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Abstract

A physical quantity that is positive in classical physics can become negative in quantum
physics, but it may be bounded. Quantum inequalities are lower bounds on averages
of these physical quantities. In the case of energy densities of a quantum field, it is
called a quantum energy inequality. In the case of the probability current density of
right-moving states, it is called the quantum backflow effect.

This thesis is concerned with various aspects of the quantum backflow effect in the
presence of defects. The backflow effect states that a particle moving towards a reference
point with positive momentum may have the probability of being found at the right
of the reference point decreased with time. Defects represent a way of implementing
generalised point interactions without necessarily having an explicit potential function
to be added to the Hamiltonian of a physical system and are described by sewing
conditions defined at the defect location. Starting from the Dirac δ-distribution, which
can be regarded as a potential function but also as a point defect, we extend the analysis
to the jump-defect, a discontinuous and purely transmitting integrable defect allowing
conservation of total energy and momentum. In this thesis, we will examine how the
backflow is affected in the presence of different defects giving special focus on the
jump-defect, which does not have a backscattering contribution to the backflow constant
and makes our analysis compatible with conservation laws. Beyond the Schrödinger
equation, we will introduce and analyse backflow with defects in the Dirac equation,
which takes into account the spin contribution to the probability current. The existence
of bound states are shown to be relevant for the bounds on backflow, and numerical
results will support that. Furthermore, we will investigate how the backflow constant
in the presence of defects differs from the interaction-free situation.
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1

Introduction

Quantum theory certainly has di�erent mathematical formulations, and there are

signi�cant conceptual di�erences between quantum mechanics and quantum �eld theory

that go beyond a mere relativistic extension [2]. Nevertheless, quantum theory shares

some basic ideas such as Heisenberg's uncertainty principle among any of its formulations

or extensions. E�ects related to the uncertainty principle may arise as inequalities. For

example, the �quantum energy inequalities� in quantum �eld theory [3, 4], which are

lower bound restrictions on the �uxes and energy densities of physical systems, and the

quantum back�ow phenomenon [5] for the probability current in quantum mechanics. A

more extensive list of references to back�ow will be provided in section 2.1. The general

picture of a quantum inequality is the statement that a positive physical quantity in

classical physics can be negative in quantum physics, but it is bounded below.

Back�ow happens by the superposition of states with only positive momentum.

In particular, a quantum particle moving in one dimension and described by this

superposition of right-moving states has a positive expectation value of its momentum

operator. However, locally, the probability �ux can assume negative values. This

leads to the immediate question on the existence of limitations on the magnitude and

duration of negative probability �uxes. In interaction-free situations, the limitations

do exist, and its temporal extent is characterized by a dimensionless constant that

was �rst numerically calculated [6] to be� BM � 0:038. For that, Bracken and Melloy

concentrated on the problem of a quantum mechanical particle in one dimension with

a normalized state and corresponding probability �ux j  . Then they showed that

the increase in the probabilityP(t) of �nding a right-moving particle in the negative

15
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half-line (�1 ; 0), during a time interval [0; T], obeys the inequality

P(T) � P(0) = �
Z T

0
j  (0; t)dt � � BM : (1.1)

That constant was numerically calculated subsequently [7, 8] with more accuracy

to be � BM � 0:0384517. Similarly to the quantum energy inequalities, which are

limitations on the magnitude and duration of negative energy densities (obtained

from expectation values of a stress-energy tensor), the back�ow inequality can be

stated in its time-averaged or spatial-averaged version. The total energy of a physical

system being bounded below is a fact related to the existence of a stable ground state.

Nonetheless, there is an incompatibility between positive energy density conditions and

local quantum �elds [9]. The lower bound on the back�ow e�ect, however, does not

seem to have an immediately clear physical interpretation. Consideration of both e�ects

in a common framework such as a free relativistic theory may provide some insight on

their relationship. In fact, whilst most of the work on quantum back�ow considered

only the non-relativistic situation without any internal degree of freedom, the case of a

free Dirac particle with spin-12 was studied in [10], for instance. Moreover, as the energy

is usually considered in connection with a conservation law, it is reasonable to do the

same for the back�ow analysis and associate a conservation law with it when possible.

Interaction-free situations present a playground for numerous discussions, but more

realistically one has to consider the e�ect of interaction. In [11], the back�ow e�ect was

extended to scattering situations in short-range potentials. It reinforced the universality

of quantum back�ow beyond a free theory and also stated that the existence of a

lower bound, the constraint on how negative it can be, is stable under the inclusion of

interaction. Although their work has proved the existence of lower bound estimates for

a particular class of short-range potentials, they also noticed that a very short-range�

potential, although formally outside the validity of their theorem, has a back�ow e�ect

of �nite magnitude. A special particularity of the � is that it can be seen as a potential

function, but it can also be seen as a point defect that is characterised by some sewing

conditions at the defect location. Knowing that, we ask ourselves about the possibility

of including other type of point defect described by a set of sewing conditions in the

discussion of the quantum back�ow e�ect.

This thesis will be particularly concerned with the back�ow e�ect in the presence

of defects. We extend the quantum back�ow e�ect to this less restrictive situation,
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in which the interaction is represented by a set of sewing conditions describing some

discontinuity rather than having to specify an explicitly known potential function.

Defects were previously considered in scattering situations [12], and integrable defects

are generally categorised as purely transmitting [13]. In an integrable �eld theory, the

introduction of boundaries and defects can, in general, spoil the integrability of the

theory. As integrability is related to the existence of conservation laws, we shall look

for the possibility of introducing an integrable defect in order to have both total energy

and momentum conserved. In fact, general point interactions constructed by means

of self-adjoint extensions of the Hamiltonian operator have the probability conserved,

but the momentum, for instance, is not guaranteed to be conserved, and that is exactly

the case of the� -defect. As with a non-constant potential function, a defect also

breaks space translation invariance since it has a speci�c location. Surprisingly, it is

possible that the defect conditions compensate for the lack of translation invariance,

and momentum is conserved. Note that the re�ection coe�cient in the case of the�

depends (with a phase factor) on the position where it is placed on the real line, and it

does not seem possible to conserve momentum. Nonetheless, there is a speci�c defect

with the attributes we would like to analyse in connection with the back�ow e�ect. In

particular, we consider a jump-defect [14, 15] that is purely transmitting in the context

of non-relativistic quantum mechanics in one spatial dimension. In this respect, the

jump-defect is similar to the Pöschl-Teller potential [16] given by

V(x) = �
� (� + 1)
2 cosh2 x

; � > 0: (1.2)

However, the latter is only re�ectionless when the parameter� is taken to be an integer,

while the jump-defect is always purely transmitting. The jump-defect is `halfway'

between the Pöschl-Teller and the� potential, but there are two relevant features that

make it very di�erent from the � . Because it is purely transmitting, all contributions

towards the negative probability �uxes come solely from the superposition of positive

momentum states rather than a mixture of backscattering and the superposition of

positive momentum states. It also allows us to keep conserved quantities that were

conserved in the free case, such as the total energy, momentum (related to probability

�ux) and probability. As point defects, both of them involve some kind of discontinuity.

But while the � has a discontinuous �rst derivative of the wavefunction, the jump-

defect has a discontinuous wavefunction describing it. Speci�cally, the wavefunction
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discontinuity requires a treatment that involves distinct pair of domains rather than

a single domain. More generally, these can involve multiple one-dimensional domains

when several defects are placed at junctions of a network [17]. We remark that the

jump-defect has the form of a Bäcklund transformation applied to a particular point in

space rather than the entire real line, a `frozen' Bäcklund transformation.

We will analyse the back�ow for the discontinuous and transparent jump-defect,

considering both the non-conserved probability current and the conserved probability

current, and show that the back�ow e�ect has a �nite spatial extent, or a lower bound. In

considering the adjusted conservation of momentum, the need for an extra contribution

term to the back�ow will be remarked. We will also extend the previous analysis [11] for

the � -case by scanning di�erent values of the parameters and unveiling some structure

in the attractive case. It is known that the � -impurity can be, in some situations, used

to model various di�erent interactions in condensed matter, many-body theory and

atomic physics, for instance. In particular, we mention the band theory of metals with

Dirac comb potential or Dirac-Kronig-Penney model, one-dimensional version of the

hydrogen atom and hydrogen molecule ion, a Bose gas and a gas of electrons; see [18,

19, 20, 21, 22] and references therein. Beyond one single� -defect, a double� -defect,

described by a pair of deltas, will also be considered and have its back�ow compared

to the results of the single� -defect. Although the double� -defect has some structure

not supported in a single� -defect such as the existence of scattering resonances, for

example, the presence of re�ection is an almost unavoidable feature of this interaction.

In fact, the double � -defect can be transparent but in very limited circumstances that

are energy-dependent. The situation in which there is total transmission and, therefore,

no backscattering contribution mixing with the back�ow e�ect is not possible for an

interaction described by a� potential function, but a jump-defect provides us with that

possibility. Furthermore, their bound states seem to be relevant for the back�ow and

will be investigated.

