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Abstract 

Ptychography, a relatively new form of phase retrieval, can reconstruct both intensity and 

phase images of a sample from a group of diffraction patterns, which are recorded as the 

sample is translated through a grid of positions. To recover the phase information lost in the 

recording of these diffraction patterns, iterative algorithms must optimise an objective 

function full of local minima, in a huge multidimensional space. Many such algorithms have 

been developed, each aiming to converge rapidly whilst avoiding stagnation. This thesis aims 

to set a standard error metric for comparing some of the more popular algorithms, to 

determine their advantages and disadvantages under a range of different conditions, and 

hence develop a more adaptive algorithm that combines the advantages of these ancestors.  

In this thesis, different algorithms are explained together with their reconstruction results 

from both simulated and practical data. Modifications for mPIE, ADMM and RAAR are 

suggested to either reducing the number of parameters or improving their computation 

efficiency. An improved spatial error metric, which can evaluate the reconstruction quality by 

removing inherent ambiguities, is introduced to compare these algorithms. Based on the 

explained phase retrieval algorithms, a new algorithm, i.e., adaptive PIE, is developed. It has 

a faster converging speed and better accuracy comparing to its ancestors. 
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1. Introduction 

Microscopy, as a fundamental tool for observing microstructure, plays an important role in 

biology, solid state physics, material science and integrated circuit etc1,2. From Antony van 

Leeuwenhoek observing the bacteria under optical microscopes with manually manufactured 

lens in 16833, to the modern electron and x-ray microscopes4, the evolution of this technology 

has overcome many difficulties to expand the limitation of human vision from 1 μm (about 

the size of bacteria) to 0.2nm5 and helped researchers to visually approve their discovery. 

Figure 1. 1. demonstrates dimensions of some common specimens and limitations of different 

microscopy technologies. As shown in the figure, even the most powerful modern microscopy 

technology is not flawless, and most of its limitation arises from a crucial physical component 

of microscopes since the first day it was developed: the lens.  

 

 

Figure 1. 1. Dimensions of some common specimens and limitations of different observing 
methods1,3,5,6,7. 

 

The lens is an important component in various kinds of optical devices. It is utilised in focusing 

illumination onto a specimen, and forming a magnified virtual image on the image plane in 

optical microscopy5,7. Nevertheless, a lens without defects is not easy to manufacture. 

Besides the transparency and coating requirement, a well-designed microscope lens must 

correct the spherical aberration7. Even with modern manufacturing technology, an optical 

microscope with good quality lenses is still expensive and its resolution is limited up to 200nm 

due to the diffraction limitation of visible light5. Such an accuracy is acceptable for cytology 

and histology but is still miles away comparing with the scale of atoms, which is 0.3nm5,8. For 

obtaining a decent image on atoms, a short illumination wavelength is compulsory to 

overcome the diffraction limit. However, the shorter a wavelength is, the higher quality lens 

is required9,10. When wavelength comes down to 10nm or less, which is utilised in most of the 
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x-ray microscopy, a good quality lens is too expensive to afford, if indeed it is possible to 

produce11. This drawback does not only limit image quality, but also slows down the spread 

of these microscope technologies due to their enormous investments12.  

Many solutions have been attempted since the late 20th century. An idea gradually attracts 

the attention of researchers: what if there is no lens13,14? It was mind breaking to think of how 

to form an image without a lens, since no image can be detected directly without it2,14,15. 

Instead, other information can be measured, for example a diffraction pattern (e.g. Figure 1. 

2 (b)), which may contain sufficient information to reversely figure out the image of a 

specimen. This new approach bypasses the limitation caused by lenses and makes the image 

solution regardless of lens quality1. Due to this special characteristic, the new concept is 

known as lens-less imaging13,14. One should notice that lens-less imaging does not mean no 

lens is allowed in this technology. As shown in Figure 1. 3, lenses may still be utilised for 

converging illumination in the upper stream. They are just not compulsory in imaging and 

hence do not determine the image quality1,13,14. Lens defects and aberrations have no 

significant impact on the final images. Besides improving image quality, lens-less imaging also 

brings other benefits, including a quantitative phase image together with the intensity image 

and the possibility of 3D microscopy16,17,18.  

Nevertheless, all these benefits come with a question that must be solved first, which is the 

phase problem2,14. This problem is caused by the lost phase information during taking 

intensity measurements in lens-less microscopy: when a diffraction pattern is recorded, the 

phase of the wavefront that caused it cannot be detected. Without this lost phase it is not 

possible to reconstruct an image of the specimen, but if somehow the phase can be figured 

out and added to the diffraction recording, the specimen can be revealed by digital 

propagation of the recovered wavefront. 

Many efforts have been made for solving this problem13,15. Ptychography, as one of the most 

successful solutions up to date, is developed together with various phase retrieving 

algorithms. It does not only provide a satisfied solution to phase problem19, but also adapts 

to various types of illuminations and pushes the image quality to a higher level. As a price, 

ptychography suffers from its complexity in retrieving phase iteratively. This process is time 

consuming and might lead to a fruitless end due to improperly tuned algorithms or noisy 

measurements. 
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Figure 1. 2. A general demonstration of the detected image with and without lens. An illumination goes 
through a specimen from left to right. With the existence of lens (a), the light is focused onto the 
detector plane. Hence the intensity image is detected directly. Without the lens (b), waves propagate 
freely and form a diffracted pattern (i.e. diffraction pattern) on the detector. The detector only records 
the intensity of diffraction pattern, which is nothing like the intensity of image. Since the phase 
information of diffracted wave is lost during the measurement, it is impossible to obtain the intensity 
image with inversely propagating the diffracted wave. 

 

Ptychography operates as shown in A beam of illumination (𝐏𝑟⃗ ) made up of coherent waves 

shines on a specimen (𝐎𝑟⃗ ), which has negligible thickness. This illumination is absorbed and 

diffracted while propagating through this specimen and is detected by a detector sitting at 

the downstream as an intensity measurement (𝐈𝑢⃗⃗ ). Once a diffraction pattern is fully recorded, 

a relative shift is introduced between the illumination and specimen, hence their contact area 

changes slightly but still shares more than half (e.g. 60~70%20) overlapping area with the 

previous illuminated area. As a result, a new diffraction pattern appears on the detector. It is 

recorded together with the corresponding shifts. This ‘shift-and-detect’ process is repeated 

until the whole area of interest is covered. These diffraction patterns together with the 

shifting positions are the data collected by ptychography in experiments and will be used for 

phase retrieving later.  
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Figure 1. 3. A simplified demonstration of ptychography. From left to right, an illumination (𝑷𝑟 ) shines 
onto the specimen (𝑶𝑟 ) and turns into an exit wave (𝝍𝑟 ). The contact area is highlighted by the red 
square on the specimen. After a far-field free propagation, the exit wave is detected as a diffraction 
pattern (𝑰𝑢⃗⃗ ) at the downstream. 

 

An improvement on the phase retrieving algorithms is crucial to make ptychography produce 

promising results under various test scenarios. Therefore, this research focuses on evaluation 

and development of algorithms for ptychography. Developing a new algorithm requires a 

good understanding on the existed ones, hence the most famous phase retrieval algorithms 

are explained and tested with different simulated scenarios including practical data sets. The 

evaluation of reconstructed images requires an accurate error metric, which prevents the 

interference of ambiguities. Several error metrics are explained together with a standard 

process of reducing the inherent ambiguities. Based on the solid understanding of existed 

algorithms, a more adaptive and promising phase retrieval algorithm is introduced. This new 

algorithm (i.e. adaPIE) is inspired by the methods utilised in deep learning and is highly 

competitive in various test scenarios. 

This thesis is organised as follows. In Chapter 2, the phase problem of less-less imaging is 

explained from both physics and mathematical point of view. Several existed device set-ups 

for lens-less imaging are also generally introduced based on their order of development. 

Ptychography, as one of the most attractive candidates1,21,22, are explained in depth. This 

chapter also includes the conventions and definitions utilised through the whole thesis.  

Chapter 3 introduced the well-known existed phase retrieval algorithms. This chapter starts 

with the mathematics background for understanding the phase retrieval algorithms. Then 

these algorithms are separated in two categories and explained with pseudo code, flowchart, 
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modification and hardware usage. A noiseless simulated data set is utilised to evaluate the 

effectiveness of these algorithms. Some related knowledge of computer hardware is given in 

the end of this chapter. 

Chapter 4 explains the error metrics for evaluating the quality of reconstructed images. Since 

computing error metric requires minimising inherent ambiguities in advance, all inherent 

ambiguities of ptychography are explained together with corresponding removing 

methodologies. The performance of explained algorithms are tested with simulated data. 

Chapter 5 introduces a new phase retrieval algorithm: adaptive PIE, which is inspired by the 

algorithms for training neural networks. A new regularisation approach, which adapts to the 

over-all illumination intensity, is explained. Various tests with different difficulties are applied 

to test this new phase retrieval algorithms. The test results reveal this algorithm has a good 

converging speed with a decent reconstruction quality. 

Chapter 6 talks about dealing with practical data that is collected with a scanning transmission 

electron microscope (STEM). Methods for checking the collected data before reconstruction 

are explained and applied to calibrate the practical data. Then different phase retrieval 

algorithms are utilised to reconstruct this data set. 

Chapter 7 introduces some optional constraints that can be added into phase retrieval 

algorithms. The ‘probe calling map’ can visualise how a pixel of probe is related to itself by a 

given scanning grid, while other constraints are developed to prevent stagnation or 

accumulation of ambiguities. Some of these ideas show a strong potential and can be 

expanded with further research. 

Chapter 8 is the conclusion chapter, which summaries the development mentioned in this 

thesis and suggests some topics for future research. 
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Glossary  

Variables  

𝐀𝑟  Aperture 

𝐒𝑟  Support matrix 

𝐈𝑢⃗⃗  Diffraction pattern of single intensity measurement  

𝐈𝑢⃗⃗ ,𝑘 The 𝑘𝑡ℎ diffraction pattern of multiple intensity measurements 

𝐈𝑖𝑚𝑔𝑟 
 Intensity measurement of specimen 

𝐋𝑟  Lens 

𝐎̂𝑟  Specimen, true object 

𝐏̂𝑟  Illumination, true probe 

𝐎𝑟  Guessed object 

𝐏𝑟  Guessed probe 

𝐎𝑟 
′ Revised object 

𝐏𝑟 ′ Revised probe 

𝛙𝑟  Exit wave in spatial domain 

𝛙𝑟 ,𝑘 The 𝑘𝑡ℎ exit wave  

𝛙𝑟 ′ Revised exit wave 

𝐟𝑟  Modulus of exit wave 

𝐠𝑟  Phase of exit wave 

𝚿𝑢⃗⃗  Exit wave in frequency domain, i.e. Fourier transformed exit wave 

𝚿𝑢⃗⃗ ,𝑘 The 𝑘𝑡ℎ Fourier transformed exit wave 

𝚿𝑢⃗⃗ 
′  Revised Fourier transformed exit wave 

𝛌𝑟  Multiplier 

𝐅𝑢⃗⃗  Modulus of Fourier transformed exit wave 

𝐆𝑢⃗⃗  Phase of Fourier transformed exit wave 

𝟎 An ‘all-zero’ matrix 

𝟏 An ‘all-one’ matrix 

𝕄 Modulus set formed by diffraction intensity measurement 

𝕄𝑖𝑚𝑔 Modulus set formed by specimen intensity measurement 

𝕊 Support set 
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𝕆 Consistency set of ptychography 

𝑟  Referring vector in spatial domain 

𝑢⃗  Referring vector in frequency domain 

𝑟 𝑘 The 𝑘𝑡ℎ shifting vector 

𝑑𝑥𝑦 Conversion ratio (unit: meter/pixel) 

𝑑𝑐𝑎𝑚 Detector dimension or camera dimension 

𝑙𝑐𝑎𝑚 Camera length 

𝜆 Wavelength (unit: m) 

𝐺 Detector gain 

𝜂 Quantum efficiency (of detector) 

𝐾 Detector sensitivity 

𝑀 × 𝑁 Size of intensity measurement, i.e. 𝑀 rows and 𝑁 columns 

𝐾 Total No. of intensity measurements 

𝐷 
A complex space, defined by the size and number of intensity 

measurements:  𝐷 = 𝑀 × 𝑁 × 𝐾 

𝒙 and 𝒚 Two example vectors in space 𝐷  

𝜃 Rotating angle (in degree) 

𝑘𝑠𝑐𝑎𝑙𝑒 Scaling factor for scan positions 

𝑟𝛥,𝑘⃗⃗ ⃗⃗ ⃗⃗  Random shift on the 𝑘𝑡ℎ scan position 

𝜃𝑠𝑝𝑎𝑛 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 The span angle of detector 

𝐑 Rotation matrix for coordinates in 2-dimensional space 

𝐸𝑛𝑒𝑟𝑔𝑦𝑘 
Energy of 𝑘𝑡ℎ diffraction pattern, the sum of squared of modulus for 

a complex matrix 

𝐸𝑟𝑟𝑆𝑆 The summed squared error 

𝑠 − 𝑑𝑜𝑚𝑎𝑖𝑛 Real-space23, imaging plane24 or spatial domain 

𝑓 − 𝑑𝑜𝑚𝑎𝑖𝑛 
Reciprocal-space, momentum-space23, diffraction plane24, Fourier 

domain or frequency domain 

𝑠 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 Constraint formed by the priori information in s-domain 

𝑓 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 Constraint formed by the diffraction patterns 

𝑎 s-domain ambiguity: scaling constant 

𝑒𝑗𝑐 s-domain ambiguity: phase offset 
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𝑒𝑗𝑏∙𝑟  s-domain ambiguity: phase ramp 

+𝑑  s-domain: ambiguity: global shift 

Super/sub script 

𝑘 Variable at the 𝑘𝑡ℎ  scanning position 

𝑛 Variable at the start of the 𝑛𝑡ℎ  iteration 

r⃗  Variables in real space 

𝑢⃗⃗  Variables in reciprocal space 

Operator 

∗ Complex conjugate 

| | Modulus of complex number 

∙ Element-wise multiplication 

∠( ) Put following terms onto the phase, e.g. 𝐴∠𝜃 = 𝐴 ∙ 𝑒𝑥𝑝(𝑗 ∙ 𝜃) 

( )𝑚𝑎𝑥 The maximum value of in the matrix 

𝓕 2-dimensional Fourier transformation 

𝓕−1 2-dimentional inverse Fourier transformation 

𝓒𝓾𝓽 Cut out a part of matrix 

𝓐𝓭𝓭 Add a part onto a larger matrix 

𝓼𝓱𝓾𝓯𝓯𝓵𝓮 Shuffle a sequence 

𝓹𝑓 Projection to the modulus constraint to f-domain variables 

𝓻𝑓 Reflection to the modulus constraint to f-domain variables 

𝓟𝑓 Projection to the modulus constraint to s-domain variables 

𝓟𝑖𝑚𝑔 Projection to the image intensity constraint 

𝓟support Projection to the support constraint 

𝓟s Projection to consistency set 

𝓡𝑓 Reflection to modulus constraint 

𝓟𝑓
𝛼 Relaxed f-constraint projection with relaxing coefficient 𝜶 

𝓟𝑠
𝛼 Relaxed s-constraint projection with relaxing coefficient 𝜶 

𝓘 Identity (i.e. ‘Unchanged’) operator 

𝓛 Cost function 
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2. The phase problem and ptychography 

This chapter explains the significance of the phase problem (section 2.1) and details its causes 

(section 2.2). Different methodologies have been attempted to solve this problem by applying 

constraints that reflect knowledge about the lens-less experimental process. These 

methodologies and constraints are explained in section 2.3. Among them ptychography is the 

most attractive one and highly relates to this thesis. Thus, its detailed description is given 

from both physics and mathematics point of view (section 2.4).   

 

2.1. The meaning of phase problem 

The phase problem is caused by two facts. First, all waves have both amplitude and phase 

property no matter they are electromagnetic wave2 or matter wave9 (e.g. electron beam). 

Second, detectors can record the intensity of a contact wave, which equals the square of its 

amplitude, but cannot record the phase simultaneously13. Such an unideal situation is due to 

the extremely short response time required for measuring phase in this circumstance. For 

instance, the illumination beam utilised in ptychography usually has wavelength in 

micrometre scales (e.g. 10−6𝑚 ) with propagating speed equal to speed of light (e.g. 

3 × 108𝑚 𝒔−𝟏 )9. As a result, this wave can propagate through a distance equal to its 

wavelength within femtosecond (e.g. 10−15𝑠). Taking the Nyquist sampling theorem into 

account, the response time of a detector must be on the scale of fractional of femtosecond 

to be able to collect the phase information. In other words, an effective measurement on the 

wave phase requires the detector having response frequency as multiple of petahertz (e.g. 

1015𝐻𝑧), which is impractical for nowadays detectors that usually have 2-10MHz23. 

Using optical microscopy as an example, the brightness of an illumination is affected by the 

transparency of a specimen during the propagation2,7. This brightness relates to the content 

of specimen and is focused into an image with intensity variation and recorded by a detector. 

Hence researchers can observe the intensity image directly on the detector, though the phase 

information is lost5,7.  

Without a lens, the wave will diffract during propagation rather than focusing into an image. 

An at least partially coherent light source is required to produce an analysable diffraction 

pattern onto the detector13. If the full information of this diffracted pattern is recorded (i.e. 
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record both its intensity and phase), a clear image still can be obtained by inversely 

propagating this detected wave2. However, as only its intensity is recorded, the lost phase 

makes a directly reverse propagation impossible. The difference between these two set-ups 

has been demonstrated in Figure 1. 2. 

The phase problem happens when only intensity is recorded but a reverse propagation is 

desired. This is not a trivial problem that merely exists in lens-less microscopy. Its variation is 

also noticed in other imaging technologies. For instance, in the optical astronomy, solving 

phase problem is helpful for extracting useful information from a foggy background25. Besides 

that, this sort of problem is also known as the inverse problems in mathematics and have 

been studied in a more general form26,27. In return for solving phase problem, lens-less 

imaging does not only provide an intensity image but also a phase image of the specimen. 

Although phase image has shorter history comparing to the intensity image, it has significant 

meaning on observation21,28. The most considerable advantage is even a completely 

transparent specimen can generate a phase image, as long as it is made with a material that 

has a different refractive index with its surroundings1. Do not even mention solving phase 

problem provides the phase image together with the traditional intensity image29. Such a 

combination offers diverse information of a specimen. Some astonishing improvements 

brought by phasing imaging, especially ptychography, are listed below: 

 

2.1.1. Imaging living cells 

A typical usage of phase imaging is the study of living cells. Since living cells are nearly 

transparent to illuminations, they are almost invisible under an optical microscopy besides 

their edges where a significant transition of reflection index happens21,30,31. A traditional 

solution is changing their transparency by staining, though this process usually involves killing 

cells to let pigment pass through their membrane30. With this manner, it is impossible to 

observe how a living cell response to the stimulation in real time, which increases the 

uncertainty and difficulty of research. Methods like fluorescence microscopy32,33 is developed 

but requires a long-term preparation on specific samples. As a comparison, due to their 

different refractive index, cells can provide clear, high-contrast phase image while staying 

alive34,35 as shown in Figure 2. 1. In addition, the characteristic of phase image is also helpful 

on distinguishing different materials, which is convenient for material science36.  
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Figure 2. 1. The comparison between the modulus and phase images of a group of cells. Figure 2a 
demonstrates the modulus image produced by the brightfield microscopy. Since the cells are semi-
transparent, the only visible details are the regions with significant transition of reflective index, e.g. 
the edge of membrane. Figure 2b and 2c are results of the phase contrast image and the differential 
interference contrast (DIC) image respectively. They have a better contrast than the modulus image. 
Figure 2d is the phase image provided by ptychography. It uses grey level to represent the phase shift 
caused by the different reflective index and thickness of the cells. It has the strongest brightness 
contrast among these four images. The arrows in the above images indicate the cells that are probably 
into the G2/M state. Three phase images provide a better contrast on these cells, while ptychography 
has the best contrast among them. The star shows an example point, at which ptychography gives an 
enhanced contrast21. 

 

2.1.2. Resolution improvement on electron microscopy 

Ptychography also brings new potential to many mature microscope technologies. A recent 

example is the new world record in resolution achieved by the combination of ptychography 

and electron microscope23. Previously, the main approaches for improving the resolution of 

electron microscopy was either increasing the beam energy or the numerical aperture9,23, 

though the former one has potential damage to the specimen, while the later one could 



13 
 

introduce aberrations23. However, by introducing the ptychography, a better resolution (e.g. 

0.39 ångström) has been achieved with significantly smaller beam energy (80keV) on a MoS2 

sample23. As a comparison, the traditional technology can only achieve 0.98 ångström under 

the same circumstance. Such a resolution makes observing single atom defect possible as 

shown in Figure 2. 2.    

 

 

Figure 2. 2. A comparison of reconstructed images from different electron microscopy technologies. 
From (a) to (d) are the MoS2 images obtained by bright-field, angular dark-field (ADF), integrated 
centre of mass (iCoM) and full-field ptychography. A 3 ångström scale bar is shown in (d). The red 
arrows indicate a single atom defects in the specimen23.  

 

2.1.3. 3-dimentional microscopy 

The development of phase imaging also makes 3D microscopy possible37. To image a 3D 

structure, a light source that can penetrate through a specimen freely is a must. However, if 

the illumination can pass through the sample without significant absorption, its intensity 

image will have weak contrast. On the other hand, its phase accumulates linearly during 

passing through different materials. With a properly retrieved phase, one can figure out the 

material contacted by the illumination with an inverse propagation, hence reconstruct the 

internal structure without disassembling it. Figure 2. 3 shows an example of observing the 3D 

transistor structure inside a chip under the help of phase retrieving.  
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Figure 2. 3. A 3D image of a 10μm diameter chip produced by the ptychography X-ray computed 
tomography (PXCT). The finest structure of inside transistor is obtained without broken the sample. a, 
whole active structure of the chip. b, the fine structure of a single transistor37. 

 

2.1.4. Fourier ptychography 

The idea of gaining extra priori information by collecting multiple intensity measurements 

with overlapping positions also inspired other methodologies. One of the variants of 

ptychography, Fourier ptychography, also gradually attracts attention of the researches. Like 

ptychography, Fourier ptychography also relies on a set of intensity measurements to recover 

the lost phase, hence synthesis all measurements into a single complex-valued image. 

However, its real and reciprocal space constraints are swapped due to the existence of lens 

in Fourier ptychography38. Such a similarity with conventual microscope system allows the 

Fourier ptychography being applied with minor modification on the existed microscope 

platform. Besides preventing the conflict between the resolution and the field of view, which 

widely exists in conventional microscope systems, Fourier ptychography is capable for 

aberration correction and refocus images during the reconstruction, which significantly 

reduces both the expense on high quality lens system and the difficulty caused by device 

calibration.  
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As a quick summary, phase problem is a widely existed problem and have general meaning in 

various aspects. Solving it will not only bring the benefits of lens-less imaging to microscopy 

technology, but also inspire other research topics.  

 

2.2. The cause of phase problem 

To begin with, a model of wave propagation needs to be stated together with an important 

approximation, ‘Fraunhofer approximation’, on which the rest of thesis is based. The basic 

propagation of coherent light from source plane to an observation plane is described by eq 2. 

1. This expression assumes the source is formed by infinite number of fractional point light 

source, and the wave detected at any point of observation plane is the combination of 

emitted wave from all these light sources. 𝜆 is the wavelength, 𝑘 is the wavenumber, which 

equals 2𝜋/𝜆. Other related variables are demonstrated in Figure 2. 439. 

 

 𝑈2(𝑢1, 𝑢2) =
𝑧

𝑗𝜆
∬𝑈1(𝑟1, 𝑟2)

exp(𝑗𝑘𝑑12)

𝑑12
2 𝑑𝑟1𝑑𝑟2 eq 2. 1 

 

 

 

Figure 2. 4. A model for wave propagation. In this simplified model, the source plane (𝑈1) and the 
observation plane (𝑈2 ) are in parallel and separated by distance z. Each of them has their own 
coordinates as marked in the figure. The distance from a random point on source plane to the 
observation plane is labelled as 𝑑12. 
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Although eq 2. 1 gives an accurate expression on the propagating wave, its complexity, 

especially the square root term, increases the time spend on simulation, also make solving it 

for a solution a difficult task39. To make the expression less computationally expensive, two 

famous approximations are developed: the Fresnel approximation and Fraunhofer 

approximation, while the later one is highly related to this thesis. The Fraunhofer 

approximation happens when the propagation distance is significant comparing with the 

source size. Such a priori condition is named as ‘far-field’ and expressed as: 

 

 𝑧 ≫ (
𝑘(𝑟1

2 + 𝑟2
2)

2
)

𝑚𝑎𝑥

 eq 2. 2 

 

Under this assumption, the diffraction effect can be derived as: 

 

 
𝑈2(𝑢1, 𝑢2) =

exp(𝑗𝑘𝑧)

𝑗𝜆𝑧
exp [𝑗

𝑘

2𝑧
(𝑢1

2 + 𝑢2
2)]

× ∬𝑈1(𝑟1, 𝑟2) exp [−𝑗𝑘 (
𝑢1

2𝑧
𝑟1 +

𝑢2

2𝑧
𝑟2)] 𝑑𝑟1𝑑𝑟2 

eq 2. 3 

 

What makes the Fraunhofer approximation widely applied is its relationship with Fourier 

transformation. By substitute the  𝑓𝜉 =
𝑥

2𝑧
 and 𝑓𝜂 =

𝑦

2𝑧
, one can see the eq 2. 3 can be 

simplified as a scaled Fourier transformation of the source wave ( 𝑈1(𝜉, 𝜂) ), which 

considerably reduces the difficulty of analysing the resultant wave. 

 

 𝑈2(𝑢1, 𝑢2) =
exp(𝑗𝑘𝑧)

𝑗𝜆𝑧
exp [𝑗

𝑘

2𝑧
(𝑢1

2 + 𝑢2
2)] ∙ 𝓕(𝑈1(𝑟1, 𝑟2)) eq 2. 4 

 

All diffraction patterns mentioned in this thesis are all collected based on the Fraunhofer 

approximation, which implies the ‘far-field’ assumption should be applied carefully. 

Now let us consider a basic lens-less imaging system without any imperfect issue. A specimen 

(𝐎̂𝑟 ) is illuminated by a coherent plane wave. As the illumination passes through the specimen, 

it is diffracted and turns into an exit wave (𝛙𝑟⃗ ), which is expressed as a complex matrix. Its 

modulus is affected by the transparency of the specimen, while its phase is affected by the 

refractive index and thickness variations of the specimen2. Referring to Figure 1. 2 (b), since 
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there is no lens in the set-up, the exit wave propagates freely, interferes with itself and turns 

into a diffracted wave (𝚿𝑢⃗⃗ ) in the far field.  

A detector is placed at downstream to detect the diffracted wave (𝚿𝑢⃗⃗ ). As explained 

previously, the detector only records the square of the modulus of the diffracted wave (i.e. 

the diffraction pattern (𝐈𝑢⃗⃗ )), while the phase is lost. The detector samples the diffraction 

pattern and records the intensity on each sampling point10. These sampling points are 

considered as pixel from now on. The final measurement is a matrix, whose size equals the 

pixel-wise dimension of the detector, filling with real numbers that indicate the light intensity 

detected at each pixel.  

The relationship between these variables is demonstrated in Figure 2. 5. These variables 

belong to two different spaces (domains) that are related by Fourier transformation in this 

scenario. For the sake of simplicity, the space holding variables before propagating onto the 

detector is named as “real space” or the spatial domain (s-domain). Another space holding 

variables after the propagation is named “reciprocal space” or the frequency domain (f-

domain).  

The eventual aim of solving the phase problem is to determine a matrix (the object matrix) 

that represents the transmission characteristics of the specimen under investigation in the 

lens-less microscope. Without any constraints, this matrix could be populated with any of an 

infinite set of complex values. The measured diffraction pattern reduces this set of values 

drastically by introducing the following f-domain constraint:  

 

The amplitude of the Fourier transform of the object matrix must match the amplitude of the 

recorded diffraction pattern (i.e. the square root of the recorded intensity).  

 

 |𝚿𝑢⃗⃗ | = √𝐈𝑢⃗⃗  
eq 2. 5 

 

Nevertheless, 𝐈𝑢⃗⃗  only holds the modulus information. Due to the lost phase, it is 

mathematically impossible to find a unique diffracted wave from a given intensity based only 

on the f-domain constraint. Therefore, a phase problem with only f-constraint is not well-

conditioned and insoluble.  
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Figure 2. 5. The mathematic expression of the exit wave (𝝍𝑟 ), diffracted wave (𝜳𝑢⃗⃗ ), measured intensity 
(𝑰𝑢⃗⃗ ) and their relationship. All these variables are in equal size of matrices, which is expressed as a 
square in above figure. Variables in real space and reciprocal space are distinguished by sub-script 𝑟  
and 𝑢⃗   respectively (more explanations on real and reciprocal space variables in section 2.4). The exit 
wave and diffracted wave are made of complex elements; hence they have both modulus and phase 
images. As measured intensity is filled with real numbers, it only has modulus image, while its phase 
image is matrix filled up with zero. With this figure, it is obvious that inversely finding a unique 
diffracted wave with only intensity measurement is not possible. 

 

2.3. The solution of phase problem  

The f-domain constraint by itself is not adequate for solving the phase problem. Other 

constraints must be involved to further confine it13. Therefore, the history of lens-less imaging 

is about looking for other constraints. Various desired constraints are generated by different 

device set-ups and affect development of the solving approach slightly, though they all share 

one thing in common: they are all constraints in the real space (i.e. s-constraints). A quick 

glance on these constraints can demonstrate how ptychography is inspired by its ancestors. 

More importantly, the advantages brought by ptychography are revealed in this comparison. 

In the following section, these existed phase imaging methods are explained together with 

the constraints that they provided.  
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2.3.1. Intensity image of specimen 

Back to the early stage of lens-less imaging, the available information and experience are very 

limited. Instead of stepping into a new topic without any directions, combining with the lens 

imaging system can produce more information for reconstruction. After all, lens is already a 

mature device with hundreds of years of development and capable of providing an excellent 

image in most optical experiments7. Hence a constraint formed by the intensity image of the 

specimen is suggested. 

This method24, 40 requires an adjustment on the device set-up during experiment, which is 

shown in Figure 1. 2. (a) and (b). An intensity image of the specimen is acquired with the help 

of lens, then a diffraction pattern is measured without the lens. The measured image intensity 

(i.e. 𝐈𝒊𝒎𝒈r⃗ 
) forms a s-domain constraint, which is also named as specimen intensity constraint 

as shown below: 

 

 |𝛙r⃗ | = √𝐈𝒊𝒎𝒈r⃗ 
 eq 2. 6 

 

Although this constraint makes the phase problem theoretically soluble, it has some 

drawbacks. The most significant one is the existence of lens in a technology that is designed 

to be lens-less. Secondly, this new constraint formed by the intensity of the specimen is barely 

enough for solving the unknowns 40. Research indicates that it takes intensive computations 

to get a correct reconstruction40. Nevertheless, this method proves the possibility of solving 

phase problem by introducing another constraint. The Gechberg-Saxton algorithm is 

developed together with this method29. More details of this algorithm are given in section 

3.2.1. 

 

2.3.2. A known support 

Since forming an intensity image with a lens is not preferred, another idea of adding 

constraint onto the specimen was suggested by Fienup41,42, which is given a known boundary 

on the illuminated area. In this set-up, the specimen is covered with a mask, which has a 

transparent centre and opaque edges. This mask, also known as a support (𝐒𝑟⃗ ), only allows 

illumination that passes through its centre to contact the specimen; hence it forms an exit 
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wave whose edges are completely dark. A demonstration of this set-up is shown in Figure 2. 

6.  

 

 

Figure 2. 6. The set-up of involving support constraint to lens-less imaging. From left to right, a 
coherent light source illuminates a specimen through a mask (i.e. the support (𝑺𝑟 )). The exit wave (𝝍𝑟 )  
propagates freely and turns into a diffracted wave (𝜳𝑢⃗⃗ ) at far field. Finally, the intensity (𝑰𝑢⃗⃗ ) of this 
diffracted wave is measured by a detector at downstream. All the pictures showing above is only the 
intensity images. 

 

Due to the existence of this support, a set of exit waves that have pixel values equal zero 

outside support area is formed. This set is named as support set (𝕊) and expressed as eq 2. 7. 

With such a constraint, the retrieving process is looking for a phase that can inversely 

propagate an exit wave whose pixels outside the support all equals zero. This support 

constraint is also a kind of s-domain constrain, which can be expressed by following equation: 

 

 𝝍𝑟 = 0, 𝑖𝑓 𝑟 ∉ 𝕊 eq 2. 7 

 

This support constraint can be applied without adjusting set-up during collecting data. It also 

completely removes lenses from the imaging system. However, this constraint also has some 

drawbacks. First, making a support with sharp edges and a known area is not an easy task. 

Diffraction pattern is usually observed at the edges of support due to its physical thickness43. 

This phenomenon becomes more significant with the decrease of wavelength13. One way to 



21 
 

solve this problem is soften the constraint in the beginning44. In another words, a support 

with larger diameter is applied as an initial guess and its size is gradually reduced as the 

reconstruction proceeds. Second, a centrosymmetric support can lead to twin images effect45. 

Such an inherent ambiguity is caused by the characteristic of Fourier transformation, as the 

flipped conjugate of a centrosymmetric function provides the same energy distribution in the 

frequency domain as the original one. Moreover, as the Fourier transformation is a linear 

operator, all linear combinations of these two functions satisfy the f-domain constraint. The 

only way of preventing this effect is to avoid using a centrosymmetric support, which increase 

the difficulty of guessing the support function. Third, the application of a support shrinks the 

observed area of the sample, so the observer has to compromise between view area and 

magnification13.  

 

2.3.3. Overlapped scanning positions 

The intensity image and support constraints are utilised in phase imaging for a while, but they 

cannot always provide efficient and promising reconstructions46, not to even mention their 

limited view area. An alternative s-constraint that circumvents these issues is latterly 

recommended by scanning the specimen with a localised structured illumination at multiple, 

partially overlapping positions: this is ptychography47. 

The device set-up for ptychography is demonstrated in Figure 2. 7. Starting from the left side 

of this figure, a coherent light passes through aperture (𝐀𝑟 ) and lens (𝐋𝑟 ) and forms a 

defocussed “probe” beam (𝐏̂𝑟 ) on a localised region of the specimen plane. The probe is 

absorbed and diffracted when penetrating through the specimen, which is also known as 

object (𝐎̂𝑟 ) in ptychography. At the back of the specimen, this wave is encoded by the 

information of both the probe and object and is named as the “𝑘𝑡ℎ exit wave” (𝛙𝑟 ,𝑘). Finally, 

the exit wave propagates over a long distance and is detected by the detector as the 𝑘𝑡ℎ 

diffraction pattern (𝐈𝑢⃗⃗ ,𝑘).  

