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ABSTRACT 

   Shared use of on-demand ride service can only reduce traffic congestion and its 

concomitant problem if its popularity exceeds a non-shared use which is often 

provided through the same platform and may dominate. Endogeneity among users 

(i.e. availability of sharing partners) and between users and providers (i.e. feedback 

loop between them) embeds uncertainty in the system. It complicates predicting 

what level of service users will experience. Several studies modelled day-to-day 

dynamics in an on-demand ride service system considering a feedback loop 

between providers and users, yet, it is often modelled with a deterministic 

approach. This thesis aims to develop a stochastic process model to investigate the 

impact of variability on the evolution of a system attribute to the feedback loop 

between users and providers and the endogeneity among users. 

A stochastic process model represents the day-to-day learning and decision-

making process of users and providers. Users (providers) reconsider a service to 

request (offer) every day by comparing their experienced utility (profit) to use 

(provide) each service with the collective average utility (profit) of unselected 

service between non-shared and shared service. The collective average utility 

(profit) is estimated every day as the weighted sum of the mean utility (profit) 

among today’s users (drivers) and the collective average utility (profit) of the 

previous day. Service shift occurs for only a proportion of those who consider a 

change, which reflects a range of choice inertia and hesitation towards change. 

Changes in fleet size and demand give rise to a new experience for users and 

drivers on the next day. A queueing model is utilized to model an on-demand ride 

service system, which provides variables to estimate utility and profit. For a shared 

service, a fair cost split among users is modelled with a modified Shapley Value, 

which is newly proposed in this research.  

With the developed model, the two types of numerical experiments have been 

conducted with different parameter settings; 1) those with a fixed fleet size and 2) 

those with variable fleet size. The former experiments aimed to understand the 

attributes of the proposed model. The results suggest that the service network 

geometry is the main determinants of the stationary distribution of mode share. The 

experiment with unfixed fleet size showed that the proposed stochastic process 

consists of three regimes, the pseudo stable, the pseudo periodic, and the swan 

regime. It is discovered that, depending on the parameter setting, the frequency 

and length for each regime changes, which results in changing the stationary 

distribution of mode share and the proportion of fleet. 
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Chapter 1 Introduction  

 Background  

   It is widely recognised that the transport sector has contributed significantly to the 

current climate emergency by producing an enormous amount of greenhouse gas 

(GHG) emissions. For instance, in 2018, approximately 15% of GHG emissions 

came from the transport sector in the UK(Thomas, 2020). The fundamental problem 

arises from the number of vehicles on the road being too many, especially private 

cars with low car occupancy. According to UK Environmental Accounts:2020, 

approximately12% of GHG emissions were generated by domestic car use in 2018 

in the UK (Thomas, 2020). Shifting travellers from car to mass transit is one solution 

to reduce GHG emissions by reducing traffic volume and vehicle kilometres 

travelled (VKT). It could also contribute to other concomitant problems such as 

traffic congestion which is economically and environmentally unfavourable. 

However, car-based mobility has set our expectations for well-connected "door-to-

door" travel as the standard transport option. This level of service and convenience 

is challenging to achieve with mass transit.  

Recently, transportation network companies (TNCs) (e.g. Uber, Lyft, and DiDi) are 

recording rapid growth worldwide. TNCs provide a platform for an on-demand 

online matching between those willing to take a ride and those willing to offer a ride. 

Though TNCs were founded only five to ten years ago (e.g. Uber in 2009, Ola in 

2010, and Didi, Grab and Lyft in 2012), they have already reached 15 to 20 billion 

rides in 2018 (ITF, 2020). Initially, on-demand ride services provided by TNCs were 

expected to reduce the amount of traffic and, therefore, total VKT by solving the 

"last mile problem", which is often identified as the main barrier to use mass transit 

(Docherty et al., 2018). The "last mile problem" is the lack of adequate transport 

options from a transit station to the final destination (Wang, Hai and Odoni, 2016).  

Docherty et al. (2018) pointed out that the rapid growth of TNCs and on-demand 

ride services are led by a technological sector that provides software and hardware. 

From the technological industry’s perspective, it is more beneficial to have a bigger 

market to maximise their returns on investment. Therefore, they seek to encourage 

more mobility, not less. Thus, there is a need for intervention from transport 

planners and policymakers to ensure that the introduction of on-demand ride 

services will bring the desired outcome, reducing VKT. It is, therefore, crucial to 

understand how an on-demand ride service evolves over the long term to deliver 

effective measures.  
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 Characteristics of on-demand ride services  

   On-demand ride services are described as a transport service via an on-demand 

ride service platform, enabling app users to match with potential sharing partners 

and drivers. On-demand ride service is classified as one type of shared mobility, 

specifically within the category of shared ride services. Shared ride service is 

defined as two or more people share their trip simultaneously. Another type of 

shared mobility, car sharing, indicates two or more people share a vehicle over 

time, yet, not their ride, which is beyond the scope of this study.   

Following the classification conducted by Shaheen and Cohen (2019), shared ride 

services can be divided into three categories: 1) core pooled services, 2) 

ridesharing, and 3) on-demand ride services. Core pooled services include a wide 

range of non-app-based passenger transport which involves pooling – simultaneous 

sharing of a vehicle journey between multiple travellers (e.g. bus and shuttle). 

Ridesharing indicates a non-profit shared ride between two or more travellers (e.g. 

carpooling and vanpooling).  

The difference between ridesharing and on-demand ride service is in the drivers’ 

motivation and the presence of drivers’ primal origin and destination (OD). In on-

demand ride services, drivers offer services to passengers (service users) to make 

a profit. Therefore, they do not have their own specific ODs to travel and, instead, 

drive to the origin of a trip requested by users, which produces "empty-miles". On 

the other hand, ridesharing drivers have their OD, and their motivation is often to 

share the cost of travelling between that specific OD. Therefore, a trip to pick up a 

passenger is treated as a detour rather than producing empty miles. 

On-demand ride services could be further classified into two subcategories1 based 

on if they are used as a non-shared (non-shared on-demand ride service) or shared 

service (shared on-demand ride service)  (see Figure 1). A non-shared on-demand 

ride service implies that a vehicle accommodates only one trip request at the same 

time. It should be noted that a trip request could contain more than one user but 

contains only one OD pair. Ridesourcing and taxi/e-hail2 services are classified into 

this category. A shared on-demand ride service indicates that one vehicle 

accommodates two or more requests at the same time. The example of this is 

 

1Shaheen and Cohen (2019) did not classify an on-demand ride service in this 
manner. Hence, this subcategorization is inspired by them but original in this study  
2 In Shaheen and Cohen (2019), taxi and E-hail are not clearly defined if they are 

categorised as an on-demand ride service. However, in this study, both 
services are classified as an on-demand ride service  
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ridesplitting, taxi sharing and Demand Responsive Transport (DRT).  Detailed 

descriptions of each service are summarised in Table 1. 

 

Figure 1 the subcategorisation of on-demand ride service and example of 
transport service belonging to each subcategory 

Table 1 Description of different forms of on-demand services (Jin et al., 2018, 
Shaheen et al., 2016, and Shaheen and Cohen, 2018) 

Service name  Definition  

Ridesourcing  Ridesourcing refers to transport services that connect a driver 

with a private vehicle and a passenger through a mobile app 

provided by Ridesourcing company also known as Transport 

Network Companies (TNCs), mobility service providers and 

ride-hailing. 

Ridesplitting  A variation of Ridesourcing where multiple passengers with 

different origin and destination but a similar route share their 

rides at a reduced fare.  

Taxi sharing   Taxis pick up two or more unaffiliated individual or group with 

different origins or/and destinations. It is also referred to as taxi 

sharing, taxi splitting, shared ride taxis.  

Taxi/E-hail  Traditional taxi picking up only one group of people with the 

same origin and destination. If it is operated with an app-based 

system, it is defined as an e-hail service.  

DRT Demand responsive transit service typically consists of a van or 

a minibus. It can have a flexible route or/and schedules 

depending on service. It is also referred to as Microtransit.   
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Table 2 compares shared on-demand ride services, non-shared on-demand ride 

services, and mass transit systems (e.g. buses and trams).  A publicly operated 

mass transit (e.g. buses, trams) is intended to provide a low-cost service to many 

users. However, their routes and schedules are fixed, which requires users to 

adjust their travel plans accordingly and is often perceived as inconvenient. On the 

other hand, a non-shared on-demand ride service (e.g. taxi) can offer customised 

door-to-door service, yet, its cost is higher than mass transit, which could be 

perceived as unaffordable.  Shared on-demand ride services can provide a semi-

individualised service with a medium-ranged price; in other words, a service 

"somewhere between" bus and taxi (Ho et al., 2018). Hence, it is expected to 

perform as an affordable and convenient service and be the middle solution.  

Table 2 Comparison among mass transit, shared and non-shared on-demand 
ride service in terms of various attributes (modified from Ho et al., 2018) 

 Mass transit   Shared on-demand 

ride services 

Non-shared on-

demand ride service 

Route  fixed fixed/flexible  flexible  

Schedule  fixed semi-fixed/ by request by request 

Speed slow  Medium fast 

Cost low  medium high 

Mode shared  shared  non-shared  

Capacity  High medium low 

Reservation  not needed  often needed  often not needed  

 Shared on-demand ride service: good or bad? 

   Several studies suggest the positive impact a shared on-demand ride service 

could bring. Using taxi trip data in New York City, Santi et al. (2014) estimated that 

replacing some compatible non-shared taxi trips with shared taxi trips could reduce 

the number of trips by approximately 40%, reducing carbon dioxide emissions by 

423 grams per mile. Chen, X. et al. (2018) analysed trip data from a ridesplitting 

service, DiDi Express, and ridesharing platform, DiDi Hitch, in Hangzhou, China 

and conducted a questionnaire survey to service users. The survey results showed 

the potential of ridesplitting to reduce private car usage and vehicle kilometres 

travelled (VKT). 

Despite the positive expectation towards shared on-demand ride service, it does 

not guarantee beneficial outcomes. As a result of a before-and-after assessment 
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using real-world data, Erhardt et al. (2019) concluded that Transport Network 

Companies (TNCs), which could offer both non-shared and shared on-demand ride 

service, added congestion and VKT in San Francisco as well as worsening travel 

time reliability. Wu et al. (2018) suggested from a case study that the introduction of 

TNCs3 in China has generated additional GHG emissions. Also, several studies 

discovered that on-demand ride services attract users from mass transit (e.g. buses 

and trains) as well as from active transport mode (e.g. bicycle and walking) 

(Schwieterman and Smith, 2018, Chen et al., 2018, Clewlow and Mishra, 2017, 

Tiranchini. A., 2020). The reduction in VKT becomes less when the modal shift 

occurs from mass transit or active transport mode more intensely than a private car 

(Chen et al., 2018). 

As on-demand ride service could be a substitute and supplement of mass transit, 

coordination between shared on-demand ride service and mass transit is essential 

to offer a more flexible and affordable door-to-door mobility option without the need 

for a private vehicle. It is also the background idea of the new concept, "Mobility-as-

a-Service (MaaS)" (Matyas and Kamargianni, 2017). Ultimately, unless the 

introduction of a trip-sharing mode induces a shift from low occupancy car to high 

occupancy car (and other) mode, the level of road traffic will not decrease. Besides, 

even if they are well-integrated, it does not necessarily mitigate negative 

externalities unless shared use of on-demand ride service becomes the standard 

option. Considering that on-demand ride services produce "empty miles", they 

could generate more VKT than private cars, especially if used as a non-shared 

service. Several simulation studies indicate that the mean number of passenger of 

on-demand ride service needs to be higher than 1 per vehicle to achieve optimal 

service use and reduce VKT (Alonso-Mora et al., 2017). However, the growth of a 

shared on-demand ride service tends to be much limited compared to a non-shared 

on-demand ride service (Tirachini et al., 2020).  

Since both non-shared and shared on-demand ride services are often offered 

through the same platform, there are almost no physical or technical barriers for 

users to change between them. With the tendency of on-demand ride services to 

substitute mass transit, it is crucial to understand how mode shift between shared 

and non-shared on-demand services occurs to prevent the introduction of on-

demand ride service from bringing negative impacts to the current transport system.  

 

3 Wu et al. (2018) use the term “online car hailing service” to describe services 
provided by TNCs such as Uber, Lyft, Didi.  
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 The evolution of transport service system depends on 
feedback 

    The existence of a feedback loop between service providers and users has been 

well recognised and studied primarily in the context of mass transit, such as bus 

lines (Bar-Yosef et al., 2013). When there is a decline in bus service ridership, the 

service operator tends to cut operational costs to compensate for the revenue 

reduction instead of improving the level of service to attract more customers. 

Deterioration in the service level can further reduce the number of customers. This 

phenomenon is called a vicious cycle and is observed in real-world operations. In 

contrast, a virtuous cycle indicates the tendency of popular services to keep 

attracting more demand as they can afford to improve their service level (Bar-Yosef 

et al., 2013).  

In mass transit, the strategic attributes of services such as routes, schedules and 

fares are updated periodically. Hence, service level does not vary dramatically on a 

daily basis unless some unexpected event occurs (e.g. accident, natural disaster). 

On the other hand, an on-demand ride service has a classic two-sided market in 

which changes occur in both the service user and provider (i.e. driver) side every 

day (Wang, Hai and Yang, 2019). As a freelancer, a service provider (i.e. driver) 

can decide whether to work on the platform every day as well as when, where, and 

how long to work4. Hence, the service capacity could change every day based on 

drivers' decisions. It implies a more tightly coupled feedback loop between service 

users and providers; changes can happen more intensely in the shorter term 

compared to conventional mass transit.  

As mentioned in section 1.3, switching between shared and non-shared use of on-

demand ride service does not have any physical or technical barrier. However, 

each service could impact the transport system in a very different way (e.g. 

decrease/increase in VKT and CO2). Given the potential of a feedback loop to occur 

shorter than the conventional mass transit, the small shift between non-shared and 

shared use may ultimately result in a significant change in the impact that the on-

demand ride service system brings. Thus, a feedback loop between users and 

providers of on-demand ride service is an essential aspect to consider to 

understand the long-term evolution of the system. 

 

4 It should be noted that some traditional taxi drivers do not have such flexibility as 
an employee of a taxi company. 
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 Sources of uncertainty in an on-demand ride service 
system and their consequences 

Uncertainty plays a significant role in determining the performance of the on-

demand ride service system in the real world. There are three primary sources of 

uncertainty in the system; users’ behaviour, providers’ behaviour, and variation in 

the traffic system. In the real-world transport system, travel time varies between 

days and time of day due to random variation in traffic volume (Fu, 2002). Besides, 

the total number of service requests can vary every day for various reasons (Tang 

et al., 2018, Wang et al., 2019, and Zhang et al., 2016). Some studies also consider 

behaviour such as a user's delayed arrival at the pick-up location(Heilporn et al., 

2011) and user's cancellation/no-show up to the pick-up location (Xiang et al., 

2008). As summarised by (Wang, Hai and Yang, 2019), providers' decide each day 

whether, where, and how long to provide a service embed a variability to service 

capacity. 

As there is no fixed route and schedule, the availability of an on-demand ride 

service at a given time and a place is influenced by past, current, and future users' 

decisions within a day. In the case of a shared on-demand service, the availability 

of other users who can and are willing to share a ride is an additional factor 

affecting service usage (Thaithatkul et al., 2019). Day-to-day changes in demand 

and supply of the service embed further uncertainty in users' and providers' 

experience. Users’ mode choice and providers’ working decisions ultimately rely on 

users/providers being satisfied with their experience in using/offering a service. As 

multiple sources of uncertainty influence those experiences, excluding such 

uncertainty would result in misrepresenting how users and providers will behave 

and, consequently, how such a system evolves in terms of its performance.  

 Day-to-day dynamics analysis in transport research  

It is a commonly used approach to represent a transport system with a 

mathematical model to understand system characteristics and "predict" the possible 

impacts resulting from alternative measures. Day-to-day dynamics analysis is one 

approach that can represent the evolution of the traffic state or system state over 

time, and the benefit of this approach is well recognised (Li and Yang, 2016).  Day-

to-day dynamics analysis is one type of dynamic analysis representing an evolution 

of a system that occurs in discrete time from a given day to the next day (Cantarella 

et al., 2019). It investigates the evolution of the transport system through changes 

in user’s behaviour and the adjustment of the user’s behaviour caused by a system 

evolution (Smith et al., 2014, Li and Yang, 2016). Another type of dynamics 
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analysis is within-day dynamics which occurs over continuous time within a whole 

or part of a given day. It is often used to investigate dynamic traffic assignment 

(DTA) (Cantarella et al., 2019)  

A deterministic process (DP) model is one approach to investigate day-to-day 

dynamics. Horowitz (1984) first introduced DP models for day-to-day dynamics 

analysis in the transport context (Cantallera et al., 2019). Several studies 

successfully represented feedback loops between users and providers in 

passenger transport service with DP models and investigated long term evolution in 

bus systems (Bar-Yosef et al., 2013 and Cantallera et al., 2015) and on-demand 

ride services (Djavadian and Chow, 2016, Djavadian and Chow, 2017, and 

Thaitakulu et al., 2018). Analysis with DP models can examine under which 

conditions the system state might evolve towards an equilibrium state if it exists 

and, if not, whether the system will evolve towards some basin of attraction 

(Cantallera et al., 2019). Such insight cannot be obtained from equilibrium analysis 

since this only provides the end state and not the adjustment process to reach the 

endpoint.  

A stochastic process (SP) model is another approach to conduct day-to-day 

dynamics analysis introduced into the transport context by Cascetta (1989). SP 

models include the uncertainty/variability in the system with random variables 

following probability theory, while DP models are described with deterministic 

variables. The inclusion of uncertainty changes the nature of analysis and the 

outputs of SP models when compared with DP models.  Unlike DP models, SP 

models do not have one or more “fixed points”; instead, they could have a “unique 

distribution” that describes the likelihood for each state to occur (Watling, D. P., 

1995). In DP models, parameter changes typically change the attractor to which a 

process converges if there is one. In SP models, changes to parameters could 

change the “shape” of the distribution; in other words, the probability of each state 

to occur. 

 Research motivation, aim and objectives  

     As discussed in section 1.3, on-demand ride services could easily negatively 

impact the performance of the transport system, which brings further impacts on 

wider society due to the empty mile problem and the potential to compete with more 

sustainable mass transit modes. Therefore, the implementation of on-demand ride 

service should be carefully navigated with a long-term and strategic point of view as 

well as a business or operational point of view.  As discussed in section 1.1, 

intervention from transport planners is essential since the rapid growth of on-
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demand ride services is sought by the profit-motivated technology sector whose 

primary purpose is to expand the market, i.e. to induce more mobility. 

There is existing research investigating how much impact on-demand ride services 

would bring (e.g. reduction in VKT) when on-demand ride services are used in a 

certain way, as summarised in section 1.3.  However, as explained in section 1.4 

and 1.5, there is no guarantee that the introduction of an on-demand ride service to 

a transport system will invoke a desirable transition, such as efficient collaborations 

between on-demand ride services and mass transit and the extensive use of shared 

services. Therefore, it is essential to investigate how the system may evolve and 

which of the potential end-points would guarantee a positive outcome from the 

scheme. 

As explained in section 1.6, day-to-day dynamics analysis can be used to 

investigate the evolution of such a system. In particular, a stochastic process model 

is a powerful approach to represent dynamic changes considering uncertain 

components of the system. It could represent the day-to-day dynamic changes in 

users' and providers' choices within an on-demand ride service system, capturing 

the feedback loop between them. A stochastic process can also capture various 

sources of uncertainty by utilising random variables. It enables investigation of the 

influence of uncertainty on the evolution of an on-demand ride service system. 

Analysis of the day-to-day dynamics of on-demand ride services has so far received 

little attention in the research literature. 

Thus, this thesis is motivated by understanding the long-term evolution of an on-

demand ride service system using a mathematical model. It aims to develop a 

model that investigates the impact of variability on; (i) the evolution of system 

attributes (ii) the feedback loop between users and providers, and (iii) the 

interdependency among users. In order to include those three points effectively, A 

stochastic process approach is utilised which has never been done in the previous 

research, hence, this choice of modelling approach brings the originality to the 

research. The relevance to the state-of-the-art research is summarised in section 

2.8 in Chapter 2. Objectives of this research are;  

O1. to specify and develop a stochastic process model that represents the long-term 

evolution of an on-demand ride service system that provides non-shared and 

shared use.  

O2. to extend the model in O1 to include the impact of the availability of both 

sharing partner and a vehicle to the users’ experience by simplifying the service 

supply process with a queueing representation.     
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O3. To propose a fair cost distribution strategy within the framework developed in 

O2, which captures the trade-off aspects of shared services, such as a 

reduction in monetary cost and increase in in-vehicle time. 

O4. to understand the properties of the proposed models by conducting numerical 

experiments within a simple setting where the fleet size for each service is fixed.  

O5. to investigate how the system evolves under different parameter settings 

through numerical experiments where both fleet size and mode share for each 

service change day-to-day. 

 Outline of the thesis  

Chapter 2 (Literature review) provides the two types of literature review motivated 

by different objectives: 1) to position this research and 2) to understand the on-

demand ride service system to identify essential aspects of services that should be 

included in the model. Based on the literature review, Chapter 2 discusses the gaps 

in existing literature in relation to objectives specified in the previous section.  

Chapter 3 (Model specification) provides a detailed description of the proposed 

stochastic process model. The model is divided into two parts (i.e. learning and 

decision model and supply model) described separately in each subsection. The 

detailed assumptions and the reflections on them are also summarised. Objective 

O1, O2 and O3 are achieved in this Chapter.  

Chapter 4 (Numerical experiments with fixed fleet size) provides the results of the 

numerical experiments with fixed fleet size. The experiments were designed to 

investigate how day-to-day evolution occurs and the key parameters that contribute 

to changes in the trend of the process within a given parameter setting. In addition, 

sensitivity analysis and scenario experiments are conducted to understand how 

changing some parameters would affect the model’s behaviour. Objective O4 is 

delivered in this chapter.  

Chapter 5 (Numerical experiment with variable fleet size) summarised the results of 

the numerical experiments with variable fleet size. As both drivers and users make 

their service choice every day, the system's evolution is less predictable than the 

fixed fleet size case. The main focus of the analysis was to investigate the attribute 

of three regimes appeared with variable fleet size case. The condition and 

frequency for each regime’s occurrence were also investigated and are 

summarised. Objective O5 is delivered in this chapter.  

Chapter 6 (Conclusions) draws together the main findings and the key 

contributions. Besides, the critical reflection on the proposed model is presented. In 

the same chapter, the future research needs are also identified and presented.  
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Chapter 2 Literature review  

 Introduction   

   This chapter provides the literature review conducted with two different 

motivations, which are;  

1) To identify the gaps in the existing literature to set the scope of current 

research  

2) To understand the nature of on-demand ride service systems to identify the 

key components to be included in the model and to be investigated through 

the numerical experiment  

Section 2.2. to 2.4. provide a review with the first motivation. In section 2.2., a 

comprehensive review is provided on studies about day-to-day dynamics analysis 

in the context of on-demand ride services and other public transport modes (e.g. 

conventional buses and bike sharing). In section 2.3. the review on modelling on-

demand ride services is conducted focusing on the simplified representation of the 

service system. Section 2.4. provides a brief summary of the pricing problem in the 

on-demand ride service system.  

Section 2.5 to 2.7. provide a review with the second motivation. In section 2.5., the 

observed characteristics of trips made by on-demand ride services are 

summarised. Section 2.6. and 2.7. summarise the motivation and attitude of users 

and drivers towards using/providing shared and non-shared on-demand ride 

services. It is very recent that empirical evidence regarding behavioural aspects of 

on-demand ride service users and providers has become available. Hence, the 

quantity of publications regarding those points is not many; however, they offer 

interesting insights. In section 2.8, research gaps in existing literature reviewed in 

this chapter is identified and summarised in relation to each objective specified in 

section 1.7. Finally, this chapter is concluded with a summary provided in section 

2.9. 

 Day-to-day dynamics analysis in a passenger transport 
service  

   This section summarises the existing studies which analysed day-to-day 

dynamics in the passenger transport system. In particular, an application of the 

deterministic process and the stochastic process is mainly discussed. The review 

focuses on studies on on-demand ride service; however, those focusing on other 

passenger transport service (e.g. conventional bus service) is also included as 

dynamics between users and providers for those services has a relevance. 
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A few research analyse the day-to-day dynamics in a conventional bus service 

(Bar-Yosef et al. 2013, Cantallera et al., 2015, and Li and Yang, 2016). Bar-Yosef 

et al. (2013) modelled a feedback loop in bus service (i.e. vicious and virtuous 

cycle). They assumed a circular bus line in which the number of buses determines 

the service frequency. The total number of buses is estimated by the total number 

of potential bus users in their model. Some proportions of potential users are 

captive users who have no other choice than to use the bus. Others are non-captive 

users who can choose if they use a bus or not based on their experience (i.e. 

waiting time). 

With this simple representation, they analytically identified the threshold value for 

the total number of potential users and the proportion of captive users, leading to 

three states with; 1) single equilibrium point with low bus usage, 2) two equilibrium 

points, and 3) single equilibrium point with high bus usage. The vicious and virtuous 

cycle occurs in the second state. In that state, Bar-Yosef et al. identified the 

threshold fleet size of the bus, above/below which the system enters a 

vicious/virtuous cycle. Regarding policy implication, they suggested that, in the 

long-term, it would be beneficial for bus companies to increase the fleet size above 

the most profitable amount to enter the virtuous cycle, which results in higher bus 

ridership.  

Cantallera et al. (2015) developed a day-to-day dynamics model in a bi-modal 

network comprising buses and private cars. They considered the impact of mode 

choice on the congestion level of the network, which affects the travel time, and 

hence mode choice the following day. They suggested the two utility functions for 

bus users with and without the disutility regarding a bus’s crowdedness. Through 

numerical experiments, they observed multiple equilibria with both utility functions. 

They also investigated the impact of dispersion parameter, which control the degree 

of dispersion in the user mode choice behaviour. The low dispersion parameter 

indicates less variance in the user’s mode choice, while the high dispersion 

parameter indicates the high variance in the user’s mode choice.  

There are two stable fixed points, “many-on-bus” and “all-on-car”, when the 

dispersion parameters are low in the case with a utility function without the 

crowding disutility. However, the “many-on-bus” point moves towards “equal-modal-

split”, which then becomes a unique fixed point as the dispersion parameter 

increases. Therefore, as a policy recommendation, they suggested maintaining the 

dispersion parameter low to encourage the “many-on-bus” scenario. A unique “all-

on-car” stable fixed point is observed when the dispersion parameter is low for the 

case with the crowding disutility. With the high dispersion parameter, an “equal-

modal-split” stable fixed point appears as well as an “all-on-car” fixed point. Hence, 
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the dispersion parameter needs to be kept high to avoid the “all-on-car” scenario. 

They also investigated the case where a bus operator changes the fleet size 

according to the service demand. Regardless of the dispersion parameter value, it 

always has a unique equilibrium point. As the dispersion parameter increases, they 

observed that the unique equilibrium point moves towards the “equal-modal-split” 

stable fixed point.  

Li, X. and Yang (2016) also investigated day-to-day dynamics in the bi-modal 

network consisting of bus and private cars assuming heterogeneous users. They 

assumed the bus travel time is not influenced by the traffic volume, which implies 

that the bus runs on the reserved lane. In their model, the users make day-to-day 

mode choice while the bus operator changes the number of buses periodically. The 

numerical experiment is conducted to investigate the impact of travel demand, bus 

capacity, and service frequency.  

The results of their numerical experiments show the existence of two domains of 

attraction, one of which leads to high auto-share and the other leads to the almost 

equal split of mode share. As the latter domain area is larger, the vicious cycle (in 

terms of bus ridership) is unlikely to happen. The only condition for the vicious cycle 

to occurs is when the initial auto-share is very high. They recommended subsidising 

bus lines to decrease fare or/and increase the service frequency to prevent the 

system from entering the vicious cycle with such condition, consistent with Bar-

Yosef et al. (2013)’s recommendation. They also discovered that a smaller bus 

capacity (i.e. less than 60) causes the virtuous cycle. With a given travel demand, 

reducing bus capacity increases the frequency of service and reduces travel costs 

by bus, which results in increasing bus ridership. 

In the context of the on-demand ride service system, Djavadian and Chow (2016 

and 2017) proposed the first model which explicitly represents the day-to-day 

dynamics of an on-demand ride service system. Unlike conventional mass transit, 

on-demand ride services do not have a fixed route or schedule. As a result, it is 

often the case that modelling day-to-day dynamics in on-demand ride service 

requires a higher level of detail than modelling conventional public transport 

(Calderón and Miller, 2019). Few studies have focussed on the long-term evolution 

of the on-demand ride service system through day-to-day dynamics analysis. The 

following section presents a detailed review of such literature.  

Djavadian and Chow (2016) proposed a framework for agent-based deterministic 

process models of day-to-day dynamics in Flexible Transport Service (FTS). FTS, 

in their context, implies the ridesourcing type of service where drivers can make a 

daily choice of whether they enter the market on that day. Their model is designed 

to almost surely converge an agent-based stochastic user equilibrium (SUE) 



- 14 - 

through the Method of Successive Average (MSA). In their model, users update 

their strategy (i.e. mode and departure time) by maximising their perceived utility 

which is updated through their and others’ past experience. Each vehicle's routes 

and schedules are determined, given a fixed fleet size based on each user's 

strategy. That will determine the arrival time to each user's destination, which 

influences the user’s utility, hence, their strategy on the next day (see Figure 2). 

Their framework has the flexibility to assess the various policies such as pricing 

policies and vehicle routing and scheduling policies within the context of different 

type of FTS (e.g. ridesharing, taxis, DRT). A numerical experiment conducted using 

their proposed model demonstrated that the proposed model converges to the 

agent-based SUE. The capability of their model to capture the impact of different 

policies is also demonstrated.  

Djavadian and Chow (2017) extended their previous work (Djavadian and Chow, 

2016) and included the day-to-day dynamics of the provider side (see Figure 3). 

They developed the first model to analyse a two-sided flexible transport market 

using an agent-based day-to-day adjustment process. This model nicely captured 

and simplified the interaction between users’ and FTS’s provider’s behaviour. The 

users' side day-to-day learning and decision process follows their previous work, 

Djavadian and Chow (2016). The drivers chose whether they provide a service on 

the day according to expected profits estimated by their experience. That will 

change the fleet size of each mode every day, which was fixed in their previous 

model proposed by Djavadian and Chow (2016). The drivers’ earnings depend on 

users’ strategies, while users’ perceived travel cost also depends on the fleet size. 

The proposed model almost surely converges to the agent-based SUE, which is 

supported by computational experiments. They conducted a case study using real 

data in Oakville, Ontario, with the proposed model and the model developed by 

Djavadian and Chow (2016). The results indicate the importance of including the 

drivers’ day-to-day adjustment process. For instance, they observed that the 

threshold of acceptable profit for drivers to stay in the service affects how the 

service demand evolves in the long term.  
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Figure 2 a conceptual diagram of the proposed model by Djavadian and Chow 
(2016) (Djavadaian and Chow, 2016, pp.287) 

 

Figure 3 a diagram describing the components of the model proposed by 
Djavadian and Chow (2017) and their interactions (Djavadian and Chow, 
2017, pp.42) 

Thaithatkul et al. (2019) developed a behaviour-based dynamic ride sharing (DRS) 

model as a day-to-day deterministic process. They explicitly model the user-driven 

nature of DRS through users’ mode choice and partner choice assuming their 

rational behaviour (i.e. utility maximisation).  The day-to-day dynamics model 

represents how users’ expectation towards the performance of DRS is updated 
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through their experience and the collective experience of others. The within-day 

dynamic model represents the process of matching potential DRS users, which is 

influenced by and on users’ mode choice (see Figure 4). It should be noted that 

DRS in their context indicates shared use of on-demand ride service (e.g. ride-

splitting or taxi sharing) rather than “ridesharing”5 with on-demand matching. 

Hence, users mode choice can be interpreted as the choice between shared and 

non-shared on-demand ride service.  As their model focuses on the influence of 

partners’ availability, they did not consider any impact of vehicle availability by 

which the user’s mode choice could also be affected. They conducted a numerical 

experiment with the proposed model to investigate the effects of different user 

learning pattern and OD pattern. The results suggest that users will eventually stop 

choosing sharing option if the collective learning from the others’ experience is 

excluded. They also identified the demand level corresponding to “critical mass” 

below which DRS cannot be sustained as the number of DRS users becomes zero 

eventually.    

While the literature described above represent day-to-day dynamics in a 

deterministic process, Zhang and Schmöcker (2019) applied a stochastic process 

approach (i.e. Markov model) to represent the long-term change in demand, using 

panel data. The previously mentioned literature in this section focused on modelling 

supply and demand interaction and identifying if the process reaches (multiple) 

equilibria and, if so, what are the conditions for that. On the contrary, Zhang and 

Schmöcker (2019) focused on estimating the transition matrix for a stochastic 

process to achieve better demand prediction. They applied well-known ideas from 

marketing literature and introduced concepts as “customer life cycle”, “potential 

demand”, and “willingness to use” into their proposed model. The adaption of the 

“life cycle” concept allows distinguishing inactive state, i.e. temporal withdrawal 

from the service, and drop-out state, i.e. permanent exit from the service. They 

conducted a case study with the proposed model using panel data from Kyoto 

University’s bicycle share system. By analysing panel data, they identified a gradual 

change in the usage pattern of the scheme. Also, there was no sudden drop-out 

observed from the frequent scheme users. Such attributes are those their proposed 

model is intended to take into account. The comparison between the simple Markov 

 

5 The term “ridesharing” is commonly used to describe the situation where a private 
car owner with predetermined OD finds a passenger(s) to share (part of) the 
trip with through a matching platform. Therefore, there are two type of users; 1) 
those who are willing to give a ride and 2) those who are willing to take a ride. 
The common motivation of type (1) user is to save their cost while the common 
motivation of type (2) user is to receive a door-to-door service with less cost 
than taxi or other private passenger service (Shaheen and Cohen 2019).  
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model and the proposed model using the panel data illustrates that the inclusion of 

the “life cycle” concept improves the model fitness.  

 

Figure 4 the diagram of the day-to-day dynamic model proposed by 
Thaithatkul et al. (2019) considering (Thaithatkul et al., 2019, pp.618) 

 Modelling on-demand ride service  

   In this section, models to represent the on-demand ride service system are 

summarised. To begin, the commonly used routing and scheduling problem, Dial-a-

Ride problem (DARP), is summarised in subsection 2.3.1. DARP is not only 

applicable to on-demand ride services, it is used to determine routes and schedules 

for many other flexible passenger services (e.g. taxi, paratransit). Therefore, a large 

amount of literature has already been dedicated to investigating DARP with the 

motivation to provide better tools for operational planning (Ho et al., 2018 and 

Cordeau and Laporte, 2007). As this research is not aiming to develop a novel 

method to improve the existing solution algorithm or model framework for DARP, 
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the review in subsection 2.3.1 is motivated by understanding an essential 

characteristic of DARP. In subsection 2.3.2, queueing representation of DARP is 

summarised, which is one of the common ways to simplify dynamic DARP and can 

include various sources of uncertainty. 

 Dial-a-ride problem  

     In order to operate on-demand ride services, it is required to match a trip 

request(s) with an available vehicle upon the arrival of a new request(s) and the 

route and schedule of the assigned vehicle changes accordingly. Planning routes 

and schedules for fleet mainly involves three stages; 1) clustering, 2) assignment 

and 3) routing(Cordeau and Laporte, 2003a). Clustering, which only occurs when 

the service is operated as a shared service, involves formulating a group with 

multiple trip requests. Assignment indicates the process of selecting a vehicle and 

single or grouped requests to combine. Routing consists of determining the order to 

visit pick-up and drop-off locations of each request and a route between stops. 

Depending on the nature of the system, and the operational strategy, namely, the 

algorithm they use, these stages could occur consecutively or interdependently 

(Cordeau and Laporte, 2003b) 

When the fleet size is too large to operate manually, DARP is applied to determine 

the routes and schedules of a given fleet. DARP is one type of vehicle routing 

problem – a combinational optimisation and integer programming problem 

(Andreasson et al., 2016). It often formulates an on-demand ride service with sets 

of travellers and 𝑁 vehicle with 𝑛 seats for customers. Each traveller has a specific 

pick-up and drop-off time (windows) and locations (Cordeau and Laporte, 2007). 

Cordeau and Laporte (2007) further mention that what distinguishes DARP from the 

other routing problem is a consideration of human perspectives, which is usually 

introduced through constraints or/and as one of the objectives.  

Ho et al. (2018) classify DARP based on if the service is static or dynamic and 

deterministic or stochastic (see Table 3). A problem is static if any modification in 

routing and scheduling is not allowed after the operation started. It implies that all 

information relevant to planning routes and schedules of all the fleet is known 

before the operation. Even if new relevant information is revealed as time passes, 

the “grand plan” will not be updated in the realm of the static problem. On the other 

hand, if the operator allows modifying the plan for routing and scheduling for a 

given fleet as new information revealed after operation starts, it is classified as a 

dynamic problem. According to Ho et al. (2018), a problem is deterministic if all the 

information available prior to the service operation comes with certainty. In other 

words, a problem is deterministic if the decision is made on the basis of perfect 
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information. On the contrary, a problem is stochastic if imperfect information is 

assumed. 

If the problem is static and deterministic, it means that all information listed below is 

known with certainty before the start of the operation:  

1) The exact number of trip requests, their pick-up and drop-off locations and 

time 

2) All users' exact behaviour includes delayed arrival (Heilporn et al., 2011), 

cancellation (Xiang et al., 2008), and any other possible changes users 

could request before and during their ride.  

3) The exact time to complete each step of every operation (e.g. travel time 

between stops and time for users to get in/out of a vehicle).  

If the problem is dynamic and deterministic, it implies that information regarding 1) 

reveals as the operation progresses. However, information regarding 2) and 3) 

about already existing users are perfectly known. If the problem is static and 

stochastic, all the routes and schedules for the whole service period is determined 

considering the uncertainty regarding 2) and 3) before the operation starts. If a 

problem is dynamic and stochastic, a route and schedule of the fleet are updated as 

a trip request appears considering the uncertainty of information regarding 2) and 

3).  

Table 3 Classification of Dial-a-Ride problem proposed by Ho et al. (2018) (Ho 
et al., 2018, pp.399) 

 Information is known with certainty (at time 

of decision)  

Yes No 

The decision can be modified 

in response to new 

information received after 

time 0 

No Static and 

deterministic 

Static and 

stochastic 

Yes Dynamic and 

deterministic 

Dynamic and 

stochastic 

In the past, there were services with no predetermined routes and schedules. 

