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Abstract

This thess examines how microdructures in glaciogenic sediments reflect the processes
forming them, and how these microgtructures then affect the conditions around them, through a
series of fidd studies, laboratory tests, modds, and datistica andyses. Following literature
reviews, a deformational chronology is developed for diamictons a Criccieth, North Wales,
and their microstructures are used to indicate the stress, hydraulic, and environmenta changes
the materids have undergone. Microstructures of the lowest diamict indicate clast lodgement.
The processes reflected in the microstructures of thislowest diamict are built into a quantitative
modd that estimates its resdua strength (20 - 50 kPa) and the ice velocity during lodgement
(20 - 50 ma?). The response of sediment to glaciad stress is further examined by triaxid

testing of diamict from Yorkshire, and the subsequent examination of its micromorphology.
Shearsin the materia are disrupted by clasts, and this may be responsible for work hardening
seen during the tests. Fabric compression, and the development of immobilised shears or
hydraulic fractures buffer pore fluid pressure to ~470 kPa. The information from previous
chapters is then used to andyse other material from the Y orkshire coast. This andys's confirms
the presence in the area of mdtout tills that have undergone low srain, as well as providing
evidence for the decoupling of the ice and sediment in this region, and the nature of drainage
gystems within and above the diamicts during glaciation. Overdl this thess detals the
processes forming three ‘classc’ microstructures found in glacia sediments; omnisepic fabrics,
lattisepic fabrics, and melanges, and provides evidence for the processes involved in forming
diamict pebbles and skelsepic fabrics. In addition this thes's details how such structures reflect
coupling and decoupling processes between glaciers and their beds, and examines the manner
in which microstructures affect the response of a subglacia sediment body to stress and

