis are: we first introduced memory

architecture into both dialogue state tracking task and response generation

task, with our end-to-end task-oriented dialogue system model, and the result

of our experiments shows that it increases the model’s performance.

We discussed in three chapters the three main components of a task-

oriented dialogue system, sentence encoder on Twitter post to predict acci-

dents, memory-based dialogue system, and memory-based text generation.

The structure of this thesis is as follows: Chapter 2 introduces core ele-

ments, tools, and techniques in the current NLP field, which will be used in

our experiments. Chapter 3 introduces a novel experiment of sentence en-

coder on the task of event predictions on Twitter data. Chapter 4 presents

our experiments on dialogue state tracker. Chapter 5 introduces dialogue

response generator, and the experiments on end-to-end task-oriented dialogue

systems. The Final Chapter 6 summarises the entire thesis.



Chapter 2

Fundamental elements of

current NLP pipelines

This chapter will introduce some of the fundamental elements in the current

NLP area, including neural networks, word embeddings, recurrent neural

networks, BERT, attention mechanisms, Seq2Seq model, and end-to-end di-

alogue system.

The material in this chapter can be split into three parts: basics of neural

networks, word and sentence embeddings, and neural network structure for

dialogue systems.

The structure of neural networks is becoming more and more complex,

and the size is growing even faster. Together with the rapid development

of computing hardware, neural networks achieved remarkable performance

in many areas. However, no matter how giant a neural network might be,

the fundamental element of the network is still basic neural unit, connected

14
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with each other by its parameters. Therefore, developing a complex neural

network requires a thorough understanding of the basic neural unit. We will

start with an introduction to the simplest neural unit, the perceptron, and

then develop more complex structures based on it.

Following that, we will introduce different approaches to word and sen-

tence embeddings. This part focuses on converting text data into numerical

vectors, which is essential for neural network-based NLP as we can not di-

rectly input text into the neural network. Vector representation of words and

sentences will undoubtedly lose part of the original information. The goal of

a better word and sentence embeddings is to keep as much information as

possible. Finding good embedding is one of the core sub-task for all neural

network-based NLP tasks. We will go through different popular approaches,

from skip-gram to BERT.

In the end, based on previously introduced elements, we will introduce

some essential neural network models which are useful for dialogue system

tasks and review some state-of-the-art dialogue system models.

2.1 Neural networks

Neural networks are the most fundamental element of the current rapidly

developing field of artificial intelligence, or more precisely, it is the foundation

of the statistics approach of artificial intelligence[30]. Intrinsically, a neural

network is a giant function consisting of many neurons that input the data

we are working on and output desired structured data such as class labels,

dimension reduced data, etc. The function can be modified by adding or
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reducing the number of neurons or changing how neurons connect, depending

on the different tasks the neural network is dealing with.

Neural networks have shown their remarkable ability to solve various

tasks. If classified by the type of input data, two of the main categories

of tasks are Machine Vision, which deals with image data, and Natural Lan-

guage Processing, which deals with human language. In this thesis, our

focus is dialogue system, we will concentrate on NLP-related neural network

structure.

2.1.1 Perceptron

What is a neuron in neural networks? To answer this question, let us start

with the first and trivial artificial neuron: the perceptron, developed by Frank

Rosenblatt[51] in 1958. A perceptron is basically a one neuron network, takes

as input several numerical variables x1, x2, ..., xn, and output a binary value y.

For each input x the perceptron has a corresponding weight that indicate how

important this input is, and the final binary output y ∈ {0, 1}is determined

by
∑

i xiwi, if the sum is greater than a threshold y = 1, otherwise 0.

As shown in figure 2.1, a formula form of perceptron is:

y =

0, if
∑

iwixi > threshold

1, if
∑

iwixi ⩽ threshold
(2.1)

It is easy to see that a perceptron is just a special form of a first-order

polynomial. This simple perceptron, together with activation functions that

we will come up with later, is the basic unit of a neural network. The output
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Figure 2.1: An example of a perceptron with three inputs.

of a perceptron can be new input to another perceptron. Like human brains,

A neural network may contain millions of these neurons connected with each

other, constructed in a complicated structure.

Now we have a basic structure of neural network, it contains multiple

layers and each layer contains several neuron units. The output of each unit

is a hard classification value zero or one, which is not good enough. A soft

range of values can pass more information, not only class itself but the extent

of it, closer to 0 or 1 represent high belief on the class. However, if we modify

Formula 2.1 and only use
∑

i wixi as the output, although we could have soft

value output, it turns out that no matter how many layers we have in our

network, it is equivalent to one perceptron. In other words, it is equivalent

to one linear equation, and it only has the ability to fit linear function with

graph being a straight line or plane and so on. To solve this problem, we need

to introduce non-linearity into our model. This can be achieved by simply

applying a nonlinear function to each neuron, and this nonlinear function is

also called the activation function.
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Figure 2.2: A neural network consist of multiple perceptrons[42]

2.1.2 Activation function

One of the most commonly used activation functions is the sigmoid function.

Sigmoid(x) =
1

1 + e−x
=

ex

ex + 1
(2.2)

Its figure is as shown in Figure 2.3. Applying the activation function to

our neurons is also simple. We apply a sigmoid to the sum:

y = sigmoid(
∑
i

wixi) (2.3)

Compared with the hard decision made by the plain perceptron y ∈ {0, 1},

now each neuron will output a soft confidence y ∈ [0, 1].

The sigmoid function gives our model non-linearity, and thus, George

Cybenko proved in 1989[13] that a single layer perceptron with sigmoid as

activation function could fit all functions.

As the activation function’s goal is to add non-linearity to our model, we

can use even simpler functions as the activation function, as long as it is a
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Figure 2.3: The graph of sigmoid function.

non-linear function. One of the most notable alternatives is ReLU[41], which

is a straightforward function:

y =

x, if x > 0

0, if x < 0
(2.4)

And research has shown that in many cases, ReLU can keep similar per-

formance with sigmoid while reducing the training time needed[48]. Other

commonly used activation function includes tanh where y ∈ (−1, 1), and

GeLU [22] and ELU[11] which are modified Relu function.

Another commonly used activation function is softmax

softmax(x) =
exi∑K
j=1 e

xj

(2.5)

This function takes as input a set of numbers and converts them into a

probabilistic distribution that sums to one. Softmax activation is usually

used at the last layer activation for classification tasks.
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2.1.3 Gradient decent

We have a neural network ready to use, and the next step is to introduce

data into our model and update model parameters according to the data. In

other words, let the neural networks learn from the data.

To have a sense of the big picture, figure 2.4 shows how the model pa-

rameters w1, w2, ..., w3 updated with the training loss, the loss represents how

different between our model prediction y′ differs from the ground truth label

y. In this example, the loss function is simply the squared error loss y and

y′. We will introduce some more delicate loss functions later on.

The goal to train our model is clear now, and we need to minimize the

total loss created by our model for the data set. That is, to find a set

of parameters θ = w1, w2, ..., wn that minimize
∑

i(yi − y′i)
2. It is usually

challenging to find an analytical solution for a large neural network. It is not

applicable to compute an analytical solution as we need to compute a new

solution even with a very slight modification of the network. We instead use

gradient descent to approximate the solution gradually. The mathematical

formula for a gradient descent algorithm is:

θ′ = θ − γ
δ

δθ
L(θ) (2.6)

where θ is the original parameters, θ′ is the updated parameters with one

step of training. γ is the learning rate that determine how much we plan to

update the parameter from the loss of current training sample. L(θ) is the

loss function of our model L(θ) =
∑

(y − y′)2 where y′ =
∑

i wixi
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Figure 2.4: Update network parameter with loss.

Figure 2.5: gradient descent steps.

The idea behind the gradient descent algorithm is that, as we are dealing

with the optimization problem(minimize loss function), we will eventually

reach the minimal point if we move at every step in the reverse direction of

the gradient of the loss function.

Learning rate γ decides how long each step moves. In practice, a proper

γ is essential for successful training, if γ is too large, then one step may jump

over the global minimum, and if too small, it will cause much more time to

finish the training.
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2.1.4 Back propagation

Gradient descent requires the first-order gradient of the entire model, it works

for simple networks such as previous example y′ =
∑

iwixi. But for larger

multi-layer networks, it isn’t easy to compute the gradient, and also, it would

be too much work if we need to compute the gradient for every slightly

modified version of the network. To solve this problem, the Backpropagation

algorithm was invented. It only requires the partial derivatives of each neuron

with its neighbors. The loss will propagate through the entire network and

update the weight of each neuron by the chain rule.

Figure 2.6 shows a simple example of back propagation algorithm for

one neuron. This algorithm has two steps, the forward propagation simply

compute the value of b = a1w1 + a2w2 + a3w3. Backward propagation step

propagate inversely the error signal, which at this point it is δL
δab

. Once we

know δL
δab

from previous step (if current layer is not the last layer) we can

easily compute the partial derivatives of wi and L by chain rule :

δL

δwi

=
∑
j∈J

δL

δwj

δwj

δwi

(2.7)

where wj∈J is the weights of all outwards connection of current neuron.

We now know how it works for one neuron. All we need to do next is to

apply the same approach throughout all networks, update each parameter

wi with the gradient descent formula

w′
i = wi − γ

δL

δwi

wi (2.8)



23 2.1. Neural networks

Figure 2.6: An example of back propagation algorithm.

The neural network will then update towards minimum loss and thus learn

from the data set.

2.1.5 Loss function

The loss function is used to measure the difference between the model outputs

and ground truth. Most trivial loss functions are previously introduced mean

squared error(MSE) loss
∑

i(yi − y′i)
2, this is also called L2 loss. Similarly

we have L1 loss
∑

i |yi − y′i|. L2 works well in most cases, but if the data

contains extreme outliers, it will have worse performance as it took a square

of the difference.

For classification tasks, MSE loss has a disadvantage which it gives each

class the same weights regardless of whether it is the true label. If we want

our loss function to only take into account the true label, we could use Cross

entropy loss

L =
∑
i

yilog(pi) (2.9)

where pi is the probability our model predicted for ith class, generated by a
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Figure 2.7: Recurrent neural network.U,V,W are trainable parameters, x is

one unit of the input sequence, o is the output at each time step.

softmax function.

2.2 RNNs

We have introduced basic ideas of regular feed-forward neural networks. One

of the disadvantages of it is that it requires fixed-size input. But for NLP

tasks, we are dealing with text data, and it is ubiquitous to have a sentence

with a different length. The Recurrent neural network (RNN) structure was

introduced to solve this problem, which takes as input a sequence data. The

input sequence is fed into RNN one by one, and the RNN works as a loop

over itself, with each new input, the network will extend one extra layer for

it.

2.2.1 RNN

Figure 2.7 shows the basic structure of an RNN. It is, in its essence, a loop

of the same neuron. It consists of three trainable parameters U, V,W , and
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a hidden state s, which keeps the information from the previous input of

the input sequence. Each input xt will be processed by the same parameters

U , and then update the hidden state by c1W . Thus, at each time step, the c1 V

network will create an output Ot by the parameter c2V . The corresponding c2 W

equations are:

st = σ(Uxt + Wst−1) (2.10)

ot = softmax(V st) (2.11)

where σ is the sigmoid activation function.

Intuitively, the hidden state s works like human short-term memory. With

each new word inputted into the model, the hidden state will be updated to

keep new information. Thus, after the last word has been inputted, the

hidden state will have all information from the input sentence. This is why

the final hidden state is usually used as the vector representation of the

sentence. We will discuss this later in detail.

The idea of RNN is reasonable and makes clear sense, but in practice, it

suffers from a vanishing gradient problem. If the input sequence is too long,

the gradient at each layer will vanish if one layer has a small gradient because

of its multiplicative nature. To deal with it, the long short-term memory

network (LSTM)[23] was invented by Sepp Hochreiter in 1997, which not

only can remember(by a hidden state like RNN) but also have the ability to

forget.
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Figure 2.8: Architecture of Long short memory machine.[43]

2.2.2 LSTM

Figure 2.8 shows the architecture of a LSTM model. It consists of three parts:

the forget gate, update gate, and output gate, which controls the model to

forget, update, and output.