Once a diffraction pattern is collected, a relative movement (𝑟 𝑘+1) is introduced between the 

object and probe, indicated by the red arrows in Figure 2. 7. Hence a new diffraction pattern 

is obtained. This process is repeated until the whole area of interest has been scanned 

through by the probe. The relative movement can be achieved either by shifting the probe or 

shifting the object, though a shifting object is more common.  
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Figure 2. 7. A demonstration of ptychography with some key variables. From left to right, a coherent 
light passes through an aperture (𝑨𝑟 ) and lens (𝑳𝑟 ), then propagate through a distance forms a probe 

(𝑷̂𝑟 ) onto the object plane (𝑶̂𝑟 ). (In an experiment, the true probe is on the same plane of object. The 
gap between probe and object in the above picture is exaggerated to give a clear view.) The red outline 
on the object highlights the area contacted by the probe at the current scanning position (𝑟 𝑘+1), while 
the red dots indicate the centre of all scanning position. Once the wave front leaves the object, it carries 
the information of both probe and object and named as the exit wave (𝝍𝑟 ,𝑘). This exit wave propagates 

through a far field and is recorded by the detector as a diffraction pattern (𝑰𝑢⃗⃗ ,𝑘). After that, the object 

is shifted to the next scanning position. The shifting directions are demonstrated by the arrows next to 
the object. This process is repeated until diffraction patterns at all scanning positions have been 
obtained.  

 

The s-constraint in ptychography is formed by the overlapping area at different scanning 

positions. As one area of the specimen needs to satisfy multiple intensity measurements, it is 

well confined. Such a redundancy in the collected data also makes refining scan positions48 

and recover missing data49 possible. Another advantage of ptychography is that it can achieve 

any desired view area by adjusting the scanning grid47. Due to its adjustable step size and 

scanning grid, ptychography is highly adaptive to various kinds of circumstance. On the other 

hand, ptychography also suffers problems brought by scanning positions. Although the 

shifting specimen is done by specifically designed platform, a rotated or scaled scanning grid 

still happen occasionally50. This sort of inaccuracy significantly increases the difficulty of 

reconstruction. Another potential difficulty is caused by dealing a large amount of data, which 
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imposes restrictions onto the reconstruction time and computation hardware. But, after all, 

the constraint provided by ptychography provides the most information for solving phase 

problem among all the s-constraints47. Its adaptivity and topology variations (e.g. Fourier 

ptychography, 3D ptychography and rotating ptychography) let it outperform other 

competitors and become one of the mainstreams in nowadays phase imaging.  

 

2.3.4. Other constraints 

Besides the constraints that are obtained by physically adjusting the arrangement of devices, 

other s-domain constraints have also served for solving phase problem for a long time.  

Nonnegativity29 is a constraint that can be applied to real-valued object. It forces all negative 

pixels of a guessed object to zero. When the intensity of certain amount of pixels of object is 

known, Histogram29 can be applied by replacing the value of the most brightest pixel in the 

current reconstruction by the known histogram values. Assuming the modulus of all pixels of 

object are available without knowing their corresponding coordinates, these values are 

sorted to produce an array, or a histogram. Hence, every time a guessed real-valued object is 

obtained, its pixels can be sorted based on their modulus, then replace their modulus by the 

corresponding histogram array values. 

Atomicity29 is a constraint requires prior knowledge of the number of non-overlapping 

individuals in the field of view29.  This constraint is common in crystallography and astronomy, 

as the individuals are atoms or stars, which are sort of countable in advance. Applying this 

constraint requires defining an area that one individual can occupy. In the simplest case, each 

individual only occupies one pixel. Hence, for any guessed object, the pixels with the most 

significant values are considered as the ‘present of individuals’, while other pixels are replaced 

by zeros.  

 

2.4. Mathematical model of ptychography 

To deepen the understanding on ptychography, this section explains it with a mathematical 

model together with the approximations assumed and some of the possible modifications. 

Such a model is also the basis for the software simulations detailed in later chapters. 
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2.4.1. The background  

To make a mathematical model for ptychography, there are three questions that need to be 

answered: how the involved variables are expressed, how their units are related to metric 

units in the physical model and what kinds of operators are applied between them.  

The first step is representing these variables mathematically. Most of the variables shown in 

Figure 2. 7 can be considered as images contained in a certain area and have both modulus 

and phase information, hence can be expressed as matrices filled with complex numbers. The 

size of matrix is explicitly determined by the detector. For instance, if the sensors of detector 

are binned into a structure of 512×512 pixels, then the diffraction pattern (𝐈𝑢⃗⃗ ) will be recorded 

as a 512×512 matrix. As all variables are related to the diffraction pattern either explicitly or 

implicitly, they all have the same matrix size as the diffraction pattern. Therefore, nearly all 

the variables in ptychography appear as, for example, 512×512 matrices, filled with complex 

numbers. The only exception is the object (𝐎̂𝑟 ), which has a larger size in most cases. During 

the simulation, the area of the object that is illuminated at a given scan position will be “cut 

out” and turns into a matrix with the same size as the detector size (e.g. 512x512 pixels). In 

this thesis all the matrix-type variables are denoted by bold capital letters.  

Since all the images are expressed in matrix style, their pixels are equivalent to elements in 

the matrix. These elements can be referred to by setting up an upside-down Cartesian 

coordinate sat at the top-left corner, which in MATLAB starts from 1 rather than 0. After that, 

any pixel in this matrix can be referenced by a vector, which is noted by a lower-case letter 

with a vector hat (⃗⃗  ⃗). Here, 𝑟  and 𝑢⃗  are utilised to distinguish vectors in real and reciprocal 

spaces. With this set-up, one can refer to one pixel of a matrix (𝐌) at the position 𝑟  as M𝑟 . 

The element of a matrix is noted by the same letter but not bold font.  Examples are shown 

in Figure 2. 8. 
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Figure 2. 8. A demonstration of referring to a pixel when the image is represented as a matrix. The 
origin of coordinate is set at the top-left corner of this matrix. The row and column axes are labelled 
with indexing numbers. The first element in this setup is referred as (1,1), which is highlighted by grey 
colour. An example of referring to a specific pixel ( 𝑟 = (2, 3) ) is shown in the picture as well.  

 

The second problem is converting the scanning positions from metric units into pixels. Such a 

conversion is based on the concept of angular spectrum. In far-field ptychography, the 

conversion ratio (𝑑𝑥𝑦) is expressed in eq 2. 8 with unit as meter/pixel2,39. 

 

 
𝑑𝑥𝑦 =

𝜆

𝜃𝑠𝑝𝑎𝑛 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
 eq 2. 8 

The 𝜆 is the wavelength of the illuminating wave in meters. The detector span angle is usually 

estimated as the ratio of detector dimension (𝑑𝑐𝑎𝑚) and the distance between source and 

detector ( 𝑙𝑐𝑎𝑚 ) as shown in eq 2. 9, which is under the assumption of small angle 

approximation. The subscript ‘ 𝑐𝑎𝑚’ stands for ‘camera’, which is the detector in this context. 

 

 𝜃𝑠𝑝𝑎𝑛 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ≈ tan(𝜃𝑠𝑝𝑎𝑛 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟) =
𝑑𝑐𝑎𝑚

𝑙𝑐𝑎𝑚
 eq 2. 9 

Nevertheless, these two parameters might not be acquired directly and precisely. So other 

routines of computing the detector span angle are also common. One example is given in 

Figure 2. 9. One can derived their own equation following this logic based on the available 

data and the device set-up.  
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Figure 2. 9. A demonstration of an optional routine for computing the detector span angle 
(𝜃𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑛 ). In some experiment, the detector set-up is calibrated by detecting the scattering 

pattern from heavy atoms, e.g. gold atoms. In this scenario, one can obtain the span angle of a picked 
diffraction ring (e.g. 3rd diffraction ring of gold atoms) by dividing the wavelength (𝜆 ) with the 
diameter of the chosen ring in metric unit (𝑑𝑚𝑒𝑡𝑟𝑖𝑐). Then the span angle of each pixel (𝜃𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑎𝑛) can 

be obtained by further dividing this spot span angle by the diameter of the spot in number of pixels 
(𝑑𝑝𝑖𝑥𝑒𝑙). Finally, a multiplication of the pixel span angle and the number of pixels along the side of 

detector gives the detector span angle (𝜃𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑛).  

 

The scanning position hence can be converted from metric unit to the pixel unit by dividing 

the 𝑑𝑥𝑦. Since only the relative positions matter during reconstruction, an offset is often 

adapted to the scanning grid to minimise the unscanned area in the reconstructed object. 

Such an adjustment is helpful for reducing the memory occupation and computing time. A 

typical converting formula is given as eq 2. 10. This equation is prone to fractional pixel 

positions, which is normally solved by rounding its outcomes to the nearest integers. 

 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑖𝑥𝑒𝑙 =
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚𝑒𝑡𝑟𝑖𝑐

𝑑𝑥𝑦
+ 𝑜𝑓𝑓𝑠𝑒𝑡 eq 2. 10 

The last problem is the operators between these matrix-style variables. Most of the operators 

act pixel-wise (e.g. summation, multiplication, and division etc.), hence variables related by 

them have the same size. All operators are noted in curly bold letters in this thesis.  

As one of the important operators in this thesis, Fourier (𝓕) and inverse Fourier (𝓕−𝟏 ) 

transformation in this thesis imply their 2-dimensional application as shown in eq 2. 11 and 

eq 2. 12 respectively, which are normally done by DFT as a more efficient fashion24.  These 

transformations are not elementwise operation, though they produce outputs that have the 

same size as the inputs.  

 

 
𝚿𝑢⃗⃗ = 𝓕(𝛙r⃗ ) 

= ∬𝛙r⃗ exp (−
𝑗2𝜋𝑢1𝑟1

𝑀
)exp (−

𝑗2𝜋𝑢2𝑟2
𝑁

)𝑑𝑟1𝑑𝑟2 eq 2. 11 
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 𝛙r⃗ = 𝓕−𝟏(𝚿𝑢⃗⃗ ) 

=
1

𝑁2
∬𝚿𝑢⃗⃗ exp (−

𝑗2𝜋𝑢1𝑟1
𝑀

)exp (
𝑗2𝜋𝑢2𝑟2

𝑁
)𝑑𝑢1𝑑𝑢2 eq 2. 12 

 

There are two special operators that return an output with different size: the 𝓒𝓾𝓽 and 𝓐𝓭𝓭.  

These two operators are utilised to relate the object to the rest variables. Since the object 

(𝐎̂𝑟 ) usually has a larger size than others, the illuminated area at each scan position needs to 

be specified before performing any element-wise operation. The 𝓒𝓾𝓽 operator extracts the 

illuminated area of object at a given scanning position, while the 𝓐𝓭𝓭 operator add a given 

matrix to the illuminated area. Their pseudo codes are given in Pseudocode 2. 1 and 

Pseudocode 2. 2. 

 

 

 

Pseudocode 2. 1: Cut out part of matrix (𝓒𝓾𝓽) 

Input: 
The matrix (𝑚𝑎𝑡𝑟𝑖𝑥), the coordinate of the centre of chosen area ([𝑟1, 𝑟2]), the 

size of chosen area ([𝑟𝑜𝑤, 𝑐𝑜𝑙]) 

Output: A chosen part of matrix (𝑝𝑎𝑟𝑡) 

Format:  𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑚𝑎𝑡𝑟𝑖𝑥, [𝑟1, 𝑟2], [𝑟𝑜𝑤, 𝑐𝑜𝑙]) 

1:   𝑟𝑜𝑤 𝑟𝑎𝑛𝑔𝑒 = (𝑟1 −
𝑟𝑜𝑤

2
) : (𝑟1 +

𝑟𝑜𝑤

2
− 1) 

2:   𝑐𝑜𝑙 𝑟𝑎𝑛𝑔𝑒 = (𝑟2 −
𝑐𝑜𝑙

2
) : (𝑟2 +

𝑐𝑜𝑙

2
− 1) 

3:   𝑝𝑎𝑟𝑡 = 𝑚𝑎𝑡𝑟𝑖𝑥(𝑟𝑜𝑤 𝑟𝑎𝑛𝑔𝑒, 𝑐𝑜𝑙 𝑟𝑎𝑛𝑔𝑒) 
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Pseudocode 2. 2: Add a smaller matrix to a part of larger one (𝓐𝓭𝓭) 

Input: 
A large matrix (𝑚𝑎𝑡𝑟𝑖𝑥), a smaller matrix (𝑝𝑎𝑟𝑡), the coordinate of the centre 

of chosen area ([𝑟1, 𝑟2]), the size of the chosen area ([𝑟𝑜𝑤, 𝑐𝑜𝑙]) 

Output: The summed matrix (𝑚𝑎𝑡𝑟𝑖𝑥) 

Format:  𝑚𝑎𝑡𝑟𝑖𝑥 = 𝓐𝓭𝓭(𝑚𝑎𝑡𝑟𝑖𝑥, 𝑝𝑎𝑟𝑡, [𝑥, 𝑦], [𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛] ) 

1:   𝑟𝑜𝑤 𝑟𝑎𝑛𝑔𝑒 = (𝑟1 −
𝑟𝑜𝑤

2
) : (𝑟1 +

𝑟𝑜𝑤

2
− 1) 

2:   𝑐𝑜𝑙 𝑟𝑎𝑛𝑔𝑒 = (𝑟2 −
𝑐𝑜𝑙

2
) : (𝑟2 +

𝑐𝑜𝑙

2
− 1) 

3:   𝑚𝑎𝑡𝑟𝑖𝑥(𝑟𝑜𝑤 𝑟𝑎𝑛𝑔𝑒, 𝑐𝑜𝑙 𝑟𝑎𝑛𝑔𝑒) = 𝑚𝑎𝑡𝑟𝑖𝑥(𝑟𝑜𝑤 𝑟𝑎𝑛𝑔𝑒, 𝑐𝑜𝑙 𝑟𝑎𝑛𝑔𝑒) + 𝑝𝑎𝑟𝑡 

 

 

2.4.2. The mathematical model 

With above conventions, ptychography can be transferred into a mathematical model. To 

make it clear, this process is explained in two separate stages: the formation of probe and the 

formation of diffraction pattern. 

There are many ways to form the probe (𝐏̂𝑟⃗ ) in ptychography, but the most common method 

focuses a light source using a lens. Modelling the formation of such a probe starts from a 

coherent light source, which is simulated as matrix filling with constants. This light source 

passes through an aperture (𝐀𝑟⃗ ), which is expressed as matrix. Its central part is transparent, 

expressed as 1, while its dark edges are expressed as 0. Hence any wave front can pass freely 

from the centre but be stopped outside that area. This process is expressed as a multiplication 

between the light source and aperture. Following the aperture is a condensing lens to form a 

localised illumination. This step adds a quadratic phase to the passing wave, which is also 

simulated as a multiplication. Finally, this wave propagates and turns into a probe, which is 

approximated by a Fourier transformation. This process is demonstrated with 4x4 matrices as 

a simplified example in Figure 2. 10. 
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Figure 2. 10. A mathematical model of the formation of probe with 4x4 matrices as an example. To 
visualise the content of each variable, each matrix is combined with a corresponding picture in its 
background. All matrices use the modulus image as background picture, except the lens. Since the 
modulus of lens equals one everywhere, its phase image is chosen as background picture instead. 𝑠∠𝜔𝑟  
is a shorthand for 𝑠 ∙ 𝑒𝑥𝑝(𝑗𝜔𝑟 ). As the aperture and lens are not in the same space as probe, their 
referring vectors are noted as 𝑣 . From top to the bottom, a coherent light source simulated as a matrix 
filling with constant (e.g. s) passes through an aperture (𝑨𝑟 ), which is expressed as a matrix filled with 
0s and 1s. When the passing light is converged by lens (𝑳𝑟 ), a phase information is added. Finally, a 

localised illumination, so called “probe (𝑷̂𝑟 )”, is formed after a far-field propagation, which is simulated 
by a 2D Fourier transformation. 
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This probe (𝐏̂𝑟⃗ ) falls onto a specimen (𝐎̂𝑟 ) and is absorbed and diffracted during penetration. 

The interaction between the probe and object can be simulated as a multiplication, as long as 

the depth of field does not go beyond the thickness limit51, which is defined as follows: 

 

 δ = 4.88
𝑑𝑝𝑖𝑥𝑒𝑙

2

𝜆
 

eq 2. 13 

 

In order to performing elementwise multiplication, a part of object (𝐎̂𝑟 ,𝑘) with the same size 

as the probe is cut out from the object matrix with the 𝓒𝓾𝓽 operator. The propagation of exit 

wave (𝛙𝑟⃗ ,𝑘) at far-field is simulated by Fourier transformation, which turns the exit wave into 

a diffraction pattern (𝐈𝑢⃗⃗ ,𝑘) that falls onto the detector. Only the modulus of this complex 

matrix is maintained by the detector. This process is demonstrated in Figure 2. 11 together 

with Pseudocode 2. 3. A hint of minimising memory occupation by sharing a same variable 

between several intermediate variables is given as a note in the bottom of the pseudo code. 

The energy of a matrix is defined as the sum of the squared modulus of each element. Since 

the energy stays the same in both spatial and frequency domain, the energy of 𝛙r ,𝑘  (i.e. 

𝐸𝑛𝑒𝑟𝑔𝑦𝑘) can be gauged by summing up all the element of 𝐈𝑢⃗⃗ ,𝑘. The energy of matrix as 

defined by eq 2. 14 is a useful property for limiting the probe energy during the phase retrieval. 

 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑘 = ∑ |𝛙𝑟 ,𝑘|
2

𝑟 
= ∑ 𝐈𝑢⃗⃗ ,𝑘

𝑢⃗⃗ 
 eq 2. 14 
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Pseudocode 2. 3: The formation of diffraction pattern 

Input:  specimen (𝑜𝑏𝑗𝑒𝑐𝑡), illumination (𝑝𝑟𝑜𝑏𝑒) and scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

Output:  Measured intensities (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠) 

1:  For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

2:    𝑡ℎ𝑒 𝑘𝑡ℎ  𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

3:    𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

4:    𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = |𝓕( 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒  )|  

5:    𝑡ℎ𝑒 𝑘𝑡ℎ  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠2 

6:  End(k) 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 and 𝑚𝑜𝑑𝑢𝑙𝑢𝑠  
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Figure 2. 11. The formation of the kth diffraction pattern with 4x4 matrices as examples. A probe (𝑷̂𝑟 ) 

contact the 𝑘𝑡ℎ part of object (𝑶̂𝑟 ,𝑘), which is the part covered at the 𝑘𝑡ℎ scanning position that is 

highlighted by a red outline in Figure 2. 7. These two matrices generate the kth exit wave (𝝍𝑟 ,𝑘) by 

multiplication. All these variables are matrices filled with complex numbers. Finally, the kth diffraction 
pattern (𝑰𝑢⃗⃗ ,𝑘) is calculated by taking the square of the modulus of the Fourier transformed exit wave. 

One should notice the diffraction pattern is a pure real matrix, unlike any other matrix-style variables. 

 

2.4.3. Simulating noise  

The process explained above models ptychography under ideal circumstances. However, the 

data collected from an experiment contains various kinds of noise. Some of them are 

inevitable and have influence on the outcomes. To test the robustness of different phase 

retrieval methods, some artificial noise can be added to the flawless data during simulation. 
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Since the data utilised in reconstruction is made up of the diffraction patterns and the 

scanning positions, the noise and error that might exist within them are explained 

respectively. 

 

2.4.3.1. Detector noise in diffraction patterns 

This detector noise is introduced during recording diffraction patterns. It includes the Poisson 

shot noise, dark current noise and readout noise. The Poisson noise is an inevitable error 

caused by a physical phenomenon when counting random episodes with insufficient samples. 

Although increasing the counts of incident particles (e.g. photons or electrons) can minimise 

its influence, it is not suitable for samples that can be damaged by an over-dose of illumination. 

The dark current noise is caused by randomly excited electrons who are stochastically 

triggered by the thermal energy from their surroundings. As it follows the normal distribution, 

it is also called Gaussian noise. The last one, readout noise, is caused by rounding-up and 

clamping the readings to a specific dynamic range that is limited by the design of detector.  

The process of adding detector noise is shown in Figure 2. 12. First, a noiseless simulated 

diffraction pattern is divided by a detector gain (G), which is estimated as the ratio between 

the probe energy and the count of photons. This converts the intensity measurements into a 

photon matrix. Then this photon matrix is contaminated by Poisson noise and converted into 

an electron matrix by multiplying with the quantum efficiency (𝜂) and rounding up.  After that, 

a dark noise following a Gaussian distribution is added into the electron matrix. This electron 

matrix is scaled by the sensitivity of detector (K) and rounded to integer. Finally, a base line 

is added to make sure the minimum readings are higher than a specific value and any number 

larger than the maximum value is clamped by the bit-depth of the detector52.   
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Figure 2. 12. The process of simulating detector noise. From left to right, a photon matrix is gauged by 
dividing the noiseless diffraction pattern with the detector gain (G). Then a Poisson noise is generated 
based on the noiseless photon matrix and summed up together. This combined matrix is scaled by the 
quantum efficiency (𝜂) and rounded up to obtain an electron matrix. A dark noise following normal 
distribution is composed onto the electron matrix. After that, this noisy electron matrix is scaled by the 
sensitivity (K) and round up again. Finally, a read noise is introduced when converting this matrix into 
the final readings. Since detectors have dynamic range limited by the base line and bit-depth, a 
constant is added to the whole matrix to make sure its minimum value is not smaller than the base 
line. Then any value beyond the range of bit-depth is limited to the maximum possible value.  

 

2.4.3.2. Errors in scanning positions 

The scanning positions collected from experiment might also come with errors, which causes 

the actual scanning grid to deviate from the desired one. The transformation is a combination 

of rotation, scaling and random offsets. A rotated scanning grid is usually caused by an 

improperly positioned detector as shown in Figure 2. 13.  

With a poorly calibrated detector, an angle (θ) is introduced between the scanning grid and 

detector. By taking the detector coordinate as the standard, one can identify the scanning 

positions is angled by θ. This rotation effect can be simulated by multiplying the position 

coordinate with a rotation matrix (𝐑) as shown in eq 2. 15 and eq 2. 16. The multiplication 

here follows the inner product rule of matrix.  

 

 𝑟𝑘
′⃗⃗  ⃗ = 𝐑(𝜃) ∙ 𝑟𝑘⃗⃗  ⃗ eq 2. 15 

 [
𝑟𝑘1

′

𝑟𝑘2

′ ] = [
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
] [

𝑟𝑘1
𝑟𝑘2

] eq 2. 16 
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Figure 2. 13. The rotation effect caused by an angle between the scanning grid and the detector. The 
coordinates indicate the horizontal and vertical direction of the detector. The left picture shows that 
an angle (θ) between the coordinates of detector and scanning grid. If the detector coordinate is 
treated as the standard, the angled scanning positions can be calculated by multiplying the original 

coordinate (𝑟𝑘1, 𝑟𝑘2) with a rotation matrix (R). The 𝑘𝑡ℎ scanning position (𝑟𝑘⃗⃗  ⃗) is given in the picture as 

an example, which is highlighted by a red arrow. 

 

Scaling is another factor affecting the actual scanning positions. A coarse measurement on 

the device set-up or an inaccurate shifting platform can easily lead to an inaccurate converting 

ratio between metric and pixels, hence a scaled scanning position. This effect can be 

simulated by multiplying the position coordinate with a constant as shown in eq 2. 17 and eq 

2. 18.  

 

 𝑟𝑘
′⃗⃗  ⃗ = 𝑘𝑠𝑐𝑎𝑙𝑒 ∙ 𝑟𝑘⃗⃗  ⃗ eq 2. 17 

 
[
𝑟𝑘2

′

𝑟𝑘2

′ ] = 𝑘𝑠𝑐𝑎𝑙𝑒 [
𝑟𝑘1
𝑟𝑘2

] eq 2. 18 

 

Last but not the least, each scanning position could contain a random shift (𝑟𝛥,𝑘⃗⃗ ⃗⃗ ⃗⃗ ) from its 

desired position48. The final 𝑘𝑡ℎ  scanning position after taking all the possible errors into 

account can be expressed by eq 2. 19. 

 

 𝑟𝑘
′⃗⃗  ⃗ = 𝑘𝑠𝑐𝑎𝑙𝑒 ∙ 𝑹(𝜃) ∙ 𝑟𝑘⃗⃗  ⃗ + 𝑟𝛥,𝑘⃗⃗ ⃗⃗ ⃗⃗  eq 2. 19 
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3. Algorithms for solving phase problems 

The key concepts of lens-less imaging are passing the task of forming images from lens 

systems to phase retrieval algorithms, hence the defects in lens will not affect the image 

quality. As an essential part of ptychography, phase retrieval algorithm plays an important 

role in recovering images from measured data and evolve together with imaging methods. In 

this chapter, some of the most representative algorithms in the history of lens-less imaging 

are explained. Although algorithms applied in early-stage imaging methods are different with 

those utilised in ptychography due to their different constraints, they are helpful to unveil the 

common logic in solving phase problem. This section begins with introducing the related 

background knowledge in mathematics (section 3.1) and follows by the descriptions of 

algorithms before (section 3.2) and after (section 3.2) the development of ptychography. 

Some computer background, which is related to ptychography, is given in section 3.4. 

 

 

Figure 3. 1. Phase retrieval algorithms act as compulsory post-processing tools in diffraction imaging. 
They reconstruct both the modulus and phase images from the collected data. 
 

3.1. Mathematics background 

Due to the complexity of the phase problem, most algorithms are based on iterative 

optimisation rather than figuring out solutions explicitly. They all start with a reasonable guess 

on the unknown terms and gradually approach a solution by repeatedly modifying unknowns 
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with measured data. These algorithms can be separated into two categories based on their 

methodologies of optimisation: set-projection methods and steepest descent methods. The 

math knowledge of these two methodologies is explained in the following sub sections.  

 

3.1.1. Set projection and reflection 

Set projection is a widely used method for finding intersection points between several sets 

that represent different constraints in an optimization problem, as shown in Figure 3. 2. 

Beside the application of in phase imaging, the set-projection methods have also been tested 

in wide range of problems, including graph colouring, logical satisfiability, spin glass ground 

states, bit retrieval and sudoku46.  

In phase retrieval, each constraint forms a set and their intersection points are considered as 

solutions, as an ideal solution should satisfy all the constraints at the same time. With such a 

model, the set-projection method inspired many phase retrieval algorithms. Some of them is 

well-known for its capability of preventing stagnation. This section uses ptychography as an 

example, and explains how the concept of set-projection is applied in solving phase problem. 

 

 

Figure 3. 2. A demonstration of how set projection method approaches a solution. There are two given 
sets in the above picture, i.e. set A and B. Their intersection, which is the shadow area, contains the 
solutions. An initial guess, which is marked by red dot, approaches the solution area by alternatively 
projecting between two sets. The movement of each projection is indicated by arrows 
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3.1.1.1. f- and s- sets in ptychography 

All advantages achieved by ptychography come from two constraints: the measured 

intensities and the overlapping areas. As explained in Chapter 2, if the sampling grid is 

organised with 𝑀  rows and 𝑁  columns, the specimen (𝐎̂𝑟 ) can be expressed as a 𝑀 × 𝑁 

complex matrix. In ptychography, 𝐾  diffraction patterns ( 𝐈𝑢⃗⃗ ,𝑘 ) are obtained by shining 

illuminations onto this specimen with  𝐾  diverse positions, each diffraction pattern is 

expressed as a 𝑀 × 𝑁 matrix with reciprocal sampling rate in f-domain. The illumination is 

denoted as 𝐏̂𝑟 , while the specimen with K diverse translations is denoted as  𝐎̂𝑟 ,𝑘 ∈ ℂ𝐷, 𝐷 =

𝑀 × 𝑁 × 𝐾. Such a relationship is expressed by eq 3. 1, where the subscript 𝑟𝑘⃗⃗  ⃗ represents the 

relative shift. 

 

 𝐈𝑢⃗⃗ ,𝑘 = |𝓕(𝐎̂𝑟 ,𝑘 ∙ 𝐏̂𝑟 )|
2
 

eq 3. 1 

 

Therefore, all guessed objects ( 𝐎𝑟 ) and probes ( 𝐏(𝑟 −𝑟𝑘⃗⃗ ⃗⃗  ) ) satisfying the intensity 

measurements form a modulus set (𝕄), which is expressed by eq 3. 2. This set constrains the 

moduli of the set of viable exit waves in reciprocal space, which is also referred to as the f-

domain. Hence, the set 𝕄 is also referred as the f-constraint in the thesis.  

 

 {𝕄 ⊆ ℂ𝐷: |𝓕(𝐎𝑟 ,𝑘 ∙ 𝐏𝑟 )| = √𝐈𝑢⃗⃗ ,𝑘 , ∀𝑘ϵ[1,2, … , 𝐾]} eq 3. 2 

 

Due to lack of phase information, the f-constraint alone is insufficient for phase retrieving (as 

explained in Chapter 2). Thus, another constraint is required, which is a constraint in the 

spatial domain (i.e. the s-constraint). The s-constraint is formed by the overlapping area 

between different scanning positions in ptychography. When exit waves are generated from 

the guessed object and probe, they are sharing the overlapping area and related to each other 

in the spatial domain47. The set formed by the overlapped area is the consistency set (𝕆), 

which is expressed by eq 3. 3. This consistency set is due to the fact that the content of 

specimen is not changed during the recording of the diffraction patterns. Therefore, a 

successful reconstruction should produce 𝐎𝑟 𝑘
= 𝐎𝑟 𝑓𝑖𝑥𝑒𝑑

, ∀𝑘ϵ[1,2, … , 𝐾]. 

 

 {𝕆 ⊆ ℂ𝐷: 𝐎𝑟 𝑘
= 𝐎𝑟 𝑙

, ∀𝑘, 𝑙ϵ[1,2, … , 𝐾] } eq 3. 3 
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With these two sets, the lost phase can be iteratively retrieved by propagating the guessed 

object and probe between s- and f- domains and applying these constraints alternatively. 

Such a flow is demonstrated in Figure 3. 3. The process of manipulating exit waves with 

respect to these constraints is known as projection and reflection46,53, which are explained in 

the following sections. 

 

 

Figure 3. 3. The flow chart of updating object and probe with the f- and s-constraint. Starting from the 
left, the consistency of overlapping area forms the s-constraint. A group of guessed exit waves are 
generated by taking part of object out and multiplying with probe. These exit waves satisfy the s-
constraint. After that, they are revised by the f-constraint and turn into the revised exit waves. 
Eventually, these revised exit waves are utilised to update the guessed object and probe. 

 

3.1.1.2. Projection (𝓟) 

Projecting a vector onto a set is equivalent to finding a new vector that lies within the set, 

which has a minimum “distance” from the original vector29,46,54.  To give a mathematical 

description, we start from the weighted inner product in a complex vector space ℂ𝐷: 

 

 〈𝒙, 𝒚〉𝝎 = ∑ 𝜔𝑑𝑥𝑑𝑦𝑑
∗

𝐷

𝑑=1
 

eq 3. 4 

 

Where the subscript 𝝎 is a vector of weights in space ℂ𝐷 , hence each dimension of this 

complex space is correspondingly weighted by 𝜔𝒅 ∈ ℝ+ . Therefore, 〈◻,◻〉𝜔  represents the 

inner product weighted by 𝝎 and in particular 〈◻,◻〉𝟏 is the conventional complex Euclidean inner 

product. A weighted norm can be expressed by eq 3. 5. 

 

 ‖𝒙‖2 = 〈𝒙, 𝒙〉𝝎 = ∑ 𝜔𝑑|𝑥𝑑|
2

𝐷

𝑑=1
 

eq 3. 5 
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Meanwhile, the related distance metric between two vectors, 𝒙 and 𝒚 in a complex space 

𝐷 = 𝑀 × 𝑁 × 𝐾, is defined as eq 3. 6. 

 

 𝑑𝝎(𝒙, 𝒚) = ‖𝒙 − 𝒚‖𝝎 = √∑ 𝜔𝑑|𝑥𝑑 − 𝑦𝑑|2
𝐷

𝑑=1
 

eq 3. 6 

 

For 𝝎 = 𝟏, the above norm (eq 3. 5) and distance (eq 3. 6) expressions are their Euclidean 

equivalents. The distance between 𝒙 and 𝒚 along each dimension of ℂ𝐷  can be weighted 

unequally by assigning different values to different dimensions of 𝝎.  To be more specific, a 

large 𝜔𝑑 magnifies the distance between 𝑥𝑑 and 𝑦𝑑, while a small 𝜔𝑑 shrinks their distance. 

Such an influence is illustrated in Figure 3. 4. Based on this definition of distance, projecting 

a vector (𝒙) to a set (𝕄) can be expressed as eq 3. 7.  

 

 𝓟𝕄(𝒙) = argmin
𝒛𝜖𝕄

 𝑑𝝎(𝒙, 𝒛) eq 3. 7 

 

 

Figure 3. 4. A 2D example of how the 𝝎 affects projections. In this example, vector 𝒙 is projected onto 
the set 𝕄 under the influence of 𝝎 = (𝜔1, 𝜔2). 2 equal-distance loci from vector 𝒙 (locus 1 and 2) 
under different circumstance are shown as dotted lines. The corresponding projection points are 
marked as 𝑧1and 𝑧2. When 𝜔1 and 𝜔2 are equal, the horizontal and vertical dimensions are equally 
weighted. Hence a circle locus is formed as locus 1, which touches set 𝕄 at point 𝑧1. When 𝜔1 is much 
larger than 𝜔2, the variation along the horizontal dimension has more influence on the distance. Hence 
the locus has less horizontal variation, and acts as a horizontally squeezed eclipse that touches set 𝕄 
at 𝑧2.  
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• f-constraint: intensity measurement of diffraction pattern 

Projection with respect to the f-constraint (i.e. the measured intensities) is a common 

operator in diffractive imaging. To perform the f-projection (𝓟𝑓 ), the exit wave (𝛙𝑟⃗ ) is 

transformed into the reciprocal space (f-domain) by Fourier transformation. Since this exit 

wave is calculated based on the guessed object and probe, neither of its amplitude and phase 

is correct. Based on the definition of distance, projecting a guessed exit wave (𝚿𝑢⃗⃗ ) to the f-

constraint is done by replacing its modulus with the square root of the measured 

intensities(𝐈𝑢⃗⃗ ), while leaving its phase unchanged. The process of replacing modulus in f-

domain is noted as 𝓹𝑓  and demonstrated by eq 3. 8. A simplified demonstration of its 

geometry meaning is shown in Figure 3. 5.  

