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Abstract

This thesis consists of three essays on endogenous growth and innovation. Chapter

1 explores the interaction between productivity improvements and innovations by

existing firms, and by more productive new firms. I develop a tractable endogenous

growth model with capital accumulation in which growth is driven by innovation

from incumbents and creative destruction by entrants. I demonstrate that capital

accumulation, by affecting the level of incumbents’ and entrants’ R&D (which is

an endogenous variable and the direct determinant of long-rung growth), plays an

important role in stimulating economic growth. I also show the effect of policies on

equilibrium productivity growth and provide a new perspective to the welfare analysis

of models of innovation by both incumbents and entrants.

Chapter 2 studies how strengthening patent protection influences economic growth

in a Schumpeterian endogenous growth model with capital accumulation. In contrast

to the previous literature, which mostly considered patent policy in infinite-lifetime

economies, this paper investigates the implications of patent policy in an overlapping

generations framework. That allows me to study how heterogeneity in patent own-

ership across generations changes the implications of patent length and breadth for

R&D-based growth.

The aim of Chapter 3 is to investigate interactive effects of intellectual property

rights protection and monetary policy on economic growth. I develop an overlapping

generations model with R&D-based growth in which IPR protection is introduced by

considering patent breadth that determines firms’ market power, while money demand

is incorporated by imposing a cash-in-advance constraint on old age consumption ex-

penditure. The demographic structure makes it possible to study inter-generational

trade in patents and a life-cycle saving motive, thereby allowing the paper to con-

tribute to the theory of optimal monetary and patent policy in a framework with

R&D-based endogenous growth.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Introduction 1

1 Innovation by Incumbents and Entrants, Capital and Endogenous

Growth 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Final good producer . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Intermediate goods production and R&D . . . . . . . . . . . . 11

1.2.3 Household . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Equilibrium Characterization . . . . . . . . . . . . . . . . . . 16

1.3 Comparative statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Pareto Optimal Allocation . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Welfare implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 Appendix: Proofs and Derivations . . . . . . . . . . . . . . . . . . . . 39

iii



2 Patents, Growth and Capital in an OLG framework 61

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1 Production sectors . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.2 Consumption decisions . . . . . . . . . . . . . . . . . . . . . . 69

2.2.3 Equilibrium and growth . . . . . . . . . . . . . . . . . . . . . 72

2.3 Patent breadth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3.1 Patent protection and growth . . . . . . . . . . . . . . . . . . 76

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Monetary Policy and Intellectual Property Rights Protection in an

OLG Economy with Endogenous Growth 94

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.1 Production sectors . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.2 Consumption decisions . . . . . . . . . . . . . . . . . . . . . . 102

3.2.3 The government . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.4 Equilibrium characterization . . . . . . . . . . . . . . . . . . . 104

3.3 Patent breadth and growth . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 117

iv



List of Tables

1.1 Baseline parameterization . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2 Welfare effect of subsidy to incumbents research activity . . . . . . . 36

1.3 Welfare effect of subsidy to entrants research activity . . . . . . . . . 36

1.4 Welfare effect of subsidy to capital . . . . . . . . . . . . . . . . . . . 37

v



List of Figures

1.1 Social optimal vs laissez-faire (K surfaces) . . . . . . . . . . . . . . . 31

1.2 The laissez-faire solution vs social optimum (example, case 1) . . . . 31

2.1 The timing of events, case T =∞ . . . . . . . . . . . . . . . . . . . . 71

2.2 Comparison of steady-state values of k under infinite patent length and

one-period patent protection (kT=1 > kT=∞) . . . . . . . . . . . . . . 86

vi



Acknowledgements

I would like to express my deep gratitude to my supervisor, Professor Subir Chat-

topadhyay, for his invaluable guidance, support and continued encouragement

throughout my PhD study. I have been fortunate to have him as my supervisor.

I am very grateful to Professor Neil Rankin for our discussions, valuable feedback

and enthusiastic advice. I also would like to thank Dr Paulo Santos Monteiro for

discussions and helpful comments.

I am grateful to the Department of Economics and Related Studies for support my

years at York. Special thanks to Dr Michael Shallcross who has always been helpful

and understanding.

This thesis would not be possible without the support of my family: my parents

and sister who always encourage me to pursue my dreams. I am indebted to my

parents for everything they have done for me and my sister, for unconditional love

and support. I dedicate this thesis to them.

vii



Declaration

I declare that this thesis is a presentation of original work and I am the sole author.

This work has not previously been presented for an award at this, or any other,

University. All sources are acknowledged as References.

viii



Introduction

This thesis contributes to the study of endogenous economic growth. Since Solow’s

pioneering study (1956), growth theory has experienced remarkable progress the last

decades. The Solow model viewed technological change as exogenous factor that is

determined outside the model, while the AK models were the first to attempt at en-

dogenizing growth. These models were capable of producing long-run growth based

on capital accumulation, but they disregarded the role of technological change caused

by innovation. From the early 1990s, many authors proposed endogenous growth

models in which innovation activity is viewed as the most important engine of eco-

nomic growth. Well-known Romer (1990) and Grossman and Helpman (1991b) papers

presented models in which innovation induces productivity growth by creating new

variety of products. Aghion and Howitt (1992); Howitt and Aghion (1998) incorpo-

rated the Schumpeterian idea of creative destruction in the models in which growth

is assumed to depend on, not the number of products, but on their quality. Besides

endogenizing technological change, these models connect the technological progress

with market structure, competition and intellectual property rights policy.

One of the criticisms levelled at innovation-based models is that they ignore cap-

ital accumulation as a source of growth. The common view in economic growth

literature has been that the accumulation of capital contributes positively to growth

in the short run, but in the long run only the rate of technological progress matters

(Grossman and Helpman (1991a)). However, Howitt and Aghion (1998) demonstrate
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that this common view is mistaken. They present a Schumpeterian model that con-

siders capital accumulation and innovation as equal elements in the growth process.

Their model predicts productivity growth coming solely from creative destruction by

new firms/entrants. At the same time, empirical evidence suggests that not only

entrant’s activity promotes productivity growth, but the contribution of incumbents

to the growth is a substantial. On the other hand, the endogenous growth liter-

ature that study interaction incumbent and entrants in growth process (Acemoglu

and Cao (2015), Klette and Kortum (2004)) ignores capital accumulation as a source

of growth. Chapter 1 integrates innovation and capital into a single framework by

constructing a model in which growth is driven by the incumbents’ and entrants’

innovations. Developed a tractable general equilibrium growth model is rich enough

to investigate roles of capital accumulation and innovation in long-run growth, and

the growth and welfare implication of innovation policy (R&D subsidies).

Innovation activity and, as a result, economic growth can be affected by various

policies. In particular, patent policy has a significant impact on innovation by grant-

ing firms monopoly right to produce patented goods. Chapter 2 and 3 study the

interaction of intellectual patent protection and heterogeneity in patent ownership by

considering an overlapping generations framework. In Chapter 2, I examine the effect

of patent policy on growth in an OLG endogenous growth model with vertical inno-

vation. In general, patent length and patent breadth determine the degree of patent

protection. I consider the two extreme cases of patent length — one-period patent

protection and infinite patent length and show that heterogeneity in patent owner-

ship affects the implications of patent policy, namely, under short duration of patent

growth rate is higher that under long patent duration because of “crowding-out” ef-

fect. Turning to the breadth protection, I reveal that that incomplete patent breadth

has two opposite effects on growth. On the one hand, loosening patent breadth by

reducing patented intermediate goods price increases demand for the intermediate

2



product, and, as a result, increases output. This stimulates aggregate investment, in-

cluding investment in R&D, which promotes growth. On the other hand, an increase

in demand for intermediate product leads to reallocation of investment towards phys-

ical capital by reducing R&D investment, and, consequently, reduces growth rate. If

latter effect dominates the former, patent protection is not growth enhancing.

Chapter 3 continues the investigation of effect of intellectual property right on

growth, but turns to the analysis of interactive effects of intellectual property right

protection and monetary policy. I construct an OLG model with R&D-based growth

along the line of Rivera-Batiz and Romer (1991). Within this framework, I em-

bed a hybrid model, in which money is introduced by imposing a cash-in-advance

constraint on old age consumption expenditure, whereas IPR protection is incorpo-

rated by considering patent breadth that determines firms’ market power. I find that

strengthening patent breadth raises the cost of holding money, thereby reducing in-

vestment in capital and research and thus growth. At the same time, tightening IPR

moves investment from capital accumulation to research investment and, as a result,

increases growth rate. All in all, the impact of these two contradicting effects on

growth rate in favour of strengthening breadth protection. In turn, monetary expan-

sion lowers the growth rate by reducing investment in R&D. Moreover, a stronger

patent breadth weakens effects of monetary policy.
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Chapter 1

Innovation by Incumbents and

Entrants, Capital and Endogenous

Growth

1.1 Introduction

A large literature has focused on understanding the determinants of long-run economic

growth. One distinguishes two alternative strands to study endogenous growth: capi-

tal accumulation and “innovation-based” approaches. The former emphasizes the im-

portance of investment in human and physical capital (Lucas (1988); Rebelo (1991)),

while the latter is based on the idea that long-run growth relies on innovation ac-

tivity (Aghion and Howitt (1992); Grossman and Helpman (1991a,b); Romer (1990);

Aghion et al. (2015a); Jones (1995)). But, as has been indicated by Howitt and Aghion

(1998), capital accumulation and innovation should be considered as complementary

factors of growth process as each plays an important role.

A series of papers have considered innovation jointly with capital accumulation.

Howitt and Aghion (1998) construct a hybrid model by introducing capital into the
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Schumpeterian growth paradigm. They find that government policies, such as a sub-

sidy to research and capital accumulation, will raise the rate of economic growth. A

few other papers (Arnold (1998); Blackburn et al. (2000)) emphasize the importance

of human capital accumulation and innovation by constructing model that incorpo-

rates both of these factors.

This paper integrates innovation and capital into a single framework by developing

a tractable model in which growth is driven by the incumbents’ as well as entrants’

innovations; this is in contrast to the previous literature. I study an economy in which

incumbents’ and entrants’ technological breakthroughs are the key drivers of growth,

whereas the literature related to the capital-innovation integrating approach predicts

productivity growth coming solely from creative destruction by new firms/entrants.

Developing a model that generates productivity growth driven by continuing firms

together with new entrants provides a richer framework for the analysis that is con-

sistent with features of the empirical data that highlights that a large part of growth

comes from productivity improvements by incumbents, although entrants also make

contributions to productivity growth.

The purpose of this paper is to build a tractable framework to understand the

link among capital accumulation, entrants’ and incumbents’ innovation, and endoge-

nous growth. The model builds on innovation by both incumbents and entering firms

framework in Klette and Kortum (2004) and Acemoglu and Cao (2015), and intro-

duces capital accumulation as a determinant of long-run growth. The distinguishing

feature of the model is the lab-equipment specification for R&D (where a composite

final good is used as an input) rather than the employment of skilled or unskilled

workers or scientists.

I prove the existence of a steady state equilibrium at which the economy grows

at an endogenously determined constant rate. The key aspect about the steady state

growth rate is that it is determined by both incumbents’ and entrants’ R&D activity.
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In turn, the level of research is an endogenous variable and is affected by the incentive

to accumulate capital.

The tractable model allows me to get a number of comparative static results. I find

that the equilibrium response of an incumbent’s research expenditure to an increase in

the R&D subsidy rate to entrants is negative, while the response of entrants’ research

expenditure is positive, i.e. increasing the R&D subsidy rate to entrants will reduce

incumbents’ R&D, whereas entrants will spend more on research. The increase of

R&D subsidy rate to incumbents encourages incumbents’ research efforts, while the

effect of this rate on entrants’ R&D is the opposite. A capital subsidy reduces the

cost of capital which raises the flow of profit to an innovator. This, in turn, increases

the value of an innovation thereby spurs R&D investment. The model shows that a

subsidy to an incumbent’s research activity and to capital are beneficial for long term

growth. The former result — a positive effect of R&D subsidies to an incumbent —

is not surprising; the latter result — a positive effect of the capital subsidy rate —

is more interesting. This result is consistent with the main result derived in Howitt

and Aghion (1998), which leads to an important policy conclusion: it implies that,

in general, a subsidy to capital accumulation can be as effective a way of promoting

growth as a subsidy to R&D. A subsidy to an entrants has two opposite effects

on growth. On the one hand, by encouraging more entry subsidy to an entrant’s

research activity lower profitability and value of incumbents that reduce incumbents

R&D investment and, as result, lower economic growth. On the other hand, the

cost reduction induced by the subsidy, increases the expected return to entrant. This

encourages more entrants’ research investment and tends to increase economic growth.

If incumbents’ contribution to growth is sufficiently low,1 the latter effect dominates

the former, i.e., a subsidy to entrants has positive effect on growth. In this case, my

finding is in line with the Schumpeterian literature, in which encouraging entrants

1The probability of an incumbent being successful in innovation is sufficiently low. Note that if
a flow rate of innovation by incumbent is sufficiently hight, the effect is ambiguous.
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leads to an increase in economic growth. Note that in Acemoglu and Cao’s model the

growth rate is decreasing with subsidy to entrants (increasing in the tax on entrants)

for a model with a linear R&D technology for incumbents (an effect which is opposite

of the one in a standard Schumpeterian model), while for the general case they find

the effect to be ambiguous.

My model brings to light several new insights regarding welfare analysis. Ace-

moglu and Cao (2015) indicate two differences between the decentralized equilibrium

and the Pareto optimal allocation: the first corresponds to the “monopoly distortion

effect”, the second — to the “business stealing effect”. I find additional distortions

between the laissez-faire steady-state and optimal solution. First, following Hagedorn

et al. (2007), I decompose the “intertemporal spillover effect” into a “passive busi-

ness stealing”, a “standing on shoulders”, and a “consumption dilution” subeffects.

The “passive business stealing effect” affects private firms: the monopolist’s profit

flow will be reduced by creative destruction that comes from innovation by entrants.

This effect is negative consequence of creative destruction because this part promotes

underinvestment. The “standing on shoulders effect”, which can be interpreted as

capturing the cumulative nature of knowledge, arises because the planner captures

the rent from the next innovation into perpetuity, while a private firm receives the

benefit only during one interval and after that rents will be obtained by the next inno-

vator. Further, the social planner takes into account expenditures on incremental and

radical innovations, whereas the private firm accounts for only its own R&D expen-

diture. This difference reflects the “consumption dilution effect”: spending on radi-

cal innovations reduces resources available for consumption. In Howitt and Aghion

(1998), the consumption dilution effect compensates two other effects, the “passive

business stealing” and the “standing on shoulders” effects, but, in my model, this

is not the case. The “passive business stealing” and “standing on shoulders” effects

tend to generate too little incremental and radical research under laissez-faire, while
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the “consumption dilution” effect tends to make these innovations too large. Thus,

the direction of the “intertemporal effect” is ambiguous, implying that the shift of

surfaces is not uniquely determined. Second, social and private revenue differ, on the

other hand, their costs also differ. These differences correspond to a “appropriability

effect”: the social planner appropriates the entire consumer surplus related to the

good that is created. The private innovator of a new good captures only part of this

surplus because markup of price over cost decreases sales from the optimal level were

the good to be sold at its marginal cost. At the same time, the social cost exceeds the

cost to a private firm because of market power of a private firm. This distortion cor-

responds to the “monopoly distortion effect”. The “appropriability” and “monopoly

distortion” effects work in opposite directions. The “appropriability” effect tends to

generate insufficient research, whereas the “monopoly distortion” effect induces too

much research under laissez-faire. Third, the active “business stealing effect” reflects

the fact that the social planner internalizes the destruction of rents generated by

radical innovations, i.e. the social planner takes into consideration that the social

return from the previous innovation will be destroyed by a new innovation. This

implies that in the social optimum there will be less radical innovation than under

laissez-faire. Thus, the “business stealing” effect affects only research by entrants,

making entrants more active under laisser-faire. Fourth, the “monopoly distortion

effect” also can be seen in the capital equation and is absent in a model without a

capital accumulation (e.g., the Acemoglu and Cao model). An monopolist gains from

the lower capital cost at the cost of a household as supplier of capital. This effect

tends to generate too little capital accumulation under laissez-faire. Overall, whether

the growth rate under laisser-faire is greater or smaller than the optimal growth rate

depends upon whether the steady-state level of research, by incumbents and entrants,

for the decentralized economy is higher or lower than the socially optimal level for

these variables. The “appropriability”, “passive business stealing” and “standing on
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shoulders” effects tends to make laissez-faire incremental and radical innovation less

than the optimal rate, whereas “monopoly distortion” effect tends to make it more

than the optimal rate, and at the same time, by affecting only research by entrants,

the “business stealing effect” tends to generate too much radical research in the decen-

tralized economy. In case of linear return to research by the incumbents, the growth

of the Pareto optimal allocation is greater than that under laissez-faire, while for a

general specification of the technology the comparison is ambiguous.

Welfare analysis reveals that policy instruments — subsidies to incumbents’ and

entrants’ research activity, and a subsidy to capital accumulation — may have dif-

ferent impact on welfare depending on the structural characteristics of the economy.

The relationships between welfare and subsidies to research activity may be negative,

or may be represented by an inverted U-shaped curve with maximum shifts either

left or right. The latter suggests that increasing the subsidies may initially enhances

welfare, but for further higher values of subsidy rates the welfare change becomes

negative. A subsidy to capital initially improves welfare but further increases of the

subsidy rate reduces welfare.

This paper contributes to the endogenous growth literature but mostly to a strand

of it which consider the interaction between incumbents’ and entrants’ innovation in

the growth process. It provides an extension to the workhorse Schumpeterian model

to produce an model of endogenous growth that is very well suited answer important

questions regarding economic policy.

The paper is organized as follows. Section 1.2 describes the model of the pa-

per, defines the equilibrium notion and proves existence and uniqueness. Section 1.3

provides the analysis of the effects of policy on equilibrium growth. Section 1.4 char-

acterizes the Pareto optimal allocation and compares it to the equilibrium allocation.

Section 1.5 looks at welfare implications. Section 1.6 contains brief final remarks,

while the Appendix contains several proofs and derivations.
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1.2 Model

Time is continuous. The economy consists of households; a final good sector; and

an intermediate goods sector that produces differentiated goods. The final good is

storable in the form of capital. Final good is produced competitively and used as a

consumption good and a capital good, and also as an input in R&D. Innovations will

be quality improvements in intermediate goods.

Households are represented by a single agent that maximizes utility. The popula-

tion is constant at L, and labor is supplied inelastically. The household owns firms,

provides labor services in exchange for wages, accumulates physical capital, and rents

it at a rental rate Rt to firms.

An important feature of the model is that all that is required for research is

investment in equipment or in laboratories rather than the employment of skilled or

unskilled workers or scientists (this is the so-called “lab equipment” model).

1.2.1 Final good producer

The final good is produced under perfect competition using the intermediate goods

and labor, according to

Yt =
1

1− γ

∫ 1

0

qt(j)F (xt(j), L)dj, (1.1)

where xt(j) is the quantity of intermediate good j ∈ [0, 1], qt(j) is the quality of the

latest version of intermediate product j, and F : R2
+ → R+ is twice differentiable in

x and L, Fx(x, L) > 0, FL(x, L) > 0, Fxx(x, L) < 0, FLL(x, L) < 0. Moreover, F

is a constant-returns production function. Intermediate goods are necessary factors,

F (0, L) = 0. Furthermore, assume that the production function is Cobb-Douglas

F (x, L) ≡ x1−γLγ, γ ∈ (0, 1). The price of the final good is normalized to 1.
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The final good producer solves the problem:

max
xt(j),Lt

Yt −
∫ 1

0

pt(j)xt(j)dj − wtLt (1.2)

subject to (1.1), taking prices pt(j) and qualities qt(j) as given.

The first order condition (hereafter, FOC) for the maximization problem is:

pt(j) =
1

1− γ
qt(j)Fx(xt(j), L) = xt(j)

−γqt(j)L
γ
t , (1.3)

wt =
1

1− γ

∫ 1

0

qt(j)FL(xt(j), L)dj =
γ

1− γ

(∫ 1

0

qt(j)xt(j)
1−γdj

)
Lγ−1
t . (1.4)

Equation (1.3) is the inverse demand function for intermediate goods, while (1.4)

equalizes the marginal cost of employing labor to the value of the marginal product

of labor.

1.2.2 Intermediate goods production and R&D

Incumbents

There is a continuum of intermediate firms that produce the differentiated quality-

enhancing goods xt(j), j ∈ [0, 1], which are produced with the input of capital Kt(j).

Following Howitt and Aghion (1998), the production function is given by:

xt(j, q) = Kt(j)/qt(j), (1.5)

where the division by qt(j) reflects that successive blueprints are produced by increas-

ingly capital-intensive techniques.

The intermediate goods sector is monopolistic. The marginal cost of firms will

depend on the rental rate of capital, Rt. Later it will be shown that the rental rate

is the interest rate, rt, plus the rate of depreciation, δ, and minus the subsidy rate to
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holding of capital, βk:

Rt = rt + δ − βk. (1.6)

Taking into account that the inverse demand curve facing a monopolist is given by

(1.3), the monopolist’s maximization problem can be written as2

πt(j) = max
xt(j)

(
pt(j)xt(j)−RtKt(j)

)
= max

xt(j)

(
xt(j)

1−γLγ −Rtxt(j)
)
qt(j). (1.7)

Solution xt(j) is independent of j: in equilibrium all intermediate producers supply

the same quantity of goods:

xt(j) ≡ xt =

(
1− γ
Rt

) 1
γ

L. (1.8)

Thus, the monopoly price is given by the standard formula with a constant markup

over marginal cost:

pt(j) =
Rtqt(j)

1− γ
. (1.9)

The aggregate demand for capital is given by:

Kt =

∫ 1

0

Kt(j)dj =

∫ 1

0

xt(j)qt(j)dj = xtQt, (1.10)

where Qt =
∫ 1

0
qt(j)dj is an index of aggregate quality. Quantity xt can, hence, be

rewritten as xt = ktL, where kt ≡
Kt

QtL
is the capital intensity.

2For a general CRS technology

πt(j) = max
xt(j)

(
pt(j)xt(j)−RtKt(j)

)
= max

xt(j)

(
1

1− γ
qt(j)Fx(xt(j), L)xt(j)−Rtqt(j)xt(j)

)
.

.
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The first-order condition for profit maximization (1.7) can be expressed as:3

R(kt) = k−γt (1− γ). (1.11)

Substituting for pt from (1.3), R(kt) from (1.11) and xt = ktL into (1.7) yields

πt(j) = π(kt)qt(j)L, (1.12)

where π(kt) = γk1−γ
t .4

An innovation of product j at time t increases the quality of this product according

to the following “quality ladder” for each good:

qt(j) = µNt(j)qs(j) ∀j, t, (1.13)

where µ > 1, an initial quality of product j is q0(j) ∈ R+, and Nt is a Poisson process

— the number of incremental innovations between time s ≤ t and time t (s is the

time at which this good was invented).

qt is a stochastic process which obeys the stochastic differential equation of the

form 5:

dqt = (µ− 1)qt dNt.

3For a general case the rental rate of capital is given by Rt = 1
1−γ

(
Fx(xt, L) + xtFxx(xt, L)

)
.

Using xt = ktL, last equation can be rewritten as R(kt) = 1
1−γ

(
Fk(kt, 1) + ktFkk(kt, 1)

)
. It can

been easily seen that for Cobb-Douglas case F (kt, 1) = k1−γ
t .

4For a general case π(kt) = 1
1−γ

[
Fk(kt, 1)kt −

(
Fk(kt, 1) + ktFkk(kt, 1))kt

)]
= − 1

1−γ k
2
tFkk(kt, 1).

5See Appendix.
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Only an incumbent can generate incremental innovations.6 Incumbent invests in

research St(j)qt(j) units of the final good. The innovation on each good arrives at

the Poisson rate ζ(St(j)), where St(j) is quality-adjusted level of research.

The Poisson arrival rate is strictly increasing in S, ζ ′(·) > 0, that implies that

higher R&D expenditure flows lead to a greater probability of a successful innovation,

while ζ ′′(·) < 0 captures diminishing returns to R&D spending, and ζ(0) = 0. Later

on I will use the following functional form that satisfies the assumptions mentioned:

ζ(St) = ζS1−β
t with β ∈ (0, 1).