The equation for the forget gate is:

ft = σ(Wfxt + Ufht−1 + bf ) (2.12)

where Wf and Uf are trainable parameters, bf is trainable bias vector, ht−1 is

the hidden state of last step. This gate used the sigmoid activation function

to push values into (0, 1), indicate how much the model decides to forget,

based on the current input and last hidden state.

Next is the update gate:

it = σ(Wixt + Uiht−1 + bi) (2.13)

where Wi and Ui are trainable parameters, bi is trainable bias vector. Same

with the forget gate, this update gate decides how much the model decides
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to update, but this is only half the update gate. The model still needs to

know which direction to update:

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.14)

where Wc and Uc are trainable parameters, bc is trainable bias vector. Note

we choose to use tanh instead of sigmoid as the activation function, as tanh

output to (−1, 1) so it decides which direction to update. The final update

of the model would then be it ◦ c̃t, where ◦ is pointwise product.

We are now able to update the cell state vector, usually noted as ct, as

follows

ct = ft ◦ ct−1 + it ◦ c̃t (2.15)

Finally, the output gate, similar to the update gate, the output is based

on hidden state ct, but we need first to decide what and which direction to

output:

ot = σ(Woxt + Uoht−1 + bo) (2.16)

where Wo and Uo are trainable parameters, bo is trainable bias vector.

ht = ot ◦ tanh(ct) (2.17)

2.2.3 GRU

Gated recurrent unit(GRU)[10] is a variant of LSTM, as shown in figure 2.9.

It combines the forget gate and update gate, and combines cell state and

hidden state, reducing the number of parameters by around a half. The

mathematical equation for GRU is:

zt = σ(Wzxt + Uzht−1 + bz) (2.18)
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Figure 2.9: Architecture of gated neural unit.[43]

This gate controls how much to forget and how much to learn.

As LSTM, we compute how much and which direction to update:

rt = σ(Wrxt + Urht−1 + br) (2.19)

h̃t = ot ◦ tanh(ct) (2.20)

Finally, the hidden state is computed by:

ht = (1 − zt) ◦ ht−1 + zt ◦ h̃t (2.21)

It is a more straightforward setting to use zt to determine how much to

learn and 1 − zt to decide how much to forget. Research has shown GRU

can significantly save training time while keeping similar performance with

LSTM[10].

2.3 Word embedding

We have introduced the basic idea of a neural network. However, we can not

directly use the neural network to deal with human language. This is because

the original neural network can only take as input the numerical data; there
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is no way we can feed the text directly into our neural network. To solve this

problem, we need to convert textual data into numerical representations and

then feed it into the neural network. This approach is known as a distributed

representation of words or word embedding.

The trivial method to convert text data into numerical data is to use the

one-hot vector. Each independent word in the vocabulary set will have a

unique one hot vector (0, 0, ..., 1, ..., 0, 0) as its vector representation. How-

ever, this simple method does not preserve any semantic information of each

word, we all understand that man and woman are closely related word, but

if we use the one-hot vector, they are just two independent indexes, there is

no difference between (man, woman) and (man, computer).

To preserve the semantic information, we want to make the representation

of related words such as man and woman similar, whereas love and hate very

different. Skip-gram and Glove embeddings are the two most popular tasks

to train the word embedding. We will introduce both below. Note that these

tasks are just specifically designed to learn word embeddings. In fact, for any

NLP task, during the training process, the word embedding can be updated

to fit the task better, or each task can learn its own word embedding starts

with one-hot representation, and this is what the embedding layer will do

in the two most popular AI platform Pytorch and Tensorflow if the word

embedding is not pre-defined. But as the Skip-gram and Glove task are

trained with a much larger data set, the quality of the word embedding is

usually much better compared with embedding trained on a specific task

with smaller data set. Word embedding is usually referred to as a form of
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transfer learning[53].

2.3.1 Skip gram

The most commonly used method to convert text into embeddings is called

the skip-gram algorithm introduced by Mikolov in 2013[37]. The basic idea

of the skip-gram algorithm is to find vector representations of words that

predict their nearby words in a sentence.

Given a sequence of training words w1, w2, ..., wn, we first define a window

size s, then generate pairs of words.

(w1, w2), (w1, w3), ..., (w1, ws), (w2, w3), ..., (w2, ws+1), ....

These pairs of words are used as training samples and are fed into a simple

neural network that contains input, hidden, and softmax output layer. At

the input layer, each word is represented as a one-hot vector of dimension

1×V , where V is the size of the vocabulary set. Then it is multiplied with a

hidden layer matrix with dimension V ×D, where D is the hidden dimension

and will be the dimension of learned embeddings. In the end, it passes to the

output layer with a matrix of dimension D × V with softmax, each element

of the output is the prediction of a nearby word of the input word, and the

training target will be a one-hot vector of the nearby word in the training

pairs.

As mentioned before, our goal is not the model itself. Instead, we will

use the hidden layer matrix with dimension V ×D as the trained embedding

lookup table the matrix is just the learned weight of the neural network.

Each row represents a D dimensional vector representation of a word.
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Figure 2.10: The simple neural network used for transfer learning the word
embeddings[37]

Sub-sampling

One problem with the current model is that there will be many train-

ing instances for common words. Therefore the output probability will be

evenly distributed for many words, and thus it will not contain much useful

information for learning good vector representation. The Mikolov paper[39]

deals with this problem by a sub-sampling scheme, where each word wi in

the training set is discarded with a probability computed by the formula:

P (wi) = 1 −

√
t

f(wi)
(2.22)

where f(wi) is the frequency of words wi and t is a chosen threshold, typically

around 10−5.

Negative sampling
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There will be a massive amount of training pairs generated by the window

size to train the current model. Each training instance will update V × D

parameters, which is very computationally expensive. To deal with this, the

paper introduced a negative sampling mechanism. Intuitively speaking, it is

to update only a small amount of word embeddings each time where negative

samples are randomly selected.

2.3.2 Glove: Global Vectors for Word Representation

Similar to Skip-gram models, the Glove embeddings [46] also learns the word

vector representation by the co-occurrence information. The difference is

that while the skip-gram learns the vector to improve the predictive model,

the Glove model first builds a co-occurrence matrix based on the counts

of co-occurrence and then makes dimension reduction on it. In detail, for

each word wi in the vocabulary (one row of the co-occurrence matrix), each

column represents the counts you see the two words appear in near position.

Then normalize the counts and log-smoothing it and find a lower-dimensional

representation by minimizing a reconstruction loss.

The glove embedding was trained on a corpus of 42B words and is avail-

able freely on the internetc0.

2.4 Sentence embedding

Similar to word embedding, sentence embedding is the vector representation

of a whole sentence. While word embedding tries to preserve as much se-

c0https://nlp.stanford.edu/projects/glove/
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mantic information of a word as possible, sentence embedding needs to keep

semantic information and some structured information such as simple logic

and reasoning of a sentence. It hugely improves the difficulty of the task.

The state-of-the-art approaches of sentence embedding fall into three cat-

egories: average word embedding [2], recursive neural network [55], skip

thought [28]. We will take a look at each of them and introduce some state-

of-the-art models in detail.

2.4.1 Average embedding

Unweighted averaging of word embeddings has been found to perform well

in presenting short phase [39], [67] introduced an approach that learns the

sentence embedding by starting with standard word embeddings and modi-

fying them based on supervision from the Paraphrase pairs dataset(PPDB),

and constructing sentence embeddings by training a simple word averaging

model. This model is further simplified by [2] which claimed to achieve the

state-of-the-art result.

Their approach is straightforward in structure, first compute the weighted

average of a sentence from standard word embeddings, then remove the pro-

jections of the average vectors on their first principal component. The weight

of a word w, which they called smooth inverse frequency(SIF) according to

the paper, is:
a

a + p(w)
(2.23)

where a is a parameter and p(w) is the estimated word frequency.
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Figure 2.11: An illustration of how recursive neural network works. Nodes
that are not filled are only used to compute the reconstruction error.[55]

The steps to find a vector representation vs given word embeddings vw : w ∈ V ,

parameter a and word frequency p(w) : w ∈ V is:

1. Find weighted sentence embedding:

vs =
1

|s|
∑
w∈s

a

a + p(w)vw
(2.24)

2. Remove first principal component of the averaged vector:

vs = vs − uu⊤vs (2.25)

This model trained on Glove embeddings achieves the state-of-the-art

result on the Semantic Text Similarity database, beats Deep average network,

Tf-IDF weighted average, and many other models.[46]
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2.4.2 Recursive neural network

Richard Socher[55] introduced Recursive auto-encoder (RAE) to find the vec-

tor representation of a sentence, as shown in 2.11. The idea is to first generate

a tree structure of the sentence by repeatedly choose two continuous words

to merge, and the way of picking words is by minimizing the reconstruction

loss. Then combine embedding of words according to the tree structure.

In more detail, given a sequence of words s = w1, w2, w3, ..., wn, the first

step is to merge each continuous pairs of words embeddings to a parent vector

p by:

p = f(W (1)[c1; c2] + b(1)) (2.26)

Where c1; c2 are either an input word vector or a non-terminal node in the

tree, [c1; c2] is the concatenation of the two vectors. W 1andb1 are parameters

of neural network.

After merging each pair, we instantly decode the obtained vector p via:After

merge each pairs, we instantly decode the obtained vector p via:

[c
′

1; c
′

2] = W (2)p + b(2) (2.27)

And compute the reconstruction error by:

Erec =
1

2
||[c1; c2] − [c

′

1; c
′

2]|| (2.28)

We merge the pairs that give the slightest reconstruction error and repeat

this step until we merge the whole sentence to one vector representation.
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2.4.3 Skip thought

The other popular approach is the Skip Thought vector proposed by [28].

Similar to skip-gram models for obtaining word embeddings, the skip thought

model tries to get sentence embeddings by encoding a sentence to predict

sentences around it.

The model is in the framework of encoder-decoder models. That is, giving

a sentence in the corpus it is first encoded to a vector representation and then

a decoder is used to generate the surrounding sentences. In detail, suppose

we are given a tuple si−1, si, si+1, let wt
i be the t-th word of sentence si and

xt
i be its word embedding.

The first step is to encode the sentence by a GRU, following the equation

2.18-2.21, and then use the final hidden state hN
i as the vector representation

of the whole sentence si.

At decoder time, two analogous modified GRU are used to generate the

next and previous sentences. It is similar to the encoder except they intro-

duced Cr,Cz and C to bias the reset gate, the update gate, and hidden state

computation.

rt = σ(Wrx
t + urh

t−1 + Crh
i) (2.29)

zt = σ(Wzx
t + uzh

t−1 + Czh
i) (2.30)

h
t

= tanh(Wxt + Urt ⊙ ht−1 + Chi) (2.31)

ht
i+1 = (1 − zt) ⊙ ht−1 + zt ⊙ h

t
(2.32)

Given ht
i+1, the probability of word wt

i+1 is:

P (wt
i+1|w<t

i+1,hi) ∝ exp(vwt
i+1

ht
i+1) (2.33)
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Where vwt
i+1

denotes the row of V corresponding to the word of wt
i+1, and V

is the weight matrix represent a distribution over words based on the hidden

states.

The objective function of this model given si−1, si, si+1 is then optimize

the sum of log-probabilities for the previous and next sentences conditioned

on the encoder representation:∑
t

log(P (wt
i+1|w<t

i+1,hi)) +
∑
t

log(P (wt
i−1|w<t

i−1,hi)) (2.34)

The paper[28] evaluated the skip-thought approach on eight different tasks:

text classification, semantic-relatedness, and paraphrase detection. In each

task, they first convert a textual sentence to skip thought vectors, freeze the

vector, use it as features in downstream classifications, and obtain competi-

tive results.

2.4.4 BERT based word and sentence embedding

One of the most significant breakthroughs in NLP in recent years is BERT,

Pre-training of Deep Bidirectional transformers for Language Understanding[16].

It is a language model based on Transformer encoder [59].

