The Lagrangian multiform approach to

integrable systems

Duncan Sleigh
Department of Mathematics

University of Leeds

A thesis submitted for the degree of

Doctor of Philosophy

August 2021



The candidate connfirms that the work submitted is his own, except where
work which has formed part of jointly-authored publications has been included.
The contribution of the candidate and the other authors to this work has been
explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of others.

Chapters 2, 3 and 4 are based on the publications [1], [2] and [3] respectively.
For the publications [1] and [3], the candidate was responsible for the concepts,
proofs and initial write-up, whilst the co-authors offered corrections. The con-
cepts of [2] were developed in discussion with the co-authors. The candidate was
responsible for all proofs and, with the exception of the introduction, the initial

write-up.

This copy has been supplied on the understanding that it is copyright ma-
terial and that no quotation from the thesis may be published without proper

acknowledgement.



Acknowledgement

The author is very grateful to Frank Nijhoff and Vincent Caudrelier for the many
insightful discuissions and suggestions offered during the production of the work
contained in this thesis. He also acknowledges the financial support from the

School of Mathematics.



Abstract

A Lagrangian multiform enables the multi-dimensional consistency of a set of
PDEs to be captured at the variational level. We offer a new perspective on
the multiform Euler-Lagrange equations in terms of the variational derivative of
the exterior derivative of a Lagrangian multiform and present for the first time
in their full generality the multiform Euler-Lagrange equations for discrete La-
grangian multiforms. Then, by considering the closure property of a Lagrangian
multiform as a conservation law, we use Noether’s theorem to show that every
variational symmetry of a Lagrangian leads to a Lagrangian multiform. In doing
so, we provide a systematic method for constructing Lagrangian multiforms for
which the closure property and the multiform FEuler-Lagrange both hold. We
present three examples, including what was at the time the first known example
of a continuous Lagrangian 3-form: a Lagrangian multiform for the Kadomtsev-
Petviashvili equation. We show that the Zakharov-Mikhailov Lagrangian struc-
ture for integrable nonlinear equations derived from a general class of Lax pairs
possesses a Lagrangian multiform structure. We show that, as a consequence of
this multiform structure, we can formulate a variational principle for the Lax pair
itself, a problem that to our knowledge was never previously considered. As an
example, we present an integrable N x N matrix system that contains the AKNS
hierarchy. Finally, we present, for the first time, a Lagrangian multiform for the
complete Kadomtsev-Petviashvili (KP) hierarchy: a single variational object that
generates the whole hierarchy and encapsulates its integrability. By performing a
reduction on this Lagrangian multiform, we are able to obtain Lagrangian multi-
forms for the Gelfand-Dickey hierarchy of hierarchies comprising, amongst others,

the Korteweg-de Vries and Boussinesq hierarchies.
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Chapter 1

Introduction to continuous

Lagrangian multiforms

1.1 Introduction

Multidimensional consistency is a key feature of integrable systems. This is the
idea that the defining equations of the integrable system are members of com-
patible hierarchies of equations in terms of an, in principle, arbitrary number of
independent variables, which can be simultaneously imposed on the same set of
dependent variables. Alternatively this can be interpreted as the existence of an
infinite hierarchy of symmetries for those equations. From this point of view, the
integrable system is the collection of all these compatible equations, i.e., we con-
sider the integrable system to be the entire multidimensionally consistent system
of equations. The traditional variational approach involves a Lagrangian that is

a volume form, i.e.,

ZL(x,u™)dzy A .. Aday, (1.1)

on a k-dimensional base manifold. We use the notation u(™ to represent the
dependent variable u and its derivatives with respect to the independent variables
z;, up to the n'™ order. This can only give as many equations of motion as
there are components of u. A system of multidimensionally consistent equations

can be represented by a set of Lagrangians, but this captures nothing of the



1.1 Introduction

integrability of the system. Lagrangian multiforms, first conceived of in [4], allow
a compatible set of Lagrangians to be combined into a single variational object
that not only yields the relevant compatible equations, but also encapsulates the

multidimensional consistency of those equations!. A Lagrangian multiform

1<ir <..<ip<N
is a k-form in an N dimensional base manifold with £ < N, subject to the
following variational principle. We require that any u that is a critical point of

the action

Slu; o] :/L(x,u(")) (1.3)

must be a critical point for all possible surfaces of integration ¢. This is equiv-
alent to the requirement that v must satisfy the multiform Euler-Lagrange
equations given by ddL = 0 (see Section 1.3.1). Furthermore we require that any
interior deformation of the surface o must leave the critical action S unchanged.
In other words, on the equations defined by ddL = 0, we require that the differ-

ential form L is closed, i.e., that dL = 0.

Section 1.2 gives a brief overview of the early development of Lagrangian
multiforms, and is followed by Section 1.3 which deals with the multiform Euler-
Lagrange equations in greater detail. Chapter 2 is largely based on [1] and ex-
plores the link between variational symmetries and Lagrangian multiforms. In
Chapter 3, based on [2], we present a Lagrangian multiform resulting from the
Zakharov-Mikhailov Lagrangian [5] that reduces to give a Lagrangian multiform
for a general class of Lax pairs. In Chapter 4, based on [3], we present a La-
grangian multiform for the complete KP hierarchy and perform a reduction on

this multiform to obtain Lagrangian multiforms for the Gelfand-Dickey hierarchy.

'Both continuous and discrete Lagrangian multiforms were introduced in [4]. Our main
focus will be continuous Lagrangian multiforms.
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1.2 Early development of continuous Lagrangian

multiform theory

In this section, we review what was known about Lagrangian multiforms prior to
the commencement of this project. As already mentioned, Lagrangian multiforms
were first introduced to the world in [4]. This first paper was mainly focused on
discrete Lagrangian multiforms (in particular Lagrangian multiforms relating to
the ABS equations) but continuous multiforms are discussed and two examples

are given: the continuous 2-form

> Lpdt Adt; (1.4)
i<j
with
1 /1 7+ 13
Lij) = —— (—(t? - t?)wfitj + (n?wf — nfwfj) + T%(”j(ﬂti — niwtj)2> (1.5)
nin; \ 2 ti —t;

for a non-autonomous system of mutually compatible linear PDEs, and also the
continuous 2-form for the KdV generating PDE [6], with

1 Ul 1 U, U,
Ly = = (t; — t;)— 20 2L, 1.6
(i5) 2( J) UtiUtj + 2(t2 _ t]) (n] Utj + U Utl) ( )

It was observed that in order for a Lagrangian multiform to represent a multidi-

mensionally consistent system, it must obey a closure relation; in the case of a
2-form this will be of the form

Dy, Zjky + Di; Liwi) + Dy, L) = 0 (1.7)

which must hold on the equations of motion of the multiform. If this relation
holds then Stokes theorem tells us that the action

7 i<y
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is only dependent on the boundary of the surface of integration o, so it is in-
variant to deformations of the interior of o. The requirement for a Lagrangian
multiform to be closed (on the equations of the multiform) is explained through
the perspective of a variational principle in [7] and again in [8], where the action

functional S of a Lagrangian 1-form

L= ﬂl)dtl + &Q)dtQ (19)

is evaluated over a parameterised curve I' : s — (t1,%2). The action

Slu(ti, t2); ] = /»E/ﬂ(l)dtl + Zlo)dly
. (1.10)

~ [ (Zota) ) G+ Zinfia(). o) 2

is now considered a functional of both the dependent variable v and the curve of
integration I'. I' can be deformed by letting t; — t; + dt; and ty — ty + 0ty with

dt1(s0) = d0t1(s1) = 0 and dta(sg) = dta(s1) =0 (1.11)

i.e., the variations leave the end points fixed. Applying the usual variational

formalism leads to

0Ln) 0L
oty Oty

i.e. the condition that the 1-form is closed and that the action S is invariant

(1.12)

under such variations of I'.  The multiform Euler-Lagrange equations (referred
to as the generalized Euler-Lagrange equations) are introduced for the first time
in [7] (and corrected in [8]) where they are derived by varying the dependent
variable u(t1,t) in the multiform, and expressing derivatives of Ju in terms of a
component parallel to I' and a component perpendicular to I'. The case where L
has no 2" order of higher derivatives of u is considered: the component parallel

to I' gives
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(L) 2 e 0y )

ds \ |[dt/ds|]2[\ds /) du; = ds ds \ Ouy, Ouy, ds/  Ouy,
_0Zwdh  0Zpdly _
Ju ds ou ds (1.13)
1.13
whilst the component perpendicular to I' gives
(G2) 0 | dudl OAy _OZa) _(dhyi0Z _ (g
ds/ Ouy, — ds ds \ Ouy Ouy, ds/ Ouy, ' '

Since these relations hold for any curve I' it follows that, in addition to the usual
Euler-Lagrange equations for ;) and %),
0L 0Ly

= 1.1
3ut1 3ut2 0 ( 5)

and

0Ln) 02

autl (9ut2 )

These relations are generalized in [9] to the case of n component 1-forms depend-

(1.16)

ing n time components t1,...,t,. Two examples of Lagrangian 1-forms are given
in [8] where the closure relation and multiform Euler-Lagrange equations are used
to obtain the potential terms of Lagrangians for the full elliptic Calogero-Moser

system and the full elliptic case of the Ruijsenaars-Schneider model.
In [10] a Lagrangian 2-form

L= .,E/ﬁ(lg)dtl AN dtg + 95/0(23)(1252 AN dtg + .,E/ﬂ(g,l)dtg A dtl (117)

(again with no 2"¢ order of higher derivatives of u) is considered. The surface of
integration ¢ is parameterised such that o : t = t(r,s), (r,s) € Q € R? so the

action
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& Ot t))
= | L= B S i V4 ) 1.1
Sfu.o)= | //Q S (i”(m s )drds (1.18)
The closure relation

Dy, Z(23) + Diy Lz1) + Dy Loy = 0 (1.19)

is obtained by considering variations of the independent variables t;, t5 and t3.

The multiform Euler-Lagrange equations

3 [3(%%‘) 0Lij) 2(5(%%‘) txn ag(z‘j))

~—~ L J(r,s) Ou or\ o(r,s) ||t, x ts]] OVu

1<) (120)
0 <8(tz,tj) t, Xn 802”@))] -

T s\t s) To, <t ova
and
t“t 8.2”(1])
1.21
Z o(r oVu =0 ( )

are obtained by considering variations of the dependent variable u parallel to o
and perpendicular to o respectively. Here n is the unit normal vector to the

surface t given by
B t, X tg
[t < b1
It follows from (1.20) and (1.21) that, in addition to the usual Euler-Lagrange

equations for each Z;;

(1.22)

0L ij)

Pue. = 0 (1.23)

when k # ¢, 7 and
0Lty | 0Lin

= 1.24
8Uti 8utk 0 ( )

for all distinct ¢, 7, k. These relations hold for Lagrangian 2-forms depending only

on the first jet. Suris and Vermeeren [11] generalized these results to Lagrangian
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multiforms' depending on arbitrarily high jets. Their methodology required the
approximation of the smooth surface of integration o with a stepped surface.
In order to present their results we must introduce the following multi-index

notation. We let I = (iy,...,iy) and define

ur =Dru = (ﬁ(Dxa)"a)u. (1.25)

a=1
We let iy = (i1,...,0k41,...,0n) and define |I|= 4y + ...+ iy. Then, for La-

grangian 1-forms

N
LY =" Zdt; (1.26)
i=1

Suris and Vermeeren derived the relations

0iLi
. W —0 vIgi
Ur
1.27
6ty _ 0525 (1.27)
(5uh- (5qu
where the variational derivative
0i-Z(s) 0L
= —1)*D* , 1.2
Sar = 2 (DD (1.28)
a>0
In the case of Lagrangian 2-forms
N
L® = 3" Zpdt; Adt;, (1.29)
1<i<j

they derive that the multiform Euler-Lagrange equations are given by

'Which they refer to a pluri-Lagrangian systems.
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il C) Ry ) PN
5U[
0ijLlj)  OwLlin) .
= VI
Sur; S, Zi (1.30)
0;:.Lii 0Ll OriLhi
J=20y) | Dik=EGR) | TR D oy
5U1ij 5U1jk OUr
where the variational derivative
0iLij) L)
W= ig) 1)t paph Y 1.31
(5U[ a%;()( ) o aU]iajB ( )

In the same paper, they identified that ddL = 0 on critical points u of a La-
grangian multiform L, but did not identify that the equations given by ddL = 0
are equivalent to the multiform Euler-Lagrange equations (i.e., those given in
(1.27) for a 1-form and those given in (1.30) for a 2-form). They also present
a Lagrangian multiform for the entire PKdV hierarchy; the first example of a

Lagrangian multiform for an entire integrable hierarchy.

1.3 The multiform Euler-Lagrange equations

In this section we derive the multiform Euler-Lagrange equations for both con-
tinuous and discrete Lagrangian k-forms. First, we follow the argument given
in [11] to show that the multiform Euler-Lagrange equations for a Lagrangian
multiform L are given by ddL = 0. We then demonstrate how the equations given
by ddL = 0 are equivalent to a set of equations in terms of variational derivatives
(that include the usual Euler-Lagrange equation for each Lagrangian coefficient
in the multiform). In the continuous case, this was first shown in [12]; here we
present our own proof that first appeared in [1], as well as an alternative proof
that makes explicit the link between the multiform Euler-Lagrange equations in
terms of variational derivatives and the coefficients of dL. In the discrete case we
present for the first time how the equations given by ddL = 0 can be expressed

in terms of variational derivatives.
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1.3.1 The multiform Euler-Lagrange equations given by

odL =0
We let
L= Z cgfﬂ(ll__lk) d[Ell VANPIRAN dl‘lk. (132)
1<l <...<lp <N
be a k-form on a manifold of NV independent coordinates x4, . .., xy and dependent

variable u. We will show that u is a critical point of L over every surface of
integration if and only if ddL = 0 by following the argument given in [11]. We
assume that L contains terms up to n'* order derivatives of u, (i.e. L depends on
ur with |/|< n). Let B be an arbitrary k£ + 1 dimensional ball with surface 0B.

We consider the action functional S over the closed surface 0B such that

Sl = ng L (1.33)

We then apply Stokes” theorem to write S in terms of an integral over B:

Slu) = /BdL (1.34)

and we look for solutions of

5S = / SdL = 0 (1.35)
B

Since this must hold for arbitrary variations (i.e. with no boundary constraints)
for every ball B, it follows that u is a critical point of L if and only if the integrand
odL = 0. If

L= ) Ly dzy A Aday, (1.36)

1<ii<...<ix<N
is a k-form on a manifold of N independent coordinates x4, ...,z y and dependent

variable u, then

dL = S Avnda AL Ada,, (1.37)

1S11<<Zk+1§N

where the A"+ depend on the .Z;, ;) in the usual way, i.e.
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k+1

Ail“.ik“ - Z(_l)k(a+1) D$ia "%ia-‘rlmikJrlilmia—l)’ (1'38)
a=1

The operator § acts on A%++1 to give

o QAN ikt1
YA = ———duy, 1.39

where [ is a multi-index as defined in (1.25), so

odL = > SA™Hrdy, AL Ady,,

1<) <...<ipy1 <N

. 1.40)
aAn...ZkJrl (
— > Za—wéul/\dxil A Adg,

1<i1 <. <ipg1 <N T

Therefore, the equations given by ddL = 0 are precidcely the same as those given
by

8Ai1...ik+1
811,]
forall 1 <i; <... <,y < N and all I.

=0 (1.41)

1.3.2 The multiform Euler-Lagrange equations for a k-

form in terms of variational derivatives

For a fixed iy,...,i441, we shall write Z{5) to denote L. ., iy rir.ia_y)- We
define the variational derivative with respect to u; acting on £
0L a) 0L
= —-D 1.42
= 2D (142
Jio =0

where I is the same N component multi-index introduced in (1.25) representing

derivatives with respect to x1, ..., xy, and the multi-index J is such that compo-
nents j; = 0 whenever i # iy,... 15,1, i.e. J represents derivatives with respect
to z;,,..., 2, As aresult, the operator

10



1.3 The multiform Euler-Lagrange equations

N
(-D)s = [J(-Da.)". (1.43)
i=1
We define that —— % = (0 in the case where any component of the multi-index [
Ur
is negative. Note that by this definition, the variational derivative of

2

the variables x;, ,,...%;_, @ ..., x;,_,, even though derivatives with respect to

Gas1oipirir.ia_1) With respect to us only sees derivatives of u; with respect to

other variables may appear in £, i, i1...ia_1)-

Theorem 1. The dependent variable u is a critical point of the k-form L as
defined in (1.36) if and only if for all iy, . . .ig11 such that1l <iy < ... < iy <N,
and for all I,

k+1
0L
—1)eR =@ 1.44
;( ) Sung, (1.44)

In order to prove that these are the multiform EL equations, we will require the

following lemma:

Lemma 2. Let 1 <4 < ... < i1 < N be fired. For all multi-indices I,

a&@) 5%&)
= 1.4
(9u[ Z DJ (5UIJ ( 5)
Ji<l
Jie =0

where the summation is over all multi-indices J as defined for (1.42), such that

the it component of J is zero and the non-zero j; are equal to 1.

Proof. We first notice that the partial derivative on the left hand side of (1.45)
appears only once in the sum on the right hand side. We now need to show
that all other terms that appear on the right hand side of (1.45), which are all

of the form Dy 5 @) for some multi-index A, sum to zero. To show this, we
UTA

Z(a)
. . UIA .
We notice that this term appears exactly once when |J|= 0 with a factor of

(1), exactly (7) times with a factor of (—1)*! when |J|= 1, exactly (})

consider the term D4 , and let r be the number of non-zero entries in A.

11
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times with a factor of (—1)+2 when |.J|= 2 etc... In total, this term appears
with a factor of 3% 7 ((—=1)"(}). It can easily be seen that this sum is zero by
considering the binomial expansion of (1 —1)".

]

Proof. (of Theorem 1) We have already shown that u is a critical point of L over

every surface of integration if and only if ddL = 0. Since

O AN h+1
sdL = > > a—wéuf Adzi, A Ada,,, (1.46)

1S11<<’Lk+1§N I

the set of equations given by ddL = 0 are equivalent to those given by

aAi1...ik+1

=0 1.47
9u; (1.47)
forall 1 <1 <... <1, < N and for all I.
In order to proceed, we must show that, for any choice of 1 < i3 < ... <
ikr1 < N, (1.47) holds if and only if VI,
k41
0L a
S (=1 <, (1.48)
a=1 5ul\io‘

To do this, we first show that (1.48) holds for |/|> n. We then use an inductive
argument to show that if (1.48) holds for |I|> m then it also holds for |I|= m.
The converse (that (1.48) == (A.5)) is then easily seen from the intermediary
steps of the proof.

We begin by (arbitrarily) fixing 1 <i; < ... < 43413 < N and noticing that for
|I|> n + 2, (1.48) holds. In fact all terms are zero since, by definition, there

are no n + 1 order derivatives in our multiform. We now consider the relation

O AN k+1
———— =0 in the case where |I|=n + 1. In this case we find that

8U[
pA- KL gg
“ou, > (=1 kﬂau—[i-) (1.49)
a=1 la

since there are no n + 1 order derivatives in the Za)- By setting this equal to

12
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zero, we see that (1.48) holds in the case where |/|=n + 1.

Our inductive hypothesis is that (1.48) holds for |I|> m. We now consider the

aAil---ik+1
relation ———— = 0 in the case where |I|=m. We now notice that
ur

8Ai1...’ik+1 k+1

81&[ — 8U
k+1
_ i<_1 ki1 | 0L &) 0L )
o 811,[\2‘& « 8u[
k+1
0%, 0.%
I ak+1{ (@) D, <a>}
azl( " . XJ: " oury
I= (1.50)
k+1
A 0.Z
_ Yk { @ . ¥ p, }
;( ) au[\za ; J5U1J\za
i<l
Jia=1
k+1
0% 0L
N ak+1{ <a>}+ Dkt 0@
;( ) dup, ; ;( ) Our\i
§i<1l Jia>0
|J]>0

where we have made use of (1.45) in the third line, re-labeled J in the fourth line
and changed the order of the summation in the last. We now apply the inductive
hypothesis to get

aAil...ik+1 k+1 N agd a (53@
Tou, > (=1 kﬂ{ﬁi-)} + >0 ) (-1 kDJ—(?

a=1 7 P 6UIJ\z
ji<l Jia=0
|J|>0
k+1 (1.51)
=> (-1 O"f“{ D, } 0.
;( ) 8ul\za Z 5UIJ\1
]z<1
]la*O
|J|>0

Finally, we use (1.45) to express this as

13
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G A K
BT Y el <1-52>
a=1 to

and we have shown that (1.48) holds for |/|= m. By induction, it follows that
(1.48) holds for all I. The converse can easily be seen to hold by following the
steps taken in (1.50), (1.51) and (1.52) in reverse order.

We have shown that the multiform EL equations (1.44) for a given 1 <i; < ... <
ire1 < N are equivalent to A%+ = () for the same 1 < i < ... <ipy < N. It
follows that the multiform EL equations holding for all 1 <4 < ... <1 < N
is equivalent to ddL = 0. O

This proof is an extension to k-forms of the proof of the multiform Euler-
Lagrange equations for a Lagrangian 2-form that originally appeared in [2]. We

reproduce the original proof in Appendix A.

1.3.3 Multiform Euler-Lagrange equations in terms of vari-

ational derivatives of dL

In this section, we present an alternative proof of the multiform Euler-Lagrange

equations for a Lagrangian multiform

1<i1 <. .<ip<N

that also gives explicitly the link between the equations in terms of variational
derivatives of the .%;, ;) and the A"+ defined by

dL = > An-iisndg AL A dag (1.54)

1§i1<...<ik+1§N
In terms of the Z;, ),

k+1

Ai1~~~ik+1 — Z(_l)a+l Dxm ﬂ (155)
a=1

i1eda—1latl-dpt1)"
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1.3 The multiform Euler-Lagrange equations

We recall that the multiform Euler-Lagrange equations are given by ddL = 0. We
again use I to represent the N component multi-index introduced in Section 1.2,
allowing us to express the multiform Euler-Lagrange equations given by ddL = 0
in the form
9 v
8_WA1 k1 — () (1.56)
forall 1 <4 < ... < iy and all multi-indices /. For a fixed choice of 47 ... 7511,

we shall again write .Z(4) to denote £ Again, we define

i1eda—1latl-lht1)"

0La) )
= -D 1.57
= 2D (157
Jia =0
where the multi-index J is such that components j, = 0 whenever « # iy, ..., ig11,
i.e. J represents derivatives with respect to w;,,...,x;_, only. We define that
0L 4
5 @) — 0 in the case where any component of the multi-index I is negative. The
Ur
identity
0 0 9]
—D,, = D, — 1.58
8’&] ‘ 8U[\1 + ! 8U[ ( )
tells us that
0 S 0L a) 0Z(a)
T pieien = N (2q)att % 4D, = 1.59
Our ;( ) <8u1\ia T P Ouy ) ( )
SO
o .. 0 o
ARk — -D Al
5%[ XJ:< )J 8uU
(1.60)
0L 5 0L 5
N (LD 4 a+1< @ | p (a))‘
;( )i ;( ) QUL T\ig @ Quyy

Whenever j;, # 0 in this sum, so J is of the form K7, for some multi-index K,
then

15



1.3 The multiform Euler-Lagrange equations

will appear in this sum. When J = K, the term

0L a)

+(—D)xD,
( )K o auIK

will appear. These two terms cancel, so (1.60) simplifies to

k+1
0% 5
All Akl — a+1 (@)
Z Z ) B
jza =0
k+1
— Z( 1 a+1 5"%‘1)
a=1 5uI\Z°‘
It follows that if (1.56) holds, then
5 . o 5.5
_All...zk+1 — -1 a+1 (@) = 0.
5U[ Z( ) (SU[\ia
We have shown that
5 k41
ddL = A“ Tl — a“ =0
0 = Z &UW

forall 1 <43 <... <1 < N and I. By the identity is given (1.45)

O AN+ SAN TR+
- = D, —
(9U[ Z I (SU[]
Ji<l

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

and it follows that the converse to (1.100) also holds. We summarise this result

in the following theorem:

Theorem 3. For a differential k-form L as given in (1.53), and A%-#+1 qs

defined in (1.55),

16



1.3 The multiform Euler-Lagrange equations

5 k+1 5.
L ppien = N (Lq)ert 2E@) 1.67
(5U[ ;( ) (SU[\ia ( )
The set of equations defined by
5 11041

forall1 <ip < ... <ipy1 < N and I is equivalent to the set of equations defined
by 6dL = 0.

Corollary 4. A corollary of Theorem 7 is that

0 Ai1...ik+1 — (_1)a+1 5ﬂi1"'ia’lia+1'"ik+l) (169)

Oy, ou ’

so the usual Euler-Lagrange equations of each Lagrangian coefficient in L can be

expressed in terms of variational derivatives of the coefficients of dL.

1.3.4 Discrete Lagrangian k-form EL equations

The discrete multiform Euler-Lagrange equations take a very similar form to their
continuous counterparts. Unsurprisingly, much of this section closely mirrors the

previous one where we considered the continuous case.

On a discrete manifold of N independent coordinates ny,...,ny and depen-
dent variable u, we define the shift operator T; such that
T;u(ny, ..., ngy...,ny) =ulng,...,n;+1,...,ny) (1.70)
and the discrete derivative D; such that
Diu=T,u—u (1.71)
We let

L= Y Ly dn, Ao Adny, (1.72)

1<it1<...<ip <N

17



1.3 The multiform Euler-Lagrange equations

be a k-form, such that each .Z;, ;) depends on u and shifts of u up to order M
(without loss of generality, we shall assume that there are no backward shifts).
Therefore

dL = > AvEndng AL Adn, (1.73)

1<i1<...<ipy1 <N

where the A%#+1 depend on the Zi,..ir,) in the usual way, i.e.

k+1

Ai1...ik+1 — Z(_l)k(@-ﬂ) Dia ﬂ (174)
a=1

fat1-lpp101.0a—1)"

For a fixed iy,... 0541, we shall write Za) to denote L, . ixiiiria_1)- We
define the variational derivative with respect to u; acting on £

L) _ 5 (), 2 (1.75)

5114 7 8uu ’ .

Jia =0

where [ is an N component multi-index (iy,...,iy) representing shifts with re-
spect to ny,...,ny such that

ur = Tru=T¢ ... TY u. (1.76)
The multi-indices J are such that components j; = 0 whenever ¢ # iq,..., %11,

i.e. J represents shifts with respect to n;,...,n;_,. Note that by this definition,

the variational derivative of £ y only sees shifts of u; with respect

T+l k4191 ba—1
to the variables n;, ,,...n; ,, 7 ..., ni,_,, even though shifts on with respect

to other variables may appear in Z{;, ., i, i1...ia_1)-

Theorem 5. The dependent variable w is a critical point of the k-form L as
defined in (1.72) if and only if for all iy, . . .ig11 such thatl <iy < ... <ipy <N,
and for all I,

k+1
Z 0L &
a=1 I\i‘"

In order to prove that these are the multiform EL equations, we will require the

following lemma:

18



1.3 The multiform Euler-Lagrange equations

Lemma 6. Let 1 < iy < ... <ip 1 < N be fired. For all multi-indices I,

0L (a) 1y 94
= E — 1.
8U[ ( T )J 5U1J ( 78)
Ji<l
Jia =0

where the summation is over all multi-indices J as defined for (1.75), such that

the it" component of J is zero and the non-zero j; are equal to 1.

Proof. We first notice that the partial derivative on the left hand side of (1.78)
appears only once in the sum on the right hand side. We now need to show that

all other terms that appear on the right hand side of (1.78), sum to zero. We

0L 4
note that all terms on the right hand side of (1.78) are of the form T4 8—() for
Ura
some multi-index A which is of the same form as the multi-index J as defined in
(@)
Oura
an arbitrary A, and let r be the number of non-zero entries in A. We notice that

(1.75). To show that these terms sum to zero, we consider the term T 4

this term appears exactly once when |J|= 0, exactly (’{) times with a factor of
—1 when |J|= 1, exactly (3) times when |J|= 2 etc... In total, this term appears
with a factor of Y°7_(=1)’(%). It can easily be seen that this sum is zero by
considering the binomial expansion of (1 —1)".

]

Proof. (of Theorem 5)
In order for uw to be a critical point of the multiform L, we require that v is a

critical point of the action

S=>"L (1.79)

for any choice of the surface 2. Following a similar approach to the continuous
case, we now apply the discrete analogue Stokes’ theorem as given in [13] and
[14]. We let H be any k + 1 dimensional hypercube in dimensions n;,, ..., n;,,
and let 0H be the surface of H. We define

Sp=> L (1.80)
OH
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1.3 The multiform Euler-Lagrange equations

Then w is a critical point of the multiform L if and only if v is a critical point of

every Sy, i.e. if 65y = 0 for all H. In order to proceed, first note that

k+1

Sp==T; > ((-1)"D;, La)) = £ T A0 =) “dL, (1.81)
a=1 H

We note that since any closed surface B can be composed of hypercubes, (1.81)

can be generalised to obtain

Sp=) L=> dL, (1.82)
0B B

the discrete analogue of Stokes theorem (which, under continuum limit, gives the
continuous Stokes theorem). The requirement that Sy = 0 for all H is equivalent
to the requirement that for all 1 <4y < ... <41 < N and for all I,

0

—— Al — () 1.83
ou, (1.83)

We could stop here, and use (1.83) as our multiform EL equations. Indeed,
this is often the most convenient formulation to use. However, as we did in the
continuous case, we will express this in terms of variational derivatives; by do-
ing so we see more clearly the interplay between the constituent .2, ;) and, for

example, see that a consequence of (1.83) is that E(.Z,. 4,)) = 0 for each .Z{;, _1,)-

For the second part of this proof, we show that, for any choice of 1 < iy < ... <
k1 < N, (1.83) holds if and only if VI,

k+1

5%
S (1) T, 2 =, (1.84)
a=1 5u[\i"‘

To do this, we first show that (1.84) holds for |/|> M. We then use an inductive
argument to show that if (1.84) holds for |I|> m then it also holds for |I|= m.
The converse (that (1.84) = (1.83)) is then easily seen from the intermediary
steps of the proof.