Entrants

Entrants perform radical innovations.7 Spending one unit of final good, radical inno-

vations arrive at a rate ψ(S̃t(j))
qt(j)

. Then with R&D expenditure of S̃t(j)qt(j) units of the

final good, the Poisson rate of entrants’ innovation is equal to S̃t(j)ψ(S̃t(j)). I assume

that ψ(S̃) is strictly decreasing, ψ(S̃) ∈ C1, and S̃ψ(S̃) is strictly increasing in S̃,

capturing the fact that the greater the entrant’s R&D expenditure, the higher the

probability of success in innovation. When entrants improve the product, the quality

level jumps by µ̃q: qt(j) = µ̃qt (j), where µ̃ > µ. ψ(S̃t) = ψS̃−β̃t with β̃ ∈ (0, 1)

satisfies the assumptions and I will use this functional form below.

I assume that an entrant is not constrained by potential competition from previous

innovators and charges the unconstrained monopoly price, i.e. innovations are drastic.

Drastic innovations correspond to a sufficiently high value of µ̃ such that entrant be-

comes monopolist after innovation. The value of µ̃ should be such that final good pro-

ducer is indifferent between buying intermediate goods from the entrant and from the

previous innovator, i.e. Ψ(pt, Y ) ≤ Ψ̃(p̃t, Y ), where Ψ(pt, Y ) is the cost of producing

6Following Acemoglu and Cao (2015) I assume that the cost of incremental research is infinite to
the entrants. This is similar to the assumption in Barro and Sala-i Martin (2004), p.335, that the
industry leader has a cost advantage in research.

7Although incumbents could have access to radical innovation technology, because of Arrow’s
replacement effect they would choose not to (because of free entry entrants make zero profit from
this technology, whereas incumbents by replacing their own product would have negative profit).
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Y units of the final good using the new/improved intermediate input at the monopoly

price pt = Rtqt
1−γ , so that Ψ(pt, Y ) = Rtqt

1−γ

(
Yt(1−γ)
QtLγ

) 1
1−γ

, while Ψ̃(p̃t, Y ) is the cost of pro-

ducing Y units of the final good using the intermediate good produced by the previous

innovator at the marginal cost p̃t = Rtqt
µ̃

,8 so that Ψ̃(p̃t, Y ) = Rtqt
µ̃

(
Y (1−γ)µ̃
QtLγ

) 1
1−γ

. It

can be easily seen that the inequality Ψ(pt, Y ) ≤ Ψ̃(p̃t, Y ) is equivalent to

µ̃ ≥
( 1

1− γ

) 1
γ
−1

, (1.14)

so I assume the drastic innovation regime, i.e., entrants can charge the unconstrained

monopoly price.

1.2.3 Household

The preferences of the representative household are defined by the utility function:

U(Ct) =

∫ ∞
0

e−ρt
C1−ε
t − 1

1− ε
dt, (1.15)

where ρ is the discount rate, ρ > 0, Ct denotes consumption, and ε > 0 is the

coefficient of relative risk aversion.

The household holds its wealth in two forms: the first is capital which is rented

by the intermediate good producers to produce the intermediate goods, the second is

as the owner of firms that produce the intermediate goods where the value of these

firms in aggregate is denoted by At, where At =
∫ 1

0
Vt(j, q)dj and Vt(j, q) is the net

present value of monopolist with highest quality qt(j) in the j variety. The household

faces an intertemporal consumption decision subject to a budget constraint and the

8Marginal cost of the firm with the next highest quality is p̃t = Rtqt−1 = Rtqt
µ̃ .
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law of motion for capital:

Ȧt = rtAt + wtLt +RtKt − Ct − It − Tt,

K̇t = It − (δ − βk)Kt,

where It is investment, and Tt a “lump sum” tax.

1.2.4 Equilibrium Characterization

Incumbent and entrant optimization The net present discounted value of an

incumbent can be written as

Vt(j, q) = Et,q

[ ∫ T

t

e−
∫ s
t r(τ)dτ

(
π(ks)qs(j)L− Ss(j)(1− sI)qs(j)

)
ds

]
, (1.16)

where r(τ) is the equilibrium market real interest rate, T is the time when a new firm

enters, and sI is the subsidy rate to R&D. The net present value of the monopolist

with the highest quality q at time t for good j satisfies the Hamilton–Jacobi–Bellman

equation (see the Appendix for the derivation):

rtVt(j, q)− V̇t(j, q) = max
St(j)≥0


π(kt)qt(j)L− St(j)(1− sI)qt(j)

+ζ(St(j))(Vt(j, µq)− Vt(j, q)

−S̃t(j)ψ(S̃t(j))Vt(j, q)

 . (1.17)

The first line in this equation is the gross profit net of the cost of R&D. The second

line is the payoff from innovation, and final line gives the change in the firm’s value

due to creative destruction by entrants at the Poisson rate S̃t(j)ψ(S̃t(j)).

There is free entry into research.The value of each blueprint, the net present

discounted value of an entrant’s earning, for an entrant is Vt(j, µ̃q), hence, by

spending qt(j) units of final good on research, entrant generates the flow revenue
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ψ(S̃t(j))Vt(j, µ̃q). If there is free entry into research, as I assume, the flow of profit

for an entrant must be zero, that is,

ψ(S̃t(j))Vt(j, µ̃q)− qt(j)(1− sE) = 0. (1.18)

This equation can be rewritten in complementary slackness form:

ψ(S̃t(j))Vt(j, µ̃q) ≤ qt(j)(1− sE) and

ψ(S̃t(j))Vt(j, µ̃q) = qt(j)(1− sE) if S̃t(j) > 0, (1.19)

i.e., as long as the cost of R&D is above revenue, the entrant will not invest in

research. When the value of expected revenue exceeds the cost of research, the firm

will increase R&D efforts up to the point at which the condition holds with equality.

Dynamic optimization by household As usual Ct obeys the Euler equation:9

Ċt
Ct

=
rt − ρ
ε

. (1.20)

The transversality conditions are

lim
t→∞

e−
∫ t
0 r(τ)dτAt = 0, (1.21)

lim
t→∞

e−
∫ t
0 rτdτKt = 0. (1.22)

Aggregate variables Aggregate output is divided between household consump-

tion Ct, input to physical capital K̇t + δKt, and total expenditure on R&D Ŝt:

Yt = Ct + K̇t + δKt + Ŝt. (1.23)

9For derivation see Appendix.
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The total expenditure on R&D is

Ŝt =

∫ 1

0

(St(j) + S̃t(j))qt(j)dj. (1.24)

Aggregate capital is given by (1.10), and Euler equation is given by (1.20).

Total output can be written as10

Yt =
1

1− γ

(∫ 1

0

qt(j)xt(j)
1−γdj

)
Lγt =

1

1− γ
x1−γ
t QtL

γ =
1

1− γ
k1−γ
t QtL =

1

1− γ
K1−γ
t Qγ

tL
γ.

(1.25)

The government’s budget constraint takes the form:

Tt = sI

∫ 1

0

St(j)qt(j)dj + sE

∫ 1

0

S̃t(j)qt(j)dj + βk

∫ 1

0

Kt(j)dj. (1.26)

In the model describe above, a dynamic equilibrium can be defined as follows:

definition

Definition 1 An equilibrium is a collection of time paths of functions: 11

{Ct, Kt, Ŝt, St, S̃t, Rt, wt, rt, pt, xt, Vt(j, q)}∞t=0 (1.27)

that solve the final good, the intermediate good sectors and household problems, and

all markets clear:

(i) Ct, Kt, Ŝt and Tt that satisfy (1.20), (1.10), (1.24) and (1.26) respectively;

(ii) prices pt(j) and quantities xt of each intermediate good, cost of capital Rt and

net present value of profits Vt(j) are given by (1.9), (1.8), (1.6), (1.17) respectively;

10The intensive-form production function is given by yt = Yt
QtL

= 1
1−γF (kt, 1) ≡ 1

1−γ f(kt).
11While qt(j) is stochastic, average Qt is deterministic (reasoning is the law of large numbers,

hence, all aggregates are non-stochastic).

18



(iii) R&D expenditure for incumbents St and entrants S̃t that satisfy (1.17) and

(1.19);

(iv) wage and interest rate wt, rt given by (1.4) and (1.20).

I am interested in the balanced growth paths (henceforth, BGP) which are those

where all variables grow at a constant rate. First, I show that the growth rate

of outputs, consumption, physical capital and technological progress (quality) are

constant and equal:

gY = gC = gK = gQ = g∗. (1.28)

Along a BGP all variables grow at a constant rate, so that the interest rate is con-

stant12 and, by consequence, so is the cost of capital, Rt = R, so, by (1.8), xt = x.

Using this, Kt is proportional to Qt, by (1.10), and so gK = gQ. When these facts

are used in (1.25), I have gY = gQ = gK .

Using the “guess” that the value function V along BGP is linear in q, i.e. Vt(j) =

vtq(j)
13 for all j, the R&D by an incumbent j is defined as the solution to

arg max
S
{ζ(St)(µ− 1)vt − St(1− sI)}, (1.29)

which is independent of j. Then, the first-order condition is given by

ζ ′(St)(µ− 1)vt = 1− sI (1.30)

12This follows from the requirement that consumption grows at a constant rate.
13Here I use the fact that the quality of the intermediate good supplied by an incumbent is constant

over time.
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Notice that St depends on vt, µ and sI and does not depend on q. The entry condition

(1.19) can be rewritten as

µ̃ψ(S̃)vt = 1− sE, (1.31)

The equation for aggregate research expenditure (1.24) gives

Ŝt = (St + S̃t)Qt.

From the resource constraint (1.23), I have:

Ct + Ŝt
Kt

= −δ − gK +
Yt
Kt

.

Because Yt and Kt grow at same rate, Yt
Kt

is constant, so that Ct+Ŝt
Kt

is constant, hence,

Ct + Ŝt grows at rate gK and consequently, at rate gY , i.e. gC+Ŝ = gK = gY . Then

gC+Ŝ can be expressed as

gC+Ŝ =
Ċt

Ct + Ŝt
+

˙̂
St

Ct + Ŝt
= gC

Ct

Ct + Ŝt
+ gŜ

Ŝt

Ct + Ŝt
= gC + (gŜ − gC)

Ŝt

Ct + Ŝt
= gY .

Since gY , gC and gŜ are constant along a BGP, Ŝt
Ct+Ŝt

is constant, and, hence, gŜ = gC .

Thus, it has been shown that

gY = gK = gQ = gC = gŜ.

It follows from the equation for aggregate R&D expenditure (1.24) that, as Ŝt and Qt

grow at the same rate, St + S̃t is constant. From FOC (1.30) and the entry condition

(1.31), R&D expenditures of incumbents S and entrants S̃ are increasing in vt. Thus,

if incumbents increase/decrease their research expenditure, entrants do the same.
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These two factors implies that St = S and S̃t = S̃ are constant, and from (31) vt = v

is also constant, i.e Vt(j) = vtq(j) = vq(j)

Along BGP, the Hamilton-Jacobi-Bellman equation can be written as

r∗v = max
S≥0

(
π(k∗)L− S(1− sI) + ζ(S)(µ− 1)v − S̃ψ(S̃)v

)
, (1.32)

where k∗ is defined by

R(k∗) = r∗ + δ − βk, (1.33)

and (1.32) holds with S = S∗, S̃ = S̃∗, where S∗ and S̃∗ denote the solutions to (1.30)

and (1.31) respectively. It follows that v can be expressed as

v =
π(k∗)L− S∗(1− sI)

r∗ + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)
. (1.34)

The growth rate of output is given by

g∗ =
Ẏt
Yt

=
Q̇t

Qt

. (1.35)

I now determine the growth of the average quality. To derive it I use the law of large

numbers. Qt+dt can be determined as

Qt+dt =

∫
qt+dtdj =

∫
Υ1

qt+dtdj +

∫
Υ2

qt+dtdj +

∫
Υ3

qt+dtdj, (1.36)

where Υ1 is the set of product lines that experience an innovation by incumbents,

Υ2 is the set of product lines that experience an innovation by entrants and Υ3 is

the set of product lines that do not experience an innovation. The first term can be
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expressed as

∫
Υ1

qt+dtdj = E[µqt(j) | Innovate] = µQtζ(S∗)dt.

A similar expression can be obtained for
∫

Υ2
qt+dtdj and

∫
Υ3
qt+dtdj, so (1.36) can be

rewritten as

Qt+dt = µQtζ(S∗)dt+ µ̃QtS̃
∗ψ(S̃∗)dt+ (1− ζ(S∗)dt− S̃∗ψ(S̃∗)dt)Qt + o(dt).

Subtracting Qt from the right hand side and the left hand side, dividing by dt and

taking dt→ 0 yields:

Q̇t

Qt

= lim
dt→0

Qt+dt −Qt

dt

1

Qt

= ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1). (1.37)

Therefore, the growth rate is given by:

g∗ = ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1). (1.38)

Thus, the BGP is characterized by the Euler equation, and equations (1.34), (1.33),

(1.30),(1.31) and (1.38).

The following proposition establishes existence of a unique BGP equilibrium with

the linear value function of incumbent Vt(j) = vq.

Proposition 1.1 Assuming that innovation are drastic, (1.14), ε ≥ 1 and ρ + δ −

βk > 0 holds, there exists unique BGP equilibrium with a linear value function of the

incumbent.

Proof See the Appendix.

Proposition 1.1 establishes the conditions for the existence of unique BGP equi-

librium. Now I can perform comparative statics exercises.
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1.3 Comparative statics

The BGP is characterized by the following system of equations:

R(k) = r∗ + δ − βk, (1.39)

v =
π(k∗)L− S∗(1− sI)

r∗ + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)
, (1.40)

ζ ′(S∗)(µ− 1)v = (1− sI), (1.41)

µ̃ψ(S̃∗)v ≤ (1− sE) with equality if S̃∗ > 0, (1.42)

r∗ = ρ+ εg∗, (1.43)

g∗ = ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1). (1.44)

Substituting the expression for the quality-adjusted value v from the first-order con-

dition (1.41) into (1.40), and using (1.43)-(1.44) gives a research “arbitrage” equation

for an incumbent:

(1− sI) = ζ ′(S∗)(µ− 1)
π(k∗)L− S∗(1− sI)

ρ+ εg(S∗, S̃∗) + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)
. (1.45)

Similarly, substituting the free-entry condition (1.42) into (1.40), and using (1.43)-

(1.44) yields a research “arbitrage” equation for an entrant:

(1− sE) = µ̃ψ(S̃∗)
π(k∗)L− S∗(1− sI)

ρ+ εg(S∗, S̃∗) + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)
. (1.46)

The numerator in (1.45)-(1.46) is the one-period flow of output from research, whereas

the denominator is the rate at which an innovator discounts the stream of output.

After these remarks, let me now consider the long-run impacts of a change in subsidies.

The results of comparative statics in the balanced-growth equilibrium are summarized

in Proposition 1.2.
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Proposition 1.2 (i) The BGP growth rate g depends positively on the incumbents’

(sI) and subsidy rate to capital βK. The growth rate increases with subsidies to entrant

research activity (sE) when ζ(S) < ρβ(µ̃−1)
(β(µ̃−2)+1))(µ−1)

; (ii) The increase of R&D subsidy

rate to incumbents encourages incumbents’ research efforts, i.e. dS∗

dsI
> 0, while the

effect of this rate on the entrants’ R&D is the opposite, dS̃∗

dsI
< 0; (iii) the equilibrium

response of incumbents’ research expenditure on an increase in the R&D subsidy rate

to entrants is negative,dS
∗

dsE
< 0, while the response of entrants’ research expenditure

is positive, dS̃∗

dsE
> 0; (iv) Incumbents and entrants research investment are increasing

in the capital subsidy rate βk.

Proof See the Appendix.

By directly reducing the cost of R&D investment, a research subsidy to incumbents

contributes by increasing the growth rate (equation (1.44)). However, there is an

indirect effect of this policy instrument on growth that arises from the equilibrium

change in the value of v (equation (1.40)). But the indirect effect is not compensated

by the direct effect: Proposition 1.2 shows that growth is increasing in the subsidy

rate sI .

The result obtained with regard to the effect of a subsidy to capital on growth is

consistent with the main result derived in Howitt and Aghion (1998), and this leads

to an important policy conclusion. A capital subsidy reduces capital cost and raises

the flow of profit π(k)L to an innovator. This, in turn, increases the value of an

innovation (equations (1.45) and (1.46)) thereby spurs economic growth. This result

implies that a subsidy to capital accumulation can be as effective a way of promoting

growth as a subsidy to R&D, and will have a constant effect on the economy’s growth

rate.

The effect of a subsidy to an entrants on growth depends on the probability of

an incumbent being successful performing R&D, ζ(S): for a low success probability,
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the growth rate is increasing in the subsidy rate to entrants’ research. The intuition

for this result is the following. On the one hand, subsidy to an entrant’s research

activity by encouraging more entry, decreases profitability and value of incumbents,

that in turn lowers incumbents R&D investment (dS/dsE < 0) and reduces economic

growth. On the other hand, the cost reduction induced by the subsidy, increases

the expected return to entrant. This encourages more entrants research investment

and tends to increase economic growth. If incumbents contribution to growth is

sufficiently low, i.e., ζ(S) < ρβ(µ̃−1)
(β(µ̃−2)+1))(µ−1)

(see also (1.44)), then the latter effect

dominates the former — a subsidy to entrants has positive effect on growth. If a

flow rate of incumbents innovation, ζ(S), is sufficiently hight, the effect of subsidy

to entrants R&D is ambiguous. Thus, for the case of low ζ(S), my finding is in

line with the Schumpeterian literature, in which encouraging entrants leads to an

increase in economic growth. Note that in Acemoglu and Cao’s model the growth

rate is decreasing with subsidy to entrants (increasing in the tax on entrants) for a

model with a linear R&D technology for incumbents, while for the general case they

find the effect to be ambiguous.

1.4 Pareto Optimal Allocation

How does this decentralized solution compare to the socially optimal allocation of

resources? The answer can be obtained by first solving the following social planner

problem for the economy.

A social planner maximizes the utility of a representative household by choices of

consumption Csp
t and R&D expenditures Sspt and S̃spt :

maxCt,St,S̃t

∫ ∞
0

e−ρt
Csp
t

1−ε − 1

1− ε
dt (1.47)
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subject to: 14

Y sp
t =

1

1− γ

∫ 1

0

qt(j)F
sp(xt(j), L)dj = Csp

t + Ispt + Ŝspt , (1.48)

K̇sp
t = Ispt − δK

sp
t , (1.49)

Ksp
t =

∫ 1

0

xspt (j)qt(j)dj, (1.50)

Q̇sp
t =

(
ζ(Sspt )(µ− 1) + S̃spt ψ(S̃spt )(µ̃− 1)

)
Qsp
t . (1.51)

The solution to social planner’s problem is derived in the Appendix. Now, I can

compare the social optimum with the steady state level of capital and research under

laissez-faire. According to the results provided in the Appendix, the socially optimal

level for k is given by

1

1− γ
Fk(k

sp, 1) = (ksp)−γ = ε
(
ζ(Ssp)(µ− 1) + S̃spψ(S̃sp)(µ̃− 1)

)
+ δ + ρ. (1.52)

Let me consider the laissez-faire case with no subsidies (sI = sE = βk = 0). Use

(1.20), (1.33) and (1.38) to obtain ε
(
ζ(S∗)(µ−1) + S̃∗ψ(S̃∗)(µ̃−1)

)
+ δ+ρ = R(k∗).

Recall the expression for the rental rate, R(k∗) = 1
1−γ

(
Fk(k

∗, 1)+k∗Fkk(k
∗, 1)

)
, where

for the Cobb-Douglas case R(k∗) = (k∗)−γ(1− γ). Hence, the equilibrium value of k∗

for the decentralized economy satisfies

1

1− γ

(
Fk(k

∗, 1) + k∗Fkk(k
∗, 1)

)
= (k∗)−γ(1− γ)

= ε
(
ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1)

)
+ δ + ρ.

(1.53)

14I assume here the same proportional level of research expenditure in each sector.
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As shown in the Appendix, for the social planner’s problem, the optimal allocation

of resources to incremental research Ssp in steady state is given by:

1 = (µ− 1)ζ ′(Ssp)

1
1−γ

(
F (ksp, 1)− Fk(ksp, 1)ksp

)
L− (Ssp + S̃sp)

ρ+ gspε− ζ(Ssp)(µ− 1)− S̃spψ(S̃sp)(µ̃− 1)
(1.54)

with 1
1−γ

(
F (ksp, 1)− Fk(ksp, 1)ksp

)
= 1

1−γ (ksp)1−γ − (ksp)1−γ = γ
1−γ (ksp)1−γ.

Recall the expression for π(k∗) = 1
1−γ

(
Fk(k

∗, 1)k∗−
(
Fk(k

∗, 1) + k∗Fkk(k
∗, 1)k∗

))
,

where for the Cobb-Douglas case π(k∗) = (k∗)1−γ − (1− γ)(k∗)1−γ = γ(k∗)1−γ. Sub-

stituting the formulas for the quality-adjusted value of v from (1.34) and for r∗ from

Euler equation (1.20) into the first-order condition (1.30), and using the expression

for π(k∗), gives the equation determining the steady-state equilibrium level of an

incumbent’s research

1 = (µ− 1)ζ ′(S∗)

1
1−γ

(
Fk(k

∗, 1)k∗ −
(
Fk(k

∗, 1) + k∗Fkk(k
∗, 1)k∗

))
L− S∗

ρ+ g∗ε− ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)
. (1.55)

The Appendix shows that the socially optimal level for radical research S̃sp is given

by:

1 = (µ̃− 1)
(
ψ(S̃sp) + S̃spψ′(S̃sp)

) 1
1−γ

(
F (ksp, 1)− Fk(ksp, 1)ksp

)
L− (Ssp + S̃sp)

ρ+ gspε− ζ(Ssp)(µ− 1)− S̃spψ(S̃sp)(µ̃− 1)
.

(1.56)

The research “arbitrage” equation for a monopolist in the case of radical research is

analogous to (1.55) and can be obtained by plugging the formula (1.34) for v into the

free-entry condition (1.31):

1 = µ̃ψ(S̃∗)

1
1−γ

(
Fk(k

∗, 1)k∗ −
(
Fk(k

∗, 1) + k∗Fkk(k
∗, 1)k∗

))
L− S∗

ρ+ g∗ε− ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)
. (1.57)
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First, let me explore the last four equations in detail. There are four differences

between (1.54) and (1.55) (similarly, between (1.56) and (1.57)). The first is that the

rates at which the social planner and a private firm discounts stream of output differ,

namely, the social discount rate ρ + gε − ζ(S)(µ − 1) − S̃ψ(S̃)(µ̃ − 1) is less than

the “private discount rate” ρ+ gε− ζ(S)(µ− 1) + S̃ψ(S̃). This is the “intertemporal

spillover effect”. This effect can be decomposed into subeffects in a manner to similar

that done by Hagedorn et al. (2007) for the Aghion and Howitt (1992) and the Howitt

and Aghion (1998) models. Hagedorn et. al distinguish three additional subeffects:

the “passive business stealing effect”, the “standing on shoulders effect”, and the

“consumption dilution effect”. First, the passive business stealing effect affects private

firms, namely, the last term S̃ψ(S̃) in the private discount rate reflects the probability

that the monopolist’s profit flow will be reduced by creative destruction that comes

from innovation by entrants. This effect is the negative part associated with creative

destruction because this part, as we see later, promotes underinvestment.

The “standing on shoulders effect”15 arises because the planner captures the rent

from the next innovation endlessly (in social discount rate this effect is expressed

by the last negative term −S̃ψ(S̃)(µ̃− 1)), while a private firm receives benefit only

during one interval and after that rents will be obtained by the next innovator.

The numerator in (1.54)-(1.57) is the one-period flow of new output that results

from research. As can be seen, the social planner takes into account expenditures on

incremental (S) and radical innovations (S̃), whereas the private firm consider only its

own R&D expenditure, S. This difference reflects the “consumption dilution effect”:

spending on radical innovations reduces resources available for consumption. Note

that in Howitt and Aghion (1998), the “consumption dilution” effect compensates two

other effects, passive business stealing and standing on shoulders effects. However,

in my model this is not the case, namely, the net effect of passive business stealing

15This effect can be interpreted as capturing the cumulative nature of knowledge, i.e. new ideas
builds on old ideas.
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and standing on shoulders is −S̃ψ(S̃) − S̃ψ(S̃)(µ̃ − 1) = −µ̃S̃ψ(S̃), whereas the

consumption dilution effect is associated with −S̃. Because the former term is in the

denominator and the latter term is in the numerator, they work in opposite directions.

