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Summary

Regenerative chatter, which is unstable vibration, is one of the most important issues

that limit milling operations’ productivity. One way to suppress the regenerative chatter

is to utilise passive control methods such as tuned mass dampers (TMDs). However,

the performance of passive control devices that use traditional elements (e.g. spring

and dampers) is generally limited. The inerter, is a relatively new mechanical element,

has been explored to improve dynamic performance of passive control systems in a wide

range of engineering fields. However, it has not been examined for machining chatter

stability as yet. Hence, this thesis investigates possible performance improvement

using inerters in milling operations, develops an inerter design integrated into a passive

device as a localised addition, and presents experimental validations of the effectiveness

of the developed device.

The potential benefits of using inerters are initially shown by numerical evaluations

considering only simple inerter-based layouts. These layouts are considered localised

additions to provide a more versatile solution similar to a traditional TMD. Optimal

design parameters of the elements in the layouts are numerically determined by

performing computations witht the self-adaptive differential evolution (SaDE) algorithm.

The numerical simulation results indicate that the layouts can significantly improve

milling stability by up to 40% in some cases.



v

Milling operations generally need small-scale passive control applications due to the

limited space. Furthermore, numerical evaluations indicate that the inerter requires

producing small inertance due to the optimal inertance values obtained. Therefore,

design studies are presented to meet the design criteria without performance loss. The

developed inerter is capable of producing small inertance. Moreover, it allows the small

adjustment of inertance for fine tuning by simply attaching additional lumped masses

to the inerter. Using the developed inerter and a gel damper which provides hysteretic

damping, an inerter-based passive device is proposed with the advantage of being

applicable into small-scale applications without the need for a grounded connection

like a traditional TMD.

A prototype of the proposed device is manufactured for experimental validations. The

dynamic behaviour of the prototype is initially tested by impact hammer tests. These

initial tests also indicate the effectiveness of the prototype in a vibration suppression

case. Finally, the functionality and stability improvement of the prototype are examined

and validated under real cutting conditions.
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Chapter 1

Introduction

1.1 Background

Milling operations, where material is removed from a workpiece by a rotating cutting

tool, represent of an important portion of the all manufacturing techniques applied

in industry. Chatter is a major problem which limits the productivity of milling

operations, especially in aerospace, automotive, and mould industries [1]. Excessive

vibration due to chatter might lead to undesired results such as low surface quality, low

material removal rate (productivity), unacceptable accuracy, loud noise and machine

tool damage or even breakage.

Chatter is generally classified in two groups: primary and secondary chatter. The

former is induced by friction in the cutting region, thermo-mechanical effects on

the chip formation or mode coupling. The latter, secondary chatter, is caused by

the regeneration effect and it is more commonly referred to as regenerative chatter.
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Regenerative chatter is more detrimental and the most commonly seen chatter in

machining. Therefore, the focus of this thesis is on regenerative chatter and the term

’chatter’ is used to describe the regenerative chatter throughout the thesis. Regenerative

chatter is induced by regeneration of waviness on the workpiece’s surface. It is a type

of self-excited vibration and different from forced vibration. It is a stability problem

and it is therefore related to whether the vibrations grow with time or not. If a cutting

operation is stable, it is dominated by forced vibration. In the case of chatter, the

cutting is unstable and it is dominated by the self-excited vibration.

The basic regenerative mechanism of chatter was first explained by Tobias and Fischwick

[2], and Tlusty and Polacek [3]. Tobias and Fishwick [2] introduced the concept of

the stability lobe diagram by evaluating the phase shift of the waviness between two

subsequent cuts, which indicates stability limit of depth of cut against spindle speed

as present in Figure 1.1. The chatter vibrations can reach a detrimental level in a very

short time beyond the stability border. The growth of the vibration level decreases near

the stability border and chatter vibrations might be acceptable. However, the surface

quality will be still affected by the chatter vibration. Stability chart in Figure 1.1 is

commonly used for the evaluation of the stable region in machining operations. The

productivity of a cutting operation is proportional to the material removal rate, which

can be defined as the amount of material removed from the workpiece per second. A

cutting operation with a high depth of cut and high spindle speed is generally favourable

as it provides a high material removal rate (or productivity). Thus, enhancement of

the stability limit at higher spindle speed is important to improve the productivity of

cutting operations.