Quantum inequalities can be formulated as an eigenvalue problem that has to be

solved for the lowest eigenvalue of a given operator. In fact, this is not only the case of

the probability current in the back�ow e�ect but also of the energy density in energy

inequalities. In [23], Fewster and Teo reformulated the quantum energy inequalities, for

free massless scalar �elds in even dimensional Minkowski space, in terms of �nding the
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lowest eigenvalue of a self-adjoint operatorH. Speci�cally, the inequality reads

hgjHgi � 0; 8g 2 C1
0 (I ) (1.3)

with test function g supported on the intervalI � R, and H is a generalized Schrödinger

operator on L2(I ) that has its potential term replaced by a given energy density� .

Hence, the positivity of H can be equivalently formulated as the problem of �nding

the lowest eigenvalue ofH. This formulation provides a test as to whether a given

energy density is compatible with the quantum energy inequalities and an intuitive

understanding of the so-called quantum interest conjecture [24] by an analogy with the

quantum mechanics of a particle moving on the real line: negative energy densities

(loans) become potential wells and positive energy densities (repayments) become

potential barriers. It is very interesting that similar formulation works in the back�ow

for a spatially smeared probability current density in the free case [7]. In particular,

the equivalent positive Schrödinger operator has its potential term replaced by the

probability current density of a given right-moving state. Despite the formulation as an

eigenvalue problem, an optimal analytical bound on the back�ow e�ect is not known in

the interaction-free case. When interaction is taken into account, an eigenvalue problem

is generally unlikely to be solved analytically, but perturbation theory can be used to

attempt to solve the given problem in terms of the simpler problem, namely, the free

case. Thus, the back�ow constant in the presence of interaction could be treated as

a deviation from the constant in the free case. Analytic perturbation theory may be

useful to study the behaviour of the back�ow constant, but it might be di�cult to know

whether the approximations converge for a given set of parameters and estimate the

error involved by neglecting higher orders of approximation. This thesis will, at least for

the lowest order, look into the numerical results of perturbation theory applied to the

cases where the interaction is described by a� -defect or a jump-defect in the Schrödinger

equation. These are exactly solvable models, and resorting to approximation methods

is not required. In spite of that, these models can be used to check the plausibility of

the perturbation results in comparison with the exact back�ow results.

While the maximum amount of spatially averaged back�ow is bounded in one

dimension, that is unlikely to be generally true in three-dimensional Euclidean space.

This expectation comes from results of quantum energy inequalities although back�ow in

three dimensions was not de�ned or even considered in previous works. Energy densities



20 Chapter 1. Introduction

can be made arbitrarily negative at a point. While timelike smearing yields averaged

energy densities that are bounded below, spatial smearing is, in general, not enough to

produce a state-independent quantum energy inequality [25]. Back�ow was not analysed

in higher dimensions yet, but we can similarly expect that the probability current has

to be averaged in space and time (or time) in order to obtain a state-independent

lower bound that restricts the back�ow phenomenon. Incidentally, the form taken

by the probability current for a charged particle, with massm and chargeq, in an

electromagnetic �eld and described by the Schrödinger equation with wavefunction	

in three dimensions

J =
~

2mi
(	 ?r 	 � 	 r 	 ?) �

q
m

A 	 ?	 ; (1.4)

with vector potential A , is very common in physics and is also present in the conserved

current expression for particles with spin. Let us just mention the particular examples

of the current for a spin-0 scalar particle in the Klein-Gordon equation and a spin-12
particle in the Dirac equation (Gordon decomposition [26]), respectively, given by

J � = i (� ?@� � � �@� � ?) � 2q� ?�A � ; (1.5)

J � =
i

2m

� � @�  � (@� � ) 
�

+
1
m

@�
� � � ��  

�
�

q
m

�  A � ; (1.6)

where, in quantum �eld theory, the spatial components of these expressions are inter-

preted as the electromagnetic current associated with the particles in the presence of the

vector-potential A � , � �� are generators of Lorentz transformations and� and  are a

scalar �eld and a Dirac spinor, respectively. Although they are not probability currents,

the �rst term in each expression above is the convective part of the �ux, responsible

for the movement of charges. Evidently, while a negative movement of charges can be

interpreted as the positive �ux of particles with negative charge, the same interpretation

applied to a negative probability �ux would imply the existence of negative probability,

a concept �rst introduced by Dirac, who believed that negative energy and negative

probability always occur together and suggested that, �like a negative sum of money�,

should not be considered as nonsense [27]. Perhaps this �nancial analogy motivated

the quantum interest conjecture about local negative energy densities. Feynman [28]

also suggested possible interpretations for making sense of negative probabilities. Nev-

ertheless, we will not discuss negative probabilities but take the view of back�ow as



21

the existence of negative probability �uxes for right-moving states. Motivated by this

relation in which the electric current density for a charged particle is proportional to the

probability current density, Bracken and Melloy [6] suggested a possible experimental

setup where the existence of back�ow could be con�rmed by measuring the electric

current of that particle initially prepared in right-moving states.

Similarly to the electromagnetic current that has not only in�uence from the mass

of the particle but also from the spin, the probability current can be a�ected [29, 30]

by orbital angular momentum and spin (e.g., spin-orbit interaction). As the relativistic

Dirac equation takes the spin of the particle into account, we will analyze the back�ow

e�ect for a spin-1
2 particle in the presence of� -defects described by the Dirac equation.

It is worth noting that the consideration of a � -defect in the Dirac equation does not lead

to a unique possibility but rather to di�erent sets of sewing conditions. In particular,

we will look into the case of an electrostatic� e-defect as well the case of a mass-like� m -

defect and make a comparison with the results of a� -defect in the Schrödinger equation.

Moreover, a� -defect in the Dirac equation causes a discontinuity in the wavefunction

solution and, consequently, is already a type of jump condition. It cannot, however,

be considered a jump-defect, since it does not classify as an integrable defect. Then, a

natural further step would be including a jump-defect in the (one-dimensional) Dirac

equation. The �rst-order nature of the Dirac equation requires the sewing conditions to

involve its two spinor components 1 and  2 instead of derivatives of the wavefunction

as it happens for general point interactions in the Schrödinger equation. The possibility

of including a jump-defect will be considered as we re�ect on the use of a suitable

Bäcklund transformations in order to �nd the required sewing conditions.

Thesis Outline

This thesis is composed of seven chapters and two appendices. In chapter 2, we present

the quantum back�ow e�ect in the interaction-free case and in the case of scattering

for short-range potentials. Then, we extend the discussion of the back�ow to situations

where the interactions are described by defects. Chapter 3 considers the quantum

back�ow e�ect in the presence of a� -defect as well a double� -defect and a� 0-defect

obtained from the double� -defect in the zero-range limit where the distance between

the pair of deltas tends to zero. Chapter 4 focuses attention on the back�ow e�ect in
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the presence of the purely transmitting jump-defect in the linear Schrödinger equation.

The main purpose of the chapter is to examine the possibility and the consequences

of considering the back�ow e�ect in the presence of a defect that is, at the same time,

a point defect and transparent. Additionally, it aims at exploring the similarities and

di�erences between the� and the jump-defect with regard to the back�ow. Chapter 5

considers the analytical perturbation theory of the probability current operator in

order to expand the back�ow constant in power series of the interaction strength. In

Chapter 6, we examine the relativistic back�ow e�ect in the setting of the �rst-order

Dirac equation for a particle of spin-12. More speci�cally, we consider the relativistic

back�ow in the presence of an electrostatic� e-defect and in the presence of a mass-like

� m -defect. Chapter 7 has a �nal discussion and summarises the results presented in

the thesis as well possible directions for further investigation in the future. Numerical

results are provided alongside the discussion presented in each chapter and are composed

of two-dimensional and three-dimensional plots displaying the lowest eigenvalue of the

probability current operator against the position of measurementx0, which is the

center of a positive test function, and against the strength of the di�erent interactions,

or defect coupling, considered in this work. With the exception of the appendices,

all numerical results are averaged with the same Gaussian function that has a �xed

width. Appendix A shows results of the back�ow constant in the Pöschl-Teller potential

for various values of the parameter� . These provide some further evidence to make

a conjecture about bound states in chapter 7. Finally, Appendix B considers the

calculation of the back�ow constant spatially averaged with di�erent choices of weight

functions in the case of a jump-defect.



2

Quantum back�ow

2.1 negative flow of probability

In non-relativistic quantum mechanics, the continuity equation for the probability

density in one space dimension is

@t � = � @x j ; (2.1)

where � = j j2 is the probability density, j is the probability current density [30]

(or probability �ux) and  the square-integrable wavefunction of the system. The

Schrödinger equation for the wavefunction of a quantum system is simply

i~@t  = H ; (2.2)

whereH is the self-adjoint Hamiltonian operator associated with the system. The state

vector is commonly denoted byj i 2 H , as an abstract vector in the Hilbert spaceH

of the physical system. Not all solutions of this equation are elements of the space of

(equivalence classes of) square-integrable functionsL2(R), but these solutions are crucial

for scattering theory. As a consequence of the Schrödinger equation for a particle of

massm, in the free case, one has the probability �ux at positionx given by

j  (x) =
i~
2m

(@x  ?(x) (x) �  ?(x)@x  (x)) := h ; J (x) i ; (2.3)

where now the -dependence is explicitly indicated, andj  (x) can be expressed in

terms of the associated quadratic formJ(x). The space average of(2.3) with a test

function, generally f 2 S(R) in Schwartz-class1 is given by
1Such functions are nice for having a Fourier transform and they include the space of smooth

functions of compact support i.e. C1
0 � S.