Figure 2.12 shows one step of the transformer encoder. The input sentence

is first converted to a sequence of word embeddings, then add positional

embedding to each word embedding to add positional information, as the

transformer is not an RNN-like structure. Then the word embeddings are

fed to a multi-head attention layer and MLP afterward with the residual

connection. Each step is a normal process except the multi-head attention,

and we will discuss more on it next.
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Figure 2.12: One step of the transformer encoder. [59]

The attention here in the encoder is a self-attention that measures how

strongly each other word is related to the current word. In detail, for word wi

in sentence w1, ..., wn, we will have three matrices Q, V,K that project each

word embedding to queries, keys, and values, which is all vectors. E.g., for

word wi it is converted to query qi and a similarity score is computed by dot

product of qi and keys for other word kj,j∈1:n,j ̸=i. The score is the attention

score of how much other word is related to wi. Then the word embedding

of wi is the weighted sum of values of other words vj,j∈1:n,j ̸=i. This way,

each word will contain information from the whole sentence. The parameter

of each project matrix Q,K, V is randomly initialized and updated during

training.

Multi-head attention is a set of the independent self-attention process

and concatenates all of the final embeddings. BERT is simply doing the

Transformer multiple times and use it as an encoder to do a language model
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task.

Similar to skip-gram, BERT trains to predict unseen words in a sentence.

It marks 15% of the word in the original sentence as a special [Mask], and

the task is to predict it based on surrounding words. During training, one

sentence in the data set will be sent to the model repeatedly. There is an

80% chance for the masked word that it is replaced by [Mask] token, and

10% chance to be replaced with a random word and a 10% chance to stay

unchanged. This is to prevent the model from memorizing the sentence.

As an example, given the sentence Joe Biden is the new president of US.

The first step is to convert each word into word embedding. It could be

randomly initialized or generated with an algorithm such as skip-gram.

eJoe, eBiden, eis, ethe, enew, epresident, eof , eUS (2.35)

Then add each embedding with the positional encoding by bitwise addition

to add position information into the word embedding. It is computed by:

pi =



sin(w1t)

cos(w1t)

sin(w2t)

cos(w2t)

...

sin(wd/2t)

cos(wd/2t)


(2.36)
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where d is the desired dimension of positional encoding, which is divisible by

2, t is the position of the current word we are computing, and:

wk =
1

10000(2k/d)
(2.37)

Then, each word embedding is processed with three independent matrices

Q,K, V , all with dimension d by h where d is the embedding dimension, and

h is the hidden size. The Q,K, V are trainable parameters of the model and

are randomly initialized.

eqJoe, e
q
Biden, e

q
is, e

q
the, e

q
new, e

q
president, e

q
of , e

q
US

ekJoe, e
k
Biden, e

k
is, e

k
the, e

k
new, e

k
president, e

k
of , e

k
US

evJoe, e
v
Biden, e

v
is, e

v
the, e

v
new, e

v
president, e

v
of , e

v
US

Here the k, q, v stands for key, query, and value, respectively. The keys and

queries are used to compute the attention score, and values are used as the

output value.

For the word Joe, firstly, we use its query eqJoe to do dot product with

all keys of the sentence. We have attention scores for Joe with each word.

Then, we multiply the value of each word with the attention scores and sum

all of the multiplied values together, and the sum is the new word embedding

of Joe. And we repeat this process to all words in the sentence.

For sentence embedding, there are several options, we can use the start

of the input token [CLS] as the representation of the whole sentence, or we

can use the average of all word embeddings of the sentence, or we could use

the maximum value at each position of all word embedding as the sentence

embedding. Experiments[50] shows that the average embedding performs

best.
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We have introduced several different approaches for word and sentence

embeddings, including skip-gram, Glove, average embedding, recursive neu-

ral network, skip-thought and BERT. In our experiments, we choose to use

Glove embedding as the word embedding, as it is reportedly that it outper-

forms the skip-gram[46]. For sentence embedding on the other hand, the

average embedding is the most trivial approach and performance is weaker

compared with later work such as skip-thought[28], the rest approaches can

be classified into two categories: GRU based and BERT based. Both Skip-

thought and Recursive neural network used the last hidden state of a GRU

as the sentence embedding, and BERT, as introduced before, used a special

attention model together with average of word vector as the sentence embed-

ding. In our experiments, we will try both the GRU based and BERT based

sentence embedding.

2.5 Memory

While word and sentence embedding trying is using numerical vectors to

preserve semantic information of text, syntactic information and logic within

multiple sentences can also be very important. As introduced before, a group

of recurrent neural networks (RNN) was proposed to deal with sequential

data, including long short term memory machine (LSTM) [23] and gated

recurrent unit (GRU) [10]. The idea is to have a hidden state vector that is

updated by each word of the sentence. This hidden vector will then catches

some structure information of the sentence. This model has been applied on

many NLP tasks and gained popularity for its expertise in dealing with se-

quential data. And in a more extensive perspective, the hidden state vector
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can be regarded as the first attempt to represent memory/syntactic informa-

tion of a sentence.

However RNN models have difficulties dealing with long sequence, it suf-

fers from gradient vanishing problem as mentioned before. Also, it only has

a minimal ability to represent complex syntax/logical structures, especially

when there are multiple sentences. It takes each input one by one with the

same process. BERT does not have a gradient vanishing problem, but still,

all it does to multiple sentences is to add [SEP ] token between sentences

and left to the model as a black box to process the input.

Jason Weston et al.[66] proposed memory network models to deal with

question answering tasks from conversations with multiple sentences. They

introduced a memory vector which is updated multiple times following the

conversations. The model contains for separate modules:

• Input module: Convert input text and question to vector represen-

tation.

• Generalization module: Update the memory vector based on atten-

tion mechanism.

• Output module: Output the memory vector.

• Prediction module: Make predictions based on the memory vector.

These four modules are trained independently.
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2.5.1 MemN2N

Sainbayar Sukhbaatar et al.[57] proposed MemN2N, an end to end trainable

version of memory networks on question answering tasks. Its basic structure

is similar to a memory network.

Given an input passage set x1, ..., xi where each xi is a sentence in the

passage, and a query q. The first step is to convert each xi to a vector

representation mi with fixed dimension d, and the query q to vector u with

same dimension d. This can be done by summing up each word embeddings

in the passage and query respectively from an embedding matrix A of size

d× V , where V is vocabulary size.

The next step is to compute the attention vector, which is the inner

product of mi and u, and do a softmax over it.

pi = Softmax(u⊤mi) (2.38)

which is, in fact, the match of mi and u, this attention vector will take the

duty of pointing out which part of the sentence should be focused on given

the query.

Now we convert each x1, ..., xi to vector representation c1, ..., ci again

based on the other embedding matrix C, and compute the memory vec-

tor o by multiply each ci with attention pi and sum over all sentences in the

passage:

o =
∑
i

pici (2.39)
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The final step is to make predictions by a simple neural network with softmax

based on the memory vector o and query vector u:

a = Softmax(W (o + u)) (2.40)

A loop version is also proposed to catch more structured information. After

obtaining ok, uk we update the query vector by:

uk+1 = uk + ok (2.41)

And then, based on the updated query vector uk+1 we do the previous step

again to obtain an updated memory vector ok+1, and do this sufficient times

and make a prediction.

In the paper, they evaluated a three layers MemN2N model on the Face-

book Babi dataset [65], shown that the memory network architecture beats

LSTM and reaches a competitive result.

2.5.2 Dynamic memory network

Kumar et al. [29] proposed a more sophisticated memory network model,

where they called dynamic memory network (DMN).

While keeping the basic idea of learning a memory vector and make a

prediction based on it, their main contributions are:

1. Using GRU to form the vector representation of sentences, rather than

simply the sum of word embeddings, use GRU to update the memory

vector, rather than sum overall sentences.

2. The attention is computed by a two-layer feed-forward neural network

taking a feature vector of:
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[c,m, q, c ◦m, c ◦ q, |c− q|, |c−m|, c⊤W (b)m, c⊤W (b)q]

where c is the input vector representation, m is the memory vector

representation, q is the question vector representation,◦ is the element-

wise product.

They also evaluated the Facebook Babi dataset, and the DMN did outper-

form the MemN2N slightly.

2.5.3 Summary of Memory architecture

We have discussed the original memory network, the MemN2N, and the

Dynamic memory network, the essence of the memory architecture is a

memoryvector that represents current knowledge the model knows about

a specific task, and attentions updated this memory to different sentences of

input context.

Compared with sentence representation obtained by RNN, memory archi-

tecture have more potential ability to preserve syntactic information of the

context, as it has sentence level attentions and more complex structures to

handle sentence representations. This is particularly useful for context with

multiple sentences, especially when these sentences have complex logical re-

lations.

In BERT, if the input context includes multiple sentences, each sentence is

separated by a special token [SEP ], and then feed all as a long sequence into

the following massive network. Then the network works like a big black box,

with 12 layers of transformer encoder. It can preserve syntactic information
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more than RNN, but it still does not have a special structure, particularly

for catching sentence-level logic and information.

2.6 Dialogue system

The dialogue system is one of the core tasks of natural language processing

and probably the hardest one. It aims to establish a computer agent that

can communicate with a human by natural language. In the past, dialogue

systems were usually established by rule-based approaches [62][61], that is, to

manually define responses to a set of possible queries made by experts. This

approach is still widely applied in commercial systems, as it is very reliable

when the query to the system is on the list. But apparently, this approach

suffers from low generality, and it can not respond to any queries that are

not on the list.

With the development of deep learning algorithms, neural network-based

dialogue system, or more generally, statistical dialogue system, has attracted

more and more attention. This approach requires massive dialogue text as

training data instead of the predefined responses manually made by experts.

As long as there are similar expressions in the training data, the model will

know how to reply, and therefore its generality is much better than the rule-

based approach. However, as the model itself generates the responses, it is

less stable than the predefined responses in the rule-based approach.

As mentioned in the introduction chapter, there are mainly two types

of dialogue system tasks: the open dialogue system and the task-oriented

dialogue system. The open domain dialogue system aims to respond to any
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Table 2.1: An example of dialogue states at each turn of the dialogue.
utterance dialogue state

User:I would like to find a cheap restaurant
that serves tuscan food
System: nothing is matching your request.
I’m sorry.

(restaurant, food, tuscan)
(restaurant, price range, cheap)

(restaurant, name, not mentioned)
(restaurant, area, not mentioned)

User:Could you help me find some cheap Italian
food then?
System: If you do not have a preference of area,
I recommend La Margherita in the west.

(restaurant, food, italian)
(restaurant, price range, cheap)

(restaurant, name, not mentioned)
(restaurant, area, not mentioned)

user input, including day-to-day dialogue, greetings, etc. The task-oriented

dialogue system aims to solve a specific type of request from the user, such

as restaurant/hotel booking. Its training data set is usually labeled and

domain-specific. In this thesis, we will focus on a task-oriented dialogue

system.

2.6.1 Dialogue state tracking

One of the essential intermediate step of dialogue system is the dialogue state

tracking (DST), or belief tracking. In this step, the task is to recognize the

user’s goal as dialogue state, which will then be used to guide the system

response correspondingly[6]. Table 2.1 shows an example of a dialogue with

the corresponding dialogue states at each turn of the dialogue, which will be

updated at every user utterance.

DST systems can be classified into two types: ontology-based and ontology-

free. Ontology-based DST [49, 71] requires a set of pre-defined possible values

for the dialogue state, and the model selects the most likely one from the on-

tology set. The Ontology-free DST [69, 19], on the other hand, does not
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Figure 2.13: Key-value retrieval network [18]

require such an ontology set, and will choose the most likely phrase from the

dialogue history and vocabulary set.

The ontology-based DST will require a manually defined set of values for

all slots, which will be expensive for large-scale dialogue systems and makes

it difficult to generalize the model. On the other hand, the ontology-free

DST is easy to generalize for large-scale dialogue systems but can not utilize

expert knowledge in the model.

The two types of DST can be incorporated by using a gate function that

determines if the current slot should be filled by choosing from an ontology

or the dialogue history [47].

2.6.2 Key-value network

One of the limitations current NLP models faced is that the model only

has access to its text corpus data set; therefore, all the model can process

is a long sequence of language symbols. Everything it learns is just the
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rules of how those symbols are ordered. Human, instead, learns language

by connecting those language symbols with the real-world, linguist Saussure

called the language symbol the signifier and the relative stuff in real-world

the signified [15].