 

 𝚿𝑢⃗⃗ 
′ = 𝓹𝑓(𝚿𝑢⃗⃗ ) = √𝐈𝑢⃗⃗ 

𝚿𝑢⃗⃗ 

|𝚿𝑢⃗⃗ |
  eq 3. 8 

 

This is a ‘distance-minimising’ operation and can be proved with the help of Figure 3. 5. For a 

single pixel of 𝚿𝑢⃗⃗  at position 𝑑𝜖𝐷, its value can be expressed in polar coordinate form as: 

 

 Ψ𝑢⃗⃗  = |Ψ𝑢⃗⃗ | ∠𝜏𝑢⃗⃗  eq 3. 9 

 

Where 𝜏𝑢⃗⃗  stands for its phase angle. Similarly, a pixel that satisfies the measured intensity at 

the same pixel position (i.e. Ψ𝑢⃗⃗ ′) must have modulus equals √I𝑢⃗⃗ , while its phase angle is 

unknown. We express the phase difference between the Ψ𝑢⃗⃗  and Ψ𝑢⃗⃗ ′ by ∆𝜏𝑢⃗⃗ , and get: 

 

 Ψ𝑢⃗⃗ ′ = √I𝑢⃗⃗  ∠(𝜏𝑢⃗⃗ + ∆𝜏𝑢⃗⃗ ) eq 3. 10 

 

Hence their complex Euclidean distance can be expressed as: 

 

 𝑑(Ψ𝑢⃗⃗ , Ψ𝑢⃗⃗ 
′ ) = √|Ψ𝑢⃗⃗ | 

2 + I𝑢⃗⃗ − 2|Ψ𝑢⃗⃗ |√I𝑢⃗⃗ cos(∆𝜏𝑢⃗⃗ )    eq 3. 11 

 

Which achieves the minimum value when ∆𝜏𝑢⃗⃗ = 0. In other word, the distance reaches the 

minimum value when the pixels of guessed and revised exit waves have the same phase, 

which is exactly the effect of 𝓹𝑓. Since each pixel is fitted to the constraint with the minimum 

variation, the complex Euclidean distance between  𝚿𝑢⃗⃗  and 𝚿𝑢⃗⃗ 
′ is also minimised. Hence the 
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operator 𝓹𝑓, which makes the Fourier transformed guessed exit wave satisfies its f-constraint 

with minimum adjustment, is a ‘f-projection’ operator.  

After applying the f-projection (𝓹𝑓), this revised exit waves (𝚿𝑢⃗⃗ 
′) are transformed back to the 

real space (s-domain) with inverse transformation. This whole procedure is combined as 𝓟𝑓 

in eq 3. 12 for the sake of simplicity. A pseudo code of f-projection is given in Pseudocode 3. 

1. 

 

 𝛙𝑟 
′ = 𝓕−1 (𝓹𝑓(𝓕(𝛙𝑟 ))) = 𝓟𝒇(𝛙𝑟 ) eq 3. 12 

 

 

Pseudocode 3. 1: The f-projection (𝓟𝑓) 

Input:  guessed exit wave (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

1:   𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕 (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

2:   𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 =  √𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∙ exp(𝑗 ∙ 𝑎𝑛𝑔𝑙𝑒(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒)) 

3:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕−1(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Note [1]:  Temporary variable: 𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 
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Figure 3. 5. A demonstration of f-projection for a single pixel of 𝜳𝑢⃗⃗  at position 𝑑𝜖𝐷 in 𝑓 − 𝑑𝑜𝑚𝑎𝑖𝑛. 
The pixel value of Fourier transformed guessed exit wave is expressed with polar coordinate as 𝛹𝑢⃗⃗ =
|𝛹𝑢⃗⃗ |∠𝜏𝑢⃗⃗  and denoted as a black dot in the figure. The constraint formed by the measured intensity at 

the same pixel is expressed as a circle with radius equals √𝐼𝑢⃗⃗ . Any pixel that satisfies f-constraint must 

sits on this circle, though its phase angle may vary. An example of pixel fitting f-constraint is highlighted 

by a red dot, whose coordinate is 𝛹𝑢⃗⃗ ’ = √𝐼𝑢⃗⃗  ∠(𝜏𝑢⃗⃗ + ∆𝜏𝑢⃗⃗ ). 

 

Unlike the f-constraint, the s-constraint used by different diffractive imaging methods varies 

from one to another. Referring to the order in Chapter 2, the approaches of applying these s-

constraint are explained one by one.  

 

• s-constraint #1: known image intensity 

When the image intensity of specimen (𝐈𝒊𝒎𝒈r 
) is known, projecting the guessed image (i.e. 𝐎𝑟  

in this case) to the s-constraint is similar to the f-projection, which is replacing the modulus 

by the square root of measured image intensity while leaving its phase unchanged as shown 

by eq 3. 13. Its pseudocode is given in Pseudocode 3. 2. 

 

 𝐎𝑟 
′ = 𝓟img(𝐎𝑟 ) = √𝐈𝒊𝒎𝒈𝑟 

𝐎𝑟 

|𝐎𝑟 |
 eq 3. 13 
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Pseudocode 3. 2: The s-projection for image intensity constraint (𝓟𝑖𝑚𝑔) 

Input:  guessed object (𝑜𝑏𝑗𝑒𝑐𝑡), measured image intensity (𝑖𝑚𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡) 

Format:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑖𝑚𝑔(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

1:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = √𝑖𝑚𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ∙ 𝑎𝑛𝑔𝑙𝑒(𝑜𝑏𝑗𝑒𝑐𝑡) 

 

• s-constraint #2: known support 

Another common s-constraint is the area defined by a support (𝕊). Projecting to this kind of 

constraint forces all pixels beyond support area to zero, while leave other pixels unchanged. 

This process is shown by eq 3. 14 and Pseudocode 3. 3.  

 

 𝛙𝑟 
′ = {

0       𝑟 ∉ 𝕊
𝛙𝑟     𝑟 ∈ 𝕊

 eq 3. 14 

 

Pseudocode 3. 3: The s-projection for support constraint (𝓟𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

Input:  guessed exit wave (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), support (𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

1:  For (𝑟 =all pixels of 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) do 

2:    If 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑟 ) == 0 

3:        𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) = 0 

4:    Else 

5:        𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) = 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) 

6:    End  

7:  End  

 

• s-constraint #3: object consistency 

In ptychography, the derivation of projection with respect to the consistency set (𝕆) requires 

another characteristic of projection, which is that the variation caused by projection to a set 
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(𝓟𝒔(𝒙) − 𝒙) should be orthogonal to any vector (𝒚) that belongs to that set (𝕆)54. This 

relationship is usually expressed by inner product as shown in eq 3. 15. 

 

 〈𝓟𝒔(𝒙) − 𝒙, 𝒚〉𝝎 = ∑ 𝜔𝑑 ∙ (𝓟𝒔(𝑥𝑑) − 𝑥𝑑) ∙ 𝑦𝑑
∗

𝐷

𝑑=1
= 0, ∀𝒚 ∈ 𝕆 

eq 3. 15 

 

Similar to eq 3. 6, a weighting factor 𝝎𝑘 is involved to assign different weights to different 

dimension of the vector space. Combining with the definition of the consistency set, this 

equation can be rewritten as eq 3. 16. 

 

 ∑ 𝜔𝑘 ∙ (𝓟𝒔(𝐎𝑟 ,𝑘) − 𝐎𝑟 ,𝑘) ∙ 𝐎𝑟 𝑓𝑖𝑥𝑒𝑑
∗

𝐾

𝑘=1
= 0, ∀𝒚 ∈ 𝕆 

eq 3. 16 

 

 

As the 𝐎𝑟⃗ 𝑓𝑖𝑥𝑒𝑑
∗ and 𝓟𝒔(𝐎𝑟 ,𝑘) does not vary with 𝑘, it can be moved out from the summation. 

With the further derivation shown below, the projection with respect to the consistence set 

(i.e. s-constraint) can be found as eq 3. 17. 

 

 

𝐎𝑟 𝑓𝑖𝑥𝑒𝑑
∗ ∙ ∑ 𝜔𝑘 ∙ (𝓟𝒔(𝐎𝑟 ,𝑘) − 𝐎𝑟 ,𝑘)

𝐾

𝑘=1
= 0 

∑ 𝜔𝑘 ∙ 𝓟𝒔(𝐎𝑟 ,𝑘)
𝐾

𝑘=1
− ∑ 𝜔𝑘 ∙ 𝐎𝑟 ,𝑘

𝐾

𝑘=1
= 0 

𝓟𝒔(𝐎𝑟 ) ∙ ∑ 𝜔𝑘

𝐾

𝑘=1
= ∑ 𝜔𝑘 ∙ 𝐎𝑟 ,𝑘

𝐾

𝑘=1
 

𝓟𝒔(𝐎𝑟 ) =
∑ 𝜔𝑘 ∙ 𝐎𝑟 ,𝑘

𝐾
𝑘=1

∑ 𝜔𝑘
𝐾
𝑘=1

 
eq 3. 17 

   

The intensity of reconstructed probes (|𝐏𝑟 |
𝟐) are usually considered as the main components 

of weighting factor. This approach does not only relate object and probe to the exit wave (as 

𝐏𝑟⃗ ∙ 𝐎𝑟⃗ = 𝛙𝑟⃗ ), but also gives a reasonable physical meaning to the weighting factor. As a 

larger 𝜔𝑘, which is brighter part of the probe, often implies a better illumination hence higher 

signal to noise ratio and more confidence on the projection outcome.   
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Replacing 𝜔𝑘 in eq 3. 17 by |𝐏𝑟 |
2 and applying |𝐏𝑟 |

2 ∙ 𝐎𝑟 ,𝑘 = 𝐏𝑟 
∗𝛙𝑟 ,𝑘, a standard s-projection 

for ptychography is found as eq 3. 21 with corresponding Pseudocode 3. 4. Other projection 

methods also exist by using normalised probe or other weighting factors. 

 

 𝓟𝒔(𝐎𝑟 ) =
∑ 𝐏𝑟 

∗𝛙𝑟 ,𝑘
𝐾
𝑘=1

∑ |𝐏𝑟 |
2𝐾

𝑘=1

 eq 3. 18 

 

The process of a standard s-projection is demonstrated by Figure 3. 6. All guessed exit waves 

are multiplied with the guessed illumination and added up follow the corresponding scanning 

positions. This summation is divided by the position-wise add-up of the intensities of the 

guessed illumination. This process can be considered as taking the weighted average value 

for the overlapping area.  

With proper constraints, alternative projection gives an error that never increases during the 

progress40. This becomes the main concept of error reduction algorithm, which is proved in 

Section 3.2.1. One should notice projection is not a linear operator and be careful when 

moving variables around it. Last but not the least, repeat projecting to the same constraint 

will not affect the outcome, which is shown in eq 3. 19.  

 

 𝛙𝑟 = 𝓟𝒇(𝛙𝑟 ), ∀𝛙𝑟 ∈ 𝕄 eq 3. 19 
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Figure 3. 6. A basic consistency set projection. Guessed exit waves are multiplied with the conjugate of 
probe and added up following the scanning positions. Three exit waves are given as examples in the 
figure, while the outlines of their covering areas are highlighted by red dotted line. A similar add-up 
process is repeated with the squared modulus of probe. Finally, an updated object is generated by a 
pixel-wise division between these two matrices. The probe is updated in a similar way, except the probe 
existed in the above computation is replaced by the corresponding object part and the position-wise 
add up is replaced by a normal matrix add up. The adding up process can involve different weighting 
factors55. 
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Pseudocode 3. 4:The s-projection for consistency constraint (𝓟𝑠) 

Input:  exit waves (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed probe (𝑝𝑟𝑜𝑏𝑒) 

Output:  
revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒), revised exit waves 

(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format: 
 [𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡] =

𝓟s(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

1:   𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 =  𝟎 

2:   𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 =  𝟎 

3:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

4:   
 𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 ∙ 𝑝𝑟𝑜𝑏𝑒∗,

𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

5:   
 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟, |𝑝𝑟𝑜𝑏𝑒|2, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠,

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

6:   End 

7:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

8:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 =  𝓡𝓮𝓹𝓵𝓪𝓬𝓮𝓘𝓷𝓯( 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑜𝑏𝑗𝑒𝑐𝑡) 

9:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

10:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

11:    𝑝𝑟𝑜𝑏𝑒 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑝𝑟𝑜𝑏𝑒 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 ∙ 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗ 

12:    𝑝𝑟𝑜𝑏𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 𝑝𝑟𝑜𝑏𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + |𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|2 

13:   End 

14:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 =  𝑝𝑟𝑜𝑏𝑒 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/𝑝𝑟𝑜𝑏𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

15:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 =  𝓡𝓮𝓹𝓵𝓪𝓬𝓮𝓘𝓷𝓯( 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑝𝑟𝑜𝑏𝑒) 

16:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

17:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

18:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 

19:   End 

Note [1]:  The object and probe are always revised while projecting exit waves to the s-constraint. 

Note [2]:  The order of updating object and probe is interchangeable, though it will converge to a different 

solution during iterations46. 

Note [3]:  Updating object first brings 2 advantages in application: 1. The original object is not required; 2. All of 

𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 produced in revising probe can be saved and utilised in revising exit wave 

Note [4]:   𝓡𝓮𝓹𝓵𝓪𝓬𝓮𝓘𝓷𝓯( 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑏𝑎𝑐𝑘𝑢𝑝) replaces any ‘not a number’ element in 𝑚𝑎𝑡𝑟𝑖𝑥 by the element at 

the same place of 𝑏𝑎𝑐𝑘𝑢𝑝. 
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3.1.1.3. Reflection (𝓡) 

Reflection doubles the correction of projection as shown in eq 3. 20. Applying reflection 

normally requires applying projection first, then doubles the variation. As an aside, such a 

progress often requires an extra memory with the same size as the variable that is being 

reflected, as it needs to keep both the original variable (e.g. 𝛙𝑟 ) and its projection (e.g. 

𝓟(𝛙𝑟 ) ) until a result is reached. This characteristic makes reflection algorithms usually 

demand more computer memory than others. 

 

 

𝛙𝑟 
′ = 𝓡(𝛙𝑟 ) 
= 𝛙𝑟 + 2(𝓟(𝛙𝑟 ) − 𝛙𝑟 ) 
= 𝛙𝑟 + 2𝓟(𝛙𝑟 ) − 2𝛙𝑟  
= (2𝓟 − 𝓘) 𝛙𝑟  eq 3. 20 

 

Given the f-reflection as an example. As shown in eq 3. 21, both the original and projected 

exit waves are demanded to compute the reflection with a corresponding Pseudocode 3. 5. A 

modified version, which can reduce its memory occupation, is explained in Pseudocode 3. 6. 

The geometry meaning of f-reflection is illustrated by Figure 3. 7.  

 

 𝓡𝒇(𝛙𝑟 ) = (2 ∙ 𝓟𝒇 − 𝓘)𝛙𝑟  eq 3. 21 

 

Reflection add diversity to algorithms based on set-projection concept. Phase retrieval 

algorithms with different combination of projection and reflection can have different 

performance and robustness. However, as reflection-based algorithms do not have to match 

any constraint, their error may increase during the optimisation, hence making convergence 

harder to prove. Reflection is not a linear operator and it can be proved the reflection of a 

reflection equals the original vector as shown in eq 3. 22. 

 

 

𝛙𝑟 = 𝓡(𝓡(𝛙𝑟 )) 

= 𝓡(2𝓟(𝛙𝑟 ) − 𝛙𝑟 ) 
= 2𝓟(2𝓟(𝛙𝑟 ) − 𝛙𝑟 ) − (2𝓟(𝛙𝑟 ) − 𝛙𝑟 ) 
= 2𝓟(𝓟(𝛙𝑟 ) + (𝓟(𝛙𝑟 ) − 𝛙𝑟 )) − 2𝓟(𝛙𝑟 ) + 𝛙𝑟  

= 2𝓟(𝛙𝑟 ) − 2𝓟(𝛙𝑟 ) + 𝛙𝑟  
= 𝛙𝑟   

eq 3. 22 
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Pseudocode 3. 5: The f-reflection (𝓡𝑓) 

Input:  guessed exit wave (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓡𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

1:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

2:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 2 ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

 

Pseudocode 3. 6: The ‘memory-saving’ version of f-reflection (𝓡𝑓) 

Input:  guessed exit wave (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓡𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

1:   𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕 (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

2:   𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = (2 ∙ √𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 − |𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒|) ∙ exp(𝑗 ∙ 𝑎𝑛𝑔𝑙𝑒(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒)) 

3:   𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕−1(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Note [1]:  𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 and 𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 can share the same memory space 

 

 

 

Figure 3. 7. A demonstration of geometry relationship between f-projection (𝓹𝑓) and f-reflection (𝓻𝑓) 

on the same pixel of 𝜳𝑢⃗⃗  (i.e. 𝛹𝑢⃗⃗ ,𝑑). The modulus set (𝕄) for this pixel is expressed as a circle, whose 

radius is the square root of measured intensity (√𝐼𝑢⃗⃗ ). The resultant of projection is expressed by the 

red dot, while the reflection is expressed by the blue dot. 
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3.1.1.4. Relaxed projection (𝓟𝜶) 

The relaxed projection is utilised in several phase retrieval algorithms54,55. They come with 

relaxation parameters (e.g. 𝛼 ) to mediate the projection outcome with original value as 

demonstrated in eq 3. 23. The main feature of this operator is that it is a linear combination 

between the original value (𝓘 ) and the projection outcome (𝓟 ) with the sum of their 

coefficients equal to one. Although involving a parameter allows the algorithms to be tuned 

for different scenarios, it puts challenge to the tuning process and leave its results to the 

experience of users. The Pseudocode 3. 7 and Pseudocode 3. 8 give examples of relaxed f-

constraint projection (𝓟𝑓
𝛼) and relaxed s-constraint projection (𝓟𝑠

𝛼).  

 

 𝓟𝛼(𝛙
𝑟 ) = ((1 − 𝛼)𝓘 + 𝛼𝓟)𝛙

𝑟  eq 3. 23 

 

 

Pseudocode 3. 7: The relaxed f-projection (𝓟𝑓
𝛼) 

Input:  guessed exit wave (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓
𝛼(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝛼) 

1:   𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕 (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

2:  
 𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = ((1 − 𝛼)√𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 + 𝛼 ∙ |𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒|) 

∙ exp(𝑗 ∙ 𝑎𝑛𝑔𝑙𝑒(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒)) 

3:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕−1(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Note [1]:  Temporary variable: 𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 
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Pseudocode 3. 8: The relaxed s-projection (𝓟𝑠
𝛼) 

Input:  
exit waves (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed probe (𝑝𝑟𝑜𝑏𝑒), 

parameter (𝛼) 

Output:  
revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒) and revised exit 
waves (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

Format:  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑠
α
 (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒,𝛼) 

1:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟s(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

2:   𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = (1 − 𝛼) ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝛼 ∙ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

 

3.1.1.5. Relaxed reflection (𝓡𝜶) 

The reflection can also be generalised by involving a mediate parameter. However, since the 

reflection is already a linear combination of the projection and original value (i.e. eq 3. 20), its 

generalised form overlaps with the relaxed projection (𝓟𝜶). Every result produced by relaxed 

reflection can be obtained from the relaxed projection just with a proper chosen parameter. 

Therefore, the relaxed reflection is combined with relaxed projection in this thesis, and shares 

the same expression as shown in eq 3. 23. 

 

3.1.2. Gradient descent 

The gradient descent method is another common optimisation methodology. All PIE-related 

algorithms20,56, ADMM55 and conjugate gradient57 belong to this category. These algorithms 

usually take a random guess in the searching space (𝐷 = 𝑀 × 𝑁 × 𝐾) as a start. They evaluate 

the gradient at the current guess with a properly designed error metric, then move towards 

the negative gradient direction with a certain step size. The latter two steps are repeated until 

a minimum of the error metric is found, which is considered as a solution. The concept of 

gradient descent method is commonly viewed as letting a ball roll on a curvature surface and 

expecting the ball keeps descending until a pit is reached. Such an optimisation approach is 

widely used in training neural networks. The gradient descent method unveils the similarity 

between training neural networks and solving phase problem iteratively58, unsurprisingly, 

some useful concept in the former one can be transferred to the latter one. This section 
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explains some main concepts within the gradient descent method and describes how it solves 

phase problem. 

 

 

Figure 3. 8. A simplified demonstration of steepest descent method in 2-dimensional searching space. 
The initial guess (𝑎1, 𝑎2) is noted by a ball sitting on the curvature surface, which is defined by a cost 
function (𝑓(𝑎1, 𝑎2)). The ball tracks the descending direction and reaches the bottom of this surface. 
Iterative optimisation can be considered as viewing this process with equal time interval, the ball 
coordinate at each observing time point (i.e. the outcome at the end of each iteration) can be referred 
to the next arrow tip. As the height of surface is proportional to error, its bottom indicates a variable 
combination that gives the least error. Hence the error is minimised, and a solution is found. 

 

3.1.2.1. Cost function (𝓛) 

A loss function (ℒ), also known as a cost function, is the core of gradient descent method. It is 

usually an error metric that reflects the difference between the guesses and experimental 

measurements. Its value should decrease when approaching to a solution and, ideally, equals 

zero when a solution is found. A properly designed cost function usually contains variables 

that are under optimisation and be differentiable with respect to that interested variable.  

The basic cost function is demonstrated as eq 3. 24. It evaluates the Euclidean distance of exit 

waves before and after f-projection, and this evaluation can be done either in s-domain or f-

domain. These two functions share a lot of common structure: they all include the exit waves 

satisfying one constraint and compute the difference to the other constraint; they all take the 

square of the modulus; and they all sum up every pixel for every scanned position. The 

development of PIE family starts from reducing the distance in s-domain, while alternating 

direction method of multipliers and conjugate gradient are based on the distance in f-domain.  
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 ℒ = ∑ ∑ |𝐎𝑟 ,𝑘𝐏𝑟 − 𝛙𝑟 ,𝑘|
2

𝑟 𝑘
= ∑ ∑ |√𝐈𝑢⃗⃗ ,𝑘 − |𝚿𝑢⃗⃗ ,𝑘||

2

𝑢⃗⃗ 𝑘
 eq 3. 24 

 

Such a similarity come with a reason. As the two main constraints in ptychography are the s- 

and f- constraints, any accepted guess must satisfy both, which implies “zero-difference” to 

any of these constraints at the same time. Unfortunately, these two constraints are separated 

by Fourier transformation and reciprocal to each other. For evaluating the difference, guessed 

exit waves act as carriers, bring the value satisfying s-domain constraint to the reciprocal 

space, hence the difference can be computed. Due to the Parseval's theorem, the difference 

computed in s-domain equals the difference in f-domain24. The square of modulus is utilised 

as it is a standard way of evaluating the Euclidean distance, which is the geometry meaning 

of the difference. Finally, the distance for all pixels (i.e. ∑𝑟  or ∑𝑢⃗⃗ ) and all positions (i.e. 

∑𝑘 ) is summed up to give an overall distance in the whole searching space. Using this logic, 

a cost function for a variable (𝛙𝑟 ) belongs to space ℂ𝐷 and needs to satisfy constraint 𝕄 can 

be written as eq 3. 25. 

 

 ℒ𝕄 = ∑ ∑ |𝛙𝑟 − 𝓟𝕄 (𝛙𝑟 )|
2

𝑟 𝑘
 eq 3. 25 

 

3.1.2.2. Regularization 

Other terms can be added into cost function to emphasize other properties. One typical 

example is the regularisation term. Regularisation is widely used in training neural networks 

to prevent overfitting58. This term evaluates the variation on the object under optimisation 

within one iteration and returns high penalties on dramatic changes. Two examples are given 

in eq 3. 26 and eq 3. 27, where the super script 𝐎𝑟 
′  and 𝚿𝑢⃗⃗ 

′  indicates the updated object and 

exit wave correspondingly. eq 3. 26 is utilised by rPIE and eq 3. 27 is utilised by alternating 

direction method of multipliers. More explanation on regularisation is given in Chapter 5. 

 

 ℒ𝑠−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ |𝐎𝑟⃗ 
′ − 𝐎𝑟⃗ |

2

𝑟⃗ 
 eq 3. 26 

 ℒ𝑓−𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ |𝚿𝑢⃗⃗ 
′  − 𝚿𝑢⃗⃗  |

2

𝑢⃗⃗ 𝑘
 eq 3. 27 
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3.1.2.3. ℂℝ- or Wirtinger calculus 

Once a cost function is defined, its gradient can be calculated by partially differentiating this 

function with respect to the interested variable. Differentiating a function made up of 

complex matrices requires different math skills, the implicit relationship between the 

involved variables can also cause confusion. Therefore, some basic rules of these partial 

differentiations are given in Table 3. 1. One can derivate a cost function by applying chain 

rule. 

 

Table 3. 1. Rules of Wirtinger calculus 

Relationship Differentiation Examples 

Complex modulus 

∂|𝐌|

∂𝐌
=

1

2|𝐌|

∂|𝐌|2

∂𝐌
 

𝜕|𝚿𝑢⃗⃗ |

𝜕𝚿𝑢⃗⃗ 
=

1

2|𝚿𝑢⃗⃗ |

𝜕|𝚿𝑢⃗⃗ |
2

𝜕𝚿𝑢⃗⃗ 
 

∂|𝐌|2

∂𝐌
=

∂𝐌 ∙ 𝐌∗

∂𝐌
 

𝜕|𝐏𝑟 𝐎𝑟 − 𝛙𝑟 |
2

𝜕𝐏𝑟 
∗ =

𝜕(𝐏𝑟 𝐎𝑟 − 𝛙𝑟 ) ∙ (𝐏𝑟 𝐎𝑟 − 𝛙𝑟 )
∗

𝜕𝐏𝑟 
∗  

Conjugate 
function 

∂(k𝐌 + b)

∂𝐌
= 𝐌 

𝜕(𝐏𝑟 𝐎𝑟 − 𝛙𝑟 
′ )

𝜕𝐏𝑟 
∗ = 𝟎 

∂(k𝐌 + b)∗

∂𝐌
= 𝟎 

𝜕(𝐏𝑟 𝐎𝑟 − 𝛙𝑟 
′ )

∗

𝜕𝐏𝑟 
∗ = 𝐎𝑟 

∗ 

Projection 
∂𝓟(𝐌)

∂𝐌
= 𝟎 

𝜕𝐎𝑟 
′

𝜕𝐎𝑟 
= 𝟎 

Fourier 
transformation 

∂𝓕(𝐌)

∂𝐌
= exp(−2𝜋𝑗𝑢⃗ 𝑟 ) 

𝜕𝚿𝑢⃗⃗ 

𝜕𝛙𝑟 
= exp(−2𝜋𝑗𝑢⃗ 𝑟 ) 

 

3.1.2.4. Step size 

As the gradient indicates the fastest error-increasing direction, a better guess can be achieved 

by moving in the opposite direction with a proper step size. As most of gradient-descent 

methods use the first order derivative of the cost function, the approximate step size is 

estimated by finding the intersection point by solving a first order equation.  
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One of the most significant characteristic of gradient descent method is its error never 

increase during iteration. Such a characteristics gives it a fast converging speed. This seems a 

good characteristic in the first thought. However, the searching space of phase problem is full 

of local minima. Any algorithms only focus on minimising the error metric can easily get stuck. 

Therefore, the variants of gradient descent methods, e.g. stochastic gradient descent59, 

regularisation56 and descent with momentum56, are more preferred. 

 

3.2. Algorithms before ptychography 

The phase problem has existed in coherent diffraction imaging microscopy before the 

invention of ptychography13 and variety approaches have been developed to tackle this 

problem. Although they all utilise the intensity of diffraction patterns (𝐈𝑢⃗⃗ ) as one of their 

constraints, the other constraint was under developing hence varied from one to another. 

This promoted the diversity of algorithms. Some of these ideas and algorithms inspire the 

development of ptychography, hence they are explained to give a better understanding of 

the diffractive imaging problem.  

 

3.2.1. Gerchberg-Saxton (Error reduction) 

Back in the early 1970’s, there was no promising and efficient way of retrieving phase until 

the development of Gerchberg -Saxton algorithm in 197224. This algorithm was not only a 

decent solution to the phase problem in electron microscopy during that period, but also 

provided a new idea of involving extra constraint to make phase retrieval practical.  

The Gerchberg-Saxton method requires only one scanning position, but two intensity 

measurements of both the specimen (𝐈𝒊𝒎𝒈𝑟 
) and diffraction pattern (𝐈𝑢⃗⃗ ). With these s- and f- 

constraints, one can replace the modulus of the guessed image with the square root of the 

specimen intensity, then transfer this revised wave to its reciprocal space and apply the 

diffraction pattern intensity constraint. This concept is demonstrated by flowchart in Figure 

3. 9 and explained with Pseudocode 3. 9. 
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Figure 3. 9. The flowchart of Gerchberg-Saxton algorithm. This algorithm is alternatively projecting the 
guessed image (𝑶𝑟 ) to the intensity measurements in s- and f- domains. 

 

Pseudocode 3. 9: Gerchberg-Saxton (Error reduction) with image intensity 
 

Input:  
measured image intensity 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), measured diffraction pattern 

(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), No. of iterations (𝑁) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡) 

1:   𝑜𝑏𝑗𝑒𝑐𝑡 = √𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

2:   For (n=1: 𝑁) do 

3:    𝑜𝑏𝑗𝑒𝑐𝑡 = 𝓟𝑓(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

4:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝓟𝑖𝑚𝑔(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

5:   End 

 

The influence of this alternative-projection is demonstrated by arbitrary pixels of the guessed 

object in s- and f- domains by Figure 3. 10 (a) and (b) correspondingly. The circles in Figure 3. 

10 (a) and (b) represent the solution sets formed by the measured specimen intensity (𝕄𝑖𝑚𝑔) 

and diffraction pattern intensity (𝕄). An arbitrary pixel (O𝑟 ,𝑛) of guessed object, who satisfies 

the s-constraint, is represented as a black dot in Figure 3. 10 (a). This guessed object is 

transformed into its reciprocal space, yields 𝐎𝑢⃗⃗ ,𝑛. An arbitrary pixel in the reciprocal space is 

represented as a black dot (O𝑢⃗⃗ ,𝑛) in Figure 3. 10 (b). After 𝓹𝑓, the value at this pixel becomes 

O𝑢⃗⃗ ,𝑛′. Then the whole revised object is transformed back to the real space, becomes 𝐎𝑟 ,𝑛′. 
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Unless a solution is found, this revised object (𝐎𝑟 ,𝑛′) will not satisfy the s-constraint. As an 

example, which is shown in Figure 3. 10 (a), the pixel after revision (O𝑟 ,𝑛′) does not belong to 

the set formed by s-constraint. Hence the revised object needs to be projected (𝓟𝑖𝑚𝑔) to the 

s-constraint and turned into 𝐎𝑟 ,𝑘+1, which leads to a new pixel value (O𝑟 ,𝑘+1) that fits the s-

constraint. This is the end of 𝑘𝑡ℎ iteration and the start of 𝑘 + 1𝑡ℎh iteration of Gerchberg-

Saxton algorithm. 

 

 

Figure 3. 10. A demonstration of Gerchberg-Saxton algorithm with an arbitrary pixel of guessed object 

in s-domain (i.e. figure (a)) and f-domain (i.e. figure (b)). The sets formed by s-constraint (𝕄𝑖𝑚𝑔) and 

f-constraint (𝕄) for the chosen pixel are represented as circles in (a) and (b) respectively. The initial 
value of this arbitrary pixel at the start of kth iteration satisfies the s-constraint and demonstrated as 
black dot (𝑂𝑟 ,𝑘) in figure (a). Fourier transform this guessed object 𝑶𝑟 ,𝑛 yields 𝑶𝑢⃗⃗ ,𝑛 in the f-domain. An 

arbitrary pixel 𝑂𝑢⃗⃗ ,𝑘 is chosen out of this transformed guessed object. After 𝓹𝑓, this pixel falls onto the 

set formed by f-constraint and is highlighted as a red dot (𝑂𝑢⃗⃗ ,𝑛′). The whole revised object is then 

inversely transformed back to the s-constraint, gives 𝑶𝑟 ,𝑛′, and the s-domain chosen pixel value now 

becomes 𝑂𝑟 ,𝑘′ , which does not satisfy the s-constraint. Applying 𝓟𝑖𝑚𝑔  leads to 𝑂𝑟 ,𝑛+1 , which is 

illustrated as a blue dot, who satisfies the s-constraint again. 

 

The recursive formula of Gerchberg-Saxton algorithm is given in eq 3. 28, where 𝓟𝑖𝑚𝑔 

represents the projection to the s-constraint for Gerchberg-Saxton.  

 

 𝐎𝑟 ,𝑛+1 = 𝓟𝑓 (𝓟𝑖𝑚𝑔(𝐎𝑟 ,𝑛)) eq 3. 28 

 

The summed squared error (𝐸𝑟𝑟𝑆𝑆 ) evaluates the difference between the estimated and 

measured intensities either in s-domain (eq 3. 29) or in f-domain (eq 3. 30). Gerchberg-Saxton 

algorithm can be proved as a gradient descent method with this error metric, since its error 

never increases during the reconstruction40.  
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𝐸𝑟𝑟𝑆𝑆 𝑠 = ∑ (√𝐈𝑖𝑚𝑔𝑟 

− |𝐎𝑟 |)

2

𝑟 
 eq 3. 29 

 
𝐸𝑟𝑟𝑆𝑆 𝑓 = ∑ (√𝐈𝑢⃗⃗ − |𝐎𝑢⃗⃗ |)

2

𝑢⃗⃗ 
 eq 3. 30 

 

First, using the revised object in real space (𝐎𝑟 ,𝑛′) as a reference, computing the error of 

object at the beginning and end of the 𝑛𝑡ℎ iteration. 

 

 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛 = ∑ (|𝐎𝑟 ,𝑛| − |𝐎𝑟 ,𝑛
′ |)

2

𝑟 
 eq 3. 31 

 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛′ = ∑ (|𝐎𝑟 ,𝑛+1| − |𝐎𝑟 ,𝑛
′ |)

2

𝑟 
 eq 3. 32 

 

From the definition of projection, we have: 

 

 ||𝐎𝑟 ,𝑛| − |𝐎𝑟 ,𝑛
′ || ≥ ||𝐎𝑟 ,𝑛+1| − |𝐎𝑟 ,𝑛

′ || eq 3. 33 

 

Hence: 

 

 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛 ≥ 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛′ 
eq 3. 34 

 

Assuming 𝐎𝑢⃗⃗ ,𝑛+1
′ = 𝓹𝑓(𝐎𝑢⃗⃗ ,𝑛+1) , then using the 𝐎𝑢⃗⃗ ,𝑛+1 as a reference, we can compute the 

error of  𝐎𝑢⃗⃗ ,𝑛
′  and 𝐎𝑢⃗⃗ ,𝑛+1

′  as: 

 

 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛′ = ∑ (|𝐎𝑢⃗ ,𝑛
′ | − |𝐎𝑢⃗ ,𝑛+1|)

2

𝑢⃗ 
 eq 3. 35 

 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛+1 = ∑ (|𝐎𝑢⃗ ,𝑛+1
′ | − |𝐎𝑢⃗ ,𝑛+1|)

2

𝑢⃗ 
 eq 3. 36 

 

Again, with the definition of projection, we have: 

 

 ||𝐎𝑢⃗⃗ ,𝑛
′ | − |𝐎𝑢⃗⃗ ,𝑛+1|| ≥ ||𝐎𝑢⃗⃗ ,𝑛+1

′ | − |𝐎𝑢⃗⃗ ,𝑛+1|| 
eq 3. 37 

 

Hence, we have: 
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 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛′ ≥ 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛+1 eq 3. 38 

 

Due to the Parseval’s rule: 

 

 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛′ = 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛′ 
eq 3. 39 

 

Combining eq 3. 53, eq 3. 62 and eq 3. 39, we have: 

 

 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛 ≥ 𝐸𝑟𝑟𝑆𝑆 𝑠,𝑛′ = 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛′ ≥ 𝐸𝑟𝑟𝑆𝑆 𝑓,𝑛+1 eq 3. 40 

 

which indicates the error should always decrease or stay the same during the iteration. For 

this reason, Gerchberg-Saxton algorithm is also known as the error reduction (ER) algorithm40. 