The “passive business stealing” and the “standing on shoulders” effects tend to

generate too little incremental and radical research under laissez-faire because of

which surface Ssp (defined by (1.54)) is shifted above the S surface (equation (1.55)),

and the surface S̃sp (equation (1.56)) is shifted above S̃ (equation(1.57)), while the

“consumption dilution” effect tends to make these innovations too large — the surface

Ssp will be below the S surface and the S̃sp surface will be below the S̃ surface. Thus,

the direction of the “intertemporal effect” is ambiguous, it implies that the shift of

the surface S, determined by (1.54)-(1.55), and the surface S̃, determined by (1.56)-

(1.57), are not uniquely determined.

The next difference is the first term in the numerator of a fraction. For the

social planner this is 1
1−γ

(
F (k, 1)− Fk(k, 1)k

)
L = ( 1

1−γ (k)1−γ − (k)1−γ)L, while for

a private monopolist, this is 1
1−γ

(
Fk(k, 1)k −

(
Fk(k, 1) + kFkk(k, 1)k

))
L = ((k)1−γ −

(1 − γ)(k)1−γ)L. The given notations allow easily to see that social and private

revenue differ, on the other hand, their costs also differ. The first of these differences

corresponds to an “appropriability effect”: the social planner appropriates the entire

consumer surplus related to the good that is created. The private innovator of a new

good captures only part of this surplus because markup of price over cost decreases

sales from the optimal level at which the good would be sold at its marginal cost. At

the same time, the social cost exceeds the cost of a private firm because of the market

power of a private firm. This distortion corresponds to the “monopoly distortion

effect”.

The “appropriability” and the “monopoly distortion” effects work in opposite

directions. The “appropriability” effect tends to generate insufficient research, S and

S̃, under laissez-faire (the surface Ssp is above the S surface, and the surface S̃sp is
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above S̃), whereas the monopoly distortion effect induces too much research under

laissez-faire (the surface Ssp is below the S surface, and the S̃sp surface below S̃

surface).

The other difference, “active business stealing effect”, can be seen in (1.56)-(1.57).

The term in the second bracket on the right-hand side of (1.56), S̃ψ′(S̃), represents

this effect. This term is negative, because the function ψ(S̃) is decreasing. It reflects

the fact that the social planner internalizes the destruction of rents generated by

radical innovations, i.e. the social planner takes into consideration that the social

return from the previous innovation will be destroyed by a new innovation. This

implies that in the social optimum there will be less radical innovation than under

laissez-faire: the surface S̃sp will be below the surface S̃. Thus, the “active business

stealing” effect affects only research by entrants, making entrants more active under

laisser-faire.

Comparison of the equation for k in the social planner’s problem (1.52) with

that under laissez-faire (1.53) demonstrates the monopoly distortion effect, which is

reflected by the term on the left hand side of these two equations. The monopolist

gains from the lower capital cost at the cost of the household that supplies capital.

This effect is absent in Acemoglu and Cao (2015). This effect tends to generate too

little capital accumulation under laissez-faire, thus, the K surface, that is determined

by (1.52)-(1.53), is below the Ksp surface (Figure 1.1).

To summarize, the “appropriability”, the “passive business stealing” and the

“standing on shoulders” effects tend to make laissez-faire incremental and radical

innovation smaller than optimal, whereas the “monopoly distortion” effect tends to

make them larger than optimal, and at the same time, by affecting only research by

entrants, the “business stealing effect” tends to generate too much radical research

in a decentralized economy. There are eight possible combination to compare the
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Figure 1.1: Social optimal vs laissez-faire
(K surfaces)

Figure 1.2: The laissez-faire solution vs
social optimum (example, case 1)

social optimum with the steady-state decentralized equilibrium (case 1 is illustrated

in Figure 1.2):

case 1: S < Ssp, S̃ < S̃sp, k < ksp; case 2: S < Ssp, S̃ < S̃sp, k > ksp;

case 3: S < Ssp, S̃ > S̃sp, k < ksp; case 4: S < Ssp, S̃ > S̃sp, k > ksp;

case 5: S > Ssp, S̃ < S̃sp, k < ksp; case 6: S > Ssp, S̃ < S̃sp, k > ksp;

case 7: S > Ssp, S̃ > S̃sp, k < ksp; case 8: S > Ssp, S̃ > S̃sp, k > ksp.

Whether the growth rate under laisser-faire will be greater or smaller than the op-

timal growth rate depends upon whether the steady-state level of research, S and S̃,

for the decentralized economy are higher or lower than the socially optimal level, Ssp

and S̃sp. The “passive business stealing”, the “standing on shoulders” and the “ap-

propriability” effects tend to make growth rate under laissez-faire less than optimal,

whereas the “monopoly distortion”, the “active business stealing” and “consumption

dilution” effects tend to make it greater than optimal. These effects act in opposite

directions, the laissez-faire growth rate may be less or more than optimal.

The welfare effect of a subsidy to incumbent and entrant research will be positive

when the economy is in case 1. At the same time in other cases the welfare effect

will be unclear, because the economy either already enlarged with the capital stock,
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k > ks (cases 2,4,6,8) or it is at a point where already too much research, incremental

or radical (cases 3,5, and 7), is being carried out.

The welfare effect of a subsidy to capital accumulation will be positive if the econ-

omy is in case 1: a capital subsidy reduces capital cost and that raises the flow of

profit π(k)L to an innovator. This, in turn, increases the value of innovation thereby

spurring technological progress. A subsidy to capital shifts the surface k towards the

socially optimal level ksp. But when the economy is in the other cases, the welfare

effect of this subsidy is ambiguous: for cases 3, 5, and 7, such a policy measure will

tend to increase the capital stock, however, R&D research, either incremental or rad-

ical, is in the sufficient level; for cases 2, 4, 6, 8 the capital stock is already expanded,

however, the level of research (by incumbents or by entrants) can be increased.

I explore in detail the welfare effect of subsidies in the next section.

Special case: linear a flow rate of innovation by incumbents

As shown above, for a general specification of the technology comparison optimal

growth rate and the growth rate under laissez-fare is ambiguous. However, when a

flow rate of innovation by incumbents is linear, i.e. ζ(S) = ζS, the growth rate under

laissez-fare less than its socially optimal counterpart. This can be shown as follows.

The growth rate of the economy in this special case is given by16

g∗ = ζS∗a(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1), (1.58)

where S∗a ≡
∫ 1
0 S
∗
t (j)qt(j)

Qt
is the average BGP incumbents’ research expenditure.

It can be easily seen that the socially optimal level ksp (the analogous to (1.52))

is given by

(ksp)−γ = ε
(
ζSsp(µ− 1) + S̃spψ(S̃sp)(µ̃− 1)

)
+ δ + ρ, (1.59)

16See the Appendix for a detailed derivation.
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whereas the equilibrium value of k∗ for the decentralized economy (the analogous to

(1.53))

(k∗)−γ(1− γ) = ε
(
ζS∗a(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1)

)
+ δ + ρ. (1.60)

Socially optimal level for incremental innovation Ssp (the analogous to (1.54)) satisfies

1 = (µ− 1)ζ

γ
1−γ (ksp)1−γL− (Ssp + S̃sp)

ρ+ gspε− ζSsp(µ− 1)− S̃spψ(S̃sp)(µ̃− 1)
. (1.61)

Steady-state equilibrium level of an R&D effort of incumbents, S∗ (the analogous to

(1.55)), is given by

1 =
(µ− 1)ζγ(k∗)1−γL

ρ+ g∗ε+ S̃∗ψ(S̃∗)
. (1.62)

Using equations (1.59)-(1.62) I can compare the optimal growth rate, gsp, and the

equilibrium BGP growth rate, g∗.

Proposition 1.3 When a flow rate of innovation by incumbents is linear then the

growth rate under laissez-fare less than the optimal growth rate.

Proof See the Appendix.

1.5 Welfare implications

Welfare in an economy can be expressed in terms of the stationary level of consump-

tion, c:17

W =

∫ ∞
0

e−ρt
(cQtL)1−ε − 1

1− ε
dt =

1

1− ε

[
(cQ0L)1−ε

ρ− g(1− ε)
− 1

ρ

]
. (1.63)

17ct ≡ Ct
QtL

.

33



Let x denote any of the three subsidy rates: the subsidy rates to research, sI , sE,

and a subsidy rate to the holding of capital, βk. The change in steady-state welfare

is a combination of the change in steady state consumption, c, and the steady-state

growth rate, g:

∂W

∂x
∝ (ρ− g(1− ε)) ∂c

∂x
+ c(1− ε)∂g

∂x
. (1.64)

A positive sign of the derivative means that the optimal policy is to increase the

subsidy, whereas a negative sign implies that optimal policy is to reduce it. To

determine the sign, I need to consider the sign of each term in (1.64). As has been

shown in Proposition 1.2, ∂g
∂x

is positive.18 The derivative of consumption with respect

to the subsidy rate is given by:

∂c

∂x
=
∂k

∂x
(k−γ − g)− ∂S

∂x
− ∂S̃

∂x
− ∂g

∂x
k. (1.65)

The effect of subsidies on consumption is ambiguous.19

If steady-state consumption and growth change in the opposite directions, the

value of the parameter ρ may determine the sign of the the welfare derivative: a low

value of ρ reduces the weight of the consumption effect of a subsidy. Due to the

ambiguity of the sign of the derivative of consumption the problem is not analytically

tractable, thus, I appeal to numerical simulation with various empirically acceptable

parameter values.

Table 1.1 reports baseline parameterization. The values of parameters ρ, δ, ε, and

γ have been chosen within the standard ranges used in the literature (see Table 1.1);

L is normalized to one. Parameters ζ and ψ is chosen to target growth g = 2% with

70% coming from incremental innovations and 30% from radical innovations as that

18 ∂g
∂sE

is positive if ζ(S) < ρβ(µ̃−1)
(1−β)(µ−1) .

19By using the implicit function theorem the same way as in Section 1.3, it can be shown that
terms in (1.65) evolves in opposite direction, thus the sign of ∂c

∂x is ambiguous.
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Table 1.1: Baseline parameterization
Symbol Description Value Symbol Description Value
ρ Discount rate 0.01 δ Rate of depreciation 0.025
µ Quality jump (incumbents) 1.2 ε The coefficient of relative risk aversion 2
µ̃ Quality jump (entrants) 1.75 γ Labor’s shares of output 2/3
ζ Poisson coefficient for the flow rate of incremental innovation 0.16 β Incumbent’s R&D curvature 0.5

ψ Poisson coefficient for the flow rate of radical innovation 0.012 β̃ Entrant’s R&D curvature 0.5

corresponds with the empirical evidence: Akcigit et al. (2017) report the entrants’

contribution to growth of around 30%, Bartelsman and Doms (2000) and Akcigit

and Kerr (2018) report 25%, while Lentz and Mortensen (2008) report around 21%.

The size of quality improvements is chosen µ = 1.2 for incumbents and µ̃ = 1.75 for

entrants as that captures the fact that innovation by new firms is radical and satisfies

the assumption about innovation being drastic, which requires µ̃ > 1.7 (see (1.14)).

On the left panel of the Tables 1.2, 1.3 and 1.4, I report the simulation results for

welfare using the baseline parametrization. The right panel of the tables provide the

result with alternative model parameterizations.20

The results obtained reveal that policy instruments, subsidies to incumbents’ and

entrants’ research activity, and subsidy to capital accumulation, may have different

impact on welfare depending on the structural characteristics of the economy. Tables

1.2 and 1.3 show that the relationship between welfare and subsidies to research

activity may be negative (the right panel of Table 1.2 for subsidy to incumbent, the left

panel of Table 1.3 for subsidy to entrants) as well as may be represented as an inverted

U-shaped curve with maximum shifts either left or right (the left panel of Table 1.2

for subsidy to incumbent, the right panel of Table 1.3 for subsidy to entrants). The

latter suggests that increases of the subsidy may initially enhance welfare, but for

higher values of the subsidy rate the welfare change becomes negative. The range

of subsidy rate to capital accumulation is restricted by the condition in Proposition

1.1: ρ + δ − βk > 0. Table 1.4 suggests that the effect this policy instrument is

20I used various parametrizations for the simulations, the results obtained are similar to the ones
reported in the Tables. All parameters have been chosen to be consistent with those in the literature.
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always positive for different sets of parameters. Overall, a subsidy to capital initially

improves welfare but further increases of the subsidy rate reduces welfare.

Table 1.2: Welfare effect of subsidy to incumbents research activity
Parameters: ρ = 0.01, µ = 1.2, µ̃ = 1.75
ζ = 0.16, ψ = 0.012, δ = 0.025, ε = 2

γ = 2/3, β = 0.5, β̃ = 0.5

Parameters: ρ = 0.08, µ = 1.2, µ̃ = 2.5
ζ = 0.08, ψ = 0.0008, δ = 0.025, ε = 2

γ = 0.2, β = 0.5, β̃ = 0.5
subsidy rate, sI ∂W/∂sI subsidy rate, sI ∂W/∂sI

0 0.951 0 -0.011
0.1 0.978 0.1 -0.012
0.2 1.025 0.2 -0.015
0.3 1.053 0.3 -0.020
0.4 1.030 0.4 -0.027
0.5 0.873 0.5 -0.039
0.6 0.315 0.6 -0.063
0.7 -0.116 0.7 -0.080

Table 1.3: Welfare effect of subsidy to entrants research activity
Parameters: ρ = 0.01, µ = 1.2, µ̃ = 1.75
ζ = 0.16, ψ = 0.012, δ = 0.025, ε = 2

γ = 2/3, β = 0.5, β̃ = 0.5

Parameters: ρ = 0.08, µ = 1.2, µ̃ = 2
ζ = 0.16, ψ = 0.012, δ = 0.025, ε = 2

γ = 0.9, β = 0.5, β̃ = 0.5
subsidy rate, sE ∂W/∂sE subsidy rate, sE ∂W/∂sE

0 -0.483 0 0.014
0.1 -0.579 0.1 0.014
0.2 -0.828 0.2 0.016
0.3 -1.242 0.3 0.016
0.4 -1.993 0.4 0.015
0.5 -3.553 0.5 0.008
0.6 -7.670 0.6 -0.019
0.7 -10.715 0.7 -0.039
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Table 1.4: Welfare effect of subsidy to capital
Parameters: ρ = 0.01, µ = 1.2, µ̃ = 1.75
ζ = 0.16, ψ = 0.012, δ = 0.025, ε = 2

γ = 2/3, β = 0.5, β̃ = 0.5

Parameters: ρ = 0.08, µ = 1.2, µ̃ = 2.5
ζ = 0.08, ψ = 0.0008, δ = 0.025, ε = 2

γ = 0.2, β = 0.5, β̃ = 0.5
subsidy rate, βk ∂W/∂βk subsidy rate, βk ∂W/∂βk

0 43.129 0 0.356
0.005 43.212 0.015 0.329
0.01 43.347 0.03 0.280
0.015 43.408 0.045 0.239
0.02 43.373 0.06 0.203
0.025 43.209 0.075 0.171
0.03 42.875 0.09 0.144
0.035 42.660 0.105 0.132

1.6 Conclusion

This paper has developed a tractable general equilibrium growth model that is rich

enough to investigate the growth and welfare implication of various subsidies. I prove

the existence of the equilibrium and characterize its properties.

I find that a research subsidy to incumbents is beneficial for long term growth,

while the effect of a subsidy to entrants research activity on growth depends on the

probability of an incumbent being successful. The low probability of incumbents’

success together with a subsidy encourage entrants to be more active and that even-

tually leads to an increase in economic growth. The effect of a subsidy to capital on

growth is positive which is consistent with the finding in Howitt and Aghion (1998)

and leads to the conclusion that capital accumulation can be as effective a way of

stimulating growth as a subsidy to R&D.

I provide new perspectives to the welfare analysis of innovation by incumbents

and entrants in comparison to Acemoglu and Cao (2015) by pointing out additional

distortionary effects. Furthermore, as result of including capital accumulation, the

model generates the new effect, the “monopoly distortion effect”, that arises because

a monopolist gains from the lower capital cost at the cost of household as supplier of

capital. The “appropriability”, the “passive business stealing” and the “standing on
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shoulders” effects tend to make laissez-faire incremental and radical innovation smaller

than optimal, whereas the “monopoly distortion” effect tends to make it larger than

optimal, and, at the same time, by affecting only research by entrants, the “busi-

ness stealing effect” tends to generate too much radical research in a decentralized

economy.

The welfare analysis demonstrates that policy instruments — subsidies to incum-

bents’ and entrants’ research activity, and a subsidy to capital accumulation — may

have different impact on welfare depending on the structural characteristics of the

economy.

A possible extension of the current work would be a study of the consequences

of collateral constraints on the optimal growth path. My model could be used as

a building block towards a quantitative model of innovation, financial frictions and

endogenous growth. Such a model would be useful to assess the impact of innovation

policy (R&D subsidies, patent policy), tax policy on innovation-led growth in the

presence of financial constraints.
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1.7 Appendix: Proofs and Derivations

Household optimization

The preferences of the representative household:

U(Ct) =

∫ ∞
0

e−ρt
C1−ε
t − 1

1− ε
dt. (1.66)

The household rents physical capital to firms which the household owns. The house-

hold maximizes utility from consumption subject to budget constraints and the law

of motion for capital:

Ȧt = rtAt + wtLt +RtKt − Ct − It − Tt, (1.67)

K̇t = It − (δ − βk)Kt. (1.68)

The household’s maximization problem in the form of the current-value Hamiltonian

is given by

Ht = u(Ct) + λ1t(rtAt + wtLt +RtKt − Ct − It − Tt) + λ2t(It − (δ − βk)Kt),

where λ1t, λ2t are co-state variables, the multipliers associated with the budget con-

straint and the law of motion for capital stock, and u(Ct) =
C1−ε
t −1

1−ε .

The optimality conditions are:

∂Ht

∂Ct
= 0, λ̇1t = ρλ1t −

∂Ht

∂At
, (1.69)

∂Ht

∂It
= 0, λ̇2t = ρλ2t −

∂Ht

∂Kt

. (1.70)
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From (1.69)-(1.70) I get:

u′′(Ct)Ċt
u′(Ct)

=
λ̇1t

λ1t

,
λ̇1t

λ1t

= ρ− rt, (1.71)

λ1t = λ2t,
λ̇2t

λ2t

= ρ−Rt + δ − βk. (1.72)

Finally I obtain Euler equation:

Ċt
Ct

=
rt − ρ
ε

(1.73)

and the cost of capital

Rt = rt + δ − βk. (1.74)

Transversality condition becomes:

lim
t→∞

e−ρtλtAt = lim
t→∞

e−ρtλ0e
−

∫ t
0 (rτ−ρ)dτAt.

Consequently, limt→∞ e
−

∫ t
0 rτdτAt = 0. 21 Similarly, limt→∞ e

−
∫ t
0 rτdτKt = 0.

Derivation of Hamilton-Jacobi-Bellman equation

I have a one-dimensional jump state process {qt, t > 0} which is the solution of

the stochastic differential equation22

dqt
qt

= (µ− 1)dN
(1)
t + (µ̃− 1)dN

(2)
t (1.75)

21At =
∫ 1

0
Vt(j, q)dj.

22Consider a particular intermediate good, i.e. fix j and ignore the index j in notation further.
For theoretical aspects, see Touzi (2013), Øksendal (2003), and Øksendal and Sulem (2007).
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with initial q0 > 0, where {N (1)
t , t > 0} and {N (2)

t , t > 0} are independent time-

homogeneous Poisson processes with intensity ζ(St) and S̃tψ(S̃t) respectively, N
(1)
t is

the number of incremental innovations by incumbents, N
(2)
t is the number of radical

innovations by entrants. qt is the notation for the left limit, qt ≡ lims↑t q(s). The

solution of (1.75) is

qt = q0(µdN
(1)
t + µ̃dN

(2)
t ). (1.76)

Given a subset U of R, denote the set of all measurable control processes valued in

U by U . Let23

f : [0, T )×R× U → R and g : R→ R

be given function, and T ∈ [0,∞), where f is continuous. Define the gain function J

on [0, T ]×R× U by:

J(t, q, u) := E

[ ∫ T

t

e−
∫ s
t r(τ)dτf(s, qs, us)ds+ e−

∫ T
t r(τ)dτg(qT )1T<∞

]
(1.77)

with control process u and {qs, s ≥ t} given by (1.76).

Consider the optimization problem:

V (t, q) := sup
u∈U

J(t, q, u) for (t, q) ∈ S, (1.78)

where S := [0, T )×R+ is interior of the state space. Then according to the dynamic

programming principle the value function V (t, q) satisfies:

V (t, q) = sup
u∈U

Et,q

[ ∫ T

t

e−
∫ s
t r(τ)dτf(s, qs, us)ds+ e−

∫ s
t r(τ)dτV (T, qT )

]
(1.79)

23f is a running reward, g is a terminal reward.

41



with stopping time T .

Introduce the infinitesimal generator Lu associated to the process {qt, t > 0}:

LuV (t, q) := −r(t)V (t, q) + ζ(St)(V (t, µq)− V (t, q)) + S̃tψ(S̃t)(V (t, µ̃q)− V (t, q)).

(1.80)

The Hamiltonian-Jacobi-Bellman equation is the infinitesimal version of the dynamic

programming principle:

∂tV (t, q) + sup
u∈U

(LuV (t, q) + f(t, q, u)) = 0. (1.81)

Applying formula (1.81) to the incumbent’s problem, and using the fact that the

incumbent’s value drops to zero Vt(t, µ̃qt) = 0 when entrants innovate, I obtain 24

r(t)V (t, q)− V̇ (t, q) = max
S(t)≥0


π(k)q(t)L− S(t)(1− sI)q(t)

+ζ(S(t))(V (t, µq(t))− V (t, q(t))

−S̃(t)ψ(S̃(t))V (t, q(t)).

 (1.82)

24Using that f(t, q, u) = π(t)− S(t)(1− sI)q(t) and that the terminal reward satisfies g(qT ) = 0.
V̇ (t, q) = 0: V (t, q) is constant over time along BGP, because q(j) does not change over time —

it is quality supplied by the incumbent, which remains constant while firm is incumbent.
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Proof of Proposition 1.1

The BGP is characterized by the system of equations:

R(k) = r∗ + δ − βk, (1.83)

v =
π(k∗)L− S∗(1− sI)

r∗ + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)
, (1.84)

ζ ′(S∗)(µ− 1)v = (1− sI), (1.85)

µ̃ψ(S̃∗)v ≤ (1− sE) with equality if S̃∗ > 0, (1.86)

r∗ = ρ+ εg∗, (1.87)

g∗ = ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1). (1.88)

Use (1.11) and (1.83) in π(kt) = γk1−γ
t to define the function π̂(r∗ + δ − βk) =

γ(1− γ)
1−γ
γ (r∗ + δ − βk)

γ−1
γ . Inserting this into (1.84), and using the Euler equation

(1.87) to eliminate r, gives the equation that determines the equilibrium value v:

π̂
(
ρ+ εg∗(S∗, S̃∗) + δ − βk

)
L = v ·

(
ρ+ εg∗(S∗, S̃∗) + S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1) + S∗(1− sI)

)
,

(1.89)

where π̂
(
ρ+ εg∗(S∗, S̃∗) + δ− βk

)
is obtained by plugging (1.87) into π̂(r∗+ δ− βk).

Now use the growth equation (1.88) and the definition of the function π̂, to obtain

(
ρ+ ε

(
ζ(S∗(v))(µ− 1) + S̃∗(v)ψ(S̃∗(v))(µ̃− 1)

)
+ δ − βk

)1− 1
γ
ΘL =

v
(
ρ+ (ε− 1)ζ(S∗(v))(µ− 1) + (ε(µ̃− 1) + 1)S̃∗(v)ψ(S̃∗(v)) + S∗(v)(1− sI)

)
,

(1.90)

where Θ ≡ γ(1− γ)
1
γ
−1, S∗(v) is determined by the first-order condition (1.85), and

S̃∗(v) by the entry condition (1.86).
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Using the functional forms for ζ(S) = ζS1−β and ψ(S̃) = ψS̃−β, after substituting

this into (1.85) and (1.86) respectively, the R&D expenditure of incumbents and

entrants can be expressed as S(v) = A
1
β v

1
β , where A = (µ−1)(1−β)ζ

1−sI
and S̃(v) = B

1
β̃ v

1
β̃ ,

with B = ψµ̃
1−sE

.

