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ABSTRACT

The main focus of this thesis is probabilistic coupling. This technique and

its connection with the total variation distance will be a common thread

through the exploration of the random processes investigated in this thesis.

In Chapter 2, we generalise a recent result on the mixing time of the

random walk on Zn2 that at each step flips k randomly chosen coordinates. In

our work, we let the number of coordinates flipped at each step be a random

variable K, and, using a path coupling argument, we establish bounds for

the mixing time of this random walk. Furthermore, we show that, under

some stricter assumptions on the distribution of K, the random walk has a

pre-cutoff.

In Chapter 3, we focus on properties of particular couplings, such as

co-adaptedness, maximality, and other types of optimality. We consider the

Brownian motion on the circumference of the unit circle that, at times of

an independent Poisson process of rate λ, jumps to the opposite point on

the circle. We construct a co-adapted coupling for this process and, using

excursion theory and Bellman’s principle of optimality, we prove that it is

mean-optimal in the class of co-adapted couplings, i.e. it minimises the

expected coupling time. We describe how this coupling depends upon λ,

and show that it is maximal only when λ = 0. We also give an explicit

construction of a maximal coupling for this ”jumpy Brownian motion” (for

any value of λ) in the case where the two copies of the process begin at

opposite sides of the circle.



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Markov chains and the cutoff phenomenon . . . . . . . . . . . 11

1.1.1 The cutoff phenomenon . . . . . . . . . . . . . . . . . 15

1.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Co-adapted coupling . . . . . . . . . . . . . . . . . . . 27

1.2.2 Path coupling . . . . . . . . . . . . . . . . . . . . . . . 32

2. Mixing time for a random walk on the hypercube . . . . . . . . . . 36

2.1 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Mixing time for a random walk on Zn2 with random step size 42

2.2.1 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . 44

2.2.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.3 A lower bound on the mixing time . . . . . . . . . . . 50

2.2.4 A tighter lower bound . . . . . . . . . . . . . . . . . . 57

3. Jumpy Brownian Motion on the Circumference of the Unit Circle . 62

3.1 Previous studies . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 The distribution of Xt . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Maximal coupling . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Our candidate mean-optimal coupling . . . . . . . . . . . . . 71

3.5 Excursion theory . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Laplace transform of the coupling time . . . . . . . . . . . . . 82

3.6.1 Case I. D0 = π
2 . . . . . . . . . . . . . . . . . . . . . . 84

3.6.2 Case II. D0 = π . . . . . . . . . . . . . . . . . . . . . . 87



Contents 4

3.6.3 Case III. D0 6= π
2 , π . . . . . . . . . . . . . . . . . . . . 91

3.7 Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8 Expectation of Tx . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.9 Optimal coupling . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.9.1 Proof of Theorem 3.8 . . . . . . . . . . . . . . . . . . 115

3.10 Further thoughts . . . . . . . . . . . . . . . . . . . . . . . . . 125

4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix 132

A. Expectation and Variance from Section 2.2.4 . . . . . . . . . . . . 133

B. Formulas of the Laplace transform from Section 3.6.3 . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



LIST OF TABLES

2.1 Summary of the methods that have been used to find upper

bounds for random walks on the hypercube. . . . . . . . . . . 40



LIST OF FIGURES

1.1 Graph of dn(t) against time for a Markov chain that exhibits

cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 The random walk constructed by Aldous in 2004. The images

have been taken from [21] . . . . . . . . . . . . . . . . . . . . 20

1.3 Reflection coupling (Bt, y −Bt) . . . . . . . . . . . . . . . . . 30

3.1 Simulation of the reflection coupling with starting distance
3π
4 and λ = 0.5. We can see a jump in D at about time 2.15

and the coupling time is approximately 2.5. . . . . . . . . . . 73

3.2 Simulation of the synchronised coupling with starting dis-

tance 3π
4 and λ = 0.5. We can see a jump in D at about time

0.53, which is also the coupling time. . . . . . . . . . . . . . . 74

3.3 Comparison of the simulation of the Laplace tranform for

D0 = π and λ = 0.5 and the formulas obtained in Section

3.6.2 under the reflection coupling. . . . . . . . . . . . . . . . 95

3.4 Comparison of the simulation of the Laplace tranform for

D0 = π
2 and the formulas obtained in Section 3.6.1. . . . . . . 96

3.5 Comparison of the simulation of the Laplace tranform for

D0 = x < π
2 and the formulas obtained in Section 3.6.3. . . . 97

3.6 Comparison of the simulation of the Laplace tranform for

D0 = x > π
2 and the formulas obtained in Section 3.6.3. . . . 98

3.7 Graph of E[e−γT
r
π ]− E[e−γT

s
π ] with D0 = π. . . . . . . . . . . 100

3.8 Comparison of the constant C(λ) under the two couplings. . . 104

3.9 Comparison of the expectation of the coupling time under the

two couplings as a function of λ. . . . . . . . . . . . . . . . . 105

3.10 Comparison of the expectation of the coupling time for the

reflected and the synchronised couplings for a fixed λ. . . . . 106

3.11 Comparison of the expectation of the coupling time under the

two strategies for two fixed values of x. . . . . . . . . . . . . . 107



List of Figures 7

3.12 Graph of the function R(x). . . . . . . . . . . . . . . . . . . . 110

3.13 Graph of the functions R(x)(π −R(x)) and x(π − x). . . . . 112

3.14 Graph of the functions min{R(x), π−R(x)} and min{x, π−x}.113

3.15 Laplace transform of the coupling time for two copies of the

jumpy Brownian motion started at distance π under the re-

flection and synchronised couplings and under a maximal cou-

pling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.16 Expectation of the coupling time for two copies of the jumpy

Brownian motion started at distance π under the reflection

and synchronised couplings and under the maximal coupling. 127

3.17 Simulation of the jumpy Brownian motion started at 5π
6 that

jumps from x to x± 2π
3 (mod 2π) with λ = 0.3. . . . . . . . . 127

3.18 Simulation of the expectation of the coupling time with λ =

0.2 for x? = π
2 and x? = π

3 . . . . . . . . . . . . . . . . . . . . 129



ACKNOWLEDGEMENTS

As my PhD comes to an end, I would like to thank all the people who have

supported and encouraged me throughout this long and exciting journey.

My heartfelt gratitude goes to my supervisor, Dr. Stephen Connor, for

the great patience, support, and consideration he’s showed me throughout

my PhD and during the pandemic. I’m very grateful for his help, I couldn’t

have asked for a better supervisor.

I would like to thank my family for supporting me even when I decided

to move far away from home to do something that they still don’t completely

understand.

Warm thanks to my precious friend Nayana for the many laughs and

conversations, her unconditional support, and for sharing the frustration of

mixing multiple languages when speaking.

Many thanks to my friends in Italy, who have always been there for me

despite the thousands of kilometres that separate us.

Thanks to everyone in the Department of Mathematics in the University

of York who helped make the long working days lighter. Special thanks to

Peipei and Dalal for offering me their friendship and sharing the difficulties

encountered during the PhD.

Thanks to all the friends I met through Friend International York for

warmly welcoming me in York and for broadening my mind by introducing

me to so many different people and cultures. Especially, I’d like to thank

Helen, Katherine, Julie, Rebecca, and all the friends from Film Night and

Friday Night Feast for supporting me in very difficult times and helping

make the pandemic more bearable and less lonely.

Finally, I’d like to thank Prof. Pietro Caputo for encouraging me to

pursue this objective. Without his help, I’d have never known the wonderful

people who have enriched my life in York, and I’d have never lived the

extraordinary experiences that life abroad has offered me.



RINGRAZIAMENTI

Con questa tesi il mio dottorato si avvicina alla fine, quindi vorrei ringraziare

tutte le persone che mi hanno supportato e incoraggiato durante questo

lungo percorso.
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1. INTRODUCTION

In this first part of the thesis, we report a summary of material on Markov

chains that are at the base of our project. We define their main properties,

and we give an introduction to coupling describing some of its useful ap-

plications in the study of the convergence of Markov chains. The material

related to Markov chains is taken from “Markov chains and mixing times”

by Levin, Peres and Wilmer [21].

1.1 Markov chains and the cutoff phenomenon

Let X = (Xn)n≥0 be a Markov chain with state space Ω and transition

matrix P . A distribution π over Ω satisfying π = πP is called a station-

ary distribution, and it represents the long-term limiting distribution of the

Markov chain, provided P is irreducible and aperiodic.

The convergence of a Markov chain is studied in terms of distance be-

tween the distribution of the chain and the stationary distribution. Several

types of distance have been defined, one of them being the total variation

distance, which is the metric we will use in this thesis.

Definition 1.1. Let P be the transition matrix of a Markov chain with

state space Ω. Let π the stationary distribution and P t the distribution of

the Markov chain at time t. Then, we define the total variation distance

between the distributions P t and π as

‖P t(x, ·)− π‖TV := max
A⊂Ω
|P t(x,A)− π(A)|,

i.e. the maximum difference between the two probability distributions over

all the possible subsets of the state space Ω.

As it is not always convenient to work with this definition, we can use

an alternative characterisation that reduces the maximum over all subsets
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of Ω to a sum over its states, provided that Ω is a countable space.

Proposition 1.2. If Ω is a countable space, then

‖P t(x, ·)− π‖TV =
1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

Proof. Let B = {y : P t(x, y) ≥ π(y)} and let A ⊂ Ω. Then,

P t(x,A)− π(A) ≤ P t(x,A ∩B)− π(A ∩B) ≤ P t(x,B)− π(B),

where the first inequality holds because if y ∈ A ∩Bc then P t(x, y) < π(y),

which implies

P t(x,A)−π(A) = P t(x, (A∩B)∪(A∩Bc))−π((A∩B)∪(A∩Bc)) ≤ P t(x,A∩B)−π(A∩B).

Similarly, we have

P t(x,B)−π(B) = P t(x, (A∩B)∪(Ac∩B))−π((A∩B)∪(Ac∩B)) ≥ P t(x,A∩B)−π(A∩B).

In the same way, it can be showed that

π(A)− P t(x,A) ≤ π(Bc)− P t(x,Bc).

Observe that the upper bounds P t(x,B)− π(B) = π(Bc)−P t(x,Bc), so, if

we take A = B or A = Bc, then

‖P t(x, ·)−π‖TV =
1

2
[P t(x,B)−π(B)+π(Bc)−P t(x,Bc)] =

1

2

∑
y∈Ω

|P t(x, y)−π(y)|.

If Ω is a measurable space, then we have the following definition of total

variation distance.

Definition 1.3. Let µ and µ′ be two probability measures on a measurable

space Ω. Then, the total variation distance between µ and µ′ is defined as

‖µ− µ′‖TV :=
1

2
sup
|f |≤1

f measurable

∣∣∣∣∫ fd(µ− µ′)
∣∣∣∣ .
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Lindvall shows in [23] that we have the following alternative characteri-

sation.

Proposition 1.4. Let µ and µ′ be two probability measures on a measurable

space Ω. Let λ = µ+ µ′ and

g =
dµ

dλ
, g′ =

dµ′

dλ
.

Then,

||µ− µ′||TV = 1−
∫
g ∧ g′dλ.

Proof. From Definition 1.3,

2||µ− µ′||TV = sup
|f |≤1

f measurable

∣∣∣∣∫ f · (g − g′)dλ
∣∣∣∣

=

∫
g≥g′

1 · (g − g′)dλ+

∫
g<g′

(−1) · (g − g′)dλ

=

∫
|g − g′|dλ =

∫
(g − g ∧ g′)dλ+

∫
(g′ − g ∧ g′)dλ

=

∫
gdλ+

∫
g′dλ− 2

∫
g ∧ g′dλ

=

∫
dµ+

∫
dµ′ − 2

∫
g ∧ g′dλ

= 2

(
1−

∫
g ∧ g′dλ

)

The following result establishes convergence at an exponential rate of

any irreducible and aperiodic Markov chain on a finite state space to the

stationary distribution.

Theorem 1.5 (Convergence theorem). Let P be irreducible and aperiodic

with finite state space Ω and stationary distribution π. Then, there exist

constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω
||P t(x, ·)− π(·)||TV ≤ Cαt.

There are different proofs of this theorem. The proof given in [21] applies

a decomposition of the chain into a combination of the stationary distribu-

tion and another Markov chain.
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Observe that assuming that a Markov chain is irreducible and aperiodic is

essential to have convergence; if one of these two conditions is not satisfied

we might have that the chain does not converge, or that the stationary dis-

tribution depends on the starting state.

Given Theorem 1.5, one of the aims in the study of the convergence of a

Markov chain is to estimate the rate of convergence, finding bounds on the

maximal distance between the distribution of the chain and the stationary

distribution. One way to do that is estimating the mixing time, a param-

eter that measures the time required for the distance from the stationary

distribution to be small.

Definition 1.6. Let

d(t) = max
x∈Ω
‖P t(x, ·)− π‖TV

be the worst-case total variation distance; observe that d(t) is non-increasing

for all t ∈ N. Let ε ∈ (0, 1), we can define the mixing time as

tmix(ε) := min{t : d(t) ≤ ε}.

It can be showed that, if ` is a non-negative integer, then d(`tmix(ε)) ≤
(2ε)`. To make use of this inequality, we need ε < 1

2 , but for algebraic con-

venience, we usually choose ε = 1
4 and we use the notation tmix = tmix

(
1
4

)
.

Finally, we introduce the property of transitivity of Markov chains.

Definition 1.7. A Markov chain is transitive if for each pair (x, y) ∈ Ω×Ω

there exists a bijection φ(x,y) : Ω→ Ω such that

φ(x,y)(x) = y and P (z, w) = P (φ(x,y)(z), φ(x,y)(w)) for all z, w ∈ Ω.

In other words, the Markov chain “looks the same” from any point in Ω,

and convergence results do not depend on the starting state. In terms of

mixing time, this means the total variation distance does not depend on the

starting state, so considering the worst-case is not needed.
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1.1.1 The cutoff phenomenon

Starting from the notions of mixing time and total variation distance, we

can define the cutoff phenomenon. We say that a sequence of random walks

exhibits cutoff if the total variation distance drops from near 1 to near 0 in

a small interval centred at the mixing time. Formally, we have the following

definition.

Definition 1.8. Consider a sequence of Markov chains X(n) on the state

spaces Ω(n), each with mixing time t
(n)
mix and total variation distance dn(t)

at time t. We say that the sequence exhibits cutoff with a window of size

ωn if ωn = o(tn) and

lim
α→∞

lim inf
n→∞

dn(t
(n)
mix − αωn) = 1,

lim
α→∞

lim sup
n→∞

dn(t
(n)
mix + αωn) = 0.

Figure 1.1 illustrates the graph of the total variation distance of a se-

quence of Markov chains that exhibits cutoff.

The cutoff phenomenon gives important information about the convergence

of the Markov chain, but it is often difficult to prove. Sufficient conditions

under which a Markov chain exhibits cutoff have been established by Saloff-

Coste and Chen in [6] for the Lp distance for 1 < p ≤ ∞.

Definition 1.9. Let X be a Markov chain with finite state space Ω, transi-

tion matrix P and stationary distribution π. The Lp distance between the

distribution of the Markov chain and π is defined as

||P t(x, ·)− π(·)||p =


(∑

y∈Ω

∣∣∣P t(x,y)
π(y) − 1

∣∣∣p π(y)
) 1
p

if 1 ≤ p <∞

maxy∈Ω

{∣∣∣P t(x,y)
π(y) − 1

∣∣∣} if p =∞.

In particular, ||P t(x, ·) − π(·)||1 = 2 · ||P t(x, ·) − π(·)||TV , but for this

value of p we do not know sufficient conditions under which a random walk

exhibits cutoff, so it has to be shown case by case.
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tmix
(n)

t

1

dn(t)

Fig. 1.1: Graph of dn(t) against time for a Markov chain that exhibits cutoff.

Many results about the cutoff phenomenon have been proved for chains de-

scribing card shufflings. In general, if we consider a random walk on a deck

of n cards, the state space is the set of all possible arrangements of the deck,

which is represented by the set Sn of permutations of n elements.

For a first example, consider the top-to-random shuffling on n cards, a card

shuffling consisting of inserting, at each step, the top card randomly in the

deck. In [2], Aldous and Diaconis show that the mixing time has upper

bound of order n log n. In the same paper, they also prove that there exists

a matching lower bound by applying directly the definition of total variation

distance: they identify a set of permutations for which the probability under

the stationary distribution and the distribution of the random walk differ

significantly since the difference between the two probabilities is large. A

useful lower bound of the mixing time can be found from Definition 1.1. The

proof of the existence of two matching bounds for the mixing time allows

Aldous and Diaconis to conclude that the top-to-random shuffling has cutoff

at n log n and window of size n.

We will give more details about the upper bound of this card shuffle in Sec-

tion 1.2, in which we introduce the coupling method to upper bound the

mixing time.

Another card shuffle that exhibits cutoff is the random transposition shuf-

fle, which consists of choosing two cards, independently and uniformly at

random, and then transposing them if they are different. In [9], Diaconis

and Shahshahani apply representation theory of the symmetric group and
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Fourier analysis to find that the mixing time has upper bound at 1
2n log n.

Using the definition of total variation distance, they also show that a match-

ing lower bound exists, proving that the random transposition shuffle ex-

hibits cutoff at 1
2n log n with a window of order n.

Finally, in [4], Bayer and Diaconis study the riffle shuffle. This is the most

common method to shuffle cards, and it consists of cutting the deck into

two parts and riffling the two halves together. In their paper, Bayer and

Diaconis derive formulas for the probability of seeing any permutation after

t shuffles and use those expressions to show that the riffle shuffle on n cards

has cutoff at 3
2 log2 n.

Another class of Markov chains that has received great attention is that

of random walks on the hypercube, for which there exists an abundant lit-

erature showing cutoff. A hypercube, or cube of dimension n, is a graph

whose vertices are the elements of Zn2 , i.e. binary strings of length n.

Consider the lazy simple random walk on the hypercube that, at each step,

stays at the current position with probability 1
2 and with probability 1

2

chooses one of the n coordinates uniformly at random and flips it. In [8],

it is shown, by using Fourier analysis and representation theory, that this

random walk exhibits cutoff at 1
2n log n with window of size n. In [21], the

same result is showed using different tools. The lower bound is found using

the Hamming weight, i.e. the number of coordinates equal to 1, at time t

to bound the total variation distance between the distribution of the chain

at time t and the stationary distribution.

The upper bound is established using coupling, so we will give more details

about it in Section 1.2.

In [28], Nestoridi analyses the random walk on the hypercube that flips a

fixed number k of coordinates at each step, showing that, if k = o(n), it ex-

hibits cutoff at n
2k log n with window of order n

2k . We give more details about

this paper in Chapter 2, where we expand Nestoridi’s results by analysing

the random walk on the hypercube that flips a random number K of coor-

dinates at each step.

More generally, we can view a cube of dimension n as a n-regular graph,

i.e. a graph such that each vertex has exactly n neighbours. Lubetzky and

Sly, in [25], consider generic d-regular graphs on n vertices. Exploiting the
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properties of regular graphs, they find some interesting results concerning

cutoff. In particular, they prove that for any fixed d ≥ 3 the simple ran-

dom walk on a d-regular graph on n vertices has cutoff at d
d−2 logd−1 n with

window of size
√

log n. Also, if d tends to infinity with n, then the window

decreases to
√

logn
d log d .

Finally, in a recent paper [32], Salez considers Markov chains with negative

curvature finding a sufficient condition for such chains to exhibit cutoff. He

considers two definitions of curvature, the Ollivier-Ricci curvature and the

Bakry-Émery curvature, but his result applies to both definitions indiffer-

ently. The sufficient condition requires comparing the orders of the mixing

time and the relaxation time.

Definition 1.10. Let λ be the second largest eigenvalue in absolute value

of the transition matrix, the relaxation time is defined as

trel =
1

1− λ
.

Theorem. Consider a sequence of irreducible Markov chains with symmet-

ric transition matrices and non-negative curvature. Suppose that for every

ε ∈ (0, 1) we have
(trel log ∆)2

tmix(ε)
= o(1),

where

∆ = max

{
1

P (x, y)
: dist(x, y) = 1

}
and

dist(x, y) = min{k ∈ Z+ : P k(x, y) > 0}.

Then, the sequence exhibits cutoff.

The proof relies on the entropic concentration phenomenon, which en-

sures control on the variance of the relative entropy, a measure of the differ-

ence between a probability distribution and a reference probability measure.

In the paper, Salez shows that mixing does not occur before the relative en-

tropy is small but, once its level is low enough, mixing happens quickly.

Salez also show that having a non-negative curvature is sufficient to estab-

lish the entropic concentration phenomenon proving that it is a sufficient

condition to have cutoff.
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We can also define the pre-cutoff phenomenon.

Definition 1.11. We say that family of Markov chains exhibits pre-cutoff

if it satisfies the condition

sup
0<ε< 1

2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞.

In other words, there exist c0, c1 such that

lim inf
n→∞

dn(ct
(n)
mix) = 1,

lim sup
n→∞

dn(ct
(n)
mix) = 0,

for c < c0 and c > c1.

This means that t
(n)
mix(ε) and t

(n)
mix(1 − ε) are comparable and that pre-

cutoff is weaker than cutoff, for which the ratio
t
(n)
mix(ε)

t
(n)
mix(1−ε)

tends to 1 as n→∞

for all ε ∈ (0, 1
2).

The following example helps to provide a clearer idea of what pre-cutoff is

and to explain why pre-cutoff is weaker than cutoff.

Example 1.12. At the American Institute of Mathematics (AIM) research

workshop ”Sharp Thresholds for Mixing Times” organised in December

2004, Aldous constructed a random walk that has pre-cutoff but does not

exhibit cutoff. Figure 1.2 shows the transition probabilities and the graph of

the total variation distance for this random walk. It can be seen in Figure

1.2a that the stationary distribution has a geometric growth from left to

right and the random walk mixes when it reaches the right-most point. If

the random walk starts at the left-most point, it takes about 15n steps to

reach the fork. From there, it takes about 5
3n steps to reach the right-most

point using the bottom path and about 6n steps using the top path. Figure

1.2b shows that after time
(
15 + 5

3

)
n the total variation distance drops by

about 3
4 , while we have to wait time (15 + 6)n to have the distance drop by

the remaining 1
4 . Then, the ratio

t
(n)
mix(ε)

t
(n)
mix(1−ε)

in Definition 1.11 is bounded as

n→∞ implying that we have pre-cutoff, but it does not tend to 1, so this

random walk does not exhibit cutoff.
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(a) Transition probabilities

(b) Total variation distance

Fig. 1.2: The random walk constructed by Aldous in 2004. The images have been
taken from [21]

As we already observed, sufficient conditions to prove cutoff using the

total variation distance are not known, but necessary conditions exist. A

necessary condition is related to pre-cutoff and the relaxation time of a

Markov chain. The following proposition, which can be found in [21], gives

a necessary condition.

Proposition 1.13. For a sequence of irreducible aperiodic Markov chains

with relaxation times t
(n)
rel and mixing times t

(n)
mix, if

t
(n)
mix

t
(n)
rel

is bounded above,

then there is no pre-cutoff.

This proposition can be used to prove that a sequence of Markov chains

does not exhibit cutoff. For example, consider the lazy random walk on the
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cycle Zn that at each step moves clockwise with probability 1
4 , anti-clockwise

with probability 1
4 , and with probability 1

2 stays in its position. In [8], it is

showed that the mixing time is of order n2, and in [21] a detailed calculation

of the eigenvalues of this random walk shows that the relaxation time also

has order n2, so by Proposition 1.13, there is no pre-cutoff, which implies

that there is no cutoff.

1.2 Coupling

The coupling method is one of the main probabilistic techniques in the

study of convergence of Markov chains, and it consists of comparing two

probability measures on a measurable space. To formally define coupling,

we refer to Lindvall [23], where a measurable space is denoted as the couple

(E, E) of the state space E with its Borel sets E .

Definition 1.14. A coupling of two probability measures P and P ′ on a

measurable space (E, E) is a probability measure P̂ on (E2, E2) such that

P = P̂ π−1 and P ′ = P̂ π′−1,

where π(x, x′) = x and π′(x, x′) = x′ for (x, x′) ∈ E2.

In other words, P and P ′ are marginal distributions of P̂ .

This definition describes coupling in terms of probability measures but,

since in the thesis we are interested in constructing couplings of random

processes, we need a definition of coupling that better adapts to working

with random elements in the state space.

We can define a random element in (E, E) as a quadruple (Ω,F ,P, X), where

(Ω,F ,P) is the underlying probability space and X ∈ F/E , i.e. the class of

measurable maps from Ω to E. We can define coupling in the following way.

Definition 1.15. A coupling of two random elements (Ω,F ,P, X) and

(Ω′,F ′,P′, X ′) in (E, E) is a random element (Ω̂, F̂ , P̂, (X̂, X̂ ′)) in (E2, E2)

such that

X
D
= X̂ and X ′

D
= X̂ ′,

i.e. X has the same distribution as X̂ and X ′ has the same distribution as

X̂ ′.
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So, in terms of Definition 1.14, P̂(X̂, X̂ ′)−1 is a coupling of PX−1 and P′X ′−1.

If we assume that the random variables X and X ′ are coupled, we can ex-

ploit the coupling to produce an upper bound on the total variation distance

between the distributions of the two random variables.

Proposition 1.16. Let X and X ′ be two random variables with distributions

µ and µ′ respectively, and assume that X and X ′ are coupled. Then

||µ− µ′||TV ≤ P(X 6= X ′).

In the inequality, we should strictly use X̂ and X̂ ′ since the result holds

for two coupled random variables, but, by convention, we just write X and

X ′.

Proof. Let A ∈ E , then

P(X ∈ A)− P(X ′ ∈ A) = P(X ∈ A,X = X ′) + P(X ∈ A,X 6= X ′)

− P(X ′ ∈ A,X = X ′)− P(X ′ ∈ A,X 6= X ′)

= P(X ∈ A,X 6= X ′)− P(X ′ ∈ A,X 6= X ′)

≤ P(X 6= X ′).

Applying Definition 1.1 completes the proof.

Now that we have defined coupling of random variables, we can move

to random processes. Let (X̂, X̂ ′) be a coupling of two random processes

X = (Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0 in (E, E), and assume there exists a random

time T such that

X̂t = X̂ ′t, for t ≥ T.

We call T a coupling time. Using the coupling time and observing that

{X̂t 6= X̂ ′t} ⊆ {T > t}, Proposition 1.16 can be extended in the following

theorem, showed in [23], which states that there exists a convenient rela-

tionship between the coupling time and the total variation distance.

Theorem 1.17. Let (X̂, X̂ ′) be a coupling of two random processes X =

(Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0 in (E, E). Then

||P(Xt ∈ ·)− P(X ′t ∈ ·)||TV ≤ P(T > t). (1.1)
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Now, let X = (Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0 be Markov chains with transi-

tion matrix P and stationary distribution π such that X0 = x and X ′0 ∼ π.

Then equation (1.1) gives

||P t(x, ·)− π(·)||TV ≤ P(τcouple > t).

This inequality makes coupling one of the main tools in the estimation of

rates of convergence of Markov chains. We also have the following corollary.