hydraulic conditions.
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MEER, 19878).
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FIGURE 3.6 REVERSE AND NORMAL SHEAR IN ANISOTROPIC ROCKS. SOLID SHADED BAND ISA MARKER
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FIGURE 3.7 IDEALISED STRESS STRAIN RELATIONSHIPS. A) STICK-SLIP BEHAVIOUR B) RESPONSE OF MIXED
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FIGURE 4.1 THE LLEYN PENINSULA, NORTH WALES, SHOWING THE EASTERN LIMIT OF MATERIAL
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FIGURE 4.10 A) THE IRON STAINING IN SECTION 1A (VERTICAL SECTION FROM NORTH-WEST TO SOUTH
EAST). B) DIAGRAMMATIC REPRESENTATION OF THE POSSIBLE FOLDING RESPONSIBLE. -------------------
FIGURE 4.11 TINTED POLARIZED MICROGRAPH SHOWING THE BOUNDARY BETWEEN THE TWO AREAS OF
SECTIONS 1B/C (VERTICAL SECTIONS FROM NORTH EAST TO SOUTH WEST). ABOVE THE BOUNDARY THE
MATERIAL ISFORMED FROM ROTATED BLOCKS, EACH WITH ITSOWN PRIMARY FABRIC DIRECTION.
BELOW THE BOUNDARY THE MATERIAL HAS A SINGLE PRIMARY FABRIC.
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FIGURE 5.11 PROCESSES INVOLVED IN THE LODGEMENT MODEL.
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FIGURE 5.13 TILL VISCOSI TIES AT WHICH DEFORMATION IS EQUAL TO ICE DEFORMATION DEPENDANT ON
CLAST SIZE FOR VARIOUSICE VISCOSTIES.
FIGURE 5.14 DISTANCE TRAVELLED OVER TIME BY DIFFERENT SIZED CLASTS THROUGH TILLS OF VARIOUS
RESIDUAL STRENGTHS UP TO LODGEMENT WHEN THE MODEL TERMINATES (INFILL BEHIND THE
PLOUGHING CLAST BY REGELATION AND S_LUMPING ALLOWED).
FIGURE 5.15 MELTOUT PRODUCED OVER THE PLOUGHED DISTANCE BY THE PLOUGHING OF DIFFERENT
SIZED CLASTS THROUGH TILLS OF VARIOUS RESIDUAL STRENGTHS (INFILL BEHIND THE CLASTSALSO
ALLOWED BY SLUMPING OF THE TRENCH WALLS).NOTE THAT MELTOUT PRODUCTION ISHALTED IN THE
MODEL WHEN LODGEMENT OCCURS AND FRICTIONAL/GEOTHERMAL MELTOUT ISNOT INCLUDED,
MAKING THESE VALUES MINIMUM ESTIMATES.
FIGURE 5.16 FORCE RESISTING |CE FLOW OVER TIME UP UNTIL LODGEMENT, CAUSED BY CLASTS OF
VARIOUS SIZES PLOUGHING THROUGH TILLS OF VARIOUS RESIDUAL STRENGTHS (INFILLING BY
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MELTOUT AND SLUMPING OF THE TRENCH WALLS ALLOWED). THE MODEL TERMINATES AT
LODGEMENT.
FIGURE 5.17 POTENTIAL RESIDUAL STRENGTHS OF THE LITHOFACIES E TILL AT CRICCIETH FOR VARIOUS
ICE VELOCITIESBASED ON THE LENGTH OF THE PLOUGHING TRACE (INFILLING BEHIND THE
PLOUGHING CLAST BY REGELATION AND TRENCH SLUMPING ALLOWED).THE TILL STRENGTH WAS
ALLOWED TO VARY BETWEEN 1 AND 50 KPA IN 1 KPA STEPS, THE ICE VELOCITY WAS ALLOWED TO VARY
BETWEEN 1 AND 2000 M A IN STEPSOF 10 M A", PLOUGHING LENGTHS WERE THEN COMPARED WITH
THE LENGTH SEEN IN THE FIELD AND ONLY THOSE CONDITIONS PRODUCING THISLENGTH ACCEPTED
ASLIKELY.
FIGURE 5.18 MELTOUT MATERIAL ASSOCIATED WITH THE POTENTIAL RESIDUAL STRENGTH ESTIMATIONS
FOR VARIOUS ICE VELOCITIESBASED ON THE LENGTH OF THE PLOUGHING TRACE (INFILLING BEHIND
THE PLOUGHING CLAST ALSO ALLOWED BY TRENCH SLUMPING).
FIGURE 5.19 MAXIMUM FORCE RESISTING ICE FLOW ASSOCIATED WITH THE RESIDUAL STRENGTH
ESTIMATES FOR VARIOUS ICE VELOCITIES BASED ON THE LENGTH OF THE PLOUGHING TRACE AT
CRICCIETH (INFILLING BEHIND THE PLOUGHING CLASTS BY MELTOUT AND SLUMPING ALLOWED). ------
FIGURE 5.20 POTENTIAL RESIDUAL STRENGTHSFOR LITHOFACIES E AT CRICCIETH FOR VARIOUS ICE