Gerchberg-Saxton algorithm was one of the earliest phase retrieval algorithms. It 

outperformed other algorithms in reconstructing the whole phase of an interested wave front 

in electron microscopy 24. As a derivation of gradient descent method, its error drops quickly 

in the beginning40. However, this algorithm also suffers several drawbacks. First, since its error 

can never increase, it is not possible to escape from a stagnation. This is a poor characteristic 

for phase retrieving, which contains multiple local minima54. Secondly, as Gerchberg-Saxton 

algorithm cannot distinguish any existed phase offset in the reconstruction, its outcomes have 

an inherent ambiguity on the phase bias, though this ambiguity is not fatal if only the relative 

phase is interested40.  

 

3.2.2. Hybrid input output (HIO) 

The HIO algorithm is developed for a support (𝐒𝑟 ) constraint in s-domain. As the support only 

lets waves passes through its centre (𝑟 ∈ 𝐒𝑟 ), any non-zero element outside this range (𝑟 ∉

𝐒𝑟 ) is considered as violating the constraint. The concept of HIO algorithm is similar to the 

feedback system41, which is modifying the input proportional to the error in its output.  

Due to the existence of the support, the variable under reconstruction becomes the exit wave 

(𝛙𝑟 ) rather than the image of the specimen. HIO projects a guessed exit wave to the modulus 
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constraint (i.e. 𝛙𝑟⃗ 
′
= 𝓟𝑓(𝛙𝑟⃗ )) and compares the output with the support. For the area inside 

the support (𝑟 ∈ 𝐒𝑟 ), all updates are accepted. For areas beyond the support (𝑟 ∉ 𝐒𝑟 ), they 

are scaled by a coefficient (𝛽 ) and taken away from the guessed exit wave as negative 

feedback. The flowchart of HIO is given in Figure 3. 11 with pseudo code given in Pseudocode 

3. 10. 

 

 𝛙𝑟 = {
𝛙𝑟 

′ ,                     𝒓 ∈ 𝑺

𝛙𝑟 − 𝛽𝛙𝑟 
′ ,       𝒓 ∉ 𝑺

 
eq 3. 41 
 

 

 

 

Figure 3. 11. A demonstration of HIO. From top left, a guessed exit wave (𝝍𝑟 ) is projected to the f-
constraint to produce a revised exit wave (𝝍𝑟 

′ ). The final updated exit wave is obtained by tuning the 
input based on the part of output that violates the support constraint. 
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Pseudocode 3. 10: Hybrid Input and Output (HIO) with support 

Input:  
support (𝑠𝑢𝑝𝑝𝑜𝑟𝑡), measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), No. of iterations 

(𝑁), parameter (𝛽) 

Output:  revised exit wave (𝑟𝑒𝑣𝑖𝑠𝑒𝑑  𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

1:   𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

2:   For (n=1: 𝑁) do 

3:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

4:    If 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑟 ) == 0 

5:        𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) = 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) − 𝛽 ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) 

6:    Else 

7:        𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) = 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒(𝑟 ) 

8:    End 

9:  End 

 

Many variations have been developed to further improve the behaviour of HIO. It has been 

used for ptychography 60 and modified to accommodate an uncertain support43. However, 

the existence of a support limits the development of this method. Not only because one needs 

to leave the limited field of view to the non-information support area, but also the accuracy 

of the support has influence to the quality of reconstruction. Meanwhile, the support 

constraint may lead to an inherent ambiguity, which is called as ‘twin-image’. This ambiguity 

can happen when the support is centrosymmetric45. To prove this, assume 𝛙−𝑟⃗⃗⃗⃗  ⃗
∗  is the 

complex conjugate of 𝛙𝑟 . If the Fourier transformed 𝛙𝑟  is satisfies the modulus constraint 

(i.e. |𝚿𝑢⃗⃗ | = √𝐈𝑢⃗⃗ ), 

 

 𝚿𝑢⃗⃗ = 𝓕(𝛙𝑟 )=|𝚿𝑢⃗⃗ | exp(𝑗𝐆𝑢⃗⃗ ) eq 3. 42 
 

then the Fourier transformation of 𝛙−𝑟⃗⃗⃗⃗  ⃗
∗   is: 

 

 𝚿𝑢⃗⃗ 
∗ = |𝚿𝑢⃗⃗ | exp(−𝑗𝐆𝑢⃗ ) eq 3. 43 
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Which has the same modulus with 𝚿𝑢⃗⃗ , hence also satisfies the modulus constraint. This 

implies the 𝛙−𝑟⃗⃗⃗⃗  ⃗
∗  is also an allowed solution. Using image as an example, then the appearance 

of 𝛙−𝑟⃗⃗⃗⃗  ⃗
∗  will be centrosymmetric with 𝛙𝑟  with a negative phase component. This leads to the 

reconstruction result stagnates as two centrosymmetric images overlapping with each other, 

hence this problem is known as ‘twin-images’. This problem may even happen to non-

centrosymmetric support, when the twin images can fit into a loose support constraint45. 

Besides the twin-image ambiguity, support constraint also cannot find the absolute 

transverse position of the reconstructed exit wave, as the shifting appears as phase ramp in 

the f-domain and loses during taking intensity measurement. Though the influence of this 

ambiguity is less significant and can be limited by fixing the support position. 

Besides the ER and HIO, many other algorithms are applied for solving phase problem before 

the development of ptychography, for instance the difference mapping (DM), the averaged 

successive reflections (ASR), the hybrid projection reflection (HPR) and relaxed averaged 

alternating reflectors (RAAR) are also utilised for support-based phase retrieval61. Instead of 

explaining them twice (e.g. before and after ptychography), they are explained with the 

ptychography together in the following section to give a more specific description, which is 

more related to this thesis. 

 

3.3. Algorithms for ptychography 

As explained in Chapter 2.3, ptychography provides a different constraint with its ancestors: 

the overlapped area between multiple scanning positions. Since the adjacent diffraction 

patterns share part of common area of specimen, the reconstructed image must satisfy all of 

them at the same time. This consistency set forms the s-constraint in ptychography. However, 

during the reconstruction, ptychography requires separating the guessed specimen from 

revised exit waves. This requires the exact knowledge of the illumination function, which is 

not available for most of the time. The good news is that ptychography offers redundant 

information, which is more than enough to retrieve both the specimen and illumination59,47. 

Such a characteristic attracts the attention of many researchers and variety algorithms are 

exploited to take the advantage of this new constraint.  
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In the following sections, each introduced algorithm is applied to reconstruct a simulated 

noiseless data set, to give a general idea of its performance. A complete analysis of the 

algorithms will be undertaken in section 4.3, once an appropriate error metric has been 

developed in section 4.1 and 4.2. The modulus and phase images of the simulated specimen 

is given in Figure 3. 12 together with the true and estimated illumination functions. One can 

compare the reconstructed images with these true object and probe. Since the edges of the 

reconstructed object is usually noisy and causes images to lose contrast due to their large 

dynamic range, only the centre of the reconstructed object is displayed as examples in the 

later sections. This area is marked with a red dotted line in Figure 3. 12. The simulated 

diffraction patterns are generated with a 20 × 20 scanning grid, which has about 60% overlap 

area. A random offset equals 20% of the step size is introduced to minimise the influence of 

raster grid ambiguity. Until a more accurate error metric has been introduced in Chapter 0, 

the error is evaluated as the normalised difference between the modulus of Fourier 

transformed exit waves (𝚿𝑢⃗⃗ ,𝑘) and the square root of diffraction patterns (𝐈𝑢⃗⃗ ,𝑘) as shown by 

eq 3. 44. The memory occupation of the algorithms is listed in Table 3. 3 

 

 𝐸𝑟𝑟𝑓 =
∑ ∑ ||𝚿𝑢⃗⃗ ,𝑘| − √𝐈𝑢⃗⃗ ,𝑘|

2

𝑢⃗⃗ 𝑘

∑ ∑ 𝐈𝑢⃗⃗ ,𝑘𝑢⃗⃗ 𝑘
 

eq 3. 44 

 

 

 

Figure 3. 12. The object and probes used for testing algorithms. From left to right, (a) the modulus of 
object together with scanning positions (denoted as red dots) and the area covered by probe spot 
(denoted by cyan outline). The size of probe and its spot at the first scanning position are demonstrated 
by red square and cyan circle respectively; (b) the phase of object together with the selected area for 
error computation which is highlighted by red dotted line; (c) the true probe with the outline of spot 
and (d) the estimated probe. These two probes are plotted in colour wheel format, where the 
brightness and phase are expressed by the intensity and colour respectively.  
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3.3.1. Ptychography iterative engine (PIE) 

As its name would suggest, PIE was one of the earliest algorithms that specifically designed 

for solving the phase problem with data collected from ptychography62. Without the ability 

to reconstruct the illumination function, an approximate probe (𝐏𝑟⃗ ) is utilised by the PIE 

algorithm. As a result, the outcome significantly depends on the accuracy of the estimation. 

The initial object (𝐎𝑟⃗ ) is usually guessed as a free space (i.e. an all-one matrix) and optimised 

iteratively during the reconstruction.  

Following the scanning sequence, a part of object (𝐎𝑟⃗ ,𝑘), which corresponds to the area 

covered by the probe at the chosen scanning position (𝑟 𝑘), is cut out from the guessed object 

and forms an exit wave (𝛙𝑟⃗ ,𝑘) by multiplying with the estimated probe. This guessed exit wave 

is revised by the corresponding diffraction pattern (𝐈𝑢⃗⃗ ,𝑘) and utilised to modify that part of 

object with following updating function. 

 

 
𝐎𝑟 ,𝑘

′ = 𝐎𝑟 ,𝑘 +
|𝐏𝑟 |

|𝐏𝑟 |𝑚𝑎𝑥
∙

𝐏𝑟 
∗

(|𝐏𝑟 |
2 + 𝛼)

∙ (𝓟𝒇(𝛙𝑟 ,𝑘) − 𝛙𝑟 ,𝑘) 
eq 3. 45 

 

 

Where 𝐎𝑟 ,𝑘
′  is the updated part of object and 𝛼 is a parameter preventing dividing by zero at 

the dim part of probe. Then PIE replace the corresponding part of object with the updated 

one and move to the next scanning position. The origin of this updating function is described 

in detail in Chapter 5.  

In this mechanism, part of the previously updated object appears in the later updating process 

of adjacent scanning positions. Those revised area improves the quality of following guessed 

exit wave. Such a mechanism is shown in Figure 3. 14. This iterative phase retrieving process 

is repeated until a desired error level is achieved or a stagnation has been reached. A flow 

chart and pseudo code are given below with more details of PIE. 
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Figure 3. 13. A flow chart for PIE algorithm. A part of object (𝑶𝑟 ,𝑘) cover by the probe at the 𝒓𝑘 scanning 

position is cut out form the guessed object (𝑶𝑟 ) and multiplies with the estimated probe (𝑷𝑟 ) to give 
an guessed exit wave (𝝍𝑟 ,𝑘). This exit wave is projected to f-constraint and applied to update the object 

part. Finally, the updated object part replaces the corresponding area on the guessed object. 

 

 

Figure 3. 14. This figure demonstrates how PIE updates object part by part. The 𝑘𝑡ℎ and (𝑘 + 1)𝑡ℎ 
scanning positions share an overlapped area, which is coloured as red in the figure. This area is updated 

by the revised exit wave (𝑘𝑡ℎ) and improve the quality of the next estimated exit wave ((𝑘 + 1)𝑡ℎ). 
 

 

To demonstrate the performance of PIE strongly depending on the accuracy of guessed probe, 

the simulated data is reconstructed with correct and estimated probes respectively. The error 

during reconstruction is shown in Figure 3. 15. As shown in the figure, PIE fails when the 

estimated probe is utilised, though it gives decent reconstruction with a correct probe. Its 
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error decreases quickly in the beginning (e.g. drops more than 10 magnitudes in the first 500 

iteration), then slows down (e.g. decreases about 3 magnitudes in the last 3000 iterations). 

This is a typical performance for most of the PIE algorithms as shown in the following sections.  

 

Pseudocode 3. 11: Ptychographical Iterative Engine (PIE) 

Input:  

measured diffraction pattern ( 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ), 

guessed object ( 𝑜𝑏𝑗𝑒𝑐𝑡 ), guessed probe ( 𝑝𝑟𝑜𝑏𝑒 ), No. of iterations ( 𝑁 ), 

Parameter (𝛼) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (n=1: 𝑁) do 

2:    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝓼𝓱𝓾𝓯𝓯𝓵𝓮(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

3:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

4:     𝑡ℎ𝑒 𝑘𝑡ℎ  𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

5:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

6:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

7:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

8:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑟𝑜𝑏𝑒

|𝑝𝑟𝑜𝑏𝑒|𝑚𝑎𝑥

𝑝𝑟𝑜𝑏𝑒∗

(|𝑝𝑟𝑜𝑏𝑒|2+𝛼)
× 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

9:    
  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 =

𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡,𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

10:    End 

11:   End 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 
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Figure 3. 15. The reconstruction results of PIE with estimated and true probes. The outcome of 
reconstruction with estimated probe is shown in (a) and (b), while the result from true probe is shown 
in (c) and (d). As shown in the figure, PIE’s results highly depend on the quality of estimated probe. An 
accurate probe helps PIE bringing the error down to 10−12 magnitude, which is significantly better 
than the result of an estimated probe. 

 

3.3.2. Extended PIE (ePIE) 

Extended PIE (ePIE) was developed in 2009 by Andrew Maiden and John Rodenburg59. It 

extends the updating approach to the illumination function (𝐏𝑟⃗ ). Since the illumination 

function is also retrieved during the reconstruction, the accuracy of estimated illumination 

does not significantly affect the reconstruction quality.  

To update the part of object covered by the probe at the 𝑘𝑡ℎ  position (𝐎𝑟 ,𝑘′) with the 

corresponding exit wave revised by the f-constraint (𝛙𝑟 ,𝑘
′ ), a naïve updating equation is 

written as: 

 

 
𝐎𝑟 ,𝑘

′ =
𝛙𝑟 ,𝑘

′

𝐏𝑟 
=

𝐏𝑟 
∗𝛙𝑟 ,𝑘

′

|𝐏𝑟 |
2

 
eq 3. 46 
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This updating function assumes the probe is correct, hence all variation on the exit wave 

should be all adapted to the 𝐎𝑟 ,𝑘′. However, this function is poorly conditioned at the area 

covered by the dim part of probe56. Any pixel of probe with small modulus can magnify the 

variation of the exit wave and lead to fluctuation or even instable performance. To prevent 

this from happening, this updated result is mitigated by the original object part (𝐎𝑟 ,𝑘), gives: 

 

 
𝐎𝑟 ,𝑘

′ = (1 − 𝝁𝑟 ) ∙ 𝐎𝑟 ,𝑘 + 𝝁𝑟 ∙
𝐏𝑟 

∗𝛙𝑟 ,𝑘
′

|𝐏𝑟 |
2

 
eq 3. 47 

 

 

Which can be written as: 

 

 
𝐎𝑟 ,𝑘

′ = 𝐎𝑟 ,𝑘 + 𝝁𝑟 ∙ (
𝐏𝑟 

∗𝛙𝑟 ,𝑘
′

|𝐏𝑟 |
2

− 𝐎𝑟 ,𝑘) 
eq 3. 48 

 

 

Substitute 𝐎𝑟 ,𝑘 ∙ |𝐏𝑟 |
2 = 𝛙𝑟 ,𝑘 ∙ 𝐏𝑟 

∗, the updating equation is obtained as follows: 

 

 
𝐎𝑟 ,𝑘

′ = 𝐎𝑟 ,𝑘 + 𝝁𝑟 ∙
𝐏𝑟 

∗

|𝐏𝑟 |
2
∙ (𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘) 
eq 3. 49 

 

 

A well-designed weighting factor 𝝁𝑟  should approach to 1 for the pixels that are well 

illuminated by the probe and approach to 0 for the poorly illuminated pixels. In ePIE, this 

weighting factor is set as a scaled intensity of probe, which is normalised by its brightest pixel. 

 

 
𝝁𝑟 = 𝛼

|𝐏𝑟 |
2

|𝐏𝑟 |𝑚𝑎𝑥
2  

eq 3. 50 
 

 

Hence the standard 𝑘𝑡ℎ object part updating function of ePIE is: 

 

 
𝐎𝑟 ,𝑘

′ = 𝐎𝑟 ,𝑘 + 𝛼
𝐏𝑟 

∗

|𝐏𝑟 |𝑚𝑎𝑥
2 ∙ (𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘) 
eq 3. 51 

 

 

Comparing with PIE, the biggest improvement of ePIE is that it also reconstructs the 

illumination function (𝐏𝑟 ). The derivation of probe updating function is similar as above, 

hence is omitted here. The standard probe updating function of ePIE is: 
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𝐏𝑟 

′ = 𝐏𝑟 + 𝛽
𝐎𝑟 ,𝑘

∗

|𝐎𝑟 ,𝑘|𝑚𝑎𝑥

2 ∙ (𝛙𝑟 ,𝑘
′ − 𝛙𝑟 ,𝑘) eq 3. 52 

 

 

Another difference of ePIE is a shuffle on the scanning sequence at the beginning of each 

iteration. Such a modification is recommended to prevent a drifting probe during the 

reconstruction59. A flow chart and pseudo code for ePIE is given to help understanding this 

process. The reconstruction results of ePIE are given in  Figure 3. 17. 

 

Pseudocode 3. 12: Extended Ptychography Iterative Engine (ePIE) 

Input:  

measured diffraction pattern ( 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ), 

guessed object ( 𝑜𝑏𝑗𝑒𝑐𝑡 ), guessed probe ( 𝑝𝑟𝑜𝑏𝑒 ), No. of iterations ( 𝑁 ), 

Parameter (𝛼, 𝛽)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (n=1: 𝑁) do 

2:    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝓼𝓱𝓾𝓯𝓯𝓵𝓮(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

3:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

4:     𝑡ℎ𝑒 𝑘𝑡ℎ  𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

5:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

6:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

7:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

8:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝛼 ×
𝑝𝑟𝑜𝑏𝑒∗

|𝑝𝑟𝑜𝑏𝑒|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

9:    
 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 =

𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡,𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

10:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 + 𝛽 ×
𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗

|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

11:    End 

12:  End 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
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Figure 3. 16. The flow chart of ePIE. Comparing to Figure 3. 13, the main difference between PIE and 

ePIE is an additional probe updating branch. The updating functions are given by eq 3. 51 and eq 3. 
52. 
 
 

 

Figure 3. 17. The reconstruction result of ePIE with estimated and true probes. The outcome of 
reconstruction with estimated probe is shown in (a) and (b), while the result from true probe is shown 
in (c) and (d). Since the illumination is updated in ePIE, the accuracy of initial probe does not have 
significant influence on the result. Both initial probes lead to descent reconstructions. The error for true 
and estimated probe stays at similar magnitude during the reconstruction. 
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3.3.3. Regularised PIE (rPIE) 

In 2017, another modified version of PIE is developed as regularised PIE (rPIE). Regularisation 

is a common concept in machine learning63,64 to prevent a neural network getting overfit to 

the training data. In the reconstruction of PIE family, the mechanism of the fluctuation of 

poorly illuminated pixels is similar to the overfitting, hence can be supressed by introducing 

a regularised term to the cost function. The derivation of rPIE updating functions is explained 

below. 

All PIE algorithms come from a cost function as given by eq 3. 53, where 𝐎𝑟⃗ ,𝑘′ denotes the 

updated object.  The first term of this equation evaluates the difference between the present 

guessed object and probe pair with the exit wave revised by f-constraint (𝛙𝑟 ,𝑘), while the 

second term evaluates the variation of object during the present updating process.  

 

 ℒ𝑂 = ∑ |𝐎𝑟 ,𝑘
′ 𝐏𝑟 − 𝛙𝑟 ,𝑘

′ |
2

𝑟 
+ ∑ 𝝎𝑂,𝑟 |𝐎𝑟 ,𝑘

′ − 𝐎𝑟 ,𝑘|
2

𝑟 
 eq 3. 53 

  

When a solution is found for a noiseless data set, the exit wave satisfying the s-constraint (i.e. 

𝐎𝑟 ,𝑘′𝐏𝑟 ) should be the same with the exit wave satisfying f-constraint (i.e. 𝛙𝑟⃗ ,𝑘
′ ), which gives 

zero for the first term. Meanwhile, when the solution is reached, there is no difference 

between the present (𝐎𝑟 ,𝑘) and updated object (𝐎𝑟⃗ ,𝑘
′ ). Hence the second term also equals 

zero. As expected, the cost function reaches zero when the solution is found. Nevertheless, 

the second term also provides an approach for adaptively tuning the updating speed. By 

assigning large 𝝎𝑟  to the pixels that are not well illuminated, this cost function can penalise 

any dramatic variation on those poorly illuminated area of object. Different definition of 𝝎𝑂,𝑟  

leads to different updating functions. 

To find an updated object part at the 𝑘𝑡ℎ scan position (𝐎𝑟 ,𝑘′) that can minimise this cost 

function, a common approach is calculate the gradient of this function with respect to this 

variable and find a value that gives zero gradient. Thus, we differentiate the cost function for 

this object part with respect to (𝐎𝑟 ,𝑘
′ )

∗
 to obtain the gradient: 

 

 
𝜕ℒ𝑂,𝑘

𝜕(𝐎𝑟 ,𝑘
′ )

∗ = 𝐏𝑟 
∗(𝐎𝑟 ,𝑘′𝐏𝑟 − 𝛙𝑟 ,𝑘

′ ) + 𝝎𝑂,𝑟 (𝐎𝑟 ,𝑘′ − 𝐎𝑟 ,𝑘) eq 3. 54 
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Set this equation of gradient to zero and re-arrange it with respect to 𝐎𝑟 ,𝑘
′ : 

 

 𝐎𝑟 ,𝑘′ =
𝐏𝑟 

∗𝛙𝑟 ,𝑘
′ + 𝝎𝑂,𝑟 𝐎𝑟 ,𝑘

|𝐏𝑟 |
2 + 𝝎𝑂,𝑟 

 eq 3. 55 

 
Or: 
 
 

  

 
𝐎𝑟 ,𝑘′ = 𝐎𝑟 ,𝑘 +

𝐏𝑟 
∗𝛙𝑟 ,𝑘

′ − |𝐏𝑟 |
2𝐎𝑟 ,𝑘

|𝐏𝑟 |
2 + 𝝎𝑂,𝑟 

 

= 𝐎𝑟 ,𝑘 +
𝐏𝑟 

∗(𝛙𝑟 ,𝑘
′ − 𝛙𝑟 ,𝑘)

|𝐏𝑟 |
2 + 𝝎𝑂,𝑟 

 
eq 3. 56 

 

 

All object updating functions used by PIE-algorithms can be derived from this function by 

choosing a suitable weighting factor (𝝎𝑂,𝑟 ). For instance, ePIE sets 𝝎𝑂,𝑟 =
1

𝛼
|𝐏𝑟 |𝑚𝑎𝑥

2 − |𝐏𝑟 |
2, 

gives the object updating function as eq 3. 57. 

 

 
𝐎𝑟 ,𝑘

′ = 𝐎𝑟 ,𝑘 + 𝛼
𝐏𝑟 

∗ ∙ (𝛙𝑟 ,𝑘
′ − 𝛙𝑟 ,𝑘)

|𝐏𝑟 |𝑚𝑎𝑥
2  

eq 3. 57 
 

 

For rPIE, 𝝎𝑂,𝑟 = 𝛼(|𝐏𝑟 |𝑚𝑎𝑥
2 − |𝐏𝑟 |

2) is utilised56, which turns the denominator of eq 3. 56 

into a mediate value between the intensity of picked pixel (|𝐏𝑟 |
2) and the maximum intensity 

(|𝐏𝑟 |𝑚𝑎𝑥
2 ).  

 

 
𝐎𝑟 ,𝑘′ = 𝐎𝑟 ,𝑘 +

𝐏𝑟 
∗(𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘)

(1 − 𝛼)|𝐏𝑟 |
2 + 𝛼|𝐏𝑟 |𝑚𝑎𝑥

2  
eq 3. 58 

 

The illumination updating function is derived in a similar way. First, a cost function with 

respect to the probe is written as follows: 

 

 ℒ𝑃 = ∑ |𝐎𝑟 ,𝑘𝐏𝑟 
′ − 𝛙𝑟 ,𝑘

′ |
2

𝑘
+ ∑ 𝝎𝑃,𝑟 |𝐏𝑟 

′ − 𝐏𝑟 |
2

𝑘
 eq 3. 59 

 

Then the gradient at current scan position with respect to the probe is obtained by 

differentiating it with respect to (𝐏𝑟 
′)∗, 
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𝜕ℒ𝑃,𝑘

𝜕(𝐏𝑟 
′)

∗ = 𝐎𝑟 ,𝑘
∗(𝐎𝑟 ,𝑘𝐏𝑟 

′ − 𝛙𝑟 ,𝑘
′ ) + 𝝎𝑃,𝑟 (𝐏𝑟 

′ − 𝐏𝑟 ) eq 3. 60 

 

Set this gradient to zero, and rearrange it with respect to 𝐏𝑟⃗ 
′ , gives: 

 

 𝐏𝑟 
′ =

𝐎𝑟 ,𝑘
∗𝛙𝑟 ,𝑘

′ + 𝝎𝑃,𝑟 𝐎𝑟 ,𝑘

|𝐏𝑟 |
2 + 𝝎𝑃,𝑟 

 eq 3. 61 

 

Then an updating function for probe can be found by setting 𝝎𝑃,𝑟 = 𝛽 (|𝐎𝑟 ,𝑘|𝑚𝑎𝑥

2
− |𝐎𝑟 ,𝑘|

2
) 

 

 
𝐏𝑟 

′ = 𝐏𝑟 + 𝛽
𝐎𝒓𝑘

∗ (𝛙𝑟 ,𝑘
′ − 𝛙𝑟 ,𝑘)

|𝐎𝑟 ,𝑘|𝑚𝑎𝑥

2  eq 3. 62 
 

 

Besides the modified updating functions, rPIE reconstruction process is exactly the same as 

ePIE. One can refer to Figure 3. 16 for rPIE flowchart. The pseudo code of rPIE is given in 

Pseudocode 3. 13. The reconstruction result from rPIE is given in Figure 3. 18. 

 

 

Figure 3. 18. The reconstruction result of rPIE with estimated and true probes. The outcome of 
reconstruction with estimated probe is shown in (a) and (b), while the result from true probe is shown 
in (c) and (d). Again, as the probe is simultaneously updated, its initial value does not affect the 
outcome significantly. rPIE achieves reasonable reconstructions in both cases. 
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Pseudocode 3. 13: Regularised Ptychographical Iterative Engine (rPIE) 

Input:  

measured diffraction pattern ( 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ),  scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ), 

guessed object ( 𝑜𝑏𝑗𝑒𝑐𝑡 ), guessed probe ( 𝑝𝑟𝑜𝑏𝑒 ), No. of iterations ( 𝑁 ), 

Parameter (𝛼, 𝛽)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (n=1: 𝑁) do 

2:    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝓼𝓱𝓾𝓯𝓯𝓵𝓮(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

3:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

4:     𝑡ℎ𝑒 𝑘𝑡ℎ  𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

5:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

6:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

7:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

8:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑟𝑜𝑏𝑒∗

(1−𝛼)∙|𝑝𝑟𝑜𝑏𝑒|2+𝛼∙|𝑝𝑟𝑜𝑏𝑒|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

9:    
 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 =

𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡,𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

10:    
 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 +

𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗

(1−𝛽)∙|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|2+𝛽∙|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|𝑚𝑎𝑥
2 ×

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

11:    End 

12:   End 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

 

 

3.3.4. Momentum PIE (mPIE) 

The latest member of PIE family is the momentum PIE (mPIE). Momentum is a concept in 

optimisation, which has been applied in training neural networks. Referring to the example in 

Figure 3. 8, a ball can overcome the pits with the accumulated momentum. The momentum 

(i.e. velocity) is reduced due to the friction and eventually lets the ball stay in the global 

minimum. During the reconstruction, mPIE estimates the current pixel-wise velocity by 
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comparing the updated object (𝐎𝑟 
′ ) with its previous value (𝐎𝑟 ). This current velocity is 

accumulated with a damped previous one (𝛾𝒗𝑜). Finally, the updated object is moved further 

along the direction defined by the over-all velocity as demonstrated by eq 3. 63 and eq 3. 64, 

where the 𝒗𝑜 is the previous object velocity and 𝛾 is the friction coefficient. The velocity (𝒗𝑜) 

is a matrix with the same size as object and initialise to zero in the beginning. The friction 

coefficient is a fractional number between 0 and 1. A high value indicates less damping effect; 

hence the velocity dissipates slower. A similar momentum updating is applied to the probe. 

 

 
𝒗𝑜

′ = 𝛾𝒗𝑜 + (𝐎𝑟 
′ − 𝐎𝑟 ) 

eq 3. 63 
 

 
𝐎𝑟 = 𝐎𝑟 

′ + 𝛾𝒗𝑜
′  

eq 3. 64 
 

 

As shown in Figure 3. 19, the workflow of mPIE is about the same with rPIE, except the 

momentum part existing in the end of iteration. This is different to the original paper, where 

momentum was applied periodically within the main update steps, which requires user 

choosing a parameter for it. We have demonstrated that applying momentum at the end of 

each update step is both more straightforward and more stable than the original scheme. 

Meanwhile, the original mPIE have 7 parameters, including two parameters for step size, two 

for regularisation, two for momentum updating and one for the period of applying 

momentum. We reduce the parameters to three, while still keep the most characteristics of 

mPIE. The pseudo code of momentum updating is given in Pseudocode 3. 14. The result of 

mPIE is shown in Figure 3. 20. 
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Figure 3. 19. The flow chart of mPIE. The difference between mPIE and ePIE (or rPIE) is the momentum 
updating modules, which are highlighted in red colour. In the original paper56, this momentum module 
is activated after the object is updated with certain amount positions. we have demonstrated that 
applying momentum at the end of each update step is both more straightforward and more stable 
than the original scheme. 

 

 

Figure 3. 20. The reconstruction result of mPIE with estimated and true probes. The outcome of 
reconstruction with estimated probe is shown in (a) and (b), while the result from true probe is shown 
in (c) and (d). The accuracy of initial probe does not affect the outcome, mPIE success with both initial 
guessed probes. 
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Pseudocode 3. 14: Momentum Ptychographical Iterative Engine (mPIE) 

Input:  

measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦),  scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), object velocity (𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), probe 

velocity(𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), No. of iterations (𝑁), Parameter (𝛼, 𝛽, 𝛾)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝟎 

2:   𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝟎 

3:   For (n=1: 𝑁) do 

4:    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝓼𝓱𝓾𝓯𝓯𝓵𝓮(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

5:    𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡 

6:    𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 

7:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

8:     𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

9:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

10:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

11:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

12:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑟𝑜𝑏𝑒∗

(1−𝛼)∙|𝑝𝑟𝑜𝑏𝑒|2+𝛼∙|𝑝𝑟𝑜𝑏𝑒|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

13:     𝑜𝑏𝑗𝑒𝑐𝑡 = 𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

14:     𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 +
𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗

(1−𝛽)∙|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|2+𝛽∙|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

15:    End 

16:    𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝛾 × 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + (𝑜𝑏𝑗𝑒𝑐𝑡 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑜𝑏𝑗𝑒𝑐𝑡) 

17:    𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝛾 × 𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + (𝑝𝑟𝑜𝑏𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑒) 

18:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡 + 𝛾 × 𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

19:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 + 𝛾 × 𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

20:   End 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
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3.3.5. Alternating direction method of multipliers (ADMM) 

The alternating direction method of multipliers (ADMM) is a relatively new phase retrieval 

algorithm developed from the gradient descent concept55, 65. Just like any other ptychography 

algorithms, ADMM can be separated into two parts: the application of f-constraint and the 

application of s-constraint. The way of applying f-constraint in ADMM shares similarity with 

rPIE. The derivation starts with a cost function given below: 

 

 
ℒΨ = ∑ ||𝚿𝑢⃗⃗ ,𝑘

′
| − √𝐈𝑢⃗⃗ ,𝑘|

2

𝑘
+ 𝛽 ∑ ||𝚿𝑢⃗⃗ ,𝑘

′
| − |𝚿𝑢⃗⃗ ,𝑘||

2

𝑘
 eq 3. 65 

 

The first term is an error metric evaluating the Euclidean distance in f-domain, while the 

second term is regularisation term based the difference of exit waves before and after 

updating of exit waves. Following the process of deriving updating function from cost function, 

we perform a partial differentiation with respect to 𝚿𝑢⃗⃗ ,𝑘, gives: 

 

 𝜕ℒΨ,k

𝜕(|𝚿𝑢⃗⃗ ,𝑘
′

|
∗
)
= 2 (|𝚿𝑢⃗⃗ ,𝑘

′
| − √𝐈𝑢⃗⃗ ,𝑘) + 2𝛽(|𝚿𝑢⃗⃗ ,𝑘

′
| − |𝚿𝑢⃗⃗ ,𝑘|) eq 3. 66 

 

 

Set its value to zero and calculate 𝚿𝑢⃗⃗ ,𝑘
′ , gives: 

 

 
|𝚿𝑢⃗⃗ ,𝑘

′
| =

√𝐈𝑢⃗⃗ ,𝑘 + 𝛽|𝚿𝑢⃗⃗ ,𝑘|

1 + 𝛽
=

1

1 + 𝛽
√𝐈𝑢⃗⃗ ,𝑘 + (1 −

1

1 + 𝛽
) |𝚿𝑢⃗⃗ ,𝑘| eq 3. 67 

 

Which has a similar format of the rPIE updating functions. Such an updating function 

equivalents to a relaxed f-projection and can be re-written into the standard format of relaxed 

projection (𝓟𝑓
𝛼) as shown below. It equals projection when 𝛽 = 0 and remains as unchanged 

when 𝛽 goes to infinity. 

 

 
𝚿𝑢⃗⃗ ,𝑘

′ = 𝓟𝑓
𝛼(𝚿𝑢⃗⃗ ,𝑘) = (1 − 𝛼)|𝚿𝑢⃗⃗ ,𝑘| + 𝛼√𝐈𝑢⃗⃗ ,𝑘, 𝑤ℎ𝑒𝑟𝑒 𝛼 =

1

1 + 𝛽
 eq 3. 68 

 

The s-constraint is applied onto the multiplier rather than exit waves, though they are strongly 

related to each other and even interchangeable under some assumptions as shown later. The 
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guessed exit waves are revised by a relaxed s-reflection (𝓡𝑠
𝛽

) of multipliers. Its outcome is 

equivalent to projection when 𝛽 = 0 and equals to reflection when 𝛽 = 1. 

Finally, the f- and s-constraints are connected to each other by interfaces that relate 

multipliers (𝛌𝑟 ) and exit waves (𝛙𝑟 ). However, the original arrangement of ADMM, which is 

given in Pseudocode 3. 15, is not easy to follow due to the successive converting between exit 

waves and multipliers. For revealing the logic beneath ADMM, its workflow is re-arranged as 

shown in Figure 3. 21. This rearranged format converges in a same rate as the original one 

under two assumptions. The first assumption is the initial value of multiplier is zero, which is 

common initialisation of ADMM. The second assumption is that swapping the order of 

projecting to s- and f- constraints has no significant influence on the reconstruction in a long 

run, which is also true in most of the applications46.  