Corollary 1.18. Suppose that for each pair of states x, x′ ∈ Ω there is a

coupling (X̂, X̂ ′) of two Markov chains X and X ′ with transition matrix P

such that X0 = x and X ′0 = x′. Let τcouple be the coupling time. Then

d(t) ≤ max
x,x′∈Ω

P(τcouple > t).

The first time the two chains meet is called the coupling time, and it is

defined as

τcouple := min{t : X̂t = X̂ ′t}.

We can also construct the coupling such that the two chains run together

at all times after the coupling time, i.e.

X̂t = X̂ ′t, for all t ≥ τcouple.

Definition 1.19. We say that a coupling is successful if the coupling time

is finite almost surely, i.e. if

P(τcouple <∞) = 1.

Example 1.20 (Lazy random walk on the n-cycle). Consider the random

walk on the n-cycle Zn = {0, . . . , n− 1} that, at each step, with probability
1
4 moves clockwise, with probability 1

4 moves counterclockwise, and with

probability 1
2 stays in the current state.
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Let X = (Xt)
∞
t=0 be the Markov chain with transition matrix

P (j, k) =



1
4 , if k ≡ j + 1 (mod n),

1
4 , if k ≡ j − 1 (mod n),

1
2 , if k ≡ j (mod n),

0 otherwise.

This random walk is irreducible and aperiodic, so we can apply Theorem 1.5

and conclude that the random walk converges to its stationary distribution.

In [21], the following coupling is constructed. Consider two lazy random

walks on the n-cycle X = (Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0 with transition matrix

P and such that X = x and X ′ = x′. To ensure that one does not jump

over the other when they are at unit distance, the two random walks are

coupled so as to never move at the same time. At each step, a fair coin is

tossed, independently from all previous tosses. If the coin lands heads up,

X moves one step left with probability 1
2 or one step right with probability

1
2 , otherwise X ′ moves one step left with probability 1

2 or one step right with

probability 1
2 . The two chains move together after the first time they land

on the same state.

Let D = (Dt)
∞
t=0 be the clockwise distance between X and X ′, then D

is a simple random walk on {0, . . . , n} with absorbing states 0 and n. If

τ = min{t ≥ 0 : Dt ∈ {0, n}}, then τ is a coupling time and, since D models

the gambler’s ruin problem ([13]), we know that E[τ ] = D0(n−D0).

By Corollary 1.18, using Markov’s inequality yields

d(t) ≤ max
x,x′∈Zn

P(τ > t) ≤
maxx,x′∈Zn E[τ ]

t
≤ n2

4t
.

If t = n2, then d(t) ≤ 1
4 , so tmix ≤ n2.

Example 1.21 (Simple random walk on the hypercube). Consider again

the simple random walk on Zn2 . Adjacent vertices on the hypercube differ in

exactly one coordinate. Consider the random walk that starts at a vertex

x = (x1, . . . , xn) and, at each step, chooses a coordinate i ∈ {0, . . . , n}
uniformly at random and flips it, where flipping coordinate i = 0 means

that the random walk stays in the current position while flipping coordinate
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i = 1, . . . , n represents a step to one of the n neighbours.

In [1], Aldous applies the coupling method to upper bound the mixing time

of this random walk. He constructs the following coupling.

Let X and X ′ be two simple random walks on Zn2 started from the states x

and x′ respectively. Let Xt(i) denote the ith coordinate of Xt. Define

Ut = {i ∈ {1, . . . , n} : Xt(i) 6= X ′t(i)}

the set of unmatched coordinates at time t, and let Lt = |Ut|.
At time t + 1, we choose i ∈ {0, . . . , n} uniformly at random and obtain

Xt+1 by flipping Xt(i). X
′
t+1 is defined according to the following rules.

i. If Lt = 0, then we flip X ′t(i)

ii. If Lt = 1, and Ut = {j}

a. if i = 0, then we flip X ′t(j)

b. if i = j, then we flip X ′t(0)

c. if Xt(i) = X ′t(i), then we flip X ′t(i) to maintain the match at time

t+ 1

iii. If Lt > 1,

a. if i /∈ Ut or i = 0, then we flip X ′t(i)

b. if i ∈ Ut, then we choose j ∈ Ut with j 6= i and we flip X ′t(j)

Intuitively, this coupling ensures that, if Xt(i) = X ′t(i), then the match is

maintained at time t+1, otherwise we choose another unmatched coordinate

of X ′t and we flip it to create two new matches. If the only unmatched

coordinate is j, then X and X ′ are coupled as soon as i = 0 or i = j.

By construction, using this coupling implies that at time t + 1 we have

Lt+1 ≤ Lt, and τ = min{t ≥ 0 : Lt = 0} is the coupling time.

Using this coupling and applying Theorem 1.17, Aldous shows that

tmix(ε) ≤ 1

2
n log n, ε ∈ (0, 1).

A class of random walks to which coupling has been successfully applied

is represented by card shufflings. In [21], the coupling method is applied
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to the random transposition shuffle. Consider a deck of n cards, we label

the cards with numbers 1, . . . , n. At each step, we choose a card i and,

independently, a position j ∈ {1, . . . , n}. Then, we transpose card i with

the card at position j; if i already occupied position j, the deck is left

unchanged. To couple two decks, we use the same choices of i and j. If mt

is the number of matching cards at time t, we have the following possibilities.

• If i is in the same position in both decks and position j is occupied by

the same card in both decks, then mt+1 = mt.

• If i is in the same position in both decks but j is occupied by different

cards, then mt+1 = mt.

• If i is in different positions but position j is occupied by the same card

in both decks, then applying the shuffling breaks a match but creates

a new one, so mt+1 = mt.

• If i is in different positions and position j is occupied by different

cards, then applying the shuffing creates at least one new match with

a maximum of three new matches.

Applying Theorem 1.17 to this coupling yields an upper bound of the mix-

ing time of order n2. The authors show that this result holds for any initial

arrangement of the two decks, so in this particular case it is not necessary

to assume that the second deck is uniformly mixed at the start.

In this case coupling is not the most efficient method, and a sharper bound

can be found using other tools. Lindvall also observes in [23] that this ap-

proach is not always useful in general, and sometimes other methods prove

to be more efficient. In some cases, strong uniform times may be involved.

Let X be a random walk with uniform stationary distribution. A strong

uniform time is a randomised stopping time T such that XT is distributed

uniformly, and XT and T are independent. In [2], Aldous and Diaconis

prove that, if T is a strong uniform time, then the total variation distance

between the distribution of the deck at time t and the stationary distribu-

tion is bounded by P(T > t). In their paper, they use this approach to find

an upper bound of the mixing time of the top-to-random shuffle on n cards,

the random walk that, at each step, inserts the top card randomly into the

deck. Aldous and Diaconis define T as the first time when the original top

card is inserted into the deck by a shuffle and, showing that T is a strong
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uniform time, they find an upper bound of order n log n for the mixing time.

1.2.1 Co-adapted coupling

In this section, we introduce the notions of co-adapted coupling and maximal

coupling.

Definition 1.22 (Co-adapted coupling). Let (X, X̂) be a coupling of two

Markov processes X = (Xt)
∞
t=0 and X̂ = (X̂t)

∞
t=0. We say that the coupling

is co-adapted if there exists a filtration (Ft)∞t=0 such that X and X̂ are

Markov processes with respect to (Ft)∞t=0.

A non co-adapted coupling is a coupling constructed so that the way

one of the processes evolves depends on how the other process evolves in

the future. In [26], Matthews constructs a non co-adapted coupling for the

simple walk on the hypercube. As we will see more in detail in Chapter 2,

to find an upper bound of the total variation distance, Matthews constructs

a non co-adapted coupling and uses a strong uniform time to prove that the

random walk needs 1
4n log n steps to have a small variation distance with

upper bound 1
2n log n.

Definition 1.23 (Maximal coupling). We say that a coupling is maximal

if it realises an equality in the coupling inequality (1.1) for all t ≥ 0, i.e.

||P(Xt ∈ ·)− P(X ′t ∈ ·)||TV = P(T > t).

The existence of a maximal coupling has been established in several cases.

The following theorem ([23]) proves the existence of maximal coupling for

probability measures.

Theorem 1.24. Let µ and µ′ be two probability measures on a measurable

space (E, E). Then, there exists a coupling (Ẑ, Ẑ ′) such that

(i) ||µ− µ′||TV = P(Ẑ 6= Ẑ ′)

(ii) Ẑ and Ẑ ′ are independent conditioned on {Ẑ 6= Ẑ ′}.
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Proof. Let λ = µ+ µ′ and

g =
dµ

dλ
, g′ =

dµ′

dλ
.

From Proposition 1.4, we know that

||µ− µ′||TV = 1−
∫
g ∧ g′dλ.

So, if we can construct a coupling (Ẑ, Ẑ ′) such that P(Ẑ 6= Ẑ ′) =
∫
g∧ g′dλ,

then this coupling would be maximal. Let Q be the subprobability dQ =

g ∧ g′dλ, and let γ be its total mass. Observe that if γ = 1, then we would

have µ = µ′, and defining Ẑ ′ = Ẑ would be enough to have the result. So,

we restrict to the case γ < 1. We want to construct a coupling µ̂ of µ and

µ′ such that µ̂(∆) = γ, where ∆ = {(x, x) : x ∈ E} is the diagonal in E2.

Let ϕ : E → E2 defined as ϕ(x) = (x, x), and let Q̂ = Qϕ−1, then Q̂ has

mass γ concentrated on ∆. Let

ν = µ−Q, and ν ′ = µ′ −Q,

and

µ̂ =
ν × ν ′

1− γ
+ Q̂.

Then for all A,A′ ∈ E ,

µ̂(A× E) =
ν(A) · (µ′(E)−Q(E))

1− γ
+ Q̂(A× E)

=
ν(A) · (1− γ)

1− γ
+Qϕ−1({(x, x) : x ∈ A})

= ν(A) +Q(A) = µ(A),

and in the same way µ̂(E ×A′) = µ′(A′), so µ̂ is a coupling of µ and µ′. So,

if we let (Ẑ, Ẑ ′) be any pair with distribution µ̂, part (i) follows.

Finally, to show part (ii) we need to prove that for any A,A′ ∈ E

P(Ẑ ∈ A, Ẑ ′ ∈ A′|Ẑ 6= Ẑ ′) = P(Ẑ ∈ A|Ẑ 6= Ẑ ′)× P(Ẑ ′ ∈ A′|Ẑ 6= Ẑ ′).
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Now, {Ẑ 6= Ẑ ′} = ∆c and from the definition of µ̂ we have

µ̂(A×A′|∆c) =
ν(A)

1− γ
× ν ′(A′)

1− γ
,

since conditioning on ∆c implies Q̂(A×A′) = 0.

Analogous results have been found for stochastic processes, but in this

case finding a maximal coupling is much more difficult since it must be

constructed such that it is maximal for all times.

The existence of a maximal coupling has been established by Griffeath in

[15] for homogeneous Markov chains with countable state space.

Theorem (Griffeath). For any homogeneous Markov chain X with count-

able state space there exists a maximal coupling X̃.

Goldstein extended that result to general discrete Markov chains under

some condition on tail σ-fields in [14]. Pitman also shows the existence of a

maximal coupling in [29] using randomised stopping times to simplify Grif-

feath’s construction.

In [24], Lindvall and Rogers consider multidimensional Brownian mo-

tions and construct a coupling between two such processes. As they observe

in their paper, when we couple two one-dimensional continuous processes, it

is convenient to make them move together after they meet the first time, as

two one-dimensional continuous processes cannot pass each other without

hitting each other. This is not true in general for multi-dimensional pro-

cesses, so the construction of the coupling needs to be adapted in order to

derive sufficient conditions for successful coupling.

The coupling they consider for two multi-dimensional Brownian motions is

the reflection coupling. Consider two multi-dimensional Brownian motions

starting from two different states x and y, we run one of the processes as

the reflection of the other with respect to the hyperplane between x and y.

Lindvall and Rogers show that the reflection coupling is a co-adapted maxi-

mal coupling of Brownian motions on Rn, and Hsu and Sturm, in [16], prove

that it is the unique maximal coupling in the class of co-adapted couplings,

but that the uniqueness does not hold if we also consider non co-adapted

couplings. The same result has been generalised to Brownian motion on a

Riemannian manifold by Kuwada in [20].
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Example 1.25 (One-dimensional Brownian motion). In [16], Hsu and Sturm

show that the reflection coupling is the unique co-adapted maximal coupling

of Brownian motions on Rn. Consider the case n = 1.

Let

pt(x, y) =
1√
2πt

e−
|x−y|2

2t

be the transition density function of a one-dimensional Brownian motion.

Let Xt and Yt be Brownian motions on R with starting states X0 = 0 and

Y0 = y. Following Hsu and Sturm, we can define the reflection coupling of

Xt and Yt as a process (Bt, y−Bt), where Bt is a standard Brownian motion

on R. In particular, due to the symmetry of the density function, y −Bt is

also a Brownian motion started at y. Figure 1.3 illustrates an example of

reflection coupling (Bt, y −Bt).

Fig. 1.3: Reflection coupling (Bt, y −Bt)

The coupling time is defined as the first time when Bt = y −Bt, i.e. as the

hitting time of y
2

τ y
2

= inf
{
t ≥ 0 : Bt =

y

2

}
.

By Definition 1.23, we need to verify that the total variation distance be-

tween Xt and Yt agrees with P(τ y
2
> t). We find that

||Xt − Yt||TV = ||Bt − (y −Bt)||TV = max
A⊂R
|P(Bt ∈ A)− P(y −Bt ∈ A)|

= max
A⊂R

1√
2πt

∣∣∣∣∫
A
e−
|z|2
2t − e−

|z−y|2
2t dz

∣∣∣∣ =
1√
2πt

∣∣∣∣∣
∫ y

2

−∞
e−
|z|2
2t − e−

|z−y|2
2t dz

∣∣∣∣∣
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=
2√
2πt

∫ y
2

0
e−

z2

2t dz = Erf

(
y

2
√

2t

)
,

where Erf is the error function that comes out when integrating the standard

normal distribution, and it is defined as Erf(x) = 2√
π

∫ x
0 e
−z2dz.

To calculate P(τ y
2
> t), we use the Reflection principle for Brownian motion,

which can be found in [10].

Proposition 1.26 (Reflection principle). Let a > 0 and let τa = inf{t :

Bt = a}, where Bt is a Brownian motion started at 0, then

P(τa ≤ t) = 2P(Bt ≥ a).

From Proposition 1.26, we have

P(τ y
2
≤ t) = 2P(Bt ≥

y

2
) =

2√
2πt

∫ ∞
y
2

e−
z2

2t dz =
1√
2πt

(∫ ∞
y
2

e−
z2

2t dz +

∫ − y
2

−∞
e−

z2

2t dz

)

=
1√
2πt

(∫ ∞
−∞

e−
z2

2t dz −
∫ y

2

− y
2

e−
z2

2t dz

)
= 1− 2√

2πt

∫ y
2

0
e−

z2

2t dz.

Then, we have

P(τ y
2
> t) =

2√
2πt

∫ y
2

0
e−

z2

2t dz = Erf

(
y

2
√

2t

)
,

so by Definition 1.23, we can conclude that reflection coupling is a maximal

co-adapted coupling.

In general, a maximal coupling is not co-adapted. Non co-adapted cou-

plings are difficult to study because, as we mentioned above, the evolution

of one of the two coupled processes depends on the future of the other. For

this reason, we are interested in constructing co-adapted couplings which

satisfy other optimality properties.

Definition 1.27 (Optimal coupling). We say that a coupling is tail-optimal

if it minimises the tail probability of the coupling time P(τcouple > t) simul-

taneously for all t > 0.

We say that a coupling is Laplace-optimal if it maximises the Laplace trans-

form of the coupling time E[e−γτcouple ] for all γ > 0.
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We say that a coupling is mean-optimal if it minimises the expectation of

the coupling time E[τcouple].

Connor and Jacka, in [7], consider the symmetric random walk on the hy-

percube Zn2 and construct a co-adapted coupling of two such random walks,

which is very similar to the Aldous coupling described in Example 1.21. The

difference between the two couplings is that, while Aldous runs the coupling

to match the coordinates of the two random walks until they differ only in

1 coordinate, Connor and Jacka first make the random walk run indepen-

dently until the number of unmatched coordinates is even, then they couple

the unmatched coordinates in pairs, so that they obtain two new matches

at each step. They show that their coupling is optimal. However, since the

coupling time that they obtain is greater than the mixing time, it follows

that the coupling is not maximal.

A similar result related to Brownian motion is provided by Kendall in [18].

He studies Brownian motion with its local time at 0, i.e. the time spent

by the Brownian motion at 0, and constructs a coupling based on a combi-

nation of reflection and synchronised couplings. He describes a co-adapted

coupling, and he proves that it is optimal. Kendall also observes that the

moment generating functions of the coupling times of his coupling and the

maximal coupling are different, so the coupling he constructs is optimal but

not maximal.

1.2.2 Path coupling

Other methods have been derived from coupling to help the study of the

convergence of Markov chains. One of these methods is path coupling, which

was introduced by Bubley and Dyer in [5].

Instead of studying a coupling for all pairs of states, path coupling considers

pairs of adjacent states in some path between two arbitrary states. If it is

shown that for all pairs of adjacent states in the path, the two Markov chains

of the coupling get closer in expectation then, by linearity of expected value

and the triangle inequality, the two chains will come closer in expectation

on the entire path.

In their paper, Bubley and Dyer apply the path coupling technique to prove

two convergence theorems for Markov chain. The statements of the two
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theorems are technical, but the proofs offer a good demonstration of the

advantage that path coupling can provide in the estimation of the rate of

convergence of Markov chains. In this final part of the first chapter, we

report only one of them.

Let V and C be finite sets and define n = |V |, and let Ω = CV be the set

of functions from V to C. Let X be a Markov chain with state space Ω and

stationary distribution π. For x ∈ Ω, v ∈ V and c ∈ C, we denote by xv→c

the state resulting from making the transition at x associated with the pair

(v, c), so

xv→c(w) =

c if w = v,

x(w) otherwise.

Now, consider two such Markov chains X = (Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0.

Let µt be the distribution of Xt and let X ′0 ∼ π.

For x, x′ ∈ CV , the Hamming distance between x and x′, denoted by

H(x, x′), is defined as the number of v ∈ V such that x(v) 6= x′(v). Let

h = H(x, x′).

We consider a path between x and x′, i.e. a sequence of adjacent states

x = z0, z1, . . . , zh = x′ in CV such that H(za−1, za) = 1 for all a = 1, . . . , h.

Now, a coupling (X̂, X̂ ′) is defined at (x, x′) by choosing the next state (y, y′)

according to the following rules.

i. Choose v ∈ V according to a fixed distribution J , and c0 ∈ C according

to Kz0,v, where Kzi,j is a distribution on C depending only on the

current state zi ∈ CV and j ∈ V .

ii For a = 1, . . . , h, define ca = ca−1 with probability
Kza,v(ca−1)
Kza−1,v(ca−1) , oth-

erwise choose ca according to the distribution (Kza,v −Kza−1,v)
+.

iii. Define y = xv→c0 and y′ = x′v→ch .

Denote wa = (za)v→ca , then we have y = w0 and y′ = wh. Assume that

za−1 and za differ only at i, then, if J is a fixed distribution on V ,

E[H(wa, wa−1)] = 1− P(H(wa, wa−1) = 0) + P(H(wa, wa−1) = 2)

= 1− J(i)P(ca = ca−1|v = i) +
∑
j 6=i

J(j)P(ca 6= ca−1|v = j)

(1.2)
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= 1− J(i)(1− ||Kza,i −Kza−1,i||TV ) +
∑
j 6=i

J(j)||Kza,j −Kza−1,j ||TV

where to obtain equality (1.2) we have to observe that, due to the cou-

pling, H(wa, wa−1) = 0 if we choose v = i and ca = ca−1, while to have

H(wa, wa−1) = 2 we need v 6= i and ca 6= ca−1.

If we define β such that

1− J(i)(1− ||Kza,i −Kza−1,i||TV ) +
∑
j 6=i

J(j)||Kza,j −Kza−1,j ||TV ≤ β

and consider the whole path between y and y′, we can apply the linearity of

expectation and the triangle inequality to obtain

E[H(y, y′)] ≤ E

[
h∑
a=1

H(wa, wa−1)

]
=

h∑
a=1

E[H(wa, wa−1)] ≤
h∑
a=1

β = βH(x, x′).

So, after t steps we have

E[H(Xt, X
′
t)] ≤ βtn,

and applying Proposition 1.16, we deduce

||µt − π||TV ≤ βtn.

We have the following result.

Theorem 1.28 (General path coupling). Let Ω = CV with n = |V | and let

(X̂, X̂ ′) be a coupling of two Markov chains X = (Xt)
∞
t=0 and X ′ = (X ′t)

∞
t=0

with state space Ω and stationary distribution π. Let µt be the distribution

of Xt and X ′0 ∼ π. Define

β = max
x,x′∈Ω,i∈V

1− J(i) +
∑
j∈V

J(j)||Kx,j −Kx′,j ||TV

∣∣∣∣∣∣x′ = xv→c for some c ∈ C and x′ 6= x

 ,

i.e. β is an upper bound of the expected distance between adjacent states

after one step. Then, if β < 1 and t ≥ d ln(nε−1)
ln(β−1)

e, then

||µt − π||TV ≤ ε.
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In the theorem, β is an upper bound on the expected distance between

adjacent states after one step, so the assumption β < 1 is essential to have

that the two random walks X and X ′ started at any two states get closer

in expectation.



2. MIXING TIME FOR A RANDOM WALK ON THE

HYPERCUBE

We consider a hypercube of dimension n as a graph whose vertices are the

elements of the set Zn2 = {(x1, . . . , xn) : xi ∈ {0, 1}, i = 1, . . . , n}. In par-

ticular, adjacent vertices differ in exactly one coordinate. A typical random

walk on this structure is the simple random walk, that at each step chooses

one coordinate uniformly at random and flips it. We know that it is an ir-

reducible and transitive Markov chain, and, if we consider the lazy version,

it is also aperiodic. Thus, it converges to its stationary distribution, which

is the uniform distribution.

As we have seen in the introduction, to study the convergence of a ran-

dom walk we aim at bounding the mixing time and, possibly, at showing that

the random walk exhibits cutoff. There are many results proving bounds on

the mixing time of different random walks on the hypercube using a variety

of methods, and for several of these random walks a cutoff has also been

proved. For this reason, random walks on the hypercube are widely studied

and still receive a great deal of attention as studying these processes could

contribute to the development of a stronger literature about cutoff.

2.1 Previous results

As we mentioned at the beginning of this chapter, the simple random walk

on Zn2 is periodic, so it has to be modified to become aperiodic. In this

section, we present some of the studies that have established bounds on the

mixing time using two different lazy versions of the simple random walk.

As explained in Chapter 1, Aldous [1] considers the lazy version that moves

from the current vertex to one of the n neghbours, each with probability
1

n+1 , and stays still with probability 1
n+1 . He defines a co-adapted coupling

and applies equation (1.1) to prove that the mixing time has upper bound
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n
2 log n. In the same paper, he also gives an exact formula for the total vari-

ation distance of this random walk showing that the mixing time is 1
4n log n.

In [8], Diaconis considers the same lazy version and presents another ap-

proach to study the mixing time of random walks that involves the calcula-

tion of the eigenvalues of the process using irreducible representations.

In general, a representation of a group G is a homomorphism ρ : G→ GL(V )

that assigns to every element of the group an invertible matrix over a vector

space V such that ρ(st) = ρ(s)ρ(t) for all s, t ∈ G. If W ⊂ V is a subspace

such that ρ(s)W ⊂ W for all s ∈ G, then ρ restricted to W is a subrepre-

sentation. We always have two trivial subrepresentations given by the zero

space and the subspace W = V . We say that the representation ρ is irre-

ducible if it admits no non-trivial subrepresentations. If P is a probability

on G, the Fourier transform of P at the representation ρ is the matrix

P̂ (ρ) =
∑
s

P (s)ρ(s).

Diaconis also shows that the Fourier transforms of P at the irreducible rep-

resentations determine P . In the case of the hypercube, G = Zn2 and, since

this is an abelian group, all irreducible representations are 1-dimensional

representations associated to x ∈ Zn2 given by ρx(y) = 1x·y where y ∈ Zn2 .

Using this representation, Diaconis calculates the Fourier transform of the

transition matrix, showing that the mixing time has upper bound of order
1
4n log n. Applying Chebychev’s inequality, he also shows that a lower bound

of the same order can be found.

In the same book, Diaconis also considers another lazy version of the simple

random walk that moves to one of the n neighbours, each with probability
1

2n , and stays still with probability 1
2 . To find bounds of the mixing time, he

applies strong uniform time arguments, defining a stopping time and show-

ing that it is a strong uniform time. The stopping time is defined as follows:

at each step, we choose a coordinate uniformly at random and, tossing a

coin, we decide whether we flip the coordinate or not. We stop when all the

coordinates have been chosen at least once. Using this method, he shows

that n log n + cn is an upper bound for the mixing time. Applying Fourier

analysis, he also proves that for this random walk we have a lower bound of

order 1
2n log n.
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Another coupling for the same lazy version is presented in [21]: consider

two simple random walks on the hypercube started from two different ver-

tices, at each step choose a coordinate uniformly at random and replace it

with the same bit in both walks. Let T be the first time when all the co-

ordinates have been chosen at least once, then T has the same distribution

as the coupon collector random variable, and it is a coupling time. Apply-

ing Theorem 1.17, it is shown that the mixing time has an upper bound

n log(n). This bound does not give the correct mixing time, but in the same

book it is defined another coupling, which improves the upper bound and

gives the exact mixing time. With this different approach, the study of the

random walk on the hypercube is reduced to the study of a lazy version of

the Ehrenfest urn chain, which has transition matrix 1
2(I + P ), where I is

the identity and P is given by

P (j, k) =


n−j
n if k = j + 1

j
n if k = j − 1

0 otherwise

Let Xt and Yt be two lazy Ehrenfest urn chains. At each move, a fair coin

is tossed to determine which of the two chains moves; the selected chain

makes a step according to the matrix given above, while the other chain

remains in its current position. The chains move together once they have

met for the first time. Using this coupling, it is shown that the mixing time

is bounded above by 1
2n log n and, as shown in the same book, a matching

lower bound can be found, proving that this random walk exhibits cutoff at
1
2n log n and window of size n. To find the lower bound, Levin, Peres and

Wilmer consider the Hamming weight, i.e. the number of coordinates equal

to 1, at time t, and use it to bound the total variation distance between the

distribution of the chain at time t and the stationary distribution.

We have seen how coupling is a convenient technique to bound the mixing

time, but we do not necessarily have to work with co-adapted couplings. In

[26], Matthews uses another approach.

Example 2.1 (Simple random walk on the hypercube). As we have seen in

Example 1.21, Aldous defined a co-adapted coupling to establish 1
2n log(n)

as an upper bound on the rate of convergence of the simple random walk
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on the n-dimensional cube. In [26], Matthews constructs a non co-adapted

coupling for the simple random walk on the hypercube based on the coupling

proposed by Aldous, finding a sharper upper bound.