Proper selection of the spindle speed and the depth of cut can be used to avoid unstable

cuts. However, whilst this method makes the most of the stability lobe diagram, it
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Figure 1.1 Stability lobe diagram where stability limit of machining operation is shown
using depth of cut versus spindle speed.

does not improve the stability limit. It is also possible to manipulate the stability limit

to enhance the stable region in a desired way. One way to achieve this is to improve

the structural dynamics of the milling system through passive control devices. Chatter

can be induced by the dynamic flexibilities of structural mode of the machine, spindle,

tool or workpiece. Application of passive control devices such as tuned mass dampers

can increase the chatter resistance of the milling.

The inerter, is a relatively new mechanical device, has been increasingly studied by

the vibration community to improve the performance of passive control devices in a

wide range of engineering vibration problems. The concept of the inerter was first

introduced by Smith [4] as a new mechanical device to complete the missing two

terminals element in the standard analogy between mechanical and electrical networks.

An inerter generates a force proportional to the relative acceleration between its two

terminals. It corresponds to an ungrounded capacitor in an electrical network. It

has been shown benefit the behaviour of the dynamic system in many applications

as reviewed in Chapter 2. However, to the date, there has been no comprehensive
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study in the literature that focuses on the use of the inerter to improve the chatter

performance of the machining system. To the author’s knowledge, the only study

related to application of the inerter in milling is the work of Wang et al. [5], who

examined the use of the inerter for vibration mitigation of a milling machine. However,

they considered the vibration problem as forced vibration rather than the chatter

stability problem. The main issue in milling operations that limits productivity is

chatter. A great majority of machining research that address undesirable vibrations

during cutting operation focus on the chatter problem. Hence, the investigation of the

benefits of the use of inerter in chatter stability has remained a research gap in the

literature.

This thesis investigates the benefits of the use of inerter-based passive control devices

in improving chatter stability of milling. The integration of the inerter is considered as

a localised addition [6] in a similar manner to a classical tuned mass damper in order

to present more versatile solution with no (or minimum) structural modification of the

milling machine.

1.2 Motivation and objectives

The aim of the current research is to investigate improvement of the chatter stability

of milling, using an inerter as a localised addition. To achieve this, the main objectives

are follows:

1. Numerically evaluate the performance of possible layouts of inerter-based passive

control device as localised additions in milling.
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2. Develop an inerter device which is applicable to small-scale small-amplitude

applications such as milling operations.

3. Design an inerter-based passive control device which can be applied as a localised

addition (without the need for ground connection or deployment between two

parts of the controlled structure) in a similar manner to a classical TMD.

4. Manufacture a prototype and test the dynamic behaviour of the device via

experiments.

5. Validate the functionality of the absorber and the stability improvement under

real cutting conditions.

1.3 Thesis outline

The rest of the thesis is organised as follows:

Chapter 2 presents the literature review in two sections. In the first section, the

machining chatter stability, including the stability prediction, chatter avoidance and

mitigation methods are discussed. The main focus of the review is passive control

methods applied in chatter stability improvement. The second section of the literature

review evaluates the inerter. In this section, the physical realisation of the inerter, its

performance improvement and its application are discussed.

Chapter 3 introduces the theoretical background by explaining the basic regenerative

mechanism with a simplified example. It is then extended to the stability analysis of

milling, which is more complex due to the rotating tool. The concept of the stability

lobe diagram is also briefly explained in this chapter.
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Chapter 4 performs numerical evaluations of chatter stability improvements of four

different inerter-based layouts attached to the milling system. To avoid unnecessary

complexity, the milling system considered in this chapter is reduced to a single degree-

of-freedom (SDOF). The evaluation of the layouts is mostly conducted focusing on the

absolute stability limit of milling. The sensitivity analysis of the design parameters for

the layouts with best performances is also presented.