Referring to the re-arranged format in Figure 3. 21, the “interface s to f” module is a self-

updating for multiplier. It sets the multiplier to a vector pointing from the s-projection 

towards the original value. Then, this vector is added to the exit wave in “interface f to s” 

module and drives it away from the s-constraint. The multipliers work as memory terms that 

accumulate the previous error to the current exit wave. Such a mechanism perturbates the 

exit wave when it approaches to a stable point and prevent it from stagnation. To approve 

the re-arrangement does not affect the convergency of ADMM, both the original and the re-

arranged ADMM are applied to reconstruct the simulated data with 𝛽 = 0.2  with 3000 

iterations with the estimated probe. The result is demonstrated in Figure 3. 22. 
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Pseudocode 3. 15: original Alternating direction method of multipliers (ADMM) 

Input:  

measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦),  scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), object velocity (𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), probe 

velocity(𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), No. of iterations (𝑁), Parameter ( 𝛽)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝟎 

2:   For (n=1: 𝑁) do 

3:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

4:     𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

5:      𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

6:     𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 = 𝓕( 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠) 

7:     𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 =
√𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦+𝛽|𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠|

1+𝛽
∙ exp(𝑗 ∙ 𝑎𝑛𝑔𝑙𝑒(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒)) 

8:      𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 = 𝓕−𝟏(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠) 

9:      𝑡ℎ𝑒 𝑘𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 +
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝛽
 

10:    End 

11:    [𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡] = 𝓟s(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

12:    𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  𝛽 ∙ (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

13:    𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 = 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

14:   End 
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Figure 3. 21. A re-arrangement of ADMM algorithm. Each column (from top to bottom) represents a 
complete ADMM updating iteration, the updating process is gradually re-arranged from left to right. 
Modules relates to f-constraint is marked with blue colour and modules relates to s-constraint is 

marked with red colour. The expressions of relaxed f-projection (𝓟𝑓
𝛽

) and relaxed s-reflection (𝓡𝑠
𝛽

) are 

giving at the bottom of this figure. 

 

The 1st column is the standard ADMM that matches Pseudocode 3. 15. From the 1st to 2nd 

column, with assumption that initial value of multiplier is zero, the order of computing exit 

waves (𝛙𝑟 ) and multipliers (𝛌𝑟 ) are swapped with corresponding adjustment on the updating 

functions to prevent any influence on the outcomes. From the 2nd to 3rd column, the order of 

applying f- and s-constraints are swapped together with their interfaces. For most of the 

iterative phase retrieval algorithms, such an adjustment has negligible effect in a long run. 

From 3rd to 4th column, as the f-constraint does not affect multiplier, it is brought to the front 

and leaves all functions of multiplier at the end of iteration. In this new format, exit waves 
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behaves more like a buffer, while the multiplier becomes the real exit wave and passed 

between iterations.  

 

Pseudocode 3. 16: modified Alternating Direction Method of Multipliers (ADMM) 

Input:  

measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦),  scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), object velocity (𝑜𝑏𝑗𝑒𝑐𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), probe 

velocity(𝑝𝑟𝑜𝑏𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦), No. of iterations (𝑁), Parameter ( 𝛽)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

2:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

3:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

4:   End 

5:  For (n=1: 𝑁) do 

6:   
 [𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡] =

𝓟s(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

7:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

8:     𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = (1 + 𝛽) ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 − 𝛽 ∙ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

9:     𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 = 𝓕( 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠) 

10:     𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 =
√𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦+𝛽|𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠|

1+𝛽
∙ exp(𝑗 ∙ 𝑎𝑛𝑔𝑙𝑒(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒)) 

11:     𝑡ℎ𝑒 𝑘𝑡ℎ𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 = 𝓕−𝟏(𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠) 

12:    End 

13:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑚𝑢𝑙𝑖𝑝𝑙𝑖𝑒𝑟 − 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

14:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒𝑠 +  𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

15:   End 

 

Moreover, the re-arranged format is also helpful to explain ADMM from set-projection point 

of view. In the final re-arranged format, one can combining the interfaces together and 

replace exit wave with an expression of multiplier. Hence, a recursive formula of multiplier is 

found as eq 3. 69. 

 

 𝛌𝑟 
′ = 𝓟𝑓

𝛽
𝓡𝑠

𝛽
𝛌𝑟 + (𝐼 − 𝓟s)𝛌𝑟  eq 3. 69 
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Derive the above equation to the most memory saving format. 

 

𝛌𝑟 ,𝑘+1 = (𝓟𝑓
𝛽
𝓡𝑠

𝛽
+ (𝓘 − 𝓟s))𝛌𝑟 ,𝑘 

= (𝓟𝑓
𝛽
𝓡𝑠

𝛽
− 𝓟s + 𝓘)𝛌𝑟 ,𝑘 

= (𝓟𝑓
𝛽
𝓡𝑠

𝛽
− ((1 + 𝛽)𝓟s − 𝛽𝓘) + 𝛽𝓟s + (1 − 𝛽)𝓘)𝛌𝑟 ,𝑘 

= (𝓟𝑓
𝛽
𝓡𝑠

𝛽
− 𝓡𝑠

𝛽
+ 𝛽𝓟s + (1 − 𝛽)𝓘)𝛌𝑟 ,𝑘 

= ((𝓟𝑓
𝛽

− 𝐼)𝓡𝑠
𝛽

+ 𝛽𝓟s + (1 − 𝛽)𝓘)𝛌𝑟 ,𝑘 

= ((𝓟𝑓
𝛽

− 𝐼)𝓡𝑠
𝛽

+ 𝓘 + 𝛽(𝓟s − 𝓘))𝛌𝑟 ,𝑘 

 

Last but not the least, the re-arranged format reduces the required memory. The original 

ADMM format is very memory intensive, as it requires storing both the exit waves and the 

multipliers, which are the largest variables in ptychography referring to Table 3. 3. This 

drawback limits the implementation of ADMM onto large data sets. Since exit waves become 

intermediate variables in the re-arranged format, they can be wiped by the end of each 

iteration. In other words, the exit waves behave more like a buffer, and the multipliers 

become the true exit waves that is retrieved iteratively. The required memory size is nearly 

halved with this adjustment. The memory occupation can be found in Table 3. 3. 
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Figure 3. 22. The reconstruction result of ADMM with true and estimated probes. The outcome of 
reconstruction with true probe is shown in (a) and (b), while the result from guessed probe is shown in 
(c) and (d). The initial guess of probe has negligible influence on the reconstruction for ADMM. The 
error linearly decreases during the whole reconstruction. The modified version of ADMM (marked as 
dash-dotted line) has about the same trend as the original version. 
 

3.3.6. Difference Mapping (DM) 

Since the difference mapping was applied in ptychography in 20084, it has become one of the 

most competitive opponents of ePIE. It was the first algorithms tried to improve the 

reconstruction quality by retrieving illumination function during the reconstruction59. It is also 

considered as the ancestor of set-projection inspired algorithms61. The DM4 recursive formula 

with respect to 𝛙𝑟 ,𝑘 is given as follow:  

 

 𝛙𝑟 ,𝑘+1 = 𝛙𝑟 ,𝑘 + 𝓟𝑓(2𝓟𝑠(𝛙𝑟 ,𝑘) − 𝛙𝑟 ,𝑘) − 𝓟𝑠(𝛙𝑟 ,𝑘) eq 3. 70  
 

Or: 

 

 𝛙𝑟 ,𝑘+1 = (𝓘 + 𝓟𝑓𝓡𝑠 − 𝓟𝑠)𝛙𝑟 ,𝑘 eq 3. 71  
 

Theoretically, DM should always converge to a true solution. To prove this, assume the 𝛙𝑟 ,0 

is a fixed point found by eq 3. 70, then we have: 
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 𝛙𝑟 ,0 = 𝛙𝑟 ,0 + 𝓟𝑓(2𝓟𝑠(𝛙𝑟 ,0) − 𝛙𝑟 ,0) − 𝓟𝑠(𝛙𝑟 ,0) 

0 = 𝓟𝑓(2𝓟𝑠(𝛙𝑟 ,0) − 𝛙𝑟 ,0) − 𝓟𝑠(𝛙𝑟 ,0) 

𝓟𝑠 (𝛙𝑟⃗ ,0) = 𝓟𝑓 (2𝓟𝑠 (𝛙𝑟⃗ ,0) − 𝛙𝑟⃗ ,0) 

 
 

eq 3. 72 

 

Which indicates the 𝛙𝑟 ,0 satisfies both constraints at the same time, hence it is a solution. For 

later comparison, eq 3. 71 is derived into a standard format as follows: 

 

 𝛙𝑟 ,𝑘+1 = (𝓘 + 𝓟𝑓𝓡𝑠 − 𝓟𝑠)𝛙𝑟 ,𝑘 

= (𝓟𝑓𝓡𝑠 − 𝓟𝑠 + 𝓘)𝛙𝑟⃗ ,𝑘 

= (𝓟𝑓𝓡𝑠 − 2𝓟𝑠 + 𝓘 + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 

= (𝓟𝑓𝓡𝑠 − (2𝓟𝑠 − 𝓘) + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 

= (𝓟𝑓𝓡𝑠 − 𝓡𝑠 + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 

= ((𝓟𝑓 − 1)𝓡𝑠 + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 
 

 

 

 

 

eq 3. 73 

 

The pseudo code of DM is given in Pseudocode 3. 17. 

Pseudocode 3. 17: Difference Mapping (DM) 

Input:  
measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), No. of iterations (𝑁) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

2:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

3:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

4:   End 

5:   For (n=1: 𝑁) do 

6:   
 [𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡] =

𝓟s(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

7:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝒇(2 ∙ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

8:    𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 + 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

9:   End 

 

As shown in eq 3. 70eq 3. 69, all guessed exit waves from the previous iteration needed to be 

preserved for the next iteration. Moreover, some of the intermediate results, for instance the 
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outcome from 𝓟𝑠  and 𝓟𝑓 , also need to be stored temporarily. This gives DM a relatively 

larger memory footprint than PIE-algorithms. Since the DM is not based on gradient descent 

concept, it has a relatively slow error reducing speed, and usually accompanied with 

fluctuations. The test results of DM are shown in Figure 3. 23. 

 

 

Figure 3. 23. The reconstruction result of DM with estimated and true probes. The outcome of 
reconstruction with estimated probe is shown in (a) and (b), while the result from true probe is shown 
in (c) and (d). The accuracy of initial probe does not affect the outcome of DM significantly. The error 
reduces in a linear trend for the first 2000 iterations. The fluctuation on the error plot is typical 
characteristic of DM. 

 

3.3.7. Relaxed averaged alternating reflections (RAAR) 

The relaxed average alternating reflections (RAAR) is based on set-projection concept. The 

pseudo code of RAAR is given in Pseudocode 3. 18. 
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Pseudocode 3. 18: Relaxed averaged alternative reflections (RAAR) 

Input:  
measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), No. of iterations (𝑁), parameter (𝛽) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

2:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

3:    𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

4:   End 

5:   For (n=1: 𝑁) do 

6:   
 [𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡] =

𝓟s(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑝𝑟𝑜𝑏𝑒) 

7:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝒇(2 ∙ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

8:   
 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝛽 ∙ (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 + 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) +
(1 − 2𝛽) ∙ 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

9:   End 

 

 

The updating function of exit wave in RAAR is given below: 

 

 𝛙𝑟 ,𝑘+1 = (𝛽(𝓘 + 𝓟𝑓𝓡𝑠) + (1 − 2𝛽)𝓟𝑠)𝛙𝑟 ,𝑘 eq 3. 74 

 

With some derivation works: 

 

 

𝛙𝑟 ,𝑘+1 = (𝛽𝓘 + 𝛽𝓟𝑓𝓡𝑠 + 𝓟𝑠 − 2𝛽𝓟𝑠)𝛙𝑟 ,𝑘 

= (𝛽𝓟𝑓𝓡𝑠 − 𝛽(2𝓟𝑠 − 𝓘) + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 

= (𝛽𝓟𝑓𝓡𝑠 − 𝛽𝓡𝑠 + 𝓟𝑠)𝛙𝑟⃗ ,𝑘 

= (𝛽(𝓟𝑓 − 1)𝓡𝑠 + 𝓟𝑠)𝛙𝑟⃗ ,𝑘  

 

 

 

eq 3. 75 

 

Comparing to eq 3. 73, this equation almost identical to the DM updating function, except it 

has a relaxed parameter (𝛽). This tiny variance, however, significantly improves the capability 

of preventing stagnation as shown in Figure 3. 24. 
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Figure 3. 24. The reconstruction result of RAAR with true and estimated probes. The outcome of 
reconstruction with true probe is shown in (a) and (b), while the result from guessed probe is shown in 
(c) and (d). RAAR has a linear error reduction until it hit the precision limit, which causes flat error trend 
at the end of reconstruction. The initial guess of probe has no observable influence on the output, which 
indicates RAAR reconstructs both the specimen and probe with good precision. 

 

3.3.8. Hybrid projection and reflection (HPR) 

The hybrid projection and reflection (HPR) is inspired by Fienup’s basic input-output method 

(BIO) and hybrid input-output (HIO) method, which were developed in the early stage of 

computational microscopy66. The equation of HPR is shown in eq 3. 76. The 𝛽 is a parameter, 

which give the algorithm more flexibility53.  

 

 
𝛙𝑟 ,𝑘+1 =

1

2
(𝓡𝑠(𝓡𝑓 + (𝛽 − 1)𝓟𝑓) + 𝑰 + (1 − 𝛽)𝓟𝑓)𝛙𝑟 ,𝑘 eq 3. 76 

 

When the HPR is applied to ptychography, the current exit waves need to be computed first 

based on the guessed probe and object. Then their projection with respect to the f-constraint 

is denoted as 𝓟𝑓(𝛙𝑟 ,𝑘),. Meanwhile, their reflection (𝓡𝑓(𝛙𝑟 ,𝑘)) is computed as explained 

before. After that, a group of temporary exit waves are form with the following equation. 
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𝛙𝑟⃗ ,𝑘
′ = 𝓡𝑓𝛙𝑟⃗ ,𝑘 − (1 − 𝛽)𝓟𝑓𝛙𝑟⃗ ,𝑘 eq 3. 77 

 

These temporary exit waves are reflected with respect to the spatial domain constrain and 

update the probe and object at the same time by using equation (4). Finally, the s domain 

reflected exit waves are added up with the present exit waves and the adjusted frequency 

domain exit waves and divided by 2 to obtain the final updated exit waves, which will be used 

in the next iteration. 

 

𝛙𝑟 ,𝑘+1 = (𝓡𝑠𝛙𝑟 ,𝑘
′ ) + 𝛙𝑟 ,𝑘 + (1 − 𝛽)𝓟𝑓𝛙𝑟 ,𝑘 eq 3. 78 

 

 

 

 

Figure 3. 25. The reconstruction result of HPR with estimated and true probes. The outcome of 
reconstruction with true probe is shown in (a) and (b), while the result from true probe is shown in (c) 
and (d). HPR has a linear error reduction until it hit the precision limit, which causes flat error trend at 
the end of reconstruction. The quality of initial probe has no observable influence when the 
reconstruction fully converges, which indicates HPR reconstructs both the specimen and probe with 
good precision. 
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3.3.9. Incremental accelerated proximal gradient (iAPG) 

Proximal algorithm is an optimisation approach, which has been extensively studied67,68. It 

can produce a descent gradient for a constrained non-differentiable cost function, which 

makes it attractive for solving phase problem67. For ptychography, the phase retrieval can be 

expressed as optimising the following objective function69: 

 

 min
𝛙𝑟⃗⃗ ,𝑘

𝑓(𝛙𝑟 ,𝑘) + 𝑔(𝛙𝑟 ,𝑘) eq 3. 79 

 

Where 𝑓(𝛙𝑟 ,𝑘) represents the f-constraint formed by the measured intensities and 𝑔(𝛙𝑟 ,𝑘) 

represents the s-constraint formed by the over lapping area.  The gradient descent method 

can be applied to minimising 𝑓(𝛙𝑟 ,𝑘) as explained in section 3.3.3.  

 

 𝛙𝑟 ,𝑘
′ = 𝛙𝑟 ,𝑘 − 𝛾𝑘∇𝑓(𝛙𝑟 ,𝑘) 

eq 3. 80 

 

On the other hand, 𝑔(𝛙𝑟 ,𝑘)  is not differentiable with non-convex constraint67. It can be 

written as an indicator function as follow: 

 

 𝑔(𝛙𝑟 ,𝑘) = {
0    𝛙𝑟 ,𝑘 ∈ 𝕆

∞   𝛙𝑟 ,𝑘 ∉ 𝕆
 eq 3. 81 

 

To minimise eq 3. 79, one must use proximal gradient method. Then the recursive equation 

of exit waves can be written as: 

 

 

𝛙𝑟 ,𝑘+1 = 𝒑𝒓𝒐𝒙𝑔(𝛙𝑟 ,𝑘
′) 

= argmin
𝛙

 𝑔(𝛙) + |𝛙 − 𝛙𝑟 ,𝑘
′|

2
 

 

eq 3. 82 

 

To minimise eq 3.82, 𝛙 has to satisfy s-constraint (𝛙 ∈ 𝕆), otherwise the first term becomes 

infinity. Moreover, 𝛙 needs to be close to the current guess (i.e. 𝛙𝑟 ,𝑘
′), hence the second 

term is also minimised. Combining eq 3.80 and eq 3.82, the recursive equation for proximal 

gradient descent method is obtained: 
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𝛙𝑟 ,𝑘+1 = 𝒑𝒓𝒐𝒙𝑔 (𝛙𝑟 ,𝑘 − 𝛾𝑘∇𝑓(𝛙𝑟 ,𝑘)) 

 

eq 3. 83 

 

This equation can be understood as minimising the differentiable function by gradient 

descent, then finding a new value that stays in the domain and is close to the present value. 

Researches68 indicate the converging speed can be improved by introducing an adaptive 

parameter w, whose value (as defined in eq 3.84) approaches to unity as iteration goes. This 

gives the Incremental accelerated proximal gradient algorithm. Its pseudocode is given in 

Pseudocode 3.19. Its simulation results are shown in Figure 3.26. 

 

 

 𝑤 =
𝑛 − 1

𝑛 + 2
 

 

eq 3. 84 

 

 

Figure 3. 26. The reconstruction result of iAPG with estimated and true probes. The outcome of 
reconstruction with true probe is shown in (a) and (b), while the result from true probe is shown in (c) 
and (d). iAPG converges fast in the beginning and gradually slows down as the iteration goes. It has a 
relatively slow over-all converging speed. The reconstruction quality is not significantly affected by the 
quality of initial guessed probe.  
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Pseudocode 3. 19: Incremental accelerated proximal gradient (iAPG) 

Input:  
measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦), scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), No. of iterations (𝑁), parameter (𝛼, 𝛽, 𝛾) 

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

13:   For (n=1: 𝑁) do 

14:    𝑤 =
𝑛−1

𝑛+2
 

15:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡 

16:    𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 

17:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

18:     𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

19:     𝑡ℎ𝑒 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

20:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

21:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 

22:     𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕 (𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

23:     𝐹𝑇 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕 (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

24:     𝐹𝑇 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = (1 + 𝑤) ∙ 𝐹𝑇 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑤 ∙ 𝐹𝑇 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

25:     𝑑𝑒𝑙𝑡𝑎 = 𝐹𝑇 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝓟𝑓(𝐹𝑇 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

26:     𝐹𝑇 𝑛𝑒𝑥𝑡 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝐹𝑇 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝛾 ∙ 𝑑𝑒𝑙𝑡𝑎 

27:     𝑛𝑒𝑥𝑡 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓕−1(𝐹𝑇 𝑛𝑒𝑥𝑡 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒) 

28:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑛𝑒𝑥𝑡 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

29:     𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 

30:     𝑝𝑟𝑜𝑏𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 

31:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝛼 ×
𝑝𝑟𝑜𝑏𝑒∗

|𝑝𝑟𝑜𝑏𝑒|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

32:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡,𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

33:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 + 𝛽 ×
𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗

|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|𝑚𝑎𝑥
2 × 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

34:    End 

35:   End 
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3.3.10. Other existed algorithms 

Besides the algorithms explained above, there are also some other ptychographic algorithms, 

such as proximal algorithms 70,67,71 , maximum likelihood optimization72, convex relaxation to 

linearize the ptychography problem73, momentum-accelerated Wirtinger flow74 and flexible 

least-squares optimize75. However, they are either less influential as the algorithms explained 

in the previous sections, or still under developing, or not suitable for retrieving phase for 

ptychography, they are not discussed in this thesis. 

 

3.4. Computer hardware background 

All simulations and phase retrieval within this thesis are carried out using the MATLAB 

software. This software is well known for its efficiency in computing vectorised variables. 

Since most of the variables in diffraction imaging are in matrix style, they are benefited by the 

strength of MATLAB. Meanwhile, MATLAB offers various kinds of functions and toolboxes that 

assist with prototyping new algorithms. This section explains some important hardware 

limitations that strongly relates to the phase retrieving algorithms.  

 

3.4.1. Benefits and limitations of parallel computation 

The redundancy in collected data brings many advantages to ptychography, but it also puts a 

strict requirement on the hardware. Retrieving phase iteratively from a set of diffraction 

patterns is computation-intensive and demands enormous memory for storing necessary 

variables. Nowadays, the phase retrieving process are mostly done by Graphic Processing Unit 

(GPU), as they are designed for parallel computation hence faster than Central Processing 

Unit (CPU) in this application. However, unlike the CPU whose memory size can be increased 

by plugging more RAMs, the available memory for GPU (i.e. vRAM) is limited and cannot be 

modified. By the time this thesis is written, a CPU can access multiple 16G RAMs with a 

reasonable mother board comparing with only 12G vRAM in a top tier domestic GPU.  

 

. 
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Although some specifically designed GPUs or cross fire technology are capable to provide 

more total memory76, they are, firstly, not sharing the vRAM between different GPUs, and 

secondly, coming with a considerable price. Transferring variables between RAM and vRAM 

can prevent running out of memory, though it takes significant time and should be prevented 

for a good efficiency. Moreover, extra memory is implicitly demanded by other functions as 

buffers. The amount of implicit demand is usually proportional to the variable size in MATLAB. 

This leads to a conflict between the computing speed and available memory. As multiple 

variables need to be computed simultaneously to maximise the efficiency, but the memory 

for storing variables is limited by the finite vRAM. Such a conflict does not affect the outcome, 

but it varies the efficiency of a same code on different devices and data set.  

 

 

Figure 3. 27. The available memory size affects the efficiency of parallel computing. This figure uses 
Fourier transformation of guessed exit waves as an example. The available memory size is visualised 
as a red dotted outline. When the memory is sufficient (a), all exit waves are parallelly computed to 
maximise the efficiency. However, when the available memory is insufficient (b), the computation has 
to be applied onto several smaller batches. Giving the batch size has negligible effect on parallel 
computation in MATLAB, the number of computations dominate the consuming time. Therefore, a 
smaller memory size leads to more batches, hence consumes more time. 

 

The required memory of different algorithms varies from one to another. One should put this 

into consideration as some algorithms may not be an option for a large data set, even though 

it had a promising outcome on smaller one. Therefore, a metric for assessing the required 
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memory is developed to illustrate this intrinsic characteristic of algorithms. The memory 

occupation is mainly caused by the matrix-type variables, including matrices to hold the 

specimen, illumination function, measured intensities, exit waves and their buffers. Their size 

is determined by both the size of the matrix and the data type. For two variables with equal 

matrix size, the one filled with complex numbers, e.g. the exit wave, occupies twice the size 

of the one filled with real numbers, e.g. the diffraction pattern. The smallest matrix within 

ptychography context is a matrix with probe size filled with real number. If the size of this 

matrix is defined as 1 unit (𝑢𝑛𝑖𝑡𝑝𝑟𝑜), most of the variables in ptychography can be expressed 

as multiple of this unit as shown in Table 3. 2. To flesh out these variables, a data set 

generated by a 512 by 512 probe, 20 by 20 scanning grid and 30% step size is utilised as an 

example. 

The only exception is the object, which can be related to this unit by the step size and scanning 

grid. For a step size equal to 𝛿𝑠 percent of the probe matrix size and a scanning grid with 𝐴 by 

𝐵 positions, the object size (𝑢𝑛𝑖𝑡𝑜𝑏𝑗 ) can be approximated by eq 3. 85. However, such a 

relationship complicates the expression. Hence 𝑢𝑛𝑖𝑡𝑜𝑏𝑗 is also considered as a basic unit. One 

can converting these units referring to eq 3. 85. 

 

 𝑢𝑛𝑖𝑡𝑜𝑏𝑗 = [𝐴𝐵𝛿𝑠
2 − (𝐴 + 𝐵)𝛿𝑠(𝛿𝑠 − 1) + (𝛿𝑠 − 1)2] ∙ 𝑢𝑛𝑖𝑡𝑝𝑟𝑜 eq 3. 85 

 

 

Table 3. 2: Variable size with examples 

Variable Illumination Specimen 
Measured 
intensities 

Exit waves 

Size 2𝑢𝑛𝑖𝑡𝑝𝑟𝑜 2𝑢𝑛𝑖𝑡𝑜𝑏𝑗 400𝑢𝑛𝑖𝑡𝑝𝑟𝑜 800𝑢𝑛𝑖𝑡𝑝𝑟𝑜 

Elements 
512 × 512 complex 

numbers 
~34 × 106 

complex numbers 
512 × 512 × 400 

real numbers 
512 × 512 × 400 
complex numbers 

Example 4.2MB 67.1MB 838.9MB 1.68GB 

 

 

As shown in the table, exit waves and measured intensities occupy most of the memory. Some 

algorithms requiring buffers for exit waves dramatically worsen the memory occupation. 

Without wisely spending the memory space, the limitation of vRAM is quickly reached in some 

scenarios 
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Table 3. 3. The memory occupation of different algorithms  
Algorithm Standard With standard size unit With given example 

PIE, ePIE, rPIE 

Least memory (4 + 𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 2𝑢𝑛𝑖𝑡𝑜𝑏𝑗 914Mb 

Max efficiency (6 + 𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 2𝑢𝑛𝑖𝑡𝑜𝑏𝑗 852Mb 

mPIE 

Least memory (8 + 𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 868Mb 

Max efficiency (10 + 𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 860Mb 

ADMM 
original 

Least memory (8 + 5𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 4247Mb 

Max efficiency (6 + 7𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 5885Mb 

ADMM re-
arranged, DM, 

RAAR 

Least memory (8 + 3𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 2570Mb 

Max efficiency (6 + 5𝐾)𝑢𝑛𝑖𝑡𝑝𝑟𝑜 + 6𝑢𝑛𝑖𝑡𝑜𝑏𝑗 4207Mb 

 

3.4.2. Prevent running out of memory 

There are several ways to prevent running out of memory. Firstly, the intermediate variables 

can share the same buffer and get updated once it has been used. Secondly, in some of the 

algorithms, the operation can be done in separate groups, though this will reduce the benefits 

brought by parallel computation. Thirdly, variables can be converted from double into single 

type when the accuracy is not dominated by the data precision. Fourthly, some variables can 

be removed and regenerated when it is necessary. Obviously, this will increase the 

computation time. Last but not the least, a careful re-arrangement of the computation order 

can also save memory space without significantly affecting results.  
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4. Error metric 

After decades of development, various kinds of phase retrieval algorithms have been 

developed. Their unique characteristics give them different performance during the 

reconstruction. In this chapter the algorithms described in Chapter 3 are tested under a range 

of simulation scenarios. The chapter begins with a discussion of ambiguities that can occur in 

ptychographic reconstruction (Section 4.1) and of error metrics that can be used to assess the 

performance of ptychographic algorithms for real-world and simulated data. A new error 

metric we have developed is introduced (Section 4.2). Finally, the error metrics are used in a 

series of simulations to assess the performance of the algorithms detailed in Chapter 3. 

  

4.1. Dealing with s-domain ambiguities 

To quantitatively compare the quality of ptychographic reconstructions from simulated data, 

a direct comparison with the original ground truth object is required. However, inherent in 

the ptychographic process are ambiguities that satisfy all of the priori conditions on the object 

and probe reconstructions, but which deviate in a systematic way from the ground truth56. It 

is commonly seen that the difference between the guessed exit waves and their f-constraint 

has been reduced to a negligible level, while the resultant images are still not informative due 

to a combination of multiple kinds of ambiguities. As shown in Figure 4. 1, the pair of object 

and probe with ambiguity looks completely different with the true pair, though they can 

produce diffraction patterns those exactly fit the simulated ones. Unsurprisingly, a direct 

comparison between such an ambiguous image with the true one result a meaningless, large 

difference, which does not match with the comparison in f-domain. Therefore, these s-

domain ambiguities must be removed before computing a s-domain error. 
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Figure 4. 1. An example of the influence of ambiguities. The top row shows the modulus (a), phase (b) 
of true object and true probe (c) utilised for simulating diffraction patterns, while the bottom row 
shows the corresponding properties of object and probe (e.g. (d) for modulus of object, (e) for phase 
of object and (f) for probe) after adding artificial ambiguities. The red dotted square indicates the area 
for computing s-domain difference, and the outline of an inside feature is highlighted for later use. The 
red dotted circles in (c) and (f) indicate the general spot location of true probe. In this example, one 
can identify the global shifting (e.g. the shift content inside red dotted square), the phase ramp (e.g. 
strips in (e)) and scaling factor (e.g. the difference in the colour bars of (a) and (c)). 

 

Equation eq 4. 1 sets out these ambiguities. The probe (𝐏𝑟 ) and the 𝑘𝑡ℎ part of object (𝐎𝑟 ,𝑘) 

reconstructed by any of the ptychographic algorithms together form a set of exit waves (𝛙𝑟 ,𝑘), 

where 𝑟  represents pixel coordinates and 𝑘 represents the offset position of the object when 

the 𝑘𝑡ℎ diffraction pattern was recorded. The algorithm can be considered successful if the 

Fourier-transformed intensities of these exit waves match the recorded data. This condition 

is met by a range of reconstructed objects and probes related directly to the true probe and 

object: 𝐏̂𝑟  and 𝐎̂𝑟 . The possible ambiguities include an amplitude scaling constant (𝑎), a 

constant phase offset (𝑒𝑗𝑐), a linear phase ramp (𝑒𝑗𝑏∙𝑟 ) and a global shift (+𝑑  term in the 

subscript). Although these trivial ambiguities are neither determined by the quantity of the 

reconstructed exit waves, nor indicative of an unsuccessful reconstruction, they do affect the 
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appearance of images and the computation of an accurate error metric unless they are 

accounted for. (There is one more ambiguity, which is known as the “raster grid pathology”, 

caused by the regular scanning positions. This is usually prevented by adding some 

randomness to the scanning grid.) A process of automatically estimating and removing 

ambiguities in reconstructed images is explained in the following sections. 

 

 𝛙𝑟 ,𝑘 = 𝐏𝑟 𝐎𝑟 ,𝑘 = (𝑎𝑒𝑗𝑐𝑒𝑗𝑏∙𝑟 𝐏̂𝑟 +𝑑 )(𝑎
−1𝑒−𝑗𝑐𝑒−𝑗𝒃∙𝑟 𝐎̂𝑟 +𝑑 ,𝑘) eq 4. 1 

 

4.1.1. Global shifting (+𝒅⃗⃗ ) 

The global shifting ambiguity appears as both the object and probe shift towards the same 

direction with the same distance as shown in Figure 4. 2(d)-(f). During the reconstruction, as 

long as the bright spot of probe does not shift beyond the range defined by the matrix size of 

probe, this ambiguity only gives a shifting effect onto guessed exit waves, which appears as a 

phase ramp in its reciprocal space. Since applying the f-constraint only modifies the modulus, 

the phase ramp is not corrected in this process. Meanwhile, as both the object and probe shift 

with the same amount, the content in their contact area is not significantly affected by the 

global shifting. Hence the s-constraint also cannot correct this ambiguity. 

To estimate the global shifting ambiguity accurately, the probe used for simulating diffraction 

patterns has to have zero boundaries. Then the ambiguity can be estimated through cross-

correlation between the modulus of reconstructed and true probes59,77. Once the shifting 

vector is estimated, a counter shifting can be applied by introducing a phase ramp in its f-

domain rather than shifting in the s-domain. In this way, the counter shift can be done in 

fraction of pixels, which gives a better accuracy.  The counter shift is applied to both the object 

and probe. This ambiguity-eliminating process is visualised in Figure 4. 2. One should notice 

that this step usually requires a reasonably reconstructed probe, which may not be the case 

in the beginning of reconstruction. Without calibrating the shifting ambiguity, the rest 

ambiguity removing processes cannot act properly. This is the main cause of fluctuation in the 

s-domain error in the beginning of reconstruction. 
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Figure 4. 2. A demonstration of removing global shifting ambiguity. The shifting ambiguity is estimated 
as the displacement from the centre of guessed probe to the centre of true probe. This displacement is 
highlighted by a white arrow in (a). The same counter shift should be applied to the guessed object at 
the same time, as shown in (b). After removing the global shifting, the feature inside the comparison 
area of guessed object should match to the true one. As shown in (c), now the feature is aligned.  

 

4.1.2. Phase ramp (𝒆𝒋𝒃∙𝒓⃗ ) 

Phase ramp ambiguity causes stripes on the phase images as shown in Figure 4. 1(e). In 

ptychography, a phase ramp and its counter ramp may exist in the object and probe. This 

linear phase variation pair cancels out while producing exit waves, and hence has no influence 

on the modelled wavefronts. Once the influence of global shifting has been measured and 

removed from a reconstruction, any phase ramp error can be obtained by multiplying the 

reconstructed object with the conjugate of the true image. The phase of the resulting matrix 

is then the difference between the phase of the true object and the reconstruction as shown 

by eq 4. 2. The gradient of this linear expression is the phase ramp ambiguity needed to be 

removed.  

 

 

𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑎𝑛𝑔𝑙𝑒 ((𝑎−1𝑒−𝑗𝑐𝑒−𝑗𝒃∙𝑟 𝐎̂𝑟 +𝑑 ,𝑘) ∙ (𝐎̂𝑟 +𝑑 ,𝑘)
∗
) 

= 𝑎𝑛𝑔𝑙𝑒 ((𝑎−1𝑒−𝑗𝑐𝑒−𝑗𝒃∙𝑟 ) ∙ |𝐎̂𝑟 +𝑑 ,𝑘|
2
) 

= 𝑎𝑛𝑔𝑙𝑒 ((𝑎−1 ∙ |𝐎̂𝑟 +𝑑 ,𝑘|
2
) ∙ 𝑒−𝑗(𝒃∙𝑟 +𝒄)) 

= −𝒃 ∙ 𝑟 − 𝑐 
eq 4. 2 

 

Since the edges of object usually contain considerable amount of noise that causes 

unnecessary complexity, a centre area of the object is used for this step. To measure any 
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phase ramp in the phase error, a best fit is carried out. To do this fit, the most challenging 

part is first unwrapping the matrix of phase difference. There is no perfect way to unwrap a 

2D data so far, and 2D unwrapping can be very time consuming78,79,80. One way to solve this 

problem, which is the method that utilised in this thesis, is applying 1D unwrap along the 

horizontal direction. Then take the gradient of the central row as the estimated phase 

gradient along the horizontal direction. Then repeat the same process on the central column 

to obtain the phase gradient along the vertical direction. The order of calculations is 

interchangeable. Once the gradient of the 2D phase ramp is known, a counter phase ramp 

will be generated and applied to both the object and probe. Last but not the least, a non-

averaged zero phase ramp can introduce a phase offset ambiguity to the image. However, it 

does not affect the details in the phase image (as shown in Figure 4. 3 (b) and (d)), and it can 

be removed as apart of complex ambiguity with method explained in the next section. 

