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“...“Playing” is not simply a pastime,

it is the primordial basis of

imagination and creation.

Truth be told, Homo Ludens (Those

who Play) are simultaneously

Homo Faber (Those who Create).”
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Abstract

An existing challenge in power systems is the implementation of optimal demand man-

agement through dynamic pricing. This research project deals with on-line pricing

schemes for electricity in micro-grid network systems and the ways in which their im-

plementation affects the physical system’s response. Two approaches were devised in

this study: First, the ways in which micro-grid networks can be modelled as less pre-

scriptive multi-agent consensus systems; examining their response under uncertainties

and gaining insights on the relation between the network topology, the heterogeneous

parameters of its components, and the system’s response. Secondly, deriving game-

theoretic novel pricing schemes and integrating them with the physical system model to

perform a stability analysis. The proposed schemes consider the rational behaviour of

the end-users and the entailing tension with the energy supplier(s); demonstrating the

ways in which the decisions of the players involved influence the physical system. The

study aims to clarify the interconnection between the market and physical layers of the

problem, leading to a better future implementation of such schemes. The first part of

this thesis studies networks of heterogeneous micro-grids, treating them as agents and

modelling their dynamics as an averaging process that is subject to uncertain non-linear

parameters. The second part introduces a pricing scheme based on the Stackelberg

game with incentive strategies in a micro-grid, where the leader is the energy supplier,

and the follower the consumer. The scheme is then improved and carried out in a droop-

controlled low-voltage resistive AC micro-grid. The final part of this research is about

the design of a scheme based on coalitional game theory, where there are multiple com-

peting energy retailers attracting consumers. For all the propositions above, analysis

and simulations that illustrate system stability, agent rationality, profit improvement,

and the convergence to different equilibria in the physical and market responses are

implemented.
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Chapter 1

Introduction

The present thesis deals with the dynamic modeling of power systems and electricity

pricing mechanisms via elements of control theory and game theory respectively. From

the dynamic and market setups here derived, an analysis on stability is performed when

integrating both kinds of systems.

In this chapter, a background of the topics related to this research project is provided

along with the motivations that led to its formulation.

This dissertation contains seven chapters. Chapter 3, Chapter 4, Chapter 5 and

Chapter 6 comprise the main body of this thesis.

1.1 Background and Motivation

The study of network systems (or system of systems) has numerous applications, one of

rising interest is the smart-grid paradigm, sometimes referred to as micro-grid, which is

characterised by the management of energy resources such as power and frequency in a

large group of electricity users with a local supply and consumers that act as loads [2].

A micro-grid can either operate in conjunction with the main electricity grid or inde-

pendently (islanded mode). The balance of power between the elements and their man-

agement is achieved by a local controller. An example of a micro-grid and its elements

is illustrated in Fig. 1.1.

The AC micro-grid is the dominant type of micro-grid and is the main focus of the

present work. However, two configurations are presented in this study. The first one

is based on the swing equation [3, 4] which deals with the frequency fi and power Pi

1
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ControllerStorage

Load

Industrial Load
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Figure 1.1: Micro-grid elements and representation example.

dynamics of a micro-grid i in a network:

Ṗi = ∑
j∈Ni

Ti j( f j− fi),

ḟi =
1

Mi
Pi−

Di

Mi
fi,

(1.1)

where Di and Mi are damping and inertia coefficients, and Ti j is a synchronizing coef-

ficient between the connected micro-grids i and j in a neighborhood of nodes Ni. The

second is the resistive micro-grid, which as we will explain later, can be considered

similar to a DC micro-grid, where the power expression for a power unit (or node) i in

a network can be expressed as

Pi =Vi
2( 1

Rii
+ ∑

j∈Ni

1
Ri j

)
− ∑

j∈Ni

ViVj

Ri j
, (1.2)

where Vi is the node voltage, Rii its shunt resistance and Ri j the equivalent resistance of

the transmission line that connects nodes i and j in Ni.

On the other hand, one of the most relevant problems at present in the research field

of demand-side management is the search for a real-time pricing scheme that success-

fully improves the profits of both energy consumers and suppliers while also improving

the efficiency of the power grid. This study focuses on bringing together the market

and physical dynamics that are involved, determining the functioning of a micro-grid

network as a whole.



3 1.1. Background and Motivation

As commonly employed in the field of economics, game theory concepts allow

modelling the dynamics of a market and the rationale of consumers and suppliers. The

implementation of pricing mechanisms based on game theory for electrical networks is

not novel per se. In contrast, as we will show later in the literature review, there are

still open challenges that need to be explored when these kinds of pricing mechanisms

are put in conjunction with the physical system. For instance, given a pricing scheme,

a detailed stability analysis should be conducted to ensure the correct operation of the

micro-grid. These open research areas are expected to some degree since the analysis

of just one system is complex, let alone for a group of interconnected ones. This further

motivates the search for a simpler representation of the network system that can help us

predict its behaviour and the agents interacting in it in a reliable manner.

The main chapters of this thesis contain problems related to power systems mod-

elling, network theory, real-time electricity pricing and game theory. Despite the fact

that the setup of each chapter is independent of each other, they constitute a whole

evolving work; where each contributes to the refinement of this research and its appli-

cation. To set the stage about the setup and concepts involved, let us provide a brief

background.

1.1.1 Multi-Agent Systems

Recently there has been increased interest in large scale interconnected multi-agent

systems due to their potential to be implemented in numerous areas such as energy,

transportation, social networks, cloud computing and others [5]. Multi-agent systems

are powerful mathematical constructs that describe the interaction between a number

of entities, sometimes also referred to as players or agents, such entities can possess

decision-making capabilities as well as means of sensing and communication between

them. Generally, said capabilities are achieved by the use of information technologies,

hence their present-day relevance. The models for these kinds of systems can accommo-

date the information, the influence of it to the agents’ behaviour, as well as the response

of the system itself and the impact of the agents to it. Previous work about the mod-

elling of such systems provides numerous results about their mathematical foundations

and equilibrium concepts. However, there are limited writings about the stability anal-

ysis, equilibrium selection and robustness under uncertainty; additionally, the inclusion
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Figure 1.2: On-line pricing and rational end-user behavior example.

of schemes to shift the agents’ response is an interesting approach to the study of the

mentioned literature challenges. As we will mention later, micro-grid networks can also

be represented as systems that need to reach a consensus (i.e. a certain frequency value

for all micro-grids) [4].

1.1.2 On-Line Pricing

One of the aims of this research is to subject micro-grid systems to on-line electricity

pricing mechanisms and the ways in which these can be designed. Pricing mechanisms

on electrical power systems constitute a viable way to shift the demand peaks and thus to

improve efficiency [3]. The underlying assumption is that the consumer and the supplier

are rational and try to maximise their profits. Under such an assumption, a change of

the price by the independent system operator modifies the consumer’s behaviour [6].

An example of such seller-buyer dynamics is exemplified in Fig. 1.2 where the demand

of the users is shifted as a reaction to the announced price. The analysis of the resulting

dynamics is a core element in the literature on on-line pricing. On-line pricing requires

the implementation of incentive mechanisms in real-time to increase the profits of the

supplier by charging more when the production costs are higher instead of applying

a flat rate. Similarly, incentives can be used to let the consumer know when is more

convenient to carry out the more power-consuming tasks [7]. Effective methods to

determine the electricity price dynamically present several challenging open problems

including: Global optimality for both consumers and suppliers, the uncertainties in the

consumers’ behaviours and preferences, and more importantly, the safe operation of the

electrical systems when subjected to such mechanisms.
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Player 2
rock paper scissors

rock (0,0) (-1,1) (1,-1)
Player 1 paper (1,-1) (0,0) (-1,-1)

scissors (-1,1) (1,-1) (0,0)

Figure 1.3: Payoff matrix of Rock-Paper-Scissors game, where the payoff for a player
is equal to 1 when winning, 0 when there is a tie and -1 when losing.

1.1.3 Game Theory

The pricing schemes presented in this study are modelled using concepts from game

theory. Game theory studies the interaction between rational individuals and their

strategies in a cooperative or competitive environment [8]. It is applied to a plethora

of domains, from finance to social sciences. A very basic example of strategy and pay-

off modeling is found in Fig. 1.3. This feature of capturing rationality is useful in the

modeling of suppliers and consumers. We employ concepts of game theory such as the

Stackelberg equilibrium [8] and coalitional games [9] to describe the ways in which

a price is derived in the pricing schemes we have designed, and in consequence, the

choices from the consumers that result in power demand.

1.2 Research Questions

This research project addresses the aforementioned responses and behaviours in two

ways: firstly the analysis and explanation of observed phenomena. Secondly, the pre-

diction and design of the network system response. Part of this project focuses on the

strategic interaction between the players and their influences, specifically the effect that

individual actions have on the system and vice versa. More concretely, this research

is about studying pricing schemes based on game theory and the ways in which these

can be implemented in the physical power network. We intend to answer the following

research questions: How can we model these complex networks of systems in a less

rigid, less complicated way? What is the role of the network topology and its param-

eters? How do the strategies of the agents affect such systems responses? And more

importantly: How can we induce such strategies and implement them in a stabilizing

manner?
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1.3 Overview and Main Contributions

To accentuate the importance of the present work, an abridgement of the main contri-

butions is given in the sequel. The interrelation between the different contributions is

also explained with the intention of allowing the reader to follow the work progress in

the chapters that follow.

Chapter 2 presents the state of the art and the reviewed literature that inspired and

motivated the present research. A brief comparison of the previous works with the

current investigation is enclosed.

Chapter 3 presents an analysis of the transient dynamics of a network of micro-

grids, mainly the influence of oscillations during the system response, where every

single micro-grid is modelled incorporating heterogeneous parameters for damping and

inertia. This study sheds light on the ways in which different damping coefficients in-

fluence the frequency and power flow responses as well as the different positioning of

the system eigenvalues. Secondly, for each of the micro-grids in the network, the con-

ditions that guarantee absolute stability when the system is subject to non-linearities

and uncertainties are derived. Additionally, the study involves the adaptation of the

proposed model to real instances in the UK electrical network and the calibration of the

nodes’ parameters using data of the power capabilities of the micro-grids.

Chapter 4 utilizes the previously presented model for a single micro-grid and sub-

jects it to a normalised leader-follower pricing scheme. As a first result, the conditions

for stability and the transient response of a micro-grid system subject to a price are

obtained, where the price is generated exogenously from a Stackelberg game. The

game introduces an incentive problem, which in turn determines the steady-state gain

of the open-loop market dynamics. As a second result, a general feedback rule to ob-

tain the price as a function of the power flow and demand is derived. Such a rule is

based on an ex-ante price formulation. The impact of the parameters on the transient

dynamics of the micro-grid system is studied.

Chapter 5 further improves on the Stackelberg game with incentive strategies,

where the profit functions of the players are more appropriately defined and tuned,

the analysis is extended to a more realistic model of a low-voltage resistive network

system, while the steady-state gain for the consumer response is calculated directly in

the game by employing the derived profit functions. The incentive strategy is included
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as means for a personalised price function. The system dynamics incorporates a droop-

control structure for each unit in the micro-grid, a stability analysis of the integrated

system is performed, including an extension for the case when implementing bounded

droop control that leads to simplified stability conditions. Another core novelty is that,

to the best of our knowledge, this is the first time that a droop-controlled resistive

micro-grid is subjected directly to a game-theoretic pricing scheme, thus paving the

way for the application of game theory-based intelligent demand-side management in

future distribution systems.

Chapter 6 takes the resistive micro-grid model studied in Chapter 5 and proposes

for it a novel pricing scheme, in a coalitional game framework, where there are mul-

tiple competing retailers in a micro-grid. A stability analysis is carried out covering

the coalitions formed by our proposed game and algorithm. Following with the leader-

follower structure of the previous chapters, the existence of the equilibrium points in

the game is demonstrated, namely the guaranteed existence of a consumption value

given an announced price with a potential subsidy. Finally, the advantages of the

scheme are numerically demonstrated; the ways in which the profits of the consumers

improve in comparison to a single retailer scenario is shown.

Chapter 7 provides a summary of the results achieved in the thesis and proposes

several possible directions for future work.





Chapter 2

Literature Review

In this chapter, the previous work that motivates the current research is presented. The

literature review is separated into subsections that focus on particular disciplines that

have been touched upon, such as the different models and equations used for the micro-

grid system, consumer and supplier models, and the utilised concepts from game theory.

The tools used for the analysis are also mentioned.

2.1 Network Models

The basis of the micro-grid models analysed in this study rests on the power flow and

frequency dynamics (1.1). When such micro-grids are interconnected in a network

topology an equivalence can be made to an averaging system based on the form of a

Laplacian matrix. We focus our research on the stability analysis of networks com-

prised of such micro-grid systems and the role of the parameters in the transient and

convergence of their response. The main result of the exponential stability of linear

systems composed by a row-stochastic matrix (the Laplacian matrix is a case of these),

its properties, the conditions for stability and the relation with the zero eigenvector was

first introduced in [10]. The paper explains in a generalized way how such systems are

constructed and provides a detailed demonstration of the ways in which synchronization

is achieved. The majority of the graph theory tools, analysis and main characteristics of

network systems are resourcefully and concisely explained in [5], mainly the properties

of the Laplacian matrix, its derivation from a network graph and the role of the algebraic

connectivity or Fiedler eigenvalue. All the concepts of graph theory used in this work

9
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are also explained in [5]. In [11] an example related to the Kuramoto oscillator is men-

tioned, these results are explained more extensively in [5]. The role of the Laplacian

in the swing dynamics and the analogy with the Kuramoto coupled oscillator model is

likewise studied in [5], where the latter denotes the angle θ dynamics of a node in a

network as

θ̇i = ωi−
n

∑
j=1

ai j sin(θi−θ j), i ∈ {1, ...,n}, (2.1)

where θi is the node angle, ωi is the phase and ai j is the weight of the edge connecting

nodes i and j. The approximation based on the swing dynamics (1.1) and the link with

the Laplacian for small phase angles is discussed in [11], we use this approximation in

the micro-grid model. In [11] there are also discussions regarding the role of the second

smallest eigenvalue of the network, the eigenvector of the Laplacian and how these kind

of systems accomplish synchronization.

In [12] an analysis of synchronization for networks of inverters is performed, the

results on the rate of frequency convergence are related directly to the algebraic con-

nectivity that is defined by the network topology, in our study we show a similar result

when the network has heterogeneous parameters for the agents. Our current study is

inspired by the previous contribution [4], where a stability analysis of micro-grids to-

gether with the study of the effects of damping and inertia for homogeneous micro-grids

was conducted. Part of the present studies differs from [4] in the sense that one of our

objectives is to take the heterogeneity between micro-grids. Another aspect that differ-

entiates our work is our intention to bridge the market layer to the physical layer of the

micro-grid network.

2.2 Modelling for Networks of AC Micro-Grids

The first of the micro-grid models used in the present work are derived from the swing

equation (1.1). Such an equation is known to represent, to decent approximation, the

dynamics of generators in electricity grids. As shown above, the swing equation is

characterized by its inertia and damping parameters. This power grid model is fre-

quently used, such as in [2], [3], [13], [14], and [15]. Although the swing equation

is well-known and established, it ignores non-linear dynamics such as the mechanical

rotational loss due to friction in the generators [16], such considerations are out of the
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scope of this study and these terms are approximated by the damping and inertia coeffi-

cients as in other conventional approaches. The model is employed in [15] as means to

implement a droop controller that we will mention later. The equivalent model for the

connection between two micro-grids is based on the reduction shown in [17]. We also

use the power flow model introduced in [18] under the assumption that all generators

in a micro-grid are operating synchronously. This model also has the form of a consen-

sus protocol which is thoroughly analysed in [13] and mentioned as an example in [5]

and [11].

Another instance of using the power flow equation to describe the power transfer

between two areas and linearising for small angles is derived in [19] and also employed

in the micro-grid model in [3]. Transient analysis on coupled homogeneous oscillators

and the relation between damping and inertial coefficients is investigated in [2] and [13].

These works also describe the conditions that these coefficients must fulfill in the form

of a perturbation parameter. Subsequent work in [20] shows the micro-grid network

model as a correspondence of the Kuramoto coupled oscillator, the network model is

subject to a frequency droop controller. The results regarding synchronization are also

related to algebraic connectivity. The role of the damping parameters in a network of

electrical generators is discussed in [21]; here it is explained that damping is not con-

sidered during the modelling of electrical systems but is produced as a result of physical

phenomena such as changing loads and control loops. The model mentioned above im-

plemented to a network of interconnected oscillators and the influence of disturbances

is also utilized in [3] though is focused in using game-theory to represent disturbances.

A study of the power flow and demand response in a distributed system of micro-grids

similar to the present one is carried out in [22], as main difference, we provide a stabil-

ity analysis. The basis of the present work is in the same spirit as [4], where a stability

analysis of micro-grids together with the study of the effects of damping and inertia for

homogeneous micro-grids was conducted. The present research differs from [4] as we

add the market layer to the physical layer of the micro-grid. From the latter, and by

taking into account heterogeneity in the network, a brief analysis of the influence of the

parameters on a micro-grid, along with a simplified version of the model used in the

present work is found in [23]. It is worth mentioning that some of the models studied

are input/output systems interconnected through diffusive coupling as in [24, 25], we
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Figure 2.1: One-line diagram derived from part of the London City Road Network as
in [1]

.

differentiate our work by focusing on the case for agents with heterogeneous parame-

ters.

2.3 Line Diagrams and Parameter Approximation

From the interconnected micro-grid models, a one-line diagram can be derived, these

kind of diagrams describe the ways in which different micro-grids are connected and

how the power is interchanged between them. We borrow from [4] the idea of convert-

ing the one-line diagram of an electrical micro-grid network into a dynamic network

and extend the approach to heterogeneous networks. The examples of existing UK

electrical network topologies and parameters in this thesis are obtained from [1]. In

such document, there are detailed diagrams for the 33 kV electrical network for the

London city road region in the United Kingdom. The diagrams presented served as a

reference for instances of existing electrical network topologies and some of their pa-

rameters. A representation of the above is shown in Fig. 2.1. Parameter approximation

for electrical networks and their use in the swing equations is studied in [2] and ref-

erences therein, the book also contains detailed analysis about the units in which the

damping of an electrical generator is measured as well as the procedure to obtain it.

We used such methods to approximate the data that was not available from [1] to fully

adapt the one-line diagram to our model.
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2.4 Analysis of Linear and Non-Linear Systems

Since this research project deals with complex network systems that can have matrix

representations of high order, we recur to various concepts to analise their stability. The

Gershgorin disc theorem is a tool we use to bind the possible values of the eigenval-

ues of a square matrix in the complex plane. The theorem was first introduced in [26].

It consists in computing areas in which the eigenvalues of our system’s matrix can be

located, these areas are obtained from the values of each of its rows. We use this as

means to show the transient dynamics of the system’s response, how the damping and

inertia values change the eigenvalue location and to find the rate of convergence of

such response. The method in the present study where we isolate the uncertainty in

the feedback loop of the system is explained in [27]. Such method consists on intro-

ducing a non-linearity in the feedback loop. This physically represents that the power

and frequency measurements in our micro-grid system are subject to disturbances. The

conditions obtained from [13] are also employed for the non-linearity sector calculation.

From [27] we also use the conditions for absolute stability, these include the conditions

for positive definiteness and showing that the system’s model is Hurwitz. The Routh-

Hurwitz criteria for obtaining the stability conditions for higher-order systems has been

studied and used as a tool for our closed-loop system configuration, numerous texts

explain the procedure and reasoning behind such criteria, a comprehensive explanation

can be found in [28]. The stability analysis of our droop controlled resistive network

configuration is performed via Jacobian linearization approximation around an equilib-

rium point. A concise explanation and method to perform such analysis is presented

in [29].

2.5 Consumer-Supplier Models and Ex-Ante Price

To derive the pricing schemes that are presented in this research we have to first charac-

terize the agents involved in the problem, which in our case is suppliers and consumers

of electricity. The supplier and consumer models that are analysed in this work were

first proposed in [6]. The main characteristic of such models is that both the supplier

and the consumers are considered to be price-taking, profit-maximizing agents. These

models are widely used in other works related to shiftable demand such as [3] and [30].
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Seller Buyer

p (p,K− p)

(0,0)

Buy=Yes

Buy=No

Figure 2.2: Following game where a seller announces an item of price p, value K to the
buyer and no value to the seller. The buyer can decide to buy or not to buy, choosing
the latter yields a payoff of 0 to both players. The seller has to consider the buyer’s
responses while formulating p.

Additionally from [6], the standard characteristics of both cost and utility functions

for supplier and consumer respectively are employed, namely, both are monotonically

increasing and convex and concave respectively. The formulation used in the current

study for the ex-ante price is also introduced in [6], such price can be calculated from the

derivative of the supplier’s cost function evaluated at the value of an estimated supply

which is in turn obtained from a recorded previous demand. As part of the formula-

tion of the ex-ante price, the supplier’s cost function must be defined, we refer to the

cost for electricity generation mentioned in [31]. Such cost has been experimentally

validated for thermal generators in [32] and is otherwise generally accepted as a sound

approximation as seen in [33], [34] and [35].

2.6 Stackelberg Game and Incentive Strategies

The pricing schemes presented here are formulated using game-theoretic concepts and

models. The basic concepts of game theory that are used in this work are explained

in [8], such as the definition of equilibrium and strategy, Nash equilibrium, the Bertrand

and Cournot models and mainly the formulation of the Stackelberg game model. A

Stackelberg game is a two-player extensive game in which a “leader” chooses an action

based on the possible rational response of its “follower”, who in turn, informed of the

leader’s choice, chooses an action. We have selected to base our schemes on such a

game since it fits a common market dynamics that is simple and easy to relate, under-

stand and is the only one that allows to capture the hierarchical structure that takes place

in the electricity market. A simple example of this is shown in Fig. 2.2.
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The variation of the Stackelberg game via an introduction of an incentive strategy

was first presented in [36]. The main difference with the classic Stackelberg game is

that the leader in the game announces a function or ‘incentive’ which depends on the

follower’s own response, that is, instead of just a single decision, the follower now has

a space of decisions. This variation is used in our study since the leader-follower dy-

namic fits the one of the system operator-consumer in a dynamic pricing scenario. In

our current study, we use a linear function of the power consumed by the follower to

represent the incentive strategy. A literature review was performed in order to find out

what kind of incentive strategies are employed when this kind of game is used. On [37]

fundamental results about mean-payoff games are shown, the paper uses a vector no-

tation to include all followers and refers to it as strategy profiles for all followers; in

the examples only proportional strategy profiles are employed. In [38] and [39] the for-

mulation of linear-quadratic games with non-cooperative followers is presented. In the

first, linear strategies are explicitly and exclusively used for their purpose. In the latter,

linear strategies are used as an example, though it is not discarded that other types of

functions can be employed. Examples of the Stackelberg game with incentive strategies

are examined in [40] and [41]. In [40] a way to control road traffic flow is presented,

two results are shown, the first uses a linear strategy, the second uses a non-linear ex-

ample comprised of a linear function and then an exponential one for certain domains.

A very interesting example of how a game of counter-terrorism would be modelled

using the Stackelberg game is presented in [41]. In the example linear and quadratic

functions are employed, it is mentioned explicitly that they are formulated that way for

the sake of tractability and simplicity. Our justification of choosing a linear function

for the incentive strategy comes from the analogy that commonly in the literature the

price of energy to the consumer is chosen proportionally to the total demand from all

the users [31]. Other examples of this practice are found in [3], [42] and [43]. For prac-

ticality sake, the linear price function and generation cost function used in this study

have been based and adapted on the ones from [30]. Although incentive strategies on

micro-grids have been previously studied in [3], they are implemented as a reward to

the consumer when participating in an on-line pricing scheme. Another reward scheme

is formulated in [22], the paper discusses a way to adjust the power consumption by

trading the one generated and stored by the user. Opposed to [3] and [22], the pricing
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scheme we have derived outputs a personalised price to each consumer.

2.7 Demand Response and Load Modelling

Even though is not widely used, the shift in demand response from electricity consumers

given an input can be approximated to the response of a first-order system. The demand

dynamics employed in this research employ such approximation as means to stream-

line the systems we propose. The first-order approximation for electricity demand was

introduced in [44]; other examples of this for households and businesses can be found

in [45] and [46]. The justification of this comes from the reasoning that the majority of

the energy consumed by these kinds of buildings comes from heating/air conditioning

systems, these types of devices possess the mentioned behaviour. The conventional way

to model dynamic loads in electrical systems was first introduced in [47], in this paper

it is mentioned that, depending on the type of load to simulate, a series of parameters

must be selected to be substituted in a non-linear differential equation. The method

for load modelling mentioned above is generally used in power systems literature, such

as [15] and [48]. A comprehensive set of explanations about how to model static and

dynamic loads, how to select the parameter values for each type of load (i.e. motors,

incandescent lights), and how to linearise the equations in [47] is presented in [49] and

references therein.

2.8 Stackelberg Game and Micro-Grids

New articles have been emerging that propose the use of the Stackelberg game for on-

line pricing in micro-grids. The survey in [50] presents a summary of the potential

of applying game-theoretic models to address significant and open problems in areas

that relate to the smart-grid paradigm. Examples of the use of the Stackelberg equi-

librium for demand management problems are found in [51–56], where [51] and [52]

focus mainly on electric vehicle charge management and [53] demonstrates its feasibil-

ity numerically. The existence of equilibrium points using game-theoretic approaches

including the Stackelberg one is demonstrated in [54] and [55]; in [56] the Stackel-

berg approach is used in conjunction with evolutionary algorithms for on-line pricing
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schemes. In [57] algorithms that use the same kind of game are proposed, the inputs

to their proposal include the economic factors and the power and voltage regulations.