We begin by (arbitrarily) fixing 1 < 43 < ... < i3y < N (along with the
corresponding H), and noticing that for |I|> M + 2, (1.84) holds. In fact all
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1.3 The multiform Euler-Lagrange equations

terms are zero since, by definition, there are no M + 1** order shifts in our
multiform.
Our inductive hypothesis is that (1.84) holds for |I|> m. We now consider the

H :
= 0 in the case where |I|= m.
ur

relation

We now notice that

05, ! L0
gy~ 2V g Die Dl

k+1
:i:( 1)ak T aﬁ/p(a) _a"iﬂ(@)
o1 fe 8’&[\1& 8’&]
k+1
0L 0%
— -1 ak{ Tz (@) _ T—l (@) }
;( ) “ Gul\za ; ( J 5UIJ
(1.85)
k+1
0L, 0L
— -1 ak{ Tz (@) . . 1 (&) }
> T & = B T g
Ji<l
Jia =1
k+1
0% 0L
_ Sy p, 9 } ~ ek, D@
;( ) { « au[\ia ; ; ( ) ( )J\ « 6u]J\ia
§i<1 Jia>0
|[J|>0

where we have made use of (1.78) in the third line, re-labeled J in the fourth line
and changed the order of the summation in the last. We now apply the inductive

hypothesis to get
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1.3 The multiform Euler-Lagrange equations

OSu — ke 0-La)
= —]_ @ :
= 2 { . am} > ST g

]1<1 ]la_o
|J|>0
k+1 (1.86)
0L 0% a
_ -1 ozlc{rI\z _T—l (&) }IO
;( ) ¢ 8U1\za ; ( )J(Sulj\ia
7i<1
jla_o
|J|>0
Finally, we use (1.78) to express this as
95k — k 0-La)
oM _ NT(Zq)ek T, -0 1.87

and we have shown that (1.84) holds for |I|= m. By induction, it follows that
(1.84) holds for all I. The converse can easily be seen to hold by following the
steps taken in (1.85), (1.86) and (A.15) in reverse order.

We have shown that the multiform EL equations (1.77) for a given 1 <i; < ... <
i1 < N are equivalent to 0S5y = 0 for the same 1 < iy < ... < ipy < N. It
follows that if the multiform EL equations hold for all 1 < iy < ... < iy < N

then w is a critical point of the multiform L. O

1.3.5 Discrete multiform Euler-Lagrange equations in terms

of variational derivatives of dL

As we did for the continuous case, we present an alternative proof of the multiform

Euler-Lagrange equations for a discrete Lagrangian multiform

1<iy<..<ip<N
that also gives explicitly the link between the equations in terms of variational

derivatives of the .Z and the A"+ defined by

(i1...i3)
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1.3 The multiform Euler-Lagrange equations

dL = > AvEndng AL Adn, (1.89)

1<i1 <. <ipp1 <N

In terms of the Z;, i),

k+1
AWtk — Z(—l)aJrl D,, ﬂil...ia—l’ioH»lu.ik#—l)' <1'90)
a=1

We recall that the multiform Euler-Lagrange equations are given by ddL = 0.
We again use I to represent the N component multi-index introduced in (1.76),
allowing us to express the multiform Euler-Lagrange equations given by ddL = 0
in the form

O i
a_mA Lokl = () (1.91)
forall 1 <4y < ... < iy and all multi-indices I. For a fixed choice of iy ... 7511,

we shall again write Z(5) to denote £ Again, we define the

il...ia_lia+1...ik+1) .

variational derivative

0L a)

595/”(5[)
= § T , 1.92
(SUI 7 ( )J a’LL]] ( )
Jia=0

where the multi-index J is such that components j, = 0 whenever « # iy, ..., g1,
0%

i.e. J represents shifts with respect to n;,, ..., n;, , only. We define that 5—() =
Ur

0 in the case where any component of the multi-index I is negative. The identity

0 0
— T, =T, —— 1.93
8u1 8u1\z ( )
tells us that
o . AR 0L 0L
A’L1...Zk+1 — E _1 a+1 TZ (CY) . (CY) 194
ﬁul a:l( ) ( « 8u1\ia 8u1 ( )

SO
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1.3 The multiform Euler-Lagrange equations

J

o 0 o
_ 11 Tk+1 — -1 1141
(5’LL[A Z(T >J8U[JA

k+1

g (1.95)
Z Z )a+1 (T~ 895,”(@) aﬁ&)). .
J a=1

aUIJ\ia Oury

Whenever j; # 0 in this sum, so J is of the form Ki, for some multi-index K
then

0L a 0% 4
(T, Ty = = (T ) 1.96
(1)) T o = (1) (1.96)
will appear in this sum. When J = K, the term
0% s
T @ 1.97
Iy (1.97)

will appear. These two terms cancel, so (1.95) simplifies to

Azl gl oz+1 T. (@)
=2 2. )1 T o
jza—O (1.98)
k41
=Y (i, S
a=1 5“[\1(1
It follows that if (1.91) holds, then
k+1
5 0% s
g Al = )21, D =, 1.99
Z “ B, (1.99)
We have shown that
Bl =0 = A ettt D=y 1.100
Z “ Fun, (1.100)
forall 1 <4 < ..

<1 < N and I. Lemma 6 tells us that

24



1.3 The multiform Euler-Lagrange equations

8Ai1---ik+1 B 5Ai1---ik+1
]'zél

and it follows that the converse to (1.100) also holds. We summarise this result

in the following theorem:

Theorem 7. For a discrete differential k-form L as given in (1.88), and A%+
as defined in (1.90),

§ e 0La
A = Y (p)ettr, @ 1.102
5U[ az—;( ) h 5ul\ia ( 0 )
The set of equations defined by
o ..
— A" = () 1.103
o (1.103)

forall1 <i; < ... <igy1 < N and I is equivalent to the set of equations defined
by odL = 0.

1.3.6 Semi-discrete multiform Euler-Lagrange equations

For both the continuous and discrete cases, we used Stokes’ theorem to show that
the multiform Euler-Lagrange equations are given by ddL = 0. The semi-discrete
analogue of Stokes’ theorem is obtained by taking a partial continuum limit (i.e.,
in some, but not all of the independent variables) of (1.82). It then follows that
the multiform Euler-Lagrange equations are again given by ddL = 0. Also, by
combining the proofs given above, it also follows that the equations given by

0dL = 0 in the semi-discrete case are equivalent to the equations given by

k+1
5%
(—1)ttT, =@ (1.104)
o1 ¢ 5U1\z'a

where T;_ is taken to be the shift operator when z;  is a discrete variable and
the identity operator in the case where z; is a continuous variable and [ is a
multi-index representing derivatives in the continuous independent variables and

shifts in the discrete independent variables.

25



1.4 L vs. dL

1.4 L vs. dL

Throughout this thesis we take our working definition to be that a Lagrangian
multiform L is a differential form where dL = 0 on the equations defined by
odL = 0. We generally declare that a Lagrangian multiform L is trivial if the
multiform Euler-Lagrange equations are satisfied by every u or only by the zero
function. If we did not discount such trivial Lagrangian multiforms, then every
differential form with polynomial coefficients in v and derivatives thereof would be
considered a valid Lagrangian multiform. Whilst it may be obvious that such ex-
amples should not be considered true Lagrangian multiforms, there are examples
that lie in a grey area in between; where the multiform Euler-Lagrange equations
place additional constraints on the Euler-Lagrange equations of the Lagrangians
in the multiform, but with a light enough touch to still allow non-trivial solu-
tions. If it were a condition of a Lagrangian multiform that the equations given by
E(Zj)) = 0 (where E is the Euler operator) must not be in any way constrained,
then the majority of the currently known Lagrangian multiforms would fall foul.
For example, in the AKNS Lagrangian multiform we shall give in Chapter 2, the
equations given by E(.%Z;;)) = 0 where 1 < 4,5 are further constrained by the
Euler-Lagrange equations arising from the .Z{;;) and .Z{;;) Lagrangians. Some-
times, as is the case for the Lagrangian multiform for the potential KdV hierarchy
given in [11], we find that the most fundamental equations of the multiform arise

from the multiform Euler-Lagrange equations of the form

0L i) N 0L 1)

5ut1 6ut].

=0 (1.105)

rather than E(.Z;;)) = 0 which only gives us differentiated versions of these
equations. This all leads to a degree of ambiguity as to what exactly any given
Lagrangian multiform is a Lagrangian multiform for. An interesting example of
such a Lagrangian multiform is the Lagrangian 2-form for the KdV generating
PDE given in [4] where

U,.
2 ), 1.106
) (1.106)

In this case, the equation given by E(.Z;;)) = 0 is equivalent to

1
St — 1) +

Uz, 1 NA
Lip =5 - (

U0, 2t —t) \ T,
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1.4 L vs. dL

77/,2 Ut] tQZt] 1 Utitj Utitiutjtg
+ U, 2772 112 tit;
(tz o tj) Us Us ti —t; Uy, Uy, Utj
n?  U? 2 1 Uy,
+ Ut ( : 2_t2 - tlzt] a mj)
n2 Ut‘
—— (U, + U, +2(t; — t;)Uy 4,
Fat g, e e A T )
n2 U
J t
A S U + U, +2(t; — ;) Uy.p,
3 — g, U O 2 )
1 1 1
S N
- Q(ti - tj) b (Utz Utj )’
(1.107)
the generating PDE of the KAV hierarchy [6]. If we define
g Uit U+ Ut
AR = (=)l + () — th) e + (t — i) e 1.108
( J)UtiUtj + ( J k) UtjUtk + ( k )UtkUti ( )
and
BZ.]k ': U o UtitkUtitj . UtitjUtjtk . UtitkUtjtk
Sy, 20, 20,
1 n? n?
—ZUUU i + J 1.109
2 HTh tk<Ut2i<tk‘_ti>(ti —t;)  UZ(ti—t;)(t; — i) (1.109)

+ 2
Up (t; — te)(tr — 1)
then
dL= ) AY*BY*dt; A dt; A dty. (1.110)
1<j<k

As a result, all multiform Euler-Lagrange equations of this multiform are conse-

quences of AY* =0 and BY* = 0 (a surprising consequence is that (1.107), a 1+1
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1.4 L vs. dL

dimensional PDE is given by %, when both AY* and BY* are 2 + 1 dimen-
sional). Therefore, it would be more accurate to describe this as a Lagrangian
multiform for A% = 0 and BY* = 0 rather than for the KdV generating PDE
given in (1.107).

One way to avoid such ambiguity is to shift our focus away from the La-
grangian multiform L and instead consider its exterior derivative dL to be the
main object of interest. As we shall see in all of the new examples given in this
thesis, by factorising the coefficients of dL (as we did in terms of A% and Bk
for the KAV generating PDE), the fundamental equations of the Lagrangian mul-
tiform become apparent. This perspective is used in [15] to define Lagrangian
multiforms . Since our working definition of a Lagrangian multiform (dL = 0 on
the equations defined by ddL = 0) only places conditions on dL, there is a strong
case to be made that dL should be considered to be the main object of study,

rather than the Lagrangian multiform L.

'We note that Vermeeren and Petrera allow a constant term in their definition, since their
definition does not require that dL=0 on the multiform Euler-Lagrange equations
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Chapter 2

Variational symmetries and

Lagrangian multiforms

2.1 Variational symmetries and Noether’s the-

orem

In this section, we shall make use of a version of Noether’s (first) theorem as

presented in [16], where proofs of all statements in this section can be found. We

consider systems with p independent variables x = (z1,...,,) and ¢ dependent
variables v = (u!,...,u4)T. In the rest of this paper, we will often use u to denote
the collection of fields u', ..., u? or the vector (u',...,u?)7.

2.1.1 Generalized and evolutionary vector fields

We consider vector fields of the form

~. 0 ., 0
V:;é-i%+;¢a% (2.1)

i

We say that v is a geometric vector field if the & and ¢, depend only on
x and u. If the & and ¢, depend also on derivatives of u, we say that v is a

generalized vector field. If all of the & are zero, i.e.
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2.1 Variational symmetries and Noether’s theorem

vo = Z@a—a =05 (2:2)

we call VQ an evolutionary vector field with characteristic Q(z,u™) =
(Qi(z,u™), ..., Qq(z,u™))T, where Q(x,u™) is taken to mean that ) may de-
pend on z, u and derivatives of u. The prolongation of an evolutionary vector

field v takes the form

0

= D,;Q,— 2.

prvo=>» D,;Q Jus (2.3)
a,J
where we have used the multi-index notation where .J is the ordered set (j1, ..., j,)
and

D ﬁ(D Y, D 0 +) ug 0 (2.4)

= 2 ) Dy = — ug, = . .

’ i=1 1 z al’z a,J ’ au‘a]

We shall write Ji" to denote (ji,...,5 +7,...,7p), J\k" to denote (ji,...,Jr —
r,...,Jp) and |J| to denote the sum j; + ...+ j,.

Every vector field v in the form of (2.1) has an associated evolutionary represen-

tative v where
p
Qo = o — Y _ &l (2.5)
i=1

2.1.2 Variational symmetries

The vector field v is a variational symmetry of a Lagrangian £ (z, u(™)dz, A ... A

dz, if and only if

prv(Z)+ £ Div{ =DivB (2.6)
for some B(z,u™) = (By(z,u™),..., B,(x,u™))T. For an evolutionary vector
v, this simplifies to

prvo(Z) = DivB (2.7)
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2.1 Variational symmetries and Noether’s theorem

for some B(z,u™) = (By(z,u™), ..., By(z,u™))". A generalized vector field v

is a variational symmetry of .# if and only if its evolutionary representative vy, is.

Finding the variational symmetries of a given Lagrangian is a non-trivial exercise.
Methods for doing so are covered in [16], [17], [18] and [19]. In our approach, we
assume that such a variational symmetry is given (by applying one of those meth-
ods for instance) and we use it as our starting point to construct a Lagrangian

multiform.

2.1.3 Noether’s theorem

In order to introduce Noether’s theorem, we will require the Euler operater E.
We define the Euler operator E to be the g-component vector operator whose a*

component is E, given by

0

o
oug

B, =) (-1)MID, (2.8)
J

The sum is over all multi-indices J = (41, ..., j,). For a Lagrangian ., E(.Z) =0

gives the standard Euler Lagrange equations for .Z. For example, in the case

where p = 2, ¢ = 1 and . contains terms up to the 2"? jet,

iz 0.L 0L o, 0Z 02 92
E($> o % Dl"l 8u$1 D‘m 8%2 _'_Dxl aUmm +Dx1 Dm aU:ma?z _'_sz aumm.
(2.9)

We say that the equations of motion given by E(.Z) = 0 are of maximal rank if
the ¢ x (p + q(“”)) Jacobian matrix

_ (9Ei(2) 9E(2)
JE(ﬁ)-( o, oug (2.10)

is of rank ¢ (i.e. of maximal rank) on the equations of motion given by E(.Z) = 0.

Theorem 8. [Noether] Let vy be an evolutionary vector field with characteristic

Q and £ a Lagrangian density, such that E(Z) is of mazximal rank. Then,

provg(Z) =DivB for some B <= @Q-E(Z)=DivP for some P. (2.11)
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2.1 Variational symmetries and Noether’s theorem

q
where Q) - E = ZQa E,.
a=1

The right hand side of (2.11) is the characteristic form of a conservation law. Since
setting E(.%Z) = 0 defines the equations of motion, this tells us that Div P = 0

on the equations of motion - the usual form of a conservation law.

2.1.4 Finding the components of a divergence

If we are given that an expression A(x,u™) is a divergence (i.e., A = Div B for
some B = (By, By, ..., B,)T, it is often easy to find the components By, by trial
and error. This can also be done algorithmically using the homotopy operator
[16]. First for multi-indices I and J we define

G) B ﬁ (2.12)

where Il =iilio!. . 3,0, Jl= il gl gt and (I\J)!'= (iy — ). .. (4, — jp)l. We
now define the higher Euler operators EZ such that:

E(A) = Z (§> (— D)I\J%- (2.13)

>J
We note that when |J|= 0, the higher Euler operator coincides with the Euler
operator defined in (2.8). Then the homotopy operator H acts on A as follows:

A

H(A(z,u™)) = B = (By,...B,)" (2.14)

with each

By = /0 1 Xq: ZI: B Ly e B A Dl )dA + /O nAQ 0N, (2.15)

where i), is the k" component of I and the [\u] denotes replacing every u® in
E/®(A) with Mu®. So long as A(z,u™) is a divergence, the B defined in this

manner is such that A = Div B.
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2.1 Variational symmetries and Noether’s theorem

Example 9. We let A = ug zuz,. Since E(A) = 0, it follows that A is a

divergence. The only non-zero higher Euler operators are

E™ (A) = T Uzyag
E™2(A) = —ug .
i (4) ’ (2.16)
E S(A) = Ugyzy
E®1"2(A) = uy,.
Then (2.15) tells us that
. ! 1
B, = / U(=MUgyzs) + = Dy (uAUy, ) dA
0 2 (2.17a)
1 1
- Zuxgu:cg - ZUJU/I2$37
. 1 1
By = / U(—= Mgy zg) + = Doy (udtug, ) dA
0 2 (2.17b)
1 1
- Zuzluz;g - Zuuzlmga
and
X 1
B; = / UNUg, 2, AN
10 (2.17¢)
= Euuxm.
For these Bl, Bg and Bg,
Dxl Bl + ng BQ + ng Bg = UgizoUzg = A (218)

as required.
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2.2 Variational symmetries as Lagrangian multiforms

2.2 Variational symmetries as Lagrangian mul-

tiforms

In this section, we shall take the well known results of the previous section, and
apply them in the context of Lagrangian multiforms. We consider the Lagrangian
density .Z on a manifold with p independent, and ¢ dependent variables from the
previous section. In order to be able to apply Noether’s theorem, we require that
the corresponding EL equations E(.Z) = 0 are of maximal rank. If we introduce

a new independent variable x,, independent of xy,...,x,, and the vector field

W = U, - 7 then

ou

prw(Z)=D, ., % (2.19)

Tp+1 :

Also, by reversing the integration by parts that was used to get from . to E(.%)
it follows that

Uy, - B(ZL) =D,,,, £ +DivA (2.20)

Tp+1

for some A, where the z,,; component of A is zero. If () is the characteristic of

a variational symmetry of .Z then Noether’s theorem tells us that

Q-E(Z)=DivP (2.21)

for some P. Adding (2.20) and (2.21) gives us that

(Us,,, + Q) -E(Z) =Div P (2.22)

where P = A+ P so the Zp+1 component of Pis .. We use this idea to construct

Lagrangian multiforms as follows.

Theorem 10. Let Q(z,u™) be the characteristic of a variational symmetry of
the Lagrangian density £ (x,u™) such that £ and Q have no dependence on

Tp1 or derivatives of w with respect to Tpyq. IfFQ = Ug,,, +Q then

Q-E(Z)=DivP (2.23)
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2.2 Variational symmetries as Lagrangian multiforms

for some P = (Py,...P,, Pyy1)", and the p-form L such that

p+1
L=> Zaydzig A Adzyy Adey AL Adeisy with L5 = (—1)7P; (2.24)

i=1

is a Lagrangian multiform. The p + 1 component of P is equivalent (i.e. equal

modulo total derivatives) to L.

Remark 11. A Lagrangian multiform arising from Theorem 10 requires a La-
grangian and a single variational symmetry. Since, in general, a single symmetry
is not a sufficient condition for integrability, it follows that Theorem 10 can give

us Lagrangian multiforms for non-integrable systems.

Proof. The existence of a P that satisfies (2.23) and has . as its p + 1 component
follows from the introduction to this section, equations (2.19) to (2.22). Since @
is a symmetry of E(.Z) we know that the equations Q = 0 and E(.Z) = 0 are

compatible in the sense that there exists a general common solution. Then
dL = (1)’ Div P dzy A ... Adzpy, (2.25)

and it follows that ddL = 0 is equivalent to the requirement that

0
—DivP = 1. 2.2
5a, iv 0 Vv (2.26)

Using (2.23), this gives us that

0 0 ~ ~ 0

—DivP=(—Q ) -EZ | =—EZ 2.27
D= (50-0) B2+ Q- (pE2), (22
and since E(.Z) is of maximal rank (a requirement for Noether’s theorem), the
necessary and sufficient condition for ddL = 0 is that both Q = 0 and E(.Z) =0
hold simultaneously. From the form of (2.23), it is clear that dL = 0 on solutions

of either Q = 0 or E(.Z) = 0. O

Remark 12. If vg is a variational symmetry of a Lagrangian £ dxy A. .. Ndx,, it
is tempting to say that vy is also a variational symmetry of £ since pr 'UQ(,,%) =

Div B for some B. This is not quite correct since B contains a xp41 component.
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2.2 Variational symmetries as Lagrangian multiforms

However, vg is a variational symmetry of Ldry A ... A dr, A drpiq (i.e., the
same £ but now integrated over the coordinates 1, ..., xp.1 instead of x4, ..., xp,

giing an alternative perspective for what is happening in Theorem 10.

Remark 13. Theorem 10 allows us to construct a p+1 dimensional Lagrangian
multiform from a Lagrangian in p dimensions and a single variational symmetry.
It is natural to consider whether, in the case where we have a set of | commuting
variational symmetries, we can iterate the process to find a p + | dimensional
Lagrangian multiform, as was achieved for a class of 1-forms in [20]. In Section
2.2.3 we use Theorem 10 to obtain a multiform that incorporates the first three
flows of the AKNS hierarchy. We also show why, in the case of a Lagrangian 2-
form, it is always possible to obtain a 2 + | dimensional Lagrangian 2-form from
an autonomous polynomial Lagrangian (19 and a set of | commuting variational
symmetries with autonomous polynomial characteristics. A similar argument can
be used for autonomous polynomial k-forms for arbitrary k. Whether or not non-
autonomous, non-polynomial systems can be extended through repeated application

of Theorem 10 remains an open problem.

Remark 14. A Lagrangian p+ 1-form given by the components of P in Theorem
10 gives E(Z) = 0 and Q = 0 and consequences thereof as its multiform Euler-
Lagrange equations. We can also consider the components of P as giving us a
Lagrangian p-form, the multiform Fuler-Lagrange equations of which will give us
E(Z) =0 and Q = 0 and consequences thereof as its multiform Euler-Lagrange
equations. However, unlike the Lagrangian multiform given by Theorem 10, £

will not be one of the Lagrangians of the multiform.

We note that P is not unique. Indeed, any change to P that is equivalent to
adding an exact form to L will also satisfy (2.23). In addition, we can perform
“integration by parts” on the left hand side of (2.23) and the remaining terms

will still be a divergence, e.g.

Q-E(%) = —D,Q-D;'E(Z) and DivP — Div P = Div P—D,(Q-D;' E(.2)).
(2.28)
Such a transformation amounts to adding a double zero to one of the components

of P so the resultant Lagrangian multiform will be essentially the same in that
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2.2 Variational symmetries as Lagrangian multiforms

odL = 0 will give the same equations of motion, and dL = 0 will still hold on these
equations of motion. This idea can be generalized further by noticing that the

“integration by parts” can be carried out on any constituent part of Q - E(Z),

e.g.

Qi Ei(¥) —» -D,Q; D;'Ei(%), (2.29)

whilst leaving the resultant multiform essentially unchanged. The @ in (2.23) isin
evolutionary form with respect to x,; i.e. it is in the form u,,,, +Q(z, u™) =0
where Q(z,u™) does not contain z,,; or derivatives of u with respect to z,,;.
If, by using the above operations we are able to put E(.%) into evolutionary form
with respect to some z;, and neither z; nor derivatives of u with respect to x;
appear in Q) then we can reverse the roles of ) and E(Z) whilst essentially leaving
the resultant multiform unchanged. This idea forms the basis of the following

theorem.

Theorem 15. Consider the Lagrangian and variational symmetry as given in
Theorem 10 and let j € {1,...,p} be fized. If there exist constants a and multi-
indices Jy, for k =1,...,q where the p+ 1 and j components of each Jy are zero,
such that

ap D} ER(Z) =0 (2.30)

is in evolutionary form with respect to x;, then the q components of E(Z3)), up

to re-ordering, are precisely the q expressions

1 ~
— Dy, Q. (2.31)
Qg

Proof. 1f there exist multi-indices Ji, and constants ay, as described that put E(.Z)
into evolutionary form with respect to x;, then applying ay, Djkl to Ex(%) and

é Dy, to Qp in (2.23) amounts to performing integration by parts on the products

QeEL(Z), ie.

1

ag
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2.2 Variational symmetries as Lagrangian multiforms

for some C}%. We note that the j and p + 1 components of C} are zero since the

7 and p 4+ 1 components of each J, are zero. It follows that
i ~ .
E — Dy, Qr-ax D} Ex(£) = Div P (2.33)
ay
k=1

where P = P+ >4, Cy. Now that each ay Djkl Ex (%) is in evolutionary form, it
follows from Noether’s theorem that the corresponding characteristics represent

variational symmetries of i Dy, Qp, and by Theorem 10, £ is the Lagrangian
foriDJka,kzl,...,q. O

It follows that the multiforms described by P and P in theorems 10 and 15 both
have Z(;) and £ as their j and p + 1 components respectively, since the j and

p + 1 components of each Cj, are zero.

2.2.1 The “zero” symmetry

Every Lagrangian multiform we know of that has been considered up to this point
has related to integrable systems. However, it is not the case that Lagrangian
multiforms only exist for integrable systems, since Theorem 10 applies to any La-
grangian with a variational symmetry. In fact, it turns out that every variational

equation has at least one Lagrangian multiform description.

Using our construction, the requirements for a Lagrangian multiform are a La-
grangian density % (z,u™) and a variational symmetry v. It is trivially true
that the zero vector (i.e. vg where Q = 0) is a symmetry of every Lagrangian
since vo(.Z) = 0. Letting Q = Ug,,, +Q = Uy, , it follows that

Q- -E(%)=DivP (2.34)

for some P, and it follows from Theorem 10 that P describes a Lagrangian mul-
tiform. Therefore every Lagrangian, regardless of integrability, fits into at least

one Lagrangian multiform description.
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2.2 Variational symmetries as Lagrangian multiforms

This particular multiform could reasonably be described as semi-trivial, in
that one of the equations of motion is simply u,,,, = 0. However, it does have
a practical application relating to the inverse problem of finding a Lagrangian (if
it exists) for a given equation of motion. Theorem 10 tells us that .# is given by

the z,1; component of P. By applying the homotopy operator to P we find that

g:/o w - (E™+ (P)[\u])dA

(2.35)
— [ w €L
0
which is precisely the formula given in [16]. Also, the relation
E(P- Q) = Dp(Q) + D (P), (2.36)

where Dp(Q) is the Fréchet derivative of P acting on @) and D} is the adjoint of
Dp, can be applied to (2.34) in the case where Q= Ug,,, to derive the condition
(also given in [16]) that an equation has a Lagrangian description if and only if

its Fréchet derivative is self adjoint.

Remark 16. Since we can apply Theorem 10 with any variational symmetry,
many Lagrangians can fit into more that one Lagrangian multiform description.
For example, if a given Lagrangian possesses time/space shift symmetries and ro-
tational symmetries then we can obtain a Lagrangian multiform for each. How-
ever, unless the symmetries themselves describe mutually commuting flows, we
cannot expect it to be possible to connect these multiforms descriptions to each
other in any coherent way (i.e., as we are able to do in the case of the AKNS
multiform in section 2.2.3). The latter point emphasises the distinction between
multiforms as just described, and multiforms carrying information about the in-
tegrability of the equations of motion, which was the original intent of the notion

of Lagrangian multiforms.

Next, we shall give three examples of constructing Lagrangian multiforms from
variational symmetries. All three systems considered come from well known inte-
grable hierarchies - this simplifies the task of finding variational symmetries, since

the required symmetries are other equations taken from the respective hierarchies.

39



2.2 Variational symmetries as Lagrangian multiforms

2.2.2 The sine-Gordon equation

The sine-Gordon equation, u,,,, = sinu with Lagrangian density

1
L2 = 5 Uity — COSU (2.37)
and variational symmetry Q) = ug,, + 2um1 is given as an example in [16]. We can

confirm that () is a variational symmetry of .Z by checking that prvy.Z = Div P
for some P. Indeed, we find that

1 3 1 3
pr VQ"% (u4x1 +3 9 xlux1$1)u$2 + 2(u3$1$2 + 3 9 xluwlxz)um

1
+ (use, + 5“3:1) sinu
1 1 1 1 (2.38)
:Drl<§ux1um1w1$2 - 2u$19E1u1122 + 2u$1$1$1u$2 + = 4 mlumz

L

g’uxl).

1
+ Uz, SINU — 5“21 cosu) + Dy, (
We now let Q = Uy, — (. In this case, Q = 0 is precisely the modified KAV

equation which is known to be compatible with the sine-Gordon equation. By
Theorem 10, the product

1

Q-E(ZL) = (ugy — Uz, — éuil)(sinu — Ug,g,) = Div P, (2.39)

i.e. it is a divergence. If we write this product in terms of the components of P
we find that

1
) — 5 Uy Ugy + lfrmumwz : Uz, smu —|— Fu2 cosu ZL23)
— w2 —
P = _Euﬂflluws — Uz T gum = of(gl) (2.40)
Uy Uy, — COS U Zu2)

satisfies (2.39), and is precicely the Lagrangian multiform for the sine-Gordon

equation that was given in [21]. In accordance with Remark 14, we also consider

1

Q- -E(Z) = (use, + §uil)(sinu — Ugyzy) = Div P, (2.41)
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2.2 Variational symmetries as Lagrangian multiforms

where

1

Ugp g SINU — 2UZ. COSU — Uy, 5, U %
P = 171 9 Yy ey Yrizs | (2) ) 2.49
( Lu2  — Lt L (2.42)

27r1T1 8

The multiform Euler-Lagrange equations for the Lagrangian 1-form
are given by

0Ly 024y _
5U]\2 (SU]\l

(2.44)

for all I. Therefore, the non-zero multiform Euler-Lagrange equations are as

follows: 5. .
1
5; ) =— — Dm(guil + Usg,) = 0 (2.45a)
0.% 3
@ _ 5 — D?El(sinu — Ugyzy) + —uil (sinu — Uy, 4,)
o ) 2 (2.45b)
— ]:)m2 (u311 + éuil) =0
0L 1
5u;) =0 = D, (ugs, + 5“21) =0 (2.45¢)
0%
®) 0 = sinu-— Ugyzy = 0 (2.45d)
U,y
0Ly 0L 1 s
5“11 5“12 Uy, + 2ux1 ( e)
0.% A
W _9F@ gy, =0 (2.45f)

OUgyzy  OUgyay

As expected, all are consequences of ug,, + %ui . = 0 and sinu — uz,,, = 0. We
can view this Lagrangian 1-form as a reduction of the sine-Gordon Lagrangian
2-form under the constraint that no motion is allowed in the z3 direction. We

shall make further use of this type of reduction in Chapters 3 and 4.
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2.2 Variational symmetries as Lagrangian multiforms

2.2.3 The AKNS multiform

The first two flows of the AKNS hierarchy [22] were shown to possess a Lagrangian
multiform structure in [2]. The Z;,4,) and Z(;,,,) AKNS Lagrangians, (see e.g.