23
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j  (f ) = h ; J (f ) i =
Z

dx f (x) j  (x) ; (2.4)

and is understood as the spatial-averaged probability current measured by a spatially

extended apparatus. The corresponding smeared operator is the integrationJ (f ) =
R

f (x)J (x)dx; understood in the sense of quadratic forms. This operator is Hermitian

for a real function f and is written as

J (f ) =
1

2m

�
P̂ f (X̂ ) + f (X̂ )P̂

�
; (2.5)

with position operator X̂ and momentum operatorP̂ = � i~@x . Similarly, in particular,

it is common to write J (x) in terms of the generalized position eigenvectorjxi , and it

has the following symmetric form

J (x) =
1

2m

�
jxi hxj P̂ + P̂ jxi hxj

�
: (2.6)

From a square-integrable wavefunction, the probability density can then be de�ned in

terms of position probability density j (x)j2 or momentum probability density j ~ (k)j2

by means of the Fourier transform2 (F )(k) = ~ (k) = (2 � )� 1=2
R

dx e� ikx  (x).

The e�ect that, for a particle with positive momentum (k > 0), the probability of

�nding it to the right of some reference point may decrease with time is called quantum

back�ow e�ect. This means that given a wavefunction ~ with support in momentum

space restricted by supp
� ~ 

�
� R+ , right-moving wavefunction, it is not guaranteed at all

that the probability current density ful�lls the positivity condition j  (x) > 0 with x 2 R.

That e�ect was initially discovered and studied in the context of the time of arrival

in quantum mechanics by Allcock [5]. Later on, Bracken and Melloy [6] investigated

the e�ect in greater detail analysing the temporal extent of the e�ect as an eigenvalue

problem for a free quantum particle. Their results were also extended to the case where

the particle is moving under a constant force [31], and again the probability �ows, for a

�nite period of time, in the opposite direction to the momentum. It is important to

highlight the fact that quantum back�ow has no classical analogue e�ect and it is not

a spreading of a Gaussian wave packet as previously suggested [32], and subsequently

clari�ed in [33] by showing that the Wigner function associated with this Gaussian

2Omitted limits of integration are assumed to be the full real line R.
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wave packet is positive at all times. That the e�ect can be reproduced by a simple

superposition of two plane waves was illustrated in [6] and similarly for a superposition

of two Gaussians wave packets [34], where the authors show that, despite Gaussian wave

packets having support on both positive and negative momentum, the negativity of the

current cannot be explained by the very small probability of having negative momentum

which comes from the Gaussian state. Quantum back�ow was also related, in the

phase-space, to another interference e�ect called quantum reentry where position rather

than momentum is constrained [35, 36]. Following that interesting relation, a particle

escaping through a Dirac� barrier was analysed in [37] and compared to the evolution of

a free particle. The back�ow was also considered in the case of a system with spin-orbit

coupling in [38], in the rotational motion of a particle in a ring [39]. Relativistic e�ects

on the back�ow of a free particle were examined in [10, 40, 41]. Being a quantum

phenomenon augmented by certain �back�ow states� (states in which back�ow occurs)

[42], its level of non-classicality can be compared to the required negativity of the

Wigner function, as was done in [43], where it was stated that the negativity of the

Wigner function is only a necessary prerequisite for the occurrence of back�ow. After

Allcock, the e�ect was shown to be relevant for the discussion of quantum events and

the meaning of arrival-time distribution [44, 45]. However, not only the temporal

extent, as originally discovered, of back�ow has attracted attention in the literature. In

fact, by focusing on the shape of back�owing regions, therefore considering its position

dependence, back�ow was shown to be closely related to superoscillations [46]. It was

also considered for the case of an electrically charged particle in a constant magnetic

�eld [47, 48]. An analogue optical e�ect was observed in [49]. Furthermore, the spatial

extent of back�ow was analysed considering the spatial-averaged probability current

[7, 11] rather than its temporal-averaged version. In its spatially averaged version, the

back�ow has similarities to the quantum energy inequalities [7, 4] in quantum �eld

theory. This thesis will focus on the spatially averaged version of the back�ow e�ect.

2.2 free case

In interaction-free situations, the maximal amount of back�ow, spatially averaged with

a positive test function f , i.e. the lowest bound, is de�ned [11] by

� 0(f ) := inf hE+ J (f )E+ i  ; (2.7)
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where the in�mum is understood as

inf hAi := inf
kE+  k=1

h ; A i 2 (�1 ; 1 ) ;

for all  2 D(A), the domain of an operatorA, with square-integrable 2 L2(R).

According to the minimax principle [50],� 0(f ) is the minimum eigenvalue of the averaged

current evaluated in right-moving states,E+ J (f )E+ . The orthogonal projectionE+

of the momentum operator makes sure that the momentum is positive (k > 0). In

particular, if  is a right-mover, E+  =  . The question of how negative this quantity

� 0(f ) can be, and if it is actually bounded below, was answered by Eveson, Fewster

and Verch in the following theorem [7]

Theorem 1. For every positive test functionf 2 S(R); 9 Cf > 0 such that the inequality

hJ (f )i  > � Cf holds true, where is taken to be normalised and right-moving, i.e.

 2 R = f  2 L2(R)j ~ (k) = 0 for k < 0 and  0 continuous and square-integrableg:

Thus, � 0(f ) > �1 , as Cf is a �nite constant. More precisely,

Z
dx f (x)j  (x) � �

~
8�m

Z
dx jg0(x)j2 > �1 ; (2.8)

where f = g2 for some realg 2 S(R), and prime denotes derivative with respect to

position variable. The inequality (2.8) has origin in the following estimations. De�ne a

multiplication operator by (M f  )(x) = f (x) (x), and write the spatial average as

Z
dx f (x)j  (x) =

Reh ; M f P̂  i
m

=
Reh ; M gP̂Mg i

m

=
~
m

Z
dk
2�

k
�
�
�( ]M g )(k)

�
�
�
2

;
(2.9)

where M f P̂ was substituted in terms of the commutator[M g; MgP̂ ]. The Fourier

transform of the product ( ]M g )(k) is given by the convolution theorem

(]M g )(k) =
Z 1

0

dk0

p
2�

~g(k � k0) ~ (k0) (2.10)

which has the integration limits restricted tok0 > 0 because is a right-moving state.

Then, there are two estimations used in the derivation of the theorem. The �rst, and
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more important, is a bound by comparing the integral with its part arising fromk < 0

Z
dx f (x)j  (x) �

~
m

Z 0

�1

dk
2�

k
�
�
�( ]M g )(k)

�
�
�
2

= �
~
m

Z 1

0

dk
2�

k
�
�
�( ]M g )( � k)

�
�
�
2
; (2.11)

and the second estimation comes from applying the Cauchy-Schwarz inequality to the

expression
�
�
�( ]M g )(k)

�
�
�
2

that is given by means of (2.10). Then, it follows that

�
�
�( ]M g )( � k)

�
�
�
2

�
Z 1

0

dk0

2�
j~g(k + k0)j2 ; (2.12)

using also the fact thatk k = 1 and that j~g(� k)j2 = j~g(k)j2 becauseg is a real function.

Combining that with the previous estimation (2.11) gives

Z
dx f (x)j  (x) � �

~
m

Z 1

0

dk
2�

Z 1

0

dk0

2�
k j~g(k + k0)j2

= �
~
m

Z 1

0

d�
4� 2

j~g(� )j2
Z �

0
dk k

= �
~
m

Z 1

�1

d�
16� 2

� 2 j~g(� )j2

= �
~

8�m

Z
dx jg0(x)j2 ;

(2.13)

which is obtained by making a change of variables such that� = k + k0, using the

evenness property of the integrandj~g(� )j and and the Parseval-Plancherel identity.