However, there is no analysis of the stability of the electrical system by introducing the

pricing scheme. Another proposal where the game is used is found in [58], the paper

demonstrates the existence of an equilibrium price for both leaders and followers in the

system, however, the stability analysis together with the physical system integration is

also not performed. From the above, although the use of the Stackelberg equilibrium in

demand-side management for micro-grids is not an uncommon proposition, to the best

of our knowledge, the majority of works that make use of it do not take into account the

stability of the physical systems where such schemes are applied [51]- [58]. The main

difference between our current study and the papers mentioned above is the implemen-

tation of the incentive strategy as means to formulate the price. We can also see that

there exists an open challenge in bridging the market layer with the physical layer of

the micro-grid system when employing a game-theoretic approach for dynamic pricing.

2.9 Resistive Network Model

In an effort to implement our derived pricing schemes on other types and scales of

micro-grid systems, we employ the representation of their equivalent resistive networks.

The resistive network model is a modification of the AC micro-grid model, the change

comes from the fact that in low voltage configurations, the inductive element of the

transmission lines between the elements of the micro-grid network is less dominant than

the resistive part. This in consequence matches the model of the DC micro-grid while

maintaining AC. An example of the elements of the transmission lines is illustrated in

Fig. 2.3. The power representation for each unit in the micro-grid network is given

by (1.2).

Such a model has an equivalence to the system’s conductance matrix [59], its proper-

ties and its interpretation as a loopy Laplacian matrix are explained in [60]. The conduc-

tance matrix is frequently employed in the modelling of energy pricing schemes such as

stochastic dynamic pricing [61], power balance-based optimization methods [62], day-

ahead frequency-based electricity markets [63], among others. An analysis for the con-

ditions for stability in droop controlled micro-grids connected in a network topology is
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Figure 2.3: Equivalent model of a transmission line between nodes i and j in a micro-
grid network.

carried out in [64], the results are useful for inductance dominant networks, the cases for

resistive networks are addressed briefly by indicating the changes that should be made

to adapt the model. The derivation of the resistive network equations is thoroughly ex-

plained in [65]; the book also provides a survey on the state of the art in micro-grid

control, which are based on the distributed cooperative control of multi-agent systems,

as well as primary techniques for both AC and DC control. In [66] a study about the

relationship between the distance of a generator to a load and the power contribution to

the latter is decreased when implementing Power/voltage droop controllers. The authors

in [66] also demonstrate that the power modification that accompanies such controllers

is beneficial as it leads to lower power losses. An examination of the behaviour of DC

circuits is performed in [48], the paper makes use of the power equations we are using,

such equations express the power in each node in a resistive network of interconnected

power devices. The results in the paper deal with the interplay of the network topology

and also the definition of a nominal voltage level for the circuit. A variation of the droop

controller for resistive low-voltage networks is presented in [67], a procedure for the se-

lection of the gains for the controller is explained and numerical results for a network

system subject to disturbances are provided. The resistive network power dynamics

have also an equivalence to a non-linear consensus algorithm as mentioned in [68].

Where a Lyapunov function analysis is performed and results on the convergence of the

response to a consensus is demonstrated. A subsequent study of the non-linear consen-

sus algorithm is presented in [69], in the paper, the convergence of the algorithm while

it is adapted to power networks is analysed. An extended analysis of the same kind of

non-linear consensus protocols was originally introduced with examples in [70] where

the analysis for the general case and applications to unmanned aerial vehicles for such

algorithms is presented. The resistive network model we use in the later parts of our
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study is also widely considered when designing droop controllers [71]. Additionally, to

the best of our knowledge, the present study marks the first time the conductance matrix

is used as means to derive a coalitional game-based pricing scheme.

2.10 Droop Controller

As briefly touched in Chapter 1, to model the voltage dynamics of a micro-grid we

utilise droop control. This type of controller is used in AC power generators, it con-

sists of balancing the frequency of the elements of a micro-grid by regulating the power

output. Droop controller modeling for micro-grid systems remains an open problem

in engineering. Even though the main focus of our investigation is not the design of

such controllers, we make use of the one proposed in [72]. Such paper shows results on

voltage and frequency synchronization, it also demonstrates stability conditions to inte-

grate distributed generators into power networks. Because of the nature of the resistive

network dynamics, we employ the P-V droop control variation, which balances power

and voltage similarly to the more common frequency-reactive power configuration. An

example slope for the P-V droop is illustrated in Fig. 2.4, from it, the voltage expression

for unit i in a micro-grid can be given as

Vi =Vmax− k(Pi−Pre f ), (2.2)

where Vi is the unit voltage, Pi the unit power, Vmax and Pre f are rated reference values

for voltage and power respectively and k is a scalar gain based on a selected percentile

deviation for the voltage. In the UK, in a micro-grid with low-voltage configuration Vmax

would be around 230V. This static expression (2.2) can be implemented in a dynamic

form as in [64], where it is stated that if the measurement of the power is calculated

through a low-pass filter, the latter is the one that brings it into such form.

Droop controllers have been implemented in resistive networks previously in [71],

however the one proposed in the paper is of quadratic nature different to the simplified

linear one we are using. In [71] a stability analysis is performed for a network of loads

and generators subject to their proposed controller. As will be explained later, we em-

ploy the resistive network dynamics and subject it to droop control [72]; which in turn

has been modified to have bounded outputs [73]. The latter is necessary since the node
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Figure 2.4: P-V droop control slope example.

voltages should remain within specified limits from the rated voltage. The expressions

for the bounded droop controller used in this work are based on the bounded integral

control theory from [74]. Bounded integral control maintains the well-established inte-

gral control concept with guaranteed bounds without any saturation units that compli-

cate the analysis and that can lead to integrator windup.

2.11 Coalitional Games in Micro-Grids

In the last of our derived pricing schemes we propose the use of coalitional game the-

ory as means to encourage competition and collaboration among players by leveraging

the connectivity of cyber-physical systems. Coalitional games study the ways in which

players can “ally” and cooperate in order to improve their welfare. The fundamentals

about coalitional game theory are studied in detail in the tutorial [9], along with appli-

cations to communications. A review of the use of coalitional games with a justification

for their use in power networks is carried out in [7], where the types of cooperation ap-

plicable to electrical systems are explained, including the ways in which these and the

behavior of the agents involved can be modeled in a game-theoretic fashion.

The use and formulation of cooperative coalitional games in micro-grids was first

introduced in [75], where the proposed algorithm focuses on reducing power losses and

costs by forming coalitions of neighboring micro-grids. Similarly, in [76] the coalitions

are formed between micro-grids in a macro station, where their profits are distributed

using the Shapley value. A similar approach is used in [77], where a case study with
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existing data is performed. A centralized algorithm where the micro-grids trade with the

macro station is studied in [78], in this the payoff functions to maximize are dependent

on the ordering of the joining micro-grids. A study of the case where greedy prosumers

do not align with the micro-grid’s decision is presented in [79], there, a balanced game

is proposed without the need of calculating the imputation set. The problem formulated

in [80] minimizes discomfort, which is modeled as a non-linear function of the power

deficit in the micro-grid. The coalitions can be formed between macro stations, such as

in [81], where it is numerically shown the ways in which the price is affected by them.

A game where local micro-grids cooperate without the participation of a main grid is

presented in [82], this is done by assuming a known non-flexible demand. In [83] the

introduction of auction theory is used to define the pairing of micro-grids that buy and

sell. The game proposed in [84] divides the players between consumers and the micro-

grid itself, where the latter outputs its payoff function to the consumers; additionally,

the calculations for an imputation set is omitted. The same author also proposes the use

of evolutionary game theory in conjunction with coalitions [85], where the price is a

quadratic function of the consumption. An interesting bidding system for cooperating

prosumers is presented in [86], however constraints on power capacity and losses are

ignored.

From the above, it can be seen that the use of coalitional games in the subject of

micro-grids is a very recent topic, however, to the best of the authors’ knowledge, the

majority of the works do not take into account the dynamics of the physical systems

where such schemes are applied, such as [75,77,79,81–86] among others. Additionally,

with a few exceptions [82,84–86], the coalitional games proposed in the literature do not

address the end consumers themselves as players, and none of them present a scheme

in where there are multiple retailers to choose.

2.12 Conclusion

Having covered multiple works in different disciplines that, because of the technologi-

cal resources available today, are increasingly interacting with each other, it is important

to get some insight on the ways in which some of their concepts are compatible and what

aspects are left to be explored.
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Table 2.1: Most important literature by topic.
Topic Key Literature

Network systems and graph theory [5, 10, 11]
Micro-grid network modelling [2–5, 11–13]
Linear and non-linear systems analysis [13, 26, 27]
Consumer-supplier modelling [3, 6, 30, 33]
Stackelberg game and incentive strategies [36, 38, 41]
Stackelberg game in micro-grids [51, 53, 58]
Resistive networks [60, 65, 68, 71]
Droop control [64, 71–73]
Coalitional games [7, 9, 87, 88]
Coalitional games in micro-grids [75–77]

Table 2.1 contains the key literature that serves as foundation for this research

project, we have selected the most influential works and separated them by field.

One of the open challenges identified that motivate the present study lie mainly in

the stability analysis of the micro-grid network model when heterogeneity is present

between the agents; and the role of the heterogeneity in terms of the system’s response.

Another significant aspect is joining the physical layer of the system to the market layer

of the dynamic pricing paradigm, as seen above, the large majority of papers focused

in deriving a pricing scheme for the micro-grid system do not take into account the

physical system’s equations. An important focus of our study is the implications that

arise from connecting those layers and the further studies that this implies, an stability

analysis for example. Another significant aspect that differentiates our study from the

previous ones is our implementation of the incentive strategy and the multiple retailer

scheme in a coalitional game framework, both constitute novel approaches to the field of

dynamic pricing schemes for micro-grid systems. We believe that the multiple retailer

scenario fits the use of coalitional games and needs to be studied, since this approach

matches the current needs of energy trading platforms, such as [89, 90] and recent end-

user price comparison tools like [91].



Chapter 3

Stability of a Network of Micro-Grids

under Uncertainties

3.1 Introduction

This chapter investigates the dynamics of a network of micro-grids, more specifically

the effect of oscillations during the system transient response. A micro-grid is modeled

using the swing dynamics and integrating parameters for damping and inertia. The

interconnection between micro-grids is modeled via the coupled oscillator archetype

and the resulting dynamics is described by a graph-Laplacian matrix. The transient

analysis is extended to a number of cases to gain insight on the role of the parameters

and the connectivity.

Different to our previous work in [23], here the interplay between the transmission

dynamics and the micro-grid dynamics is investigated by obtaining the conditions for

stability when the system is subject to uncertainties. This is also a continuation of

the study in [4] about the effects of the parameters of homogeneous micro-grids on

their transient stability. We now enhance the approach to networks with heterogeneous

elements.

Although the presented model is a simplified representation for individual micro-

grids, it has been proven to be useful as a tool for the study of smart-grid related sub-

jects, such as demand-side management in [92] and real time pricing [3]. This chapter

provides a more in-depth stability analysis and yields some other highlights that might

not be entirely practical in nature but are interesting nonetheless.

23
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The parameter heterogeneity that is involved in the present study can be useful in

the design of modern power systems, since the impact of inertia is a present challenge

[93,94], as more low-inertia systems such as renewables are being commonly integrated

into current power networks [95].

This chapter is structured as follows. In Section 3.2 we state the problem and in-

troduce the model. In Sections 3.3 and 3.4 we present our findings. In Section 3.6

we provide numerical examples. Finally in Section 3.7 we provide conclusions and

comment on the ways in which this model can be subjected to pricing mechanisms.

3.1.1 Summary and Contributions

Firstly, the relation between the transient stability and consensus dynamics is explored

under the assumption that the micro-grids are homogeneous, namely every micro-grid

in the network has equal parameters. This study sheds light on the ways in which dif-

ferent damping coefficients influence the frequency and power flow consensus values.

Secondly, stability analysis for the heterogeneous case is performed by estimating

the system’s eigenvalues based on the Gershgorin disc theorem. The conditions that

ensure absolute stability, namely the case in where the measurement of the system’s

states are subject to non-linearities and uncertainties, are also explored.

Thirdly, simulations are performed using different topologies; emphasizing the ways

in which the connectivity of the network affects the time constant of the transient re-

sponse. Additionally, the present work also involves the adaptation of the proposed

model to real instances in the UK electrical network and the calibration of the nodes’

parameters using data of the power capabilities of the micro-grids, simulation results

also show the system’s response when subject to parameter change over time.

3.2 Problem Statement and Model

This chapter mainly addresses the analysis of the transient dynamics of a network sys-

tem comprised of interconnected micro-grids and the influence of the parameters and

topology of the network on the stability. More specifically, the ways in which the het-

erogeneous parameters in the network influence the eigenvalues of the overall system.

Furthermore, we investigate conditions that guarantee absolute stability, that is, the
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maximum magnitude of uncertain non-linear parameters that the system can withstand

when subject to such uncertainties.

Our approach allows to link the transient response to the connectivity of the equiv-

alent network graph, approximate the position of the eigenvalues and the bounds of the

values these can take depending on the different micro-grid parameters, derive condi-

tions for stability, and determine the maximum amplitude of uncertainties in terms of

the parameters of each micro-grid.

The dynamic model of a single micro-grid i in a network describes the power flow Pi,

which follows the first-order differential equation:

Ṗi = ∑
j∈Ni

Ti j

σi
( f j− fi)−

µi

σi
Pi, (3.1)

where fi and f j are the frequencies of micro-grids i and j respectively, Ti j is the synchro-

nizing coefficient which represents the maximum power transfer between micro-grids

i and j [5] in MVA, where Ti j = |Vi||Vj||Yi j| and Yi j is the inverse of the impedance

Zi j of the transmission line {i, j}, Fig. 3.1 shows the equivalent circuit representation

for the interconnection of two micro-grids [17], σi and µi are the transmission inertia

and damping coefficients respectively. If micro-grid i is connected to multiple other

micro-grids, then the first term is a sum of the adjacent micro-grids Ni to micro-grid i

as will be explained later. The second term helps describe the characteristic response of

the power transmission. From (3.1) it can be seen that the power flow depends on the

frequency error f j− fi. A physical interpretation of this is that if fi < f j then the power

flows from micro-grid j to micro-grid i; in contrast if fi > f j then the power flows from

micro-grid i to micro-grid j. The model of micro-grid i also involves the dynamics of

frequency fi represented by the swing equation [3, 92]:

ḟi =−
Di

Mi
fi +

1
Mi

Pi, (3.2)

where Di and Mi denote the micro-grid swing damping and inertia coefficients respec-

tively. In electrical systems, the damping Di is obtained as a result of changing loads

and control loops [21] and is measured in MJ/rad. Mi is the moment of inertia caused

by the rotors of the electric generators in the micro-grid [2, p.438] and is measured in

MJ-s/rad. Note that due to the simplification of the micro-grid model, its parameters
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Ei Vi

Zi

E jVj

Z jZi j = 1/Yi j

Figure 3.1: Equivalent circuit representing the connection between micro-grids i and j,
with shunt conductances Yi = 1/Zi.

f j +

−

e Ti j
σis+µi

1
Mis+Di

fiPi

Figure 3.2: System block representation of micro-grid i.

are estimated [2] and contain part of the nonlinear properties [16]. Figure 3.2 shows the

system block representation of the system (3.1)-(3.2).

The state space representation of the system is obtained by introducing the state

variables Pi = x(i)1 , fi = x(i)2 and taking f j = x( j)
2 as an external input. Model (3.1)-(3.2)

is rewritten as:  ẋ(i)1

ẋ(i)2

=

 −µi
σi
−Ti j

σi

1
Mi

−Di
Mi

 x(i)1

x(i)2

+
 Ti j

σi

0

x( j)
2 . (3.3)

A system of interconnected micro-grids can be modelled by a graph like the one

shown in Fig. 3.3. Each node represents a micro-grid and each edge the power line that

connects two of them; the connectivity of a micro-grid is captured by the degree di of

the corresponding node, which is equal to its number of connections. In the unweighted

and undirected case, di is equal to the number of edges that are incident to node i.

By extending (3.3) to the case of a system of n micro-grids we obtain the state-space

model (3.5). The block matrix that contains the synchronization parameters Ti j is linked

to the graph-Laplacian matrix, given by
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Hoxton

Finsbury

Canal St.

Seacoal Ln.
Beech St.

City Rd

Mansell St.

Devonshire Sq.

City Rd. C

City Rd. B

Figure 3.3: Graph topology analogous to the micro-grid network in [1].

L :=


T11 −T12 · · · −T1n

−T21 T22 · · · −T2n
...

... . . . ...

−Tn1 −Tn2 · · · Tnn

 , (3.4)

where the diagonal entries correspond to the sum of the weights of the outgoing edges,

while the off-diagonal entries are the weights of the adjacency matrix A of the network.

Let us recall that the Laplacian of a graph is expressed as L = Dout−A, where Dout is a

diagonal matrix whose elements are the out-degree of the nodes. The Laplacian matrix

is then used to represent the system dynamics in matrix form as follows



ẋ(1)1
...

ẋ(n)1

ẋ(1)2
...

ẋ(n)2


=



−µ1
σ1
· · · 0 −T11

σ1
· · · T1n

σ1

0 . . . 0 . . .

0 · · · −µn
σn

Tn1
σn

· · · −Tnn
σn

1
M1

· · · 0 −D1
M1
· · · 0

0 . . . 0 0 . . . 0

0 · · · 1
Mn

0 · · · −Dn
Mn





x(1)1
...

x(n)1

x(1)2
...

x(n)2


. (3.5)

Let X j = [x(i)j ]i=1,...,n then

 Ẋ1

Ẋ2

=

A︷ ︸︸ ︷ −diag(µi
σi
) −diag( 1

σi
)L

diag( 1
Mi
) −diag(Di

Mi
)

 X1

X2

 , (3.6)

where diag(Di/Mi) and diag(µi/σi) denote diagonal matrices with main diagonal en-

tries equal to the damping to inertia ratio and diag(1/Mi) and diag(1/σi) are diagonal
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matrices with main diagonal entries equal to the inverse of the inertial constants Mi and

σi of each micro-grid i. The state variables X1 and X2 are the vectors of power flows Pi

and frequencies fi of each micro-grid i for i= 1, . . . ,n. Based on the micro-grid network

model introduced above, we now leverage the two following derivations to help study

its stability.

3.3 Preliminary Derivations

In this section, we review a couple of preliminary results on the determinant of the

micro-grid network system and the Gershgorin disc theorem which will be used in the

following sections to show the ways in which the eigenvalues are obtained and subse-

quently the conditions for the system’s stability.

3.3.1 Transient Dynamics of the Micro-Grid Network System

The first preliminary derivation is about the transient dynamics of system (3.6). For this

purpose, we need to obtain the eigenvalues of matrix A. For an unweighted, undirected

network of heterogeneous micro-grids with inertial coefficients Mi,σi and damping co-

efficients Di,µi, to find the eigenvalues of system (3.6), the roots of det(λ I−A) must

be obtained. Taking A as a square block matrix, its determinant is obtained as

det(λ I−A) = det(

λ I +diag(µi
σi
) diag( 1

σi
)L

−diag( 1
Mi
) λ I +diag(Di

Mi
)

) (3.7)

= det
(

λ
2I +λ (diag(

Di

Mi
+

µi

σi
))+diag(

µiDi

σiMi
)+diag(

1
σiMi

)L
)
.

By denoting Ψ := diag(Di
Mi
), Φ := diag( 1

Mi
), Γ := diag( 1

σi
) and κ := diag(µi

σi
), the de-

terminant (3.7) is rewritten as

det(λ I−A) = det(λ 2I +λ (Ψ+κ)+κΨ+ΓΦL). (3.8)

System (3.6) is stable if all its eigenvalues λi lie in the left-hand-side of the complex

plane. The following theorem illustrates the ways in which an estimation of the eigen-

values of matrix A can be obtained.
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3.3.2 Gershgorin Disc Theorem

This theorem is a well known concept used to encircle the possible values of the eigen-

values of a square matrix in the complex plane. Let Ann be a n× n matrix and let ai j

be its i jth entry. For each i ∈ 1, . . . ,n let the radius Ri = ∑ j 6=i |ai j| be the sum of the

absolute values of the non-diagonal elements in the ith row. Let ∆(aii,Ri) be the closed

disc centered at aii with radius Ri. Such disc is called a Gershgorin disc.

Theorem 1. Every eigenvalue λi of Ann lies within at least one of the Gershgorin discs

∆(aii,Ri).

Proof. We refer the reader to the original paper by [26] for full details of the proof.

3.4 Stability and Response Analysis

In this section, we present results related to the transient of the system. First, an estima-

tion of the eigenvalues of system (3.6) is provided using the Gershgorin disc theorem.

Furthermore, a discussion of the ways in which the eigenvalue that is closest to the ori-

gin affects the system’s response is presented. Secondly, the eigenvalues are obtained

for the case when the damping to inertia ratios are normalised to one and the inertia is

either equal to one or has different values for each micro-grid. Thirdly, a procedure to

identify regions containing the eigenvalues of the system is shown.

3.4.1 Eigenvalue Location and Response Bounding

In the following, we focus on obtaining an estimation for the eigenvalues of A taking

mainly into account the different damping to inertia ratios of the micro-grids. For the

analysis utilizing the Gershgorin disc theorem, two sets of discs are obtained. For the

first one, we take Di > 0 and Mi > 0 for i = 1,2, . . . ,m. Then we obtain a disc ∆
(1)
i in

the first set which encloses the position of an eigenvalue λi in the complex plane. Let

R(1) = 1/Mi, then the disc ∆
(1)
i is given by

∆
(1)
i (−Di

Mi
,

1
Mi

) = {ξ : ξ ∈ C | | ξ +
Di

Mi
| ≤ R(1) } . (3.9)
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Every disc ∆
(1)
i has a radius equal to R = 1/Mi and is centered in −Di/Mi on the real

axis of the complex plane. For the second set of discs denoted by ∆
(2)
i , let us set µi > 0

for i = m+ 1, m+ 2, . . . ,n. Let R(2) = ∑ j∈Ni |li j|/σi, then we obtain a disc ∆
(2)
i in the

second set given by

∆
(2)
i (−µi

σi
, ∑

j∈Ni

1
σi
|li j|) = {ξ : ξ ∈ C | | ξ +

µi

σi
| ≤ R(2) } . (3.10)

Every disc ∆
(2)
i has a radius equal to R = ∑ j∈Ni |li j|/σi and is centered in −µi/σi on

the real axis of the complex plane. Here we denote by |li j|= |Ti j| the absolute value of

the i jth element of the Laplacian L. Let us recall that the spectrum of A is the set of

eigenvalues {λ1,λ2, . . . ,λn }.

Lemma 1. For the spectrum of matrix A we have

spec(A) ∈
m⋃

i=1

∆
(1)
i (−Di

Mi
,

1
Mi

)∪
n⋃

i=m

∆
(2)
i (−µi

σi
, ∑

j∈Ni

1
σi
|li j|). (3.11)

Proof. Recalling the Gershgorin disc theorem, all eigenvalues of the system are con-

tained within the union of all areas of the discs. The centre of each disc is situated on

each of the diagonal elements of A in (3.6), the radius of each disc is equal to the sum

of the rest of the elements in the matching row.

In the following, we present some results in the case where the transmission dynam-

ics is much faster than the swing dynamics. This is an assumption that is commonly

found in the literature since it yields the standard swing equation [3, 4, 23] because of

the difference in the parameter’s magnitude.

Assumption 1. The transmission damping coefficient µi is much larger than the swing

damping coefficient Di, µi� Di.

If Assumption 1 holds, let us then assume without loss of generality that the nodes

are ordered decreasingly in the damping to inertia ratio as follows:

− µn

σn
<−µn−1

σn−1
< .. . <−µm+2

σm+2
<−µm+1

σm+1
�

− Dm

Mm
<−Dm−1

Mm−1
< .. . <−D2

M2
<−D1

M1
. (3.12)
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Im

Re
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1
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|li j|

−µi
σi

λ̂i = ∑ j∈Ni
1
σi
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σi

λ̄1 =
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M1

1
M1

−D1
M1

Figure 3.4: Gershgorin disc configuration example.

In other words, the ratio−D1/M1 corresponds to the micro-grid with the smallest damp-

ing to inertia ratio and is the centre to the disc that encircles the smallest eigenvalue λ1.

Before presenting the next result, let us define the closest point of each disc to the

origin as the upper bound of ∆
(1)
i and ∆

(2)
i respectively as

λ̄i :=
1−Di

Mi
, λ̂i = ∑

j∈Ni

1
σi
|li j|−

µi

σi
. (3.13)

Figure 3.4 shows a possible configuration of the discs and their upper bounds in the

complex plane.

Theorem 2. System (3.6) is asymptotically stable if for the upper bound of its smallest

eigenvalues it holds

λ 1 := max
i
{λ̄i, λ̂i}< 0. (3.14)

Furthermore, the rate of convergence satisfies

|x(t)− xeq| ≤ ϒ2neλ 1t , (3.15)

where xeq is a generic equilibrium point and ϒ2n is an opportune 1×2n vector.

Proof. Let any point p̄i ∈ ∆
(1)
i and similarly, let p̂i ∈ ∆

(2)
i be given, it holds that ℜ[p̄i]<

λ̄i; ℜ[p̂i]< λ̂i. It follows that if condition (3.14) holds true, then ℜ[p̄i],ℜ[p̂i]< 0, and

therefore, the real part of the eigenvalues is negative.

To proof the result about the rate of convergence, let us sssume that A is diagonal-

izable. By obtaining all eigenvalues {λ1, . . . ,λn} of A, an eigenvector matrix V can be

computed, as well as its inverse W = V−1. The modal transformation of A is obtained
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from

WAV = diag({λ1, . . . ,λn}) = Λ, (3.16)

which results in a diagonal matrix Λ where each of its elements contain an eigenvalue

of A. The response of the system for a given initial state x(0) and zero input is now

expressed as

x(t) = VeΛtWx(0), (3.17)

the rate of decay of the smallest eigenvalue λ1 is dominant for the system’s response.