However, most of the requests were assumed to be arranged in well advance (e.g. 

one day before), such as door-to-door transportation services for elderly or disabled 

people (Madsen et al., 1995, and Toth and Vigo, 1997), airport shuttles (Reinhardt 

et al., 2013), and patient transport service (Hanne et al., 2009). Hence, the timely 

update was not necessary once the routes and schedules were fixed. In other 

words, it could be modelled and operated as a static problem. However, it could be 

a dynamic problem if operators decide to react to an unexpected event (Pillac et al., 
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2013). On the contrary, the current On-Demand Ride services, which this study 

focuses on, mostly receive trip requests shortly before the expected pick-up time. 

Hence, it requires constant adjustment of routes and schedules as a new request 

arrives. Therefore, it is, by nature, dynamic DARP.  

In the real-world system, the service is always exposed to uncertainty from various 

sources. For instance, travel time varies between days and time-of-day due to 

random variation in traffic volume (Fu, 2002). Such variance in travel time would 

influence on predicting the vehicle arrival time to a pick-up or drop-off location. Also, 

users delayed arrival would cause a delay in future service. Especially for the 

shared service, a user’s delayed arrival would delay the pick-up time of users who 

are scheduled to be picked up later. Such delay could result in deterioration in the 

service level and frustrating a driver resulting in discoursing drivers to provide 

shared service (Morris et al., 2020). 

It is an operator’s choice of how much uncertainty they would take into account. 

However, it should be pointed out that considering uncertainty also embeds the 

extra challenges (e.g. modelling an impact of stochastic component, the 

interpretation of outcome) and needs for higher computational power if a quick 

readjustment is expected, especially for a dynamic and stochastic problem (Ho et 

al., 2018).  

 Queuing representation of DARP   

   When the motivation to model an on-demand ride service attributes to the 

operational interests (e.g. developing a faster estimating algorithm), DARP needs to 

be precisely formulated. However, when the motivation of developing a model 

comes from a strategic perspective (e.g. understating long-term evolution of 

system), solving DARP could be too computationally demanding, especially in the 

case of a dynamic and stochastic problem. In addition, there is also the fact that 

solving DARP inevitably becomes highly case-specific. Therefore, abstracting the 

problem by simplifying DARP helps to understand more general characteristics of 

the system. Hence, it is common to utilise a simplified representation of DARP (e.g. 

Djavadian and Chow, 2017 and Thaithatkul et al., 2019).  

Some research introduced a graph-theoretical approach to limit the combinations of 

route and schedules in order to conduct a large-scale simulation (Santi et al., 2014 

and Alonso-Mola et al., 2017). Others applied a queuing theory as a heuristic 

solution algorithm for dynamic and stochastic DARP (Hyytiä et al., 2012) and as a 

simplified representation of DARP as a part of the other model (e.g. Djavadian and 

Chow, 2017 and Wang and Odoni, 2016). 
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Application of queueing theory has been studied as one of the approaches to 

represent dynamic routing problem by several authors, including Psaraftis (1988), 

Bertsimas and Ryzin (1991, 1993) and Swihart and Papastavrou (1999). One 

benefit of this simplification is that it can include the stochasticity of the system, 

which is often seen as the most computationally demanding form of DARP. The 

queueing model represents the real-life queueing phenomenon, in general, with the 

interest of investigating the queuing system's long-term performance for future 

planning and operation purposes (Bose, 2002). In particular, given a customer 

arrival process (e.g. arrival rate) and service mechanism (e.g. service time), two 

aspects, the number of people in the queue and their waiting time, are often 

investigated as the main focus of queuing analysis.  

Originally, Psaraftis (1988) identifies the connection between the queueing problem 

and the dynamic routing problem when defining the dynamic travel salesman 

problem (DTSP). Psaraftis set the arrival process of customers following a Poisson 

process as with the standard queueing model. These demands are served by a 

“salesman” who travel from one node to another. A “salesman” spend a stochastic 

time at each node for serving. The objective of DTSP is to optimise the system 

according to some performance measure (e.g. the number of the served customer 

within the period or minimising the waiting time)  

Inspired by Parafits’s work, Bertsimas and Ryzin (1991) and Bertsimas and Ryzin 

(1993) proposed a dynamic travel repairman problem (DTRP). DTRP intends to 

minimise user waiting time by minimising the average system time. The main 

difference between DTSP and DTRP is that DTRP is defined in the Euclidean 

plane, while DTSP is set to be on the graph of nodes. As with the case of DTSP, 

demand for service occurs randomly following Poisson distribution, the location of 

which independently and uniformly distributed in a convex service area. Swihart 

and Papastavrou (1999) extended DTRP into Dynamic Pick-up and Delivery 

problem (DPDP). Unlike DTRP, customers are not served on-site. Instead, a server 

picks up the customer at a pick-up location and travel with them to a delivery 

location. Pick-up and delivery location are distributed uniformly and independently 

of each other. They derived the lower bound for users' expected time to spend in 

the system with the light traffic and the heavy traffic cases. They applied a single 

server queue to investigate the case of a single-vehicle with unit-capacity where 

only one pick-up is allowed for one service and multi-capacity where multiple pick-

ups are feasible within one service.  

Hyttiä et al. (2012) proposed a non-myopic vehicle assignment and routing policy in 

dynamic DARP by applying the Markov Decision Process model (MDP). They 

suggested the framework to select the best action, which minimises the cost taking 
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into account unknown future request. The cost is defined as the weighted sum of 

the system’s effort (i.e. the vehicle travel distance) and the customer’s interest (i.e. 

the mean passenger travel time). As there is an enormous number of possible 

combinations of routes and schedules in dynamic DARP, they simplify the system 

to deliver the cost function by introducing M/M/1 queue as a highly abstract 

representation of a vehicle in an on-demand ride service system.  

They formulate a customer arrival with Poisson process and assume a service time 

as a required time to serve a newly requested trip which varies among queues. This 

feature well-reflects the real-world system where the expected pick-up time could 

vary among fleets depending on, for instance, the proximity of location between the 

pick-up spot of new request and drop-off spot of the last request. Nevertheless, it 

should be mentioned that spatial perspective is not directly considered in this 

representation but indirectly suggested into a random service time. M/M/1 queue 

serves only one customer simultaneously; hence, this representation can not 

express the pooling aspect. 

Lees-Miller (2016) used queuing approach to study the lower boundary of mean 

passenger waiting time for the Personal Rapid Transit system (PRT). PRT is a 

computer-operated small pod that carries a single or small number of passengers 

between stations located on a network with guideways (Less-Miller et al., 2016). 

The purpose of their study is to deliver the reallocation strategies for an empty pod 

in PRT, which minimise the mean passenger waiting time. As the PRT operates on 

the guideways and choice of pick-up and drop-off locations is limited, a queuing 

model closely represents how PRT is operated in real life.  

Wang and Odoni (2016) designed a hypothetical Last Mile Transport System 

(LMTS) as a solution for the last mile problem. The proposed LMTS is assumed to 

be operated under a dynamic and stochastic environment with batch demand. They 

simplified LMTS through a queueing model, then derived the approximate estimate 

of the system performance mainly focused on user waiting time as a function of 

system parameters such as fleet size. Though all the trip made by LMTS starts from 

the fixed location (i.e. station), drop-off points are not predetermined, unlike PRT 

studied by Less-Miller et al. (2016). Assuming that the users’ destination is known 

prior to their arrival, users arriving in a batch are clustered into subgroups by 

solving VRP and assigned to each vehicle. Once a vehicle drops off all passengers 

at their destination following the route determined by VRP, it returns to the station to 

pick-up a new group. They assume a server as a vehicle and represent multiple 

vehicle operations by applying a multi-server queue.  

As demonstrated above, the queueing model has been used as an abstract model 

of a vehicle in several different passenger transport system without a fixed route 
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and/or schedule. In some special case, such as PRT, a queueing model could 

capture the system characteristic as it is (Less-Miller et al., 2016). The queueing 

application in on-demand ride service systems is often driven by the intention to 

reduce the enormous number of possibilities to include stochastic and dynamics in 

DARP when the study is motivated by operational application (Hyttiä et al., 2012 

and Wang H., 2019). Nevertheless, as Wang and Odoni (2016) established, it could 

also be employed when a model is designed for strategic planning, where real-time 

operational planning is not the main focus. 

 Pricing problem for on-demand ride service  

   Pricing mechanisms vary among different service platforms. Usually, price is 

calculated based on travel time and travel distance (Li et al., 2019). Some 

Transport Network Companies (TNC), such as Uber and Lyft, utilise dynamic 

pricing, which is often called “surge pricing” (Shaheen and Cohen, 2019). Surge 

pricing refers to the system where the price changes according to the demand-

supply balance Castillo et al. (2017). The price will increase during high demand 

hours then fall back to normal once demand becomes lower. It aims to balance the 

supply and demand of service by incentivising drivers to participate in the service at 

peak times and locations when the service platform does not directly control drivers' 

behaviour (Karamanis et al., 2020). From the user’s point of view, the monetary 

cost for travelling between the same locations could vary due to surge pricing.  

Several studies investigated how surge pricing is changing in practice using real-

world data. Henao and Marshall (2019) reported that they encountered surge 

pricing in only 7.2 % of trips with a range of 1.2 to 2.0 in Denver in the US. Cohen et 

al. (2016) found that the period when surge pricing was more than 1 in major cities 

in the US is less than 30%; 27.7% in Chicago, 25.1% in San Francisco, and 17.1 % 

in Los Angeles, 14.7% in New York. Chen et al. (2015) discovered that surge price 

was activated 57% of the time in San Francisco and 14% in Manhattan, mostly from 

1.25 to 1.50. However, they observed that surge pricing could become higher up to 

quadruple prices. They also found that surge pricing would last not so long and less 

than 10 mins. The majority of the time, it was less than 5 min.  

There is an additional pricing problem for shared services, which can be described 

as a “fair cost distribution” problem, in other words, how to split the cost among 

more than two passengers of shared service in a somewhat equitable way. It 

should be pointed out that this problem is also applicable to conventional taxi 

sharing, which does not use dynamic pricing. Karamanis et al. (2020) indicated the 

lack of consideration for “cost distribution” aspects in an on-demand ride service 

context, especially for dynamic pricing problem. On the other hand, a fair cost 
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distribution problem has been investigated in the goods delivery context and 

modelled as Travelling Salesman Game (TSG) by Potters et al. (1992). Aziz et al. 

(2016) summarise this game as “a cooperative transferable utility game in which 

agents correspond to locations in a travelling salesperson problem (Aziz et al., 

2016, pp.573). This game's solution method is often taken from cooperative game 

theory, especially Shapley value (Shapley, 1953). 

Potters et al. (1992) stated three principles for travelling salesman games;  

1) The contribution of the sponsors (passengers in this context) sums up the 

total cost (“efficiency”). 

2) No sponsor pays more than the cost of a direct trip from the traveller’s home 

city (the origin of trips) to the sponsor’s residence (passengers destination) 

and back (“individual rationality”) 

3) Each sponsor (passenger) pays at least his own marginal cost (“minimal 

obligation”)  

Marginal cost in this context indicates the difference between the total cost and the 

cost when a passenger’s destination is skipped—for instance, assuming the case 

like Figure 5 where a service vehicle needs to travel from and to a black star (e.g. 

pick-up spot) visiting two drop-off points. 

 

Figure 5 An example case with two drop-offs  

In such a case, the marginal cost for user 1 and user 2 can be calculated as below;  

𝑚𝑐(1) = 𝑡ଵ + 𝑡ଶ + 𝑡ଷ − 2𝑡ଷ = 𝑡ଵ + 𝑡ଶ − 𝑡ଷ (2.1) 

𝑚𝑐(2) = 𝑡ଵ + 𝑡ଶ + 𝑡ଷ − 2𝑡ଵ = 𝑡ଶ + 𝑡ଷ − 𝑡ଵ (2.2) 

where  𝑚𝑐(1) and m𝑐(2) indicates a marginal cost for each user. Potters et al. 

(1992) stated that if the route has the minimum length, the sum of marginal cost 

does not exceed the total travel cost, which, in this case, means; 

𝑚𝑐(1) + m𝑐(2) = 2𝑡ଶ < 𝑡ଵ + 𝑡ଶ + 𝑡ଷ (2.3) 

The statement above is proven to be true following the formulation condition of a 

triangle, which is;   
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𝑡ଶ < 𝑡ଵ + 𝑐 (2.4) 

The common solution method for TSG, Shapley value, for this example, can be 

estimated as follows; 

𝜏(1) = 𝑡ଵ − 𝑡ଶ + 𝑡ଷ +
𝑡ଵ − 𝑡ଶ + 𝑡ଷ

2
 (2.5) 

𝜏(2) = −𝑡ଵ + 𝑡ଶ + 𝑡ଷ +
𝑡ଵ − 𝑡ଶ + 𝑡ଷ

2
 (2.6) 

where 𝜏(1) and 𝜏(2) are Shapley value for user 1 and 2.  Following “individual 

rationality”, the principle specified by Potters et al. (1992), the maximum willingness 

to pay for each user is assumed to be equivalent to when they use the exclusive 

service (i.e. 2𝑎 and 2𝑐).  The total benefit of sharing scheme is: 

𝜓 = 2𝑡ଵ + 2𝑡ଷ − (𝑡ଵ + 𝑡ଶ + 𝑡ଷ) = 𝑡ଵ + 𝑡ଷ − 𝑡ଶ (2.7) 

Application of TSG and Shapley value in on-demand ride service has been 

introduced by Levinger et al. (2019). However, as Levinger et al. (2019) suggested, 

Shapley value is rarely mentioned in the on-demand ride service context, possibly, 

because Shapley value is computationally demanding. Services involving dynamic 

ridesharing (DRS) such as ride-splitting and taxi sharing requires fast estimation. 

Hence, Shapley value may not be attractive enough, especially for an operational 

model. Besides, in some cases, pricing is considered in the process of clustering of 

users and assignment to drivers, for instance, as a combinational double auction 

model (Karamnis et al., 2020). In such a case, the analogue of TSG, determining 

the route before distributing the price, is not necessarily applicable.  

 Trip characteristics of on-demand ride service  

   This section summarises the trip characteristics of the on-demand ride service. 

Mainly, the study using real data are reviewed and summarised. It is essential to 

understand the basic attributes of trips made by on-demand ride service to 

establish reasonable assumptions for a proposed model and determine the 

threshold of various parameters for numerical experiments. In subsection 2.5.1., the 

general trip characteristics made by on-demand ride service is summarised. In the 

following subsection, the spatiotemporal features are mainly focused on and 

discussed.   

 

 Observed trip characteristics  

   When one platform is offering both shared service and non-shared service, the 

results of several studies consistently indicate that the non-shared service is used 

much more than the shared service (Li et al., 2019, Young et al., 2020, Shaheen 
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and Cohen, 2019). For instance, Li et al. (2019) found that the percentage of 

shared ride orders among total orders for a resourcing company, DiDi, Chengdu, 

China, is 6.2 %. Young et al. (2020) found that 14.80% of trips made through a 

resourcing platform, Uber, was shared use in Toronto, Canada, between 

September 2016 and March 2017.  

Li et al. (2019) discovered that 90.50% of shared rides are shared between 2 trip 

requests, whereas the trips shared among 3 and 4+ requests are minimal at 9.33 % 

and 0.17%.  Li et al. (2019) pointed out that this is because DiDi allows drivers to 

accept a maximum of 2 shared ride requests at one time. For one request, a 

maximum of 2 people is allowed to be picked up from one location. Although this is 

a specific rule for DiDi, Li et al. mention that similar regulations are set by most 

resourcing companies (e.g. Uber and Lyft) to reserve a seat for future passengers.  

Young et al. (2020) determined that 51.7 % of the trips made by pooled ride-hailing 

service6 (i.e. UberPOOL) were unmatched in Toronto, Canada. “Unmatched” 

indicates that a requested pooled ride was completed without sharing the ride with 

other pooled ride requests. Schwieterman and Smith (2018) identified that 60% of 

trips were matched among their sample data collected in Chicago, USA. Young et 

al. (2020) also discovered that the likelihood of matching increases as the origin of 

a trip request becomes closer to the downtown area, where the demand for pooled 

ride-hailing service is higher.  

Travel time distribution is found to be positively skewed for both non-shared and 

shared ride in different cities. (Li et al. 2019, Chen et al., 2017, and Haglund et al., 

2019). In their context, travel time is the duration from the start to the end of a trip. 

The mean travel time for both non-shared and shared services varies depending on 

the area of the study. This heterogeneity is attributed to several factors, including 

the city structure, the purpose of trips (Schwieterman and Smith et al. 2018), and 

which transport mode an on-demand ride service has replaced.  

Few studies compare the difference between non-shared and shared service 

offered by the same platform. Li et al. (2019) estimated the mean travel time as 

21.53 min for a non-shared ride and 31.98 min for a shared ride among trips made 

by DiDi in Chengdu, China. As illustrated in Figure 6, Li et al. (2019) further 

analysed that the mean delay caused by sharing is approximately 9.86 min, 

accounting for 30% of travel time. In Toronto, Canada, Young et al. (2020) showed 

that the mean travel time is 21.82 min for a matched shared ride and 17.23 min for 

 

6 It is classified as one type of shared on-demand ride service in the context of this 
study.  
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an unmatched shared ride. It indicates that detour travel time accounts for 16.7% of 

total travel time for a shared ride.  

 

Figure 6 Distribution of delay caused by sharing a ride [min] (Li et al., 2019, 
p.345)  

In terms of waiting time, Schwieterman and Smith (2018) estimated that the mean 

waiting time for UberPool was 7.3 min among their sample trips in Chicago in the 

US, where the mean travel time was 35.9 min. Chen et al. (2017) identified that 

waiting time is 6.13 min on weekdays for non-shared service in Hangzhou, China, 

where the mean travel time is 18.72 min for peak hour and 12.78 min for an off-

peak hour.  

Haglund et al. (2019) investigated an on-demand micro-transit pilot, the Kutsuplus7, 

in Helsinki Metropolitan Region (HMR). They discovered that the average interval 

between acceptance of a trip request and user pick-up (i.e. waiting time) was 20.87 

min for the Kutsuplus pilot, where the average trip duration was 16.98 min. 

However, the waiting time distribution was positively skewed, the few cases with 

extremely high-value impact on the mean. For this reason, Haglund et al. argue that 

users experienced a shorter waiting time than 20.87 min in most cases, and it was 

perceived as acceptable. 

 

 Observed spatiotemporal characteristic  

   There has been extensive research on understanding the spatial and temporal 

characteristics of demand for on-demand ride service. Studies are mostly motivated 

 

7 Kutsplus does not always require to share a ride. Their results showed that the 
mean number of passengers per ride was approximately 1.27.  
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by developing a demand prediction model to mitigate the demand-supply 

imbalance. The temporal and spatial distribution of trip requests is often influenced 

by users’ travel pattern, constraints given by the operators and land-use patterns.  

Several studies show that the demand for on-demand ride service fluctuates 

throughout the day (e.g. Li et al., 2019, Chen et al., 2018, Dong et al., 2018). Li et 

al. (2019) compared the distribution of departure and arrival time for a non-shared 

and a shared ride for DiDi in Chengdu, China (see Figure 7). Their results suggest 

that the temporal distribution of non-shared trips is flatter than the one of shared 

service. Besides, all three peaks in the morning, noon and evening occur later for 

shared service than non-shared service.  

 

Figure 7 Distribution of departure and arrival time for a shared and a non-
shared ride (Li et al., 2019, pp.342)  

Chen et al. (2017) suggested that the non-shared use of DiDi in Hangzhou, China, 

has two peaks, AM peak (7:00-9:00) and PM peak (17:00-19:00). Haglund et al. 

(2019) also show that the hourly demand pattern for Kutsuplus had two peaks, one 

in the morning and one in the afternoon, which has a similar shape with fixed public 

transport systems operating in the Helsinki Metropolitan Region (HMR).  

In terms of spatial distribution, many studies have been identified the existence of 

service demand hotspots for e-hailing (Dong et al., 2018), taxi (Chang et al., 2010, 

Yu et al., 2019 and Zhang et al., 2017), and ride-sourcing/ride-splitting (Faghih et 

a., 2018, Dong et al. 2018 and Chen et al.,2017). In general, service demand 
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hotspots are associated with the land use pattern. In particular, residential zone, 

transportation hub, business districts, educational zone, health care facility, and 

commercial regions are often identified as hotspots (Yu et al., 2019, Dong et al., 

2018, Zhang et al., 2016 and Wang et al., 2019).  

Some studies focused on O.D. patterns in on-demand ride services more than just 

analysing the distribution patterns of pick-up and drop-off locations separately 

(Dong et al., 2018 and Liu et al., 2019). Liu et al. (2019) analysed data from the 

world largest ride-sourcing company, DiDi, in Chengdu, China. They discovered the 

general tendency throughout one targeted month that ride-sourcing users tend to 

use the service to travel away from the centre rather than towards the centre. (see 

Figure 8).  

 

Figure 8 Proportion of arrivals in relation to total tripes made in each zone 
(Liu et al., 2019, pp. 6) 

Dong et al. (2018) also investigated data from DiDi in Beijing, China, focusing on 

the spatial pattern at each time of the day. They visualised hotspots where pick-ups 

dominate drop-offs in morning rush hour and evening rush hour (see subfigure (a) 

and (c) in Figure 9). Hotspots, where drop-offs dominate pick-ups in the morning 

rush and evening rush hour, are also visualised (see subfigure (b) and (d) in Figure 

9). Their results illustrate that users tend to travel to the central business district 

from the surrounded area, speculated as users residences, using ride-sourcing 

services in the morning rush hours. In the evening hour, the opposite tendency is 

observed.  It indicates the existent of difference in the distribution of pick-up and 

drop-off hotspots. In particular, it is observed that pick-up hotspots are more 

concentrated and surrounded by drop-off spots or the other way around depending 

on the time of the day, as illustrated in Figure 9. Also, if the service is used as a 

mode to travel from home to work, it is often used as the return trip from work to 

home (Dong et al., 2018 and Yu et al., 2019)  
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Figure 9 Hotspot visualisation for morning rush hour ((a) and (b)) and evening 
rush hour ((c) and (d)). Places where the number of pick-up places 
dominates the drop-off location are visualised in (a) and (c) and places 
the other way around in (b) and (d) (Dong et al., 2018, pp. 15)  

Dong et al. (2018) found out that outside of rush hours, the distance of trips tends to 

be shorter, and they are concentrated in the central area in the CBD. Though they 

have not provided more microscopic analysis in the off-peak period, another study 

suggests the difference in pick-up and drop-off hotspots at the microscopic level. 

For instance, Li et al. (2012) investigated a traditional taxi where users need to 

catch a taxi on the road. They discovered that drop-off locations are more dispersed 

than pick-up locations as users often catch a taxi on the main road due to the 

easiness to find the taxi. In contrast, users chose drop-off locations based on their 

final destination.  

It should be noted that the scale and the number of hotspots are determined by the 

interest of research as well as the nature of the mobility pattern. Chang et al. (2010) 

investigated real taxi request data provided by the taxi company in Taiwan to 

predict the location of future taxi requests better. Their results illustrate that the 

number of hotspots will vary based on the clustering technique (see Figure 10). 
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Figure 10 Clusters of taxi stopping locations generated by four different 
algorithms (Chang et al., 2010, pp,14)  

 On-demand ride service users’ behaviour  

   This section summarises the literature about on-demand ride service user. The 

focus of this section is to understand on-demand ride service users’ behaviour by 

reviewing the studies of real would system and by investigating how users’ 

behaviour is modelled in other studies. This section consists of two subsections. In 

subsection 2.6.1, the motivation for choosing an on-demand ride service and 

choosing to share the service is described. In subsection 2.6.2, the value of travel 

time with on-demand ride service and willingness to share a ride are discussed.  

 Motivation to choose shared on-demand ride service  

   A number of studies investigated the reason why people uses on-demand ride 

services compared with other transport modes. Tiranchini (2019) conducted a 

comprehensive review of the motivation for the user to choose a ride-hailing 

service. The result presents a variety of reasons to use ride-hailing service. Among 

them, most of the paper determined trip cost, travel time, ease of payment, no need 

to drive after drinking, and waiting time are highly valued. 
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Lavieri et al. (2018) identified through their literature review that the easiness to use 

the service (i.e. payment and booking process), lower cost, and shorter waiting time 

are often mentioned as reasons to use ride-hailing service over conventional taxi 

service. Compared with mass transit, shorter travel time is the primary reason to 

choose a ride-hailing service. In terms of the trip purpose, social and recreational 

trips are the most common purpose when ride-hailing services are used (Tiranchini, 

2019, Lavieri et al., 2018, and Li et al., 2019).  

Note that the following discussion includes studies focusing on shared autonomous 

vehicles (SAV), where “shared” indicates that the vehicle is shared between 

multiple individuals. It may also be the case that multiple users ride-share in an 

SAV for a particular trip. Hence, a comparison between shared and non-shared use 

of SAV is relevant to the more general comparison between shared and non-shared 

use of on-demand ride service. It is worth acknowledging that the absence of a 

driver may influence an individual’s perception of using such a service in an 

autonomous vehicle (AV) or SAV. 

Since the concept of sharing a ride appeared in the transport context, several 

operational and psychological aspects have been identified to 

encourage/discourage sharing. Psychological factors are often identified as barriers 

to ridesharing, such as a desire for a personal space and security concerns (Chan 

and Shaheen, 2012 and Lavieri et al., 2018). However, a green lifestyle propensity 

(GLP), i.e. individuals’ tendency to choose an environmentally friendly option, could 

positively influence on the decision to use a shared ride (Lavieri et al., 2018). 

Sarriera et al. (2017) discovered the asymmetry in the relationship between the 

experience of sharing a ride and the decision to share again. The negative social 

experience of sharing a ride would be more discouraging than the positive social 

experience would be an incentive.  

Sarriera et al. (2017) and Middleton and Zhao (2019) investigated the 

discriminatory attitude between ride-splitting users (i.e. UberPool and Lyft Line) in 

the USA through an online survey. Both studies discovered that a substantial 

proportion of TNCs users have discriminatory attitudes towards passengers from 

different social class and race. Brown (2018) also found that users are less likely to 

share their ride in racially and ethnically diverse neighbourhoods. Furthermore, 

Sarriera et al. (2017) discovered that women tend to prefer to match with 

passengers of the same sex than men due to security-related concerns.  

Moody et al. (2019) investigated the relationship between user’s willingness to 

share rides and their discriminatory attitudes the first time in the ride-splitting 

context through an online survey targeted to UberPool and Lyft Line users in the 

USA in 2016 and 2018. Their results suggest that rider-to-rider discriminatory 
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attitudes are not significantly predictive of user’s decisions on the first-time use of 

ride-splitting service. However, they are significantly predictive of the satisfaction 

level and lower frequency of usage and lower willingness to adapt to sharing in the 

future. 

Though psychological and social factors would impact the mode choice, several 

studies concluded that they are not as significant as traditional factors such as time 

and cost (Sarriera et al. 2017 and Moody et al., 2019). However, Middleton and 

Zhao (2019) discussed that given the discriminatory attitudes discovered in their 

study, if, one day, some TNCs decide to implement a new feature to consider the 

preference of matching, it is reasonable to expect that some riders would take 

advantage of the feature to avoid potential fellow passenger based on their social 

class or/and race. Besides, such a feature could potentially be used to express the 

preference to share a ride with a same-sex passenger(s) to mitigate security 

concerns.  

In terms of operational aspects, the trade-off between monetary cost and travel time 

is often mentioned in the literature (e.g. Chen et al., 2017, and Sarriera et al., 2017, 

Lavieri and Bhat, 2019). Chen et al. (2017) identified that in-vehicle time, monetary 

cost and waiting time are in the top 5 most important features influencing whether 

users chose to share or not. Sarriera et al. (2017) also discovered that the primary 

motivator to share an on-demand ride service is the cost being cheaper than a non-

shared option. According to Shaeen and Cohen (2019), 25-60% of monetary cost 

saving is expected compared to the non-shared option.  

As presented in the previous section (i.e. section 2.5.1), the trip length for shared 

service is longer than the non-shared service. It is easy to imagine that the increase 

in in-vehicle time could discourage users from choosing a shared service.  Also, the 

uncertainty of trip length is indicated as a potential deterrent to using shared service 

by  Sarriera et al. (2017) and  Li et al. (2019). 

 Value of travel time and willingness to share a ride  

   The value of travel time (VoT), conventionally referred to as the value of travel 

time savings, reflects the amount of money a traveller is willing to pay to save travel 

time. It is defined as the ratio of the marginal utility of time and money and 

comprises the opportunity cost and actual disutility regarding time spent for travel 

(Wardman et al., 2004). The value of in-vehicle time (VoIVT) is known to vary 

according to a travel mode. Moreover, walking time to/from and waiting time at the 

station have the corresponding VoT in the case of public transport use (Wardman et 

al., 2004).  
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Krueger et al. (2016) estimated VoT for shared autonomous vehicle (SAV) with 

dynamic ridesharing (DRS) and SVA without DRS by conducting an online stated 

choice survey targeted to residents living in a major metropolitan area in Australia. 

Their results indicated that the value of VoIVT for SAV with DRS was higher than 

the VoIVT for SAV without DRS. Lavieri and Bhat (2019) measured phycological 

disutility to share a ride, such as hesitation to share a vehicle with strangers 

separately from an operational disutility such as an increase in in-vehicle time due 

to an insertion of extra stops. They introduced the willingness to pay not to share 

with an additional person (the willingness to share (WTS)) and discovered that WTS 

is a fixed cost and independent of travel time.  

Lavieri and Bhat (2019) also identified that the trip purpose significantly affects the 

user’s sensitivity towards strangers' presence in a vehicle. People seem to be less 

sensitive towards a stranger's existence for a commuting trip than a leisure trip. On 

the other hand, people are more sensitive towards travel time for a commuting trip 

than a leisure trip. Al-Ayyash et al. (2016) discovered the impact of the number of 

co-riders on the willingness to adopt a shared trip. Their results indicate that 

individuals are 7-8% more willing to use the shared service if a trip is shared among 

a maximum of two additional passengers rather than up to five passengers  

Alonso-González et al. (2020a) compared the different ratio of WTS against the 

value of IVT estimated by several studies, including theirs. They investigate the 

influence of the number of additional passengers on WTS by conducting an online 

survey targeted at individuals living in urban areas of the Netherlands. The results 

show that WTS is consistent when the number of additional passengers is 1-2 while 

WTS gets higher for the 4 co-rider scenario. Table 4 compares the ratio between 

WTS/VOT for the 1-2 co-rider case obtained by multiple research.  

Table 4 the comparison of the ratio between WTS/VOT for 1-2 co-rider case 
(Alonso-Gonzalez et al., 2020a) 

Authors  WTS/VOT Mobility option  Country 

Al-Ayyash et al. (2016) 0.1 Shared taxi  Lebanon 

Lavieri and Bhat (2019) 0.05-0.1 pooled SAV USA 

Alonso-Gonzalez et al. 

(2020 a) 
0.02-0.07 

Shared on-demand 

ride service  

Netherland  

Conventionally, the ratio between the value of waiting time and in-vehicle time is 

estimated as 2 or above (Wardman, 2004). However, the study of Alonso-González 

et al. (2020b) in a Dutch urban area suggests a lower value in the range of 1-1.5 

depending on the length of waiting time. Frei et al. (2017)‘s study showed the value 

of waiting time is lower than the value of in-vehicle time for commute trip with 
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shared on-demand ride service in the USA. It possibly is because the commute 

trip's origin tends to be an individual’s home or office. It is reasonable to speculate 

that individuals would perceive waiting in a familiar indoor space as less 

uncomfortable than waiting outside.  

 On-demand ride service driver’s behaviour  

   This section summarises the characteristics of on-demand ride service drivers’ 

behaviour. Understanding the driver’s behaviour helps to establish reasonable 

assumptions for the driver side’s learning and decision process. This section 

consists of two subsections. In subsection 2.7.1, a drive’s service location choice 

behaviour is discussed, including surge pricing effects. Then, in subsection 2.7.2, 

the driver’s motivation to provide on-demand ride service is summarised, and their 

experience and attitude towards delivering non-shared service and shared service.  

 Driver’s choice on service location   

   Traditionally, the decision regarding if drivers should change their location or not 

has been seen as an interesting topic to discuss. It could depend on many factors 

such as drivers’ strategy, experience and knowledge, parking availability, the fuel 

efficiency of their car, etc. (Henao and Marshall, 2020). Naji et al. (2017) analysed 

the vacant taxi's temporal and spatial behavioural patterns using taxi data in Wuhan 

city, China. They categorised drivers into three categories, high, moderate, and low 

profitable classes, based on distance and duration of the chargeable trip (i.e. trip 

with a passenger) and income. They discovered that highly profitable drivers tend to 

cruise around crowded places such as railway stations and main economic area 

compared to moderate- and low-income drivers. They suggest that the high-income 

group may have known which area has a higher potential to get new users for each 

period of the day from their experience or some other sources. According to that 

information, they cruise or stop around such “demand hotspot”.  

Chang et al. (2010) demonstrated the recommendation system for a vacant taxi, 

which endorses the nearest pick-up hotspots based on each taxi's current location. 

It suggests that a vehicle could come back to the pick-up hotspot once they 

complete a current service, depending on the service operation strategy. Besides, 

the geographical proximity of a hotspot may influence on the selection of a hotspot 

if there are multiple of them. The surge pricing could also play the same role as the 

recommendation system Change et al. (2010) suggested. With a surge pricing 

scheme, the operation area is divided into smaller zones, and a service platform 

periodically updates the surge multiplier in each zone. Drivers can usually access 

the “surge heat map” which shows the surge prices in the zone where they are at 
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and surrounding zones. Relocation of drivers to high demand zone with higher 

surge price is one of the expectations to introduce surge pricing, and, in theory, it 

should work in that way (Guda and Subramanian, 2019). 

However, Chen et al. (2015) observed the controversial results from their data 

collection in San Francisco and New York City in the US in 2015. They discovered 

that though surge pricing had effects on encouraging off-line drivers to be online, it 

induced drivers to move out from the high surge area from other places, which is 

the opposite of the expected impact of surge pricing. Also, even considering surge 

pricing, Henao and Marshall (2019) do not recommend the cruising behaviour of 

drivers unless there is a guarantee of reducing 30 % of deadheading time (i.e. time 

without serving passengers). Experienced drivers may learn such strategies from 

their experience, which could affect drivers’ location choice behaviour.  

 

 Drivers’ motivation, experience and attitude towards 
providing shared and non-shared on-demand ride service  

   In most cases, on-demand ride service drivers are not hired by a provider of the 

service platform. Instead, they are “partnering” with the service platform provider. 

Therefore, they can decide when, where, and how long they offer their service. 

Many studies identified such flexibility as the primary motivation for drivers to enter 

the platform (Hall and Krueger, 2018, Hong et al., 2020, and Fielbaum and 

Tiranchini, 2020). Hall and Krueger (2018) provided the first comprehensive 

analyses of Uber’s “driver-partners” in the US using the survey data conducted in 

2014 and 2015. Their results suggest that most Uber drivers have a full-time or 

part-time job aside from being a driver. Hence, they use Uber as a supplemental 

income source to earn more or smooth out their income fluctuations. On the other 

hand, Fielbaum and Tiranchini (2020) discovered that most drivers are working full 

time indefinitely from the online survey target drivers of the two biggest raid-hailing 

companies in Chile (i.e. Uber and Cabify) 2018. The difference in the results could 

be attributed to the different data collection time. 

Depending on the motivation of partnering with an on-demand ride service platform, 

drivers’ working hours and patterns vary. When drivers have other full-time and 

part-time jobs, their working hours are much shorter than traditional taxi drivers, and 

working patterns vary week by week (Hall and Krueger, 2018). On the contrary, 

when providing on-demand ride service is their full-time job, most drivers have a 

fixed routine, which makes working patterns not so different from a traditional taxi. 

However, the absence of a fixed working schedule is still appreciated by drivers 

(Fielbaum and Tiranchini, 2020).  
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Several studies declare that both profitability and drivers’ earnings are questionable 

(Henao and Marshall, 2019 and Hong et al., 2020). Hall and Krueger (2018) 

concluded that drivers earn as much per hour or probably more than an average 

taxi driver and chauffeur. In particular, their estimation suggests that drivers’ 

earnings are between $16.20 and $23.70 per hour, where operational cost is $2.90 

and $6.50 per hour in the US. On the other hand, Fielbaum and Tirachini (2020) 

estimated that drivers' actual hourly earnings are between $5.10 and $6.50 per 

hour, which is higher than the earnings perceived by drivers (i.e. $4.20 per hour); 

however, less than half of the amount which Uber claims (i.e. $12.10 - $17.20 per 

hour without discounting operational cost). 

Henao and Marshall (2019) estimated that on-demand ride service drivers’ (i.e. 

Uber and Lyft) wage is between $5.70 and $10.50 per hour in Denver in the US, 

which is lower than the minimum wage in the state of Colorado. Hong et al. 

(2020)and Henao and Marshall (2019) pointed out that the price of on-demand ride 

service could be below the threshold to cover operational costs when demand is 

deficient and the number of active vehicles is saturated. Though the expected 

amount of earnings differs among drivers, Fielbaum and Tiranchini (2020) 

discovered that the insufficient amount of earnings is often mentioned as the reason 

to quit being a driver.  

Not much literature is focusing on drivers’ preference for providing shared and non-

shared service. Results of a survey targeted 1,000 Uber and Lyft drivers in the US 

indicate that a higher percentage of drivers used negative sentences to explain the 

satisfaction level of providing shared service (i.e. UberPool and LyftShare) 

(Campbell, 2018). Morris et al. (2020) also conducted an online survey that targeted 

Uber and Lyft drivers in cities across the US. Their results also suggest that the 

average satisfaction level for providing shared service is lower than the non-shared 

option and service in general, with 0.1% significance level. Besides, two-thirds of 

former drivers mentioned providing a shared service as somewhat reason for them 

quitting.  

According to Morris et al. (2020) and Pratt et al. (2019), drivers tend to ignore 

shared service requests. However, they pointed out that ignoring too many requests 

resulted in “time-out”, during which drivers cannot accept a request8. In addition, 

Griswold (2017) reported that though Uber allowed drivers to turn off UberPool 

options, it automatically turned off Uber X which covered the majority of trip 

 

8 Morris et al (2020) and Pratt et al (2019) refer the link to Uber and Lyft website 
accessed in October 2018. The link to Uber’s webpage is not working anymore. 
Besides, Lyft website does not mention “time-out” anymore. Instead, they 
indicate the acceptance rate could affect to the accessibility to several services.  