Theorem 1 describes a quantum inequality that is state-vector independent. More-

over, whilst the operator E+ J (f )E+ is bounded below it is unbounded above, for

positive f , exactly as the corresponding non-smeared versionE+ J (x)E+ . Note, how-

ever, that the lower bound depends on the choice of test functionf that is related to

the measurement apparatus. E�ectively, the unboundedness is a high momentum e�ect

[11]. In the context of the Weyl-Wigner quantisation, it was also shown in [7] that the

back�ow e�ect for the spatially smeared �ux j  (f ), as a quantum inequality, can be

seen as a direct consequence of the sharp Gårding inequalities [51] in the theory of

pseudo-di�erential operators, although it is not possible to determine the magnitude of

the bound Cf from that. Interestingly, a strong improvement of the Gårding inequality

was derived from considering the consequences of the uncertainty principle for the

theory of pseudo-di�erential operators [52, 53].
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2.3 interaction in scattering situations

For scattering situations, we consider the e�ect of an interaction with a potential term

V, external and time-independent for simplicity, added to the free Hamiltonian so that

H =
P̂2

2m
+ V(X̂ ): (2.14)

As a physical requirement, the potential is Hermitian. While the concept of right-movers

is clear in a free case, the time evolution associated with an interacting Hamiltonian does

not commute with the projector E+ , meaning that the space of right-moversE+ L2(R)

is not invariant under time evolution transformations. As an alternative equivalent

concept, we adopt the asymptotic right-movers in the sense of scattering theory, as used

before in [11]. In this way, we consider a state such that its incoming asymptote is a

right-mover. The incoming Møller operator is given by


 (IN) = 
 V := s-lim
t !�1

e+ iHt e� iH 0 t ; (2.15)

with s-lim denoting the strong operator limit andH0 the free Hamiltonian. Our quantity

of interest is now dependent on the potential and de�ned as

� V (f ) := inf
D

E+ 
 y
V J (f )
 V E+

E

 
; (2.16)

which is called the �asymptotic back�ow constant� [11] and it is the lowest eigenvalue

of the operatorE+ 
 y
V J (f )
 V E+ . In general, � V (f ) has a contribution from scattering

as a result of the interaction, with the exception of special cases in which there is no

re�ection. Moreover, it has physical units of~=(m`2), with a length scale` as the unit

of length. In the future, we will refer to this operator as the �(asymptotic) probability

current operator� or simply the �interacting current�.

To ensure the applicability of the scattering theory, we usually work with potentials

that vanish su�ciently fast at spatial in�nity. This is based on the fact that the fall-o�

properties of the potential are related to smoothness properties of the scattering data.

Speci�cally, it is usual to require the ful�llment of the condition [54]

kVk1
1 :=

Z + 1

�1
dx (1 + jxj) j V (x) j < 1 ; (2.17)
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and we say thatV 2 L1
1(R). In the stationary scattering theory, one has the time-

independent Schrödinger equation (TISE) for a wavefunction' (x)
�

�
~2

2m
@2

@x2
+ V(x)

�
' (x) =

(~k)2

2m
' (x); (2.18)

for which the scattering solutionsx ! ' k(x) with k > 0 have asymptotics of the form

' k(x) =

8
<

:
TV (k)eikx + o(1) as x ! 1 ;

eikx + RV (k)e� ikx + o(1) as x ! �1 ;
(2.19)

with transmission TV (k) and re�ection RV (k) coe�cients. In the scattering context,

the Schrödinger equation together with boundary conditions(2.19) is equivalent to a

Lippmann-Schwinger equation [55]

' k(x) = TV (k)eikx +
Z

dy Gk(x � y)U(y)' k(y); (2.20)

with U = (2m=~2) V . For this choice of complementary function (the inhomogeneous

term of the integral equation), the Green's function for the free TISE, which is a solution

of the equationG00
k(x) + k2Gk(x) = � (x), is

Gk(x) = �
sin(kx)

k
� (� x); (2.21)

where� is the Heaviside function:� (x) = 0 for x < 0 and � (x) = 1 for x > 0.

For situations where the interaction is exactly solvable, we do not need to make

use of Green's functions in the Lippmann-Schwinger equation. Later in our discussion,

chapter 5, we will consider and apply some analytic perturbation theory for the

probability current operator, and Green's function will be essential in our analysis.

Either working with perturbation approximations or the exact solution, a key ingredient

for analysing the back�ow e�ect in scattering situations is the expansion of the Møller

wave operator in the following integral form; see, for example, [56] for the Lemma below.

Lemma 1. Let V 2 L1
1(R). Then the operator
 V de�ned in (2.15) exists. Further, the

solution x 7! ' k(x) (k > 0) of (2.18) with the asymptotics(2.19) exists and is unique,

and for any ~ 2 C1
0 (R),

hxj 
 V E+ j i = (
 V E+  )(x) =
1

p
2�

Z 1

0
dk ' k(x) ~ (k) : (2.22)
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By the use of some estimates, e.g., [54, 57], the following theorem [11] is a result on the

existence of back�ow in scattering situations and also on its lower bound.

Theorem 2. Let the potential function V be aL1
1(R)-class potential, i.e.

kVk1
1 < 1 . For any f 2 C1

0 (R), with f > 0, 9 CV;f > 0 such that

h jE+ 
 y
V J (f )
 V E+ j i > � CV;f for k k = 1: (2.23)

Hence, the asymptotic back�ow constant is �nite, � V (f ) > �1 . The existence of

back�ow and the boundness (below) of back�ow are stable under the addition of a

scattering potential to the Hamiltonian. This means that, even in the presence of

re�ection, the e�ect is bounded below. Henceforth, we denote the expectation value of

the interacting operator in a general (normalized) state vectorj i by

hJV (f )i  := h j E+ 
 y
V J (f )
 V E+ j i : (2.24)

Moreover, the expansion of this expectation value with respect to scattering states' k

in position space relies on the use3 of the Lemma 1.

As is the case for the Hamiltonian, we expect that the asymptotic current operator

has a spectrum composed of pure point and absolutely continuous parts. Thus, we

have some eigenvalues, with the lowest one denoted by� V (f ), and at some point a

continuum of generalized eigenvalues. That is justi�ed on the basis of the evidences

provided by the numerical calculations, which will be explained in section 4.5. It is

important to stress our interest in this lowest eigenvalue in the context of quantum

inequalities.

2.4 backflow in the presence of a defect

In the next two subsequent chapters of the present work, Chapter 3 and Chapter 4,

we will, in more details, address the concept of defects by introducing some particular

defects into the Schrödinger equation. Following that, the back�ow e�ect will then be

analysed in the presence of these defects. More speci�cally, the single� -defect, the double

� -defect and the jump-defect, respectively. Moreover, Chapter 6 will also consider the
3The Lemma 1 requires ~ to be smooth of compact support ~ 2 C1

0 . However, C1
0 (R) is dense in

L 2(R) and through the use of Friedrichs extensions [58] the discussion applies to a general in the
domain D(JV (f )) of our operator.
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presence of defects but in the Dirac equation instead. Before the back�ow calculations

that will be carried out later once the interactions are explicitly particularised, we need

to set out the general structure of our quantities of interest, namely the probability

current operator and its lowest eigenvalue taking interaction into account.

A mathematically oriented discussion on the introduction of singular perturbations

of partial di�erential operator, particularly in the context of Hilbert spaces and the

Schrödinger equation, started in [59]. These authors considered the perturbation of a

Hamiltonian with a delta potential function using the extension theory of symmetric

operators. The theory of self-adjoint extensions of symmetric operators, based on the

fact that a symmetric operator can be extended to a self-adjoint operator when its

de�ciency indices are equal, was very important in the development of exactly solvable

models in quantum mechanics specially because of the Laplacian operator or kinetic

energy operator. The literature is vast but some of the earliest references can be

mentioned [60, 61, 62, 63, 64, 65, 66, 67]. Since the de�ciency indices play an important

role in the existence of self-adjoint extensions, let us recall the following result [58]

De�nition 1. Let A be a symmetric operator with domain D(A) and adjointAy. Its

de�ciency indices are the pair of numbersn+ , n� , given by

n+ := dim
�
ker(Ay � i )

�
;

n� := dim
�
ker(Ay + i )

�
:

(2.25)

Then, there are three possibilities

(i) If n+ = n� = 0, A is either self-adjoint or has a unique self-adjoint extension and

is said to be essentially self-adjoint.

(ii) If n+ = n� = n � 1, there exist self-adjoint extensions ofA, which are

parametrized by a unitary n � n matrix, a n2-parameter family of such extensions.

(iii) If n+ 6= n� , then A has no self-adjoint extension.

These self-adjoint extensions can be described in terms of matching conditions

relating the value of a wavefunction and its derivatives. In particular, for point

interactions, the conditions are de�ned at these interaction sites. Physically, point

interactions, or zero-range potentials, are understood as sharply localised potentials
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but they are mathematically special in the sense that they are singular perturbations

with support of zero measure of the free HamiltonianH0 = � ~2

2m @2
x for a free particle of

massm. Thus, for the Hamiltonian with a point interaction (located at the origin, for

convenience), its self-adjoint extension di�ers fromH0 just by including the appropriate

matching conditions describing the particular interaction of interest. To consider a

simple case, let us denote the densely de�ned operatorL = � @2
x , D(L) = C1

0 (Rn f 0g),

all C1
0 (R) functions having compact support separated from the origin, and, from that,

we haveh�; L i = hL y�;  i for � 2 D(L y) and  2 D(L) whereL y is the adjoint of

L. In addition, L has de�ciency indices(2; 2). The self-adjointness conditions onL,

for square-integrable functions� and  without support at the origin4, require that

the operator and its adjoint have the same domain andL is a symmetric operator,
R1

�1 � ?(x)(L )(x) dx =
R1

�1 (L� ?)(x) (x) dx; that can be expressed in the form

�
Z 1

�1

�
� ?@2

x  �
�
@2

x � ?
�
 

�
dx =

h
� ?@x  � (@x � ?) 

i 0+

0�
= 0; (2.26)

which can hold true in the simplest case where the functions and their derivatives are

continuous at the origin. Nevertheless, there are other possibilities and the case of a�

interaction is the known example where the function is continuous at the origin but its

derivative is not. That is described by the following conditions: (0+ ) =  (0� ) =  (0)

and @x  (0+ ) � @x  (0� ) = 2 � (0) with � 2 R, see(3.1) in Chapter 3. Equally

conceivable, a discontinuous function can also hold(2.26) true. An example of such

more severe discontinuity is obtained in the case the interaction is represented by the

derivative of a delta, known as the� 0(x). Unfortunately, it seems that the admissibility

of discontinuities in the wavefunction is not well explored in the textbook literature

on quantum mechanics. There are, however, numerous physical situations or models

where these discontinuities are realizable. Some examples in the literature include the

mass jump, which describes a physical system with an abrupt discontinuity of the

mass at one point that happens for a quantum particle moving in a media formed

up by two di�erent materials, the problem of the connection rules in semiconductor

heterostructures, junctions and the short-range limit of a two-body interaction [69,

70, 71, 72, 73, 74]. While the existence of a self-adjoint Hamiltonian operator and a

�nite average kinetic energy for a quantum particle are physical requirements, there is
4In particular,  belongs to the Sobolev spaceW 2

2 (R n f 0g) [68].