Consider two simple random walks X = (Xt)
∞
t=0 and Y = (Yt)

∞
t=0 on the

n-dimensional cube Zn2 with X0 = 0 and let Y0 have the uniform distribution

on Zn2 . Create a mythical (n + 1)st coordinate that flips at the tth step if

Yt = Yt−1. Denote this new process on Zn+1
2 by Y ? = (Y ?

t )∞t=0 and put

Y ?
0 (n+ 1) =

1 if |Y ?
0 | is odd,

0 otherwise.

Now, if we denote by A the set of coordinates i such that Y ?
0 (i) = 1, we

define the time T to be the first time t when half of the A-coordinates of Y ?
t

are equal to 0. T is a stopping time for Y ?, and Matthews shows that T is

also a coupling time.

Now, we construct a process X? on Zn+1
2 (to which X on Zn2 will correspond)

using the information we have from Y ?
T . We consider the following two sets

A0 = {coordinates in A such that Y ?
T = 0},

A1 = {coordinates in A such that Y ?
T = 1},

listed in order of increasing coordinate index. Make a list of pairs of coordi-

nates consisting of the first coordinates of A0 and A1, the second coordinates

of A0 and A1, etc.

At step t, if Y ?
t is obtained by flipping coordinate i, X?

t will move according

to the following rule.

i. If t > T , then X?
t flips coordinate i,

ii If t ≤ T then we have two possibilities

a. If i ∈ Ac, then X?
t flips coordinate i,

b. If i ∈ A and i and j are paired, then X?
t flips coordinate j.

By the construction of the coupling, X?
T = Y ?

T , and Matthews shows that

the mixing time is bounded above by 1
4n log(n), improving the result found

by Aldous by a factor 1
2 . So, this coupling is more efficient but clearly non

co-adapted since we first run the process Y up to the coupling time T , then
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Author Method Upper Bound

Aldous [1] Coupling inequality n
2 log n

Diaconis [8] Representation theory n
4 log n

Diaconis [8] Strong uniform time n log n

Levin, Peres, Wilmer [21] Coupon collector n log n

Levin, Peres, Wilmer [21] Ehrenfest urn n
2 log n

Matthews [26] Non co-adapted coupling n
4 log n

Tab. 2.1: Summary of the methods that have been used to find upper bounds for
random walks on the hypercube.

we go back in time and we construct the process X according to rules that

depend on YT .

Similar results have also been proved by Aldous and Diaconis in [3], in

which they define a strong stationary time for the lazy simple random walk

on the hypercube, and relate this time to the coupling method to bound the

total variation distance.

Table 2.1 illustrates a summary of the results reported in the first part of

this section.

In [22], Lim studies an irreversible random walk on the hypercube QV ,

with colour set Q = {1, 2, 3} and vertex set V = {1, . . . , n}. He considers

the following cyclic dynamics. At each step, a vertex is uniformly chosen.

Assume that the vertex has colour i, then we reassign colour i with proba-

bility 1− p and colour i+ 1 with probability p, where 0 < p < 1. Lim shows

that this random walk exhibits cutoff at 1
3pn log(n) and window of order n.

To find the upper bound, he defines a semi-synchronised coupling, i.e. a

synchronised coupling (in which the two chains are as synchronised as pos-

sible) that considers different cases depending on the current configuration

of the two random walks.

The second lazy version considered by Diaconis in his book is gener-

alised in “A non-local random walk on the hypercube” [28] by Nestoridi. In
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her paper, she studies the random walk that at each step stays still with

probability 1
2 , else flips a set of k uniformly chosen coordinates, where k is

fixed at the beginning of the walk. The number k is chosen in the set of

odd numbers in {1, . . . , n2 }; choosing k odd avoids parity problems, and she

restricts the choice to {1, . . . , n2 } because flipping k coordinates and flipping

n− k coordinates lead to the same results.

The main result, showed in [28], is the following theorem.

Theorem 2.2. For the lazy walk changing k ≤ n
2 coordinates on the hyper-

cube, the following hold for every x ∈ Zn2 .

(a) For ` = n2

2k(n−k) log n+ c n2

k(n−k) , we have that

||P `x − U ||TV ≤ e−c + 2−c,

where c > 0.

(b) For ` = n
2k log n − cnk , where 0 < c ≤ 1

4 log n and for x being the

identity element, we have that

||P `x − U ||TV ≥ 1− B

e4c
,

for a uniformly bounded constant B > 0.

Corollary 2.3. If k = o(n), then the walk exhibits cutoff at n
2k log n with

window n
2k .

To find the upper bound in the first part of the theorem, Nestoridi introduces

a coupling for the Markov chain and applies Theorem 1.17. Then, applying

path coupling we described in Section 1.2.2, she proves that the two random

walks of the coupling started at any two vertices get closer in expectation.

That gives an upper bound for the probability on the right hand side of

(1.1), thus an upper bound for the mixing time.

To prove the lower bound, Nestoridi uses representation theory. Starting

from the irreducible representations of Zn2 , she calculates the eigenvalues

and eigenfunctions of the transition matrix to show that after ` steps the

expected value of a particular eigenfunction can get big, while the variance

is bounded. Applying Chebyshev’s inequality finishes the proof.
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2.2 Mixing time for a random walk on Zn2 with random step size

In this section, we generalise the results of Theorem 2.2 in the following

way. Instead of flipping always the same number k of coordinates, we allow

k to be chosen at each step according to some probability distribution. More

precisely, let K be a random variable on the set of odd numbers in {1, . . . , n}.
At each step, the random walk first draws a value for K, then it chooses

K coordinates uniformly at random and flips them. We will consider the

lazy version, so that we have an irreducible and aperiodic Markov chain that

converges to the uniform distribution. Also, this random walk is transitive,

so the choice of the starting point will not influence our results.

In this section, we prove two main results. The first, summarised in the

following theorem, establishes an upper bound for the mixing time.

Theorem 2.4. Let {K1,K2, . . . } be i.i.d. random variables supported on

the odd integers belonging to the set {1, . . . , n}. Let ` = d n2

E[K(n−K)] log n +

c 2n2

E[K(n−K)]e, then for the lazy random walk on the hypercube changing Ki

coordinates at step i, we have

||P ` − U ||TV ≤ 21−c.

This theorem establishes an upper bound for the mixing time even when

we introduce variability in the choice of k. This means that we are able to

extend the result found for k fixed when considering a more general version

of the random walk on the hypercube.

As it can be seen in the statement of the theorem, if we fixed k ≤ n
2 instead

of using {K1,K2, . . . }, we would not obtain the results showed in Theorem

2.2(a) since our upper bound is double the bound found by Nestoridi. As we

were working to generalise her path coupling argument, it became evident

that there was a mistake in her proof, which Nestoridi confirmed (personal

communication), and correcting it gave us an extra factor of 2. We still

believe that the upper bound can be tightened to give the correct bound

n2

2E[K(n−K)]
log n+ c

n2

E[K(n−K)]

by using a similar method to the proof in [12] by Nestoridi and Eske-

nazis. They study the mixing time of the Bernoulli-Laplace urn model
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with parameters (n, k), which is defined in the following way. Consider two

urns, each containing n balls; at each step, we pick k balls uniformly at

random from each urn and switch them simultaneously. They show that
n
4k log n + 3n

k log logn + O
(
n
ε4k

)
is an upper bound for the mixing time for

every ε ∈ (0, 1). Let Xt and Yt be two copies of the Bernoulli-Laplace urn

random walk, their proof is structured into four steps.

1. Using the eigenvalues and eigenfunctions of the random walk, they

show that Xt and Yt are at distance at most O(
√
n) at time n

4k log n.

2. Then, they run the random walks independently showing that after

O
(
n
k

)
Xt and Yt are at distance O(

√
k log n).

3. The third step consists of running the random walks according to a

coupling, and they prove that with high probability they will be at

distance o(
√
n) within 3n

k log log n steps.

4. Finally, once Xt and Yt are at distance o(
√
n), they show that the

distance becomes o(1) after one step.

Conjecture. Applying a similar argument of [12] used for the Bernoulli-

Laplace urn model proves that the right upper bound for the mixing time of

the lazy random walk on the hypercube that flips {K1,K2, . . . } coordinates

at each step is

n2

2E[K(n−K)]
log n+ c

n2

E[K(n−K)]
.

The following theorem establishes a lower bound for the mixing time.

Theorem 2.5. Let {K1,K2, . . . } be i.i.d. random variables supported on

the odd integers belonging to the set {1, . . . , sn}, where sn ≤ n/2 is the max-

imum possible value assumed by the random variables. Let Cε = log
(

n
4sn

)
+

log
(

1−ε
ε

)
, we have two cases for the lower bound of tmix(ε) with ε ∈ (0, 1).

(i) If sn = O(n) and E[K] ∼ n
D for some constant D ≥ 2, then the lower

bound is Cε
2 log( D

D−1)
.

(ii) If E[K] = o(n) then the lower bound is n
2E[K]((1−γ) log n+Cε), where

γ ∈ [0, 1] satisfies sn = O(nγ).



2. Mixing time for a random walk on the hypercube 44

Remark. If the conjecture were true then, under the hypothesis of Theorem

2.5(ii) with γ = 0, the mixing time would have a lower bound at

n

2E[K]
(log n+ Cε)

and an upper bound of order

n

2E[K]
log n.

So, the random walk would exhibit a cutoff at n
2E[K] log n with window of

size n
2E[K] .

2.2.1 Proof of Theorem 2.4

To prove Theorem 2.4, we shall use a coupling argument that is slightly

different from the one used in [28], so first we have to construct the coupling

that we will use in our proof. At each step we will couple the chains to move

some number k of coordinates, so here we define the following measure on

Zn2 for any fixed odd k ∈ {1, . . . , n}.

Pk(v) =


1
2 , if v = id = (0, 0, . . . , 0)

1
2(nk)

, if v ∈ Zn2 has k ones and n− k zeros
(2.1)

and let Pk(x,x+v) = Pk(v) for every x,v ∈ Zn2 .

Let (Xt) and (X ′t) be two copies of the Markov chain with transition matrix

Pk, whereX starts at an arbitrary point x ∈ Zn2 , andX ′ starts at a uniformly

chosen point. At time t, let

Yt = {j ∈ {1, . . . , n} : Xt(j) 6= X ′t(j)},

Mt = {1, . . . , n} \ Yt,

where Xt(j) and X ′t(j) indicate the j-th coordinate of the two chains at time

t, and let

yt = |Yt|, mt = |Mt|.

Thus, Yt and Mt are sets of coordinates on which Xt and X ′t differ and agree



2. Mixing time for a random walk on the hypercube 45

respectively.

Suppose the two chains are at time t, and we have to move to step t+1. We

couple the two chains according to the following rule. We have two cases:

1. If yt is odd, then take one independent step on each chain according

to the probability measure Pk.

2. If yt is even, both chains stay fixed with probability 1
2 .

With probability 1
2(nk)

, we choose an integer dt+1 using the probability

distribution

P(dt+1 = j | Mt) =

(
mt
j

)(
yt
k−j
)(

n
k

) , j = 0, . . . ,min{k,mt}.

Given, dt+1, we uniformly choose two disjoint sets, denoted by Dt+1

and At+1, with |Dt+1| = dt+1 and |At+1| = at+1 := k−dt+1, such that

Dt+1 ∼ Unif({sets of size dt+1 from Mt}),

At+1 ∼ Unif({sets of size at+1 from Yt}).

Then, put Gt+1 = Dt+1 ∪At+1. Note that |Gt+1| = k.

Flip Xt+1(i) for all i ∈ Gt+1, and consider the following rule to move

X ′t+1:

(i) If at+1 >
yt
2 , flip X ′t+1(i), for all i ∈ Gt+1.

(ii) If at+1 ≤ yt
2 , we choose another set of k coordinates G′t+1 =

Dt+1 ∪A′t+1, where A′t+1 is chosen uniformly in the set Yt \At+1.

We have that |A′t+1| = |At+1| and A′t+1 ∩At+1 = ∅.
Finally, we flip X ′t+1(j) for all j ∈ G′t+1.

We claim that this procedure represents a coupling the two sets Gt+1 and

G′t+1 are both uniformly chosen from

Ik = {subsets of size k from {1, . . . , n}},

so the construction given above really is a coupling of X and X ′, conditional

on each chain moving according to Pk. This is proved in the following two

propositions.



2. Mixing time for a random walk on the hypercube 46

Proposition 2.6. Conditioned on Mt, the set Gt+1 is distributed uniformly

on Ik.

Proof. For any set I ∈ Ik,

P(Gt+1 = I | Mt) = P(Dt+1 ∪At+1 = I | Mt)

= P(Dt+1 ∪At+1 = (I ∩Mt) ∪ (I ∩ Yt) | Mt)

=

mt∑
j=0

P(Dt+1 = I ∩Mt, At+1 = I ∩ Yt | Mt, dt+1 = j)P(dt+1 = j | Mt)

=

mt∑
j=0

[
P(Dt+1 = I ∩Mt | Mt, dt+1 = j)

· P(At+1 = I ∩ Yt | Mt, dt+1 = j)

(
mt
j

)(
yt
k−j
)(

n
k

) ]
= P(Dt+1 = I ∩Mt | Mt, dt+1 = |I ∩Mt|)

· P(At+1 = I ∩ Yt | Mt, dt+1 = |I ∩Mt|)

(
mt
|I∩Mt|

)( yt
k−|I∩Mt|

)(
n
k

)
=

1(
mt
|I∩Mt|

) 1( yt
k−|I∩Mt|

) ( mt
|I∩Mt|

)( yt
k−|I∩Mt|

)(
n
k

) =
1(
n
k

) .
Here, the final line follows from the definitions of Dt+1 and At+1.

Proposition 2.7. Conditioned on Mt, the set G′t+1 is distributed uniformly

on I.

Proof. First, we need to prove that, conditioned on |A′t+1| = at+1 ≤ yt
2 ,

G′t+1 is distributed uniformly on

J = {all subsets of Yt of size at+1} .

Conditioned on |At+1| = |A′t+1| = at+1, we have that ∀J, J ′ ∈ J such that

J ∩ J ′ = ∅

P(At+1 = J | Yt, |At+1| = at+1) =
1(
yt
at+1

) ,
P(A′t+1 = J ′ | Yt, At+1 = J, |At+1| = |A′t+1| = at+1) =

1(
yt−at+1

at+1

) .
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Therefore,

P(A′t+1 = J ′ | |A′t+1| = at+1)

=
∑
J∈J

P(A′t+1 = J ′ | Yt, At+1 = J, |At+1| = |A′t+1| = at+1)P(At+1 = J | Yt, |At+1| = at+1)

=
1(
yt
at+1

) ∑
J∈J :
J∩J ′=∅

P(A′t+1 = J ′ | Yt, At+1 = J, |At+1| = |A′t+1| = at+1)

=
1(
yt
at+1

) · 1(
yt−at+1

at+1

) · (yt − at+1

at+1

)
.

It follows that

P(A′t+1 = J ′ | |A′t+1| = at+1) =
1(
yt
at+1

) .
Finally, if we consider Ik = {subsets of size k from {1, . . . , n}} and I ∈ Ik,
then as in the proof of Proposition 2.6,

P(G′t+1 = I|Mt) = P(Dt+1 ∪A′t+1 = I | Mt)

= P(Dt+1 ∪A′t+1 = (I ∩Mt) ∪ (I ∩ Yt) | Mt)

= P(Dt+1 = I ∩Mt | Mt, dt+1 = |I ∩Mt|)

· P(A′t+1 = I ∩ Yt | Mt, dt+1 = |I ∩Mt|)

(
mt
|I∩Mt|

)( yt
k−|I∩Mt|

)(
n
k

)
=

1(
mt
|I∩Mt|

) 1( yt
k−|I∩Mt|

) ( mt
|I∩Mt|

)( yt
k−|I∩Mt|

)(
n
k

) =
1(
n
k

) .

As we already mentioned above, the coupling that we described repre-

sents one step of the random walk for a fixed value of k. We can, of course,

use this to couple our random walks in which k is randomised: at each

step, we draw K from a distribution qK on the odd integers in {1, . . . , n}
and then, conditioned on K = k, couple the next step of our random walks

using the construction described above.
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2.2.2 Upper bound

At time t = 0, if y0 is odd, we let the chains run independently until the

first time T0 when yT0 is even. Then, we claim that, for all times t > T0, we

have that yt is even.This is easily proved by induction. Suppose that t > T0

and yt is even, we want to prove that yt+1 is even. We have two cases:

(i) If at+1 >
yt
2 , then we flip X ′t+1(i), with i ∈ Gt+1. Thus, yt+1 = yt and

so is even.

(ii) If at+1 ≤ yt
2 , then we uniformly choose another set A′t+1 of size at+1 in

Yt \ At+1 and we flip both Xt+1(i) and X ′t+1(j), where i ∈ Gt+1 and

j ∈ G′t+1. Thus, we flip Dt+1 on both, At+1 on Xt+1, and A′t+1 on

X ′t+1. In particular, we flip 2at+1 mismatching coordinates (those in

At+1 and A′t+1), i.e. yt+1 = yt − 2at+1 is even.

To prove the upper bound, we will apply the path coupling technique as

explained in Section 1.2.2, where in this context V = {1, . . . , n} is the set of

coordinates, C = {0, 1}, and the distributions KXt,i are used to assign an

element of C to coordinate i in the current state Xt.

The way we defined T0 implies that it is distributed as a geometric random

variable with parameter 1
2 . For any c > 0

P
(
T0 > c

n2

E[K(n−K)]

)
≤ 2

−c n2

E[K(n−K)] ≤ 2−c, (2.2)

since n2

E[K(n−K)] > 1.

Suppose that at time t − 1 we have yt−1 = 2, i.e. just 2 coordinates differ

between Xt−1 and X ′t−1. In order to couple at time t (and obtain yt = 0),

at least one of the mismatched coordinates must belong to At, so at ≥ 1. If

at >
yt−1

2 , we know that we flip the same coordinates in both chains at time

t, so in this case we would have yt = yt−1 = 2. Thus, the only way in which

we can couple at time t this is if at = 1. Then, for any fixed value of k,

P(Xt = X ′t | yt−1 = 2,Kt = k) = P(at = 1 | yt−1 = 2,Kt = k)

=
1

2

(
k
1

)(
n−k

1

)(
n
2

) =
k(n− k)

n(n− 1)
.
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In our case, k is chosen according to the distribution qK :

P(Xt = X ′t | yt−1 = 2) =
n∑
k=0

k(n− k)

n(n− 1)
· qK(k) =

E[K(n−K)]

n(n− 1)
. (2.3)

Now, let ||Xt−X ′t|| denote the Hamming distance between Xt and X ′t. Using

(2.3), we have

E
[
||Xt −X ′t||

∣∣∣ Xt−1, X
′
t−1, ||Xt−1 −X ′t−1|| = 2

]
≤
[
1− E[K(n−K)]

n(n− 1)

]
||Xt−1−X ′t−1||

since having Xt 6= X ′t corresponds to ||Xt−X ′t|| = ||Xt−1−X ′t−1||. Applying

the path coupling, we can extend the previous inequality to

E
[
||Xt −X ′t||

∣∣∣ XT0 , X
′
T0

]
≤ n

[
1− E[K(n−K)]

n(n− 1)

]t−T0
. (2.4)

Let T be the coupling time, i.e. T = min{t : Xt = X ′t}. Then we know

that T > t implies ||Xt −X ′t|| ≥ 2. If we define time ` = n2

E[K(n−K)] log n +

c 2n2

E[K(n−K)] and use (2.2), (2.4), and the Markov inequality, we have

P(T > `) = P
(
T > `

∣∣∣∣ T0 ≤ c
n2

E[K(n−K)]

)
P
(
T0 ≤ c

n2

E[K(n−K)]

)
+ P

(
T > `

∣∣∣∣ T0 > c
n2

E[K(n−K)]

)
P
(
T0 > c

n2

E[K(n−K)]

)
≤ P

(
||X` −X ′`|| ≥ 1

∣∣∣∣ T0 ≤ c
n2

E[K(n−K)]

)
+ P

(
T0 > c

n2

E[K(n−K)]

)
≤ E

[
||X` −X ′`||

∣∣∣∣ T0 ≤ c
n2

E[K(n−K)]

]
+ 2−c

≤ n
[
1− E[K(n−K)]

n(n− 1)

]`−c n2

E[K(n−K)]

+ 2−c

≤ e−c + 2−c.

In the final line we make use of the inequality 1 − x ≤ e−x for x ∈ [0, 1].

The upper bound for the total variation distance derives from the coupling

inequality established by Theorem 1.17.
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We conclude that an upper bound for the mixing time is given by

` =
n2

E[K(n−K)]
log n+ c

2n2

E[K(n−K)]
,

and this concludes the proof of Theorem 2.4.

2.2.3 A lower bound on the mixing time

We will prove Theorem 2.5 by using irreducible representations to calculate

the eigenvalues and eigenfunctions of the Markov chain. In this section, the

random walk will start at the identity id = (0, 0, . . . , 0) and we will define

the set of possible values for K as {1, . . . , sn}, where sn ≤ n
2 . In particular,

we will have to consider two cases: sn = O(n) and sn = o(n).

Consider the one-dimensional representations ρa(v) = (−1)a·v of Zn2 indexed

by vectors a ∈ Zn2 , where v ∈ Zn2 and a · v is the dot product of a and v.

Observe that ρa is a representation since, given any two vectors v,w ∈ Zn2 ,

ρa(v + w) = (−1)a·(v+w) = (−1)a·v+a·w = (−1)a·v(−1)a·w = ρa(v)ρa(w).

Moreover, as explained in [8], any one-dimensional representation is irre-

ducible since in that case there are no non-trivial subrepresentations. Thus,

the representations ρa(v) = (−1)a·v are irreducible.

Let |a| denote the number of ones in a. Following [8], for any fixed k, the

Fourier transform of Pk (2.1) at ρa is

P̂k(ρa) =
∑
v∈Zn2

ρa(v)Pk(v) =
1

2
+

1

2

k∑
b=0

(−1)b
(|a|
b

)(n−|a|
k−b

)(
n
k

) . (2.5)

In the above calculation, we fix a, and we sum over all possible v ∈ Zn2 .

From the definition of Pk, if v = id then Pk(v) = 1/2 and if |v| = k then

Pk(v) = 1
2(nk)

.

The eigenvalues for the transition matrix Pk are the values P̂k(ρa) with

corresponding eigenfunctions fa(x) = (−1)a·x. This is true because

Pkfa(x) =
∑
v∈Zn2

Pk(v)fa(x + v) =
∑
v∈Zn2

Pk(v)fa(x)fa(v)

= fa(x)

∑
v∈Zn2

Pk(v)fa(v)

 = fa(x)P̂k(ρa).
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For our random walk of interest, for which we choose a different k for each

step according to a generic distribution qK on {1, . . . , sn}, the transition

matrix is a linear combination of the matrices Pk defined in (2.1):

P (v) =
n∑
k=1

qK(k)Pk(v).

We have that the function fa(x) = (−1)a·x is once again an eigenfunction

for P with corresponding eigenvalue P̂ (ρa) =
∑

k qK(k)P̂k(ρa):

P̂ (ρa) =
∑
v∈Zn2

ρa(v)P (v) =
∑
v∈Zn2

ρa(v)

n∑
k=0

qK(k)Pk(v)

=

n∑
k=1

qK(k)
∑
v∈Zn2

ρa(v)Pk(v) =

n∑
k=1

qK(k)P̂k(ρa).

Notice that all vectors a ∈ Zn2 that have the same number of ones give the

same eigenvalue. Therefore, if we fix a vector x ∈ Zn2 , and we sum the

eigenfunctions fa(x) on all a such that |a| = j, we obtain the function

fj(x) =
∑
a∈Zn2 :
|a|=j

fa(x) =

|x|∑
b=0

(−1)b

(|x|
b

)(n−|x|
j−b

)(
n
j

) .

Since fj(x) is a sum of eigenfunctions of P corresponding to the same eigen-

value P̂ (ρa), it is itself an eigenfunction of P .

To find a lower bound for the mixing time we will use a different approach

to that used by Nestoridi. As we mentioned above, to find a lower bound she

applied the Chebyshev’s inequality using the expectation and variance of an

eigenfunction of the random walk. In our case, using the same approach is

not useful as the variance we obtain using the eigenfunctions is too big and

applying Chebyshev’s inequality would be inconclusive. In Section 2.2.4, we

will see that introducing assumptions over the size of E[K] will give us the

possibility to bound the variance, and that would make us able to apply

Chebyshev’s inequality to tighten the bounds of Theorem 2.5.

We will apply the “Wilson’s lemma”, a method that was introduced by Wil-

son in his paper “Mixing times of lozenge tilings and card shuffling Markov
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chains” [33], in which he employs this result to improve the lower bounds of

some Markov chains that had been previously studied.

Theorem 2.8. (Wilson’s lemma) If a function Φ on the state space Ω of

a Markov chain X satisfies

E[Φ(Xt+1)|Xt] = (1− γ)Φ(Xt), (2.6)

and there exists a constant R > 0 such that

E[(∆Φ)2|Xt] ≤ R, (2.7)

where ∆Φ = Φ(Xt+1)−Φ(Xt), then, when the number of Markov chain steps

t is bounded by

t ≤
log Φmax + 1

2 log(γε/(4R))

− log(1− γ)

where Φmax = supx∈Ω Φ(x) and 0 < γ ≤ 2−
√

2, the variation distance from

stationarity is at least 1− ε < 1.

The basic idea of Wilson’s lemma is that if we can find a function on

the state space of a Markov chain for which we can bound the variance

then we can apply Chebychev’s inequality to show that the distribution of

this function is concentrated around its expectation. This function is then

used to bound the number of steps of the Markov chain, from which we can

deduce a lower bound for the mixing time.

We will use the Fourier transform to find the eigenfunctions of the random

walk we study, and any of such eigenfunctions may be used as the function

Φ in Wilson’s lemma.

To prove the lower bound, we apply the following equivalent formulation

([21]) of Wilson’s Lemma.

Theorem 2.9. Let (Xt) be an irreducible, aperiodic Markov chain with

state space Ω and transition matrix P . Let Φ be an eigenfunction of P with

eigenvalue λ satisfying 1
2 < λ < 1. Fix 0 < ε < 1 and let R > 0 satisfy

Ex
(
|Φ(X1)− Φ(x)|2

)
≤ R
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for all x ∈ Ω. Then for any x ∈ Ω

tmix(ε) ≥ 1

2 log(1/λ)

[
log

(
(1− λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

)]
.

In our study, the function Φ may be replaced by any of the eigenfunc-

tions of the random walk, and, following Nestoridi [28], we want to consider

the eigenfunction with the biggest eigenvalue so that we can have a good

bound for the mixing time. For this reason, we will use the eigenfunction

fj(x) for j = 1. Once we have the function, we can find R for which the

assumption of Theorem 2.9 is satisfied.

In our case, we have Ω = {0, 1}n with transition matrix P . We want to

apply Theorem 2.9 using the eigenfunction

f1(x) =

1∑
b=0

(−1)b
(|x|
b

)(n−|x|
1−b

)(
n
1

) = 1− 2|x|
n
.

To find and calculate the corresponding eigenvalue λ, we take X0 = 0:

Pf1(X0) =
n∑
k=1

qK(k)Pkf1(X0) =
n∑
k=1

qK(k)

[
1

2
+

1

2

(
1− 2k

n

)]

=
n∑
k=1

qK(k)

(
1− k

n

)
= 1− E[K]

n
=

(
1− E[K]

n

)
f1(0),

so we have

λ = 1− E[K]

n

which satisfies 1
2 ≤ λ < 1 due to our assumption that sn ≤ n

2 .