- 38 - 

requests as of 20179. 60% of drivers who participated in the survey conducted by 

Morris et al. (2020) stated that they would refuse the request for a shared ride if it 

were easier to do so.  

Interestingly, the compensation was most frequently mentioned in both what drivers 

like and dislike about providing shared service (Morris et al., 2020). Drivers seem to 

like the fact that they can keep passengers in a vehicle longer time instead of 

cruising around to find another passenger, which results in more earnings. They 

also mention that they could get more tips by providing shared ride than non-shared 

service as there are more passengers per ride. However, some drivers perceive 

shared service users as bad tippers. It should be noted that Uber now gives $1 per 

pick-up for a shared service, while Lyft does not offer any rewards. Morris et al. 

(2020) discovered that approximately $3.40 per pick-up would make the average 

driver feel fairly compensated. Some drivers also mentioned that what they earn 

from providing one shared trip is not high enough, considering how long it takes to 

complete the trip. Nevertheless, Uber and other observers estimated that providing 

shared service results in better compensation, according to Morrison et al. (2020). 

Hence, they recommend a platform to provide better communication in terms of 

financial benefit with drivers. 

 Research gaps in the existing literature  

   In this section, the deficiencies of the models presented in reviewed studies are 

presented with respect to the motivation and objectives of this research. In 

particular, research gaps associated with objective O1 to O3 are summarised 

individually.  

 

O1. to specify and develop a stochastic process model that represents the 

long-term evolution of an on-demand ride service system that provides 

non-shared and shared use.  

Section 2.2 in Chapter 2 summarised existing research focusing on the day-to-day 

dynamics in on-demand ride service systems and other types of “shared” systems 

(e.g. bike-sharing, conventional bus service). In the context of conventional mass 

transit such as bus services, several studies modelled the feedback loop caused by 

users’ mode choices and changes in the system capacity (Cantallera et al. 2015 

and, Li and Yang, 2016). Periodic changes in the frequency of bus services (Li and 

Yang, 2016) and daily changes in travel time influenced by private car usage and 

 

9 Author did not find information regarding that is still applicable or not.   
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bus ridership (Cantallera et al., 2015) are introduced as causes of service capacity 

change. However, unlike an on-demand ride service, the changes in the system 

capacity are not related to (bus) drivers’ decisions.  

Djavadian and Chow (2016, 2017) proposed a framework to represent the 

dynamics between users and drivers of an on-demand ride service as an agent-

based model. Their framework can capture the day-to-day learning and decision 

making of both users and drivers regarding which service they will use or provide. 

However, the nature of their model is deterministic. Research conducted by Zhan 

and Schmocker (2019) is the only one that utilised a stochastic process model in 

the “shared” service context. In particular, they applied a Markovian approach to 

develop a demand prediction model that can capture the long-term evolution of 

bike-sharing users' choices. The bike-sharing scheme is similar to an on-demand 

ride service in the sense that the service level is influenced by the supply-demand 

balance, which could change every day. However, bike-sharing is fundamentally 

different from on-demand ride service since no drivers are involved and there is no 

pooling of passengers.  

Hence, a research gap remains in that there exists no stochastic process to 

represent the long-term evolution of on-demand ride services.  

 

O2. to extend the model in O1 to include the impact of the availability of both 

sharing partner and a vehicle to the users’ experience by simplifying the 

service supply process with a queueing representation  

In the case of shared service, the dynamics among shared service users influence 

the service level. For instance, even if the number of drivers is large enough 

compared to the number of shared service users, the small number of shared 

service users may still prevent users from finding others to share a vehicle with. It 

leads to the deterioration of service level by increasing waiting time.  Thaitakul et al. 

(2019) simplified the sharing aspect of on-demand ride service and investigated the 

impact of sharing partners’ availability on the long-term evolution in DRS. The 

problem was reduced to matching multiple users based on their OD and travel time 

constraints by removing the discussion regarding vehicle availability.  

Discussion regarding the availability of vehicles could be ignored if it is assumed 

that the fleet size is large enough for users to access the service anytime, 

anywhere. However, the fleet size is not often that large in the real-world system as 

it would be financially inefficient for the service providers, namely, drivers. As 

explained in the section 2.7, drivers have the flexibility to decide if they provide the 

service at certain time of the day. Therefore, when drivers discover the market is 
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oversaturated and they cannot earn as much money as they would like, it is highly 

likely that they will stop providing the services. Therefore, it is very unlikely to see 

the situation where the fleet size is large enough to be able to ignore the availability 

of vehicle. Besides, interesting aspects of a shared ride cannot be represented if 

the impact of service capacity is excluded. One example of such elements is the 

balance between competition among users to access the limited resources (e.g. 

fleet) and dependency among users to find sharing partners.  

Hence, the research gap remains where there is no research about day-to-day 

dynamics in on-demand ride service, including the dynamics between users and 

providers and the dynamics among shared service users. 

In order to represent the dynamics between shared service users, the trip matching 

process needs to be included in the model. The trip matching process is 

challenging to represent in a simplified way, especially for shared service; too much 

simplification risks losing aspects of the interactions that are essential to the 

system’s evolution and performance. On the other hand, an overly detailed 

representation would lose the transferability of results and/or would not provide a 

general understanding of the system. Section 2.3.2 in Chapter 2 reviewed existing 

research which uses the queuing representation of on-demand ride service and 

similar type of passenger services. In particular, studies conducted by Wang and 

Odoni (2016) and Less-Miller et al. (2016) are discussed.  

A critical aspect of the queueing representation proposed by Wang and Odoni 

(2016) is that trip requests arrive in batches, and their destination is known prior to 

their arrival at the pick-up spot (i.e. a mass transit station). The pick-up location is 

assumed to be the same spot, a mass transit station, while drop-off locations are 

spread throughout the given service operation area. As they focused on Last-Mile 

Transport System (LMTS), this is a reasonable assumption; however, this 

assumption limits their model's application to the more general context of on-

demand ride services.  

As discussed in subsection 2.5.2, empirical research discovered from the real-world 

data that some “hotspots” for pick-up requests are observed (Dong et al., 2018). 

Besides, in some cities, it is observed that users travel with on-demand services 

from the city centre to the outer area (Liu et al., 2019). Hence, their spatial 

representation could also be applicable even when on-demand ride services are not 

used only as a LMTS. However, the arrival pattern of the trip requests or users is 

different if the on-demand ride service is not used as a LMTS. In specific, it is 

unlikely for trip requests to have a temporal pattern where batch requests 

repeatedly arrive with a short constant interval (e.g. 5-20 min) outside of the LMTS 



- 41 - 

context. Therefore, Wang and Odoni’s representation cannot be applied to model 

on-demand ride services outside of LMTS context.  

Furthermore, the batch arrival assumption of Wang and Odoni cannot capture a 

trade-off between waiting time and in-vehicle time. One of the challenges to cluster 

the multiple trip requests for shared service is that it is uncertain when other trip 

requests which share a similar OD would arrive. The longer waiting time would 

increase the chances of such requests arriving and reduce total travel time by 

offering more efficient routing. However, a longer waiting time increases the time 

from a trip request entering the system to arrive at their destination. The availability 

of a sharing partner and the expected time until such requests arrive would change 

depending on the level of demand for the shared service. Hence, it is an important 

aspect to consider in order to capture the influence of variability in trip requests 

arrival time on users’ experience.  

Less-Miller et al. (2016) assumed that trip requests arrive individually. However, as 

their contexts are PRT which is operated on the guideway with fixed stations, 

destination choices are much limited compared to on-demand ride services. This 

could be seen as a simplified representation of shared on-demand ride service, 

where the pick-up and drop-off points are limited and predetermined. However, this 

representation also limits the capability to capture the trade-off between waiting 

time and in-vehicle time. Unlike Wang and Odoni et al. (2016), the Less-Miller 

representation can express variability in trip request arrival time. Nevertheless, it 

cannot express uncertainty regarding whether or not that trip request has an OD 

that can be shared with other requests.  

Hence, a research gap remains where there is no queueing representation of on-

demand ride service system outside of LMTS context and without pre-fixed OD 

choices.  

 

O3.  To propose a fair cost distribution strategy within the framework 

developed in O2, which captures the trade-off aspects of shared services, 

such as a reduction in monetary cost and increase in in-vehicle time 

As summarised in section 2.6, monetary cost and in-vehicle time are essential for 

users' mode choice between non-shared and shared services. In Section 2.4, 

Shapley value is introduced as a possible method to achieve a fair cost distribution 

for shared service.  As explained in section 2.4, the Shapley value can be 

interpreted as being that each user receives some proportion of “benefit” from 

sharing the vehicle. However, it does not consider the disutility of users staying 

longer in the vehicle. If the case illustrated in Figure 11 is assumed where both 
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destinations are located at the same distance from the origin (a star in Figure 11), 

the Shapley value will be equal and  𝜑(1) =  𝜑(2). However, as user 2‘s in-vehicle 

time is longer than the one for user 1, it would be perceived as unfair for user 2 to 

pay the same price as user 1. As TSG has often been applied in the logistics field, it 

is sensible that previous studies had no problem using Shapley Value as a solution 

method. Unless a fleet carries highly perishable goods, the length of in-vehicle time 

is not a primary concern for both a carrier and goods. Nevertheless, when moving 

people rather than goods, the disutility of longer in-vehicle time cannot be ignored 

as it is essential to capture a trade-off between monetary cost saving and the 

increase in travel time in on-demand shared ride service.  

Hence, in this research, a modified Shapley value which includes the penalty of 

longer in-vehicle time, is proposed and investigated.  

 

Figure 11 An example where two drop-offs are located the same distance 
from the pick-up point.  

 Summary 

   In this chapter, two types of the literature review were presented. Section 2.2 to 

section 2.4 presents a review conducted to identify the gaps in the existing 

literature. The remaining sections discussed the nature of on-demand ride service, 

mainly using studies through real data analysis. 

Some research focused on the day-to-day dynamics model in the context of on-

demand ride service, most of which utilised the deterministic process. Each 

research used a different approach to simplify the problem to investigate the long-

term evolution of the system, which is presented in section 2.2.  

Section 2.3. describes the queueing representation of DARP after introducing the 

summary of DARP in general. Subsection 2.3.1 focused on describing the different 

way to represent DARP. The following subsection summarises a queuing 
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representation of DARP, which often used to reduce the size of the problem while 

capturing stochasticity and dynamic aspect.  

Section 2.4 provides a brief review of the pricing problem regarding non-shared and 

shared service. Although dynamic pricing is often discussed as the unique feature 

of the pricing problem for on-demand ride service, the empirical evidence suggests 

that surge pricing remains deactivated most of the time (e.g. 75% of the day). 

Besides, the fair cost distribution problem is mentioned as a unique problem for 

shared on-demand ride service.  

Section 2.5 summarises a basic characteristic of trips made by non-shared and 

shared on-demand ride service. Empirical evidence suggests that non-shared 

service is much more frequently used compared to shared service in several cities. 

Several studies analysed spatiotemporal characteristics of trips and identified the 

existence of demand hotspots for pick-ups and drop-offs.  

Section 2.6 discusses the behavioural aspects of on-demand ride service users. A 

shorter waiting time and lower cost are mentioned as to why people chose on-

demand ride service over other passenger services such as taxis. The influence of 

the phycological factor on the willingness to share an on-demand ride service is 

also identified. However, it does not seem to have a bigger impact than traditional 

factors (i.e. monetary cost and travel time). 

Section 2.7 presents reviews regarding on-demand ride service drivers’ behaviour. 

Drivers’ relocation behaviour is observed when they are on the standby phase. 

Surge pricing seems to encourage off-line drivers to be online, although online 

drivers' tendency to move away from high surge zone is discovered. Also, several 

studies observed drivers’ negative attitude towards providing a shared service. 

There is not much literature investigating a driver side’s behaviour aspect yet. 

Hence, it is too early to conclude those are the universal trend. However, it seems 

to be the case that drivers perceive providing a non-shared and shared service as a 

different experience.  

At last, in section 2.8, research gaps are identified and presented regarding several 

objectives stated in Chapter 1.  
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Chapter 3 Model specification   

 Introduction    

   As mentioned in Chapter 1, one of the objectives of this research is to develop a 

stochastic process model that represents the long-term evolution of an on-demand 

ride service system. This chapter provides a detailed description of the proposed 

stochastic process model that reflects three points specified with the objective O1, 

O2, and O3 in Chapter 1. 

In particular, through a user’s utility-based decision model and driver’s profit-based 

decision model, the modelling framework is able to represent users’ choice of 

whether to use a shared and or non-shared on-demand ride service, as well as 

drivers’ choice of whether to provide such services. The long-term evolution of the 

system is captured by letting users and drivers collectively learn about experience 

regarding using and providing shared and non-shared service day by day (the 

objective O1). Day-to-day users’ and drivers’ service type choices are reflected in a 

supply model10 and determine the number of users and drivers for each service on 

each day. The changes in the supply-demand balance, as a result, affect users’ and 

drivers’ experience of using and providing each service. The estimated experiences 

are fed back to the users' and drivers' learning and decision process the next day, 

with which the feedback loop is completed. Those processes are specified in 

section 3.3.  

A queuing representation is utilised to achieve a simplified representation of non-

shared and shared service, which is specified in section 3.4. In order to include the 

trade-off aspects of shared service, which is inevitably detailed while keeping the 

simplicity of the model, a particular service network representation is introduced 

(the objective O2). The fair splitting of monetary costs among shared service users 

is modelled by introducing the modified Shapley Value, which is newly introduced in 

this research (the objective O3). Section 3.4 also explains the simulation process of 

outputs from the supply model, such as user waiting time, round trip time, user’s in-

vehicle time, and fare.   

The structure of this chapter is as follows. After summarising the list of notations, 

the learning and decision process model is described in section 3.3. In section 3.3, 

key assumptions are summarised in subsection 3.3.1; then, the user’s and driver’s 

learning and decision processes are separately explained in the following 

subsections. Section 3.4 is dedicated to explaining the supply model. After key 

 

10 A stochastic process consists of three main models; 1) a learning model, 2) a 
decision model, and 3) a supply model. (Watling and Cantarella, 2015). 
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assumptions are listed, the general structure of the queueing representation of an 

on-demand ride service is described in subsection 3.4.2. The process to estimate 

key outputs used as inputs for the learning and decision process is explained with 

small numerical experiments. The chapter is concluded with the summary section in 

section 3.5. 

 The list of notation 

𝐍ୢ The vector contains the number of non-shared and shared service 

users on day 𝑑 which are 𝑁ଵௗ and 𝑁ଶௗ. 

𝐗ୢ The vector contains the number of users who experienced 

unsatisfactory service using a non-shared service, 𝑋ଵௗ, and a 

shared service, 𝑋ଶௗ, on day 𝑑 

𝜑 The total expected number of trip requests during the period of 

interest per day 

𝛼௨ The proportion of users who satisfied with the service they chose 

yet stated that they would change to the alternative service on the 

following day 

𝛽௨ The proportion of users who did not satisfy with the service they 

chose yet stated that they would stay in the same service on the 

following day 

𝑘 The type of service ( 𝑘 = 1 indicates a non-shared service while 

𝑘 = 2 indicates a shared service) 

𝑢,,ௗ The utility of a user who made 𝑖th request for the service  𝑘 on day 

𝑑 

𝑊𝑇,୩,ௗ Waiting time of a user who made 𝑖th request for the service  𝑘 on 

day 𝑑 [min] 

𝐼𝑉𝑇,,ௗ In-vehicle time of a user who made 𝑖th request for the service  𝑘 

on day 𝑑 [min] 

𝑐,,ௗ The fare charged for a user who made 𝑖th request for the service  

𝑘 on day 𝑑 [monetary unit] 

𝑊𝑇𝑆 Users’ willingness to pay to avoid sharing their ride with stranger(s) 

which is consistent among all users regardless of the number of 

strangers share their ride with other shared service users 

[monetary unit] 
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𝜔,ௗ A dummy parameter to count the number of unsatisfied users 

using the service 𝑘 on day 𝑑 

𝛾௪ The value for user waiting time [monetary unit/min] 

𝜸௩(𝑘) A vector contains the value for in-vehicle time for non-shared 

service and shared service [monetary unit/min] 

𝑃𝑈,ௗ The collective average utility of the service 𝑘 on day 𝑑. 

𝜂௨ An updating filter which determines how much the average utility 

on day 𝑑 influences on the collective average utility on day 𝑑 

𝑃𝑈,ௗ. When, 𝜂௨ = 1, the collective average utility on day 𝑑 is 

equal to the average utility on day 𝑑 

𝐒ௗ The vector contains the number of drivers providing non-shared 

services, 𝑆ଵௗ , and shared services, 𝑆ଶௗ, on day 𝑑 

𝐘ௗ The vector contains the number of drivers with unsatisfactory 

experience providing non-shared services, 𝑌ଵௗ, and shared 

services, 𝑌ଶௗ, on day 𝑑 

𝜒 The expected number of total drivers per day  

𝛼 The proportion of drivers who satisfied with providing the service 

they chose yet stated that they would change to providing the 

alternative service on the following day 

𝛽 The proportion of drivers who did not satisfy with providing the 

service they chose yet stated that they would keep providing the 

same service on the following day 

𝜌,ௗ A dummy parameter to count the number of unsatisfactory drivers 

providing the service 𝑘 on day 𝑑 

𝛾 The parameter determines the fare charged for a minute of a 

round trip [monetary unit/min] 

𝛾 The parameter represents the cost for drivers to make a round trip 

[monetary unit/min] 

𝑟,,,ௗ The duration of the 𝑙th round trip for a driver 𝑗 providing the service 

𝑘 on day 𝑑 [min] 

𝑞,,ௗ The total number of trips made by a driver 𝑗 providing the service 𝑘 

on day 𝑑 

𝑝,,ௗ The profit made by a driver 𝑗 providing the service 𝑘 on day 𝑑 
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𝑃𝑃,ௗ The collective average profit for the service 𝑘 on day 𝑑  

𝜂 An updating filter which determines how much the average profit 

on day 𝑑 influences on the collective average profit on day 𝑑  

𝑃𝑃,ௗ. When, 𝜂 = 1, the collective average profit on day 𝑑 is equal 

to the average profit on day 𝑑 

𝐌ௗ The vector contains the mean service rate of non-shared services, 

Mଵௗ, and shared services, Mଶௗ, on day 𝑑 

𝚲ௗ The vector contains the mean arrival rate of a trip request for the 

non-shared service, Λଵௗ, and the shared service, Λଶௗ, on day 𝑑 

𝑎 The minimum number of requests per cluster for shared service. A 

cluster indicates the set of trip requests for shared service 

simultaneously served by a vehicle.  

𝑏 The number of passenger seat per vehicle  

𝛿(𝜻, 𝜅) The set of parameters determines the service network geometry.  

𝜻 = (𝜁 , 𝜁ௗ)  consists of the length of the corridor, 𝜁, and the side 

length of a drop-off area, 𝜁ௗ. 

𝜃 The threshold waiting time till non-clustered requests to be 

clustered, beyond which trip requests become ready to be 

matched with any available vehicle providing shared service 

without forming a cluster 

𝜛 The duration of interest [min] 

𝑧,,,ௗ The number of drop-offs in the 𝑙th round trip of a driver 𝑗 providing 

the service 𝑘 on day 𝑑. (𝑎 < 𝑧,,,ௗ < 𝑏) 

𝑔,,,,ௗ The order of a user 𝑖 to be dropped off during the 𝑙th round trip of a 

driver 𝑗 providing the service 𝑘 on day 𝑑 

ℎ The mean number of accompanied people per request  

𝜏൫ 𝑔,,,,ௗ  ൯ The modified Shapley value for a user 𝑖 who is dropped off at  

𝑔,,,,ௗth stop during the 𝑙th round trip of a driver 𝑗 providing the 

service 𝑘 on day 𝑑 

 The learning and decision model 

   This section describes the learning and decision process of the proposed model. 

In the first subsection, key assumptions of the learning and decision process are 

specified. Then, the user's learning and decision model is specified in subsection 
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3.3.2. At last, the driver side's learning and decision model is explained in 

subsection 3.3.3.  

 Key assumptions  

   The user's and driver's learning and decision model are formulated based on the 

assumptions specified below. Figure 12 presents the model framework for the 

user's and driver's learning and decision model.  

A1. A trip can be made by an on-demand ride service only, which offers non-

shared and shared services. A non-shared service implies that only one trip 

request is matched with a driver. A shared service suggests that two or 

more trip requests are matched with a driver. Hence, two unknown (groups 

of) user share (the part of) their rip.  

 

A2. The service users and drivers can use the service by signing up for the 

service platform. Through an online application provided by the service 

platform, a user can make a trip request. Drivers enter the market by 

activating their status on the same application. 

  

A3. The expected number of users and drivers during a period of interest is fixed 

every day. However, the total number of users and drivers who actually 

use/provide each service varies day by day.  

 

A4. A user could travel with accompanied people who travel from the same 

origin and destination using an on-demand ride service. A user needs to 

specify the number of travellers when she/he requests a trip. The number of 

travellers per request does not correlate with any other attribute of trips. 

Hence, the number of service users on the day is not necessarily equivalent 

to the number of people travelling. However, it is equal to the number of trip 

requests made on that day.  

 

A5. Service users and drivers choose the service they want to use/provide 

based on the review provided by the application. The review is updated and 

delivered at the end of the day every day. 

 

A6. The service platform collects users' and drivers' experience as the service 

progress within a day. The collective average performance of using and 

providing the service is estimated for each period when all users who made 

a trip request during the period completed their service. A day is divided into 
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several periods by the service platform based on the similarity in activities 

(i.e. peak and off-peak period)  

  

A7. The collective average performance is estimated as the weighted sum of the 

user's and driver's average experience of the day and accumulated 

performance in the past. The service platform operator determines the 

weight.  

 

A8. After the collective average performance of each service is released, users 

and driver asses if their experience was satisfactory compared to the 

alternative service's collective average performance. Based on their 

assessment, all users and drivers send feedback regarding if they would 

choose the different service on the next day or not through the application.  

 

A9. Users and drivers do not always make a decision which is seemingly 

consistent with their experience. For instance, among those who were not 

satisfied with their experience, a certain proportion of them would send 

feedback as “staying with the same service on the next day”. Besides, a 

certain proportion of those who had a satisfactory experience would send 

feedback as “changing the service on the next day” for various reasons.  

 

A10. Feedback is sent one per one trip request even if they travelled as a group. 

Hence, the total number of feedbacks from users is equivalent to the total 

number of trips on the day.  

 

A11. The review of each service is updated every day before the beginning of a 

certain period, reflecting the previous day’s users and drivers' feedback.  

 

The below section presents the reflection on some of the assumptions specified 

above. 

Assumption A4 

The number of passengers in a vehicle is not a sufficient indicator to define shared 

or non-shared service.  For instance, if a group of 3 people requests a non-shared 

service, as illustrated in Figure 13, the number of passengers per vehicle is 3. 

However, it is still a non-shared service.  

 

Assumptions A5 to A11 
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As illustrated in Figure 12 and specified with assumptions above, individual users 

and drivers do not remember their own experience in this model. Instead, individual 

experiences collectively update the overall reputation of each service. Individuals 

decide which service they would like to use/provide the next day by comparing their 

own experience of the current day and the overall reputation of the alternative 

service. Therefore, though the learning is done collectively, differences in individual 

experience would still be reflected through the decision process in this model.  

 

Figure 12 a diagram of the user's and driver's learning and decision process  
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Figure 13 Illustrative example to clarify the number of users is not the 
determinant of the type of service. 

Assumption A5 

As illustrated in Figure 12, drivers are assumed to keep providing the same service 

selected at the beginning of the day. As discussed in section 2.7.2, the current 

major on-demand ride service platforms do not offer the feature for drivers to 

choose the type of service to provide. They can refuse the request of a specific type 

of service (e.g. shared service) based on their preference. However, some 

platforms penalise drivers if they refuse the requests too many times.  

In the current real-world system, the demand for non-shared services is much 

greater than the shared service. Hence, it is reasonable to expect some drivers are 

able to and willing to keep providing the non-shared service by refusing the request 

for the shared service. That behaviour has already been observed according to the 

survey conducted by Morris et al. (2020) and Pratt et al. (2019) (see section 2.7.2. 

for details). On the other hand, it would be more difficult for drivers to keep 

providing shared services only by refusing non-shared service due to the low level 

of demand for shared service. Nevertheless, some drivers prefer to provide the 

shared service than non-shared service, as discussed in section 2.7.2.  

Hence, it is plausible to assume that some drivers would intentionally choose to 

provide shared services when the trip requests for shared services were more than 

the non-shared services in the future. In addition, it is possible to have a service 

platform that incentives drivers to stay in one service to maintain the minimum level 

of capacity for each service in the future. In such a case, assumption A5 would give 

a capability to represent and investigate such a system.  

Assumption 7 

It should be mentioned that the weight could represent the differences in 

individuals' travel patterns. For instance, the weight could be assumed to reflect the 

proportion of the regular and occasional service users and providers. In such a 

case, when the weight for the accumulated performance is set to be higher it could 
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be interpreted as the proportion of regular service users/providers is high. 

Conversely, when the weight of the average user’s and driver’s experience of the 

day is set to be higher, it could be interpreted as the proportion of occasional 

service users/providers is high.  

In addition, assumption A7 indicates that only collective learning is considered, and 

individual learning is excluded. It is expected that if individual learning has been 

included, some dependency on departure time would be observed in users’ service 

choice behaviour, given individuals have a fixed range of departure times. For 

instance, those who arrived earlier do not wait for a vehicle but may need to wait for 

sharing partners if they chose a shared service and the mode share for shared 

service is low. On the other hand, those who arrived when all vehicles were busy 

would select shared service as waiting time for shared service tends to be lower 

than non-shared service during the busy period. As described with the example 

above, the within-day dynamics in mode choice behaviour could be observed and 

day-to-day dynamics if the individual experiences are reflected.  

 

 User's learning and decision model  

   The process of uses' day-to-day service choice is modelled as a stochastic 

process. 𝑁ଵௗ and  𝑁ଶௗ represent the number of users who requested a non-shared 

service and a shared service on day 𝑑 and contained in the vector 𝐍ௗ as shown 

below; 

𝐍ௗ = (𝑁ଵௗ , 𝑁ଶௗ)       (3.1) 

𝑋ଵௗ and 𝑋ଶௗ represent the number of users who experienced an unsatisfactory non-

shared service and shared service on day 𝑑, and contained in the vector 𝐗ௗ as 

displayed below; 

𝐗ௗ = (𝑋ଵௗ , 𝑋ଶௗ)             (3.2) 

Given the (constant) expected total number of requests during the period of interest 

per day, 𝜑, the number of requests for non-shared and shared service on day 𝑑  is 

estimated with the following equations (3.3) to (3.6); 

𝑁,ௗାଵ|(𝐍ௗ = 𝐧ௗ , 𝑿ௗ = 𝐱ௗ) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛൫𝜑 ∙ 𝑓(𝐧ௗ , 𝐱ௗ)൯              (k =  1,2)        (3.3) 

where 

𝑓ଵ(𝐧ௗ, 𝐱ௗ)

=
𝑛ଵ,ௗ − 𝛼௨ ∙ ൫𝑛ଵ,ௗ − 𝑥ଵ,ௗ൯ − (1 − 𝛽௨) ∙ 𝑥ଵ,ௗ + 𝛼௨ ∙ ൫𝑛ଶ,ௗ − 𝑥ଶ,ௗ൯ + (1 − 𝛽௨) ∙ 𝑥ଶ,ௗ

𝑛ଵ,ௗ + 𝑛ଶ,ௗ
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 (3.4) 

𝑓ଶ(𝐧ௗ, 𝐱ௗ)

=
𝑛ଶ,ௗ − 𝛼௨ ∙ ൫𝑛ଶ,ௗ − 𝑥ଶ,ௗ൯ − (1 − 𝛽௨) ∙ 𝑥ଶ,ௗ + 𝛼௨ ∙ ൫𝑛ଵ,ௗ − 𝑥ଵ,ௗ൯ + (1 − 𝛽௨) ∙ 𝑥ଵ,ௗ

𝑛ଵ,ௗ +  𝑛ଶ,ௗ
 

 (3.5) 

𝑛ଵ,ௗ , 𝑛ଶ,ௗ ≥ 1 (3.6) 

𝛼௨ indicates a certain proportion of those who satisfied with today's experience, yet, 

submitted the feedback as they would change their service on the next day. 

Conversely, 𝛽௨indicates a certain proportion of those who were not satisfied with 

today's experience, yet, submitted feedback as they would stay in their current 

service the next day. It is assumed that there is always one request made for each 

service.  

The level of service is estimated by calculating the utility for each trip request. A 

utility-based approach has also been applied in the model of Djavadian and Chow 

(2016) and Thaithatkul et al. (2019). The level-of-service experienced by an 

individual or group of users who made the 𝑖th request on day 𝑑 with the service 

𝑘, 𝑢,,ௗ, is compared with the collective average utility for the alternative 

service, 𝑃𝑈,ௗ. Then, those which had lower utility than the collective average utility 

of the alternative service is defined as unsatisfied, the number of which is 

calculated for each service as follows; 

𝑥ଵௗ =  𝜔ଵௗ =  ൜
0 𝑖𝑓     𝑢ଵ,ௗ ≥ 𝑃𝑈ଶ,ௗ

1 𝑖𝑓    𝑢ଵ,ௗ < 𝑃𝑈ଶ,ௗ
    (3.7) 

𝑥ଶௗ =  𝜔ଶௗ =  ൜
0 𝑖𝑓     𝑢ଶ,ௗ ≥ 𝑃𝑈ଵ,ௗ

1 𝑖𝑓    𝑢ଶ,ௗ < 𝑃𝑈ଵ,ௗ
    (3.8) 

The following equation indicates a utility function for an individual or group of users 

who made the 𝑖th request on day 𝑑 with the service 𝑘, 𝑢,,ௗ.  

𝑢,,ௗ = ቊ
−𝛾௪ ∙ 𝑊𝑇,,ௗ − 𝜸௩(1) ∙ 𝐼𝑉𝑇,,ௗ − 𝑐,,ௗ 𝑖𝑓 𝑘 = 1

−𝛾௪ ∙ 𝑊𝑇,,ௗ − 𝜸௩(2) ∙ 𝐼𝑉𝑇,,ௗ − 𝑐,,ௗ + 𝑊𝑇𝑆 𝑖𝑓 𝑘 = 2
      (3.9) 

𝜸௩(𝑘) = ൜
𝛾௩ଵ 𝑖𝑓 𝑘 = 1
𝛾௩ଶ 𝑖𝑓 𝑘 = 2

 

where 

𝛾௪ , 𝜸௩() > 0     (3.10) 

𝑊𝑇,,ௗ ,𝐼𝑉𝑇,,ௗ, and 𝑐,,ௗ  represent a waiting time, in-vehicle time, and the fare of 

𝑖th request on day 𝑑 with service 𝑘. 𝑊𝑇𝑆 indicates the users’ willingness to share 

their ride which is constant among all users regardless of the number of passengers 

to share the ride with. An estimation process of each variable is explained in 
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subsection 3.4.3 to 3.4.6 in this chapter. It should be mentioned that the 𝑖th request, 

in this context, is not necessarily served by 𝑖th service. The parameters 𝛾௪ and  

𝜸௩(), express the weight of each parameters' contribution to the overall utility and 

are positive and constant among all users.  

By applying the exponential smoothing technique, the collective average utility for 

the service 𝑘 is estimated as the weighted average of the mean utility among the 

service 𝑘 users on day 𝑑 and the collective average utility on day 𝑑 − 1. 𝜂௨ is an 

updating filter and determines the weight of each value.  𝑃𝑈,ௗ  is estimated by an 

equation below;  

𝑃𝑈,ௗ = (1 − 𝜂௨) ∙ 𝑃𝑈,ௗିଵ + 𝜂௨ ∙
∑ ௨,ೖ,

ೖ,
సభ

ೖ, 
                      (0 < 𝜂௨ ≤ 1)    (3.11) 

 

 The driver's learning and decision model  

   Service providers (drivers) may also react to their previous day's experience by 

changing the service type they offer. Hence, the fleet size for non-shared service 

𝑆ଵௗ and shared service 𝑆ଶௗfluctuate day by day. Fleet size is shown by the vector 

𝑺ௗ;  

𝐒ௗ = (𝑆ଵௗ , 𝑆ଶௗ) (3.12) 

The number of drivers having an unsatisfactory experience on day 𝑑 for non-shared 

and shared service 𝑌ଵௗand 𝑌ଶௗ is expressed with the vector 𝒀ௗ as below;  

𝐘ௗ = (𝑌ଵௗ , 𝑌ଶௗ) (3.13) 

Given the expected total fleet size 𝜒, the fleet size for each service on day 𝑑 + 1 is 

represented with the random variable 𝑺,ௗାଵ which is generated by; 

𝐒,ௗାଵ|(𝐒ௗ = 𝐬ௗ , 𝐘ௗ = 𝐲ௗ)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛൫𝜒 ∙ 𝑓(𝐬ௗ , 𝐲ௗ)൯       (𝑘 = 1,2) (3.14) 

where 

𝑓ଵ(𝐬ௗ , 𝐲ௗ)

=
𝑠ଵௗ − 𝛼 ∙ (𝑠ଵௗ − 𝑦ଵௗ) − ൫1 − 𝛽൯ ∙ 𝑦ଵௗ + 𝛼 ∙ (𝑠ଶௗ − 𝑦ଶௗ) + ൫1 − 𝛽൯ ∙ 𝑦ଶௗ

𝑠ଵௗ + 𝑠ଶௗ
 

   

 (3.15) 

𝑓ଶ(𝐬ௗ , 𝐲ௗ)

=
𝑠ଶௗ − 𝛼 ∙ (𝑠ଶௗ − 𝑦ଶௗ) − ൫1 − 𝛽൯ ∙ 𝑦ଶௗ + 𝛼 ∙ (𝑠ଵௗ − 𝑦ଵௗ) + ൫1 − 𝛽൯ ∙ 𝑦ଵௗ

𝑠ଵௗ + 𝑠ଶௗ
 

 (3.16) 
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where  

𝑠ଵ,ௗ , 𝑠ଶ,ௗ ≥ 1 (3.17) 

𝛼 indicates a certain proportion of those who satisfied with today's experience, yet, 

submitted the feedback as “changing their service” on the next day. Conversely, 

𝛽indicates the certain proportion of those who were not satisfied with today's 

experience, yet, submitted the review as “staying in their current service” the next 

day. It is assumed that there is always one driver providing each service. 

The drivers decide their experience by comparing the profit they gained on the day 

with the collective average profit for an alternative service, 𝑃𝑃,ௗ.Then, those which 

earned lower profit than the collective average profit for alternative service is 

defined as an unsatisfied, the number of which is calculated for each service as 

follows; 

𝑦ଵௗ =  𝜌ଵௗ =  ቊ
0 𝑖𝑓     𝑝ଵ,ௗ ≥ 𝑃𝑃ଶ,ௗ

1 𝑖𝑓    𝑝ଵ,ௗ < 𝑃𝑃ଶ,ௗ
    (3.18) 

𝑦ଶௗ =  𝜌ଶௗ =  ቊ
0 𝑖𝑓     𝑝ଶ,ௗ ≥ 𝑃𝑃ଵ,ௗ

1 𝑖𝑓    𝑝ଶ,ௗ < 𝑃𝑃ଵ,ௗ
    (3.19) 

The profit earned by a driver 𝑗 providing the service 𝑘 on day 𝑑 is estimated by 

subtracting the total cost of all trips they provided on day 𝑑 (e.g. gas) from the total 

fare they collected on day 𝑑 as following ; 

𝑝,,ௗ = ൫𝛾 − 𝛾൯ ∙  𝑟,,,ௗ

ೕ,ೖ,

ୀଵ

                                    (𝛾 > 𝛾) (3.20) 

The total number of round trips made by driver 𝑗 for service 𝑘 on day 𝑑 is 𝑞,,ௗ. 𝛾 

and 𝛾 indicate the fare and cost per min. The cost and fare are determined by the 

total length of round trips made by a driver 𝑗 during the period of interest on day 𝑑.  

By applying the exponential smoothing technique, the collective average profit for 

the service 𝑘 is estimated as the weighted average of the mean profit among 

service 𝑘 drivers earned on day 𝑑 and the collective average profit on day 𝑑 − 1. 𝜂 

is an updating filter and determines the weight of each value.  𝑃𝑃,ௗ  is estimated by 

the equation specified below;  

𝑃𝑃,ௗ = ൫1 − 𝜂൯ ∙ 𝑃𝑃,ௗିଵ + 𝜂 ∙
∑ 𝑝,,ௗ

௦ೖ,

ୀଵ

𝑠,ௗ 
                    (0 < 𝜂 ≤ 1) (3.21) 

 The supply model specifications 

   This section provides the supply model specification. The supply model outputs 

are used as input for the learning model specified in the previous section. In 
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subsection 3.4.1, key assumptions regarding the supply model are described with a 

reflection on some of them. In subsection 3.4.2, the queueing representation of 

non-shared and shared service is explained. Then, the estimation process of user 

waiting time, round trip time, in-vehicle time and fare are specified in subsection 

3.4.3 to 3.4.6.  

 

 Key assumptions  

   There are three types of assumptions described in this section regarding network 

properties, trip request arrival process, and service process. In each section, the 

assumptions are explained first. Then, the reflection of each assumption is 

discussed at the end of each subsection.  

 

 Network properties  

This study uses a network illustrated in Figure 14 following assumptions listed 

below;  

 

A12. The trip request is always served from the pick-up demand hotspot 

represented with a star in Figure 14. 

 

A13. Individual drop-off locations are randomly spread within the service area (i.e. 

dashed square in Figure 14).  

 

A14. The pick-up demand hotspot is only connected to the drop-off area via a 

corridor connected to the centre of the drop-off area.  

 

A15. The travel time within the pick-up demand hotspot can be ignored.  

  

A16. Travel time from the centre to anywhere in the drop-off area is supposed to 

be short enough itself or against travel time on the corridor; therefore, all 

users have the potential to share their trip in terms of geographical 

proximity.  
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Figure 14: The structure of the service network assumed in this study 

The assumption A12 and A16 are key to simplify the trip matching process for 

shared use of the on-demand ride service. By considering the demand hotspot as a 

node with assumption A12, the geographical proximity of pick-up locations can be 

ignored during a trip matching process between trip request(s) and available driver. 