 

Figure 4. 3. The process of estimating and removing phase ramp ambiguity. A phase difference (c) can 
be found by multiplying the centre of ambiguous object (a) with the true one (b). The linear gradient 
of phase ramp along the horizontal and vertical direction can be estimated by unwrapping the centre 
row and column of the phase difference, as indicated by the 2 red lines in (c). With the estimated phase 
gradient, a counter phase ramp can be produced and applied to balance out the phase ramp in 
ambiguity in ambiguous object. As shown in (d), the ‘strip appearance’ in (a) is significantly improves 
in (d).  
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4.1.3. Complex scaling (𝒂𝒆𝒋𝒄) 

Unlike the previous two, the complex scaling ambiguity has no significant influence on the 

appearance of reconstructed image. Its modulus part introduces a constant scaling factor to 

the modulus image. Although it changes the dynamic range of modulus image, its influence is 

negligible during display as shown in Figure 4. 1 (a) and (d).  Meanwhile, its phase part has no 

considerable impact on the contrast of phase image, as it only changes the phase offset and 

does not affect the relative phase. However, it can significantly affect the computing of s-

domain error, hence must be removed for a more accurate error metric. 

The complex scaling ambiguity is estimated as the averaged complex difference between the 

ambiguous object with the true one (eq 4. 3). Again, the poorly reconstructed edges should 

be excluded for better accuracy. The object centre obtained from previous step is a good 

option for this step. The influence of removing complex scaling ambiguity is shown in Figure 

4. 4. 

 

 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝑎−1𝑒−𝑗𝑐𝐎̂𝑟 +𝑑 ,𝑘 ∙ (𝐎̂𝑟 +𝑑 ,𝑘)

∗

|𝐎̂𝑟 +𝑑 ,𝑘|
2  

=
𝑎−1𝑒−𝑗𝑐|𝐎̂𝑟 +𝑑 ,𝑘|

2

|𝐎̂𝑟 +𝑑 ,𝑘|
2  

= 𝑎−1𝑒−𝑗𝑐 
eq 4. 3 
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Figure 4. 4. The influence of removing complex scaling ambiguity. From left to right, each column 
represents the modulus (top, (a)-(c)) and phase (bottom, (d)-(f)) images of before, after and the true 
centre of object. After removing the complex ambiguity, both the modulus dynamic range (the colour 
bar in (b)) and the phase offset (e) fit the true images. 

 

4.2. Error metric 

Error metrics are designed to quantitatively evaluate the quality of reconstructed images by 

comparing them with the available true grounds. Since the true grounds are related to the 

two constraints, i.e. the f-constraint and s-constraint, two types of error metrics were 

developed based on them. One extra error metric, which evaluates the variation before and 

after one iteration, is also explained below. These error metrics can be applied to evaluate 

the performance of algorithms or to demonstrate a stagnation has reached. 

 

4.2.1. f-domain error (𝑬𝒓𝒓𝒇) 

The f-domain error (i.e. f-error) is established on the difference between the measured 

diffraction patterns (𝐈𝑢⃗⃗ ,𝑘) and the guessed exit waves (𝛙𝑟 ,𝑘) as shown in eq 4. 4. This error 
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metric is always an option for evaluating the reconstruction, as every data set of ptychography 

must have measured diffraction patterns. Meanwhile, this error metric can be computed 

while applying f-projection, hence no extra variable needs to be computed during 

reconstruction. However, it also has two drawbacks. First, since the measured diffraction 

patterns do not have phase information, ambiguity can exist in the phase of Fourier 

transformed exit waves. This is evitable when evaluating a result formed by complex number 

while only its modulus is known. Second, the accuracy of this error metric is determined by 

the quality of measured intensities. If collected diffraction patterns are contaminated by noise, 

eq 4. 4 will produce inaccurate error values. Last but not the least, a low 𝐸𝑟𝑟𝑓 indicates a good 

quality of reconstruction, though the content of images can still be distorted by the 

ambiguities that explained in section 4.1. 

 

 𝐸𝑟𝑟𝑓 =
∑ ∑ (|𝓕(𝛙𝑟 ,𝑘)| − √𝐈𝑢⃗⃗ ,𝑘)

2

𝑢⃗⃗ 𝑘

∑ ∑ 𝐈𝑢⃗⃗ ,𝑘𝑢⃗⃗ 𝑘
 eq 4. 4 

 

4.2.2. s-domain error (𝑬𝒓𝒓𝒔) 

Another approach for evaluating the reconstruction quality is comparing the reconstructed 

images with the true one. After removing s-domain ambiguities, a s-domain error (i.e. s-error) 

can be computed by eq 4. 520,56. The advantage of s-domain error metric is that its value 

directly relates to the appearance of reconstructed image. Both the modulus and phase 

difference between two complex values are directly under comparison, which gives no 

uncertainty for the error. On the other hand, this error metric is only appliable when the true 

image is available, which implies a simulation situation.  Meanwhile, the ambiguity removing 

procedure demands extra computation, which slightly increase the memory footprint and 

computing time. 

 

 𝐸𝑟𝑟𝑠 =
∑ |𝐎𝑟 − 𝐎̂𝑟 |

2
𝑟 

∑ |𝐎̂𝑟 |
2

𝑟 

 eq 4. 5 
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4.2.3. self-variation (𝑬𝒓𝒓𝒔𝒆𝒍𝒇) 

As explained by its name, this self-variation error metric (𝐸𝑟𝑟𝑠𝑒𝑙𝑓) evaluates the difference of 

a variable before and after one complete reconstruction. Two examples are given in eq 4. 6 

and eq 4. 7 respectively by using the exit wave and object as the comparing variables. This 

error metric adapts to both simulated and practical data. Since it is a comparison between 

two complex numbers, it is sensitive to variation. However, its value should be considered as 

an indicator for converging rather than the quality of reconstruction. A small 𝐸𝑟𝑟𝑠𝑒𝑙𝑓 indicates 

the reconstruction is stagnated, which can be either converging to a solution or getting 

stagnated. 

 

 𝐸𝑟𝑟𝑠𝑒𝑙𝑓 𝛙 =
∑ ∑ |𝛙𝑟 ,𝑘,𝑛 − 𝛙𝑟 ,𝑘,𝑛+1|

2
𝑟 𝑘

∑ ∑ |𝛙𝑟 ,𝑘,𝑛+1|
2

𝑟 𝑘

 eq 4. 6 

   

 𝐸𝑟𝑟𝑠𝑒𝑙𝑓 𝐎 =
∑ |𝐎𝑟 ,𝑛 − 𝐎𝑟 ,𝑛+1|

2
𝑟 

∑ |𝐎̂𝑟 ,𝑛+1|
2

𝑟 

 eq 4. 7 

 

4.3. Comparison of ptychographic algorithms 

We have implemented and tested the well-known phase retrieval algorithms: the ‘PIE’ family 

of algorithms20, the difference map (DM)4,29 , relaxed averaged alternating reflections 

(RAAR)81 and hybrid projection and reflection (HPR)66. The PIE-type algorithms are based on 

the stochastic gradient descent concept56, whilst the rests are based on the set projection and 

reflection concept82, and hence named the ‘PR’ algorithms in this section. The tests are begun 

by tuning algorithm parameters using multiple sets of simulated calibration data. Then, these 

tuned algorithms were tested on simulated data generated from a range of scenarios using 

either a randomised illumination function or convergent beam illumination, combined with 

either a weakly- or a strongly- scattering sample. We then used the ambiguity-invariant error 

measure detailed in Section 4.1 and 4.2 to evaluate the differences between the resulting 

images56. 
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4.3.1. Description of the simulation 

The ptychographic algorithms detailed in Chapter 3 all reconstruct the transmission 

characteristics of the object under examination whilst simultaneously recovering the 

complex-valued illumination wavefront incident on the object (commonly referred to as the 

‘probe’). To test this blind-deconvolution ability, a wide range of probe and object 

combinations were simulated based on four specific examples from the literature, each under 

a different wavelength regime: optical56, electron19, soft X-ray83 and hard X-ray4. Experimental 

conditions and the probes in our tests were simulated to match as closely as possible those 

used in the respective references, whilst two simulated ‘objects’ were tested under each 

scenario. One had both wide intensity and phase dynamic range, what we will refer to as the 

“strong object” in this thesis. The other was fully transparent and only provided weak phase 

variation: the “weak object”. Details of the four probes and two objects are given in Figure 4. 

5 and Figure 4. 6 respectively. Further details of the experiment setups are listed in Table 4. 

1. For each scenario, a reasonable approximation of the probe was produced beforehand and 

utilised as the initial guess in each algorithm. These initial probes are also shown in Figure 4. 

5. The initial guess of the object in every case was an all-one matrix, which can be interpreted 

as a completely transparent specimen. Meanwhile, considering the PIE algorithms employ a 

random reconstruction sequence for each iteration, we pre-prepared this sequence in 

advance and shared it for all PIE reconstructions. 

 

Figure 4. 5. The first row (from (a) to (e)) are the probes used for simulating diffraction patterns, while 
the second row (from (f) to (j)) are the corresponding initial probe for reconstruction. The columns (e.g. 
(a) and (f)), from left to right, represent the probe for respectively the parameter optimisation, then 
the optical, electron, soft x-ray and hard x-ray test cases. All probes are displayed on the colour wheel 
shown as an inset in (a). Further details of these probes are listed in Table 1. 
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Figure 4. 6. The modulus and phase image of tested objects are shown in this figure. Each column is a 
modulus and phase pair of a tested object. The first row (i.e. (a) to (c)) demonstrates the modulus 
images of these objects, whereas the second row (i.e. (d) to (f)) demonstrates their phase images. To 
be more specific: the modulus (a) and phase (d) images of object for parameter optimisation, the 
modulus (b) and phase (e) images of strong object and the modulus (c) and phase (f) images of weak 
object. Each image comes with a colour bar to indicate their dynamic range. All images have the same 
size (3800×3800 pixels), which is large enough for all testing scenarios. 

 

 

Table 4. 1.Details of four test scenarios 

Wavelength regime Optical56 Electron19 Soft x-ray83 Hard x-ray4 

Real space pixel width 1.01 µm 0.34nm 42.6nm 18.3nm 

Probe size (pixels) 512×512 1024×1024 960×960 128×128 

Probe spot size 150 µm 40nm 2 µm 300nm 

Scan position (lateral × vertical) 15×15 8×8 9×9 40×40 

Step size (w.r.t. the probe spot size) 20% 25% 40% 33% 

Randomness (w.r.t the spot size) 33% 75% 0% 30% 
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4.3.2. Parameter optimisation 

Although in its initial presentation, ePIE and DM included tuning parameters, they are almost 

always set to unity. This choice has firm theoretical foundations in both cases. The ePIE can 

be considered a stochastic gradient descent scheme whose step sizes, when the tuning 

parameters are unity, are the Lipschitz constants of the gradients of the associated cost 

functions56, whilst the DM approach corresponds to the Douglas-Rachford method when its 

tuning parameter is unity53 81. The other tested ptychographic algorithms require users to 

determine some tuning parameters, which typically trade off convergence speed against 

stability. Thus, these algorithms were calibrated before the test. To avoid bias, a calibration 

object, with a dynamic range between the strong and weak object, was utilised for the tuning. 

Its modulus and phase images are shown in Figure 4. 6 (a) and (d) respectively. Similarly, the 

probe used for parameter optimisation is shown in Figure 4. 5 (a) and (f). The test range for 

each parameter is given in Table 4. 2, where the variables relate to the algorithm descriptions 

provided in the references listed in the first column of the table. Equally spaced values within 

the range were tested and each algorithm was cycled through 90 iterations before assessing 

their performance. The average values of parameter combination with the smallest error (see 

Table 4. 2) was considered the most suitable and applied in the rest of tests.  

Table 4. 2. Optimised parameters for each algorithm tested. 
Parameter descriptions can be found in the references listed. 

Algorithm Parameter test range Chosen tuning parameters 

rPIE/mPIE56 
𝛼 ∈ [0.01, 1.1] 

𝛽 ∈ [0.01, 1.1] 

𝛼 = 0.1 

𝛽 = 0.8 

HPR53 𝛽 ∈ [0.01, 1.2] 𝛽 = 0.5 

RAAR81 𝛽 ∈ [0.01, 1.2] 𝛽 = 0.8 

 

The mPIE algorithm applies Nesterov-type acceleration to rPIE56. In its original exposition, 

mPIE had a restrictively large parameter set (the 𝛼  and 𝛽  parameters from rPIE plus five 

additional parameters). However, we have found that most of these additional parameters 

can be avoided simply by applying the momentum only at the end of each iteration of rPIE. 

Referring to the original paper, this equates to setting T – the batch size – equal to the number 

of diffraction patterns in the data set. Under this condition, the rPIE update equations can be 
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employed directly in mPIE (without reduced step sizes, so with reference to Chapter 3, 𝛼 =

𝛽 = 1), and the momentum learning rate can be fixed at 𝛾 = 0.9). 

 

4.3.3. Test results 

Having selected parameters for all the algorithms, we ran eight tests to assess their 

performance: using the strong and weak objects shown in Figure 4. 6, under each of the four 

experiment/wavelength scenarios (optical, electron, soft- and hard-x-ray). Each scenario has 

two error figures below, which are the outcomes from tests with the strong and weak objects 

respectively. The central part of the reconstructed object from each algorithm is also plotted 

next to the error graph with a coloured frame: these cut out areas show the modulus for the 

strong object and the phase for the weak object tests. The ground truth of these regions is 

shown in Figure 4. 7 for comparison. 

 

 

Figure 4. 7. The centre of modulus image of strong object (a) and the phase image of weak object (b) 
for later comparison. 

 

4.3.3.1. Optical ptychography 

The optics microscopy is a difficult scenario, as its probe is highly structured whilst the initial 

guessed probe is only an aperture without any phase information. This requires the 

algorithms to recover the probe effectively besides reconstructing the object. As shown in the 

error figures, only rPIE and mPIE reconstructed the centre of the strong object, while only 

mPIE can reconstruct the weak one, even after 1000 iterations. In unsuccessful 

reconstructions of all the algorithms, the probe either drifted to a corner or collapsed into a 
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single point. Based on the test results, only mPIE can provide promising results under this 

most demanding of tests. Note that the fluctuations in the plots at very low error values arise 

from our removal of the ambiguities before calculating 𝐸𝑟𝑟𝑠 , which requires image 

registration to small fractions of a pixel. 

 

 

Figure 4. 8. The ambiguity-free real space error (𝐸𝑟𝑟𝑛) for simulations based on optical ptychography 
with a strong object (left) and a weak object (right). Each algorithm is marked by a unique colour, their 
legends are provided in the figure. Central parts reconstructed by different algorithms are shown to 
the right, contained in a frame with the corresponding colour. These images show the modulus of the 
strong object and the phase of weak object. Subsequent figures use the same structure. 

 

4.3.3.2. Electron ptychography 

In this scenario, all algorithms provided acceptable reconstructions of the strong object. The 

PR algorithms have generally the same gradient as ePIE, while rPIE and mPIE converge more 

quickly. The behaviour of all these algorithms are similar in the weak object test. Here, only 

mPIE is capable to further decrease its error as the iterations progress. 



112 
 

 

Figure 4. 9. The ambiguity-free real space error (𝐸𝑟𝑟𝑛) for electron microscopy with strong object (left) 
and weak object (right). The error plots and central part of the respective reconstructed objects share 
the same colour coding. 

 

4.3.3.3. Soft x-ray ptychography 

Since this test case used a regular scanning grid (as in the corresponding paper), its results are 

affected by the raster grid ambiguity, which appears as a periodic pattern on the 

reconstructed images. In the strong object test, all algorithms approach the exact object to 

differing extents, while the mPIE gives the least error among all these algorithms. DM and 

HPR performs well in this test, although some grid artefacts are apparent in the reconstructed 

image.  

The PR algorithms are consistently outperformed by the PIE algorithms in the weak object 

test. All projection and reflection algorithms struggle to reconstruct the weak object under 

the influence of raster grid ambiguity. Significant grid pattern can be observed on their 

reconstructed images. Once again, mPIE gives the most successful reconstruction. 
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Figure 4. 10. The ambiguity-free real space error (𝐸𝑟𝑟𝑛) for soft x-ray microscopy with strong object 
(left) and weak object (right). The error plots and central part of the respective reconstructed objects 
share the same colour coding.   

 

4.3.3.4. Hard x-ray ptychography 

In the strong object test, all algorithms reconstruct the centre of the object successfully, 

although mPIE and rPIE give a smaller error than the others by at least two orders of 

magnitude. ePIE, DM and HPR stay about the same error level. The weak object test in this 

case shows a clear margin between the PIE algorithms and the PR algorithms, while the PIE 

algorithms give much smaller final errors. 
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Figure 4. 11. The ambiguity-free real space error (𝐸𝑟𝑟𝑛) for hard x-ray microscopy with strong object 
(left) and weak object (right). The error plots and central part of the respective reconstructed objects 
share the same colour coding.  

 

4.3.4. Noise resistance 

Previous tests have demonstrated that all introduced algorithms can reconstruct noiseless 

data. However, noise is inevitable in practical scenarios and can bring difficulty to the 

reconstruction. As explained in section 2.4.3, noise could exist either in the measured 

intensities or the scanning positions. Hence some noisy data are simulated to test the 

robustness of these algorithms under the influence of various noise. The influence of the 

detector noise and scanning position noise are tested separately.  

 

4.3.4.1. Noise in measured intensities 

The simulation of detector noise is explained in section 2.4.3. Different noise level is simulated 

by modifying the incident photons. By decreasing the photon counts from 1010 to 106, the 

detector noise becomes increasingly significant on the diffraction pattens. Then these noisy 

diffraction patterns are applied with correct scanning positions for reconstruction. Due to the 

influence of noise, all algorithms reach to stagnations within less iterations. Test results 

indicate that 500 iterations are enough to reach the stagnation in this test. Since the 

measured intensities are noisy, they are not suitable for evaluating the f-domain error. To 
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demonstrate the influence of detector noise on different algorithms, the reconstructed 

modulus images with 109 and 106 photon dose are demonstrated in Figure 4. 12. As shown 

in the figure, mPIE and DM are more sensitive to the detector noise. The reconstruction 

quality of mPIE significantly drops at low photon dose, while the performance of DM is poor 

even at a relatively high photon dose (109). 

 

 

Figure 4. 12. A comparision of different algorithms under the influence of detector noise, which is 
determined by the incident photon dose. The result from 109 photon counts is plotted on the top left 
corner, while the results from 107 photon counts is plotted on the bottom right corner (as labeled on 
the figure). All reconstructed image are normailised to the same dynamic range to reveal their details. 

 

4.3.4.2. Noise in scanning positions 

As explained in section 2.4.3, the noise in scanning positions contains three parts: scaling, 

rotating and randomness. They are tested separately here. First, a group of noiseless 

measured intensities are simulated with an irregular scanning grid. After that, these three 

different types of position noise are added separately. Finally, the noiseless diffraction 

patterns and noisy scanning positions are provided together for phase retrieving. The noisy 

scanning positions cause the reconstructed images having distortion comparing with the 

ground truth, hence the s-domain error is not suitable for evaluating the quality of 

reconstruction. Error level, which gives the most contrast between these algorithms, is 

chosen, their reconstruction results are shown in Figure 4.13. Test results indicate that the 

scaling error has the most significant impact on the reconstruction. 105% scaling on the 

scanning grid considerably decreases the quality of reconstruction for all algorithms. ePIE, 

rPIE and RAAR demonstrate better tolerance on the rotating and randomness error. 
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Figure 4. 13. A comparision of different algorithms under the influence of differetn types of scanning 
position noise. The first row compares the results with 0.2 and 0.8 degree rotating error. The second 
row compares the results from correct (100% scaling) and 105% scaling scanning grid. The third row 
compares the results from scanning grid with 2% and 8% of step size randomness error. Among all the 
scanning position error, the scaling error has a more significant influence on the reconstruction too all 
algorithms. mPIE and DM are sensitive to the noise, while ePIE, rPIE and RAAR show a better tolerance 
on the noise. 

 

As shown in the above tests, ePIE, rPIE and RAAR have the best noise resistance among these 

tested algorithms. Although the momentum concept accelerates the converging speed in 

noiseless situation, it also makes mPIE become instable in noisy scenario. Updating with all 

exit waves or one by one give no significant difference on the noise tolerance.  

 

4.3.5. Summary 

As shown above, both PIE and PR algorithms can provide reasonable reconstruction when the 

specimen has large dynamic range, the guessed probe is not wildly different from the exact 

one, and the scanning positions do not lie on a regular grid. In this kind of scenario, the PIE 
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algorithms converge to the final solution faster than the projection and reflection algorithms. 

Meanwhile, PIE algorithms are more tolerant to the ambiguity caused by a regular scanning 

grid and the seemingly more difficult task of reconstructing a weak specimen, which appears 

as a significant challenge to the PR algorithms. When the probe is both highly structured and 

difficult to model accurately prior to the reconstruction, image reconstruction is a challenge 

for all the algorithms. Only mPIE can successfully reconstruct the specimen regardless to its 

dynamic range, although it takes significantly more iterations. 

To evaluate phase retrieval algorithms for ptychography, we began by tuning their 

parameters with several groups of noise-free diffraction patterns, which simulated an ideal 

experimental data set. Different parameter values were evaluated by reconstructing these 

data, removing ambiguities in the reconstructed images, and calculating a spatial domain 

error value. The average values of the best-performing parameters were utilised in 

subsequent tests, whose data sets were generated from simulating realistic scenarios, 

including various combinations of strongly- and weakly-diffracting samples with focused and 

defocused/diffused illumination probes. These tests gave an insight into the differences 

between the algorithms and highlighted their robustness to a wide range of experimental 

geometries. Our results indicate that best performance (in terms of convergence rate and 

final error value) is realised by the mPIE algorithm with correctly tuned parameters.  

Although there are already some publications in comparing different algorithms84,85, this 

section tries to reveal their difference by increasing the diversity of the test scenarios. Some 

relatively new algorithms are also involved in the test (e.g. rPIE and mPIE). The improved s-

domain error metric provides a new approach of observing the behaviour of algorithms.  
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5. Adaptive regularised PIE 

In this chapter, the logic of the regularisation term in the existing PIE algorithms is fully 

explained (section 5.1). Then a new PIE-based algorithm is introduced together with 

pseudocode for implementation (section 5.2) and its performance is assessed using simulated 

data (section 5.3). Our work suggests this adaptive ptychographical iterative engine, or adaPIE, 

moulds together benefit from the different alternatives to give plug and play operation. Like 

ePIE, it is a stochastic gradient algorithm with a very small memory footprint and a rapid initial 

rate of convergence. Like RAAR and ADMM, it often converges to a global minimum when 

given perfect data (although in common with these approaches there are no convergence 

guarantees). And crucially, like DM it is essentially parameter-free and there is no need to 

tune the algorithm for different experiment scenarios. The algorithm and results in this 

chapter are adapted from a draft paper under preparation and due for submission to Optics 

Express. 

 

5.1. The limitation of existed PIEs 

As explained in the ‘regularised PIE’ section in Chapter 3.3.3, the updating functions utilised 

by all PIE-based algorithms are developed to minimise two cost functions. For a clear 

description, these two cost functions are re-written as eq 5. 1 and eq 5. 2. 

 

 ℒ𝐎,𝑘 = ∑ |𝓕(𝐎𝑟 ,𝑘
′ 𝐏𝑟 ) − √𝐈𝑢⃗⃗ ,𝑘|

2

𝑢⃗⃗ 
+ ∑ 𝝎𝐎,𝑟 |𝐎𝑟 ,𝑘

′ − 𝐎𝑟 ,𝑘|
2

𝑟 
 eq 5. 1 

   

 ℒ𝐏 = ∑ |𝓕(𝐎𝑟 ,𝑘𝐏𝑟 
′) − √𝐈𝑢⃗⃗ ,𝑘|

2

𝑢⃗⃗ 
+ ∑ 𝝎𝐏,𝑟 |𝐏𝑟 

′ − 𝐏𝑟 |
2

𝑟 
 eq 5. 2 

 

The first one (ℒ𝐎,𝑘 ) takes the updated object part at the 𝑘𝑡ℎ  scan position (𝐎𝑟 ,𝑘
′ ) as the 

independent variable, while the second one (ℒ𝐏 ) takes the updated probe (𝐏𝑟 
′ ) as the 

independent variable. Both two functions are made up by two terms. The first term evaluates 

the error between the guessed exit wave produced by the updated object (or probe) and the 

corresponding intensity measurement (𝐈𝑢⃗⃗ ,𝑘). The second term evaluates a weighted variation 

of this independent variable during the updating. The core of PIEs is searching for the updated 
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object and probe that can minimise these two cost functions. Such an optimisation process is 

done by estimating the current gradient and moving towards an opposite direction, which is 

also known as ‘gradient descent’ method86. 

Gradient descent method is well known for the converging speed, as its error can never 

increase during the optimisation86. However, such a characteristic is not desired for solving 

phase problem. The modulus constraint (𝕄) formed by the intensity measurements is a non-

convex set47, which cause local minima in the searching space. Since the gradient descent 

method does not allow the error increasing, it cannot escape from a local minimum, hence 

get stagnated. 

Instead of gradient descent, PIEs use stochastic gradient descent method to prevent 

stagnation. One should notice that eq 5. 1 and eq 5. 2 only take one scan position (e.g. 𝑘𝑡ℎ) 

into consideration rather than summing across all scan positions. By doing this, the variable 

updated at one position is not the most optimised value for other positions unless a solution 

is found. Such a process is named as stochastic gradient descend method, which is utilised by 

PIEs for preventing stagnation.  

After explaining the common parts of all PIE algorithms, let us talk about their difference. The 

development of various PIEs comes from the differently designed weighting factors: 𝝎𝐎,𝑟  and 

𝝎𝐏,𝑟 . Referring to these cost functions, their first terms evaluate the error with respect to the 

intensity measurements. When the noise is negligible, such an error directly indicates the 

incorrectness of a guessed exit wave, so called a ‘hard-error’. On the other hand, their second 

terms evaluate the variation of the independent variables. Although this second term equals 

zero when a solution is found, its value does not reflect the correctness of the current guess. 

As a comparison, this error is named as ‘soft-error’.  

The purpose of this ‘soft-error’ term is to penalise any significant change on the variable that 

is under optimisation. The updated variable is not the one giving the minimum hard-error 

after introducing the regularisation term. This is a desired behaviour when multiple 

constraints exist and the variable under optimisation is not expected to over-fit to any of 

these constraints63. As shown in Figure 5. 1, less fluctuation is one of the advantages brought 

by preventing over-fitting. 
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Figure 5. 1. A demonstration of how ‘over-fitting’ causes fluctuation. In this example, two non-
interception sets (i.e. 𝔸 and 𝔹) are shown as the black curved line and black straight line respectively. 
The same starting points are marked as red dots in (a) and (b). In ‘over-fitting’ scenario (i.e. (a)), the 
red dot approaches the area that two sets are close to each other, then fluctuates by alternatively 
fitting these two sets. By penalising the variation (i.e. (b), the red dot also moves towards the same 
area, but moves less distance each time. The fluctuations in these two scenarios are labels as 𝛿1 and 
𝛿2 respectively. The fluctuation is less by preventing over-fitting. 

 

Rather than weighting the variation with a constant, a more flexible way is defining a matrix 

with the same size as the variable, hence a spatially varying penalties can be applied pixel-

wisely. For example, we may think it sensible to increase the penalty for changing an object 

part (𝐎𝑟 ,𝑘) in areas where the probe is dim, or we may penalize changes to the probe (𝐏𝑟 ) 

when it passes through opaque regions of the object. As 𝝎𝐎,𝑟  and 𝝎𝐏,𝑟 are in matrix form 

instead of constants and act on the regularisation term, they are named as ‘regularisation 

maps’ in the later context. Differently designed regularisation maps making the updating 

functions of PIEs diverge from its general form. The direviation from cost function to the 

general form of updating function has been shown by eq 3. 54 to eq 3. 56 in the rPIE section. 

From this general form, the updating functions utilised by each PIE algorithms can be obtained 

by substitute 𝝎𝐎,𝑟  with suitable expression. The object updating functions utilised by existed 

PIE algorithms and corresponding definition of 𝝎𝐎,𝑟  are listed in Table 5. 1. 
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Table 5. 1. The object updating functions of different PIE algorithms 

 The updating function The regularisation map 

General 
form 

𝐎𝑟 ,𝑘
′ =

𝐏𝑟 
∗𝛙𝑟 ,𝑘

′ + 𝝎𝐎,𝑟 𝐎𝑟 ,𝑘

|𝐏𝑟 |
2 + 𝝎𝐎,𝑟 

 𝝎𝐎,𝑟  

PIE 𝐎𝑟 ,𝑘
′ = 𝐎𝑟 ,𝑘 +

|𝐏𝑟 |𝐏𝑟 
∗

|𝐏𝑟 |𝑚𝑎𝑥(|𝐏𝑟 |
2 + 𝛼|𝐏𝑟 |𝑚𝑎𝑥

2 )
(𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘)  𝝎𝐎,𝑟 = |𝐏𝑟 |𝑚𝑎𝑥 (|𝐏𝑟 | + 𝛼
|𝐏𝑟 |𝑚𝑎𝑥

2

|𝐏𝑟 |
) − |𝐏𝑟 |

2 

ePIE 𝐎𝑟 ,𝑘
′ = 𝐎𝑟 ,𝑘 + 𝛼

𝐏𝑟 
∗

|𝐏𝑟 |𝑚𝑎𝑥
2 (𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘) 𝝎𝐎,𝑟 =
|𝐏𝑟 |𝑚𝑎𝑥

2

𝛼
− |𝐏𝑟 |

2 

rPIE 
(mPIE) 

𝐎𝑟 ,𝑘
′ = 𝐎𝑟 ,𝑘 +

𝐏𝑟 
∗

(1 − 𝛼)|𝐏𝑟 |
2 + 𝛼|𝐏𝑟 |𝑚𝑎𝑥

2 (𝛙𝑟 ,𝑘
′ − 𝛙𝑟 ,𝑘) 𝝎𝐎,𝑟 = 𝛼(|𝐏𝑟 |𝑚𝑎𝑥

2 − |𝐏𝑟 |
2) 

 

The logic of 𝝎𝐎,𝑟  is to apply a strong penalty to the object part update where the probe is dim, 

since these regions are susceptible to noise, and to apply a smaller penalty where the probe 

is bright, reflecting the higher signal-noise ratio there. Likewise, the weighting factor (𝝎𝐏,𝑟 ) 

for probe regularization assumes a low signal to noise (so a high penalty) where the object is 

relatively opaque, and a high signal to noise (low penalty) where the object is transparent. 

Such a trend can be seen in all of the definitions of 𝝎𝐎,𝑟  in Table 5. 1. 

There are a couple of gaps in this logic. First, it ignores the interplay between the updates at 

different positions. For example, the object regularization map is exactly the same whether 

the object box is taken from the centre of the object reconstruction, which will have been 

illuminated many times, or if it is taken from the edge, where some areas of the object will 

have been illuminated only once. Second, it fails to account for the influence of errant bright 

pixels during the reconstruction, for example a single bright pixel in the object results in a 

large regularization penalty applied across every pixel in the probe. 

 

5.2. Adaptive regularisation 

A new regularisation approach is suggested, which takes the influence of overall-illumination 

condition into consideration when building a regularisation map for a single scan position. 

The new algorithm applying this concept is named as ‘adaPIE’, who solves the issues of 

previous PIEs by using as regularisation maps the average probe intensity that illuminates 
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each object pixel and the average object transparency through which each probe pixel passes. 

The update steps for the 𝑗𝑡ℎ  object part and the probe are shown in eq 5. 3 and eq 5. 4 

respectively. 

 

 𝐎𝑟⃗ ,𝑘
′ = 𝐎𝑟⃗ ,𝑘 +

𝐏𝑟⃗ 
∗ ∙ (𝛙𝑟⃗ ,𝑘

′ − 𝛙𝑟⃗ ,𝑘)

|𝐏𝑟⃗ |
2 + 𝛼〈|𝐏|2〉𝑟⃗ ,𝑘

 
eq 5. 3 

   

 𝐏𝑟 
′ = 𝐏𝑟 +

𝐎𝑟 ,𝑘
∗ ∙ (𝛙𝑟 ,𝑘

′ − 𝛙𝑟 ,𝑘)

|𝐎𝑟 ,𝑘|
2
+ 𝛽〈|𝐎|2〉𝑟 

 eq 5. 4 

 

Where 〈|𝐏|2〉𝑟  maps the average probe intensity illuminating each pixel over the whole object 

(𝐎𝑟 ) and 〈|𝐎|2〉𝑟  maps the average object transparency encountered by each pixel of the 

probe. One should notice that 〈|𝐏|2〉𝑟  has the same size as the object. When it is applied to 

updating process (eq 5. 3), an area corresponds to the 𝑘𝑡ℎ scan position is cut out from 〈|𝐏|2〉𝑟 . 

This 𝑘𝑡ℎ part of the regularisation map is denoted as 〈|𝐏|2〉𝑟 ,𝑘. Such a process is similar to take 

the 𝑘𝑡ℎ object part (𝐎𝑟 ,𝑘) from the guessed object (𝐎𝑟 ). The parameters 𝛼 and 𝛽 are fixed at 

𝛼 = 𝛽 = 1. We have included them because increasing their value in the final iterations of an 

adaPIE reconstruction is an effective means to halt the cyclical behaviour common to 

stochastic gradient descent algorithms. 

Calculating the regularisation maps in eq 5. 3 and eq 5. 4 every time the probe and object are 

updated is computationally time-consuming and can be unstable at the beginning of the 

reconstruction process, where both object and probe can change significantly from update to 

update. A better way is to take rolling averages; these rolling averages are the ‘adaptive’ part 

of the algorithm. To Compute the rolling average probe intensity illuminating each object 

pixel, we make use of a ‘visit’ matrix whose entries contain the number of times each object 

pixel is updated (or visited) during an iteration of the algorithm. The number of visits to pixels 

near the edges of the object has values of 1 or 2, whilst visits to the centre may be over 100. 

The visit matrix 𝑽𝑟 , is defined by eq 5. 5. 