To find R, we observe that the random walk starts from the identity and

that after one step we either have the identity (if the walk stays still) or we

have exactly K ones:

|f1(X1)− f1(0)| =
∣∣∣∣1− 2|X1|

n
− 1

∣∣∣∣ =
2

n
|X1|,

then,

E
(
|f1(X1)− f1(0)|2

)
=

4

n2
E[|X1|2] =

1

2

4

n2
E[K2] ≤ 2

n2
snE[K],
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where the factor 1
2 derives from the laziness of the random walk (and, if

it does not move, then |X1| = 0). We can put R = 2
n2 snE[K] and apply

Theorem 2.9

tmix(ε) ≥ 1

2 log 1/λ

[
log

(
(1− λ)f1(0)2

2R

)
+ log

(
1− ε
ε

)]
=

1

2 log
(

n
n−E[K]

) [log

( E[K]
n

4
n2 snE[K]

)
+ log

(
1− ε
ε

)]

=
1

2 log
(

1 + E[K]
n−E[K]

) [log

(
n

4sn

)
+ log

(
1− ε
ε

)]
. (2.8)

Now, we have two cases:

Case 1 Let sn
n →

1
B for some constant B > 1. To find an asymptotic

equivalence for log
(

n
4sn

)
, we need the following result.

Lemma 2.10. Suppose f(n) ∼ g(n), then log(f(n)) ∼ log(g(n)).

Proof. We know that f(n) ∼ g(n), so f(n)
g(n) → 1. Now, if we take logarithms

on both sides we have

log(f(n))− log(g(n)) = log

(
f(n)

g(n)

)
→ log(1) = 0.

We now divide by log(g(n))

log(f(n))

log(g(n))
− 1→ 0.

Thus, we have that

n

4sn
∼ B

4
⇒ log

(
n

4sn

)
∼ log

(
B

4

)
.

We define

Cε = log

(
n

4sn

)
+ log

(
1− ε
ε

)
,

and we have that

Cε > 0⇔ 0 < ε <
B

B + 4
.

In the setting of Case 1, we have two possibilities for E[K].
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(i) If E[K] ∼ n
D , with D > 1 constant, then from

1 +
E[K]

n− E[K]
∼ D

D − 1

it follows

log

(
1 +

E[K]

n− E[K]

)
∼ log

(
D

D − 1

)
again by Lemma 2.10. From (2.8), we obtain

tmix(ε) ≥ 1

2 log
(

1 + E[K]
n−E[K]

) [log

(
n

4sn

)
+ log

(
1− ε
ε

)]
∼ Cε

2 log
(

D
D−1

) ,
and, since log

(
D
D−1

)
> 0 for all D > 1, we have a useful lower bound when

Cε > 0, and that happens when 0 < ε < B
B+4 .

(ii) If E[K] = o(n), then from E[K]
n−E[K] −−−→n→∞

0 it follows

log

(
1 +

E[K]

n− E[K]

)
=

E[K]

n− E[K]
+ o

(
E[K]

n− E[K]

)
.

From (2.8),

tmix(ε) ≥ 1

2 log
(

1 + E[K]
n−E[K]

) [log

(
n

4sn

)
+ log

(
1− ε
ε

)]

∼ Cε

2 E[K]
n−E[K] + o

(
E[K]

n−E[K]

) ∼ Cεn

2E[K]
.

As in case (i), we have a useful lower bound when 0 < ε < B
B+4 .

Comparing what we obtained for the lower bound with our result for the

upper bound, we cannot conclude anything about a cutoff when sn = O(n).

This result is not unexpected. Even in [28], where the choice of K is deter-

ministic, Nestoridi had to assume k = o(n) to have cutoff, and the introduc-

tion of extra variability in the random walk intuitively makes having cutoff

even more unlikely.
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Case 2 If sn ∼ nγ

B , with B > 0 and γ ∈ [0, 1), then E[K] = o(n).

Again, we have

log

(
1 +

E[K]

n− E[K]

)
=

E[K]

n− E[K]
+ o

(
E[K]

n− E[K]

)
.

From Lemma 2.10, we deduce that

n

4sn
∼ B

4
n1−γ ⇒ log

(
n

4sn

)
∼ log

(
B

4
n1−γ

)
∼ log(n1−γ).

For the lower bound of the mixing time,

tmix(ε) ≥ 1

2 log
(

1 + E[K]
n−E[K]

) [log

(
n

4sn

)
+ log

(
1− ε
ε

)]

=
1

2 E[K]
n−E[K] + o

(
E[K]

n−E[K]

) [log

(
n

4sn

)
+ log

(
1− ε
ε

)]

∼ n

2E[K]

[
log
(
n1−γ)+ log

(
1− ε
ε

)]
.

To have a useful lower bound, we need log
(
B
4 n

1−γ)+ log
(

1−ε
ε

)
> 0, and we

have that when 0 < ε < n
n+4sn

.

We observe that in this case the lower bound we found is of order

(1− γ)
n

2E[K]
log n.

From our previous calculations, we have that the upper bound is

n2

E[K(n−K)]
log n+ c · 2n2

E[K(n−K)]
,

which, assuming E[K] = o(n) and sn = O(nγ), with γ ∈ [0, 1), is of order

n

E[K]
log n.

As in Definition 1.11, we say that a sequence of Markov chains has a

pre-cutoff if it satisfies

sup
0<ε<1/2

lim sup
n→∞

tn(ε)

tn(1− ε)
<∞.
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From what we said about the bounds for the mixing time we conclude that,

under the assumptions of Case 2, our random walk has a pre-cutoff

lim sup
n→∞

tn(ε)

tn(1− ε)
= lim sup

n→∞

(1− γ) n
2E[K] log n

n
E[K] log n

=
1− γ

2
<∞.

However, since the upper and lower bounds do not agree under these

assumptions on sn and E[K], we are not able to conclude anything about a

cutoff.

2.2.4 A tighter lower bound

In some cases, we can improve the lower bound by extending the method

used in [28] to our random walk.

Following Nestoridi, we will use the normalized form of fj(x) for j = 1,

the eigenfunction f1(x) =
√
n
(

1− 2|x|
n

)
, and the non-normalized form for

j = 2, the eigenfunction f2(x) = 1− 4|x|
n−1 + 4|x|2

n(n−1) .

Let X be a vector chosen uniformly from Zn2 , and let Z = |X| be the number

of ones in X. We have that Z ∼ Bin
(
n, 1

2

)
. Then,

E[f1(Z)] = 0, Var(f1(Z)) = 1.

Let X0 = 0 and let Z` = |X`| be the number of ones at time `. We can find

the eigenvalues of f1 and f2, which will be useful in our calculation.

Pf1(Z0) =
∑
k

qK(k)Pkf1(Z0) =
∑
k

qK(k)

[
1

2
+

1

2

(
1− 2k

n

)]
=

(
1− E[K]

n

)
f1(0),

so 1− E[K]
n is the eigenvalue corresponding to f1, and

Pf2(Z0) =
∑
k

qK(k)Pkf2(Z0) =
∑
k

qK(k)

[
1

2
+

1

2

(
1− 4k

n− 1
+

4k2

n(n− 1)

)]
=
∑
k

qK(k)

(
1− 2k(n− k)

n(n− 1)

)
=

(
1− 2E[K(n−K)]

n(n− 1)

)
f2(0),

so 1− 2E[K(n−K)]
n(n−1) is the eigenvalue corresponding to f2. Then (since f1 is an
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eigenfunction for P ),

E[f1(Z`)] = P̂ `f1(Z0) =

(∑
k

qK(k)P̂k

)`
f1(Z0) =

√
n

(∑
k

qK(k)

(
1− k

n

))`

=
√
n

(
1− 1

n

∑
k

qK(k)k

)`
=
√
n

(
1− E[K]

n

)`
.

Using f2
1 (x) = n

(
1
n + n−1

n f2(x)
)

yields

E[f2
1 (Z`)] = n

(
1

n
+
n− 1

n
P̂ `f2(Z0)

)

= 1 + (n− 1)

(∑
k

qK(k)P̂k

)`
f2(Z0)

= 1 + (n− 1)

[∑
k

qK(k)

(
1− 2kn− 2k2

n(n− 1)

)]`

= 1 + (n− 1)

[
1− 2E[K(n−K)]

n(n− 1)

]`
,

and

Var(f1(Z`)) = 1 + (n− 1)

[
1− 2E[K(n−K)]

n(n− 1)

]`
− n

(
1− E[K]

n

)2`

.

Now that we have an expression for the expectation and variance of f1,

we can prove that, under the hypotheses described in the following Lemma

on the distribution of K, the expectation grows with n and the variance is

bounded. Then, applying the Chebyshev’s inequality gives us a lower bound

for the mixing time.

Lemma 2.11. We have the following two cases.

Case 1. If E[K] = O(nε), with ε ∈ (0, 1), then we have a lower bound for the

mixing time at

` =
n2

2E[K(n−K)]
(log n− 2c),

for 0 < c < 1
4 log

(
n
nε

)
.

Case 2. If E[K] = n
d , with d > 1, then we have a lower bound for the mixing
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time at

` =
1

2
log d

d−1
n− c

when 1− 1
2d ≤ γ ≤ 1.

Proof. Case 1. Assume E[K] = O(nε), with ε ∈ (0, 1), then E[K(n−K)] =

O(n1+ε). Let ` = n2

2E[K(n−K)](log n − 2c) with c < 1
2 log n and suppose that

nE[K]
E[K(n−K)] ∼ 1. Under these assumptions we claim that

E[f1(Z`)] ∼ ec
(

1 +
(E[K])2

4E[K(n−K)]
(log n− 2c)

)
≥ ec, (2.9)

and

Var(f1(Z`)) ∼ 1+e2c

(
E[K(n−K)]

(n− 1)2
(log n− 2c)− (E[K])2

2E[K(n−K)]
(log n− 2c)

)
.

The details of the calculations of E[f1(Z`)] and Var(f1(Z`)) can be found

in Appendix A. Therefore, for c < 1
4 log

(
n
nε

)
, the expectation in (2.9) can get

big and grow with n, and the variance is bounded, so there exists a constant

B > 0 such that Var(f1(Z`)) < B. For the set Aα = {x : |f(x)| ≤ α}, using

Chebyshev’s inequality we have

U(Aα) = U(|f1(Z`)| ≤ α) = U
(
|f1(Z`)− E[f1(Z`)]| ≤ α

√
Var(f1(Z`))

)
≥ 1− 1

α2

and

P `(Aα) ≤ P(|f1(Z`)−E[f1(Z`)]| > E[f1(Z`)]−α) ≤ Var(f1(Z`))

(E[f1(Z`)]− α)2
≤ B

(ec − α)2
.

If we take α = ec

2 , we obtain

||P `(Aα)− U(Aα)||TV ≥ 1− 1

α2
− B

(ec − α)2
= 1− 4

e2c
− 4B

e2c
.

We conclude that, if E[K] = O(nε), with ε ∈ (0, 1), and nE[K]
E[K(n−K)] ∼ 1, we

have a lower bound for the mixing time at

` =
n2

2E[K(n−K)]
(log n− 2c),
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for 0 < c < 1
4 log

(
n
nε

)
, which improves the bound of Theorem 2.5(ii).

Observe that if we restricted our result to the case when K = k is a de-

terministic value from the set {1, . . . , n2 }, then we would obtain the same

result for the lower bound shown in [28] by Nestoridi. We would have

E[K] = k = O(nε), with ε ∈ (0, 1), and the lower bound would be

` =
n2

2k(n− k)
(log n− 2c) ∼ n

2k
(log n− 2c),

with c < 1
4 log

(
n
k

)
∼ 1

4 log
(
n
nε

)
.

Case 2. Assume that E[K] = n
d , with d > 1, then we have that E[K(n−

K)] ∼ γ n2

d , with 1
2 ≤ γ < 1. Let ` = 1

2 log d
d−1

n− c, then

E[f1(Z`)] =
√
n

(
1− 1

d

)`
=

(
d

d− 1

)c
,

and

Var(f1(Z`)) ∼ 1 + (n− 1)

(
1− 2γ

d

)`
− n

(
1− 1

d

)2`

= 1 + (n− 1)

(
d2 − 2dγ

d2

)`
− n

(
d− 1

d

)2`

≤ 1 + (n− 1)

(
d− 1

d

)2`

− n
(
d− 1

d

)2`

= 1−
(
d− 1

d

)2`

= 1− 1

n

(
d− 1

d

)2c

.

To obtain the inequality in the third line, we used d2 − 2dγ ≤ d2 − 2d + 1,

so this argument holds if and only if γ ≥ 1 − 1
2d . If c < 1

4 log d
d−1

n, then

the expectation can grow with n while Var(f1(Z`)) < 1. We can apply

Chebyshev’s inequality to find that we have a lower bound for the mixing

time at

` =
1

2
log d

d−1
n− c

when 1− 1
2d ≤ γ ≤ 1.

Also in this case, we can obtain the same result shown in [28] by considering

K = k, where k is a deterministic value in the set {1, . . . , n2 }. If we restricted
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our result to that choice for K, we would have E[K] = k ∼ n
d , E[K(n−K)] =

k(n− k) ∼ n2

d (1− 1
d) for a constant d ≥ 2 and lower bound

` =
1

2
log d

d−1
n− c,

with c < 1
4 log d

d−1
n.



3. JUMPY BROWNIAN MOTION ON THE CIRCUMFERENCE

OF THE UNIT CIRCLE

Consider a continuous time stochastic process Xt defined as

Xt =
1

2
Bt + πNt (mod 2π),

where Bt is a standard R-valued Brownian motion, Nt is an independent

Poisson process of rate λ > 0, and 1
2 is introduced for the convenience of

calculations.

In other words, Xt can be consider as a Brownian motion 1
2Bt on the cir-

cumference of the unit circle that, at times given by an independent Poisson

process, jumps to the opposite point of the circumference from which it con-

tinues diffusing. For this reason, we will refer to the process Xt as a jumpy

Brownian motion.

The aim of our study is to construct a mean-optimal co-adapted coupling

of the jumpy Brownian motion as we met in Definitions 1.22 and 1.27.

Definition 1.22 (Co-adapted coupling). Let (X, X̂) be a coupling of two

Markov processes X = (Xt)
∞
t=0 and X̂ = (X̂t)

∞
t=0. We say that the coupling

is co-adapted if there exists a filtration (Ft)∞t=0 such that X and X̂ are

Markov processes with respect to (Ft)∞t=0.

Definition 1.27 (Optimal coupling). We say that a coupling is tail-optimal

if it minimises the tail probability of the coupling time P(τcouple > t) simul-

taneously for all t > 0.

We say that a coupling is Laplace-optimal if it maximises the Laplace trans-

form of the coupling time E[e−γτcouple ] for all γ > 0.

We say that a coupling is mean-optimal if it minimises the expectation of

the coupling time E[τcouple].

As we have mentioned in Chapter 1, a lot of attention has been given

to constructing optimal couplings of Brownian motion, and, for different
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state spaces, the maximality of the reflection coupling has been established.

Introducing the possibility for the Brownian motion to jump, we want to

investigate if and to what extent the jumps influence the construction of a

coupling and its optimality.

3.1 Previous studies

As we have seen in Chapter 1, in [24] Lindvall and Rogers show that for

Euclidean Brownian motion on Rn, the reflection coupling is maximal and

co-adapted. Consider two Euclidean Brownian motions X1 and X2 with

different initial states x1 and x2, the reflection coupling consists in letting

X2 be the reflection of X1 with respect to the hyperplane which is the per-

pendicular bisector of the line x1x2; after the first time X1 and X2 meet on

that hyperplane, they run together.

In [16], Hsu and Sturm start from that result and study the uniqueness of

this coupling. In general, the reflection coupling is not the unique maximal

coupling of Euclidean Brownian motion, so they need to restrict to the class

of Markovian couplings to obtain the uniqueness.

Definition 3.1 (Markovian coupling). Let X = (X1, X2) be a coupling

of Brownian motions and let {FXt } be the filtration generated by X. The

coupling X is Markovian if for each s ≥ 0, conditioned on FXs , the process

{(X1(t+ s), X2(t+ s), t ≥ 0}

is still a coupling of Brownian motion.

In other words, a Markovian coupling is a coupling that, conditioning on

the past, is still a coupling of the process in the future, i.e. the joint process

X = (X1, X2) is a Markov process. So, a Markovian coupling requires a

stronger condition than a co-adapted coupling, for which X1 and X2 are

required to be Markov processes with respect to the same filtration.

To prove their result, Hsu and Sturm use a martingale argument. They

consider the joint process X = (X1, X2). From the Markovian hypothesis

on the coupling, it follows that X and X1 −X2 are continuous martingales.

Then, by Lévy’s decomposition, it is possible to express the process X1 −
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X2 as a Brownian motion W with time increments given by the quadratic

variation of X1 −X2. They then define the following times

τ1 = inf{t ≥ 0 : X1(t) = X2(t)}, τ2 = inf{t ≥ 0 : W (t) = 0},

and they show that the coupling time T = τ1 = τ2, from which it follows

that X2 is the reflection of X1. Then, the reflection coupling is the only

maximal Markovian coupling of n-dimensional Brownian motions.

The study of uniqueness of the reflection coupling is developed by Kuwada

who, in [20], extends the result to Brownian motion on Riemannian man-

ifolds. The reflection structure of the coupling is defined in the following

way. Let B1 and B2 be two Brownian motions on a Riemannian manifold

M started from two distinct points x1, x2 ∈ M . The reflection structure is

defined by the two following properties on M .

(1) There is a continuous map R : M → M , with R ◦ R = id and Px1 ◦
R−1 = Px2 .

(2) The set of fixed points H = {x ∈ M : R(x) = x} separates M into

two disjoint sets M1 and M2 with R(M1) = M2.

From these properties, the reflection coupling can be constructed. Let τ =

inf{t > 0 : B1(t) ∈ H} be the hitting time of H, then let

B2(t) =

R(B1(t)) t < τ

B1(t) t ≥ τ.

This construction defines the reflection coupling, and τ is the coupling time.

Kuwada shows that the reflection coupling is the unique maximal coupling

of Euclidean Brownian motion in the class of Markovian couplings. To prove

this result, Kuwada applies the Markovian hypothesis to reduce to a mass

transportation problem, which he uses to prove the uniqueness.

In [18], Kendall studies the case of coupling for the two-dimensional

process consisting of Brownian motion together with its local time at 0.

He defines a reflection/synchronised coupling showing that it is tail-optimal

among all co-adapted couplings.
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Applying Tanaka’s formula (which can be found in [30]), Kendall represents

a Brownian motion with local time at 0 as a pair (B,S), where B is a real

Brownian motion and St = max{L(0)
0 , sup{Bs, s ≤ t}}, where L

(0)
0 is the

local time at 0. He then defines a coupling of two copies (B,S) and (B̃, S̃)

of the process started with different initial conditions; the coupling has two

stages:

1. Reflection coupling. B̃ = −B until the first time T1 that B and B̃

meet.

Then, if (B,S) and (B̃, S̃) are not already coupled,

2. Synchronised coupling. B̃ = B until the first time T2 after T1 that

B ≡ B̃ hit the level ST1 ∨ S̃0.

At the end of the second stage of the coupling, we have B = B̃ and S = S̃,

so the processes are coupled. The reflection/synchronised coupling can be

reformulated as dB̃ = JdB, where the control J assumes values ±1, i.e. it

is a “bang-bang” control.

Jt =

−1 t < T1 (reflection stage)

1 T1 ≤ t ≤ T2 (synchronised stage)

In his paper, Kendall shows that any optimal co-adapted coupling of

(B,S) and (B̃, S̃) can be approximated by a coupling with “bang-bang”

control. Using this result, Kendall shows that a coupling consisting of an

initial synchronised stage followed by the reflection/synchronised coupling

has a positive chance of reducing the probability of success. This implies that

the reflection/synchronised coupling is tail-optimal among the co-adapted

couplings of Brownian motion together with local time at 0. Finally, Kendall

shows that the reflection/synchronised coupling is not maximal by compar-

ing the moment generating function of the coupling times. To find the

expression of the moment generating function of the coupling time of the

reflection/synchronised coupling, he applies excursion theory adapting the

calculations of [31, §VI.56]. We will examine excursion theory in detail

in Section 3.5. Then, using the joint density of B and S given in [30],

he calculates numerically the moment generating function of the maximal

coupling time and compares it with that of the reflection/synchronised cou-
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pling, showing that their distributions are different. This implies that the

tail-optimal co-adapted coupling cannot be maximal.

3.2 The distribution of Xt

In this section, we first of all explore distributional properties of the jumpy

Brownian motion. The way Xt is defined allows us to describe its distribu-

tion in terms of a standard real valued Brownian motion and the Poisson

process that generates the jump times. From the definition of Xt, we have

that, if Nt is even, then Xt = 1
2Bt (mod 2π), otherwise we have that Xt is

at the opposite point on the circumference, i.e. Xt = 1
2Bt+π (mod 2π). So,

if A ⊂ [0, 2π], we have the following:

P(Xt ∈ A|Nt even) =
∑
k∈Z

P
(

1

2
Bt ∈ A+ 2kπ

)
,

P(Xt ∈ A|Nt odd) =
∑
k∈Z

P
(

1

2
Bt ∈ A+ (2k + 1)π

)
.

(3.1)

Since N is a Poisson process of rate λ, it follows that

P(Nt even) =
∑
k≥0

e−λt
(λt)2k

(2k)!
= e−λt cosh(λt),

P(Nt odd) =
∑
k≥0

e−λt
(λt)2k+1

(2k + 1)!
= e−λt sinh(λt).

(3.2)

Putting this together, we see that:

P(Xt ∈ A) = P(Xt ∈ A|Nt even)P(Nt even) + P(Xt ∈ A|Nt odd)P(Nt odd)

= P(Xt ∈ A|Nt even)
1 + e−2λt

2
+ P(Xt ∈ A|Nt odd)

1− e−2λt

2
.

(3.3)

Now, let Xt and X̂t be two independent jumpy processes that start from

opposite points on the circumference, and let Nt and N̂t their respective

driving Poisson processes.

Remark. From this point, we will often drop the (mod 2π) and denote the

circumference of the unit circle as S1 and the distance on the circle between
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x, y ∈ S1 as |x− y|.

We have the following result.

Lemma 3.2. Let A = {y ∈ S1 : |X0 − y| < |X̂0 − y|} with X0 and X̂0

opposite points on S1, then for all t ≥ 0

P(Xt ∈ A) ≥ P(X̂t ∈ A). (3.4)

Proof. In this calculation, we use (3.1), (3.2) and the fact that, since λt

is always a real, positive value, then cosh(λt) ≥ sinh(λt), which implies

P(Nt even) ≥ P(Nt odd).

We can also observe that, since X0 and X̂0 are antipodal points, if Nt is even,

then Xt = X0 + 1
2Bt, while if Nt is odd then Xt = X0 + π + 1

2Bt. So, from

the choice of A, it follows that P(Xt ∈ A|Nt even) > P(Xt ∈ A|Nt odd). In

the same way, P(X̂t ∈ A|Nt odd) > P(X̂t ∈ A|Nt even).

P(Xt ∈ A) = P(Xt ∈ A|Nt even)P(Nt even) + P(Xt ∈ A|Nt odd)P(Nt odd)

= P(Xt ∈ A|Nt even)P(Nt even) + P(Xt ∈ A|Nt odd)[1− P(Nt even)]

= P(Xt ∈ A|Nt odd) + P(Nt even)[P(Xt ∈ A|Nt even)− P(Xt ∈ A|Nt odd)]

≥ P(Xt ∈ A|Nt odd) + P(Nt odd)[P(Xt ∈ A|Nt even)− P(Xt ∈ A|Nt odd)]

= P(X̂t ∈ A|N̂t even) + P(N̂t odd)[P(X̂t ∈ A|N̂t odd)− P(X̂t ∈ A|N̂t even)]

= P(X̂t ∈ A|N̂t even)P(N̂t even) + P(X̂t ∈ A|N̂t odd)P(N̂t odd)

= P(X̂t ∈ A).

Now, for simplicity assume that X0 = 0 and X̂0 = π (still independent).

Using (3.1) and (3.3), we want to find an expression for the total variation

distance between the two processes.

||Xt − X̂t||TV = max
A⊆S1

|P(Xt ∈ A)− P(X̂t ∈ A)|.

To maximise the total variation distance, we need to maximise P(Xt ∈
A) − P(X̂t ∈ A). From 3.2 with X0 = 0 and X̂0 = π, it follows that we

need to choose A = {y ∈ S1 : |y| < |π − y|}, so A = (−π
2 ,

π
2 ). The following

lemma gives an explicit expression of the total variation distance between

Xt and X̂t.
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Lemma 3.3. Let X0 = 0 and X̂0 = π.

||Xt − X̂t||TV = 2e−2λt
∑
k∈Z

[
Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)]
. (3.5)

Proof. Following the discussion above and equation (3.3), we can rewrite

the total variation distance as

||Xt − X̂t||TV =
∣∣∣P(Xt ∈

(
−π

2
,
π

2

))
− P

(
X̂t ∈

(
−π

2
,
π

2

))∣∣∣
=

1 + e−2λt

2

∑
k∈Z

[
P
(

2kπ − π

2
≤ N

(
0,
t

4

)
≤ 2kπ +

π

2

)
−P
(

2kπ − π

2
≤ N

(
π,
t

4

)
≤ 2kπ +

π

2

)]
+

1− e−2λt

2

∑
k∈Z

[
P
(

2kπ +
π

2
≤ N

(
0,
t

4

)
≤ 2kπ +

3π

2

)
−P
(

2kπ +
π

2
≤ N

(
π,
t

4

)
≤ 2kπ +

3π

2

)]
,

where N (µ, σ2) is a normal distribution with mean µ and variance σ2. Given

the choice of A, we know that

P(Xt ∈ A) = P(X̂t ∈ Ac).

The periodic nature of S1 enables us to deduce that

P(Xt ∈ A+2kπ) = P(X̂t ∈ Ac+2kπ), and P(Xt ∈ Ac+2kπ) = P(X̂t ∈ A+2kπ)

for all k ∈ Z, so we can simplify the previous expression

||Xt − X̂t||TV = e−2λt
∑
k∈Z

[
P
(

2kπ − π

2
≤ N

(
0,
t

4

)
≤ 2kπ +

π

2

)
− P

(
2kπ − π

2
≤ N

(
π,
t

4

)
≤ 2kπ +

π

2

)]
.

Now, we analyse the two probabilities in these series. Let Φ(x) be the

cumulative standard normal distribution.

P
(

2kπ − π

2
≤ N

(
0,
t

4

)
≤ 2kπ +

π

2

)
= P

(
(4k − 1)π√

t
≤ N (0, 1) ≤ (4k + 1)π√

t

)
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= Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)
,

P
(

2kπ − π

2
≤ N

(
π,
t

4

)
≤ 2kπ +

π

2

)
= P

(
(4k − 3)π√

t
≤ N (0, 1) ≤ (4k − 1)π√

t

)
= Φ

(
(4k − 1)π√

t

)
− Φ

(
(4k − 3)π√

t

)
,

Then,

||Xt − X̂t||TV = e−2λt
∑
k∈Z

[
Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)
−Φ

(
(4k − 1)π√

t

)
+ Φ

(
(4k − 3)π√

t

)]
= e−2λt

∑
k∈Z

[
Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)
−Φ

(
(4k + 1)π√

t

)
+ Φ

(
(4k − 1)π√

t

)]
= 2e−2λt

∑
k∈Z

[
Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)]
.