As an example, when we first learn the word apple, we will see and touch

the apple, taste it, cook it, and so on. Therefore, we establish the signifier

and signified of apple in our mind. NLP algorithm, however, only have access

to its signifier, it probably learns that the word apple is very likely following

with another word ’pie’ if the corpus is large enough, but it can never answer

questions such as ’what is the taste of the apple ?’ unless there are such

question-answer pairs in the corpus, as it does not link to the real world.

As a solution, incorporate NLP models to the Knowledge graph of the

Knowledge base (KB) has been introduced, originally in question answering

tasks [64]. A KB consists of a large amount of object-relation-subject triples

such as (meeting, time, 3pm)

For the dialogue system, Mihail Eric et al. introduced the key-value

retrieval network [18], which connected each conversation in a task-oriented

dialogue system with a small knowledge base, which all triples in the small

KB are related to the current dialogue.

The key-value retrieval network has an encoder-decoder structure as a

normal Seq2Seq dialogue system, but at the output step of the decoder, it

not only selects candidate word from the corpus vocabulary set but also

selects from the small KB. As an example, a triple (meeting, time, 3pm) is
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firstly converted to object as the value, and subject relation pairs as the key,

say, key : meetingtime, value : 3pm. When making predictions, the model

not only searches from the vocabulary but also searches all the keys and

gives a probability distribution over all vocabulary plus all the keys. If one

of the keys has the largest output probability, then its relevant value will be

output. E.g., The meeting is at , and the model select key meeting time as

output, it will actually output value 3pm.

Some other networks were trying to connect the model with knowledge,

e.g., Andrea Madotto et al. introduced Mem2Seq model[35], which also deals

with task-oriented dialogue system with a small relative KB. The difference

is that for each triple of the KB, a feature vector is extracted instead of

key-value pairs.

The limitation of the current mechanism is the KB is too small, and it has

to be manually selected to be related to the current conversation. Connecting

the NLP model with KB is one of the initial efforts to add external real-world

information to the model. Other attempts to do so, such as multi-model

NLP[27] which gives the NLP model a direct link to the real world, such as

sense of sight and hearing. Also, there are attempts to introduce common

sense into the NLP model[56].

2.6.3 Seq2Seq network

One of the building blocks for a dialogue system is the Seq2Seq model. In-

trinsically, any model given a sequence of text as input and then produces

a sequence of responses can be regarded as a Seq2Seq model, and dialogue

system task naturally fit in this schema.



51 2.6. Dialogue system

Figure 2.14: Sequence to sequence for machine translation[58].

Seq2Seq model was introduced by Ilya Sutskever et al.[58] for machine

translation task. In a machine translation task, we have a source language

sentence, say, ABC, and target language sentence WXY Z. The base model

is a long short term memory network (LSTM)[23], and at each step of the

LSTM, it takes as input one word from the source sentence. After the whole

source sentence is fed into the model, it starts to predict the first word of

the target sentence, and the predicted word is then fed into the network at

the next step and so the model recursively generate a long sentence until a

special token < eos > stands for the end of the sentence is predicted.

Dzmitry Bahdanau et al. [4] introduced an attention mechanism into the

normal Seq2Seq model. In their work, the translation model is split into an

encoder and a decoder, where the encoder is a bi-directional RNN that the

last hidden state of the RNN is used as the vector representation of the source

sentence, and fed as the initial hidden state of the decoder RNN, which then

predicts the whole target sentence. The attention mechanism is applied at

the decoder stage, at each step of the decoder, it takes the previous predicted

word yt, the previous hidden state st and attention-based context vector ct

as input. We will discuss this in more detail next.
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Encoder: The encoder is essentially a Bi-directional RNN. The forward

RNN reads the input sequence as it is ordered, and generate a sequence of

forward ordered hidden states h1,forward, h2,forward, ..., hn,forward. The back-

ward RNN read the input sequence in reverse order and generate a sequence

of backward ordered hidden states h1,backward, h2,backward, ..., hn,backward. For

each word of the input sentence, we now have a forward state and a back-

ward state, and the final representation hi will be the concatenation of the

two states [hi,forward, hi,backward]. This representation is later used to compute

context vectors and is used during the decoding process.

Decoder: The difference with a normal decoder is that here at each step,

the decoder has access to the vector representations of input words with an

attention mechanism. As shown in figure 2.15, at step i, for jth hidden state,

the attention weight is computed by:

αij = softmax(eij) =
exp(eij)∑n
k=1 exp(eik)

(2.42)

Where

eij = a(si−1, hj) (2.43)

is a similarity score indicate how well the word representation and the decoder

hidden state match.

Then the content vector ci is computed via

ci =
n∑

j=1

αijhj (2.44)

Intuitively, the context vector is just the weighted sum of the word em-

beddings of each word in the context, and the weight for each word is the
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Figure 2.15: Bahdanau attention mechanism.

similarity score between its embedding and current decoder hidden state,

which represent how related is the word with current state.

Seq2Seq model as a generator suffers from the exposure bias problem, like

all generators that generate words one by one. The generation of the current

word will depend on previously generated words, therefore once the model

made a mistake, it will affect all the following generations, and the bias will

be accumulated and amplified with the generation going on. Efforts to solve

this problem have been made, such as to use partly ground truth target and

partly generated target when training the model[70], but so far, this is still

an open question to the field. In our work, we will adopt the Seq2Seq model

as the skeleton of our generator. More detail will be introduced in chapter 5.

2.6.4 Pointer network and copy mechanism

In human conversation, quite often, the phrase we used can be found in a

dialogue history. For example, A:Do you like Peaky Blinders? B: Yes, Peaky

Blinders is my favorite. In this case, the phrase PeakyBlinders is directly

copied from question to response. To better deal with this situation in the
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Figure 2.16: Pointer network [60]

NLP model, Oriol Vinyals et al. introduced pointer network [60], a modified

Seq2Seq model that each element of the output sequence is directly from

the input sequence. Their paper chooses Convex Hull as an example, and a

simpler example is sorting a sequence of numbers. As shown in figure2.16, at

each time step of decoding, the network points to one element of the input

sequence, so it is named as pointer network.

Pointer network in NLP tasks is also known as Copy mechanism [72], it

outputs either word from vocabulary, or copy from input sentence, which

might be a single word or a phrase of continuous words. In our experiments

we will use this approach as part of our sentence generator.

2.6.5 End-to-End dialogue system

The next step is to build an end-to-end neural network-based dialogue sys-

tem with the state tracker and generator ready. Tsung-Hsien Wen, et al. [63]

proposed a neural network-based model for task-oriented dialogue systems.
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Figure 2.17: neural network-based model for task-oriented dialogue
systems.[63]

The model consists of a belief network, an intent network, a database oper-

ator, a policy network, and a generation network. As shown in Figure 2.17

This architecture has three essential components:

Sentence encoder: the intent network encodes the query sentences into

sentence representations.

Dialogue state tracking: the belief tracker predicts current dialogue

states.

Response generator: the generation network generates system output.

Note the database operator enables the generator output text in the knowl-

edge base.

Given a sequence of words wt
1, w

t
2, ..., w

t
N from user (the query sentence),

the system first converts them into two internal representations. One is
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distributed representation of the sentence z generated by the intent network

by an LSTM:

zt = LSTM(w1, w2, ..., wN) (2.45)

Another is the belief tracker, which tries to maintain a multinomial distribu-

tion p over v ∈ Vs for each informable slot and binary distribution for each

requestable slot. A slot-value pair s-v is a state indicator of conversation.

The informable slots are the user’s constraints, such as the food types or

prices; the requestable slots are slots that the user can request value for,

such as the address. So in the restaurant situation, the belief tracker is ba-

sically predicting what type of food the dialogue is currently talking about,

the range of accepted price, etc. Each slot will have its tracker, and the

probability is updated by:

f t
v = f t

v,cnn ⊕ pt−1
v ⊕ pt−1

ϕ (2.46)

gtv = ws · sigmoid(Wsf
t
v + bs) + b′s (2.47)

ptv =
exp(gtv)

exp(gϕ,s) + Σv′∈Vsexp(gtv′)
(2.48)

where ⊕ is vector concatenation, f t
v,cnn denote the sentence feature obtained

by a CNN [40], ptv is the probability of all possible values from ontology for

current slot, and ptϕ is the probability that the user has not mentioned that

slot up to turn t.

Based on the output pts, a query to the knowledge base qt is formed by:

qt = ∪s′∈SI
argmaxvP

t
s′ (2.49)
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Where SI is the set of informable slots. Then the query is searched

on the knowledge base and generates a binary value vector xt over entities

of the knowledge base, where a 1 indicates that the corresponding entity is

consistent with the query. If xt has a non-zero element, then an entity pointer

identifies one of the matching entities selected at random.

Then zt,qt,xt are feed into a one layer feed forward neural network to

form a single action vector representation:

ot = tanh(Wzozt + Wpopt + Wxoxt) (2.50)

where qt is a concatenation of all belief vectors ptv.

The last step is to generate the output response sentence with a LSTM:

P (wt
j+1|wt

j, h
t
j−1, ot) = LSTMj(w

t
j, h

t
j−1, ot) (2.51)

In this thesis, we adopt this three-step approach. Compared with the

trivial Seq2Seq model, the intermediate state tracker can better extract in-

formation from context and enables the model to query KB. We will add

a memory mechanism into the model and see if it can further improve the

performance on state tracking and generation tasks.

2.7 Summary

In this chapter, we introduced: 1. Basics of neural networks. 2. Word and

sentence embeddings. 3. Dialogue systems and useful neural network struc-

tures for a dialogue system. These elements together can be constructed to
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a pipeline process for NLP tasks: first, convert each word into word em-

beddings, then encode these word embeddings into sentence representations

using skip-thought or BERT. Finally, feed the sentence representations into

a predictor network, the type of predictor networks depends on the kind of

tasks. E.g., for classification tasks, the predictor can be a simple feed-forward

neural network with a softmax layer, but for generation tasks such as dia-

logue system, the predictor can be a Seq2Seq model with pointer network

and copying mechanism.

The essence of this pipeline is to find a proper vector representation of

the input text data. We want the vector to preserve as much information

of the original input as possible. Current techniques might be able to deal

with input text if it is a single sentence, but for tasks with multiple sentences

as input, especially if the sentences have strong logical relations with each

other such as dialogue systems, if we still treat them as a single long sentence

and feed them in one go by concatenating every sentence, there are probably

information lost which is not negligible. Therefore, in this thesis, we designed

models with memory mechanisms for dialogue state tracking and dialogue

generation tasks and evaluate our model with benchmark models without

memory mechanisms.

Chapter 3 will introduce research on event detection tasks with Twitter

data, and the methodology in this research will follow the NLP pipeline we

just mentioned. The data of this chapter is a single tweet, one sentence at a

time, so it fits well with the pipeline.

In chapters 4 and 5, we will introduce research on dialogue state tracking
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and dialogue generation. Both tasks have an input of dialogue instead of a

single sentence. We will present our novel models with memory mechanisms

and corresponding experiments of the models.



Chapter 3

Crisis prediction based on
Twitter data

In this chapter we will introduce experiments about sentence encoder. The

goal of this research is to evaluate the possibility of establishing an NLP

model that can predict critical events happening based on monitoring the

stream of Twitter data. This research is part of the project ”Continuous

Planning of Operational Processes Applied to Non-combatant Evacuation

Operations (Dstl, 2017-2018, PI)” sponsored by Defence Science and Tech-

nology Laboratory.

The aim of this project is to use a combination of run-time natural-

language processing (to update a stochastic model of the target process based

on unstructured data such as Twitter) and stochastic model synthesis (to

generate Pareto-optimal plans for the process), to derive operational plans of

human-centric critical processes such as and rescue, disaster relief operations,

and emergency management.

The methodology in this research is the NLP pipeline we introduced in

Chapter 2. First, we encode input Twitter data into vector representations

60
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3.1. Continuous planning of operational processes involving humans

(COPE)

and then feed them into downstream predictors. The task is event detection,

so the predictor we used is a neural network with a softmax layer at the end.