 

 𝑽𝑟⃗ = ∑ 𝟏𝑟⃗ ,𝑘
𝑘

 eq 5. 5 
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Where 𝟏𝑟⃗ ,𝑘 is an ‘all-one’ matrix with the same size as the probe. Such a matrix is accumulated 

according to the scanning positions. The purpose of doing this to count how many times of 

each pixel in the object is covered by the probe in the scanning process, hence they can be 

regulated later. The resultant matrix, i.e. 𝑽𝑟 , has the same size as the object. The element 

value in this matrix equals the number of ‘being-covered-by-probe’ during a scan process, 

which is affected by both the scan positions and the size of probe. Using the visit matrix, the 

rolling average probe intensity is updated as follows: 

 

 〈|𝐏|2〉𝑟⃗ ,𝑘
′ = 〈|𝐏|2〉𝑟⃗ ,𝑘 +

|𝐏𝑟 |
2 − 〈|𝐏|2〉𝑟⃗ ,𝑘

𝑽𝑟⃗ ,𝑘
2  eq 5. 6 

 

Or: 

 

 〈|𝐏|2〉𝑟⃗ ,𝑘
′ = (1 −

1

𝑽𝑟⃗ ,𝑘
2) 〈|𝐏|2〉𝑟⃗ ,𝑘 +

1

𝑽𝑟⃗ ,𝑘
2
|𝐏𝑟 |

2 eq 5. 7 

 

Which is gradually update the regularisation map by removing its certain amount, then adding 

an equivalent portion produced by the current guessed probe. By expecting the guessed 

probe is getting closer to the ground-truth during the iteration, the regularisation map is 

converging to its ‘true’ value, which is a position-wise summation of the true-probe. For a 

given object pixel, the rolling average decays with the square of the number of visits to that 

pixel.  

Regularization of the probe requires the rolling average object transparency through which 

each pixel of the probe passes. Unlike the object reconstruction, where central regions are 

updated many more times than the edges during each iteration, every pixel in the probe is 

updated 𝐾  times per iteration. The equivalent to the visit matrix (𝑽𝑟 ) for the probe is 

therefore simply equal to 𝐾 at every point. Hence it is no need to compute it separately. The 

matching update to the rolling average for the probe regularization is therefore: 

 

 〈|𝐎|2〉𝑟⃗ 
′ = 〈|𝐎|2〉𝑟⃗ +

𝐎𝑟 ,𝑘 − 〈|𝐎|2〉𝑟⃗ 
𝐾2

 
eq 5. 8 
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The rolling average decays as the inverse square of the number of diffraction patterns, 𝐾. 

These choices of decay rate mean the speed with which the rolling averages forget old values 

decreases approximately linearly with visit map values. Regions of the object regularization 

map (〈|𝐏|2〉𝑟 ,𝑘
′ ) corresponding to the object edges have a short memory; the rolling average 

decays very quickly there. Regions corresponding to the object centre have a longer memory 

and it takes several iterations before the influence of previous probe estimates disappear. 

The probe regularization map decays even more slowly. This decay rate strategy introduces a 

sort of inertia to the probe and object updates. The relatively slow decay of the probe 

regularization compensates for the relatively large number of probe updates per iteration. 

The quick decay of the object regularization at the edges means the more erratic object 

updates there are quickly forgotten.  

To initialize the two rolling averages, a safe choice is to set them as constants and equal to 

the maximum initial probe and object intensities, so that: 

 

 〈|𝐎|2〉𝑟 ,𝑛=0 = max(|𝐎𝑟 |
2) eq 8. 1 

 〈|𝐏|2〉𝑟 ,𝑛=0 = max(|𝐏𝑟 |
2) eq 8. 2 

 

The pseudo code for the adaPIE is given in Pseudocode 5. 1. 
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Pseudocode 5. 1: Adaptive Ptychography Iterative Engine (adaPIE) 

Input:  
measured diffraction pattern (𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦),  scanning positions (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠), guessed 

object (𝑜𝑏𝑗𝑒𝑐𝑡), guessed probe (𝑝𝑟𝑜𝑏𝑒), No. of iterations (𝑁), Parameter (𝛼, 𝛽)  

Output:  revised object (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡), revised probe (𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒)  

1:   𝑎𝑣𝑔𝑒𝑂 = (|𝑜𝑏𝑗𝑒𝑐𝑡|2)𝑚𝑎𝑥 ∙ 𝟏(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡) 

2:   𝑎𝑣𝑔𝑒𝑃 = (|𝑝𝑟𝑜𝑏𝑒|2)𝑚𝑎𝑥 ∙ 𝟏(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

3:   𝑣𝑖𝑠𝑖𝑡𝑠 = 𝟎(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡) 

4:  For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

5:    𝑣𝑖𝑠𝑖𝑡𝑠 = 𝓐𝓭𝓭( 𝑣𝑖𝑠𝑖𝑡𝑠,𝟏, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

6:  End 

7:  For (n=1: 𝑁) do 

8:    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝓼𝓱𝓾𝓯𝓯𝓵𝓮(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) 

9:    For (k=1: total number of 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠) do 

10:     𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 = 𝓒𝓾𝓽(𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

11:     𝑜𝑏𝑗𝑅𝑒𝑔𝐵𝑜𝑥 = 𝓒𝓾𝓽(𝑎𝑣𝑔𝑒𝑃, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

12:     𝑣𝑖𝑠𝑖𝑡 𝑏𝑜𝑥 = 𝓒𝓾𝓽(𝑣𝑖𝑠𝑖𝑡𝑠, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

13:     𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡 ∙ 𝑝𝑟𝑜𝑏𝑒 

14:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 = 𝓟𝑓(𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

15:     𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 − 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒 

16:     𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑟𝑜𝑏𝑒∗

|𝑝𝑟𝑜𝑏𝑒|2+𝛼∙𝑜𝑏𝑗𝑅𝑒𝑔𝐵𝑜𝑥
× 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

17:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝓐𝓭𝓭(𝑜𝑏𝑗𝑒𝑐𝑡,𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

18:     𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒 = 𝑝𝑟𝑜𝑏𝑒 +
𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡∗

|𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡|2+𝛽∙𝑎𝑣𝑔𝑒𝑂
× 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

19:     𝑎𝑣𝑔𝑒𝑂 =  𝑎𝑣𝑔𝑒𝑂 +
| 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡+𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛|2− 𝑎𝑣𝑔𝑒𝑂

𝐾2  

20:     𝑎𝑣𝑔𝑒𝑃 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
|𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑏𝑒|2−𝑜𝑏𝑗𝑅𝑒𝑔𝐵𝑜𝑥

𝑣𝑖𝑠𝑖𝑡 𝑏𝑜𝑥2  

21:    𝑎𝑣𝑔𝑒𝑃 = 𝓐𝓭𝓭(𝑎𝑣𝑔𝑒𝑃, 𝑎𝑣𝑔𝑒𝑃 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒) 

22:    End 

23:   Apply additional constraints 

24:   End 

Note [1]:  Temporary variable: 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡, 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑖𝑡 𝑤𝑎𝑣𝑒, 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
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5.3. Simulation scenarios 

Our simulation scenarios are illustrated by Figure 5. 2. Every simulation uses a scan pattern 

comprising 𝐾 = 400 positions arranged in a 20 × 20 grid, with random offsets from perfect 

uniformity to eliminate the possibility of periodic artefacts in the reconstructions87. The 

boundary traces in Figure 5. 2 (a) and (b) indicate the extent of the scan pattern. The probes 

are of size [𝑀, 𝑁] = [512,512], with a bright central area in each case of diameter 150 pixels 

(shown by the shading in Figure 5. 2 (a). The average step size in the simulations is 35 pixels, 

±20% random offsets. The object matrix has a dimension of 1350 × 1350 pixels. In all the 

simulations 

the object matrix is initialised as free-space, i.e. 𝐎𝑟 ,0 = 𝟏. 

Simulation 1 is an unrealistic but illustrative example. It is designed as an easy test with no 

noise and a reasonably accurate estimation on the initial probe, so we expect every algorithm 

to give good results. The two photographs utilised as the modulus and phase images of the 

object are shown in Figure 5. 2 (a) and (b). Images such as these, or the ‘cameraman’ or ‘Lena’ 

images, are often used as examples, although we will see that they seem to give an optimistic 

view of algorithm performance (perhaps because there is no correlation between the 

amplitude and phase parts, and because photographs are generally very rich in spatial 

frequency content). The probe for Simulation 1 is shown in Figure 5. 2 (g). It results from 

Fourier-transforming an aperture (drawn in a paint package) with a quadratic phase curvature. 

This simulates the point spread function from a stopped-down lens, imaged at a defocus, and 

is the sort of probe that might arise in soft x-ray or electron ptychography. The initial probe 

estimate is simulated in the same way as this ground true probe, but a perfect disc is 

employed rather than a hand-drawn aperture, and a 7% error in the defocus is introduced. 

Simulation 2 is a little more realistic. It uses a complex-valued image of frog’s blood (Figure 5. 

2 (e) and (f)), which we generated from the results of a real-world optical bench ptychography 

experiment. This is a much weaker phase object. The probe (Figure 5. 2 (i)) simulates a small 

angle beam of illumination that might arise in hard X-ray experiments and the initial probe 

estimate is an Airy disc of approximately the right size. 

Simulation 3 uses a complex-valued images of a cotton spider (Figure 5. 2 (c) and (d)), derived 

again from an optical bench ptychographic reconstruction. The probe (Figure 5. 2 (h)) models 

a random diffuser placed in the path of a laser beam. Such structuring of the probe has been 
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shown to aid the experimental process by reducing the dynamic range of the recorded 

diffraction data, and to improve resolution in the reconstructed image88. The initial probe 

estimate is a clear aperture of approximately the correct size, as it is difficult to estimate the 

random structure of the diffuser. This simulation is set as a challenge for the algorithms, 

because the initial probe is necessarily far from the true probe, and the interior of the spider 

in the object contains considerable fine detail. 

Since these tests are simulations, algorithm performance can be measured by comparison of 

reconstructions with a known ground truth. A direct real-space simulation error metric (i.e.  

𝐸𝑟𝑟𝑠 ), comparing the reconstructed and ground truth object matrices, must account for 

various ambiguities s that can arise in ptychography. Although these ambiguities and their 

removing process have be described in Chapter 4, we will compare the difference between 

the reconstructed diffraction patterns with the ground-truth to avoid complication here. 

 

 𝐸𝑟𝑟𝑓 =
∑ ∑ (|𝓕(𝛙𝑟 ,𝑘)| − √𝐈𝑢⃗⃗ ,𝑘)

2

𝑢⃗⃗ 𝑘

∑ ∑ 𝐈𝑢⃗⃗ ,𝑘𝑢⃗⃗ 𝑘
 

eq 5. 9 
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Figure 5. 2. Objects, probes and example diffraction patterns for three simulation scenarios. Simulation 
1: a) and b) show the object modulus and phase, c) shows the probe on a colorwheel scale and d) gives 
an example diffraction pattern (contrast enhanced to show detail). The boundary trace in a) and b) 
indicates the extent of the scan pattern and the highlighted region in a) illustrates the relative size of 
the probe and the extent of its non-zero values. This boundary and probe size apply to all three 
simulations. Simulation 2: e) and f) object modulus and phase, g) probe, h) example diffraction pattern. 
Simulation 3: i) and j) object modulus and phase, k) probe and l) example diffraction pattern. 
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5.4. Results from noiseless data (Simulation 1 and 2) 

Figure 5. 3 shows the progress of the simulation error metric for the six algorithms, 

reconstructing data from Simulations 1 and 2. In Simulation 1, all of the algorithms reached 

a threshold of 𝐸𝑟𝑟𝑓 = 10−4 where the central region of the reconstructed object amplitude 

and phase appear visually very similar to the true object. rPIE converged to this point quickest 

(76 iterations), followed by adaPIE (138), DM (168), RAAR (181), ePIE (377) and ADMM (413). 

RAAR and adaPIE progressed beyond this threshold, reaching a global minimum equal to the 

working precision of our computer at which point they were terminated. ADMM we expect 

would reach this limit given sufficient further iterations. (To determine the working precision, 

the algorithms were seeded with the ground truth object and probe as initial estimates and 

allowed to run for a few iterations.) As Figure 5. 3 (b) shows, all of the algorithms found 

Simulation 2 more challenging. After 5000 iterations the algorithms all passed the visual 

accuracy threshold, but the visual appearance of the results does not tell the whole story. 

Whilst the error level is in large part set by errors at the edges of the object reconstruction, 

these edge regions feed into the centres of the object reconstructions through the errors they 

impart to the probe. After removing all of the ambiguities between the reconstructed and 

true objects for each of the six algorithms, mean(maximum) phase errors in milliradians in the 

central regions of the object reconstructions reached: ADMM 3.7(26); DM 0.39(2.7); RAAR 

1.0(5.3); ePIE 0.3(2.9); rPIE 0.066(0.86); and adaPIE 1.9 × 10−10(2.5 × 10−9 ). 
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Figure 5. 3. Results of Simulation 1 and 2 showing the simulation error metric, 𝐸𝑟𝑟𝑓 , over 5000 

iterations of six ptychographic algorithms. The plots are shown on a log-log scale to highlight the initial 
convergence rate and the final error level for the different algorithms. Below an error of 𝐸𝑟𝑟𝑓 = 10−4  

the images reconstructed by the algorithms are visually very similar to the ground truth. When 
provided with the ground truth probe and object as initial estimates, all the algorithms give the 
indicated lower bound on the error value of 𝐸𝑟𝑟𝑓 = 4 × 10−31, the limit of double-precision accuracy 

in our simulations.  

 

5.5. Results from noisy data (Simulation 3) 

In Simulation 3, different levels of Poisson-distributed noise were introduced to the data. The 

noise was calibrated by setting the total power in the ground truth probe equal to a fixed 

number of counts (i.e. the probe’s Fourier transform was scaled so that its summed intensity 

was equal to the required counts). Figure 5. 4 (a) shows extracts from the amplitudes of the 

reconstructions when total counts of photon in the probe was 106. This is a relatively low 

dose, which is supposed to provide slightly poor signal to noise ratio. To highlight the noise 

content, the gray levels in these images are scaled to ±20% of the mean pixel value. 

When noise is present in the data, the cost functions (i.e. eq 5. 1 and eq 5. 2) will have different, 

non-zero minima. The algorithms deal differently with this situation: batch approaches (i.e. 

DM, RAAR and ADMM) aim for a fixed point that is at least a local minimum of the sum of the 

cost functions for all scan positions, whereas stochastic gradient descent algorithms (i.e. ePIE, 

rPIE and adaPIE) will cycle through the minima. There are two ways to settle down these 

cycles and draw stochastic algorithms to a fixed point. One is to average the final few 

iterations of the reconstruction4, as is often done when training neural networks63. Another, 

which we apply here, is to increase the regularization constants 𝛼  and 𝛽  in the final few 
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iterations. For ePIE, rPIE and adaPIE this second method gives a marked improvement in 

image clarity. The split panes in Figure 5. 4 (a) show the amplitudes of the reconstructions 

immediately before (bottom right) and after (top left) 50 iterations of the algorithms with 𝛼 

and 𝛽 multiplied by 50 × their initial value. In the interest of fairness, the RAAR, ADMM and 

DM results in Figure 5. 4 (a) include averaging of their final 50 iterations, and the effect of 

this is shown in the split panes for their reconstructions. Whilst RAAR and ADMM perform 

well without this averaging, DM fares quite badly overall in this test. Averaging the object 

estimates over the final 50 iterations somewhat improves matters, but this process has only 

negligible influence on the final 𝐸𝑟𝑟𝑓 metric. Figure 5. 4 (b) shows how the algorithms deal 

with a range of noise levels. The error after 500 iterations is plotted, where in each case this 

includes either averaging (DM, RAAR and ADMM) or increased regularization (PIEs) over the 

final 50 iterations. The effect of the increased regularization on the adaPIE error level is 

indicated by the arrows adjacent to each column of the plot. 

 

 

Figure 5. 4. Results of Simulation 3. (a) Cutouts from the modulus of the reconstructions after 500 
iterations of the different algorithms, when the total counts in the probe was 106. During the final 50 
iterations of ePIE, rPIE and adaPIE the regularization constants, 𝛼 and 𝛽, were increased by a factor of 
50; the effect of this is shown by the split panes, which show reconstructions after 450 iterations 
(bottom right) and after 50 iterations with the increased regularization (top left). The DM, RAAR and 
ADMM split-panes show the effect of averaging over the final 50 iterations of those algorithms. (b) 
plots the final error after 500 iterations of the algorithms for different noise levels. The effect of the 
increased regularization on the adaPIE error level is indicated by the arrows adjacent to each column 
of the plot.  
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6. Reconstruction of practical electron data 

Data collected from experiment may include various defects. Some of them are inevitable, 

such as detector noise, while other are caused by improper setup or unknown conventions, 

for instance, slightly rotated detector, unmatched diffraction patterns with scanning 

sequence, unknown scanning direction and orientation of loading data from detector to 

storage. Although artificial error is preventable with careful manipulation and detailed 

experiment record, it is tedious to check every possible convention in advance. This kind of 

problem brings significant barrier when different research groups try to exchange their data. 

This sort of error usually does not get enough attention until all the reconstruction attempts 

are denied. To prevent fruitless efforts caused by this kind of error, a procedure of pre-check 

the collected data without reconstruction is suggested in this chapter. This process aims at 

detecting the potential error in a practical data without extra measurements and minimise 

their negative influence in the reconstruction. Some of these procedures are also helpful to 

check whether a desired feature is captured during the experiment in real-time or narrow 

down to a specific area before the reconstruction. To demonstrate the effectiveness, this 

procedure is applied on a practical data that collected with STEM. 

 

6.1. Description of the experiment 

A group of experimental data is collected with a scanning transmission electron microscope 

(STEM). The sample was a bilayer of Molybdenum Disulphide (MoS2). The electron 

microscope operated with a beam energy of 80kV, which is equivalent to a 4.18pm 

wavelength based on eq 6. 1. The influence of specimen thickness is neglected. The camera is 

calibrated by measuring the 3rd diffraction ring from a gold test sample. Based on the 

measurements, the approximate camera length is gauged as 183mm. The camera utilised in 

this experiment has 128 by 128 pixels with a pixel size of 150𝜇m/pixel, which makes pixel 

angle equal 0.82 mrad/pixel. Each pixel of the reconstructed image corresponds to 0.04nm. 

A negative defocus (about 56nm) is applied to give the electron probe a diameter of 2nm, 

equivalent to approximately ⅓ of the probe reconstruction window (=128*0.04nm). The 

device set-up is demonstrated in Figure 6. 1. 
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λ =

𝑘

√2𝑚𝑒𝐸𝑒𝑉 (1 +
𝐸𝑒𝑉

2𝑚𝑒𝑐2)

 
eq 6. 1 

 

In the data set considered here, the beam current is 99pA, where 1pA stands for 6242 

electrons per millisecond. The step size of the scanning grid is 15% of the probe size, which is 

about 0.3nm (i.e. 3Å). Such a step size offers about 81% overlap area between two adjacent 

scanning positions. The scanning grid is a 95 by 95 regular grid. Therefore, the total electron 

dose can be calculated as 6.87ke/ Å2 in this setup. 

 

 

Figure 6. 1. The device set-up for collecting this data set. The camera utilised in this experiment has 
128 by 128 pixels with a pixel size of 150𝜇m/pixel. A negative defocus (about 56nm) is applied on the 
specimen plane. The approximate camera length is gauged as 183mm. 

 

6.2. Match with scanning sequence 

Every ptychography experiment data includes the scanning positions and measured 

intensities, but their order may not match due to improper data storage or various device 

setup. Such a mismatching, unsurprisingly, causes fruitless reconstruction, but can be 

prevented easily with the concept of ‘General Modulus Image’ (GMI).  

If each diffraction pattern is represented by its energy as a scalar and fill these values into 

adjacent blocks following the sequence that defined by the scanning sequence, a blurred 

image similar to the modulus of object is obtained. This effect is trivial to approve. Each block 

in the GMI represents the energy of a diffraction pattern, which equals the energy of exit 
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waves. As the probe is consistent and the phase of object does not affect the energy, the 

energy purely depends on the modulus of object that covered by probe at the corresponding 

scanning position. Moreover, as the adjacent scanning positions should share more than half 

of the area, their contrast is limited. Hence it is not a surprise that the GMI appears as a 

‘smoothed’ modulus image of the specimen. The modulus image of specimen is unavailable 

in practical situation, but the smoothness of GMI is a helpful tool for checking whether 

diffraction patten sequence matches scanning positions. As if they are not matching, the GMI 

will be full of high frequency details and no general outline can be observed.  

 

Figure 6. 2. Produce a General Modulus Image (GMI) with collected data. A group of collected 
diffraction patterns are collected with a 𝑀 × 𝑁 scanning grid. Each of them is represented by its energy 
as a constant ‘k’ with corresponding subscripts. These numbers are arranged following the direction of 
scan to form a general Modulus Image with 𝑀 × 𝑁 resolution. The correspondence is highlighted with 
different colours. 

 

The blurry effect on GMI can also be explained with filter effect. The scanning process of 

ptychography is similar as the concept of ‘Moving Average Filter (MAF)’ in signal processing 

in 2D, where the object is the original signal and the probe is the smoothing kernel. Due to 

the similarity between ptychography and gaussian smoothing (Figure 6. 3), the GMI can be 

considered as filtering the object with probe to some extent. Theoretically, smaller the spot 

size of probe, less area of specimen is covered at each position, hence a general image with 

sharper edges will be. On the other hand, smaller the step size, the overlap area between two 

scanning positions increasing, hence less energy variation and smoother the general image 

will be. Moreover, this process is similar to the texture extraction that used in image 

processing. Every time the structure of probe matches the texture of specimen, a peak value 

in the general image will be detected. Such an effect is demonstrated by Figure 6. 4.  
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Figure 6. 3. A comparison between Gaussian filter and ptychography. A gaussian kernel with the same 
size and similar outline of the example probe is created for comparison. The diffraction patterns 
collected by ptychography are converted into energy values and put into the corresponding area to 
form a General Modulus Image (GMI). The GMI is similar to the filtered image, which is a smoothed 
modulus image of the object. When the probe becomes a real matrix, whose modulus follows Gaussian 
distribution, scanning step size decreases to one pixel and scanned area covers the whole object, the 
general image equals to the filtered image. 

 

 

Figure 6. 4. The GMI outline is determined by both the modulus of specimen and probe. When the 
structure of probe shares similar structure with the covered area of specimen, peak values (the 
brightest or darkest pixels) appear on the GMI.  
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Generating a GMI only requires diffraction patterns and scanning coordinates. It is not 

affected by the orientation of diffraction patterns and always smooth when the diffraction 

patterns correspond to the recorded position. Therefore, this GMI concept provides an option 

for instantly checking the correspondence between the diffraction patterns and scanning 

sequence without being affected by the orientation of guessed scanning sequence. An 

example is given in Figure 6. 5. It also illustrates the content of collected data before 

reconstruction and help user to narrow down an interested area. However, hot pixels in the 

diffraction patterns sometime break the smoothness of general image. In that case, it is 

recommended to remove certain amount of high value pixels in diffraction patterns before 

generating GMI.  

 

 

Figure 6. 5. Applying the GMI concept for checking the correspondence of scanning sequence and 
diffraction patterns. In the first row, the default scanning sequence, which is the exact sequence for 
collecting diffraction patterns, is demonstrated with arrows. The dotted arrows only represent the 
connection between scans, they are not a part of it. 8 possible scanning sequences can be obtained by 
flip and transpose the default sequence, such an effect is named as ‘different orientation’ in this thesis. 
They demonstrate the GMI is only determined by the scanning direction and does not affect by its 
orientation. In the second row, the outcome of an unmatched sequence is shown, which contains much 
more high frequency information comparing with correct ones. Only default orientation is used for 
producing GMI in the rest of the thesis, as others are the same picture with different orientations. 
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6.2.1. Scanning coordinates 

For applying the GMI concept, we start from the most ideal scenario, which is the scanning 

positions are provided as regular coordinates. In this case, the scanning direction, grid size 

and step size can be easily determined by looking at the coordinates. Hence the scanning grid 

can be easily scaled to adjacent pixels by dividing by the step size. Then a GMI is produced by 

filling these pixels following the scan direction with the corresponding energy. For irregular 

scanning coordinates, difficulty lies in finding a proper scaling factor that converts the random 

coordinates into adjacent pixels. This problem has been solved under the help of ‘probe 

calling map’. By dividing with step size and rounding to integers, scan grid with randomness 

can also be converted into adjacent pixel grids as shown in Figure 6. 6. Neglecting the 

randomness of coordinates does not affect the GMI. 

 

 

Figure 6. 6. An example of converting a group of scan positions with randomness into adjacent pixel 
grid for making GMI. Scanning positions are scaled by dividing by the step size and rounded to integers. 
A GMI can be produced based on these scaled positions. 

 

6.2.2. Square scanning grid with step size 

Recording the step size and duplicate a scanning grid is also common in the experiment, as it 

simplifies recorded data. No randomness is introduced in this circumstance. Generating a 

pixel grid for GMI is straightforward. As the pasting sequence of the diffraction pattern energy 

does not affect by the orientation of the scanning sequence for a square scanning grid.  

However, the problem arises from an unknown scanning direction with a not square scanning 

grid, whose size is unknown. This situation is common when the collected data is too massive 

to reconstruct all together or only a part of it contains usable details.  
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In this case, the GMI can help to figure out the most likely arrangement. Since the grid size is 

unknown, a pair of factors can be guessed by factorising the primes from the number of 

diffraction patterns. Two possible grids are produced by alternating these two numbers on 

the row and columns. GMI is sensitive to the incorrect grid size. When the grid size is incorrect, 

multiple stripes appear on the GMI with the same gradient as shown in Figure 6. 7. Hence the 

most likely non-square grid size can be determined by observing the GMI. 

 

 

Figure 6. 7. Determine the unknown grid size from the number of diffraction patterns by GMI. In this 
example, 360 diffraction patterns are given without scanning grid size. By factorising the number of 
diffraction patterns into 2 close integers, the most possible grid size is either 18 rows by 20 columns or 
20 rows by 18 columns. Two GMIs are generated correspondingly and one of them has significant 
diagonal stripes due to the incorrect row and column numbers. Therefore, a proper non-square grid 
size is deduced under the help of GMI.  

 

In the collected data, all data are collected by a square scan grid with given grid size. A GMI is 

produced for each collected data with a default scan sequence. As shown in Figure 6. 8, these 

images demonstrate the guessed scan sequence matches the collected diffraction patterns. 

Hence a suitable scan sequence is obtained. 
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Figure 6. 8. Three examples of GMIs of collected data. From left to the right, the details of GMIs are 
less significant due to the reducing illumination strength. However, their continuous outline is generally 
kept. This implies the guessed scan sequence adapts to the collected diffraction pattern.  

 

6.3. Match with scanning direction 

General Modulus Image is handy in matching scanning positions with diffraction pattern 

sequence and checking a non-square grid size. However, it is not capable to identify the 

orientation of diffraction patterns. Since each diffraction pattern is represented by a scalar 

during making GMI, its orientation property is not considered. Like the 8 possible orientations 

of scanning directions in Figure 6. 5, a diffraction pattern also has 8 orientations without 

disturbing its content. Due to the device setup and unknown convention, recorded diffraction 

patterns may be transformed and not match with the direction of scan. A successful 

reconstruction is not possible without figuring out the correct orientation.  

Although it seems 8 possible scan orientations combining with 8 possible diffraction 

orientations give 64 possibilities, most of them are related by rotation.  In other words, one 

can consider a chosen scan orientation defines the base vectors in that 2D plane. Hence if the 

orientation of diffraction patterns matches this setup, they are correctly oriented and capable 

for a successful reconstruction. A quick simulation is conducted to demonstrates how a 

chosen scan direction re-defines base vectors. A group of object parts are cut out following 

the default scan sequence, then their orientation is adjusted and pasted back with a re-

oriented scan sequence. Object parts are utilised here as they have clearer content than the 

diffraction patterns. Since the object parts and diffraction patterns share the same orientation, 

the outcome of this experiment has general meaning to the diffraction patterns as well.  As 

demonstrated by Figure 6. 9, for each chosen scan orientation, there is one and only one 



140 
 

group of re-oriented object parts producing a seamless image. This confirms there are at most 

8 combinations on the orientations of chosen scan sequence and collected diffraction 

patterns. 

 

 

Figure 6. 9. There is one and only one correct orientation of diffraction patterns based on the chosen 
scan sequence. Three different scanning orientations are chosen as examples. The scan directions are 
demonstrated with black arrows. Each of them has a pair of red and blue arrows illustrating the 
primary and secondary scan dimensions. If images produced at each scanning position (e.g. exit wave 
or the cut-out part of object) are correctly oriented, their normalised, position-wise sum should form a 
seamless image as the object. Hence, 8 images are produced by 8 differently oriented cut-out parts of 
object for each scan orientation. The size of a single object part is shown as dotted square in the first 
overlapped image. In the first group, the orientation of the object part is denoted by the blue and red 
arrows. Rest groups follow this convention. As shown in the figure, there are 8 different overlapped 
images caused by the orientation of the parts of object, while the scanning orientation only affect their 
order. Only one of them has the matched orientation and provides a seamless image.  
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The next problem needs to be considered is how to relate the content of diffraction patterns 

with the scanning sequence. In an experiment with defocus probe, which is common in 

ptychography, the illuminated area of specimen affects the content in diffraction pattern, 

which varies together with the shifting specimen during an experiment. This leads to a 

thought: if two adjacent diffraction patterns have the correct orientation, adding them up 

based on the scaled displacement of their collected positions will cause the similar patterns 

overlap with each other as shown in Figure 6. 10. When all diffraction patterns are pasted 

with a correctly scaled scanning grid, a blurred image appears, which has a strong relationship 

with the content of specimen. To bring this coarse idea to practical, the main difficulty is 

finding the proper scaling factor for the scanning grid. 

 

 

Figure 6. 10. The effect of overlapping diffraction patterns. Two exit waves are produced by 
illuminating the object at partially overlapped positions and transformed into diffraction patterns. 
Their correspondence is highlighted by different colours. As shown in the figure, the diffraction patterns 
contain similar structures. By overlapping them with correct displacement, their structure is enhanced 
(Their dark edges are removed in this example to give a better contrast).  

 

So far, there are three different approaches for estimating this scaling factor. The most basic 

one raises from the cause of this phenomenon: the ratio between the diameter of defocused 

probe and diffraction pattern. Since any interference on the diffraction pattern happens when 

the probe interacts with specimen and vanishes when specimen moves away from probe, the 

ratio between the travel distance of specimen and the perturbation pattern should be similar 

with the ratio between the diameter of probe to the diffraction pattern. Thus, the 

displacement scaling factor can be obtained by comparing the diameter of a guessed probe 
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with the diameter of averaged diffraction patterns. However, there is no quantitative way to 

define ‘diameter’ for these two properties. In practice, their diameters are usually estimated 

as the diameter of the bright area. Moreover, the inaccurate guessed probe can lead to a 

wrong ratio. When the outline of well guessed probe is available, this straightforward method 

gives a good estimation for further tuning. It can also work oppositely to check whether the 

guessed probe has at least a similar outline with the true probe. 

 

 

 

Figure 6. 11. The displacement relationship between the specimen (left) and its interference on the 
diffraction pattern (right). The background demonstrates the exit wave and diffraction pattern when 
the specimen sitting right at the centre of probe. An estimated image when the specimen sitting at the 
edge of probe is illustrated by overlapping the coloured circle and the background. The colour shows 
their correspondence. The perturbation on the diffraction pattern can be observed when the specimen 
contacts the bright area of probe. Hence their displacement ratio can be estimated by taking the ratio 
of a probe and its diffraction patterns diameters. 

 

The second approach is estimating the shifts by fitting two adjacent diffraction patterns. This 

is done by superimposing 2 diffraction patterns with similar patterns and gradually adjust 

their displacement until their structure fits together. Then a ratio is deduced by dividing this 

displacement with their relative shifts during scanning. To get a good estimation, one needs 

to repeat this process with different diffraction patterns multiple times and takes their 

average. The good side of this method is that one can immediately notice the unmatched 

orientation when the estimated displacement does not in the same direction of shifting. 
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Figure 6. 12. Estimating the displacement in f-domain by fitting 2 diffraction patterns.  

 

The third approach is pasting all diffraction patterns with a scaled scan position. When all 

diffraction patterns are correctly oriented and pasted with correctly scaled scanning positions, 

their features overlap with each other and form an image. As shown in the Figure 6. 13, one 

out of 8 possible diffraction pattern orientations produces the best image for a given scan 

sequence. To minimise the influence of dark edges, the overlapped image needs to be 

normalised by overlapping the average diffraction patterns. Hence the correct DP orientation 

is determined. 

 

Figure 6. 13. The centre of specimen used for simulation (a) and images formed by overlapping 
diffraction patterns with different orientations (b, c, d and e). Among the overlapped images, (a) is the 
formed by correctly orientated diffraction patterns, while the rest 3 are examples formed by incorrect 
orientations. Hence a correct diffraction pattern orientation is determined for the selected scan 
sequence. 
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6.4. Fine adjustment on the rotating angle 

The last common defect in the device setup is the rotating angle of detector. A slightly rotated 

detector is hard to notice during experiment until its data fails reconstructions. The question 

here is how to determine the rotating angle without access to the detector and also recover 

the data to its best without commencing a new experiment. A rotated detector dose not only 

affects the true scanning positions, but also rotates the diffraction patterns. A ptychography 

seen by a rotated detector is shown in Figure 6. 14. 

 

 

Figure 6. 14. The influence of a rotated detector. The true scanning grid and a sample diffraction 
pattern is shown in the left. When the detector is correctly calibrated, it observes the correct scan grid 
and collects diffraction pattern without rotating effect as shown on the top right branch. When an 
angle is introduced between the detector and scan grid, it collects rotated diffraction patterns with a 
rotated scan grid. These two data sets have the same difficulty on reconstruction. However, due to 
the unnoticed rotating angle, the unrotated grid is combined with rotated diffraction patterns, which 
cause the scan grid mismatches diffraction pattens. 

 

To make the data useable, one need to estimate the rotating angle, which can be achieved by 

applying the overlapping diffraction patterns idea. This requires user manually testing 

different rotating angle (from -90 to 90 degrees) on the scan grid, and visually check the 

overlap images until the image has a good sharpness. For the practical data, a 11 degrees 

clockwise rotation on the detector is estimated with this method.  
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6.5. Reconstruction with tuned data 

Once the collected data is calibrated following the process explained above, the 

reconstruction failure due to unmatched measured intensities and scan positions is 

minimised. These data can be applied to phase retrieval and further tuned to minimise the 

influence of noise. 

6.5.1. Reconstruct the raw data 

The first thing needs to be considered is the noise offset. The same data is reconstructed by 

all ptychographic algorithms explained in Chapter 3 with 100 iterations, which is enough to 

let them converge and settle down. Among all those algorithms, results from ePIE, rPIE, 

ADMM and RAAR are shown in Figure 6. 15. These results are chosen because they all produce 

images that reveal details to different extent, while others end up in noisy images. ADMM 

and RAAR reconstruct similar probes, which implies a decent reconstruction on the probe. 

Meanwhile, PIEs give poorer resolution and smaller view area than the ADMM and RAAR in 

this test. This is not a surprising result, as the PIEs are more sensitive to the noise on the 

intensity measurements.  