Besides, assumptions A16 made all trip requests in the proposed network to be 

shareable from the spatial point of view. As a result, the component of a trip 

matching problem for shared service is reduced to the temporal problem only. 

Meanwhile, as the drop-off points could be anywhere in the drop-off area, it could 

express numerous combinations of different relative positions of drop-off points for 

shared services. Thus, it distinguishes this approach from the spatially more limited 

representation by Less-Miller et al. (2016) mentioned in Chapter 2. 

The practical implication of this network could be a trip between a central business 

district (CBD) to a residential area where a neighbourhood area is connected to 

CBD with a motorway, as illustrated in Figure 15. It should be noted that the 

proportion of objects in Figure 15 does not follow the real-world scale.  According to 

the literature review conducted in section 2.5. in Chapter 2, it is observed that the 

drop-off locations are more spread than the pick-up locations in some cases in the 

real-world system. Hence, the network representation proposed in this study is 

sensible, however, limited to the case which has the specific OD pattern.  

The current network representation could be easily expanded to the case where 

users travel to multiple drop-off locations, as demonstrated in  Figure 16. It should 

also be noted that the shape of the drop-off area is not limited to a square. Suppose 

the real-world data were utilised in the proposed model. In that case, the number of 

clusters should be determined depending on the nature of mobility patterns in the 

study area and which attribute would be mainly examined through the model 

regarding the influence on the evolution of a system.  

 



- 58 - 

    

Figure 15 an example of the simplified representation of a service network 
assumed in this study where a neighbourhood area is connected to the 
central business district (CBD) by a motorway that connects to the local 
road network via a single junction 

 

 

Figure 16 the potential expansion of the network with two separable 
destination area.  

 

 The trip request arrival process  

   The trip request arrival process is modelled with the assumptions listed below;  

A17. Trip requests are made when the service users are willing to travel. In other 

words, there is no pre-booked trip request considered in this context.  

 

A18. A trip request contains four information; trip request time, the number of 

travellers, the drop-off location and the type of service they are willing to 

use. That information is used to match the request with a driver and other 

trip requests, if applicable.  

 

A19. Assuming that users are aware of a vehicle capacity, the number of 

travellers per request cannot exceed the maximum number of passenger 

seats per vehicle (i.e. vehicle capacity). When service users request a 

shared service with accompanied people, their group size needs to be 
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smaller than the vehicle capacity so that (the part of) the trip could be 

shared with other requests. When the group size is the same as the 

maximum number of passengers per vehicle, they cannot request a shared 

service.   

 

For instance, when a vehicle has 4 passenger seats, at maximum, a group 

of 4 people can request a non-shared service. However, assuming that the 

minimum number of trip requests per shared service is 2, only the group 

with three or less people can request a shared service.  

 

A20. If there is no available vehicle for a selected service type when a trip is 

requested, a user will wait until she/he is served. In other words, once they 

made a request, they will not cancel their trip or switch the service type.  

 

A21. A trip request is set to be arriving separately with the random interval.  

 

A22. The arrival rate is influenced by the demand level of each service.  It is 

assumed that the expected total travel demand for a certain period in a 

certain area is fixed. However, the actual total number of request varies day 

by day. 

The below section presents the reflection of some assumptions specified above. 

The assumption A19 

The number of travellers per trip could limit their option to chose the shared service. 

Also, it could affect the probability of finding other trip requests to share a ride with 

for a shared service. For instance, assuming a vehicle has 4 seats for passengers, 

if the group of 3 people request a shared service, they can only share a ride with a 

trip request with a single traveller. On the other hand, if a single person requests a 

shared service, they could be matched with a trip request made by a group of 1 to 3 

people. Therefore, the lower the number of travellers per request, the higher the 

probability to be matched with other trip requests for shared service.  

 

 The service process 

   In this model, two types of on-demand ride service are modelled, non-shared 

service and shared service. Both services are operated under the assumptions 

listed below;  

A23. The capacity of a vehicle is uniform and fixed among all fleet.  
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A24. The fleet size for each service is constant during a period of interest on the 

given day.  

 

A25. The fleet of on-demand ride service does not influence on the congestion 

level.  

 

A26. A vehicle always makes a round trip from and to the pick-up demand 

hotspot, as displayed in Figure 17.  

 

 

Figure 17 An example trajectory of a round trip with two trip requests (i.e. two 
different drop-off points 𝑫𝟏and𝑫𝟐) from the pick-up hotspot (i.e. 𝑶). All 
round-trips initially follow the corridor (e.g. a motorway) to the centre of 
the drop-off area, within which drop-off points are randomly distributed. 

A27. The loading/unloading time of each passenger is assumed to be small 

enough compared to an overall travel time and is not included in a round trip 

time. 

 

A28. A vehicle does not formulate a physical queue when they are on standby 

and waiting to be matched with trip requests.  

 

A29. When a trip request arrives, the service operation system matches trip 

request(s) and an available driver and decide the order to visit each drop-off 

location following the predetermined strategies 

 

A30. The shortest path is selected as a route to follow between each drop-off, the 

centre of the drop-off area, the pick-up demand hotspot. In this model, it is 

represented as the straight line between two points.  

 

A31. If there is more than one driver available, the trip request is randomly 

assigned to one of them. 
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A32. If there is no driver available, a trip request is stored at the end of the virtual 

queue in the system 

 

A33. Once a round trip starts, there will be no change in schedules and routes all 

the way. 

 

A34. Both drivers and users always follow the instruction provided by the service 

platform through the application.  

The trip matching process of non-shared and shared service operates under 

different assumptions as a shared service involves an additional step. 

In the case of non-shared service,   

A35. The non-shared service is operated based on the first-come-first-served 

(FCFS) principle. Hence, the trip request that arrived first is assigned to an 

available driver (i.e. a driver in the standby phase) first. If there is no 

available driver, a request will be put at the end of the virtual queue in the 

system and wait until a driver becomes available (see Figure 18).  

 

 

Figure 18 the flowchart of a trip matching process for a non-shared service  
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In the case of shared service, the service process follows the flowchart summarised 

in Figure 19. From the trip requests arrival to the vehicle dispatch, a trip request 

needs to go through two stages; clustering and assignment. The clustering 

indicates the process where the multiple trip requests are combined. The 

assignment implies the process where the clustered requests are matched with an 

available driver.  

A36. The minimum number of trip requests per cluster is predetermined.  

 

A37. The total number of users per clustered requests cannot exceed the number 

of passenger seats per vehicle.  

 

A38. When a trip request for shared service arrives, it is first assessed if it can be 

combined with the existing clustered requests waiting to be matched with an 

available driver. The resulting action would be as follows; 

 

1) If any clustered request waiting is compatible with a newly arrived request, 

the newly arrived request will be added to the cluster.   

 

2)  If there is no clustered request waiting or any of the waiting clustered 

requests are not compatible, the request is assessed if it can be combined 

with any non-clustered trip request. 

 

If the newly arrived request could not find any other trips to form a cluster, it 

will be stored at the end of the virtual queue for non-clustered request.  

 

A39. If a trip request waited longer than the threshold waiting time for a potential 

sharing partner to arrive, it would be ready to be matched with an available 

shared service driver without forming a cluster.   

 

A40. The threshold waiting time for sharing partners is predetermined and fixed 

by the service platform operator. 

 

A41. Both the clustering process and the assignment process follows the first-

come-first-served (clustered) principle in general.  
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Figure 19 the flow chart explaining the process of a newly arrived request for 
shared service to find sharing partners or to join the queue for non-
clustered trips 

The below section presents the reflection of some assumptions specified above.  

The assumption A26 

A service process of an on-demand ride service consists of two parts of trips; a trip 

with passengers and a trip without any passenger.  As illustrated in Figure 20, the 

order of those two parts can be different based on the model assumption. The left 

figure in Figure 20 shows the case where drivers stay at the drop-off location of the 

last request. Hence, when the new request arrives, they need to travel to the pick-

up location first. As a result, the trip with no passenger comes first. It could be the 

case when there is no apparent demand hotspot. The right figure in Figure 20 

illustrates the case assumed in the proposed model where drivers always come 

back to the demand hotspot represented as a star. As summarised in section 2.7 in 

Chapter 2, both assumptions could be observed in the real-world situation.  

Assuming the driver making a round trip from and to the pick-up demand hotspot 

could simplify the matching process, there is no need to consider the proximity of 

the drivers idling location to the requested pickup location.  
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Figure 20 an example of two approaches for defining a driver’s behaviour. 
The left figure represents the case where a driver stays at the last drop-
off point. The right figure represents the case where a driver always 
returns to the pick-up demand hotspot illustrated with a star.   

The assumption A28 and A32 

In the real-world system, the situation where both users and drivers (vehicles)  

formulate a physical queue is somewhat limited. It is only possible when there is a 

dedicated point prepared for them to form a queue. It could be seen in some 

airports or big train or bus stations located in a busy area. However, even in that 

case, users or drivers could move for a short distance to avoid queueing. Besides, 

forming a physical queue is one way to reserve a "spot" to receive the service later, 

which is currently unavailable. In the current research, the application would 

reserve a “spot” for users and drivers; hence, there is no initiative for both users 

and drivers to form a physical queue by restricting their movement.  

It should also be mentioned that an absence of a physical queue allows ignoring 

users' and drivers' feeling of unfairness when a trip matching process does not 

respect the drivers’ or trip requests’ arrival order. They do not have the mean to 

check that. 

The assumption A38 and A39 

Trip requests become ready to be matched with an available driver when; 

1) they formed the cluster consists of the minimum number of requests per cluster  

2) they waited longer than the threshold waiting time for sharing partner.  

Until the conditions mentioned above are satisfied, trip requests are pending in the 

virtual queue. It could be defined as the waiting time for sharing partners during 

which they need to wait regardless of the driver’s availability.  In general, the stricter 

the condition for clustering becomes, the longer users need to wait. Hence, if users 

are only allowed to share with the people whose destination are very close to their 

own destination, they need to wait longer to find those who satisfied this condition. 

As a result, an additional waiting time may end up negating the benefit of in-vehicle 
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time saving. The service platform operator needs to consider such a trade-off when 

they decide the clustering conditions.  

Also, it should be noted that a trip request which waited for sharing partners longer 

than the threshold time is not always served immediately without forming the 

cluster. Even if they become ready to be matched with a driver, a user still needs to 

wait if no driver is available. Meanwhile, the new request could arrive and be 

clustered with it.  

Assumption A41 

Unlike non-shared service, shared service would not always follow the FCFS 

principle from the individual trip request point of view. The exception is when the trip 

request always contains one traveller, namely if they will never bring an 

accompanied person. On the other hand, clustered requests are always served 

following the FCFS principle. Figure 21 illustrates the example of a case where the 

clustering process does not follow the FCFS principle. A trip request is added to the 

left side as it arrives in this example. Assuming that a vehicle can carry 4 

passengers maximum, the first two requests from the right cannot be combined as 

they will exceed the vehicle capacity. Hence, the first and third request from the 

right would be clustered. Like this example, in only the case where the clustering is 

infeasible due to a predetermined constrain (e.g. the assumption A37), the FCFS 

principle is not strictly applied.  

 

 

Figure 21 the example of a case where the first two requests cannot be 
combined because the total number of users per request exceeds the 
number of passengers seats per vehicle (i.e. 4).  

 

 

 The summary of terminologies  

Table 5 the summary of terminologies used in this chapter 

Terminology  Description  
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Trip request Made by a user when they are willing to travel. It contains 

four information; the trip request time, the number of 

users, the drop-off location and the type of service they 

are willing to use 

The number of travellers 

per trip request 

Expresses how many people are travelling as a group 

between the same pick-up and drop-off location.  It is 1 

when a user travels alone. It could be more than 1 when a 

user travels with accompanied people. It could limit their 

service choice as specified with the assumption A19 

Clustered request It consists of multiple trip requests for shared service.  

The number of requests per 

cluster  

Express how many trip requests are combined to form a 

cluster. The minimum number of requests per cluster, 𝑎, 

is fixed and given by the service operator. 

The number of travellers 

per cluster  

Expresses the total number of travellers among clustered 

trip requests. The maximum number of travellers per 

cluster cannot exceed the number of passenger seats per 

vehicle, 𝑏. 

Round trip A trip from and to the pick-up demand hotspot  

The number of drop-offs 

per round trip   

It is equivalent to the number of requests per cluster. For 

non-shared service, it is always 1. For shared service, it is 

equal or higher than 𝑎. * 

*(unless the trip request waited for shared partner longer 

than threshold waiting time is served without forming a 

cluster) 

 The queuing representation of an on-demand ride service  

   Following the assumptions specified in subsection 3.4.1, an on-demand ride 

service is represented with a queueing model by positioning a "server" for a queue 

as each vehicle and service time as a round trip time. A simplified representation of 

an on-demand ride service with queueing theory is observed in the other literature 

as summarised in section 2.3.2 in Chapter 2. Queuing system can be decomposed 

into three parts; 1) arrival process, 2) service mechanism, and 3) characteristics of 

queues (Bose, 2002). There are several qualities to be checked for each part to 

define the characteristics of a queue. Table 6 summarises attributes for each part of 

the proposed model.  
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Table 6 the summary of attributes of a queuing model utilised for the model 

 Category  Attributes of a queueing model for this study  

Service 

process  

Number of 

servers 

Multi-server  

Number of 

queues  

Single queue for non-shared service  

Multiple queues for shared service  

Serving type Single service 

Arrival process  Single arrival with different load per service  

Characteristics of queue  No balking*, reneging**, jockeying*** allowed. The 

capacity of a queue is infinite.  

* balking: customers deciding not to join the queue,** jockeying: customers switch between 

queues depending on the expected time to be served, *** reneging: customers leave the 

queue  

A non-shared service is modelled with a single service multiple server queue. 

Figure 22 visualises the service process of the queue representing a non-shared 

service. A trip request arrived at the system is served one by one with one of the 

available servers (i.e. vehicle).  A trip request forms a queue only when none of the 

servers is available. A shared service is also modelled with a single service multiple 

server queue. However, as illustrated in Figure 23, it has multiple queues, one for 

single (non-clustered) requests and one for clustered requests, which are vertically 

connected. A trip request for shared service arrives at the queue for single requests 

first. The transition to the queue for clustered request happens if one of the below 

criteria is satisfied. Three criteria are summarised below.  

1) There is any compatible clustered request waiting in the queue for clustered 

request. A compatible clustered request indicates that when the newly 

arrived request joins it, the total number of travellers per cluster does not 

exceed 𝑏.  

 

2) With trip requests waiting in the queue for single requests, a newly arrived 

request can form a cluster, the total number of which does not exceed 𝑏 and 

the number of requests per which is equal or higher than 𝑎.  

 

3) A trip request waited in the queue for single requests longer than the 

threshold waiting time  

In the case of users always travelling alone, it works as a bulk service queue.  



- 68 - 

 

 

Figure 22 the diagram illustrating a queuing representation of non-shared 
service where each server is defined as a vehicle  

 

 

 

Figure 23 the diagram illustrating a queuing representation of shared service 
where each server is defined as a vehicle 

 

 User waiting time  

A user waiting time for 𝑖th trip with the service 𝑘 on day 𝑑, 𝑊𝑇,,ௗ is generated 

through the simulation and can be expressed as a function of the mean arrival rate 

and the mean service rate as displayed below, 

𝑊𝑇,୩,ௗ~𝑓(𝚲ௗ , 𝚳ௗ) (3.22) 

where  

𝚲𝒅 = (Λଵௗ , Λଶௗ) =
𝐍ௗ

𝜛
 (3.23) 
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𝚳ௗ = (Μଵௗ , Μଶௗ) ~𝑓(𝑎, 𝑏, 𝛿(𝜻, 𝜅), 𝐒ௗ , 𝜃, ℎ) (3.24) 

𝚲ௗ is the vector containing the mean arrival rate for non-shared and shared service 

(i.e. Λଵௗ and Λଶௗ) where 𝜛 expresses the duration of interest during which 𝐍ௗ trip 

requests arrive. The trip requests are modelled to randomly arrive following the 

Poisson distribution with the given mean arrival rate, which is 𝑵ௗ 𝜛⁄ . The number of 

users per trip request is determined by randomly generating the number of 

accompanied people per request from the Poisson distribution with the fixed mean, 

ℎ.  

The service rate for non-shared service, Μଵௗ, and shared service, Μଶௗ, are defined 

as the function of the fleet size for both services, Sd, and few parameters. 𝑎 indicate 

the minimum number of requests per cluster, while 𝑏 implies the maximum number 

of passengers per vehicle. δ(v, s) is the mean round trip duration for non-shared 

service, which consists of the vector that specifies the service network 

geography, 𝜻 = (𝜁 , 𝜁ௗ), and the mean speed of the vehicle, 𝜂. 𝜁 indicates the 

length of corridor while 𝜁ௗ indicates the side length of the drop-off area. 𝜃 indicates 

the threshold waiting time for sharing partner(s).  

 

 Round trip time inference  

   A travel time for each round trip is randomly sampled from a corresponding round 

trip time distribution. The round trip time distribution varies according to the number 

of drop-offs per round trip, 𝑧,,,ௗ, and network property specified with 𝜻 and 𝜅. 

Hence, travel time for the 𝑙th round trip made by a driver 𝑗 providing the service 𝑘 

on day 𝑑 can be expressed as below;  

𝑟,,,ௗ~𝑓(𝑧,,,ௗ , 𝜻, 𝜅, ) (3.25) 

Figure 24 illustrates the flow chart for a round trip time inference. The round trip 

time distribution is inferred in advance with given multiple critical attributes of the 

system through the simulation in this research, yet, it could be estimated from the 

empirical data if it is available. It should be emphasised that this inference process 

is intended to bring the effect from the operational environment to an on-demand 

ride service while keeping the generality in the model. The embedded randomness 

in sampling a round trip is intended to capture the variation in travel time regarding 

geographical differences among destinations and some other factors.  

A whole round trip from and to a pick-up hotspot can be divided into two parts, a trip 

on the corridor connecting pickup location and the centre of the drop-off area (i.e. 

solid line in Figure 17) and a trip from the centre of the drop-off area to the final 

destination of each trip (i.e. dashed line in Figure 17). As the length of the corridor 
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is fixed, a round trip in the drop-off area is the only source of variance in terms of 

travel distance and time. The round trip length distribution pattern in the drop-off 

area differs based on five components, a network structure, the size and shape of 

the drop-off area, the distribution pattern of the final destinations, and the number of 

drop-offs per round trip.  

The trip length distribution in the drop-off area is estimated through a simulation by 

repeatedly solving Travelling Salesman Problem (TSP) for each number of drop-

offs per round trip. The distribution of round trip length is determined by adding the 

doubled length of the corridor.  The service time distribution can be estimated by 

dividing it by the mean speed of a vehicle in the network, which is influenced by the 

congestion level. The effects to and of congestions level and the loading/unloading 

time of each passenger are not considered as defined by the assumption A25 and 

A27. 

 

Figure 24 the diagram of a round trip time inference process 

 

 Example  

   This section shows how the round trip time distribution would differ with a different 

number of drop-offs (NoDs) per round trip with a given condition assuming a test 
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network as illustrated in Figure 25. It consists of the square drop-off area with an 

4.39 km side length and a 10 km corridor connecting the pick-up demand hotspot 

and the centre of the drop-off area. Drop-off locations are uniformly distributed in 

the area, and a vehicle moves 20 km/h on average inside. On the other hand, the 

average speed of a vehicle is set to be 60km/h on the corridor, assuming this as the 

main road, for instance, connecting the city centre and a neighbourhood area.  

 

Figure 25 the simple example of a service network  

Figure 26 illustrates simulated round time distributions for different NoDs per round 

trip, 𝑧. A round trip time is repeatedly simulated 10,000 times for each 𝑧 (1 ≤ 𝑧 ≤

10) with the conditions specified above, from which a round trip time distribution is 

estimated. For each iteration, a drop-off location for each trip request is randomly 

generated within the drop-off area. The shortest route from the centre of the area is 

estimated by solving Travelling Salesman Problem (TSP). Figure 27 displays the 

mean round trip time for each 𝑧 in the range of 1 ≤ 𝑧 ≤ 10. As shown in Figure 27, 

the marginal increase of the mean round trip time decreases as NoDs per round trip 

increases. It is reasonable as the mean distance between drop-off locations 

decreases as the drop-off locations increases.  
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Figure 26 round trip time distributions at the service network specified in 
Figure 25 with the NoDs per round trip 1 (i.e. non-shared service) to 10. 

 

Figure 27 the mean round trip time at the service network specified in Figure 
25, with NoDs per round trip 1 (i.e. exclusive service) to 10. 

 

 User’s in-vehicle time  

   This section explains the process to estimate an in-vehicle time for each user 

from a round trip time. An in-vehicle time for user 𝑖 included in the 𝑙th round trip of a 

driver 𝑗 providing the service 𝑘 on day 𝑑, 𝑡,,ௗ, can be expressed with the function 

of a round trip time, 𝑟,,,ௗ, and the order of user 𝑖 to be dropped off in the 𝑙th round 

trip of driver 𝑗, 𝑔,,,,ௗ, as follows; 

𝐼𝑉𝑇,,ௗ~൫𝑟,,,ௗ , 𝑔,,,,ௗ൯  (3.26) 
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where  

1 ≤ 𝑔,,,,ௗ < 𝑧,,,ௗ    

In the case of non-shared services, a driver visits only one drop-off location 

requested by a user, hence, 𝑔,,,,ௗ = 𝑧,,,ௗ = 1. As specified by assumption A30, 

a driver moves the straight line between two locations (e.g. a drop-off location, a 

pick-up location, the centre of the drop-off area). Hence, the in-vehicle time for a 

non-shared service user is equal to half of the round trip time as presented below;  

𝐼𝑉𝑇,ଵ,ௗ = 𝑟,,ଵ,ௗ/2  (3.27) 

The estimation process for in-vehicle time with a shared service involves a few 

more steps than the one for a non-shared service. As all clustered trip requests for 

a round trip share their journey on the corridor, only a trip in the drop-off area needs 

to be modelled.  

A round trip time is generated from a specific round trip distribution for NoDs per 

round trip. Therefore, a relative position of drop-off points against the centre of the 

drop-off area is generated. Then, in-vehicle time for each drop-off points is 

calculated, which is later randomly assigned to each request involved in a round 

trip. It implies that the order to visit final destinations does not correlate with trip 

requests' arrival order. In the real-world system, the order of arrival of the request 

could influence on the order of delivery to drop-off locations if the passengers time 

window is uniform and very strict. However, the relative proximity between a drop-

off and a pick-up location among shared partners would anyway not correlate with 

the order of arrival.  

 

 Example  

    This section illustrates an example of how to estimate in-vehicle time when NoDs 

per round trip is 3. Three drop-off points are randomly generated in a unit square 

space, which determines the relative positioning of drop-offs and the centre of the 

square. By solving the TSP, the optimised route to visit 3 points are determined. To 

simplify the example, three points (A, B, and C) and the centre of the square (the 

star) are forming the square shape the side length of which is 0.25 (see Figure 28). 

The last thing that needs to be determined is the direction of a round trip. In this 

example, it needs to be decided if a driver visits point A first or point C first. In this 

model, a driver will visit the one closest to the centre of the drop-off area, which will 

minimise the total in-vehicle time of all users.  

In this example, both clockwise and counter-clockwise would give the same total in-

vehicle time; therefore, the clockwise is selected randomly. Assuming that the 
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round trip time in the drop-off area is 20 min, the travel time on each leg of the 

square would be 5 min each. Hence, an in-vehicle time from the centre to the first 

stop, A, the second stop, B, and the last stops, C, in this unit square are estimated 

as 5 min, 10 min, and 15 min.  

 

Figure 28 an example of randomly generated three drop-offs  

 

 Fare  

 The fare for 𝑖th user of the service 𝑘 on day 𝑑 is estimated based on the round trip 

time required by a vehicle to serve requested trip(s) and can be expressed as the 

function specified below;  

𝑐,,ௗ~𝑓൫𝑟,,,ௗ , 𝛾 , 𝑔,,,,ௗ , 𝑧,,,ௗ൯ (3.28) 

where  𝑟,,,ௗ is the travel time of the 𝑙th round trip of a driver 𝑗 providing the service  

𝑘, with which 𝑖th user was travelling on day 𝑑. 𝛾 is a parameter deciding a fare/min. 

𝑔,,,,ௗ specifies the 𝑖th user's order to be dropped off during the 𝑙th round trip of a 

driver 𝑗 providing the service 𝑘. 𝑧,,,ௗ is NoDs during the 𝑙th round trip of a driver 𝑗.  

In this model, a round trip time multiplied by  𝛾 is paid to a driver as a driver made 

each round trip. Hence, in the case of non-shared service, one user is responsible 

for paying all of them as a fare as specified with the below equation;  

𝑐,ଵ,ௗ = 𝑟,,ଵ,ௗ × 𝛾 (3.29) 

In shared service, the total fare charged for a round trip is divided among all users 

who made a request assigned to the round trip. Hence, drivers earn the same 

amount of money regardless of which service they provide if a round trip time is the 

same. On the other hand, if a round trip time is the same, a shared service user 

always pays less fare than a non-shared service user does as they split the fare 

among multiple people. The fare for 𝑖th shared service user who is assigned to the 

𝑙th round trip of a driver 𝑗 on day 𝑑 is estimated as follows;   
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𝑐,ଶ,ௗ = 𝛾 ∙ ൭
𝜏൫𝑔,,,ଶ,ௗ൯

∑ 𝜏(𝑣)
௭,ೕ,మ,

௩ୀଵ

+
2𝜁

𝑧,,ଶ,ௗ
൱ (3.30) 

where 

 𝜏(𝑣)

௭,ೕ,మ,

௩ୀଵ

= 𝑟,,ଶ,ௗ − 2𝜁 
(3.31) 

𝑐,ଶ,ௗ ≤ 𝑐,ଶ,ௗ
௫  (3.32) 

𝜏൫𝑔,,,ଶ,ௗ൯ indicates the modified Shapley value for a user who is travelling to 

𝑔,,,ଶ,ௗth drop-off of the 𝑙th round trip of a shared service driver 𝑗 on day 𝑑. It 

estimates the length of trip user 𝑖 is responsible for paying during the trip in the 

drop-off area. The fare charged for the travel on the corridor, 2𝜁, is equally split 

among users. 𝜏൫𝑔,,,ଶ,ௗ൯ is calculated with the following equation;  

𝜏൫𝑔,,,ଶ,ௗ൯ = 𝑚𝑐,మ,
+ ቌ𝑟,,ଶ,ௗ − 2𝜁 −  𝑚𝑐௩

௭,ೕ,మ,

௩ୀଵ

ቍ ∙
𝑤,,ೕ,మ,

∑ 𝑤௩
௭,ೕ,మ,

௩ୀଵ

 
(3.33) 

Similar to the conventional Shapley value, it follows three principles of travelling 

salesman games (i.e. efficiency, individual rationality, and minimal obligation) which 

are specified in section 2.4 in Chapter 2. Also, the process to estimate the marginal 
cost for each user included in a round trip, 𝑚𝑐,,ೕ,మ,

, is the same with the 

conventional Shapley value. However, while the rest of the cost is allocated equally 

among travellers in the conventional Shapley value, the proposed method 
distributes it disproportional to in-vehicle time by estimating some "weight", 𝑤,,ೕ,మ,

. 

Specifically, the weight is designed to consider users' disutility of staying in a 
vehicle longer to the distribution process of monetary cost.  𝑤,,ೕ,మ,

  is given by; 

𝑤..ೕ.మ,
=

𝐼𝑉𝑇,ଶ,ௗ
௫

𝐼𝑉𝑇,ଶ,ௗ
 (3.34) 

where 𝐼𝑉𝑇,ଶ,ௗ
௫  indicates the expected in-vehicle time if user 𝑖 selected a non-shared 

service.  

It should be mentioned that the fare is estimated only based on travel time though 

travel distance could also be considered to estimate fare in the real-world system. If 

travel distance is considered in the network assumed in Figure 25, shared service 

drivers will earn less than non-shared service drivers. This is because shared 

service drivers travel longer in the drop-off area and shorter on the corridor than 

non-shared service drivers. Hence, the distance per minute would be shorter for 

shared service. As a result, the fare would be cheaper for shared service. It could 

be a motivation for users to choose a shared service. At the same time, it could also 

discourage drivers from choosing to provide a shared service.  
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 Example  

   Assuming that the same round trip used in section 2.4 specified with Figure 5, this 

section demonstrates how to estimate a modified Shapley value for the user 

dropped off at first and for the user dropped off at the second. As explained in the 

previous section, the marginal cost estimation process follows equation (2.1) and 

(2.2).  

 

Figure 29 an example of a round trip that consists of two drop-off locations 

Then, the weight for the user travelling to the 1st drop-off, 𝑤ଵ, and the 2nd drop-

off, 𝑤ଶ, is estimated as follows,  

𝑤ଵ =
𝐼𝑉𝑇ଵ

௫

𝐼𝑉𝑇ଵ
=

𝑡ଵ

𝑡ଵ
 (3.35) 

𝑤ଶ =
𝐼𝑉𝑇ଶ

௫

𝐼𝑉𝑇ଶ
=

𝑡ଷ

tଵ + tଶ
 (3.36) 

Then, the modified Shapley value for each user 𝜏(1) and 𝜏(2) are estimated by 

distributing the remaining cost according to weights as follows,  

𝜏(1) = 𝑡ଵ + 𝑡ଶ − 𝑡ଷ + (𝑡ଵ − 𝑡ଶ + 𝑡ଷ) ∙
𝑤ଵ

𝑤ଵ + 𝑤ଶ

= 𝑡ଵ + 𝑡ଶ − 𝑡ଷ + (𝑡ଵ + 𝑡ଷ − 𝑡ଶ) ∙
𝑡ଵ + 𝑡ଶ

𝑡ଵ + 𝑡ଶ + 𝑡ଷ
 

(3.37) 

𝜏(2) = 𝑡ଶ + 𝑡ଷ − 𝑡ଵ + (𝑡ଵ − 𝑡ଶ + 𝑡ଷ) ∙
𝑤ଶ

𝑤ଵ + 𝑤ଶ

= 𝑡ଶ + 𝑡ଷ − 𝑡ଵ + (𝑡ଵ + 𝑡ଷ − 𝑡ଶ) ∙
𝑡ଷ

𝑡ଵ + 𝑡ଶ + 𝑡ଷ
 

(3.38) 

When there are only 2 drop-offs (i.e. 𝑧,,,ௗ = 2), individual rationality specified with 

equation (4.32) is always satisfied. Equation (4.32) can be rewritten for users 

travelling to the  1st drop-off location as follows; 

𝑡ଵ + 𝑡ଶ − 𝑡ଷ +
(𝑡ଵ + 𝑡ଷ − 𝑡ଶ)(𝑡ଵ + 𝑡ଶ)

𝑡ଵ + 𝑡ଶ + 𝑡ଷ
≤ 2𝑡ଵ (3.39) 

and for users travelling to the 2nd drop-off location as follows;   

𝑡ଶ + 𝑡ଷ − 𝑡ଵ +
(𝑡ଵ + 𝑡ଷ − 𝑡ଶ) ∙ 𝑡ଷ

(𝑡ଵ + 𝑡ଶ + 𝑡ଷ)
≤ 2𝑡ଷ (3.40) 
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Both equations can be expressed as follows;  

(3.39) ⇔
𝑡ଵ + 𝑡ଶ

𝑡ଵ + 𝑡ଶ + 𝑡ଷ
≤ 1 (3.41) 

(3.40) ⟺
𝑡ଷ

𝑡ଵ + 𝑡ଶ + 𝑡ଷ
≤ 1 (3.42) 

since all leg length between two points in Figure 29 is positive (i.e. 𝑡ଵ, 𝑡ଶ, 𝑡ଷ > 0), 

equation (3.41) and (3.42) are always true. However, the results of a simulation 

indicate that when the drop-off locations are more than 2 (i.e. 𝑧,,,ௗ > 2), the 

estimated costs could exceed the maximum amount that users are willing to pay for 

some cases. In such cases, the excess cost is distributed proportionally to a weight 

estimated with an equation (3.34) among those who still have an allowance to pay.  

 

 The numerical experiment: Discount vs additional in-vehicle 

time  

   In this section, a numerical experiment is conducted to assess the attribute of the 

modified Shapley value. In particular, it is examined how much discount each user 

can get regarding an additional time to spend in a vehicle. It is assumed that NoDs 

per round trip and a user's order to be dropped off would be the primary contributor 

to the trade-off between additional in-vehicle time and the fare discount. Hence, the 

four cases with the different NoDs per round-trip (i.e. 𝑧,,,ௗ = 2 𝑡𝑜 5) are generated 

and compared. The service network is assumed to be the same as the one 

specified in Figure 25.  

The 10,000 instances are generated for each case with different NoDs per round 

trip. In each case, the drop-off points are uniformly randomly generated, based on 

which in-vehicle time [min] and "the allocated cost to cover [min]" are estimated. 

The allocated cost to cover implies the length of a trip that a user is responsible for 

covering and estimated as the modified Shapley value. The fare is estimated by 

multiplying it with 𝛾, which is assumed to be 𝛾 = 1 [monetary unit/min] in this 

example. Also, the user's VoT is assumed to be 1 [min/monetary unit]. Hence, 

users expect to get 1 min worth of discount when in-vehicle time extended 1 min 

compared to the expected fare and in-vehicle time when they travel between the 

same OD with non-shared service. 

Figure 30 compared the fare discount distribution among 4 cases with NoDs per 

round trip being 2 to 5. The discount is estimated by subtracting the actual fare of 

using a shared service from the expected fare for travelling by a non-shared 

service. In general, the mean amount of discount increases as NoDs increases. At 

the same time, the variance of discount increases as NoDs increases. As Figure 31 

indicates, the additional in-vehicle time also increases as NoDs increases. The 
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additional in-vehicle time is estimated by subtracting the expected in-vehicle time of 

travelling by a non-shared service from in-vehicle time of travelling with a shared 

service. The variance in the additional in-vehicle time also increases as NoDs 

increases.  

 

Figure 30 The comparisons of the  distribution of discount in allocated 
minutes for each trip requests to cover among 4 cases with different 
NoD (i.e. NoD = 2,3,4,5) 

 

Figure 31 The comparisons of the distribution of additional in-vehicle time 
among 4 cases with different NoD (i.e. NoD = 2, 3, 4, 5) 

The tendencies described above are consistent with the expectations. However, 

there is still an unanswered question: if the discount is enough to compensate for 

the additional in-vehicle time. In this example, users expect to receive 1 monetary 

unit discount for a minute of additional in-vehicle time, as explained above. 

Otherwise, users are supposed to feel that they experienced an uncompensated 

trip. Table 7 compares 2 types of values estimated with a modified and 

conventional method which are 1) the proportion of those who have not received 

enough discount for each NoDs per round trip and 2) the proportion of those who 

have not received enough discount summarised for each order to be dropped off. In 
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both cases, according to Table 7, the proportion of uncompensated trips increases 

as the NoDs. Also, the later the order to be dropped off becomes, the higher the 

proportion of uncompensated trips becomes for both cases.  

It can also be observed from Table 7 that the proportion of the uncompensated trips 

is higher when the conventional Shapley value is applied. The proportion of the 

uncompensated trips is higher for modified Shapley value only in the cases for 

those dropped off at the 2nd place and only when NoDs is 4 and 5. It is because the 

amount of discount for those dropped off at 4th or 5th places is high, most of which is 

distributed among those who are dropped off earlier and experienced shorter in-

vehicle time. It indicates that the modified Shapley value managed to reflect the 

disutility of longer in-vehicle time. It should also be mentioned that the proportion of 

the uncompensated trips depends on VoT. In this scenario, VoT is set as 1 

[min/monetary unit]. However, if it were higher (lower), the proportion of 

uncompensated trips would be higher (lower). Nevertheless, even in the case of an 

uncompensated trip, a user always pays less than the amount she/he would have 

paid using a non-shared service. 

Table 7 Comparison of the proportion of the uncompensated trips for the 
order to be dropped off and in total with different NoDs estimated with a 
modified (top) and conventional method (bottom). 

NoDs 

Type of 

Shapley Value  
Total 

The order to be dropped off 

1  2 3 4  5 

2 Modified  0.132 0 0.263 - - - 

Conventional 0.148 0 0.295 - - - 

3 Modified  0.174 0 0.029 0.494 - - 

Conventional 0.195 0 0.030 0.554 - - 

4 Modified  0.205 0 0.022 0.121 0.678 - 

Conventional 0.226 0 0.018 0.149 0.737 - 

5 Modified  0.230 0 0.009 0.077 0.264 0.800 

Conventional 0.257 0 0.007 0.087 0.331 0.859 

In particular, when drop-off locations are horizontally spread, it tends to be an 

uncompensated trip compared to the cases where drop-off locations are vertically 

spread. In other words, when two lines are drawn between the first/last drop-off 

location and the centre of the area, as illustrated in Figure 32, the angle between 

the two lines of an uncompensated trip tends to be wide. In other words, the wider 

the angle becomes, the higher the proportion of uncompensated trip becomes, as 
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illustrated in Figure 33. Figure 33 plots the proportion of uncompensated trips 

against the maximum angle between two lines for four cases with different NoDs 

(i.e. NoDs = 2 to 5).  

For instance, when NoDs per round trip is 3, the proportion of uncompensated trips 

are 0.031 when the angle is less than 90°. On the other hand, the proportion is 

0.175 when the angle is less than 180°. From this observation, it could be 

concluded that this “angle” could be used as a measure to express the constraints 

for geographical proximity of drop-offs when the multiple trip requests are clustered 

in this model. However, the stronger the limitation in angle becomes, the less 

probable it is to find a sharing partner, meaning more waiting time. Therefore, 

introducing such restriction would not always increase the users' experience. In 

addition, it should be noted that it depends on the VoT and fare/min if users feel the 

additional in-vehicle time is compensated with the discount or not.  

 

Figure 32 the example of a round trip with the wide angle (left side) and the 
narrow angle (right side)  

 

Figure 33 the proportion of uncompensated trips with the different maximum 
angle between the first and the last stops for 4 cases with different NoDs 
(i.e. NoDs = 2 to 5).  
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 Summary 

   This chapter provided a detailed explanation of the proposed model, which 

includes three attributes specified with objective O1, O2, and O3 in Chapter 1. In 

section 3.3, the user’s and driver’s learning and decision model are specified. The 

key assumptions of this representation are the existence and the role of the third 

party, namely, the service platform operator. Both users and drivers request and 

offer a trip through the online application provided by the service platform operator. 