[23]) are as follows:

1 i i
Loy = 5 (Mey = @a2) + 50 + 507 (2.46)

and

1 1 3
L) = E(qraca — T'qzy) + g(rwqulwl = Gy Tayey) + §QT<T%1 — Q) (2.47)

giving equations of motion

Ty = —%rmm +ir?q, (2.48)

2 .
Qzy = 5%”“ —ig*r (2.49)

corresponding to the two components of E(.Z12)) = 0, and

3 1

ra?g - §Tq7"x1 - ZT11$1$1 ) (250)
3 1

Qzs = §qrq:):1 - qun:mm ) (251)

corresponding to the two components of E(.Z{31)) = 0. It is straightforward (but

time consuming) to check that

3 1 0 3 1 0

Vo = (§QT%’1 - Z%lmm)a_q + (57"(]7”351 - erlxl$l)a (2.52)

is a variational symmetry of Z{;9). In order to apply Theorem 10 we define

- (q) —Q (2.53)

Txg

and it follows that
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2.2 Variational symmetries as Lagrangian multiforms

~ Qs — %qquvl + %Qxlmlzl Ty — %Tﬂvlfbl + ’iT2q
Q- E(Zuz) = : = Div P
’r$3 - 57"(]’/’9@1 + erlxlxl QxQ - §q$1l‘1 + Zq T
(2.54)
for some P. We find that
Z(23)
P = | L3y (2.55)
Z2)
with
1 1 1
ﬂ%) :Z<ngrxlzl o T‘T?qxlml) o 5((]137“961 + rwsqm) + é(qwl'rmzz - Tm‘]zmz)
3 1 7
+ gqr(quQ - T%cg) - gqgvlwlrxlml + Zlqr(qrwlxl + rqul)
= (@, + ) + e — 500
(2.56)

and ZL(12) and L31) as given in (2.46) and (2.47) will satisfy (2.54). This gives

us the Lagrangian multiform

L= ﬂlg) d£C1 A\ dCEQ + 956(23) dl‘g A dl’g + .,E/p(gl) dl’g A dili'l, (257)

for which dL = 0 and ddL = 0 as expected. This 3-component multiform was first
derived in [2].

Extending the multiform to include the z, flow

We now follow a similar procedure to find the Z{14), Z(24) and Z(34) Lagrangians
of the AKNS multiform, illustrating how our construction can be used to go
beyond the first few terms in a Lagrangian multiform to include the higher flows

of an integrable hierarchy. For the AKNS case, this means that we want to include
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2.2 Variational symmetries as Lagrangian multiforms

the flow corresponding to the independent variable x4 to produce the Lagrangian

multiform

|_1234 :ﬂlg) d.%'l N dl’Q + &13) d.’L‘l A dl‘g + 056(14) diL’l VAN diL’4 (2 58)
+ .;2’%23) de A d.Tg + .ﬁﬁm) dl’g A d$4 + .ﬁ/ﬂ(34) d$3 A d$4 '

In order to find the Z{14), L4y and £(34) We require our Q to represent the xy
flow of the hierarchy, i.e.

qw‘l + i(%qgrz - zllq2rx11'1 - %qqxllrl'l - qTQ:vl:pl - %qul _'_ %q4:131)
Qs = . (2.59)

213 2.3 1,.2 1 3.2 1
Tzy — Z(Zq T = 3T sy — 57q21Tey — Q7720 — 1472, + §r4x1)

The components of Q4 are obtained by using the recursive procedure given in
[24]. Theorem 10 tells us that

Qu - E(Z12)) = Div P (2.60)
where the components of P'?* (with respect to z1, 75 and x4) are found to be

%qmlr%1 + £q27‘2, (2.61a)

1
P4124 = Q(quz - qrm) + 9

L3
16

1 57}
Z_lq/rq1E1,r:l‘1 + _qr(qrmlzl + quﬁ:pl)

2.2 2 2
(qry, +17q,) + 6

1
P2124 :§(qr:r4 — Tqx,)
1 1
- §Qxlmlrzlx1 - Zlqg'rg

(2.61Db)
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2.2 Variational symmetries as Lagrangian multiforms

and

P =§q2r2(rqw1 — qra,) — 1%(612%1%2 + 720, Q) — f—éqr(qmm + T'oya)
- %qr(rqsml — qTs30,) — %(quxlv"zlml — 10y Qoray) — oo (Pay = 4r))
iqr(mlqulxl = Gy Tara2y) T %qr(qmrm + Ty Qy) — é(Qs,xler + 732, G )
+ 11_6(Qlermlml — T30y Qayay ) + é(qxlxlmm + Tayey Qryzs) — %(qmlru + T2, Qay)-

(2.61c)

We can now recognize P}* = %15y and we set Py?* = L1y and P}?* = L),
consistently with Theorem 10. From the construction of the coefficients, it follows

immediately that for the multiform
Liog = .,%12) dri A day + ﬁ%) dry A dxy + ﬂz;l) dry N dxq, (2.62)

the multiform EL equations are satisfied when both E(.Z{12)) = 0 and E(Z{41)) =

0, and that dLi94 = 0 on these equations of motion.

To produce the rest of the coefficients needed for Lis34, we now use the same Q4

together with Z{3) to define P34 such that
Q4 E(Lu3)) = Div P13, (2.63)

Then we find that the components of P34 (with respect to i, x3 and x4) are
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2.2 Variational symmetries as Lagrangian multiforms

such that P{** = L3 = —Zs1) given in (2.47), as expected from Theorem 10,

1 1 1
134
P = "%34) :_(qwlmrl’wa + Tﬂcwlqﬂcwa) - _(Q3m17"a:3 + 7”3951%3) — 559331732,

8 8 32
1 1 3

+ 3_2<q2ri1331 + T2q32311‘1) + @qilra%l + gqr(rqle - qu'zl)
91 31 7

+ 3_2q4r4 - 1_6q272<q74x1x1 + rqxlxl) - E(qzrxlrxg + T2Qx1Qx3)
5% 1

- 1_6qr(q7aI1x3 + Tqmac;;) + Z(QI1x1Tx4 - rmxlqam)
3t 1

+ Eqr<qa:1r3x1 + 7ﬂ:JclqE’wm) + Eqqumem
1 151

- 1_6Qw1T11 (qr:vlwl + TQzlzl) - EQ2T2QQ:1T:31
31 1

+ gqr(qurms + Timqm“s) - g(qmrwlm - Txlqmm) )

(2.64)

and Py3* = Z 1) - identical to the Z41) previously identified as Py**, given in
(2.61b). Again, from the construction of the coefficients, it follows immediately
that for the multiform

Lizg = .,%13) dri A dxs + ﬁ34) drs A dxy + ﬂz;l) dry N dxq, (2.65)

the multiform EL equations are satisfied when both E(.Z{13)) = 0 and E(Z{41)) =
0, and also that dLy34 = 0 on these equations of motion. We are now able to
form the 6 component Lagrangian multiform Lis34 given in (2.58) and, as we
would hope, the multiform EL equations are all consequences of E(Z1;) = 0
for i € {2,3,4}, and dLj234 = 0 on these equations. Therefore, in this case, we
were able to incorporate two commuting variational symmetries to extend our
multiform, but will this always be possible? Inspired by the AKNS example we
have just carried out, we now examine this problem in the case where the Z{;)
Lagrangian and variational symmetry characteristics are autonomous polynomi-

als in the field variables and their derivatives.

Given that each Ly;; is determined from dL,;;, we have the freedom to add any

exact 2-form to Ly;; without affecting the multiform structure. As a result, the
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2.2 Variational symmetries as Lagrangian multiforms

L4y, L) and Z(;1) we obtain are not uniquely defined; this fact holds added
significance when extending our multiform to include more than one commuting
symmetry. When forming L3, any choice of Z{12), Z{23) and Z{3;) such that
dliss = Q - E(ZL2))dzy A dag A dag will give us a valid multiform. When we
then form L;o4, we now require that the -Z{9) is exactly the same as the one in
Li23. This is not a problem, since we will always be able to make it so by adding
an appropriate exact 2-form to Lios. Similarly, when we come to form Ljsg, it
will always be possible to get the same .Z{;3) that was obtained in L;93 by adding
an appropriate exact 2-form. However, it is not entirely obvious that the .Z{14)
obtained at this stage will be exactly the same as the one in Lyp4. If the two Z{14)
components were to differ by a total x4 derivative then it would not be possible
to correct this by adding an exact 2-form without also changing .#{;3), which we

don’t want to do because it is already in the form we require.

In the case of a 2-form where Z(19) contains only z; and z, derivatives of u, it
follows from the form of dLy;, as given by Theorem 10, that the resulting #;)
Lagrangian need only contain first order derivatives of u with respect to x; and
no products of x; derivatives of u. This is because, when applying Theorem 10

to obtain dLyy;, the only z; derivatives of u that appear come from

Uy,

K3

E(Zp). (2.66)

When reversing the integration by parts that was used to obtain E(Z{i2)) from
Z12), this becomes

Dy, L2y + Dy, A1 + Dy, As (2.67)

for some A; and A,, and since all integration by parts was with respect to x; and
T4, Ay and A, do not contain 2"¢ or higher order derivatives with respect to z;,
or products of x; derivatives of u. This, in conjunction with the multiform EL
equations, in particular those of the form

0L12) 0L

— 2.
Oy, Oy, (2.68)
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for ¢ > 1, where

L) _ 0L )
— —1)7*" D D7 J 2.69
5“] q;o( ) i j au[iqu ( )

tells us that, modulo total z; derivatives, all Z(y;) for i > 2 are of the form

0ZLuy

o + Fi 2.70
S, + (2.70)

k3

where .%; is some function that has no direct dependence on x; derivatives of wu.
This guarantees that, for example, the {14 coming from L34 can be made to

coincide with the one coming from Ljoy.

There is also the question of whether the multiform EL equations and closure
relation that relate to dlLoss will be satisfied on the equations of motion relating
to L2y, L3y and L4y To show that this is the case, we follow a similar
argument to the one given in [11]. Once all of the Z{1;)’s are consistently defined,

we can form Lip34 and it follows from

d*(Lig34) = 0 (2.71)

and the form of dLg3,dL 24 and dL;34 in terms of the .Z;;) that

Dy, (D, Z(34) — Day Z(24) + Dy L23)) (2.72)

has a double zero on the equations of motion. Then, since each Z{;;) is an au-
tonomous polynomial, it follows that dL,34 also has a double zero on the equations
of motion, so all of the required relations will be satisfied. This argument can then
be used iteratively to further extend the multiform to include higher flows relating
to additional commuting variational symmetries. It is also possible to extend this
argument to the case of autonomous polynomial systems in higher dimensions,
but it remains an open problem to extend this argument to non-autonomous,

non-polynomial systems.

The entire AKNS Lagrangian multiform using the recursion operator

The equations of the n'® flow of the AKNS hierarchy are given by
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2.2 Variational symmetries as Lagrangian multiforms

qzn _ n—1 qm1
() R () (2.73)

_ . (—aD.lr+3D.,,  —qD.lq
R=1 < 7’ng11 . . D;11 . _1% D, (2.74)

where

is the recursion operator originally found by A. Lenard. Using this formulation

of the AKNS hierarchy in conjunction with Theorem 10, we obtain

)
P = L - (2.76)

L)
Therefore H(P') where H is the homotopy operator given in (2.14) gives us an
explicit formula for every Lagrangian in the multiform for the entire AKNS hier-
archy. This formulation pre-dates the one given in [25], so is the first formulation

of a Lagrangian multiform for the entire AKNS hierarchy.

In Appendix B we present some further Lagrangian multiforms relating to the
AKNS hierarchy. The results in this appendix have now largely been superseded
by the results in [25], hence their relegation to the appendix.

2.2.4 The KP multiform

In this section, we shall construct a Lagrangian multiform for the Kadomtsev-
Petviashvili (KP) equation [26]. This is the first example of a Lagrangian mul-
tiform for an integrable PDE in 2 + 1 dimensions. It is therefore a 3-form. A
Lagrangian multiform for the discretised KP equation is given in [27]. Attempts

to perform a continuum limit (see [28] for examples of such a procedure) in or-
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2.2 Variational symmetries as Lagrangian multiforms

der to obtain a continuous Lagrangian multiform for the KP equation have, so

far, been unsuccessful. In order to proceed, we take as our starting point the

Lagrangians
1 1 1
L) = 51}11111}1113 - §v§xl — 5“:%1:52 + ’U}Z’lxl (2.77a)
1 2
Lnz) = 5 Vma Ve — 2035, Vg zyz0 — 3Vr12: Vasas + 4v;, 4 Varas (2.77b)

where v3;, = Vg z,2,- These are based on the KP Hamiltonians given in [29],
which are based on the formulation of [30]. In order to avoid non-local terms,
these Lagrangians are given in terms of v such that v,,,, = ¢, where g is the usual

KP field variable. These Lagrangians give equations of motion

2
Vgrzs — Vzyaroazs T Vbzy 1+ 003, 4 6Vp 0, Vg, = 0, (2.78a)

the first KP equation, and

U3(E1(E4 + 4U5I1£2 - gvxli‘lzg + 8U4mlvm122 + 24U3xlvx1x1x2 + 16U:plxlv3a¢1x2 = O (278b)

the second KP equation respectively. It is straightforward (although time con-
suming) to check that setting @) equal to

D_3(_Ua:1a:1a:2x2 + U6z, + 6v§x1 + 602961”41:1) = _D;l (Uﬂczccz + 3,032:1551) + Usg, (2-79)

Z1

gives a variational symmetry v of the second KP equation (2.78b). This implies
that

(Ux1x1x1x4 + 4U5$1$2 - _U3313x2 + 81}4%11}11%2 + 24U3$1Ux1$112 + ]-6/U$11‘1/U3271:E2)(U£E3

3
— D (Vgpay + 302 ) + Vs, ) = Div P
(2.80)
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2.2 Variational symmetries as Lagrangian multiforms

We use integration by parts (i.e. integrate the first bracket and differentiate the

second bracket, both with respect to 1) to remove non-local terms and get

(Uﬂmwlm + 41}417112 — 5 U3z, + 87}39011)11902 + 167}%1111}%111%2)(”%1%3 — Uzoay

3
+ 3v2 ., + Vs, ) = Div P

(2.81)

As expected, P describes a Lagrangian 3-form

L 2959(123)(11‘1 Adxs Adzs + .,?(234)d:1:2 ANdxs Adzy + &341)(1%3 Adxzy Adzy

+ ﬂ412)dx4 A d[El A dl‘g
(2.82)

with the 1,2,3 and 4 components of P corresponding to —Z(o34), ZL(341), —ZL(412)
and Z{123). The Z(123) and £{412) Lagrangians are precisely those given in (2.77a)
and (2.77b). We find that the .Z{234) Lagrangian is given by

1
&234) = - §U:E1:L'3U£E1:E4 - 4U1'1m3U3:B1£E2 + 2”1’1213{73”.’[1119}2 - gvxzxgvxzxg + Ux2$2Ux1$4
2
+ 4UCCQI2U31’1122 - gvxlxgscgvrlxlxg - U3x1vx1x1x4 + §U31’1U3CE2 - 4,03.7;1?-]1’1122
3
+ 8U11$1U3$1U$1$1$2 + 87}119317}171962”12962 + nglwz - 8U$1$1U$1$2U$1$3
3
- 8U$1x1/uff11'2
(2.83)
and the Z{34;) Lagrangian is given by
4 2
2 2
"%341) :gvxzxg + 2U4z1 - 2v?)ﬂclvﬂﬁlﬂﬁlﬂcs - gvxzxgvmxg - §UI1$QUI2€L‘3 + VzyzoVziag
4
2 2 2 2
- gvxlxll‘g + §U3$1v$1$2xz + 122)9613312}4551 + 4U3z1v361$1 - 4Um1mlvx2$2
2 2 4
+ 400,V gy + AV 0 Vaes + 100,
(2.84)
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2.2 Variational symmetries as Lagrangian multiforms

It is clear from (2.81) that dL = 0 when either the first (2.78a) or second (2.78b)
KP equation holds. When both the first and second KP equations hold, the left
hand side of (2.81) gives a double zero, so we also have that ddL = 0. As a con-
sequence, all of the multiform EL equations hold. This is the first ever example

of a continuous Lagrangian 3-form.

2.2.5 Constructing 3-forms with more than 2 flows

In the case of an appropriate 14+1 dimensional integrable hierarchy (e.g. the
AKNS hierarchy), we can use Theorem 10 to construct arbitrarily many terms
of the corresponding Lagrangian 2-form. This is made possible because every
Lagrangian .Z;;) appears in at least one dL;;. In the case of a 2+1 dimensional
integrable hierarchy, Theorem 10 can be used to give each dL;9;;, which will give
us expressions for Lagrangians of the form % 9, -Z{1;5) and Z9;;, but will not
help us to find the Z{;;,) Lagrangians for ¢, j,k > 2. In the following example,
we present an algorithmic method for finding such Lagrangians and use it to

construct a Lagrangian multiform incorporating three flows in 241 dimensions.

A simple Lagrangian 3-form with 3 flows

This example is based on a stripped down version of the linearised KP hierarchy.

We take our three equations to be

Quts = Qyy
ety — _4q:nmmy (285)
oty = _]-OQI:vyy

with Lagrangians
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2.2 Variational symmetries as Lagrangian multiforms

1 1

-iﬂ(123) = 5%%3 - §q2
1
L) = 54t — 2zalny (2.86)

1
Los) = 5%%5 - 56]:3;;

respectively. Our aim is to find the Lagrangian coefficients for the multiform

L12345 = ,,%(123)(11‘ VAN dy VAN dtg + ﬂ124)d$ VAN dy VAN dt4 + .,?img,)dl’ N dy N dt5
+ cg(134)dl‘ A dtg VAN dt4 + ng;)dl’ N dt3 A dt5 + 0%145)(311‘ N dt4 A dt5
+ Llozaydy A dtz Adty + Liossydy A dis A dts + Lousydy A dty A dis

+ 956(345)(1153 AN dt4 AN dt5
(2.87)

In order to apply Theorem 10, we note that

Q1 = 4qzay (2.88)
is the characteristic of a variational symmetry of Z{193) and Z{;25), and that

Qs = 10g2y, (2.8)

is the characteristic of a variational symmetry of Z{123) and Z{124). Letting

Q4 = (i, + 4qgjxy (290)

we find that

Qu E(L123)) =01, + 4uay) (— oty + qyy) = Div Prasy (2.91)

where
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2.2 Variational symmetries as Lagrangian multiforms

_%th qty — 2qg;t3Q$y + 4QIyny
_Qthlg Qzz + qt4qy - 2q§y
_5?:5%4 + Q?Z’gqgcy
24z9ts — 59,

P1234 =

Similarly, letting

QE) = qi5 + 1OQxyy

we find that

Qs E(L123)) = (@85 + 10Gayy ) (—dats + qyy) = Div Prags

where

— 501,05 + 5,
_101q:ct3 Qxy + qis Qy
~aath; + 15612§y
524z9ts — 39,

Pro3s =

and also that

Qs E(.i”(124)) = (qt5 + 10Gyy ) (—quty + Quazy) = Div Piogs

where

— 2@ty — A5 Qozy + 202t50zy — 400y Gayy
_1Oqa:t4er + 2qgct5 Gz + QOquy
1—%%%5 +5¢2,
392ts — 2qz2Gry

P1245 =

In addition to the Lagrangians given in (2.86), we now also have

o4

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)



2.2 Variational symmetries as Lagrangian multiforms

L3y = 2ty Qoe + @y — ZQiy
&135) - _10(]mt3qg¢y + qi54y
«ifﬂ(145) = _1Oth4Qxy + QQJ:t:)Qx:v + 20%261@,

1
Llost) = 54t + 2oty oy — Ay yy (2.98)

1
ﬂz%) = 5%3%5 - 5%3?,

1
656(245) = eq4 qts + 4qt5qgmy - 2qn5QIy + 4OQxnyxyy'

As expected, our three applications of Theorem 10 have not given us Z345). We
might hope that we could obtain Z(345) by applying the Qs symmetry to the
L34y or Z{934) Lagrangians, or that the Q4 symmetry could be applied to the
ZLass) or Za35) Lagrangians. However, the presence of alien derivatives (e.g., y
derivarives in .Z{134), @ derivatives in Z{234)) prevents Theorem 10 from working.
For this simple example, it is possible to find a Z{345) that works through a

process of trial and error; we find that by setting

1

&345) - 1Oth3Qyt4 - 2qg3t5Q$t3 - 10%4Q$yt3 - 4qg3yQyt5 - gqt257 (299)

the multiform EL equations of Ljszes are (2.85) and corollaries thereof, and
dLi2345 = 0 on the equations of motion.

When dealing with Lagrangians that are not as simple as these (e.g., those of
the KP hierarchy), it is not realistic to find such Lagrangians through guesswork,
so a more algorithmic method is required. We notice that the .Z{345 we have
obtained is not unique. If we add or subtract terms that have a double zero on
the equations of the multiform (e.g. (Q4)ze BE(L123)), (Q1)2Q5, Q2) to Laus),
then dL;9345 will still have a double zero on the desired equations. By adding or
subtracting such terms, we can obtain a unique %45) that contains no products

of t3, t4 and 5 derivatives. This {345 can also be obtained from the closure of

L as follows. We know from the closure of L that
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2.2 Variational symmetries as Lagrangian multiforms

Dy Z(315) — Dty Z(145) + D, Zlass) — Dy ZLlaza (2.100)

has a double zero on the multiform Euler-Lagrange equations. Therefore

D, Z345) = Dy, Li1as) — Dy Linssy + Dy Llazay + A (2.101)

where A has a double zero on the multiform Euler-Lagrange equations. Since
D, 9%45) contains no products of derivatives with respect to t3, t, and ts, it
is easy to find the unique A that eliminates such products from Dy, Z{145 —
Dy, Z3s) + Dyy Z{134) and hence we obtain D, 9%45) which we can integrate to

get ,:27(345). In the case of the current example, we find that

Dt3 9%145) - Dt4 &135) + Dt5 .,%(134) = - loqm4qut3 + 2qgct5met3 + 4Oqgczngczyt3
10quty Quyty — Qs Qyts — 2QutsQoats + Gyt
- 4szq$yt5 .
(2.102)

It is not a coincidence that there are no mixed time derivatives of ¢ here (e.g.,
ist,)- This is a concequence of the multiform Euler-Lagrange equations of the

form

0Lijry  0Llijn)
6qtk (5Qtl

= 0. (2.103)

The A that will remove products of t3, t4 and t5 derivatives is

— 10(B(Lu23))y (Qa)e + 2(Q5)= (B(Laz))o + 10 B(Lr23)) (Qa)ay + Qs(Qa)y

— 2E(L123))(Q5)ae — Qu(Q5)y.
(2.104)

As a result, we find that
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2.2 Variational symmetries as Lagrangian multiforms

—~

Dx 9%345) = - 10qt4QZ‘yyy + 4qt5 qgcxyy - 4(]xngcyt5 - Qoqgctgq:r:a:xyy - 1quyqu4
+ 2q:rt5 mey - 2qnymmt5 + 1quy%:yt4 + 20qyy%¢xxyy + 10(]znyyt4
- 4Qyt5 me + 40(]w:pyq:r:vyt3 - 40q:m:yq:ryyy - 20(]w:pyy£]a:xt3 + 60(]w:pyy£]a:yy

+ 4OQ$yt3 Q:m:;ry - 40(]yyy%::m:y
(2.105)

which we integrate with respect to x to obtain

—~

Lisas) = — 1061, Qyyy + 4015 Qoyy — 20yyGats — Ayts Gy — 20Guts Qoayy + 10Gy, Gy,

+ 4quxy%cyt3 + QOnyQxxyy - 40(]:0:z:ynyy + 20q92cyy'
(2.106)

This 927(345) differs from Z(345) by

- . - 1 -~
L0 E(L129) (Qa)y — 2B(La29)) (@5)e = 10(E(L129)))yQa + (@)%, (2:107)
a double zero on the equations of the multiform. It follows from

d2|_12345 - O (2108)

that .,?(/345) is such that

D, Z(345) — Dt Llaas) + Dt ZLla3s) — Dis Loz (2.109)

also has a double zero on the equations of the multiform.
In Appendix C we apply the method outlined above to extend the KP multi-

form to include the ¢5 flow.
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2.3 Discrete and semi-discrete Lagrangian multiforms from
variational symmetries

2.3 Discrete and semi-discrete Lagrangian mul-

tiforms from variational symmetries

In this section, we look at the discrete and semi-discrete analogue of the results
from the previous sections. As was the case when we considered the multiform
Euler-Lagrange equations, we shall work on a discrete manifold of N independent

coordinates nq, ..., ny and dependent variable u, with shift operator T; such that

T;u(ny, ... g, ...,ny) =u(ng,...,n;+1,...,nyn). (2.110)
Letting J be the ordered set (ji,...,Jjn), we define
N

T, =[[@) (2.111)

i=1
and

We also define the discrete derivative D; such that

Diu=T,u—u. (2.113)

In this case, our Lagrangian density .Z can be a function of discrete coordinates
ni,...,ny, our dependent variable u = (u, ..., u,) and shifts of u (either positive
or negative) up to some order m. The Euler-Lagrange equations for .Z are given

by

% =0 (2.114)
where
§ .
P ;(T )Ja—uj. (2.115)

In sections 2.3.1 and 2.3.2 we present some key results from [31, 32] relating

to variational symmetries of discrete Lagrangians.
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2.3 Discrete and semi-discrete Lagrangian multiforms from
variational symmetries

2.3.1 Variational symmetries of discrete Lagrangians

Analogously to the continuous case, it is natural to consider as a generator of a

variational symmetry, a vector

A B N
= i— o« — 2.116
V=D Gt b (2.116)
=1 a=1
where the & and ¢, depend on our discrete coordinates ny, ..., ny, our dependent

variable u and shifts thereof. However, the gi(‘?ini components of v represent a
continuous deformation of the lattice points on our discrete manifold. As a con-
sequence, unlike in the continuous setting, it is not possible to find an associated
evolutionary vector v that generates essentially the same variational symmetry.
Although it is possible to find variational symmetries generated by vectors in the
form of v in the discrete setting, they do not yield Lagrangian multiforms so,

from here on, we shall only consider evolutionary vectors of the form

q
0
vg = ; baz o (2.117)

which behave in almost exactly the same way as their continuous counterparts.

The prolongation of such an evolutionary vector v,

prvg = ZZ(%)Ja(i)J. (2.118)
a=1 J

An evolutionary vector vq is a variational symmetry of a Lagrangian . if and

only if
N
prvo(£) =DivB=> D;B; (2.119)
i=1
where B = (B, ..., By)T and each B; is a function of the discrete coordinates
ni,...,ny, the dependent variable v and shifts thereof. I.e., an evolutionary

vector vg is a variational symmetry of a Lagrangian . if and only if prvg (%)

is a discrete divergence.
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2.3 Discrete and semi-discrete Lagrangian multiforms from
variational symmetries

2.3.2 Noether-type identities and a discrete analogue of

Noether’s theorem

Since, for any Lagrangian .2,

0% = ou- % + Div A4 (2.120)
for some A, it follows that
prvo(Z)=0Q - % + Div Ay (2.121)

for some A,. For example, if .2 depends only on u, Tiu = u and Thu = u, then

0 ~ 0% ~ 0%
rves =Q Gt Q Gy T 5y

0L 0% 0F 0% 0%

:Q'(au tor T au)+D1(Q- au)+Dz<Q~ au) (2.122)
5.8 0% 0L

IQ'E+D1<Q'3—U>+DZ<@M)-

Identities such as this one are referred to in [32] as Noether-type identities. If v
is a variational symmetry of ., then combining (2.119) and (2.121) we obtain
that
0L
Q- — =DivC (2.123)
ou

where C' = B — Ay, a discrete analogue of Noether’s theorem.

2.3.3 Semi-discrete Lagrangians and symmetries

Once we restrict ourselves to the case of evolutionary symmetries (i.e., in the
form of (2.117)), we find that discrete Lagrangians and symmetries behave in
exactly the same way as their continuous counterparts. As a result, a semi-
discrete Lagrangian, i.e., one that is a function of discrete coordinates ny, ..., ny,
continuous coordinates 1, ..., zy dependent variable u = (uy, ..., u,) and shifts

and derivatives of u, can be treated in a similar manner. Similarly, a variational
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symmetry where the ¢, are semi-discrete can be used. In the following section, we
give an example of a semi-discrete Lagrangian multiform arising from variational

symmetries.

2.3.4 Examples of semi-discrete Lagrangian multiforms

arising from variational symmetries

We will now use the principles outlined above to construct a semi-discrete La-
grangian 1-form and a semi-discrete Lagrangian 2-form. We take our starting

Lagrangian to be
1

L =uu — iui (2.124)
This gives Euler-Lagrange equations
E(ZL) = uy, + U+ u. (2.125)

We define the vector fields Xy = 100, and X3 = 130, where 7, = u — u and

~

n3 = u — u. These vector fields are variational symmetries of any quadratic

Lagrangian that is summed in the ~ direction. In particular, they are both

variational symmetries of .. In the case of X,

pr Xo(L) = Do (u® + uu — ug, uy, ). (2.126)

We also have the Noether type identity

0L 0L
pr Xo(Z) = E(Z) +Do(n2——) + D¢, (2 ). (2.127)
ou Ouy,
Combining (2.126) and (2.127) we obtain
M B(ZL) = Do(u? + u? — uguy, ) + Dy, (uny, — uuy,), (2.128)

a two component Lagrangian 1-form with £y = vu,, — uuy, and Ly = u* +

u? — ug, ug, . The full set of multiform Euler-Lagrange equations is as follows:

61
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0L )
S =0 = uy —u,=0
0L )
=0 = u—u=0
5Ut1 :
5"?(151)
5 =0 = 2u+ Uty ¢q 0
Y ~ (2.129)
0.
55“ =0 = 2u+u,=0
0L 0L1) ~
S L buy, —Un Tty =0
0L~ 0L(1,)
W, 0y 4y, = 0.
(Su 6Ut1

As expected, all of these are consistent with the equations E(.Z) = 0 and 1, = 0.

We now consider the vector field Xy = 7,0, where 7, = Uy, + U — u is semi-

~

discrete. In this case,

pr Xo(Z) = Di, £ + Do (u? + uu — uguy, ), (2.130)

so (in the case where the action associated with . is an integration over ¢; and
ty and a sum over the ~ variable) X, is a variational symmetry of .Z. We can

then use the same Noether-type identity to obtain

e E(Z) = D,V(u2—i—1i2 —utl%tl—gutz)—l—Dtl(utlth + Uy, —gut1)+Dt2 Z, (2.131)

giving us a Lagrangian 2-form where Z(i,) = &, Lity1,) = 0> +1u* — ug uy, — uy,

and L,y = Ug Uy, + autl — way,. We now consider the vector field X3 = 730,

where 73 = u, +u — u. We find that

~
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~

pr X3(.Z) = Dy, .Z + Do (tu + uu + G+ u — Uy, gy — Uy, ), (2.132)

~ ~

so X3 is a variational symmetry of .. Again using the same Noether-type iden-

tity, we obtain

M3 E(Z) =Dy, & + Do (tu + ut + ut + Ut — g, gy — Uy Uy, — Ully,)

N (2.133)
+ Dtl (utl Utg + utﬂj - utl%)?