Substituting these values into the right-hand side of equation (1.90) yields:

F = vρ+ (ε− 1)(µ− 1)ζA
1
β
−1v

1
β + (ε(µ̃− 1) + 1)ψB

1
β̃
−1
v

1
β̃ + A

1
β v

1
β (1− sI),

(1.91)

where the right hand side of (1.90) is denoted by F . It is clear that limv→0 F = 0 and

limv→∞ F =∞.

Let me show that F is strictly increasing in v when ε ≥ β holds.

Taking the derivative of F with respect to v:

dF

dv
= ρ+ (ε− 1)(µ− 1)

1

β
ζA

1
β
−1v

1
β
−1+

(ε(µ̃− 1) + 1)
1

β̃
ψB

1
β̃
−1
v

1
β̃
−1

+
1

β
A

1
β v

1
β
−1(1− sI). (1.92)

dF
dv
> 0 holds if (ε−1)(µ−1) 1

β
ζA

1
β
−1v

1
β
−1+ 1

β
A

1
β v

1
β
−1(1−sI) ≥ 0. It is straightforward

to show that this holds for any ε ≥ β.25

The left hand side (LHS) of (1.90) is decreasing in v: ζ(S(v)) and S̃ψ(S̃) are

strictly increasing in v,

(
ρ+ ε(ζ(S(v))(µ− 1) + (µ̃− 1)S̃(v)ψ(S̃(v)) + δ − βk

)1− 1
γ

is

decreasing function as composition of increasing and decreasing functions. Thus, the

left-hand-side is decreasing in v.

25From (ε − 1)(µ − 1) 1
β ζA

1
β−1v

1
β−1 + 1

βA
1
β v

1
β−1(1 − sI) = 1

β ζA
1
β−1v

1
β−1

(
(ε − 1)(µ − 1)ζA−1 +

(1− sI)
)
≥ 0, it follows that ε ≥ − 1−sI

(µ−1)ζA−1 + 1, which after substituting into it values of A yields

ε ≥ β.
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Taking into account limv→0 ζ(S(v)) = 0 and limv→0 S̃ψ(S̃) = 0, it is sufficient to

have ρ + δ − βk > 0 holds to guarantee of the existence a positive equilibrium value

of v.

Because the left hand side and the right hand side are continuous, then there

exists a unique v > 0 which is a point of intersection.

Given v∗, the equilibrium values of S∗ and S̃∗, the growth rate g∗, and the interest

rate r∗ are uniquely determined by the equations (1.85), (1.86), (1.88) and (1.87)

respectively. The uniqueness of k∗ follows directly from (1.83) and (1.87), k∗ =(
ρ+g∗ε+δ−βk

1−γ

)− 1
γ
.

Finally, let me demonstrate that the transversality condition is satisfied when

ρ > (1− ε)g∗. The transversality condition along a BGP are

lim
t→∞

e−
∫ t
0 r(τ)dτKt = 0,

lim
t→∞

e−
∫ t
0 r(τ)dτ

∫ 1

0

Vt(j)dj = lim
t→∞

e−
∫ t
0 r(τ)dτvQt = 0,

that implies that r > g.26 Because r = ρ + εg, the condition r > g is satisfied if

ρ > g(1− ε) which holds if ε ≥ 1.

Hence, the BGP with linear value function of incumbent exists and is uniquely

determined.

26Using that along BGP rt = r, Q̇t
Qt

= g.

45



Proof of Proposition 1.2

I derive the comparative statics results by using the implicit function theorem. The

equilibrium values of S∗, S̃∗, g∗, and v∗, are determined by the system of equations:

H1 =
1− sI

ζ ′(S∗)(µ− 1)
− v∗ = 0, (1.93)

H2 =
1− sE
µ̃ψ(S̃∗)

− v∗ = 0, (1.94)

H3 = ζ(S∗)(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1)− g∗ = 0, (1.95)

H4 =
(ρ+ g∗ε+ δ − βk)1− 1

γ Θ− S∗(1− sI)
ρ+ g∗ε+ S̃∗ψ(S̃∗)− ζ(S∗)(µ− 1)

− v∗ = 0. (1.96)

where Θ ≡ γ(1− γ)
1
γ
−1. The Jacobian matrix of the system is given by27

J =



∂H1

∂S
∂H1

∂S̃
∂H1

∂g
∂H1

∂v

∂H2

∂S
∂H2

∂S̃
∂H2

∂g
∂H2

∂v

∂H3

∂S
∂H3

∂S̃
∂H3

∂g
∂H3

∂v

∂H4

∂S
∂H4

∂S̃
∂H4

∂g
∂H4

∂v


=



h11 0 0 −1

0 h22 0 −1

h31 h32 −1 0

h41 h42 h43 −1


, (1.97)

where h11 = − (1−sI)ζ′′(S)
(µ−1)(ζ′(S))2

> 0; h22 = − (1−sE)ψ′(S̃)
µ̃(ψ(S))2

> 0; h31 = (µ − 1)ζ ′(S) > 0;

h32 = (S̃ψ(S̃))′(µ̃−1) > 0. For ease of notation denote the first term in the numerator

of equation (1.96) by Γ1 ≡ (ρ+ g∗ε+ δ − βk)1− 1
γ Θ− S∗(1− sI) and the denominator

by Γ2 ≡ ρ + g∗ε + S̃∗ψ(S̃∗) − ζ(S∗)(µ − 1), then h41 = −(1−sI)Γ2+Γ1ζ′(S)(µ−1)

Γ2
2

; h42 =

−(S̃ψ(S̃))′Γ1

Γ2
2

; h43 =
(ρ+g∗ε+δ−βk)

− 1
γ (1− 1

γ
)ΘεΓ2−Γ1ε

Γ2
2

.

Let me determine the sign of these last three elements of the matrix. First,

consider the sign of Γ2. From the transversality condition ρ + gε > g = ζ(S)(µ −

1) + S̃ψ(S̃)(µ̃ − 1) > ζ(S)(µ − 1) − S̃ψ(S̃), so Γ2 > 0. Using (1.96), the fact that

equilibrium value of v∗ is positive and Γ2 > 0, I can see that Γ1 > 0. These facts

yield h42 < 0 and h43 < 0. Using (1.93) and (1.96) h41 = −1−sI
Γ2

+ Γ1ζ′(S)(µ−1)

Γ2
2

=

27Hereafter, to ease the notation I drop the “*”.
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−vζ′(S)(µ−1)
Γ2

+ vζ′(S)(µ−1)
Γ2

= 0. Using these results, a straightforward calculation shows

that the determinant of J is positive, ∆ > 0.

Let me now explore the comparative-statics relatitionships between the R&D sub-

sidy rate to incumbent, sI , and incumbents’ and entrants’ research activity, and

growth.

The effect of subsidies to incumbents on incumbents’ research expenditure can be

derived by using the implicit function theorem:

dS

dsI
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂sI

∂H1

∂S̃
∂H1

∂g
∂H1

∂v

∂H2

∂sI

∂H2

∂S̃
∂H2

∂g
∂H2

∂v

∂H3

∂sI

∂H3

∂S̃
∂H3

∂g
∂H3

∂v

∂H4

∂sI

∂H4

∂S̃
∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
(µ−1)ζ′(S)

0 0 −1

0 h22 0 −1

0 h32 −1 0

S
Γ2

h42 h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.98)

It is straightforward to show that the determinant in (1.98) is negative, and thus,

dS
dsI

> 0.

The effect on an entrant’s R&D of changes in subsidies to incumbents is given by

the following expression:

dS̃

dsI
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂sI

∂H1

∂g
∂H1

∂v

∂H2

∂S
∂H2

∂sI

∂H2

∂g
∂H2

∂v

∂H3

∂S
∂H3

∂sI

∂H3

∂g
∂H3

∂v

∂H4

∂S
∂H4

∂sI

∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 − 1
(µ−1)ζ′(S)

0 −1

0 0 0 −1

h31 0 −1 0

0 S
Γ2

h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.99)

The determinant in (1.99) is

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 − 1
(µ−1)ζ′(S)

0 −1

0 0 0 −1

h31 0 −1 0

0 S
Γ2

h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −h11

S

Γ2

+ h31h43

(
− 1

(µ− 1)ζ ′(S)

)
. (1.100)
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Substituting the value of h11, h31 and h43 into (1.100), I get −h11
S
Γ2

+ h31h43

(
−

1
(µ−1)ζ′(S)

)
= − (1−sI)ζ′′(S)

(µ−1)(ζ′(S))2
S
Γ2
− (ρ+g∗ε+δ−βk)

− 1
γ (1− 1

γ
)ΘεΓ2−Γ1ε

Γ2
2

= Γ1

Γ2
2

(
− ζ′′(S)S

ζ′(S)
− ε
)
−

(ρ+g∗ε+δ−βk)
− 1
γ (1− 1

γ
)ΘΓ2

Γ2
> 0,28 since ζ ′′(S) < 0 and 1 − 1

γ
< 0. Thus, the determi-

nant in (1.99) is positive, and so dS̃
dsI

< 0.

To show that effect on growth of sI is positive I consider:

dg

dsI
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂S̃
∂H1

∂sI

∂H1

∂v

∂H2

∂S
∂H2

∂S̃
∂H2

∂sI

∂H2

∂v

∂H3

∂S
∂H3

∂S̃
∂H3

∂sI

∂H3

∂v

∂H4

∂S
∂H4

∂S̃
∂H4

∂sI

∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 − 1
(µ−1)ζ′(S)

−1

0 h22 0 −1

h31 h32 0 0

0 h42
S
Γ2

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.101)

It is easy to see that the determinant in (1.101) is negative, so dg
dsI

> 0.

Next, consider the effect of subsidies to entrants. The relationship between sE

and S is defined by

dS

dsE
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂sE

∂H1

∂S̃
∂H1

∂g
∂H1

∂v

∂H2

∂sE

∂H2

∂S̃
∂H2

∂g
∂H2

∂v

∂H3

∂sE

∂H3

∂S̃
∂H3

∂g
∂H3

∂v

∂H4

∂sE

∂H4

∂S̃
∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −1

− 1
µ̃ψ(S̃)

h22 0 −1

0 h32 −1 0

0 h42 h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.102)

dS
dsE

< 0 follows from the fact that the determinant in (1.102) is positive.

The equilibrium response of R&D expenditure is given by

dS̃

dsE
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂sE

∂H1

∂g
∂H1

∂v

∂H2

∂S
∂H2

∂sE

∂H2

∂g
∂H2

∂v

∂H3

∂S
∂H3

∂sE

∂H3

∂g
∂H3

∂v

∂H4

∂S
∂H4

∂sE

∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 0 −1

0 − 1
µ̃ψ(S̃)

0 −1

h31 0 −1 0

0 0 h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.103)

28Here I use 1−sI
(µ−1)ζ′(S) = Γ1

Γ2
which follows from (1.93) and (1.96).
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Straightforward calculation yields that determinant in (1.103) is negative, thus, dS̃
dsE

>

0.

Without imposing additional restrictions, the effect on growth of the subsidy rate

sE is ambiguous. The derivative of g with respect to sE is given by:

dg

dsE
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂S̃
∂H1

∂sE

∂H1

∂v

∂H2

∂S
∂H2

∂S̃
∂H2

∂sE

∂H2

∂v

∂H3

∂S
∂H3

∂S̃
∂H3

∂sE

∂H3

∂v

∂H4

∂S
∂H4

∂S̃
∂H4

∂sE

∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 0 −1

0 h22 − 1
µ̃ψ(S̃)

−1

h31 h32 0 0

0 h42 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.104)

The determinant in (1.104) is

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 0 −1

0 h22 − 1
µ̃ψ(S̃)

−1

h31 h32 0 0

0 h42 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

µ̃ψ(S̃)

∣∣∣∣∣∣∣∣∣∣
h11 0 −1

h31 h32 0

0 h42 −1

∣∣∣∣∣∣∣∣∣∣
=

1

µ̃ψ(S̃)

(
− h11h32 − h31h42

)
.

(1.105)

The sign of this determinant and, as a result, the sign of dg
dsE

, is determined by the

sign of −h11h32−h31h42. If −h11h32−h31h42 < 0 then the BGP growth rate depends

positively on sE. Some algebra yields:29

− h11h32 − h31h42 = (S̃ψ(S̃))′
Γ1

Γ2
2ζ
′(S)

[
ζ ′′(S)(µ̃− 1)Γ2 + (ζ ′(S))2(µ− 1)

]
. (1.106)

Thus, the sign of (1.106) depends on the sign of the term in brackets and has to

be negative to get a positive relationship between the growth rate and the entrants’

subsidy rate. Using the functional form ζ(S) = ζS1−β, it is straightforward to show

that ζ ′′(S) = −βζ ′(S)/S and ζ ′(S) = (1−β)ζ(S)/S. Substituting this into ζ ′′(S)(µ̃−

1)Γ2 + (ζ ′(S))2(µ − 1) < 0 allows me to reformulate the condition as − ζ′(S)
S

(
β(µ̃ −

29Notice that using (1.93) and (1.96) yields 1−sI
(µ−1)ζ′(S) = Γ1

Γ2
.
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1)Γ2 − ζ(S)(µ − 1)(1 − β)
)
< 0. Taking into account that ζ ′(S) > 0, this condition

can be rewritten as

β(µ̃− 1)Γ2 − ζ(S)(µ− 1)(1− β) > 0. (1.107)

Noticing that Γ2 > ρ− ζ(S)(µ− 1), I get

β(µ̃− 1)Γ2 − ζ(S)(µ− 1)(1− β) > β(µ̃− 1)
(
ρ− ζ(S)(µ− 1)

)
− ζ(S)(µ− 1)(1− β).

(1.108)

The last inequality implies that (1.106) holds if ζ(S) < ρβ(µ̃−1)
(β(µ̃−2)+1))(µ−1)

.

Finally, let me demonstrate that S, S̃, and g are increasing in the subsidy rate to

capital βk:

dS

dβk
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂βk

∂H1

∂S̃
∂H1

∂g
∂H1

∂v

∂H2

∂βk

∂H2

∂S̃
∂H2

∂g
∂H2

∂v

∂H3

∂βk

∂H3

∂S̃
∂H3

∂g
∂H3

∂v

∂H4

∂βk

∂H4

∂S̃
∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −1

0 h22 0 −1

0 h32 −1 0

− (ρ+gε+δ−βk)
− 1
γ (1− 1

γ
)θ

Γ2
h42 h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(1.109)

dS̃

dβk
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂βk

∂H1

∂g
∂H1

∂v

∂H2

∂S
∂H2

∂βk

∂H2

∂g
∂H2

∂v

∂H3

∂S
∂H3

∂βk

∂H3

∂g
∂H3

∂v

∂H4

∂S
∂H4

∂βk

∂H4

∂g
∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 0 −1

0 0 0 −1

h31 0 −1 0

0 − (ρ+gε+δ−βk)
− 1
γ (1− 1

γ
)θ

Γ2
h43 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(1.110)
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dg

dβk
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂H1

∂S
∂H1

∂S̃
∂H1

∂βk

∂H1

∂v

∂H2

∂S
∂H2

∂S̃
∂H2

∂βk

∂H2

∂v

∂H3

∂S
∂H3

∂S̃
∂H3

∂βk

∂H3

∂v

∂H4

∂S
∂H4

∂S̃
∂H4

∂βk

∂H4

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

h11 0 0 −1

0 h22 0 −1

h31 h32 0 0

0 h42 −
(ρ+gε+δ−βk)

− 1
γ (1− 1

γ
)θ

Γ2
−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(1.111)

Straightforward calculations yield dS
dβk

> 0, dS̃
dβk

> 0 and dg
dβk

> 0.

Derivation of the social optimum

The social planner’s problem reads as follows

maxCt,St,S̃t

∫ ∞
0

e−ρt
C1−ε
t − 1

1− ε
dt (1.112)

subject to:30

K̇t = Yt − δKt − Ct − Ŝt =
1

1− γ
K1−γ
t Qγ

tL
γ − δKt − Ct − (St + S̃t)Qt, (1.113)

Q̇t =
(
ζ(St)(µ− 1) + S̃tψ(S̃t)(µ̃− 1)

)
Qt. (1.114)

30At any t, the social planner ensures an efficient production. This requires, as in laissez-faire case,
that xt(j) = xt, i.e all sectors produce the same quantuty of goods. That implies that the condition
for equilibrium on the capital market xt = ktL = Kt

Qt
and production function can be written as Yt =

1
1−γ

∫ 1

0
qt(j)F (xt(j), L)dj = 1

1−γF (Kt, QtL), where for Cobb-Douglas case Yt = 1
1−γK

1−γ
t Qγt L

γ . By

plugging the equation for capital accumulation (1.49) into the market clearing equation for the final
good, (1.48), I get (1.113).
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The current-value Hamiltonian for this problem is

H(Ct, St, S̃t, Kt, Qt, η1t, η2t) =
C1−ε
t − 1

1− ε

+ η1t

( 1

1− γ
K1−γ
t Qγ

tL
γ − δKt − Ct − (St + S̃t)Qt

)
+ η2t

(
ζ(St)(µ− 1) + S̃tψ(S̃t)(µ̃− 1)

)
Qt. (1.115)

The necessary first-order conditions are

∂Ht

∂Ct
= C−εt − η1t = 0, (1.116)

η̇1t = −∂Ht

∂Kt

+ ρη1t = −η1t

(
K−γt Qγ

tL
γ − δ

)
+ ρη1t, (1.117)

∂Ht

∂St
= −η1tQt + η2t(µ− 1)ζ ′(St)Qt = 0, (1.118)

∂Ht

∂S̃t
= −η1tQt + η2t(µ̃− 1)(ψ(S̃t) + S̃tψ

′(S̃t))Qt = 0, (1.119)

η̇2t = −∂Ht

∂Qt

+ ρη2t

= −η1t

( γ

1− γ
K1−γ
t Qγ−1

t Lγ − (St + S̃t)
)
− η2t

(
ζ(St)(µ− 1) + S̃tψ(S̃t)

)
+ ρη2t.

(1.120)

Notice that in the social planner’s problem the growth rate is g = ζ(S)(µ − 1) +

S̃ψ(S̃)(µ̃ − 1), which is the same expression as in the decentralized economy. It

follows from this and (1.116) that

η̇1t

η1t

= −εĊt
Ct

= −ε
(
ζ(S)(µ− 1) + S̃ψ(S̃)(µ̃− 1)

)
. (1.121)

I can rewrite (1.117) as

η̇1t

η1t

= −K−γt Qγ
tL

γ + δ + ρ. (1.122)
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Using the first expression for η̇1t
η1t

from (1.121) and F (kt, 1) = k1−γ
t , I have that

Ċt
Ct

=
K−γt Qγ

tL
γ − δ − ρ
ε

=
k−γt − δ − ρ

ε
=

1
1−γFk(kt, 1)− δ − ρ

ε
. (1.123)

The expression for Ċt
Ct

from (1.121) gives the equation for the socially optimal level of

k:

1

1− γ
Fk(k, 1) = ε

(
ζ(S)(µ− 1) + S̃ψ(S̃)(µ̃− 1)

)
+ δ + ρ. (1.124)

From (1.118) and (1.119) it follows that:31

η1t

η2t

= (µ− 1)ζ ′(St),
η1t

η2t

= (µ̃− 1)(ψ(S̃t) + S̃tψ
′(S̃t)),

˙η1t

η1t

=
˙η2t

η2t

. (1.125)

Combining first two equation from (1.125), I get the condition that balances innova-

tions by incumbents and by entrants for the social planner:

(µ− 1)ζ ′(St) = (µ̃− 1)(ψ(S̃t) + S̃tψ
′(S̃t)). (1.126)

Dividing (1.120) by η2t and substituting ˙η1t
η1t

= ˙η2t
η2t

= −εg yields

ρ− η1t

η2t

( γ

1− γ
K1−γ
t Qγ−1

t Lγ − (St + S̃t)
)
−
(
ζ(St)(µ− 1) + S̃tψ(S̃t)(µ̃− 1)

)
= −εg.

(1.127)

Noticing that γ
1−γK

1−γ
t Qγ−1

t Lγ = 1
1−γ

(
F (kt, 1) − Fk(kt, 1)kt

)
L,32 and substituting

for η1t
η2t

from the first equation in (1.125), determines the socially optimal level for

31The last equation follows from ln η2t + ln(µ− 1)ζ ′(St) = ln η1t, or alternatively, ln η2t + ln(µ̃−
1)(ψ(S̃t) + S̃tψ

′(S̃t)) = ln η1t.
32It follows from γ

1−γK
1−γ
t Qγ−1

t Lγ = 1
1−γFQL(K,OL) = 1

1−γ
(
F (kt, 1)− Fk(kt, 1)kt

)
L.
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incremental research S:

1 = (µ− 1)ζ ′(S)

1
1−γ

(
F (k, 1)− Fk(k, 1)kt

)
L− (S + S̃)

ρ+ gε− ζ(S)(µ− 1)− S̃ψ(S̃)(µ̃− 1)
. (1.128)

Proceeding in the same way, but now using the second equation in (1.125) instead of

the first, determines the socially optimal level for radical research S̃:

1 = (µ̃− 1)
(
ψ(S̃) + S̃ψ′(S̃)

) 1
1−γ

(
F (k, 1)− Fk(k, 1)kt

)
L− (S + S̃)

ρ+ gε− ζ(S)(µ− 1)− S̃ψ(S̃)(µ̃− 1)
. (1.129)

Derivation of the laissez-faire solution and the social optimum for linear

ζ(·)

In linear case, from HJB equation (1.17) the equilibrium condition that satisfies

the optimality and market clearing is given by33

ζ(Vt(j, µq)− Vt(j, q)) ≤ qt(j),

ζ(Vt(j, µq)− Vt(j, q)) = qt(j) if St(j) > 0. (1.130)

By appealing to symmetry, and dropping the index j,34 the equlibrium value function

satisfies

ζ(V (µq)− V (q)) = q, (1.131)

33Recall that in Section 1.4 I consider the case with no subsidies.
34Using that q(j) does not change over time — it is quality supplied by the incumbent, which

remains constant while firm is incumbent.
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so than value function has to be linear in q, i.e. V = vq. Then (1.131) can be

rewritten as

v =
1

ζ(µ− 1)
. (1.132)

The entry condition for entrants is the same as for general case (see (1.19)).35 Using

linearity of value function and (1.132) gives36

S̃t(j) = S̃ = ψ−1
(ζ(µ− 1)

µ̃

)
. (1.133)

Along the BGP HJB, (1.17), implies that

v =
π(k∗)L

r∗ + S̃∗ψ(S̃∗)
. (1.134)

The analogous to the law of motion of Qt (1.37) for linear case is given by

gQ =
Q̇t

Qt

= ζSat (µ− 1) + S̃tψ(S̃t)(µ̃− 1), (1.135)

where Sat ≡
∫ 1
0 St(j)qt(j)

Qt
is the average incumbents’ research expenditure at time t. Let

me show that the growth rate of the economy is gQ.

It can be shown that gY = gk = gQ = gC = gŜ,37 where the total expenditure on

R&D is given by

Ŝt =

∫ 1

0

St(j) + S̃t(j))qt(j)dj =

∫ 1

0

St(j)qt(j)dj + S̃Qt. (1.136)

35Using linearity of the value function, the entry condition (1.19) can be rewritten as ψ(St(j)) =
1
µ̃v .

36Note that for entrants, symmetry is a property of the equilibrium, not an assumption.
37The steps of proof is the same as for general case (see Section 1.2.4).
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Rewriting and rearranging (1.136) yields

∫ 1

0
St(j)qt(j)dj

Qt

=
Ŝt
Qt

− S̃, (1.137)

which shows that
∫ 1
0 St(j)qt(j)dj

Qt
is constant along BGP. Therefore, the aggregate incum-

bents research expenditures
∫ 1

0
St(j)qt(j)dj are proportional to Qt. Thus, the BGP

growth rate of the economy is given by

g∗ = ζS∗a(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1), (1.138)

where S∗a ≡
∫ 1
0 S
∗
t (j)qt(j)

Qt
is the average BGP incumbents’ research expenditure.