Collective learning and individual decision making are also conducted through the 

application. 

Section 3.4. is dedicated to describing the supply model specifications. In order to 

represent enough details to capture essential trade-offs for shared service, a certain 

network structure and a driver's behaviour are assumed though both of them are 

observed in the real-world system as described in Chapter 2. To represent the 

process to split the fare among those who share a ride, the modified Shapley Value 

is proposed, which includes the disutility of users staying longer in a vehicle.  

In the next chapter, the numerical experiment is conducted to understand the 

property of the proposed model.  
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Chapter 4  Numerical experiment with the fixed fleet size  

 Introduction  

   A detailed description of the proposed stochastic process model and assumptions 

are given in Chapter 3. This chapter presents some numerical results with fixed 

fleet size in the hypothetical service network. The numerical experiments have been 

designed to deliver two objectives specified below, which are;  

1) to investigate how day-to-day evolution occurs within a given parameter 

setting 

2) to understand how changing some parameters would affect the model 

behaviour.  

The analysis has been conducted from four dimensions to deliver the second 

objective; 1) the sets of parameters in the utility function, 2) parameters to specify 

users’ irregular behaviour, 3) the fleet size for each service, and 4) the service 

network geometry. Assuming that people often choose the option they can expect 

to gain the higher utility, the word “irregular” is selected to describe the opposite 

behaviour. The first two dimensions were assessed by conducting sensitivity tests. 

The last two dimensions were investigated by comparing results generated with 

different scenario settings.  

The rest of the chapter is structured as follows. In subsection 4.2, the default 

parameter settings for experiments are specified. In subsection 4.3, a base 

scenario analysis is presented, aiming to achieve the first objectives stated above. 

Besides, the results from sensitivity analysis against several parameters are 

presented. In subsections 4.4, 4.5, and 4.6, the impact of the fleet size, and the 

service network geometry and the impact of modified Shapley Value are assessed. 

Finally, this chapter is concluded with the summary in section 4.7.  

 Default parameter setting  

   The service network is specified as presented in Figure 34. The length of the 

corridor is set to be 10 km on which the vehicle moves with the fixed average speed 

of 60 km/h. The drop-off area is assumed to be a square with the side length being 

8.71 km, in which the vehicle moves with the fixed average speed of 20k m/h. The 

side length was specified for the mean round trip time with one drop-off point to 30 

min. The mean duration of a round-trip for each number of drop-offs is summarised 

in Table 8.  
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Figure 34 the specification of the default service network geometry for this 
experiment  

Table 8 The mean duration of a round trip for different number of drop-offs 
per round trip 

No. of drop-offs per round-trip  1 2 3 4 

The mean duration of round trip [min] 30.01 53.70 63.56 70.77 

 

The expected number of total trip requests was set to be 120 requests per hour. All 

trip requests were assigned to arrive within 120 min. Hence the total of 240 trip 

requests was expected to arrive within the given period. It should be noted that the 

total time to serve all requests could take longer than 120 min depending on the 

balance between service demand and the capacity. The initial mode share for each 

service was set to be 0.5. The minimum number of requests per round trip and the 

vehicle capacity was defined as 2 and 4, respectively. All trips were assumed to be 

homogeneous, indicating that everyone would accept to share a ride with anyone.   

The mean number of accompanied users (NoA) per request was set to be 0.3. 

Table 9 summarises the proportion of trip requests with a certain number of users 

(NoU) when the mean NoA is 0.3 among 100,000 samples. It should be noted that 

a trip request with four or more users cannot choose a shared service since the 

vehicle capacity is 4 and the minimum number of requests per cluster is 2. 

However, as Table 9 shows, the proportion of requests with 4+ users is small 

enough for this constraint to bring a significant impact.  

Table 9 the proportion of requests with the certain NoU among 100,000 
samples when the mean NoA = 0.3. 

NoU 1 2 3 4 5 

Proportion  0.740 0.223 0.033 0.004 0.00 
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The maximum clustering waiting time (MCWT) is set to be 3 min.  It is expected that 

MCWT primarily affects users’ waiting time in scenarios with few trip requests and a 

high fleet size. For instance, if the trip request arrival rate is 240 per hour, the 

expected inter-arrival time of requests is 0.25 min. Therefore, users are highly likely 

to find another request to share the ride in less than 3 min. On the other hand, if the 

trip request arrival rate is 15 per hour, the expected inter-arrival time of requests is 

4 min. Hence, many requests will be sent to the dispatching queue without forming 

a cluster. However, suppose the fleet size is small compared to the trip request 

arrival rate. In that case, users will need to wait for a vehicle to become available 

and, while waiting in the dispatching queue, have the opportunity to find a sharing 

partner and thereby form a cluster. 

In this experiment, fare/min is defined as 1 monetary unit per minute. The value of 

in-vehicle time (VoIVT) is defined as 2 monetary unity/min for both non-shared and 

shared service (i.e. 𝛾௩ଵ = 𝛾௩ଶ = −2). It is based on the scenario setting and 

estimated VoT by the study of Alonso-Gonzalez et al. (2020) that targeted Dutch 

urban individuals. The ratio between fare/min and VoIVT varies within the research 

literature, motivating the sensitivity analysis conducted here; relevant results will be 

discussed in section 4.3.3.4.  

Following the research of Alonso-Gonzalez et al. (2020 transportation) and Lavieri 

and Bhat (2019), the willingness to pay to avoid sharing (i.e. willingness to share 

(WTS)) is set to be independent of the length of travel time. The ratio between the 

willingness to pay to avoid sharing (i.e. willingness to share (WTS)) and VoIVT is 

set to be 0.05, hence, 𝑊𝑇𝑆 = −0.1. Besides, the value of waiting time (VoWT) is 

defined 1.25 times as much as VoIVT, therefore  𝛾௪ = −2.5. The sensitivity tests 

against those two parameters have also been conducted, and the results will be 

summarised in the later section (i.e. Section 4.3.3.4)  

It is assumed that with 50% of chance, users do not change their service on the 

next day even if they do not satisfy with the experience of the current service. On 

the other hand, it is assumed that people will always stay with their current option if 

they satisfy with their service. An updated filter is set to be 0.5.  The simulation 

represents the continuous decision of 200 days.   

Table 10 the list of parameters for sensitivity test and their default value  

Parameters Default value 

The total expected number of trip requests per hour 120 

The fleet size for the non-shared service  36  

The fleet size for the shared service  28 

The initial mode share for non-shared service  0.5 
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The mean number of accompanied persons per request (NoA) 0.3 

The minimum number of requests per cluster  2 

The maximum number of users per cluster, i.e. a vehicle 
capacity  

4 

The maximum clustering waiting time (MCWT) 3 min 

The side length of the square drop-ff area 8.71 km 

The length of the corridor  10 km 

The period of interest 120 min 

The mean speed of the vehicle in the drop-off area 20 km/h 

The mean speed of the vehicle on the corridor 60km/h 

Fare/min 1 

The value of in-vehicle travel time (VoIVT) 2 

The value of waiting time (VoWT) 2.5 

The willingness to share (WTS)  0.1 

𝛼௨ : the proportion of those who stay in the service even if the 

experienced profit is lower than the expected profit of the 

alternative service.  

0 

𝛽௨: the proportion of users who did not satisfy with the service 

they chose yet stated that they would stay in the same service 

on the following day. 

0.5 

𝜂௨: an updating filter which determines how much the average 

utility on day 𝑑 influences on the collective average utility on 

day 𝑑, 𝑃𝑈,ௗ.  

0.5 

 The analysis of the base scenario  

This section summarises the analysis of the base scenario where a parameter 

setting was set as a default value specified in the previous section.  

 

 Key findings  

Key findings from the analysis of the base scenario are;  

 Within a given parameter setting, mode share for non-shared services is 

higher than shared services in most of the days. 
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 The randomness in the total number of trip requests combined with the 

mode share causes a significant change in a mode share from one day to 

the next day. However, that change would not last permanently.  

 

Key findings from the sensitivity analysis are;  

 This process is ergodic as the stationary distribution is not affected by the 

initial condition. 

 

 The parameters expressing the users’ irregular behaviour and the updating 

filters are observed to change a variance of the stationary distribution. 

However, they do not influence the mean value of the stationary distribution.   

 

 When the value of waiting time (VoWT) is within the realistic range (i.e. 

higher than VoIVT), changes in VoWT did not impact the unique stationary 

distribution of mode share 

 

 As the Value of In-Vehicle time (VoIVT) increases, the mean value for the 

stationary distribution of mode share for non-shared (shared) service 

increases (decreases).  

 

 Increasing the fare per minute for non-shared service has more impact on 

the stationary distribution of mode share than decreasing the fare per 

minute for shared service. 

 

 Willingness to share (WTS) is too small compared to the difference in non-

shared and shared service’s utility. Hence, in this experiment, WTS does not 

significantly influence on the stationary distribution of mode share.  

 

The detailed analysis and numerical evidence supporting the above findings are 

presented in the following subsection 4.3.2 and 4.3.3.  

 

 Results 

Figure 35 illustrates the evolution of mode share for 200 days and the distribution of 

mode share for non-shared service after the warming-up period (i.e. from day 51 

and 200). The results of sensitivity analysis against initial condition indicated that 

this process is ergodic, hence, it is a stationary distribution. The details of sensitivity 

analysis are summarised in section 4.3.1. With the visual observation, it is assumed 
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that the warming-up period of the process has ended sometime before day 51. As 

shown in Figure 35, the mode share for non-shared service is generally dominant 

throughout the period. However, some days, the mode share for the shared 

services becomes higher than the non-shared services. It always switches back to 

non-shared services being dominant on the next day.  

As described in Chapter 3, users’ service choice is made by comparing their actual 

experiences of using the service they chose on the day with the collective average 

utility of the alternative service. Hence, the switching from the non-shared service 

dominance to the shared service dominance would be associated with either the 

decline in the utility of using non-shared services or increases in the utility of using 

shared services. 

 

Figure 35 The evolution of mode share for non-shared and shared service for 
200 days (left) and the stationary distribution of mode share for non-
shared service from day 51 to 200 (right). 

Figure 36 presented the evolution of four values from day 105 to day 120, which 

are; 1) the total number of trip requests, 2) the mode share for non-shared services, 

and 3) the mean experienced utility for non-shared service and the collective 

average utility for shared services. During those 15 days, the mode share for non-

shared service becomes less than 0.5 on day 119. On the previous day (i.e. day 

118), the mean utility for non-shared service significantly dropped while the 

collective average utility for shared service being constant (see the bottom figure in 

Figure 36).  The significant drop in the mean utility for non-shared service on day 

118 caused the sharp decline in the mode share for non-shared service on the next 

day, namely, day 119. Though the mode share for non-shared service on day 118 

is higher than the other days (i.e. 0.717), it is lower than day 109 (i.e. 0.724). As the 

mode share did not drop sharply on day 110, it can be concluded that the mode 

share is not the only cause for the sharp drop in the mode share for non-shared 

service.  

Comparing day 109 and day 118, the number of total trip requests has a big 

difference according to the top figure in Figure 36. On day 109, it is 229, while it is 
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283 on day 118. Even if the mode share is the same, if the total number of trip 

requests is different, the number of requests for each service is different. As the 

fleet size is fixed, a higher number of trip requests increases waiting time and 

decreases the utility. Hence, it can be concluded that the randomness in the 

number of total trip requests as well as the mode share contribute to the switch of 

the dominant service though it would not affect the long-term trend.  

 

Figure 36 the number of trip requests (top), the mode share for non-shared 
service (middle) and the mean utility of non-shared and shared service 
(bottom) from day 105 to day 120 when 𝑺𝟏 = 𝟑𝟔 and 𝑺𝟐 = 𝟐𝟖. 

 

 Sensitivity analysis 

   This subsection consists of summarising results for sensitivity analysis against 4 

different parameters, which are; 1) initial conditions, hesitation parameters, 

updating filters, and parameters in the utility function. 

 

 Initial condition  

A stochastic process is called ergodic if a stationary distribution is independent of 

an initial state once the stationary period is reached. Moreover, it guarantees the 

uniqueness of stationary distribution, which indicates that one pseudo-realisation of 

the process can provide all statistical description of the system state (Watling and 
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Cantarella, 2013). Sensitivity analysis against an initial condition (i.e. initial mode 

share for shared and non-shared service) is conducted to examine if the proposed 

stochastic process has an ergodic property. The results of the test are summarised 

in this section.  

Figure 37 compared a stationary distribution of mode share for non-shared service 

with 11 different initial mode share for non-shared service from 0 to 1. Table 11 

summarise the mean and variance of each distribution. According to Table 11 and 

Figure 37, it can be observed that the stationary distribution does not change based 

on the initial condition. In addition, a two-sample t-test has been conducted for all 

110 combinations of 10 samples. In all cases, the null hypothesis is not rejected (at 

1% level), indicating that all 11 stationary distributions are indifferent. Hence, the 

stochastic process proposed in this study is ergodic.  

 

Figure 37 the distribution of mode share of non-shared service when initial 
mode share is 0 to 1 when 𝑺𝟏 = 𝟑𝟔 and 𝑺𝟐 = 𝟐𝟖. 

Table 11 the mean and standard deviation for distribution of mode share of 
non-shared service when initial mode share is 0 to 1 

 Initial mode share   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Mean 0.61 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.62 

Standard 

deviation  
0.09 0.10 0.10 0.10 0.09 0.10 0.10 0.09 0.09 0.10 0.09 

 

 The impact parameters for users’ irregular behaviour  
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   Parameter 𝛼 and 𝛽 are introduced to represent the irregular behaviours of 

users. 𝛼 represents the proportion of users who declare to change the service for 

the next day even though the experienced utility of their current service is higher 

than the collective average utility of the alternative service. 𝛽 indicates the 

proportion of those who stay in the service even if the experienced utility of their 

current mode is lower than the collective average utility of the alternative service. 

Assuming that people often choose the option they can expect to gain the higher 

utility, the word “irregular” is selected to describe the opposite behaviour.  

When 𝛼 = 0, everyone will stay their service if their experienced utility is higher than 

the collective average utility of alternative. Hence, to see the influence of 𝛽 on the 

output, the sensitivity analysis has been conducted for 𝛽 = 0 to 𝛽 = 1 with 𝛼 = 0. All 

the other parameters are kept as default value described in section 4.2. Figure 

38Figure 38 illustrates how the stationary distribution of mode share for non-

shared service changes as 𝛽 changes. It should be noted that when 𝛼 = 𝛽 = 1 

nobody will make any change in their mode choice. Hence, it stays at 0.5, which is 

the initial mode share for non-shared and shared service.  

As observed in Figure 38, the distribution becomes less dispersed as 𝛽 increases. 

Besides, as Table 12 summarises, there has been no distinctive change observed 

in the mean value. Higher 𝛽 indicates that people are more reluctant to change their 

mode even if the alternative mode is expected to have a higher level of service. 

Hence, there would be a less dramatic change in mode share from one day to the 

next as 𝛽 increases as shown in Figure 39.  

 

Figure 38 Stationary distribution of mode share for non-shared service (i.e. 
the distribution of mode share for non-shared mode from day 51 to 200) 
when 𝜷 = 𝟎 to 𝜷 = 𝟏 and 𝜶 = 𝟎. 



- 91 - 

Table 12 the mean mode share of non-shared service with 10 different 𝜷 from 
𝜷 = 𝟎 to 𝜷 = 𝟎. 𝟗 

 𝛽 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Mean 0.56 0.58 0.59 0.60 0.61 0.62 0.62 0.62 0.63 0.63 

Standard 

deviation 
0.29 0.22 0.19 0.15 0.12 0.10 0.08 0.06 0.04 0.03 

 

Figure 39 the evolution of mode share for non-shared service for 200 days 
with different 𝜷 (i.e. 𝜷 = 𝟎. 𝟏, 𝟎. 𝟓, 𝒂𝒏𝒅 𝟎. 𝟗). 

Figure 40 displays the change in the distribution of mode share for non-shared 

service with different 𝛼 (i.e. 0 ≤ 𝛼 ≤ 1) when 𝛽 = 1 and the other parameters are 

set to be a default value. 𝛽 = 1 implies that any of those whose experienced utility 

of current service is lower than the collective average utility of alternative mode will 

not change their service on the next day. Hence, when 𝛼 > 0, mode change 

happened only among those who experienced higher utility than the collective 

average utility of the alternative service. According to Figure 40, as 𝛼 increases, in 

other words, as people are more willing to try the alternative service even if they are 

happy with the current service, the distribution of mode share becomes more 

dispersed. It is because as 𝛼 increases, the variance of mode share for non-shared 

service increases as displayed in Figure 41. 
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Figure 40 the distribution of mode share for non-shared service for different 
values of 𝜶.  

 

Figure 41 the evolution of mode share for non-shared service for 200 days 
with different 𝜶 (i.e. 𝜶 = 𝟎. 𝟏, 𝟎. 𝟓, 𝒂𝒏𝒅 𝟎. 𝟗). 

 

 The impact of updating filters  

An updating filter, 𝜂௨, decides how the collective average utility is updated every 

day. In particular, it determines how much the mean utility on day 𝑑 contributed to 

estimate the collective average utility on day 𝑑, 𝑃𝑈,ௗ. When 𝜂௨ = 1, the collective 

average utility is estimated only based on the mean utility among service user on 

day 𝑑. On the other hand, when 𝜂௨ ≈ 0, the contribution of the mean utility on day 𝑑 
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to 𝑃𝑈,ௗ is almost zero. In other words, the amount of change in 𝑃𝑈,ௗ from 𝑃𝑈,ௗିଵ 

is highly limited.  

In order to investigate the impact of 𝜂௨, the sensitivity test was conducted with 10 

different 𝜂௨ from 𝜂௨ = 0.1 to 𝜂௨ = 1 where the other parameters are set as default. 

The key results from the test are summarised below. Figure 42 compares the 

distribution of mode share for non-shared services with different 𝜂௨. As it can be 

observed, there is no significant difference in the mean mode share associated with 

changes in 𝜂௨. As illustrated shown in Figure 43, the standard deviation increases 

as 𝜂௨ increases. Figure 43 displays the mean value for 100 standard deviations of 

mode share for non-shared service generated for different 𝜂௨ from 0.1 to 1. The 

error bar in the figure indicates the standard deviation among 100 samples. It is 

consistent with the expectation as higher  𝜂௨ makes 𝑃𝑈,ௗ to be influenced by one 

day’s experience more, therefore, less stable. As a result, the number of users who 

are satisfied/unsatisfied with the service fluctuates more every day so as mode 

share.  

 

Figure 42 the distribution of mode share for non-shared service with different 
values of 𝜼𝒖 from 0.1 to 1. 
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Figure 43 the mean of standard deviation of mode share for non-shared 
service among 100 realisations generated for different 𝜼𝒖 from 0.1 to 1.  

 The impact of parameters in the utility function  

    This section summarises the sensitivity analysis against the coefficients in the 

utility function. At first, changes in mean utility regarding the expected number of 

requests for each service are investigated and presented in Figure 44. In specific, 

the mean utility is estimated for non-shared service with the expected number of trip 

requests for non-shared service from 10 to 120 per hour. The same process was 

repeated for shared service, and results were compared. The other parameters are 

set as default value specified in section 4.2. According to Figure 44, it can be 

observed that the mean utility exponentially deteriorates as the number of trip 

requests increases. It is associated with how waiting time changes as the number 

of trip requests increase.  

Figure 45 compare how the mean utility regarding waiting time, in-vehicle time, and 

fare changes as the number of trip requests changes. Hence, the y-axis represents 

a variable multiplied by the coefficient for each variable, such as −𝛾௩ଵ ∙ 𝐼𝑉𝑇,ଵ,ௗ, 

−𝛾௪ ∙ 𝑊𝑇,ଵ,ௗ and −𝑐,ଵ,ௗ for non-shared service (i.e. left figure) and  −𝛾௩ଶ ∙ 𝐼𝑉𝑇,ଶ,ௗ 

and −𝛾௪ ∙ 𝑊𝑇,ଶ,ௗ and −𝑐,ଶ,ௗ  for shared service (i.e. right figure) (see equation (3.9) 

in Chapter 4 as a reference for the utility function). In the right figure, WTS is 

excluded as it is constant, and the value is minimal compared to other variables in 

the utility function for shared services. WTS is lower than the other variables as this 

is the only parameter that does not change based on travel time. Hence, in order to 

add more impact of WTS, it is possible to change WTS to be travel time dependent. 

However, it should be remembered that the results of several studies suggest that 

WTS is independent of the travel time and distance, as explained in section 2.6 in 

Chapter 2. 
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In Figure 45, the mean utility attributes to in-vehicle time and fare are both constant 

and -30 for non-shared service. In the case of shared service, the mean utility 

attributes to fare is just above -30 to -20, while the mean utility attributes to in-

vehicle time is -40 to -60. Therefore, the summation of mean utility attributes to in-

vehicle time and fare is from approximately -70 to -80 for a shared service while it is 

constantly -60 for a non-shared service. This difference results in the constant 

difference between the mean utility of non-shared and shared service observed in 

Figure 44 when the number of trip request is low.  

When the number of trip request is above approximately 60, the utility regarding 

waiting time started decreasing, according to both figures in Figure 45. That is the 

leading cause of the deterioration in the mean utility observed in Figure 44 for both 

services. As the shared service is more resilient when the demand reaches or 

exceeds the capacity of the service, the decreasing rate of the mean utility 

regarding the waiting time is slower for shared service than non-shared service. 

Hence, the mean utility for shared service becomes higher than the one for non-

shared service when the number of trip requests is higher than 98 (see Figure 44). 

 

Figure 44 The mean utility for shared (dash-dotted line) and non-shared 
service (solid line) as the number of trip requests for the service is 
changed (i.e. from 10 to 120 request/h).   
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Figure 45 the mean utility regarding each factor, waiting time, in-vehicle time, 
and fare for non-shared service when the fleet size is 𝑴𝟏 = 𝟑𝟔 (the left) 
and for shared service when the fleet size is 𝑴𝟐 = 𝟐𝟖 

 

(1) The Value of Waiting Time  

The mean utility for both services has been estimated with VoWT from 0.1 to 3. The 

other parameters were set as default. For each VoWT, 56 cases with different 

mode share for non-shard service were generated from 0.08 to 1, namely, the 

expected number of trip requests for non-shared service from 10 to 120 per hour. 

As there was no distinctive difference observed when VoWT becomes higher than 

2, only the results with VoWT between 0.1 to 2 are presented.  

Figure 46 displays six cases with the different VoWT. It is observed that changing 

VoWT have a little effect on the mean utility for both non-shared and shared service 

when the expected number of trip requests is low. In Figure 46, when the x-value is 

120, namely, the expected number of trip requests for non-shared service is highest 

in the current setting, the mean utility for non-shared service visibly changes as 

VoWT changes. It is because the waiting time is much longer compared to the other 

components when the x-value is 120, as illustrated in Figure 45. The same 

tendency is observed in the case of shared service—the lowest mean utility for 

shared service when x-value is the lowest decreases as VoWT decreases.  

Figure 47 shows the distribution of mode share for non-shared service with different 

VoWT. As the VoWT decreases, the stationary distribution of mode share for non-

shared service takes higher values. It is consistent with what can be observed in 

Figure 46. It should be pointed out that VoIVT was kept constant at the default 

value for this sensitivity test. Hence, VoWT lower than 2 means VoWT is lower than 
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VoIVT. In general, VoWT is estimated as a higher value than VoIVT. However, as 

mentioned above, there were not distinctive changes observed after VoWT 

becomes higher than 2. Therefore, it could be stated that within the realistic range 

of VoWT (i.e. higher than 2), VoWT does not have a significant influence on the 

behaviour of the model.  

 

Figure 46 the mean utility of non-shared and shared service with a different 
expected number of trip requests for non-shared service from 10 to 120 
with 6 different VoWT 

 

Figure 47 The distribution of mode share for non-shared service with different 
VoWT from 0.1 to 2 
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(2) The Value of In-Vehicle Time  

The mean utility for both services is estimated with VoIVT from 0.1 to 3. The other 

parameters are set to be the default value as specified in Table 10. For each 

VoIVT, 56 cases with different mode share for non-shard service are generated, 

which is from 0.08 to 1, namely, the expected number of trip requests for non-

shared service from 10 to 120 per hour. Figure 48 displays 6 cases with different 

VoIVT.  

When the expected number of trip request for non-shared service is low (i.e. lower x 

value), the mean utility of non-shared service is higher than the shared service. As 

the expected number of trip request for non-shared service increases, the mean 

utility for non-shared service (shared service) decreases (increases). Then, at some 

point, the mean utility of shared service exceeds the mean utility of non-shared 

service. According to Figure 48, the expected number of trip requests for non-

shared service with which such switching occurs becomes higher as the VoIVT 

increases. Consequently, the mode share for non-shared service increases as 

VoIVT increases as the non-shared services gains more “capacity” to provide the 

same service level to the larger number of users (see Figure 49). In other words, 

the low VoIVT always leads to the higher mode share in shared service.  

 

Figure 48 the mean utility of non-shared service and shared service with the 
different expected number of trip requests for non-shared service from 
10 to 120 with 6 different VoIVT.  
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Figure 49 The distribution of mode share for non-shared service with different 
VoIVT from 0.1 to 2 

 

(3) The fare/min for non-shared and shared service  

Figure 50 summarise how the mean utility of non-shared service changes as the 

fare/min for non-shared service increases. On the contrary, Figure 51 illustrates 

how the mean utility for shared service changes as the fare/min for shared service 

decreases. By default, fare/min is set as 1 monetary unit per min for both services. 

In Figure 50, the mean utility for non-shared service where the fare for non-shared 

service is 1, 1.5, and 2 monetary units per min are presented while keeping the 

fare/min for shared service as default value. According to Figure 50, the higher 

fare/min for non-shared service becomes, the mean utility for non-shared service 

decreases. As a result, the mean utility for shared service becomes higher than the 

one for non-shared service with a lower x-value. Similarly, as fare/min for shared 

service decreases from 1 to 0.8 and 0.5, the mean utility for shared service 

increases, as displayed in Figure 51. Consequently, the mean utility for shared 

service becomes higher than the mean utility of non-shared service with the lower 

x-value as fare/min for shared service decreases.  

In Figure 52, the distribution of mode share for non-shared service is summarised 

with the different fare for non-shared service per minute. In Figure 53, the 

distribution of mode share for non-shared service is summarised with the different 

fare for shared service per minute. In both figures, the higher fare/min for non-

shared service becomes comparing to shared service, the lower the mode shared 

for non-shared service becomes. Figure 19 and Figure 20 show that the amount of 

change in the distribution of non-shared service is larger when the non-shared 
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service fare is increased compared to when the shared service fare is discounted. It 

is because the amount of deterioration in the mean utility for non-shared service 

caused by an increase in fare for non-shared service is higher than the amount of 

increase in the mean utility for shared service caused by a discount in fare for 

shared service (see Figure 50 and Figure 51). It implies that, with the current 

setting, it is more effective to increases the fare for non-shared service than giving a 

discount to the fare for shared service to encourage the use of shared service.  

 

Figure 50 the mean utility for shared service with default fare value and the 
mean utility for non-shared service with 3 different fare value (i.e. 1, 1.5, 
and 2 monetary unit/min) for the different expected number of trip 
requests for non-shared service when 𝑺𝟏 = 𝟑𝟔 , and 𝑺𝟐 = 𝟐𝟖 

 

Figure 51 the mean utility for non-shared service with default fare value and 
the mean utility for shared service with 3 different fare value (i.e. 0.5, 0.8, 
and 1 monetary unit/min) for the different expected number of trip 
requests for non-shared service when 𝑺𝟏 = 𝟑𝟔 , and 𝑺𝟐 = 𝟐𝟖 
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Figure 52 The distribution of mode share for non-shared service with a  
different fare/min for non-shared service from 1 to 3. 

 

Figure 53  The distribution of mode share for non-shared service with a 
different fare/min for shared service from 0.1 to 1 

 

 The impact of the fleet size  

 Scenario settings 

The simulation was conducted with 441 combinations of fleet size for non-shared 

service, 𝑆ଵ, and shared service, 𝑆ଶ. The range of fleet size for non-shared service is 

from  𝑆ଵ = 36 to 𝑆ଶ = 76 increased in increments of 2, while the range of fleet size 

for non-shared service is from 𝑆ଶ = 28 to 𝑆ଶ = 68.  For each combination of fleet 
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sizes, 200 days were simulated. As this stochastic process is ergodic, as proved in 

section 4.3.3.14.3.3.1, the stationary distribution of mode share is estimated using 

the value from day 51 to 200. The results are summarised in the following section.  

 

 Key findings 

Key findings from this numerical experiment are listed below;  

- With a given setting, the stationary distribution of mode share changes 

according to the change in the fleet size for non-shared service, regardless 

of shared service fleet size 

 

- It is because the maximum mean utility of non-shared service is higher than 

the maximum mean utility of shared service. Hence, the mean utility of 

shared service becomes higher only by the reduction in the mean utility of 

non-shared service. Therefore, the changes in fleet size for shared service 

does not affect the distribution of mode share. 

 

- As the fleet size for non-shared service, 𝑆ଵ, increase, the distribution of 

mode share for non-shared service takes higher value. No significant 

changes in the distribution of mode share are observed after the fleet size 

for non-shared service reaches 𝑆ଵ > 60. 

 

The detailed analysis and numerical evidence supporting the above findings are 

presented in the following subsection.  

 

 Results 

Figure 54 displays the distribution of mode share for non-shared service with 

different fleet size for shared service (i.e. 𝑆ଶ = 28 to 𝑆ଶ = 68) when the fleet size for 

non-shared service is  𝑆ଵ = 36 (the top figure) and 𝑆ଵ = 76 (the bottom figure). 

According to Figure 54, there is no visible change in the distribution of mode share 

in response to the changes in fleet size for shared service for both cases.  Figure 

55 illustrates how the distribution of mode share for non-shared service changes as 

𝑆ଵ changes from 36 to 76 when 𝑆ଶ = 28. In Figure 55, it is observed that as 𝑆ଵ 

increases, so does the mode share for non-shared services. This increase in mode 

share stops above approximately 𝑆ଵ = 60. In other words, the increase in  𝑆ଵ does 

not have any influence on distribution of mode share as of 𝑆ଵ = 60.  
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Figure 54 The distribution of mode share for non-shared service with different 
fleet size for shared service (i.e. 𝑺𝟐 = 𝟐𝟖 to 𝑺𝟐 = 𝟔𝟖) with the fleet size for 
non-shared service 𝑺𝟏 = 𝟑𝟔 (upper figure) and 𝑺𝟏 = 𝟕𝟔 (lower figure)  

 

Figure 55 the distribution of mode share for non-shared service with different 
fleet size for non-shared service (i.e. 𝑺𝟏 = 𝟑𝟔 to 𝑺𝟏 = 𝟕𝟔) with the fleet 
size for shared service 𝑺𝟐 = 𝟐𝟖.  

Figure 56 compares the evolution of mode share and the mean utility for non-

shared and shared services when 𝑆ଵ = 36, 𝑆ଵ = 46, and 𝑆ଵ = 60. According to 

Figure 56, the fluctuation of the mean utility for non-shared service becomes less 

variable as the fleet size increases. It is because the number of trip requests which 
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triggers the sharp decline in the mean utility increases as 𝑆ଵ and therefore the 

service capacity increases (see Figure 57).  

The same analysis has been conducted against two different fleet sizes for shared 

service (i.e. 𝑆ଶ = 48 𝑎𝑛𝑑 68) with 𝑆ଵ = 36. However, no significant difference has 

been observed compared to the case with 𝑆ଵ = 36 and 𝑆ଶ = 28. Therefore, the 

results are not displayed in this section. It could be because the fleet size, 𝑆ଶ = 28, 

is high enough for the current setting so that the increase in the fleet size does not 

improve the user’s experience. Alternatively, with the current setting, the fleet size 

of shared service may not impact the service capacity. The investigation has been 

conducted on how utility changes as fleet size and the number of trip requests for 

non-shared and shared service changes. The results are summarised below.  

 

Figure 56 Comparison of the evolution of mode share and changes in the 
mean utility for non-shared and shared service for 200 days when 𝑴𝟏 =
𝟑𝟔 (the top row), 𝑴𝟏 = 𝟒𝟔(the middle row) and 𝑴𝟏 = 𝟔𝟎 (the bottom row) 
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Figure 57 the mean utility of non-shared service against the expected number 
of trip requests for non-shared service when 𝑴𝟏 = 𝟑𝟔, 𝟒𝟔, 𝒂𝒏𝒅 𝟔𝟎. 

Figure 58 compares changes in mean utility against the expected number of trip 

requests for non-shared service. In particular, the mean utility for non-shared 

service when 𝑆ଵ = 36 is compared with the mean utility for shared service when 

𝑆ଵ = 28 and 𝑆ଶ = 68. As the total expected number of trip requests per hour is 120, 

the expected number of trip requests for shared service is calculated by subtracting 

the x-value from 120. As observed in Figure 58,  the maximum mean utility of non-

shared service is higher than the maximum mean utility of shared service. Hence, 

the mean utility of shared service becomes higher only by the reduction in the mean 

utility of non-shared service. Therefore, the unique distribution of mode share did 

not change as the fleet size changes for shared service, as presented in Figure 54.  

Hence, it is concluded that, with a given parameter setting described in section 4.2, 

only the fleet size of non-shared service impacts the distribution of mode share. 

However, there are several other factors that can influence the utility; hence, the 

distribution of mode shares, such as the service network property and the 

coefficient in the utility function. The impact of coefficients in the utility function is 

already summarised in section 4.3.3.4. The impact of the service network geometry 

will be presented in the following section.  
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Figure 58 the comparison of the mean utility of non-share service with 𝑺𝟏 =
𝟑𝟔 and the mean utiltiy of shared service for 2 different cases when 𝑺𝟐 =
𝟐𝟖 and 𝑺𝟐 = 𝟔𝟖. 

 The impact of service network geometry  

 Scenario settings 

    This section examines the influence of the service network property on the 

unique distribution of mode share. The simulation has been conducted with 9 

different service networks, and results were compared and analysed below. As 

described in Figure 34, the service network consists of two parts, a corridor and a 

square-shaped drop-off area. Table 13 summarised 9 scenarios with different 

combinations of corridor length and the side length of the drop-off area where 

scenario 1 is the default setting. 

For all cases, a drop-off point is randomly and uniformly distributed in the squared 

drop-off area. The mean travel speed is 20 km/h in the drop-off area and 60 km/h in 

the corridor. For each scenario, the simulation was conducted with 441 

combinations of fleet size for non-shared service, 𝑆ଵ, and shared service, 𝑆ଶ. The 

range of fleet size for non-shared service is from  𝑆ଵ = 36 to 𝑆ଶ = 76 increased in 

increments of 2, while the range of fleet size for non-shared service is from 𝑆ଶ = 28 

to 𝑆ଶ = 68.   

Table 13 9 cases with different combination of corridor length and side length  

Scenario 1  2 3 4 5 6 7 8 9 

Side length (km) 8.71 4.39  2.18  

Corridor (km) 15 10 5 15 10 5 15 10 5 
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When the composition of the service network geometry changes, the distribution of 

round-trip time also changes. Figure 59 illustrates the mean round trip time with the 

different number of drop-offs (NoDs) per round trip when the corridor length is 10 

km, and the side length of drop-off area is 8.71 km (i.e. default), 4.39 km and 2.18 

km. It can be observed that the bigger the drop-off area becomes, the more the 

mean round trip time increases as NoDs per round trip increases. As the travel time 

on the corridor is constant among three cases, increases in the round-trip time only 

contribute to the increase in travel time in the drop-off area.  

When the length of the corridor is increased, as illustrated in Figure 60, the amount 

of increase in the mean round trip time corresponding to the increase in the NoDs is 

constant. As only the travel time on the corridor increases, the mean travel time 

equally increases regardless of NoDs per round trip. It should be pointed out that, 

as the length of the corridor changes, the proportion of trips shared among all 

passengers also changes in the case of shared service. After a vehicle dispatches 

from the pick-up hot-spot, a trip would be shared by all passengers until a vehicle 

arrives at the first drop-off points. The longer proportion of that part becomes, the 

longer proportion of their trip can be shared among the highest number of 

passengers.  In the case of non-shared service, the increase in the corridor just 

indicates the increase in the mean in-vehicle time from the users’ point of view.  

 

Figure 59 the comparison of the mean round trip time when the corridor 
length is 10 km/h with the different side length of drop-off area (i.e. 8.71 
km, 4. 39 km, and 2.18 km)  
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Figure 60 the comparison of the mean round trip time when the side length of 
the drop-off area is 8.71 km with different corridor length (i.e. 15 km, 
10km and 5 km)  

 

 Key findings 

The key findings from this numerical experiment are summarised below.  

 As the proportion of a trip on the corridor becomes longer in a round trip, the 

mean utility of shared service becomes higher than the non-shared 

service—the dominant service changes as the service network geometry 

changes.  

 

 The impact of fleet size for shared services becomes the determinant of the 

stationary distribution of mode share when the proportion of a trip in the 

corridor is high and the mean round trip time is not too short.  

 

 When the mean round trip time is too short, the stationary distribution of 

mode share is not affected by both fleet sizes. It is because the minimum 

fleet size in this numerical experiment already guarantees a large enough 

capacity for the given expected number of total trip requests for those 

cases. 

 

 The service network geometry determines the boundary of the stationary 

distribution of mode share. 

The detailed analysis and numerical evidence supporting the above findings are 

presented in the following subsection.  
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 Results  

Figure 61, Figure 63, and Figure 65 show how the distribution of mode share for 

non-shared service changes as the fleet size of shared (non-shared) services 

changes when 𝑆ଵ = 36 (𝑆ଶ = 28) with a different service network geometry. Figure 

61 compares the scenario 1 to 3 where the side length of the drop-off area is 8.71 

km. Figure 63 compares scenarios 4 to 6 where the side length of the drop-off area 

is 4.39 km. Figure 65 compares scenarios 7 to 9 where the side length of the drop-

off area is 2.18 km. 

In the case of scenario 1 to 3 where the side length of the drop-off area is 8.71km, 

the distribution of mode share is only influenced by the fleet size of non-shared 

service, 𝑆ଵ for all 3 cases with different corridor length (see Figure 61). For all 

cases, the mean mode share for non-shared service is higher than 0.5.  Figure 62 

compares how the mean utility of shared service and non-shared service changes 

when the expected number of trip requests for non-shared service is 10 to 120 for 

scenario 1 to 3. From Figure 62, it can be observed that, as the corridor length 

increases, the mean utility for shared service becomes higher than non-shared 

service with the lower expected number of trip request for non-shared service. 