We could now consider the case when X and X̂ start from any two

points on S1. In the discussion above, we assumed that Xt and X̂t start

from 0 and π respectively, and that condition allowed us to find an explicit

expression of the total variation distance. We could follow the same idea

for any two starting states X0, X̂0 ∈ S1, but the expression we would have

in Lemma 3.3 would not be as nice as when X and X̂ start at distance π.

However, we would still be able to determine the set A that maximises the

total variation distance following the same idea as in the case X0 = 0 and

X̂0 = π. Applying 3.2 with any two starting states X0 and X̂0, we can define

A as the symmetric interval of size π centred at X0.

3.3 Maximal coupling

Let Xt and X̂t be two jumpy Brownian motions started from points 0 and

π respectively. In Lemma 3.3, we found an explicit expression of the total
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variation distance between two jumpy Brownian motions and, from Defini-

tion 1.23, we know that a maximal coupling is a coupling that realises the

equality in the coupling inequality Theorem 1.17.

In this section, we show how to construct a maximal coupling of X and

X̂.

Lemma 3.4. Let τ = min {t ≥ 0 : |Bt| = π}, where B is a standard Brow-

nian motion on R, and J ∼ Exp(2λ), then

||Xt − X̂t||TV = P(τ > t)P(J > t) = P(min{τ, J} > t). (3.6)

Proof. The distribution of J is

P(J > t) =

∫ ∞
t

2λe−2λxdx = e−2λt.

To find the distribution of τ , we can observe that

P(τ > t) = P0 (Bs ∈ (−π, π), 0 ≤ s ≤ t) = Pπ(Bs ∈ (0, 2π), 0 ≤ s ≤ t).

From [27], this probability is given by

Pπ(Bs ∈ (0, 2π), 0 ≤ s ≤ t) =

=
∞∑

k=−∞

[
Φ

(
(4k + 1)π√

t

)
− Φ

(
(4k − 1)π√

t

)
− Φ

(
(4k + 3)π√

t

)
+ Φ

(
(4k + 1)π√

t

)]

=
∞∑

k=−∞

[
2Φ

(
(4k + 1)π√

t

)
− 2Φ

(
(4k − 1)π√

t

)]
.

Thus, from (3.5) we deduce that

||Xt − X̂t||TV = P(τ > t)P(J > t).

Then, a coupling of two jumpy Brownian motions started from 0 and π

is maximal if it satisfies (3.6) for all t ≥ 0. This observation now allows us to

define a maximal coupling for Xt and X̂t in the following way. We let B be

a standard Brownian motion on R, and J an independent Exp(2λ) random
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variable. Let τ be the first time B hits ±π. We have two possibilities.

1. On the event {τ < J}, let Xt = 1
2Bt (mod 2π) and X̂t = π −

1
2Bt (mod 2π) for t ∈ [0, τ ].

2. On the event {J < τ}, let Xt = 1
2Bt (mod 2π) and X̂t = π +

1
2Bt (mod 2π) for t ∈ [0, J). At time J , we toss a fair coin

(i) If we get a head, then set XJ = X̂J = π + 1
2BJ (mod 2π)

(ii) If we get a tail, then set XJ = X̂J = BJ (mod 2π).

In both cases, the two processes will be coupled as soon as we see the

first jump.

In other words, we couple X and X̂ with starting distance π in the following

way: we first observe the process B up to time τ . We then compare τ and

J , the time of the first jump: if τ < J , then reflecting B would make X

and X̂ couple before time J ; if J < τ , then we keep X and X̂ at distance

π so that at time J one of them jumps to the other and they couple. By

construction, this coupling satisfies (3.6), but it is not co-adapted since the

choice of the strategy depends on what happens in the future.

Considering a different starting distance would probably compromise the

maximality of this coupling. If |X0 − X̂0| < π, then using a jump to couple

X and X̂ would require them to reach distance π first. So, deciding whether

reflecting B or jumping is faster would be more complicated, and we would

probably have to combine the two strategies.

3.4 Our candidate mean-optimal coupling

We are now going to construct a co-adapted coupling and prove that it

is mean-optimal. To define a coupling, we consider two jumpy Brownian

motions

Xt =
1

2
Bt + πNt (mod 2π) and X̂t = x+

1

2
B̂t + πN̂t (mod 2π),

where Bt and B̂t are two standard Brownian motions, Nt and N̂t are two

Poisson processes with parameter λ > 0, and x ∈ [0, π] is the distance on
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the circle between X0 and X̂0. To construct the coupling, we consider the

process

Dt = |Xt − X̂t| ∈ [0, π]

defined as the distance on the circle between Xt and X̂t. We define the

following coupling for Xt and X̂t. First, assume that x ∈ (0, π). We start

with reflection coupling, i.e. B̂t = −Bt. We shall generate jump times for

X and X̂ using a Poisson process Ñ of rate 2λ, and censoring the events of

that process. If we see a jump in Ñ at time t, then we have two possibilities:

i) if Dt− >
π
2 , then we toss a fair coin.

a. If we get a head, then Xt jumps, i.e. Xt = Xt− + π.

b. If we get a tail, then X̂t jumps, i.e. X̂t = X̂t− + π.

In both cases, Dt jumps downwards, reflecting over π
2 . That is Dt =

π −Dt− <
π
2 .

ii) If Dt− ≤ π
2 , then we toss a fair coin.

a. If we get a head, then both Xt and X̂t jump.

b. If we get a tail, neither of them jumps.

In both cases, Dt is unchanged, i.e. Dt = Dt−.

With this construction, D diffuses like a standard Brownian motion in

the interval [0, π] (that is why we used a factor 1
2 in our original definition

of X) with downward jumps which reflect the process over π
2 , occurring at

rate 2λ. If D hits zero then the two jumpy Brownian motions meet; but if

D hits π (and so X and X̂ arrive at opposite points of S1) then we consider

two possible ways in which to continue coupling them from that point.

Definition 3.5 (Synchronised coupling). Let X and X̂ be at distance π.

We let them diffuse synchronously, i.e. Bt = B̂t, until we see a jump on Ñ

and the two processes meet. That means that the process D stays at π and,

as soon as we see a jump, D jumps to 0.

Definition 3.6 (Reflection coupling). Let X and X̂ be at distance π. Under

the reflection coupling we follow the same strategy as for x < π, with Bt =

−B̂t, until X and X̂ meet.
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The coupling time is the time taken by Dt to hit 0

Tx = min{t : Dt = 0 with D0 = x}.

Figures 3.1 and 3.2 show a simulation of the reflection and synchro-

nised couplings respectively, with starting distance D0 = 3π
4 and jump rate

λ = 0.5. As we can see in the simulations, the two couplings differ in the

behaviour of D at π. Figure 3.1, when D hits π, it reflects and continues

diffusing in [0, π], under the synchronised coupling illustrated in Figure 3.2,

once D hits π, it stays there until the next jump, that will bring the process

directly to 0.

0.0 0.5 1.0 1.5 2.0 2.5

π

π/2

0

Time

S
pa
ce

Fig. 3.1: Simulation of the reflection coupling with starting distance 3π
4 and λ = 0.5.

We can see a jump in D at about time 2.15 and the coupling time is
approximately 2.5.

The choice we made for our coupling strategy when x = π is justified

intuitively by the following result.

Lemma 3.7. Let Bt be a standard Brownian motion in the interval (−a, a)

and J be the first interarrival time of a Poisson process of parameter 2λ.

Let τ = min{t ≥ 0 : Bt 6∈ (−a, a)}. Then

P(τ > J) = 1− 1

cosh(2a
√
λ)
.

Proof. From [11], we know that for a standard Brownian motion Bt in the
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0.0 0.1 0.2 0.3 0.4 0.5

π

π/2

0

Time

S
pa
ce

Fig. 3.2: Simulation of the synchronised coupling with starting distance 3π
4 and

λ = 0.5. We can see a jump in D at about time 0.53, which is also the
coupling time.

interval (−a, a) we have E0[e−γτ ] = 1
cosh(a

√
2γ)

. Since J ∼ Exp(2λ),

P(τ > J) = E[P(τ > J |τ)] = 1− E[e−2λτ ]

= 1− 1

cosh(2a
√
λ)
.

Now, we have that

P(τ > J) = 1− 1

cosh(2a
√
λ)
→

1 as λ→ 0

0 as λ→∞

Interpreting this result in terms of the jumpy Brownian motion, if λ → 0,

i.e. if the jumps happen more rarely, then the process Dt hits 0 by reflecting

before we see the first jump, so it is reasonable to expect that the reflection

coupling is faster. On the other hand, if λ→∞, i.e. if we often see jumps,

then it is convenient to keep Dt at π because, as soon as we see the next

jump, Dt jumps directly to 0.

The main aim of this chapter is proving the following theorem.

Theorem 3.8. Let X and X̂ be two jumpy Brownian motions with jumps
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occurring at rate λ. Let λ? be the unique solution to the equation

π

2 cosh(π
√
λ)− 1

=
cosech(π

√
λ)

2
√
λ

,

i.e. λ? = 0.08337. Then,

(i) If λ < λ?, then the reflection coupling of Definition 3.6 is the unique

mean-optimal coupling in the class of co-adapted couplings.

(ii) If λ > λ?, then the synchronised coupling of Definition 3.5 is the

unique mean-optimal coupling in the class of co-adapted couplings.

To prove the mean-optimality of our coupling, we follow the idea of

Kendall [18] of using excursion theory to find an expression of the moment

generating function of the coupling times for the reflection and synchronised

couplings defined above. In the next section, we introduce excursion theory,

which is essential in Section 3.6 to calculate the expressions of the Laplace

transform of the coupling times. In Section 3.8, we use the Laplace trans-

form to calculate the expectation of the coupling times, which gives us the

condition to find the value of λ? mentioned in the statement of Theorem

3.8. Finally, in Section 3.9, we apply Bellman’s principle of optimality to

complete the proof of Theorem 3.8 and establish the mean-optimality of the

reflection and synchronised couplings.

3.5 Excursion theory

Excursion theory was introduced by K. Itô in [17], and it is one of the most

useful techniques in the study of the behaviour of Markov processes. Excur-

sion theory consists in breaking time into intervals and analysing the excur-

sions of the process on those intervals. Itô discovered that the excursions

over different intervals are independent and identically distributed. This

makes excursion theory a method that simplifies the study of the diffusion.

Excursion theory is very efficient when, given a random variable T , we

want to study the behaviour of the process at time T . Consider the interval

[0, T ] and a recurrent state a for the Markov process. We can split [0, T ]

into smaller time intervals at the times when the process comes back at a.

By the strong Markov property, we have that the excursions of the process

over those intervals are independent. Finally, we mark the excursions with
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an independent Poisson process. Using the distribution of the marks, we

can then use the law of the excursions to calculate the Laplace transform of

the random variable T .

In this section, we give an overview of Excursion Theory, describing its

application to standard Brownian motion: this will be helpful when we come

to apply it to the more complicated jumpy Brownian motion. We start with

defining the excursion point process.

Definition 3.9 (Inverse local time). Let B = (Bt)t≥0 be a one-dimensional

Brownian motion started at recurrent state a. We denote by Lat the local

time at a at time t, i.e. the time spent by B at the state a by time t. The

corresponding inverse local time is defined as

γat = inf{u > 0 : Lau > t}.

Definition 3.10 (Excursion point process). Let B = (Bt)t≥0 be a one-

dimensional Brownian motion started at recurrent state a. The excursion

point process from a is defined as

Π = {(t, et) : γt 6= γt−},

where

et(s) =

B(γt− + s) for 0 ≤ s < γt − γt−,

a for s ≥ γt − γt−.

We call et the excursion at local time t.

In other words, we can split the path at the times when the Brownian

motion comes back to state a. An excursion of the Brownian motion is the

portion of its path in one of those intervals.

The following result, showed in detail in [31, §VI.55], describes the mea-

sure of the excursions.

Theorem 3.11. Let W = (Wt)t≥0 be a reflecting Brownian motion on R+.

Let f be an excursion of W , i.e. a continuous function from R+ to R+ such

that f(0) = 0 and

f(t) > 0, 0 < t < ζ and f(t) = 0, t ≥ ζ,
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for some ζ > 0. Let S(f) = supt f(t) for the excursion f , and let n(·) denote

the excursion measure, then

(i) n(S(f) > x) = x−1 for x > 0

(ii) Each excursion f can be split at its maximum S(f) into two pieces

representing two independent Bessel processes of dimension 3 started

at 0.

Recall that a Bessel process is defined as follows.

Definition 3.12 (Bessel process). Let B = (Bt)t≥0 be an n-dimensional

Brownian motion started at x. An n-dimensional Bessel process started at

x, denoted by BESx(n), is the one-dimensional process R = (Rt)t≥0 defined

as

Rt = ||Bt||,

where || · || denotes the Euclidean norm.

To illustrate how Excursion Theory can be used to solve problems related

to Brownian motion, we report, as an example, the calculations showed in

[31, §VI.56]. We will use the same ideas in Section 3.6, adapting these cal-

culations to the jumpy Brownian process.

Example 3.13. Let B = (Bt)t≥0 be a one-dimensional Brownian motion

started at 0. Define

T = inf{t ≥ 0 : |Bt| = 1}, σ = sup{t < T : Bt = 0},

i.e. T is the hitting time of ±1, and σ is the last time when Bt is equal to

0 before hitting level ±1. We also define

A+
t =

∫ t

0
1[0,∞)(Bs)ds, A−t = t−A+

t ,

i.e. A+
t is the time spent by B in the interval [0,∞) up to time t. We want

to find the joint law of A+
σ , A

−
σ , and T . To do that, we define

ξ = E[e−αA
+
σ−βA−σ−γ(T−σ)], (3.7)
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where α, β, γ > 0. We want to interpret ξ using excursions of B from 0. We

define the following disjoint sets:

U+ = {upward excursions from 0 that do not hit 1}

U− = {downward excursions from 0 that do not hit − 1}

U1 = {excursions from 0 that hit + 1 or − 1}.

Following this classification, we split the path of B into excursions, and we

mark them with independent Poisson processes of different rates indepen-

dent from B. We mark the excursions in U+ at rate α, the excursions in U−

at rate β, and the excursions in U1 at rate γ. Then, we define the following

sets.

U?+ = {excursions in U+ that contain a mark}

U?− = {excursions in U− that contain a mark}

U?1 = {excursions in U1 that contain a mark before reaching 1}

U0
1 = U1 \ U?1 .

Then, we can observe that the expectation in (3.7) can be rewritten in

terms of a combination of the independent Poisson processes that produce

the marks on the excursions.

ξ = P(the first excursion in U?+ ∪ U?− ∪ U1 lies in U0
1 )

=
n(U0

1 )

n(U?+) + n(U?−) + n(U1)
, (3.8)

where recall that n(·) denotes the excursion measure.

Now, we need to calculate the excursion measures in equation (3.8).

n(U0
1 ) = n(U1)P(excursion which escapes from [−1, 1] has no marks before it leaves [−1, 1])

= n(U1)E[e−γH
3(1)],

where H3(x) = inf{t : Rt = x}, and R = (Rt)t≥0 is a BES0(3) process. This

last passage comes from Theorem 3.11(ii), while from 3.11(i) we have that

n(U1) = 1.

To calculate the expected hitting time of R at level x, we want to use
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the following lemma.

Lemma 3.14. Let Rt be a BES0(3), and let H3(x) = inf{t : Rt = x}. Then

for λ > 0,

E[e−λH
3(x)] = x

√
2λ cosech(x

√
2λ).

Proof. Let Mt = e−λtR−1
t sinh(

√
2λRt) be a local martingale, and let T =

H3(x). From Doob’s optional stopping theorem, we know that E[MT ] =

E[M0]. Moreover,

M0 = lim
t→0

e−λt sinh(
√

2λRt)

Rt
= lim

t→0

sinh(
√

2λRt)

Rt
=
√

2λ.

Then

E[MT ] = E

[
e−λT sinh(

√
2λRT )

RT

]
=

sinh(x
√

2λ)

x
E[e−λT ] =

√
2λ,

and rearranging yields

E[e−λT ] = x
√

2λ cosech(x
√

2λ).

�

Applying Lemma 3.14 to our expression for n(U0
1 ) gives

E[e−γH
3(1)] =

√
2γ cosech(

√
2γ),

so we obtain

n(U0
1 ) =

√
2γ cosech(

√
2γ).

To calculate n(U?+), we apply Theorem 3.11(ii). Each excursion in U?+

has a maximum in (0, 1). Given that the excursion has maximum x, we can

split it into two pieces, one before the maximum is reached, the other one

after the maximum is reached. From Theorem 3.11(ii), we have that these

two pieces are independent and each distributed as a BES0(3) process.

Since we are now interested in the event that there is at least one mark

of rate α in the excursions that belong to U?+, from Lemma 3.14, we have,

n(U?+) =

∫ 1

0

1

2
x−2[1− (x

√
2α cosech(x

√
2α))2]dx =

1

2
[
√

2α coth(
√

2α)− 1].
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Applying the same ideas to U?− yields

n(U?−) =
1

2
[
√

2β coth(
√

2β)− 1].

Putting all of these expressions into equation (3.8), we arrive at the

formula stated in [31]:

ξ = E[e−αA
+
σ−βA−σ−γ(T−σ)] =

2
√

2γ cosech(
√

2γ)√
2α coth(

√
2α) +

√
2β coth(

√
2β)

.

To apply Excursion Theory to the jumpy Brownian motion, we will need

to use the ideas illustrated in Example 3.13. The following lemma extends

those results to a generic interval (−c, d), with c, d > 0.

Lemma 3.15. Let Bt be a Brownian motion in the interval (−c, d) starting

from 0, where c, d > 0. Let T0({−c, d}) = inf{t : Bt ∈ {−c, d}}, T0(d) =

inf{t : Bt = d} and T0(c) = inf{t : Bt = −c}. Then

(i) E[e−γT0({−c,d})] =
cosech(d

√
2γ) + cosech(c

√
2γ)

coth(d
√

2γ) + coth(c
√

2γ)
.

(ii) E[e−γT0({d})] =
cosech(d

√
2γ)

coth(d
√

2γ) + coth(c
√

2γ)
.

(iii) E[e−γT0({−c})] =
cosech(c

√
2γ)

coth(d
√

2γ) + coth(c
√

2γ)
.

Observe that if c = d = 1, then for (i) we would get sech(
√

2γ), which

agrees with ξ above when α = β = γ.

Proof. To prove this lemma, we want to apply excursion theory to the inter-

val (−c, d) adapting the calculations of Example 3.13. We distinguish four

different types of excursions:

U+ = {upward excursions that do not hit d},

U− = {downward excursions that do not hit − c},

Ud = {upward excursions that hit d},

Uc = {downward excursions that hit − c}.

We mark the excursions at rate γ, and we consider the following sets

U?+ = {marked upward excursions that do not hit d},
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U?− = {marked downward excursions that do not hit − c},

U0
d = {upward excursions with no marks before hitting d},

U0
c = {downward excursions with no marks before hitting − c}.

Starting from (i), we can express the Laplace transform of T0({−c, d}) as

the probability that we have an excursion with no marks that hits d or −c
before an excursion with at least one mark:

E[e−γT0({−c,d})] = P0(the first excursion in U?+ ∪ U?− ∪ Ud ∪ Uc lies in U0
d ∪ U0

c )

=
n(U0

d ) + n(U0
c )

n(U∗+) + n(U∗−) + n(Ud) + n(Uc)
. (3.9)

From the definition of Ud, we have that since we are considering only upward

excursions to +d (not −d) then n(Ud) = 1
2d . In the same way, n(Uc) = 1

2c .

As before,

n(U0
d ) = n(Ud)P0(excursion that hits d has no marks before hitting d)

=
1

2d
E[e−γH

3(d)].

From Lemma 3.14, we obtain

E[e−γH
3(d)] = d

√
2γ cosech(d

√
2γ),

which implies

n(U0
d ) =

√
2γ

2
cosech(d

√
2γ).

Doing the same for the downward excursions implies

n(U0
c ) =

√
2γ

2
cosech(c

√
2γ).

To calculate the measure of U?+, we consider an upward excursion with

maximum y, and we split the excursion into two pieces, one before y is

reached and the other after y. The two sections of the excursion behave like

independent 3-dimensional Bessel processes started from 0, and we want at

least one mark on their union, so

n(U∗+) =

∫ d

0

1

2
y−2[1−(y

√
2γ cosech(y

√
2γ))2]dy =

1

2

(√
2γ coth(d

√
2γ)− 1

d

)
.
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We do the same for U?−, and we obtain

n(U∗−) =
1

2

(√
2γ coth(c

√
2γ)− 1

c

)
.

Then, from (3.9),

E[e−γT0({−c,d})] =
cosech(d

√
2γ) + cosech(c

√
2γ)

coth(d
√

2γ) + coth(c
√

2γ)
,

which completes the proof of part (i). To show parts (ii) and (iii), we just

observe that

E[e−γT0({d})] =
n(U0

d )

n(U∗+) + n(U∗−) + n(Ud) + n(Uc)
=

cosech(d
√

2γ)

coth(d
√

2γ) + coth(c
√

2γ)
,

and

E[e−γT0({−c})] =
n(U0

c )

n(U∗+) + n(U∗−) + n(Ud) + n(Uc)
=

cosech(c
√

2γ)

coth(d
√

2γ) + coth(c
√

2γ)
.

3.6 Laplace transform of the coupling time

In this section, we show how to find an expression for the Laplace transform

of the coupling time for the jumpy Brownian motion. The expressions of the

Laplace transform are given by the following lemmas for the two coupling

strategies defined in Definitions 3.6 and 3.5.

Lemma 3.16. Let T rx be the coupling time for the jumpy Brownian motion

with D0 = x under the reflection coupling. Let α =
√

2(2λ+ γ) and β =
√

2γ. Then, we have the following formulas for the Laplace transform of T rx .

1. If x ∈ (0, π2 ),

E[e−γT
r
x ] =

cosech(xβ)[2− sech(απ2 ) sech(β π2 )]

[2− sech(απ2 ) sech(β π2 )][coth((π2 − x)β) + coth(xβ)]

−
cosech((π2 − x)β)[−2 sech(β π2 ) + sech(απ2 )]

[2− sech(απ2 ) sech(β π2 )][coth((π2 − x)β) + coth(xβ)]
.



3. Jumpy Brownian Motion on the Circumference of the Unit Circle 83

2. If x ∈ (π2 , π)

E[e−γT
r
x ] =

cosech((π − x)β) + cosech((x− π
2 )β) sech(β π2 )

coth((π − x)β) + coth((x− π
2 )β)

−
cosech((x− π

2 )β) sech(απ2 ) tanh2(β π2 )

[2− sech(απ2 ) sech(β π2 )][coth((π − x)β) + coth((x− π
2 )β)]

−
2βα cosech((π − x)α) tanh(απ2 ) tanh(β π2 )

[2− sech(απ2 ) sech(β π2 )][coth((π − x)α) + coth((x− π
2 )α)]

.

3. If x = π
2 ,

E[e
−γT rπ

2 ] =
2 cosh(π2α)− cosh(π2β)

2 cosh(π2β) cosh(π2α)− 1
.

4. If x = π,

E[e−γT
r
π ] = 1−

β
α tanh

(
π
2α
)

tanh
(
π
2β
)

1− 1
2 sech

(
π
2β
)

sech
(
π
2α
) .

Lemma 3.17. Let T sx be the coupling time for the jumpy Brownian motion

with D0 = x under the synchronised coupling. Let α =
√

2(2λ+ γ) and

β =
√

2γ. Then, we have the following formulas for the Laplace transform

of T sx .

1. If x ∈ (0, π2 ),

E[e−γT
s
x ] =

cosech(xβ) + cosech((π2 − x)β) sech(β π2 )

coth((π2 − x)β) + coth(xβ)

− β

2α

cosech((π2 − x)β) tanh(β π2 ) cosech(απ2 )

coth((π2 − x)β) + coth(xβ)
.

2. If x ∈ (π2 , π)

E[e−γT
s
x ] =

cosech((π − x)β) + cosech((x− π
2 )β) sech(β π2 )

coth((π − x)β) + coth((x− π
2 )β)

− β

2α

cosech((x− π
2 )β) tanh(β π2 ) cosech(απ2 )

coth((π − x)β) + coth((x− π
2 )β)

− β2 cosech((π − x)α)

α2[coth((π − x)α) + coth((x− π
2 )α)]

.
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3. If x = π
2 ,

E
[
e
−γT sπ

2

]
=

1

cosh(π2β)
− 1

2

β

α
tanh

(
β
π

2

)
cosech

(π
2
α
)
.

4. If x = π

E[e−γT
s
π ] =

2λ

γ + 2λ
.

The remainder of Section 3.6 is dedicated to the proof of Lemmas 3.16

and 3.17. We shall split our analysis into three cases, depending on the

value of D0.

I. D0 = π
2

II. D0 = π

III. D0 6= π
2 , π.

In the remainder of the chapter, we will use the following notations:

• T rx for any x ∈ [0, π] as the coupling time with D0 = x under the

reflection coupling,

• T sx for any x ∈ [0, π] as the coupling time with D0 = x under the

synchronised coupling.

3.6.1 Case I. D0 = π
2

Consider the jumpy Brownian motion Dt starting from π
2 . In this case, the

process behaves identically for both the coupling strategies until D hits the

set E = {0, π}. This means that, if Tπ
2
(E) denotes the hitting time of the

set E with D0 = π
2 , Tπ

2
(E) does not depend on the coupling. We can write

T rπ
2

= Tπ
2
(E) + 1{DTπ

2
(E)=π}T

r
π ,

and similarly

T sπ
2

= Tπ
2
(E) + 1{DTπ

2
(E)=π}T

s
π ,
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where T rπ and T sπ are independent from Tπ
2
(E). Then, we can express the

Laplace transform of T rπ
2

as

E
[
e
−γT rπ

2

]
= E

[
e
−γTπ

2
(E)

1{DTπ
2
(E)=0} + e

−γ(Tπ
2

(E)+T rπ )
1{DTπ

2
(E)=π}

]
= E

[
e
−γTπ

2
(E)

(1− 1{DTπ
2
(E)=π}) + e

−γ(Tπ
2

(E)+T rπ )
1{DTπ

2
(E)=π}

]
= E

[
e
−γTπ

2
(E)
]

+ E
[
e
−γTπ

2
(E)

1{DTπ
2
(E)=π}

] (
E
[
e−γT

r
π
]
− 1
)
.

(3.10)

To determine the first term in 3.10, we can observe that the time for D to hit

E is the same as for a Brownian motion to hit ±π
2 . So, we can rewrite the

Laplace transform of Tπ
2
(E) for the process Dt started at π

2 as the Laplace

transform of the hitting time T0({−π
2 ,

π
2 }) for a Brownian motion started at

0:

E[e
−γTπ

2
(E)

] = E[e−γT0({−π
2
,π
2
})] =

1

cosh(π2
√

2γ)
.