2.4. Backflow in the presence of a defect 33

no physical reason to rule out the presence of discontinuities in the wavefunction. In

Chapter 4, we will present the jump-defect as another special example of a discontinuous

wavefunction that is associated with a �nite kinetic energy. Defects or impurities on

the real line are modeled by point interactions, and we will make interchangeable use

of these terms in this thesis. Because of the singular nature of these interactions, it

is not always convenient or possible to have an analytical expression for a potential

function representing them. In that sense, defects provide us with more possibilities

that go beyond the addition of a zero-range potential function to the Hamiltonian of a

physical system. Furthermore, the self-adjoint extensions of the Hamiltonian can be

used to construct general point interactions [75, 76, 77, 78, 79] that, in the case of a

single interaction center in one dimension, are characterized by a four-parameter family

matching conditions as follows [80]
 

' k(0+ )

' 0
k(0+ )

!

= ei�

 
a b

c d

!  
' k(0� )

' 0
k(0� )

!

; (2.27)

where ' 0
k denotes the spatial derivative, the coe�cientsa; b; c; d2 R and � 2 [0; � ) are

restricted by the condition ad � bc= 1, which is called the non-separated condition

because the regionsx < 0 and x > 0 are connected. The case where there is no trans-

mission, e�ectively an in�nite wall, is called separated type and its matching conditions

are called separated conditions. The case of a single� -defect can be reproduced by

taking a = 1, b = 0, c = 2� , d = 1 and � = 0. Interestingly, self-adjoint extensions

of the Hamiltonian operator are equivalent to enforcing probability conservation or

that probability current is continuous across the discontinuity, that is at the defect

position [81, 82, 83]. Speci�cally, for stationary solutions' k , the condition requires that

@x j ' k = 0, wherej ' k is obtained from(2.3) by the substitution of  for ' k . Taking into

account the real line excluding the origin, this means that

j ' k (0+ ) = j ' k (0� ); (2.28)

to be understood in the limiting sense. We remark that, although the wavefunction

might be discontinuous, the Hamiltonian operator can be self-adjoint and probability

conserved. These general point defects described by self-adjoint extensions, however,

do not exhaust all possible point interactions. In fact, the case of a� 0 interaction, see

Chapter 3, shows that we may have to use additional assumptions such as symmetry
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properties of the interaction, and di�erent assumptions can result in di�erent point

interactions. All that discussion is not limited to the one-dimensional case or even to

the Schrödinger equation only and it can be extended [84, 85]. The conservation of

probability was also used to create di�erent matching conditions including the case of

a particle moving on the circle with a point interaction [86, 87]. For that inclusion,

the matching conditions characterizing the self-adjoint extensions of the Hamiltonian

(which has de�ciency indices(2; 2)) relate the family of point interactions conserving

probability to a 2 x 2 unitary matrix U 2 U(2) as follows

(U � I )

 
' k(0+ )

' k(0� )

!

+ iL 0(U + I )

 
' 0

k(0+ )

� ' 0
k(0� )

!

= 0; (2.29)

whereL0 6= 0 is an arbitrary constant and I is the identity matrix in U(2).

A defect in one-dimensional con�guration space, therefore, can be viewed as a

type of point interaction implemented into the physical system with sewing conditions

connecting the pair of regions separated by the defect position on the real line. Thus,

we consider here the e�ect of a generic interaction in the context of the Schrödinger

equation. It is also convenient here to set~ = m = 1 by a suitable re-scaling of the

length and time units. In the presence of a general non-trivial interaction term, at

least of short-range type, we can write the expectation value(2.24) of the interacting

probability current, in position space, as follows

h j JV (f ) j i =
Z

dx
Z

dx0(
 V E+  )?(x0) [J (f )(x0; x)] (
 V E+  )(x); (2.30)

with the kernel J (f )(x0; x) in position space. In order to simplify this equation, we

need a general expression forJ (f )(x0; x), which can be obtained from the expectation

value h j J (f ) j i substituting the unbounded operatorJ (f ) in terms of position and

momentum operators using (2.5) as

h j J (f ) j i =
1
2

h j P̂ f (X̂ ) + f (X̂ )P̂ j i

= �
i
2

Z
dy  ?(y)

�
f (y)

@ (y)
@y

+
@
@y

(f (y) (y))
�

;
(2.31)

which can be rewritten in the form

h j J (f ) j i = �
i
2

Z
dy  ?(y)

� Z
dy0f (y)

@�(y � y0)
@y

 (y0)

+
@f(y)

@y
� (y � y0) (y0) + f (y)

@�(y � y0)
@y

 (y0)
�

;
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where we have used the trick of rewriting the wavefunction (y) =
R

� (y � y0) (y0)dy0.

Hence, sinceh j J (f ) j i =
R

dy
R

dy0 ?(y0) [J (f )(y0; y)]  (y0), we obtain

J (f )(y; y0) = �
i
2

�
2f (y)

@�(y � y0)
@y

+
@f(y)

@y
� (y � y0)

�
: (2.32)

In abstract Dirac notation, we write the general structure of the interacting operator

current JV (f ). From (2.22), it follows that the resolution of the operator
 V can be

written in the abstract form


 V =
Z 1

�1
dk j' k i hkj ; (2.33)

where jki is the generalized momentum eigenvector (in the sense of rigged Hilbert

spaces), and the dual eigenvector (linear functional)hqj is such that � (q� k) = hqjki . In

particular, a plane wave has the normalization convention given byhxjki = eikx =
p

2� .

It is not di�cult to derive, by comparison with (2.30), the abstract operator

JV (f ) = E+ 
 y
V J (f )
 V E+ =

�
E+

Z
dq0jq0i h' q0j J (f )

Z
dqj' qi hqj E+

�
: (2.34)

The expression(2.34) is the interacting operator expanded in terms of the interacting

state vector and it highlights how JV (f ) di�ers from the free operator E+ J (f )E+ .

Obtaining an expression for that linear operator is also the starting point from where

some analytical perturbation theory can be applied to the analysis of the back�ow

constant in Chapter 5. For a practical calculation such as obtaining the lowest eigenvalue

of the operatorJV (f ), we will work with stationary scattering states and momentum

space wavefunctions of the Hilbert space. Back to the expectation value expression

(2.24), it can, therefore, be written in terms of' k as

h j JV (f ) j i =
1

2�

Z 1

0
dk

Z 1

0
dk0~ ?(k0) ~ (k)

Z
dx

Z
dx0' ?

k0(x0)J (f )(x0; x)' k(x);

(2.35)

where we will denote the spatial inner integrals by

L(k0; k) =
Z

dx
Z

dx0' ?
k0(x0)J (f )(x0; x)' k(x): (2.36)

Having a defect located at the origin(x = 0) of the real line, the line is split into two

regions, left of the defect (x < 0) and right of the defect (x > 0). In the presence
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of defects, we will clearly distinguish solutions by denoting the stationary scattering

solution uk for the left region andvk for the right region. As for the square-integrable

wavefunctions solutions of the time-dependent Schrödinger equation, they are denotedu

and v, respectively. Because' k is in general discontinuous at the origin, it is necessary

to split the spatial integrals in (2.36) accordingly. Alternatively, the stationary solution

' k can be expressed as

' k(x) = � (� x) uk(x) + � (x) vk(x); (2.37)

where, for solutions continuous at the origin, the Heaviside function can take the value

at the origin given by � (0) = 1 =2. For ' k discontinuous at the origin, that is not a

possible choice and the value at the origin' k(0) is not speci�ed, but always understood

in the limiting sense through the use of the sewing conditions only.