Since λ 1 upper bounds the smallest eigenvalue λ1, every state of (3.17) is exponentially

bounded by λ 1. Namely the system converges to an equilibrium xeq as in (3.15).

Remark 1. In the proof above, although we employ the modal transformation to show

the rate of convergence, there can be certain network topologies and micro-grid param-

eters that can make the system matrix A non-diagonalizable (i.e. not all of its eigenval-

ues are unique). However, the rate of decay of the response is still bounded by the small-

est eigenvalue, this is true for especial cases of Laplacian-based systems [5, 12, 87].

From the discs representation in Fig. 3.4 we can see that the radius of each disc ∆
(2)
i

depends proportionally on the topology by means of |li j| of the Laplacian. Therefore,

the eigenvalues are tied to the network’s connectivity.

From Fig. 3.4 it can also be seen that the imaginary part of the eigenvalues is

bounded by the radii of the discs. Namely, the maximal amplitude of the frequency of

the oscillations is bounded by the radius. Moreover, without altering the topology, if

the inertia coefficients σi and Mi increase, the discs are shifted to the left with a reduced

radius. Conversely, if decreased, the discs shift to the right and the radii expand, leading

to larger and faster oscillations in the transient.

3.4.2 Effect of Inertia on Eigenvalues

In this section, two cases are analyzed. In the first one, the eigenvalues of the system

are obtained for the ideal case when all of its parameters are normalised to one. In the

second, all inertia coefficients are considered different in order to emphasise the ways
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in which such parameters affect the transient. A result for each case is shown below.

Let us now state the first assumption.

Assumption 2. All damping and inertia coefficients in (3.6) are unitary, namely µi =

Di = 1, and σi = Mi = 1 for all i, so that κ = Γ = Φ = Ψ = I ∈ Rn.

This is a strong assumption, however, it is useful for the purpose of isolating the

effect of the topology in the network’s eigenvalues and subsequently illustrate the rate

of convergence towards the consensus value. Such will be relaxed by Assumption 3.

Let us denote dmax as the maximum degree of all the nodes in the network, namely

dmax := maxi {di} which identifies the node with most connections and its quantity.

Theorem 3. Let Assumption 2 hold true. Then system (3.6) is stable. Furthermore, the

maximal frequency of the oscillations is bounded by

√
2dmax. (3.18)

Proof. From Assumption 2, the determinant (3.8) is rewritten as:

det((λ 2 +2λ )I +L+ I) =
n

∏
i
((λ 2 +2λ )I +ηi), (3.19)

where ηi denotes the ith eigenvalue of −(L+ I). Taking (3.19) equal to zero, the eigen-

values of A, which we denote by λi are then obtained as

λ
+
i =

−2+
√

4+4ηi

2
, λ
−
i =

−2−
√

4+4ηi

2
, for i = 1, . . . ,n. (3.20)

From (3.20) and from the fact that by definition ηi ≤ −1∀i ∈ {1, . . . ,n}, it can be

deduced that ℜ(λi) is negative for all eigenvalues, hence the network system is stable.

As discussed in [5], the smallest eigenvalue of−L is lower bounded by −2dmax. By

extension, the lowest bound for the smallest ηi is equal to−2dmax−1. From this, we can

infer bounds on the argument of the square root of (3.20) which is the imaginary part of

the eigenvalues. This in turn establishes that the maximal oscillation frequency of the

system’s response depends directly on the topology, substituting said bound in (3.20)

we get
√

2dmax.

For the second case, since matrices Φ and Γ are diagonal, ΓΦL is equal to the
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Laplacian L scaled by 1/σiMi on each row :

ΓΦL =


l11

σ1M1
· · · l1n

σ1M1
. . .

ln1
σnMn

· · · lnn
σnMn

=


1

σ1M1
l1

...
1

σnMn
ln

 , (3.21)

where li is the ith row of L. Note that by definition, the eigenvalues of a Laplacian

L are non-negative with its smallest eigenvalue equal to zero. Such eigenvalues are

non-positive for −L. Scaling L by any positive scalar, will not affect the sign of the

eigenvalues but these will be compressed or expanded depending on the scalar.

The next result shows that stability is guaranteed under weaker conditions than the

ones in Theorem 3 and serves to highlight the effect of the inertia coefficients on the

eigenvalues. This can be justified in the sense that, as emphasised by [93, 94] and

references therein, a current problem in power systems is the tendency towards adopting

generation devices that do not have inherent inertia, resulting on low-inertia micro-

grids. Studying the effect of different inertia parameters in the network is pivotal in the

stability of the overall system.

Assumption 3. All damping to inertia ratios in (3.6) are unitary, namely µi/σi =

Di/Mi = 1 for all i, so that Ψ = κ = I ∈ Rn.

Let us define σmax and Mmax as the largest inertia coefficients in the system, namely

σmax := maxi {σi}, Mmax := maxi {Mi}.

Theorem 4. Let Assumption 3 hold true. Then system (3.6) is stable. Furthermore, the

maximum frequency of the oscillations is upper bounded by√
2Mmax

dmax

σmax
. (3.22)

Proof. With Assumption 3 in mind, the same expression (3.20) can be obtained from

the determinant (3.8), substituting ηi with µ̂i which is the ith eigenvalue of−(ΓΦL+ I).

The scaling of the Laplacian shifts the discs closer to the origin. Furthermore, in-

troducing the eigenvalues of −I we obtain that all µ̂i < −1 and therefore all eigen-

values are negative. The bound of the imaginary part of the eigenvalues is obtained

by substituting the lowest bound for the smallest µ̂i in (3.20) which in this case is

−2dmax/σmaxMmax −1.
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3.4.3 Clusterization

In this subsection, we introduce a tool that allows to differentiate and segment the

area(s) in the complex plane where the eigenvalues can be located. The union of the

area of a number of overlapping discs derived from system (3.6) can be referred to as a

cluster.

Theorem 5. The number of clusters is obtained from

∑
i
I
[ i⋃

j=1

∆ j∩
n⋃

j=i+1

∆ j = /0
]
, (3.23)

where I[·] denotes the indicator function, and ∆ j is any disc in the complex plane.

Proof. Depending on the values of Di and Mi and ordering the discs as in (3.12), there

can be an instance where the equality

− 1+Di

Mi
<

1−Di+1

Mi+1
, for any i ∈ {1, . . . ,m}, (3.24)

is yielded, where the left-hand-side describes the maximum distance of a point in ∆
(1)
i

from the origin, and the right-hand-side is the minimum distance of any point in ∆
(1)
i+1

from the origin, (3.24) means that there is at least a partial overlap between both discs.

A similar inequality can be derived for all ∆
(2)
i . For the case where two or more discs

overlap, suppose there exists a specific value for i denoted by ĩ such that satisfies

ĩ⋃
j=1

∆ j∩
n⋃

j=ĩ+1

∆ j = /0, (3.25)

which is the argument of (3.23). The above condition means that the union of the first

ĩ discs {∆1, . . . ,∆ĩ} is disjoint from the union of the last n− ĩ discs {∆i+1, . . . ,∆n}.

Using the indicator function on (3.25) signals the separation of two clusters, the sum

of the times I[·] yields a positive result equals to the number of clusters in which the

eigenvalues are located.
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Figure 3.5: Micro-grid i subject to disturbances.

3.5 Stability Under Uncertainties

In the following, we extend the analysis to the case where both frequency and power val-

ues in each micro-grid are subject to uncertainties ψi. Following the proposed method

found in [27], we isolate the uncertainty in the feedback loop as illustrated by Fig 3.5

where ψi(·) denotes a sector non-linearity. An interpretation of the non-linearity in

the feedback loop can be for instance that the power and frequency measurements are

subject to disturbances.

For the mentioned case, system (3.3) can then be rewritten asẋ(i)1

ẋ(i)2

=

−µi
σi
−Ti j

σi

1
Mi

−Di
Mi


︸ ︷︷ ︸

A

x(i)1

x(i)2

+
1 0

0 1


︸ ︷︷ ︸

B

ψ1(x
(i)
1 )

ψ2(x
(i)
2 )

+
Ti j

σi

0


︸ ︷︷ ︸

U

x( j)
2 , (3.26)

where the non-linearities ψi belong to the sector [Kmin,Kmax]. This implies that the

following inequality holds

[ψ(x)−Kminx)]T [ψ(x)−Kmaxx)]≤ 0, (3.27)

where Kmin = −γ2I and Kmax = γ2I, γ2 is a sufficiently small gain that determines the

size of the non-linearity sector, and

γ1 = sup
ω∈R

ςmax[G( jω)], (3.28)

where ςmax[·] denotes the maximum singular value of the system’s transfer function

G( jω) and γ1 its upper bound; both γ1 and γ2 serve as means to determine the size of

the non-linearity that the system tolerates before becoming unstable. Conceptually, it is

assumed that ψi satisfies a sector condition, namely that ψi is at equilibrium at the origin
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ψi(x)

x

Kminx

Kmaxx

Figure 3.6: Sector definition example (dashed) for non-linearity ψi.

and is locally Lipschitz in the system output’s domain. Figure 3.6 shows an example

of the sector non-linearity and its bounds. The utility of this method is to determine if

the origin is asymptotically stable for all non-linearities in the sector, yielding absolute

stability to the system, this is also referred to as Lure’s problem [27]. Although the

existence and uniqueness of a solution to the system can potentially be verified through

the Lipschitz condition; the presence of uncertainties complicate the analysis, calling

for a substantially different approach as touched in [96] and references therein. An

advantage of the sector non-linearity method is that to determine stability, as mentioned

above, given a positive real system only ψi has to be checked to be Lipschitz.

3.5.1 Amplitude of Uncertainty

Let us first point up the system’s transfer function G(s) derived from (3.26) as

G(s) =
1

s2 +(µi
σi
+ Di

Mi
)s+ Ti j+Diµi

σiMi

Di
Mi

+ s −Ti j
σi

1
Mi

µi
σi
+ s

. (3.29)

In the case where the transmission and swing dynamics have similar parameters, we

can obtain a sufficient condition for the maximum size of the non-linearity sector for

which absolute stability holds. Such value is equal to the square root of the maximum

eigenvalue of the transfer function matrix G( jω) multiplied by its conjugate transpose,

that is

ςmax =
√

λmax[GT (− jω)G( jω)]. (3.30)
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With the purpose of obtaining such value and for the rest of the analysis, the external

input x(i)2 in (3.26) is assumed to be equal to zero. While obtaining an expression of γ1,

for illustrative purposes, the following assumption can be made:

Assumption 4. Both swing and transmission damping to inertia ratios, have similar

values, such that Di/Mi ≈ µi/σi. Also, we assume Di > Mi, namely, the dynamics are

over-damped, as discussed in [13].

Theorem 6. Let Assumption 4 hold. Then the maximum amplitude for the non-linearity

sector in (3.26) is

γ2 <
1√

M2
i (D

2
i +1)

. (3.31)

Proof. Due to the complexity of the expression for ςmax and for the sake of simplicity,

taking δ for shorthand of the polynomial in (3.29), G( jω) can be denoted as

G( jω) =
1

δ ( jω)

 G11( jω) G12( jω)

G21( jω) G22( jω)

 , (3.32)

GT (− jω) can be defined similarly. ςmax comes from the largest eigenvalue of G∗G,

where ·∗ is the conjugate transpose, we can obtain it using the determinant ∆ and trace T .

Expressions for both are simplified by accounting the following: G12( jω) and G21( jω)

have no imaginary part, taking Assumption 4 as true, it holds that |G11|= |G22|. We can

also assume the network to be unweighted: Ti j = 1, yielding G12 =−G21; |G12|= |G21|.

Taking f = |G11| and g = |G12| and using ·̄ to denote the conjugate we obtain

T =
2

δ δ̄
(g2 + f 2), ∆ =

1
(δ δ̄ )2

(g2 + f 2)2. (3.33)

The eigenvalues of G∗G are then obtained from (3.33) as follows

λ =
2(g2 + f 2)±

√
4

(δ δ̄ )2 (g2 + f 2)2− 4
(δ δ̄ )2 (g2 + f 2)2

2δ δ̄
=

g2 + f 2

δ δ̄
.

Then, ςmax is obtained taking the square root as in (3.30)

ςmax =

√
(g2 + f 2)/δ δ̄ . (3.34)



39 3.5. Stability Under Uncertainties

Substituting all values and expressions in (3.34), we get

ςmax=

√
D2

i

M2
i
+ω2+

1
M2

i

/
(1+D2

i )
2

M4
i

+
2(D2

i −1)ω2

M2
i

+ω4. (3.35)

Substituting (3.35) in (3.28) we get γ1 = supω∈R ςmax, which refers to the largest value

that (3.35) can get to as ω varies. If Assumption 4 holds, (3.35) is a monotonically

decreasing function, with a least upper bound at ω = 0, obtaining γ1 =
√

M2
i /(D

2
i +1).

Since we know from the small gain theorem [27, p.411] that γ1γ2 < 1, it can be inferred

that inequality (3.31) holds.

The above gives us a clearer definition of the size of the non-linearity sector as a

function of the parameters.

3.5.2 Lyapunov Approach

In the general case where there is no simple analytical expression for the maximum

singular value, a numerical Lyapunov stability approach can be carried out. Some other

alternatives to corroborate stability include the application of a loop transformation of

the system into feedback-connected passive dynamical systems and the utilization of

either the Popov or the circle criterion when applicable [4, 27].

Let us propose a candidate Lyapunov function for system (3.26) denoted by V ,

where V = xT Px.

Theorem 7. Given a small ε , γ2 and a symmetric positive definite matrix P that satisfies

the Riccati equation:

PA+AT P+ εCTC+
1
γ2

2
PBBT P≤ 0, (3.36)

then (3.26) is absolutely stable and V is a Lyapunov function.

Proof. The derivative of V along the trajectories of system (3.26) is

V̇ = xT (PA+AT P)x−2xT PBψ. (3.37)

V̇ is strictly negative if the given V̇ plus a small quantity γ2
2 ψT is not larger than the
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small quadratic function −εxT Lx, namely

V̇ + γ
2
2 ψ

T
ψ ≤−εxT Lx. (3.38)

Then, inequality (3.38) can be expanded as

xT (PA+AT P)x−2xT PBψ + γ
2
2 ψ

T
ψ ≤−εxT Lx. (3.39)

To validate that (3.39) holds, let us rewrite it using L =CTC as

[
xT ψT

] M︷ ︸︸ ︷ PA+AT P+ εCTC −PB

−BT P −γ2
2 I

 x

ψ

≤ 0. (3.40)

The negative definiteness of M can be shown by imposing that its Schur complement is

negative. Given that −γ2 ≤ 0, we take the Schur complement of the block −γ2
2 I:

M/[−γ
2
2 I] := PA+AT P+ εCTC− (PB(γ2

2 I)−1(−BT P)),

and by setting it to less than or equal to zero, we obtain the Riccati equation (3.36)

itself.

Other ways in which the linear matrix inequality (3.40) can be solved are via a

graphical method or by recurring to a system of algebraic Riccati equations (ARE).

3.6 Numerical Examples

In this section, real instances of power network topologies are simulated. The first one

covers the case when the network is considered homogeneous, unweighted and undi-

rected. The second example touches on a different network with a different topology

and shows the influence of the connectivity on the response. The third set of simulations

contains parameter uncertainties, in such case the network is heterogeneous, weighted

and directed.
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City Road

Canal St.

Finsbury

Figure 3.7: Reduced network model based on the one-line diagram of the London City
Road Network from [1].

3.6.1 Graph Modeling from Existing Network

Simulations were carried out using data of the London City Road power network as

found in [1]. Figure 3.7 shows a simplified diagram extracted from the one-line dia-

grams in [1], this contains the names of the generators and their respective load buses;

from this, a network graph was derived which is the example in Fig. 3.3. The graph

was modelled as unweighted and undirected, assuming that the influence between any

two nodes is bidirectional. The objective of the first set of simulations is to analyze

the transient dynamics and investigate the convergence of the frequency and power to

the desired reference. When this occurs, the network achieves synchronization. In

the present simulations, all micro-grids are considered homogeneous. The correspond-

ing parameters were selected as follows: number of nodes n = 10, inertial constants

Mi = 1, σi = 1 MJ/rad synchronizing coefficients Ti j = 1 MVA, number of iterations

N = 1000, step size dt = 0.01 seconds. For illustrative reasons, different damping con-

stants Di = 1,2,4 and µi = 5,10,20 MJ-s/rad are used for different runs. To illustrate

the resiliency of the system and as an extreme case study, the initial states of the fre-

quency and power are obtained as random values in the interval [−0.5,0.5]. Frequency

and power variables are also reset every 3.3 seconds as a way to simulate periodic ex-

treme disturbances with a value in the vicinity of ±1%. The resulting plots have been

scaled around 50 Hz and 30 MW for the frequency and power flow respectively to rep-
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Figure 3.8: State of the micro-grid frequency over time.

resent realistic values. Figure 3.8 shows the frequency response of each micro-grid. It

can be seen that the response remains in the range between [49.5,50.5] Hz and does not

exceed in magnitude the desired frequency by more than 1 Hz. Such values have been

selected to test an extreme disturbance scenario, the magnitude of the disturbances in a

real case would be much lower and handled better by the system. Figure 3.9 displays

the power flow of each micro-grid, the values remain in the range of [29.5,30.5] MW

as well. In both plots, different damping values are used from top to bottom. Observe

that for larger values both oscillations and settling times are reduced. As mentioned in

Section 2.3, we employ some established methods to approximate missing parameters

from [1] in the following numerical examples.

3.6.2 Change of Topology

To show that the previous results are scalable, a different section of the London City

Road network was selected. The derived undirected unweighted graph is shown in

Fig. 3.10. It is worth mentioning that on average this topology has 2.75 connections

per node, in contrast to the 2.5 of the previous example. The rest of the parameters are

unchanged.

The frequency response is shown in Fig. 3.11. Comparing these results against the
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Figure 3.9: State of the power flow in each micro-grid over time.
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Figure 3.10: Derived graph for a different section of the network in [1].
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Figure 3.11: Frequency response in a different topology.

previous example, it can be seen that under the second topology the system converges

about half a second faster; this is more evident in the top plots where Di = 1 MJ-s/rad,

reaffirming our justification for Assumption 2. This implies that a larger connectivity

yields a smaller time constant in the overall system. Furthermore, all frequency re-

sponses have fewer oscillations with a smaller magnitude during the transient. We omit

to show the power flow plot since it has no significant differences from the previous

one.

3.6.3 Parameter Varying and Heterogeneity

To account for heterogeneity, we now consider the system shown in Fig. 3.3 where

all nodes contain different parameters and the influence from node i to j differs to the

one from j to i. The following simulations shed light on the transient response when

the synchronizing coefficient Ti j, the damping coefficients Di, µi and the inertial coeffi-

cient Mi, σi are different between micro-grids. First, based on the information in [1], a

weighted and directed graph has been derived as shown in Fig. 3.12. The synchronizing

coefficients Ti j have been selected depending on the power in MVA that flows in and out

of each micro-grid as found in [1], i.e. if micro-grid i outputs 60 MVA to micro-grid j,

its Ti j will vary within the range [59,61] MVA. This range has been introduced with the
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Figure 3.12: Weighted directed graph of the London City Road network [1].

Table 3.1: London City Road Grid Power Capabilities
Number Name Capability Gi [MVA]

1 City Road 1440
2 Devonshire Square 180
3 Beech Street 180
4 Mansell Street 190
5 Hoxton 60
6 Finsbury Market 198
7 Canal Street 132
8 City Road C 202
9 Seacoal Lane 76
10 City Road B 120

aim of including uncertainties in the system. Due to the unavailability of data on the

exact parameters of the network, approximations were done in accordance with typical

data from Westinghouse in [2, p.436]. The inertial coefficients Mi and σi depend on the

capacity Gi of each micro-grid as in Table 3.1. The constant Hi is assigned randomly

from a range of values in [6,9]. For the swing inertia, we take Mi = GiHi/π fi, where

fi is the nominal frequency, which in this case is 50 Hz. For the damping constant Di a

random value in the interval [4.5Mi,5.5Mi] is assigned to each micro-grid for the simu-

lation. For illustrative purposes the values of µi are chosen as µi = 15Di. As a way to

subject the system to non-linearities, the parameters change their value randomly within

their assigned range every 0.1 seconds during the simulations. Also, the states are reset

every 3.3 seconds as in previous examples.

It can be seen in Fig. 3.13 that the power flow is contained within the acceptable

tolerance of 1 MW for the entirety of the simulation. Let us lastly mention that the

random change of topology every 0.1 seconds produces barely noticeable oscillations

that neither modify the behaviour nor the consensus value. For brevity, we omit to show

simulations on the effect of uncertainties that result in an unstable response. However it
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Figure 3.13: Frequency and power flow responses for the directed, weighted and ap-
proximated configuration while subject to uncertainties.

is straightforward to choose an uncertainty amplitude value that causes larger measure-

ment variations, namely, an amplitude under which condition (3.31) does not hold for

the given inertia and damping parameters.

3.7 Conclusion

As a progression of previous works which are focused on networks of homogeneous

micro-grids, we have now extended the analysis to the case where heterogeneity is

involved in the form of the different parameters for each micro-grid.

We have investigated the transient stability, and shown the ways in which the hetero-

geneity of the parameters between micro-grids in the network affects both the response

and eigenvalues of the overall system. We mainly focused on the inertial parameters

since studying their effect is a current issue in the design of modern power systems.

We obtained a few interesting observations regarding the displacement of the eigen-

values, which depends on the multiple heterogeneous parameters in the network; plus

the way of deriving the clusterization of the areas where the eigenvalues might reside

in.

We have studied the maximal magnitude of the non-linearities that the system can
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accept while remaining stable and expressed it as a function of the parameters.

Finally, we have illustrated the scalability of the model by simulating different

topologies and shown the role of connectivity in the network’s response.

On the other hand, the uncertainty has been only investigated in this chapter as a

sector bounded uncertainty. There exist other kinds of uncertainty and methodologies

to examine them and the ways in which they influence the stability of the system [27].

Unfortunately, for this research project we decided to not continue this approach. How-

ever, the results shown here provide a good application from the theory presented in [27]

and the previous contribution from [4].

Having studied the micro-grid model and its conditions for stability, the next step in

this research is the implementation of the on-line pricing mechanisms as will be touched

on in the next chapters. Although the uncertainty part is not implemented exactly as

touched in this chapter, such analysis sheds light on the resilience of the system and the

ways in which the parameters affect the response values. The latter will prove useful

when subjecting a single micro-grid to a shift in power consumption, as will be explored

in Chapter 4.





Chapter 4

On-line Pricing in a Micro-Grid via a

Stackelberg Game with Incentive

Strategies

4.1 Introduction

As discussed in Chapter 1, pricing mechanisms on power systems can improve effi-

ciency by shifting the demand. In this chapter, we take the standard form of the micro-

grid model as seen in Chapter 3, Assumption 1 and subject it to an on-line pricing

scheme derived from a Stackelberg game.

As mentioned in Section 2.6, we chose the Stackelberg game as basis because it

enables a market a setup that is easy to relate to: A seller, having some semblance of

customer behaviour, announces a price first. Then, the consumer(s) react(s) to such

announcement in a way that it maximises its profit. Opposed to other market scenarios

and games like auction theory or looking for the Nash or Cournot equilibrium [8, 87],

this aspect of hierarchy is only captured by the Stackelberg game.

Such a game accommodates the leader-follower structure of the traditional electric-

ity market, where the consumer reacts to a price that is set by the supplier. The way the

game is defined also adapts the underlying rationality of the players where they both try

to maximise their profits.

This chapter is organized as follows. In Section 4.2, we introduce the micro-grid

and demand response models, and formulate the Stackelberg game. In Section 4.3, we
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present the ways in which the game and the physical plant are integrated. In Section 4.4,

we provide numerical examples. Finally, in Section 4.5, we provide a brief conclusion.

4.1.1 Main Contributions

As a first finding, conditions for stability are obtained and the transient response of a

micro-grid system subject to a price, which is generated exogenously from a Stackel-

berg game, is studied. The Stackelberg game introduces an incentive problem, which in

turn determines the steady-state gain of the open-loop market dynamics. As a second

development, a general feedback rule to obtain the price as a function of the power flow

and demand is derived. Such a rule is based on an ex-ante price formulation. Stability

analysis is performed and the impact of the parameters on the transient dynamics of

the micro-grid system is studied. In addition to this, simulations were carried out using

both open-loop and closed-loop pricing mechanisms based on data from [2].

4.1.2 Problem Statement

In this chapter we make our first effort on bringing together the market and physical

dynamics that are involved in determining the functioning of the micro-grid as a whole.

Two configurations are studied in which the market layer is modelled as an open-loop

and closed-loop dynamical system respectively. In the first configuration, a Stackelberg

game is introduced between the supplier and consumer where the supplier plays an

incentive strategy to generate an equilibrium price. In the second, the price is obtained

as a feedback function of the power supplied, the demand and an incentive strategy.

However, a detailed stability analysis should be conducted on both configurations to

ensure their correct operation.