Let me show that there exist a unique equilibrium with growth g∗, (1.138). By

(1.133) S̃∗ is uniquely determined and is strictly positive. Combining (1.132) and

(1.134) gives the BGP interest rate

r∗ = ζ(µ− 1)γk∗1−γL− S̃∗ψ(S̃∗). (1.139)

This equation, together with (1.33) yields:

k∗−γ(1− γ) = ζ(µ− 1)γk∗1−γL− S̃∗ψ(S̃∗) + δ − βk. (1.140)

The left hand side (LHS) of (1.140) is decreasing in k∗, and limk→0 LHS = ∞,

limk→∞ LHS = 0, while the right hand side in increasing in k∗, and limk→0RHS =

−S̃∗ψ(S̃∗) + δ − βk, limk→0RHS = ∞. Thus, there exist a unique k that solves

(1.140). From Euler equation (1.20) and equation (1.139) growth rate can be also

expressed as

g∗ =
ζ(µ− 1)γk∗1−γL− S̃∗ψ(S̃∗)− ρ

ε
. (1.141)
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Using (1.138) and (1.141), I have that the average BGP incumbents’ expenditure

S∗a =
ζ(µ− 1)γk∗1−γL− S̃∗ψ(S̃∗)(ε(µ− 1) + 1)− ρ

εζ(µ− 1)
. (1.142)

S∗a is strictly positive if38

k∗1−γ >
S̃∗ψ(S̃∗)(ε(µ− 1) + 1) + ρ

ζ(µ− 1)γL
, (1.143)

Analogous to the case of a general specification of the technology, the transversality

condition is satisfied if ρ > g(1 − ε), which holds if ε ≥ 1. There to be positive

aggregate growth follows from (1.138) and strictly positivity of Sa∗ and S̃∗.

Substituting ζ(S) = ζS into (1.52)-(1.55) and using (1.138) and (1.134) for the

case of decentralized economy, (1.52)-(1.55) can be rewritten as follows. The socially

optimal level ksp (the analogous to (1.52)) is given by

(ksp)−γ = ε
(
ζSsp(µ− 1) + S̃spψ(S̃sp)(µ̃− 1)

)
+ δ + ρ, (1.144)

whereas the equilibrium value of k∗ for the decentralized economy (the analogous to

(1.53))

(k∗)−γ(1− γ) = ε
(
ζS∗a(µ− 1) + S̃∗ψ(S̃∗)(µ̃− 1)

)
+ δ + ρ. (1.145)

Socially optimal level for incremental innovation Ssp (the analogous to (1.54)) satisfies

1 = (µ− 1)ζ

γ
1−γ (ksp)1−γL− (Ssp + S̃sp)

ρ+ gspε− ζSsp(µ− 1)− S̃spψ(S̃sp)(µ̃− 1)
. (1.146)

38Note that assumption is expressed in terms of k which is an endogenous variable. However, it
is easy to find sets of parameters for which the assumption is satisfied. Note also that from (1.133)
S̃∗ is function of parameters.
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Combining (1.132) and (1.134), using Euler equation (1.20) and π(k∗) = γ(k∗)1−γ

yields steady-state equilibrium level of an R&D effort of incumbents, S∗ (the analo-

gous to (1.55))

1 =
(µ− 1)ζγ(k∗)1−γL

ρ+ g∗ε+ S̃∗ψ(S̃∗)
. (1.147)

Proof of Proposition 1.3

In liner case, the condition that balanced innovations by incumbents and entrants

for the social planner becomes (the analogous (1.126))

(µ− 1)ζ = (µ̃− 1)(ψ(S̃sp) + S̃spψ′(S̃sp)), (1.148)

whereas this condition for case of decentralized economy is39

(µ− 1)ζ = µ̃ψ(S̃). (1.149)

Noticing that S̃spψ′(S̃sp) = β̃ψ(S̃sp),40 (1.148) can be rewritten as

(µ− 1)ζ = (µ̃− 1)(1− β̃)ψ(S̃sp). (1.150)

Combining (1.149) and (1.150), I obtain

ψ(S̃sp) >
(µ− 1)ζ

µ̃
= ψ(S̃), (1.151)

39This equation is obtained by combining (1.132) and the entry condition.
40Recall that the functional form for ψ(S̃) = ψS̃β̃ with β̃ ∈ (0, 1)
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which implies S̃sp < S̃, since ψ(S̃) is decreasing in S̃. Rearranging (1.146) and

plugging (1.150) into it yields

gsp =
(µ− 1)ζ γ

1−γ (ksp)1−γL+ β̃S̃spψ(S̃sp)(µ̃− 1)− ρ
ε

. (1.152)

By rearranging (1.147) I get

g∗ =
(µ− 1)ζγ(k∗)1−γL− S̃∗ψ(S̃∗)− ρ

ε
. (1.153)

Substituting (1.144) and (1.145) into (1.152) and (1.153) respectively and rearranging

it gives

f1 ≡ gspε− (µ− 1)ζ
γ

1− γ
(gspε+ δ + ρ)1− 1

γL− β̃S̃spψ(S̃sp)(µ̃− 1) + ρ = 0,

(1.154)

f2 ≡ g∗ε− (µ− 1)ζ
γ

1− γ
(1− γ)

1
γ (g∗ε+ δ + ρ)1− 1

γL+ S̃∗ψ(S̃∗) + ρ = 0. (1.155)

Notice that f1 is strictly increasing in gsp and concave, goes to −∞ as gsp = 0, and

goes to +∞ as gsp goes to +∞. Function f2 behaves the same way with regard g∗.41

So that, function f1 (and f2) crosses the horizontal axis form below and this is only

one crossing point. Therefore, for any ḡ < gsp, f1(ḡ) < f1(gsp), so that g∗ < gsp as

long as f1(g∗) < f1(gsp) = 0.

41To see this, note that function x1− 1
γ dominates the linear function x and any constant when

x → 0, while the linear function grows faster than x1− 1
γ and any constant for x → ∞. From

(1.150) and (1.133) S̃sp and S̃ are functions of parameters, particularly, S̃sp =
(

(µ̃−1)(1−β̃)ψ
(µ−1)ζ

) 1
β̃

and

S̃ =
(

µ̃ψ
(µ−1)ζ

) 1
β̃

.
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Rearranging (1.155) and noticing that (1− γ)
1
γ < 1 gives

− S̃∗ψ(S̃∗)− ρ = g∗ε− (µ− 1)ζ
γ

1− γ
(1− γ)

1
γ (g∗ε+ δ + ρ)1− 1

γL >

g∗ε− (µ− 1)ζ
γ

1− γ
(g∗ε+ δ + ρ)1− 1

γL. (1.156)

Using obtained inequality I get

f1(g∗) = g∗ε− (µ− 1)ζ
γ

1− γ
(g∗ε+ δ + ρ)1− 1

γL− β̃S̃∗ψ(S̃∗)(µ̃− 1) + ρ <

− S̃∗ψ(S̃∗)− ρ− β̃S̃∗ψ(S̃∗)(µ̃− 1) + ρ = −(1 + β̃(µ̃− 1))S̃∗ψ(S̃∗) < 0. (1.157)

So that f1(g∗) < f1(gsp) and, consequently, g∗ < gsp.

60



Chapter 2

Patents, Growth and Capital in an

OLG framework

2.1 Introduction

It is widely believed that stronger patent protection should promote innovation, and as

a result, economic growth. However, some empirical studies (e.g., Qian (2007), Lerner

(2009))1 indicate the possibilities of a nonmonotonic relationship between patent pro-

tection and growth (IPR and innovation). The present paper studies how strength-

ening patent protection influences economic growth in a Schumpeterian endogenous

growth model with capital accumulation. In contrast to the previous literature, which

mostly considers patent policy in infinite-lifetimes economy, this paper investigates

the implications of patent policy in an overlapping generations (OLG) framework

that allows to analyse how heterogeneity in patent ownership across generations can

change the implication of patent policy. In this study I consider the effects of the

duration of patents and patent breadth protection on growth and innovation. By

concentrating on two extreme cases of patent length, the one-period and the infinite

1Using panel data, Aghion et al. (2005) find evidence of an inverted-U relationship between
competition and innovation. Weakening patent protection in current model implies high competition.
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patent life systems, I establish that a short patent duration enhances innovation. This

can be explained as follows. Under one-period patent life, investment of the young

is allocated to physical capital and research, whereas under infinite patent length

protection, the young agent allocates their investment in physical capital, research

and purchasing of patents from the older generation, thereby reducing the amount of

investment in research. R&D expenditures spurs growth, thus, the growth rate with

one-period protection is higher than that under infinite patent life.

Analysis of the implications of patent breadth protection reveals that loosening

patent breadth affects growth in two opposing directions. Incomplete breadth reduces

the price of patented intermediate goods, which leads to increased demand for the

intermediate product, and, as a result, to increasing output. In its turn, this stim-

ulates aggregate investment, including investment in R&D, which promotes growth.

On the other hand, an increase in the quantity of the intermediate product leads to

reallocation of investment towards physical capital by reducing research investment,

and, as a result, reduces growth rate.

My paper relates to the literature on optimal patent protection. Starting with

Nordhaus (1969, 1972) and Scherer (1972), works that study optimal patent length

in a static partial equilibrium models, many researchers address their work to the

different implications of patent policy (Goh and Olivier (2002), Iwaisako and Fu-

tagami (2013), Chu et al. (2016), etc.). However, only a few papers study the growth

implications of patents in the OLG framework.

Chou and Shy (1993) construct an OLG endogenous growth model of variety

expansion (with no physical capital) and show the existence of “crowding-out effect”

for long period patent protection2 that appears when a young agent purchases patents

from the old agent rather than invest in new innovation. Specifically, they reveal

that investment in R&D with one-period patent life is higher than under infinite

2Chou and Shy define the crowding-out effect as a situation where “part (or all) of the savings is
allocated to purchasing existing monopoly firms rather than the construction of new firms”.
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patent life, that is, a short patent duration stimulates innovation. Sorek (2011)

explores patent policy and endogenous growth for a quality-ladder OLG economy.

His model uses the Grossman and Helpman (1991b) model of vertical innovation

without physical capital with intermediate goods produced by labor. The main focus

of the paper is on the qualitative effect of the value of the inter-temporal elasticity of

substitution (IES). He shows that the effect of loosening patent breadth protection

on growth and research depends on the length of the patent and the IES, specifically,

weakening patent protection raises R&D investment and growth for IES less than one

and prevents R&D investment and growth for IES exceeding one. In the logarithmic

utility function case (IES equal to one) lagging breadth protection has no effect on

investment in research and therefore a growth. By studying the effect of patent

length he reveals that, depending on the IES, R&D investment and growth can be

either higher or lower under one-period patent length than under infinite patent life.

Diwakar et al. (2019) study the implications of patent policy for welfare and growth by

constructing a variety expansion model with capital accumulation in an overlapping

generations economy. Their paper establishes that growth is higher under incomplete

patent protection. Additionally, their research demonstrates that shortening patent

length is more effective than loosening patent breadth in spurring growth.

This paper contributes to the literature on patent policy and economic growth by

investigating the implication of patent policy in a quality-ladder OLG economy with

physical capital. To the best of my knowledge only Sorek (2011) provides such an

analysis for an OLG economy with Schumpeterian structure with creative destruction;

but unlike his study, I consider both quality improvements and capital accumulation

that offers new insights in the analysis of the effects of imperfect patent protection

on growth and innovation.

The paper is organized as follows. Section 2.2 describes the model, defines an

equilibrium and proves existence and uniqueness for both the one-period and the in-
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finite patent life cases, and investigates the effects of patent life regime on growth.

Section 2.3 develops similar results with a focus on the protection granted by patent

breadth and establishes mechanisms through which loosening breadth protection af-

fects growth. Section 2.4 provides final remarks, while the Appendix contains the

proofs.

2.2 The Model

I develop an overlapping generations model with R&D-based Schumpeterian growth

as in Aghion and Howitt (2007). Time is discrete, starts at 0, and extends infinitely

into the future. Each generation consists of L new individual agents who live for two

periods. For simplicity I assume that there is no population growth, Lt = L = 1 for

all t. There are two production sectors: the final good sector and the intermediate

sector. Intermediate producers is patent-holding firms that produce and sell the

differentiated good. I consider two instruments in influencing the degree of patent

protection: patent duration and patent breadth. In Section 2.2 I focus on patent

length that represents how long patentee can exclusively produce and sell the good.

In Section 2.3 I introduce policy variable η that representing of breadth of patent and

explore the effect of both patent length and patent breadth on growth, innovation

and welfare.

2.2.1 Production sectors

Final goods producer

The final good is storable, in the form of capital, and the intermediate products are

produced with capital. The final good is produced competitively according to the
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following production function:

Yt =
1

1− γ

(∫ 1

0

qt(j)xt(j)
1−γdj

)
Lγt , (2.1)

where qt(j) is the quality and xt(j) is the amount of intermediate good j ∈ [0, 1],

γ ∈ (0, 1). The labor supply L of the entire economy is used in production of the

final good, labor is supplied inelastically, and I set L = 1. The price of the final good

is normalized to 1.

Profit maximization by the final good producer implies that demand for the in-

termediate goods of the highest available quality is

xt(j) = pt(j)
− 1
γ qt(j)

1
γ , (2.2)

and the wage rate at time t is

wt =
γ

1− γ

(∫ 1

0

qt(j)xt(j)
1−γdj

)
. (2.3)

Intermediate goods production and innovation

The optimization problem of an intermediate good producer is solved by backward

induction: first, I derive the optimal price for a good, assuming that it has already

been invented, then, I determine the optimal research expenditure.

Pricing, profit and production Each intermediate product is produced ac-

cording the production function:

xt(j, q) = Kt(j)/qt(j), (2.4)
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where Kt(j) is the amount of capital used as input. The division by qt(j) in (2.4)

reflects that successive blueprints are produced by increasingly capital intensive tech-

niques.

Each intermediate good producer is a monopolist in her sector. Her cost is

RtKt(j) = Rtqt(j)xt(j), (2.5)

where Rt is the rental rate of capital.

The monopolist takes the demand for intermediate good xt(j) as given and max-

imizes her profit

πt(j) = max
pt(j)

(pt(j)−Rtqt(j))xt(j), (2.6)

subject to demand function (2.2). Differentiate this equation to obtain
∂πt
∂pt

= xt(j)+(
pt(j)−Rtqt(j)

)∂xt
∂pt

= 0, so that pt(j) =
−xt

∂xt/∂pt
+Rtqt(j).

That yields the monopoly price:3

pt(j) =
Rtqt(j)

1− γ
. (2.7)

That implies the equilibrium quantity of each intermediate product is

xt(j) ≡ xt =

(
1− γ
Rt

) 1
γ

. (2.8)

3I assume that firm that create a new type of differentiated good can obtain a patent that allows
to produce and sell good monopolistically.

66



The supply for capital is the predetermined capital stock Kt and the demand is the

sum of demand for capital of each sector:

Kt =

∫ 1

0

Kt(j)dj =

∫ 1

0

xt(j)qt(j) =

(
1− γ
Rt

) 1
γ

Qt, (2.9)

where Qt =
∫ 1

0
qt(j)dj is an index of aggregate quality. Let kt ≡

Kt

Qt

denote capital

intensity. Then from (2.9), the equilibrium rental rate is a decreasing function of the

capital-technological knowledge ratio kt:

Rt = k−γt (1− γ). (2.10)

Now I can express quantities of intermediate goods in intensive form, that is xt = kt.

Substituting this and (2.7), (2.10) into (2.6) gives

πt(j) = π̂(kt)qt(j), (2.11)

where π̂(kt) = γk1−γ
t .

Determination of R&D effort Each period there is one innovator/entrepreneur

in each sector. Innovation takes one period. Entrepreneur spends the final good

in research and creates a new improved version of the intermediate product if she

succeeds. Specifically, the quality of the intermediate good in each sector j is

qt(j) =


µqt−1(j) with probability φ(R̃t(j))

qt−1(j) with probability 1− φ(R̃t(j)),

(2.12)

where the probability of successful innovation φ(R̃t(j)) depends on the amount of

R̃t(j) of final output spent on research, and µ > 1.
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If innovation is successful, the entrepreneur in that sector will become the monop-

olist. She will choose the R&D expenditure R̃t(j) that maximizes her net benefit:

max
R̃t(j)

φ(R̃t(j))πt(µqt−1(j))− R̃t(j)qt−1(j), (2.13)

where πt(µqt−1(j)) is entrepreneur’s profit if she succeeds. The innovation intensity

depends positively on the amount of R&D expenditure R̃t(j) and takes the Cobb-

Douglas functional form:

φ(R̃t(j)) = ζR̃t(j)
1
2 , (2.14)

where the parameter ζ reflects the productivity of the research sector. The first-order

condition for the above maximization problem is:

φ′(R̃t(j))π̂(kt)µ = 1.

Combining this with (2.14) gives the equilibrium quality-adjusted level of research

and research intensity:

R̃t(j) ≡ R̃t =
(ζγµ)2

4
k

2(1−γ)
t , (2.15)

φ(R̃t(j)) ≡ φ(R̃t) =
ζ2γµ

2
k1−γ
t . (2.16)

The parameters of the model ζ and γ should satisfy the condition ζ2γµ
2
k1−γ
t < 1 that

guarantees that the innovation rate φ(R̃t) is between 0 and 1.

Note that the probability of innovation φ(R̃t) is the same in all sectors regardless

of the starting level of quality qt(j). This property permits a simple characterization

of the aggregate growth rate in the economy.
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2.2.2 Consumption decisions

The preferences of agents are represented by the logarithmic utility function:

U(C1,t, C2,t+1) = u(C1,t) + ρu(C2,t+1) = lnC1,t + ρ lnC2,t+1, (2.17)

where ρ ∈ (0, 1) is the discount factor, C1,t denotes the consumption of an individual

born at time t when young (at date t), and C2,t+1 is this individual’s consumption at

date t+ 1 in his old age.

I consider two extreme patent lengths: infinite patent length, T = ∞, and one-

period patent life, T = 1.

Infinite patent length During the first period of life, an agent receives wage

income from inelastically supplying one unit of labor which can be used to consume

the final good and to invest. Under infinite patent length an agent diversifies her

investment in three forms: physical capital Kt+1, which is available for production in

period t+ 1, investment in research R̃
(agg)
t+1 , which will be used for R&D at time t+ 1,

and buying “old” patents from the older generation V
o(agg)
t . A young agent buys the

“old” (patent created by the old/previous generation) patent to hedge against the

risk of possible R&D failure. When old, at period t + 1, an agent’s incomes come

from different sources: the rental from her physical capital stock, the monopoly profit

from patented intermediate goods and income from selling the patent. The budget

constraints are

C1,t +Kt+1 + R̃
(agg)
t+1 + V

o(agg)
t = wt, (2.18)

C2,t+1 = (Rt+1 + (1− δ))Kt+1 + φ(R̃t+1)(π
n(agg)
t+1 + V

n(agg)
t+1 ) + (1− φ(R̃t+1))(π

o(agg)
t+1 + V

o(agg)
t+1 ).

(2.19)
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where R̃
(agg)
t+1 =

∫ 1

0
R̃t+1(j)qt(j)dj = R̃t+1Qt is aggregate research expenditure;

π
n(agg)
t+1 = γk1−γ

t+1 µQt and V
n(agg)
t+1 are, respectively, aggregate profit obtained in time

t + 1 and the value of monopoly firms (“new” patent) that will be sold to the next

generation if innovation is successful. Whereas, if invention fails the agent receives

the aggregate profit π
o(agg)
t+1 = γk1−γ

t+1 Qt and sells the “old” patents V
o(agg)
t+1 .

By treating the consumer’s optimization problem as an asset pricing problem, I

get the first-order condition

u′(C1,t)

ρu′(C2,t+1)
= Rt+1 + (1− δ)

=

φ(R̃t+1)

(
π
n(agg)
t+1 + V

n(agg)
t+1

)
R̃

(agg)
t+1

=

(1− φ(R̃t+1))

(
π
o(agg)
t+1 + V

o(agg)
t+1

)
V
o(agg)
t

.

(2.20)

Using (2.20), I can rewrite (2.19), the budget constraint when old, as

C2,t+1 =
u′(C1,t)

ρu′(C2,t+1)

[
Kt+1 + R̃t+1 + V

o(agg)
t

]
. (2.21)

Using (2.18), the budget constraint when young, in (2.21) I have

C2,t+1 =
u′(C1,t)

ρu′(C2,t+1)

[
wt − C1,t

]
. (2.22)

so that

C1,t =
wt

1 + ρ
, (2.23)

since u(Ct) = lnCt.
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Figure 2.1: The timing of events, case T =∞

Now it is immediate from (2.18) that

Kt+1 + R̃t+1 + V
o(agg)
t =

ρ

1 + ρ
wt. (2.24)

Note that π
o(agg)
t = 1

µ
π
n(agg)
t , thus, it can be easily seen that V

o(agg)
t = 1

µ
V
n(agg)
t .

Substituting this into (2.20) yields

V
o(agg)
t =

1

µ

1− φ(R̃t+1)

φ(R̃t+1)
R̃

(agg)
t+1 . (2.25)

Now substituting R̃
(agg)
t+1 = (ζγµ)2

4
k

2(1−γ)
t+1 Qt into the last equation, and using (2.16),

after some algebraic manipulations, I get

V
o(agg)
t =

(γ
2
k1−γ
t+1 −

(ζγ)2µ

4
k

2(1−γ)
t+1

)
Qt. (2.26)

Now I can summarize the timing of events in the case of infinite patent length. This

is depicted in Figure 2.1.

Under one-period patent protection an agent invests in physical capital and

R&D. Thus, agents will not buy “old” patents from the older generation as they

are worthless: intermediate good producers collect a monopoly profit only for one

period and become competitive thereafter. It can be easily seen that for the case of
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one-period patent protection equation (2.24) modifies to:

Kt+1 + R̃t+1 =
ρ

1 + ρ
wt. (2.27)

2.2.3 Equilibrium and growth

Definition A competitive equilibrium is a sequence of quantities {C1,t, C2,t, Kt, Yt, xt,

Qt, R̃
(agg)
t , V

(agg)
t , π

(agg)
t }∞t=0 and prices {wt, rt, pt}∞t=0 such that i) consumers maximize

utility subject to their intertemporal budget constraint taking prices as given; ii) the

final good producers maximizes profits choosing labor and intermediate inputs; iii)

intermediate good producers maximize net expected benefit by choosing a level of

R&D expenditures and maximize profit choosing the price at which to sell invented

goods, and iv) all markets clear.

I focus on steady-state equilibrium that is defined in the usual way as an equi-

librium in which the capital-quality ratio kt = k ≡ Kt
Qt

is constant. The steady state

for kt corresponds to a balanced growth path for the original variables. A balanced

growth path is defined as a path along which all variables grow at a constant rate

and growth rates are equal across variables.

The equation for final output, (2.1), can be rewritten as Yt = 1
1−γk

1−γ
t Qt, that

gives gY = (1− γ)gk + γgQ, then gY = gQ. The final good is devoted to consumption

and to investment in physical capital and research, Yt = Ct + Kt+1 + R̃
(agg)
t+1 , where

Ct = C1,t + C2,t. Using that wt = γ
1−γk

1−γ
t Qt, (2.23) can be rewritten as C1,t =

1
1+ρ

γ
1−γk

1−γ
t Qt. Substitution (2.20), (2.23) and expression for wt into (2.22) gets

C2,t+1 = ρ
1+ρ

γ
1−γk

1−γ
t (Rt+1 + (1− δ))Qt. Since along BGP Rt = R (see (2.9)), clearly

that gc1 = gc2 = gC = gQ.
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Let Zt denote Zt = Kt+1 + R̃
(agg)
t+1 . From the resource constraint I have that

gY = gC+Z = gC

(
Ct

Ct + Zt

)
+ gZ

(
Zt

Ct + Zt

)
= gC + (gZ − gC)

(
Zt

Ct + Zt

)
. (2.28)

Since gQ = gK = gR̃(agg) ,4 gY = gQ = gZ . As gY , gC , and gZ are constant along BGP

and (2.28) holds for all t, Zt
Ct+Zt

is also constant along BGP, therefore Ct and Zt grow

at the same rate. Finally, I have g∗ = gY = gQ = gC = gK = gR̃(agg) .

Thus, the growth rate of the economy is

gt = gQ =
Qt −Qt−1

Qt−1

.

Average total quality is

Qt =

∫ 1

0

(
φ(R̃)µqt−1 + (1− φ(R̃))qt−1

)
dj = Qt−1 + φ(R̃)(µ− 1)Qt−1

that implies:

gt = φ(R̃t)(µ− 1) =
ζ2γµ(µ− 1)

2
k1−γ
t . (2.29)

The BGP growth rate is

g = φ(R̃)(µ− 1) =
ζ2γµ(µ− 1)

2
k1−γ, (2.30)

where k is steady-state capital intensity. Clearly, the result will be similar for the

case of one-period patent length.