~

giving us a Lagrangian 2-form where £,y = 2, L1, = wu + v+ uu + ﬂtwc —

~ ~

~

Ugy Ugy — Ugy Uy — ULy, and Lty = Upy Upy + Ugy U — ug,u. Finally, we note that for

the L, g?iven above,

~

pr X; ("ZQN)) =Dy, 'i’ﬁ(Ntz) + DN(TLH Uty + atﬂih Uy Upy + Uy Uy + agtl

. . . (2.134)
Uy, + Uy, Ul — ULy, — UL — ULy, — Uy, ),

so X3 is a variational symmetry of Ly~ Since L,y is a function of uy,, uy,,

u and u, we use the Noether-type identity

i 0L (1, _ 0Lty
pr X3(Lt,~)) =13 E(Liyny) + Dol ~a(; : _23 8(; ))

a$t2~) )

ath

oy (2.135)
_ (tQN) _
D D

+ t1 (773 3ut1 ) + to (773

We note that #;,~) contains “alien” t; derivatives, so 73 E(Z,~)) is taken to

mean
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oz 73
u . . 2.136
("g) <<ﬁ3>t1> (2430

Combining (2.134) and (2.135) we obtain that

~

73 E("E’p(tQN)) = Dt3 ("E’ﬂ(t2~)) + Dt2 (_utlutS - utla + ut1%)

~

+ DN(utl Upy + Ugy Ugy + Uty Uty + Uty Uty + Uty + Uy,

~ ~ ~

= Uy U+ Uy — Uy — WUy + U Uy — Ul — Ugg Uy — utlut3).

(2.137)

This gives us a .Z{.,) Lagrangian the same as the one obtained eariler and also
a Ztt,) Lagrangian. Thus, just like we did for the first three flows of the AKNS

hierarchy, we have obtained a semi-discrete Lagrangian 2-form

|_ I.,iﬂ(th)dtl VAN dN+ ﬁtQN)dtQ A dN+ aatgw)dtg A\ dN

+ Lty dts Adty + Lipyry)dts A dty + Lgp,)dts Adiy (2.138)
where
Lty) = U — %u?l
"%Nh) = Uty — autl — Uy, Uy,
&Nt:s) =Uuy U — Utla — Uy Uy
Litsta) —u?+ 32 T Uy Ugy — Uy, (2.139)

Lltoty) = — Ugy Upy — Uy Uy, — Ugy Upy — UgyUgy — Uy — Uy, + Uy U

~ ~ ~

— U, + UlUg, + UUp, — U Uy, + U, + Up, U, + Up, U
1 1 ~t ~ ~ 7t 3 Y1 193

~ ~ ~

Lltity) = uu + U WU U — gy Uy — Uy, Ugy — Ul

~ ~ ~

that contains the three flows.
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2.4 Conclusion

Given any Lagrangian and an associated variational symmetry, the method out-
lined in this chapter allows us to construct a Lagrangian multiform. As a con-
sequence, we have shown that the existence of a Lagrangian multiform structure
is not a sufficient condition for integrability. However, by linking Lagrangian
multiforms to variational symmetries, existing results relating symmetries to in-
tegrability can now be applied to Lagrangian multiforms of the type described in
this chapter. Whilst we have shown that every variational symmetry leads to a
Lagrangian multiform, the question of when the converse holds remains an open

problem.
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Chapter 3

The Zakharov-Mikhailov

Lagrangian multiform

3.1 The Zakharov-Mikhailov Lagrangian

Following the method of Zakharov and Mikhailov [5] we start from a N x N

matrix Lax pair U and V' and auxiliary problem

=UEn N, 0y =V(En,A)V. (3.1)

Henceforth, we shall commit an abuse of terminology and refer to the N x N
matrix U as the eigenfunction of the Lax pair. This gives rise to the compatibility

condition

U, — Ve + [U,V] =0. (3.2)

We assume that U and V' are rational functions of A with a finite number of
distinct simple poles (the case where U and V' have higher order poles is dealt
with in [33]), so

Vjé’n

e (3.3)

U=U%"n +ZA€77), V=Vn)

giving the compatibility conditions
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3.1 The Zakharov-Mikhailov Lagrangian

Uy —VEe+ 10V =0 (3.4)
and
. ALNRVE [ U
Ui + [Uavuj;ai_bj} =0, V/+ {VJ,UM;@_GJ —0. (3.5)

Equation (3.4) implies that U° and V° can be written in terms of an invertible

matrix g(&,n) such that

U'=geg", Vo=gy9 " (3.6)

The matrices U? and V7 are expressed as

U'=¢'U'(e), V=9 V)" (3.7)

where U’ and V7 are the Jordan normal forms of U? and V7 which depend only
on ¢ and 7 respectively. In order to show that U? depends only on &, we let Y?

be the solution of

Y= VeV’ (3.8)

then

Op((Y)TUY') = =(V) W hza, UY + (V) 7V za, UTY + (V) UV 320, Y
pu— 0’
(3.9)

so (Y9)~IU'Y" is constant with respect to 1. Since similarity transformations
preserve eigenvalues, this tells us that the eigenvalues of U’ do not depend on
n. Therefore the Jordan normal matrix U’ which has the same eigenvalues as U’

does not depend on 7. Similarly V7 does not depend on .

The ZM Lagrangian
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3.1 The Zakharov-Mikhailov Lagrangian

Ny No
Len) Ztr{Z(wi)l(% Gng U =) ()W — gegT )V
= = (3.10)
N 1/}]‘/] ¢] -1 zUz( 1)
2y )
i=1 j

has Euler-Lagrange equations equivalent to the compatibility conditions (3.5).
We find that

i‘i _ ((pi)fl (90:7 . <gng71 4 Z_; wjil/j(_@/);j) )g0> Ui(gpz‘)fl
” (3.11a)
+U' (") (% (gng™" + Z M)w') ()
and
% =(y’)~"! ( gg‘1+z(prz_ a )vj(W)—l
(3.11b)

= v (- et + 3 T )

which, when we use (3.7) and set equal to zero are equivalent to (3.5).

Remark 17. From the definition of ©' and ¢’ in (3.7), it is clear that they are

not-unique. As a result, (3.11a) is equivalent to the statement that

No L N1
iN—1(, i - PVI(YI) i
(")) = (g0 + D ﬁ)@ ) (3.12)
=t
can be any matriz that commutes with U'. A similar statement relating to V7
follows from (3.11b). However, the non-uniqueness of ' and 17 does not lead to

any additional freedom on solutions of the system because, by (3.7), this freedom
does not affect U* and V7.
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3.1 The Zakharov-Mikhailov Lagrangian

We also find that

Ny

0L —1 ifri, iy— —1 ifyi, iyl —
@:Z{Dn(g Yo' U (@) + g e U 9) g 1977}
i=1
No ) . (3.13)
-> {Ds(g‘lzﬁ”‘/](tﬁ’)_l) +g WV (1/1’)‘19‘195}-
j=1
When we use (3.7) and set equal to zero this is equivalent to
N1 N2 )
Z{U;Jr[Ui,VO]} :Z{VgHW,UO]} (3.14)
i=1 Jj=1

which is a consequence of (3.5). Compatibility condition (3.4) follows directly
from the form of U° and V? in terms of g, i.e. it is not a variational equation
of this Lagrangian. Zakharov and Mikhailov made no reference in [5] to varying
the fields U* and V7 (although, in [33, 34], Dickey does vary the analog of these
fields). We note that, in the ZM formulation, this would amount to varying a

Jordan normal matrix.

Remark 18. By letting U — ® = ¢~ U, letting U* — U’ = ¢~'U'q and letting
VI — Vi =g "Wig we can express the auziliary problem (3.1) without U° and V°
terms. This allows us, without loss of generality, to omit g from all ZM related

Lagrangians from here on.

We shall now change our perspective from the ZM construction, and consider the

ZM Lagrangian

Ny Na Ny

o Na 575 (ahi =1 [ TE( i)~ 1
Loy = tr { Zwi)—lgpggi _ Z(¢j)_1¢§v] _ ZZ wJVJ(Wa)‘ _(pb{] () }

i=1 j=1 i=1 j=1

(3.15)

as our fundamental object. We impose that U’ and V7 depend only on ¢ and 7
respectively. We no longer impose that U’ and V7 are in Jordan normal form,

and now consider them to be fundamental matrix-valued fields. We now take
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3.1 The Zakharov-Mikhailov Lagrangian

variational derivatives with respect to all field variables, including U? and V7.

The variational derivative with respect to U’ reads

Lien _ i1 N~ @)WV )
— = (¢ P — . 3.16
o = (@) ; P (3.16)
We set this equal to zero and define
Vi = v () (3.17)
and N
~VI(§,m)
s .].
V=250 b, (3.18)
J=1
to get that
¥y = Virza' (3.19)
Similarly, by varying with respect to V7 and setting
U'=¢'U'(g") ™ (3.20)
and v
~ U'(,m)
U= —_— 3.21
; )\ —a; ? ( )
we get that
Ul = Ulyzp, . (3.22)
These relations imply that
Uy = Dy(0'U' (")) = VIrea, 0 U (") = U (¢") 'V iz, 3.2
= [Vlrza;, U]
and similarly
Ve = [Ulr=,, V7] (3.24)

We get precisely the relations (3.5). We have already seen in (3.11a) and (3.11b)

that the variational derivatives with respect to ¢' and ¢/ also give us (3.5) and
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3.1 The Zakharov-Mikhailov Lagrangian

the variational derivative with respect to g gives us (3.14) - a corollary of (3.5).

Therefore all of these variations give compatible equations.

Remark 19. The variational derivative with respect to ©' gives a weaker rela-
tion than the variational derivative with respect to U*. This is due to the non-
uniqueness in the choice of @' when putting U* into Jordan normal form. When
we re-write these relations in terms of U', using (3.17) this non-uniqueness is
removed and we get the same relations in both cases. A similar statement can be

made regarding V¥ and V7.

3.1.1 Multidimensional Consistency

One main goal is to incorporate the ZM Lagrangian into a Lagrangian multiform,
each component of which corresponds to two Lax matrices of a Lax multiplet.
We will do so for the first nontrivial case of a Lax triplet (U, V,W). In order for
this to be possible at all, a necessary property of the triplet is that it produces
a multidimensionally consistent system. Indeed, we will see that a consequence
of our construction is that the multiform Euler-Lagrange equations form such
a consistent system. Therefore, let us introduce a third Lax matrix W and
associated independent variable v (giving a third part to the auxiliary problem
(3.1) of the form ¥, = WW). We require that all of the matrices U, V and W are

functions of three independent variables &, 7 and v. In addition to the relation

U,-Ve+[UV]=0. (3.25)

that arises when we sum and combine equations (3.5), we assume that we have

similar relations

V,—W,+[V.W]=0 and We—U,+[W,U] =0 (3.26)

relating V and W, and W and U. In order to proceed, we assume that two of
the three relations (e.g. the relations (3.26)) hold simultaneously and show that
the arising compatibility conditions are consistent with the third relation (i.e.
the relation (3.25)). If we view the relations (3.26) as definitions for the n and £
derivatives of W then we must check that D, W — DWW, = 0 when (3.25) holds:
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3.1 The Zakharov-Mikhailov Lagrangian

DyWe — DeW,y = Dy (U, + [U,W]) — De(V,, + [V, W])
= UWV + [Um W] + [U7 Wn] - Vfl/ - [v& W] - [V7 Wﬁ] (3'27)
= Unv - V&V + [Un - Véa W] + [U, Wn] - [V, W&]-

We use (3.26) again to write this as

Upy = Ve + Uy = Ve, W+ [UV, + [V, W] = [V, U, — W, U]]

(3.28)
:DV(UW - va + [U7 V]) + [UT] - ‘/:57 W] + [Uv [‘/7 W]] + [Vv [W7 U“
By the Jacobi identity, this is equivalent to
Dy (Uy = Ve +[UV]) + [Uy = Ve + [U, V], W] (3.29)
which is zero whenever (3.25) holds.
3.1.2 A Lagrangian Multiform Structure
We now introduce the Lagrangian multiform
L = Llends Adn + ZLpydn Adv + Zedv A dg (3.30)
where
Ny N2 N1 R .
i z' . ,l/}jVj ¢j 1 1Uz i\ —1
VR DERETLE YIORT LD 3 prA AU R LR
i=1 j=1 i=1 j=1
(3.31a)
Ny N3 No N3 g k (k)1 i
o XFWH( YIVI(y
Loy =10 Do) e = Y gt = 303 A
j=1 k=1 j=1 k=1 k
(3.31b)
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3.1 The Zakharov-Mikhailov Lagrangian

and
N3 Ny Nz N 3 1 -1 k11/k
— T 7 SOU W( )
g = 08 ) -5 EEE RO |
k=1 i=1 k=1 i=1 v

(3.31c)

We impose that the U’ only depend on &, the V7 only depend on 1 and the W*

only depend on v. The multiform Euler-Lagrange equations of L correspond to

S = /(, L (3.32)

simultaneously for every surface o in the &, n, v plane. Since this Lagrangian 2-

the criticality of the action

form depends only on 1 order derivatives of the field variables, the multiform

Euler-Lagrange equations reduce to the following:

e The standard Euler-Lagrange equations

5"%(677) 5"%(En) 5';%(577)

= O’ = 0’ = 0’
0p oy 0X (3.33a)
oU ’ oV ’ ow
and similarly for £{,,) and Z,¢).
e The first jet one component Euler-Lagrange equations
0L 0L
0, 0,
and similar relations for cyclic permutations of £, and v.
e The first jet two component Euler-Lagrange equations
0L 0L 0Ly 0L 0L 0L
5905 0y 59077 5@5 0y 590?7

and similar relations with respect to ¢ and Y.
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3.1 The Zakharov-Mikhailov Lagrangian

Remark 20. Since, in this case, the Lagrangian multiform L has no 2"¢ or higher
jet terms, the variational derivatives with respect to any given first jet term are

just partial derivatives with respect to that term.

Theorem 21. For the Lagrangian multiform

L= LieqydE N dn+ Liydn A dv 4 Ly dv A dE, (3.34)

the relevant Euler-Lagrange equations (3.33a), (3.33b) and (3.33c) yield the mul-
tidimensional system of equations given by (3.5) and the corresponding relations
for the matriz W. Furthermore, dL = 0 on solutions of the multiform Fuler-

Lagrange equations.

Proof. We begin by confirming that the Multiform Euler-Lagrange equations
(3.33a), (3.33b) and (3.33c) hold. From varying U and V in .Z¢,) we get

gpﬁ] =V|r=a,¢’ and wg = U\,\:bjwj. (3.35a)
From varying V and W in .%,,, we get

W) = Whapt?! and  xF = Ve X" (3.35b)

From varying W and U in L) we get

Xlg = U|A:cka and 90?/ = W|>\:ai90i' (335C)

From varying ¢’ and ¢/ in Z¢,) we get

N2 Vi Ny i
i i = a v 7 = :
Un+[U,;ai_bj] 0 an 5+[v,;bj_ai] 0 (3.36a)

which are corollaries of (3.35a). From varying ¢/ and x* in %) we get

SN oV
j j _ k k _
VI + {VJ, E b _CJ =0 and W]+ {W , E p— b]} =0 (3.36D)
k=1 j=1

which are corollaries of (3.35b). From varying x* and ¢ in %,¢) we get
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3.1 The Zakharov-Mikhailov Lagrangian

Ny U N3 Wk
k k _ i i _
We + [W , ;_1 p— ai] =0 and U+ [U , kgl p— CJ =0 (3.36¢)

which are corollaries of (3.35¢). Equations of the type given in (3.33b) are triv-
ially satisfied since there are no v derivatives in Z¢,), no § derivatives in %,
and no 7 derivatives in .Z{,,y. Equations of the type given in (3.33c) are also
trivially satisfied, in that they do not require the field variables to be critical

points of the action in order to hold.

The validity of the relation dL = 0 for the Lagrangian (3.34) on the solutions of
the Euler-Lagrange equations is verified by direct computation. The Lagrangian
2-form Ly d§ Adn+ Liydn Adv + L6 dv AdE is closed if and only if D, Z¢,) +
D¢ Ly + DyZivey = 0 on solutions of the system.

DV-Z(&W) + Dé&m’) + Dn'g@ﬁ)

— i { Dl e ()Rl + ;Wj)_l ACORE (3.37a)

{ IZVJUZ L VI AWV WY UﬁWuUiW’f}
7=1

ZZ bj — cx ZZ Cr — a;

i=1 J=1 k=1 k=1 =1

(3.37b)
The first set of terms (part (3.37a)) are equivalent to

{Z% ) UL +ZW W)V +ZX5 1Wf} (3.38)

We can use (3.36) to re-write this as
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3.1 The Zakharov-Mikhailov Lagrangian

N1 Ns 1 k No Ni : ; N3 Ny k ]
U*W ITTe WeyI
tr { Yo £ } (3.39)

Sy Ty sy e
! o k=1g=1Y

i=1 k=1 j=1 i=1

and we see that all of these terms will cancel with terms in part (3.37b). This

gives us that

Du&&l) + DED%(W) + Dniﬂ(%)
) { N1 N2 V]UZ N2 N3 Wk‘/f] N3 M Uka } (340)
= 1r :

)ID DD DD Db i) DD Dbruys
IR S g= R T k== TR

i=1 j=1

We use (3.36) again to re-write this as

N1,N2,N3 ) X
tr VI Ui’Wk < N
{ 1;1 | | (bj — ai)(ck —ai) ~ (cx — bj)(ai — bj)

T ai- ck>1<bj - ck>> }

which is zero, since the sum of the three fractions is zero. O]

The proof given above is precisely the one that appeared in [2]. In the follow-
ing theorem we show how dL can be expressed as a sum of terms, each of which is
factorised into expressions that are zero on the multiform Euler-Lagrange equa-
tions. It is then a very obvious consequence that dL = 0 on the multiform
Euler-Lagrange equations. In addition, the expression we give for dL shall be
useful later on when reducing the ZM Lagrangian multiform in order to obtain a

Lagrangian multiform for the ZM Lax par.

Theorem 22. The explicit form of dL is as follows:
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3.1 The Zakharov-Mikhailov Lagrangian

j=1 J i=1 I
Na N1 i N3 i k
1 : Uiqp? o . Viw
S (- W) 1(v3+ — ])
j=1 i=1 7 ' k=1 7 k
N3 N1 ik N k
1 k U'x ky—1 k W, VY]
T3 Xﬁ_zc 4 (") Wn+zc b
k=1 =1 kT =1 kY
N3 2 ik Ny k 7ri
1 Vix _ Wr U
—52 Xk — p— (x*) 1(W§+ [C _aA]>}d£/\dn/\dV
k=1 j=1 k7 =1 kT
(3.41)
or equivalently,
Ny No i g N3 i k
i Vg i— i (U, W
N D S [N CAD My
i=1 j=1 " J k=1 " k
No N3 k - N1 - 3
OB W\ S (VLU
23 (- e (v )
j=1 k=1 J K i=1 J i
N3 N1 ik N2 k Vi
U'x _ (W, VY]
k ky—1 k ,
+Z(X§— ck—a-)(X) (Wn+z Ck_b')}dg/\dn/\dy.
k=1 i=1 ' j=1 J
(3.42)

Proof. Lines one and two of (3.41) are equal, as are lines three and four, as are
lines five and six; this is readily seen by expanding and comparing terms. The
equivalence of (3.41) and (3.42) follows. In order to show that (3.42) holds, we
begin by expanding the 1% line to get
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3.1 The Zakharov-Mikhailov Lagrangian

Ny N3 i k1 V2 it Ne N3 i (774 k
o U W ViU ViU, Wk
t 7 iN—1771 7 7 1[ ) - v )
Souleer vy g LW ss P st st VIV
i=1 k=1 j=1 j=1 k=1

(3.43)
The identities

tr{} (") ' UL} = tr{D,((¢") 'l U") — Dy((¢") ', U")} (3.44)

and
tr{gp%(goi)_l[Ui, WH} = tr{UéWk} (3.45)

follow from the definition that U’ = ¢'U%(x")~! and allow us to express (3.43) as

z oL NS U ViU
Ztr{ YiU) = Dy ((¢") "'l TY) +Zaz_ck jzaz—b

N2 N v ] (3.46)
L v, w
- ;; (a;i — bj)(ai — cx) }

Expanding the whole of (3.42) in a similar manner we get

N3 Uzwk No VjUZ

dL:tr{Z<Du((S@i)_1@%Ui)_D( 20" +Zal—ck_;az—b

i=1

An VIR W
_;; J)(ai_ck))

| - V i N3 ka]

+Z<Dg<<w>—1wm D, (") ¢VY) +Zb j_a b»—;

. 7 1 J

N1 N3 Wk Vi UZ]
_;; b —Ck b _az)>
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3.1 The Zakharov-Mikhailov Lagrangian

No kY/j Ny itk

_ WEVI uw
+§ ( XeW) = D)) + 30 e = > -
j=1 7o

Cr — a;
1 k %

(3.47)

N1 N2

UiWE, V]
_ZZ G o) Ck_b))}df/\dn/\dl/.

=1 j=1

The sum of each term with a triple sum is zero, giving us that

dL:tr{Dy<Z(<p) oL U Z(W) WVJ ZZ@DJVJ @Dﬂ)_;UZ(W)

=1 J=1 =1 j=1
N2 N3 N2 N3 k k —1 J ]
iN—1.07T7F k k X W (0 v (¥* )
D (Y0l = 3o g - Y5
j=1 k=1 j=1 k=1
N3 Ny N3 Ny iTTe -1 k k
_ - a0k O UY( W
AT YERELE»'Y )
. Cr — Q;
k=1 =1 k=1 i=1
}df/\dn/\dy
= (DyZen) + De Loy + Dy ZLiey)dE Adnp Ady = dL.
(3.48)

]

Remark 23. We notice that the N3 pairs of expressions derived from L by varying
Tk
= Ul=eX" and X} = V= X" (3.49a)
are precisely the auxiliary problem (3.1) with X = c,. Similarly, we can view the
N, expressions involving @' of the form
QOZ = VlA:aiSOi and Spj/ = W|>\:ai 901 (349b)

that come from varying U* as an auziliary problem based on V and W with A = a;

and the Ny expressions involving 1’ of the form

=W, and ] = Ulyop,0? (3.49¢)
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3.1 The Zakharov-Mikhailov Lagrangian

that come from varying V7 as an auziliary problem based on W and U with X\ = b;.

3.1.3 Lagrangian for the ZM Lax Pair

Building on remark 23, in the case of the Lax pair (3.1) involving U and V' with
spectral parameter A and associated coordinates ¢ and 7, we can view the spec-
tral parameter \ as coming from a “ghost” direction v as one of the poles of the
associated Lax matrix W. In this case, the Lagrangian multiform (3.30) can be
viewed as the Lagrangian for the Lax pair U and V, with the multiform Euler-
Lagrange equations of the Lagrangian multiform including both the equations of
motion of the Lax pair U and V and also the auxiliary problem (3.1). However,
it would be just as valid to focus on V and W and consider £ as the “ghost”
direction, or to focus on W and U with 7 as the “ghost” direction, since the three
Lax matrices U, V and W along with their respective associated coordinates &,
n and v all hold equal status within the multiform. Therefore, in the context
of this Lagrangian multiform description, rather that considering a Lax pair as
consisting of matrices U and V' with spectral parameter )\, it is more satisfactory
to consider the Lax triplet U, V and W.

In the Lagrangian for the ZM Lax Pair section of [2] we claim that an appro-
priate ZM Lagrangian multiform can be considered to be the Lagrangian for the
ZM Lax Pair involving U and V if we impose that W = 0 on the multiform Euler-
Lagrange equations. Here we shall perform a reduction on the ZM Lagrangian
2-form to obtain a 1-form thereby imposing that W = 0 at the Lagrangian mul-
tiform level. The resulting Lagrangian 1-form is a more elegant candidate for
the Lagrangian for the ZM Lax Pair. We include the original version from [2] in

Appendix D.
If we are only interested in the U, V' auxiliary problem

\Ilﬁ = U(£7 UE )‘)\117 \IIW = V(£7 U )‘)\Ila (350)

and want to cast this in the multiform structure of Section 3.1.2 then it is nec-

essary to temporarily introduce a “ghost” variable v and require that all field
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3.1 The Zakharov-Mikhailov Lagrangian

variables now have a v dependence. We must also introduce the additional Lax
matrix W relating to the “ghost” direction v. We then consider Lagrangian
multiform L[, ¢, x, U, V,W; A] such that

Ny N N1 i_i i\—
L= (Z RIS DUORIIZNS gy praids ibU ) l)dmdn
=1 j=1 1=1 j=1

N:

> @) TV — T W

@1
rx

»

Z XWX IV (i)t

+ b — A

)dn/\dv

+

(3.51)

This Lagrangian 2-form is special case of the multiform (3.30) where the matrix
W has a single pole at A\. In accordance with Theorem 22 we obtain that dL =
Qdé A dn A dv where

Q:tr{—i (@i— avivfiA)(‘Pi)l( "+§:[CLU——V;]]>
. i=

+§j (wi - b?%) (7))~ (VZ + Z [;/ j—?)

+% (Xs - A _Zé.)x_l (W" ' i [KV’—VZ;]“])
e g

S-S (e 2R

Since we are only interested in the U, V' Lax pair in the £, 1 coordinates, we wish

(3.52)

to remove any dependence on v from our multiform. To do so we set ¢!, = 0 and
¥J =0 for all 7 and j to obtain
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3.1 The Zakharov-Mikhailov Lagrangian

o= S (2o
)

U, V]
(o3 )

Vi, U]
(e e

=1

f(w
= \b;— A

X N, i - (3.53)
B
_1 _i V]X —1 W—}—ZWUZ]
2 Xn =1 )\ - bj — Gy ‘
We find that we can also express € as follows:
- N A O L
Q=tr { D, <X1X§W — >
i—1 >\ — a;
, (3.54)
- XWX~ WV” (v
— D¢ (X 1X77 Z ) :
It follows that if we define the Lagrangian 2-form
L = Zod¢ + Lpdn (3.55)
where
; e XWX T ()
L =tr {X_1X£W - P } (3.56)
i=1 !
and N
i 1
5 1T XWXV ()
L) Ztr{x W =) A_b,( ) (3.57)
]

i=1

then dL = Qdn A d¢ where Q is as given in (3.53). As a result, the full set of

multiform Euler-Lagrange equations give us
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xe=Ux and x,=Vx (3.58)

the auxiliary problem based on U and V/,

N2 V] N1 i
Ul + [U? =0 and VI 4+[VI =0 3.59
T ,;ai_bj] and V¢ + | ,;bj_ai] (3.59)

the equations of motion for U’ and V7 and also that W = 0. Therefore, the
Lagrangian multiform (3.55) can be considered the Lagrangian (multiform) for

the Lax pair U and V. We can summarise this result in the following theorem.

Theorem 24. The Lagrangian 1-form Llp, v, x, U, V,W; | given by (3.55) is
a Lagrangian for the Lax pair U and V. When we take the multiform FEuler-
Lagrange equations our equations of motion give us that W = 0, the auxiliary

problem

xe=Ux and x,=Vx (3.60)

for U and V' and the equations of motion

RN ‘ i
U’ U* =0 d V! 1% =0 3.61
ot ,;ai_j] and V7 +] ,;bj_ag (3.61)

corresponding to the compatibility conditions of this auziliary problem.

3.2 Matrix AKNS Hierarchy

As a specific example of the general construction, we present here the case of the
single-pole Lax pair which, with appropriate choice of variables, can be viewed
as a generating model for the generalized, i.e. N x N matrix generalization, of
the famous AKNS hierarchy of [22].
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3.2.1 An Integrable N xN Hierarchy and its ZM Lagrangian

We begin by introducing co-ordinates x; for ¢ = 0,...,00 and we define the

derivatives with respect to ¢ and 7 such that

1 0 1 0
=0 7=0

and apply this to form a Lax pair and auxiliary problem with a single simple pole

U, V(E,
o= A@—Z)\D’ " A(iz)‘l“

i.e. the ZM auxiliary problem with N; = 1 and Ny, = 1. This gives rise to the

(3.63)

compatibility conditions

V. U]

U =V: = ) 3.64
n 3 a—b ( )
By the ZM method outlined in Section 3.1, this has the Lagrangian
A s Vip=lpUp™!
Lign) = tr {w fogU — ™V — v wa _sob ‘ } (3.65a)

We can now introduce the co-ordinate v, the associated matrix W (v) and param-

eter ¢ to form two further Lagrangians

R Wx V=t
L) = tr {w R P CLLES Xb _wc v } (3.65b)
and Tty i1
- XWX
Ly =t {x XeW — ¢, 0 — £ QOC_ - } (3.65¢)
to form the Lagrangian multiform
LlendE Ndn + ZLppydn Ady + ZLpedv A dE. (3.65d)

By Theorem 21, this Lagrangian multiform is closed on solutions of this system
and has Multiform Euler-Lagrange equations that include (3.64) when we let

U=pUp ' and V =¢V1~!, ie. we have a Lagrangian multiform structure for
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this system.

Since, on the equations of motion, U, = Vg, there exists a matrix H such that
U = H¢ and V = H,. Expressing (3.64) in terms of H, we get

[anﬂ£]
He = ———=., 3.66
&n a— b ( )

A conventional Lagrangian that gives this expression directly was originally given
in [35] and discussed further in [36]. When we expand the £ and 7 derivatives in

terms of the x; co-ordinates this gives us

Hxixj,1 - Hxiflxj = [HZ‘J;UHCQ?J? (367)

an integrable N x N matrix system [36, 37]. We will show that, in the 2 x 2
case, this contains the AKNS hierarchy; this particular case, and the underlying
Kac-Moody algebra structure were treated in [24], where in particular the corre-

sponding symplectic forms were given.
We define the matrix

Q;:=—0,,_H fori>1 (3.68)

so (3.67) becomes

02, Qi — 00,Q; = [Qj, Q4] (3.69)

and since partial derivatives of H with respect to the x; co-ordinates commute,

we also have that

axin = 85173'71Qi+1' (370)

If we define @)y to be a constant matrix then (3.69) and (3.70) give us the addi-

tional relation

[Qo, Qr+1] + (@1, Qr] = 0, Q. (3.711)
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3.3 Conclusion

The relations (3.69),(3.70) and (3.71)are used recursively to find @; for all 7. In
the case of the AKNS hierarchy, we take the ); to be 2 x 2 matrices and define

Qo = (_OZ ?) , Q= (2 g) (3.72)

where ¢ and r are functions of the x; co-ordinates. We are now able to follow the
procedure outlined in [24] and use (3.69),(3.70) and (3.71) recursively to find the

Qia €.g.

i —qr qml 1 q/rl'l - qusl qul - 2q2T
=5 ’ = 7 5 ce 3.73

The equations of the AKNS hierarchy are given by

Ory Q1 — 0:,Qn = [Qn, Q1] (3.74)

i.e. equation (3.69) with i = 1.