To find an expression for the second term in (3.10), we apply excursion

theory as in Section 3.5. We distinguish the following types of excursions

for a Brownian motion started at π
2 :

1. upward excursions that do not hit π, and which have no marks

2. upward excursions that do not hit π, with at least one mark

3. downward excursions that do not hit 0

4. upward excursions that hit π, and which have no marks

5. upward excursions that hit π, with at least one mark

6. downward excursions that hit 0.

Let σ = sup{t < Tπ
2
(E) : DTπ

2
(E) = π

2 } be the last time the process leaves
π
2 before hitting E. First, we rewrite the expectation we are considering in

terms of σ and Tπ
2
(E):

E
[
e
−γTπ

2
(E)

1{DTπ
2
(E)=π}

]
= E

[
e
−γTπ

2
(E)E

[
1{DTπ

2
(E)=π}

∣∣∣σ, Tπ
2
(E)

]]
= E

[
e
−γTπ

2
(E)P

(
DTπ

2
(E) = π

∣∣σ, Tπ
2
(E)
)]
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= E
[
e
−γTπ

2
(E) 1

2
P
(

no jumps in Ñ in time [σ, Tπ
2
(E)]

∣∣σ, Tπ
2
(E)
)]

=
1

2
E
[
e
−γTπ

2
(E)−2λ(Tπ

2
(E)−σ)

]
=

1

2
E
[
e
−(2λ+γ)(Tπ

2
(E)−σ)−γσ

]
. (3.11)

We will use the notations α =
√

2(2λ+ γ) and β =
√

2γ. Now, we define

the following sets for a Brownian motion started at 0:

U+ = {positive excursions that do not hit
π

2
}

U− = {negative excursions that do not hit − π

2
}

Uπ
2

=
{

positive and negative excursions that hit
{
−π

2
,
π

2

}}
We mark the excursions in U± at rate γ and the excursions in Uπ

2
at rate

2λ+ γ, and we consider the sets

U?± = {excursions in U± with at least one mark}

U?π
2

= {excursions in Uπ
2

with at least one mark}

U0
π
2

= {excursions in Uπ
2

with no marks}.

We can now rewrite the following in terms of the measures of these sets:

E
[
e
−(2λ+γ)(Tπ

2
(E)−σ)−γσ

]
= P(the first excursion in Uπ

2
∪ U?± is in U0

π
2
)

=
n(U0

π
2
)

n(U?±) + n(Uπ
2
)
.

First, we calculate the measure in the numerator.

n(U0
π
2
) = n(Uπ

2
)P
(

excursion that hits
{
−π

2
,
π

2

}
has no marks before hitting it

)
=

2

π
E
[
e−(2λ+γ)H3(π

2
)
]
,

where n(Uπ
2
) is calculated using 3.11(i), and H3(π2 ) is the time for a 3-

dimensional Bessel process to hit π
2 .

To find an expression for the expectation in the previous paragraph, we
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apply Lemma 3.14 with x = π
2 and α = 2λ+ γ to obtain

E
[
e−(2λ+γ)H3(π

2
)
]

=
π

2
α cosech

(
α
π

2

)
and therefore

n(U0
π
2
) = α cosech

(
α
π

2

)
.

To calculate n(U?+), given x is the maximum of the excursion, we can

split it into two parts, the part before x and the part after x. Both of these

two parts of the excursion are independent and can be interpreted as a 3-

dimensional Bessel process started from 0. We want at least one mark of

rate γ in the union these two parts, so

n(U?±) = 2n(U?+) =

∫ π
2

0
x−2[1− (βx cosech(βx))2]dx = β coth

(
β
π

2

)
− 2

π
.

Then,

E
[
e
−(2λ+γ)(Tπ

2
(E)−σ)−γσ

]
=

α cosech(π2α)

β coth(β π2 )− 2
π + 2

π

=
α

β
tanh

(
β
π

2

)
cosech

(
α
π

2

)
and from (3.11)

E
[
e
−γTπ

2
(E)

1{DTπ
2
(E)=π}

]
=

1

2

α

β
tanh

(
β
π

2

)
cosech

(π
2
α
)
.

From (3.10), we obtain

E[e
−γT rπ

2 ] =
1

cosh(π2β)
+

1

2

α

β
tanh

(
β
π

2

)
cosech

(π
2
α
) (

E
[
e−γT

r
π
]
− 1
)
,

(3.12)

with the same equation holding for T sπ
2

in terms of T sπ .

At this point, we need to find expressions for E
[
e−γT

r
π
]

and E
[
e−γT

s
π
]
.

3.6.2 Case II. D0 = π

In this section, we calculate the Laplace transforms of T sπ and T rπ , the cou-

pling times respectively for the synchronised coupling and the reflection

coupling with D0 = π. We continue to write α =
√

2(2λ+ γ) and β =
√

2γ.
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Synchronised process

In this case, Dt = π until the first jump is generated by the Poisson process

Ñt. The coupling time is the time taken to generate a jump at rate 2λ, so

T sπ ∼ Exp(2λ), and

E[e−γT
s
π ] =

∫ ∞
0

e−γx2λe−2λxdx = 2λ

∫ ∞
0

e−(γ+2λ)xdx =
2λ

γ + 2λ
.

From (3.12), we obtain the following formula

E
[
e
−γT sπ

2

]
=

1

cosh(π2β)
+

1

2

α

β
tanh

(
β
π

2

)
cosech

(π
2
α
)( 2λ

γ + 2λ
− 1

)
=

1

cosh(π2β)
− 1

2

β

α
tanh

(
β
π

2

)
cosech

(π
2
α
)
.

This completes the proof of parts 3 and 4 of Lemma 3.17.

Reflected process

We want to apply again excursion theory to calculate the Laplace transform

of the coupling time T rπ . We consider two types of excursions of D from π:

Uπ =
{

downward excursions that return to π without hitting
π

2

}
Uπ

2
=
{

downward excursions that hit
π

2

}
We mark the excursions with marks at rate γ and, independently, with

jumps at rate 2λ. We define the following sets:

Umπ = {excursions in Uπ with at least one mark}

U j,no mπ = {excursions in Uπ with at least one jump and no marks}

U j,mπ = {excursions in Uπ with at least one jump and one mark}

Uno j,no mπ = {excursions in Uπ with no jumps and no marks}

Uno mπ
2

= {excursions in Uπ
2

with no marks}

Let θ = inf{t > J1 : Dt = π}, where J1 is the first jump time of D, and η

the time D, under the reflection coupling, takes to hit π
2 . We can write

T rπ = θ1θ<η + (Tπ
2

+ η)1η<θ,
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where T rπ
2

is the coupling time of the process started from π
2 , and

E[e−γT
r
π ] = E[e−γθ1θ<η] + E[e

−γ(T rπ
2

+η)
1η<θ]

= E[e−γθ1θ<η] + E[e−γη1η<θ]E[e
−γT rπ

2 ], (3.13)

where the second equality is justified by the fact that η and Tπ
2

are inde-

pendent.

The first term in (3.13) is the probability of seeing an excursion with a jump

but no marks that goes back to π, before seeing an excursion that hits π
2 or

an excursion with at least one mark that goes back to π. That is,

E[e−γT
r
π1θ<η] = P(the first excursion in U j,no mπ ∪ Umπ ∪ Uπ

2
lies in U j,no mπ )

=
n(U j,no mπ )

n(Uπ
2
) + n(Umπ ) + n(U j,no mπ )

.

The measure of the set of excursions hitting π
2 is, as before,

n(Uπ
2
) =

2

π
.

To calculate n(Umπ ), we proceed as before, splitting the excursion around

its maximum value:

n(Umπ ) =

∫ π
2

0
x−2

[
1− (xβ cosech(xβ))2

]
dx = β coth

(π
2
β
)
− 2

π
.

To calculate n(U j,no mπ ), we rewrite U j,no mπ = Uno mπ \Uno j,no mπ , so if we split

again the excursion into two pieces around its maximum, if the excursion

is in Uno mπ we want no marks in both pieces, while if the excursion is in

Uno j,no mπ we want no marks and no jumps in both pieces.

n(U j,no mπ ) = n(Uno mπ )− n(Uno j,no mπ )

=

∫ π
2

0
x−2

[
(xβ cosech(xβ))2 − (xα cosech(xα))2

]
dx

= −β coth
(π

2
β
)

+ α coth
(π

2
α
)
.
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Then we have

E[e−γT
r
π1θ<η] =

α coth(π2α)− β coth(π2β)

α coth(π2α)
= 1− β

α

coth(π2β)

coth(π2α)
.

Now, we calculate the second term in (3.13). It can be interpreted as the

probability of having an excursion with no marks that goes back to π, before

an excursion with at least one jump and one mark that goes back to π or

an excursion that hits π
2 :

E[e−γT
r
π1η<θ] = P(the first excursion in U j,mπ ∪ Uno mπ

2
∪ Uπ

2
lies in Uno mπ )

=
n(Uno mπ

2
)

n(U j,mπ ) + n(Uπ
2
)
.

Applying again excursion theory and Lemma 3.14,

n(Uno mπ
2

) = n(Uπ
2
)P(excursion that hits

π

2
has no marks)

=
2

π
E[e−γH

3(π
2

)] =
2

π

π

2
β cosech

(π
2
β
)
,

while if we consider the set of excursions with at least one jump and one

mark

n(U j,mπ ) =

∫ π
2

0
x−2[1− (xα cosech(xα))2]dx = α coth

(π
2
α
)
− π

2
.

Thus we have

E[e−γT
r
π1η<θ] =

β

α

cosech(π2β)

coth(π2α)
.

In conclusion, we can express (3.13) as

E[e−γT
r
π ] = E[e−γθ1θ<η] + E[e−γη1η<θ]E[e

−γT r
π/2 ] =

= 1− β

α

coth
(
π
2β
)

coth
(
π
2α
) +

β

α

cosech
(
π
2β
)

coth
(
π
2α
) · E[e

−γT r
π/2 ]. (3.14)

To find a complete expression for E[e−γT
r
π ] we combine (3.12) and (3.14)

together:

E[e−γT
r
π ] = 1− β

α

coth(π2β)

coth(π2α)
+
β

α

cosech(π2β)

coth(π2α)
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·
[

1

cosh(π2β)
+

α

2β
tanh

(
β
π

2

)
· cosech

(π
2
α
) (

E
[
e−γT

r
π
]
− 1
)]
,

and rearranging we obtain

E[e−γT
r
π ] =

1− β
α

coth(π
2
β)

coth(π
2
α)

1− 1
2

cosech(π
2
β)

coth(π
2
α) tanh

(
π
2β
)
· cosech

(
π
2α
)+

+

β
α

cosech(π
2
β)

coth(π
2
α)

[
1

cosh(π
2
β) −

α
2β tanh

(
π
2β
)
· cosech

(
π
2α
)]

1− 1
2

cosech(π
2
β)

coth(π
2
α) tanh

(
π
2β
)
· cosech

(
π
2α
)

= 1−
β
α tanh

(
π
2α
)

tanh
(
π
2β
)

1− 1
2 sech

(
π
2β
)

sech
(
π
2α
) . (3.15)

Combining (3.12) and (3.14), we can also obtain an explicit expression for

the coupling time starting from π
2 :

E[e
−γT rπ

2 ] =
1

cosh(π2β)
+

α

2β
tanh

(π
2
β
)

cosech
(π

2
α
) (

E
[
e−γT

r
π
]
− 1
)

=
1

cosh(π2β)
+

α

2β
tanh

(π
2
β
)

cosech
(π

2
α
)

(
−β
α

coth(π2β)

coth(π2α)
+
β

α

cosech(π2β)

coth(π2α)
· E[e

−γT r
π/2 ]

)
.

Rearranging this expression we obtain the following formula for T rπ
2

E[e
−γT rπ

2 ] =
2 cosh(π2α)− cosh(π2β)

2 cosh(π2β) cosh(π2α)− 1
. (3.16)

This completes the proof of parts 3 and 4 of Lemma 3.16.

3.6.3 Case III. D0 6= π
2 , π

Finally, consider the coupled processes starting from any point D0 = x ∈
(0, π)\{π2 }. First, we find the expressions of the Laplace transforms without

distinguishing the coupling strategy, so we denote by Tx the coupling time.

Let F = {0, π2 , π}, we denote by Tx(F ) the hitting time of D of the set F
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with D0 = x. We can express Tx as

Tx = Tx(F ) + Tπ1{DTx(F )=π} + Tπ/21{DTx(F )=
π
2
}.

To find the Laplace transform of Tx, we rewrite it in the following way

E[e−γTx ] = E[e−γTx(F )
1{DTx(F )=0}] + E[e−γ(Tx(F )+Tπ)

1{D(Tx(F ))=π}]

+ E[e
−γ(Tx(F )+Tπ

2
)
1{DTx(F )=

π
2
}]

= E[e−γTx(F )] + E[e−γTx(F )
1{DTx(F )=

π
2
}](E[e

−γTπ
2 ]− 1)

+ E[e−γTx(F )
1{D(Tx(F ))=π}](E[e−γTπ ]− 1). (3.17)

To find expressions for the three terms in (3.17) we use excursion theory

again. Due to the definition of the coupling, the process Dt behaves differ-

ently depending on whether the starting point x is smaller or greater than
π
2 . That means that we need to study the two cases x < π

2 and x > π
2

separately and, in each interval, we restrict to considering the hitting time

of the extrema of the interval in which Dt starts.

To make the calculations easier we can apply Lemma 3.15 and we again use

the notations α =
√

2(2λ+ γ) and β =
√

2γ.

Since the Brownian motion B is shift-invariant, we can think of B as starting

from 0 and diffusing in an interval (−c, d), where d, c > 0. In other words,

with D0 = x,

1. if x <
π

2
, we shift to the interval (−c, d) =

(
−x, π

2
− x
)
,

2. if x >
π

2
, we shift to the interval (−c, d) =

(π
2
− x, π − x

)
.

(3.18)

First term of (3.17)

To find a formula for the first term E[e−γTx(F )], we can observe that in this

case the hitting time of F is not affected by the jumps since we are not

considering which point of F is hit by D. This means that the calculations

do not depend on whether x is bigger or smaller than π
2 and that, when

applying Lemma 3.15(i), we only mark the excursions at rate γ.

We can conclude that

E[e−γTx(F )] = E[e−γT0({−c,d})] =
cosech(dβ) + cosech(cβ)

coth(dβ) + coth(cβ)
, (3.19)
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where c and d are functions of x, as defined in (3.18).

Second term of (3.17)

To calculate E[e−γTx(F )
1{DTx(F )=

π
2
}], we need to consider the case in which

Dt hits π
2 . Since we always use a reflection coupling in the interval (0, π), D

hits π
2 independently of the jumps in Ñ : this happens because, if D ≤ π

2 at

the time of a jump, then its position is left unchanged; if D > π
2 , the jump

would reflect D downwards over π
2 , and the process would continue diffusing

upwards hitting π
2 . That means that in both intervals, the time taken by D

to hit F when starting from x is the same as the time taken by B to hit the

boundary points of an interval (−c, d) and, when we apply Lemma 3.15, we

mark the excursions at rate γ.

1. Let x ∈ (0, π2 ). To calculate the hitting time of π2 , we need to consider

the times when B hits d = π
2 − x, so from Lemma 3.15(ii)

E[e−γTx(F )
1{DTx(F )=

π
2
}] = E[e−γT0({−x,π

2
−x})

1{BT0({−x, π2−x})=
π
2
−x}]

=
cosech(dβ)

coth(dβ) + coth(cβ)

=
cosech((π2 − x)β)

coth((π2 − x)β) + coth(x
√

2γ)

2. Let x ∈ (π2 , π). To have the hitting time of π
2 , we consider the times

when B hits −c = π
2 − x. From Lemma 3.15(iii),

E[e−γTx(F )
1{DTx(F )=

π
2
}] = E[e−γT0({π

2
−x,π−x})

1{BT0({π2−x,π−x})=
π
2
−x}]

=
cosech(cβ)

coth(dβ) + coth(cβ)

=
cosech((x− π

2 )β)

coth((x− π
2 )β) + coth((π − x)β)

Third term of (3.17)

Finally, we calculate E[e−γTx(F )
1{D(Tx(F ))=π}]. As we did for the second

term, we need to study the two cases x < π
2 and x > π

2 separately.
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1. If x ∈ (0, π2 ), it is not possible for Dt to hit π without hitting π
2 first, so

E[e−γTx(F )
1{DTx(F )=π}] = 0.

2. Let x ∈ (π2 , π). To have the hitting time of π, we apply Lemma 3.15,

but this time the jumps will influence the calculations.

As usual, we consider excursions of B in an interval (−c, d) = (π2 −x, π−x).

To have B hit d = π − x, we need that to happen before seeing a jump, so

we mark the excursions at rate 2λ+ γ. From Lemma 3.15(ii):

E[e−γTx(F )
1{DTx(F )=π}] = E[e−γT0({π

2
−x,π−x})

1{BT0({π2−x,π−x})=π−x}
]

=
cosech(dα)

coth(dα) + coth(cα)

=
cosech((π − x)α)

coth((π − x)α) + coth((x− π
2 )α)

. (3.20)

This completes the proof of parts 1 and 2 of Lemmas 3.16 and 3.17.

The calculations of the expressions of the Laplace tranform as established

in those lemmas are showed in Appendix B.

3.7 Laplace transform

In this section, we show the graphs of some simulations of the Laplace

transforms and we compare them to the formulas obtained in the previous

section. As the graphs illustrate, the formulas we calculated agree with

the simulations of the jumpy Brownian motion under the reflection and

synchronised couplings, so we have also a numerical confirmation that the

expressions given in Lemmas 3.16 and 3.17 are correct.



3. Jumpy Brownian Motion on the Circumference of the Unit Circle 95

1 2 3 4 5
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tx ]

Simulation

Formula

Fig. 3.3: Comparison of the simulation of the Laplace tranform for D0 = π and
λ = 0.5 and the formulas obtained in Section 3.6.2 under the reflection
coupling.
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1 2 3 4 5
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tx ]

Simulation

Formula

(a) Comparison of the simulation and the formulas of the Laplace tranform for
D0 = π

2 and λ = 0.5 under the reflection coupling.

1 2 3 4 5
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tx ]

Simulation

Formula
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Fig. 3.4: Comparison of the simulation of the Laplace tranform for D0 = π
2 and

the formulas obtained in Section 3.6.1.
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1 2 3 4 5
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tx ]

Simulation

Formula
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2 and λ = 0.5 under the synchronised coupling.

Fig. 3.5: Comparison of the simulation of the Laplace tranform for D0 = x < π
2

and the formulas obtained in Section 3.6.3.
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2 and λ = 0.5 under the reflection coupling.
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(b) Comparison of the simulation and the formulas of the Laplace tranform for
D0 = x > π

2 and λ = 0.5 under the synchronised coupling.

Fig. 3.6: Comparison of the simulation of the Laplace tranform for D0 = x > π
2

and the formulas obtained in Section 3.6.3.

At this point, it is interesting to compare the Laplace transform of the

coupling time for the two coupling strategies on which we are focusing.

Figure 3.7 shows the graph of the difference E[e−γT
r
π ] − E[e−γT

s
π ] of the

Laplace transforms evaluated in Section 3.6.2 for two jumpy Brownian mo-

tions started at distance π under our two coupling strategies. As in Defi-

nition 1.27, we say that a coupling is Laplace-optimal if it maximizes the

Laplace transform of the coupling time for all γ > 0. From the relation

between the expectation and Laplace transform of a random variable, we

can see that the Laplace-optimality is a stronger property than the mean-

optimality. Finally, observe that the tail-optimality is the strongest type of

optimality among the three of Definition 1.27, and it corresponds to finding
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the co-adapted coupling that realises the best upper bound for the total vari-

ation distance in the coupling inequality (1.1) simultaneously for all t ≥ 0.

As we can see from Figure 3.7a, if λ > λ?, then the Laplace transform

under the synchronised coupling is bigger than that under the reflection

coupling for all γ > 0. Thus, we can conjecture that the synchronised cou-

pling is Laplace-optimal for all λ > λ?. Unfortunately, we cannot expect

a similar result in the case λ < λ?. As Figure 3.7b illustrates, when γ is

small, E[e−γT
r
π ] − E[e−γT

s
π ] > 0, but as γ grows, the graph decreases until

it becomes negative. This indicates that neither of the two couplings under

consideration is Laplace-optimal when λ < λ?.

Remark. If λ = 0, then the jumpy Brownian motion is a one-dimensional

Brownian motion with no jumps, for which we know that the mean-optimal

co-adapted coupling is given by our reflection coupling, which is clearly

maximal.

Now that we have graphically seen how the mean-optimal co-adapted

coupling compares to the maximal coupling, we can show that the mean-

optimal coupling is not maximal for all λ > 0 directly from the explicit

formulas of the expected coupling time. Let τ?, T sπ , and T rπ be the cou-

pling time for two jumpy Brownian motions started at distance π under the

maximal, synchronised, and reflection couplings respectively. We know that

E[τ?] =
1− sech(2π

√
λ)

2λ
,

E[T sπ ] =
1

2λ
,

E[T rπ ] =
π sinh(π

√
λ)√

λ(2 cosh(π
√
λ)− 1)

.

We want to show that, for all λ ≥ 0,

1. E[τ?] ≤ E[T sπ ],

2. E[τ?] ≤ E[T rπ ].

1. Since sech(2π
√
λ) ≥ 0 for all λ ≥ 0, then

E[τ?] =
1− sech(2π

√
λ)

2λ
≤ 1

2λ
= E[T sπ ],

for all λ ≥ 0.
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(a) Graph of E[e−γT
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s
π ] with D0 = π for two different values of λ < λ?.

Fig. 3.7: Graph of E[e−γT
r
π ]− E[e−γT

s
π ] with D0 = π.

2. We distinguish two cases based on the value of λ.

• If λ ≥ λ?, then E[T rπ ] ≥ E[T sπ ] ≥ E[τ?].

• If λ < λ?, we want to show that E[τ?]
E[T rπ ] ≤ 1. Let x = π

√
λ, from the

formulas above,

E[τ?]

E[T rπ ]
=

(1− sech(2x))(2 cosh(x)− 1)

2x sinh(x)
.

Then, using the exponential forms sinh(z) = ez−e−z
2 and cosh(z) =
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ez+e−z

2 yields

E[τ?]

E[T rπ ]
=

(1− sech(2x))(2 cosh(x)− 1)

2x sinh(x)
=

sech(2x) sinh(x)(2 cosh(x)− 1)

x

=
(e2x − e−2x)− (ex − e−x)

x(e2x + e−2x)
=

∫ 2x
x (ey + e−y)dy

x(e2x + e−2x)

≤ xmaxx≤y≤2x(ey + e−y)

x(e2x + e−2x)
= 1,

where the last equality derives from the fact that ey + e−y is an in-

creasing function.

In conclusion, the mean-optimal coupling is not maximal for all λ > 0.

3.8 Expectation of Tx

Using the Laplace transforms calculated in Section 3.6, we can derive the

expectation of the coupling time Tx for our two coupling strategies. As

usual, the calculations depend on the starting point x and on the coupling

strategy adopted at π.

Lemma 3.18. For the reflection coupling of Definition 3.6 starting from

D0 = x, the expected coupling time satisfies

E[T rx ] =


x(π − x) + π(π−x)

2 cosh(
√
λπ)−1

+ π sinh(
√
λ(2x−π))√

λ(2 cosh(
√
λπ)−1)

if x ≥ π
2

x(π − x) + πx
2 cosh(

√
λπ)−1

if x ≤ π
2 .

(3.21)

For the synchronised coupling of Definition 3.5, the expectation of the cou-

pling time satisfies

E[T sx ] =


x(π − x) + (π−x) cosech(

√
λπ)

2
√
λ

+ cosech(
√
λπ) sinh(

√
λ(2x−π))

2λ if x ≥ π
2

x(π − x) + x cosech(
√
λπ)

2
√
λ

if x ≤ π
2 .

(3.22)

Proof. To find the expectation of the coupling time, we take the expressions

of the Laplace transform E[e−γTx ] found in Section 3.6, we differentiate them

with respect to γ, and finally we take the limit as γ → 0.
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Once we have the expectation, we can study how it behaves when λ

varies.

Looking first at the reflection coupling and the expectation given by (3.21),

we have the following:

lim
λ→∞

E[T rx ] = x(π − x), lim
λ→0

E[T rx ] = x(2π − x)

for all x ∈ [0, π]. Combining (3.21) and the limits, we can easily verify that

E[T rx ] is a continuous function of x for all λ ≥ 0 with a maximum at x = π

when λ < λ? and a maximum at x = π
2 when λ > λ?. The limits we obtained

are what we would have expected intuitively, as we now explain.

When λ → ∞, the process Dt jumps instantly. If x ∈ (0, π), the process

diffuses in the interval
(
0, π2

]
because every time it gets above π

2 it instantly

jumps back below π
2 . So, Dt behaves in the same way as a standard Brownian

motion in
(
0, π2

]
with reflection at π

2 . Thus, the time taken by D to hit 0

has the same distribution as the time taken by a standard Brownian motion

started at x to hit {0, π}. Then, E[T rx ] = x(π − x). In particular, if x = π
2

the mean time is π2

4 . If x = π, we instantly jump to 0, so the expected

coupling time is 0.

If λ→ 0, there are no jumps, so Dt diffuses like a standard Brownian motion

in [0, π] with reflection at π, so the time to hit 0 is equivalent in distribution

to the time for a standard Brownian motion started at x to hit {0, 2π}.
Then, we know that E[T rx ] = x(2π − x).

As we did for the reflected process, we now analyse the behaviour of the

expectation of the synchronised coupling time described in (3.22).

lim
λ→∞

E[T sx ] = x(π−x) for all x ∈ [0, π], lim
λ→0

E[T sx ] =

+∞ for all x ∈ (0, π]

0 if x = 0.

From (3.22) and the limits, we can conclude that E[T sx ] is again a continuous

function of x for all λ except at x = 0 when λ = 0. As a function of x, E[T sx ]

has a maximum at x = π if λ < λ?, while it has a maximum at x = π
2 and

a minimum at x = π if λ > λ?. That follows by the fact that E[T s0 ] = 0,

while from the limits above we have limλ→0 E[T sx ] = +∞ for all x ∈ (0, π].

As we did for the reflecting strategy, we can intuitively justify the limits we

obtained.
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If λ→∞, then the probability of hitting π tends to 0. This means that we

can repeat the same argument as for the reflection coupling, and E[T sx ] =

x(π − x) for all x ∈ (0, π). If x = π, Dt instantly jumps to 0, so E[T sπ ] = 0.

When λ → 0, the process does not jump. This implies that, if x = π,

the process will never hit 0, so E[T sx ] = ∞. If x ∈ (0, π), the process

starts performing reflection, so it has a positive probability of hitting π

before getting to 0. Thus, there is a positive chance of the coupling being

unsuccessful, and so E[T sx ] =∞.

Now, looking at the expectation of the coupling time of the two coupling

strategies in Lemma 3.18 we notice that they only differ by a function that

depends on λ. This means that we can rewrite

E[Tx] =


x(π − x) + (π − x)C(λ) + sinh(

√
λ(2x−π))√
λ

C(λ) if x ≥ π
2

x(π − x) + xC(λ) if x ≤ π
2 ,

where

C(λ) =

C
r(λ) = π

2 cosh(π
√
λ)−1

for the reflection coupling,

Cs(λ) = cosech(π
√
λ)

2
√
λ

for the synchronised coupling.