The law of motion for economy for the case of infinite patent length is derived as

follows. Using (2.29), Kt+1 can be expressed as Kt+1 = Kt+1

Qt+1
Qt+1 = kt+1(gt+1+1)Qt =( ζ2γµ(µ−1)

2
k2−γ
t+1 + kt+1

)
Qt.

4See (2.9) and recall R̃
(agg)
t+1 = R̃t+1Qt.
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Then (2.24) can be rewritten as

ζ2γµ(µ− 1)

2
k2−γ
t+1 + kt+1︸ ︷︷ ︸

Kt+1/Qt

+
(ζγµ)2

4
k

2(1−γ)
t+1︸ ︷︷ ︸

R̃aggt+1/Qt

+
γ

2
k1−γ
t+1 −

(ζγ)2µ

4
k

2(1−γ)
t+1︸ ︷︷ ︸

V
old(agg)
t /Qt

=
γ

1− γ
ρ

1 + ρ
k1−γ
t︸ ︷︷ ︸

ρ
1+ρ

wt/Qt

.

(2.31)

By simplifying the previous equation I have:

(ζγµ)2

4
(1− 1

µ
)k

2(1−γ)
t+1 +

ζ2γµ(µ− 1)

2
k2−γ
t+1 +

γ

2
k1−γ
t+1 + kt+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t ,

(2.32)

which is the fundamental law of motion of my economy for the case of infinite patent

length.

By modifying (2.27) I obtain the law of motion of the economy for the case of

one-period patent protection:

ζ2γµ(µ− 1)

2
k2−γ
t+1 + kt+1︸ ︷︷ ︸

Kt+1/Qt

+
(ζγµ)2

4
k

2(1−γ)
t+1︸ ︷︷ ︸

R̃aggt+1/Qt

=
γ

1− γ
ρ

1 + ρ
k1−γ
t︸ ︷︷ ︸

ρ
1+ρ

wt/Qt

. (2.33)

Let me now verify that there exists a unique steady state. The following proposition

states the result.

Let Ψ be the parameter space: ψ = {γ, δ, ζ, µ, ρ}, and ψ ∈ Ψ.

Proposition 2.1 (i) Under infinite patent length, there exists a unique steady-state

equilibrium as long as ψ ∈ {Ψ1,Ψ2} with (disjoint) subspaces of the parameter space
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Ψ1,Ψ2 ⊂ Ψ:

Ψ1 = {ψ ∈ Ψ | 1− ρ
1 + ρ

< γ ≤ 1

2
},

Ψ2 = {ψ ∈ Ψ | γ > 1

2
and 2ρ− (1− γ)(1 + ρ)

(
1 + (2γ − 1)ζ2µ(µ− 1)

)
≥ 0}.

(2.34)

(ii) Under one period patent length there exists a unique steady-state equilibrium when-

ever ψ ∈ {Ψ3,Ψ4} with (disjoint) subspaces of the parameter space Ψ3,Ψ4 ⊂ Ψ:

Ψ3 = {ψ ∈ Ψ | γ ≤ 1

2
},

Ψ4 = {ψ ∈ Ψ | γ > 1

2
and

2ρ− (1− γ)(1 + ρ)(2γ − 1)ζ2µ2 ≥ 0 and γ − 2γ2µ+ 2µ− 2 ≥ 0}. (2.35)

Proof The proof is in the Appendix.

Assumption 1 Based on Proposition 2.1, I assume hereafter that

(i) Under infinite patent length (T =∞) ψ ∈ {Ψ1,Ψ2} with Ψ1 and Ψ2 (Ψ1,Ψ2 ⊂

Ψ)are defined in (2.34).

(ii) Under one period patent length (T = 1) ψ ∈ {Ψ3,Ψ4} with Ψ3 and Ψ4

(Ψ3,Ψ4 ⊂ Ψ)are defined in (2.35).

The law of motion of the economy under infinite patent length is determined by

(2.31). The proof of Proposition 2.1 demonstrates that the system determined by

(2.31) has a unique steady state with positive k if the parameters of the model satisfy

Assumption 1. Given k, the growth rate g is uniquely determined by (2.30).

Proposition 2.2 (i) R&D investment is higher under one-period patent protection

than under infinite patent life (“patent crowding-out effect”). (ii) Under one-period

patent length growth is higher than under infinite protection.
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Proof The proof is in the Appendix.

Part (i) of Proposition 2.2 establishes that a short patent duration enhances in-

novation. This can be explained by the following. Under one-period patent life the

crowding-out effect does not occur, since investment of the young is allocated to

physical capital and research, whereas with infinite patent, the young allocate their

investment in physical capital, research and to purchasing of patents from the older

generation, thereby reducing the amount of investment in research. In its turn, R&D

expenditures spur growth, so the growth rate with one-period protection is higher

than that under infinite patent life, as stated in part (ii) of Proposition 2.2.

2.3 Patent breadth

2.3.1 Patent protection and growth

In Section 2.2 the existence of uniquely determined BGP has been proved for the case

when patentee can charge unconstrained monopolistic price. In this section I assume

that government controls the degree of patent protection by using patent breadth

along with patent length. Here I follow Goh and Olivier (2002)5 to introduce policy

variable η that representing of patent breadth. Patent breadth determines how high a

price markup each monopolist can charge. The patentee maximizes profit by charging

price pηt (j) = ηpt(j) = ηRtqt(j)
1−γ with η ∈ (1 − γ, 1). In the case of a narrow patent

breadth, the maximum price that the patentee can charge coincides with marginal cost

Rtqt(j) (so that η = 1− γ), while a broader breadth of patents raises the maximum

price that the patentee can charge: the unconstrained monopolistic price in this case

is pt(j) = Rtqt(j)
1−γ (when η = 1).

5Similar modelling approach for patent breadth protection was used (among others) by Iwaisako
and Futagami (2013), and Futagami and Iwaisako (2007), Chu et al. (2016).
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Under patent breadth policy, the equilibrium quantity of the intermediate good

(2.2) modifies to:

xηt (j) ≡ xηt = kt =

(
1− γ
ηRt

) 1
γ

, (2.36)

whereas the monopolist’s profit (2.6) becomes:

πηt (j) = (γ + η − 1)
1

η
k1−γ
t qt(j) = θk1−γ

t qt(j), (2.37)

where θ ≡ (γ + η − 1) 1
η
. Accordingly, equilibrium quality-adjusted level of research

and research intensity modify to:

R̃η
t (j) ≡ R̃η

t =
(ζθµ)2

4
k

2(1−γ)
t , (2.38)

φ(R̃η(j)) ≡ φ(R̃η) =
ζ2θµ

2
k1−γ
t . (2.39)

The growth rate is now expressed as6

gηt =
ζ2θµ(µ− 1)

2
k1−γ
t . (2.40)

Finally, I obtain the law of motion of the economy under imperfect breadth protection

with infinite patent length:

(ζθµ)2

4
(1− 1

µ
)k

2(1−γ)
t+1 +

ζ2θµ(µ− 1)

2
k2−γ
t+1 +

θ

2
k1−γ
t+1 + kt+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t ,

(2.41)

6The BGP growth rate is given by:

gη =
ζ2θµ(µ− 1)

2
k1−γ .
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which is analogous to (2.31) for the complete breadth protection, i.e., η = 1; and,

under one period patent length I get the analogue of (2.33) which is:

ζ2θµ(µ− 1)

2
k2−γ
t+1 + kt+1 +

(ζθµ)2

4
k

2(1−γ)
t+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t . (2.42)

As in Section 2.2.3, I now establish the existence of a unique steady state for two

cases, T =∞ and T = 1, in the following proposition.

Proposition 2.3 (i) Under infinite patent length there exists a unique steady-state

equilibrium as long as ψ ∈ {Ψ̃1, Ψ̃2} with (disjoint) subspaces of the parameter space

Ψ̃1, Ψ̃2 ⊂ Ψ:

Ψ̃1 = {ψ ∈ Ψ | γ ≤ 1

2
and 2ργ − (1− γ)(1 + ρ)(1− 1− γ

η
) > 0}, (2.43)

Ψ̃2 = {ψ ∈ Ψ | γ > 1

2
and

2ργ2 − (1− γ)(1 + ρ)
(
1− 1− γ

η

)(
1 + (2γ − 1)ζ2µ(µ− 1)

)(
1− 1− γ

η

)
≥ 0}.

(2.44)

(ii) Under one period patent length there exists a unique steady-state equilibrium when-

ever ψ ∈ Ψ3, Ψ̃4} with (disjoint) subspaces of the parameter space Ψ3, Ψ̃4 ⊂ Ψ:

Ψ3 = {ψ ∈ Ψ | γ ≤ 1

2
}, (2.45)

Ψ̃4 = {ψ ∈ Ψ | γ > 1

2
and 2ργ2 − (1− γ)(1 + ρ)(2γ − 1)ζ2µ2

(
1− 1− γ

η

)2 ≥ 0

and (2− γ)(µ− 1)− (2γ − 1)µ
(
1− 1− γ

η

)
≥ 0}. (2.46)

Proof The proof is in the Appendix.

Proposition 2.3 is the direct analogue of Proposition 2.1.
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Assumption 2 Based on Proposition 2.3, I assume hereafter that

(i) Under infinite patent length (T =∞) ψ ∈ {Ψ̃1, Ψ̃2} with Ψ̃1 and Ψ̃2 (Ψ̃1, Ψ̃2 ⊂

Ψ) are defined in (2.43) and (2.44).

(ii) Under one period patent length (T = 1) ψ ∈ Ψ3, Ψ̃4} with Ψ3 and Ψ̃4 (Ψ3, Ψ̃4 ⊂

Ψ) are defined in (2.45) and (2.46).

Having conditions for the existence of steady-state allows me to compare R&D

efforts and the growth rates with incomplete breadth protection for two cases (T =∞

and T = 1).

Proposition 2.4 Under infinite and one-period patent length (i) For sufficiently low

steady state k, k ∈ (0, ε) with ε > 0 sufficiently small real number, weakening patent

breadth stimulates investment in research and enhances growth. (ii) If k ∈ (ε,∞), the

opposite results apply. In particular, incomplete breadth protection lowers research

investment and reduces the growth rate.

Proof The proof is in the Appendix.

The economic intuition behind results in Proposition 2.4 is the following. Relaxing

patent protection has two opposite effect on growth. On the one hand, if the stock of

knowledge (Q) significantly higher than the stock of physical capital (K) (k ∈ (0, ε)7),

incomplete breadth reduces the price of patented intermediate goods, pη, which leads

to increased demand for the intermediate product used in the final goods sector,

xη, and, as a result, to increased output, Y . In its turn, this stimulates aggregate

investment including investment in R&D. Increasing research investment promotes

growth. On the other hand, if the stock of knowledge (Q) much lower than the stock

of physical capital (K) (k ∈ (ε,∞)), an imperfect IPR lowers the price of patented

intermediate goods, which increases the amount of of intermediate goods used in the

final sector, that, in its turns, direct investment towards physical capital by reducing

research investment.
7Recall that k = K/Q
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The next proposition compares research investment and growth for two different

patent durations.

Proposition 2.5 (i) R&D investment is higher under one period patent protection

than under infinite patent length. (ii) Under one period patent length growth rate is

higher than under infinite patent length.

Proof The proof is in the Appendix.

Proposition 2.5 is the direct analogue of Proposition 2.2. This proposition demon-

strates the presence of the crowding-out effect for the case with incomplete breadth

protection, and also shows that higher growth under incomplete patent breadth is

achieved with short patent duration with the same reasoning as in Proposition 2.2.

2.4 Conclusion

In this paper I explore how patent protection affects economic growth in an OLG

quality-ladder endogenous growth model with capital accumulation. I focus on the

two extreme cases of patent length, one-period patent protection and infinite patent

length, and reveal the existence of the “crowding-out effect” for an OLG Schumpete-

rian model which consists in reallocation of investment resources away from R&D

towards purchase of patents from the older generation. This effect does not occur

in the one-period patent life case that leads to higher growth rate under one-period

patent length. I show that relationship between patent breadth and economic growth

is nonmonotonic.
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2.5 Appendix

Proof of Proposition 2.1

(i) Case T =∞ The law of motion of the economy under infinite patent length

is determined by (2.31):

ζ2γµ(µ− 1)

2
k2−γ
t+1 + kt+1 +

(ζγµ)2

4
k

2(1−γ)
t+1 +

γ

2
k1−γ
t+1 −

(ζγ)2µ

4
k

2(1−γ)
t+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t .

Let A ≡ (ζγµ)2

4
, B ≡ ζ2γµ(µ−1)

2
, C ≡ γ

2
, D ≡ γ

1−γ
ρ

1+ρ
. Then last equation can be

rewritten as

A(1− 1

µ
)k

2(1−γ)
t+1 +Bk2−γ

t+1 + Ck1−γ
t+1 + kt+1 = Dk1−γ

t . (2.47)

I show that the system characterized by (2.47) has a unique steady state with positive

k. Plugging in kt = kt+1 = k into (2.47), I have:

hT=∞(k) ≡ A(1− 1

µ
)k2(1−γ) +Bk2−γ + (C −D)k1−γ + k = 0. (2.48)

If C − D ≥ 0 then hT=∞(k) is strictly increasing, and taking into account that

hT=∞(0) = 0, the equation (2.48) does not have non-zero solution.

Consider the case C − D < 0. hT=∞(0) = 0, and limk→∞ hT=∞(k) = ∞, since

k2−γ and k2(1−γ) grows faster than k1−γ. Differentiating hT=∞(k) with respect to k

gives

∂hT=∞

∂k
= (2− 2γ)A(1− 1

µ
)k1−2γ + (2− γ)Bk1−γ + (1− γ)(C −D)k−γ + 1.

(2.49)
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For sufficiently low steady-state k (k → 0), k−γ dominates the functions k1−γ and

k1−2γ,8 therefore ∂hT=∞/∂k < 0; while for k →∞, k1−γ and k1−2γ grows faster than

k−γ, so ∂hT=∞/∂k > 0. The second derivative of hT=∞(k) with respect to k is given

by

∂2hT=∞

∂k2
= (2− 2γ)(1− 2γ)A(1− 1

µ
)k−2γ + (1− γ)(2− γ)Bk−γ − γ(1− γ)(C −D)k−γ−1.

(2.50)

There are two cases, γ ≤ 1
2

and γ > 1
2
.

For γ ≤ 1
2
, all terms in (2.50) are positive, so that ∂2hT=∞/∂k

2 > 0, therefore,

∂hT=∞/∂k < 0 is not feasible once ∂hT=∞/∂k has become positive, and, as a result,

there is no second steady-state. Combining facts about signs of first and second

derivative, the curve hT=∞(k) must cross the horizontal axis from below, i.e., at this

point ∂hT=∞/∂k > 0 must hold, and this point is only one crossing point. Hence,

if γ ≤ 1
2

9 and C − D < 0,10 that is, 1−ρ
1+ρ

< γ ≤ 1
2
, there exists a unique (non-zero)

steady state for the system in (2.47).

In the case where γ > 1
2
, let me find conditions under which the second derivative

(2.50) is positive. First, consider k ∈ (0, 1]. Since the second term in (2.50) is positive,

to show that the second derivative is positive, ∂2hT=∞/∂k
2 > 0, it suffices to have

sum of the first and third terms in (2.50) is non-negative, i.e., (2− 2γ)(1− 2γ)A(1−
1
µ
)k−2γ − γ(1− γ)(C−D)k−γ−1 ≥ 0. For k ∈ (0, 1], k−γ−1 ≥ k−2γ, thus, this sum will

be positive if −γ(1−γ)(C−D) ≥ (2−2γ)(2γ−1)A(1− 1
µ
). Substituting the value of

coefficients A, C and D and rearranging it I have that for k ∈ (0, 1], ∂2hT=∞/∂k
2 > 0

whenever 2ρ− (1− γ)(1 + ρ)
(
1 + (2γ − 1)ζ2µ(µ− 1)

)
≥ 0.

8For k → 0 (2 − 2γ)A(1 − 1
µ )k1−2γ + (2 − γ)Bk1−γ + (1 − γ)(C − D)k−γ + 1 = (1 − γ)(C −

D)k−γ + o(k−γ).
9This implies that 1− γ ≥ 1

2 . A capital share this large is reasonable if capital is interpreted in
a broad sense (Mankiw et al. (1992), Barro and Sala-i Martin (2004)).

10Substituting the value of coefficients C and D into C −D < 0 yields 1−ρ
1+ρ < γ.

82



Second, I have to determine the sign of the second derivative (2.50) when k ∈

[1,∞). Since the third term in (2.50) is positive, to have ∂2hT=∞/∂k
2 > 0 it suffices

to show that sum of first two terms is non-negative, i.e., (2 − 2γ)(1 − 2γ)A(1 −
1
µ
)k−2γ + (1 − γ)(2 − γ)Bk−γ ≥ 0. Note that for k ∈ [1,∞), k−γ ≥ k−2γ, then from

(1 − γ)(2 − γ)B ≥ (2 − 2γ)(2γ − 1)A(1 − 1
µ
)11 follows immediately that the sum is

non-negative. Hence, when k ∈ [1,∞) the second derivative, ∂2hT=∞/∂k
2, is positive.

Define two (disjoint) subspaces of the parameter space Ψ1,Ψ2 ⊂ Ψ:

Ψ1 = {ψ ∈ Ψ | 1− ρ
1 + ρ

< γ ≤ 1

2
},

Ψ2 = {ψ ∈ Ψ | γ > 1

2
and 2ρ− (1− γ)(1 + ρ)

(
1 + (2γ − 1)ζ2µ(µ− 1)

)
≥ 0}.

To summarize, under infinite patent length there exists a unique steady-state equi-

librium as long as ψ ∈ {Ψ1,Ψ2}.

(ii) Case T = 1 The evolution of kt in case of one-period patent length is given

by (2.33):

ζ2γµ(µ− 1)

2
k2−γ
t+1 + kt+1 +

(ζγµ)2

4
k

2(1−γ)
t+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t .

Similar to the case of infinite patent length this equation can be rewritten as

Ak
2(1−γ)
t+1 +Bk2−γ

t+1 + kt+1 = Dk1−γ
t . (2.51)

The steady state is obtained as the solution to

hT=1(k) ≡ Ak2(1−γ) +Bk2−γ −Dk1−γ + k = 0. (2.52)

11Substituting the value of coefficients A and B in this inequality and rearranging it yields γ2 ≤ 1.
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Equations (2.52) and (2.48) differ only by the term Ck1−γ in (2.48) and factor 1− 1
µ

of the first term in (2.48), so the proof steps for the current case T = 1 will be similar

to the case T =∞. Taking the derivative of hT=1(k) with respect to k, I get

∂hT=1

∂k
= (2− 2γ)Ak1−2γ + (2− γ)Bk1−γ − (1− γ)Dk−γ + 1. (2.53)

Note that for k → 0, ∂hT=1/∂k < 0, while for k → ∞, ∂hT=1/∂k > 0. The second

derivative of hT=1(k) with respect to k is

∂2hT=1

∂k2
= (2− 2γ)(1− 2γ)Ak−2γ + (1− γ)(2− γ)Bk−γ + γ(1− γ)Dk−γ−1. (2.54)

As in case T =∞, there are two possible cases, γ ≤ 1
2

and γ > 1
2
.

For γ ≤ 1
2
, all terms in (2.54) are positive, so that ∂2hT=1/∂k

2 > 0. Thus,

hT=1(k) must cross the horizontal axis from below, i.e., at this point ∂hT=1/∂k > 0

must hold, and this point is only one crossing point. Hence, for γ ≤ 1
2

there exists a

unique (non-zero) steady state for the system in (2.51).

For the case γ > 1
2
, first consider k ∈ (0, 1]. To show that the second derivative is

non-negative, ∂2hT=1/∂k
2 > 0, it suffices to have sum of the first and third terms in

(2.54) non-negative, i.e., (2− 2γ)(1− 2γ)Ak−2γ +γ(1−γ)Dk−γ−1 ≥ 0. For k ∈ (0, 1],

k−γ−1 ≥ k−2γ, therefore, this sum will be positive if γ(1− γ)D ≥ (2− 2γ)(2γ − 1)A.

Substituting the value of coefficients A and D into this inequality and rearranging

yields that ∂2hT=1/∂k
2 > 0 as long as 2ρ− (1− γ)(1 + ρ)(2γ − 1)ζ2µ2 ≥ 0.

Next, let me examine the case when γ > 1
2

and k ∈ [1,∞). To have ∂2hT=∞/∂k
2 >

0, it suffices to have the sum of the first two term be non-negative, i.e., (2− 2γ)(1−

2γ)Ak−2γ+(1−γ)(2−γ)Bk−γ ≥ 0. For k ∈ [1,∞), k−γ ≥ k−2γ, so that ∂2hT=∞/∂k
2 >

0 follows from (1 − γ)(2 − γ)B ≥ (2 − 2γ)(2γ − 1)A, which, after substituting the

value of coefficients A and B and rearranging, becomes γ − 2γ2µ+ 2µ− 2 ≥ 0.
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Define two (disjoint) subspaces of the parameter space Ψ3,Ψ4 ⊂ Ψ:

Ψ3 = {ψ ∈ Ψ | γ ≤ 1

2
},

Ψ4 = {ψ ∈ Ψ | γ > 1

2
and

2ρ− (1− γ)(1 + ρ)(2γ − 1)ζ2µ2 ≥ 0 and γ − 2γ2µ+ 2µ− 2 ≥ 0}.

Thus, under one period protection there exists a unique steady-state equilibrium

as long as ψ ∈ {Ψ3,Ψ4}.

Proof of Proposition 2.2

Denote the steady state in the case of one-period protection by k1 and the steady-

state in the case of infinite patent protection by k∞, i.e., k1 is the intersection point of

hT=1(k) and horizontal axis, while k∞ is intersection point of hT=∞(k) and horizontal

axis. It has been shown in Proposition 2.1 that the function hT=1(k) (and hT=∞(k))

crosses the horizontal axis from below and this is only one crossing point. Therefore,

for any k̄ < k1, hT=1(k̄) < hT=1(k1) = 0. So k∞ < k1 as long as hT=1(k∞) <

hT=1(k1) = 0. Since

hT=1(k∞) = Ak2(1−γ)
∞ +Bk2−γ

∞ −Dk1−γ
∞ + k∞, (2.55)

I have to show that hT=1(k∞) = Ak
2(1−γ)
∞ + Bk2−γ

∞ − Dk1−γ
∞ + k∞ < 0. But, from

(2.48), hT=∞(k∞) = A(1 − 1
µ
)k

2(1−γ)
∞ + Bk2−γ

∞ + (C − D)k1−γ
∞ + k∞ = 0. Therefore,

hT=1(k∞) = hT=∞(k∞) + 1
µ
Ak

2(1−γ)
∞ −Ck1−γ

∞ = 1
µ
Ak

2(1−γ)
∞ −Ck1−γ

∞ has to be negative,

i.e., 1
µ
Ak

2(1−γ)
∞ − Ck1−γ

∞ < 0.
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Figure 2.2: Comparison of steady-state values of k under infinite patent length and
one-period patent protection (kT=1 > kT=∞)

Modifying last inequality and substituting into it the values of coefficients A and

C, I have:

k∞ <

(
C

A
µ

) 1
1−γ

=

(
2

ζ2γµ

) 1
1−γ

, (2.56)

that is, k∞ < k1 as long as k∞ <

(
2

ζ2γµ

) 1
1−γ

, but it is the assumption12 that ensures

that innovation intensity is between 0 and 1. Thus, it has been shown that k∞ < k1.

Figure 2.2 illustrates the determination and comparison of steady-state values of k

for cases T =∞ and T = 1.

(i) Since R&D investment is strictly increasing in k (see (2.15)13), R̃
(agg)
T=1 > R̃

(agg)
T=∞

(ii) The growth rate is strictly increasing in k (see (2.30)) that implies that gT=1 >

gT=∞.

12Assumption is made immediately after equation (2.16). Notice that assumption is expressed in
terms of k which is an endogenous variable. However, it is easy to find sets of parameters for which
the assumption is satisfied.

13The quality-adjusted level of research in BGP is given by R̃ = (ζγµ)2

4 k2(1−γ)

86



Proof of Proposition 2.3

(i) Case T =∞ The law of motion of the economy under infinite patent length

is determined by (2.41):

(ζθµ)2

4
(1− 1

µ
)k

2(1−γ)
t+1 +

ζ2θµ(µ− 1)

2
k2−γ
t+1 +

θ

2
k1−γ
t+1 + kt+1 =

γ

1− γ
ρ

1 + ρ
k1−γ
t .