However, in all three cases, the maximum mean utility of non-shared service is 

higher than the maximum mean utility of shared service. Hence, the mean utility of 

shared service becomes higher only by the reduction in the mean utility of non-

shared service. Consequently, only the fleet size of non-shared service affects to 

the distribution of mode share.  

In the case of scenario 4 to 6 where the side length of the drop-off area is 4.39 km, 

the distribution of mode share changes differently as the fleet size changes 

depending on the length of the corridor. When the corridor length is 15 km, the 

mean mode share for non-shared service slightly decreases as the fleet size for 

shared service increases (see the top left figure in Figure 63) and slightly increases 

as the fleet size for non-shared service increases. In both cases, the mean mode 

share for non-shared service stays below 0.5. This happens as the maximum utility 

of non-shared and shared service is almost the same (i.e. -70.0 and -68.2), as 

illustrated in Figure 64. Figure 64 displays the mean utility for non-shared and 

shared service for the different expected number of trip requests for non-shared 

service from 10 to 120 for scenario 4 to 6 

When the corridor length is 10 km, only the changes in fleet size for non-shared 

service impact the distribution of mode share. The mean mode share for non-shard 

service stays above 0.5. When the corridor length is 5 km, neither changes in fleet 
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size for non-shared service nor shared service impact the distribution of mode 

share. The mean mode share for non-shared service is approximately 0.95 and 

constant. It is because the mean utility of non-shared service is higher than shared 

service regardless of the number of trip requests per hour, as presented in the right 

figure in Figure 64.  

In the case of scenario 7 to 9 where the side length of the drop-off area is 2.18 km, 

the fleet size of non-shared service does not influence on the distribution of mode-

share in any case (see Figure 65). When the corridor length is 15 km, the mode 

share for non-shared service decreases as the fleet size for shared service 

increases (see the left top figure in Figure 65). The mean mode share for non-

shared service is constantly less than 0.5. It is because the mean utility for shared 

service is constantly higher than the non-shared service except for the trip requests 

for non-shared service (shared service) is 10 (110), as illustrated in Figure 66. 

When the side length of the drop-off area is 10km and 5 km, neither changes in 

fleet size for non-shared service and shared service influence the distribution of 

mode share (see middle and bottom two figures in Figure 65). In the case of the 

corridor length being 10 km, it is because the mean utility for a shared service is 

constantly higher than the mean utility for a non-shared service, according to the 

middle figure in Figure 66. Hence, the mean mode share for non-shared service is 

less than 0.5 and approximately 0.26. In the case of the corridor length being 5 km, 

the mean mode share for non-shared service is constantly about 0.96. It is because 

the mean utility for non-shared service is higher than the shared service (see the 

left figure in Figure 66). 

Overall, it can be concluded that as the proportion of trip on the corridor becomes 

longer in a round trip, the mean utility of shared service becomes higher than the 

non-shared service. Hence, the impact of fleet size for shared services becomes 

the determinant of the distribution of mode share. In addition, when the mean round 

trip time is too short (i.e. scenario 6 and 9), the distribution of mode share is not 

affected by both fleet size. It is because the minimum fleet size for this experiment 

(𝑆ଵ = 36 and 𝑆ଶ = 28) is already high enough in those scenarios setting so that the 

additional fleet does not improve users experience as it is hence no effects to the 

distribution of mode share. Also, it is discovered that the service network geometry 

determines the boundary of the stationary distribution of mode share can take 

regardless of the fleet size.  
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Figure 61 the distribution of mode share for non-shared service with a 
different fleet size of shared service (the left column) and non-shared 
service (the right column) with different length of the corridor (i.e. 15 km, 
10km, and 5 km) when the side length of drop-off area is 8.71km, 𝑴𝟏 =
𝟑𝟔 , and 𝑴𝟐 = 𝟐𝟖. 

 

Figure 62 the mean utility of non-shared and shared service with different 
expected number of trip request for non-shared service from 10 to 120 
per hour with different corridor length, 15km, 10km, and 5 km when the 
side length of the drop-off area is 8.71km,  𝑺𝟏 = 𝟑𝟔 , and 𝑺𝟐 = 𝟐𝟖 
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Figure 63 the distribution of mode share for non-shared service with a 
different fleet size of shared service (the left column) and non-shared 
service (the right column) with different length of the corridor (i.e. 15 km, 
10km, and 5 km) when the side length of drop-off area is 4.39 km. 

 

Figure 64 the mean utility of non-shared and shared service with the different 
expected number of trip request for non-shared service from 10 to 120 
per hour with different corridor length, 15km, 10km, and 5 km when the 
side length of the drop-off area is 4.39 km,  𝑺𝟏 = 𝟑𝟔 , and 𝑺𝟐 = 𝟐𝟖 
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Figure 65 the distribution of mode share for non-shared service with a 
different fleet size of shared service (the left column) and non-shared 
service (the right column) with different length of the corridor (i.e. 15 km, 
10km, and 5 km) when the side length of drop-off area is 2.18 km. 

 

Figure 66 the mean utility of non-shared and shared service with the different 
expected number of trip request for non-shared service from 10 to 120 
per hour with different corridor length, 15km, 10km, and 5 km when the 
side length of the drop-off area is 2.18 km,  𝑺𝟏 = 𝟑𝟔 , and 𝑺𝟐 = 𝟐𝟖 
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 The impact of modified Shapley value  

 Scenario settings 

This section investigates the impact of the fare distribution method for shared 

service on the system evolution. The simulation was conducted to compare the 

impact of traditional Shapley value and modified Shapley value. As demonstrated in 

section 3.4.6, using modified Shapley value increases the proportion of those who 

received enough discount in fare, which compensates the additional in-vehicle time 

caused by sharing their ride. However, it is expected that the difference in the fare 

distribution method would only impact the case where the shared service is 

dominant or at least when the non-shared service is not dominant.  

Hence, at first, two scenarios with different service network geometry are generated 

and compared. One is the default service network specified in Figure 34 (scenario 

1) and the other is the service network with the corridor length 15 km and the side 

length of drop-off area 2.18 km (scenario 2). As discussed in section 4.5, the default 

service network leads the system to be a high mode share for non-shared service, 

while the service network used for scenario 2 leads the system to have a high mode 

share for shared service.  For each scenario, the fleet size for non-shared service is 

set as constant at 36 while 4 different fleet sizes for shared service are tested from 

28 to 46 in increment of 6.  

Additional experiments are conducted to see the effect of VoIVT in the same 

service network geometry with scenario 2. The fleet size for non-shared service is 

set as 36 while the fleet size for shared service is set as 46. Three cases with 

different VoIVT (i.e. 0.5, 1, and 2) are tested, and the results are summarised in the 

following section. The other parameters are set as default. The parameter settings 

for all 3 scenarios are summarised in Table 14. Besides, to minimise the effect of 

randomness when the results with traditional and modified Shapley value are 

compared, a random seed is set to be the same for the simulation with the 

traditional and with the modified Shapely value.  

Table 14 The parameter settings for the 3 scenarios.  

Scenario 

Service network geometry 
VoIVT 

[min/monetary 

unit] 

Fleet size for 

Shared service  
Corridor length 

[km] 

Side length 

[km] 

1  

15 

8.71 
1 28 to 46 

2 
2.18 

3 [0.5, 1, 2] 46 
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 Key findings  

 The differences between traditional and modified Shapley value can only be 

observed with the specific combination of service network geometry and the 

fleet size where the non-shared service is not highly dominant.   

 

 The modified Shapley value leads the mean mode share for shared service 

(non-shared service) to be higher (lower) compared to the case with the 

traditional Shapley value.  

 

 The difference in the mean mode share between the case with traditional 

and modified Shapley value increases as the VoIVT decreases. 

 

 Results  

Figure 67 compares the mean mode share for non-shared service from day 51 to 

500 between the case generated with the traditional Shapely value and the case 

generated with the modified Shapley value for different fleet sizes for scenario 1. 

The error bar in the figure indicates the standard deviation of mode share for non-

shared service from day 51 to 500. Following the different experiments summarised 

in Chapter 4, the process is assumed to leave from the warming up period as of day 

50. In Figure 67, there is no distinctive difference observed when the fleet size for 

shared service is 28 and 34. However, when the fleet size for shared service is 40 

and 46, the mean mode share for non-shared service is lower in the case with 

modified Shapley value than the case with traditional Shapley value. As the range 

of the error bar also becomes lower for the modified Shapley case, it can be said 

that this difference is not the result of randomness.   
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Figure 67 the comparison of mean mode share for non-shared service from 
day 51 to 500 between the case generated with the traditional Shapely 
value and the case generated with the modified Shapley value for the 
different fleet sizes from 28 to 46 for scenario 1. The error bar indicates 
the standard deviation. 

Figure 68 summarises the same values as Figure 67 but for scenario 2. As shown 

in Figure 65, the service network geometry assumed in scenario 2 allows shared 

service to provide a higher level of service than the non-shared service. Therefore, 

the mode share for shared service is much higher than the non-shared service. 

Following the expectation mentioned at the beginning of this section (i.e. section 

4.6), the difference in the mean mode share for non-shared service regarding the 

fare distribution method is revealed more distinctively than scenario 1. According to 

Figure 68, The mean mode share for non-shared service is lower for the modified 

Shapley value for all cases with different fleet sizes from 28 to 46. In addition, it is 

observed that the difference in the mean value increases as the fleet size 

increases. Therefore, it can be concluded that as the parameter settings become 

more advantageous for shared services to provide a high level of service, the 

impact of the fare distribution method on the system evolution increases.  
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Figure 68 the comparison of mean mode share for non-shared service from 
day 51 to 500 between the case generated with the traditional Shapely 
value and the case generated with the modified Shapley value for the 
different fleet sizes from 28 to 46 for scenario 2. The error bar indicates 
the standard deviation. 

Figure 69 summarises the results for scenario 3 and compares the mean mode 

share for non-shared services generated with three different VoIVT (i.e. 0.5, 1, 2). 

According to Figure 69, for all three cases with different VoIVT, the mean mode 

share for non-shared service is lower for the case with modified Shapley value than 

the case with traditional Shapley value. In addition, it is observed that as the VoIVT 

decrease, the difference between the two fare distribution methods increases. It is 

because, as discussed in subsection 3.4.6, the proportion of uncompensated trip 

requests decreases as VoIVT decreases. It should be remembered that the 

uncompensated trip requests in this context imply the situation where trip requests 

did not receive enough discount in fare to compensate for the additional in-vehicle 

time caused by sharing their trip. The higher proportion of the compensated trip 

requests implies that more shared service users experienced higher service levels. 

Thus, the mode share for shared service (non-shared service) increases 

(decreases) more for the case with modified Shapley value when VoIVT is smaller.  
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Figure 69 the comparison of mean mode share for non-shared service from 
day 51 to 500 between the case generated with the traditional Shapely 
value and the case generated with the modified Shapley value for the 
different VoIVT for scenario 3. The error bar indicates the standard 
deviation 

 Summary  

   This chapter summarised the results of a numerical experiment with the fixed fleet 

size and the model's sensitivity to different parameters. In section 4.3, the analysis 

of the base scenario is presented and the sensitivity analysis against several 

parameters. The analysis results suggested that within the given parameter settings 

specified as the default parameters, the mode share for the non-shared service was 

higher than the shared service for most of the days. Nevertheless, the mode share 

for shared service became higher than the non-shared service from time to time. It 

happens when the mode share and the total number of trip request are high on the 

same day. However, the mode share for non-shared service always became 

dominant again on the next day.  

The sensitivity analysis was conducted against the initial condition, the parameters 

determining the user’s irregular behaviour, the updating filter, and several 

parameters in the utility function. The sensitivity analysis against the initial 

conditions (i.e. initial mode share) concluded that the initial condition did not 

influence the stationary distribution. Therefore, the stochastic process is ergodic 

with the fixed fleet size case. The parameters controlling the user’s irregular 

behaviour and the updating filters change a variance of the stationary distribution. 

However, they do not influence the mean mode share  
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VoWT, VoIVT, and fare per minute for non-shared and shared service are selected 

for the sensitivity analysis. As willingness to share (WTS) was too small compared 

to other variables in the utility function, the sensitivity analysis was not conducted 

against it. When VoWT was within the realistic range (i.e. higher than VoIVT), 

changes in VoWT was observed not to bring any impact to the stationary 

distribution of mode share. Besides, it was discovered that, as VoIVT increases, the 

mean value for the stationary distribution of mode share for non-shared service 

increases. Moreover, increasing the fare per minute for non-shared service was 

observed to have more impact on the stationary distribution of mode share than 

decreasing the fare per minute for shared service. 

In section 4.4, the impact of fleet size for non-shared and shared service was 

examined. With a given setting, the results suggest that the stationary distribution of 

mode share changed according to the change in the fleet size for non-shared 

service, regardless of shared service fleet size. It was because the maximum mean 

utility of non-shared service was higher than the maximum mean utility of shared 

service. Hence, the mean utility of shared service became higher only by the 

reduction in the mean utility of non-shared service. Therefore, the changes in fleet 

size for shared service did not affect the distribution of mode share. Furthermore, 

as the fleet size for non-shared service, 𝑆ଵ, increased, the distribution of mode 

share for non-shared service took higher value. Besides, no significant changes in 

the distribution of mode share were observed after the fleet size for non-shared 

service reaches 𝑆ଵ > 60. 

In section 4.5, the impact of the service network geometry is investigated. The 

results suggest that the mean utility of shared service becomes higher than the 

non-shared service as the proportion of a trip on the corridor becomes longer in a 

round trip.  Besides, the service network geometry was discovered to determine the 

boundary of the stationary distribution of mode share. Hence, the dominant service 

changes as the service network geometry changes. Moreover, the impact of fleet 

size for shared services becomes the determinant of the stationary distribution of 

mode share when the proportion of a trip in the corridor is high and the mean round 

trip time was not too short. When the mean round trip time is too short, the 

stationary distribution of mode share was not affected by both fleet sizes as the 

minimum fleet size in this numerical experiment was already high for those cases. 

In section 4.6, the impact of modified Shapley value on the system evolution is 

demonstrated. With the hypothesis that the difference between modified and 

traditional Shapley value is influential only when the non-shared service is not 

dominant, the simulation is conducted with two different service network geometry, 

one leading to the significantly high mode share for non-shared service and one 



- 120 - 

leading to the significantly high mode share for shared service, with four different 

fleet sizes. The results suggest that even with the case where non-shared service is 

dominant, the fare distribution method impacts the system evolution when the fleet 

size for shared service is larger. Besides, the difference between modified and 

traditional Shapley values increases as the fleet size for shared service increases 

and as the service network geometry becomes more advantageous for shared 

service to provide a higher level of service with a given fleet size for non-shared 

service. In particular, the mean mode share for shared service (non-shared) service 

becomes higher (lower) for the case of modified Shapley value. In addition, 

experiments with different VoIVT showed that as VoIVT decreases, the difference 

between the modified and traditional Shapley value increases with a given fleet size 

and service network geometry.  

  



- 121 - 

Chapter 5 Numerical experiment with the variable fleet size  

 Introduction  

   This chapter summarised the results of numerical experiments with variable fleet 

size. It means that drivers also learn and would change their service to provide day 

by day. Unlike the case with fixed fleet size, it was difficult to predict how the 

process would behave before running an experiment because of the complexity of 

the model. Running a few simulations revealed that the proposed stochastic 

process had three regimes; 1) the PS regime, 2) the swan regime, and 3) the PP 

regime. The definition and attribute of each regime is analysed and presented in 

section 5.4 in this chapter. Besides, the detailed analysis of how the transition 

occurs between each regime was conducted and summarised. In particular, the 

main focus of the analysis was to identify if the series of a random event caused the 

transition or not. In addition, sensitivity analysis was conducted to investigate how 

the occurrence pattern of three regimes changes as parameters change, hence, the 

stationary distribution of mode share.  

The structure of this chapter is as follows. In section 5.2. default parameter settings 

for numerical experiments are provided. In section 5.3, the comparison of results 

with a given parameter setting between the fixed fleet size case and the variable 

fleet size case is summarised. In section 5.4, the definition and attributes of each 

regime are specified. In section 5.5, a detailed analysis of the transition process 

between each regime are provided. In section 5.6, the sensitivity analysis against 

the initial conditions is summarised for two scenarios with different parameter 

settings. In section 5.7, the occurrence pattern of each regime is discussed with the 

result of the sensitivity analysis. In section 5.8, the condition to change the system 

from demand-driven to supply-driven is discussed. In section 5.9, how changing the 

updating function affects to the nature of the process is discussed. The chapter is 

concluded by providing the summary in section 5.10. 

 Default parameter setting 

   For this experiment, the same service network assumed in Chapter 4 is also 

assumed (see Figure 34 in Chapter 4). As with Chapter 4, the length of the corridor 

is set to be 10 km on which the vehicle moves with the fixed average speed of 60 

km/h. The drop-off area is assumed to be a square with the side length being 8.71 

km, in which vehicles move with the fixed average speed of 20 km/h. Other 

parameters settings also follow in Chapter 4, which is summarised in Table 15. The 

default setting for the new parameters introduced in this section is summarised in 
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Table 16. Newly introduced parameters are related to the drivers’ learning and 

decision-making process. Also, as the fleet size is not fixed anymore, the expected 

total number of drivers (fleet) is set as 100 instead of individual setting the number 

of drivers. The initial proportion of fleet size for each service is set to be 0.5. In 

addition, the cost for drives’ making a round trip is set as 0.5 monetary unit/min.  

Table 15 default parameter setting  

Parameters Default value 

The expected total number of trip request per hour 120 /h 

The initial mode share for non-shared service  0.5 

The mean number of accompanied persons per request (NoA) 0.3 

The minimum number of requests per cluster  2 

The maximum number of users per cluster, i.e. a vehicle 

capacity  

4 

The maximum clustering waiting time (MCWT) 3 min 

The side length of the square drop-ff area 8.71 km 

The length of the corridor  10 km 

The period of interest 120 min 

The mean speed of the vehicle in the drop-off area 20 km/h 

The mean speed of the vehicle on the corridor 60km/h 

Fare/min 1 

The value of in-vehicle travel time (VoITT) 2 

The value of waiting time (VoWT) 2.5 

The willingness to share (WTS)  0.1 

𝛼௨: The proportion of those who stay in the service even if the 

experienced profit is lower than the expected profit of the 

alternative service  

0 

𝛽௨: The proportion of users who did not satisfy with the service 

they chose yet stated that they would stay in the same service 

on the following day  

0.5 

𝜂௨: An updating filter which determines how much the average 

utility on day 𝑑 influences on the collective average utility on 

day 𝑑 𝑃𝑈,ௗ.  

0.3 
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Table 16 default values for the newly introduced parameters  

Parameters  Default value  

𝛼: The proportion of drivers who satisfied with providing the 

service they chose yet stated that they would change to 

providing the alternative service on the following day 

0 

𝛽: The proportion of drivers who did not satisfy with providing 

the service they chose yet stated that they would keep 

providing the same service on the following day 

0.5 

𝜂: An updating filter which determines how much the average 

profit on day 𝑑 influences on the collective average profit on 

day 𝑑 An updating filter which determines how much the 

average profit on day 𝑑 influences on the collective average 

profit on day 𝑑 

0.3 

The cost to provide the service per minute  0.5 

The expected total fleet size  100 

The initial proportion of fleet for non-shared service  0.5 

 Comparison with the fixed fleet size case  

In this section, the simulation results with the fixed fleet size and the variable fleet 

size are compared to see the effect of introducing drivers’ service choice behaviour. 

The parameter setting follows the default value for both cases specified in section 

4.2 for the case of fixed fleet size and section 5.2 for the case of variable fleet size. 

500 consecutive days are generated for both cases. For variable fleet size case, the 

initial proportion of fleet is 0.5 for both services where the expected total fleet size is 

100. Hence, the fleet size for non-shared and shared service is set as 50 and 50 for 

the case of fixed fleet size. As the actual fleet size is randomly generated with the 

mean of 100 for variable fleet size case, the fleet size of the first day is not 

necessarily 50 and 50. However, the initial proportion of fleet for both cases are still 

consistent and 0.5 for non-shared service and shared service.  

Figure 70 shows the evolution of mode share and the stationary distribution of 

modes share for non-shared service for the fixed fleet size case. It is assumed that 

the warming-up period of the process ends before day 50 from the visual 

observation. Hence, the stationary distribution is generated from the mode share on 

day 51 to day 500. Figure 71 displays the evolution of mode share (the upper left 

figure) and the evolution of the proportion of fleet size (the lower left figure) for 

variable fleet size case. The stationary distribution of mode share for non-shared 
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service and the proportion of fleet for non-shared service are also illustrated in the 

right column. 

 

Figure 70 the evolution of mode share (left) and the unique stationary 
distribution of mode share for non-shared service (right) for fixed fleet 
size case generated with the default parameter settings. 

 

 

Figure 71 the evolution of mode share (upper left) and the proportion of fleet 
(lower left) and the unique stationary distribution of mode share for non-
shared service (upper right) and the proportion of fleet (lower right) for 
the variable fleet size case generated with the default parameter 
settings. 

It can be observed that the mode share for non-shared service takes the higher 

value for the case with variable fleet size than the case with fixed fleet size, 

according to Figure 70 and Figure 71. In addition, the fluctuation in a mode share is 

smaller in Figure 71 than in Figure 70. As the lower figure in Figure 71 shows, the 
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proportion of fleet for non-shared service increases as the mode share for non-

shared service increases during the first several days. The larger fleet size enables 

the service to serve more people without increase the number of queues. Hence, 

users experience higher utility which results in a higher mode share.  

Figure 72 compares the evolution of the mean utility for non-shared and shared 

service for the case with the fixed fleet size (the upper row) and with the variable 

fleet size (the lower row). Comparing the upper-left figure and the lower-left figure, 

the mean utility for non-shared service is higher for the case with variable fleet size 

than the fixed fleet size case in most of the days. Besides, the mean utility for non-

shared service fluctuates less in the variable fleet size case. On the other hand, the 

mean utility of shared service is lower in the variable fleet size case than the fixed 

fleet size case. Hence, fleet size for shared service is smaller in the variable fleet 

size case, as observed in Figure 71. At the same time, the mean utility for shared 

service fluctuates more in the variable fleet size case than the fixed fleet service 

case (see the right figures in Figure 72).  

 

Figure 72 the mean utility for non-shared and shared service for the case with 
fixed fleet size and variable fleet size where  

 The three regimes  

   This section summarises the definition and attributes of three regimes identified 

through the numerical experiment with a default parameter setting specified in 

section 5.2.  They are named as; 1) The pseudo stable regime (the PS regime), 2) 
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the swan regime, and 3) the pseudo periodic regime (the PP regime).  In Figure 73, 

the one realisation is presented as an example case since it contains three regimes 

at one realisation. The updating filter and the proportion of hesitant users and 

drivers are set as 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08 for the case presented in 

Figure 73. The PS regime is emphasised with the dashed square labelled as (1) in 

the figure. One of the swan regimes is highlighted with the dashed square marked 

as (2) in the figure. One of the PP regimes is emphasised with the dashed square 

labelled as (3) in the figure.  It should be noted that depending on the updating 

filters and hesitation parameters, some realisations contains only one or two 

regimes. 

The below section consists of 5 subsections. In subsection 5.4.1, the quantitative 

definition of each regime is presented. In subsection 5.4.2 to 5.4.3, the qualitative 

description of each regime is summarised. The case with 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ =

𝛽 = 0.08 is used as an example to describe the attribute of each regime that was 

generated for 100,000 days.  

 

Figure 73 one realisation of the process with 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 =

𝟎. 𝟎𝟖 where all three regimes are observed  

 

 The definition of three regimes 

The quantitative definition of each regime is summarised below. 

1) The pseudo stable regime  

The pseudo stable regime could be defined as the mean experienced utility and the 

mean experienced profit for the dominant service is always higher than the 
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collective average utility for the other service. For instance, in the case of default 

parameter settings, the non-shared service is dominant. Hence, the mean 

experienced utility and profit is consistently higher than the collective average utility 

of shared service.  

(2) The swan regime   

If the following three conditions are satisfied, it is the swan regime;  

- the mode share is constant during the regime 

- the mean experienced utility is lower than the collective average utility for 

the other service for both services (i.e.  𝑢തଵௗ > 𝑃𝑈ଶௗ and 𝑢തଶௗ > 𝑃𝑈ଵௗ).  

- The difference between the two values, |𝑢തଵௗ − 𝑃𝑈ଶௗ| and |𝑢തଶௗ − 𝑃𝑈ଵௗ|, 

constantly decreases during the regime.  

(3) The pseudo periodic regime   

The pseudo periodic regime can be defined with the autocorrelation in the 

proportion of fleet. In specific, the autocorrelation with one day lag, two-day lag, 

three-day lag, four-day lag, and five-day lag is always negative, positive, negative, 

positive, and negative, as summarised in Table 17.  

Table 17 the sign for autocorrelation in the proportion of fleet when the lag 
length is from 1 to 5 days 

Lag in days  1 2 3 4 5 

sign − + − + − 

Figure 74 shows the example of the autocorrelation in the PP regime when 𝜂௨ =

𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08. Depending on the value of updating filters and the 

hesitation parameters, the absolute values of the autocorrelation change. However, 

in the majority of cases, it is above 0.9 or below -0.9.  

 

Figure 74 an example of autocorrelation in the proportion of fleet when 𝜼𝒖 =
𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖 
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 The pseudo-stable regime  

   The pseudo stable (PS) regime is the most stable regime as represented by its 

name. First, both mode share and proportion of fleet do not fluctuate intensely 

compared to the pseudo periodic (PP) regime during the regime, as observed in 

Figure 73. Also, the dominant mode is consistent and non-shared service during the 

PS regime.  Figure 75 shows the histogram of mode share and the proportion of 

fleet for non-shared service when 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08 as an example.   

The variance of those value changes as the value for updating parameter and 

hesitation parameter changes. The length of the regime also varies among one 

realisation. In this example, the PS regime appeared 4 times, the length of which is 

summarised in Table 18. The occurrence frequency of the PS regime and the 

distribution of regime length also changes as the value for updating parameter and 

hesitation parameter changes, which are summarised in section 5.7.  

 

Figure 75 the histogram for the mode share (left) and the proportion of fleet 
(right) for non-shared service during all the PS regime when 𝜼𝒖 = 𝜼𝒑 =

𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖. 

Table 18 the length of 4 PS regimes occurred in one realisation with 𝜼𝒖 = 𝜼𝒑 =

𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖 

The length of  the PS regime  117 105 51 21 

Figure 76 presents the evolution of key values related to non-shared services 

during one PS regime. The top figures show the evolution of mode share (left) and 

the proportion of fleet (right) for non-shared service. The middle left figure 

compares the mean utility of non-shared service users, 𝑢തଵௗ, and the collective 

average utility of shared services, 𝑃𝑈ଶௗ. Those parameters influence on the service 

choice for the non-shared service user of the day. The middle right figure compares 

the mean profit of non-shared service drivers, �̅�ଵௗ, and the collective average profit 
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of shared services, 𝑃𝑃ଶௗ. Those parameters influence on the service choice for the 

shared service user of the day. The bottom figures display the proportion of non-

shared service users (left) and drivers (right) who change the service each day.  

From the middle left figure in Figure 76, it is observed that the mean utility for non-

shared users is higher than the collective average utility of shared service during 

the PS regime (i.e.  𝑢തଵௗ > 𝑃𝑈ଶௗ). Similarly, the mean profit among non-shared 

service driver is constantly higher than the collective average profit of shared 

service (i.e. �̅�ଵௗ > 𝑃𝑃ଶௗ) Therefore, the proportion of non-shared service users and 

drivers who change the service is constantly low. As a result, the mode share and 

the proportion of fleet are stable during the PS regime.  

 

Figure 76 an example of one pseudo stable regime lasted for 117 days when 
𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the evolution 
of mode share (left) and the proportion of fleet (right) for NON-SHARED 
service during the period. The middle figures compare the mean utility 
among NON-SHARED service users and the collective average utility of 
SHARED service (left) and the mean profit among NON-SHARED service 
drivers and the collective average profit of SHARED service (right) who 
changed service on each day. The bottom figures show the proportion 
of users (left) and drivers (right) who changed service on each day. 

Figure 77 displays the same variables as Figure 76 but for shared service users 

and drivers. As the number of shared service users and drivers is constantly low 

during PS regime, the small shift in users and drivers could greatly change the 
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utility and profit for shared service users and drivers. Therefore, compared to the 

middle two figures in Figure 76, the mean utility and profit fluctuate greater in Figure 

77. Though it changes periodically, most of the days, the mean utility of shared 

service is lower than the collective average utility of non-shared service (i.e. 𝑢തଶௗ <

𝑃𝑈ଵௗ). On those days, high proportion of users and drivers change their service to 

non-shared service. Nevertheless, as the number of shared service users and 

drivers are small, such a shift do not always cause a significant change in the 

system during the PS regime.  Hence, the PS regime remains stable.  

 

Figure 77 an example of one pseudo stable regime lasted for 117 days when 
𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the evolution 
of mode share (left) and the proportion of fleet (right) for SHARED 
service during the period. The middle figures compare the mean utility 
among SHARED service users and the collective average utility of NON-
SHARED service (left) and the mean profit among SHARED service 
drivers and the collective average profit of NON-SHARED service (right) 
who changed service on each day. The bottom figures show the 
proportion of users (left) and drivers (right) who changed service on 
each day 

 The swan regime  

   The swan regime has two distinctive attributes. During this regime, a process 

looks stable from the users’ point of view. However, almost all drivers are changing 

the service every day; hence, it is unstable from the drivers’ point of view.  The 

swan regime having two contradicting attributes, stable and unstable, from different 
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points of views, reminds swans. They look smoothly swimming if only seen above 

the water. On the other hand, many movements are constantly happening under 

the water as they continually move their pedals (see Figure 78). Hence, this regime 

is named “the swan regime”.  

 

Figure 78 a drawing of the swan metaphor representing two distinctive states 
observed in one system that is smooth and elegant on the water and 
hectic under the water.  

Figure 79 and Figure 80 illustrate the same variables presented in Figure 76 and 

Figure 77 but for the swan regime. From the middle left figure in Figure 79 and 

Figure 80, it is observed that the mean utility of non-shared (shared) service is 

greater than the collective average utility of shared (non-shared) service (i.e. 𝑢തଵௗ >

𝑃𝑈ଶௗ and  𝑢തଶௗ > 𝑃𝑈ଵௗ) Therefore, the proportion of users who shift from both 

services is 0; hence the mode share stays constant during the swan regime (see 

the middle and bottom left figure in Figure 79 and Figure 80).  

From the driver side summarised in the right column in Figure 79 and Figure 80, it 

is observed that the mean profit among non-shared (shared) service drivers is 

constantly lower than the collective average profit of the alternative service (i.e. 

�̅�ଵௗ < 𝑃𝑃ଶௗ and �̅�ଶௗ < 𝑃𝑃ଵௗ ) according to the right middle figures in Figure 79 and 

Figure 80. Therefore, the proportion of drivers who changes the service is constant 

and 0.92, which is the highest value it can possibly take (see the bottom right 

figures). It implies that all drivers are unsatisfied with their experience every day, 

and 92% of them (i.e. 1 − 𝛽) actually decided to switch the service. However, as 

the proportion of fleet for each service fluctuate around 0.5 during the swan regime, 

even if almost everyone each service shifts the service every day, the proportion of 

fleet stay within the similar range. Hence, some equilibrium is maintained. 
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Figure 79 an example of the pseudo stable regime from day 175 to day 190 
when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the 
evolution of mode share (left) and the proportion of fleet (right) for NON-
SHARED service during the period. The middle figures compare the 
mean utility among NON-SHARED service users and the collective 
average utility of SHARED service (left) and the mean profit among NON-
SHARED service drivers and the collective average profit of SHARED 
service (right) who changed service on each day. The bottom figures 
show the proportion of users (left) and drivers (right) who changed a 
service on each day. 
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Figure 80 an example of the pseudo stable regime from day 175 to day 190 
when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the 
evolution of mode share (left) and the proportion of fleet (right) for 
SHARED service during the period. The middle figures compare the 
mean utility among SHARED service users and the collective average 
utility of NON-SHARED service (left) and the mean profit among 
SHARED service drivers and the collective average profit of NON-
SHARED service (right) who changed service on each day. The bottom 
figures show the proportion of users (left) and drivers (right) who 
changed service on each day 

As shown in Figure 4, the mode share and regime length during the swan regime 

vary. The below section summarises the attribute of the swan regime in one 

realisation with 𝛽௨ = 𝛽 = 0.08 and 𝜂௨ = 𝜂 = 0.1 which was simulated for 100,000 

days. During that time, the swan regime appeared 2,173 times. The maximum 

length of the swan regime was 35 days. The distribution of the swan regime length 

is displayed in Figure 81. Compared to the maximum length of the PS regime in the 

same realisation (i.e. 117), it can be observed that the swan regime is less stable 

than the PS regime. 

According to the middle figures in Figure 79 and Figure 80, the difference in the 

mean utility and the collective average utility is decreasing as the day passes during 

the swan regime. It is because while the mean utility is constant during the swan 

regime, the collective average utility is updated every day. The same tendency is 

observed in the mean profit and the collective average profit for both services. 
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When the difference between mean utility (profit) and the collective average utility 

(profit) becomes small enough, the process transitions to a different regime. Hence, 

the swan regime cannot stay as long as the other two regimes. The length of the 

regime depending on how great the difference between mean utility (profit) and the 

collective average utility (profit) is at the beginning of the regime, which is randomly 

determined. Also, the updating filters, 𝜂௨ and 𝜂, would impact on the regime length 

as it determines the rate of reduction in the difference between two values.  

 

Figure 81 histogram for the swan regime length appeared during 100,000 
days of one realisation with 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖   

Figure 82 summarised the mode share (left) and the mean proportion of fleet (right) 

for non-shared service during the swan regime. According to the left figure, unlike 

the PS regime, the mode share for shared service tends to be dominant during the 

swan regime. The mean mode share for non-shared service among 2,173 swan 

regimes is 0.362. As the proportion of fleet fluctuates during the swan regime, the 

right figure presents the histogram for the mean proportion of fleet for non-shared 

service. It is discovered that the proportion of fleet fluctuates around 0.5 in the 

above section. Hence, the mean proportion of the fleet takes approximately 0.5 

most of the time. It implies that, unlike the mode share, the proportion of fleet shows 

a consistent tendency among 2,173 regimes.  
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Figure 82 histogram of mode share (left) and the mean proportion of fleet 
(right) for NON-SHARED service during the swan regime, which 
appeared during 100,000 days of one realisation with 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 
𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖 

 

 The pseudo-periodic regime   

In the pseudo-periodic (PP) regime, both the mode share and the proportion of fleet 

show the “flip-flop” behaviour as observed in top figures in Figure 83 and Figure 84. 

Figure 83 and Figure 84 summarised the same set of variables with Figure 76 and 

Figure 77 but for the PP regime instead of the PS regime. The flip-flop behaviour is 

observed more distinctively in the proportion of the fleet than in the mode share. 

Besides, as described in section 5.4.1, the autocorrelation in the proportion of fleet 

with one day lag is always a negative value.  

The middle left figures in Figure 83 and Figure 84 shows that the greater value 

between the mean utility among non-shared (shared) users and the collective 

average utility of the alternative service is switching every day. Responding to such 

changes, the proportion of users who changed the service also switches every day 

between 0 and approximately 0.7. The same observation can be made in the driver 

sides according to the middle right figure in Figure 83 and Figure 84. During the PP 

regime, the fleet size is always overly large or small compared to the number of 

users.  

When the fleet size is overly large compared to the number of users, the mean 

profit of drivers becomes much lower than the collective average profit of the 

alternative service. When the fleet size is overly small compared to the number of 

users, drivers' mean profit becomes much higher than the other two regimes (see 
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the middle right figure in Figure 76, Figure 77, Figure 79, and Figure 80). As a result 

of the extreme shift between the mode share and especially the proportion of fleet 

for each service, the difference between the mean utility and profit of one service 

and the collective average utility and profit of the alternative service is kept large. 

Therefore, the ‘all-or-nothing’ type of behaviour continues during the PP regime.   

 

Figure 83 an example of the pseudo periodic regime from day 519 to 576 
when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the 
evolution of mode share (left) and the proportion of fleet (right) for NON-
SHARED service during the period. The middle figures compare the 
mean utility among NON-SHARED service users and the collective 
average utility of SHARED service (left) and the mean profit among NON-
SHARED service drivers and the collective average profit of SHARED 
service (right) who changed service on each day. The bottom figures 
show the proportion of users (left) and drivers (right) who changed 
service on each day. 
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Figure 84 an example of the pseudo periodic regime from day 519 to 576 
when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  . The top figures show the 
evolution of mode share (left) and the proportion of fleet (right) for 
SHARED service during the period. The middle figures compare the 
mean utility among SHARED service users and the collective average 
utility of NON-SHARED service (left) and the mean profit among 
SHARED service drivers and the collective average profit of NON-
SHARED service (right) who changed service on each day. The bottom 
figures show the proportion of users (left) and drivers (right) who 
changed service on each day 

The below section summarises the attribute of the PP regime in one realisation with 

𝛽௨ = 𝛽 = 0.08 and 𝜂௨ = 𝜂 = 0.1, which was simulated for 100,000 days. During 

that time, the PP regime appeared 2,002 times. Figure 85 illustrates the distribution 

of the PP regime length. The mean length of the PP regime was 30.01 days, and 

the maximum length was 136 days. Figure 86 shows the distribution of mode share 

(left) and the proportion of fleet (right) for non-shared service during one PP regime 

from day 99,230 to 99,325. As a result of continuous “flip-flop” changes in the mode 

share and the proportion of fleet, the distribution of mode share and proportion of 

fleet showed two peaks (see Figure 86). This tendency was consistent with the 

other PP regime observed during the same realisation.  
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Figure 85 the histogram of the PP regime length appeared during 100,000 
days of one realisation with 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖   

 

Figure 86 the histogram for the mode share (left) and the proportion of fleet 
(right) for non-shared service during one PP regime from day 99,230 to 
99,325 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖. 