VELOCITIESBASED ON THE LENGTH OF THE PLOUGHING TRACE (INFILLING BEHIND THE CLAST NOT
ALLOWED).NOTE THAT THE RESIDUAL STRENGTH WAS ALLOWED TO VARY BETWEEN 1 AND 50 KPAIN
STEPS OF 1 KPA, AND THE ICE VELOCITY WAS ALLOWED TO VARY BETWEEN 1 AND 2000 M AIN STEPS
OF 10 M A-l, THUSTHE VALUES ARE NOT CONTINUOUS. IN REALITY THE VALUESWOULD FALL IN A
CONTINUOUSFIELD OF POTENTIAL STRENGTH-VELOCITY COMBINATIONS. THE VALUES SEEN HERE ARE
THE ONLY ONES FOUND REASONABLE IN THE QUOTED RANGES BASED ON THE CRITERIA THAT THE
PLOUGHING LENGTH SHOULD BE THAT SEEN IN THE FIELD.
FIGURE 5.21 MELTOUT ASSOCIATED WI TH THE ESTIMATES OF TILL RESIDUAL STRENGTH FOR VARIOUSICE
VELOCITIES (INFILLING NOT ALLOWED).
FIGURE 5.22 MAXIMUM FORCE SUPPORTED ON A PLOUGHING CLAST FOR VARIOUS POTENTIAL TILL
RESIDUAL STRENGTHS ASSOCIATED WITH VARIOUS POTENTIAL ICE VELOCITIES (INFILLING BEHIND
PLOUGHING CLAST NOT ALLOWED).
FIGURE 5.23 PROCESSES AND FEATURES ASSOCIATED WITH THE PLOUGHING AND LODGEMENT OF CLASTS -
FIGURE 6.1 THE SIMPLE SHEAR BOX METHOD. SAMPLE SHEARS AT A POINT BETWEEN THE TWO HALVES OF
THE CONTAINING BOX, FORCED BY THE BOX GEOMETRY.
FIGURE 6.2 THE TRIAXIAL DEFORMATION APPARATUS USED IN THE EXPERIMENTS.
FIGURE 6.3 LOCATION OF SAMPLE SITE AND SITESDISCUSSED IN THE TEXT.
FIGURE 6.4 SUBGLACIAL STUATIONS FOR WHICH DIFFERENT DEFORMATIONAL EQUIPMENT IS ANALOGOUS.
A. CLAST TRAPPED IN A SMOOTH ICE BASE PLOUGHS THROUGH UNDEFORMED SEDIMENT.
CONDITIONS SIMILAR TO THOSE IN A TRIAXIAL RIG EXIST IN FRONT OF THE CLAST (ARROWS SHOW
FORCE DIRECTIONS). CONDITIONS SIMILAR TO A SHEAR BOX EXIST AT THE SMOOTH ICE-BED
INTERFACE. B. CLAST TRAPPED IN FAST MOVING TILL PLOUGHING THROUGH UNDEFORMING
SEDIMENT. CONDITIONS SIMILAR TO THOSE IN A SHEAR BOX EXIST AT DECOLLEMENTSWITHIN THE
SEDIMENT. C. IN STEADY STATE DEFORMATION CONDITIONS SMILAR TO TRIAXIAL AND SHEAR BOX
EXPERIMENTS EXIST, ASWELL AS CONDITIONS SSIMILAR TO RING SHEAR RIGS.
FIGURE 6.5 LOCATIONS AROUND SKIPSEA
FIGURE 6.6 STRESS-STRAIN RECORDS FOR THE TRIAXIAL TESTS.
FIGURE 6.7 STORAGE RECORDS FOR THE TRIAXIAL TESTS.
FIGURE 6.8 UPPER PORE FLUID PRESSURE RECORD FOR THE TRIAXIAL TESTS.
FIGURE 6.9 P-Q SPACE RECORDS FOR THE TRIAXIAL TESTS
FIGURE 6.10 VISUAL SCALE APPEARANCE OF TWO TEST SAMPLES. TEST 5; CROSS SECTION SHOWING SHEAR
DIP, DRAWN DURING SECTIONING FOR THIN SECTION SAMPLES. TEST 6; SHOWING OUTER SURFACE
AFTER TESTS. NOTE THE TWO DISLOCATION PLANES.
FIGURE 7.1 PHOTOMICROGRAPH OF A CLAST RICH PATCH FROM SLIDE T22. UNPOLARIZED LIGHT
CONDITIONS.
FIGURE 7.2 A PERVASIVE LATTISEPIC FABRIC PHOTOMICROGRAPH FROM T22. CROSS POLARISED LIGHT
WITH A TINT PLATE. YELLOW AREAS OF MATRIX ARE ORIENTATED IN ONE DIRECTION, BLUE AREAS ARE
ALIGNED IN ANOTHER DIRECTION, ALONG WMITH SOME OTHER THIN GRAINS.
FIGURE 7.3 PHOTOMICROGRAPH OF CLASTSWITHIN A SHEARED FABRIC THAT HAVE DEVELOPED AN FABRIC
PARALLEL TO THEIR SIDESBETWEEN THEM. UNPOLARIZED LIGHT, SLIDE T22.
FIGURE 7.4 PHOTOMICROGRAPH OF CLAY/SILT CONCENTRATION AROUND A CLAST. UNPOLARIZED LIGHT,
SLIDE T22.
FIGURE 7.5 CRACKING IN THIN SECTION T51. NOTE THE STRAIGHTNESS OF THE CRACKING DESPITE THE
HETEROGENEITY OF THE MATERIAL. UNPOLARIZED LIGHT.
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FIGURE 7.6 CRACK ORIENTATIONS FOR THE CRACKING IN THE THIN SECTIONS PREPARED FROM THE TEST
SAMPLES. MEASUREMENTS WERE TAKEN IN THE RANGE 90° TO 270°, AND THE RESULTS ARE
CATEGORISED IN 10° BINS.