4.2 Micro-Grid and On-Line Pricing Models

In this section, we introduce the dynamic models for the micro-grid and for the on-line

pricing mechanism in a unified framework.
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4.2.1 Micro-Grid Model

As previously explained in Chapter 3, a micro-grid connected to the main grid can

be modelled combining an integrator and the swing dynamics. The first equation is

associated with the rate of change of the power flow into the grid as a function of the

deviation between the nominal mains frequency and the frequency of the grid [13]. This

is given by

Ṗf low = T ( fnom− f ), (4.1)

where f is the operating frequency of the micro-grid, fnom is the nominal frequency,

which is considered to be the frequency of the main grid and T is the synchronizing co-

efficient which is obtained as the power transferred over the transmission line between

the micro-grid and the mains [5]. The second dynamics describe the rate of change of

frequency as a function of the current frequency f , the power flow Pf low, the generated

power from the mains Pgrid , the nominal consumed power by the loads PLrated and the

shiftable demand response ∆PL [3]. This second dynamics is given by

ḟ =−D
M

f +
1
M
(Pf low +Pgrid−PLrated−∆PL), (4.2)

where D denotes the damping coefficient of the micro-grid and M its inertial coefficient,

while the dynamics for ∆PL are explained in the following subsection. The block repre-

sentation of the market layer and the physical layer of a single micro-grid is shown in

Fig. 4.1. There, the input exogenous to the grid represents the price Λ obtained from

the on-line open-loop mechanism.

4.2.2 Demand Response

For a given price, the demand response dynamics can be represented as a first-order

system [30]

∆ṖL =−1
τ

∆PL +
k
τ

Λ, (4.3)

where ∆PL is the demand, τ the time constant of the market dynamics and Λ is the price

multiplied by a DC gain k. The demand is subtracted from the power available in the

grid as shown in Fig. 4.1 and represents the quantity of electrical energy that is used by

the consumer given the price announced by the supplier. The price Λ is generated from
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Figure 4.1: Block system of a micro-grid with demand response ∆PL, power Pf low and
frequency f subject to exogenous price input Λ.

a Stackelberg game as described in the following section.

4.2.3 Consumer and Supplier Functions

Both the supplier and the consumers are considered to be price-taking, profit-maximizing

agents. In particular, the supplier wants to maximize the price and the consumers want

to consume as much as possible with the minimum price. The power supplied Ps and

power consumed Pc are selected as the quantity that maximizes their profit functions [6].

With some abuse of notation let us denote this as:

Ps = argmax
x

max
Λ∈[

¯
Λ,Λ̄]

Λx− c(x,Pc), (4.4)

Pc = argmax
x

min
Λ∈[

¯
Λ,Λ̄]

v(x,Λ)−Λx, (4.5)

where the value function of the ith consumer in the grid is denoted by vi(x,Λ), which

represents the monetary value that the consumer obtains by expending x units of elec-

tricity while taking into account the announced price Λ. Analogously, the supplier has

a production cost function c(x,Pc). We assume that the value and cost functions are

concave and convex, respectively [3, 6].

The simultaneous optimization problems (4.4)-(4.5) serve as a way to describe the

game and capture the supplier-consumer tension. The fact that the outcome of (4.4) de-

pends on the output of (4.5) provides some form of constraint; one optimization problem
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is subject to the other, which leads to the game-theoretic approach. Other constraints

can be taken in to account, we are omitting this for the sake of simplicity. The optimal

solutions are unique for every time the game is played, which is done iteratively.

In the maximization problems defined above, we denote by Λ̄ and
¯
Λ the upper and

lower bounds for the price. In other words, we assume that the price Λ lies in the con-

tinuous and closed interval [
¯
Λ, Λ̄]. The corresponding supply and consumption values

obtained from (4.4) and (4.5) under the minimum and maximum prices are denoted by

¯
xs, x̄s and

¯
xc, x̄c, respectively. This implies that the supply and consumption values xs

and xc lie in the continuous intervals [
¯
xs, x̄s] and x[

¯
xc, x̄c] respectively. The optimal sup-

ply and consumption values x̄∗s and x̄∗c can be obtained by taking the derivative of the

objective functions in (4.4)-(4.5) and setting them equal to zero. This corresponds to

identifying as optimal those points in which the derivative (slope of the curve) is par-

allel to the price line, as illustrated in Fig. 4.2. From the figure it can be noted that x̄c

corresponds to the maximum consumption given the lowest price
¯
Λ, similar conclusions

can be drawn for all other bounds.

In order to steer the solutions to an equilibrium, a Stackelberg game is proposed.

Let us formally establish the concept of such a game and its equilibrium since we will

be using it in the following chapters. This is formalized with the following definitions:

Definition 1 (Player action profile). Given a universe of players N , the set Hi is the

set of actions of player i for all i ∈N ; the set H := {h|h = (hi)i∈N ,hi ∈Hi,∀i ∈N} is

the set of action profiles, where an action profile is an N-tuple of actions. The function

ui : H→ R is the payoff function corresponding to i.

Definition 2 (Stackelberg equilibrium). The best response set of player i is defined as

Qi(h−i) := {h∗i ∈Hi|ui(h∗i ,h−i) = maxhi∈Hi ui(hi,h−i)}.

An action profile (hS
1,h

S
2) is a Stackelberg Equilibrium for player 1 if hS

2 ∈ Q2(hS
1)

and

u1(hS
1,h

S
2)≥ u1(h1,h2), ∀h1 ∈H1,h2 ∈Q2(h1). (4.6)

From the definitions above, the characteristics of the Stackelberg game are corrobo-

rated: The game incorporates a hierarchical structure, where the leader applies his best

strategy taking into account the rational reaction of his followers. In turn, the followers

output their best response based on the one given by leader.
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Figure 4.2: Supplier and consumer functions and quantities.

For the case of the supplier and consumer in a single micro-grid, the advantage of

formulating such a normalised game is that the incentive strategy no longer depends

directly on the cost and value functions, but solely on the Stackelberg equilibrium.

Let us define reference points to be employed in the game. Normalizing the optimal

solutions to each problem to unitary values, such solutions can be taken equal to

(
¯
Λ, x̄c) = (0,1), (4.7)

(Λ̄, x̄s) = (1,1), (4.8)

for the consumer and for the supplier respectively. The incentive strategy is fully ex-

plained in Section 4.3.

4.3 System Integration and Analysis

In this section, the central focus of this chapter is presented. First, for the open-loop

configuration, we formulate the Stackelberg game, the incentive problem and determine

its optimal solution. Secondly, we perform the stability analysis and obtain the steady-
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state gains of the micro-grid model subject to the game-generated price. Thirdly, we

show a way to express the price as a function of power and demand and perform both

stability and final value analysis on the closed-loop micro-grid model.

4.3.1 Normalized Stackelberg Game Formulation

Assuming that the demand response ∆PL of the consumers depends on the price Λ set

by the supplier, the following Stackelberg game with incentive strategy is proposed.

The game provides an incentive strategy and an associated on-line pricing mechanism

for the case of open-loop market dynamics. First, denoting the supplier as the Leader

and the consumers as the Follower, we introduce πL(qL,qF) and πF(qL,qF) as their

respective profit functions. Both functions depend on the outputs qL of the leader and

qF of the follower. The output of the supplier is the price Λ that will minimize its cost

and maximize its profits, the output of the follower is the quantity of power ∆PL that

will be shifted from its nominal consumption and maximize its utility from the power

while using the minimum price. The incentive problem is formulated in a way such

that the leader selects a price as a function of the follower’s demand, as given in Defini-

tion 2. The following profit functions capture the tension between the supplier and the

consumer. Namely the consumer prefers a low price and to consume large quantities of

energy, whereas the supplier aims to balance supply and demand. Let (4.7) and (4.8) be

the optimal solutions of the optimization problems (4.4) and (4.5) respectively. Then

let us propose a profit function πL for the leader, given by

πL = qLqF −
1
2

q2
F , (4.9)

similarly, the profit function πF for the follower is given by

πF = logqF +1−qLqF . (4.10)

We refer to incentive strategy as the choice that the leader takes depending on the one

of the follower. Namely a function Γ(qF). For the sake of tractability, we propose the

following assumption, however, without loss of generality, other classes of strategies

(functions) can be employed in a similar way as previously discussed in Chapter 2.
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Assumption 5. Strategy Γ(qF) is linear and given by

qL = γqF . (4.11)

As also touched in Chapter 2, the above strategy denotes that the output of the leader

is proportional to the output of the consumer. This can be interpreted as an offer that is

announced instead of a price, allowing the consumer choose a price depending on how

much it wants to consume.

Theorem 8. Let Assumption 5 hold true. The Stackelberg game yields the following

equilibrium point:

q∗F = γ
− 1

2 , (4.12)

q∗L = γ
1
2 . (4.13)

Proof. Let the leader maximize (4.9), and the follower maximize (4.10). Because of the

concavity of (4.15), the maximum of the follower is obtained by taking the derivative

of its profit function and equating it to zero:

∂πF

∂qF
=

1
qF
−qL = 0. (4.14)

Under the assumption that the leader is playing according to (4.11), then (4.14) can then

be rewritten as

1
qF
− γqF = 0. (4.15)

The above yields the optimal solution q∗F as in (4.12). Once the follower has chosen its

demand, the leader then obtains the price substituting (4.12) in (4.11), which leads to

the equilibrium (4.13).

The optimal solutions q∗F and q∗L determine the equilibrium of the game. Now the

leader has to devise a proper strategy γ to obtain the best equilibrium point. For the

supplier, the best equilibrium point, in the normalised case, is the one closest to the

optimum (1,1) as in (4.8). Figure 4.3 illustrates the way in which a different choice for

strategy γ produces different quantities of price and demand at the equilibrium. From

the figure, it is evident that the output of the leader (the supplier) depends on the quantity
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Figure 4.3: Stackelberg equilibrium points as a function of γ .

selected by the follower (consumer). In particular, the higher the price, the lower the

consumption.

Remark 2. From the demand response dynamics in (4.3), the following expression can

be obtained at steady-state:

Λ
ss =

1
k

∆Pss
L . (4.16)

Above, there is a linear relation between the price and the demand, it can be implied

that the incentive γ can be treated as a scalar gain, making the choice of the Stackelberg

game with a linear Γ(qF) appropriate for the studied case.

4.3.2 Stability of Open-Loop Configuration

Now that we have explained the ways in which the price Λ is obtained, let us analyze the

stability of the system subject to such input. From the system configuration illustrated

in Fig. 4.1 and equations (4.1)-(4.3) the following state space representation is derived:


Ṗf low

ḟ

˙∆PL

=

A︷ ︸︸ ︷
0 −T 0
1
M −D

M − 1
M

0 0 −1
τ




Pf low

f

∆PL

+
B︷ ︸︸ ︷

0 T 0

0 0 1
M

k
τ

0 0




Λ

fnom

Pgrid−PLrated

 . (4.17)

Theorem 9. System (4.17) is stable for all positive values of parameters T , M, D, and τ .
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Proof. Consider matrix A in (4.17). The characteristic polynomial of the entire sys-

tem can be obtained from the denominator of the system’s transfer function, which is

expressed by the determinant of sI−A:

|sI−A|=
∣∣∣∣


s T 0

− 1
M s+ D

M
1
M

0 0 s+ 1
τ


∣∣∣∣
= s3 +(

D
M

+
1
τ
)s2 +(

T
M

+
D

τM
)s+

T
τM

. (4.18)

The roots of the above polynomial, namely the eigenvalues of system (4.17) are given

as follows:

s1 =−
1
τ
, s2,3 =

−D±
√

D2−4MT
2M

. (4.19)

For the system to be asymptotically stable, the real part of its eigenvalues must be

negative, namely, the eigenvalues must lie on the left-hand-side of the complex plane.

From (4.19) the system is stable if the following conditions on the parameters are met:

τ > 0 and MT > 0. (4.20)

The above conditions are always true given that the parameters are strictly positive.

Remark 3. The transient of the system is characterized by oscillations, when the eigen-

values have a complex part, namely for D2 < 4MT . On the contrary, no oscillations

arise when the eigenvalues are real and specifically for D2 > 4MT .

Since the system is stable as proven in Theorem 9, a steady-state value for a ref-

erence step input exists. It is useful to solve for this step value in order to know the

response of the power flow and frequency dynamics given a sudden change of price

and the consequent consumption. This also allows us to know if the demand will be

covered, as will be demonstrated later in the numerical examples.

We can find such steady-state values by setting the derivative on the left-hand-side

of (4.17) to zero and employing the final value theorem. The steady-state gain from a

step input of magnitude Λm = Λ, fm = fnom or Pm =Pgrid−PLrated correspondingly, to
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system (4.17) is expressed by:

Pss
f low = kΛm +D fm−Pm,

f ss = fm, ∆Pss
L = kΛm.

(4.21)

This is done as follows. From system (4.17) a transfer function matrix can be obtained

as Y (s)/U(s) = C(sI−A)−1B. Since the feedback in the mentioned system is unitary,

matrix C is considered to be an identity matrix I of appropriate dimensions. Substituting

matrices A and B we obtain
Pf low(s)

f (s)

∆PL(s)

=


G11(s) G12(s) G13(s)

G12(s) G22(s) G23(s)

G31(s) 0 0




Λ(s)

fnom(s)

Pgrid(s)−PLrated(s)

, (4.22)

where

G11(s)=
P(s)
Λ(s)

=
kT

M(D
M s+ s2 + T

M )(τs+1)
,

G12(s) =
P(s)

fnom(s)
=

T (D
M + s)

D
M s+ s2 + T

M
,

G13(s) =
P(s)

Pgrid(s)−PLrated(s)
=− T

M(D
M s+ s2 + T

M )
,

G21(s) =
f (s)
Λ(s)

=− ks
M(D

M s+ s2 + T
M )(τs+1)

,

G22(s) =
f (s)

fnom(s)
=

T
M

D
M s+ s2 + T

M
,

G23(s) =
f (s)

Pgrid(s)−PLrated(s)
=

s
M(D

M s+ s2 + T
M )

,

G31(s) =
r(s)
Λ(s)

=
k

τs+1
.

From the final value theorem, we have that the steady-state gain for a system described

by a transfer function F(s) and subjected to an input U(s) can be obtained as

lim
s→0

sG(s)U(s). (4.23)
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From (4.23) and (4.22) and assuming a step input of magnitude Λm, fm or Pm we obtain:

lim
s→0

sG11(s)
Λm

s
+ sG12(s)

fm

s
+ sG13(s)

Pm

s

=
kT

M T
M

Λm +
T D

M
T
M

fm−
T

M T
M

Pm,

lim
s→0

sG21(s)
Λm

s
+ sG22(s)

fm

s
+ sG23(s)

Pm

s

=− 0
M T

M
Λm +

T
M
T
M

fm +
0

M T
M

Pm,

lim
s→0

sG31(s)
Λm

s
= kΛm.

Hence, the steady-state values (4.21) are obtained.

In view of the considerations in subsection 4.3.1, the price Λ is the supplier’s output

from the Stackelberg game and is a function of a selected strategy Γ(qF) that charac-

terizes the equilibrium point in terms of supply and demand as shown in (4.12). This

implies that for every possible equilibrium point we obtain a different steady-state value.

4.3.3 Price as a Function of Power and Demand

To determine a way to express the price Λ as a linear function of power and demand

while closing the loop of the system in Fig. 4.1, a few concepts must be introduced in

the same spirit as in [6].

An ex-ante price Λ(t) can be calculated from an estimated supply ŝ which is in turn

obtained from the total of a previous demand, namely

ŝ(t) = PLrated(t)+∆PL(t) (4.24)

which essentially represents the balancing of supply and demand. From it and by solv-

ing the supplier’s cost function in (4.4) we obtain

Λ(t) =
d
dx

c(x)
∣∣∣
ŝ(t)

. (4.25)

A physical interpretation of the above is that the supplier supplies a quantity equal to

the demand from a previous period of time. The price is then the one that is optimal for

the given supplied quantity. Graphically, the price is identified by the slope of the curve
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Figure 4.4: Block system of the micro-grid with closed-loop on-line pricing.

representing the cost evaluated in the point corresponding to the supplied quantity. As

mentioned in [31], the supplier cost function is the following:

Assumption 6. The supplier has a cost function c(x) of the form:

c(x) = α
x2

2
, (4.26)

where x is the quantity of supplied power and α is a scalar value. As mentioned in

Chapter 1, such cost function has been validated for thermal generators in [32] and is

generally used as a good approximation in the literature as seen in [33], [34] and [35].

Substituting the supply (4.24) and the cost (4.26) into (4.25), the following expres-

sion for the ex-ante price is derived:

Λ(t) =
d
dx

α
x2

2

∣∣∣
ŝ(t)

= αx
∣∣∣
ŝ(t)

. (4.27)

We are ready to establish the following result.

Lemma 2. Let Assumption 6 hold, the price is given by

Λ(t) = α(PLrated(t)+∆PL(t)). (4.28)

Now that we have obtained the dependence of price Λ on the sum of the nominal

consumed power PLrated and the demand shift ∆PL, the block system describing the mar-

ket dynamics can be rearranged closing the loop as in Fig. 4.4. The system’s dynamics
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in the case of closed-loop market dynamics can then be written as

Ṗf low = T ( fnom− f ),

ḟ =−D
M

f +
1
M
(Pf low +Pgrid−PLrated−∆PL),

∆ṖL =−1
τ

∆PL +
kα

τ
(PLrated +∆PL).

(4.29)

We can freely substitute kα with the incentive γ since both are linear relationships to

the consumed power and serve as means of shifting the total demand via ∆PL. The

state-space representation of the closed-loop system can be rewritten in matrix form as

follows 
Ṗf low

ḟ

˙∆PL

=
A︷ ︸︸ ︷

0 −T 0
1
M −

D
M − 1

M

0 0 1
τ
(γ−1)




Pf low

f

∆PL

+
B︷ ︸︸ ︷

0 T 0
1
M 0 − 1

M

0 0 γ

τ




Pgrid

fnom

PLrated

, (4.30)

as in Section 4.3.2, the characteristic polynomial can be obtained from |sI−A|, yielding

|sI−A|=s3 +(
D
M

+
1−γ

τ
)s2 +(

T
M
− D(γ−1)

τM
)s− T (γ−1)

τM
. (4.31)

We are now ready to enunciate the following result.

Theorem 10. System (4.30) is stable for all non-negative values of parameters T , M,

D and τ . Additionally, the incentive strategy γ must comply with the condition:

0 < γ < 1. (4.32)

Proof. The role of the system parameters in the conditions for stability is obtained

similarly to the analysis demonstrated in Theorem 9. The roots of the characteristic

polynomial (4.31) are the following:

s1 =
γ−1

τ
, s2,3 =

−D±
√

D2−4MT
2M

, (4.33)

which yields the condition MT > 0 that is always true. To find the conditions for γ , the
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Routh-Hurwitz criteria can be applied to (4.31) to obtain the following conditions:

D
M

+
1−γ

τ
>0,

T
M
− D(γ−1)

τM
>0,

(
D
M

+
1−γ

τ
)(

T
M
− D(γ−1)

τM
)>− T (γ−1)

τM
.

(4.34)

Such conditions together with (4.33) can be reduced to obtain the range of values (4.32)

for the incentive strategy.

The meaning behind (4.32) is that if the gain is too small this results in a price

reduction that will increase the demand, and by trying to maximise their utility function,

the consumers will demand power beyond the capabilities of the micro-grid. Therefore,

we can conclude that the closed-loop system is stable for certain bounds of γ , as we

will illustrate in Section 4.4.2. Hence the supplier must be aware of the consumption

historical patterns in the grid and select an appropriate value for the incentive.

Remark 4. Taking into account the previous statement and the expression of the eigen-

values in (4.33) we can also derive the two following considerations:

• The system is stable with complex eigenvalues when D2 < 4MT .

• The system is stable with real, distinct and negative eigenvalues when D2 > 4MT .

As can be seen from the mentioned inequalities, the oscillations in the system’s

response depend mainly on the value of the damping and inertial parameters D and

M, which still holds with the findings in [13] despite our new system configuration.

Additionally, we can provide the following observations obtained empirically regarding

the role of the system’s parameters on the transient of the system. The value of the

time constant τ affects directly the settling time of Pf low and ∆PL. The synchronizing

coefficient T influences the speed of the oscillations of all states proportionally, and

reduces the settling time as well; T also alters the peak values of Pf low and ∆PL. The

inertial coefficient M affects oscillation speed on all states and the peak responses of

Pf low and ∆PL without affecting their steady-state values. The damping coefficient D

directly increases the settling time for larger values while also modifying the steady-

state values of Pf low and f . The gain γ directly changes the magnitude of Pf low and
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∆PL, increasing the settling time for larger values. The last two observations can be

corroborated by the following result.

Similarly to Section 4.3.2, we can apply the final value theorem to (4.30). The

steady-state gain from a corresponding step input of magnitude PGm = Pgrid , fm = fnom

or PLm = PLrated to system (4.30) is expressed by:

Pss
f low =

1
1− γ

PLm−PGm +D fm,

f ss = fm, ∆Pss
L =

γ

1− γ
PLm.

(4.35)

The above is derived as follows. From system (4.30) a transfer function matrix can be

obtained. Since the feedback in the mentioned system is unitary, matrix C is considered

to be an identity matrix I of appropriate dimensions. Substituting matrices A and B into

Y (s)/U(s) =C(sI−A)−1B we obtain


Pf low(s)

f (s)

∆Pd(s)

=


G11(s) G12(s) G13(s)

G21(s) G22(s) G23(s)

0 0 G33(s)




Pgrid(s)

fnom(s)

PLrated(s)

 (4.36)

where

G11(s) =
Pf low(s)
Pgrid(s)

=− T
s(D+Ms)+T

,

G12(s) =
Pf low(s)
fnom(s)

=
T (D+Ms)

s(D+Ms)+T
,

G13(s) =
Pf low(s)

PLrated(s)
=

sT τ +T
(−γ + sτ +1)(s(D+Ms)+T )

,

G21(s) =
f (s)

Pgrid(s)
=

s
s(D+Ms)+T

,

G22(s) =
f (s)

fnom(s)
=

T
s(D+Ms)+T

,

G23(s) =−
f (s)

PLrated(s)
=

τs2 + s
(−γ + sτ +1)(s(D+Ms)+T )

,

G33(s) =
∆PL(s)

PLrated(s)
=

γ

τs+1− γ
.

Applying the final value theorem from (4.23) to (4.36) and assuming a corresponding



65 4.4. Numerical Examples

step input of magnitude PGm, fm or PLm it yields:

lim
s→0

sG11(s)
PGm

s
+ sG12(s)

fm

s
+ sG13(s)

PLm

s

=−T
T

PGm +
T D
T

fm +
T

(1− γ)T
PLm,

lim
s→0

sG21(s)
PGm

s
+ sG22(s)

fm

s
+ sG23(s)

PLm

s

=− 0
T

PGm +
T
T

fm +
0

(1− γ)T
PLm,

lim
s→0

sG31(s)
PLm

s
=

γ

1− γ
PLm.

Hence, the steady-state values (4.35) are obtained.

4.4 Numerical Examples

The parameters were selected based on typical values of a micro-grid with a capacity of

60 MVA that is providing 30 MVA of power to the main grid: T = 30 MVA, M = 0.2

MJ-s/rad and D = 1 MJ/rad in accordance to [2]; the simulation time is 60 seconds,

initial state values are selected randomly and the grid is subject to step inputs of fnom =

50 Hz, Pgrid = 50 and PLrated = 20 MVA. The time constant for the demand response

has been selected as τ = 3 s; two justifications are behind this, the first is to show the

results more clearly, the second is that in the future, customers might be able to access

real-time prices in a more immediate way (i.e. an automated decision-making system).

4.4.1 Micro-Grid with Exogenous Price Input

In addition to the parameters previously mentioned, the gain is selected as k = 25 and

the price Λ is a value in the range of [0,1], in the simulation, only three different values

of Λ are selected for illustrative purposes, tractability, and to show the system’s response

to abrupt changes. Figure 4.5 shows the open-loop configuration response. Note that

the demand ∆PL reacts in accordance with the consumer behaviour discussed in Section

4.2.2. Oscillations arise during the transient of the system, also the sum of powers in

the grid Pgrid−PLrated−∆PL does not turn negative, meaning that the increase/decrease

of demand does not surpass the power available in the grid. Finally, none of the states

exceeds the 60 MVA capacity of the micro-grid, it can be seen that the power flow
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Figure 4.5: Open-loop response of of (top) price, (middle) power flow, and (bottom)
frequency.

reacts according to the demand shift. As discussed above, choosing larger values for D

can attenuate the oscillations but this would, in turn, produce larger power flow values

that can surpass the capacity of the grid. Conversely, selecting larger values for k may

result in deviations in the frequency state. Figure 4.6 shows the response under the

same parameter values with the exception of D = 2 MJ/rad, which is sufficiently large

to damp the oscillations. Note that when the power flow increases, a larger damping

can be chosen but this will in might produce power flow values out of the 60 MVA

capacity of the grid. Conversely, selecting larger values for k may result in deviation on

the frequency state.

Selecting large values of k can also result in power flow values larger than the ca-

pacity of the grid, Fig. 4.7 shows the response of the grid under the same parameter

values as for the first example except for k = 250. Note that the frequency state deviates

largely from the desired 50 Hz. These results show that the response can be asymp-

totically stable but the parameters must be selected in a way that the demand does not

exceed the power available.
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Figure 4.6: Open-loop response of (top) price, (middle) power flow, and (bottom) fre-
quency; by increasing the damping coefficient oscillations are reduced.
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Figure 4.7: Open-loop response of (top) price, (middle) power flow, and (bottom) fre-
quency; by selecting large gain values, the demand exceeds the power available in the
grid.
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Figure 4.8: Closed-loop response of (top) power flow, and (bottom) frequency.

4.4.2 Micro-Grid with Closed-Loop Market Dynamics

The following set of simulations adopts the same parameters and frequency inputs as in

the previous example. In Fig. 4.8 with γ = 0.5 and D = 1 MJ/rad, it can be seen that the

power flow can take negative values due to oscillations during the transient. However,

the frequency f has the same steady-state value. Also, the demand shifted given the

incentive γ is not larger than the power available. As with the open-loop case, increasing

the damping D can help to eliminate oscillations at the cost of increasing the power flow.