As a matter of �nding the lowest back�ow eigenvalue expression, we need to take

the minimum of the expression (2.35) obtained from

� V (f ) =
1

2�

Z 1

0
dk

Z 1

0
dk0 ~J� (k0)~J(k)L(k0; k); (2.38)

where we tacitly assume the existence of the lowest eigenvectorjJmin i of the operator

JV (f ), for which the associated wavefunction, in momentum space, is denoted by
~J(k). That assumption is supported by the numerical analysis, which is explained in

section 4.5. At the present moment, however, an explicit analytical solution for the

lowest eigenvector is not known even in the free case. That is also the case for the

temporal version of the back�ow [8, 34].
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Back�ow in the presence of� -defects

3.1 backflow in the presence of a � -defect

We �rst review the back�ow calculation in the presence of a� -defect [11] because of

its importance and as a stepping stone towards the jump-defect case that is the topic

of discussion in the next Chapter 4. It shall be said that the� can be seen as a Dirac

delta potential term V(x) = �� (x), with � 2 R the strength of the potential, but also as

an impurity or a point defect in the real line that is implemented by a set of matching

or sewing conditions and is denominated� -defect. After considering a single� -defect,

we take a further step and analyse the back�ow in the presence of the double� -defect.

The latter is an interaction of physical interest and will be discussed in section 3.3. An

important and direct consequence of that discussion will be the inclusion of the singular

� 0-defect that has a discontinuity similar to that of the purely transmitting jump-defect.

The � 0-defect will be obtained from the double� -defect in the zero-range limit.

Although the � potential function is not a L1
1(R)-class potential (it is not a locally

integrable function), it was shown in [11] that one can have a (rough) estimate of the

lowest back�ow eigenvalue, and the numerical results show that the� potential is indeed

a special case that also has a lower bound for its� V (f ). Here we add to the numerical

results and the analytical expression for(2.36) of the work contained in [11]. The aims

for this are twofold: the lowest back�ow eigenvalue displays a di�erent behaviour for

defect parameter valuesj� j < 1 and the analytical calculation of (2.36), in the � -defect

case, highlights the di�erences with respect to the discontinuous jump-defect case. For

the moment, let us introduce the following notation without further justi�cation as

37
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it will be further discussed in Chapter 4. The delta impurity (as a local defect) has

matching conditions de�ned at a point, and its wavefunction in one spatial dimension

can be split into left part (x < 0), denotedu, and right part ( x > 0), denotedv, such

that

u(0) = v(0) =  (0); vx (0) � ux (0) = 2 � (0); (3.1)

where the evaluation of the wavefunction , solution of the time-dependent Schrödinger

equation, at zero is understood in the right and left limit sense. These are well-known

consequences from the continuity of the wavefunction at the defect's location and the

discontinuity of its spatial derivatives or slopes. More precisely, without focusing on

issues of self-adjoint extensions, we shall mention thatV(x) = �� (x) is a point interaction

with wavefunction  , as a function in the domain of a self-adjoint HamiltonianH , that

belongs to the Sobolev spaceW 2;2(Rn f 0g) = H 2(Rn f 0g), the space of all 2 L2(R)

whose �rst and second order (distribution) derivatives belong toL2(R), where

H m (Rn f 0g) =
�

 2 L2(R)j @�  2 L2(R); 8�; j� j � m
	

(3.2)

is the Sobolev space of orderm, and m is a nonnegative integer. Note that the

distributions and their derivatives are to be understood here with respect to test

functions in C1
0 (R n f 0g). We are interested in the Sobolev spaceH 2(R n f 0g) of

functions that admits a �nite jump at the origin because defects discontinuities can

be accommodated in this space. For that, we remark that an alternative de�nition

of Sobolev spaces can be used onR n f 0g in which H 2(R n f 0g) is the completion of

f  2 C2(Rn f 0g) j k k2;2 < 1g with respect to the appropriate Sobolev norm, which

is k k2;2 =
� P

j � j� 2 k@�  k2
2

� 1=2
, and k:k2 is the usualL2-norm. Moreover, as the origin

is removed from the domain, the conditions(3.1) are the set of conditions connecting

the value of the wavefunction and its derivatives at the origin.

Let ' k denote the solution for the TISE in the presence of a� -defect. We can

work with derivatives in the weak sense as both' k and its derivative @x ' k are both

locally integrable functions' k 2 L1
loc(R), @x ' k 2 L1

loc(R). The full square-integrable

time-dependent solution to the Schrödinger equation is denoted by

' (x; t ) =
1

p
2�

Z 1

0
dk ~g(k) exp(� iwt )' k(x)

=
1

p
2�

Z 1

0
dk ~g(k) exp(� iwt ) ( � (� x)uk(x) + � (x)vk(x)) ;

(3.3)
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where ~g 2 C1
0 (R) is an arbitrary not identically zero and smoothly varying function

used for producing the wave packet as a proper square-integrableL2(R)-solution. As we

established before, we denote the solution at the left of the defect byu and at the right

by v. The time-independent scattering (from the left) states in position basis(2.19),

compatible with the sewing conditions (3.1), are

uk(x) = exp( ikx ) +
�

ik � �
exp(� ikx ) x < 0;

vk(x) =
�

ik
ik � �

�
exp(ikx ) x > 0; (3.4)

where the re�ection coe�cient R(k) and the transmission coe�cientT(k) for the � -defect

are explicitly written. In particular, for the � -defect, ' 2 H 1(R) \ H 2(Rn f 0g) as it is

continuous at the origin. We want to concentrate our attention on the time-independent

part ' k(x) composed of (3.4) and, for that, the inner integral (2.36) reads

L(k0; k) =
Z

dx
Z

dx0[(� (� x0)u?
k0 + � (x0)v?

k0) J (f )(x0; x) ( � (� x)uk + � (x)vk)] : (3.5)

Since the expression(2.32) for J (f )(x0; x) has a factor of� i=2, we absorb it by working

with 2iL (k0; k) instead. Each term is expanded by the insertion of theJ (f )(x0; x) and

simpli�ed after integration. Let us focus only on the spatial integrals, namely the

kernel 2iL (k0; k). First, we recall that a locally integrable function ' 2 L1
loc(R) can

be associated with a linear functional, a distribution, byh'; � i =
R

dx ' (x)� (x) with

� 2 C1
0 (R). The derivative of that distribution is de�ned by h@'; � i = � h '; @� i . In

this weak sense, the derivative (with respect to test functions inC1
0 (R)) of of our

function ' k is

@'k = ( vk(0) � uk(0)) � 0 + ' 0
k ; (3.6)

where' 0
k denotes the (piecewise de�ned) strong derivative of' k that is unde�ned at

the origin, and � 0 is the Dirac delta distribution concentrated at the origin x = 0,

h� 0; � i = � (0). Also, the values of the functionsuk and vk at the origin are understood

in the limiting sense,uk(0) = lim
" ! 0�

uk(" ) and vk(0) = lim
" ! 0+

vk(" ). Because we know

that the gap vk(0) � uk(0) is actually zero for the� -defect, the weak and the strong

derivatives coincide outside the origin with the strong derivative unde�ned at the origin.

The kernel can be written as the smearing with the test functionf of the following
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quantity involving ' k and its �rst derivative

2iL (k0; k) =
Z

dx0f (x0)
�

' ?
k0(x0)

@'k(x0)
@x0

�
@'?k0(x0)

@x0
' k(x0)

�
; (3.7)

and the derivatives of' k are understood in the strong sense. It follows immediately

that the integral can be split in two parts in terms of the functionsuk and vk as

2iL (k0; k) =
Z 0

�1
dx0f (x0)

�
u?

k0(x0)
@uk(x0)

@x0
�

@u?k0(x0)
@x0

uk(x0)
�

+
Z 1

0
dx0f (x0)

�
v?

k0(x0)
@vk(x0)

@x0
�

@v?k0(x0)
@x0

vk(x0)
�

;
(3.8)

where the derivatives are understood in the strong sense.

Finally, we can write down the lowest back�ow eigenvalue as

� V (f ) =
1

2�

Z 1

0
dk

Z 1

0
dk0~J� (k0)~J(k)L(k0; k);

with the Hermitian kernel

2L(k0; k) = ( k + k0)
Z 0

�1
dx0f (x0) exp(ix 0(k � k0))

+
� (k0 � k)
(ik � � )

Z 0

�1
dx0f (x0) exp(� ix 0(k + k0))

�
� (k � k0)
(ik 0+ � )

Z 0

�1
dx0f (x0) exp(ix 0(k + k0)) (3.9)

+
� 2(k + k0)

(ik 0+ � )( ik � � )

Z 0

�1
dx0f (x0) exp(� ix 0(k � k0))

�
kk0(k + k0)

(ik 0+ � )( ik � � )

Z 1

0
dx0f (x0) exp(ix 0(k � k0)) ;

which is obtained by the use of equation(3.4). Thus, the kernel is composed of

contributions located at either the left (�1 ; 0) of the defect or the right (0; 1 ) of the

defect, and there is no contribution purely supported at the defect position.

In section 4.1.2, we will check conservation of energy, momentum and probability

in the presence of a� -defect and compare with the equivalent analysis applied to a

situation described by a jump-defect. Then, the possibility of �nding contributions

to these physical quantities that are located precisely at the defect position will be
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investigated. Such extra terms are regarded as contributions coming purely from the

defect. Particularly, we will �nd that, provided they exist, these terms are �nite and do

not cause, for example, undesirable in�nite energies despite the defect discontinuities.