Comparing the formulas for C(λ) for the two couplings, as illustrated in

Figure 3.8, we see that there exists a unique value λ? = 0.083 of λ such that

C(λ) assumes the same value in both strategies, i.e. Cr(λ) = Cs(λ). This

is the value of λ? given in Theorem 3.8. Comparing Figures 3.8 and 3.9,

we also deduce that if λ > λ∗, then Cs(λ) < Cr(λ) and the synchronised

process is faster on average than the reflected process. The opposite happens

if λ < λ∗.

Figures 3.10 and 3.11 confirm this conclusion. Figure 3.10 illustrates a

comparison between the expected coupling times of the two processes with

fixed λ (with λ > λ? in Figure 3.10a and λ < λ? in Figure 3.10b) and

x ∈ [0, π]. Figure 3.11 shows a comparison between the expectation of the

coupling time under the two coupling strategies when λ varies for two fixed

values of x. As we see from the graphs, the expectations agree at λ?.



3. Jumpy Brownian Motion on the Circumference of the Unit Circle 104

0.5 1.0 1.5 2.0 2.5 3.0
λ

-0.4

-0.2

0.2

0.4

C
r(λ)-Cs(λ)

λ*

Fig. 3.8: Comparison of the constant C(λ) under the two couplings.

3.9 Optimal coupling

Now that we have calculated the expectations of the coupling time under

the reflection and synchronised couplings and established which strategy is

better depending on the value of λ, we complete the proof of Theorem 3.8

showing that the couplings defined in Section 3.4 are mean-optimal in the

class of co-adapted couplings. To prove the mean-optimality of our coupling,

we use Bellman’s principle of optimality, which can be found in [19]. We

define the value function as

v(x) = inf
c
E[T cx ], (3.23)

the infimum over all co-adapted couplings c of E[T cx ] for a pair of jumpy

Brownian motions started at distance x under the coupling c. To establish

the optimality of our couplings, we need to show that they attain the equality

of (3.23). To do that, we define the process

V c
x (δ) =

∫ δ

0
1{Dcs>0}ds+ v̂(Dc

δ), (3.24)

for any coupling c in the class of co-adapted couplings, where v̂(Dc
δ) is the

value function under our candidate optimal couplings ĉ described in Section
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(b) Comparison of the expectation of the coupling time under the two couplings as
a function of λ and x = 3π

4

Fig. 3.9: Comparison of the expectation of the coupling time under the two cou-
plings as a function of λ.

3.4:

v̂(Dδ) = Dδ(π−Dδ)+C(λ) min{Dδ, π−Dδ}+C(λ)
sinh(

√
λ(2Dδ − π))√
λ

1Dδ>π/2,

(3.25)
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(b) Expectation of the coupling time as a function of x for the two couplings for a
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Fig. 3.10: Comparison of the expectation of the coupling time for the reflected and
the synchronised couplings for a fixed λ.

where

C(λ) =


π

2 cosh(
√
λπ)−1

if we apply the reflection coupling

cosech(
√
λπ)

2
√
λ

if we apply the synchronised coupling.
(3.26)

In other words, we run the jumpy Brownian motion using any co-adapted

coupling c until time δ, and then switch to our candidate optimal coupling

at time δ. We denote by V ĉ
x the function in (3.24) corresponding to using

our couplings since time 0. Bellman’s principle of optimality states that if
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Fig. 3.11: Comparison of the expectation of the coupling time under the two strate-
gies for two fixed values of x.

V c
x is a submartingale for all co-adapted couplings c, i.e.

lim
δ→0

E[V c
x (δ)− V c

x (0)]

δ
≥ 0,

and V ĉ
x is a martingale, then our candidate coupling ĉ is mean-optimal. In

fact, since V c
x is a submartingale,

v̂(x) = V c
x (0) ≤ E[V c

x (δ)]
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for all δ ≥ 0 and for all co-adapted couplings c. Then, from (3.24)

lim
δ→∞

E[V c
x (δ)] = lim

δ→∞
E
[∫ δ

0
1{Dcs>0}ds+ v̂(Dc

δ)

]
= E

[∫ +∞

0
1{Dcs>0}ds

]
+ 0 = E[T cx ]

for all successful co-adapted coupling c. So, v̂(x) ≤ infc E[T cx ] = v(x). Since

V ĉ
x is a martingale, the equality is satisfied by our candidate coupling ĉ,

which is therefore mean-optimal.

Now, in order to define a generic co-adapted coupling of two jumpy

Brownian motions X and X ′, we need to consider all the possible ways to

couple their Brownian motion and Poisson process components. Let Jk ∼
Exp(2λ) for k ≥ 1 be i.i.d. random variables that represent the potential

jump times, and let Yk ∼ Ber
(

1
2

)
be i.i.d. that represent tossing a fair coin

to decide whether the jumpy Brownian motion jumps at time Jk. Let Bδ

and B′δ are two independent standard Brownian motions, and consider two

jumpy Brownian motions on R

Xδ =
1

2
Bδ + π

∞∑
k=1

1{Jk<δ}Yk

X ′δ = x+
θ

2
Bδ +

√
1− θ2

2
B′δ + π

∞∑
k=1

1{Jk<δ}((1− p)Yk + p(1− Yk)),

(3.27)

where θ ∈ [−1, 1] and p ∈ [0, 1] are the control parameters of the Brownian

motion and the Poisson process components respectively. So, the diffusion

of X ′ is defined as a combination of two independent Brownian motions:

if θ = −1, it is defined as x − 1
2Bδ, which means that Xδ and X ′δ are

coupled under the reflection strategy; while if θ = 1, we get x+ 1
2Bδ, which

corresponds to the synchronised coupling. To decide whether Xδ jumps

at time Jk, we toss a fair coin Yk. As to the jumps of X ′δ, we introduce

another control parameter p: if p = 0, then the two processes always jump

simultaneously, while if p = 1, they always jump independently. Observe

that the coupling defined in (3.27) is constructed so that X ′ does not depend

on how X evolves in the future, so the coupling is co-adapted.

As we did previously, we could obtain the jumpy Brownian motions on

the circle by taking X and X ′ (mod 2π), but that would cause issues with
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the calculations required in this section. For that reason, we first define the

distance between Xδ and X ′δ as the real-valued process

Zδ = Xδ −X ′δ = x+
1− θ

2
Bδ −

√
1− θ2

2
B′t

+ π

∞∑
k=1

1{Jk<δ}[(1− (1− p))Yk − p(1− Yk)]

d
= x+

√
1− θ

2
B̃δ + π

∞∑
k=1

1{Jk<δ}p(2Yk − 1),

(3.28)

where B̃δ is a standard Brownian motion. Finally, we define Dδ = R(Zδ),

where

R(x) =



x− 2kπ x ∈ (2kπ, (2k + 1)π) for any integer k ≥ 0

or x ∈ ((2k + 1)π, (2k + 2)π) for any integer k ≤ −1

2π − (x− 2kπ) x ∈ ((2k + 1)π, (2k + 2)π) for any integer k ≥ 0

or x ∈ (2kπ, (2k + 1)π) for any integer k ≤ −1,

is a function that projects any point of R onto a point on the interval [0, π].

In other words, R is a periodic function of period 2π: it is the identity on

the interval [0, π], and it reflects any point in [π, 2π] over π. Any other point

on R is either translated directly to a point in the interval [0, π], or it is first

translated to [π, 2π] and then reflected with respect to π, so that any point

in R is mapped into a value in the interval [0, π]. Figure 3.12 shows the

graph of this function. So, R(Z) has the same effect of taking Z (mod 2π),

but it allows us to avoid the complications that would arise from the use of

(mod 2π) in the calculations exposed in the rest of this section.

From Definition 3.24, we can rewrite V c
D0

as

V c
D0

(δ) =

δ + v̂(Dδ) if δ < T cD0

T cD0
otherwise

where T cx is the coupling time of the process started from x under a coupling

c. Observe that if δ > T cD0
, then Xδ and X ′δ have already coupled by time δ,

so it follows that v̂(Dδ) = 0. We want to calculate the following expectation.

E[V c
D0

(δ)− V c
D0

(0)] = E[(δ + v̂(Dc
δ))1{T cD0

>δ} + (T cD0
+ v̂(Dc

δ))1{T cD0
<δ} − V c

D0
(0)]
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Fig. 3.12: Graph of the function R(x).

= E[δ1{T cD0
>δ} + v̂(Dc

δ) + T cD0
1{T cD0

<δ} − V c
D0

(0)]

≥ δP(T cD0
> δ) + E[v̂(Dc

δ)]− V c
D0

(0)

= δ(1− o(δ)) + E[v̂(Dc
δ)]− V c

D0
(0), (3.29)

where the last equality comes from the following observation. Let J ∼
Exp(2λp) be the random variable, independent from B̃δ, that represents the

time of the first jump in Dc, then

P(T cD0
> δ) ≥ P(both J and the hitting time of the diffusion at ±D0 are greater then δ)

= P(J > δ)P

(∣∣∣∣∣
√

1− θ
2

B̃δ

∣∣∣∣∣ < D0

)
= (1− e−2λpδ)

(
1− Erfc

(
D0√

(1− θ)δ

))
,

where e−2λpδ = o(δ) and Erfc

(
D0√

(1−θ)δ

)
= o(δ) for all p ∈ [0, 1] and θ ∈

[−1, 1]. So,

P(T cD0
> δ) ≥ 1− o(δ)

for all p ∈ [0, 1] and θ ∈ [−1, 1].

From the discussion above, it is now sufficient to show that

lim
δ→0

δ + E[v̂(Dc
δ)]− V c

D0
(0)

δ
≥ 0

for all co-adapted couplings c and that we have the equality if and only if
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we use our candidate optimal coupling since time 0. This is what we shall

do in the remainder of this section.

To make the reading easier, we use the following notations for the error

functions that will appear in the calculations in the following sections:

Erf(δ, θ, j, k) = Erf

(
j

2
√
δ(1− θ)

+ k
√
δ(1− θ)

)
Erfc(δ, θ, j, k) = 1− Erf(δ, θ, j, k),

and the following property

Erf(−z) = −Erf(z).

From (3.29) and (3.25), we need to find an expression

E[v̂(Dδ)] = E

[
Dδ(π −Dδ) + C(λ) min{Dδ, π −Dδ}+ C(λ)

sinh(
√
λ(2Dδ − π))√
λ

1Dδ>π/2

]
,

(3.30)

where C(λ) depends on the coupling strategy we apply. The formula of the

value function depends on the value of Dδ, so we distinguish the following

cases:

1. D0 ∈
(
0, π2

)
2. D0 ∈

(
π
2 , π

)
3. D0 = π

2

4. D0 = π.

Since the value functions v̂(Dδ) for our two candidate optimal couplings

differ only by the constant C(λ), we will first find lower bounds of the

functions that depend on Dδ in (3.30). We will then combine all the terms

together distinguishing between the two expressions of C(λ) as seen in (3.26),

and we will use the lower bounds previously found to establish the mean-

optimality of our candidate couplings. We will proceed in this way only for

cases 1, 2, and 3. Case 4 will require a separate discussion.
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First term of (3.30)

The first term of (3.30) can be bounded in the same way for all D0. Since

both the functionDδ(π−Dδ) and the jumps are symmetric with respect to π
2 ,

we have that Dδ(π−Dδ) is unchanged whether we see a jump before time δ or

not. From the definition of the function R, we know that R(Zδ)(π−R(Zδ)) ≥
Zδ(π − Zδ), as showed in Figure 3.13.

-π π
x

π

2

π

-
π

2

R(x)(π-R(x))

x(π-x)

Fig. 3.13: Graph of the functions R(x)(π −R(x)) and x(π − x).

We can therefore find a lower bound in the following way:

E[Dδ(π −Dδ)] = E[R(Zδ)(π −R(Zδ))] ≥ E[Zδ(π − Zδ)]

= E

[(
D0 +

√
1− θ

2
B̃δ

)(
π −D0 −

√
1− θ

2
B̃δ

)]

= D0(π −D0)− 1− θ
2

δ. (3.31)

Second term of (3.30)

To calculate the second term, we observe that min{Dδ, π−Dδ} is symmetric

with respect to π
2 . Since the jumps are also symmetric with respect to the

same point, the value of min{Dδ, π − Dδ} is once again not influenced by

the jumps. Again from the definition of the function R, we deduce that

min{R(x), π −R(x)} ≥ min{x, π − x}, as Figure 3.14 shows.

We rewrite

min{Dδ, π −Dδ} =
π

2
− |2Dδ − π|

2
,

and we distinguish the three cases depending on D0.
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-π π
x

π

2

π

-
π

2

min{R(x),π-R(x)}

min{x,π-x}

Fig. 3.14: Graph of the functions min{R(x), π −R(x)} and min{x, π − x}.

1. Let D0 ∈
(
0, π2

)
. Then,

E[min{Dδ, π −Dδ}] = E
[
π

2
− |2Dδ − π|

2

]
=
π − E[|2Dδ − π|]

2

=
1

2

(
π − E

[∣∣∣∣∣2D0 − π + 2

√
1− θ

2
B̃δ

∣∣∣∣∣
])

=
1

2

(
π − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ − (π − 2D0) Erf(δ, θ, π − 2D0, 0)

)

=
1

2

(
2D0 − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (π − 2D0) Erfc(δ, θ, π − 2D0, 0)

)
,

(3.32)

where we use Erf(z) = 1− Erfc(z).

2. Let D0 ∈ (π2 , π). Then,

E[min{Dδ, π −Dδ}] = E
[(

π

2
− |2Dδ − π|

2

)]
=
π − E[|2Dδ − π|]

2

=
1

2

(
π − E[|2D0 − π + 2

√
1− θ

2
Bδ|]

)

=
1

2

(
π − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ − (π − 2D0) Erf(δ, θ, π − 2D0, 0)

)

=
1

2

(
π − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ − (2D0 − π) Erf(δ, θ, 2D0 − π, 0)

)
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=
1

2

(
2π − 2x− 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (2D0 − π) Erfc(δ, θ, 2D0 − π, 0)

)
,

(3.33)

where we use Erf(−z) = −Erf(z) and Erf(z) = 1− Erfc(z).

3. Let D0 = π
2 . In this case, we have

Zδ =
π

2
+

√
1− θ

2
B̃δ.

As we observed above, min{R(x), π −R(x)} ≥ min{x, π − x}, so

E[min{Dδ, π −Dδ}] = E[min{R(Zδ), π −R(Zδ)}] ≥ E[min{Zδ, π − Zδ}]

=
π

2
− E[|2Zδ − π|]

2
=
π

2
−

E[|
√

2(1− θ)B̃δ|]
2

=
π

2
−
√

2(1− θ)E[|B̃δ|]
2

=
π

2
−
√

2(1− θ)
2

√
2δ

π
,

(3.34)

where we used

E[|B̃δ|] = 2

∫ ∞
0

x√
2δπ

e−
x2

2δ dx =

√
2δ

π
.

Third term of (3.30)

To find a lower bound for the third term of (3.30), we use the process Z and

an independent variable J ∼ Exp(2λp) that represents the time of the first

jump in X or X ′.

1. Let D0 ∈
(
0, π2

)
. Restricting to the case when J < δ, we obtain:

E[sinh(
√
λ(2Dδ − π))1{Dδ>π

2
}] ≥ E[sinh(

√
λ(2Dδ − π))1{Dδ>π

2
}1{J<δ}]

= E[sinh(
√
λ(2R(Zδ)− π))1{π−D0+

√
(1−θ)/2>π

2
}]P(J < δ)

≥ 2λpδ

∫ π

π
2

1√
πδ(1− θ)

sinh(
√
λ(2y − π))e

− (π−D0−y)
2

(1−θ)δ dy

= 2λpδ
1

4
e

√
λ(2(1+θ)π+(θ−1)2

√
λδ+2D0(1+θ))

1−θ
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(
e−
√
λ(π+3πθ+4D0)

1−θ
(
−Erf(δ, θ,−2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ e−
√
λ(3π+πθ+4θD0)

1−θ
(
−2 + Erfc(δ, θ, 2D0,

√
λ) + Erfc(δ, θ, π − 2D0,−

√
λ)
))

.

(3.35)

2. Let D0 ∈
(
π
2 , π

)
. Restricting to the case when J > δ yields

E[sinh(
√
λ(2Dδ − π))1{Dδ>π

2
}] ≥ E[sinh(

√
λ(2Dδ − π))1{Dδ>π

2
}1{J>δ}]

≥ E[sinh(
√
λ(2R(Zδ)− π))1

{D0+
√

(1−θ)
2

B̃δ>
π
2
}
]P(J > δ)

≥ (1− 2λpδ)

∫ π

π
2

1√
πδ(1− θ)

sinh(
√
λ(2y − π))e

− (D0−y)
2

(1−θ)δ dy

= (1− 2λpδ)
1

4
eλδ(1−θ)+

√
λ(2D0−π)

(
−1 + Erf(δ, θ, 2π − 2D0,−

√
λ)

+ e−2
√
λ(2D0−π)

(
−Erf(δ, θ, 2π − 2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ Erfc(δ, θ, π − 2D0,−
√
λ)
)
. (3.36)

3. LetD0 = π
2 . We again use Z and the following observation: 1{R(Zδ)>

π
2
} =

1 if B̃δ > 0 and J > δ, or if B̃δ < 0 and J < δ.

E[sinh(
√
λ(2Dδ − π))1{Dδ>π

2
}] = E[sinh(

√
λ(2R(Zδ)− π))1{R(Zδ)>

π
2
}]

= E
[
sinh(

√
λ(2R(Zδ)− π))

(
1{B̃δ>0}1{J>δ} + 1{B̃δ<0}1{J<δ}

)]
≥
∫ π

π
2

1√
πδ(1− θ)

sinh(
√
λ(2y − π))e

− (π2−y)
2

(1−θ)δ dy

=
1

4
e(1−α)λδ

(
2 Erf(δ, θ, 0,

√
λ)− Erf(δ, θ, π,

√
λ) + Erf(δ, θ, π,−

√
λ)
)
.

(3.37)

3.9.1 Proof of Theorem 3.8

In this section, we prove that our candidate coupling is the unique mean-

optimal coupling if λ < λ? and λ > λ? completing the proof of Theorem 3.8.

To do that, we bound E[V c
D0

(δ) − V c
D0

(0)] as in (3.29) combining the lower

bounds found in the previous paragraphs in (3.25) with C(λ) defined as

C(λ) =


π

2 cosh(
√
λπ)−1

if we apply the reflection coupling

cosech(
√
λπ)

2
√
λ

if we apply the synchronised coupling.
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Case 1. Since D0 ∈
(
0, π2

)
, the value function at time 0 is

V c
D0

(0) = D0(π −D0) +D0C(λ).

Using equations (3.31), (3.32), and (3.35), we obtain

E[V c
D0

(δ)− V c
D0

(0)] ≥ δ(1− o(δ)) +D0(π −D0)− 1− θ
2

δ

+
C(λ)

2

(
2D0 − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (π − 2D0) Erfc(δ, θ, π − 2D0, 0)

)

+
2λpδC(λ)

4
√
λ

e

√
λ(2(1+θ)π+(θ−1)2

√
λδ+2D0(1+θ))

1−θ[
e−
√
λ(π+3πθ+4D0)

1−θ
(
−Erf(δ, θ,−2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ e−
√
λ(3π+πθ+4θD0)

1−θ
(
−2 + Erfc(δ, θ, 2D0,

√
λ) + Erf(δ, θ, π − 2D0,−

√
λ)
)]

−D0(π −D0)−D0C(λ)

= δ(1− o(δ))− 1− θ
2

δ

+
C(λ)

2

(
−2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (π − 2D0) Erfc(δ, θ, π − 2D0, 0)

)

+
2λpδC(λ)

4
√
λ

e

√
λ(2(1+θ)π+(θ−1)2

√
λδ+2D0(1+θ))

1−θ[
e−
√
λ(π+3πθ+4D0)

1−θ
(
−Erf(δ, θ,−2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ e−
√
λ(3π+πθ+4θD0)

1−θ
(
−2 + Erfc(δ, θ, 2D0,

√
λ) + Erfc(δ, θ, π − 2D0,−

√
λ)
)]
.

Dividing by δ, we obtain

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ 1− o(δ)− 1− θ

2

+
C(λ)

2

(
−2

√
1− θ
πδ

e
− (π−2D0)

2

4(1−θ)δ +
(π − 2D0)

δ
Erfc(δ, θ, π − 2D0, 0)

)

+
2λpC(λ)

4
√
λ

e

√
λ(2(1+θ)π+(θ−1)2

√
λδ+2D0(1+θ))

1−θ[
e−
√
λ(π+3πθ+4D0)

1−θ
(
−Erf(δ, θ,−2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)
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+ e−
√
λ(3π+πθ+4θD0)

1−θ
(
−2 + Erfc(δ, θ, 2D0,

√
λ) + Erfc(δ, θ, π − 2D0,−

√
λ)
)]
.

Finally, we take the limit as δ → 0. The limit of the second line is

lim
δ→0

(
−2

√
1− θ
πδ

e
− (π−2D0)

2

4(1−θ)δ +
(π − 2D0)

δ
Erfc(δ, θ, π − 2D0, 0)

)
= 0,

while in the last two lines we have

lim
δ→0

Erf(δ, θ,−2D0,
√
λ) = −1, lim

δ→0
Erf(δ, θ, π − 2D0,

√
λ) = 1,

lim
δ→0

Erfc(δ, θ, 2D0,
√
λ) = 0, lim

δ→0
Erfc(δ, θ, π − 2D0,−

√
λ) = 0.

Thus, after taking the limit and combining the remaining exponential func-

tions, we obtain

lim
δ→0

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ 1 + θ

2
+

2λpC(λ)

2
√
λ

e−
√
λ(π−2D0)(e2

√
λ(π−2D0) − 1)

=
1 + θ

2
+

2λpC(λ)√
λ

sinh(
√
λ(π − 2D0)).

We now observe that this lower bound is non-negative for all θ ∈ [−1, 1] and

p ∈ [0, 1], and the equality is attained if and only if θ = −1 and p = 0. Then,

if D0 ∈ (0, π2 ), V c
D0

is a submartingale for any co-adapted coupling c, and it is

a martingale if and only if we use our candidate mean-optimal coupling, i.e.

the processes X and X ′ reflect their Brownian motion components (θ = −1)

and they jump at the same time (p = 0).

Case 2. Since D0 ∈ (π2 , π), the value function at time 0 is

V c
D0

(0) = D0(π −D0) + (π −D0)C(λ) +
sinh(

√
λ(2D0 − π))√
λ

C(λ).

We then use equations (3.31), (3.33), and (3.36) to obtain

E[V c
D0

(δ)− V c
D0

(0)] ≥ δ(1− o(δ)) +D0(π −D0)− 1− θ
2

δ

+
C(λ)

2

(
2π − 2D0 − 2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (2D0 − π) Erfc(δ, θ, 2D0 − π, 0)

)
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+
(1− 2λpδ)C(λ)

4
√
λ

eλδ(1−θ)+
√
λ(2D0−π)

[
−1 + Erf(δ, θ, 2π − 2D0,−

√
λ)

+ e−2
√
λ(2D0−π)

(
−Erf(δ, θ, 2π − 2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ Erfc(δ, θ, π − 2D0,−
√
λ)
]
−D0(π −D0)− (π −D0)C(λ)− C(λ) sinh(

√
λ(2D0 − π))√
λ

= δ(1− o(δ))− 1− θ
2

δ

+
C(λ)

2

(
−2

√
δ

1− θ
π

e
− (π−2D0)

2

4(1−θ)δ + (2D0 − π) Erfc(δ, θ, 2D0 − π, 0)

)

+
(1− 2λpδ)C(λ)

4
√
λ

eλδ(1−θ)+
√
λ(2D0−π)

[
−1 + Erf(δ, θ, 2π − 2D0,−

√
λ)

+ e−2
√
λ(2D0−π)

(
−Erf(δ, θ, 2π − 2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ Erfc(δ, θ, π − 2D0,−
√
λ)
]
− C(λ) sinh(

√
λ(2D0 − π))√
λ

.

We divide by δ,

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ (1− o(δ))− 1− θ

2

+
C(λ)

2

(
−2

√
1− θ
δπ

e
− (π−2D0)

2

4(1−θ)δ +
(2D0 − π)

δ
Erfc(δ, θ, 2D0 − π, 0)

)

+
1

δ

[
(1− 2λpδ)C(λ)

4
√
λ

eλδ(1−θ)+
√
λ(2D0−π)

(
−1 + Erf(δ, θ, 2π − 2D0,−

√
λ)

+e−2
√
λ(2D0−π)

(
−Erf(δ, θ, 2π − 2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)

+ Erfc(δ, θ, π − 2D0,−
√
λ)
)
− C(λ) sinh(

√
λ(2D0 − π))√
λ

]
,

and we take the limit as δ → 0. The limit of the second line is

lim
δ→0

(
−2

√
1− θ
δπ

e
− (π−2D0)

2

4(1−θ)δ +
(2D0 − π)

δ
Erfc(δ, θ, 2D0 − π, 0)

)
= 0,

and

lim
δ→0

[
(1− 2λpδ)C(λ)

4δ
√
λ

eλδ(1−θ)+
√
λ(2D0−π)

(
−1 + Erf(δ, θ, 2π − 2D0,−

√
λ)

+ e−2
√
λ(2D0−π)

(
−Erf(δ, θ, 2π − 2D0,

√
λ) + Erf(δ, θ, π − 2D0,

√
λ)
)
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+ Erfc(δ, θ, π − 2D0,−
√
λ)
)
− C(λ) sinh(

√
λ(2D0 − π))√
λ

]
=

1

2
e
√
λ(2D0−π)(−1 + e−2

√
λ(2D0−π))λ(−1 + θ + 2p).

Thus,

lim
δ→0

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ 1− 1− θ

2
+
C(λ)

2
√
λ
e
√
λ(2D0−π)

(−1 + e−2
√
λ(2D0−π))λ(−1 + θ + 2p)

=
1 + θ

2
+
C(λ)

2
√
λ

(−e
√
λ(2D0−π) + e−

√
λ(2D0−π))λ(−1 + θ + 2p)

=
1 + θ

2
+
C(λ)√
λ

(− sinh(
√
λ(2D0 − π)))λ(−1 + θ + 2p)

=
1 + θ

2
+
C(λ) sinh(

√
λ(2D0 − π))√
λ

λ(1− θ − 2p).

(3.38)

To show that our coupling is optimal, we need to prove that the expression

(3.38) is non-negative for all θ ∈ [−1, 1] and p ∈ [0, 1] and equal to 0 if and

only if θ = −1 and p = 1. That comes from the fact that, as we defined our

candidate optimal coupling, we want X and X ′ to reflect their Brownian

motion components (θ = −1) and to jump independently (p = 1).

In the second term of the formula, the factor 1−θ−2p is not always positive,

so we need to distinguish two cases.

i. If 1−θ−2p ≥ 0, then both terms of the sum in (3.38) are non-negative

and are both zero if and only if θ = −1 and p = 1.

ii. Alternatively, suppose that 1 − θ − 2p < 0. We distinguish two cases

depending on the value of λ.