However, as implied in the stability analysis, there exists a sufficiently large value of γ

which compromises the stability of the system. In Fig. 4.9 the damping is increased to

D = 2 MJ/rad to eliminate oscillations and as in the open-loop configuration, there is an

increase in the power flow state that can ultimately lead to values exceeding the capacity

of the grid. This is illustrated in Fig. 4.10 where γ = 0.8 and the power available

becomes negative due to increased demand, which is physically impossible.

4.5 Conclusion

From the model introduced in Chapter 3, we have explored two ways of implementing

on-line pricing mechanics in a single micro-grid, with a novel approach of subjecting

the system model to a Stackelberg game with incentive strategies. Furthermore, condi-

tions for stability were found, as well as the role of the grid’s time constant, DC gain,

inertial, damping and synchronizing coefficients in the transient and steady-state be-

haviour of both configurations has been studied. More importantly, we brought closer
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Figure 4.9: Closed-loop response of (top) power flow, and (bottom) frequency; by in-
creasing the damping coefficient oscillations are reduced.
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Figure 4.10: Closed-loop response of (top) power flow, and (bottom) frequency; by
selecting large gain values, the demand exceeds the power available in the grid.
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the market and physical layers in the system by learning the way in which the parame-

ters that are chosen by the supplier, being a price, a gain or incentive, affect the system

response. The proposed Stackelberg game will be further explored and refined in the

following chapters. Where such is implemented in a more realistic resistive micro-grid

model dynamics.



Chapter 5

Personalised Pricing in a Resistive

Micro-Grid via a Stackelberg Game

with Incentive Strategies

5.1 Introduction

As previously discussed in the chapters above, most literature about dynamic pricing

does not touch upon the analysis of the effect and stability of implementing such mech-

anisms onto a realistic physical electrical system. Having introduced a pricing scheme

into the swing equation-based AC micro-grid model in Chapter 4, we now include it

with a more realistic low-voltage resistive micro-grid. This enables the profit func-

tions to be defined in a more precise and practical manner. Furthermore, the use of

the incentive strategies is more notable than in Chapter 4, since the improved adaption

of the scheme allows the inclusion of offers that result in a personalised price for the

consumers in the micro-grid.

5.1.1 Summary and Contributions

As a first result, we present the conditions for stability of the resistive micro-grid model,

where the underlying assumption is that every generator and (industrial) load is inter-

faced with the micro-grid through a power inverter that operates under the P-V droop

control (resistive droop), and the loads receive a power reference value given by a pric-

71
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ing scheme. The implementation of the proposed scheme is further simplified by adopt-

ing a P-V bounded droop controller. Numerical implementations are carried out, where

the strategic competition between the consumer and the follower is shown. Conver-

gence to different equilibrium points for different incentive strategies is also illustrated.

A way in which the parameters can be selected for its application is likewise delineated.

5.1.2 Problem Statement

The focus of this chapter consists of the further study of the Stackelberg game with

incentive strategies and observe its effect on an industrial low-voltage resistive micro-

grid system. Where both the generators and the loads are in grid-forming mode (droop-

controlled units), as required in modern power systems, and the load demand is subject

to a pricing mechanism from the corresponding leader-follower market structure. We

propose and adapt a Stackelberg approach with incentive strategies and a related closed-

loop configuration that enables the implementation. However, a detailed analysis for

both the system stability and the game operation is necessary to obtain the conditions

that ensure the correct operation of the whole integrated system.

5.1.3 Notation Preliminaries

Given the one-dimensional vector x ∈ Rn with individual elements xi ∈ R, where i =

1,2, . . . ,n, we denote [x] = diag(x) = diag(xi)∈Rn×n as the associated square diagonal

matrix with the elements of vector x in the diagonal entries. Let us review the property

[x]−1 = [x−1
i ]. Let 0n×n denote a n×n matrix with all entries equal to zero, and 1n×1 be

a column vector of n elements with all entries equal to one.

5.2 Micro-Grid Model

In this section, we introduce the dynamic models of both the micro-grid network and

the droop controlled units (generators and loads).
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5.2.1 Network Model Considerations

Just as in Chapter 3, a network topology is considered. Differently, for this case we

consider a single micro-grid that is distributed in a network, the representation is as fol-

lows. The micro-grid network is represented by a connected, undirected and weighted

graph G(V,E), where V = {1,2, . . . ,n} is the set of nodes (vertices). The set of nodes

is divided in loads VL = {1,2, . . . , l} and generators VG = {l + 1, l + 2, . . . ,n}, where

V = VG∪VL, l is the number of load nodes and n the total number of nodes. The set of

edges E ⊆ V ×V is the set of unordered pairs {i, j} in consideration of the distribution

lines, which are assumed to be resistive. Let A ∈ Rn×n denote the adjacency matrix of

graph G, where its i jth element Ai j is the corresponding edge represented by a conduc-

tance 1/Ri j between nodes i and j. The setNi refers to the neighboring nodes j of node

i where Ni ∈ V : {i, j} ∈ E .

5.2.2 Resistive Micro-Grid Model

The micro-grid model under consideration has a low-voltage configuration, also known

as a resistive micro-grid. The system is considered as a network of load nodes and

generator nodes as shown in Fig. 5.1, where the supplier is considered to be the owner

of such generators and each consumer is represented by a load node. Note that the main

grid is considered as a generator. The network is assumed to be resistive, namely the

impedance of the line, which is usually resistive-inductive, is dominated by the resistive

component, hence the reactive power is neglected [67].

The micro-grid is considered to be connected to the main grid that contributes power

when the demand is higher than the supply provided by the generators; in the network

topology, the main grid is considered as an additional node. However, the results ex-

plained here also apply to the case when the micro-grid is islanded.

The power equation of a node i, as a function of its adjacent nodes’ voltages in a

resistive micro-grid is given by:

Pi =Vi
2( 1

Rii
+ ∑

j∈Ni

1
Ri j

)
− ∑

j∈Ni

ViVj

Ri j
cosφi j, (5.1)

where Vi is the voltage on node i, Pi is the node power, Ri j is the resistance of the line

that connects nodes i and j, Rii is the shunt resistance of node i, and φi j is the phase
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Figure 5.1: Resistive micro-grid in a network representation, comprised by loads and
generators , resistive distribution lines, and shunt conductances.

difference between nodes i and j. Assuming standard decoupling approximation [3,71],

namely that the phase φi j has values near to zero, we obtain the following non-linear

expression:

Pi =Vi
2( 1

Rii
+ ∑

j∈Ni

1
Ri j

)
− ∑

j∈Ni

ViVj

Ri j
. (5.2)

The power expression of all the nodes of the network has the non-linear form of

P = [V ]GV, (5.3)

where P and V are vectors containing all the nodes’ powers and voltages respectively,

and G is the conductance matrix [59] that is derived from the network’s Laplacian. Let

us briefly explain some of the properties of G in the next subsection.

5.2.3 Definition and Properties of the Conductance Matrix

Let A denote the adjacency matrix of the micro-grid network. The degree matrix of A is

defined as D := [{∑n
j=1 Ai j}n

i=1], while the Laplacian L of A is obtained as L := D−A.

Note that, although apparent in A, the self-loops in the topology represented by the

shunt conductances Aii = 1/Rii = gi do not appear in L. For this reason, we recur to

the conductance matrix G, which has the form of a loopy Laplacian matrix [60] and is
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defined as G := L+[{Aii}n
i=1]. The conductance matrix G has the following properties:

its i jth element gi j = −1/Ri j and its diagonal elements gii = 1/Rii +∑ j∈Ni 1/Ri j =

gi−∑ j∈Ni gi j. If there is no connection between two nodes i and j, namely j /∈ Ni,

then gi j = 0. If node i does not contain a shunt conductance, then gi = 0. Note that

G as a loopy Laplacian matrix [60], makes the system (5.3) a non-linear consensus

algorithm [70].

5.2.4 Additional Model Conventions

It is important to mention that the power injection Pi is positive for generators and

negative for loads. The node sequence in the proposed network topology consists of

the loads first and then the generators and the main grid, yielding a voltage vector V =

[V1,V2, . . . ,Vl,Vl+1,Vl+2, . . . ,Vn]
T , where l is the number of loads in the network, and

the nth node corresponds to the main grid. We can freely denote the power contributed

by the main grid that the network is connected to as Pmg = Pn.

5.2.5 P-V Droop Controller

Following the architecture of modern smart-grids [97], it is considered that the micro-

grid is dominated by inverter- and rectifier-interfaced units, i.e. both generators and

loads, operating under the droop control concept to support the grid. Due to the resistive

nature of low-voltage AC micro-grids, the P-V droop controller should be adopted [72];

hence the voltage dynamics for every node take the following form:

τvV̇ = (V ∗1n×1−V )− k(P−Pset), (5.4)

where τv = diag(τvi) and k = diag(ki) are diagonal matrices containing all the nodes’

voltage time constants and power droop coefficients respectively, V ∗ is the rated volt-

age value and Pset a vector representation of the reference power either demanded or

generated that is set for each node by a supervisory controller.

The vector Pset contains consumption rated values PLrated
i , ∀ i ∈ VL. For configura-

tions where the main grid is included, Pset
mg = PLrated

mg = 0 in order to supply any addi-

tional demand to the micro-grid or absorb any excess generation. For practicality and

to generalize, we are including such node for the remainder of this chapter. Substituting
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(5.3) in (5.4), we obtain the dynamics for the resistive network:

V̇ =−τ
−1
v V − kτ

−1
v [V ]GV + τ

−1
v V ∗1n×1 + kτ

−1
v Pset . (5.5)

Now we are ready to state our problem formulation.

5.3 Problem Formulation

We will incorporate a Stackelberg game-based pricing scheme, novel in the field of

micro-grids. Where we consider the existence of a supplier of electricity and l-consumers.

The supplier can be represented by a distribution network operator (DNO) or an inde-

pendent system operator (ISO) that possesses a distributed set of generators. The set of

consumers are represented by the controllable responsive load nodes included in (5.5).

The generators take various Pset values, obtained by a supervisory controller or a max-

imum power point tracking algorithm, that concurrently generate different costs to the

supplier, triggering a change of price. This in consequence shifts the demand in the

consumer load. Such change of Pset in the supplier’s generators exemplifies a variation

of the power outputted by renewable resources.

Following from Chapter 4, both suppliers and consumers are modelled to be price-

taking, profit-maximizing agents [3, 6]. We refer to profit in monetary terms as the

remainder of the earnings minus the costs of generating/consuming power. In order

to maximize their profit, the supplier wants to use a price as large as possible and the

consumers want to consume as much as they can afford with the announced price. The

output of the supplier is the price Λ which is determined by a function Γ(·) called

an incentive strategy, and the output of the consumer is a shift on consumption Dset
i ,

these are selected as the quantities that maximize their profit functions ΠS and ΠC

respectively [6]. Let us reserve the full game explanation together with the incentive

strategy Γ(·) in Section 5.4.2.

We have now defined both the pricing scheme and the micro-grid network dynamics

(5.5). We will use the announced price and the decided demand to obtain the stability

conditions for the integrated system in a closed-loop configuration, this includes the

droop control, load dynamics, and the tension between supplier and consumers.
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5.4 System Integration and Stability Analysis

In this section, first we make a brief introduction to the pricing mechanism and explain

our proposed variation. Secondly, we explain how the physical model is subjected

to the outcome of the price change and obtain the conditions for stability. Thirdly, we

formulate in detail the equations involved and demonstrate the existence and expression

for the resulting equilibrium points. Finally, we show the influence of such equilibrium

points on the dynamics of the physical system.

5.4.1 Consumer and Supplier Functions

Having described the physical dynamics and the problem formulation, let us continue

with the game theoretical part of our problem.

The value function of a consumer in the grid is denoted by v(·), which represents

the value obtained by utilizing a quantity of electricity. Analogously, the supplier has a

production cost function c(·). Following [3, 6], we invoke the following assumption

Assumption 7. The functions c(·) : R→R and v(·) : R→R are continuous, monoton-

ically increasing. In addition, they are convex and concave respectively.

For the sake of brevity and with some abuse of notation, let us facilely denote the

game and the ways in which outputs Λ and Dset
i are calculated:

Λ = Γ(·) =argmax
Γ

ΠS(Γ),

=argmax
Γ

ΛPS− c(Γ),
(5.6)

for the supplier, and

Dset
i =argmax

Dset
i

ΠC(Dset
i ),

=argmax
Dset

i

v(Dset
i )−ΛPC, ∀i ∈ VL

(5.7)

for each consumer, where PS is the total power supplied by the supplier and PC the

power consumed by a consumer i. The optimal solution is unique for every time the

game is played, which is done iteratively. The earnings of the supplier are denoted

by the product ΛPS and the money paid by the consumer as ΛPC. It can also be seen
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from (5.6) that Γ is a functional that has the consumption as parameter and is output

from the corresponding optimization problem, this will enable the introduction of offers

(as seen in Chapter 4) or a personalized price.

The inclusion of both simultaneous maximization problems motivates the use of

game-theoretical concepts such as the Stackelberg game equilibrium, which we will

analyze whilst we fully formulate the profit functions of the game in the following

section.

5.4.2 Stackelberg Game Formulation

As previously discussed in Chapter 4, the Stackelberg game refers to a hierarchical

structure, according to which there is a leader and there are followers (in our case a

supplier and consumers respectively). The system setup introduced in this chapter ac-

commodates such a structure where the leader plays first, and the output of the consumer

depends on the announced output of the supplier. The supplier in turn has selected its

output as the best one from a set.

As introduced in Chapter 4, setting the output of the leader to be a function enables

the existence of multiple equilibrium points [36,92]. This allows the follower to decide

on an output that aligns with its necessities. This is the main advantage of this variation

of the game, where instead of a unique equilibrium point, the follower can select its

best response from the multiple options yielded by the announced incentive; all while

the game is at an equilibrium.

For the sake of tractability, let us define the incentive strategy Γ(·) as the following

assumption, however, without loss of generality, other types of strategies/functions can

be selected in a similar manner.

Assumption 8. The incentive strategy Γ(·) is a linear function and is given by

Γ(PL
i ) := Λi = γPL

i , (5.8)

where γ is a positive scalar gain. The endogenous variable PL
i is the power consumed

by load i that is being measured the moment before the game is played. Namely, an

instant measurement of the system state Pi.

The above can be interpreted as a function for a personalized price Λi that depends
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on how much power each consumer is using, in simpler terms the strategy can represent

an offer that incentivizes consumption, where the offer can take the form of the pro-

posed Γ(·) function. This is a sensible assumption since the price would be calculated

proportionally to the demand, as is generally utilized in the literature about demand

management [31], incentive strategies [42, 92], and dynamic pricing [43].

The gain γ is defined as strictly positive in our setup since a negative value would

represent the supplier paying the consumer. For consistency and as in the previous

chapter we will refer to γ as incentive value.

Let us introduce the quantity PG which is the total power supplied by the supplier’s

generators in the network. This does not include the main grid in node n, namely

PG = ∑i∈VG\n Pi. The power lost in the distribution lines of the network Ploss is the

remainder of all the power generated minus the sum of measured powers on the nodes.

This is calculated as Ploss = ∑i∈VG
Pi−|∑i∈VL Pi|.

Remark 5. For the sake of simplicity we use the above expression to obtain a measure of

the power losses, however, the power loss can also be calculated as Ploss = ∑i∈VG
V 2

i gii;

we avoid the use of such expression since it involves the system’s state vector.

As mentioned in Section 5.4.1, from (5.8), the money paid by the consumer i is

rewritten as γPL
i (D

set
i +PLrated

i ) and the earnings of the supplier as γ∑i∈VL(P
L
i )

2; both

quantities are equal to the price times the respective power consumption/supply. The

remaining elements of (5.6) and (5.7) are explained as follows. We define both cost and

value functions of the supplier and consumers respectively as

c(·):=c(γ,PG,Pmg,Ploss)=αG(γPG)
2+αG(γPloss)

2+αmg(γPmg)
2, (5.9)

v(·) := v(Dset
i ) = αCi ln(PLrated

i +Dset
i ), (5.10)

where it is clear that c(·) and v(·) are convex and concave respectively [6], αG is a scalar

gain directly associated with the cost of running/operating the supplier’s own network

generators, and αmg is associated with the cost of borrowing power from the main grid.

Both positive scalars are selected and derived exogenously according to various factors

such as market conditions, time of the year, etc. Analogously, αCi represents each

consumer’s own predilection in consuming power. As their names suggest, the cost

and value functions represent monetary quantities for the players and the above gains
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are used to also adjust such functions’ units. All the above yields the maximization

problems and profit functions now rewritten as:

argmax
γ

γ ∑
i∈VL

(PL
i )

2− c(γ,PG,Pmg,Ploss),

argmax
Dset

i

v(Dset
i )− γPL

i (D
set
i +PLrated

i ), ∀i ∈ VL

(5.11)

for the supplier and each of the consumers respectively. Where the supplier computes

and announces an incentive γ that consequentially results in l output prices Λi; with it,

the consumers calculate a power shift Dset
i . The existence of the Stackelberg equilibrium

points from the game (5.11) is demonstrated as follows.

Theorem 11. Let Assumption 8 hold and considering the cost and value functions (5.9)-

(5.10) in the maximization problem (5.11), the Stackelberg game yields the following

equilibrium points as functions of γ:

Λ
∗
i = γPL

i , (5.12)

Dset∗
i =

αCi

γPL
i
−PLrated

i . (5.13)

Proof. Due to the concavity of (5.10), the follower’s maximum is obtained by taking

the derivative of ΠC in (5.11) and setting it equal to zero,

∂ΠC

∂Dset
i

= αCi
1

Dset
i +PLrated

i
− γPL

i = 0. (5.14)

The derivative (5.14) yields a function of both player outputs as in a standard Stack-

elberg game, from (5.8) and solving for Dset
i in (5.14) yields the conditions in (5.12)-

(5.13).

The game is played every determined period of time TS. The resulting Dset
i from

the maximization problems (5.11) is then filtered through the first-order system (5.15),

feeding back the consumptions as will be explained in Section 5.4.3.

Now that the pricing mechanism has been defined, emphasis will be given to estab-

lishing the stability conditions for the physical system, where the input is the shift on

consumption Dset
i from above.
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5.4.3 Closed Loop Configuration

After each consumer i has decided how much to shift its consumption, namely all Dset
i

values for each load node have been outputted by the game, these are reflected in the

micro-grid system by feeding them back into it. Although a decision of how much

power a load should be consuming is taken every time step a price is announced, the load

introduces a dynamic response. This is captured by a first-order dynamics as follows

τi∆ṖL
i = Dset

i −∆PL
i ,∀i ∈ VL, (5.15)

where τi ∈ R>0 is the time constant of the system and ∆PL
i our new consumption shift

state. This represents the consumers’ response while they shift their consumption before

reaching their selected value Dset
i [30,92]. From (5.15) it is straightforward to show that

at steady-state ∆PL
i

ss
= Dset

i . Similar demand response modeling is often found in the

literature, such as [44–46].

The way in which our system is subjected to the price change comes by integrating

the dynamics (5.5)-(5.15). This yields a state vector with the form [V1, ...,Vn,∆PL
1 , ...,∆PL

l ]
T .

The added states ∆PL
i are subtracted to their respective load node powers in the vector

Pset in (5.5), yielding Pset
i = PLrated

i −∆PL
i if i ∈ VL. In other words, the resulting shift

of demand given a new price is reflected by modifying the rated load values. For each

of the load nodes, the dynamics (5.5) are now modified as follows:

V̇i =−
1

τvi
Vi−

ki

τvi
V 2

i gii−
ki

τvi
Vi ∑

j∈Ni

Vjgi j (5.16)

+
ki

τvi
(PLrated

i −∆PL
i )+

1
τvi

Vi
∗,∀i ∈ VL

For the rest of the nodes, namely generator nodes and the main grid node, their dy-

namics are left unchanged as in (5.5), for the sake of completeness, let us write their

dynamics as

V̇i =−
1

τvi
Vi−

ki

τvi
V 2

i gii−
ki

τvi
Vi ∑

j∈Ni

Vjgi j (5.17)

+
ki

τvi
Pset

i +
1

τvi
Vi
∗,∀i ∈ VG.

Now that we have the full dynamics of the system subject to the change of demand due
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to an announced price, we can perform a stability analysis.

5.4.4 Closed-Loop Stability

Due to the non-linear nature of (5.15)-(5.17), in the sequel we recur to the method of

linearizing around an equilibrium, this provides local stability results.

Calculating the Jacobian of (5.15)-(5.17) we analyze the system under the assump-

tion of the existence of an equilibrium point; we follow the methodology for resistive

networks as in [71] and references therein. We also resort to [98, Theorem 1] which

states that a non-linear circuit system is to be studied near the equilibrium via lineariza-

tion for V ∈ R>0; which is true for our case. Hence, let us state our equilibrium as

follows:

Assumption 9. For constant inputs Dset
i ∀i ∈ VL and Pset

i ∀i ∈ VG with Pset
mg = 0, there

exists an equilibrium point [V̄1, ...,V̄n,∆P̄L
1 , ...,∆P̄L

l ]
T for system (5.15)-(5.17), where

V̄i ∈ R>0 and ∆P̄L
i ∈ R.

Although the droop control model is standard, the above assumption might seem

initially as strong. We utilize it for simplicity as means to approximate the position of

the system eigenvalues. This assumption will be relaxed in Section 5.4.5, Assumption

10. We should mention that in a practical scenario, the droop controller has to be de-

signed in a way such that it outputs positive voltage values [20, 64]. Additionally, the

fact that the output voltages are at an equilibrium larger than zero, implies that the sys-

tem operates correctly. We demonstrate stability from the existence of the equilibrium

with the Jacobian.

Theorem 12. Let Assumption 9 hold and given a shift on consumption ∆PL
i in each load

node, system (5.15)-(5.17) is asymptotically stable at the equilibrium point if

−1− ki
(
2

V̄i

Rii
+ ∑

j∈Ni

V̄i−V̄j

Ri j

)
< 0, for i ∈ VG,

−1− ki
(
2

V̄i

Rii
+ ∑

j∈Ni

V̄i−V̄j

Ri j
−1
)
< 0, for i ∈ VL.

(5.18)

Proof. Calculating the Jacobian of system (5.16)-(5.15) with respect to the states Vi and
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∆PL
i , yields the following (n+ l)× (n+ l) matrix

J =


JV

−kτ−1
v

0(n−l)×l

0l×n −τ−1

 , (5.19)

where τ = diag(τi) is an l× l matrix, and JV is the n× n matrix corresponding to the

Jacobian of the open loop voltage dynamics (5.5) with respect to the state vector V :

JV =−τ
−1
v − kτ

−1
v
(
[V̄ ]G+[GV̄ ]

)
, (5.20)

which is comprised of diagonal elements

JV
ii =−

1
τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j, (5.21)

and non-diagonal elements

JV
i j =−

ki

τvi
V̄igi j. (5.22)

To obtain the stability conditions, the eigenvalues of our linearized system J should

be obtained. However, due to the size of J, the analytic calculation of the eigenvalues is

a daunting task. Let us employ the Gershgorin disc theorem to approximate the position

of such eigenvalues within the complex plane.

From Assumption 9, a disc ∆∆∆i can be defined for each row i in J, this will encircle

the position of the eigenvalue λi, such disc is centered at Ci = Jii along the real axis with

a radius Ri = ∑ j∈Ni |Ji j|.

At the equilibrium point, for the ith voltage state of the system, its disc ∆∆∆i(Ci,Ri) is

defined for non-load nodes as

∆∆∆i
(
− 1

τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j, ∑
j 6=i∈Ni

|− ki

τvi
V̄igi j|

)
, for i ∈ VG, (5.23)

and if i is a load node as

∆∆∆i
(
− 1

τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j, ∑
j∈Ni

|− ki

τvi
V̄igi j|+ |−

ki

τvi
|
)
, for i ∈ VL. (5.24)
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Im

Re

∑
j 6=i∈Ni

|− ki
τvi

V̄igi j|

︷ ︸︸ ︷
− 1

τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

gi j

Figure 5.2: Gershgorin disc configuration example, center and radius for the ith disc
of J.

Figure 5.2 illustrates a possible configuration of such discs. Taking into account the

properties of G mentioned in Section 5.2.3, the expression of ∆∆∆i(Ci,Ri) is simplified as:

∆∆∆i
(
− 1

τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j,
ki

τvi
V̄igii−

ki

τvi
V̄igi
)
, if i ∈ VG (5.25)

∆∆∆i
(
− 1

τvi
−2

ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j,
ki

τvi
V̄igii−

ki

τvi
V̄igi +

ki

τvi

)
, if i ∈ VL. (5.26)

For the system to be stable, the eigenvalues of the system have to be positioned in the

left-hand-side of the complex plane, namely ℜ(λi)< 0. To guarantee this, the entirety

of all Gershgorin discs should be in the left-hand-side of the complex plane, namely

Ci +Ri < 0, this yields

− 1
τvi
− ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j−
ki

τvi
V̄igi <0, for i∈VG, (5.27)

− 1
τvi
− ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j−
ki

τvi
V̄igi +

ki

τvi
<0, for i∈VL,

simplifying the expressions above, the two conditions in (5.18) are obtained. Addition-

ally, from J, the ∆PL
i states yield l stable eigenvalues λi = −1/τi, which is a straight-

forward result since the time constants are always positive.