Meanwhile, the energy of probes reconstructed by PIEs keeps increasing during the iteration 

as shown in Figure 6. 16. This is due to the accumulation of complex scaling ambiguity (𝑎𝑒𝑗𝑐), 

which is explained in Chapter 4. At the same time, the modulus of objects gradually reduces 

and leads to images with poor contrast. A probe energy limitation constraint is added to PIEs 

in the later tests to prevent this problem. In the interest of fairness, the same energy 

constraint is added to other algorithms. Although aPIE does not have problem in the probe 

energy, it does not give a successful reconstruction as shown in Figure 6. 17. 
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Figure 6. 15. Reconstructed images by different algorithms. Ambiguities has been calibrated to the 
same level. Each column represents the reconstructed images from one algorithm. From top to bottom, 
each row represents the modulus of object, phase of object and probe respectively. PIEs are less 
successful in this test. Both the resolution and the size of informative area are poorer than ADMM and 
RAAR.  

 

 

Figure 6. 16. The diverge of probe energy as the PIE iteration goes. This figure demonstrates how the 
energy of probe varies without setting a limit. This causes the modulus of reconstructed object losing 
contrast. 
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Figure 6. 17. The reconstructed images from adaPIE. From left to right, the modulus of central specimen 
(a), the phase image of central specimen (b) and the probe (c).  

 

6.5.2. Estimate the noise offset 

The previous test indicates the existence of background noise in the intensity measurements, 

though its level is unknown. To minimise the negative influence of the noise, various threshold 

levels are attempted. The range of possible threshold is estimated by observing the 

distribution of the readings. Figure 6. 18 demonstrates the average of all measured intensities 

and sorted pixel values of these diffraction patterns. As shown in the plot, about 36% of the 

pixels have readings smaller than 0. These negative readings are caused by the detector noise 

and should be neglected. Then, by drawing a circle containing the spot of averaged diffraction 

patterns, the percentage of pixels dominated by the spot against all measured pixels can be 

estimated, which is about 10% in this test. Hence the 10% largest readings are considered as 

having good signal to noise ratio, and the noise threshold should not be larger than them, 

which is about 300 for this data set. Therefore, the background noise offset has high 

possibility falling between 0 and 300. For estimate the background noise offset, values within 

this range are tested with step size as 50. With each attempted noise threshold, all intensity 

measurements are subtracted by the threshold, and all negative pixels are set to zero. 
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Figure 6. 18. The estimate the background noise offset. The left picture is the average of all diffraction 
patterns. The approximate spot of diffraction patterns is labelled by a blue dotted circle. Pixels inside 
this circle has relatively high signal to noise ratio due to more detected electrons. In this data set, 10% 
of pixels fit into the this estimated spot with minimum value about 300. This ‘turning point’ is 
highlighted as a blue dot on the right line plot. The right picture illustrates the sorted pixel value against 
the percentage over all pixels in measured intensities. As its y-axis is log-scaled, values not larger than 
zero are omitted. The first pixel larger than zero is highlighted with a red dot together with the percent 
of pixels had value smaller than zero. 

 

To find out the influence of different noise threshold quickly, the object and probe 

reconstructed by ADMM from the previous run is utilised as the initial guess. Such well 

guessed object and probe makes the reconstruction quickly converge to stable state. Since 

the diffraction patterns are modified, the f-domain error metric cannot evaluate the quality. 

The proper noise threshold is estimated by observing the reconstructed images.  

Some reconstructed images from ePIE and ADMM are demonstrated in Figure 6. 19. These 

two algorithms are chosen as they are highly representative for the gradient descent and set-

projection methods. As shown in this figure, ePIE is more sensitive to the modification of 

diffraction patterns. As the noise threshold increases, more details are revealed on the phase 

image, though the modulus image gradually lose details. On the other hand, ADMM is less 

sensitive to the varying threshold. Their results barely change until a high threshold removes 

too much information and causes blurred reconstructions. To balance these effects, the noise 

threshold is chosen as 150 for the further reconstruction. The final reconstruction after 

removing the background noise offset is shown in Figure 6. 20. As a comparison, the crystal 
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structure of MoS2 is shown in Figure 6. 21. Only the ePIE and ADMM can reveal the hexagonal 

structures for the specimen in this experiment. 

 

 

 

Figure 6. 19. Reconstruction results after applying different noise threshold. From the top row to the 
bottom, the threshold value of each row is given in the first column. The modulus and phase images of 
object reconstructed by ePIE and ADMM are shown in the figure. These two algorithms are chosen as 
they give the overall best reconstruction. The results of ePIE vary significantly as the increasing of noise 
threshold, while the results from ADMM are less sensitive to the modification.  
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Figure 6. 20. The reconstruction results after removing the noise offset from the measured intensities. 
The object and probe images from the same algorithm is put in outlines with the same colour. 
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Figure 6. 21. The crystal structure of a bilayer MoS2 sample. The hexagonal structure is a typical 
geometry from its top view. The sulfur atoms are in yellow colour, while the molybdenum atoms are in 
green colour68. 
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7. Other tricks 

Phase retrieving algorithms are not the only way of extracting information from the data 

collected by ptychography. Some tricks can be applied to improve the quality of initial guess 

or produce extra constraint to improve the robustness of phase retrieving. These concepts 

are explained respectively in each section. 

 

7.1. Probe calling map (data analysis) 

In ptychography, a well illuminated area of specimen is covered multiple times by different 

part of probe. Such a relationship makes one part of guessed object contributes to the 

updating of different parts of probe at different scan position and vice versa. This relationship 

can also be considered in another way—one part of probe is related to its other parts under 

the interference of guessed object. This self-referring relationship is determined by the 

utilised scan grid. To unveil this relationship in an understandable way, the reconstruction 

process is imagined as stamping a paper with a stained stamp. The probe is the stamp while 

the object is a blank paper. To trace the influence of a specific pixel, only that pixel is stained 

in the beginning. When the probe stamps on the object following the scan positions, the 

stained probe pixel contaminates the contacted object pixel. The previously stained object 

also affects other probe pixels at the same time. After one iteration, all stained probe pixels 

are caused by the first contaminated pixel and considered as directly related to the first pixel 

through a full reconstruction process.  Therefore, if one pixel of probe is significantly poorly 

reconstructed and not updated in time, it will have directly impact on these related pixels 

within next updating. As this pattern illustrates how one-pixel contacts (calls) other 

individuals under the influence of scan positions, it is named as ‘calling map’. 
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Figure 7. 1. Appearance of 19 × 19   calling maps formed by 10 × 10  scan grids with increasing 
randomness. As shown on the top row of this figure, when randomness is 0% of the step size (a), each 
group of dots overlap with each other. As the randomness increasing, the groups gradually expand. 
The randomness of dots in each group (±2∆𝑟) is double of the randomness of scan grid (±∆𝑟).  When 
the grid randomness is larger than 25% (e.g. 30% in figure (c)), adjacent groups start to contact with 
each other. Figure (d) demonstrates how a probe is related to itself in s-domain under the influence of 
a 15% randomness scan grid. There are 8 groups completely covered by the probe spot. This implies a 
good self-referring relationship.  

 

A 𝑀 × 𝑁 scan grid with randomness ±∆𝑟 leads to a calling map with (2𝑀 − 1) × (2𝑁 − 1) 

groups of positions, which appear as dots on the calling map.  As long as the randomness is 

less than 25% of the step size, there is clear gap between these groups. For the group on mth 

row and nth column, it contains 𝑚 × 𝑛 dots within it. The group closer to the centre of this 

map contains more dots. The geometry centre of each group can be estimated by computing 
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their average value. The step size hence can be estimated by finding the distance between 

the geometry centres of two adjacent groups. The randomness of each group is the double of 

scan grid randomness (eq 7. 1 and eq 7. 2). This method uses the scan position to the max for 

estimating unknown step size and randomness with decent accuracy. The calling map 

provides acceptable step size estimation even with randomness slightly larger than 25%, 

although groups start to overlap in that case.  As long as there are sufficient individuals in the 

group (a large enough scan grid).  

 

 𝑟𝑛⃗⃗  ⃗ = 𝑟𝑛⃗⃗  ⃗𝑔𝑟𝑖𝑑
± ∆𝑟 eq 7. 1 

 𝑟𝑛⃗⃗  ⃗ − 𝑟𝑛−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑑 ± 2∆𝑟 eq 7. 2 

 

Some facts can be concluded by looking at the calling map. First, calling map only depends on 

the scan grid. As the scan grid shows how the pixel of object referring to others object pixels 

during reconstruction, the calling map is the counter part of scan grid for probe. Second, there 

is always a blank zone around the origin. This implies any pixel of probe cannot affect the 

pixels right next to it through s-constraint. They are not sharing any information, either good 

or bad reconstruction, unless f-constraint is applied. Third, each group collapse into a single 

dot when randomness equals zero. In that case, the communication between probe pixels is 

reduced to the minimum level. They can only communicate through the f-constraint.  

 

7.2. Artificial randomness to the scan grid (reconstruction) 

As demonstrated by the calling map, a regular scan grid gives weak s-domain relationship to 

the probe. Hence each group of probe pixels are not sharing information effectively by s-

constraint and not benefit the converging in the beginning. To improve the s-domain 

connection of probe, some randomness can be artificially added into the scan grid in the 

beginning of reconstruction. In this way, poor probe pixels contact more object pixels that are 

modified by other revised probe pixels. As long as the specimen is not full of details in the 

scale of probe pixel, a tiny drift from the correct scan grid does not significant change the 
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values that each probe pixel contacted. Since the priority at the beginning of reconstruction 

is not refining details, this method is also acceptable and provides a good reconstruction on 

the coarse outline. This artificial randomness also supresses the raster grid ambiguity, though 

the ambiguity comes back once the randomness is removed. A dynamic randomness (that 

change from time to time between iterations) is preferred, as they also improve the s-domain 

communication of object pixels due to slightly varied scan grid.  

Test results prove this concept has negative influence on the algorithms that updates the 

object with all exit waves together (mainly projection and reflection algorithms), as they are 

very sensitive to the mismatching scan grid. It has no observable influence on PIE families 

when the scan grid already has randomness. However, it gives better initial convergence with 

PIE family with regular scan grid, and the benefits increases when the initial probe is 

inaccurate.  

 

 

Figure 7. 2. The influence of adding artificial dynamic randomness to the scan grid in the beginning of 
reconstruction. The platform error metric is due to the data precision and can be ignored for this topic. 
In this test, ±2 pixels dynamic randomness is added onto the scan grid in the first 20 iterations. Between 
21st to 25th iterations, the randomness is static. After that, the randomness is removed. In these tests, 
the added randomness does not have significant influence on the outcome.  
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7.3. Smash a collapsed probe (reconstruction) 

Collapsed probe is a common cause of stagnation. When it happens, the energy of probe 

concentrates into an area that is significantly smaller than the true one. When a probe 

collapses, its increasing dark edges collect less information from object while producing 

guessed exit waves. This makes the mismatch in overlapped scan position less detectable, 

hence reduces the effectiveness of f-constraint onto the object. Meanwhile, dim probe pixels 

have trend of magnifying the variation caused by revised exit waves during updating object. 

Such a response lead to instability on the area covered by dark area. When the spot diameter 

is about right, the area covered by dark edges of probe at one position is corrected multiple 

times at other scan positions with better illumination. But this correction mechanism fails 

when the spot is too small. Moreover, as the energy of the revised exit wave is defined by the 

diffraction patterns, a probe with all energy concentrating on a small area gives a dark ‘hole’ 

on the updated object. This makes the reconstruction like ‘punching-holes’ onto the guessed 

object. As the two main constraints in ptychography are considerably suppressed in this 

scenario, a collapsed probe is hard to recover and causes stagnation eventually.  

The collapsed probe is mainly caused by a poor phase structure in the reciprocal space, as its 

modulus in f-domain is usually in good shape thanks to the f-constraint. The phase of a 

complex matrix works as a ‘frame’ in the reciprocal space. A well-reconstructed phase in f-

domain increases the spatial frequency content to the data, hence the entire matrix does not 

collapse during the inverse Fourier transformation. 

Stagnation caused by a collapsed probe is solved in two steps: identification and intervention. 

In the Chapter 6, a method of estimating probe diameter from diffraction patterns and scan 

grid has been explained. That is considered as a priory condition for detecting a collapsing 

probe. The calling map concept is also helpful for observing how the current probe relates to 

itself. As step size should be no larger than 30% of the spot size59, overlapping the origin of 

calling map at the centre of probe (e.g. Figure 7. 1(d)) illustrates whether the probe is 

effectively updated. A rule of thumb is at least 4 groups of dots stays inside the probe spot. 

Once the probe spot barely touches adjacent calling map groups, interference should be 

introduced to prevent it from further collapsing. 
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Since the cause of a collapsing probe is poor phase profile in the f-domain, one recommended 

solution is modifying or replacing its phase with a new one, which can provide a probe with 

spot size close to the desired diameter. 

 

Figure 7. 3. An example of collapsed probe (a) and after ‘smashed’ (b). The outer blue circle indicates 
the estimated probe diameter, while the radius of inner red circle is step size. The collapsed probe(a) is 
significantly smaller than the desired diameter. Its radius is even smaller than the step size. Such a 
guessed probe cannot form effective overlapping area during reconstruction and cause stagnation. 
After replacing its f-domain phase with the initial one, the spot size matches the estimated probe size 
again (b).    

 

7.4. Object hot pixel limit (constraint, result observing) 

During the iteration, some pixels on the object become significantly brighter than others. They 

do not only make the modulus image lose contrast but also introduce instability to the 

iteration. This problem is solved by setting a limit on the maximum values of modulus. 

Theoretically, a non-illuminating object should not have modulus larger than 1. However, 

some algorithms prefer a tolerance to perform reflection more effectively. Therefore, a 

slightly higher limits, e.g. 2, is an overall better choice during the iterations.  

 

7.5. Energy confinement (constraint) 

As explained previously, scaling factor is an inherent ambiguity for ptychography and cannot 

be completely removed by f- or s- constraint. Although, as an ambiguity, the scaling factor 

should have no influence on the reconstruction, it sometimes accumulates during the 

iteration and eventually causes the values go beyond the data precision. Adjusting the energy 
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of probe can stop the positive feedback in scaling factor effectively. The energy of probe is 

adapted to the energy of brightest diffraction pattern at the end of each iteration. This fixed 

probe energy can effectively prevent the probe diverges from its correct energy level. One 

should notice that even the brightest diffraction pattern has less energy than the true probe 

due to the specimen absorption and scattering. But this energy confinement constraint still 

applies for most of the cases and one can scale the energy level based on the experiment 

scenario to give a better estimation on the true probe energy.  

 

7.6. Blind recentre (constraint) 

Besides the scaling factor, the global shifting is also a common ambiguity that can accumulate 

with iteration and leads to fail reconstruction without proper handling. For instance, if the 

probe continuously drifts during the reconstruction, its integrity will break when some parts 

of it go beyond the boundary. This could ruin the reconstructed object and lead to an instable 

reconstruction. Therefore, preventing the guessed probe from continuously drifting is crucial 

for a stable reconstruction. This “blind recentre” constraint is made to limit the guessed probe 

in a certain area during the reconstruction. 

Without available true probe, a good approximation for finding the centre of probe is taking 

its ‘centre of mass’ as the centre. The ‘centre of mass’ is the position that provides similar 

summation value on its both sides. By applying this concept along the row and column 

direction respectively, the centre of reconstructed probe is found. Hence the object and 

probe can be shifted to the centre of its range. One should notice the global shifts must be 

applied to the probe and object (and other related variables, e.g. the exit waves) 

simultaneously to prevent disturbing the reconstruction. The target of this function is not 

locating the guessed probe to the same location as the true probe but preventing it from 

continuously drifting during the reconstruction. Since the guessed probe could change 

dramatically in the beginning of reconstruction, it is recommended to activate the ‘blind 

recentre’ after tens of iterations to let the probe structure settle down.  
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Figure 7. 4. A demonstration of estimating the centre of a probe by ‘centre of mass’ method. Summing 
the probe along the horizontal and vertical direction directions respectively. Then the centre of two 1-
D array is estimated by finding the pixel that has about the same summation on its both sides. The 
mass centre is highlighted by re colour in this example. 

 

To test this constraint under the influence of ‘not spatially well confined’ probes, two 

scenarios are simulated: one with highly diffused probe and one with double spots. These two 

types of probes are demonstrated in Fig 7.5 together with the corresponding initial guessed 

probes. Diffraction patterns are produced with these probes and applied for reconstruction. 

The reconstructed probe is artificially shifted at the 200th iteration.  The reconstruction results 

are shown in Fig 7.6. As shown in the figure, the ‘not spatially confined’ probes do not make 

the ‘blind recentre’ instable. 

 

 

Figure 7. 5. Not spatially well confined probes for testing “blind recentre” constraint. (a) shows a probe, 
whose structure is significantly affected by a diffuser. (b) is the initial guessed probe for reconstruction. 
(c) is a probe having two spots on it, and (d) is the corresponding guessed probe. All these probes are 
plotted in colour wheel format. 
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Figure 7. 6. As shown in the figure, decent reconstructions are obtained in both scenarios. The error 
spike caused by the artificially shifting the probe at the 200th iteration is quickly levelled out as the 
reconstruction progress. Eventually the error returns to the same level as it was before shifting the 
probe.  
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8. Conclusion 

The development of lens-less imaging removes the limitation of lens quality from the 

traditional imaging system and brings fascinating potentials to various microscopy 

technologies. All these benefits are based on solving the phase problem, which is caused by 

losing phase information during recording diffraction intensities. Solving the phase problem 

requires more information than a single diffraction pattern provides; other constraints are 

required to fully confine the solution. Ptychography, as one of the competitors, forms a 

consistency constraint by scanning the specimen with a defocused probe at overlapping 

positions. With a sufficiently large overlapping area, this consistency constraint contains 

sufficient information to not only recover an image of the specimen, but also the illumination 

function. Many phase retrieving algorithms have been developed that take advantage of the 

rich data provided by ptychography to provide a robust and promising reconstruction. These 

algorithms are based on different concepts and perform differently with the same collected 

data set. 

This thesis started from a study on the existed algorithms developed for ptychography. 

Several widely utilised algorithms and their variants are separated into two categories, their 

operation explained, and their implementation detailed using pseudocode. Besides 

representing the original form of these algorithms, some modifications are also suggested to 

maximise their efficiency and reduce their memory footprint. For the momentum PIE (mPIE) 

algorithm, the required parameters are reduced from 7 to 3, which makes its performance 

less dependent on user experience while maintaining an excellent converging speed. Its 

momentum updating functions are also moved to the end of a complete iteration for better 

computing speed and stability. For alternating direction method of multipliers (ADMM), a re-

arrangement of the computation order under two assumptions significantly reduces its 

memory footprint without significantly affecting its results. The hybrid projection and 

reflection (HPR), which was developed for support constraint previously, is also translated to 

the ptychography environment and tested. 

Once a reconstructed image is obtained, the next task is to evaluate its quality. Although an 

error metric comparing reconstructed and measured diffraction pattern intensities offers a 

straightforward route, this is not a good way to compare the performance of different 

algorithms in simulations, since it does not directly measure the accuracy of the image against 
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the known ground truth. In ptychography, there are three kinds of inherent ambiguities 

appearing in pairs on the reconstructed object and probe. They cannot be suppressed by the 

constraints, but significantly distort the appearance of the images. In this thesis, a working 

flow of estimating these ambiguities, removing them and computing an accurate s-domain 

error is explained. This improves on previous work by maximising efficiency and robustness.  

With the understanding of these existed algorithms, a new algorithm is developed, which is 

named as adaptive PIE (adaPIE). This algorithm is inspired by methods used in the training of 

neural networks. By introducing an adaptive regularisation term to the cost function, the local 

minima in the searching space is flattened. This does not only reduce the chance of getting 

stagnated in the beginning, but also prevents ill-posed pixels fluctuating significantly during 

reconstruction. Both its converging speed and reconstruction quality outperforms other 

algorithms in simulated tests. 

To test these algorithms within a practical scenario, several data sets are collected by 

observing a bilayer of Molybdenum Disulphide (MoS2) under a scanning transmission 

electron microscope (STEM). A series of manipulations on the collected data is explained to 

prevent fruitless reconstruction due to unmatched scan position and measured intensities. 

The test results indicate none of these algorithms has absolute advantages, though ePIE, 

ADMM and RAAR demonstrates a strong robustness for noisy data. On the other hand, the 

adaPIE does not show considerable advantages in these tests, which indicates further work is 

required to refine the approach and improve its robustness to the noise. 

Other constraints and tricks that are developed during the research are listed in the last 

chapter. The ‘probe calling map’ can visualise how a pixel of probe is related to itself by a 

given scanning grid, while other constraints are developed to prevent stagnation or 

accumulation of ambiguities. 

Many other ideas are still under development. First, the adaPIE demonstrates a strong 

potential by reconstructing the simulated data, though it is not the case for the practical data 

set. Such an unmatched performance indicates the impact of noise on the adaptive regulation 

map needs to be considered more seriously. We expect to bring the advantage of adaPIE in 

simulated data to a more practical scenario by adjusting its regulation components.  

Another further research direction is mediating the updating strategies used by PIE and batch 

algorithms. The ‘one- by-one’ updating strategy used by PIE has less memory footprint but 

leads to the final reconstruction fluctuating around a solution. On the other hand, the batch 
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algorithms prevent the fluctuation by averaging the variation on all revised exit waves. The 

concept, named as ‘mini-batches’, is attempted to mediate their performance by separating 

the exit waves into several smaller groups, then updates the object and probe group by group. 

Some efforts have been made on this topic, but they give no advantages so far. A deeper look 

into the objective function is required for this algorithm.  

As a help for researches interested in this topic, all the codes for algorithms and other useful 

tools for simulation and evaluation are available for requires.  

 

 

 

 

 

 

 

 

 

 

 

 

 



164 
 

Reference 

1. Rodenburg, J. M. New microscopic-imaging method delivers novel capabilities. SPIE 

Newsroom 2–4 (2011) doi:10.1117/2.1201012.003414. 

2. Pozzi, G. Fourier Optics. in Advances in Imaging and Electron Physics (2016). 

doi:10.1016/bs.aiep.2016.02.007. 

3. Singer, C. Notes on the Early History of Microscopy. Proc. R. Soc. Med. (1914) 

doi:10.1177/003591571400701617. 

4. Thibault, P. High-resolution scanning x-ray diffraction microscopy. Science (80-. ). 379, 

379–383 (2008). 

5. Mualla, F., Aubreville, M. & Maier, A. Microscopy. in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics) (2018). doi:10.1007/978-3-319-96520-8_5. 

6. Physical principles of electron microscopy. Mater. Today (2005) doi:10.1016/s1369-

7021(05)71290-6. 

7. Mertz, J. Introduction to Optical Microscopy. Introduction to Optical Microscopy (2019). 

doi:10.1017/9781108552660. 

8. Chen, C. J. Introduction to Scanning Tunneling Microscopy: Second Edition. Introduction 

to Scanning Tunneling Microscopy: Second Edition (2007). 

doi:10.1093/acprof:oso/9780199211500.001.0001. 

9. Pulizzi, F. Electron and X-ray microscopy. Nature Materials (2009) 

doi:10.1038/nmat2424. 

10. Jacobsen, C. X-ray microscopy. X-ray Microscopy (2019). doi:10.1017/9781139924542. 

11. Cosslett, V. E. X-ray microscopy and microanalysis. Metall. Rev. (1960) 

doi:10.1179/mtlr.1960.5.1.225. 

12. Pfeiffer, F. X-ray ptychography. Nat. Photonics (2018) doi:10.1038/s41566-017-0072-5. 

13. Ozcan, A. & McLeod, E. Lensless Imaging and Sensing. Annual Review of Biomedical 

Engineering (2016) doi:10.1146/annurev-bioeng-092515-010849. 

14. Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in 

biomedicine and environmental monitoring. Methods (2018) 

doi:10.1016/j.ymeth.2017.08.013. 

15. Ersoy, O. K. Diffraction, Fourier Optics and Imaging. Diffraction, Fourier Optics and 



165 
 

Imaging (2006). doi:10.1002/0470085002. 

16. Li, P. & Maiden, A. Multi-slice ptychographic tomography. Sci. Rep. (2018) 

doi:10.1038/s41598-018-20530-x. 

17. Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in 

an LED array microscope. Optica (2015) doi:10.1364/optica.2.000104. 

18. Zhang, B. et al. High contrast 3D imaging of surfaces near the wavelength limit using 

tabletop EUV ptychography. Ultramicroscopy (2015) 

doi:10.1016/j.ultramic.2015.07.006. 

19. Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic 

electron microscopy using high-angle dark-field scattering for sub-nanometre 

resolution imaging. Nat. Commun. 3, 730–737 (2012). 

20. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval 

algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009). 

21. Marrison, J., Räty, L., Marriott, P. & O’Toole, P. Ptychography-a label free, high-contrast 

imaging technique for live cells using quantitative phase information. Sci. Rep. (2013) 

doi:10.1038/srep02369. 

22. Li, P. & Maiden, A. M. Ten implementations of ptychography. J. Microsc. (2018) 

doi:10.1111/jmi.12614. 

23. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. 

Nature (2018) doi:10.1038/s41586-018-0298-5. 

24. Gerchberg, R. W. & Saxton, W. O. PRACTICAL ALGORITHM FOR THE DETERMINATION 

OF PHASE FROM IMAGE AND DIFFRACTION PLANE PICTURES. Opt. (1972). 

25. Dainty, J. C. & Fienup, J. R. Phase Retrieval and Image Reconstruction for Astronomy. 

Image Recover. theory Appl. (1987). 

26. Bertero, M. & Boccacci, P. Introduction to Inverse Problems in Imaging. Introduction to 

Inverse Problems in Imaging (1998). doi:10.1887/0750304359. 

27. Groetsch, C. Introduction to inverse problems. Inverse Probl. 1–24 (1999) 

doi:10.1090/clrm/012/01. 

28. Maiden, A. M., Sarahan, M. C., Stagg, M. D., Schramm, S. M. & Humphry, M. J. 

Quantitative electron phase imaging with high sensitivity and an unlimited field of view. 

Sci. Rep. (2015) doi:10.1038/srep14690. 

29. Elser, V. Phase retrieval by iterated projections. 20, 40–55 (2001). 



166 
 

30. Stephens, D. J. & Allan, V. J. Light microscopy techniques for live cell imaging. Science 

(2003) doi:10.1126/science.1082160. 

31. Dailey, M. E., Manders, E., Soll, D. R. & Terasaki, M. Confocal microscopy of living cells. 

in Handbook of Biological Confocal Microscopy: Third Edition (2006). doi:10.1007/978-

0-387-45524-2_19. 

32. Andersson, H., Baechi, T., Hoechl, M. & Richter, C. Autofluorescence of living cells. J. 

Microsc. (1998) doi:10.1046/j.1365-2818.1998.00347.x. 

33. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annual 

Review of Biochemistry (2009) doi:10.1146/annurev.biochem.77.061906.092014. 

34. Park, Y. K., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. 

Nature Photonics (2018) doi:10.1038/s41566-018-0253-x. 

35. Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. Quantitative Phase Imaging. in 

Progress in Optics (2012). doi:10.1016/B978-0-44-459422-8.00003-5. 

36. Fitzgerald, R. Phase-Sensitive X-ray Imaging. Phys. Today (2000) 

doi:10.1063/1.1292471. 

37. Holler, M. et al. High-resolution non-destructive three-dimensional imaging of 

integrated circuits. Nature (2017) doi:10.1038/nature21698. 

38. Guoan, Z., Cheng, S., Shaowei, J., Pengming, S. & Changhuei, Y. Concept, 

implementations and applications of Fourier ptychography. Nat. Rev. Phys. 

0123456789, (2021). 

39. Voelz, D. G. Computational Fourier Optics: A MATLAB Tutorial. Computational Fourier 

Optics: A MATLAB Tutorial (2011). doi:10.1117/3.858456. 

40. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982). 

41. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. 

Lett. 3, 27–29 (1978). 

42. Fienup, J. R. Phase retrieval with continuous version of hybrid input-output. in (2014). 

doi:10.1364/fio.2003.thi3. 

43. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. 

Rev. B - Condens. Matter Mater. Phys. 68, 1–4 (2003). 

44. Konijnenberg, A. P., Coene, W. M. J., Pereira, S. F. & Urbach, H. P. Ptychographic phase 

retrieval by applying hybrid input-output (HIO) iterations sequentially. Digit. Opt. 

Technol. 2017 10335, 103351I (2017). 



167 
 

45. Guizar-Sicairos, M. & Fienup, J. R. Understanding the twin-image problem in phase 

retrieval. J. Opt. Soc. Am. A (2012) doi:10.1364/josaa.29.002367. 

46. Elser, V., Rankenburg, I. & Thibault, P. Searching with iterated maps. Proc. Natl. Acad. 

Sci. U. S. A. (2007) doi:10.1073/pnas.0606359104. 

47. Hawkes, P. & Spence, J. Springer Handbook of Microscopy. Neuroanatomy (2019). 

48. Maiden, A. M., Humphry, M. J., Sarahan, M. C., Kraus, B. & Rodenburg, J. M. An 

annealing algorithm to correct positioning errors in ptychography. Ultramicroscopy 

(2012) doi:10.1016/j.ultramic.2012.06.001. 

49. Maiden, A. M., Humphry, M. J., Zhang, F. & Rodenburg, J. M. Superresolution imaging 

via ptychography. J. Opt. Soc. Am. A (2011) doi:10.1364/josaa.28.000604. 

50. Tripathi, A., McNulty, I. & Shpyrko, O. G. Ptychographic overlap constraint errors and 

the limits of their numerical recovery using conjugate gradient descent methods. Opt. 

Express (2014) doi:10.1364/oe.22.001452. 

51. Jacobsen, C. Relaxation of the Crowther criterion in multislice tomography. Opt. Lett. 

43, 4811 (2018). 

52. Godard, P., Allain, M., Chamard, V. & Rodenburg, J. Noise models for low counting rate 

coherent diffraction imaging. Opt. Express (2012) doi:10.1364/oe.20.025914. 

53. Bauschke, H. H., Combettes, P. L. & Luke, D. R. Hybrid projection–reflection method for 

phase retrieval. J. Opt. Soc. Am. A 20, 1025 (2003). 

54. Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. 

Rev. Sci. Instrum. (2007) doi:10.1063/1.2403783. 

55. Chang, H., Enfedaque, P. & Marchesini, S. Blind ptychographic phase retrieval via 

convergent alternating direction method of multipliers. SIAM J. Imaging Sci. 12, 153–

185 (2019). 

56. Maiden, A., Johnson, D. & Li, P. Further improvements to the ptychographical iterative 

engine. Optica 4, 736 (2017). 

57. Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: 

a nonlinear optimization approach. Opt. Express 16, 7264 (2008). 

58. Ruder, S. An overview of gradient descent optimization algorithms. 1–14 (2016). 

59. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval 

algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009). 

60. Konijnenberg, A. P., Coene, W. M. J., Pereira, S. F. & Urbach, H. P. Combining 



168 
 

ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm. 

Ultramicroscopy 171, 43–54 (2016). 

61. Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. 

Rev. Sci. Instrum. 78, (2007). 

62. Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting 

illumination. Appl. Phys. Lett. 85, 4795–4797 (2004). 

63. Murphy, K. P. Machine learning: a probabilistic perspective (adaptive computation and 

machine learning series). Mit Press. ISBN (2012). 

64. Kukačka, J., Golkov, V. & Cremers, D. Regularization for deep learning: A taxonomy. 

arXiv (2017). 

65. Enfedaque, P., Chang, H., Krishnan, H. & Marchesini, S. GPU-based implementation of 

ptycho-ADMM for high performance x-ray imaging. in Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics) (2018). doi:10.1007/978-3-319-93698-7_41. 

66. Bauschke, H. H., Combettes, P. L. & Luke, D. R. Hybrid projection–reflection method for 

phase retrieval. J. Opt. Soc. Am. A 20, 1025 (2003). 

67. Yan, H. Ptychographic phase retrieval by proximal algorithms. New J. Phys. (2020) 

doi:10.1088/1367-2630/ab704e. 

68. Wu, M. hong et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic 

degradation of organic contaminants: A review. Process Saf. Environ. Prot. 118, 40–58 

(2018). 

69. Huang, Y. et al. Ptychography-based high-throughput lensless on-chip microscopy via 

incremental proximal algorithms. Opt. Express 29, 37892 (2021). 

70. Hesse, R., Luke, D. R., Sabach, S. & Tam, M. K. Proximal Heterogeneous Block Input-

Output Method and application to Blind Ptychographic Diffraction Imaging. 1–32 (2014) 

doi:10.1137/14098168X. 

71. Bertsekas, D. P. Incremental Gradient, Subgradient, and Proximal Methods for Convex 

Optimization: A Survey. Optim. Mach. Learn. 2010, (2019). 

72. Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent 

diffractive imaging. New J. Phys. 14, (2012). 

73. Horstmeyer, R. et al. Solving ptychography with a convex relaxation. New J. Phys. (2015) 

doi:10.1088/1367-2630/17/5/053044. 



169 
 

74. Bostan, E., Soltanolkotabi, M., Ren, D. & Waller, L. Accelerated Wirtinger Flow for 

Multiplexed Fourier Ptychographic Microscopy. in Proceedings - International 

Conference on Image Processing, ICIP (2018). doi:10.1109/ICIP.2018.8451437. 

75. Odstrčil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for 

generalized maximum-likelihood ptychography. Opt. Express (2018) 

doi:10.1364/oe.26.003108. 

76. Marchesini, S. et al. SHARP: A distributed GPU-based ptychographic solver. J. Appl. 

Crystallogr. (2016) doi:10.1107/S1600576716008074. 

77. Guizar-sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration 

algorithms. 33, 156–158 (2008). 

78. Zhang, T. et al. Rapid and robust two-dimensional phase unwrapping via deep learning. 

Opt. Express 27, 23173 (2019). 

79. Navarro, M. A., Estrada, J. C., Servin, M., Quiroga, J. A. & Vargas, J. Fast two-dimensional 

simultaneous phase unwrapping and low-pass filtering. Opt. Express 20, 2556 (2012). 

80. PIJEWSKA, E., GORCZYNSKA, I. & SZKULMOWSKI, M. Computationally effective 2D and 

3D fast phase unwrapping algorithms and their applications to Doppler optical 

coherence tomography. Biomed. express 10, 1365–1382 (2019). 

81. Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging. Inverse 

Probl. 21, 37–50 (2005). 

82. Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. 

Rev. Sci. Instrum. 78, 1–12 (2007). 

83. Giewekemeyer, K. et al. Ptychographic coherent x-ray diffractive imaging in the water 

window. Opt. Express (2011) doi:10.1364/OE.19.001037. 

84. Qian, J., Yang, C., Schirotzek, A., Maia, F. & Marchesini, S. Efficient Algorithms for 

Ptychographic Phase Retrieval. 0, 261–279 (2014). 

85. Yang, C., Qian, J., Schirotzek, A., Maia, F. & Marchesini, S. Iterative Algorithms for 

Ptychographic Phase Retrieval. 630–632 (2011). 

86. Nocedal, J. & Wright, S. J. Numerical optimization. in Springer Series in Operations 

Research and Financial Engineering (2006). doi:10.1201/b19115-11. 

87. Fannjiang, A. Raster grid pathology and the cure. Multiscale Model. Simul. (2019) 

doi:10.1137/18M1227354. 

88. Odstrčil, M., Lebugle, M., Guizar-Sicairos, M., David, C. & Holler, M. Towards optimized 



170 
 

illumination for high-resolution ptychography. Opt. Express (2019) 

doi:10.1364/oe.27.014981. 

 