Let Aη ≡ (ζθµ)2

4
, Bη ≡ ζ2θµ(µ−1)

2
, Cη ≡ θ

2
, D ≡ γ

1−γ
ρ

1+ρ
. Now I can rewrite dynamic of

k as:

Aη(1− 1

µ
)k

2(1−γ)
t+1 +Bηk2−γ

t+1 + Cηk1−γ
t+1 + kt+1 = Dk1−γ

t .

The steady state is determined as the solution to

hηT=∞(k) ≡ Aη(1− 1

µ
)k2(1−γ) +Bηk2−γ + (Cη −D)k1−γ + k = 0. (2.57)

Note that equation (2.48) from the proof of Proposition 2.1, which is the case η = 1,

and (2.57) differ only by the coefficients Aη, Bη and Cη, in particular, in the current

case, η ∈ (1− γ, 1), γ is replaced by θ, where θ ≡ (γ + η − 1) 1
η
.

The first derivative of hηT=∞(k) with respect to k is

∂hηT=∞
∂k

= (2− 2γ)Aη(1− 1

µ
)k1−2γ + (2− γ)Bηk1−γ + (1− γ)(Cη −D)k−γ + 1.

(2.58)

By following the same reasoning as for hT=∞(k) in Proposition 2.1, for sufficiently

low steady-state k (k → 0), ∂hT=∞/∂k < 0, while for k → ∞, ∂hT=∞/∂k > 0. The
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second derivative of hηT=∞(k) with respect to k is given by

∂2hηT=∞
∂k2

= (2− 2γ)(1− 2γ)Aη(1− 1

µ
)k−2γ + (1− γ)(2− γ)Bηk−γ − γ(1− γ)(Cη −D)k−γ−1.

(2.59)

As in the proof of Proposition 2.1 (i), I have to consider two cases, namely γ ≤ 1
2

and

γ > 1
2
.

Case γ ≤ 1
2
. It has been shown in the proof of Proposition 2.1 (i), a unique steady

state equilibrium exists if γ ≤ 1
2

and C−D < 0. Taking into account the observation

about coefficients in both cases, the second condition under which unique steady state

equilibrium exists can be written as Cη−D < 0. Substituting the value of coefficients,

I get that under infinite patent length there exists a unique steady state equilibrium

as long as γ ≤ 1
2

and 2ργ − (1− γ)(1 + ρ)(1− 1−γ
η

) > 0.

Case γ > 1
2
. Analogously to the proof of Proposition 2.1 (i), consider two cases:

k ∈ (0, 1] and k ∈ [1,∞).

The same reasoning as in Proposition 2.1 (i) can be applied to determine conditions

under which the second derivative is non-negative when k ∈ (0, 1]. The condition

−γ(1−γ)(Cη−D)k−γ−1 ≥ (2−2γ)(2γ−1)Aη(1− 1
µ
) guarantees that ∂2hηT=∞/∂k

2 > 0.

Substituting the value of coefficients Aη, Cη andD into this inequality and rearranging

it yields that ∂2hηT=∞/∂k
2 > 0 as long as 2ργ2 − (1 − γ)(1 + ρ)

(
1 − 1−γ

η

)(
1 + (2γ −

1)ζ2µ(µ− 1)
)(

1− 1−γ
η

)
≥ 0.

By following the same reasoning as in Proposition 2.1 (i), to ensure that the sign

of second derivative (2.59) is positive when k ∈ [1,∞), I have to show that (1−γ)(2−

γ)Bηk−γ ≥ (2−2γ)(2γ−1)Aη(1− 1
µ
). Substituting the value of coefficients Aη and Bη

into this inequality and rearranging it gives 3η(γ−1)+2γ2−3γ+1 < 0. Noticing that

the first term in this expression is negative, 3η(γ−1) < 0 and recalling that I consider

case γ > 1
2

that implies 2γ2 − 3γ + 1 < 0, gives that 3η(γ − 1) + 2γ2 − 3γ + 1 < 0

always holds. Thus, when k ∈ [1,∞), the second derivative, ∂2hηT=∞/∂k
2, is positive.
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Define two (disjoint) subspaces of the parameter space Ψ̃1, Ψ̃2 ⊂ Ψ:

Ψ̃1 = {ψ ∈ Ψ | γ ≤ 1

2
and 2ργ − (1− γ)(1 + ρ)(1− 1− γ

η
) > 0},

Ψ̃2 = {ψ ∈ Ψ | γ > 1

2
and

2ργ2 − (1− γ)(1 + ρ)
(
1− 1− γ

η

)(
1 + (2γ − 1)ζ2µ(µ− 1)

)(
1− 1− γ

η

)
≥ 0}.

Thus, under infinite patent length there exists a unique steady-state equilibrium

as long as ψ ∈ {Ψ̃1, Ψ̃2}.

(ii) Case T = 1 Similarly to the proof of (i), I can rewrite the law of motion of

k from equation (2.42) as

Aηk
2(1−γ)
t+1 +Bηk2−γ

t+1 + kt+1 = Dk1−γ
t .

The solution of following equation determines the steady state:

hηT=1(k) ≡ Aηk2(1−γ) +Bηk2−γ −Dk1−γ + k = 0. (2.60)

It is clear that the proof for the current case η ∈ (1−γ, 1) will be similar to the proof

of Proposition 2.1 (ii) in which η = 1. Equation (2.60) and (2.52) differ only by the

coefficients Aη and Bη. As in Proposition 2.1 (ii), I have to ensure that the second
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derivative of hηT=1(k) with respect to k is positive.14 There are two possible cases,

γ ≤ 1
2

and γ > 1
2
.

For γ ≤ 1
2
, there exists a unique (non-zero) steady state for the system (2.60).15

For the case γ > 1
2

and k ∈ (0, 1], the result will follow if I show γ(1 − γ)D ≥

(2 − 2γ)(2γ − 1)Aη.16 Substituting the value of coefficients Aη, and D into this

inequality and rearranging it yields ∂2hηT=1∂k
2 > 0 as long as 2ργ2 − (1 − γ)(1 +

ρ)(2γ − 1)ζ2µ2
(
1− 1−γ

η

)2 ≥ 0.

Consider the case γ > 1
2

and k ∈ [1,∞). To have ∂2hT=∞/∂k
2 > 0, it suffices to

have (1− γ)(2− γ)Bη ≥ (2− 2γ)(2γ − 1)Aη, which is after substituting the value of

coefficients Aη and Bη and rearranging becomes (2−γ)(µ−1)−(2γ−1)µ
(
1− 1−γ

η

)
≥ 0.

Define Ψ̃4 ⊂ Ψ as

Ψ̃4 = {ψ ∈ Ψ | γ > 1

2
and 2ργ2 − (1− γ)(1 + ρ)(2γ − 1)ζ2µ2

(
1− 1− γ

η

)2 ≥ 0

and (2− γ)(µ− 1)− (2γ − 1)µ
(
1− 1− γ

η

)
≥ 0}.

Thus, under one period protection there exists a unique steady-state equilibrium

as long as ψ ∈ {Ψ3, Ψ̃4}.17

14Similarly to the proof of Proposition 2.1 (i), the first derivative of hηT=1(k) with respect to k:

∂hηT=1

∂k
= (2− 2γ)Aηk1−2γ + (2− γ)Bηk1−γ − (1− γ)Dk−γ + 1,

while the second derivative is given by

∂2hηT=1

∂k2
= (2− 2γ)(1− 2γ)Aηk−2γ + (1− γ)(2− γ)Bηk−γ + γ(1− γ)Dk−γ−1.

15See the proof of Proposition 2.1 (ii).
16For reasoning, see the proof of Proposition 2.1 (ii).
17Ψ3 has been defined in the proof of Proposition 2.1 (ii).
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Proof of Proposition 2.4

Denote by F∞(k) the function in (2.57) and by F1(k) the function in (2.60):

F∞(k) ≡ Aη(1− 1

µ
)k2(1−γ) +Bηk2−γ + (Cη −D)k1−γ + k = 0, (2.61)

F1(k) ≡ Aηk2(1−γ) +Bηk2−γ −Dk1−γ + k = 0, (2.62)

where the coefficients Aη, Bη, Cη and Dη are defined in the proof of Proposition 2.3.

Recall that θ ≡ (γ + η − 1) 1
η
, so that θ is increasing in η ( ∂θ

∂η
= 1−γ

η2
> 0), therefore,

Aη, Bη, Cη are strictly increasing functions in η.

Case T =∞ First, consider the case with infinite patent length. By the implicit

function theorem18

∂k

∂η
= −∂F∞/∂η

∂F∞/∂k
. (2.63)

Taking the partial derivative of F∞ with respect to η yields ∂F∞/∂η = ∂Aη

∂η
(1 −

1
µ
)k2(1−γ) + ∂Bη

∂η
k2−γ + ∂Cη

∂η
k1−γ > 0, since Aη, Bη, Cη is strictly increasing function in

η. The partial derivative of F∞ with respect to k is ∂F∞/∂k = Aη(1− 1
µ
)(2−2γ)k1−2γ+

Bη(2−γ)k1−γ +(Cη−D)(1−γ)k−γ +1 > 0, since F∞ crosses the horizontal axis from

below at steady state point k, i.e., ∂F∞/∂k (see Proposition 2.1 (i) for reasoning).

Substituting these expressions into (2.63) gives ∂k
∂η
< 0, so that k∗ is decreasing in η.

Taking the derivative of g (see (2.40)19) with respect to η:

∂g

∂η
=
ζ2µ(µ− 1)k−γ

2

(∂θ
∂η
k +

∂k

∂η
(1− γ)θ

)
. (2.64)

18Hereafter, to ease the notation I drop the superscript η.
19The BGP growth rate is given by gη = ζ2θµ(µ−1)

2 k1−γ .
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The sign of ∂g/∂η depends on the sign of expression inside the brackets in (2.64). Let

me find conditions under which this expression is negative that can be written as:

∂θ

∂η
< −∂k

∂η

(1− γ)θ

k
. (2.65)

Substituting explicit expression for ∂k
∂η

from (2.63) into (2.65) yields:

(ζθµ)2

2
(1− 1

µ
)(1− γ)k2(1−γ) +

ζ2θµ(µ− 1)

2
(2− γ)k2−γ + (1− γ)

(θ
2
− γ

1− γ
ρ

1 + ρ

)
k1−γ + k <

(ζθµ)2

2
(1− 1

µ
)(1− γ)k2(1−γ) +

ζ2θµ(µ− 1)

2
(1− 1

µ
)k2−γ + (1− 1

µ
)
θ

2
k1−γ, (2.66)

which, after some algebraic manipulations, can be rewritten as:

γρ

1 + ρ
k−γ − ζ2θµ(µ− 1)

2
k1−γ − 1 > 0. (2.67)

Denote this function by f(k) ≡ γρ
1+ρ

k−γ − ζ2θµ(µ−1)
2

k1−γ − 1. Note that for k → 0, k−γ

dominates two other functions in (2.67), namely, k1−γ and constant;20 for k → ∞,

k1−γ and const = 1 grow faster than k−γ; limk→0 f(k) =∞, and limk→∞ f(k) = −∞.

Differentiating f(k) with respect to k gives

∂f(k)

∂k
= − γ2ρ

1 + ρ
k−γ−1 − ζ2θµ(µ− 1)(1− γ)

2
k−γ − 1,

i.e., ∂f(k)/∂k < 0 everywhere. This facts demonstrate that there exists ε > 0 such

that for k ∈ (0, ε), f(k) > 0, i.e., (2.67) holds. Therefore, the expression inside the

brackets in (2.64) is negative, which yields ∂g/∂η < 0, i.e., gη<1 > gη=1. In turn, for

k ∈ (ε,∞), f(k) < 0, which implies ∂g/∂η > 0.

20For k → 0, γρ
1+ρk

−γ − ζ2θµ(µ−1)
2 k1−γ − 1 = γρ

1+ρk
−γ + o(k−γ).
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Differentiating of R̃ (see (2.38)21) with respect to η:

∂R̃

∂η
=
θ(ζµ)2k1−2γ

2

(∂θ
∂η
k +

∂k

∂η
(1− γ)θ

)
. (2.68)

Note that expression inside the brackets in (2.68) is the same as inside the brackets

in (2.64), which gives that for k ∈ (0, ε), ∂R̃/∂η < 0, R̃η<1 > R̃η=1, i.e., weakening

patent breadth spurs investment in research for infinite period patent length as well

as for one-period patent duration. For k ∈ (ε,∞), ∂R̃/∂η > 0, i.e., innovation is

increasing in patent breadth η.

Case T = 1 Equation (2.61) for the case T =∞ and equation (2.62) for the case

T = 1 differ only by the term Cηk1−γ and factor (1 − 1
µ
) of the first term in (2.61).

Note that over the derivation of (2.66), terms with coefficients Cη and Aη(1 − 1
µ
)

cancel out, so that the resulting equation (2.66) is the same as for the case T = ∞,

that implies the same result as for case T =∞.

Proof of Proposition 2.5

As has been noticed in the proof of Proposition 2.3, the case for loosening patent

breadth protection, η ∈ (1− γ, 1), differs from the case with complete patent protec-

tion, η = 1, only by the coefficients of dynamic equation of k.

It is clear that for the current case, η ∈ (1 − γ, 1), the proof steps will be the

same as for Proposition 2.2,22 thereby, kη1 > kη∞, which implies (for same reason as in

Proposition 2.2 (i)) R̃η
T=1 > R̃η

T=∞ and, (ii) gηT=1 > gηT=∞.

21The quality-adjusted level of research in BGP is given by R̃η(j) = (ζθµ)2

4 k2(1−γ).
22The proof is the same as for Proposition 2.3, except that γ is replaced by θ in the coefficients

Aη, Bη, Cη, and in equilibrium quality-adjusted level of research, R̃η (2.38, the BGP level), research
intensity φ(R̃η) (2.39, the BGP level), and growth rate gη (2.40, the BGP growth rate). Note that
γ is also replaced by θ in the assumption used in Proposition 2.2, namely, the assumption becomes
ζ2θµ

2 k1−γ < 1.
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Chapter 3

Monetary Policy and Intellectual

Property Rights Protection in an

OLG Economy with Endogenous

Growth

3.1 Introduction

The complexity of relationships between inflation and economics growth has been ex-

plored in various empirical and theoretical studies. A series of empirical papers (Barro

(1991), Fischer (1993) and Bruno and Easterly (1998)) found a negative relationship

between growth and inflation. A large theoretical literature has also investigated

the impact of inflation on growth in the long run. In an early paper in this area,

Sidrauski (1967) found that inflation rate has no effect on either the growth rate

or the steady-state rate of output (money is superneutral). However, Tobin (1965)1

1Tobin’s model is based on the one-sector neoclassical growth model of Solow and Swan, whereas
Sidrauski’s money-in-the-utility function model is based on Ramsey’s paper on optimal savings
behaviour and has been the first formulation of a monetary growth model in an explicitly optimizing
framework.
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presents a model in which inflation has a positive effect on growth, assuming that

money is a substitute for capital. Other authors (Stockman (1981) and Cooley and

Hansen (1989)) construct the models in which inflation rates affect steady state cap-

ital/output ratios but not growth rates.

Later a various of endogenous growth models have been proposed with varying

results. Chari et al. (1995), using four types of endogenous growth models (one-sector

model with a linear production function (AK); a generalization of the linear model

that endogenizes the relative price of capital (two-sector); a model which emphasizes

human capital accumulation (Lucas); model with spillover effects in the accumulation

of physical capital (Romer)), and Dotsey and Sarte (2000), in an AK model with

uncertainty, propose endogenous growth models with cash-in-advance constraints and

find very small effect of inflation on growth. At the same time, Gomme (1993), using

a human capital model with a cash-in-advance constraint, and Haslag (1998), using

an AK model with money used for bank reserves, find a significant effect of inflation

on growth.

A more recent and growing literature has investigated the growth effect of mone-

tary policy in the framework with innovation-based endogenous growth. Marquis and

Reffett (1994), Chu et al. (2012), Chu and Lai (2013), Chu and Cozzi (2014), Chu

et al. (2015) study the effect of monetary policy on economic growth in the R&D-

based growth models (Schumpeterian quality ladder and Romer’s expending-variety

growth models).

For example, Marquis and Reffett (1994) incorporates cash-in-advance constraint

and a transaction-service sector into model with horizontal innovation (Romer-style

model). They find that higher inflation reduces growth through reallocation of human

capital form the production of final good and R&D to transaction services.

Following Sidrauski (1967), Chu and Lai (2013) incorporate money demand into a

quality-ladder model formulated by Grossman and Helpman (1991b) using a money-
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in-utility specification and analyse how the elasticity of substitution between con-

sumption and the real money balance affects the growth effect of inflation. They

find that if consumption and the real money balance are complements (substitutes),

reducing money growth increases (decreases) output growth in an R&D-based growth

model.

In an OLG framework, money has been introduced along different lines. Weiss

(1980), Drazen (1981), Abel (1987) introduce money in the utility function in order

to study optimal monetary policy, monetary neutrality and Tobin effects.2 As an

alternative, one can introduce cash-in-advance constraints (see Schönfelder (1992),

Hahn and Solow (1995), Crettez et al. (1999)).3

This study also relates to the literature on economic growth and patent policy.

Starting with Nordhaus (1972), many authors have explored the different implica-

tion of patent policy in infinitely-lived homogeneous agents’ framework (see Goh and

Olivier (2002), Futagami and Iwaisako (2007), Furukawa (2007), Iwaisako and Fu-

tagami (2013), etc.). In the OLG framework, some studies also examine the growth

implications of patents. For example, Chou and Shy (1993) focus on effect patent

length on growth using model with expanding variety (without capital), while Sorek

(2011) analyses the effect of length and breadth on growth in Schumpeterian style

model, in which effects depend on elasticity of inter-temporal substitution. Using a

two period OLG model of an expanding-variety growth with physical capital, Diwakar

et al. (2019) show that weakening patent protection enhances economic growth.

Much less attention has been given to the interactive effects of monetary and

patent policies in an theoretical framework for endogenous growth. An exceptional

study with this respect, by Chu et al. (2012), examine an interaction between the

effects of monetary policy and IPR protection policy on growth. They develop a

2As has been noticed by Crettez et al. (2002a), weakness of this approach is that the reasons
money is introduced in utility function are not detailed.

3See Crettez et al. (2002b) for presentation of drawbacks and advantages of this approach.
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monetary hybrid endogenous growth model of infinitely-lived agents in which R&D

and capital accumulation are both engines of long-run economic growth. Chu et al.

include in the model investment good production that determines the growth rate of

physical capital and consider the knowledge-driven R&D specification, where R&D

activities require labor inputs. They show that monetary expansion hurts economic

growth by reducing R&D and capital accumulation, whereas the effect of intellectual

property rights on economic growth is ambiguous due to a trade-off between R&D

and capital accumulation. However, Chu et al. paper, unlike the present chapter,

consider economies of infinitely-lived homogeneous agents.

To the best of my knowledge, there are no existing studies that investigate the

effects of monetary and patent policies and their interaction in the OLG framework.

The demographic structure makes it possible to study inter-generational trade in

patents and a life-cycle saving motive, thereby allowing the paper to contribute to

the theory of optimal monetary and patent policy in a framework with innovation-

based endogenous growth.

This paper investigates interactive effects of intellectual property rights protec-

tion and monetary policy on economic growth. I develop an overlapping generations

model with R&D-based growth as in Rivera-Batiz and Romer (1991). Intellectual

property rights protection is introduced in the model by considering patent breadth

that determines the firms’ market power, while the money demand is incorporated

by imposing a cash-in-advance constraint on old age consumption expenditure.

Using a monetary endogenous growth model, I examine how the strengthening

patent protection influences growth. Patent protection determines market structure

that in turn affects the effects of monetary policy on economic growth. The results

show that strengthening patent protection increases the growth rate of output. The

reason is as follows. Strengthening patent protection affects the growth in two oppo-

site directions. First, a larger patent breadth raises the price of intermediate goods,
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which in turn increases the profit. Under the lab-equipment R&D specification the

value of innovation is independent of patent breadth. As a result, an increase in

monopoly profits increases the equilibrium rental rate. The higher rental rate moti-

vates young to save less, i.e., in their young age agents have less incentives to invest

in patents and capital. Moreover, a broader patent protection raises real balances

held by agent thereby lowers investment in capital accumulation and research. This

is a negative effect of patent protection growth. On the other hand, strengthening

patent breadth increases monopolistic profits, providing more incentives for research

investment and, as a result, increases growth rate. All in all, the impact of these two

contradicting effects on growth rate in favour of strengthening breadth protection.

Turning to the effect of monetary policy on growth, I find that monetary expansion

raises the cost of holding money and, as a result, households reduce R&D invest-

ment and capital accumulation, which in turn decreases the growth. The analysis of

the interactive effects of intellectual property rights and monetary policy shows that

a larger breadth of patents mitigates the negative effect of money growth, that is,

the increasing of protection breadth weakens the negative effect of money growth on

growth rate of output.

The rest of the chapter is organized as follows. Section 3.2 presents the dynamic

equilibrium model and shows that there is a unique balanced growth path. In Section

3.3, I examine how monetary and patent policies affect the growth rate. Section 3.4

concludes.

3.2 The Model

I develop a two-period OLG model with lab-equipment R&D-based growth. It extends

the product product variety model drawing mostly from Rivera-Batiz and Romer

(1991) and Diwakar et al. (2019). Agents are endowed with one unit of labor that
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they supply in the first period of life and are retired during old age. Each generation

consists of L new individual agents who live for two periods. There is no population

growth, Lt = L for all t. There are the final goods sector and the intermediate-goods

sector that produce differentiated goods. I assume that firms that create a new type

of differentiated goods can obtain a patent that allows them to produce and sell

goods monopolistically. But, patent protection may be incomplete and the degree of

patent protection depends on the authority’s policies. The patent protection degree

generally is determined by two instruments: patent length and patent breadth. For

simplicity I assume that patents have infinite life and the government controls the

degree of patent protection by using patent breadth.4

3.2.1 Production sectors

Final goods producer

The final good can be used for consumption and for investment in physical capital

and patents. The final good is produced by perfectly competitive firms using labor

and intermediate goods :

Yt = L1−α
∫ Nt

0

xt(j)
αdj, (3.1)

where xt(j) is the amount of the j type of intermediate good, Nt is a number of

intermediates, α ∈ (0, 1). The labor supply L of entire economy is used in production

of final goods and I set L = 1.

4I describe the patent protection in more detail in Section 3.3.
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Profit maximization by the final good producer implies that demand for the in-

termediate good is5

pt(j) = αxt(j)
α−1L1−α, (3.2)

xt(j) = L

(
α

pt(j)

) 1
1−α

(3.3)

and the wage rate at time t is6

wt = (1− α)L−α
∫ Nt

0

xt(j)
αdj. (3.4)

Intermediate goods production and innovation

Each intermediate product is produced according to a linear production function:

xt(j) = Kt(j), (3.5)

where Kt(j) is the amount of capital used as input. A firm owning a patent sets its

production level so as to maximize the profit subject to demand function (3.2). The

profit is given by:

πt(j) = max
xt(j)

pt(j)xt(j)−Rtxt(j), (3.6)

where Rt is the rental price of capital. The rental rate is determined in the market

for capital Rt = rt + δ, where δ is the rate of depreciation. Later, to simplify analysis

I assume that capital fully depreciates after use so δ = 1 that implies 1+ rt+1 = Rt+1.

5pt(j) is the price of intermediate good xt(j) relative to final good.
6In units of final good.
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The optimal quantity and price set by monopolistic firm are

xt(j) = xt = α
2

1−αLR
1

α−1

t , (3.7)

pt(j) = pt =
1

α
Rt. (3.8)

Thus, the maximum profit for monopolistic firm is

πt(j) = πt =
1− α
α

α
2

1−αLR
α
α−1

t . (3.9)

The supply for capital is predetermined capital stock Kt and demand is sum of

demand for capital of each sectors:

Kt =

∫ Nt

0

xt(j) = xtNt = α
2

1−αLR
1

α−1

t Nt. (3.10)

Let me denote kt = Kt/(NtL), then xt = ktL. From (3.7) equilibrium rental rate

is decreasing function of kt:

Rt = α2kα−1
t . (3.11)

Plugging (3.11) into (3.9) the firm’s profit can be expressed as

πt = (1− α)αkαt L. (3.12)

Note, that in this Section I consider complete patent protection, that is the case when

innovator can charge monopoly markup and gets the full monopoly profits. In a later

Section 3.3 I examine intermediate case where firms are forced prices lower than the

monopoly price.
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Variety expansion depends on the amount of final output that is used as input in

research R̃t:

Nt+1 −Nt =
R̃t

ψ
, (3.13)

where ψ is the cost to create a new variety of intermediates.7 I assume free entry, i.e.,

the research sector is perfectly competitive. The free entry condition implies that in

equilibrium with positive research expenditure the worth of each new good is equal

to ψ.