The result of this research has been published as part of the paper 1 in the

publication page. My contribution in this research is that I developed a data

pipeline to collect stream data, and labeled thousands of tweets with relevant

events such as a gunshot, flood, earthquake, and so on. And I designed

and trained a natural language processing model to update the stochastic

model of a human-centric critical process by exploiting information encoded

in unstructured data streams such as Twitter. Based on the predictions of

this NLP component the planner is then making updates on the operational

plans.

3.1 Continuous planning of operational pro-
cesses involving humans (COPE)

The success of human-centric critical processes such as search and rescue,

disaster relief operations, and emergency management relies on the depend-

able use of relevant information to support effective decision-making. A very

challenging decision-making task in this context is the continuous planning

needed because of the uncertainty and frequent changes in the environment

and goals of operational processes[3].

When models are used to derive operational plans, it is paramount to

ensure that these models are both reliable and up to date. Accordingly, the

models are updated at runtime, with their parameters (and sometimes their

structure) derived from observations of data sources that record model fea-
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Figure 3.1: Table of collected Twitter data.[45]

tures. The techniques used for this purpose typically require structured data

sources (e.g., application logs or software-generated events). As such, these

techniques cannot be applied to critical processes with human participants

who generate relevant unstructured data through channels like social media,

web-based forums, and verbal reporting of their observations.

3.2 Data collection

We have collected over 100,000 tweets that were posted at locations and times

close to an incident that occurred. The incident types we are interested in in

this research include Gunshot, Earthquake, and Flood, as shown in Figure

3.1. For each event type, we collected data of two independent events as

training and testing data set, respectively.

Each data set was gathered using GPS location information and search

radius around the event of interest. We selected 1000 tweets from each of the

training sets by hand and labeled them as being related to the event or being

normal tweets. This subset was then used as a training set for the classifier.
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Data sets marked ’testing’ are used as test sets and evaluations of the COPE

simulator.

3.3 Model

The model to detect the occurrence of incidents from Twitter data consists

of two components, a predictor that predicts if a single tweet is related to

an incident or just a normal tweet, and a detector that keep detecting all

tweets posted in small time windows, and trigger the alarm if the detector

finds significant percentage of tweets in a certain period are related to one

type of incident.

The predictor includes a sentence encoder that encodes each tweet into

sentence representation and a softmax classifier that predicts if this tweet is

about a certain event or just a normal tweet. We used GRU as the sentence

encoder. Each tweet is firstly pre-processed such as cleaning the text and

removing retweets. Then we convert each word wi i ∈ 1, ..., N in the sentence

into glove embedding. After that, the embedding sequence is fed into a GRU,

and the last hidden state is used as the sentence vector representation. The

final layer is a feed-forward neural network ended with a softmax layer to

make the prediction. In the mathematical form, the model is:

xt = embedding(wt) (3.1)

xt is the vector representation, wt is the original input word.

st+1 = GRU(st, xt) (3.2)

st stands for the hidden state of the GRU.

p = softmax(σ(WsN + b)) (3.3)
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Figure 3.2: The graph of the confidence function.

p is the output probability, W and b are trainable parameters, and sN is the

last hidden state of the GRU. If the value of p for a tweet is larger than a

threshold, then the model will predict that this tweet talks about an incident.

The model is now able to predict if a single tweet is indicating an incident

or not, but as the Twitter data is very noisy, and the model is unable to make

all prediction correctly, We introduced a confidence function to monitor all

tweets in a time window, if only a sufficient amount of tweets are about

the incident then our model raise the alarm, to prevent false positive. The

confidence function is a logistic form function:

c =
er(n−t)

1 + er(n−t)
(3.4)

where n is the percentage of tweets in the batch for which the probability of

the event having occurred is over the threshold; t is a threshold above which

we assume an event to have occurred; and r is a scaling factor allowing for

the gradient of the confidence function to be controlled.
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Figure 3.3: Apply confidence function and predictor on the test set of Gun-
shot(Lower Manhattan data set). The graph on top is the corresponding
confidence level by time, and the bottom graph is the confidence level by
data point. The vertical red line indicates the time that the gunshot really
happens, according to the news report.

3.4 Experiment

We trained our model for each of the events independently. The hyperpa-

rameter setting is word embedding and hidden state dimension: 300, learning

rate 0.001. As mentioned before, we used one event as the training set and

another same type of event as the test set, as example, for gunshot event, we

used 1000 labelled tweets from Las Vegas gunshot as the training data set,

Table 3.1: Accuracy of event predictions for single tweets, with three different
sentence encoders.

Gunshot Earthquake Flood
GRU 0.927 0.883 0.855
LSTM 0.925 0.891 0.847
Conv1d 0.894 0.886 0.821
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and 1000 tweets from Lower Manhattan as the test set. This is to make sure

our model does not have any information of test set during training process

and so we could best test our model’s performance for completely new events.

Table 3.1 shows the result we get for each type of the events, with three

different sentence encoders. We used three different types of sentence en-

coder: GRU, LSTM and Conv1d. The first two have been introduced in

Chapter 2, and the last Conv1d stands for one dimensional convolutional

neural network[26], we choose it so that we could compare the performance

between RNN structure and CNN structure for NLP task. Usually convolu-

tional neural network(CNN) is used for machine vision tasks, and is usually

two-dimensional as image data is two-dimensional, Conv1d used a one di-

mensional kernel in order to process text data which is one-dimensional. As

a result, GRU encoder performs the best for gunshot and flood event and

LSTM for earthquake. 1d Convolutional neural network has generally worse

performance compared with RNN structured network.

The next step is to apply the confidence function and the predictor on the

whole original test data set of Gunshot(Lower Manhattan data set). Figure

3.3 shows the confidence level our model has over time and data point. The

vertical red line is the time point where the gunshot really happens, according

to the new report. The figure shows clearly that the confidence of our model

is significantly higher than usual after the gunshot happens. The graph at

the bottom is based on data points, we can see that the red line indicating

theafter the gunshot, people tweet much more than at the normal time.
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3.5 Summary

In this chapter, we present our research on Twitter data based event de-

tection task. The methodology we used is the NLP pipeline introduced in

the previous chapter, which is the word and sentence embedding plus down-

stream predictor. Our contribution in this research is that we created a novel

event detection data set based on Twitter datac0, and the model we proposed

on the data set has shown its capability to extract useful information from

the Twitter data stream.

The result of the experiment indicates that, in the case of single sentence

input, the encoded vector representation of each tweet preserved enough

information so that it can be used to predict the occurrence of events by

following predictors. This shows that the NLP pipeline we introduced is

working, at least for single sentence input, and it is a possible direction of

solving more challenging NLP tasks. In the next two chapters, we will present

our research on dialogue system tasks, where the input will be multiple sen-

tences.Crisis prediction is a typical classification tasks, the predictor choose

from a binary target space (related, not related). Although dialogue system

looks much more complicated than crisis prediction, it is intrinsically just

a complex version of classification task: for dialogue state tracker, the task

is to choose from all possible dialogue state; for dialogue generator, at each

time step, the task is to choose the right word from the vocabulary set.

c0This project is sponsored by Defence Science and Technology Laboratory, due to
copyright issue, this data set is not publicly available.
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Dialogue state tracker

Task-oriented dialogue systems, such as Apple Siri or Amazon Alexa, address

one of the major tasks in the NLP field. While the complete accomplishment

of a dialogue system may still have a long way to go, a step-by-step approach

that includes Dialogue Representation, State Tracking, and Text Genera-

tion has been proposed. The main component of the middle step is State

Tracking, which predicts at each turn of the dialogue what the topics or user

requirements are. The state is represented as values in certain predefined

slots. For example, given one of the sentences of a dialogue: Is there any

restaurant in the city center? then the corresponding state values could be

[Task: Restaurant][Location: Center].

Various task-oriented dialogue data sets have been released, including

NegoChat [52] and Car assistance [18]. Eric et al. introduced the MultiWOZ

2.1 data set [17], which is a multi-domain data set in which the conversation

domain may switch over time. The user may start a conversation by asking to

reserve a restaurant table, then go on to request a taxi ride to that restaurant.

In this case, the state tracker has to determine the corresponding domain,

slots and values at each turn of the dialogue, taking into account the history

68
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of the conversation if necessary.

In this chapter, we introduce a memory-based dialogue state tracker,

which consists of two components: a memory encoder which encodes the

dialogue history into a memory vector, and a pointer network which points

to the set of possible values of states, including words in the dialogue history

and ontology of the data set. The memory vector will be updated at each

turn of the dialogue, and it will then be passed to the pointer network, where

prediction is made based on the current memory. For each dialogue, there

are multiple slots to be filled, each with a set of possible values. Both the

slots and their possible values are predefined. The prediction is a two-step

procedure. Firstly, predict the domains the current utterance lies in, then

for the specific domain, fill values into corresponding slots.

This work has been accepted as a conference paper 2 in the publication

page.

4.1 Introduction to dialogue state tracker

Dialogue state tracking (DST), or Belief tracking, was introduced as an in-

termediate step in dialogue systems. In this step, the task is to recognize

the user’s goal as state, which will then be used to guide the system response

correspondingly[6]. Table 2.1 shows an example of a dialogue with the corre-

sponding dialogue states at each turn of the dialogue, which will be updated

at every user utterance.

DST systems can be classified into two types: ontology-based and ontology-

free. Ontology-based DST [49, 71] requires a set of pre-defined possible values
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for the dialogue state, and the model selects the most likely one from the on-

tology set. The Ontology-free DST [69, 19], on the other hand, does not

require such an ontology set, and will choose the most likely phrase from the

dialogue history and vocabulary set.

The ontology-based DST will require a manually defined set of values for

all slots, which will be expensive for large-scale dialogue systems and makes

it difficult to generalize the model. On the other hand, the ontology-free

DST is easy to generalize for large-scale dialogue systems but can not utilize

expert knowledge in the model.

The two types of DST can be incorporated by using a gate function that

determines if the current slot should be filled by choosing from an ontology

or from the dialogue history [47].

4.1.1 Multi domain Dialogue state tracking

The MultiWOZ 2.1 data set released by [17] is one of the largest task-oriented

dialogue system data sets so far. It includes nine different domains, and at

each turn of the dialogue, there can be more than one domain active. As

the dialogue continues, the active domain and corresponding slot may be

changed.

Benchmark methods of dialogue state tracking on this data set include

FJST, HJST, DST, HyST and TRADE[17]. FJST, or Flat Joint State

Tracker, refers to the trivial approach which uses bi-directional LSTM to en-

code the full dialogue history and then feed into separate feed-forward neural
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Figure 4.1: Memory state tracking system. This graph shows how does the
memory mechanism work on the second turn of the dialogue

network independently trained for each state slot. HJST refers to Hierarchi-

cal Joint State Tracker, which is similar with FJST but instead enodes the

dialogue history in a hierarchical structure. TRADE[68] uses bi-directional

LSTM as encoder, and uses generative state tracker with a copy mechanism.

DST[19] model frames the dialogue state tracking task as a reading compre-

hension task and extract values of each slot from the dialogue history, this

utilizes the idea of pointer network. HyST[20]aims to extend the generality

of the model by adding an external vocabulary set as possible slot value.

While those benchmark methods varies mainly on the predictor part, our

model uses a novel memory architecture as the dialogue history encoder, and

used a combination of copy mechanism and pointer network as the predictor

with a gate function decides which network is used to generate value of slot.

4.2 Memory state tracker model
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In this chapter, we provide a detailed description of the proposed Memory

State Tracking model, as shown in figure 4.1.

Each sentence in the input dialogue is first encoded to vector representa-

tion by the sentence encoder. Then each sentence vector is fed into an RNN

structured Memory network in turn, and the memory network will output a

memory vector at each turn of the dialogue. The final step is to make predic-

tions based on the memory vector, which is a three-step procedure for each

state slot to be filled: firstly, through a binary ‘mention’ gate to determine if

the current state is mentioned or not in the dialogue. If the gate predicts it

is not mentioned, then the state slot will be marked as “not mentioned”. If

it is mentioned, two predictors will make independent predictions of possible

slot values in the ontology and dialogue history, respectively, and another

gate function will be used to decide which prediction will be used as the final

predicted value of the slot.

4.2.1 Encoder

We used two types of sentence encoding models as our model’s encoder.