3.3 Conclusion

Using the method outlined in this chapter, one is able to construct a Lagrangian
multiform structure for systems with Lax pairs in the appropriate form, and in
so doing, find a Lagrangian for the Lax pair itself. Lagrangians in the case of
Lax pairs with higher-order poles were given by Dickey in [33], and it is to be
expected that those can be extended to a Lagrangian multiform structure. The
generating PDEs introduced in [6, 38] which are associated with non-isospectral
Lax pairs, possess Lagrangians of the required form, cf. also [4]. Furthermore,
we expect that the universal symplectic form of Krichever and Phong, [39, 40]
associated with Lax operators could play a role in the construction of Lagrangians

possessing a multiform structure.
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Chapter 4

Lagrangian multiforms for

Kadomtsev-Petviashvili (KP)
and the Gelfand-Dickey hierarchy

4.1 Pseudodifferential operators

The main results in this chapter require the use of pseudodifferential operators.

Here we give a brief summary based on [33, Chapter 1] and the references therein.

We introduce the differential algebra A with generators uy, us, us, ... and deriva-
tion D, the total derivative with respect to x, such that D, ul) = ( (()f))z = u&””,
where u&o) = Uq. Also, D, obeys the Leibnitz rule D, ug)u(ﬁj) = ugﬂ)u(ﬁj) +
ug)ugﬂ). Elements of A are polynomials with real or complex coefficients in the

generators u, and their derivatives of arbitrary order. The operator 0 is defined

such that for f € A,

O f = fo* + (T) fo 4 (k

2) froF=2 4. (4.1)

where f € A, ' =D, f and

(k:):k:(k:—l)...(k—z’%—l). 42)
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4.1 Pseudodifferential operators

When £ > 0 this sum naturally truncates, whereas when k£ < 0 the sum is infinite.
Using these definitions for D, and 0, we note that for f € A, D, f is also in A,
whereas 0f is not, since 0f = D, f + f0 which is an operator.

The ring of pseudodifferential operators R consists of elements

X=)Y X0 X,€A (4.3)

1=—00
Elements of R can be added (in the natural way) and multiplied term by term,
moving all ds to the right hand side according to the commutation rule given in
(4.1). Using the commutation rule (4.1), elements of R can also be written in the

equivalent “left” form

X=) 00X, X cA (4.4)

If the leading coefficient of X, X,,, is 1, then there exists a unique inverse

X1 also with leading coefficient 1, such that XX ! = X~!X = 1. There also

exists a unique m'" root of X, X'/™ starting with 9. Then X?/™ = (X/™)P and
(XYmym = X. We define R, to be the set of all elements

X, => X0 (4.5)
i=0
and R_ to be the set of all elements

X = i X;0' (4.6)

1=—00

The residue of a pseudodifferential operator, res{ X} = X_;, is the coefficient of
071 in X. We shall make use of two important properties relating to residues.

Firstly,

res{X Y} =res{X,Y_ } =res {XY_}. (4.7)
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4.1 Pseudodifferential operators

The second property we shall use is given on the following lemma.

Lemma 25. The residue of a commutator of two pseudodifferential operators X
and Y,

res{[X,Y]} =D, h (4.8)
for some h € A, so is a total x derivative.

This lemma is given in [33, Chapter 1] but the proof contains errors that are

corrected here.

Proof. We verify this for single term pseudodifferential operators S = sd™ and
T = t0". We shall use the notation s} = D¥ s and similarly for t. We first note
that res{[S, T} is only non-zero if one of m and n is greater than or equal to
zero whilst the other is negative. Without loss of generality, we shall assume that
m > 0 and n < 0. The product

ST =Y (Z‘) stk gman=k, (4.9)
k=0

SO

res{ST} = (m _{jZ N 1) stlmAntl) (4.10)

when m+n+1 > 0. Otherwise res{ ST} = 0 since k > 0 in (4.9). It follows that

m+n+1 m+n+1

res{[S,T]}:( " )st(m+”+1)—( " )st(m+”+1). (4.11)

We notice that

( m ):m(m—l)...(—n) and( n >:n(n—1)...(—m>

m+n+1 (m+n+1)! m+n+1 (m+n+1)!
(4.12)
SO
n m
= (—1)m+ntt : 4.13
<m+n—|—1> (=1) (m+n+1) (4.13)
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4.2 The KP hierarchy and its reduction to Gelfand-Dickey

Then
res{[S, T}

m n

_ ( +m N 1) (stm+mtD) | g(glmtn) _ ((Uylmn) _ @) mtn=1) 4 (@yomtn—1) 4
m+n

- (_1)m+nt(1)s(m+n) + (_1)m+nt(1)s(m+n) + (_1)m+nt8(m+n+1))
(4.14)

where, to get the expression on the second line we have added and subtracted
S gla)(mintl=a) We recognise this as a total x derivative, so

a=

m-+n
m —a
res{[S,T]} = (m+n N 1) D, E (—1)as(@glmtn=a) (4.15)
a=0

It follows that, for general pseudodifferential operators X and Y, their residue,
res{[X, Y]} can be expressed as the sum of total derivatives of the form given in
(4.15) for pairs X; and Y}, so is a total x derivative. O

4.2 The KP hierarchy and its reduction to Gelfand-
Dickey

4.2.1 The KP hierarchy

Here we give a brief summary of Sato’s scheme [41] for the KP hierarchy [26]. We
let

L=0+u0 ' +uwd?+... =0+ ) ud " (4.16)
a=1

Using the notation L’ to represent (L), for i > 0

Lo, =L, L (4.17)
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4.2 The KP hierarchy and its reduction to Gelfand-Dickey

gives us the KP hierarchy. For each i, this produces an infinite set of PDEs
containing derivatives with respect to x; and x. From the case where 1 = 1, we
see that L,, = D, L, allowing us to identify z; with x. A consequence of (4.17)
is that

(L")e, = [Li—’ L"] (4.18)

for all n > 1. This can be proved by induction on n. It follows that

[
[
= [-L', L], + L}, 7], (4.19)
L
[

This gives us the “zero-curvature” equations for KP,

(Li)xz - (LfF)xj = [Ll;i-7 LJ+] (4'20)

For each 7,7 > 0, this produces a finite set of PDEs containing derivatives with

respect to x;, x; and . In the case where i = 2 and j = 3, (4.20) gives us

3(up)gy = 3 + 6ult)

(4.21)
3ty + 3(uz)ay — 2}y = 0"+ 3us” — Gurwy”.
Letting 2u; = v and eliminating us, this gives us
gz, = (g, — u® — 6unM),, (4.22)

the KP equation that gives its name to the hierarchy.
For a fixed choice of i and j, the PDEs given by (4.17) for ¢ and j are not

equivalent to the PDEs given by (4.20) for the same ¢ and j, since (4.17) gives
an infinite set of PDEs whilst (4.20) gives a finite one. However the set of PDEs
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4.2 The KP hierarchy and its reduction to Gelfand-Dickey

given by (4.17) for all ¢ > 0 is equivalent to the set of PDEs given by (4.20) for
all 4, j > 0. We have already shown that we can obtain (4.20) from (4.17). The

following lemma relates to the converse.

Lemma 26. The set of equations given by

(Li)mz - (LfF)Z‘j = [LfH LZF] (4‘23)

for all 1 <1 < j is equivalent to the set of equations given by

Lo, = L4, L) (1.24)
foralli>1.

Proof. We have already shown that (4.24) for ¢ and j implies (4.23) for the same ¢
and j. To show that (4.23) for all 1 < 4,7 implies (4.24) for all i > 1, we consider
(4.20) in the form

(L), — (L), = L4, D]y — [, L', (4.25)
and without loss of generality assume that 7 > ¢. The first j — ¢ terms of this
(i.e. the coefficients of 9* for k from i — 1 to j — 2) are identical to the first j — i
terms of

Ll =L, L) (4.26)

We now let 7 =n + 1 in (4.26) and multiply from the left by L=, and from this
we subtract (4.26) with j = n, multiplied on the left by L=", and on the right by
L to obtain

LML+t — L2 L) = L™([LY,, L™ — [L',, L"]L). (4.27)
The left hand side of this is just L,,, whilst the right hand side simplifies to
[L",, L]. Therefore two copies of (4.20) with j = n and j = n+1 gives us the first

n — 1 terms of

L,, =[L', L] (4.28)
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4.2 The KP hierarchy and its reduction to Gelfand-Dickey

Since n is arbitrary, we are able to obtain all terms of (4.17).
[l

In [1], a Lagrangian multiform incorporating a re-scaled version of (4.22) and
the corresponding equation arising from (4.20) with ¢ = 2 and j = 4 was presented
with the following Lagrangian coefficients:

1 1, 1,

— 3
0%123) - §Umlxlvm1$3 - 5”31’1 - 5”1’122 + U.’L'l.’ltl

(4.29a)

1 2
"E/ﬂ(412) = §Ux1xlvx1x4 - 2U3w1vm1w1x2 - gvxlmvxzm + 41}21:011}:1?112 (429b)

1 2
Dg/ﬂ(234) - - va1x3U$1x4 - 4Ux1131j3:v1$2 + 21}1’1213{730.’[111372 - gvxzwgvzzxg + Ua:zngvxlcm

8

2
+ 4vx2:cgv3x1xg - gvx1x2x2U$1x1x2 - U3x1vx1x1z4 + _U3x1v3x2 - 41}3I1'Ux1x2

3

3
+ 87}11%@3%11}%1%1&72 + 8U11$1U119E2UZ2Z2 + gvxlxz - 8U$1$1U901$2U901$3

3
- 8U$1x1 lel'Z

(4.29¢)

4 2

_ 2 2
.,%(341) _§Ux2m2 + 2/U4$1 - 2U3x1UI1CE1w3 - nggaﬁnglxg, - gvxlrgvxgm;; + lel'gvx11'4
1, 4

2 2 2
- gvmmxz + §U3$1U$1$21‘2 + 12Ux1zlv4x1 + 47}33{:11}4311‘1 - 4Ux1xlvx2x2

2 2 4
+ 4V 2,V 4, T+ 4%1:611):,;1903 + 100, ,, -

(4.29d)

where the dependent variable v,,,, = w has been used to eliminate non-local
terms. These Lagrangians were found using the variational symmetries method
outlined in the same paper. Although it is possible to extend this Lagrangian
multiform to incorporate more flows of the hierarchy, the resultant Lagrangians
become increasingly unwieldy. Also, as we progress up the hierarchy, an ever

increasing number of non-local terms appear in the Lagrangians, and the La-
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4.2 The KP hierarchy and its reduction to Gelfand-Dickey

grangians grow very large very quickly. Expanding this multiform to include
the x5 flow results in Lagrangians that are many pages long (see Appendix C).
Also, this approach does not yield an explicit formula for all of the constituent
Lagrangians of the multiform for the complete hierarchy, so in order to obtain a

multiform for the entire hierarchy, a different approach is needed.

4.2.2 The Gelfand-Dickey hierarchy as a reduction of KP

The n'* Gelfand-Dickey hierarchy [42] can be formulated as follows. We let

LGD =" + vn_28”_2 + vn_38”_3 + ...+ (430)
and let
P = (LG54 (4.31)

We note that whilst Lgp is not a pseudodifferential operator, in general a frac-
tional power of Lgp will be. The n'* Gelfand-Dickey hierarchy is then given
by

(Lep)ey, = [P, Lep]. (4.32)
In the case where n = 2, this gives the KdV hierarchy, whilst for n = 3 we get
the Boussinesq hierarchy. We now consider the KP equation (4.18)

L =[Lm L. (4.33)

xT

In order to reduce the KP hierarchy to the n'* Gelfand-Dickey hierarchy we
impose the constraint that L™ = 0. We note that

L"=0— L"=1L", (4.34)

an n' order differential operator that we equate with Lgp. It follows that Lla/g =

L, so P,, is given by L", making (4.32) and (4.33) equivalent. We also note that
LM =0 = LF =0 for all k € Zy, so (4.33) gives L” = 0 whenever n divides
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4.3 A Lagrangian for the KP hierarchy

m. This is as expected since, by (4.32), (Lgp)s,, = 0 whenever P, is an integer

power of Lgp, which happens when n divides m.

4.3 A Lagrangian for the KP hierarchy

In this section, we present a Lagrangian for the KP hierarchy that was originally
given in [43]. We define A, to be the differential algebra analogous to A with
generators g, ¢1, 2, . . . (i.e. where elements of A, are differential polynomials in
the generators ¢g), and we define R, to be the ring of pseudodifferential operators
with coefficients in A,. We define R, and R,_ analogously to R, and R_. We

make the dressing substitution

L= ¢dp~? (4.35)
where
p=1+ 0", (4.36)
B=0

noting that because of the leading 1, a unique ¢! exists. Expanding (4.35) we
find that

L = 0—g0 "+ (o —¢1) 02+ (o105 +pop — ()2 —pgeh—h) 0+ .., (4.37)

where ¢ denotes the x derivative of pg. Equating coefficients with (4.16), we

see that ui = —¢, uz = Yowy — ¢, Us = Y1 + Yot — (¥4)” — Viwy — ¢ ete.,
giving an injective map from A to A..

The resulting KP equation in terms of ¢ is given by

In order to show this, we invoke the idea of homogeneity in the sense of all terms

of an expression carying equal weight. Let us consider this in the case of the KP
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4.3 A Lagrangian for the KP hierarchy

equation
By = (dttgy — ul® — 6unM),. (4.39)

We begin by assigning a weight of 1 to the derivative with respect to x. On the
left hand side of the equation, we see a 1,5, term, which we compare to the u(®
term on the right hand side. In order for these terms to have equal weight, an x,

derivative must have weight 2. Similarly, by comparing the ui}} and u® terms,

(3

it follows that an x5 derivative has weight 3. Finally by comparing «® and wu™®

we see that u carries weight 2. Whenever it is possible to assign weights in this
manner such that all terms of an expression carry equal weight, we say that the

expression is homogeneous.

Homogeneity can also be introduced directly on the level of the pseudodiffer-
ential operators. Applying this to the KP operator
L=0+u0 " +u02+..., (4.40)

we again assign a weight of 1 to the derivative with respect to x, so the leading
0 carries weight 1. In order for all terms to carry equal weight, it follows that w4
has weight 2, us has weight 3, and in general u,, has weight o + 1. Similarly, the
leading 1 of the operator

=1+ p0 +p02+... (4.41)

tells us that ¢ has weight 0, so ¢y has weight 1, ¢; has weight 2, and ¢z has
weight # + 1 in order that each term has weight 0. In this chapter we only deal

with homogeneous equations. With this in mind, we have the following lemma.

Lemma 27. We let L = ¢0¢~' € R,. Then

Ly, =[L" L] < ¢, =—L"¢. (4.42)

Proof. Using that L = ¢0¢~!, the equation

Lo, =L, L (4.43)
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4.3 A Lagrangian for the KP hierarchy

becomes

[¢$i¢_1 - LZ—H L] = 07 (444)

This is equivalent to the statement that

Grd ' =Ly + ;=0 (4.45)

for some f; in R, such that [L, f;] = 0. Letting fi = ¢~ fi¢, the requirement that
[L, fi] = 0 is equivalent to the requirement that [0, f;] = D, f; = 0. Therefore f;

is a constant in R, so

fi = Z %‘aj (4.46)

j=—oc0
for some m, where each v, is a constant in A, (i.e. a real or complex number),

and consequently

fi= )yl (4.47)

j=—00
for the same constants ;. In (4.45) we see that both ¢,,¢~" and L, are of weight
i, so we require that f; is also of weight i. Therefore, 7; = 0 whenever j # 1, so
fi is of the form ~;L'. When f; takes this form, the coefficient of 9° in (4.45) is
v — 1, and setting this equal to zero gives us that ~; = 1. Then (4.45) becomes

so the resulting equation for ¢,, is

Gp, = —L' 0. (4.49)

ILe.,
Ly, =[L",L] = ¢, =—L"¢. (4.50)
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4.3 A Lagrangian for the KP hierarchy

Conversely, we see that if (4.38) holds then

in = (¢a¢71)xi
= ¢xia¢_l - ¢8¢_1¢xi¢_1

= —L" ¢0¢ ™t + ¢p0p 1L (4.51)
=[-L", L]
=[L}, L]

so (4.38) implies (4.43). O

Corollary 28. Lemmas 26 and 27 together tell us that the set of equations given
by
(L4)a, = (LY)ay = (L, 14 (4.52)

in R for all 1 < 1,7 is equivalent to the set of equations given by

in Ry, for alli > 1.
We now consider a Lagrangian £{;;dz; Adx; Adz; with Zy;5) € A,. For such
Lij) (

0pp
with respect to ¢z acting on .Z{y;;)) to obtain expressions in A,. However it is

a Lagrangian, we can take variational derivatives i.e., the Euler operator

convenient to define the variational derivative with respect to the pseudodiffer-

ential operator ¢,

0L0ij) _ N pp0ZL0is)
— = of =1 (4.54)
oo % 0
. . " 0L i) . . . .
According to this definition, is a pseudodifferential operator in R, that

can be put in the usual form with all ds on the right using (4.1). The motivation

for this definition is made clear by the following lemma.

Lemma 29. If there exist hy, hy and hs such that

(Sogxﬂ(uj) = res{X 5¢} + Dx hl + Dxl hg + ij h3 (455)
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4.3 A Lagrangian for the KP hierarchy

for some X € R, then the variational derivative of Z(1;5) with respect to ¢,
0L 1ij)

00
Proof. Since 6¢ = dppd~ + 01072 + ... has only negative powers of 9, (4.55) is

equivalent to

~ X, (4.56)

59%11']') = res{X+ 5¢} + Dm hl + sz ]’LQ + Dl«j h3. (457)

We write X, in the “left” form described in equation (4.4), so

Xy =) "Xy, Xp €A, (4.58)
k=0
and consider the product of an arbitrary term in X, with an arbitrary term in
d0¢. This will be of the form

"X, 000 ™t = X, 0" 1+Z( )DZ (X 0 )01 (4.59)

=1

and the only term on the right hand side that is not a total derivative is X, 5,0 m=L,

Therefore,

0Ly = res{ X 06} +Dy ha+Dy, ho+ Dy hs = > Xi 6p4+Dg ha+Ds, ho+Dy; hg
k=0

(4.60)
for some ﬁl, so the variational derivative
0L 144 ~
ah) _ %, (4.61)
0Pk
for 0 < k < m and is zero for k > m. It follows that
(53 i 0L
~ J Za’f ) Za’ka X (4.62)
O

99



4.3 A Lagrangian for the KP hierarchy

Following the formulation in [43], we introduce

Gp=1+4p) a0 "7 (4.63)
8=0
where p € R.

Proposition 30. The Lagrangian density

1
Lij) = res { — /0 P (0p0' 0, )i, (00 ¢, 1) (0, dp + ™ o, — 3i¢_1¢xj}
(4.64)

gives Fuler-Lagrange equations that are equivalent to the KP equation

(L )a; = (L), + (L4, IA] = 0, (4.65)

It is important to note that where 0 appears in this Lagrangian, it signifies
an operator that acts on everything to its right, rather than the = derivative of
whatever is immediately to its right. Also, even though ¢ consists of an infinite
number of components, because this Lagrangian is a residue, only a finite number
of these components actually feature. A proof that (4.64) gives the KP equation
as its Euler-Lagrange equations is given in [43] and repeated here. We shall

require the following lemma:

Lemma 31. The following formula holds:

p . .
5 res { / (650 65" <¢ﬁaﬂ¢;1>+]¢;ldﬁ}

(4.66)
= —res {[<¢pai¢;l)+7 (¢paj¢;1)+]5¢p ¢;1} + D2l
with
By = // Lves {[T[V, S], U] + [T, U]+.S, V] + [U[V, S]]
L [UT, [V, S]] + [T[S, U, V] + [U, [T, V],.5] + [V[S, U], 7] (467)

VT, [S,Ul4] + [[U, V], TS] + [T, [U, V]S]} dp d.
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4.3 A Lagrangian for the KP hierarchy

where S = ¢5', T = 0¢5 ¢, U = (¢50°0;" )4 and V = (¢30°¢5" ). This hy is

local.

The first part of this result is essentially the same as the one given by Dickey
in [43]. However, Dickey does not give an explicit expression for hq, since when
considering a single Lagrangian, it is only necessary to show that it is a total x
derivative. In the Lagrangian multiform case, we will require an expression for

h1, so it is included here.

Proof of Lemma 31. We proceed by taking the p derivative of
p . .
0res {/ P (05005 1) s (¢ﬁ3]¢,§1)+]¢,§1dﬁ}
0
+res{((6,0'0, ")+ (6,0°6, 1 )+106, 6,
¢p

(4.68)

multiplying by p, and using that p = ¢p — 1. This gives us

ores {[(¢p8i¢_1)+a (¢paj¢;1)+]¢;l} + res {[<¢p8i¢;1)+a (¢paj¢;1)+]5¢p ¢;2}
Fres o006, ) (640°6; )36, ')

(4.69)
Again using pai ¢, — 1 we find that
15;%&@H+=—w;x@ygﬂg+ (4.70)
We shall also use that
3000y )1 = [00p 0 (000 ") 4]+ (4.71)

Letting S = ¢!, T'= 0¢, ¢,', U = (¢,0'¢0, ")+ and V = (8¢, ") 4, (4.69) is

equivalent to

res {[[T, U]+, V]S +[U,[T,V]+]S+ [U,V|TS — [UV]|ST — [[S, U]+, V|T

(4.72)
- [U> [S’ V]-i—]T}
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In order to show that this is a total = derivative, we make use of (4.8), the
property that the residue of a commutator is a total x derivative. We consider

(4.72) two terms at a time. Firstly,

res{[[T, U]+, V]S = [U,[S, V]]T}
=res{[T, U4 [V, 5] + [[T U].S, VI + [T UV, Sy + [UIV, 81, T + [UT, [V, S]4 ]}
=res{[T, U]V, S] + [T, U].S, V] + [U[V, 5], T] + [UT, [V, 5], ]}
=res{T(U, [V, S]] + [TV, 5], Ul + [T, U]+.S, V] + [U[V, 514, T] + [UT, [V, S]]}

(4.73)

Then

res{[U, [T, V]]S — [[S, U]}, V]T'}
=res{[T, VL[S, U] + [U, [T, V] S]+ [T, V][S, Ul + VIS, Uy, T] + [VT, [S, Ul ]}
=res{[T, V][S, U] + [U, [T, V]+S] + [V[S, U]+, T| + [VT, [S,U]+]}
=res{T[V,[S,U]] + [T[S, U}, V] + [U, [T, V].5] + [VIS, ULy, T] + [VT, [S, U]}

(4.74)

Finally,

res{[U,V|T'S — [U,V]ST}
=res{[U,V][T, S]} (4.75)
=res{T[S, [U, V]| + [[U, V], TS] + [T, [U,V]S]}.

Adding (4.73), (4.74) and (4.75) together, we notice that

res{T([U, [V, S]] + [V, [S,U]] + [S,[U,V]])} =0 (4.76)

by the Jacobi identity, so (4.72) is equal to
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4.3 A Lagrangian for the KP hierarchy

res{[T[V, S],U] + [T, U]4.S, V] + [U[V, 8]+, T] + [UT, [V, S]] + [T]S, U], V]
+ [U, [T, V].8) + [VIS, Ul,, T) + VT, [S,U]4] + [[U, V], TS] + [T, [U, V]S]}.
(4.77)

Since every term is the residue of a commutator, this is a total x derivative. We
set hy equal to the local expression obtained by letting p — p in (4.77), integrating
with respect to p from 0 to p, integrating with respect to x and setting the constant

of integration equal to zero (i.e., the expression given in (4.67)). It follows that,
for this choice of hy, (4.66) holds. O

Proof of Proposition 30. We use Lemma 31 with p =1 to obtain

1
Jres {/0 p_l[(¢pai¢;1)+’ (¢paj¢;1)+]¢z;1dp}

(4.78)
= —res {[(00" 0" ) 1, (6076 ™) 1100 ¢~} + Da(fa|p=1)-
Variation of the rest of the Lagrangian (4.64) gives us
Sres{V ¢~ ¢y, — 0’0 0}
=D,, res{¥ ¢ '6¢} — D, res{d'¢" "¢}
+res{pd ¢ ha, ¢ 00 ¢} —res{9d'¢ T bu; 0 0P 6T} (4.79)

—res{¢y, ¢ 6¢p o7} + res{d,, 0’9 dp ¢} + Ohy
=D,, res{¥ ¢ '6¢} — D, res{0'¢ "¢}
+ res{((Li)zg‘ - (L{i-)m)&b Qbil} + Dx h27

where we have made use of (4.7) and the fact that d¢ ¢~* € R_ to obtain the the
final expression. Combining (4.78) and (4.79) we get

0L ij) =res{((L4)a; — (L4 )a, + [LY, LA])30 67"}

| | o (4.80)
=res{¢™ (L} )a, — (L4 )as + [LY, L4])00} + Dy hy,
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4.3 A Lagrangian for the KP hierarchy

SO
0L i; B ; A L
5o = 107 (L), = (e, + (L LU b (4.81)
and when set equal to zero, this is equivalent to (4.20). O

Example 32. The explicit form of Z123) given by (4.64) is

vg/ﬂ(123) - - Ua::z:a:g, + X;Bz - VUa:atz - WU.TQ - VV;@ - U2Ua33 + VU:Cg + UU$z3
+ UZU:]C:D2 +UV,, + U2Vm2 —UUzps, — U3UI2 —UW,, = 2UV,,, — 3V, U,,

2
3 3 1
— 5Ug[,,mv —3V,,V — EUxQUQ + 20U, U? + 2V, U* + 2U, 2V — §UUmm
3

3

4 5UUU,, + 2UVU,, + 3UsU,U + 2U,, VU,
(4.82)

where U = ¢, V = @1, W = @9 and X = 3. This was calculated using Maple
and PSEUDO [}/]. Note that although X andY appear in this Lagrangian, their
presence is trivial in that they do not contribute to or feature in the resulting
Euler-Lagrange equations. We can simplify Z(123) considerably by subtracting

total derivatives to obtain the equivalent Lagrangian

- 3 5

Loz = 3U2U% - §Um U 43V, U+ 5Ujj + U Uy, + U2, —3U,V,, —3U, Vi +3V 72
(4.83)

that gives identical Fuler-Lagrange equations. The variational derivatives with

respect to U and V' are

8.4
5([}23) = — 6UU,y — 6UU2 — 6UU,q, + 6U Vg — 3U,Us — 15U, Uy,

8.4
6;23) = 60U,y + 6U% — 3Uppe + 3Usey — 6V,
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4.4 Lagrangian multiforms for the KP hierarchy

giving us that

5&123) :859%123) n 59%(123)
5 5V 5U
_5$123) 5&123) n 5iﬂ(123)
5V 5V sU
=(6UUyy + 6U2 — 3Ups + 3Uszy — 6Vit)0 — Upiraw + 6U U + 3Uspay

— 3Vaae + —6UUpy + 3UUpy — 6UU? — 6UU,y, + 6UV,y — 3U,, U,
— 2Usy + 3Viay

0+ D,

(4.85)

Since the Euler Lagrange equations (4.81) have a pre-factor of ¢~1, we calcu-

late

8L
(¢> 5(@1523)) = (6U Uy + 6U; — 3Usgs + 3Usy — 6V32)0 — 3Up, Uy — 3U Uy,
+

(4.86)

Making the substitution uwy, = —U,, uy = UU, — V. (based on the expansion
(4.37)), this becomes
(308 = 3(11 ).y +6uS)O+2(111 )y —3 (S 2y — 3 (1), —6ug Y+l +-3u . (4.87)

Setting this equal to zero gives us equations that are equivalent to (4.21).

4.4 Lagrangian multiforms for the KP hierarchy

In this section we present two closely related Lagrangian multiform structures for
the KP hierarchy. Let

1<i<j<k
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4.4 Lagrangian multiforms for the KP hierarchy

be a differential 3-form. We shall define the coefficients .Z{;;1) such that the PDEs
defined by 6dM = 0 are the full set of equations of the KP hierarchy, and we shall
show that on these equations dM = 0. We define FP;;;;) such that

dM = )" Pujdz; Ada; Adzy Adr (4.89)
1<i<j<k<l
and will show that each P has a double zero on the equations of the KP

hierarchy, so the coefficients F;;;) will be of the form

> AB, (4.90)
y=1

where each A, and B, is zero on the equations of the KP hierarchy. More

specifically, the A, will be of the form

(Li)zj - (Li)wz + [LZ—‘H LZF] (4‘91)

whilst the B., will be of the form

Gr 0+ L, (4.92)

giving us the required double zero. Then

0Puijey = »_ 6A,B, + A.6B, (4.93)
y=1

so the equations given by 05 = 0 will be a subset of the equations of the KP
hierarchy. In order for the equations given by 0P, = 0 for all 1 < 4,5,k to
be the full set of equations of the KP hierarchy, we require that the factors A,
and B, span the set of equations of the KP hierarchy, and also that the A, and
B, are non-degenerate. Rather than show this directly, we will instead show the
equivalent result that the full set of equations of the KP hierarchy arise from the
Euler-Lagrange equations of the .Z{;;;) Lagrangians. Then, for the F;i;) where
1 <i,j,k,l we will show that §P;i) = 0 on the equations of the KP hierarchy.
Together, these results will show that the multiform Euler-Lagrange equations

given by 6dM = 0 are a subset of the equations of the KP hierarchy, and include
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4.4 Lagrangian multiforms for the KP hierarchy

the entire KP hierarchy. It follows that the multiform Euler-Lagrange equations
are precisely the equations of the KP hierarchy.

The factorised form of Py in terms of the A, and B, would suggest that

as well as giving us equations in the form
(L)ay = (Lh)a, + [L4, L4 = 0, (4.94)

the multiform Euler-Lagrange equations should also include KP equations of the

type
¢z + L. =0. (4.95)

However, Corollary 28 tells us that the set of equations of the form of (4.94) for
all 4, j > 0 is equivalent to the set of equations of the form of (4.95) for all ¢ > 0,
so we are free to view either of these equivalent sets of equations as the complete

set of multiform Euler-Lagrange equations for M.

4.4.1 A Lagrangian multiform for KP based on Dickey’s

Lagrangian

We define

ot 1= (60407 00,07 00y, 67 + (0067 00,67 0000071+ (0007 01,6760, 67

- [¢8k¢_1¢:{:j¢_1¢xia ¢_1] - [¢aj¢_1¢xi¢_1¢xka ¢_1] - [¢8i¢_1¢xk¢_1¢zﬁ qb_l]

+[02,, 0" 07 00,07 A [y T b 7] [y 00T i, 07

- [(bwu ak(bil(bxj(ﬁil] o [¢1k7 aj(bilgb:vi?bil] - [¢xj7 ai(bilqsxk(bil])v
(4.96)

Aijge = —/lp‘l([T[W SLUI+ T, UL S, VI+ UV, 514, T + [UT [V, S]4]

+ (T[S, U], V] + U, [T, V]S + [V[S, U]+, T

+ [VT,[S, U]+ [[U, V], TS|+ [T, [U,V]S])dp
(4.97)
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4.4 Lagrangian multiforms for the KP hierarchy

where S = ¢, ', T = (6,)0,0, %, U = (6,0'0, )4 and V = (6,076, ")+,

Ok 1= %([w—% DV LL) 4 (I, Lo 7' + [0 67 L]+ (LA L, 60,67
(4.98)
and

Ajji =
SULY LD — ALY LR 4 (LS LL, L) + (LY, LS LL) + [LE, L) 4 [L7F, L)),

2
(4.99)

In these definitions, L is used as an abbreviation of ¢d¢~!, so all of the above
are pseudodifferential operators whose coefficients are in terms of ¢z and their

derivatives.