3.2.2 Consumption decisions

The preferences of agents are represented by a life-cycle utility function

U(c1,t, c2,t+1), (3.14)

where c1,t and c2,t+1 are consumption of goods during youth and old age, respectively.

U : R2
+ → R+ is differentiable, increasing and strictly concave, limc1→0 U

′
c1

(c1, c2) =

∞, for all c2 > 0, and limc2→0 U
′
c2

(c1, c2) = ∞, for all c1 > 0. During youth each

agent supplies inelastically one unit of labor and is retired during old age.

Agents can invest their savings in a nominal asset — money Mt, and real assets

— physical capital, investment in new and old patents, which will be productive at

date t+1. Investment in new patents are investment in R&D to create a new variety,

that using (3.13) can be expressed as ψ(Nt+1 − Nt). Young buys existing firms/old

patents on producing goods invented by the old generation. Value of old patents can

be expressed as ψNt. All patents are assumed to be granted forever. In their old age

agents receive monopoly profit of newly constructed firms and earn from selling these

7This is similar to the assumption in Section 6.1 in Barro and Sala-i Martin (2004) that the cost
of inventing a new type of good does not change over time.
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firms to young, (πt+1 + ψ)(Nt+1 −Nt). Moreover, old agents collect monopoly profit

and earn from selling patents from firms that they bought in the previous period,

(πt+1 + ψ)Nt.

The budget constraints writes in real terms:8

c1,t + kt+1Nt+1/L+ ψ(Nt+1 −Nt)/L+ ψNt/L+
Mt

Pt
= wt, (3.15)

c2,t+1 = Rt+1kt+1Nt+1/L+ (πt+1 + ψ)(Nt+1 −Nt)/L+ (πt+1 + ψ)Nt/L+
Mt

Pt+1

.

(3.16)

Following Hahn and Solow (1995), I assume that a fraction of at least 0 < µ < 1

of consumption during old age is financed by money balances held at the beginning

of old age:

Mt ≥ µPt+1c2,t+1. (3.17)

I study the case in which the cash-in-advance constraint is binding:

Mt = µPt+1c2,t+1. (3.18)

This implies that real return on investment in assets that agent holds is not less than

the real return on money holdings:9

Rt+1 ≥
Pt
Pt+1

. (3.19)

8Recall that capital fully depreciates after use, i.e., δ = 1.
9I verify it in Proposition 3.2
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Agents maximize their utility (3.14) subject to two budget constraints (3.15),

(3.16) and the CIA constraint (3.18). The first-order condition yields

Rt+1 =
πt+1 + ψ

ψ
. (3.20)

The optimal consumer’s choice necessarily satisfies

U ′c1,t
U ′c2,t+1

=
Rt+1

1− µ+ µRt+1
Pt+1

Pt

. (3.21)

3.2.3 The government

The government can choose the money growth rate λt:

M̄t − M̄t−1 = λtM̄t−1, (3.22)

where M̄t = LMt is the total money stock at time t. Public expenditures are given

by the government budget constraint:

PtGt = λtM̄t−1. (3.23)

3.2.4 Equilibrium characterization

A competitive equilibrium can be defined as follows.
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Definition 1 A competitive equilibrium is a sequence of quantities {c1,t, c2,t, Kt, Yt,

Nt, R̃t}∞t=0 and prices {wt, Rt, pt}∞t=0 and a time path of policy {λt}∞t=0 such that i)

consumers maximize utility subject to their budget and cash-in advance constraints

taking prices as given; ii) firms in the final good sector maximize profits choosing

labor and intermediate inputs; iii) intermediate firms’ behaviour is optimal; iv) the

government budget constraint holds; v) all markets clear.

I focus on the features of the competitive equilibrium of the economy under the

hypothesis that the monetary authority pegs the money growth at a constant rate.

Definition 2 A BGP for the economy is an equilibrium sequence where the vari-

ables grow at the same constant factor. In addition, the money growth rate is constant

along the BGP.

The steady-state k∗ is determined by (3.20), that using (3.11) and (3.12) can be

rewritten as:

α2k∗α−1 =
(1− α)αk∗αL+ ψ

ψ
. (3.24)

Let me show that there exists a unique steady state.

Proposition 3.1 There exist a unique steady-state equilibrium with capital intensity

given by (3.24).

Proof The left hand side (LHS) in expression (3.24) is decreasing in k∗, and

limk→0 LHS = ∞, limk→∞ LHS = 0, whereas the right hand side (RHS) is in-

creasing, and limk→0RHS = 1, limk→∞RHS = ∞. Thus, there exists exactly one

crossing point, that is a unique k∗ that solves (3.24).
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Remark Note that solution of (3.24) k∗ can be written as k∗ = k̃(α, ψ, L), where the

k̃ is function of α, ψ, L. For the specific, but generically accepted case α = 1/3, the

steady-state k∗ can be explicitly determined.10

Next, let me derive the BGP growth rate. Firs, rewrite (3.1) and (3.4) respectively

as

Yt = kαt LNt, (3.25)

wt = (1− α)kαt Nt. (3.26)

Let me denote

st = kt+1Nt+1 + ψ(Nt+1 −Nt) + ψNt = (kt+1 + ψ)Nt+1, (3.27)

then, using first-order condition (3.20),11 substitution from consumer’s second budget

constraint (3.16) into the budget constraint when young (3.15) yields:

c1,t +
(
c2,t+1 −

Mt

Pt+1

) 1

Rt+1

+
Mt

Pt
= wt. (3.28)

Plugging CIA constraint (3.18) into this equation I get the intertemporal budget

constraint:

c1,t +
c2,t+1

Rt+1

(
1− µ+ µRt+1

Pt+1

Pt

)
= wt. (3.29)

10Equation (3.24) can be rewritten as (1−α)αLk∗+ψk∗1−α−α2ψ = 0. Substituting 1−α = l−m
l

and k = xl into this equation I get (1−α)αLx3 +ψx2 −α2ψ = 0, that can be reduced to depressed

cubics t3 + pt+ q, where x = t− ψ
3(1−α)αL , p = − ψ2

(3(1−α)αL)2 , q = 2ψ3

27((1−α)αL)3 −
αψ

(1−α) and can be

solved with Cardano’s method.
11Using (3.20) and the fact that in equilibrium zit = 1, j = 1, 2, 3, the budget constraint when old

can be rewritten as c2,t+1 = Rt+1st + Mt

Pt+1
. Note, that using notation (3.27), the budget constraint

when young is c1,t + st + Mt

Pt
= wt.
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For tractability assume the logarithmic utility specification:

U(c1,t, c2,t+1) = ln c1,t + ρ ln c2,t+1, (3.30)

where ρ ∈ (0, 1) is discount factor. Under this assumption equation (3.21) can be

rewritten as:

c1,t =
c2,t+1

ρRt+1

(
1− µ+ µRt+1

Pt+1

Pt

)
. (3.31)

Combining (3.29) and (3.31) yields

c1,t =
1

ρ+ 1
wt. (3.32)

Using the budget constraint when old (3.16) and CIA constraint (3.18) one can rewrite

budget constraint (3.16) as:

c2,t+1 =
1

1− µ
Rt+1st. (3.33)

Notice that the money held by old agents at the beginning of period t is equal to

the aggregate money supply at date t − 1, M̄t−1 = LMt−1. Using (3.33) the money

stock held by old agents at the beginning of period t is given by

M̄t−1 = LMt−1 = LµPtc2,t = LµPt

(
1

1− µ
Rtst−1

)
. (3.34)

Substituting from (3.11) and (3.27) into (3.34) and rearranging it I have:

M̄t−1

LPt
= Γkα−1

t (kt + ψ)Nt, (3.35)

with Γ = µα2

1−µ .
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In the money market equilibrium demand is equal supply:

LMt = M̄t = (1 + λt)M̄t−1. (3.36)

The real balances held by each young agent at date t is

mt =
Mt

Pt
= (1 + λt)Γk

α−1
t (kt + ψ)Nt. (3.37)

Government consumption is given by:

Gt = λt
M̄t−1

Pt
= λtΓk

α−1
t (kt + ψ)LNt. (3.38)

Using (3.15), (3.26), (3.32) and (3.37) non-monetary aggregate saving can be ex-

pressed as:

st = wt − ct −
Mt

Pt
=

ρ

ρ+ 1
(1− α)kαt Nt − (1 + λt)Γk

α−1
t (kt + ψ)Nt. (3.39)

Substitution for st from (3.27) into (3.39) gives the growth rate of product variety:

gN + 1 =
Nt+1

Nt

=

ρ
ρ+1

(1− α)kαt − (1 + λt)Γk
α−1
t (kt + ψ)

kt+1 + ψ
. (3.40)

In the next proposition I show that there exists a unique BGP.

Proposition 3.2 Assuming that λ < λ̄, µ ≥ µ, and the cost of creating a new variety

ψ is sufficiently low, there exist a unique BGP in which all variables grow at the rate

g∗N = g∗, where λ̄ = ρ
ρ+1

1−α
α+(1−α)L

1−µ
µα
− 1, µ = 1− ρ+1

ρ
(α+(1−α)L)α

1−α .

Proof From (3.25), the growth rate of output can be expressed as

gY + 1 =
Yt+1

Yt
=
Nt+1

Nt

= gN + 1. (3.41)
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Resource constraint is given by Yt = ctL+stL+Gt = (c1t+c2t)L+(kt+1+ψ)Nt+1L+Gt,

where ct = c1t + c2t. From (3.39) and (3.38) st and Gt are proportional to Nt, so that

g∗S = g∗G = g∗N . Let me show that consumption grows at the rate g∗N . Conjecture that

ct grows by the same rate as Nt, i.e., ct+1 = ct(1 + gN) that implies ct = c0(1 + gN)t.

Substituting the equilibrium values for Yt, ct and st in the resource constraint I get:

k∗αL =
c0

N0

L+ (k∗ + ψ)(gN + 1)L+ λΓk∗α−1(k∗ + ψ)L. (3.42)

Therefore, for the initial value of consumption

c0 =
(
k∗α − (k∗ + ψ)(gN + 1)− λΓk∗α−1(k∗ + ψ)

)
N0, (3.43)

the paths {ct, Nt}∞t=0 satisfy the resource constraints with Nt and ct grow at the same

rate g∗:12

g∗ + 1 = gN + 1 =

ρ
ρ+1

(1− α)k∗α

k∗ + ψ
− (1 + λ)Γk∗α−1. (3.44)

Next, I have to find conditions that guarantee positive growth.

As ψ approaches 0, steady-state capital intensity k also approaches zero as can

be seen from (3.24). Let me denote Θ ≡ ρ
ρ+1

(1− α)− (1 + λ)Γ and rewrite equation

(3.44):

g∗ + 1 =
Θk∗α − (1 + λ)Γψk∗α−1

k∗ + ψ
. (3.45)

12An alternative way to show that g∗c = g∗N is as follows. From (3.32), (3.26) and (3.33),(3.27) c1t
and c2t are proportional to Nt, so that gc1t = gc2t = gN , and, consequently, gc = gN .
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By rearranging the expression (3.24) to obtain ψ and plugging it into previous equa-

tion (3.45), after some algebraic manipulations, I get:

g∗ + 1 = k∗α−1(Υ1 + Υ2), (3.46)

where Υ1 = θα2−(1+λ)Γ(1−α)αL
α2−k∗1−α+(1−α)αL

that, for k∗ → 0, approaches to some constant, and,

Υ2 = θk∗1−α

−(α2−k∗1−α+(1−α)αL)
→ 0 when k∗ approaches 0. So that, the expression in brack-

ets (3.46), which is the sum of Υ1, Υ2, approaches some constant, θα2−(1+λ)Γ(1−α)αL
α2+(1−α)αL

.

Hence, the sign of growth rate depend on sign of numerator of Υ1, i.e., I need to

have θα2 − (1 + λ)Γ(1 − α)αL > 0 ⇔ (1-α)α ρ
ρ+1
− (1 + λ)Γ(α + (1 − α)L) > 0

⇔ λ < λ̄ = ρ
ρ+1

1−α
α+(1−α)L

1−µ
µα
− 1. That implies that for sufficiently low ψ and λ < λ̄

the growth rate is positive.

Finally, I have to provide the condition under which the CIA constraint is binding

along equilibrium. This condition corresponds to the property that the rate of return

on money is dominated by the rate of return on assets Pt
Pt+1
≤ Rt+1.

Using (3.35) and (3.11) the last inequality can be rewritten as

Rt+1Pt+1

Pt
= α2(1 + λt)

kα−1
t (kt + ψ)Nt

(kt+1 + ψ)Nt+1

≥ 1. (3.47)

Using (3.27) and (3.39) I have

(kt+1 + ψ)Nt+1 = (
ρ

ρ+ 1
(1− α)kαt − (1 + λt)Γk

α−1
t (kt + ψ))Nt. (3.48)

Substituting it into (3.47) and rearranging it produces

ρ(1− α)

α2(ρ+ 1)

kαt
kα−1
t (kt + ψ)

≤ (1 + λt)(1 +
Γ

α2
). (3.49)
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Denote the left-hand side and the right-hand side of (3.49) by LHS and RHS re-

spectively. Substituting expression for ψ, that has been obtained by rearrangement

of (3.24), ψ = (1−α)αkαL
α2kα−1−1

, into the left-hand side of (3.49), gives

ρ(1− α)

α2(ρ+ 1)

kαt
kα−1
t (kt + ψ)

<
ρ

ρ+ 1

1− α
(α + (1− α)L)α

. (3.50)

Let me denote A = ρ
ρ+1

1−α
(α+(1−α)L)α

. In (3.50) I have shown that LHS < A. I found

above that one of conditions that guarantees positive growth rate is λ < λ̄, so using

introduced notation λ ∈ (0, Aα2

Γ
− 1).13 Then, (3.49) is satisfied for λ ∈ (0, λ̄) if

A ≤ 1 + Γ
α2 . Given the expression of Γ and A, the condition under which the rate of

return on asset dominates the rate of return on money is

µ ≥ µ = 1− ρ+ 1

ρ

(α + (1− α)L)α

1− α
. (3.51)

Proposition 3.3 The growth rate is decreasing in the money growth rate λ.

Proof Taking the derivative of (3.44) with respect to λ gives the result.

3.3 Patent breadth and growth

In the previous section, I prove the existence of uniquely determined BGP for the case

when breadth protection is complete, that is the case when a patentee can charge an

unconstrained monopolistic price. In this section, I analyse how changes in patent

policy impacts the growth rate of output.

Patent breadth determines how high a price markup each monopolist can charge.

I model patent breadth protection with the parameter η, which limits the ability of

patent holders to charge the unconstrained monopolistic price. Thereby, the patent

breadth is parametrized by the maximum price that the innovator can charge with the

13Note that λ̄ can be expressed as λ̄ = Aα2

Γ − 1.
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patent. Similar modelling approach for patent breadth protection was used (among

others) by Goh and Olivier (2002), Iwaisako and Futagami (2013), and Futagami and

Iwaisako (2007), Chu et al. (2012).

The patentee maximizes profit by charging price p(η) = ηpt(j) with η ∈ (α, 1). A

patent breadth η = α is related to the case where innovator charges a competitive

price and thereby makes no profits. A patent breadth η = 1 is related to the case

where innovator is able to charge the monopoly markup and obtain full monopoly

profit. A patent breadth with α < η < 1 will be the cases where the price that

innovator is forced to charge lower the monopoly price, but still higher competitive

price and innovator is able to make profits.

Price charged by innovator with patent breadth η is pt(η) = ηRt
α

. Incorporation

of patent breadth modifies the equations for the level of intermediate output, (3.3),

and, as result, level of profit (3.12) which become:

kηt =

(
α2

ηRt

) 1
1−α

, (3.52)

πηt = (
η

α
− 1)

α2

η
(kηt )

αL. (3.53)

Modifying the rest of the analysis and taking into account (3.37),(3.39),(3.40) allow

to get the expression for the growth rate:

g∗η + 1 =

ρ
ρ+1

(1− α)(k∗η)α

k∗η + ψ
− (1 + λ)Γ(k∗η)α−1 1

η
, (3.54)

where k∗η is steady state capital intensity and is determined by (3.20) which can be

rewritten as14

α2

η
(k∗η)α−1 =

( η
α
− 1)α

2

η
(k∗η)αL+ ψ

ψ
. (3.55)

14This equation is analogue of equation (3.24).

112



Next, I derive the effect of changes in patent and monetary policies on growth rate.

Proposition 3.4 The growth rate g is increasing in patent breadth η and decreasing

in the money growth rate λ. Increasing patent breadth weakens the negative effect of

the money growth rate on the economic growth rate.

Proof15 First, let me consider ∂k∗

∂η
. By the implicit function theorem

∂k∗

∂η
= − ∂F/∂η

∂F/∂k∗
, (3.56)

where F is obtained by rearranging (3.55):

F = (
η

α
− 1)

α2

η
k∗αL− ψα

2

η
k∗α−1 + ψ = 0. (3.57)

Taking the partial derivative of F with respect to η yields ∂F/∂η = α2

η2
k∗αL(1+ψ

k
) > 0,

with respect to k∗ gives ∂F/∂k∗ = α2

η
k∗α−1

(
(η−α)L+ (1−α)ψ

k
)
)
> 0. Substituting

these expressions into (3.56) I find

∂k∗

∂η
= −

k∗(1 + ψ
k∗

)L

η(1− α)
(
η−α
1−αL+ ψ

k∗

) , (3.58)

so that k∗ is decreasing in η.

Next, differentiating expression for the growth rate (3.54) with respect to η, I

obtain:

∂(g∗ + 1)

∂η
=

ρ(1− α)

(ρ+ 1)(k∗ + ψ)2

∂k∗

∂η
k∗α
(
α(
ψ

k∗
+ 1)− 1

)
− 1 + λ

η
Γk∗α−1

(
− (1− α)

∂k∗

∂η
k∗−1 − 1

η

)
.

(3.59)

The sign of the first term depends on the sign of the term in brackets, α( ψ
k∗

+ 1)− 1.

From (3.55), ψ = (η−α)αk∗αL
α2k∗α−1−η , then ψ

k∗
−−−→
k∗→0

(η−α)L
α

. Using this fact, α( ψ
k∗

+1)−1 −−−→
k∗→0

15To ease the notation hereafter I drop superscript η in this section.
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η − 1,16 which is non-positive since η ∈ (α, 1). Thus, because ∂k∗

∂η
< 0, the first term

in (3.59) is non-negative.

Next, consider the second term in expression (3.59). The sign of this term depends

on the sign of the term in the second brackets in (3.59). Let me assume that the term

in the second brackets in (3.59) is non-negative,
(1+ ψ

k∗ )
η−α
1−α+ ψ

k∗
≥ 1. Substituting expression

for ∂k∗/∂η into this inequality and rearranging it yields
(1+ ψ

k∗ )
η−α
1−α+ ψ

k∗
≥ 1 which always

holds since η ∈ (α, 1). Hence, the second term in (3.59) is always non-positive.

Thus, the first term is increasing in patent breadth η, whereas the second is de-

creasing. Strengthening patent protection affects growth in two opposite directions.

Intuitively, stronger patent breadth increases monopolistic profits, providing more

incentives for R&D – this is the positive effect of IPR protection on growth. On the

other hand, a larger patent breadth raises the price of intermediate goods, which in

turn increases the profit. Under the lab-equipment R&D specification the value of

innovation, ψ, is independent of the patent breadth . As a result, from (3.20), an

increase in monopoly profits increases the equilibrium rental rate Rt+1. The higher

rental rate motivates young to save less, i.e., in their young age agents have less in-

centives to invest in patents and capital.17 Moreover, increasing η raises real balances

held by agent thereby lowers investment in capital accumulation and research. This

is a negative effect of patent protection on growth.

To find sign of ∂(g∗+1)
∂η

, I rewrite (3.59) using (3.58) as

∂(g∗ + 1)

∂η
=
∂k∗

∂η
k∗α

[
ρ(1− α)

(ρ+ 1)(k∗ + ψ)2

(
α(
ψ

k∗
+ 1)− 1

)
+

1 + λ

η

(1− α)Γ

k∗2
−

1 + λ

η2

Γ

k∗2

(
η(1− α)(η−α

1−α + ψ
k∗

)

1 + ψ
k∗

)]
. (3.60)

16Hereafter it is without loss of generality to assume that L ≡ 1.
17Alternatively, this effect can be explained (see Diwakar et al. (2019)) as shift from old to young

saving when patent breadth is incomplete. As indicated by Diwakar et al this effect is similar to
income transfers from old to the young in Jones and Manuelli (1992) paper.
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The sign of ∂(g∗+1)
∂η

depends on sign of term in square brackets in (3.60). Let me show

that this term is negative:

ρ(1− α)

(ρ+ 1)(k∗ + ψ)2

(
α(
ψ

k∗
+ 1)− 1

)
+

1 + λ

η

(1− α)Γ

k∗2
−

1 + λ

η2

Γ

k∗2

(
η(1− α)(η−α

1−α + ψ
k∗

)

1 + ψ
k∗

)
< 0. (3.61)

Rearranging (3.61) yields

1 + λ

η
Γ

(
1− η−α

1−α + ψ
k∗

)

1 + ψ
k∗

)
<

ρ

(ρ+ 1)

k∗2

(k∗ + ψ)2

(
1− α(

ψ

k∗
+ 1)

)
. (3.62)

The right-hand side of (3.62) is ρ
(ρ+1)

k∗2

(k∗+ψ)2

(
1− α( ψ

k∗
+ 1)

)
−−−→
k∗→0

ρ
(ρ+1)

(
α
η

)2
(1− η),

while the left-hand side is 1+λ
η

Γ

(
1− η−α

1−α+ ψ
k∗ )

1+ ψ
k∗

)
−−−→
k∗→0

1+λ
η

Γα−2α2−ηα
(1−α)η

. From Proposition

3.2, λ̄ = ρ
(ρ+1)

α(1−α)
Γ
− 1,18 thus 1 < 1 + λ < ρ

(ρ+1)
α(1−α)

Γ
. Using this I get

1 + λ

η
Γ
α− 2α2 − ηα

(1− α)η
<

ρ

(ρ+ 1)

α(α− 2α2 − ηα)

η2
.

So that if

ρ

(ρ+ 1)

α(α− 2α2 − ηα)

η2
<

ρ

(ρ+ 1)

(α
η

)2
(1− η). (3.63)

then LHS of (3.62) less than RHS of (3.62). It can be easily shown19 that (3.63)

always holds, therefore the expression in square brackets in (3.60) are negative, and,

as a result, ∂(g∗+1)
∂η

> 0.

The second statement of the proposition follows straightforwardly from taking

the derivative of (3.59) with respect to λ. Intuitively, monetary expansion (higher λ)

18Note that it can be easily shown that the condition for λ̄ in the current case (η ∈ (α, 1)) is the
same as in the case when η = 1 in Section 3.2.

19Rearranging 3.63 yields 2α2 > 0.
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raises the cost of holding money and, consequently, households reduce R&D invest-

ment and capital accumulation, which in turn decreases the growth rate.

To see why a broader patent breadth mitigates the negative effect of money growth,

note that the term in the second brackets in (3.59) is non-negative. So that, it is

immediately clear from (3.59) that increasing η weakens the negative effect of money

growth.

3.4 Conclusion

In this paper I examine the mutual effect of patent and monetary policy on economic

growth. Several studies that analyze this effect focus on economies of infinitely-lived

homogeneous household, while the implications of inter-generational trade in patents

and life-cycle saving motive are unexplored.

I show that within the framework of an overlapping generation model with a cash-

in-advance constraints strengthening patent protection increases the growth rate of

output. Monetary expansion, on the other hand, decreases the growth rate of output.

The magnitude of the last effect depends on the degree of patent protection. In

particular, a broader breadth of protection weakens this effect.

The study has a number of extensions that appear to be an interesting area for

future research. As one example, the model could be used to explore the impact

of patent length. As another extension, I could consider knowledge-driven R&D

specification, as well as incorporate a capital-producing sector that allows to examine

the effect of intellectual property rights protection on innovation and accumulation

of physical capital separately.
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