The first one used Glove word embedding[46] and feed each word into a

GRU, and used the last hidden state as the sentence representation. The

second one used the BERT model for language understanding [16] as the

sentence encoder. For each turn of the dialogue, the input sequence is the

current user request and system response separated by [SEP] token, and then

padded to a fixed length and fed into the encoder, the output si is the vector

representation of sentence i.
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4.2.2 Memory network

For each dialogue, a memory vector ei is used to represent all information

from the dialogue history. At each turn of the dialogue, the memory vector

is updated using an RNN, where the input is the sentence representation si

of the utterance at current turn. At the beginning of the training process, a

hidden parameter H0 is initialized with all values set to zero, then for each

turn of the dialogue, the memory is updated with

etemp, Hi = GRU(si, Hi−1) (4.1)

ei = gi · etemp + (1 − gi) · ei−1 (4.2)

where the ei is the ith memory representation of the dialogue, representing

the whole dialogue until the ith turn.

gi is an attention score computed by a simple gate function with two layer

feed-forward neural networks

gi = sigmoid(W2 · tanh(W1 · (si, ei−1)) (4.3)

The purpose of this gate function is to measure how important the current

turn of the dialogue is. If the gate function gives a high score, it means the

current turn is informative, and by equation 4.2 it will update the memory

vector greatly, and vice versa.

4.2.3 Pointer predictor

We adopt the Pointer network architecture [36] as the predictor in our model.

The prediction model makes predictions based only on the memory vector ei
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at each turn. The prediction is a two-step procedure. First, we have a set of

mention gate functions for each of the slots to be filled:

mi,j = Gj∈J(ei) (4.4)

which decide if the jth (domain, slot) pair is mentioned or not at ith. J is

the set of all (domain, slot) pairs to be filled, mi,j is the probability of the

mention gate, and Gj∈J is a fully connected layer with sigmoid activation.

Gj∈J(ei) = sigmoid(Wjei + bj) (4.5)

Different from the three-way gate in TRADE [68], we do not add “don’t

care” in this gate, as the number of “don’t care” slots is relatively small com-

pared with “not mentioned”, and it can be predicted later in the categorical

predictor.

If the mention gate predicts the jth (domain, slot) pair is not mentioned,

then the value of this slot will be filled with “not mentioned”. If the gate

predicts that it is mentioned, the value will be filled by the pointer network.

For (domain, slot) pairs that are predicted to be “mentioned”, there are

two independent predictors to predict its values. One is a pointer network

point to words in the dialogue history.

Indexstart,j = argmaxk(sigmoid(Wj,1wk + bj,1)) (4.6)

Indexend,j = argmaxk(sigmoid(Wj,2wk + bj,2)) (4.7)
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where wk is the word embedding of the kth word in the dialogue history.

Indexstart,j represents the start index of predicted slot values and Indexend,j

represents the end index, with words in between being the final prediction of

pointer network.

Another predictor is a categorical classifier that chooses a word from

possible values for current (domain, slot) pairs, with a feed-forward neural

network.

As an example, given a dialogue Is there any hotel in the city centre with

low-price?, slot to be filled is hotel-price and slot ontology is(cheap, medium,

expensive), the pointer predictor will pick the most likely phrase from the

dialogue history and output low-price, whereas the categorical classifier will

choose cheap from the ontology.

A gate function is employed to determine which predictor is used, with a

structure similar to the mention gate.

Gpred(ei) = sigmoid(Wjei + bj) (4.8)

4.3 Experiment

This chapter discusses the experiment of our model trained on the Multi-

WOZ 2.0 [8] and MultiWOZ2.1 [17] data sets, including experiment setups,

parameters and results.
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4.3.1 Data set

MultiWOZ 2.0 and 2.1 are large goal oriented dialogue system data sets,

which consist of around 10,000 dialogues, 113, 556 turns of dialogues with

multiple domains including restaurant, hotel, hospital, taxi, police train, at-

traction, and bus. Table 2.1 is an example of a dialogue about restaurant

booking.

MultiWOZ 2.1 is a refined version of MultiWOZ 2.0, modifying around

2% of the slots.

4.3.2 Experiment setup

The hospital and police domains are ignored in this thesis as they contain

only very few dialogues, following [68]. We use the validation and test set

supplied by the data set.

4.3.3 Model details and parameters

Our model is trained on a single GTX 2080 GPU with Pytorch environment.

Word embedding dimension is set to 300 using Glove embedding [46].

The maximum sentence length is set to 30, in order to train the model in

batches. This means words in an input sentence after the 30th word will be

discarded, if the sentence is longer than 30, and if shorter, a special token of

[PAD] will be added until the length of input sentence is 30. Similarly, the

max dialogue length is set to be 10.

The training batch size is 128, hidden size of the encoder, and all feed-

forward neural networks is 256. We also used Gradient Clipping [25] with
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clip parameter 50, to prevent gradient explosion.

We used different learning rates for encoder and pointer networks, which

shows to have better performance. The encoder learning rate is 0.001 and

predictor learning rate is 0.0001.

4.4 Experimental Results

Table 4.1: Joint goal accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 data
set

MWOZ 2.0 MWOZ 2.1
HJST[17] 38.4 35.55
FJST[17] 40.2 38.0
TRADE[68] 48.6 45.6
DST[19] 39.41 36.4
HyST[20] 42.33 38.10
MST(ours) 49.16 47.27

We used joint goal accuracy to test our model. The slot accuracy is the

accuracy of each single state value. For the joint accuracy, only if all the slots

in one turn are correctly predicted will the prediction be marked as correct,

otherwise, it is incorrect.

Table 4.1 shows the joint goal accuracy of our model on MultiWOZ2.0

and MultiWOZ2.1 data set, compared with benchmark models. Our model

beats these baseline models in both data sets, compared with state-of-the-art

TRADE, our model outperforms it by 0.56% on MultiWOZ 2.0 and 1.67%

on MultiWOZ 2.1 dataset.

Table 4.2 shows the accuracy of each domain for MultiWOZ 2.1 data set.

The joint accuracy indicates how much our model got all correct for all slot
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at one turn, and the slot accuracy indicates how much our model got right

for a single slot, so the joint accuracy is generally much lower. Particularly,

the joint accuracy for hotel and taxi domain is relatively lower than others,

according to Table 6.1 in appendix, this could be because the possible value

of taxi is much more than others, and for hotel domain it has more slots to

be filled so it is more difficult to predict them all correct.

Table 4.2: Domain-Specific Accuracy on MultiWOZ 2.1 data set
Domain Joint Accuracy Slot Accuracy
Restaurant 66.41 98.22
Hotel 48.13 97.14
Taxi 39.50 94.85
Attraction 66.47 98.43
Train 63.83 94.98

4.5 Ablation Test

Table 4.3 shows the ablation test on the MultiWOZ 2.1 data set. We tested

the performance with different encoders, and with and without the memory

mechanism. The test shows that the choice of the encoder does not make

much difference, Bert encoder very slightly outperforms the GRU encoder.

However, the memory mechanism improves the performance for both encoder

by more than 0.6%, indicates the memory mechanism did extract more in-

formation from dialogue history.

Table 4.3: Ablation test on MultiWOZ 2.1 data set.
Feature Joint accuracy
GRU encoder(no memory) 46.55
Bert encoder(no memory) 46.62
GRU+Memory mechanism 47.19
Bert+Memory mechanism 47.27
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4.6 Summary and Discussion

In this chapter, we introduced a novel memory mechanism for a dialogue

state tracking system. The core contribution of our work is to incorporate

the memory architecture into the dialogue state tracking system. We used a

vector that will be updated at each turn of the dialogue to preserve useful

historical information in the model. This model outperforms a set of bench-

mark models with joint goal accuracy on both MultiWOZ 2.0 and MultiWOZ

2.1 data sets.

Compared with existing works such as TRADE[68], our memory-based

model enables the network to have sentence-level links between sentence em-

beddings and update the memory vector correspondingly. This gives our

model at least the possibility of learning sentence-level logic information.

The model performance is improved with memory setting, indicating that

the memory vector could preserve more information than no memory set-

ting.

In the domain-specific accuracy table, we can see that the Hotel and Taxi

domains are shown to be more difficult compared with other domains. The

Hotel domain has 11 slots to be filled which is the largest of all domains, so

it is reasonable that the Hotel domain has a lower joint goal accuracy. For

the Taxi domain, as shown in the Appendix, the number of possible values

for its state slot is the highest among all domains, which may lead to the low

joint goal accuracy.



Chapter 5

Sentence generator for dialogue
systems

In this chapter, we will introduce another important element of the dialogue

system: the sentence generator. We already have embeddings to convert

user utterance to vector representation and a state tracker to predict the

user’s goal. The next step is using the sentence generator to generate human

language response based on the vector and states. We will introduce ex-

periments that we have implemented related to sentence generator. We will

start with the language model, and discuss different approaches of sentence

generator and introduce our model. Then we will discuss the evaluation of

the sentence generator and the experiment result.

5.1 Sentence generator

A sentence generator is a statistic model that, given a start of sentence

token [SOS], it gives the next word of the sentence by giving a probability

distribution over the vocabulary set V, and making this prediction repeatedly

until the predicted word is the end of sentence token [EOS]. The essence of

this model is a language model.

80
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5.1.1 Language model

Given a sequence of words s = w1, w2, ..., wn, a language model is a probabil-

ity distribution that determines how likely this sequence is a proper sentence

in a language. For example, ”I like playing football.” should have a higher

probability compared with ”I football playing like.”.

Formally, a language model is defined by:

P (w1, w2, ..., wn) =
∏
i∈n

P (wi|w1, ..., wi−1) (5.1)

where P (wi|w1, ..., wi−1) is the probability that the upcoming word is wi given

the previous word being w1, ..., wi−1).

In practice, the language model is usually simplified to the uni-gram or

n-gram model, which only considers one or n previous words. But to build a

sentence generator, what we are interested in here is not the probability of the

whole sentence but the single conditioned probability of the upcoming word.

If we have this probability model, we can generate a sentence by repeatedly

picking the word with the highest probability. In language model, given a

large corpus, this uni-gram probability is computed by:

P (wi|wi−1) =
Count(wi−1, wi)

Count(wi)
(5.2)

where P (wi|wi−1) is the conditional probability that current word is wi given

the previous word iswi−1, Count(wi−1, wi) is the total amount that current

to have phrase (wi−1, wi) in the corpus, and Count(wi) is total amount of

word wi in the corpus.
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This probabilistic model can be regarded as a simple sentence generator.

However, this generator is far from functional. It will generate the same

sentence with the same start, and it does not have the ability to consider

the context of the dialogue. If we have a knowledge base, this generator is

unable to connect with it.

To solve these problems, we need to update this language model. Bengio[5]

first introduced a neural network based language model, it firstly convert

each previous word into word embeddings, then used a feed-forward neu-

ral network to learn the probability of the upcoming word. this model has

greater generalization ability compared with the trivial language model, but

still suffer from lacking the ability to handle long term information in a long

sequence.

Mikolov[38] introduced a recurrent neural network-based language model,

the word embeddings are fed into an RNN, and the output of this RNN at

each time step is then fed into a softmax function to generate the probability

distribution. This network has a better ability to deal with long-term in-

formation.Most commonly used RNN includes LSTM, Bi-LSTM and GRU,

generally speaking, Bi-LSTM has the greatest amount of trainable parame-

ters, so Bi-LSTM will require more computational resources compared with

other two, and performs slightly better[14]. Based on this RNN model, we

can now construct a simple sentence generator.

5.1.2 RNN generator and encoder-decoder model

As shown in figure 5.1, an RNN sentence generator is very similar to a normal

RNN model. The difference is that:
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Figure 5.1: Trivial sentence generator.

1. The output of the RNN generator at each time step is connected with a

softmax over the vocabulary set, which predicts the next word of the current

sequence.

yt = softmax(ot) (5.3)

where yt is the generated word, ot is the RNN output with dimension equals

to size of vocabulary, represents confidence of the model to each word in the

vocabulary.

2. at each time step of the RNN generator, the input is previously generated

word.

st = σ(Uyt−1 + V st−1) (5.4)

where st is the RNN hidden state at time t, yt−1 is the previously generated

word, st−1 is the previous hidden state and U and V are model parameters.