(a) Let λ < λ?, then

π sinh(
√
λ(π))√

λ(2 cosh(
√
λπ)− 1)

<
1

2λ
.

Since D0 ∈
(
π
2 , π

)
, we have that sinh(

√
λ(2D0−π)) < sinh(

√
λπ),
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so

lim
δ→0

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ 1 + θ

2
+
π sinh(

√
λ(2D0 − π))√

λ(2 cosh(
√
λπ)− 1)

λ(1− θ − 2p)

≥ 1 + θ

2
+

1− θ − 2p

2
= 1− p ≥ 0.

(b) Let λ > λ?. The initial assumption D0 ∈ (π2 , π) implies that

2D0 − π < π, so we have

lim
δ→0

E[V c
D0

(δ)− V c
D0

(0)]

δ
≥ 1 + θ

2
+

cosech(
√
λπ) sinh(

√
λπ)

2λ
λ(1− θ − 2p)

=
1 + θ

2
+

1

2λ
λ(1− θ − 2p) =

1 + θ

2
+

1− θ − 2p

2

= 1− p ≥ 0.

In both cases, also when 1− θ − 2p < 0, the formula is non-negative.

In conclusion, we have that limδ→0
E[V cD0

(δ)−V cD0
(0)]

δ ≥ 0 for all θ ∈ [−1, 1]

and p ∈ [0, 1] and it is equal to 0 if and only if θ = −1 and p = 1, i.e. if and

only if we use our candidate mean-optimal coupling.

Case 3. Let D0 = π
2 , then

V c
π
2
(0) =

π2

4
+
π

2
C(λ).

Using (3.31), (3.34), and (3.37) yields

E[V c
π
2
(δ)− V c

π
2
(0)] ≥ δ(1− o(δ)) +

π2

4
− 1− θ

2
δ + C(λ)

(
π

2
−
√

2(1− θ)
2

√
2δ

π

)

+
C(λ)e(1−θ)λδ

4
√
λ

(
2 Erf(δ, θ, 0,

√
λ)− Erf(δ, θ, π,

√
λ) + Erf(δ, θ, π,−

√
λ)
)

− π2

4
− πC(λ)

2

= δ(1− o(δ))− 1− θ
2

δ + C(λ)

(
−
√

(1− θ)δ
π

)

+
C(λ)e(1−θ)λδ

4
√
λ

(
2 Erf(δ, θ, 0,

√
λ)− Erf(δ, θ, π,

√
λ) + Erf(δ, θ, π,−

√
λ)
)
.
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We divide by δ,

E[V c
π
2
(δ)− V c

π
2
(0)]

δ
≥ (1− o(δ))− 1− θ

2
+
C(λ)

δ
√
λ

·

[
e(1−θ)λδ

4

(
2 Erf(δ, θ, 0,

√
λ)− Erf(δ, θ, π,

√
λ) + Erf(δ, θ, π,−

√
λ)
)
−
√

(1− θ)λδ
π

]
,

and we take the limit as δ tends to 0,

lim
δ→0

E[V c
π
2
(δ)− V c

π
2
(0)]

δ
≥ 1− 1− θ

2
=

1 + θ

2
,

which is non-negative for all θ ∈ [−1, 1] and it is equal to 0 if and only

if θ = −1. So, our candidate mean-optimal coupling is the unique mean-

optimal coupling strategy.

Case 4. Finally, we consider the case D0 = π. We have

E[V c
π (δ)− V c

π (0)|D0 = π] = E
[∫ δ

0
1{T cπ>y}dy + v̂(Dc

δ)

]
− v̂(π). (3.39)

The following results will help us find a lower bound of (3.39).

Let φ(π, θ, δ; y) be the density of a Brownian motion with mean π and vari-

ance (1−θ)δ
2 at y ∈ R. We define

I1 :=

∫ π

−∞
(y(π − y) + C(λ) min{y, π − y})2φ(π, θ, δ; y)dy

= −(1− θ)δ
2

+

√
(1− θ)δ

π
[C(λ) + π − 2C(λ)e

− π2

(1−θ)δ ] + C(λ)πErfc(δ, θ, π, 0),

and

I2 :=

∫ π

−∞

C(λ)√
λ

sinh(
√
λ(2y − π))2φ(π, θ, δ; y)dy

= e(1−θ)δλC(λ)√
λ

[sinh(
√
λπ)− cosh(

√
λπ) Erf(δ, θ, 0,

√
λ)].

Now, let J ∼ Exp(2λp) be the first time X or X ′ jumps, then

E[v̂(Dδ)] ≥ E[v̂(Dδ)|J > δ]e−2λpδ ≥ (I1 + I2)e−2λpδ,



3. Jumpy Brownian Motion on the Circumference of the Unit Circle 122

where e−2λpδ = P(J > δ). So,

E[v̂(Dδ)]− v̂(π) ≥ (I1 + I2)e−2λpδ − v̂(π)

= e−2λpδ

[
−(1− θ)δ

2
+

√
(1− θ)δ

π
[C(λ) + π − 2C(λ)e

− π2

(1−θ)δ ] + C(λ)πErfc(δ, θ, π, 0)

+ e(1−θ)δλC(λ)√
λ

[sinh(
√
λπ)− cosh(

√
λπ) Erf(δ, θ, 0,

√
λ)]

]
− v̂(π)

= e−2λpδ

[
−(1− θ)δ

2
−
√

(1− θ)δ
π

2C(λ)e
− π2

(1−θ)δ + C(λ)πErfc(δ, θ, π, 0)

]
− v̂(π)[1− e−2λpδ+(1−θ)δλ]

+ e−2λpδ

[√
(1− θ)δ

π
(C(λ) + π)− e(1−θ)δλC(λ)√

λ
cosh(

√
λπ) Erf(δ, θ, 0,

√
λ)

]
.

(3.40)

We take the Taylor series around point 0 of the last term√
(1− θ)δ

π
(C(λ) + π)− e(1−θ)δλC(λ)√

λ
cosh(

√
λπ) Erf(δ, θ, 0,

√
λ)

∼ (C(λ) + π)
1− θ
π

√
δ − C(λ)√

λ
cosh(

√
λπ)2

(1− θ)λ
π

√
δ +O(δ

3
2 )

=
(1− θ)δ

π
(C(λ) + π − 2C(λ) cosh(

√
λπ)) +O(δ

3
2 ) = O(δ

3
2 ).

So, we get

E[v̂(Dδ)]− v̂(π) ≥ e−2λpδ

[
−(1− θ)δ

2
−
√

(1− θ)δ
π

2C(λ)e
− π2

(1−θ)δ + C(λ)πErfc(δ, θ, π, 0)

]
− v̂(π)[1− e−2λpδ+(1−θ)δλ] +O(δ

3
2 ).

Now, we need to distinguish the following two cases.

• Let λ < λ?. Then,

E[V c
π (δ)− V c

π (0)|D0 = π] ≥ δ + e−2λpδ

[
−(1− θ)δ

2
−
√

(1− θ)δ
π

2C(λ)e
− π2

(1−θ)δ

+ C(λ)πErfc(δ, θ, π, 0)]− v̂(π)[1− e−2λpδ+(1−θ)δλ] +O(δ
3
2 ).
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We divide by δ and let δ → 0

lim
δ→0

E[V c
π (δ)− V c

π (0)|D0 = π]

δ
≥ 1− 1− θ

2
− v̂(π)(2λp− (1− θ)λ)

=

(
1

2
+ λv̂(π)

)
− p(2λv̂(π)) + θ

(
1

2
− λv̂(π)

)
.

Since λ < λ?, v̂(π) ≤ 1
2λ , the last term is non-negative for all θ ∈

[−1, 1] and p ∈ [0, 1], and the lower bound is minimised when p = 1

and θ = −1. Finally, when p = 1 and θ = −1, it is equal to 0,

as required. So, the reflection coupling is the unique mean-optimal

coupling strategy.

This completes the proof of Theorem 3.8(i).

• Let λ > λ?. Observe that

C(λ) + π − 2C(λ) cosh(
√
λπ) =

cosech(
√
λπ)

2
√
λ

+ π − 2 cosh(
√
λπ)

cosech(
√
λπ)

2
√
λ

=
1

2
√
λ sinh(

√
λπ)

+ π − 2 cosh(
√
λπ)

2
√
λ sinh(

√
λπ)

=
1 + 2π

√
λ sinh(

√
λπ)− 2 cosh(

√
λπ)

2
√
λ sinh(

√
λπ)

>
1 + 2 cosh(

√
λπ)− 1− 2 cosh(

√
λπ)

2
√
λ sinh(

√
λπ)

,

where the last inequality comes from the assumption λ > λ?, so

π sinh(
√
λπ)√

λ(2 cosh(
√
λπ)− 1)

>
1

2λ
,

which is equivalent to

2π
√
λ sinh(

√
λπ) > 2 cosh(

√
λπ)− 1.

So we have that C(λ) + π − 2C(λ) cosh(
√
λπ) ≥ 0 for all θ ∈ [−1, 1]

and p ∈ [0, 1], then

(1− θ)δ
π

(C(λ) + π − 2C(λ) cosh(
√
λπ)),

is non-negative for all θ ∈ [−1, 1] and p ∈ [0, 1] and it is equal to 0 if
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and only if θ = 1, i.e. if and only if X and X ′ are synchronised. So, if

we let θ = 1, we have that the third term of (3.40) cancels, and, since

Erfc(δ, θ, π, 0)→θ→1 0, also the first term disappears. So,

E[v̂(Dc
δ)]− v̂(π) ≥ −v̂(π)[1− e−2λpδ] +O(δ

3
2 )

= − 1

2λ
[1− e−2λpδ] +O(δ

3
2 ).

Thus, from (3.39),

E[V c
π (δ)− V c

π (0)|D0 = π] ≥ δ − 1

2λ
[1− e−2λpδ] +O(δ

3
2 ).

Dividing by δ and taking the limit as δ → 0 yield

E[V c
π (δ)− V c

π (0)|D0 = π]

δ
≥ 1− 1

2λ

1− e−2λpδ

δ
+O(δ

1
2 ) −−−→

δ→0
1− 1

2λ
2λp = 1−p.

We know that 1 − p ≥ 0 for all p ∈ [0, 1], while 1 − p = 0 if and

only if p = 1, as required. So, the synchronised coupling is the unique

mean-optimal coupling strategy.

This completes the proof of Theorem 3.8(ii).
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3.10 Further thoughts

In this chapter, we showed for any value of λ 6= λ? there exists a unique

mean-optimal co-adapted coupling: when λ < λ?, this is the reflection cou-

pling of Definition 3.6, and when λ > λ?, this is the synchronised coupling

of Definition 3.5. In general, a co-adapted coupling can be maximal; an

example of that is given in Chapter 1, where we observed that the reflec-

tion coupling is maximal and co-adapted for the one-dimensional Brownian

motion. To decide whether our mean-optimal coupling is maximal, we can

compare it to a maximal coupling.

First, we find the Laplace transform of the maximal coupling time τ?

when the two jumpy Brownian motions start at distance π.

E[e−γτ
?
] =

∫ ∞
0

e−γtP(τ? ∈ dt) =

∫ ∞
0

e−γt
(
− d

dt
P(τ? > t)

)
dt.

As we have seen in Section 3.3,

P(τ? > t) = P(τ > t)P(J > t) = P(τ > t)e−2λt,

so, where J ∼ Exp(2λ) is the time of the first jump and τ is the first hitting

time of a standard Brownian motion at level ±π.

E[e−γτ
?
] =

∫ ∞
0

e−γt
(

2λe−2λtP(τ > t)− e−2λt d

dt
P(τ > t)

)
dt

=
2λ

2λ+ γ

∫ ∞
0

(2λ+ γ)e−(2λ+γ)tP(τ > t)dt+

∫ ∞
0

e−(2λ+γ)tP(τ ∈ dt)

=
2λ

2λ+ γ
P(τ > Exp(2λ+ γ)) + E[e−(2λ+γ)τ ],

where the probability in the first term is given by Lemma 3.7, and the second

term is the Laplace transform of the hitting time of a standard Brownian

motion at level ±π. Thus,

E[e−γτ
?
] =

2λ

2λ+ γ
+

γ

2λ+ γ

1

cosh(π
√

2(2λ+ γ)
.

To calculate the expectation of τ?, we differentiate the Laplace transform
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with respect to γ and we take the limit as γ → 0:

E[τ?] =
1− sech(2π

√
λ)

2λ
.

Figures 3.16 and 3.15 show a comparison between the expectation and

Laplace transform of the coupling time under our mean-optimal strategies

and under the maximal coupling defined in Section 3.3 for two jumpy Brow-

nian motions started at distance π. From the graphs of the expectation and

Laplace transforms, we can conclude that these coupling times do not have

the same distribution and that the mean-optimal co-adapted coupling is not

maximal.

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tπ ]

Maximal coupling

Reflection coupling

Synchronised coupling

(a) Laplace transform of the coupling time with λ = 0.2 > λ? for two copies of
the jumpy Brownian motion started at distance π under the reflection and
synchronised couplings and under a maximal coupling.

0.2 0.4 0.6 0.8 1.0
γ

0.2

0.4

0.6

0.8

1.0

[e-γ Tπ ]

Maximal coupling

Reflection coupling

Synchronised coupling

(b) Laplace transform of the coupling time with λ = 0.05 < λ? for two copies
of the jumpy Brownian motion started at distance π under the reflection and
synchronised couplings and under a maximal coupling.

Fig. 3.15: Laplace transform of the coupling time for two copies of the jumpy Brow-
nian motion started at distance π under the reflection and synchronised
couplings and under a maximal coupling.
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0.2 0.4 0.6 0.8 1.0
λ0

2
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6

8

10
[Tπ]

λ*

Maximal coupling

Reflection coupling

Synchronised coupling

Fig. 3.16: Expectation of the coupling time for two copies of the jumpy Brownian
motion started at distance π under the reflection and synchronised cou-
plings and under the maximal coupling.

An interesting extension of the study presented in this chapter is the

possibility for the Brownian motion to jump at rate λ to any point on the

circumference. As an easier case, we can start with the Brownian motion

that at rate λ jumps from the current point x to x ± 2π
3 (mod 2π). Figure

3.17 shows a simulation of this jumpy Brownian motion.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

π

π/3

2π/3

0

Time

S
pa
ce

Fig. 3.17: Simulation of the jumpy Brownian motion started at 5π
6 that jumps from

x to x± 2π
3 (mod 2π) with λ = 0.3.

As we did before, we can consider the process Dt as the distance on

the circumference between two copies X and X ′ of the jumpy Brownian

motion, so that D diffuses in the interval [0, π] with potential jumps of rate

2λ. We can split the interval [0, π] in which D diffuses into three intervals,[
0, π3

]
,
(
π
3 ,

2π
3

)
, and

[
2π
3 , π

]
. As we did for our original jumpy Brownian

motion problem, it is intuitively reasonable to reflect the Brownian motion
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components of X and X ′, so we start with a reflection coupling. We then

need to determine a sensible strategy to couple the jump components in

order to minimise the expected coupling time. When we see a jump we have

different ways of coupling X and X ′: we could let only the corresponding

Brownian motion jump and keep the other one still; or we could synchronise

the jumps and let the two processes jump at the same time, and we could

also choose of letting them jump in the same direction or in the opposite.

Analysing numerically some of the possible couplings, we think that the

following rules might be needed to construct an optimal coupling:

1. If Dt− ∈
[
0, π3

]
, we synchronise both the jump times and directions,

so that X and X ′ jump synchronously and Dt = Dt− is unchanged.

2. If Dt− ∈
[

2π
3 , π

]
, we let the processes jump independently. To decide

the direction of the jump, we toss a coin and if we get heads, the

process will jump anticlockwise, otherwise it will jump clockwise.

It is still not clear to us what the most efficient strategy is when Dt− ∈(
π
3 ,

2π
3

)
. At the moment, we considered the following strategy: we syn-

chronise the jumps to leave the distance on the circumference unchanged

if Dt− ≤ x?, and we let the processes jump independently otherwise. The

question then becomes making a sensible choice for x?.

Figure 3.18 shows a simulation of the expectation of the coupling time

τcouple under the strategy described above for x? = π
3 and x? = π

2 . Based on

the simulation, it looks like setting x? = π
3 would be more efficient. However,

this is a numerical evaluation under only one of the possible couplings and

using only two of the possible values of x?, and other co-adapted couplings

might reveal to be even more efficient. Also, as we have seen above, the

optimal coupling strategy, assuming one exists, will depend upon λ, and

so further investigation would be required before we are able to arrive at a

conjectured optimal coupling under these altered dynamics.
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ππ/4 3π/4π/2
x
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[τcouple]

Synchronised up to π/2

Synchronised up to π/3

Fig. 3.18: Simulation of the expectation of the coupling time with λ = 0.2 for
x? = π

2 and x? = π
3 .



4. CONCLUSION

The coupling method has played an essential role in this thesis. Coupling has

a strong connection with the total variation distance and can be an effective

technique to help study the convergence of random walks and, possibly,

establish cutoff.

In chapter 2, we generalised Nestoridi’s paper on the mixing time for the

random walk on Zn2 that at each step flips k randomly chosen coordinates.

We let the number of coordinates flipped at each step be a random variable

K, and we established bounds for the mixing time of this random walk.

To find an upper bound, we employed a similar path coupling argument

of Nestoridi, correcting her result and establishing an upper bound for the

mixing time in terms of E[K(n−K)]. The upper bound we found is double

what we think the correct mixing time is, but we suggested another method

that might give a tighter bound. Then, using representation theory and

Wilson’s lemma, we found a lower bound that in general does not match the

upper bound. However, we showed that in some cases it can be improved,

and we proved that, under the assumption E[K] = o(n), the random walk

exhibits a pre-cutoff.

In Chapter 3, we focused on another aspect of coupling, namely mean-

optimality. The process under examination was the Brownian motion on

the circumference of the unit circle that, at times given by an independent

Poisson process of rate λ, jumps to the opposite point on the circle. After

exploring some distributional properties of this process, we constructed two

co-adapted couplings of two jumpy Brownian motions X and X ′ using a

third process D defined as the distance on the circle between X and X ′.

These two couplings, that we called the reflection coupling and the synchro-

nised coupling, differ only in the strategy adopted when D hits π. Since

we were interested in studying the optimality of these couplings, we needed

to know more about the distribution of the coupling time. The presence of

the jumps in the diffusion of the jumpy Brownian motion suggested that we
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should apply excursion theory to find an explicit expression of the Laplace

transform of the coupling time, which we then used to derive its expectation.

As we saw in Section 3.8, the expected coupling time under the two strate-

gies differs only by a function C(λ), and there exists a unique point λ? at

which C(λ) assumes the same value in the two couplings. Then, using Bell-

man’s principle of optimality, we showed that for any λ < λ? the reflection

coupling is the unique mean-optimal co-adapted coupling, while if λ > λ?

the synchronised coupling is the unique mean-optimal co-adapted coupling.

Finally, we compared the reflection and synchronised couplings to a maximal

coupling. Using the exact formulas of the Laplace transform and expectation

of the maximal coupling time, we graphically showed that the distribution

of the coupling times under the mean-optimal co-adapted coupling differs

from the distribution of the maximal coupling time, therefore the reflection

and synchronised couplings are mean-optimal but not maximal.
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A. EXPECTATION AND VARIANCE FROM SECTION 2.2.4

In Section 2.2.4, we used the eigenfunction f1(x) =
√
n
(

1− 2|x|
n

)
to find

tighter lower bounds for the mixing time of the random walk on the hyper-

cube than the lower bound found in Section 2.2.3. In Case 1, we assumed

E[K] = O(nε) with ε ∈ (0, 1), and we claimed that if ` = n2

2E[K(n−K)](log n−
2c) with c < 1

2 log n and nE[K]
E[K(n−K)] ∼ 1, then

E[f1(Z`)] ∼ ec
(

1 +
(E[K])2

4E[K(n−K)]
(log n− 2c)

)
≥ ec,

and

Var(f1(Z`)) ∼ 1+e2c

(
E[K(n−K)]

(n− 1)2
(log n− 2c)− (E[K])2

2E[K(n−K)]
(log n− 2c)

)
.

Using the eigenvalue corresponding to f1, we obtain

E[f1(Z`)] =
√
n

(
1− E[K]

n

)`
=
√
ne

` log
(

1−E[K]
n

)

=
√
n exp

{
− nE[K]

2E[K(n−K)]
(log n− 2c) +

(E[K])2

4E[K(n−K)]
(log n− 2c)

+ o

(
(E[K])2

E[K(n−K)]
log n

)}
∼ exp

{
c+

(E[K])2

4E[K(n−K)]
(log n− 2c) + o

(
(E[K])2

E[K(n−K)]
log n

)}
.

The second line follows from the Taylor expansion

log

(
1− E[K]

n

)
= −E[K]

n
+

(E[K])2

2n2
+ o

(
(E[K])2

n2

)
.

Also, from nE[K]
E[K(n−K)] ∼ 1, it follows

exp

{
− nE[K]

2E[K(n−K)]
(log n− 2c)

}
∼ e−

1
2

(logn−2c).
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Since
(E[K])2

4E[K(n−K)]
(log n− 2c) = O(nε−1 log n)→ 0,

the expectation

E[f1(Z`)] ∼ ec
(

1 +
(E[K])2

4E[K(n−K)]
(log n− 2c)

)
≥ ec.

For the variance, we apply the Taylor expansion

log

(
1− 2E[K(n−K)]

n(n− 1)

)
= −2E[K(n−K)]

n(n− 1)
+

2(E[K(n−K)])2

n2(n− 1)2
+o

(
(E[K(n−K)])2

n2(n− 1)2

)
.

We can observe that

n

(
1− E[K]

n

)2`

= exp

{
2c+

(E[K])2

2E[K(n−K)]
(log n− 2c) + o

(
(E[K])2

E[K(n−K)]
log n

)}
and that, from n

n−1 ∼ 1, it follows

exp

{
− n

n− 1
(log n− 2c)

}
∼ e−(logn−2c).

Then,

(n− 1)

[
1− 2E[K(n−K)]

n(n− 1)

]`
= (n− 1) exp

{
` log

(
1− 2E[K(n−K)]

n(n− 1)

)}
= (n− 1) exp

{
− n

n− 1
(log n− 2c) +

E[K(n−K)]

(n− 1)2
(log n− 2c)

+ o

(
E[K(n−K)]

(n− 1)2
log n

)}
∼ exp

{
2c+

E[K(n−K)]

(n− 1)2
(log n− 2c) + o

(
E[K(n−K)]

(n− 1)2
log n

)}
.

Then,

Var(f1(Z`)) ∼ 1 + e2c

[
exp

{
E[K(n−K)]

(n− 1)2
(log n− 2c) + o

(
E[K(n−K)]

(n− 1)2
log n

)}
− exp

{
(E[K])2

2E[K(n−K)]
(log n− 2c) + o

(
(E[K])2

E[K(n−K)]
log n

)}]
.
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We have that

E[K(n−K)]

(n− 1)2
= O(nε−1)→ 0 and

(E[K])2

2E[K(n−K)]
= O(nε−1)→ 0

. Then,

exp

{
E[K(n−K)]

(n− 1)2
(log n− 2c)

}
− exp

{
(E[K])2

2E[K(n−K)]
(log n− 2c)

}
∼ E[K(n−K)]

(n− 1)2
(log n− 2c)− (E[K])2

2E[K(n−K)]
(log n− 2c)

= O(nε−1 log n)→ 0,

and

Var(f1(Z`)) ∼ 1+e2c

(
E[K(n−K)]

(n− 1)2
(log n− 2c)− (E[K])2

2E[K(n−K)]
(log n− 2c)

)
.



B. FORMULAS OF THE LAPLACE TRANSFORM FROM

SECTION 3.6.3

We can give an explicit expression for (3.17) for any x ∈ (0, π). Since the

formulas depend on the coupling, we denote by T rx and T sx the coupling time

for, respectively, the reflection coupling and the synchronised coupling with

D0 = x.

1. If x ∈ (0, π2 ),

E[e−γTx ] = E[e−γTx(F )] + E[e−γTx(F )
1{D(Tx(F ))=π

2
}](E[e

−γTπ
2 ]− 1)

=
cosech((π2 − x)β) + cosech(xβ)

coth((π2 − x)β) + coth(xβ)
+

cosech((π2 − x)β)

coth((π2 − x)β) + coth(xβ)
·

·
[

1

cosh(π2β)
+

α

2β
tanh

(π
2
β
)
· cosech

(π
2
α
) (

E
[
e−γTπ

]
− 1
)
− 1

]
,

where the expression for E
[
e−γTπ

]
depends on the strategy adopted when

starting from π.

A. Reflected process.

E[e−γT
r
x ] =

cosech(xβ)[2− sech(π2α) sech(π2β)]

[2− sech(π2α) sech(π2β)][coth((π2 − x)β) + coth(xβ)]

−
cosech((π2 − x)β)[−2 sech(π2β) + sech(π2α)]

[2− sech(π2α) sech(π2β)][coth((π2 − x)β) + coth(xβ)]

B. Synchronised process.

E[e−γT
s
x ] =

cosech(xβ) + cosech((π2 − x)β) sech(π2β)

coth((π2 − x)β) + coth(xβ)

− β

2α

cosech((π2 − x)β) tanh(π2β) cosech(π2α)

coth((π2 − x)β) + coth(xβ)
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2. If x ∈ (π2 , π),

E[e−γTx ] = E[e−γTx(F )] + E[e−γTx(F )
1{D(Tx(F ))=π

2
}](E[e

−γTπ
2 ]− 1)

+ E[e−γTx(F )
1{D(Tx(F ))=π}](E[e−γTπ ]− 1)

=
cosech((π − x)β) + cosech((x− π

2 )β)

coth((π − x)β) + coth((x− π
2 )β)

+
cosech((π − x)β)

coth((π − x)β) + coth((x− π
2 )β)

·

·
[

1

cosh(π2β)
+

α

2β
tanh

(π
2
β
)
· cosech

(π
2
α
) (

E
[
e−γTπ

]
− 1
)
− 1

]
+

cosech((π − x)α)

coth((π − x)α) + coth((x− π
2 )α)

(E[e−γTπ ]− 1),

where the expression for E
[
e−γTπ

]
depends on the strategy adopted when

starting from π.

A. Reflected process.

E[e−γT
r
x ] =

cosech((π − x)β) + cosech((x− π
2 )β) sech(π2β)

coth((π − x)β) + coth((x− π
2 )β)

−
cosech((x− π

2 )β) sech(π2α) tanh2(π2β)

[2− sech(π2α) sech(π2β)][coth((π − x)β) + coth((x− π
2 )β)]

−
2β
α cosech((π − x)α) tanh(π2α) tanh(π2β)

[2− sech(π2α) sech(π2β)][coth((π − x)α) + coth((x− π
2 )α)]

B. Synchronised process.

E[e−γT
s
x ] =

cosech((π − x)β) + cosech((x− π
2 )β) sech(π2β)

coth((π − x)β) + coth((x− π
2 )β)

− β

2α

cosech((x− π
2 )β) tanh(π2β) cosech(π2α)

coth((π − x)β) + coth((x− π
2 )β)

− β2 cosech((π − x)α)

α2[coth((π − x)α) + coth((x− π
2 )α)]
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Poincaré, Probabilités et Statistiques, volume 56, pages 2621–2639. In-

stitut Henri Poincaré, 2020.
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