Remark 6. In the case where all of the node voltages have approximately the same

value at the steady-state, i.e. V̄i ≈ V̄j, and the shunt conductances are small enough to
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Vqi

Vi

︷ ︸︸ ︷
V ∗i +∆V

V ∗i
−1 ︷ ︸︸ ︷

V ∗i −∆V

1

Figure 5.3: Bounded droop controller phase portrait example.

be neglected 1/Rii ≈ 0, condition (5.18) is simplified even further, yielding:

ki < 1 (5.28)

this is a stronger assumption to the case studied. However, in practice ki = pV ∗i /Prated
i ∀i,

where p is a percentage deviation of the node voltage that corresponds to 100% devia-

tion of the real power, according to the droop control concept. The above result (5.28)

yields the inequality pV ∗ < Prated
i , which aligns with the low voltage network assump-

tion.

5.4.5 Implementing a Bounded Droop Control Architecture

It should be highlighted that in a real scenario, it is a requirement that the instantaneous

node voltages remain within a given set, usually Vi ∈ (V ∗i −∆V,V ∗i +∆V )∀t ≥ 0 where

∆V is a deviation value of around 5 to 10 % from the rated voltage, namely ∆V =

0.05V ∗. Then, according to [73] we can use the bounded droop controller (BDC) to

guarantee such outputs, this is based on the bounded integral control theory from [74];

a characteristic of this is that it still maintains the linear P-V controller approach [72]

while generating a bounded output. The above is achieved by introducing a second

controller state Vq, hence the voltage dynamics for all the nodes take the following
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form:

V̇ = cτ
−1
v
(
(V ∗1n×1−V )− k([V ]GV −Pset)

)
V 2

q , (5.29)

V̇q =−cτ
−1
v

Vq
(
V−V ∗1n×1)

∆V 2 (V ∗1n×1−V−k([V ]GV−Pset)
)

+ kI((V −V ∗1n×1)
2

∆V 2 +V 2
q −1n×1

)
Vq. (5.30)

where Vq is a vector with the same dimensions as V , c = diag(ci) and kI = diag(kI
i ) are

matrices of positive constant gains for the integral control. The yielded state vector has

the form [V1, ...,Vn, Vq1, ...,Vqn,∆PL
1 , ...,∆PL

l ]
T . With the addition of Vq, it can be seen

from (5.29)-(5.30) that the controller is comprised of a non-linear double integrator

structure, thus acting as an oscillator [73] and fulfilling the objective of emulating the

dynamics of RMS voltage. Figure 5.3 illustrates the ways in which the values of the

states Vi and Vqi start and remain in the upper part of the ellipse formed by the term

kI( (V−V ∗1n×1)
2

∆V 2 +V 2
q −1n×1) in (5.30). The above has been previously demonstrated in

detail in [74].

The closed-loop configuration of (5.29)-(5.30) for load nodes is now derived as

V̇ i =
ci

τvi

(
Vi
∗−Vi− ki(Vigii +Vi ∑

j∈Ni

Vjgi j−Pi
set +∆Pi

L)
)
V 2

qi,∀i ∈ VL, (5.31)

V̇qi =−
ci

τvi

Vqi
(
Vi−V ∗i )
∆V 2

(
V ∗i −Vi− ki(Vigii +Vi ∑

j∈Ni

Vjgi j−Pset
i +∆Pi

L)
)

(5.32)

+ kI
i
((Vi−V ∗i )

2

∆V 2 +V 2
qi−1

)
Vqi, ∀i ∈ VL,

the equations for generator nodes can be obtained similarly as in Section 5.4.3. The

implementation of the BDC into our system dynamics also guarantees the existence

of equilibrium points within selected bounds. With the introduction of the bounded

voltage dynamics, we can now relax Assumption 9 and present the result that follows.

Assumption 10. For constant inputs Dset
i ∀i ∈ VL and Pset

i ∀i ∈ VG with Pset
mg = 0,

there exists an equilibrium point [V̄1, ...,V̄n,V̄q1, ...,V̄qn,∆P̄L
1 , ...,∆P̄L

l ]
T for system (5.15)-

(5.29)-(5.32), where ∆P̄L
i ∈ R, V̄i ∈ R>0, V̄i ∈ (V ∗−∆V,V ∗+∆V ) and V̄qi ∈ (−1,1).

This enables the system to be stable without depending on the existence of equilib-

rium points but only on rated and tuned parameters:
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Proposition 1. Let Assumption 10 hold and given a shift on consumption ∆PL
i in each

load node, system (5.15)-(5.29)-(5.32) is asymptotically stable at an equilibrium point

if

−1−ki
(
2

Vi
∗−∆V
Rii

−2∆V ∑
j∈Ni

1
Ri j

)
<0, ∀i ∈ V. (5.33)

Proof. Denoting the Vq dynamics (5.30)-(5.32) as f (V,Vq,∆PL) and calculating the Ja-

cobian of system (5.15)-(5.29)-(5.32) with respect to the states Vi, Vqi and ∆PL
i , yields

the following (2n+ l)× (2n+ l) matrix

JBDC =


ΦJV 0n×n −Φκ

∂ f
∂V

∣∣∣
V̄,∆P̄L

−
[
2kI

iV̄qi
2
]

∂ f
∂∆PL

∣∣∣
V̄,∆P̄L

0l×n 0l×n −τ−1

 (5.34)

where κ is the n× l matrix κ =
[
kτv
−1,0(n−l)×l

]T and Φ is a n×n matrix Φ = [ciV 2
qi].

For the stability conditions, the eigenvalues λi of linearized JBDC are calculated. These

are the roots of the polynomial yielded by the determinant

∣∣∣λ I− JBDC
∣∣∣= ∣∣λ I +

[
2kI

iVqi
2]∣∣ ∣∣λ I−ΦJV ∣∣ ∣∣λ I + τ

−1∣∣ , (5.35)

using the properties of block matrices to (5.35), it is trivial to see that the n+ l eigen-

values yielded by both matrices [2kI
iVqi

2] and τ−1 are negative and real due to that all

their values are positive. Leaving only to find the eigenvalues of ΦJV . We can discard

Φ and focus only on JV since all values of ciV 2
qi are positive as well.

Similarly as in Section 5.4.3, computing the Gershgorin discs ∆∆∆i(Ci,Ri) of JV with

Ci = JV
ii and Ri = ∑ j∈Ni |J

V
i j |, the following condition is yielded by shifting the entirety

of disc ∆∆∆i to the left-hand-side of the complex plane:

− 1
τvi
− ki

τvi
V̄igii−

ki

τvi
∑

j∈Ni

V̄jgi j−
ki

τvi
V̄igi < 0, ∀i∈V. (5.36)

Simplifying the expression above, we can substitute V̄i and V̄j to the value that yields

a disc closer to the origin. The worst-case scenarios for such values are V̄i = V ∗i −∆V

and V̄j =V ∗j +∆V . By doing this we obtain the sufficient condition (5.33).
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Note that condition (5.33) can be easily checked since it does not require the calcu-

lation of the equilibrium point.

Now that the conditions for the stability of the integrated system have been ex-

plained, let us briefly focus on the ways in which the outcome of the game influences

the physical system output. After each play of the game, it can be demonstrated that

the physical dynamic’s equilibrium points depend directly on the game’s output values.

This can be corroborated as follows.

Remark 7. The steady-state expression for dynamics (5.15) of node i ∈ VL can be

formulated as a function of the Stackelberg equilibrium parameters, namely

Vi
ss = f (γ,PL

i ,αCi). (5.37)

Once the consumers have decided their consumption and their demand has shifted,

the dynamics (5.15) - (5.16) are considered to be at steady-state. From there the follow-

ing expressions are obtained

Vi
ss =ki(PLrated

i −∆PL
i

ss
)− kiPi +Vi

∗, (5.38)

∆PL
i

ss
= Dset

i , (5.39)

where Pi is shorthand for the static expression (5.2) at the equilibrium point. Substitut-

ing (5.13) into (5.39) yields

∆PL
i

ss
=

αCi

γPL
i
−PLrated

i , (5.40)

this can be freely substituted into (5.38), resulting in the simplified expression

V ss
i = ki(2PLrated

i − αCi

γPL
i
)− kiPi +V ∗i , (5.41)

which can be presented as the function in (5.37). It is worth mentioning that the steady-

state of the system will change value once the game has been played again, this is further

exemplified in the numerical examples in the next section. The above derivations can

be done similarly for the system subject to the bounded droop control presented in

Section 5.4.5.
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5.5 Numerical Examples

In this section, we demonstrate two scenarios. In the first, we show how a single load

behaves when subject to the incentive strategy, while in the second we show a con-

figuration with two loads, both are implemented using the bounded droop control on

Simulink.

In the first scenario the micro-grid consists of the following elements: one load

(node 1), two generators (nodes 2 and 3), and the micro-grid is connected to the main

grid (node 4). The parameters are selected as follows: droop control time constant

τvi = 0.1s, load response time constant τi = 3s, nominal voltage V ∗i = 220V, maximum

selected voltage deviation ∆V = 11V, desired power references at each node Pset =

[−6.0,3.5,2.5,0]T kW. The integral gains are selected as kI
i = 1, the droop coefficients

are calculated in a standard fashion as ki = 0.05V ∗i /Prated
i for all nodes, where Prated =

[10.0,7.0,5.0,3.0]T kW is the rated power vector. The network topology is given by

the conductances in G, g12 = g21 =−5S, g13 = g31 = −4.167S, g14 = g41 =−4.545S,

g23 =g32 = −4.347S, g24 =g42 =−4.761S, g34 =g43 =−4S, and shunt conductances

gi = 0.6S. The value function gain is set to αC = 29× 106$/ log(W) while the cost

function gains have been set to αG = 11W2/$ and αmg = 2W2/$. These are selected

in a way that illustrates that is more costly to use power from the main grid. The

initial value of the incentive is set to γ = 0.036 $/W2. For example purposes, without

loss of generality, we have selected the game to be played every TS = 60s in which a

new γ is calculated. The consumption ∆Pset
1 is calculated at TC = 62s, meaning that

the incentive is known by the consumer 2 seconds after being announced. To further

illustrate the price change, during the simulation we modify the power contributed by

the supplier’s generators; this is achieved by modifying the generators’ set powers to

the values Pset
2 = 1.9kW, 0.1kW, 2.0kW at times t = 0s, 1000s, and 3000s respectively

and Pset
3 = 1.5kW, 0.05kW, 2.0kW at times t = 0s, 2000s, and 3000s respectively. The

total simulation time is 4000s.

Figure 5.4 shows the node’s power plots, it can be seen that there is an incentive

change every time the generators shift their value, in consequence, a shift in the load

happens depending on how high the incentive is, if the incentive γ increases, the price

increases and the consumer reduces its consumption (making it less negative in the

plot). It can also be seen that a higher contribution by the main grid leads to a higher
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price and vice versa. Finally, the plots show that given a change in the generators,

both the incentive and the powers converge towards an equilibrium point. The voltage

response stays within acceptable ranges and is mainly affected by the generator shifting

as shown in Fig. 5.5, it can be verified that the droop control is successful and there is

no deviation larger than the 5% of the selected 220V.

Figure 5.4: Simulation of a network connected to the main grid with one load and two
varying generators.

The second scenario consists of two loads (nodes 1 and 2), two generators (nodes

3 and 4), and the main grid (node 5). The new example vectors are selected as Pset =

[−3.5,−3.0,3.5,2.5, 0]T kW and Prated = [6.0,6.0,7.0,6.0,3.0]T . The topology is ex-

panded from the previous with the conductances g15 = g51 =−3.845S, g25 = g52 =

−3.703S, g35=g53=−3.571S, g54=g45 =−3.448S. The cost function gains have been

re-tuned to αG = 9.5W2/$ and αmg = 7.5W2/$, while the value function gains are set

to αC1 = 29×106$/ log(W) and αC2 = 20×106$/ log(W), these have been selected to

show two consumers with different interests. The generators’ set powers are modified

as in the previous simulation: Pset
3 = 1.9kW, 0.1kW, 2.0kW at times t = 0s, 1000s, and
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Figure 5.5: Voltage plots for the one load configuration.

3000s respectively and Pset
4 = 1.5kW, 0.05kW, 2.0kW at times t = 0s, 2000s, and 3000s

respectively. The rest of the parameters are left as in the previous simulation.

Figure 5.6, shows the second power plots. As before, it can be seen that there is con-

vergence towards different equilibrium points for different γ . The different consumer

value gains αCi result in distinct steady-states from their equal rated consumption val-

ues. The voltage plots for the second scenario are shown in Fig. 5.7. As expected, the

inclusion of another load lowers the voltages overall. However, the 5% deviation from

the set voltages is still respected by the droop controller. It is also worth noting that

the rational behaviour for both the supplier and the consumer has been captured: When

the main grid contributes more power, its higher cost forces the supplier to increase the

incentive which results in higher prices; in response, the consumer lowers its load to

a point that brings better profit given the current price. The converse case when the

contribution from the main grid is low, lowering the price and increasing the loads is

also captured in the final part of both simulations.

As a final note, the simulation results for the system without using the bounded

droop control are very similar to the ones presented and are not shown here for the

sake of brevity. However, it is easy to check that condition (5.18) holds based on the

parameters used above.

5.6 Conclusion

The pricing scheme based on the Stackelberg game has been refined. Differently from

the normalised version of Chapter 4, it has been adapted to a more realistic setting such
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Figure 5.6: Simulation of a network connected to the main grid with two loads and two
varying generators.

Figure 5.7: Voltage plots for the two load configuration.
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as the low-voltage resistive micro-grid, integrating the market and physical components

of the problem in a more fluent way. The proposed game and player models successfully

capture the rationality of energy consumers. We have demonstrated the asymptotic

stability conditions and adapted the parameters and functions for the implementation of

the on-line pricing mechanism.

The resistive micro-grid network model introduced in this chapter, together with the

derivations related to stability will be utilised for an integration with another pricing

scheme based on coalitional games. For such a scheme, the consumer and supplier

models presented in this chapter will also prove useful.





Chapter 6

Pricing and Stability via Coalitional

Games in a Resistive Micro-Grid

6.1 Introduction

With the advent of the smart-grid paradigm, more ways to distribute power have emerged,

bringing recent changes to the electricity market. Here governments and general con-

sumers now seek and switch to better providers and sources of power that enable them

to fulfil certain requirements while still being profitable. Such a paradigm has also en-

abled a higher degree of communication between the consumers themselves and the

energy retailers, providing new set-ups where these interact and cooperate to optimize

their outputs.

These aspects of switch-ability, cooperation and applicability are the main foci of

this chapter, since the majority of works about coalitional game theory applied to smart-

grids do not spotlight scenarios where there are multiple electricity retailers for the

end-users to choose; let alone the effect of these in the physical system.

Taking the physical system and the analysis introduced in Chapter 5, we now will

subject it to a novel pricing scheme where there are multiple retailers, where the Stack-

elberg equilibrium is also integrated. The problem statement is the following.

95
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6.1.1 Problem Statement and Contributions

We propose a dynamic pricing scheme with multiple electricity providers or retailers.

These compete to attract the largest number of consumers inside a community, which

in our case is represented by a micro-grid.

When consumers choose to be provided by a particular retailer, they join the re-

tailer’s coalition. This induces a partition on the set of players, which is comprised of

non-overlapping coalitions. It is understood that a coalition can accommodate only one

retailer since all electricity providers are considered quarrels. Another underlying as-

sumption is that both consumers and providers are price-taking rational agents that look

forward to increasing their profits. Both evaluate the price of energy in their respective

profit functions. The ways in which a retailer gains a consumer is by announcing its

price for electricity accompanied by an incentive. The retailers adjust their prices pe-

riodically, which in consequence will cause them to lose or gain consumers, and at the

same time, adjust the demand and supply of energy in the micro-grid.

Although the competition between retailers would seem fit to apply a non-cooperative

game framework, the inclusion of the consumer and its choice of retailer could not be

captured by this. In such a game the consumer as a player would be individually com-

peting against the retailers and other consumers. We also aim to capture the ways in

which consumers can “ally” to get a better profit by choosing a retailer in common,

recalling some form of the classic “cable tv company problem” [87] from graph theory

while including a market layer by taking into account profits, connection fees, potential

subsidies and costs.

The main contributions of this chapter can be summarized as follows:

• A pricing scheme based on notions from coalitional games is proposed, where

there are multiple competing retailers in a micro-grid. To the best of the author’s

knowledge, this is a novel problem setup in micro-grid literature. This is done in

Section 6.2.

• In Section 6.3 a stability analysis is performed covering the coalitions formed by

the proposed game and algorithm. The existence of the equilibrium points in the

game is also demonstrated, namely the guaranteed existence of a consumption

value given a price.
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• Section 6.5 focuses on deriving the stability conditions for the physical micro-

grid when subject to our pricing scheme. This is the first time in which this kind

of scheme is analyzed alongside a resistive low-voltage micro-grid.

• Additionally, the basis for a novel method where a costs-saving game is linked

and formulated directly from the existing physical conductance matrix of the grid

is introduced.

In Section 6.6 we numerically illustrate the advantages of the scheme; the ways in

which the profits of the consumers improve in comparison to a single retailer scenario

is shown. Section 6.7 streamlines conclusions of this work.

6.2 System Model, Definition and Preliminaries

In this section, we introduce the ways in which both retailers and consumers are mod-

elled. We review the concept of the Stackelberg game and recall the concepts from

graph theory that will be useful for the rest of this study.

6.2.1 Sets and Coalitions Definition

To study the coalitional behaviour of our scheme, we recur to a game-theoretic frame-

work. Let us define the universe of players in the micro-grid as N which contains N

players. This is partitioned into two non-overlapping sets: the set of retailers R ⊂ N

and the set of consumers B ⊂ N ; where R∪B = N . For the sake of simplicity, we

assume that R∩B = /0, namely a consumer cannot be a retailer and vice versa. Such

sets are composed asR := {r1, . . . ,rp} and B := {b1, . . . ,bl}, where p+ l = N. Besides

this basic partition, we seek a pairing between a retailer and a subset of consumers.

Definition 3 (Retailer’s coalition). A coalition Si⊂N is given by assigning k consumers

b j ∈ B to a single retailer ri ∈R,

Si := {ri,b j, . . . ,bk},∀i ∈R, j,k ∈ B. (6.1)

For the case where a retailer ri does not succeed to attract any consumer, its coalition

is reduced to a singleton Si = {ri}. In the problem, due to the nature of our market setup,

there are underlying assumptions that need to be addressed.
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Assumption 11. Each consumer b j ∈ B has to be assigned to one retailer at all times.

As a consequence, for the union of all coalitions, it holds

⋃
i

Si =N , ∀i ∈R. (6.2)

As a countermeasure, each consumer can decide to have zero consumption. This

will be the case according to its profit function, as it will be explained in Section 6.2.2.

Coalitions that have more than one retailer or that share consumers are considered in-

feasible, and this is formalized as follows.

Assumption 12. The coalitions comply with the conditions:

1. Two or more retailers cannot be allocated to the same coalition since they are

considered quarrels:

Si∩R\ ri = /0, ∀Si ∈N . (6.3)

2. Coalitions are non-overlapping, a consumer cannot be assigned to more than one

coalition:

Si∩S j = /0, ∀Si,S j ∈N . (6.4)

With the above, all possible coalitions are guaranteed to be feasible.

6.2.2 Consumer and Retailer Profit Functions

As touched in Chapters 4 and 5, both consumers and retailers are considered to be

price-taking rational agents. Both have the objective of maximizing their profits. This

captured by their profit functions Π(·), which we will review here for the sake of

convenience. Such functions represent the remaining amount of money after produc-

ing/consuming electricity and after covering the underlying production/consumption

fees. For the retailer ri this is calculated as

Πi = Λix−C(x), i ∈R, (6.5)

where C(·) is a function that corresponds to the cost of producing x quantity of electric-

ity and Λi is the price announced by the retailer which will be applied to its coalition.
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Similarly, every consumer b j that has opted to consume from ri calculates its profit in

accordance to

Π j =U(x)−Λix, j ∈ B, i ∈R, (6.6)

where U(·) is the monetary equivalent to the utility from consuming x quantity of elec-

tricity. As in Chapter 5, Assumption 7 we assume that such utility and costs functions

are monotonically increasing, while being concave and convex respectively [3, 6].

The rationale of both players in the setup of this chapter is represented by two max-

imization problems, the output of which is the price Λi for the retailer and a quantity of

power consumption Pd
b j

for the consumer; these are obtained as

Λi =argmax
λ∈[λ ,λ̄ ]

λ ·( ∑
b j∈Si

Pd
b j
−Ploss

i )−C(Pg
i ), (6.7)

Pd
b j
=argmax

ζ∈[ζ ,ζ̄ ]
U(ζ )−Λiζ , (6.8)

where λ and ζ are the maximization argument variables for the retailer’s price and

power used by each consumer respectively, Pg
i is the power generated by the retailer

and Ploss
i equals to the power losses incurred by the individual retailer in the micro-grid

transmission lines. The latter two terms are measured at the moment of evaluating (6.7).

Si is the coalition that contains the consumers b j of retailer ri; as explained in Section

6.2.1. In the maximization problems (6.7)-(6.8), it can be seen that the retailer wishes

to use the maximum price for bigger profits, and that the consumer wishes to consume

accordingly to its needs given the announced price. This scenario can be accommodated

in a game with a leader-follower structure. The optimal solution for (6.7)-(6.8) is unique

for every time the game is played, which is done iteratively.

The consumer is expected to evaluate all the prices Λi announced by all retailers ri

in the micro-grid. This will determine its decision on picking a retailer, namely which

coalition to join. By adding consumers to its coalition, the retailer also has to take into

account the following constraint:

| ∑
b j∈Si

Pd
b j
+Ploss

i | ≤ |Pg
i |, (6.9)

meaning that the retailer cannot provide power to the consumers beyond its own power
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capabilities. The dimensions of the power quantities are used in (6.9) since, as explained

in Chapter 5 with the physical model, the convention is to consider generation as a

positive value and consumption and losses as negative values.

6.2.3 Stackelberg Game Review

In our demand-side management problem, the consumption is regulated by means of

price. Therefore, the ways in which the consumers respond to the retailers’ announced

price involve a hierarchical structure. This can be represented by a Stackelberg game

[87], where among the players there is a leader, (in our case the retailers) that play

first, and some followers (the consumers), that play their best response to the leader’s

action. In essence, the retailers try to maximize their profits by announcing a price

which in turn is formulated as a function from the expected demand, and the consumers

consume as much as possible with the given price to also maximize their profits. Such

tension between leader and followers is captured by (6.7)-(6.8). When both leader and

followers select their optimal outputs, it is said that the game is at an equilibrium, as

will be further explained in Section 6.3.6.

6.2.4 Network Systems Review

For convenience, let us review the following concepts, which condense some notions

touched previously in Chapters 3 , 4 and 5. The topology of the networks described

in this chapter is represented by a connected, undirected and weighted graph Gi(V,E).

where V is the set of nodes (vertices). The set of edges E ⊆V×V is the set of unordered

pairs {i, j}. The out-degree δk of a node refers to the number of edges that connect to

a certain node k, which in the undirected case is equal to the number of edges that are

incident to a specific node. The minimum spanning tree of a network refers to the subset

of edges that connect all the nodes in the network, with the minimum total edge weight.

The adjacency matrix corresponding to a graph G is denoted by A∈Rn×n, where its i jth

element Ai j is the corresponding edge that connects nodes i and j. The set Ai refers to

the neighboring nodes j of node i where Vi ∈ A : {i, j} ∈ E . Let the degree matrix of A

be defined as D := [{∑n
j=1 Ai j}n

i=1], while the Laplacian L of A is obtained as L :=D−A.

In the coalitional game layer of our problem, each provider knows the cost of con-
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nection for every consumer in the micro-grid. These can be delineated by a graph; in

the set of nodes for the cost network we find a retailer and a number of consumers

V = {ri,b j, . . . ,bk}. The value (weight) of each edge in the corresponding graph repre-

sents a cost. These non-physical cost edges vary from consumer to consumer depending

on various factors like the physical position relative to each supplier (e.g. one consumer

is near a retailer’s own generator), plausible power losses or fees from regulatory agen-

cies. It is important to emphasize that the edges in the cost networks do not necessarily

represent physical connections or communication links.

In order to get from a supplier to a consumer, a certain path can be followed. This

path is described by the succession of edges in the network that can be used to reach a

consumer. The absence or presence of certain consumers in the provider’s network can

affect the path and result in higher or lower costs by adding the edge weights; this is

explained in Section 6.3.1.

6.2.5 Definition and Properties of the Conductance Matrix

Just as in Chapter 5, for the physical layer of our problem, the system is considered as

a network of load nodes and generator nodes, we will review some useful characteris-

tics of the system for ease of reading: The element Ai j in the adjacency matrix is the

corresponding edge represented by a conductance 1/Ri j between nodes i and j in con-

sideration of the distribution lines, which are assumed to be resistive. The conductance

matrix G is derived from the physical network’s Laplacian. However, although apparent

in A, the self-loops in the topology represented by the shunt conductances 1/Rii of each

node do not appear in L. For this reason, we recur to the conductance matrix G, which

has the form of a loopy Laplacian matrix [60] and is defined as G := L+ [{Aii}n
i=1].

Such matrix has the following properties: its i jth element Gi j = −1/Ri j and its diag-

onal elements Gii = 1/Rii +∑ j∈Ai 1/Ri j. If there is no connection between two nodes

i and j, namely j /∈ Ai, then Gi j = 0. If node i does not contain a shunt conductance,

then Gii = ∑ j∈Ai 1/Ri j.
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6.3 Coalitional Game with Multiple Retailers

In this section, we formally present the rules of the game and the ways in which the

coalitions are formed. We also present the algorithm that describes by what means the

game is played, along with a stability analysis in the coalitional games sense.

A coalitional game is defined by the tuple 〈N ,v〉, where v : 2N → R is a function

that assigns a real number to every coalition Si ⊂N . In our case, this is the savings that

the consumers in a coalition achieve by choosing the same retailer. To define the value

function v(Si) for any coalition Si ⊂N , the costs inferred by each consumer relative to

all available retailers have to be defined as detailed in the sequel.