Here the first input will be the start of the sentence token [SOS]. We

could use any type of RNN such as LSTM or GRU, as long as at each time
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Figure 5.2: Seq2Seq sentence generator.

step we feed in the previous prediction and predict the upcoming word at

the output.

Now we have a working sentence generator, but as mentioned, it still

cannot cope with the context of a dialogue. Users may ask ”what is the

weather like today?”, and there is no way to inform this generator about this

query. To deal with this, we adopted the Seq2Seq model or encoder-decoder

model, as shown in figure 5.2, which was invented for machine translation

task[58].

The idea of Seq2Seq model is simple. For the sentence in the previous

dialogue, we simply add an RNN to learn it and use the last hidden state of

this RNN as the initial hidden state of the generator RNN. In this way, the

generator will have access to the dialogue history.

5.1.3 Attention based decoder

The standard Seq2Seq model generally performs not well for long sequences,

as it only uses the last hidden state as the context vector, other than that
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Figure 5.3: attention based sentence generator.

it does not have any other connection with the context. This means all

information that is lost in the context vector during the generation process

is permanently lost.

To deal with this, Dzmitry Bahdanau et al. [4] and Luong et al. [34]

introduced attention mechanism into the Seq2Seq model, respectively. The

idea of their work is very similar, as shown in figure 5.3, at the encoder step,

the output of the encoder RNN at each time step hj is used as the vector

representation of the word wj. At each step of the decoder, when the model is

trying to output the next predicted word, the input of the decoder RNN is not

only the previously generated word embedding but also a weighted context

vector computed by the weighted sum of the word vector representation in the

encoder part. The weight of each word is the similarity score aij between the

current decoder hidden state and each word vector representation. The final
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input is the concatenation of previous word embedding and weighted context

vector, and the similarity score here works as the attention mechanism, if a

word in the context get higher similarity score with the decoder hidden state

than other words, it indicates that this word is more related to current state

of generator and we shoud put more attention on this word, so we give it

higher weight when computing the context vector. In this way, the decoder

could trace back to the context at every step of output and could know

which part of the context is important for the current step by the attention

mechanism.

Formally, for Bahdanau’s attention, the context vector at each step of

decoder is:

ci =
n∑

j=1

αijhj (5.5)

where

αij = softmax(eij) =
exp(eij)∑n
k=1 exp(eik)

(5.6)

and

eij = a(si−1, hj) (5.7)

si−1 is the decoder RNN hidden state at current step and hj is the j th word

vector representation.

The Luong’s attention is developed based on Bahdanau’s attention. The

difference is that it uses different similarity metrics, computes the current

decoder hidden state first, then uses it and the context vector to compute

the output of the current step. In practice, the two approaches have very

similar performance.
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Figure 5.4: Knowledge enhanced sentence generator.

5.2 Knowledge enhanced generator

We now have a sentence generator which is able to generate sentence based

on the context. This model works well for machine translation tasks, but it

is still not good enough for the dialogue system. For task-oriented dialogue

systems, there will usually be a knowledge base containing important infor-

mation about the dialogue. The current generator does not have any access

to the knowledge base.

For example, in MultiWOZ data set, there is a knowledge base about

detailed information of many restaurants, hotels, attractions, and so on, in-

cluding their name, address, area, etc. This knowledge base is important for

a task-oriented dialogue system intended to respond to customers’ requests

and queries.

Here are some sample of the knowledge bases of MultiWOZ data set:

{
"address": "Regent Street City Centre",
"area": "centre",
"food": "italian",
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"id": "19210",
"introduction": "Pizza hut is a large chain with restaurants
nationwide offering convenience pizzas pasta and salads to eat
in or take away",
"location": [

52.20103,
0.126023

],
"name": "pizza hut city centre",
"phone": "01223323737",
"postcode": "cb21ab",
"pricerange": "cheap",
"type": "restaurant"

}

Not connecting with this knowledge base will undoubtedly make our

model perform worse. As the generator now only makes predictions of the

upcoming word based on the vocabulary set of context, there will be many

out of vocabulary (OOV) problems. For example, in the training data set,

the ground truth agent response might be the number is 01223337766 ., but

the telephone number 01223337766 never appears in the training data but

the knowledge base, then it is not possible for the generator to make a correct

prediction in this case.

An intuitive approach to solve this problem is adding the vocabulary of

knowledge base Vk into context vocabulary V . This solves the OOV problem

but plenty of structured information is lost. As shown in the example, the

element in knowledge base is in form of slot-value pairs, such as “area”:

“centre”, “food”: “italian”. We are mainly interested in the values, but the

slot name also contains plenty of semantic information.

Key-value retrieval network[18] was introduced to utilize the structured

data in the knowledge base. At each time step in the decoder, a gate function
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g firstly decided to select the upcoming word in context vocabulary V or in

knowledge base vocabulary Vk. If the gate function chooses to generate from

Vk, then each slot-value pairs will be given a score based on the slot name

or key. And it will output the value of the slot-value pairs with the highest

score.

As an instance, if the decoder has generated “The phone number is :”,

ideally the gate function will choose to generate from knowledge base and

“phone” will have higher score compared with other slot name “area” or

“address”, and then the final output is the value of “phone”, say 01223323737.

This key-value retrieval model can preserve part of the structured infor-

mation of the knowledge base, but it still has limitations for a larger and

more complex knowledge base. For the knowledge base of MultiWOZ data

set, its first level structure is a set of restaurants, hotels, and so on. Each

restaurant or hotel then has a set of attributes; therefore, if we convert the

whole knowledge base into slot-value pairs, there will be many phone number

pairs, then it is impossible for the network to decide which one should be

selected. Also, when using Seq2Seq models for a dialogue system, usually the

dialogue history is concatenated as one long sequence and fed into the en-

coder, but they are separate utterances in turn, this structured information

may be lost as well.

5.3 Our model: Memory based sentence gen-
erator

In order to better utilize information from the knowledge base and dialogue

history, we proposed a memory-based sentence generator. As shown in figure
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Figure 5.5: A high level architecture of the our model.

5.5 it mainly consists of three parts: the memory architecture, the knowledge

base searcher, and the text generator. All words are firstly converted into

Glove embedding as input of the model. The memory architecture is to

compute a memory vector based on dialogue history and current utterance.

This memory vector is then used as input of decoder RNN and generator.

The knowledge base searcher is to find elements in the knowledge base that

match the dialogue state generated by state tracker, and then used them as

the potential candidates of upcoming words in the generator. The generator

then predicts the upcoming word based on memory vectors.

Memory architecture

As shown in figure 5.6, in order to better utilize information from the

knowledge base, the essence of the memory architecture of our model is the

short term memory and long term memory vector. The short-term memory

is computed by the attention mechanism over the current utterance and
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Figure 5.6: Memory architecture of our model.

words that have been generated at this time step, and the long-term memory

vector is computed over the dialogue history. Then the long-term memory

vector and short term memory vector are concatenated with the previously

generated word as the input of decoder RNN, and the output of the decoder

RNN, together with long and short memory vector, are fed into the text

generator model.

In detail, to compute the long term memory, given a dialogue history

u1, ..., uk, we first compute their sentence representations s1, ..., sk by a sen-

tence encoder, then compute memory vector e1, ..., ek for each utterance by

an RNN, just like what we did in the memory state tracker model in chapter

4, with equation 4.1-4.3. Now we have the memory vector e1, ..., ek for each

utterance in the dialogue history. The next step is to introduce an attention

mechanism into the model to compute the long term memory vector ltmi at
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the current time step of the decoder:

ltmi =
n∑

j=1

αijej (5.8)

where

αij = softmax(scoreij) =
exp(scoreij)∑n
k=1 exp(scoreik)

(5.9)

here scoreij is the similarity score between the current decoder hidden state

(at time step i) and memory vector of j th utterance:

scoreij = a(si−1, ej) (5.10)

si−1 is the decoder RNN hidden state at current step and ej is the j th memory

vector representation. a can be any similarity metric, here we used dot

product.

Similarly, the short term memory vector stm is computed by:

stmi =
n∑

j=1

αijhj (5.11)

where

αij = softmax(scoreij) =
exp(scoreij)∑n
k=1 exp(scoreik)

(5.12)

here scoreij is the similarity score between the current decoder hidden state

(at time step i) and j th word vector representation computed by encoder:

scoreij = a(si−1, hj) (5.13)

si−1 is the decoder RNN hidden state at current step and hj is the j th word

vector representation.
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Intuitively speaking, the short term memory is a weighted sum of all

word embeddings of current sentence, where the weight (or attention) is the

similarity score between each wording embedding and current decoder hidden

state, and long term memory is weighted sum of sentence embeddings.

The long term memory ltmi and short term memory stmi are then con-

catenated with the previous predicted word (initially [SOS]) as the input of

the decoder at the current time step.

Knowledge base searcher

The purpose of the knowledge base searcher is to find desired elements in

the knowledge base, such as a restaurant or hotel, that matches the dialogue

state we predicted with our state tracker. The search result can be a set of

many elements, or empty, which means no elements in the knowledge base

matches the current dialogue state.

The amount of search results is also important information for the gen-

erator. In the data set, we can often see agent replies such as “There are

several, do you have a specific area you are interested in?” or “There are

no restaurants that fit your desired criteria. Is there another cuisine type or

price range?” Therefore, at each turn of the dialogue, we have a search re-

sult state vector to inform our model what we got from the knowledge base.

The first three positions of the vector is a one-hot indicator, (1,0,0) represent

there are multiple candidates in the search result, (0,1,0) stands for a single

candidate, and (0,0,1) stands for no candidate. The fourth position is the

exact amount of candidates, this vector is concatenated with the short-term

memory when training.
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Text generator

The main structure of our text generator is shown in figure 5.4, the gen-

erator takes as input the long and short memory vector, the search result

state vector, and the decoder hidden state at the current step. Then we

used a feed-forward neural network as the gate function, and two indepen-

dent feed-forward neural network as predictors for vocabulary and knowledge

base:

gi = sigmoid(W2 · tanh(W1 · (stmi, ltmi, si)) (5.14)

predictorV,i = softmaxV (W2 · tanh(W1 · (stmi, ltmi, si)) (5.15)

predictorkb,i = softmaxkb(W2 · tanh(W1 · (stmi, ltmi, si)) (5.16)

5.3.1 Objective function

The most intuitive objective function for text generation is the maximum

likelihood estimator(MLE) loss:

ŷ = argmax
y

(log(P (y|X))) (5.17)

X is the previous words. The idea is to maximize the probability of the

target word given by our model. The MLE loss is the most commonly used

loss function for many classification tasks because it is intuitively trivial, But

for Language model research has shown that model trained with simple MLE

loss tends to output the most common expressions, and lacks diversity.[31] To

deal with this problem, instead of using MLE, here we adopted the maximum

mutual information(MMI) as objective function[31].

ŷ = argmax
y

(log(P (y|X)) − λlog(U(y)) + γlengthNy) (5.18)
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where

U(y) =
N∏
i=1

P (yi|y1, y2, ..., yi−1) · g(i) (5.19)

and

g(i) =

1 if i ⩽ γ

0 if i > γ
(5.20)

In formula 5.21, the log(P (y|X)) is the conditioned language model term,

λlog(U(y)) is the anti language model(LM) term that punishes popular ex-

pressions controlled by hyper-parameter λ, γlengthNy is the term to encourage

long sentence. The idea is to discourage the model from having common ex-

pressions by the anti-LM term, but if we use the original language model

term log(P (y)), it will cause the model to produce sentences not follow the

language model. Therefore we used a parameter λ to control its weight in

the objective function and use modified log(U(y)) as the language model to

make this term only works at first γlength words in the generated sentence.

In our experiment, the λ, γlength and γ is set to 0.3, 5 and 0.15 respectively.

For example, phrase Apple is a healthy will very likely followed by fruit, and

therefore the language model will give very high output probability to fruit.

However, it is also possible that the following word is actually company, if we

only have a language model term, then our model will rarely or even never

output company. With the anti-LM term, our model gives a penalty to very

common expressions and so the confidence to fruit will be relatively lower

and therefore the diversity of output will increase.
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5.3.2 Teacher forcing

One of the challenging problems for Seq2Seq text generation is the so-called

exposure bias. As each word generated by the model is based on previously

generated words, if there are mistakes or biases at the first few steps of

generation, then it will be largely amplified with the process of the generation.