Theorem 33. The 3-form

1<i<j<k

with coefficients

1
Loy = { - / (6,06, ) (6006, 1) 1) dp + 066, awﬁmk}
(4.101)
and

o%ijk) :/res {Fz‘jk+Aij,k+Ajk,i+Akz’,j+@ij,k+@jk,i+@ki,j+Az‘jk}dx (4102)

(with the constant of integration set to zero) when i > 1 is a Lagrangian multiform
for the KP hierarchy. Each Ly s a local expression in the fields g and
their derivatives. The multiform Fuler-Lagrange equations given by 0dM = 0 are
the full set of equations of the KP hierarchy and consequences thereof. On the
equations of the KP hierarchy, dM = 0.

We have constructed Z;jy) in this way so that

108



4.4 Lagrangian multiforms for the KP hierarchy

dM = )" Pudz; Ada; Adzy Ada. (4.103)

1<i<j<k<l
has a double zero on the equations of the KP hierarchy. In particular, this %)
is such that

Paijry = = Day, Z1ij) — Da, Lijky + Day ZLiik) + Day Ll

= res {5 ((E e, — (E)a, + [E L)) (60007 + 1)

Lo k Tk 1 g (4.104)
(L )a, = (L), + [, LED) (6007 + LE)
* %((Li)wi = (L), + L5, L)) (00,07 + L)}

Before we can show this to be the case, we shall require a number of lemmas.
Lemmas 34 and 35 are closely related to Dickey’s computations to obtain the
Euler-Lagrange equations of his KP Lagrangian that we reproduced in Section
4.3. Lemma 36 then re-arranges some of the resulting terms to get us closer to
(4.104), whilst Lemma 37 gives us the terms in (4.104) that do not contain any
x;, j or x, derivatives. Also, it is important to note that each of I';jx, Aijk, Oijk
and A;j, are expressed in terms of the residue of commutators. Therefore they
are all total x derivatives so can be integrated with respect to x to obtain a local

expression for Z; ;).

Lemma 34. The [';j; defined in (4.96) is such that

Dy, (0" Gu; — 8¢ 0,) + Dy (0'0 Gy, — 0"¢7 ' 60) + D (9707 b, — 0070
= %(_(Lk)wﬁbxi + (Lj)wk¢xi - (Li)wkgbxj + (Lk)mi¢mj - (Lj)xigbxk + (Li>$j¢xk)¢_1

(4.105)
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4.4 Lagrangian multiforms for the KP hierarchy

Proof of Lemma 34.

Dy, (05 ¢ b, — ¥ ¢ a) + Da) (00 by — 0" o) + D (F ¢ 0, — 00 )
= 8k¢71¢mj¢71¢m + 8i¢71¢xk¢71¢xj + aj¢71¢xi¢il¢xk

- Okgzﬁ_lqugb_lqzﬁxj - aiqb_lqszqb_lqbzk - aj¢_1¢xk¢_1¢wi'
(4.106)

We now use commutators to get this in the form (L'),, ¢, ¢ "

%(—qﬁa%—l%wl%wl + 00O bu & a0 — 30O Pe 6 a6
+ 00 0T G0, P! = GV b 0 b T+ G0 G007 G007
b5 (0,007 6007 4 0P 00,07 — 0,067 00,07
F000°676,,07 — 0067 00,6 + 61,067 01,67
§ (0967 0067 00y 67 4 (607676007 b 67) 4 (6007 0,67 00 67

- [¢ak¢71¢x]’¢il¢xw (bil] - [¢aj¢7l¢mi¢il¢zka ¢71] - [¢ai¢7l¢zk¢il¢zja ¢71]
+ [0, 007 G0, 0]+ (00, 0T 00,07 + [Py, 097 Py 07
- [¢Zﬂ ak¢_1¢$j¢_1:| - [¢$k7 aj¢_1¢$i¢_1] - [quj? ai¢_1¢$k¢_l])

S (L), (DY, = (L), (L), — ()b (D), 00067
+ Ty
(4.107)
O
Lemma 35. The Ay defined in (4.97) is such that
1
Duyres{ = [ 010,06, )0 000,105 o} s

=r1es {[(¢0'0 ")+, (0070~ )4]dw, 7'} + res{Aij}

Proof of Lemma 35. Since each Z(y;j) is autonomous, we notice that D,, £, =
0L ij)l6¢=g., - 1t follows from Lemma 31 that the left hand side of (4.108) is equal

to
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4.4 Lagrangian multiforms for the KP hierarchy

res {[(¢0'0 ™)+, (607071 ) 1] bu, 071} — D hlsg=(op)a, (4.109)

evaluated at p = 1. We note that res{A;;;} as defined in (4.97) is precisely
— Dg hilsps=(s;)., €valuated at p = 1. That is,

Aijje = —/lp_l([T[V, SLUI+ ([T, ULLS, VI + [UV, Sl T + [UT, [V, S]4]

+[T[S, U], V] + [U, [T, V]S + [VIS, U]y, T] + [VT, [S, U] ]
+ [[U, V], TS|+ [T, [U,V]S])dp
(4.110)

with S = 6, ", T = ($)0 by ", U = (0,00, ") and V = (6,070, "), m

Lemma 36. The ©;;, defined in (4.98) is such that

res{[Ly, L]0, 07} = gres{[LL, L ]6n, ¢ + (L4)a, LL — (L4 )2, L1} + res{Oy}
(4.111)

Proof of Lemma 36. Using the identity
0= [L, D) = (L, ) + (L, L)y + [, D) (4.112)

we see that
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4.4 Lagrangian multiforms for the KP hierarchy

res{[Li, Lﬂcbxk o'}

1 . A 1 A A , )
=—res{[L%, L] ¢, 0"} — 3 ves{[L’., L’ J¢u,, 0" + [L", L] ™'}

2
=g res{[LL, Ao, 6 7'} + s res{ L bu,6 I — 6,07 417
+ G UL — L ¢ L A+ [ ¢ L L) + [ L ¢y 7]
+ (L6007  LL] + (LY LY, 6007 ']} (4.113)

:% res{[Li, Li—]quk Qb_l + (L{i-)kaz— - (L:-)&?kLJ—}
45 nes{ (0,67 L] 4 [0, Ly6a,07) + (L bno™, L]
+ L LE, ¢ 0}

1 o - . . i .
=5 res{{L Lo, 67+ (L) L = (L) IV} + res{Oiz,

where

O 1= %([cw—l, L LZ) 4 [LL, Ly 6o 67 + (D671 LU+ (LA L, 60, 67']),

(4.114)
O

Lemma 37. The identity
res{[L’, 21" + (L7, LX]LY + [LX, L)L)} = —2res{ Ay}, (4.115)

holds.

Proof of Lemma 37. We consider res{[L?, L7]L*}, (which is clearly zero) and ex-

press this in terms of the positive and negative parts of the powers of L:

0 =res{[L}, 7|L*} = ves {[L', L})L* + L', L))L* + L%, L7 |L%

L, L)LY + (L D ]LE + (L L) LF (4 116)
- Tt +r == — =

The first three terms on the right hand side of (4.116) can be written as
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ves {[L%, L |LF + (L, LX) + (L, LV)L

o o T . 4 (4.117)
L, DDA+ [LE, D L) + (LD LR ) + [LL LY, L)}

whilst the final three terms on the right hand side of (4.116) can be written as

1 j j i 1 i i j 1 i j
ves {5 ([LL, L)+ (L4, LED L + S (L5, L] + [LE, LU LY + S (2, 1]
HEY DIDEE + (L8, LLLE) + (2, DL L) + (LU LL, LA + (L LY, L]
HLAL L) (L LF L)+ (L, D L) + [ L L))
(4.118)

By (4.112), this is equal to

Sres{—[LL, LEILY —[LF, L)L — L, LL)0F + (LY, L7 LX)
(LA DL 4 (DL DA 4 [Lirh, L)+ (pL? rr) (4119)
+ LA LR L)+ (LY, L L) + (L, L L)}

Since (4.117) and (4.119) sum to zero, it follows that

ves{[L, L |LF + [, LF|L + (L, LL]L) )
= —res{2[L1, L, LX) + 2[L% L LV ) + 2L I, LX) + 2[L LE, 17
(LU DL 4 (L DL 4 (LU L L] + (LU LY, L]
(DL LT L)+ (DL L)+ [LL, L L]+ [LE L LU}

(4.120)

which simplifies to
—ves {[LY L1 — LLLY LM+ (LY L0 D4 + (LY LE L] + [0, L7H9) 4 (L7, L]}

= —2res{A;x}
(4.121)
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4.4 Lagrangian multiforms for the KP hierarchy

where

N = AL, = DL P+ UALL D)+ L AL+ L )
+ [L7F L7 ]).
Il

Proof of Theorem 33. Since I'jjx, Ajjk, ©ij% and Ajj, are composed entirely of

commutators, it follows from Lemma 25 that

c%ijk) = /res {Fijk+Aij,k+Ajk,i+Aki,j+@ij,k+@jk,i+@ki,j —FAijk}d(IJ (4.123)

is local. Since the multiform Euler-Lagrange equations arising from 6dM = 0 in-
clude the Euler-Lagrange equations of the .Z;;, we know that the set of equations
given by 6dM = 0 includes all KP equations of the form

By Corollary 28, 6dM = 0 also gives us KP equations of the form

¢z, + L = 0. (4.125)
In order to proceed, we again use the notation F;;;;) such that

dM =Y Puudz; Adz; Adzy Ada. (4.126)

1<i<j<k<l

Combining the results of Lemmas 34 to 37, we see that

Puijky = — Doy, ZL1ij) — Day L1jk) + Doy Liairy + Doy Liji)
1 ‘ o -
= res (5((E)e, — (B)e, + [, D) (6067 + 1)
1o i k i Tk -1 i (4.127)
S((L)ay, = (L3)a, + (L4, L) (@™ + LL)

(L8)a, = (L), + (LK, Li)) (007" + L)},

_|_

N — DN

+
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4.4 Lagrangian multiforms for the KP hierarchy

and since equations of the form (L), — (L%, )., +[L}, L},] = 0 and ¢,,,¢ "' +L1 =0
are both equations of the KP hierarchy, P;;, has a double zero on the hierarchy.

In order to complete the proof, we must show that for

Pijity = Day ZLijkty — Da; “Llikty + Day ZLiijty — Day Llijnys (4.128)

0Py = 0 and Pjry = 0 on the equations of the KP hierarchy. We require
that 0F;;k) = 0 on the equations of the KP hierarchy in order to confirm that
0 Pijr1y = 0 does not define any equations that are not part of the KP hierarchy,
and we require that Py = 0 in order that dM = 0 on the equations of the
hierarchy. To show this, we first note that from its definition in terms of the
ZLijk), Pijwy is a polynomial with no constant term, in (cpgl)) 1 where n gives the
order of derivative with respect to x and [ is a multi-index representing derivatives

with respect to z; for i > 1. Also, since d*M is identically zero,

D Pijrty = Da; Pajrry — Doy Pairyy + Day, Paijiy — Dy Paiji)- (4.129)

This is an identity, so we do not require the g to satisfy the equations of the
KP hierarchy for this to hold. Since each of Py, Puikyy, Pijiy, and Pjry has
a double zero on the equations of the KP hierarchy, it follows that D, P;xy also

has a double zero on the equations of the KP hierarchy, and therefore that

0
a(‘ﬂg )1
for all I and n. Using the identity
0 0 0
——7— Da Plijkty = Do ————FPlijry + ——— Flijrn) (4.131)
(5, a5, (5

we see that for a fixed choice of I, if n is the largest such that ((,0;”)) 7 appears in

P(ijk‘l)7 then
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92

0 (80(5”))1
on the equations of the KP hierarchy. It also follows from (4.131) that, on the
equations of the KP hierarchy, if

Pjrry =0 (4.132)

a(%gn))[P(ijkl) =0 then ﬁp(ijkl) =0. (4.133)
Therefore, on the equations of the KP hierarchy,
P =0 (4.134)
a(@én))l

for all I and n, so 0Pyjry = 0. Since Pk is autonomous, (4.134) tells us that

Dy, Pijey =0 Vi >0 (4.135)

s0 Pijiy is constant, and since the KP hierarchy admits the zero solution, we
conclude that this constant is zero, and Fji) = 0 on the equations of the KP

hierarchy.

Thus, the set of equations defined by 6dM = 0 is precisely the full set of equa-
tions of the KP hierarchy, and on these equations, dM = 0, so M is a Lagrangian
multiform for the KP hierarchy. m

4.4.2 An alternative KP Lagrangian multiform

In the KP Lagrangian multiform of Theorem 33, we used Dickey’s KP Lagrangian
for the Z(1;;) , and the Lagrangian defined in (4.102) for the .Z};;x) when 1 < 4, j, k.
Here we present an alternative version of the KP Lagrangian multiform in which

every Lagrangian is of the same type.

Theorem 38. The differential 3-form

1<i<j<k
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where
o?(ijk) :/res {Fz‘jk‘f‘Aij,k—i-Ajk’ri-Akm+@ij,k+@jk7i+@ki,j+/\ijk}dx (4.137)

(i.e., the Lagrangian defined in (4.102)), is a Lagrangian multiform for the KP

hierarchy.

Proof. We recall that in Section 4.2 we identified x; with z. For now we choose
not to do so and treat them as separate co-ordinates. This allows us to consider a
3-form M; such that the coefficient of dx Adx; Adz; with 1 <14 < j is Dickey’s KP
Lagrangian .Z,;;), whilst the coefficient of dz;Adz;Adxy, with 1 <4 < j < kis the
Lagrangian %, defined in (4.102). It then follows from the proof of Theorem
33 that this is also a Lagrangian multiform for the KP hierarchy. The multiform
Euler-Lagrange equations for My will be the multiform Euler-Lagrange equations
of M plus an additional set of equations that tell us to equate derivatives with
respect to x; with derivatives with respect to x, arising from equations of the

form

(L-i-):t:j - (Li—)xl +[L+, Li—] =0, (4.138)

and dM; will have a double zero on these equations. We now define My to be
the restriction of M; to a submanifold with co-ordinates x, zs, x3, ..., obtained
by fixing x = ¢, a constant. It follows that dM, still has a double zero on this
same set of equations. If we then equate x; with x in My, we get M and it follows
that dM has a double zero on the equations of the KP hierarchy. Therefore, the
equations defined by §dM = 0 are a subset of the equations of the KP hierarchy.

To complete the proof that M is a Lagrangian multiform for the KP hierarchy,
we must show that the equations defined by ddM = 0 are precisely the full set
of equations of the KP hierarchy. We shall do this by showing that the Euler-

Lagrange equations of the .Z{;;) Lagrangians give us these equations.

We first consider the coefficient P;1) from dM;.
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1, A . )
=—1Ies {5(([’:—)% = (LY)a, + (L4 LA]) (02,0 P LE)
Lo k i Tk -1 i (4.139)
S (L) e, = (L3)a; + (L, LY (G607 + L2

(L8)a, = (LY)ay, + (LS, L)) (007" + L1)},

_|_

+

DO | — Do

so in the case where 7 = 1 this becomes

Puijry = — Day Lia1j) — Dy Liwjiy + Doy Liair) + Do Lujny
1 . ; _
= —res (3(= (L) + ()60, + 1)
+ (L) a, = (LK)a, + [, LE]) (007" 4+ L)

(L)ay = (LY)2) (60,071 + L0)}

(4.140)

N =N =

+

since L, = 0. If we equate x; and x in this expression then this becomes zero.
This is obvious in the first and third line; for the second line, we note that

L. =(¢pdp™ ") =(0— g0 ') = —¢,¢!. We now define

"g/ﬂ(mij) = -iﬂ(m'j)’azﬁxl (4.141)

and consider the 2-form

L= Z:ﬂj)dxl A dSEj + aiz(mlk)dl’l Adxy, + (ijk) - lek))da:j A dzy,. (4.142)

By construction, dL = —P(mj‘k)!ngl: 0. Then, by Corollary 4, the variational
derivative of each of the Lagrangian coefficients in L is zero. Therefore,
0 _

%(iz(xjk) — L) =0 (4.143)

SO
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5L, 0L aj “1(7i ] ioJ
0 ST (o (), — (L + (B LD (4140

—

Since iz(ljk) = Lk, all equations of the KP hierarchy are consequences of
§dM = 0, so M is a Lagrangian multiform for the KP hierarchy.
O

4.5 Reduction to multiforms for the Gelfand-
Dickey hierarchy

In order to reduce KP to the n'* Gelfand-Dickey hierarchy, we imposed the con-
straint that L™ = 0. Since, by (4.38), ¢,, = —L™¢, we can achieve this in the
Lagrangian multiform by setting ¢, = 0. A simple way to obtain a Lagrangian
multiform for the n'* Gelfand-Dickey hierarchy is to leave the KP multiform ob-
tained in Section 4.4 unchanged and impose this constraint on the Euler-Lagrange
equations. A more satisfactory approach involves setting ¢,, = 0 in (4.127) to

obtain

D., Zlij) + Dy, viﬁ(ljn) — Dg, iﬁ(lm) — Dy, viz(ijn)

= res {5 (L), = () + 1 ) E
(4.145)

(), + [ ) (67 + L)),

If we can find Lagrangians .,S?(ijk) such that (4.145) holds, then the constraint L" =
0 will be naturally incorporated into the multiform Euler-Lagrange equations,
giving us the n'* Gelfand-Dickey hierarchy. The & are not uniquely defined by

this expression, but a natural choice would be

o%lij) = O, (4146&)
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4.5 Reduction to multiforms for the Gelfand-Dickey hierarchy

A

1
.z(m:res{— / p1[<¢pai¢p1>+,<¢pa”¢p1>+]¢p1dp+a"¢1%}, (4.146b)

A

1
L1jn) = Tes { - /0 p (0 0, )4, (0,070, 1) ], Hdp + ﬁnqﬁ_lgbxj}, (4.146¢)

and

~

.,g/ﬂ(ijn) = / {fljn + Ajn,i -+ Am‘yj + @jn,i + @m‘,j -+ Azjn}dib’ (4.146d)

with the constant of integration set to zero, where

. 1
Fijn = 5 res {[¢an¢_l¢xi¢_l¢x]~7 ¢_1] - [¢an¢_l¢xj¢_l¢xm ¢_1]

(4.147)
ey, 00T 00,07 = [y, "0 0,07 ]}
is equal to I';;, with ¢,, = 0. The KP multiform (4.88) reduces to
My = Y Lijmdz; Ada; Adzy,. (4.148)

1<i<j
This multiform does not contain any derivatives with respect to z,,, so does not
allow any motion in the z, direction, and is equivalent (i.e., produces identical

multiform Euler-Lagrange equations) to

My = Y Lijmdz; Ada;, (4.149)
1<i<j
a Lagrangian 2-form for the n'* Gelfand-Dickey hierarchy. As was the case for
the KP Lagrangian multiform, a Lagrangian multiform with all coefficients in
the form of (4.146d) is also a Lagrangian multiform for the n'* Gelfand-Dickey
hierarchy.
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4.6 Conclusion

4.6 Conclusion

The Lagrangian multiforms we have presented constitute, in our view, the first
instance of establishing the integrability of the KP hierarchy at the Lagrangian
level. In contrast to the Lagrangian multiform for KP hierarchy (up to the x4
flow) that was presented in [1], we now have explicit formulae for the constituent
Lagrangians of the Lagrangian multiform for the complete hierarchy, and the
constituent Lagrangians are fully local. In addition, whilst for the Lagrangian
multiform in [1] the 2 and x5 co-ordinates held a special status (i.e., were treated
differently to the other co-ordinates), for the Lagrangian multiform presented
here, only x; holds a special status. Aspirations for future work include obtaining
a Lagrangian multiform for KP that treats every co-ordinate (including x) on an
equal footing, and also to connect the continuous KP Lagrangian multiform from

this chapter with the discrete KP Lagrangian multiform given in [27].
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Chapter 5

Conclusion

5.1 Summary

The past four years have seen a considerable number of advances related to La-
grangian multiforms, both in terms of new examples of Lagrangian multiforms,
and also a deepening of understanding of the mathematics that underpins them.
The main new results in this thesis are as follows.

In Chapter 1 we give new proofs for the multiform Euler Lagrange equations
for both continuous and discrete k-forms. In the continuous case, the multiform
Euler-Lagrange equations for a Lagrangian k-form were first found in [12]. How-
ever this new proof establishes for the first time the equivalence between the
multiform Euler-Lagrange equations in terms of the Lagrangian coefficients, and
variational derivatives of the coefficients of dL. In the discrete and semi-discrete
cases, the multiform Euler-Lagrange equations that we present are a new result.

In Chapter 2 we demonstrate the link between Lagrangian multiforms and
variational symmetries that arises from Noether’s theorem. The connection be-
tween Lagrangian multiforms from variational symmetries was first explored in
the context of 1 and 2-forms in [20] and [21]. The approach presented in this
chapter is more general in that it applies to Lagrangian forms of any order, and
also applies in the discrete and semi-discrete context. By applying this approach
to the KP hierarchy, we were able to obtain the first example of a continuous

Lagrangian 3-form.
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5.2 Outlook

In Chapter 3 we show that the Lagrangian density proposed in [5] can be
extended naturally to a Lagrangian 2-form structure. This makes the multidi-
mensional consistency of the corresponding Zakharov-Mikhailov system manifest
at the Lagrangian level. We also show that, our Lagrangian multiform leads to
a variational formulation of the underlying Lax pair itself. In fact, the 2-form
structure leads naturally to the Lagrangian description for a Laz triplet (or more
generally a Lax multiplet), and thus we can recover the Lax pair from the La-
grangian multiforms associated with the Zakharov-Mikhailov Lagrangians.

In Chapter 4 we obtain a Lagrangian multiform for the complete KP hierarchy.
This is the first ever example of a continuous Lagrangian 3-form for a complete
integrable hierarchy. Then, based on the reduction of KP to the Gelfand-Dickey
hierarchy, we perform a reduction on the KP Lagrangian multiform to obtain
Lagrangian multiforms for each of the integrable hierarchies that comprise the
Gelfand-Dickey hierarchy.

5.2 Outlook

The theory of Lagrangian multiforms is still in its infancy, with many aspects yet
to be studied in any significant detail. New examples of Lagrangian multiforms
for integrable systems are being found on a regular basis, and there is no reason
to think that this will not continue. At the same time, the understanding of
the theory behind Lagrangian multiforms continues to advance. In Chapter 2
we showed how Noether’s theorem links variational symmetries and Lagrangian
multiforms. There remains some scope to extend the main result of this chapter;
for example, the Lagrangian multiform of Chapter 3 cannot be obtained using a
variational symmetries approach, but can be obtained using a similar approach
where the vector prvg,Z;x) is not a divergence, but prve, £k + prve, L) +
prvo,-ZLi;) is. This type of extension to the ideas in Chapter 2 may lead naturally
to the concept of a variational symmetry of a Lagrangian multiform, and thereby
an extension of Noether’s theorem to the Lagrangian multiform case.

The Lagrangian multiform obtained in Chapter 3 appears to be a rather self-

contained result with little scope for further work. However the Zakharov—Mikhailov
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5.2 Outlook

Lagrangian was recently linked to Chern—Simons theory [45], opening the pos-
sibility of extending this result. Also, obtaining a discrete analogue of the Za-
kharov—Mikhailov Lagrangian multiform remains an open problem.

It is tempting to claim that, as a result of the Lagrangian multiform found
in Chapter 4, the KP Lagrangian multiform is done. However, the Lagrangian
multiform we obtained is rather cumbersome and also gives a special status to
the = co-ordinate (in that derivatives with respect to x appear in all Lagrangian
coefficients). As a result, there remains the scope to find an improved Lagrangian
multiform for the KP hierarchy.

Looking more generally at Lagrangian multiforms, there are many avenues left
to explore. For example, it has been proposed that the existence of a Lagrangian
multiform with certain properties could be used as a definition of integrability.
This might be done by linking existing results (e.g., those that relate the existence
of sufficient symmetries to integrability) to Lagrangian multiforms, or perhaps
it may be possible to show that any non-trivial Lagrangian multiform that is
sufficiently large (i.e., that has enough non-zero Lagrangian coefficients) leads
to an integrable system. Also, so far only tentative steps have been made to
link Lagrangian multiforms to quantum setting via Feynman path integrals [46].

Much work remains to develop this idea more fully.
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Appendix A

Proof of multiform
Euler-Lagrange equations for a

Lagrangian 2-form

The following is the proof of the multiform Euler-Lagrange equations for a La-

grangian 2-form as originally presented in [2].
We consider the Lagrangian 2-form

L = Lijd& A dE; + LjnydE A A + Lriydée A dE (A.1)

which contains terms up to N order derivatives of ¢, (i.e. such that [I|< N).
Let B be an arbitrary three dimensional ball with surface 9B. We consider the

action functional S over the closed surface 0B such that

Sle] = ]g ) L (A.2)

We then apply Stokes’ theorem to write S in terms of an integral over B:

S[e] = /B dL (A.3)

and we look for solutions of
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58S = / sdL =0 (A.4)
B

Since this must hold for arbitrary variations (i.e. with no boundary constraints)
for every arbitrary ball B, it follows that on solutions ¢ of our system, ddL = 0.
Up to this point, we have used the same argument as the one given in the proof of
Proposition 2.2 in [11]. The statement that ddL = 0 is equivalent to the statement
that
odL =0 VI (A.5)
dp;
The scheme of this proof from here is to first use (A.5) to show that

0Ly | 0Lk | 0Lk _
0Pne  0Pn; 0P

0 (A.6)

holds for [I|> N. We then use an inductive argument to show that it holds in all
cases by showing that if it holds for |I|> M then it also holds for |I|= M.

We begin by noticing that for [I|> N + 2, (A.6) holds. In fact all terms are zero

1% order derivatives in our multiform. We

since, by definition, there are no N +
. . odL . .
now consider the relation —— = 0 in the case where |I|= N + 1. In this case we

Pr
find that

odL _ 0L | 0Lk | 0Lk
= + +
dpr  Oepg  Oppy e

(A7)

since there are no N + 1" order derivatives in Lij), Lk and L. By setting
this equal to zero, we see that (A.6) holds in the case where |I|= N + 1.

Our inductive hypothesis is that (A.6) holds for |I|> M. We now consider the
dL
relation —— = 0 in the case where |I|= M. We first make use of the easily

¢

verified relation

0O L) _ 9L | OLiw

dp; dp; Ty

(A.8)
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along with similar relations for Z(;;) and Z;;) to get that

0%L; 0L; 0L ki 0Ly 0L
odL _ 024w | p, 926w | 92t +p, 22 | 94w
Op;  Opp ¢y =y Op; P\ o¢;

when expressed in terms of Z;j), Z(r and Z;. We now make use of the
relation

0L _ 0Ly 0L 9%

_D.D. 0-Lij)
0Py dp; 0Py, ’ 0pr; ’ 0Py

(A.10)

along with similar relations for ;) and .Z{s;) to expand (A.9) to get that

0L 0L 0L 0L 0L
odL 0Ly ( b,y 04w | p 0w | p o, (yk))
Ip;  Opp; 0Py 0py; 0Pk 0P ik
+ ('“)+Dj( ® Dy —* 4 p,——* | p, D, (’”) (A.11)
8901\3' dp; oy, 0@y, 0P 11

0% 6.0 6. 5. 6.
N <a>+Dk( W, p, 0% | p %) | <a>>.
P \k 0p; 0P 0Py, 0P i

Since, by our inductive hypothesis,

(A.12)

0Liwy |, 0Ly 53(@')) _0

D,;D;D
7ok (5‘P1jk 0P i 5‘P1ij

the triple derivative terms in (A.11) can be removed. We then use our inductive

hypothesis to rewrite (A.11) as

oL _0Zm {dfm') L . (fwm') REZC) )
D, a‘Pl\i 5901¢\j 59011'\14 T\ by 5901ij\k
0L ki 0L i
+Dk( (ki) (a))}
5‘P1ki\j der;
L ki 0L i 0% ; 0L 0% ;
9 (’“)—Dj{ i) (]k)+Dk( ) m:))
a‘Pl\j (5‘P1j\k 5901j\i 5‘PU 5‘Pljk\i

0L s 0L
+D, ( (i5) + (Jk)) }
5901ij\k 5‘P1j

_|_
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+

0 _p, (Lo o, (o, 5
asof\k 5‘P1k\¢ 5‘P1k\j 0P 1k 5‘P1ki\j

A.13

0Liry | 0Lk (A.13)

+D; + .
5901jk\i 0Pk

We use our inductive hypothesis again to simplify, and get that

odL _0Zyw 4y {55/”(1@2') L0 (5»5%') >}

3_901 O 0Pr; 0Pk 0P 1ki\j
N “”—Dj{ i) (Jk)+Di( m)} (A14)
6’901\j 5‘P1j\k 5901j\¢ 5‘P1z‘j\k
0L 0%, 0L ki 0%,
N (a)_Dk{ o "”+D]~( (Jk)>}.
a‘Pz\k 5‘P]k\i 5‘P1k\j 5‘PIjk\i
Finally, we use (A.10) to write this as
odL 6% 0Ly 0-L;
_ (Jk) + (ki) + () (A.15)

dpr opn:  0en; 0@ .

Since % =0, we now have that (A.6) holds for |/|= M.