6.3.1 Cost Definition and Minimum Spanning Tree Problem

Given a coalition Si, the retailer ri has knowledge on how much it costs to provide

electricity to a consumer b j in the retailer’s coalition, i.e. a connection fee to be paid by

the consumer. We refer to it as direct connection cost and can be denoted as c({ri,b j})

which can be represented by the weight of edge (ri,b j). Such cost c({ri,b j}) is equal

to the cost for having b j ∈ B as the only consumer of ri ∈R, namely, with Si = {ri,b j},

c(Si) = c({ri,b j}). The retailer also allocates different aggregate connection costs that

are enabled depending on the consumers in the coalition, namely the cost for connecting

consumer b j if bi is already in the coalition; denoted by c({bi,b j}) and represented in

a network as edges connecting consumers. The paths and edges are defined in a way

that makes more sense to have consumers join a coalition; resulting in higher savings

for the consumers when more consumers join the coalition. However, a consumer has

to be able to join whatever retailer it wants in accordance to its individual objectives.

The above can be represented by a graph Gi, where the nodes are all the players in

the coalition and the edges represent the connection costs both direct and aggregates.

The existence of the latter is subject to various exogenous factors such as geographical

location, high costs, etc. In this chapter, we will refer to this kind of network as retailer’s

cost network. We are now ready to present the definition below.

Definition 4 (Cost of a coalition). Given a coalition Si with an associated graph Gi

and characteristic cost function c : 2|Si| → R, the cost c(Si) is given by the minimum

spanning tree of Gi.
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Figure 6.1: Example cost network from retailer r1, and its minimum spanning tree
(dashed). Other retailers r j also assign similar costs (gray).

Conceptually, the minimum spanning tree in a weighted and well-connected graph G

contains all the nodes and the minimum possible total edge weight, that is, the smallest

possible sum of all weights. Further properties about the cost of the coalition defined

above are presented in Sub-section 6.3.5.

Example 1. Let the coalition S1 = {r1,b1,b2,b3}, where the cost network for retailer

r1 is the one in Fig. 1. There exist five different edges E1 = {(r1,b1),(r1,b2),(r1,b3),

(b1,b2),(b1,b3)}.

From the graph, there are seven possible trees that contain all nodes.

c({(r1,b1),(b1,b2),(b1,b3)}) = 170

c({(r1,b1),(b1,b2),(r1,b3)}) = 220

c({(r1,b1),(r1,b2),(r1,b3)}) = 270

c({(r1,b2),(b1,b2),(b1,b3)}) = 150

c({(r1,b2),(r1,b1),(b1,b3)}) = 220

c({(r1,b3),(b1,b3),(b1,b2)}) = 160

c({(r1,b3),(r1,b2),(b1,b3)}) = 210

The minimum spanning tree is found to be the one containing the edges {(r1,b2),(b1,b2),

(b1,b3)}, yielding the cost of the coalition as:

c(S1) = c({r1,b1,b2,b3}) = 150. (6.10)

With the cost of a coalition, its value function can be obtained by turning the con-

sumer’s minimum cost spanning tree game [99] into a costs-saving game. The value
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function of any feasible coalition Si can be expressed as:

v(Si) =


∑

j∈Si

c
(
{ri,b j}

)
− c(Si) , if Si is feasible,

0, if ri1,ri2 ∈ Si,

0, if rk /∈ Si ∀k ∈R,

(6.11)

where the value equals the sum of savings of all individual consumers, that is, the cost

for being the only consumer in the coalition minus the cost of the coalition with other

consumers.

Having defined the ways in which the savings are obtained through v(·), in order to

make sense of the network design and coalition forming, the following straightforward

assumption is formulated.

Assumption 13. Given a coalition Si consisting of a retailer ri and two or more con-

sumers b j, the following condition holds:

v({ri,b j})≤ v(Si), ∀b j ∈ Si. (6.12)

Namely, the savings are larger in a coalition with various consumers than in a coali-

tion containing only a retailer and a single consumer. The purpose of the costs-saving

game is to use it as a tool to incentivize consumers for joining a retailer’s coalition, by

aiding to increase the consumers’ profits with such savings.

6.3.2 Savings Imputation via Shapley Value

Given a coalition Si, the savings produced by the consumers of retailer ri have to be

imputed fairly. We recur to the Shapley value to do so since it is a well-known and stan-

dard solution for coalitional game problems [87]. A few concepts have to be established

before introducing the Shapley value, such as the marginal value which determines how

valuable a player can be when joining a coalition.

Assuming that the consumers enter in a certain sequence σ to an already defined Si

(e.g. σ = {ri,b6,b8, ...,bk}), where the ordering number of a buyer b j is given by σ−1(b j)
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(in the example, σ−1(b8) = 3), the set of predecessors of consumer b j is defined as

ρ
σ
b j

:= {bl ∈ Si | σ−1(bl)< σ
−1(b j)}. (6.13)

From this, the marginal value for b j given an arbitrary sequence σ can be defined as

mσ
b j
(v) = v(ρσ

b j
∪{b j})− v(ρσ

b j
). (6.14)

The marginal value for each existing sequence can be stored in vector form as

mσ (v) = {mσ
b j
(v),b j ∈ Si}. (6.15)

Finally, the Shapley value is then calculated as the average of the marginal vector

over all permutations of sequences, namely

Φ(v) =
1
k! ∑

σ

mσ (v), (6.16)

where k is the total number of consumers in the coalition. The resulting vector outputs

the corresponding portion of savings imputed to each consumer b j ∈ Si.

6.3.3 Retailer’s Cost Network Derivation

This sub-section is focused on the ways in which the previously introduced cost network

is derived from the individual retailer perspective. As mentioned, its edge values and

topology represent costs that are dependent on numerous factors both physical such as

distance and non-physical such as running costs and the retailer’s discretion. Because of

these reasons, several methods might arise to determine the weights of the cost network.

Here we present a novel and straightforward way to derive the costs based on the micro-

grid conductance matrix G [59]; which in a resistive micro-grid, represents the ways in

which the transmission lines involve the voltage dynamics. We have selected to derive

the cost network from G since it indirectly affects the running and connection costs for

the power suppliers by taking into account the power losses. The integration of G into

the physical system dynamics will be explained in Section 6.5.1.

The steps for deriving the cost network for a particular retailer ri are enumerated as
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follows:

1. Obtain the adjacency matrix. Given the conductance matrix G of the whole

micro-grid, it is straightforward to derive the adjacency matrix A, which contains

the conductance values of all connections between the nodes (loads and gener-

ators) in the network; its diagonal elements are equal to zero. The i jth element

Ai j =A ji contains the conductance between nodes i and j. From A, an unweighted

adjacency matrix B can also be obtained as follows:

Bi j =

1 if Ai j > 0 ∀i, j ∈N

0 otherwise
, (6.17)

2. Get the direct connection costs. The weight of the edge connecting the retailer to

a single consumer c({ri,b j}) is based on the average value of the path edges from

ri to b j nodes in GA. We employ the properties of the powers of both adjacency

matrices [5], namely An and Bn, where the element (Bn)i j is equal to the number

of walks of length n between nodes i and j. Conversely, (An)i j is equal to the

products of the edges of such n-length walks. The average product of edges per

path can be obtained as the elements of E:

Ei j =


(
(An)i j/(Bn)i j

) 1
n if (An)i j > 0 ∀i, j∈N

0 otherwise
, (6.18)

where the n-th root of the value is taken to preserve the same units and dimensions

given the increasing value of the n powers of Ai j. To calculate the costs, the

retailer has to define two monetary quantities: γ and ξ , where γ is a scalar to

adjust the conductance value to a monetary cost and ξ is a scalar equal to a fixed

fee that will increase the cost proportionally to the number of edges in the walk

from retailer to consumer. The cost c({ri,b j}) is then found as given below in an

iterative way, depending on the values of n and Ei j, ∀i∈R, j∈B, starting with

n = 1:

c({ri,b j}) = γEi j +nξ , if Ei j > 0, ∀i∈R, j∈B. (6.19)

Once a direct cost is assigned, n is to be increased by one n = n+ 1 and b j is
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discarded for the next iteration so its direct connection cost is not re-calculated.

This step is to be repeated until all direct costs c({ri,b j}) have been assigned a

value.

3. Get the aggregate connection costs. This step is straightforward since these are

coupled to the connections between consumer nodes. The edges c({bi,b j}) can

be calculated from A as:

c({bi,b j}) =

γAbib j +ωξ , if Abib j > 0

0 otherwise
, (6.20)

where ω is a scalar to differentiate between direct and aggregate fees if the retailer

desires to do so.

After completing the above steps, retailer ri has defined the connection costs and con-

sequently, the weights for graph Gi for its utilization in the minimum spanning tree

problem explained in Section 6.3.1.

6.3.4 Price, Consumption and Coalition Forming

In this section, the individual retailer’s cost function C(·) and every consumer utility

function U(·) are defined, their link with the supplier cost networks is introduced and

the ways in which these lead to the formation of the coalitions is explained.

As explained in Section 6.2.2, the cost and utility functions are monotonically in-

creasing and convex and concave respectively. To comply with this we have chosen the

quadratic term (ΛiP
g
i )

2 for C(·) and the radical term (Pd
b j
)

1
6 for U(·) in the same spirit

as introduced in Chapters 4 and 5.

Both functions output a monetary value, hence the terms discussed in the following

have to be included in the cost/utility of each player. The coalitional game is connected

to these functions by including the term v(Si) directly into the cost of the retailer, which

is equal to the consumer savings that will be rewarded back via imputation. The con-

sumers also include the individual base payment −c({ri,b j}) into their profit function

since it has to be paid regardless of the prospective savings. The retailers also announce

the value of a potential subsidy κriδ
ri
b j

to the consumer. Where δ
ri
b j

is the degree of the

node represented by b j in the cost network relative to ri. The scalar κri is a positive
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constant to adjust the potential subsidy proportionally to the number of connections

in the cost network. The subsidy term is an equivalent to the Bahnzaf power index

employed in cooperative games which dictates how pivotal is a players’ presence in a

coalition [100]. A form of the subsidy term is also used in [3] as an incentive tool. The

potential subsidy is announced by the retailer to the consumer as means to incentivize

the latter to join the retailer’s coalition, since in minimum spanning tree games the play-

ers with more connections in the cost network can potentially hold more value [87],

enabling the consumer to consequently increase its own profits. The actual resulting

subsidy is calculated after the coalition is formed; its value is equal to each consumer’s

Shapley value Φ(v) imputation.

Having introduced the above, and similarly to Chapter 5, we have defined the cost

and utility functions for retailers and consumers respectively as:

C(Pg
i ,Si) = αri ·(ΛiP

g
i )

2 + v(Si), ∀i ∈R, (6.21)

U(Pd
b j
) = αb j ·(P

d
b j
)

1
6 +κriδ

ri
b j
− c({ri,b j}), ∀ri ∈R,b j ∈ B, (6.22)

where the constant αri is a scalar associated to the production cost of the generated

power corresponding to retailer ri. Analogously, αb j represents each consumer’s predilec-

tion to consume power. Regarding the first term in (6.22); although any radical (or con-

cave function for that matter) can be used, we have chosen a sixth root for the sake of

simplicity and ease of tuning during the simulations. The inclusion of (6.21)-(6.22) to

the profit functions defined in (6.7)-(6.8), yields the maximization problems:

Λi = argmax
λ∈[λ ,λ̄ ]

λ ·( ∑
b j∈Si

Pd
b j
−Ploss

i )+ ∑
j∈Si

c({(ri,b j)})−αri · (λPg
i )

2− v(Si), (6.23)

Pd
b j
= argmax

ζ∈[ζ ,ζ̄ ]
αb j·(ζ )

1
6 +κriδ

ri
b j
− c({ri,b j})−Λiζ , (6.24)

for each ri ∈R and b j ∈ B respectively.

The process of consumer b j selecting a coalition Si is done by evaluating all prices

Λi ∀i ∈ R, base payments c({ri,b j}) ∀i ∈ R and the value of the potential subsidies

κriδ
ri
b j

announced by all the retailers into its profit function as in (6.24) and then taking
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the one that yields the largest profit:

Si← Si∪{b j} ⇐⇒ i = argmax
i

{
Πb j

(
Λi,κiδ

ri
b j
,c({ri,b j})

)
, i ∈R

}
. (6.25)

The consumption is then optimized in (6.24) with the consumer outputting the de-

manded quantity of power Pd
b j

whilst announcing it back to the retailer. In the case

where the constraint (6.9) does not hold for Si, retailer ri will have to reject the con-

sumers that generate the least profit in its coalition until the constraint is fulfilled, leav-

ing the rejected consumers to re-evaluate (6.25) without the former selected retailer.

Once the coalitions are formed, namely all consumers have been allocated a retailer;

the value of the savings of the consumers in the coalition is obtained by calculating the

Shapley value Φ(v) as explained in Section 6.3.2 and paid back to each consumer in the

coalition. This whole process is repeated every fixed period of time T = t f − t0 in the

interval [t0, t f ], allowing the price to be changed by the retailers. The sequence of all

the steps in the game is presented in Algorithm 1.

Algorithm 1: Coalition Forming and Savings Imputation
1 Initial State
2 Any b j ∈ B is assigned to an initial Si.
3 Any ri ∈R starts with initial Pg

i , fixed κri and Λi.
4 Any b j ∈ B starts with initial Pd

b j
.

5 repeat
6 Any ri ∈R measure ∑b j∈Si Pd

b j
and evaluate (6.23);

7 Any ri ∈R output Λi and κriδ
ri
b j

to all b j;
8 Any b j ∈ B evaluate all Λi and κriδ

ri
b j

into (6.24);

9 ∀b j ∈ B select coalition Si and announce Pd
b j

to ri ∈ Si;
10 if (6.9) does not hold for ri ∈ Si
11 repeat
12 ri ∈ Si rejects b j ∈ Si with the lowest Pd

b j
;

13 until (6.9) holds for ri;
14 Rejected b j by ri evaluate Λl and κrl δ

rl
b j

into (6.24) ∀l ∈R\ ri;
15 Rejected b j select another coalition Sl∀l∈R\ri;
16 end if
17 Any ri ∈ Si calculates v(Si) and Φ(v);
18 Any ri ∈ Si outputs Φ(v) to each b j;
19 Any b j ∈ Si consume Pd

b j
;

20 Wait for a period of time for next play;
21 end repeat
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6.3.5 Properties and Stability of the Coalitional Game

In this section, we enumerate and demonstrate the ways in which our game introduced

above yields stable coalitions and at the same time encourages competition between the

retailers. We also briefly analyse the existence of its equilibrium point.

The core of a coalitional game (N ,v) represents a key concept when analysing the

equilibrium of such games. A pay-off vector is an element a ∈ R|N | such that ai ∈ R

represents the gains of player i ∈N . The core is defined as:

Definition 5 (Core). For a coalitional game (N ,v), the core C is a subset of R|N | such

that C = {a ∈ R|N | : ∑i∈S ai ≥ v(S), ∀S⊂N}.

Let us investigate first the existence of a solution for the minimum cost spanning tree

game (MCST) we introduced in Section 6.3.1. Namely the existence of a non-empty

core given a retailer’s coalition Si. Non-emptiness of the core is a known property of

convex games [101]. Although the convexity of the game cannot be proven directly, we

recur to the concept of permutationally convex games (PC) originally introduced in [99],

where it is demonstrated that all PC games possess a non-empty core and both MCST

and convex games are PC. Let us introduce some general concepts in the following.

Definition 6 (Convex game). Let N = {1,2, ...,n} be an arbitrary set of players and

c : 2N→R a characteristic cost function where c( /0) = 0. A cost cooperative game

〈N,c〉 is convex if

c(S∪T )+ c(S∩T )≤ c(S)+ c(T ) ∀S,T ⊆ N. (6.26)

To demonstrate the analogy between PC and convex games, let us first note that c

satisfies

c(S∪{i})− c(S)≤ c(T )+ c(T ∪{i}) (6.27)

for all i ∈ N,T ⊆ S ⊆ N \ i. This means that the cost of connecting node i is reduced

when is included in an existing larger set of players. Following the general example, let

us denote the node corresponding to the retailer as 0. Finding the minimum spanning

tree in a graph induces a partial order i� j, namely for i, j ∈ N we say that i� j if node

j is in the unique path connecting node i to 0. The one immediate predecessor of i can
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be denoted as j(i) ∈ {0,1,2, ..., i−1}. Let us also denote [0] = /0 and [k] = {1,2, ...,k}.

We can now present the following generalization that yields from (6.27).

Definition 7 (Permutationally convex game). A game 〈N,c〉 is convex if there exist a

labeling of players, say 1,2, ...n, such that

c([k]∪S)− c([k])≤ c([ j]∪S)− c([ j]) (6.28)

for all S⊆N \ [k] and k� j. Namely, the costs are reduced further when sequentially

adding more players in a labelling. Any labelling satisfying (6.28) is a permutationally

convex order. We are now ready to present the following result:

Theorem 13. Given a retailer’s coalition Si, with a respective cost network described

by the graph Gi, the resulting minimum cost spanning tree game is permutationally

convex.

Proof. Let us denote [b j] = {b1,b2,b j − 1}, with bk � b j in the minimum spanning

tree and in consequence b j(bk) ∈ {ri,b1,b2, ...,bk−1} ∀i ∈ Si∩R, j,k ∈ Si∩B. With

some abuse of notation, let c([b j]) and c([bk]) denote the costs associated to the corre-

sponding labeled subsets of consumers [b j] and [bk]. From (6.28), it is straightforward

to determine that

c([bk])≤ c([b j]) if bk � b j. (6.29)

Given that smaller costs are obtained by including nodes in the unique path of the mini-

mum spanning tree, satisfying (6.29), it can be said that the induced order is PC, hence,

the MCST game of Si is PC.

From the relations and analogies above, we can state the following.

Theorem 14. Given a retailer’s coalition Si with a number of consumers b j, the respec-

tive minimum cost spanning tree game has a non-empty core.

Proof. We refer to the proof of [99, Theorem 1].

Remark 8. If the reader wishes further details on the derivations regarding the core

non-emptiness of PC games; we highly encourage the reader to revise the seminal study

in [99]. Additionally, the properties of a generalization for minimum spanning tree
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games are studied in [102], along with methods for finding its cost allocation and ex-

amples that illustrate its application.

Regarding the multiple retailer game described in Section 6.3.4 and with the pur-

pose of showing that competition among retailers brings them greater payoffs, we can

demonstrate that the game is subadditive [86]. Subadditivity is established in the fol-

lowing theorem.

Theorem 15. The coalitional game with multiple energy retailers 〈N ,v〉 with value

function v is subadditive, namely

v(Si∪S j)≤ v(Si)+ v(S j), ∀i, j ∈R. (6.30)

Proof. From Assumption 12, it is straightforward to determine that v(Si∪S j) = 0. Fur-

thermore, as explained in Section 6.3.1, the value of a coalition v(Si) is given by the

minimum spanning tree that connects the retailer to its consumers in the coalition via

the cost network, yielding the savings/subsidies; the worst-case scenario for the value

of any coalition is v(Si) = 0, always yielding that v(Si)≥ 0, hence (6.30) holds.

Subadditivity is not sufficient to demonstrate the stability of the game or the satis-

faction of the coalition members [86]. A stabilizing allocation can be guaranteed by

proving that the game is balanced. To do this, we first need to introduce the following

consequential property of our game:

Theorem 16. The coalitional game with multiple energy retailers 〈N ,v〉 is concave,

namely, for any Si,S j ⊆N ,

v(Si∪S j)+ v(Si∩S j)≤ v(Si)+ v(S j), ∀i, j ∈R. (6.31)

Proof. As consequence of (6.3) and (6.4) in Assumption 12, it is true that v(Si∪S j) = 0

and v(Si ∩ S j) = v( /0) = 0. Also, as in our previous demonstration; for any coalition

v(Si)≥ 0, thus (6.31) holds.

A property of all N-player concave games is that they are balanced [103], meaning

that for any concave game, there exists an equilibrium point. Therefore, we can state

the following theorem:
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Theorem 17. The coalitional game with multiple energy retailers 〈N ,v〉 is balanced.

Proof. We refer to the proof of [103, Theorem 1] for this demonstration.

Remark 9. Given the properties of subadditivity and concavity, we refer to [104] and

references therein, where additionally to the study in [103], the sufficient conditions for

a subadditive game to be balanced are enumerated and explained in detail.

In the following, we provide a complimentary analysis for the stability of the game’s

coalitions, where we investigate consumer satisfaction and the ways in which this is

guaranteed.

From the game proposed, Theorem 15 and Assumption 12 it can be inferred that the

value of the grand coalition v(N ) = 0 since the grand coalition, by definition, would

include all competing retailers. This, in consequence, renders conventional cooperative

game stability and balance analysis [86, 87] unusable. We recur to the notion of stable

partitions first introduced in [88], more specifically Dhp-stability, where the defection

function D(Si) is defined in a way that it outputs collections of players that can leave

the coalition Si to form homogeneous partitions. A coalition is D-stable when no group

of players is interested in leaving the coalition.

Definition 8 (Dhp stability). A coalition Si = {ri,b j, . . . ,bk} is Dhp-stable if the follow-

ing conditions are satisfied:

1. given a collection {Pi1, . . . ,PiL} resulting from an arbitrary partition of Si, such

that ∪L
j=1Pi j = Si:

v(Si)≥
L

∑
j=1

v(Pi j), ∀i ∈R, (6.32)

2. given the coalitions Si in the subset T ⊆ {1, . . . ,K}, where i ∈ T and K ≤ p:

∑
i∈T

v(Si)≥ v(
⋃
i∈T

Si), (6.33)

Theorem 18. Given the coalitional game with multiple energy retailers 〈N ,v〉. The

coalitions Si formed by such are Dhp stable.

Proof. For a fixed ri ∈R and associated coalition Si⊂N , consider a collection {Pi1, . . . ,PiL}.

It follows that ri ∈ Pi j for some i j ∈ {1, . . . ,L} which implies v(Pi j)≥ 0, and v(Pik) = 0
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for the rest. The cost associated with Pi j satisfies c(Si)≥ c(Pi j) since the minimum span-

ning tree of Pi j is contained in the one corresponding to Si. Condition (6.32) follows

directly from

v(Si)− v(Pi j)≥ c(Si)− c(Pi j)

since c({ri,bik})> 0 for all ik ∈ Si \Pi j .

For the second condition, it can be inferred from (6.3)-(6.4) that v(∪i∈T Si) = 0.

From the value formulation for a coalition (6.10)-(6.11), it is true that v(Si)≥ 0. From

the above, it is trivial that condition (6.33) holds.

6.3.6 Stackelberg Equilibrium

Having fully formulated both the profit functions and the maximization problems in-

volved in our proposed game, we are now ready to present the following result that

guarantees the existence of a Stackelberg equilibrium.

Theorem 19. There exists an equilibrium point (Λ∗i ,P
d∗
b j
)∈R2,∀ri,b j ∈ Si for the Stack-

elberg game (6.23)-(6.24).

Proof. Let a retailer ri and a consumer b j be in the same coalition, where they maximize

the profit functions in (6.23) and (6.24) respectively. The maximum of both profits can

be obtained by taking the derivative of both functions and equaling to zero:

∂Πri

∂Λi
=Pd

b j
−Ploss

i −2αriP
g
i

2
Λi = 0, (6.34)

∂Πb j

∂Pd
b j

=
αb j

6
(Pd

b j
)−

5
6 −Λi = 0, (6.35)

which follows the procedure to obtain the equilibrium point in a two-player Stackelberg

game [87, 92]. From (6.35) an expression for the consumer’s demand as a function of

the price is obtained

Pd
b j
=

1
6 5
√

6

( Λi

αb j

)− 6
5 . (6.36)

Substituting (6.36) in (6.34), yields the following expression:

1
6 5
√

6
Λi

αb j

− 6
5
−2αriP

g
i

2
Λi−Ploss

i = 0. (6.37)
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Solving for Λi while substituting the respective values of the parameters in (6.37),

equals a real positive value which corresponds to Λ∗i . Substituting it into (6.36) results

in Pd∗
b j

, thus yielding both equilibrium values.

The existence and convergence towards a Stackelberg equilibrium for our game is

further illustrated with the numerical results in Section 6.5.

6.4 Risk Sharing and Reduction of Statistical Disper-

sion

In this section, we provide a brief insight into the statistical implications for the con-

sumers when considering their demand to be a random variable. Motivated by [105],

here we consider the statistical properties of the consumer demand in order to demon-

strate that coalition forming entails lower risks.

In the game, there is an implied risk for the consumers when selecting a supplier;

such can result in the consumer not meeting the expected profit, i.e. the yielded sub-

sidy is lower than the potential one announced by the retailer. As demonstrated above,

consumers are induced to form a coalition to jointly increase the subsidy, leading to an

increase in the collective profit by sharing their risk.

For the sake of simplicity, let us consider the consumer’s αb j to be a random variable

αb j(t) ∼ N(µ,σ2). This a sensible assumption since the demand depends on various

factors such as the time of day, the different usage tasks, etc. Then, because of the

maximization problem (6.24), the resulting consumption Pd
b j

for each consumer can

be consequentially modeled as a stochastic process Pd
b j
(t) ∈ [0,Db j ], which truncates

the normal distribution of the original random variables. Where Db j is the upper limit

of consumption by b j. The vector-valued random process can be denoted as Pd(t) =

[Pd
b1
(t), . . . ,Pd

bl
(t)]T . The cumulative distribution function (CDF) at each time t is given

by

Φ(Pd; t) = P{Pd(t)≤ Pd}, (6.38)

which signifies the probability of the random process Pd(t) taking a value less than or

equal to Pd . The distribution Φ(Pd; t) is supported on a compact subset ∏b j [0,Db j ] ⊆

Rl
≥0.
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As already mentioned, the power consumption of a coalition Si ⊆N would be then

represented by a sum of stochastic processes:

Pd
Si
(t) = ∑

b j∈Si

Pd
b j
(t), i ∈R∩Si, j ∈ B∩Si. (6.39)

The corresponding random process is denoted by Pd
Si
= {Pd

Si
(t) < Pd} with support

[0,∑b j∈Si Db j ]. From this, the time averaged CDF is

FSi(P
d) =

1
T

∫ t f

t0
ΦSi(P

d, t)dt. (6.40)

Let F−1
Si

: [0,1]→ [0,∑b j∈Si Db j ] be the associated quantile function. For any p ∈

[0,1], the p-quantile of FSi is F−1
Si

(p) = inf{x ∈ [0,1]|FSi(x)≥ p}.