For the calculation of the lowest back�ow eigenvalue� V (f ), as the eigenfunction~J(k)

is not analytically known, we need to rely upon numerical calculations in order to plot

the result. Some graphs for the� -defect case can be found in section 3.2 along with a

discussion of the results.

3.2 numerical results

Details on the numerical analysis can be found in section 4.5, including the de�nition

of all parameters involved in the calculations. The back�ow calculation in the presence

of a � -defect was analysed in section 3.1, and the corresponding kernel was analytically

simpli�ed to expression(3.9). Here, we present additional numerical results to those

reported in [11], where the defect parameter was restricted toj� j = 1. All the graphs refer

to the probability current operator smeared with a Gaussian test function. Speci�cally,

the graphs show the lowest back�ow eigenvalue� V (f ) against the centerx0 of the

averaging Gaussian functionf . Attractive refers to the case� < 0, and repulsive to the

case� > 0. See the following �gure 3.2 and �gure 3.3 where we vary the parameter�

for displaying its behaviour under the strengthening or weakening of the interaction. In

particular, in the limit � ! �1 , it becomes a purely re�ecting situation, equivalent to

a boundary theory. Naturally, when� ! 0 the interaction-free case is obtained. For the

free case, the lowest eigenvalue is represented by the line� 0(f ) � � 0:241. As shown by

�gure 3.2, there is a maximum of the lowest eigenvalue, in the attractive case, close

to the defect's location whenj� j < 1. Moreover, the maximum seems to peak when

the defect parameter is� = � 1=2. Despite not being included in this thesis, a few of

other parameters around� = � 1=2 (� = � 0:40; � 0:45; � 0:55; � 0:60) were explored

and suggested that the maximum indeed peaks at� = � 1=2. This is a new observation.

We do not have a physical explanation for it, but it is worth exploring in the future.

Changing the width of the Gaussian causes the maximum to peak at di�erent values of

� , but that is somehow expected as di�erent widths also modify the back�ow eigenvalue

even in the interaction-free situation. Finally, su�ciently increasing its absolute value

(j� j > 1) causes the attractive and repulsive cases to approach each other.
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Classically, the intuition underlying the di�erent behaviours between� > 0 (re-

pulsive) and � < 0 (attractive) is that the particle velocity is lower in the former

case and higher in the latter case when compared with the free case. Hence, in the

attractive case the back�ow e�ect is weaker than in the repulsive case. From the point

of view of quantum mechanics, the di�erence is more subtle. Note that the pole of the

transmission and re�ection coe�cients in (3.4) is at k = � i� . In the complex energy

plane, bound states have imaginary part Imk > 0 and virtual states (or antibound

states) have Imk < 0. Then, in the case of the� -defect, while positive values of� yield

virtual states, negatives values of� yield physical bound states. There are, therefore,

two important factors determining the behaviour of the back�ow constant at the left of

the defect: backscattering and bound states. In the transmission region at the right of

the defect, the situation in both cases is similar to the free case. In contrast to the left

region, the right region has no superposition of incoming and re�ected waves but only

transmitted wave, which can shift away the back�ow lowest eigenvalue from the free

case, but� V (f ) is still represented by a constant line. That is why the two curves, blue

(� > 0) and red (� < 0), merge at the right of the defect.

Additionally to the two-dimensional plots, we have varied the parameter� over

a wide range for displaying three-dimensional pictures, �gure 3.4 and �gure 3.5, to

illustrate how the lowest back�ow eigenvalue� V (f ) is a�ected in the presence of the

� -defect. This can be compared to the results of the double� -defect in section 3.4 and

to the results of Chapter 4 where the jump-defect parameter� varies, �gures 4.9, 4.10,

4.12 and 4.13 in section 4.4. The only di�erence between �gure 3.4 and �gure 3.5 is

that the former is plotted over a larger range of� to show global aspects and the latter

covers a smaller range of the parameter in order to exhibit local features around the

defect's location. In particular, �gure 3.5 shows very clearly that the peak at� = � 1=2

where� V (f ) � � 0:081. All these results are stable against increasing the numberN of

discretization steps and the momentum cuto�Pcuto� .
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(a)

(b)

Figure 3.1: Lowest back�ow eigenvalue of the current operator, for which (a)j� j = 0:03
(b) j� j = 0:1.
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(a)

(b)

Figure 3.2: Lowest back�ow eigenvalue of the current operator, for which (a)j� j = 0:5
(b) j� j = 1:0.
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(a)

(b)

Figure 3.3: Lowest back�ow eigenvalue of the current operator, for which (a)j� j = 5:0
(b) j� j = 10:0.
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3.3 the double � -defect

While the � -defect always describe a situation where the re�ection coe�cientR(k) is

non-zero, it can also be seen as a particular case from the more general double� -defect.

Given two � impurities, each one located at a di�erent point in the real line, the single

� -defect is obtained in the limit that these two defect's positions are the same. In

that sense, the double delta case is more general and has additional features that are

not present in the single delta case. For instance, the number of bound states can

change up to two instead of a single bound state, the presence of resonances and the

possibility of having a zero re�ection coe�cient, in other words a situation where the

defect is transparent. In terms of applications in physical situations, the double delta

can model, for example, the diatomic hydrogen gas molecule [21, 88] or the pair of

plates in the Casimir e�ect [89, 90, 91]. Moreover, what would describe the derivative

of a Dirac-� as a quantum mechanical potential, or as a defect called� 0-defect, can be

obtained from the double� -defect in a limiting process where the deltas approach each

other. Consequently, other more general situations as the double� -� 0-defect can also be

explored in the context of the Casimir e�ect and nuclear physics [92, 93]. Here we are

interested in how the double� -defect defers from the single� -defect in regard to the

quantum back�ow e�ect. Most of the calculations related to the double delta are similar

to those in the case of a single delta. Hence, we will rely on previous sections to present

the results of this sections not in a detailed and lengthy exposition but highlighting

some important points without signi�cant losses.

For that purpose, the potential is now considered in its general form asV(x) =

� 1� (x � a1)+ � 2� (x � a2), with real parameters� 1 and � 2, the potential strengths, anda1

and a2 the positions where the impurities are located in the real line such thata1 < a 2.

Exactly as before, the sewing conditions are de�ned only at the defect's location,a1

and a2, expressing the fact that the wavefunction is continuous at these two points

and that there is a discontinuity of the slopes at the same points. Thus, in evident

similarity to (3.1), the sewing conditions are

u(a1) = w(a1) =  (a1); wx � ux = 2� 1w(a1);

w(a2) = v(a2) =  (a2); vx � wx = 2� 2v(a2);
(3.10)

whereu; w; v correspond to the pieces of the wavefunction located at the left of the
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�rst delta, (x < a 1), in the middle between the two deltas(a1 < x < a 2), and at the

left of the second delta(x > a 2), respectively. The time-independent scattering states

compatible with (3.10) can be shown to have the following form

uk(x) = exp( ikx ) + R(k) exp(� ikx ) x < a 1;

wk(x) = A(k) exp(ikx ) + B(k) exp(� ikx ) a1 < x < a 2;

vk(x) = T(k) exp(ikx ) x > a 2;

(3.11)

with k > 0, and the corresponding coe�cients given as follows

A(k) =
k2 + ik� 2

k2 + ik (� 1 + � 2) � � 1� 2

�
1 � � 2

� 2

�

B (k) =
� ik� 2� 2

k2 + ik (� 1 + � 2) � � 1� 2

�
1 � � 2

� 2

�

T(k) =
k2

k2 + ik (� 1 + � 2) � � 1� 2

�
1 � � 2

� 2

� (3.12)

R(k) =
� ik (� 2� 1 + � 2� 2) � � 1� 2(� 2 � � 2)

k2 + ik (� 1 + � 2) � � 1� 2

�
1 � � 2

� 2

� ;

whereT(k) is the transmission coe�cient and R(k) is the re�ection coe�cient and we

have set� := exp(ika1) and � := exp(ika2). In particular, if a1 = � a and a2 = a, with

a > 0, the potential is symmetrical when� 1 = � 2 = � , and the interaction is entirely

repulsive or entirely attractive. Similarly, the particular case wherea1 = � a and a2 = a

with � 1 = � � 2 = � corresponds to the antisymmetric situation composed of a mixture

of attractive and repulsive interactions.

Alternatively to the use of sewing conditions to obtain the coe�cients(3.12), one

can write the solution to the time-independent Schrödinger equation in terms of the

Lippmann-Schwinger (2.20) in the form

' k(x) = exp( ikx ) + 2 � 1

Z
Gk(x � y)� (y � a1)' k(y)dy

+ 2� 2

Z
Gk(x � y)� (y � a2)' k(y)dy

= exp( ikx ) + 2
X

J

� J Gk(x � aJ )' k(aJ );

(3.13)
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with index J = 1; 2 corresponding toa1 and a2, respectively, and the integral kernel

Gk(x � y) =
1

2ik
eik jx � yj : (3.14)

The evaluation of ' k(x) at x = aI , with index I = 1; 2, is given as follows

' k(aI ) [1 � 2� I Gk(aI � aI )] � 2� J Gk(aI � aJ )' k(aJ ) = exp( ika I ); (3.15)

with I 6= J . That can, more generally, be written in the matrix form

 
M 11 M 12

M 21 M 22

!  
' k(a1)

' k(a2)

!