In this proof, we have shown that the multiform Euler-Lagrange equations are a
consequence of ddL = 0. It is clear from (A.15) that the converse is also true, i.e. if
all of the multiform Euler-Lagrange equations are satisfied then édL = 0. Whilst
this proof applies only to a Lagrangian 2-form, it is relatively straightforward
to generalize this argument to get the multiform Euler-Lagrange equations for a

Lagrangian k-form.
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Appendix B

A fully native Lagrangian
multiform for the AKNS
hierarchy

B.1 Introduction

In [28] the concept of alien derivatives is discussed, and a Lagrangian compo-
nent .Z;; is described as i, j-native if it only contains derivatives with respect to
x;, x; and also x; (where x; is given special status as the spatial co-ordinate).
If it contains derivatives with respect to any other co-ordinates, then these are
described as alien derivatives. We will use the term fully native to describe La-
grangian components .Z;; that only contain derivatives with respect to x; and z;.
For the Lagrangian multiform we have already obtained for the AKNS hierarchy,
we notice that, whilst the .Z}; components only contain derivatives with respect
to x1 and x; (i.e. corresponding to the labelling of .#};), the .%;; components for
i,7 > 1 contain derivatives with respect to z;, ; and also ;. Therefore, each
component is already i, j-native, but only the .Z}; components are fully native.
In this section we show how the Flaschka—Newell-Ratiu (FNR) construction of
the AKNS hierarchy [24] can be used to construct a fully native Lagrangian mul-
tiform for the AKNS hierarchy. The results in this section have now largely been
superseded by those in [25].
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B.2 The FNR construction of the AKNS hierarchy

B.2 The FNR construction of the AKNS hier-
archy

We begin by defining

1 1
and
k
LW =3 NI (B.2)
i=0
We let Ly = BZ ?) and the subsequent L; are obtained recursively using the
relation

Ly, = [LY, L] (B.3)

and the assumption that all integration constants are zero. The next few L; are

as follows:

n=(00). = (T ).
r 0 —35Tey QT
1 1 1.2
Ls = < Z(qul - qrfcl) — 19101 T 34 7“) , Lg=

1 1 2 1
_Zrl“lftl + §qT _Z<qu1 - qrﬂ?l)

(_%q2r2 + 8(Tx1x1q qIITII + qxliCllr.) 3 9 9 %(6QTCII1 qgclxlxl )
%(6(]7‘7’11 rmlxlan) Zq = §<Tz1z1q Az, Tz, + q:m:m

(B.4)

Where ¢ and r are the field variables of the system. The equations of motion for

the k™ flow of the hierarchy are then obtained from the off diagonal entries in

LW — ™ 1M 1] = 0. (B.5)

Tk

It is apparent from this construction that every equation of motion will contain x;

derivatives and this is why we end up with a native but not fully native Lagrangian
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B.3 The Kaup—Newell hierarchy

multiform. The source of these x; derivatives is (B.3) which guarantees that each

L; will contain more x; derivatives than L;_;.

B.3 The Kaup—Newell hierarchy

Instead of using (B.3) to generate the matrices L;, we can use

Ly, = [L@, L]. (B.6)

The first few L; we obtain are:

(0 ¢ B —%qr s B —%(ST—th) %qm
Ll_(r 0)’ L2_< t %qr)’ L3_( —irg, L(sr+tq)

Lo — <§q2r2 + 3G, —qra,) — 58t 55a, +5(PtHqrs) >
—Lxy, + 3(r%s + qrt) — L¢P — 1 (rqu, — qra,) + S5t
(B.7)
We now have four field variables, ¢, r, s and t. The off diagonal entries in
LY —L® 4+ L@ LW] = 0. (B.8)

gives us the Kaup—Newell hierarchy [47]. For example, the x; flow is given by
Q(A? =0, R(ﬂ =0, S(Azf =0 and Tﬁ) = () where

Qgi =y, + 215
RY .= re, — 2it

g)l ' » (B.9)
SAl =Sz T Qe — QT

Tfl) =Ty, — Tay + iqr.

By inspection, we find that these equations of motion are variational, coming

from the Lagrangian

1 , 1 1 1 1 1 1
Lz = §q2r2 —2ist— 5 e + 5 Gty — 3 1, + 5 "de2 = 5 80 + 5 5Tor- (B.10)
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B.3 The Kaup—Newell hierarchy

We can now use the variational symmetries approach given in Chapter 2 to find

the Lagrangian coefficients of the multiform. We do this by using

dl_lgl' = E($12) : (Bll)

where
L12i = .,f(lg)dxl N dl’z + .;%(%)dl’g VAN dIZ + Dali)dl‘l A dl’z (B12)

to obtain all Zy;) and £{;). The remaining .#{;;) can then be obtained from

@
R
dlig; = B(%) - | & (B.13)
R
Tn;
using the Z(y;) obtained from (B.11). The first few Lagrangian coefficients are as
follows:
1 , 1 1 1 1 1 1
ZLag) = §q2r2 —2ist — 5 U= + 3 qte, — 3 tqy, + 5 My = 5 5 + 55T (B.14)
.2 .9 1 9 1 5 1 ? 1
°§€(13) ::Zth +or sq — g Tﬂmq r+ g qathr - Zq,rl'122 + ZTxQle + ZszrrEl
1 1 1 1 1
- ZTQxlxg - 5 qTCE3 + qCEQt + 5 ngr - Txgs + 5 StCEl - 5 tsl'l
(B.15)
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B.3 The Kaup—Newell hierarchy

1 1 7 1 1 3 1
Ligy = — Zq37”3 — thxlxg + thzqm + 3 @, — 3 rqty, + 3 treq” — 1 Q. qt
1 1 1 3 ) ]
Y T2Q$2q + 3 qr28$1 + - qTy, TS — 35 SquQ - 387’3311‘2 - th:leg
2 8 4 8 4 4
- _TQSQ + zC]acztz1 - ET:cszz - 3q2t2 + Erzzsazl + zsxzrwl - zrsxlxg
2 4 2 2 4 4 4
1 1
- 5 qTCE4 + 5 Qx4r - twgs + Sl’gt
(B.16)

1 . ) 1 1 7 1
"%23) = §q2t2 + ZTqSt + _T2S2 -5 q2rx27’ + < TQqu — S QTzoxy — 7T qxoas

2 8 8 4 4
1 1 1 1 1 1
3 gty + qu3t + 57’3353 — 57“3033 + 5253;28 3 St
(B.l?)
7 1 7 1 1 3 1
95424) = ZTSa:m - thgrz - Zlqtiﬂgxz - ZSQZT?’ -3 TthCIQ + ] tq27”mg T 7qqxyt
1 9 1 3 TR 1 9
+ g qSz,7" + 1 qrry,S — g ST°Qy, +1qst” — thmm — Zsrgmj2 +itrs
1 1 1 1
— 5 qty, + 5 Qz,t + 5 TSy, — 5 T3S
(B.18)
1 1 1 1 3 3
Lagy = — 3 ot + 3 Sy ST — 5 Ten @12 + S Gy @°1° + 3 tr2,q° — 3 5T
1 1 1 1 1 7
- g Tq2tw3 - g QI4qT2 + g qr25333 + g 7’,,34q27" - §q2rr22 - th:r21'3

1 1 1 1 1
- era:gq:ul - anzgrau; - Zt(hgmg - 17081‘2.%3 - Zsrxzatg - §t1‘251‘2 - 5 t:czrsq

l v

l ? T 9,9 4.4 ? ?
+ ZQT$2$4 + ZTJCQSQC;:, + 58 t + 32q r + 4rqa82$4 + ZS$2TQC3 + quthB
7 1 1 T 54 1 1 1
+ Ztmqa;3 — 5 sty + 5 tSy, — gqm re— 4—1 rqz,ql + 4—1 qrzTSs + 5 Sz, qtT
1 7 7 5)
+ =1, qSt — = Qg St — —q?’rt2 — —qr352 + =T, qQr, T — — itq2r23.

2 2 2 2 4 4

(B.19)
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B.4 Beyond Kaup—Newell

We notice that in this multiform, all .Z9; coefficients are now fully native. How-
ever, with the exception of .Z{12), the Z{1;)s are no longer fully native. In fact,
it appears that we are no closer to a fully native multiform that we were for the

original AKNS multiform.

B.4 Beyond Kaup—Newell

We will now consider the hierarchy that comes from a x3 based construction, i.e.

where our L;s are found using

L., = [L®, L]. (B.20)

The first few L; we obtain are:

(0 ¢ _[—iqr s [ —E(sr+tq) u
Ll_(r O)’ LQ_( t %qr)’ L?’_( v L(sr+tq)

I — Lg*r? — dqu —dru —4st) . L '
— 5Ty —5(¢*r* — 4quv — 4ru — 4st)
(B.21)

We now have six field variables, ¢, r, s, ¢, u and v and the off diagonal entries in
3 k 3) 7k
LY —L® 4+ [L® LW] = 0. (B.22)

give us our equations of motion. In this case the x; flow is given by

3 )
Q(Ai = Qy, + 215
RY) =, —2it
Sg? 1= 84, — 1q°T + 2iu
@) (B.23)
TN, = @y, + iqr® — 2iv
Uﬁ) = Up, — Qo — z'q2t —isqr

VA(EI) = Uy — Tgy + ir’s 4+ iqrt,
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B.4 Beyond Kaup—Newell

but these equations of motion (in the form given above) are not variational, so we
cannot proceed as we did for the z; and x5 based constructions of the hierarchy.
However, it was shown in [23] that all systems of this type (i.e. the z; version of
this construction for ant x;) are Hamiltonian, with equations of motion expressible

in the form

i o 6HY
1| =D, QY =TV & (B.24)
— 6@1

for some Hamiltonian H J(i), where J® is the matrix of Poisson brackets of the

field variables. In the case of the x3 construction,

{e.a} {a.r} {ast {at} {qu} {qv}

G e i

3y S, q S, T S, 8 s,t S, U S,V
=g on {os) {60 () {10} | (5:25)

{u, ¢y {w,r} {u, s} {u,t} {u,u} {u,v}

{v.q} {v,r} {v,s} {v,t} {v,u} {v,v}

These Poisson brackets can be evaluated in terms of the entries in the L; matrices

using the R-matrix approach given in [48]. If we denote the (1,1) entry of L; as

a; then

0O 0 0 0 0 a

0 0 0 0 —ap O

0 0 0 a 0 a
3 — 0 1

J 0 0 —ayg 0 —a 0 (B ' 26)

0 ag 0 aq 0 (05}

—Aag 0 —Qaq 0 —a2 0

In general, each J® has ags with alternating signs along the antidiagonal, a;s with
alternating signs along the —2-antidiagonal and generally, a;s with alternating
signs along the —2i-antidiagonal, such that all a;s in the far right column have
a positive sign. All other entries in J® are zero. We shall require the inverse of
J@: in the case of J®),
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B.4 Beyond Kaup—Newell

0 72 0 g1 0 Jo

=72 0 =j1 0 —j0 O

(3)—1 _ O jl 0 jg O O
J i 0 —jp 0 0 0 (B.27)

0O 50 0 0 0 O

—J5% 0 0 0 0 O

_ 1 4 .
where jo = —— and subsequent ji are given by
Qo
| XK

JK+1 = T ;]K—iai-&-l (B.28)

In general, each J 0~ has Jos with alternating signs along the antidiagonal, j;s
with alternating signs along the 2-antidiagonal and generally, j;s with alternating
signs along the 2:-antidiagonal, such that all j;s in the top row have a positive

sign. All other entries in J@ " are zero.

Remark 39. If we multiply (B.24) from the left by JO™ then it is clear that
the right hand side is variational. For the resulting equations of motion to be
variational, we also require the left hand side to be variational. The results in
[25] show that this is the case.

In the case where ¢ = 3, these same equations of motion can be obtained by

evaluating J (3)71Q(A33 = 0 where

(B.29)

and J (3)71Q§’3 = E(Z3)) for some Lagrangian .Z(;3). We are now able to find

the Lagrangian coefficients of our multiform since

-1

dls;; = BE(%%) -Qg = JO Q% -Qg’;. (B.30)
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B.4 Beyond Kaup—Newell

Remark 40. J(i)_1 18 a Hermaitian matriz so

1 -1
dls;; = J® Q(A:n Q(A; —_J® Q(A?’;‘Qm = —dLyj; (B.31)

and, more generally
i)~ 1 ; 1 7
dLij, = JV QY - Q% = —JV QY - QY = dLy. (B.32)

The first six coefficients of the multiform obtained in this way are as follows:

) , 1 1 1 1
ZLag) = §q2r2 —21ist — 3 qra, + 3 qte, — 3 Gz, t+ 3 TQuy — 3 TSy, + 3 re s (B.33)
. 2 L, L, - - 1 1
Lz =iq°rt +iqres — gq Ty + gqr Gz, — 215V — 29Ut — §q7“x3 + §qvm1
1 1 1
— 5%11} + 57“%3 — 57’%1 + érmu + 5 Sty — 3 Sg, T
(B.34)
i )

.,2”(14) =21qrst + 4%3%1 + 47“;53%31 + 2q2t2 + 57“232 + Qust — T238 — qu,g
237“3 Lrqus +ir v+zur+1tr 1sr7’ +1s r?
4q 4 q1,3 q q 4 qrdqz, 4 qrrg, ] z14
1 1
~3 . S Qe 775 — 3 “ta qPr — 24UV + 3 lo U 3 tUy, + = SV,

1 1 1
- 5 Sz, U + 5 TqQexy — § qrz,
(B.35)
' 1 1 1

Loz = %r s“ — 2iuv + 2q 242 —3 q2rm2 + 3 qrqu2 +rqgst — 3 Qs

1 1 1 1 1 1 1

+ 5 qUzy — 5 qzsV + 5 q:ltgt + 5 TSxy — 5 TUgy + 5 TeU — 5 TgsS (B36)
1 1

+ 5 Stm2 — 5 SIQt

137



B.4 Beyond Kaup—Newell

i i i oo 3, s 42
qugrm + Z qu r° +1gst

'5/”(24) =isr?u + itq2v +itrs? + TsQuy — itq%? _
- ltqrqx - lsqrrx - lqgrtm - 17’% zs T+ 17"2861,; +isqrv + ituqr
4 2 4 2 8 2 4 2T3 8 2
Lo Lo 1 1 1 1
T3 q Tz, + 3 qreSz, + 3 Ly + 5 8V = 5 Say¥ + QugV — B tUyy — TgUl
1 1 1 1 ;
+ 5 "Se T 5 Tms T 5 qle, + B Gzyt — 1172w
(B.37)

i 1 1
L) = —Z—ltqurQ—§tux3+§svzs—§vsx3+§utx3+§s$4t—
1 1 1 boo L og44 b9
+ = TU, — = QUgy + e,V — T+ ST+ g + —rfu
g e T g At Tt T Tt TGS A 0T Ty
i i
5 2 2—Z—lvq?’rz—Z—luq27‘3—gqr2qw4—i—ivuqr—i—ivqst—l—iurst
1

?
1 1 1 l
8

5 Stx4

+ =qv

-5 q2TCC3t -3 q2rt1‘3 - _Tq.r3$3 - _qrmga?g + . qT2SfL‘3 + ’. q2TT:E4
8 4 4 8 8

1 9 1 1
+ é QusT°S + Z tqrqy, — Z SqrTy,.

(B.38)

On this occasion, not only are all of the Z(3;s fully native, but so is Z{;2).

We now consider the x4 construction, with the L; matrices obtained from

Ly, = [LW, 1], (B-39)

and the first four given by:

(0 ¢ [ —iqr s [ —E(sr+tq) u
Ll_(r 0)’ L2_< t %q’r)’ L?’_( v L(sr+tq)

L= s —dqu —dru —4st) w
4 T —(g?r* — 4qu — 4dru — 4st)
(B.40)

where w and z are two additional variables. We obtain our equations of motion
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B.4 Beyond Kaup—Newell

from

4 k 4 k
LW —L® 4+ LW, LW] = 0, (B.41)

and find the multiform coefficients by reconstructing Ly;; from

dLy; = JO QW QY. (B.42)

The first six multiform coefficients are as follows:

1 1

i . 1 1 1
Zay = S0t —2ist— L | 9 o, T+ 92 UEY 92 TSz, +

1 (B.43)
2 2 2 g fe® B

. . 1 ) ) 1 1
Lz = — irg’t —iqris + 3 q27“7"z1 ~3 qulr2 + 2isv + 2itu + 5 qras — 5 qUq,
1 1 1 1 1 1
+ §qmlv — §rqm3 + 3 TUgp — irmu 3 Sty + 3 Sg, t
(B.44)
. 1 .
Ly = 2q2t2 + %T‘QSQ + z'rq% + iq7°2u + 1 1qqe,m — 1 Sqrry, — 218x — %q?’r?’
1 1 1 1
—2@tw—§q rty, + 2itqrs + 5 MW §3x1v+§ta:1“_ 515%1
1 1 1 1 1
+ 3 SVe F 5 Ty = 5 TWay — S AT+ S ATy — 5 G+ 4TS
1
+ 3 Qu,7%5 — 3 Prot — 2iuv
(B.45)
IR 1 1 - 1
,2”(23) = — §r S qgtT+ 2iuv + = 3 q TV gy — 8 qqm —qstr + 3 Qs
1 1 1 1 1 1 1
- 5 QUg, + = 5 VG, — 5 1y, — 5 TSy, + = 5 TUgy — 5 UT gy + 5 STgs
1 1
3 Sty, + = 2 tS4,

(B.46)
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' 1 1 1
Log) = — iquT?’ — 21w — 2ux — 3 q27“tgc2 ~3 q27“$2t + 3 QTQS:CQ + itqru
, 1 1 1 1 1 1
+isqrv + 3 e = 5 SayV + 3 teyu + 5 SVr2 + 5 "Sea = 5 W
1 1 1 1 1 1 1 9
- §qtac4 + 5 qTzy — § Gz T + §th4 - §tuaz2 - 5 STy + g ey 7S
_it32 12 4 ita? ast? 4 isr? lt _1
1 q°r° +utrs® + g v +1gst” +isr u+4 qqz,T 4sqrrx2
(B.47)
Lz = — éq‘lr4 1 1qzqr + 150w — wqru — wqst — urst — %q2v2
T 5 o n 1 1 . 1 L 1 1 L
— =r7u — pa — = T W+ = "Wy + = QUp, — = Qs + = LU,
2 g et 7 5 Tl 5 Tas 75 @Wes ™ 5 B 7 5 Pl
1 1 1 1 1 1
+ 3 Sty, — 3 SVUgy — §rux4 + 51}513 — ivqmJL — §Utx3 + 51@7’14
7 1 1 1 1
3 15z, + Zt3q2r2 —3 qmgsr2 3 smqr2 + 3 T‘I3tq2 —3 qzrm4
+ qu r? + 115 ¢*r + 2iwx — 132252 + ivq3r2 + 3.uq2r3
g g " 2 4 4
(B.48)

In this case, all Lagrangian coefficients are fully native. In addition we notice
that for 7,5 < 3, the Lagrangian coefficients are identical to those from the x3

construction. This leads to the following two theorems:

Theorem 41. The Lagrangian multiform based on a xp FNR construction has

fully native Lagrangian coefficients £(;;y whenever i,j < k.

Theorem 42. Given two Lagrangian multiforms based on xy and x; FNR con-
structions respectively, if k < [ then both multiforms have the same Lagrangian

coefficients £ ;) whenever i,j < k.

In order to prove these theorems, we will introduce the following notations. We
shall label the 2k field variables that arise in the z; construction as g1, ..., ¢®*,
r . r®k (50 in the x5 (Kaup-Newell) construction, we now label the field

variables ¢, ¢@2 r@1 (2 ingtead of ¢,7,s,t). Similarly, we shall denote the
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B.4 Beyond Kaup—Newell

equations of motion for the x; flow, as they arise from the z; FNR construction
as Q(Aki)j =0, R(Aki)j =0for j=1,..., k. We will require the following lemma:

Lemma 43. For j < i, Qx)j has no x; deriwatives if l+j7—1 < 1. Ifl+j—1i>
1 then the only x; derivative in QX)J.I appears as qg(c)lﬂ " with no additional
coefficient. Similarly, for 7 < 1, Rg)jl has no x; derwatives if | +j —1i < 1. If
l+7—1>1 then the only x; derivative in Rg)jl appears as Tg(g)lﬂ " with no

additional coefficient.

Proof. ThlS follows from the FNR construction that is used to derive the @ ,; (k)g
and R{ M . O

Proof. (of Theorem 41.) We now consider

1
dLijx = 797 QY - QY = D, Lk + Day Liri + Diy L) (B.49)

in the case where ¢ > j, k and notice that since the components of Q(AZ)] and Q(A’L
only contain first order derivatives of any of the field variables with respect to z;
and g, and contain no products of derivatives of the field variables with respect
to z; and zy, it is not possible for £, to contain any x; derivatives, or for Z;;
to contain any x; derivatives, so these two Lagrangian coefficients are both fully
native. In order to show that .Z{;; is also fully native when j &k < i, we will
show that dL;;; does not contain any products of derivatives of any of the field
variables with respect to z; (e.g. there is no qg(ﬁl)] qg(f) , qél)] rg(cl)k, g(c?] T;Sc? term in

dL;;x). We can express dL;;;, in terms of components as follows:

i—1 i—m—1
)L ~@G 7 . (2) n+1 ()yi—m—n 1) n+1 1)i—m—n
dLje = J¥ Q(A)j'Q(A)k:ij > QR — Ry QW )
m=0 n=0
(B.50)
We are interested in when a product of z; derivatives may appear in (B.50) — by
combining (B.50) with lemma 43, we see that the products of x; derivatives are

given by

i—1 i—m—1

jm Z qz)n+j+1 i (z)k m—n __ (z)n+3+1—zq(z)k m— n) (B51)
0 n=0

T4 Zq
m=
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where qg(g?j and rgfi)j are taken to be zero when 5 < 1. We can adjust the summa-

tion limits to exclude these zeros so the products of x; derivatives are given by

i—1 k—m—1
Z ]m Z (qéii)n-i-j-l—l—i,r,;ii)k—m—n _ ,r,c(tii)n—i-j-&-l—iq;ii)k—m—n). (B52)
m=0

n=i—j
Now for the right hand side of this sum, we re-label and reverse the order of

summation by letting n — k+4¢ —m — 7 — 1 —n and the sum becomes

i—1 k—m—1

Z]m Z (qéii)n-i-j—l—l—ir;ii)k—m—n . ,r,g(gii)k—m—nqg(cii)n—kj-l-l—i). (B53)

m=0 n=i—j
Therefore, there are no products of x; derivatives in dL;;, for j,k < i so each

Lk for j,k < is fully native. m
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Appendix C

The three low KP multiform

using Theorem 10

In Section 2.2.4 we used variational symmetries to obtain a Lagrangian multiform
for the first two flows (¢35 and t4) of the KP hierarchy. Here we extend this
multiform to include the t5 flow. We begin by introducing the dependent variable
r such that r, . ., = ¢ where ¢ is the usual KP variable (so r,, = v, the variable

we used in 2.2.4). In terms of r, the Lagrangians already obtained become

1 1 1
_ 2 2 3
21123) - §T3$1T$1I1I3 - §r4x1 - Erxlarlacg + T3J:17 (Cl)
1 2
2
0%124) - §T311T$1$1$4 - 2r4xlr3x1x2 - grm1mlmgrx11212 + 4T3xlrx1$11'27 (CQ)
2 4 2
_ 2 2
"56(134) - grl‘lxgscz + 2r5x1 - grfElIQIQTlelxs - §T$1I2$3TI1I1I2 + Txlxlxzrxlxlgm
4 4
2 2 2 2
- §T33:1m2 + §r4flrwlmlz2r2 + 127“3:]017‘5331 + 4T411T311 - 4T311T$112$2
2 2 4
+ 4r311rx1z1x2 + 4T3I1T11$1x3 + 10r3x1 + 27159317’13315515537
(C.3)
and

143



_ 2 3
‘ﬂ234) - 2T3xlx3r3x1x2 + 2r5x1T4$1x2 + 6T31-1t1'1.’172 + 4r3x1r$1x1$2
8 2

2 2
- 4T4mlrm111$2 - 27’3x17’1212x2 - grw1wlz2rzr3zlr2 - §T$2$212T5$1
+ 47”311 rm1x1x2r5x1 + 2T5x1ta:1:r2 + 2Tx1x1:r3ta:1x2 - 2rm1x2x2tx1x2

2
+ 6r3$1r4$133‘2 + 2T4xlrx1$1x2x3 + 2T$1x2932r4x1a:2 - T4xlr3x1x4

2
2
+ §rx1x1x4r5x1 + 57"3:517},;1;51904 + 4r3xlrx1x1xzrx1z2x2 - §T$1x2x2rxlxgxg

2 2 4 1,
- §r1111$3rw2$212 + grwlmmrmmzwz + §r4$1T112212$2 + grmmxz

1

+ 8T3m1r4x1r3x1x2 - 4r3$1ra:1x1x27ﬂx1$1a:3 + _T$1x2$2rl‘1x11‘4'

2

The Z(125), based on a Hamiltonian given in [29] is given by

1 3 2 5 2 2
a€€(125) = §T3xlrx1x1x5 - 57“5901 - 6Tx1m2x2 - 5r3x1x2 <C5)

15
2 4 2 2
+ 15T4x1r3$1 - 7703271 + 57’3:)31711'1-'52-772 + 5T3$1rx1x112'

With the Lagrangians in this form we obtain the Euler Lagrange equations

E<=§€(123)) = _6T3x1r611 - 18r4x1,r5$1 - 705:131:)33 + T4x1x2x2 - Tle (CG)

E($124)) = _16r3x1r511m2 - 8r:r1x1;tg7'6x1 - 40r4x1x2r4x1 (07)

- 32T5Z1T311m2 - T51'1.’E4 + _T3:El3(£2 - 4T72¢1:E2

3

3
E(B%(125)> - 540T3mlr4zlr5ml + 180T4x1 _60T4271T3m1272$2 _807,411%271311%2 _4OT5$1 Txll'lzg.’ﬂg
2
+ 210r6mlr5x1 + 9OT3x1T6x1 - lorxleIQTle - QOTxlxlszlewg - T5x1x5
5
- 30r3x1r4x1x2x2 + 120T4$1T7I1 _I_ grx1x14x2 + 30T3I1T8I1 - 10r6x1x2x2
‘I— 37”10;51 .
(C.8)

In order to apply Theorem 10, we shall require the four times integrated with
respect to x1 versions of these. Defining e; such that (e;)ss, = E(Z12:) we find
that
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2
€3 = _3T3x1 — Toyzyzs + Toywows = Thans <09)

4
€4 = Toryziaxy — 4T4x1z2 - 87‘39&1”{:1&:19&2 + §T3I2 - 4151519[»‘27 (ClO)
and
5
€5 = —Tziziz5 + 3T7x1 + 53412 - 107“33;1952352 + 15Tix1 + 30r3xlr5ml (Cll)
+ 307‘21‘1 - 10T3x1rx1x2w2 - 57‘5}13}13}2 - 5tw2x2 - 10ux2'

These integrated versions of the Euler-Lagrange equations contain a number of
non-localities, labelled s, ¢ and u, such that s,, = 7, ty4, = 13, and u, =
T3z, oz - LHese non-localities shall feature in the Lagrangians we obtain for
the KP multiform. We usually insist that all Lagrangian coefficients in a La-
grangian multiform are local expressions, so it is debatable whether or not the
multiform we present here is a true Lagrangian multiform. However, the only

non-localities that appear in the Lagrangians are the ones that appear in the e;.

Using the above expressions for e3, e4 and e5, Theorem 10 tells us that

63(65):1:1 = Dz5 iﬂ(mg) - ng ﬂl%) + sz ﬂ135) - Dzl -iﬂ(235), (C-12)

which allows us to find that

5 )

‘ﬂl?ﬁ) = - grxlxgzzrxlxzxg - §T1111x3r:v2$2x2 - 10T3x1x3T3x1x2 + Tx1:t1302rx1x1:p5

+ grm1x2x2rx2z2x2 + _r4cc1rx1x2z2x2 + _rx1z1x2x2r3x1$2 + 7r5x1r4x1x2

3 3

2 3
+ 15r3$1t:€1a}2 + 20T311Tx1a:1a:2 - 10T3$1Tm1ac1x2r5ac1 - 70T3x1T4x1T3x1x2

2 2
- 20r4x1rI1$1x2 + 10T3x1rx1x1zgrx1x1x3 + 5T$1x2$3r3m1 - 1OTI1I3T3I1T3961I2
10
2 3
- 5T3xlrw2$2r2 + 10T3$1T3$1$2T1222 + ?rxlmlm

(C.13)
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and

5) 5) 5 1

ﬂZBE)) - grx1x2x2xgr3x1x2 - §rxzxgx2rx1$2x3 + §Tx2x2x2x2r4x1 - §Tx1x1x3rx1x1z5
+ 30r3x1rm1$13}3r5$1 - 30r$1$2$2T3$1r5$1 - 30T4$1T31‘1T31‘11‘3 - 18r3$1r4m1r6m1
- 10r4x1x2r3x1rx1x1x2 - 3Or$1$1$zr3$1$zr4$1 - 1OT$1x1$3r3x1T$1x2x2

15
2
+ _tm‘lz‘z + r$1$2x2rx1x1335 + 3r6x1rmlx1x2x2 - 3T7$1/r.1‘1.’[2x2

2

- QOTix Txyzoms — 307"§x xo 1321 T 30T§z T3z1zaws T 18Tiz T5e, + 9T§$ Ty
1 122 1 1 1

- 5T4xltx1x2x2 + 24T3x17'§z1 - 5Tx113tx112x2 - 3T6x1r3x1x3 + 3T7I1TI1171:173

Tyiz123 + 10T§111w27”x1w2x2 + 1OT§11212T3I1

- 10T111113T3zlzgm2 + 3T5mlr4xlm3 - 3T3111212T511 + 10Tzlr2m2r3r1m212

- 407’3301 Tz12z0mo + 30r$1x1x37a§x1 + 90T§x17n5x1 + 3T5I1T7I1 + 5r$2x2t961x21‘2

7 4 25 , S, 3 5

2
- T4$1T3x1$5 - 5Tm11112

+ 157"29517":):1:5113 + §r4xlx2 - ErxlxleIQ érxgxzxg - §T6$1 + 54T§I1'
(C.14)
We use Theorem 10 again to get that
ea(es)z, = Doy Lln2ay — Doy L125) + Day Ll145) — Doy Lloas), (C.15)
allowing us to find
40 20 410 140
9%(145) = §r$2T$1x2$2r4$1$2 - ?rrxlmla:gr?)mlfﬂxg - ?rr5x1r8m1 - 77"7‘3x1x27‘a:1:c13a}2
10 , 10, 20 20
- ?Txlxlxgxg 57131‘2 + ?Tx1z1rx1x1x27"z13wz + ﬁrﬂflﬂflr:str?ﬂ?lIQ + ?7“117'3901 79z,
20 5 40
- ET&EQ t$1a)2 - §T31‘2Tzl$1$4 - ﬁrr&tl T:I?14a72 +4Otx1wgrzlw1x2 r3$1 +80T4x1xzr3x1rx1x1x2

- 4070:511-2127431‘17’5:51 + 16T3xlr4x1r6x1 + 40Tx2x2r4x1r511 - 34T1111T411r7$1

- 56701-15517“51-1716351 + 10T3xlrx1m1r2rxlx1x4 - 10Tx1w4r3x1r3x1x2 + 90T$1T5mlr721
40

2 2 5 2 2
+ 1207‘x2x27"3$17"4x1 + ]_02(/"?1562 -+ 84T311 + 18T4$1z2 - 6T6z1 - §TT$1x1x2x2r3x1l‘21‘2
) 20 4 2
- grxlxgxgrx1zgm4 + Er113127n3x112 + gr:rlxgzgrmlxlxg) + §7am1x2x5r:r1xlzg
38 40 178 40
- ?TTBLL‘lTlel - Errw1w2z27ﬂ4w1z2‘t2 - 3 TT4:C1T9:B1 - 2_,7TT3Z1T:B1:614I2
20 20 40 40
- grrxl?)xgrllrla:g + ﬁllﬂ/’“3x2r5x1x2 - gr:pgl‘graﬁlxlxzr?’xlxg - ETxQZ‘QTIﬂCQCEQTALCCl
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100 40 40 80
9 r3x2T1121x2r321 - 3T11r3x11‘2r11312 - Erl'gz‘gr?)xltrzlmlexz 27rx2T$13$2T4x1