 The transition between each regime  

   In this section, how the process moves from one regime to the other regime is 

investigated. In particular, the mean experienced utility of users and drivers and the 

collective average utility of users and drivers for both services are analysed during 

the transition. Mainly, the one realisation with 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08 is 

used to show the transition, which was also used to show the example in the 

previous section. However, there is a specific transition that is not observed with 
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those parameter settings. In that case, one realisation with different combinations of 

𝜂௨, 𝜂, 𝛽௨ and 𝛽 are presented. The following sections are divided into three 

subsections which summarise 1) the transition between the pseudo periodic (PP) 

regime and the swan regime, 2) the transition between the swan regime and the 

pseudo stable (PS) regime, and 3) the transition between the PP regime and the 

PS regime.  

 

 The transition between the pseudo periodic regime and the 
swan regime  

Figure 87  and Figure 88 summarise changes in several variables related to non-

sharing service and shared service during the transition from/to the PP regime 

to/from the swan regime. Those variables are the same as those summarised in 

Figure 76 and Figure 77 presented in section 5.4. Hence, for the description of each 

variable in Figure 87  and Figure 88, the description of variables in Figure 7 and 

Figure 8 should be referred which is presented in subsection 5.4.2.  

Comparing Figure 87  and Figure 88, it can be observed that the relation between 

the mean utility of one service and the collective average utility of the alternative 

service is always opposite during the PP regime. In specific, when the mean utility 

of non-shared services is higher than the collective average utility of shared 

services (i.e. 𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ), it is the other way around for shared service (i.e. 𝑢തଶ,ௗ <

𝑃𝑈ଵ,ௗ) and vice versa. The same logic applys for the relationship between the mean 

profit of one service and the collective average profit of the alternative service.  

The transition from the PP regime to the swan regime occurs when the mean utility 

of both services becomes higher than the collective average of the alternative 

service on the same day. According to the middle figures in Figure 87  and Figure 

88, those conditions had met on day 240 for this case. On that day, the mean utility 

and the collective average utility would have been  𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ  and 𝑢തଶ,ௗ < 𝑃𝑈ଵ,ௗ if it 

were still in the PP regime. However, on the day 235, the mean utility of non-shared 

service experienced a sharp decline (see the left middle figure in Figure 87). 

Therefore, the collective average utility for non-shared also decreased by a great 

amount (see the black line in the left middle figure in Figure 88). Following another 

sharp decline in the mean utility of non-shared service on day 237, the mean utility 

of shared service exceeded the collective average utility, 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ, on day 240. 

The sharp decline in the mean utility for non-shared service on day 235 is the 

consequence of random events. As shown in Table 19, the proportion of fleet for 

non-shared service was lower than the other 10 days in the table. However, the 

mode share for non-shared service was not so high compared to the other days.. 
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However, on day 235, the randomly generated total number of users (i.e. 253) was 

higher than the expected value (i.e.240), and the randomly generated total fleet size 

(i.e. 93) was lower than the expected value (i.e. 100) at the same time.  As a result, 

the number of users for non-shared service (i.e. 143) became too high compared to 

the fleet size for non-shared service (i.e. 2). Then, the mean utility for non-shared 

services dropped significantly. The changes in the process resulting from the 

random event were also observed in the fixed fleet size case presented in Chapter 

4 (see subsection 4.3.2 in Chapter 4). However, the fixed capacity of the service 

prevented a process from changing its behaviour. Thus, it is highly likely that the 

different regime emerged as the limitation in the service capacity is relaxed with 

variable fleet size. 

 

Figure 87 an example of the transition between the pp regime and the swan 
regime from day 230 to day 270 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  
. The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for NON-SHARED service during the period. 
The middle figures compare the mean utility among NON-SHARED 
service users and the collective average utility of SHARED service (left) 
and the mean profit among NON-SHARED service drivers and the 
collective average profit of SHARED service (right) who changed service 
on each day. The bottom figures show the proportion of users (left) and 
drivers (right) who changed a service on each day. 
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Figure 88 an example of the transition between the pp regime and the swan 
regime from day 230 to day 270 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖  
. The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for SHARED service during the period. The 
middle figures compare the mean utility among SHARED service users 
and the collective average utility of NON-SHARED service (left) and the 
mean profit among SHARED service drivers and the collective average 
profit of NON-SHARED service (right) who changed service on each day. 
The bottom figures show the proportion of users (left) and drivers (right) 
who changed service on each day 

Table 19 the changes in the total number of users and total fleet size as well 
as mode share, the proportion of fleet, No. of users, fleet size for NON-
SHARED service from day 230 to 240.  

 

Mode share Prop. of fleet No.of users Fleet size
230 233 98 0.0687 0.9241 14 92
231 240 96 0.8590 0.0751 201 5
232 274 97 0.1159 0.9242 30 92
233 249 102 0.8459 0.0759 211 5
234 209 102 0.1230 0.9239 19 91
235 253 93 0.5434 0.0714 143 2
236 226 96 0.0644 0.9217 17 89
237 227 94 0.5833 0.0742 131 2
238 245 100 0.0712 0.9217 10 94
239 223 102 0.6603 0.0752 158 6
240 227 104 0.1528 0.9247 31 92

Days
Total no. of 

users
Total fleet 

size
Non-shared service
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As described in subsection 5.4.3, the difference between the mean utility (profit) 

and the collective average utility (profit) decreases during the swan regime. Hence, 

the transition from the swan regime to the other regime always occur. In this 

example, it shifted to the PP regime most of the time, which was consistent with a 

realisation with the different combination of updating filters and hesitation 

parameters. The transition from the swan regime to the PP regime follows the two 

steps.  

First, the swan regime ends and the mode share for non-shared service begins to 

increase. It is because the shared service users start to change the service to the 

non-shared service as the difference between the mean utility among shared 

service users and the collective average utility of non-shared service (i.e.  

ห 𝑢തଶ,ௗ − 𝑃𝑈ଵ,ௗห) becomes small enough. As Figure 89 presents, the difference 

between 𝑢തଵ,ௗ and 𝑃𝑈ଶ,ௗ is smaller than the difference between 𝑢തଶ,ௗ and 𝑃𝑈ଵ,ௗ at the 

beginning of the swan regime. However, as the mean utility for non-shared service 

is constantly higher than the shared service as presented in Figure 90, the 

collective average utility for non-shared service increase at a higher rate than the 

collective average utility for shared service. Consequently, 𝑃𝑈ଵ,ௗ beomces too close 

to 𝑢തଶ,ௗ at some point before 𝑃𝑈ଶ,ௗ becomes too close to 𝑢തଵ,ௗ  which results in some 

users for shared service to change their service to non-shred service. Hence, the 

swan regime always ends with an increase in the mode share for non-shared 

service. 

Responding to changes in mode share, the proportion of the fleet starts to fluctuate. 

While the transition from the PP to the swan regime was triggered by the changes 

in the relationship between the mean utility and the collective average utility, the 

transition from the swan to the PP regime was led by the changes in the 

relationship between the mean profit and the collective average profits. As 

presented in the middle right figures in Figure 87 and Figure 88, the mean profit of 

non-shared service exceeded the collective average profit of shared service (i.e. 

�̅�ଵ,ௗ > 𝑃𝑃ଶ,ௗ) on day 260 and when �̅�ଶ,ௗ < 𝑃𝑃ଵ,ௗ. On the next day, the relationship 

becomes the other way around, namely, �̅�ଵ,ௗ < 𝑃𝑃ଶ,ௗ and �̅�ଶ,ௗ < 𝑃𝑃ଵ,ௗ. While this 

flip-floping continues, it became 𝑢തଵ,ௗ < 𝑃𝑈ଶ,ௗ and 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ on 261. Then, the 

process entered to the PP regime.  



- 143 - 

 

Figure 89 the changes in the difference between the mean utility for non-
shared (shared) service and the collective average utility for the 
alternative service.  

 

Figure 90 the difference between the mean utility for non-shared service and 
shared service during the swan regime  

 

 The transition between the swan regime and the pseudo 
stable regime 

The PS regime was observed 4 times in an example realisation. For all cases, the 

transition occurs from the swan regime to the PS regime. Figure 91 and Figure 

91Figure 92 present the changes in the same set of variables with Figure 87 and 

Figure 88 but from day 16,950 to day 17,000, which includes one of four transitions 

from the swan regime to the PS regime. In this realisation, the swan regime was 

observed 2,173 times, among which the swan regime shifted to the PS regime only 

4 times and to the PP regime for the rest of the cases. Those 4 times are the only 

times the PS regime appeared in this realisation, and the case shown in Figure 91 

and Figure 92 is the first PS regime that appeared in this realisation.  
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It should be noted that though the PS regime first occurred on day 16,970 in this 

realisation, it could and would appear on much earlier days (e.g. day 200) for some 

of the other realisations. As mentioned in the previous paragraph, the process does 

not enter the PS regime as often as the PP regime and swan regime with the 

current parameter settings. In particular, the transition from the swan to the PP 

regime occurred 543.25 times as much as the transition from the swan to PS 

regime in this realisation. As the PS regime occurs very rarely, the first appearance 

of the regime happened to be very late in this realisation. The likelihood of the PS 

regime’s occurrence would not vary among multiple realisations with the same 

parameter settings.  However, it would change as the parameter settings changes, 

which were investigated and are summarised in section 5.7.   

When the transition from the swan regime to the PP regime occurs, the relationship 

between the mean profit of non-shared (shared) service and the alternative service 

changed to �̅�ଵ,ௗ > 𝑃𝑃ଶ,ௗ and �̅�ଶ,ௗ < 𝑃𝑃ଵ,ௗ from �̅�ଵ,ௗ < 𝑃𝑃ଶ,ௗ and �̅�ଶ,ௗ < 𝑃𝑃ଵ,ௗ. The 

same phenomenon happened in the process of transition from the swan regime to 

the PS regime on day 16,970, as presented in the middle left figures in Figure 91 

and Figure 92. However, in the following days, those relationships remained the 

same instead of shifted to the other way around. As a result, the proportion of fleet 

for non-shared service continued to increase as the mode share for non-shared 

service increases. Consequently, the process shifted to the PS regime.  

On the other hand, the transition from the PS regime to the swan regime was not 

observed in this realisation and any other realisation. As described in subsection 

5.4.3, the condition for the process to be in the swan regime is  𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ  and 

𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ. During the PS regime, the mean utility for non-shared service is 

constantly higher than the collective average utility for shared service (i.e.  𝑢തଵ,ௗ >

𝑃𝑈ଶ,ௗ) as described in subsection 5.4.2. On the other hand, the mean utility for 

shared service is lower than the collective average utility for non-shared service 

most of the time (i.e. 𝑢തଶ,ௗ < 𝑃𝑈ଵ,ௗ). 

In order for the PS reimage to enter the swan regime, the mean utility for shared 

service needs to be higher than the collective average utility for non-shared service. 

However, the improvement of the mean utility for shared service would not happen 

without the deterioration of the mean utility for non-shared service. As both mean 

utility needs to be higher than the collective average of the alternative service (i.e. 

𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ  and 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ). Thus, it is highly likely that the transition from the PS 

reimage to the swan regime would never occur with the current parameter settings.  
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Figure 91 an example of the transition from the swan regime and the PS 
regime from day 16,950 to day 17,000 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 =

𝟎. 𝟎𝟖. The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for NON-SHARED service during the period. 
The middle figures compare the mean utility among NON-SHARED 
service users and the collective average utility of SHARED service (left) 
and the mean profit among NON-SHARED service drivers and the 
collective average profit of SHARED service (right) who changed service 
on each day. The bottom figures show the proportion of users (left) and 
drivers (right) who changed a service on each day. 
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Figure 92 an example of the transition from the swan regime and the PS 
regime from day 16,950 to day 17,000 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 =

𝟎. 𝟎𝟖  . The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for SHARED service during the period. The 
middle figures compare the mean utility among SHARED service users 
and the collective average utility of NON-SHARED service (left) and the 
mean profit among SHARED service drivers and the collective average 
profit of NON-SHARED service (right) who changed service on each day. 
The bottom figures show the proportion of users (left) and drivers (right) 
who changed service on each day 

 

 The transition between the pseudo stable regime and the 
pseudo periodic regime  

In subsection 5.5.1 and 5.5.2, the one realisation with 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 =

0.08 are used to describe the transition between two regimes. However, the 

transition from PP to PS has not occurred during 100,000 days. Hence, this 

subsection uses a realisation with different parameter settings, which are 𝜂௨ = 𝜂 =

0.2 and 𝛽௨ = 𝛽 = 0.3.  The evolution of mode share and the proportion of fleet for 
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the realisation is presented in Figure 93 as well as the stationary distribution of 

mode share and the proportion of fleet for non-shared service. According to Figure 

93, it is observed that this process consists of two regimes, the PS regime and the 

PP regime. 

 

Figure 93 the evolution of mode share (top left), the proportion of fleet 
(bottom left), the stationary distribution of mode share (top right) and 
the proportion of fleet for non-shared service (bottom right) of one 
realisation with 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟐 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟑 for 1000 days 

 

Figure 94 and Figure 95 summarise the same set of values with Figure 91 and 

Figure 92 from day 470 to 530 of the realisation presented in Figure 93, where the 

process moves from the PP regime to the PS regime to the PP regime. The 

transition from the PP regime to the PS regimes start with the relationship between 

the mean utility of non-shared and shared service and the collective average of the 

alternative service being 𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ and 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ on the same day. In Figure 

94 and Figure 95, it happened on day 481. The cause of this was the two sharp 

declines in the mean utility for non-shared service on day 478 and 480. It decreases 

the collective average utility for non-shared service on day 479 and 480. 

Consequently, the mean utility for shared service did not become lower than the 

collective average utility for shared service on day 481. If it were still in the PP 

regime, it would have been 𝑢തଶ,ௗ < 𝑃𝑈ଵ,ௗ.  

After the abovementioned condition, 𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ and 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ, was achieved, 

the mode share for non-shared service started increasing continuously. The logic 
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behind this phenomenon is equivalent to how the swan regime ends with the 

increases in the mode share for non-shared service, which is discussed in 

subsection 5.5.1. As ห𝑢തଵ,ௗ − 𝑃𝑈ଶ,ௗห is constantly greater than ห𝑢തଶ,ௗ − 𝑃𝑈ଵ,ௗห, the 

more users unsatisfied with using shared services and, therefore, change to the 

non-shared service. At some point, the mean utility for shared service became 

lower than the collective average utility of non-shared service, 𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ while 

keeping the relationship in the non-shared service side as 𝑢തଵ,ௗ > 𝑃𝑈ଶ,ௗ. That 

satisfied the condition to be in the PS regime on day 491.  

From the middle right figures in Figure 94 and Figure 95, it is observed that the 

driver side was reacting to the user side’s change rather than leading the transition 

since there was no change in trend observed on day 481. However, their reaction to 

the user side accelerated the transition by creating a virtuous cycle for non-shared 

services and a vicious cycle for shared services. The increase in the mode share 

attracted more drivers in non-shared service, which created additional capacity to 

serve more users without deteriorating the service level. The opposite phenomenon 

was observed for shared services.  

According to top figures in Figure 94 and Figure 95, the process shifted to the PP 

regime on day 520. On the day before (i.e. day 519), the demand exceeded the 

capacity for shared services which caused a sharp decline and a sharp increase in 

the mean utility and profit for shared service. The reaction of the following day was 

the users’ shift to the non-shared service and drivers’ shift to the shared service. As 

a result, the mean utility of non-shared service became lower than the collective 

average utility of the shared service, 𝑢തଵ,ௗ < 𝑃𝑈ଶ,ௗ , while the mean utility of shared 

service exceeded the collective average utility of non-shared service,  𝑢തଶ,ௗ > 𝑃𝑈ଵ,ௗ. 

Consequently, the process shifted to the PP regime.  

As there was no particular change in trend during the PP regime and the PS 

regime, it can be concluded that the transition between the PP regime and the PS 

regimes is led by the series of random events described above.  
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Figure 94 an example of the transition between the PP regime and the PS 
regime from day 450 to day 500 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟐 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟑. 
The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for NON-SHARED service during the period. 
The middle figures compare the mean utility among NON-SHARED 
service users and the collective average utility of SHARED service (left) 
and the mean profit among NON-SHARED service drivers and the 
collective average profit of SHARED service (right) who changed service 
on each day. The bottom figures show the proportion of users (left) and 
drivers (right) who changed service on each day. 
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Figure 95 an example of the transition between the PP regime and the PS 
regime from day 450 to day 500 when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟐 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟑  . 
The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for SHARED service during the period. The 
middle figures compare the mean utility among SHARED service users 
and the collective average utility of NON-SHARED service (left) and the 
mean profit among SHARED service drivers and the collective average 
profit of NON-SHARED service (right) who changed service on each day. 
The bottom figures show the proportion of users (left) and drivers (right) 
who changed service on each day 

 Impact of initial conditions  

This subsection summarises the results of the sensitivity analysis against initial 

conditions. There are four initial conditions: the initial mode share for the non-

shared service and shared service and the initial proportion of fleet for the non-

shared service and shared service. In subsection 5.6.1, the scenario settings for the 

sensitivity analysis is summarised. In subsection 5.6.2, the results of the analysis 

are presented. 

 Scenario settings  
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There are two scenarios examined with the different parameter settings for the 

updating filters (i.e. 𝜂௨, 𝜂) and the hesitation parameters (i.e. 𝛽௨, 𝛽). Table 20 

specifies the values for those parameters for each scenario. For each scenario, 110 

cases with the different combinations of initial mode share and the proportion of 

fleet for non-shared service are generated where the initial mode share from 0 to 1 

increased in increments of 0.1 and the initial proportion of fleet from 0.1 to 1 

increased in increments of 0.1. 10,000 consecutive days are generated for each 

realisation of the process. The other parameters follow the default value specified in 

subsection 5.2.  

Table 20 the values of 𝜼𝒖, 𝜼𝒑, 𝜷𝒖 and 𝜷𝒑 for each scenario 

 𝜂௨ = 𝜂 𝛽௨ = 𝛽 

Scenario 1 0.1 0.08 

Scenario 2  0.3 0.5 

 

 Results  

The results from scenario 1 suggested that there is no distinctive change observed 

in the distribution of mode share and the proportion of fleet in relation to the 

changes in the initial condition. Figure 96 and Figure 97 display the 11 cases with 

different initial mode share for non-shared service from 0 to 1 when the initial 

proportion of fleet for non-shared service is 1 for scenario 1. In Figure 96, three 

peaks consistently observed in the distribution of mode share; around the mode 

share with 0.15 to 0.13, 0.39 to 0.42, and around 0.75 to 0.78.  

As it can be observed in Figure 73, when the updating filters and hesitation 

parameters are set as 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08, a realisatioan of the 

process could contain three regimes. Nevertheless, it mainly consists of the swan 

regime and the PP regime, and the PS regime barely occurs. Therefore, stationary 

distributions for mode share for non-shared service summarised in Figure 95 are 

mainly a mixture of two distributions during the swan regime (see Figure 82) and 

during the PP regime (see Figure 86). The same observation can be applied for the 

stationary distributions of proportion of fleet for non-shared service presented in 

Figure 96. 
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Figure 96 distribution of mode share for non-shared service for 11 cases with 
different initial mode share for non-shared service from 0 to 1 when the 
initial proportion of fleet for non-shared service is 1 for scenario 1 
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Figure 97 distributions of the proportion of fleet for non-shared service for 11 
cases with different initial mode share for non-shared service from 0 to 1 
when the initial proportion of fleet for non-shared service is 1 for 
scenario 1.  

 

For all 110 cases, the mean value for the stationary distribution of mode share and 

proportion of fleet was estimated, and the results are summarised in Figure 98. As 

shown in Figure 98, the mean mode share varied about 0.2 during 110 cases 

though the mean proportion of fleet varied only around 0.08. There was no 

correlation observed between the mean value for the stationary distribution of mode 

share and the proportion of fleet with the initial mode share or proportion of fleet.  
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Instead, a clear positive (negative) correlation was observed between the 

proportion of days in the PS regime (the swan regime) and the mean mode share 

(see Figure 99). It should be reminded that, as the proportion of days in the PS 

regime increases, the proportion of days in the swan regime decreases and vice 

versa. The distribution of the regime length and mode share during the swan 

regime do not change as the initial condition changes. The same thing could be 

applied to the PP regime. Hence, it is highly likely that the mean mode share of one 

realisation of the process varies only based on the total length of each regime and 

not based on the initial condition.  

In order to check the above hypothesis, 110 realisations were generated with 𝜂௨ =

𝜂 = 0.3 and 𝛽௨ = 𝛽 = 0.05 with a different set of initial conditions for scenario 2. 

With these parameter settings, there is only the PS regime appears as presented in 

Figure 71. It indicates that the stationary distribution of mode share and the 

proportion of fleet would not be affected by the proportion of total days for each 

regime. Figure 100 shows the histogram of the mean mode share (left) and the 

mean proportion of fleet (right) for non-shared service estimated for 110 cases with 

different initial condition.  

Compared to Figure 98, the mean mode share for non-shared service is observed 

to be less variable for scenario 2 than scenario 1. Table 21 summarises the mean 

and standard deviation of 110 sets of mean mode share and proportion of fleet with 

a different initial condition for scenario 1 and scenario 2. According to Table 21, the 

standard deviation of the mean mode share and the proportion of fleet for scenario 

2 is approximately ten times lower than scenario 1. These results further support 

the hypothesis that initial conditions do not affect the stationary distribution of mode 

share and proportion of fleet.  

As discussed in subsection 4.3.3.1 in Chapter 4, if a stochastic process has 

ergodicity, a stationarity distribution is not influenced by initial conditions. In the 

case of fixed fleet size, the sensitivity analysis against the initial condition showed 

strong evidence for independence of a stationarity distribution from the initial 

condition. The experiment above suggested that the variance in the stationary 

distribution of the mode share and the proportion of fleet attributes to the proportion 

of days for a process to be in each regime. Besides, any correlation between the 

initial conditions and the changes in a stationary distribution was not observed. 

Hence, in this study, it is concluded that a stochastic process with the variable fleet 

size also has ergodicity with given parameter settings.  
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Figure 98 the histogram for the mean mode share for non-shared service from 
day 51 to 10,000for 110 cases with different initial conditions  (the left 
figure) and the mean proportion of fleet for non-shared service from day 
51 to 10,000 for 110 cases with different initial conditions (the right 
figure) when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟏 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟎𝟖.  

 

 

Figure 99  the mean mode share for non-shared service and the proportion of 
total days in the PS regime (left) and in the swan regime (right). In the 
left figure, only the realisation, including the PS regime, is presented 
(i.e.e 32 cases). In the right figure, all 110 cases are presented.  
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Figure 100 the histogram of the mean mode share for non-shared service 
from day 51 to day 10,000 for 110 cases with different initial conditions 
(the left figure) and the mean proportion of fleet for non-shared service 
from day 51 to day 10,000 for 110 cases with different initial conditions 
(the right figure) when 𝜼𝒖 = 𝜼𝒑 = 𝟎. 𝟑 and 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟓. 

 

Table 21 Comparison of the mean and standard deviation of the mean mode 
share and the proportion of fleet for non-shared service among 110 
cases with the different initial conditions for scenario 1 and 2.  

 Mean Mode share 

for non-shared service 

Mean Proportion of fleet 

for non-shared service 

Mean Std Mean Std 

Scenario 1 0.4281 0.0040 0.4997 0.0014 

Scenario 2 0.9475 0.0006 0.8874 0.0007 

 Sensitivity analysis 

This section summarises the results of the sensitivity analysis against updating 

filters (i.e. 𝜂௨, 𝜂) and hesitation parameters (i.e. 𝛽௨, 𝛽). 100 realisations of the 

process with different combinations of those parameters were generated for 1000 

days. Updating filters for the collective average utility, 𝜂௨, and the collective average 

profit, 𝜂, are set to be equivalent. 10 values for  𝜂௨ = 𝜂 from 0.1 to 1 increased in 

increments of 0.1 are investigated. It should be reminded that updating filter 

controls how much the mean utility (profit) among users (drivers) of the current day 

contributes to updating the collective average utility (profit). Hence, 𝜂௨ = 𝜂 = 0 
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indicates that the collective average utility and profit are not updated and are not 

included.  

Hesitation parameters for users and drivers are set to be equal. It indicates that the 

same proportion of users and drivers do not change their service the next day even 

if they did not satisfy with their experience on the current day. 10 values for 𝛽௨ = 𝛽 

from 0 to 0.9 increased in increments of 0.1 are assessed. 𝛽௨ = 𝛽 = 1 indicates 

that no one will change their service regardless of their experience; hence, it is not 

included. Other parameters are set as default value specified in subsection 5.2. 

For the analysis of the swan regime, the additional simulations were conducted with 

the smaller interval between values. In specific, 1260 combinations of  𝜂௨ = 𝜂 and 

𝛽௨ = 𝛽 are tested from 0.1 to 0.6 increased in increments of 0.01 and from 0 to 0.2 

increases in increments of 0.01, respectively. Table 22 summarises the parameter 

settings for 𝜂௨ = 𝜂 and 𝛽௨ = 𝛽. Unlike the PP regime and the PS regime, the 

swan regime occurs only in the limited values for  𝜂௨ = 𝜂 and 𝛽௨ = 𝛽. Thus, the 

further analysis within the limited range was conducted. The below sections 

summarise the results of the analysis.  

Table 22 the parameter settings for  𝜼𝒖 = 𝜼𝒑 and 𝜷𝒖 = 𝜷𝒑. 

 𝜂௨ = 𝜂 𝛽௨ = 𝛽 

For all three regimes  0.1 to 1 (up by 0.1) 0 to 0.9 (up by 0.1) 

Additional for the swan regime  0.1 to 0.6 (up by 0.01) 0 to 0.2 (up by 0.01) 

 

 Results  

Figure 101 compares the proportion of total days for a process to be in the PS 

regime (top left), the swan regime (top right) and the PP regime (bottom left). The x-

axis shows the hesitation parameter (i.e. 𝛽௨ = 𝛽) while the y-axix shows the 

updating filter (i.e. 𝜂௨ = 𝜂).  As Figure 101 is intended to compare the area for 

each regime to appeared among three regimes, the value for each level is not 

displayed. Figure 102, Figure 103, and Figure 104 show the contour plot for each 

regime separately with the value for each level. Through the sensitivity analysis, 5 

cases with different combinations of three regimes are observed to occur, which are 

summarised in Table 23  

According to Figure 101, Figure 102, and Figure 104, it is observed that the 

proportion of total days in the PS regime and the PP regime has a negative 

correlation. With a given updating filter, the proportion of total days in the PS regime 

increases as the hesitation parameter increases. On the other hand, the proportion 
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of total days in the PP regime decreases as the hesitation parameter increases. 

The higher hesitation parameter means that more users and drivers do not change 

the service on the next day even if they are not satisfied with their experience on 

the current day. Hence, a process becomes more stable with the higher hesitation 

parameter. Therefore, it is reasonable that the proportion of total days in the PS 

regime (the PP regime) increases (decreases) as the hesitation parameter 

increases.  

Changes in 𝜂௨ and 𝜂 influence the proportion of total days in the PP regime when 

the hesitation parameter is 0.1 < 𝛽௨ = 𝛽 < 0.5.  In the case of the PS regime, 

𝜂௨ and 𝜂 effects the proportion of total days when the hesitation parameter is 0.2 <

𝛽௨ = 𝛽 < 0.7. It indicates that the changes in the proportion of total days in the PP 

regime correlate with the proportion of total days in the PS regime when the 

hesitation parameter is between 0.2 < 𝛽௨ = 𝛽 < 0.7. With a given hesitation 

parameter, for instance, when 𝛽௨ = 𝛽 = 0.3, the proportion of days in the PS 

regime (the PP regime) decreases (increases) as the updating filter increases. It is 

because as the updating filter becomes closer to 1, the weight of the mean utility 

and profit of the current day becomes bigger when the collective average of utility 

and profit is updated. Hence, the process becomes less stable with the higher 

updating filter.  

As observed in Figure 101 and Figure 103, the swan regime started to appearing 

when 0 < 𝛽௨ = 𝛽 < 0.2  and  0.1 < 𝜂௨ = 𝜂 < 0.6. Therefore, the changes in the 

proportion of total days in the PP regime is mainly affected by the proportion of total 

days in the swan regime when 0.2 > 𝛽௨ = 𝛽. Unlike the PP regime and the PS 

regime, the swan regime cannot occur alone.  In addition, any case with the 

proportion of the total days in the swan regime exceeded 0.5 was not observed, 

unlike the PP regime and the PS regime. It would be because the swan regime 

cannot last as much as the PP regime and the PS regime, as explained in 

subsection 5.4.3 and subsection 5.5.  

Figure 105, Figure 106, and Figure 107 summarise the mean length of each regime 

against a different combination of the updating filter and the hesitation parameter. 

According to Figure 102 and  Figure 105, the PS regime's mean length increases 

as the hesitation parameter becomes closer to 1 after the proportion of days for the 

PS regime exceeds 0.9. The PP regime’s mean length increases as the hesitation 

parameter become closer to 0 after the proportion of days for the PP regime 

exceeds 0.9, according to Figure 103 and Figure 106. On the other hand, the mean 

length of the swan regime does not change dramatically like the PS and PP regime, 

even if the proportion of days in the swan regime increases (see Figure 104 and 
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Figure 107). That is another proof that the swan regime is fundamentally unstable 

compared to the PP and the PS regime regardless of the parameter setting.  

Table 23 the summary of 5 cases with the different combinations of three 
regimes.  

 The PS regime  The Swan regime  The PP regime  

Case 1 ✓ ✓ ✓ 

Case 2 ✓ ✓  

Case 3  ✓  ✓ 

Case 4 ✓   

Case 5   ✓ 

 

 

Figure 101 the contour plot for the proportion of total days in the PS regime 
(top left), in the swan regime (top right) and the PP regime (bottom left) 
with different updating filters and hesitation parameters.  
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Figure 102 the contour plot for the proportion of total days in the PS regime 
with different combination of updating filters and hesitation parameters.  

 

Figure 103  the contour plot for the proportion of total days in the swan 
regime with different combination of updating filters and hesitation 
parameters 
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Figure 104 the contour plot for the proportion of total days in the PP regime 
with different combination of updating filters and hesitation parameters 

 

Figure 105 the contour plot for the mean length of the PS regime with 
different combination of updating filters and hesitation parameters 
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Figure 106 the contour plot for the mean length of the swan regime with 
different combination of updating filters and hesitation parameters  

 

Figure 107 the contour plot for the mean length of the PP regime with 
different combination of updating filters and hesitation parameters  
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 From the demand-driven to the supply-driven system  

This section summarises the results of two experiments conducted to investigate 

how to transfer the system from demand-driven to supply-driven. The results of 

experiments presented in sections 5.3 to 5.6 imply that with the current parameter 

settings this system is demand-driven, especially during the PS regime. As the on-

demand ride services are demand-responsive, it is natural to observe that the 

system is led by the changes in demand. 

As summarised in section 5.5, the transition between the three regimes occurred 

responding to the changes in the demand side rather than the supply side. The 

transition from the swan regime to the PS regime and the PP regime was triggered 

by the changes in the supply side (i.e. the relationship between the collective 

average profit of one service and the mean experienced profit of the alternative 

service). However, those triggering events occur due to constant changes in the 

demand side (i.e. the monotonic decrease in the difference between the collective 

average utility of one service and the mean utility of the other service). Hence, even 

those transitions are a result of changes in the demand side.  

From the policy makers perspective, it is easier to control the system evolution if the 

system is supply-driven. For instance, they could limit the number of licenses to 

issue for each service to restrict the fleet size. Therefore, it is worth investigating 

which parameter could change the process to be supply-driven from demand-

driven. There are two hypothesises specified below;  

1) Changing the total fleet size would shift the system into the supply-driven 

system 

2) Changing the minimum number of drivers for each service would shift the 

system into the supply-driven system  

The scenario settings for two experiments to investigate those two hypothesises are 

summarised in the following subsection 5.8.1. The results are summarised and 

presented in subsections 5.8.2 and 5.8.3.  

 

 Scenario settings  

There are two experiments conducted to investigate the above two hypothesises. 

For the first experiment, 9 different cases with different total fleet sizes are tested, 

as specified in Table 24 and Table 25. The set of fleet sizes summarised in Table 

24 is selected to examine the behaviour of the process when the total fleet size is 

decreased compared to the cases specified in section 5.3. On the other hand, the 

set of fleet sizes displayed in Table 25 is selected to see the effect of increasing the 
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total fleet size from the cases specified in section 5.3. For each scenario, 500 

consecutive days are generated. The other parameters are set as default.  

Table 24 the set of the fleet used to see the impact of decreasing the total 
fleet size from the case specified in section 5.3. 

Total fleet size  50 60 70 80 90 100 

Table 25 the set of the fleet used to see the impact of increasing the total fleet 
size from the case specified in section 5.3. 

Total fleet size  400 800 1200 

For the second experiment, 4 scenarios are examined with the different minimum 

number of fleets for non-shared service and shared service as summarised in Table 

26 while keeping the other parameters as default which is specified in Table 15. 

The flexible fleet specified in the last row of the table implies the number of fleets 

with a driver who can choose the service to provide day to day by comparing their 

own experience and the collective average experience. For each scenario, 500 

consecutive days are generated. The other parameters are set as default.  

Table 26 specification of the minimum number of fleets for each service in 
each scenario 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

The min fleet size for 

NON-SHARED service 

10 70 5 15 

The min fleet size for 

SHARED service  

70 10 15 5 

Flexible fleet 20 20 80 80 

 

 Results (1): the impact of total fleet size  

Figure 108 to Figure 111 show the evolution of mode share and the proportion of 

fleet for each service and the distribution of mode share and the proportion of fleet 

for non-shared service from day 51 to day 500 when the total fleet size is 50, 70, 

400 and 1200. Instead of presenting all the cases summarised in Table 24Table 24 

and Table 25, a few interesting cases are selected and presented. According to 

Figure 108 and Figure 109, decreasing the total fleet size makes the process more 

unstable and increases the PP regime's occurrence frequency. As the sensitivity 

analysis results summarised in section 5.7.1 show, the proportion of days where the 

process is in the PP regime is less than 0.1 when the total fleet size is 100. 

However, as the total fleet size decreases, the proportion of the days where a 
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process is in the PP regime increases according to Figure 108 and Figure 109. It is 

because the total fleet size is not enough to provide a satisfactory service level 

above the certain proportion of mode share. It is true, with a given expected total 

number of trip requests, even if all the fleet provides one service. Therefore, when 

the mode share for non-shared service reaches a certain value, the utility for non-

shared service drops dramatically, which results in the mode shift to the shared 

service. As the same phenomenon occurs for the shared service, the process 

becomes unstable. Thus, it can be concluded that the reduction in the total fleet 

size makes the system unstable but does not make it a supply-driven system.  

As the fleet size increases, variabilities in both the evolution of mode share and the 

proportion of fleet decrease, according to Figure 110 and Figure 111. At the same 

time, the difference between the proportion of fleet for shared and non-shared 

service decreases as the total fleet size increases. It is because the total fleet size 

is much larger compared to the expected total number of trip requests. Therefore, 

the satisfactory service level for non-shared service can be provided with the lower 

proportion of fleet for non-shared service. Besides, compared to the case with the 

total fleet size being 100 presented in Figure 71, the variability in the proportion of 

fleet decreases when the total fleet size is 400 and 1200, which supports the 

conclusion of the previous paragraph.  

 

Figure 108 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) 
when the total fleet size is 50.  
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Figure 109 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) 
when the total fleet size is 70. 

 

Figure 110 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) 
when the total fleet size is 400. 
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Figure 111 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) 
when the total fleet size is 1200. 

 

 Results (2): the impact of the minimum fleet size for each 
service 

This subsection demonstrates how securing a certain number of drivers for each 

service impacts the system evolution. As specified by equation 3.17, it is assumed 

that there is always at least one driver providing each service. If the minimum 

number of drivers is increased, the minimum service capacity also increases. 

Hence, regardless of the number of trip requests for each service, a certain service 

level is secured. Figure 112 to Figure 115 presents the evolution of mode share and 

proportion of fleet for scenarios 1 to 4. The distributions of mode share and the 

proportion of fleet for non-shared service are also presented for each scenario. In 

section 5.4.2, it is mentioned that the distribution of mode share and proportion of 

fleet changes as the parameter setting changes. The four figures from  Figure 112 

to Figure 115 exemplify such changes regarding parameter settings. In particular, 

Figure 112 is a distinctive example showing that the dominant service during the PS 

regime would change depending on the parameter settings.  

In scenario 1 presented in Figure 112, there is only 20 fleet choosing their service 

option every day. In addition, the minimum fleet size for non-shared service is set 

as 10. As a result, the fleet size for non-shared service becomes 30 in maximum 

even if it is more profitable to provide non-shared service as presented in the 

middle-left figure in Figure 117Figure 116. 30 vehicles is not enough to provide 
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satisfactory service when the mode share for non-shared service is over 

approximately 0.45. Therefore, the mode share for shared service is dominant most 

in this case as presented in Figure 112. At the same time, the mode share for 

shared service is not continuously increasing as the proportion of fleet for shared 

service does not monotonically increase. It is because the profit of providing the 

shared service is lower than the collective average profit of non-shared service (see 

the middle-left figure in Figure 117). Unlike the case presented in Figure 71 in 

subsection 5.3, where the minimum fleet size for both services is 1, the behaviour 

of the process is restricted by the supply side’s conditions and behaviour in this 

case. Therefore, it can be concluded that changing the minimum fleet size would 

make the process from a demand-driven to a supply-driven system.  

 

Figure 112 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) for 
case 1. 

For both cases presented in Figure 113 and Figure 114, it can be said that the 

variability in the proportion of fleet is smaller than the one observed in Figure 115 

and Figure 116. It is because scenarios 1 and 2 have only 20 fleets who can 

choose their service option every day, while 80 fleets can choose their service 

option for the case of Figure 115 and Figure 116. Compared to Figure 115 and 

Figure 116, the proportion of fleet for shared service is constantly higher in the case 

presented in Figure 115 as the minimum fleet size for shared service is higher (i.e. 

15) for that scenario.   
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Besides, compared to the case where the minimum fleet size for both services is 1 

presented in Figure 71, the variability in the proportion for fleet size is smaller for 

scenarios 3 and 4 (see Figure 114 and Figure 115).  As it is observed from Figure 

71, the mode share and the proportion of fleet for non-shared service are much 

higher than the shared service except for the day with a sharp drop.  Hence, in 

general, the fleet size for SHARED service is generally very low, around 10 or less. 