FIGURE 8.1 A) MAP OF LOCATIONS DISCUSSED IN THE TEXT. B) LOCATION OF SITESON THE EAST
YORKSHIRE COAST DISCUSSED IN THE TEXT. SAMPLE SITESDISCUSSED IN THIS CHAPTER ARE IN
ITALICS.

FIGURE 8.2 SHEAR EXTENDED CHALK MATERIAL AT HORNSEA, EAST YORKSHIRE COAST. RULED DIVISIONS
ARE 10 CM.

FIGURE 8.3 SEDIMENT SEQUENCE AT FILEY BRIGG, EAST YORKSHIRE COAST. COMPOUND SEQUENCE FOR
THE WHOLE BRIGG AREA FROM EVANSET AL., 1995, ALSO SHOWING THE POSI TIONS OF THEIR
SE.M.THIN SECTION SAMPLES 2.7.6, 3.7.6 AND 8.7.6. SEQUENCE ON RIGHT ISTHE STRATIGRAPHY AT
THE SAMPLE SITE DISCUSSED IN THISCHAPTER WITH HEIGHTS OF SAMPLES (FB1 TO 6) (AFTERAN
ORIGINAL DIAGRAM BY SCHURCH, 1996, UNPUB.).

FIGURE 8.4 PHOTOGRAPH OF FILEY BRIGG SHOWING SAMPLING SITE.

FIGURE 8.5 SKETCH OF THE TWO DIMENSIONAL FORM OF THE SAMPLED SEDIMENTS.

FIGURE 8.6 PHOTOMICROGRAPH OF A CLAY BODY FROM SAMPLE FB6A SHOWING LOW STRAIN
DEFORMATION. UNPOLARIZED LIGHT CONDITIONS.

FIGURE 8.7 POTENTIAL SMALL SCALE ‘MASSMOVEMENT' DEPOSIT. NOTE HOW THE CLAYS ARE FOLDED
AROUND AN AREA THAT MIGHT HAVE ‘FLOWED' INTO THEM IN A SEMI-COHERENT MASS. SAMPLE FB6A,
UNPOLARIZED LIGHT CONDITIONS.

FIGURE 8.8 PHOTOMICROGRAPHS OF CLAY BANDS SHOWING OVERPRINTING. A) SAMPLE FB6A. B) SAMPLE
FB4A. PICTURE TAKEN UNDER CROSS POLARIZED LIGHT WITH A TINT PLATE.

FIGURE 8.9 PHOTOMICROGRAPH OF CLAY BAND FROM SAMPLE FB5A. NOTE THAT THE INTERNAL FABRIC
OF THE CLAY HASNOT BEEN OVERPRINTED AFTER THE BAND’S DEFORMATION.

FIGURE 8.10 HYPOTHETICAL SHEAR STRESS - EFFECTIVE PRESSURE PATHS ACCOUNTING FOR THE
MICROSTRUCTURES OBSERVED IN THE UPPER PART OF THE SEQUENCE AT FILEY BRIGG, EAST
YORKSHIRE COAST. MAIN DIAGRAM SHOWS THE SUGGESTED RHEOLOGIES OF THE MATERIAL. THE
INSET DIAGRAMS ARE PATHSWHICH MAY HAVE PRODUCED THE STRAIN EVIDENCE PRESENTED IN THE
TEXT. A AND B ARE THE STARTING CONDITIONS FOR THE MATERIAL WITH THE INCONSISTENT FABRIC
AND ELSEWHERE RESPECTIVELY. C AND D ARE THEIR RESPECTIVE FINAL CONDITIONS. -----=--=--=-==------

FIGURE 8.11 SEDIMENT SEQUENCE AT DIMLINGTON HIGH GROUND, EAST YORKSHIRE COAST. INSET SHOWS
THE POSI TION OF THE SAMPLE SITE AT THE SCALE OF CATT AND PENNY'S (1966) SURVEY OF THE
AREA (THOUGH NOTE THAT THE AREA’S STRUCTURE HAS CHANGED BECAUSE OF COASTAL RETREAT).-

FIGURE 8.12 PHOTOGRAPH OF THE SEDIMENTS SAMPLED AT THE BOUNDARY BETWEEN THE SKIPSEA TILL
AND THE BASEMENT TILL AT DIMLINGTON HIGH GROUND, EAST YORKSHIRE COAST. OPEN ENDED
SAMPLE BOXESARE IN THE APPROXIMATE SAMPLE POS TIONS.