80 140 80 20
+ §T$2T3xlrm1x13m2 + ?rx17n4a:1r8m1 + §Tm2r3m1x2rx1x1w2x2 - grwlracmclxgra:lxl?)xg
40 38 40 20

+ ?r:tgrmlxlxgr?)xlxgxg - ?Txlxer}xlerl - 2770117/'3117011412 - 2771x17a3x27'4x1x2

80

2 2 2
+ §?7gnm2r3$1r$13$2-—-202773$1r7$1-—-4rmlxl$5T3$1-—»42074xlr3$1

2 2 2
+ 5r$1$2$4r3:01 + GOrxlxleTBxl + 20T4331x2t331x2 + 16T3I1T511 - 167“4$17“5x1

2
+ 10T3x1/r7$1 - 4T31112I2T511 + 56T11T6;pl - 2T5zlrm1m1m5 - 10T311m2r311m4

(C.16)
and
38 140 38 5)
9%245) = __Txgr3$1709331 - _Txgr4xlr8x1 - _TT321T9.’21182 - _T3mgrw1x2m4
3 3 3 3
2 20 40 4
+ _rz1x2x2r:c1x2x5 - _r:v13:c2r:v1x1z2x2 + _T3x2r3x1x2z2 + _T3$2rdf1x1x5
3 3 3 3
80 40 20 1
+ _T3$1T$11212r312 + _ngerlzgrml?)zg TT41‘2r41‘112 - _Tx1x1x4rzlwlx5
9 9 27 2
40 40 40

27TI1T31‘1$2T41‘2 - ﬁrzgzgr3w1rz13xg - 2_7rr3xlraj15$2 - 4t$1x2T$1x1$5
- 2T411Tmlx1w2x5 - 12T5m1:1:2r6x1 + 12T4I1£2T7I1 - 10Tzlmlr4r3z1r2x2 - 2T3x1xgr3x1x5
2
+ 3rz1x1x4r7x1 - 3r3x1x4r6x1 + 3r4x1x4r5x1 + 15r4$1rx1x1x4 + 12r7x1tx1x2

2 2 2
+ 48T31-1 r61‘112 - 56Tx2 Tﬁxl - 40Tx1x1x2 T5x1 - 4T3x1x2m2 r4x112 - 4r312 7’7:E1 +4rx13302 r61‘1

2 2
- 4r$1w13$2r5$1 + 60t$1$2r4z1 - 5r$1w4t$1w2z2 - 20t$1$2r3$1$2w2 - 5T$1$1$4rxlmlz2
4 2
- 2r4x1x2rx1x1x5'+'3O73x1rx1x1x4‘+'12073x1tx1x2‘+'18073xlrx1x1x2“'207}qx1x2tx1x2
76 20 76 20
+ ?71111273117'83:1 2771:1?27"3:1:2714x1:1:2 + ?r:t1713x1:1:27'8x1 - ?rrxlx1mgrm1x14mg
20 76 40 40
+ ?Tmlzlrihgrzlmschz + ?Tx17“3w1718x1$2 + §T$1TSC13$2T:C1331:1721‘2 - ETT31‘1:B2T$614$2
140 20 38 40

- 3 rr4x1x2r8x1 + 2_77nr3xgr411x2x2 - ?rr3x1x2r9x1 - ETTxlxzxgr?mnng

40
+ Tml Trlxzxgrxlml&cg + 68Txlr4w1xgr7x1 + 120Tm2x2T311T311m2 - 4Ot$1x2r$1(£2£2r3(£1

9
- 4807"31;17,'3;181:027"4;181 + 112Txlr6x1 T5x1x2 + 12Otx1x2r3xlr5x1 + 407nx1x1x2x2r3x1r3x1x2
+ 407’12z27ﬂ4x1r4x1x2 - 64TI111T4I1T6I112 - 14r311rx1xlxgr7x1 + 48T3x1r3x1x2r6x1
20
- 16T3$1T4$1T52¢1$2 - 88T2¢1CE1$2T4$1T6£1 _'_ 1127’3013:2715371716:“ + §T$1$1T112112T412

40 40 40

grxlan ra:13a;2 r:clxgxz - grxlxzrxlxlxz Tx13a:2 2771502 7”3351 rx14a;2
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200 100 40 140

- 27 TT:E13$27’3:B1$2:E2 - 9 Trxlxlngg'rzlam?;zg - 2_,7T11T3xgr3x1x2x2 - 3 rr4zlr81‘1.’52
40 20
- 2_,7Tx1x2r3x2r3m1a:2 + Era:grxlxlxgrmmcl&tz - 9OTT5$1x2T7m1 - 64TI1$1T4.I1$2T6.Z’1

2 2
- 40r11x2x2r3x1 rxlxlmg + 240r3x1r2111x2r5x1 - 104r$1$1T5$1r5x1x2 - 10T11x1x4r3x1rx1x212
+ 68T$1$2T4LE1T7$1 + 56T4I1T311I2T5I1 - 38701-15517“31-1717;511-2 - 38701711'17133811'27172?1
- 30T3$1$4T3$1T41‘1 - 9OT$2T5$1T7$1 + 1127’117“5117’637112 + 30T$1$1$4T3$1T5x1

+ 68r$1r4a}1r7mla}2 - 40T3$2T3I1T5x1 - 407”3313)21‘27“33:11‘27“41‘1 + 1527"31-17“53;17"43;13;2

20
2
- 40rx1x2xgr3x1r4x1x2 - 1127ar6x1r6x1x2 - 90rr5x1 r?xlxg + _r4z2r3x1z2 + _T3I2rx1$1562

3 3
(C.17)

In order to find Z{345) we follow the method outlined in Section 2.2.5. We calcu-

late

D, L5y — Day Luss) + Day Liasay (C.18)

and remove all products of x3, x4 and x5 derivatives by adding terms that are
double zeros on the KP equations. We then integrate the resulting expression

with respect to x1 to obtain

76 10 200
"%(345) - €T811T3$113T11 + ?7’4127’611 - 3 T3$1T$1111‘2TI1$1312
40 40 ,
- grxlxgxgrxlxzrxlrlxgxg - ?‘941:2”1‘2 + 5r3x2x4tx1 + 10uxzrx1x2x4 + 487ﬂ3$17ﬂ(i:c1:c3

— 567’137“2331 + 807’?;131%11113 + 480r§’mlriml + 1020r§x17’5m1 + 57’le7”1112$4

+ 30Tw14x2T§x1 - 36r5$1r§m1x2 — Ay ey waraws 5oy T Aoy womans 60y T 40Usyteye,

+ 7r5w1x2r3w1x4 + 3T6€E1x2r961361904 + 4T3201x1x2r$1$115 - 4rixlrwlxlx5 + 2r4$115r11x2$2
+ 2T5x1r42115 - 10r6x1tw1x212 - 7T421x2r421x4 + 16T41122$2r$1$11’2(£2 + 40u1’2r3$1$212
- 132r§xlrx1x2z2 — A6xywaws T aaws T 247501 2020 Ty was + 18T?2)x1 79z, — 5ri1x1zgrw1xzx4
- 67"311137”811 + 12704:17113707:1:1 + 12T6x1x2x2tx1 - 72T§x1r5z112x2 + 47“6:1:1:1:212744:1:1

4
+ 36T4$112T3$112$3 + 8r6x1x2r4x1x2 + 10T$14x2T$1$1$3 - 120T3x17ﬂ$1$2x2
56 80 20

— 20T$1x14$2tx1 + §T3$1$2w2 - 2_,7rw3rx13x2r3x1z2 + _rx3T3ac2r4:c1x2

27
20 40 40

+ ?7111.%2.%370931:)313932 - ?rmlx2x2x3r3xlrx2:tg - 571393170:):1:1321270129022:3

40
— 1127760, 60125 — — TarzazazsTzrzaTzyzizs T 80732, oy 2, — 907750, 172, 2

9
2
+ 48073, 73212, U — 8074z, Tazy 20U — 07T 501237701 + 807010120 T2 212920 U
+ 807’3$1x27°5$1'u - 567“511 r11x1x2r4x1x2 + 40r311 T51‘1:172t1‘2 + 10r3x1Tzlz4T5zlzz
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_96r3xlr4wlr4x1w2x2 + 68T4xlrxlr7w1x3 + 1207’33317’3&«1137’12352 - 64r4x1T1121T61123

+ 10Tx1x1m2'rzlzlxgx2rxlm4 + 68T4xlrx1m3r7x1 - 40T3m1xzr4xlxzrx23:2

- 4or3r1xgrx1x1xgr3x1x2 - 38r3x1rx1x1r7x1x3 - 907“3037“59517"73;1 - 80T§1$1x2rx1x2xzr3x1

- 12OT§x1txlrx1w1xgzg - 204r3xlr5zlr3111212 + 4OT§m1Tx2w2Txlzlzzx2 - 16r4zlr5zlxgr3zl
+ 92T4zl Tmlxlwgrﬁxl + 46T3r1 T:E1:B1(E3T7£B1 + 48T4mlr3mlmgr4m1m2 + 112Txlr5w1x3rﬁx1

- 4OTx1x1x2Tx13x2tx1 + 8r3x1rx1x1x5r5x1 + 240r§x1r3x1x2tx2 + 112Tx1xgr5x1rﬁx1

+ 112TI1T5I1T6I1I3 - 40r4xlx3rxla:2x27n3x1 + 10r5x1r3x1x2rx1x4 + 176T3x1 7"3:1:11:27n5:131:c2
- 60T$1$1$3T4$1T$11‘1$2$2 - 10T4$1T4$1$2T1‘1$4 + 40T§xlrz1m2:ﬂ3rx1xlzg

- 207“171331x37nz1;t2m2r5m1 + 407ﬂ4z17ﬂ3x1z2z27ﬂm1m3 + 156r3w1r5m1r7x1 + 52T4z17ﬂ5x17nz1;v1m2172
- 10Tx1x1x2T$1$2$2rx1x1x4 + 1Or3x1r4x1x2rx1$1x4 - 40T3x1x2T4x1rx1$2x3

- 40T§xlrxlzlz2$2rxlff3 - 64T1111962r311$2r611 + 6OT§x1 Tx124T 32122 + 80r92c1x1xgr3x1rw1$113
+ 40T41123T:B2£B2T4ZB1 + 44T321 T6m1 Trlxl:pgazg + 30T4x1 T3mlxzrx1x1m4 - 36T3x1 T4x1 Tle

- 4T3x1r4x1r3x1x5 - 8OT§xlr3x1x2 33x2 + 360Tx1x1xgr3x1rzx1 - 480T3x1rig;1 ritleZ‘Q

- 12T3x113r3x1 rﬁxl - 60tm1x2x2T3x1r4ml + SOTx1x1x2T3x1r3x1x2x3 + 240T3xlrixlr5x1

- 40rxlx1xgr5x1txlx2 + 40T$1$1x2TI121x2$2tx2 - 38r3x1m3r11xlr7xl + 20T3ml r4xlr4w2

- 10T311T5mlrz1x214 - 40T4$1T4x1$2t:1?2 + 120T3m1z2m2T4zlt11 - 100T3xlrzlm1xgr3m1mgmz
- 4OTx1x2x2rx1x1x2x2tx1 - 160T§mlr4r17nx1x1x2x2 + 30r4x1rx1x1x2r3x1x4

+ 42OT§x1r$1$1I3r5$1 - 4007’33:17’11129627”511 - 40T§x1r$11123T$1$2$2 - 6607’33013037’3331?”4331
+ 24T3x1T1111I2T61122 - 176T4r1 TGzl Tmlxzwg - 104Tr1m1 Tle 7‘53;113 - 4OT4$1T3$1$2x2TZ212
+ 152T4x1x3T3x1r5x1 - 647"411 T3xlz3r5x1 + 4OT3$1$2T5$1t$2 + 40r3$1 T4zlx2tzlx2

+ 10r3m1ra:1:v1x27“4:v1x4 + 60r3x1r3m1x2r3m1$4 - 64T4$1:c3rx1x17n6x1 + 120r3$1w2r4$1w2t$1
+ 80T§xlrm1x1x2r4x1x2 - 10r5m1 TeizizoTaiz12y + 60r4xlr5xlr6x1 - 84r3x1 Teyzoxa T2y

+ 56T4zl raclxlxgrrt')xl:pg + 40rw1x11222 T4zl rwlxzxz + 40r3wlxzr4xlxzrx1x3

2
- 20Tx1x2x27“4x17"3x1x3 + 40rx1w1xzwgr3x1mgr3x1 - 30T3$1rx1w1xzrx1x1x4

, 20 40

_ 407ﬂ3x17nx1x1x2r5x1 + 687“4551:537“1-17“7;51 - ?34;1:27'39019:2:02 + Erxlxlxzxgrxzrmmxzxg
5 20 20 40

- 5701'1{22(22.’&17”321%2 - ?T"Elx14227’.x1w3 - ?Txg,rxlxlmgrmlxliimg - 2_,7T3x2xgr3x1xgrm1
40 , 76 5) 40

- §T$1$2$2 + §r8x1rx1z37“3x1 - §T3x2w4ra:2x2 + ?rcclxlxgrz13x2rz2x2
140 20 25 80

- 3 r811TT4x1x3 - §t1‘112x383w2 _'_ ?rxlxlxgmg'rxlz1mgx4 + ﬁrxl&vzxgr?mlrxz
40 40 4

+ §r$1x2z2$3rm2r3x1m2 - Erxgmgrxlxlxg/r.rlx1m2a}3 - grl'lx2172$5r$1733
40 40 80

- ?7'3:101137'9019021:270:1:2:62 - 5707"1'1123?2713113?22721‘3 - 2_7rx13x2x3r7'3:1:1x2
140 20 80

- 3 T8$1$3TT411 + ﬁr/r312704331$2z3 - grzlzlzgmgrxlmlzgzgzgr - §r3:l71932r1‘111.r2$5
40 80 80

+ §Tx1x1x2r2x37ﬂx2rx1x1x2 + grx1x1x2rx1x2xzrr1x2x3 - Errx13x27“3x1x2x3
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40 40 20 4
_Erﬂﬁlﬂczxz%rr%lmzzz + ?rxlmgxzrmlxllﬁ - Ermrwzrmxﬁxzmr + 210r4x1

+10r2 L oo+ 1082+ 607, 4+ 12008, + 16r2, . + 12075, + 40u2,

T1T1T2 T2x2

38 380 40 20

- ETQ:ElTngS:m + 3 7031112x27n3117ax1x2x2 + ?rx1x13x2713x2 - ?Tx1x2x2x3rx1zlx2x2

40
+ ?Tmlxgmgrzlmlmgmgrxgmg + 20t$2I2T3$11212 + 1OT114IQT5$1 - 5Tr2m2m4tm1m2

2
— 2762, 30,25 T 2()7“%,19021,27"5:,31 — 07212020792, — 10Uz, T2, + 18072, 21257

- 24r5x11212rx1x1$3 - 6T8x1T6x1 - 12T5mlx3r6wl + 4T6x1x2x2Tz1m3 - 16T4x1x212r6x1

2 2 3 2
- 60T3$1T611 + 727“43317"73;1 + 40rw2w2$3r3x1 - 100T3x1x2T$1$1$3 - 4T6x1w2rw1$2$3

2 2
T1T2T2 T1T1T2

4
3x1

+ 47’59:1:1:27'1111962% + 5t$2$2 T'z120m4 + 407’3%9617“ - 24r5x1x2x2r5x1 + 607’23617”
- 20T§xlrmlmzw4 - 24Tix1r3$1r222 + Soorgxlrgzlmg + 252T§xlr7$1 - 4T3$1w2$2r4w1$3

+ 167”5’:517“301961355 + 20t 5, 2puslay + 20730 a0 tayaonws — 3760y Toyaywazy — 380r§xlr3m1xzx2
+ 9OOT§x1r§x1 + Qorxzxzx:srim — 15t 4, Loy apay — 40730 20 Uanzy + 20730 205l 0y

- 16T4m112;r2r3xlx3 - 2T411£3T$1$1:E5 + 72r3xlrlex2 + 6T$1$1£3T911 + 10tr12¢2m2r$1$1([21‘2

2
- 40“5{:2302 tccz + 6T3x1 T4£L‘1:I,‘5 - 4Tx1x2x2w5 tx1 + 67“9351 TBazl - 10T3x1w3 tx1w2:1:2 + 6Tw1x1$2x2r8m1

2 80

- 12r3x1x2x2r7x1 - 7r5x1 T3x1x2x4 - 10rx14x2rx1x2x2 - §T3x1x5 Txlxlxza:g - ?Tx1x13:cg T4x1x2
40 40 40 20

+ ?rxl&bz - ?T$113r$1$1x2rml3$2 + §T$1I122T$1$1$2$2Tr2$3 + §T3$2I3riﬂlxlx2r$1$1
20 80 40

+ §Tx1z1w2x37‘3xzrm1x1 - §T$1x1x2x2rz1x3lr‘x1:c2xz + §Tx1x1w27a3x27“5x1
80 40 80

+ ﬁr?)zlxgrxzrxl?)xz + ?Tx1$2xgr3xlxgxgr12 - ?Tzlxlxzrxl?)xzr@cl + grxlzgxgrm1x2x5
40 40 20 38

- ?T3$1T3z27ﬂ4x1z2 - §r3m1xzr5$133m2 + ?ngxzr:le14x2 - ?rgmlr&clxgr
20 40 5 260

- Erx1x1x2x3715613332 + ?razlxgngmgxgrSmle + §T3x2x47nz1mg _'_ ?TlexerlHIQmQ
280 40 40

+ 3 Tzlzlmgriirlmgrmla:lzgzg + ?7‘49317’417193283172 - ?Tmlxlxgrmlzlzgmgsfizg

40
- _7ﬂ3r1x37ﬂrx14x2 + 80rx1x1xgr3x1xgrx2x2r3x1 - 80r3x1rx1x1xgr3xlxgrx1x3

27
40
- 240T3mlrw1x1xgr3x1x2tx1 - 80T311T4I1Trlx1$2713931$2 + Erxlxlmgzgxgrxlnggrml
40
- 80uux2$2 + 4OUtx1x2w3 + ?ul‘zz‘zs?ﬂjz - grxgrx1w2xzr3x1x2a:2
25 ) 40 40
- Erw1x13zgrx1x1x4 - §T1131‘2T3x11‘4 - 2_77,£E1:L‘3T3£E2T3331x2 + §Tx111zgmgrx1xgxgzgrwl
20 9 200 140 40
- _T$2332333T1‘111z2 - T3$1T$13I2T31‘1I2 - T8I1T;B3T4I1 - _TZ‘3T3J:1TZ‘14J:2
9 3 3 27
40 10 20 80

2
- §T3x175x1x233x2 - 9 Tz woms 3 — ?Tx1x14$27a4501 + §r3$1raz1x1x2x2
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4 5 76

)
+§r3$1$222Tx1x2w4 + §T$1x2$2$5T1222 - §S4wzra:1w2x4 + §T8x1xgrxlr3w1

20 40 80 40
+ 2_,77033223337"7“41‘1.?2 - 2_7701‘143321‘37“713$1 + 2_,7T3331Tx13332rx2$3 - 2_7T3a?2r3$13)2x3r1‘1
10 40 40 10
+ ?r4mgr3x1mg - ?TILerQ:Englmgxzrxlxl - ?7“901330270511962 - ?714:):271:1:111962362
38 40 20 20
- Err3x1r9$1$3 - ?Txlm&cztm:cz + ?T:l?1331:173713x2r1‘11‘1x2 - 6T11x131‘27ﬂx1$1x2x3r
8 20 20 10, 40,
+ §T$1$1$5r3$1$2332 + §r3x2x3r3x1x2 - ?tx2x234x2 + 334332 + ?rxlagla;zr3x1x2x2a

(C.19)

giving us a Lagrangian multiform up to the x5 flow of the KP hierarchy.
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Appendix D

Lagrangian for the ZM Lax Pair -

version from [2]

If we are only interested in the U, V' auxiliary problem

\Ilﬁ = U(gvnvk)\llv \1/77 = V(£7n7>‘)\I]7 (Dl)

and want to cast this in the multiform structure of Section 3.1.2 then it is neces-
sary to introduce a “ghost” variable v and require that all field variables now have
a v dependence. We must also introduce the additional Lax matrix W relating to
the “ghost” direction v. These are required in the Lagrangian in order to have a
closed 2-form. The multiform Euler-Lagrange equations from such a Lagrangian
2-form will have a v dependence. We will go on to show that any set of v de-
pendent solutions can be reduced to a set of v independent solutions, thereby
obtaining precisely the auxiliary problem (D.1) and the associated compatibility

conditions depending only on ¢ and n from our Lagrangian 2-form.

We take our Lagrangian L[y, , x, U, V, W; )] to be
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N1 J ] ] =1, i778(, AL
L= 0 - S e = 30 3 V) T g oy

=1 j=1 =1 j=1
SR L O XWx IV (7))~
+(;(¢) YIVI — I, W Z 3 )dn A dv
+ (X TxeW — i QLU — ZQDUZ #)XWx )dy/\dé‘.
=1 A=

(D.2)

This Lagrangian 2-form is special case of the multiform (3.30) where the matrix
W has a single pole at A. In accordance with Theorem 21 the multiform equations

of motion given by this multiform are

xe=Ux and x,=Vx (D.3a)
0y =Virxza' and @l = Wli_g,¢' (D.3b)
= Wop,t? and ¢ = Ulxz,1? (D.3¢)

and corollaries thereof, including

B SR R 0 i U
Ui+ U —-| =0 and Ve + W’Zb.— =0 (D.4a)
a; — 0 U —a

j=1
. . 1 Ny
VI4 |V, WZ 1 Z0 and W)+ (W, LS (D.4b)
bj — A " )\ — b,
7j=1
N .
N U . Wt
1 1 _ 1 1 _
W + [W ,;leA_aj =0 and U+ [U’ai—x] = 0. (D.4c)

At this stage, our equations of motion contain v which does not feature in the
U, V Lax pair. However, if the matrices U, V, W, ¢', ¢’ and yx satisfy these

equations, then there is also a solution with the same U and V but with W = 0.
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In this case the second equation of (D.3b) and the first equation of (D.3c) tell us
that ' and 1)/ no longer depend on v, i.e. we can think of these as the ¢ and 7
of the original solution, with v = vy, a constant. The first equation of (D.3b) and
the second equation of (D.3c) are simply the definitions of ¢* and v/ which hold
for v = 1. Then (D.3a) is precisely the auxiliary problem for U and V', which no

longer depends upon v. Thus, the only remaining relations that are non-zero are

xe =Ux and x,=Vyx (D.5)

the auxiliary problem based on U and V/,

on =Vl]r=a,¥' and @bg = Ulx=p, 0’ (D.6)

the defining relations for ' and v’/ and

N2 ; Ny ;
, . Vi ‘ . i
U, + U =0 d VZ2+ [V =0 D.7
Um0 md RIS =0 (07

the equations of motion for U® and V7. All of these relations now only depend
upon ¢ and 7. Therefore, the Lagrangian multiform (D.2) can be considered
the Lagrangian for the Lax pair U and V. We can summarise this result in the

following theorem.

Theorem 44. The Lagrangian 2-form L(p,v,x, U, V,W,g; \) given by (D.2) is
a Lagrangian for the Lazx pair U and V. When we take the multiform Fuler-
Lagrange equations and set W = 0 our equations of motion are the auxiliary

problem

xXe=Ux and x,=Vx (D.8)

for U and V' and the equations of motion

No Vj Ny i
Ui 4+ [U =0 d VI [vi =0 D.9
T ,;ai_bj] and V¢ + | ,;bj_ai] (D.9)

corresponding to the compatibility conditions of this auziliary problem.
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Appendix E

The equations for ¢ directly from
the KP multiform

In Section 4.4 of Chapter 4 we concluded that, since the KP Lagrangian multiform
M contains Dickey’s KP Lagrangian .#{y;; for all ¢ and j, the multiform Euler
Lagrange equations given by 6dM = 0 include the KP equations of the type

(Li-)$j - (Li)zb + [Li_, Li] = 0. (E.1)

We then used Corollary 28 to say that these equations are equivalent to the

equations of the form

Gr '+ L =0 (E.2)

that also appear in the factorised form of Fy;;x). Here we show directly that the
multiform Euler Lagrange equations given by given by 6dM = 0 also give us these
¢ equations.

Firstly we note that ¢,,¢~'+L" appears in the factorised form of Py as the
residue of its product with (L% ),, — (L% )a, + (L7, L*]. Since the highest power
of 9 to appear in (L, )y, — (L%),, + [, L% ] is max(j, k) — 2, we can only hope
to get equations in the form of (E.2) truncated after the 9'"™*U:*) term from
0Puijry = 0. In the following paragraphs, we shall demonstrate that the equa-
tions arising from 01,5, = 0 will, as a minimum, give us equations in the form
of (E.2) up to the % term. Tt follows that the full multiform Euler-Lagrange
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equations given by ddM = 0 give us all equations in the form of (E.2).

To confirm that the multiform Euler-Lagrange equations ddM = 0 do give us
equations of the type (E.2), we consider dPy;j) where i < j < k. The factorised

form of Pk given in (4.127) can be written as

L les{ AW B0 4 AGR BO) L 4G By (E.3)
2

where, AW = (L), — (L), + [L}, L], B = ¢, ¢! + L* etc. Then

0 Puijry =
% res{0 A B® 1 AW §B® 1 §ANBO 1 A ;1 6BO 4 §A*) BO) - AKD 5B
(E.4)

We already have A®) = 0, AU¥) = 0 and A*) = 0 from the Euler-Lagrange equa-
tions of Z(145), L1k and L1k respectively, so working modulo these equations,
(E.4) becomes

1 . . . ) .
OPuiky = 5 res{0 A B® 1 §AUKI B 4 54K gy, (E.5)

In order to proceed, we shall use the notation Af(fj) and Bff) to represent the
coefficient of 0" in A®) and B® respectively. We note that for all 4, and k,
AW € R, and B¥ € R,_. Therefore,

res{0 AW BOY —res{(FAP 2 1 4+ 649 + 54D (BY + BY) 4 ..))

_s5AG (k)
=5A @ 2B% + ...+ oB" e 2)+B_(j_3))

+ §A§’ ;(81*33(“ +...+0oB% _+BY_ )+
+ A pB% 4+ B ) + A B
(E.6)

This means that, if each of the 5Al(ij ), 5AYP and §AF) are linearly independent,

the multiform Euler-Lagrange equations arising from 0 F(;5x) will give us the trun-
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cated forms of B®, BU) and B® . However, it turns out that not all of the 5Al(ij ),
§AY" and 5A%FD are linearly independent. For example 45A§23) + 35A(242) = 0.
We shall proceed by showing that sufficient of the 5AY) are linearly independent
that the multiform Euler-Lagrange equations for the entire multiform, given by

6dM = 0, give us the full (i.e., not truncated) equations B®).

We consider the terms in A in which (¢1)yv,, features. In AP linear
term that is a multiple of (¢1),i-1,, appears. Also we see non linear terms featur-
ing (¢1)ave,; for v =1,...,i—2. Similarly, we find (¢ ),i-2,, appearing linearly in
Agij ) as well as all lower order derivatives of the form (¢1)eva; that appear in non-
linear terms. This pattern continues down to to (¢1).., appearing in AEZE% The
other instances of (¢1).v,; appearing linearly in FPyx) will be (gpl)xk_lxj appear-
ing in Aéjk), (¢1)zk-24, appearing in Agjk) and so on, up to (¢1)s, appearing in

A,(ﬁ%. The same pattern continues, that if (¢1).n., appears linearly in Ag k), then

(¢1)eva; for v=1,...,7 — 1 will feature in non-linear terms in Ag "), Therefore,
(©1)ak—12;5 (P1)ak—24,, - - (P1)aie, appear only once as linear terms in P, S0
(601)ak—12,5 (091)gk—24,, - - -, (0¢1)4iz, appear only once as linear terms in 0 Pyk).

Then, the multiform Euler-Lagrange equation that arises from setting the coeffi-
cient of (6@1>xk—lxj equal to zero will give B(_Z% = 0. The multiform Euler-Lagrange
equation that arises from setting the coefficient of (0¢1),x-2,, equal to zero will
give B(_g—i—F 1 B(_q = 0 where [} is some polynomial of the ¢, and their derivatives,
arising from the non-linear term featuring (5@1)xk_zxj in Aﬁj " The multiform
Euler-Lagrange equation that arises from setting the coefficient of (6901)$k73xj
equal to zero will give B(f:)g + FQB(j% + Fngi = 0 where F, and Fj3 are again poly-
nomials in the ¢, and their derivatives, and so on. The set of equations given
by setting all of the coefficients of (0¢1)zk-14,, (001)ak—245 - - -, (001 )aia, equal to
zero will therefore give us equations equivalent to B(_ZL =0forn=1,...,k—1.
It follows that the equation B(_QL = 0 is a consequence of the multiform Euler-
Lagrange equations given by 0P = 0 whenever & > n — ¢, and therefore
the full set of multiform Euler-Lagrange equations given by ddM = 0 gives us

precisely A =0, B® = 0 and consequences thereof for all i, j and k.
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Appendix F

Explicit form of the KP
Lagrangian multiform from
Chapter 4

Here we present the first four Lagrangians of the KP Lagrangian multiform M
and M as defined in Chapter 4, expressed in terms of the ¢ that constitute ¢.
In order to avoid notational confusion over the use of subscripts, we let U = ¢y,
V =p1, W= ¢y and X = 3. The following Lagrangians were found using
Maple and PSEUDO [44]. In order to obtain .Z(s34), a Maple procedure based on
(4.15) was used.

°§€(123) = _Uxxxg +Xac2 - VUx:pg - WUacQ - VV;UQ - U2U13 + VU;ES + Uszg -+ UvQUvII2
+ UV, + UV — U, — UUyy — UW,, — 2U Vi, — 3V Uy, — 3U, U,

3
3

2

1 3

— 5U:,fzﬂ +2U,,, U*+ 2V, U?+2U,2V — §UUmm — éUwUmx — 30U,V
3

- §UMU3+2U$3+3WW — Vs +3Vig, +5U U U, +2UV U, +3U,, U, U

+2U,, VU,
(F.1)
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1 1 3 3

3 3 3 3 1
2 - _Z — SR, — -2 —=
1
= 3UUsse = UUUsy = Uy +2V U420V =3V Vg — 2U2U§+2Uvm
+2UU,,V,
(F.2)
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14 96
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22
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36 48
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Lusay = —3UV —4UU 416U,V V =5V Vigwa +2U Uy +8UV Wy — 6V Wiy
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The Lagrangian 92234) is identical to Z{o34y. From the Lagrangians given
here, it appears that .,22(11-]-) gives a shorter Lagrangian than .Z{y;;). In general,
the difference between (,22(11-1-) and Z{y;;) can be expressed as the sum of a total x;

derivative and a total x; derivative.
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