Let us define the total consumer profit given a price Λi as the function:

ΠSi(P
d,Λi) = ∑

b j∈Si

Πb j(P
d
b j
,Λi), (6.41)

where Πb j(P
d
b j
,Λi) is the individual consumer’s profit function from (6.24). ΠSi in-

cludes the subsidies to distribute. Taking ΠSi as dependent on the stochastic process Pd
Si

,

the expected consumer profit can be defined as

JSi(Λi) = E ΠSi(P
d
Si
,Λi). (6.42)

Let us also define the individual profit for a consumer b j as Π0
b j

specifically for the

case where it does not want to cooperate with other consumers as if it were the only

client of a retailer ri. In such profit, the resulting subsidy is equal to zero since there

are no other consumers to generate savings with, namely, its coalition is reduced to

Si = {ri,b j}.

The following result demonstrates that risk-sharing through coalition leads to an

increase in profit almost surely.

Lemma 3. Given a price Λi announced by ri, and an associated coalition Si with a
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number of consumers b j, we have almost surely that:

ΠSi(P
d
Si
,Λi)≥ ∑

b j∈Si

Π
0
b j
(Pd

b j
,Λi). (6.43)

Proof. By the properties of the sum of random variables [106] and of homogeneity

and superadditivity of functions of stochastic processes [105]; the condition (6.43) is

fulfilled as a direct consequence of (6.12), where the value of a coalition is always

greater or equal than the value of a single consumer with a retailer.

The above establishes that coalitions always bring larger collective profits for the

consumers. In a tangible manner, the savings obtained and their benefit can be ref-

erenced to the attenuation of statistical dispersion from aggregation. This has been

described in detail in [107], where the optimal expected profit directly depends on the

deviation of the coalitional value-at-risk (CVaR) [108] or coalitional shortfall deviation.

This is formalized as follows.

For any q ∈ (0,1), the CVaR deviation of Pd
Si
∼ FSi is defined as

Dq(Pd
Si
) := E[Pd

Si
]−E[Pd

Si
|Pd

Si
≤ F−1

Si
(q)]. (6.44)

Such deviation measures the difference between the expected value and the probability

of q being near the bounds of the probability distribution. Then, the reduction of disper-

sion that is induced by consumers joining a coalition Si and aggregating their demand

can be represented as:

∆∆∆Si := ∑
b j∈Si

Dq(Pd
b j
)−Dq(Pd

Si
). (6.45)

It is straightforward to show that ∆∆∆Si ≥ 0 for all coalitions Si ⊆N . As a consequence,

the advantages arising from aggregation are attributable to the reduction in dispersion as

measured by CVaR. Namely, the aggregation will improve the expected profit as much

as the statistical dispersion of the aggregate consumption is reduced.

6.5 Implementation with Physical Dynamics

To illustrate the effect of our proposed pricing scheme in the physical micro-grid, in

this section we derive a way to couple the physical dynamics and the game. A stability
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b5

b4

b2
b1

b3
r1 r2

r3

Figure 6.2: Resistive micro-grid in a network representation, comprised by
loads/consumers and generators/retailers , resistive distribution lines, and shunt con-
ductances.

analysis of the integrated system is also formulated. The derivations obtained here are a

more refined version of the ones presented in Chapter 5, for completeness and to show

the improvement of the dynamics equation we present them in the sequel.

6.5.1 Micro-Grid and Demand Dynamics

As previously shown, due to the relatively small scale of the market setup of our prob-

lem, the model taken into consideration is of a low-voltage configuration. This is oth-

erwise known as a resistive micro-grid model, by cause of the resistive dominance over

the inductance in the micro-grid’s transmission lines, consequently neglecting the re-

active power [67]. Such a system is considered as a network of p generator nodes and

l load nodes (retailers and consumers respectively); as shown in Fig. 6.2. Here the

weighted edges connecting the nodes are equivalent to resistive transmission lines. For

this study, we focus on an islanded micro-grid since it is better suited for our multiple

retailer scheme. However, a scenario where there is a main grid that supplies power

additional to the generators/retailers in the micro-grid can also be accommodated in the

present model by adding an additional generator node as the main grid.

For the sake of completeness and clarity, let us briefly enumerate and explain the

dynamics of the physical system, which consists of a bounded P-V droop and demand

response.

We consider the case where each generator and consumer is providing grid support

by operating under P-V droop control. Opposed to the conventional droop control [72],
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here we propose an improved version of the bounded droop controller (BDC), which

results in a simplified structure compared to [74] and maintains the voltage of each node

within a required bound around the rated value at all times. As it is shown in the sequel,

this is important to obtain analytic stability conditions for the closed-loop system. In

this framework, the voltage dynamics of each node under the proposed bounded droop

control take the form:

V̇ = cτ
−1
v
(
(V ∗1n×1−V )− k([V ]GV −Pset)

)(
1n×1−

(V −V ∗1n×1)
2

∆V 2

)
, (6.46)

where V is a vector containing the ordered voltages of the loads and the generators V =

[Vb1,Vb2, . . . ,Vbl ,Vr1 ,Vr2 , . . . ,Vrp ]
T ∀bi ∈ B,ri ∈ R. The square diagonal matrix [V ] =

diag(V ) contains the elements of vector V . The diagonal matrices τv = diag(τvi) and

k = diag(ki) contain all the nodes’ voltage time constants and power droop coefficients

respectively, c = diag(ci) contains positive constant gains for the integral control. The

matrix G is the conductance matrix. The value of V ∗ is the rated voltage and ∆V is a

positive value to define the desired voltage bounds which is employed in the quadratic

terms in the dynamics that enable the voltage outputs to be bounded [73, 74]. Let us

briefly demonstrate that the voltage values always remain within the desired bounds.

Lemma 4. Let all the nodes in the system be subject to the dynamics (6.46), with initial

conditions Vi(0)∈ (V ∗−∆V,V ∗+∆V ), ∀i∈N . Then for all the voltage values we have

Vi(t) ∈ (V ∗−∆V,V ∗+∆V ),∀i ∈N (6.47)

at all times t > 0.

Proof. The proof follows from contradiction. Consider a trajectory for Vi(t) that vi-

olates the bound (6.47), i.e. there exists a time T where Vi(T ) = V ∗+∆V or Vi(T ) =

V ∗−∆V . Then from (6.46), we get V̇i(T ) = 0 and therefore Vi(t) =Vi(T ) ∀t ≥ T , hence,

it remains at the limit of the bound and does not violate it.

The vector Pset contains the reference value of the power that is demanded or gen-

erated by each node and is set via a supervisory controller. Its values are defined for

generators/retailers as Pset
i = PLrated

ri
,∀i ∈ R and is a constant; this is changed for the

load/consumer nodes to include their demand response as Pset
i =PL

i ,∀i∈B. Where PL
i is
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the corresponding demand response which is given by the first-order dynamics [30, 92]

as follows

τiṖL
i = Pd

bi
−PL

i ,∀i ∈ B, (6.48)

where τi ∈ R>0 is the time constant of the response and the input Pd
bi

is the desired

power demand from the consumers’ maximization problem (6.24). Hence, coupling

the game and the physical dynamics yields the following state vector with the form

[Vb1, ...,Vbl ,Vr1, ...,Vrp, PL
b1
, ...,PL

bl
]T ∀bi ∈ B,ri ∈ R. Now that we have defined the dy-

namics and explained the ways in which the physical layer of our problem is coupled

with the market layer, we are ready to demonstrate under which conditions the stability

of the physical system is guaranteed.

6.5.2 Physical Stability Analysis

In this sub-section, a stability analysis very similar to the one presented previously in

Chapter 5 is presented, it has been left here for the sake of completeness.

The BDC implemented into the voltage dynamics guarantees the existence of an

equilibrium point within the given bounds. We now present the assumption below:

Assumption 14. For constant inputs PL
i ∀i ∈ B and Pset

i ∀i ∈ R, there exists an equi-

librium point [V̄b1, ...,V̄bl ,V̄r1 , ...,V̄rp , P̄L
b1
, ..., P̄L

bl
]T for system (6.46)-(6.48), where P̄L

bi
∈

R,∀i ∈ B, V̄i ∈ R>0,∀i ∈N , V̄i ∈ (V ∗−∆V,V ∗+∆V ),∀i ∈N .

From the above, the conditions for stability do not depend on the equilibrium points

and only do on the parameters to tune. This leads to the following proposition.

Proposition 2. Let Assumption 14 hold and let a shift on consumption PL
i in each load

node be given, then system (6.46)-(6.48) is asymptotically stable at the equilibrium

point if

−1−ki
(
2

Vi
∗−∆V
Rii

−2∆V ∑
j∈Ai

1
Ri j

)
<0, ∀i ∈N . (6.49)

Proof. Calculating the Jacobian of system (6.46)-(6.48) with respect to the states Vi and

∆PL
i yields the following (N + l)× (N + l) matrix
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JBDC =

ϒJV −ϒκ

0l×N −τ−1

 , (6.50)

where ϒ = diag(υi) is an N×N matrix containing small positive scalars as a result of

substituting the equilibrium voltage values V̄i into the term υi =(1−(V̄i−V ∗)2/∆V 2) ∀i∈

N . τ = diag(τi) is an l× l matrix and κ is the N× l matrix κ =
[
kτv
−1,0(N−l)×l

]T . JV

is the N×N matrix corresponding to the Jacobian of the voltage dynamics (6.46) in an

open-loop configuration with respect to the state vector V [72], namely:

JV =−τ
−1
v − kτ

−1
v
(
[V̄ ]G+[GV̄ ]

)
. (6.51)

Correspondingly, (6.51) is comprised of diagonal elements

JV
ii =−

1
τvi
−2

ki

τvi
V̄iGii−

ki

τvi
∑

j∈Ni

V̄jGi j,∀i ∈N , (6.52)

and non-diagonal elements

JV
i j =−

ki

τvi
V̄iGi j,∀i, j ∈N . (6.53)

To obtain the stability conditions, the eigenvalues λi of JBDC are to be calculated. These

correspond to the roots of the resulting polynomial of the determinant

∣∣∣λ I− JBDC
∣∣∣= ∣∣λ I−ϒJV ∣∣ ∣∣λ I + τ

−1∣∣ . (6.54)

By the properties of block matrices, it is trivial to see that the eigenvalues of τ−1 are

negative and real due to all the time constants being positive. We are left only with

finding the eigenvalues of ϒJV . We can focus only on JV since all values of υi of ϒ are

also positive.

Given the complexity to analytically obtain the eigenvalues of JV due to its potential

size, we can compute the Gershgorin discs [26] ∆∆∆i(Ci,Ri) with their center Ci = JV
ii and

radius Ri = ∑ j∈Ni |J
V
i j | which enclose the position of any eigenvalue λi in the complex

plane. We can guarantee stability by shifting all the discs ∆∆∆i to the left-hand-side of the
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complex plane. The following condition results from such a shift:

− 1
τvi
− ki

τvi
V̄iGii−

ki

τvi
∑

j∈Ai

V̄jGi j−
ki

τvi

V̄i

Rii
< 0, ∀i∈N . (6.55)

Simplifying the expression above, and substituting V̄i and V̄j to the value that yields a

disc closer to the origin for which in the worst-case scenario we have V̄i =V ∗i −∆V and

V̄j =V ∗j +∆V , the sufficient condition for stability (6.49) is obtained.

It is straightforward to check the stability condition (6.49), since calculating the

equilibrium points of the whole system is not required.

6.6 Numerical Examples

6.6.1 Coalition Formation and Profit Calculation

In order to show the ways in which retailers calculate new prices according to the

demand as well as how consumers react to a change of prices in the micro-grid, we

have formulated two scenarios. The first consists of a micro-grid that contains five

consumers B = {b1,b2,b3,b4,b5} that are supplied with power by only one retailer

R = {r1}. The second consists of the same consumers supplied by two additional re-

tailers R = {r1,r2,r3}. The parameters for all the players are listed in Table 6.1. The

cost networks for the different retailers are defined as in Fig. 6.3. In the simulations,

the game is played every certain amount of time; we show the response along ten time

periods. We have simulated both scenarios at the same time to illustrate the difference

in the players’ responses.

From Fig. 6.4, which shows the price and consumption in each retailer’s coali-

tion, it can be seen that the rationality of the players has been captured, namely that

the consumers tend to consume more (less) given a lower (higher) price, and that the

retailers tend to lower (raise) their price when the consumption is low (high). This is

more clearly evident in the single retailer scenario, where it is also demonstrated that

the game eventually converges to a Stackelberg equilibrium [87, 92].

Additionally, Fig. 6.4 shows that there are instances where the game yields zero

consumption to certain coalitions. This is the result of the consumers choosing the
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Table 6.1: Parameters for Retailers and Consumers.
Retailer αri κri λ i λ i Pg

i

r1 1e-4 $
1
2 65 $ 0.01 $/W 4 $/W 30 kW

r2 7e-5 $
1
2 64 $ 0.01 $/W 2 $/W 30 kW

r3 5e-5 $
1
2 63 $ 0.01 $/W 3.5 $/W 30 kW

Consumer αb j Pdrated
b j

ζ
b j

ζ b j

b1 1800 W6 3 kW 0 kW 6 kW
b2 150 W6 3.5 kW 0 kW 7 kW
b3 140 W6 2.8 kW 0 kW 5.6 kW
b4 100 W6 4 kW 0 kW 8 kW
b5 1600 W6 1.5 kW 0 kW 3 kW

b3
b4

b5

b1
b2

r1

550

475

535300
280

245

540

455

b3
b4

b5

b1

b2
r3

460

495 525 230

400

340

540
250

500

b3
b4

b5

b1
b2

r2

505

520

515

425
225

350

365
510

525

Figure 6.3: Cost networks defined by each retailer for the same set of consumers.

coalition that maximizes their profit (i.e. taking the lowest price), leaving some retailers

without consumers for a period of time.

The individual consumptions are captured in Fig. 6.5, from which it is clear that

all the consumers are able to consume more in the multiple retailer scenario where the

consumption converges above the rated values for all consumers, even with those that

do not prioritize consumption as much (lower αb j). This behaviour is further justified

by looking at the individual profits of the consumers in Fig. 6.6. Here it can be seen that

the profits are larger for the consumers in the multiple retailer scenario. An exemplary

contrast is shown for b4, which has a very low consumption in the first scenario but
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Figure 6.4: Price and coalition consumption responses over time.
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Figure 6.5: Consumers’ individual power demand over time.
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Figure 6.7: Retailers’ immediate profits for every time period.
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Figure 6.9: Consumers’ coalition selection over time.

with negative profits caused by the fact that it has to be connected to the only available

retailer and has to cover the connection fee; this is alleviated in the second scenario

where its consumption is much larger, yielding positive profits. However, as expected,

the profits for r1 are reduced comparing the first scenario to the second as shown in

Fig. 6.7. As mentioned, the lack of customers can yield negative profits due to the

running costs, as captured by r2’s profit. Nonetheless, the advantage of the multiple

retailer scheme is clear. This is evident from Fig. 6.8, whereby comparing the total sum

of profits yielded by all consumers in the problem, the one in the multiple retailer case

is significantly larger.

The decision made by each consumer regarding which coalition to join in the second

scenario is distinctly delineated by the plots in Fig. 6.9, where the consumers do not

stay fixated with one retailer in their effort to take the one that gains them the largest

profit.
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Figure 6.10: Resistive network configuration for the physical dynamics integration ex-
ample.

6.6.2 Game and Physical Dynamics Integration

Having shown the ways in which consumers choose an energy retailer and coalitions

are formed, we would like to show to what degree the implementation of our pricing

scheme would affect the physical response. We subject the dynamics (6.46)-(6.48) to

the coalitional game scheme by employing the consumers and retailers with the param-

eters from our previous multi-retailer scenario in Section 6.6.1. The physical micro-grid

consists of five load nodes (consumers) and three generator nodes (retailers), these are

interconnected by the resistive network in Fig. 6.10, which is denoted by the con-

ductance matrix (6.56). We have selected the dynamics parameters as follows: droop

control time constant τvi = 0.1s, load response time constant τi = 3s, nominal voltage

V ∗ = 220V, maximum selected voltage deviation ∆V = 11V. The droop coefficients are

calculated in a standard fashion as ki = 0.05V ∗i /Prated
i and ci = (π∆V )/(0.1kiPrated

i ),

where the Prated
i vector consists of the Pg

ri and PLrated
b j

values for the corresponding re-

tailer and consumers respectively. For example purposes, without loss of generality, we

have selected the game to be played every time period TS = 60s in which the new prices

Λi are calculated. The consumer retailer selection and individual consumptions Pd
bi

are

calculated at TC = 61s, meaning that the prices and potential subsidies are known by

the consumers one second after being announced. The simulation time is 600s.

The plots in Fig. 6.11 and Fig. 6.12 illustrate the ways in which the physical system

reacts to the demand changes; which are a result of the multiple retailer pricing scheme.
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From Fig. 6.11 it can be seen that the negative power values (consumptions) for each

consumer node approximately coincide with the demand magnitudes previously shown

in the previous example in Fig. 6.5, confirming that the rationality of the consumers is

captured accordingly to the theoretical example. The small deviations from previous

simulations reside on various factors such as power losses and the nature of the P-V

droop controller; where the power is regulated to maintain the voltage values within the

desired values. The latter is corroborated in Fig. 6.12, where the voltage values are

contained within the defined equilibrium bounds, the dynamics are also corroborated

by the voltage changes incurred due to the shifts in power/demand.

As in the previous example, the dynamics of the game and preferences of the con-

sumers are illustrated in Fig. 6.13, where the coalitions with lower prices have the

highest consumptions and each price changes according to the measured coalition con-

sumption. That is, given a low (high) consumption, the price decreases (increases) in

the following time period. The individual consumer preference and retailer switching

is captured in Fig. 6.14.

Although the consumers’ coalition switching from Fig. 6.9 and Fig. 6.14 appears

to not converge to a definitive selection, this can be easily alleviated by introducing

consumer retention schemes such as disconnection or early contract exit fees to mention

some examples. The results shown serve to emphasize the price-taking rationality of

both leader and followers.

6.7 Conclusion

The definitions and the algorithm for the pricing scheme have been established and

the stability of the game and its induced coalitions have been demonstrated. We have

G =



19.16 −5.0 0 0 0 −3.33 −5.55 −5.26
−5.0 20.79 −4.34 0 0 0 −5.88 −5.55

0 −4.34 8.35 −4.0 0 0 0 0
0 0 −4.00 7.45 −3.45 0 0 0
0 0 0 −3.45 6.78 0 −3.33 0

−3.33 0 0 0 0 7.33 −4.0 0
−5.55 −5.88 0 0 −3.33 −4.0 18.78 0
−5.26 −5.55 0 0 0 0 0 10.81


(6.56)



129 6.7. Conclusion

Figure 6.11: Resistive network node powers when subject to the proposed coalitional
game.

Figure 6.12: Resistive network node voltages when subject to the proposed coalitional
game.
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Figure 6.13: Desired cumulative consumptions for each retailer coalition given a re-
spective price.

Figure 6.14: Consumers coalition selection when subject to physical dynamics.
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described a potential implementation of the present scheme and the integration of it with

the physical micro-grid dynamics, together with its corresponding stability analysis. A

comparison between single and multiple retailer scenarios has been shown numerically,

highlighting the advantages of the latter from an economic point of view.

In this chapter, we have proposed and derived an on-line pricing scheme that en-

compasses the most important theories and concepts that have been touched on in the

present research project. Namely the hierarchical structure of the Stackelberg game,

coalitional games where there are competing players, notions of network systems, and

the stability of non-linear systems.





Chapter 7

Conclusions

In this thesis, the study of game theory-based pricing schemes and their integration

with physical power systems has been carried out. In the sequel, a discussion about the

present body of work, its implications, results and general conclusions is presented.

7.1 Discussion and Conclusions

Bringing together the areas of game theory and power systems for this research has been

proven to be a great challenge. As mentioned above, because of the interdisciplinary

nature of this proposition, there is a knowledge disparity and, to a certain degree, re-

luctance from both areas to embrace each other. This fact is directly reflected in the

literature. The rigorousness of the power systems and control does not compromise for

simpler models or the subjectivity of some game-theoretic concepts. Conversely for

the game theory community, such realistic approaches have less importance, leading to

unrealistic assumptions or outright disregard of the physical systems. From this, one

can understand the compromises taken in this research that are reflected in the model

switching from Chapter 4 to Chapter 5.

Other discernible compromises arisen from this situation are the choice for simple

models in the cost and utility functions of the players, as well as in the choice for linear

incentive strategies, since advocating for more complexity would have resulted in a

more complicated analysis from the control and systems engineering perspective.

In contrast, from the game theory community, there is an eagerness to see the ap-

plicability of the theories and algorithms it proposes. This was illustrated to us directly

133
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during the reviews and the subsequent acceptance of the works proposed in Chapters 4

and 6. Although the ways in which we have connected the two parts of the problem

by the means of passing the output of the game through simple dynamics and includ-

ing the state for the latter in the physical plant appear to be valid, there must be other

procedures to couple such parts in a more logical, precise and efficient way.

From the above, we can conclude that the results presented in this thesis help bridge

the aforementioned gap, certainly not completely, but they constitute a step closer.

7.2 Impact on the Community

Although our proposed less prescriptive model from Chapter 3 is acceptable only for

certain applications, we have made available a tool to represent network systems and be

the base for further studies, being on the theoretical or practical aspects, on the market

side or otherwise.

The pricing schemes proposed in this study have been formulated with the end-

user in mind at all times. The reason behind this is to bring the reader closer to the

problem setup in a more engaging and relatable manner. This is very important since

an underlying objective of this work is to familiarize people from a power systems or

control engineering background to the game-theoretic concepts here touched.

The most palpable contribution from the present research is the insight provided

on how the electrical systems would react by subjecting them to the derived pricing

schemes; at the same time, conditions for stability are provided, depending on either

the parameters of the physical system or the pricing mechanism. This is important

since figuring out a definitive on-line pricing scheme for micro-grid systems is still an

existing challenge, the work performed here will hopefully help pave the way to their

implementation in the near future.

7.3 Future Directions

Given the level of detail of the models proposed in this research, there are several ways

the present work can be improved and expanded upon. A non-comprehensive account

of approaches is as follows:
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Although not taking part in the scope of this study, the ethical dilemmas and reper-

cussions arising from introducing novel market schemes and dynamics have to be thor-

oughly researched, as with any technological paradigm released to the public, new laws

have to be adapted and formulated for proper implementation.

Regarding the physical layer of the problems here presented, several factors can be

included such as the impact of stochastic disturbances due to renewable generation, or

the existence of failures in a given subset of micro-grid nodes to name some examples.

However, these are to be included meticulously since they would likely increase the

complexity of the dynamic models and therefore the stability analysis. Another way

to extend the present research is investigating the impact and the integration of the

proposed pricing schemes on the overall dynamics when there are multiple micro-grids

interconnected.

For the game-theoretic part, a logical step forward for the proposed schemes is the

introduction of mean-field models for the demand. A more expansive study, specifically

for the Stackelberg game, pertains in the inclusion of different functions for the incen-

tive strategy, studying different configurations for both value and cost functions and

the analytical conditions that lead to a consensus on price and demand. An investiga-

tion on the bounds for the incentive strategy and its tuning that ensure a non-oscillating

response is also another path to take.

Further developments for the coalitional game approach dwell in the incorporation

of disconnection penalties, quality of the service, among other factors that can be in-

cluded in the algorithm. Additionally, several approaches/variations for deriving the

proposed cost networks can be investigated. Finally, with the same market setup and

dynamics as the basis, a plethora of optimization methods can also be implemented for

a more efficient and precise performance for the scheme we have proposed.



References

[1] UK Power Networks, “Regional Development Plan City Road City of London

(excluding 33kV),” 2014.

[2] D. P. Kothari and I. J. Nagrath, Modern Power System Analysis. Tata McGraw-

Hill Pub. Co, 2003.

[3] T. Namerikawa, N. Okubo, R. Sato, Y. Okawa, and M. Ono, “Real-Time Pric-

ing Mechanism for Electricity Market with Built-In Incentive for Participation,”

IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 2714–2724, 2015.

[4] D. Bauso, “Nonlinear network dynamics for interconnected micro-grids,”

Systems & Control Letters, vol. 118, pp. 8–15, 2018. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S0167691118300896

[5] F. Bullo, “Lectures on Network Systems,” 2016.

[6] M. Roozbehani, M. A. Dahleh, and S. K. Mitter, “Volatility of Power Grids under

Real-Time Pricing,” arXiv preprint:1106.1401, vol. X, pp. 1–15, 2011.

[7] A. Loni and F.-A. Parand, “A survey of game theory approach in smart grid

with emphasis on cooperative games,” in 2017 IEEE International Conference

on Smart Grid and Smart Cities (ICSGSC). IEEE, jul 2017, pp. 237–242.

[8] M. J. Osborne, “A course in game theory,” Computers & Mathematics with Ap-

plications, vol. 29, no. 3, p. 115, 1995.

[9] W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Başar, “Coalitional game
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