FIGURE 8.13 FREQUENCY OF DIP ANGLESFOUND IN DSK2. THISSLIDE CONTAINED THE ONLY SDF
ORIENTATION FOR WHICH THERE WAS UNCERTAINTY AS TO WHETHER THE FABRIC WAS ALIGNED OR
RANDOM ON THE BASISOF A VISUAL INTERPRETATION OF FREQUENCY DATA. THE FABRICS APPEAR TO
BE IN TWO DIRECTIONS, HOWEVER, THE FABRICS ARE RANDOM IN THE NORTH-SOUTH PLAIN ASSEEN IN
Dsk3. THISFIGURE ISREFERRED TO WITHIN TABLE 8.4.

FIGURE 8.14 PHOTOMICROGRAPH OF CLEAN SAND LENSESIN SAMPLE DSK7. UNPOLARIZED LIGHT
CONDITIONS.

FIGURE 8.15 PHOTOMICROGRAPH OF SHEAR ‘A’ AT THE TOP OF BASEMENT TILL. THE ORIENTATION OF
THE SHEARED FABRIC GIVESIT A GREEN COLOUR. SAMPLE DSK6, UNDER CROSS POLARIZED LIGHT
WITH ATINT PLATE.

FIGURE 8.16 PHOTOMICROGRAPH OF DIAMICT PEBBLESIN THE SANDS AND DIAMICT AT THE TOP OF THE
BASEMENT TILL UNDER THE DIMLINGTON SILTS. SAMPLE DS9, UNDER UNPOLARIZED LIGHT
CONDITIONS.

FIGURE 8.17 PHOTOMICROGRAPH OF SLIDE DSK6, SHOWING THE BASEMENT TILL. NOTE THE DISCRETE
SHEARS AND PATCHES OF SHEAR ALIGNED MATERIAL. CROSS POLARIZED LIGHT CONDITIONSWITH A
TINT PLATE.

FIGURE 8.18 SEDIMENT SEQUENCE AT REIGHTON SANDS, EAST YORKSHIRE COAST. THE VISIBLE SEQUENCE
STARTSAT ~25 M O.D. LITHOFACIES A) GREY DIAMICT. B) BROWN DIAMICT. C) CHALK GRAVEL.

D) FAINTLY LAMINATED SANDS. E) MASSIVE SHELLS AND SANDS.
FIGURE 8.19 PHOTOGRAPH OF THE SAMPLE SITE AT REIGHTON SANDS.
FIGURE 8.20 PHOTOMICROGRAPH OF FABRIC FOLLOWING THE SANDS AT BASE OF LITHOFACIESA, THE

LONG AXES OF THE LONG DARK GRAINS FOLLOWTHE GENERAL FABRIC DIRECTION. SAMPLE F1A,

UNDER CROSS POLARIZED LIGHT WITH A TINT PLATE.
FIGURE 8.21 POTENTIAL FLUID-FLOW/ DEFORMATION HISTORY FOR LITHOFACIES A.
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FIGURE 8.22 PHOTOMICROGRAPH OF THE MELANGE OF DIAMICT, SILTSAND CLAYS THAT MAKES UP
LITHOFACIES B WHICH APPEARS TO BE A DIAMICT ON AN OUTCROP SCALE. SAMPLE F5A, UNDER
UNPOLARIZED LIGHT CONDITIONS.

FIGURE 9.1 SUMMARY OF THE MAIN CONCLUSIONS ON THE ORIGIN OF MICROSTRUCTURES IN THISTHESIS.
FOR FURTHER INFORMATION, SEE THE FOLLOWING CHAPTERS; A) CHAPTER SEVEN, B) CHAPTERS
SEVEN AND EIGHT, C) CHAPTER FOUR, D) CHAPTER EIGHT, E) CHAPTERS SEVEN AND EIGHT, F)
CHAPTER EIGHT.

FIGURE 9.2 SUMMARY OF THE MAIN CONCLUS ONS ON THE PROCESSES ACTING AT THE ICE-SEDIMENT
INTERFACE AND BELOW. FOR FURTHER INFORMATION, SEE THE FOLLOWING CHAPTERS; A) CHAPTER
EIGHT, B) CHAPTER FIVE, C) CHAPTER EIGHT, D) CHAPTERS SIX, SEVEN AND EIGHT, E) CHAPTERS

SIX, SEVEN AND EIGHT, F) CHAPTERS SIX AND SEVEN.