This problem is related deeply to the structure of the Seq2Seq generation

approach, so it is difficult to cope with.

One of the effects of exposure bias is it makes the training process hard to

converge. At the beginning of the training, when all parameters are random

numbers, the start of generated words is completely random, and it makes

the training of the rest of the sentence meaningless, as our objective function

is based on the conditioned probability over previous words. One way to

deal with this is teacher forcing or professor forcing[21], and the idea is very

intuitive: we use the ground truth word instead of the generated word as the

model input.

It is clear that this setting will decrease the model’s generality, as we do

not have the ground truth text at test time. To prevent it, we set this process

as a stochastic approach. At each time step, there is a teacher forcing ratio λ

determines if using ground truth word or generated word. This ratio is high

at the beginning and will decrease with the process of training:

λ =
1

1 + epoch
(5.21)

where epoch is the current training epoch count.
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5.4 Experiment result

5.4.1 Evaluation metric

Automatic evaluation of text generation is very challenging and is still an

open question to the NLP community[9]. It is difficult because two com-

pletely different expressions may have exactly the same meaning. “I am

happy to do so.”, “No problem.” and “I got it.” represent the same semantic

information under certain circumstances, and there are many more different

expressions as well. But in text generation, if the target is “I am happy to

do so.” and model prediction is “no problem.”, the model will mark it as a

big error and learns against it. On the other hand, two similar expressions

might have very different or even opposite meaning, e.g., “There are many

French restaurant near the city center.” and “There are no French restau-

rant near the city center” are two opposite sentence, but model will give it

a very tiny loss as the majority of words are the same. However, to solve

this problem requires the model to fully understand the semantic meaning of

each sentence, which is equivalent to strong AI, and there is still a long way

to go[9].

Bleu score is firstly introduced to evaluate machine translation tasks[44],

but it can be used in any text generation task with ground truth target

text. It gives a score between 0 and 1. The higher the better. The idea is

to find how many N-gram phrases in the predicted sentence are also in the

target sentence. For example, if N = 1, the bleu score is equivalent to the

percentage of words that are correctly predicted. Usually, Bleu score is the

average of scores with a set of N = 1, 2, ... Basically, short N evaluates word
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precision, and large N evaluates the fluency of the generated sentence.

Compare with evaluation by the accuracy at each position, the Bleu score

can better cover more correct predictions. But it is not perfect, the previous

example “I am happy to do so.” and “no problem.” still gives a zero score.

As we are dealing with a task-oriented dialogue system, we also evalu-

ated the model with “inform” rate and “success” rate, the “inform” rate

indicates whether the output response has provided an appropriate entity,

and “success” rate indicates whether the response answered all requested at-

tributes. For example, if requested attributes of current utterance is place:

centre and postcode: YO14RT, then whether the response includes centre

and YU74RT are two independent sample of “inform” rate, and only if the

response includes both attributes then it is a positive sample of “success”

rate[8].

5.4.2 Result

Table 5.1: Experiment result on MultiWOZ 2.0 data set
Bleu score Inform rate Success rate

Baseline[7](With oracle BS) 0.189 71.33 60.96
Our model(With predicted BS) 0.174 71.15 60.28
Our model(With oracle BS) 0.178 78.81 67.47

Table 5.1 shows the experiment results on MultiWOZ 2.0 data set, BS is

the belief state, with oracle BS means using the ground truth state provided

by the data set, with predicted BS means using belief state tracker in chapter

4 to predict the state.
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Figure 5.7: An example generated dialogue of our model, the symbol >,=, <
indicate user query, response in data set and generated response respectively.

The baseline model we used here for evaluation is a trivial seq2seq model

with a discrete database accessing component as additional features[7], it

uses the annotations of the dialogue state are used as an oracle tracker. For

comparison, we tested our model with and without oracle dialogue state. As

shown in table 5.1, our model gets close performance even without oracle

state, and beat the baseline model for around 7% at both inform rate and

success rate. This indicates that with our memory architecture the model

is able to provide more useful information extracted from dialogue history

and knowledge base. For the bleu score, we can see that our model get

slightly worse score compared with the baseline model, this could be caused

we used MMI instead of MLE as the loss function, which encourages the

model to output diverse expressions and discourages common expressions.

As discussed before, the bleu score evaluates how fluent a sentence is and

since we are dealing with task oriented dialogue system, it is more important

to be able to successfully provide correct information than output fluent but

meaningless response.

Figure 5.7 shows an example of responses generated by our model, the
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average response time is around 40-50 ms, which means it can give almost

instant response when deployed for business service.

5.5 Summary

In this chapter, we introduced sentence generation in a dialogue system,

starting with a language model. We proposed a novel memory-based sentence

generator that outperforms the baseline model. Our experiment shows that

memory architecture can improve the generation performance of a dialogue

system. Also, the connection with KB can hugely improve dialogue system

performance, and the quality of the dialogue state is important.



Chapter 6

Conclusions

6.1 Conclusions

This thesis focused on memory architecture for task-oriented dialogue state

tracking and text generation. We used three steps approach to build a

task-oriented dialogue system, namely the encoder, dialogue state tracker,

and sentence generator. We implemented three independent experiments in

Chapter 3,4,5 respectively.

Chapter 3 creates a novel data set for Twitter event detection and builds

an event detector based on a sentence encoder. This predictor is further used

as part of the evacuation planning system. Our experiment shows that the

sentence encoder can preserve enough information for downstream tasks.

In Chapter 4, we proposed a novel memory-based dialogue state tracker

which outperforms a set of benchmark models. The core contribution is to

incorporate the memory architecture into the dialogue state tracking system.

In Chapter 5, we introduced our experiments on memory-based sentence

generation for a dialogue system. The generator is based on the Seq2Seq

101
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model, consists of memory architecture, copying mechanism, KB searcher

by dialogue state, and text generator. As a result, our model outperforms

benchmark models.

6.2 Why memory helps

Our experiments have shown that the memory architecture is useful for di-

alogue system tasks. The essence of memory architecture is to build extra

connections on the sentence level. Why would this helpful?

Deep learning approaches for the natural language process are intrinsi-

cally statistical models and learn mainly the grammatical rules of language.

Word embeddings bring part of the semantic information of text, but cer-

tainly, it can not preserve all information, and in downstream processes such

as language models, it learns mainly the dependencies between words. For

instance, it is simple for a language model to predict the upcoming word

after “thanks very” is “much.” But it will be much difficult to predict what

is the next word after “I do not like apple pie because,” and without explicit

information, it is impossible to predict the word after “my name is.” These

kinds of predictions require logic and reasoning over context and knowledge

and even common sense. Current NLP approaches are very weak on this

aspect.

The memory architecture attempts to build a logic structure over the

usual NLP approach. It predicts the next word based on both long-term

memory and short-term memory and queries the knowledge base if needed.

This is intuitively similar to the thinking of human beings. Practically, there
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are neurons in charge of establishing memory and link them to the model’s

attention, and so there are more robust connections between information and

knowledge-based with the model predictor, so it is a reasonable result to see

a boost in performance.

6.3 Limitation on pure statistical model

BERT as the state-of-the-art language model has been very successful re-

cently. However, although BERT was trained on a gigantic data set, it is

still a purely statistical model. Our experiment in Chapter 4 shows that a

Bert-based sentence encoder does not make much difference compared with

RNN sentence encoder in a dialogue state tracking task. The improvement

comes from the downstream processes. This shows that the semantic infor-

mation might have reached its limit, and there is still space to be improved

for syntactic information. Also, this result indicates that a massive neural

network that works as a black box may not be the final answer for natural

language understanding. We need a more delicate structure design for each

specific task to make logic and reasoning possible.

In chapter 5, our experiment shows that connection with KB can hugely

improve the model’s performance, but this is only just a beginning to con-

nect the statistical model to the real world. The knowledge base has to be

manually created, so it is expensive and lacks generality and is expensive to

update as well. Also, information is stored in KB as triples, therefore it is

very difficult, perhaps not possible, to cover all information in the real world.

Compared with the machine, when human learns language, we have much

more access to the real world, we could interact with the real world by vision,
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hearing, smelling, touching and tasting. When we learn the word “apple,”

we have the opportunity to see its color and shape, could touch it and feel its

hardness. We first learned that if we yelled the word “apple” to our parents,

we could eat it, then we will learn imperative sentence such as “give me that

apple.”, and later we may learn to comment “this apple tastes good, I like

it.” These interactions are called language games by Wittgenstein, and by

these language games, we are able to establish a comprehensive picture of

the word “apple.” The machine, on the other hand, have only access to the

order of the alphabet, “a,p,p,l,e”, the model might know that apple can make

pies because it has seen the phrase ”apple pie” several times, but it is very

likely that it does not know what an apple pie tastes like. There is no mental

subject to participate in the language games.

Connection to the KB is one attempt to add external information to

the statistical model. Another approach is the multi-model approach such

as visual question answering[1], it gives the model access to both an image

and a text question. In conclusion, to develop towards strong AI, more

parameters, bigger models, and a larger data set are not enough. We have to

put more attention on more carefully designed network structures and give

models more connections with the real world.

6.4 Future work

1. Reinforcement learning model is a different learning methodology for

dialogue systems compared with the supervised approach, and it is more like

when human learning language. We speak with a purpose and will strengthen

the learning when the purpose is achieved. Wittgenstein called this the
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“language games.” Research has shown RL algorithm can be useful for text

generation task[32][12]. Applying RL to dialogue systems is intuitively worth

trying. For example, in this thesis we used supervised learning model to

build task oriented dialogue system, and the goal of our model is just to

output sentence that as close to the response given in original data set, in

reinforcement learning setting, we could treat the dialogue system as a game,

once the output of the model successfully provided correct information (the

inform rate metric in chapter 5), we give our model a reward, and if not

success, we give penalty. This process is more directly linked to the task

itself and more intuitively reasonable.

2. Another possible future work is human evaluation. As we mentioned

before, automatic evaluation of sentence generation is a very tough task, and

manual review could better evaluate the quality of the generated sentences.

However, human evaluation is not useful for training the models, as nobody

can work like a machine and give instant loss for all training instances. So

with limitations on time and resources, we have not performed a human

evaluation for the generator.

3. Our current dialogue model is mainly in question answering schema, and

is trained only on task oriented dialogue data set. When human learns lan-

guage, we start with simple day-to-day dialogues and usually does not have

very specific purpose, following this line of thought, it could be a reasonable

idea to incorporate external day-to-day dialogue data set and train our model

with it at first as a sort of transfer learning. The data set specifically related

to the task is small and expensive but open dialogue data set is much more
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than that as every dialogue data set can be used as pre-training data set.

4. In a task oriented dialogue system there are several clear routine format

of response, such as the location is at xxx, post code is xxx and telephone

number is xxx. Do you need anything else? So it is reasonable to manually

build a collection of skeletons of response with key information left blank,

every time our model generate a response it first pick a skeleton and then fill

in missing key information. Intuitively, this may improve the bleu score of

the model as the skeleton of the response perfectly follows routine response.
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APPENDIX

Table 6.1: Number of possible values for each (domain, slot) pairs, for Mul-
tiWOZ 2.0 and MultiWOZ 2.1 data set.

Slot Name MultiWOZ2.0 MultiWOZ2.1
taxi-leaveAt 119 108
taxi-destination 277 252
taxi-departure 261 254
taxi-arriveBy 101 97
restaurant-people 9 9
restaurant-day 10 10
restaurant-time 61 72
restaurant-food 104 109
restaurant-pricerange 11 5
restaurant-name 183 190
restaurant-area 19 7
hotel-people 11 8
hotel-day 11 13
hotel-stay 10 10
hotel-name 89 89
hotel-area 24 7
hotel-parking 8 4
hotel-pricerange 9 8
hotel-stars 13 9
hotel-internet 8 4
hotel-type 18 5
attraction-type 37 33
attraction-name 137 164
attraction-area 16 7
train-people 14 12
train-leaveAt 134 203
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