When the fleet size for SHARED service is especially small such as 2 or 3, the 

profit for the driver could become really high even if the number of users is much 

lower than the non-shared service. As a result, the collective average profit for 

shared service sometimes becomes higher than the actual profit experienced by all 

non-shared service drivers. Consequently, the large shift in the proportion of fleet 

size occurs on the next day. However, for scenarios 3 and 4, the minimum fleet size 

for shared service is set as 15 and 5. That prevents the extreme case where the 

fleet size is 1,2, or 3, which cause the big shift in the proportion of the fleet. That is 

the reason why scenarios 3 and 4 presented in Figure 114 and Figure 115 have 

less variability in the proportion of fleet while keeping other aspects very similar to 

Figure 71 (e.g. the mean proportion of fleet and mode share).  

 

 

Figure 113 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) for 
case 2. 
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Figure 114 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) for 
case 3. 

 

Figure 115 the evolution of mode share (top left) and the proportion of fleet 
(bottom right), the distribution of mode share for non-shared service 
from day 51 to day 500 (top right) and the distribution of the proportion 
of fleet for non-shared service from day 51 to day 500 (bottom right) for 
case 4. 
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Figure 116 Summary of 6 values related to non-shared service for scenario 1. 
The top figures show the evolution of mode share (left) and the 
proportion of fleet (right) for NON-SHARED service during the period. 
The middle figures compare the mean utility among NON-SHARED 
service users and the collective average utility of SHARED service (left) 
and the mean profit among NON-SHARED service drivers and the 
collective average profit of SHARED service (right) who changed service 
on each day. The bottom figures show the proportion of users (left) and 
drivers (right) who changed service on each day. 
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Figure 117 Summary of 6 values related shared service for scenario 1. The 
top figures show the evolution of mode share (left) and the proportion of 
fleet (right) for SHARED service during the period. The middle figures 
compare the mean utility among SHARED service users and the 
collective average utility of NON-SHARED service (left) and the mean 
profit among SHARED service drivers and the collective average profit 
of NON-SHARED service (right) who changed service on each day. The 
bottom figures show the proportion of users (left) and drivers (right) 
who changed service on each day 

 Impact of updating filters  

This section demonstrates how changing the updating filters, 𝜂௨ and 𝜂, impacts on 

the behaviour of the process. The updating filters are parameters in the updating 

functions specified by equations 3.11 and 3.21 and express the weight of each 

value, the collective average utility/profit of the day before and the mean 

experienced utility/profit of the day, in the updating function. The new updating 

filters and scenario settings are described in subsection 5.9.1. The results of 

numerical experiments to demonstrate the impact of different updating filters is 

summarised in subsection 5.9.2.  
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 Scenario settings 

As specified in equations 3.11 and 3.21, the updating filters are set as a given 

number between 0 < 𝜂௨ ≤ 1 and 0 < 𝜂 ≤ 1 by default. Instead, for this experiment, 

the updating filter is set as specified by equations 5.1 and 5.2, where 𝑑 implies the 

day from the beginning of the simulation. Hence, as the day passes, updating filters 

becomes smaller. As a result, the weight of the mean experienced utility (profit) of 

the day becomes smaller, and, therefore, the weight of the collective average utility 

(profit) of the day before becomes bigger when the collective average utility (profit) 

is estimated (see equations 3.11 and 3.21).  

𝜂௨ =
1

𝑑
    (5.1) 

𝜂 =
1

𝑑
    (5.2) 

While setting other parameters as default, 10 scenarios are testes with different 𝛽௨ 

and 𝛽 from 0.1 to 1 increased by the increment of 0.1. For each experiment 500 

consecutive days are generated, and the results are summarised in the following 

subsection. Only for the case of  𝛽௨ = 𝛽 = 0.1, the simulation is continued to day 

10,000 to understand the pattern more deeply. For simplicity, the updating filters 

specified by equations 5.1 and 5.2 are mentioned as the variable updating filter, 

while those specified by equations 3.11 and 3.21 are cited as the constant updating 

filter. 

 

 Results  

Figure 118 and Figure 120 display the evolution of mode share and proportion of 

fleet for the case with the variable updating filter (see equations 5.1 and 5.2) when  

𝛽௨ and 𝛽 are 0.1 and 0.3. As those cases illustrated the particularly interesting 

results, only those cases are presented instead of showing all generated cases. 

Figure 119 and Figure 121 shows the same values, but for the cases with the 

constant updating filters (see equations 3.11 and 3.21) when  𝛽௨ and 𝛽 are 0.1 and 

0.3 and 𝜂௨ = 𝜂 = 0.3 following the defulat parameter settings. 

When the hesitation parameter is set as 𝛽௨ = 𝛽 = 0.1, the distinctive differences 

observed between the cases with the constant updating filter and the variable 

updating filter are the length of the swan regime. According to Figure 106, the 

maximum mean length of the swan regime observed by the sensitivity analysis 

conducted in section 5.7 is approximately 20 days. Figure 119 also suggests that 

the length of the swan regime is short (i.e. max 8 days). However, in the case of 

Figure 118, the length of the swan regime started around day 50 continues over 
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100 days. According to the analysis conducted in subsections 5.4.3, the collective 

average utility of the alternative service is always smaller than the mean average 

utility of one service during the swan regime. However, the collective average utility 

keeps increasing during the swan regime. Eventually, it becomes close enough to 

the mean utility, leading to the shift of the process to the other regimes as analysed 

in subsection 5.5.1. For the case with the variable updating filters, 𝜂௨ and  𝜂 

decreases as time passes, therefore, the collective average utility and profit are 

updated the smaller amount. Hence, a longer time is needed for the swan regime to 

end. It can be observed in the bottom figure of Figure 122, where the slope of the 

collective average utility for non-shared service becomes less steep during the 

swan regime as time passes and the length of the swan regime become longer. At 

some point, the collective average utility will be almost constant. As a result, the 

process is expected to continuously stay in the swan regime for a very long time.  

When 𝛽௨ = 𝛽 = 0.3, the process is stable in the PS regime in the case with 

variable updating filters, as illustrated in Figure 120. On the other hand, for the case 

with the constant updating filters, the process consists of the PP regime and the PS 

reimage when 𝛽௨ = 𝛽 = 0.3 (see Figure 121). It is because the 𝜂௨ and 𝜂 becomes 

closer to 0 as time passes for variable updating filters, which makes the system 

more stable. It is consistent with the results of sensitivity analysis summarized in 

Figure 102 and Figure 104. According to those figures, as 𝜂௨ and 𝜂 decreases, the 

occurrence probability of the PS regime increases and the occurrence probability of 

the PP regime decreases. When it is set as 𝛽௨ = 𝛽 ≥ 0.4, the process consists of 

the PS regime for most of the time with the constant updating filters. Hence, the 

distinctive difference was not brought by applying the variable updating filters 

except for the reduction of variabilities in the proportion of the fleet  

According to the analysis summarized above, it can be concluded that the process 

will eventually be locked into either the PS regime or the swan regime when the 

updating filters are changed from the constant to the variable updating filters. It is 

consistent with the tendency observed through the sensitivity analysis summarised 

in section 5.7 that the occurrence probability of the PP regime decreases as 𝜂௨ and 

𝜂 decreases when the updating filters are constant. It should be noted that there 

are some parameter settings where all three regimes are observed in one 

realisation with the constant updating filter (e.g. 𝛽௨ = 𝛽 = 0.08 and 𝜂௨ = 𝜂 = 0.1). 

In such a case, when the variable updating filter is utilised, the process could stay in 

the PS regime or the swan regime, depending on when each regime occurs. 

However, the occurrence probability of the PS regime is much lower than the swan 

regime. Hence,  it is more likely for the process to stay in the swan regime rather 

than the PS regime. Besides, while the mean mode share during the PS regime 
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would not vary within a given parameter setting, the mode share during the swan 

regime varies, as explained in subsections 5.5.1 and 5.5.2. Hence, it is expected 

that the mode share during the swan regime varies when the process is locked in.  

 

Figure 118 the evolution of mode share (top) and the proportion of fleet 
(bottom) when 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟏 for the case of variable updating filters 

 

 

Figure 119 the evolution of mode share (top) and the proportion of fleet 
(bottom) when 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟏 for the case of constant updating filters 
where 𝜼𝒖 = 𝟎. 𝟑 
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Figure 120 the evolution of mode share (top) and the proportion of fleet 
(bottom) when 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟑 for the case of variable updating filters  

 

Figure 121 the evolution of mode share (top) and the proportion of fleet 
(bottom) when 𝜷𝒖 = 𝜷𝒑 = 𝟎. 𝟑 for the case of constant updating filters 
where 𝜼𝒖 = 𝟎. 𝟑 

 

Figure 122 the evolution of mode share for SHARED service (top) and the 
comparison of the mean utility for SHARED service, 𝒖𝟐𝒅തതതതത, and the 
collective average utility for NON-SHARED service, 𝑷𝑼𝟏𝒅 for 10,000 days 
when  𝜷𝐮 = 𝜷𝒑 = 𝟎. 𝟏 for the case of variable updating filters  
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  Summary  

This section summarised the results of numerical experiments with variable fleet 

size.  

In subsection 5.3, by comparing the case with fixed fleet size and the case with 

variable fleet size, it is demonstrated that the introduction of the driver's service 

choice changes the stationary distribution of mode share.  

In subsection 5.4, the definition of the three regimes, the PS regime, the swan 

regime, and the PP regime, are provided. In addition, the attributes of each regime 

are described using an example of a case with 𝛽௨ = 𝛽 = 0.08 and 𝜂௨ = 𝜂 = 0.1. It 

is discovered that the relationship between the mean utility (profit) and the collective 

average utility (profit) determined which regime the process was in. There was no 

change in the relationship between the mean utility (profit) and the collective 

average utility (profit) during the PS regime and the PP regime. However, during the 

swan regime, it is observed that the difference between the mean utility (profit) and 

the collective average utility (profit) decreases. It indicates that the swan regime will 

definitely end at some point.  

In subsection 5.5, a detailed analysis of the transition between each regime was 

provided. It is discovered that the transition between PS and PP regime and the 

transition to the swan regime occurred due to the vicious and virtuous cycle 

triggered by radome events. On the other hand, it is observed that the transition 

from the swan regime happens due to the changes in the relationship between the 

mean utility (profit) and the collective average utility (profit). It is also discovered 

that when the three regimes occur in one realisation, the transition to the PS regime 

always occurs from the swan regime. On the contrary, it was concluded that the 

transition from the PS regime to the swan regime would not happen as the 

relationship between the mean utility(profit) and the collective average utility(profit) 

cannot transfer from the one in the PS regime to the one in the swan regime.    

In subsection 5.6, the sensitivity analysis against initial conditions is presented. The 

sensitivity analysis was conducted against two scenarios with a different 

combination of the hesitation parameter and the updating filter. It was identified that   

the variance in the mean value for the stationary distribution of mode share and the 

fleet size is not ignorable when 𝜂௨ = 𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08. However, it was 

discovered that the changes in the mean mode share were correlated with the 

proportion of days in each regime rather than the initial condition. In addition, the 

variance in the mean mode share and the proportion of fleet was smaller in 

scenario 2, where there was only one regime (i.e. PS regime) appeared in the 

process. Therefore, it was concluded that there would be no dependency between 
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the initial condition and the stationary distribution of mode share and the proportion 

of fleet. It also demonstrated that the proposed stochastic process was ergodic. 

In subsection 5.7, the results of the sensitivity analysis are presented. The 

sensitivity analysis was conducted against two parameters, the hesitation 

parameter and the updating filter. It was discovered that there could be 5 cases with 

different combination of three regimes. Besides, there was a correlation between 

the proportion of total days in the PS regime and the PP regime as well as between 

the swan regime and the PP regime. As the updating filter becomes closer to 0 and 

the hesitation parameter becomes closer to 1, the PS regime appears more often 

and lasts longer. As the updating filter becomes closer to 1 and the hesitation 

parameter becomes closer to 0, the PP regime appears more often and lasts 

longer. The swan regime only appeared with very limited conditions where 0 < 𝛽௨ =

𝛽 < 0.2  and  0.1 < 𝜂௨ = 𝜂 < 0.6 and lasted a much shorter period than the PS 

regime and the PP regime.  

In subsection 5.8, it is examined what parameter would change the process to be 

supply-driven from demand-driven. The impact of the total fleet size and the 

minimum fleet size for each service is examined with the hypothesis that both or 

one of them would impact shifting the system to be supply-driven. The results of 

numerical experiments show that changing the total fleet size impacts how stable 

the process can be. However, it would not determine if the system is demand-

driven or supply-driven. On the other hand, the minimum fleet size is proved to 

determine if the system to be demand-driven to supply-driven. Especially when the 

total minimum number of fleet size for both services is set high compared to the 

total fleet size and the minimum fleet size for the service which can perform better 

in the given service network is set as low.  

In subsection 5.9, the impact of updating filters is investigated and summarised. By 

changing the updating filters from constant value to the variable value depending on 

the days in the simulation, it is observed that the process would highly likely be 

locked in some state (e.g. the PS regime or the swan regime) with the given 

parameter settings regardless of the hesitation parameters (e.g. 𝛽௨, 𝛽). When 𝛽௨ 

and 𝛽 are high and at least larger than 0.3, the process will be locked in the PS 

regime with given parameter settings. When 𝛽௨ and 𝛽 are lower than 0.3, it is likely 

to be locked in the swan regime. However, the process would take much longer to 

be stable in the swan regime than in the PS regime. Besides, when the process is 

locked into the PS regime, the mean mode share will be the same, while when the 

process is locked into the swan regime, the mode share will vary among multiple 

realisations.  
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Chapter 6 Conclusions 

 Introduction  

   This chapter summarises the findings of this study in relation to the stated aims 

and research objectives and the original contribution of the current study. Critical 

reflections on the proposed model are also presented. Finally, this thesis concludes 

with the researcher's thoughts on this study.  

This study was motivated by understanding the long-term evolution of an on-

demand ride service system using a mathematical model. The aim of the study was 

to develop a model that investigated; (1) the impact of variability on the evolution of 

system attributes, (2) the feedback loop between users and providers, and (3) the 

interdependency among users. Six objectives are specified in Chapter 1 in order to 

achieve the research aim.  

The model was formulated as a stochastic process model to capture both the 

variability and day-to-day dynamics of the system. Users and drivers were assumed 

to learn from their experiences of using and providing each service collectively 

through the online application provided by the service platform provider. The on-

demand ride service was modelled with a queueing model. The modified Shapley 

value was proposed to achieve fair cost distribution, including users' disutility for 

staying a long time in a vehicle (Chapter 3).  

By conducting numerical experiments with the fleet size fixed, attributes of the 

proposed model were investigated. Within the parameter setting of the experiment, 

it was discovered that the service network geometry had a significant influence on 

how the mode share of each service evolved (Chapter 4). Numerical experiments 

were also conducted with variable fleet size. In that case, drivers select the service 

they provide every day while users select the service to use. It was discovered that 

the system could exist in three regimes, 1) the pseudo stable regime, 2) the swan 

regime, and 3) the pseudo periodic regime. The conditions for occurrence and the 

frequency for each regime were also investigated (Chapter 5).  

The rest of this chapter is organised as follows. In section 6.2, it is summarised how 

each objective is delivered. In section 6.3, research conclusions are presented. In 

section 6.4, critical reflections on the proposed model are discussed. In section 6.5, 

policy implications drawn from the results of numerical experiments summarised in 

chapter 4 and 5 are presented. In section 6.6, several future research directions are 

suggested. Finally, this thesis is concluded with the researcher's reflections on 

delivering this thesis.  



- 180 - 

 Addressing objectives of this research  

   In this research, a wide range of aspects regarding the model formulation for an 

on-demand ride service system and users' and drivers' behaviour were identified 

through the literature review in Chapter 2. A summary of how the proposed model 

has addressed those issues is presented below in relation to each objective.  

 

O1. to specify and develop a stochastic process model that represents the 

long-term evolution of an on-demand ride service system that provides 

non-shared and shared use.  

In order to deliver objective O1, three attributes were formulated as specified below.   

 Users' day-to-day service choice was formulated based on utility 

maximisation. In the model, users compare their experienced utility of using 

the service on the day with the collective average utility for the alternative 

service. While only the user's experience of one day is used as a reference 

to estimate the utility of the selected service, the collective average utility is 

calculated as a weighted average of the mean utility among all users on that 

day and the collective average utility estimated on the day before. This 

assumes a means to gather the relevant information, e.g. via an application 

provided by the service platform operator. Hence, learning is collectively 

done among all users. Nevertheless, decision making reflects the different 

experiences of each user. Drivers’ day-to-day service choices follow the 

exact same process as that for users. However, in place of utility, the total 

profit per day determines if they are satisfied with their service provisions on 

the day or not.  

 

 The users' utility and the drivers' profit were estimated by the supply model. 

Users' service choice on the previous day impacts drivers' profit on the 

current day and their service choice for the next day. Simultaneously, 

drivers' service choice on the previous day affects users’ utility on the 

current day and their service choice for the next day. In this way, the 

feedback loops between users and drivers were represented in the 

proposed model. 

 

 The competition between non-shared and shared service are represented 

by fixing the expected total number of users and drivers per day.  
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The detailed specification of the above three points is summarised in Section 3.3 in 

Chapter 3. 

O2.  to extend the model in O1 to include the impact of the availability of both 

sharing partner and a vehicle to the users’ experience by simplifying the 

service supply process with a queueing representation.    

With the specification of network geometry, a matching process among shared 

service users was reduced from a spatial and temporal problem to only a temporal 

problem. In particular;  

 All trips were assumed to start from the pick-up demand hotspot. In addition, 

drop-off locations were assumed to be randomly uniformly spread in the 

drop-off area. The drop-off area was assumed to be sufficiently small that 

any trip request with a destination in that area can be matched. 

  

 A driver was assumed to only make round trips from and returning to the 

pick-up hotspot. With these assumptions, the proximity between a driver's 

location and the requested pick-up location can be ignored during the 

matching process between trip requests and a driver.  

By setting these assumptions regarding a driver's behaviour and the service 

network geometry, both matching processes between shared service users and 

between shared service users and drivers were included while maintaining the 

model's simplicity as much as possible.  As a result, the availability of both sharing 

partner and a vehicle was included as one of the determinants of shared service 

users’ experience.  In addition, different shapes of the drop-off area (i.e. non-square 

shape) and other distribution patterns of drop-off points can easily be implanted in 

this approach. Such flexibility can be listed as one strong point of the proposed 

model. 

The multiple server single service queue was used to represent both non-shared 

and shared on-demand ride service in the proposed model. In order to include 

several aspects regarding a shared ride, the model was formulated as specified 

below.   

 For shared service, two queues were connected, one queue contains non-

clustered trip requests, and the other queue is for clustered requests. 

Transfer from the non-clustered requests queue to the clustered requests 

queue was determined by several criteria (e.g. the minimum number of 

requests per cluster and the maximum number of people per vehicle). With 

those criteria, a matching process between users was established and 

integrated into the queuing representation.  



- 182 - 

 

 For each round trip of the shared service, the relative positions among 

multiple drop-off points were randomly generated. This allowed the 

representation of the difference in in-vehicle time experienced by different 

users and created the basis to estimate the difference in monetary cost 

based on their in-vehicle time. 

 

The detailed specifications are summarised in Section 3.4 in Chapter 3 

 

O3. To propose a fair cost distribution strategy within the framework 

developed in O2, which captures the trade-off aspects of shared services, 

such as a reduction in monetary cost and increase in in-vehicle time 

The modified Shapley value was proposed, which considered the disutility of users 

staying in a vehicle for a long time. In the proposed model, the round-trip time of 

each service was randomly generated following the given round trip time 

distribution based on the number of drop-offs (NoDs) per round trip. The driver was 

assumed to earn their fare in proportion to the round-trip time regardless of NoDs 

per round trip. Hence, the total fare charged for a round trip was divided among all 

users involved in that trip. The modified Shapley value estimation process follows 

three principles of the travelling salesman game (i.e. efficiency, individual 

rationality, and minimal obligation). In addition, the marginal cost for each user is 

estimated in the same way as the conventional Shapley value.  

For the modified Shapley value, the remaining cost when the minimal obligation is 

subtracted is allocated inversely proportional to the in-vehicle time for each user. 

Hence, those who dropped off later are assigned less amount of the remaining cost. 

This differs from the conventional Shapley value, which, if applied, would have split 

the remaining cost equally among users. Compared to the conventional method, 

the modified Shapley value proposed in this research takes into account the 

disutility regarding a long in-vehicle time. As a result, the trade-off between 

reduction in monetary cost and increase in in-vehicle time is captured.  

A detailed description of the modified Shapley value is provided in section 3.4 in 

Chapter 3.  

 

O4.  to understand the properties of the proposed models by conducting 

numerical experiments within a simple setting where the fleet size for 

each service is fixed.  
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With the proposed model, a set of numerical experiments were conducted with the 

fleet size being fixed to understand the properties of the model. At first, the 

experiment was conducted with the fixed parameter in order to investigate how the 

mode share evolves in a detailed way. In addition, the sensitivity analysis was 

conducted against the initial condition, parameters controlling users’ irregular 

behaviour, updating filter, and the parameters in the utility functions. Besides, 

scenario experiments with different fleet size and network geometry were also 

conducted. The total expected number of users and other parameters were fixed 

throughout the experiments.  

   

The key findings from the experiments are summarised below.   

 The results of sensitivity analysis against the initial condition suggested that 

the proposed stochastic process was ergodic, which guaranteed the 

existence of a unique stationary distribution.  

 

 With the given expected total number of users, the fleet size of each service 

influenced the stationary distribution of mode share in a different way 

depending on the service network geometry. Specifically, when the length of 

the corridor was greater compared to the side length of the drop-off area, 

the fleet size of the shared service primarily determined the stationary 

distribution of mode share. On the other hand, when the length of the 

corridor was shorter than the side length of the drop-off area, the fleet size 

of non-shared service was a primary determinant.  

 

 In addition, it was discovered that the service network geometry set the 

limitation for the range in the distribution of mode share regardless of the 

fleet size of both services.  

 

 The sensitivity test against components of utility function suggests that the 

value of waiting would affect to the distribution of mode share if it is set as 

lower than the value of in-vehicle time, which is against the real-world 

evidence of the value of in-vehicle time being larger than the value of 

waiting time.   

 

 The value of in-vehicle time could influence the distribution of mode share 

when it is set to be lower than the fare/min. However, it is questionable if 
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users would use the service when the fare/min is more expensive than the 

value of time-saving.  

 

 With a given setting, the increasing fare for non-shared service changes the 

distribution of mode share more than decreasing the shared service fare. 

 

 The pricing method for shared service impacts the system evolution more 

when the service network geometry works better for shared service or the 

fleet size for shared service is higher.  

 

 The modified Shapley value results in the higher mode share for shared 

service than the traditional Shapley value as the higher proportion of users 

receive enough discount in fare to compensate for the additional in-vehicle 

time  

 

 As VoIVT decreases, the difference between the modified and traditional 

Shapley value increases with a given fleet size and service network 

geometry.  

 

A detailed description of the results is summarised in Chapter 4.  

 

O5. to investigate how the system evolves under different parameter settings 

through numerical experiments where both fleet size and mode share for 

each service change day-to-day.  

With the proposed model, the numerical experiments with variable fleet size were 

conducted. The detailed analysis was conducted mainly using one realisation from 

the fixed-parameter settings with hesitation parameters and updating filters being  

𝛽௨ = 𝛽 = 0.08 and 𝜂௨ = 𝜂 = 0.1. In addition, the sensitivity analysis against the 

initial conditions was also conducted and summarised against two scenarios with 

different combination of updating filters and hesitation parameters. In order to 

investigate the occurrence pattern of each regime attributed to those two 

parameters, the sensitivity analysis was also conducted.  

Key findings from numerical experiments are summarised below.  

 Three regimes were identified, which are 1) the pseudo stable (PS) regime, 

2) the swan regime, and 3) the pseudo periodic (PP) regime). The mean 

utility (profit) and the collective average utility (profit) were identified as the 

determinant for which regime the process was in.  
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 During the PS regime, the mean mode share for non-shared service is 

higher than 0.8, and the mean proportion of fleet for non-shared service is 

higher than 0.4 during the regime.  

 

 During the swan regime, the mode share is always constant.  The mode 

share would vary among different swan regimes.   

 

 During the PP regime, the proportion of the fleet demonstrates “all-or-

nothing” behaviour. Hence, it is defined as the autocorrelation with one day 

lag, two days lag, three days lag, four days lag, and five days lag as 

negative, positive, negative, positive, negative.  

 

 The transition between PS and PP regime and the transition to the swan 

regime occurred as a result of vicious and virtuous cycle triggered by the 

random event. On the other hand, the transition from the swan regime 

happened dues to the changes in the relationship between the mean utility 

(profit) and the collective average utility (profit) during the swan regime. 

 

 When the updating filters and the hesitation parameters are set for three 

regimes to occur in one realisation, the transition to the PS regime was 

from the swan regime.  

 

 The transition from the PS regime to the swan regime was not observed 

and concluded that it would not occur since the relationship between the 

mean utility(profit) and the collective average utility(profit) cannot transfer 

from the one in PS reimage to the one in the swan regime.    

The sensitivity analysis was conducted against two scenarios with a different 

combination of the hesitation parameter and the updating filter. Key findings from it 

are summarised below;  

 It was identified that   the variance in the mean value for the stationary 

distribution of mode share and the fleet size vary is not ignorable when 𝜂௨ =

𝜂 = 0.1 and 𝛽௨ = 𝛽 = 0.08. However, it was discovered that the changes 

in the mean mode share correlated with the proportion of days in each 

regime rather than the initial condition. 
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 The variance in the mean mode share and the proportion of fleet was much 

smaller when there was only one regime (i.e. PS regime) appears in the 

process.  

 

 Therefore, it was concluded that there would be no dependency between 

the initial condition and the stationary distribution of mode share and the 

proportion of fleet. It also demonstrated that the proposed stochastic 

process was ergodic. 

Key findings from the sensitivity analysis against updating filters and hesitation 

parameters are summarised below.  

 As the updating filter becomes closer to 0 and the hesitation parameter 

becomes closer to 1, the PS regime was discovered to appear more often 

and last longer.  

 

 As the updating filter becomes closer to 1 and the hesitation parameter 

becomes closer to 0, the PP regime was discovered to appear more often 

and last longer.  

 

 When the proportion of days in PS (PP) regime becomes higher than 0.9, 

the mean length of the regime increases as the hesitation parameter 

increases (decreases).  

 

 The swan regime only appeared with very limited conditions where 0 < 𝛽௨ =

𝛽 < 0.2  and  0.1 < 𝜂௨ = 𝜂 < 0.6 and lasted a much shorter period than the 

PS regime and the PP regime.  

Key findings from the analysis regarding how to shift the process to be supply-

driven are summarised below. 

 Changing the total fleet size impacts how stable the process can be. 

However, it would not determine if the system is demand-driven or supply-

driven.  

 

 The minimum fleet size determines if the system to be demand-driven to 

supply-driven. Especially when the total minimum number of fleet size for 

both services is set high compared to the total fleet size and the minimum 

fleet size for the service which can perform better in the given service 

network is set as low.  
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Key findings from the analysis regarding the impact of updating filters are 

summarised below.  

 By changing the updating filters from constant value to the variable value 

depending on the days in the simulation, it is observed that the process 

would highly likely be locked in some state (e.g. the PS regime or the swan 

regime) with the given parameter settings regardless of the hesitation 

parameters (e.g. 𝛽௨, 𝛽).  

 

 When 𝛽௨ and 𝛽 are high and at least larger than 0.3, the process will be 

locked in the PS regime with given parameter settings. When 𝛽௨ and 𝛽 are 

lower than 0.3, it is likely to be locked in the swan regime.  

 

 It would take much longer until the process is stable in the swan regime than 

the PS regime.  

 

 When the process is locked into the PS regime, the mean mode share will 

be the same, while when the process is locked into the swan regime, the 

mode share will vary among multiple realisations.  

A detailed description of the results is summarised in Chapter 5.  

 Research contributions 

The key contributions of this research arise from the model formulation and through 

numerical experiments with the proposed model. The contributions of this research 

are summarised below;  

 

C1: Proposed a stochastic process model representing the competition between 

shared and non-shared use of on-demand ride service and how the system would 

evolve in the long term under the existence of a feedback loop.  

 

C2: Provided a simplified representation of on-demand shared ride service by 

combining a graph theoretical reduction of a problem and queuing representation of 

DARP, which can capture the impact of variability in trip request arrival time and 

their drop-off locations on the availability of sharing partner.  

 

C3: Included the trade-off aspects of reduction in monetary cost and increase in in-

vehicle time by proposing modified Shapley Value  
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C4: Through numerical experiments with fixed fleet size, discovered that the 

specification of service network geometry determined how the fleet size of non-

shared and shared services affected the distribution of mode share.  

 

C5: Through numerical experiments with variable fleet size, identified the three 

regimes, which are the pseudo stable regime, the swan regime, and the pseudo 

periodic regime and the conditions under which they occur. 

 

Table 27 the summary of which contributions are related to different 
objectives and which chapters are mentioned.  

Objectives  Contributions  Chapters  

O1 C1 CH3 

O2 C2 CH3 

O3 C3 CH3 

O4 C4 CH4 

O5 C5 CH5  

 

 Critical reflection on research method   

In this section, critical reflections on the proposed model are summarised. In 

Chapter 3, detailed reflections of key assumptions were discussed. Therefore, this 

section focuses on more general assumptions regarding this model. In particular, 

the choices of representation method regarding three components in this model are 

discussed. One of the challenges in this research was to find the appropriate level 

of detail to represent the real-world phenomena within the model. Initially, this 

research aimed to make the model as simple as possible to gain more general 

insight into on-demand ride service systems. However, as Calderón and Miller 

(2020) stated, the nature of new shared modes does not allow as much 

simplification as can be achieved with conventional transport models. Considering 

those points, this section argues why each aspect of the model was not 

represented in a more simple or more detailed way. This section is intended to be 

beneficial for anyone interested in creating simple models for shared on-demand 
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ride services in order to assess the bigger system in which shared on-demand ride 

services are included (e.g. Mobility-as-a-Service). 

Three key questions needed to be answered in the process of developing the 

proposed model. The reflection is summarised for each question in the following 

section.  

1) How to model on-demand ride services?  

If a model is developed with the operational motivation, solving a DARP is often 

used to model the trip matching process between users and drivers. Such a 

representation is the most detailed representation and the most computationally 

demanding. Moreover, the performance of the service becomes case-specific. 

Hence, to understand the general service performance, multiple simulations with 

different sample populations would be needed.  

The queuing representation of the on-demand ride service has already been 

applied in a few research studies as reviewed in Chapter 2. It is used as a heuristic 

solution method for DARP or a simplified representation of on-demand ride service 

as a part of a bigger model. It is helpful to understand the average performance of 

on-demand ride services. Hence, unlike solving a DARP, repeated simulations with 

a different sample is not necessary to gain a general understanding of the system. 

Also, it is computationally less demanding. I am not aware of a simpler 

representation of an on-demand ride service than the queueing representation. 

Overall, if the model were intended to be used for a case study or a model's focus 

were within-day dynamics, solving DARP could have be useful. However, neither of 

them was consistent with the research objectives specified in Chapter 1.  

2) To what extent are individuals specified?  

In this model, the day-to-day evolution of the system was expressed by updating 

the collective value of the system (i.e. mode share, the proportion of fleet for each 

service, the collective perception of using and providing each service). The 

simulations represented and updated the populations of drivers and of users rather 

than following specific individuals. Alternatively, an agent-based model could have 

been utilised. In that case, some or all of the agents who were generated at the 

beginning of the simulation repeatedly used or provided each service every day. 

With an agent-based model, more detailed information could have been specified 

for each agent. Also, an individual's past experience could have been included 

when users' perception of each service was determined.  

However, the more information is specified, the more case-specific it becomes. 

Therefore, to gain a general insight into the system, the repeated tests should be 
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conducted. At the same time, generating more information becomes more 

computationally demanding. As this model was not intended to apply a real-world 

system operation, there was no strict time budget to generate the results. 

Nevertheless, if the differences in individuals' experience are not the main focus, 

such details would be not necessary.  

In order to assess how beneficial it is to represent such great detail, an agent-based 

approach could be utilised and compared with the results obtained from the current 

model in the future.  

3) How to specify the service network?  

As a simper representation of the service network, the node-based representation 

could have been selected. In that case, the representation of an on-demand ride 

service would have been very similar to the one suggested by Less-Miller et al. 

(2016). It could have been utilised if the non-shared use of on-demand ride service 

were investigated in this research. However, it could have been too simple to 

represent shared on-demand ride services, as indifference in pick-up and drop-off 

locations among users was one of the key attributes which make sharing 

challenging.  

Also, instead of a pick-up hotspot, a drop-off hotspot could have been assumed as 

a node with a pick-up area. In such a case, the driver's cruising behaviour should 

be modified from the current model. OD pattern where pick-up locations are more 

spread than the drop-off locations is observed from the real-world data, especially 

in the morning peak period. Therefore, both of those two representations could be 

investigated as future research, which could be compared with the results provided 

with the current model.  

 Policy implications  

This section summarises policy implications drawn from numerical experiments 

discussed in Chapter 4 and Chapter 5.   

 The experiments summarized in 4.3.3.4 indicate that lower VoIVT leads to 

the high mode share for shared service in the fixed fleet size case. 

Therefore, it implies that implementing a shared on-demand ride service 

scheme would work more effectively if the trip with lower VoIVT is targeted. 

In other words, it isn't easy to encourage the active use of shared service 

when VoIVT is high. Hence, some policy intervention or restrictions should 

be introduced if the regulators want to promote the intense use of shared 

service where VoIVT is high.  
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 The results of experiments summarised in section 4.6 imply that the 

difference in pricing method for shared service only matters when the non-

shared service is dominant. Therefore, from the regulators’ perspective, it 

would be more effective to work on different aspects rather than improving 

the pricing strategy for shared service when; 1) the service network 

geometry works better for non-shared service than shared service to provide 

higher service level, 2) when the fleet size for shared service is small, and/or 

3) when the VoIVT is high.  

 

 According to section 5.8, changing the total fleet size would impact the 

system's stability while not deciding the system to be a demand- or supply-

driven system. Instead, setting the minimum fleet size for each service has 

the potential to make the system supply-driven. For instance, to make a 

shared service dominant in the given service networks and demand pattern, 

the below conditions should be achieved;  

 

1) to set the minimum fleet size for shared service higher than the one for 

non-shared service  

2) to limit the fleet sizes which can choose their service option every day 

 

However, it should be considered how the drivers would react to such 

regulation or if such intervention could be feasible depending on the system 

used by service platform operators.   

 

 The numerical experiments summarised in section 5.9 indicate that the 

system could be locked in either the PS regime or the swan regime if the 

updating filters change as the day passes. Such variable updating filters 

imply that users and drivers start to believe the collective average 

experience reflected all the experiences from day 1 more than the mean 

experience of drivers and users on one day as time passes. It could be 

interpreted as some common impression is attached to each service as time 

passes. Then, as bias from those common impressions becomes stronger, 

the probability of the system staying in one state increases. From the 

regulator’s point of view, it would be beneficial if the “locked-in” state was 

preferable for them. Otherwise, it indicates that policy intervention should be 

conducted before “the bias” becomes too strong. When the proportion of 

users and drivers who hesitate to change the service even if they are 

unsatisfied is very low, the system needs a longer time to be “locked into” 

one state. It implies that the regulator has more time budget to implement 
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some policy interventions. Nevertheless, the mode share for the system to 

stay is randomly determined; hence, it is difficult to control the system to be 

a certain state.  

 Future research directions   

This research provided several ideas for future studies. In general, there can be 

classified into three categories; 1) further numerical experiments with the current 

model, 2) extensions of the proposed models and 3) the application of real-world 

data. The suggestions are presented in the following section.  

At first, the idea for further numerical experiments with the proposed model is 

summarised.  

i. Conduct additional sensitivity tests against currently fixed parameters such 

as the vehicle capacity, the minimum number of requests per cluster, the 

number of captive users and drivers for each service.  

 

ii. Conduct the numerical experiment with the different distribution patterns of 

drop-off locations. For instance, the density of drop-off points could be set to 

become higher as it gets closer to the centre of the drop-off area.  

 

iii. Conduct the numerical experiment with the different trip request arrival 

patterns. 

 

iv. Conduct scenario experiments in order to find the optimal strategy to 

navigate the long-term evolution of the system under different objectives. 

The current research investigates how the on-demand ride service system 

would evolve with different parameter settings. Based on the obtained 

results, specific strategies to navigate the on-demand ride service system 

towards the desirable direction could be investigated. 

  

There are several ways to extend the proposed model, which is to;  

v. Introduce the dependency in the willingness to share and the number of 

strangers per vehicle.  

  

vi. Introduce the concept of in-group and out-group sharing. For instance, 

assuming that users are classified into two groups and some do not accept 

out-group sharing. In such a situation, it is expected that those in a minor 

group would face difficulty finding a sharing partner depending on the 
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proportion of those who accept out-group sharing in their group and in the 

other group. Then, it can be investigated how the willingness to out-group 

sharing would influence the long-term evolution of mode share in each 

group and in the general system.  

 

vii. Introduce a heterogeneous fleet with different capacities That would allow  

assessing the impact of the composition of the fleet with different capacity to 

the service level. For instance, using a vehicle with a bigger capacity could 

reduce the users’ waiting time if the demand for shared service is high. 

However, it may result in increasing the mean in-vehicle time for users. 

Investigating such trade-off aspects would be interesting and could be 

useful for the service operators.  

 

viii. Introduce more variables to determine a driver's experience, which is 

currently determined by the total monetary cost and the total fare. One idea 

is to consider a driver's willingness/hesitation to provide non-shared service 

and shared service. The literature review in Chapter 2 shows that some 

drivers show hesitation to provide a shared service for various reasons. 

Therefore, this aspect would affect the long-term evolution of on-demand 

ride services in reality and so is worth investigating.  

 

ix. Introduce other modes such as buses and private cars.  It will allow 

exploring the competition between on-demand ride services and other 

modes such as buses and private cars in addition to the competition 

between non-shared and shared service.  

 

x. Change the service network geometry to a different shape. For instance, a 

network could be assumed with multiple pick-up hotspots and/or drop-off 

areas. A service network geometry could be represented with a node-based 

network. In addition, the pick-up area and the drop-off hotspot could be 

assumed instead of the pick-up hotspot and the drop-off area. 

 

Finally, some idea to apply the real-world data is proposed, which are to;  

xi. Utilise the arrival pattern extracted from the real-world data to the model and 

conduct the simulation.  

 

xii. Specify a network structure based on the real-world OD pattern.  
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