=

 
exp(ika1)

exp(ika2)

!

; (3.16)

where the components of the complex matrixM are expressed by

M IJ =

(
1 � 2� I Gk(aI � aI ) I = J;

� 2� J Gk(aI � aJ ) I 6= J:
(3.17)

As a result, at the defect's location,' k(aJ ) is

' k(aJ ) =
X

I

�
M � 1

�
JI

exp(ika I ); (3.18)

and, the scattering solution' k(x) can be expressed

' k(x) = exp( ikx ) +
2X

J =1

2X

I =1

� J
eik jx � yj

ik

�
M � 1

�
JI

exp(ika I ): (3.19)

In particular, the re�ection coe�cient R(k), for example, can be obtained from that

when we considerx < a 1, and the transmissionT(k) in the region x > a 2.

The back�ow analysis in the presence of �nitely many� impurities follows very simi-

larly from the simpler case in the presence of a single one. In particular, the expression

(2.36) will split into three regions of integration determined by(�1 ; a1); (a1; a2) and

(a2; 1 ) corresponding tou, w and v, respectively. The asymptotic back�ow constant

in the presence of a double delta defect interaction is given by equation(2.38) with a

kernel expression, to be compared with(3.9) and that can be calculated in a similar
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manner as was done in the single delta case, given by

2L(k0; k) = ( k + k0)
Z a1

�1
dx0f (x0) exp(ix 0(k � k0))

+ ( k0 � k)R(k)
Z a1

�1
dx0f (x0) exp(� ix 0(k + k0))

+ ( k � k0)R?(k0)
Z a1

�1
dx0f (x0) exp(ix 0(k + k0))

� (k + k0)R?(k0)R(k)
Z a1

�1
dx0f (x0) exp(� ix 0(k � k0))

+ ( k + k0)A?(k0)A(k)
Z a2

a1

dx0f (x0) exp(ix 0(k � k0)) (3.20)

+ ( k0 � k)A?(k0)B (k)
Z a2

a1

dx0f (x0) exp(� ix 0(k + k0))

+ ( k � k0)B ?(k0)A(k)
Z a2

a1

dx0f (x0) exp(ix 0(k + k0))

� (k + k0)B ?(k0)B (k)
Z a2

a1

dx0f (x0) exp(� ix 0(k � k0))

+ ( k + k0)T?(k0)T(k)
Z 1

a2

dx0f (x0) exp(ix 0(k � k0)) :

As previously executed, the same numerical calculations are used in order to obtain

the lowest eigenvalue� V (f ), from (2.38), with the only di�erence being the number

of interaction centers considered. It is easy to check that the back�ow analysis in the

general case of �nitely many� -defects immediately follows from the particular case

of the double � -defect. Because each delta represents a zero-range interaction or a

point-defect, the asymptotic behaviour of the solution to the Schrödinger equation is

greatly simpli�ed, although the calculations quickly become laborious with the increase

of the number of impurities. The case of in�nitely many delta interactions, also known

as Dirac comb, will not be considered here, but it can be treated as a limiting case

where the number of impurities tends to in�nity. In particular, the expression(3.19)

would involve in�nite sums corresponding to the in�nitely many interaction centers.

Furthermore,the double� -defect can already be quite singular. The zero-range limit

a1 ! a2 ! 0 turns the interaction into a more severe discontinuity that represents what

will be called a� 0-defect and discussed in the next section.
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3.4 numerical results for the double � -defect

The numerical analysis for the back�ow e�ect in the presence of a double� -defect is

presented here in the form of graphs displaying the lowest eigenvalue� V (f ) of the

probability current operator as a function of the position of measurementx0 that is the

center of the positive test functionf , chosen to be a Gaussian function. The reader can

�nd the relevant details on the numerical analysis in section 4.5. Additionally, some

three-dimensional plots, in terms of� V (f ), position x0 and potential strength � , are

included in this section.

Some of the particular choices we make when computing the back�ow constant are

here described. The more known case, well-covered in the literature, is the special case

when the the defect's locations in the real line are� a1 = a2 = a and with strength

� 1 = � 2 = � , the symmetric case, or� 1 = � � 2 = � , the antisymmetric case. The

symmetric one will be referred as a pair of identical deltas and the antisymmetric one

will be referred as a pair of opposite deltas. These were considered in the present work,

and the respective results provided below. Keeping the positions �xed,� a1 = a2 = a,

one can also consider the case in which the strengths are related as� 1 = c� 2, where

c 2 Z is a constant of proportionality between the impurities. That possibility was

contemplated in the numerical calculations with some few values chosen as reference

and depicted in the plots therein. In accordance to what was done in the previous case

of a single� -defect, � assumes positive and negative values in this section. To cover

the various possibilities regarding the choice of signs and magnitudes, the results are

organized in subsections as follows: identical pair of deltas 3.4.1, opposite pair of deltas

3.4.2 and general pair of deltas 3.4.3.

3.4.1 The case of identical double� -defect

The pair of identical deltas is specially characterized by the condition that� 1 = � =

� 2. The terms attractive and repulsive refer to the sign of the potential strengths

corresponding to the �rst and the second deltas in the double� -defect. Attractive,

therefore, represents the situation where both deltas have negative strengths,� 1 < 0

and � 2 < 0. Repulsive represents the pair of deltas where both deltas have a positive

strength, � 1 > 0 and � 2 > 0. Here we consider the positions of each delta �xed with
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� a1 = a2 = 0:5. Because it is an identical pair of deltas, the limiting case where they

approach each other,a1 ! a2, is trivial in the sense that the result is e�ectively a single

� -defect with total strength twice the value of the individual strengths. Although we did

not include here the results whena1 ! a2, we can con�rm that the previously mentioned

maximum peak, at � = � 1=2, for the back�ow constant � V (f ) in the presence of a

single delta is reproduced setting� a1 = a2 = 0:01 and � 1 = � 2 = � 0:25, as we may

have expected from the results of section 3.2.

In evident similarity to the case of a� -defect, the pair of identical deltas for very small

perturbations, �gure 3.6, shows that the attractive case has a less negative back�ow

constant than the repulsive case of opposite strength for almost the entire region at the

left of the interaction centers. As in the previous single� -defect case, backscattering

and bound states are important factors determining the behaviour of the back�ow

constant at the left of the defects. However, in the middle region between the defects

(a1 < x 0 < a 2), � V (f ) depends critically on the coe�cients A(k) and B(k) from (3.12)

that are connecting both defects, and an intuitive description of how� V (f ) changes is

not straightforward in the general case. In contrast to the case of a single� -defect, the

red and blue curves do not merge anymore in the transmission region at the right of the

defects (x0 > a 2). To understand this behaviour, note that, although� V (f ) is given by

a constant line in that region, the transmission coe�cientT(k) has di�erent magnitudes

depending on whether the pair of defects is attractive or repulsive. In the absence of

re�ection, we can expect a symmetric situation in which the back�ow constant is the

same far away at the left and at the right of the defects. It is also expected that the

presence of bound states becomes more relevant without the backscattering contribution

to the back�ow. In particular, points of maxima of � V (f ) should appear exactly at

the defect position. In fact, these expectations will be met in the case of a purely

transmitting jump-defect.

With the increase of the potential strength, represented by �gures 3.7 and 3.8,

the appearance and development of two peaks of maximum for negative values of the

strength occur until a certain point where the peaks start to contract. In particular,

while the highest peak in the back�ow constant does not seem to be achieved for

� = � 1=2 with a = 0:5, the two distinct peaks in the attractive case are connected by a

minimum in between. After that, as the interaction becomes much stronger, the second

interaction center looks as a totally re�ecting wall while the �rst center has partial
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transmission, �gure 3.9. For a three-dimensional graph displaying all these features,

see �gure 3.10 and compare with the previous� -defect in �gure 3.4. Because the local

features corresponding to small valuesj� j are less noticeable when considering a large

range of the parameter� , �gure 3.11 shows a better representation of what happens for

when the interaction is limited to j� j � 1. That can be compared to �gure 3.5 noticing

the di�erence on the peaks in the attractive region where� < 0.
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(a)

(b)

Figure 3.6: Lowest back�ow eigenvalue of the current operator in the presence of a pair
of identical deltas,a1 = � a2 = � 0:5. (a) j� j = 0:01 (b) j� j = 0:03.
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(a)

(b)

Figure 3.7: Lowest back�ow eigenvalue of the current operator in the presence of a pair
of identical deltas,a1 = � a2 = � 0:5. (a) j� j = 0:1 (b) j� j = 0:25.
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(a)

(b)

Figure 3.8: Lowest back�ow eigenvalue of the current operator in the presence of a pair
of identical deltas,a1 = � a2 = � 0:5. (a) j� j = 0:4 (b) j� j = 0:5.
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(a)

(b)

Figure 3.9: Lowest back�ow eigenvalue of the current operator in the presence of a pair
of identical deltas,a1 = � a2 = � 0:5. (a) j� j = 1:0 (b) j� j = 10:0.
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