Chapter 5 involves design studies for the physical realisation of one of the layouts. The

physical realisation of the layouts evaluated in Chapter 4 might not be possible as

presented in ideal form due to some factors such as parasitic mass effect and realisation

of the damping. Therefore, this chapter first presents a practical approach to the

layout considering the parasitic mass effect as well as relatively simple realisation of

the damping mechanism with hysteretic damping. Then, the chapter describes the

development of a mechanical inerter with living-hinges, which is applicable to small-

scale small-amplitude application, with the advantage of adjustment of the inertance

for fine tuning. Using the developed inerter, the prototype of the inerter-based absorber

that requires no grounded connection or deployment of two components of the host

structure is presented.

Chapter 6 experimentally validates both the functionality of the prototype as an

inerter-based absorber with modal tests and the improvement of milling stability

through milling tests. A number of modal tests for different cases, including the

evaluation of the vibration suppression performance, is utilised to test its functionality.

Furthermore, the functionality and the chatter performance are evaluated under real

cutting conditions applying milling tests in this chapter. Chapter 7 draws conclusions

and discusses limitations and possible future works.



Chapter 2

Literature Review

This chapter presents a literature review of machining chatter and inerter. In the first

part of this chapter, the literature related to the machining chatter research, including

stability prediction, chatter avoidance and mitigation methods, is discussed. In the

second part, the literature review of the inerter considering its concept, the physical

realisation of the inerter device, its performance and applications are presented.

2.1 Machining chatter research

2.1.1 Introduction

Research studies of machine tool chatter date back to as early as the 19th century. The

earlier studies were mostly based on empirical data and models, and were mostly led by

industrial initiatives [7]. Among them, the most famous one is the research programme
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of F. W. Taylor. One of the general conclusions of twenty-six years of factory-based

research arrived about the chatter of the tool as stated in the published work entitled

"On the art of cutting metals" in 1906 [8]

Chatter is the most obscure and delicate of all problems facing the machinist,

and in the case of castings and forgings of miscellaneous shapes probably no

rules or formulæ can be devised which will accurately guide the machinist

in taking the maximum cuts and speeds possible without producing chatter.

Taylor stated that no rules or formula could be devised for a general understanding of

the chatter. Earlier attempts were limited for the specific cutting processes, and no

comprehensive mathematical model and explanation were expressed for the chatter

mechanism.

Research in the field of machining has shown a rapid development starting from the

middle of the 1940s. Some of the important works which accelerated the development

in the field of machining research were the works of Merchant [9–11]. He developed a

steady-state orthogonal cutting force model for the metal cutting process by assuming

a continuous chip (Type 2) of Ernst [12]. The mechanism underlying the regenerative

chatter was first given by Tobias and Fishwick [2], and Tlusty and Polacek [3]. It was

extended to multipoint cutting with the contribution of the studies of Sridhar et al.

[13–15], Altintas and Budak [16–20], Insperger and Stépán [21–24], and et alia.

More than a hundred years after Taylor’s statement, which forecast no accurate rules

or formula for the accurate prediction of chatter, a good understanding of the chatter

mechanism has been established by bringing the gaps between practice and theory. In

parallel to this understanding, advanced methods for the prediction of the occurrence of
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machine tool chatter and the mitigation of the chatter mechanism have been developed

by many researchers in the field of machine tool chatter.

The ultimate aim in the research of machine tool chatter is to increase the productivity

of the cutting process and/or increase the quality of the surface finishing. Different

methods have been proposed to avoid regenerative chatter or increase the machining

chatter stability since the establishment of the regenerative chatter theory. The

advancements in machining chatter research can be classified into three groups as

given in Fig. 2.1. The first group is chatter avoidance which relies on an accurate

prediction of the occurrence of chatter. This group accepts the machine tool dynamic

as it is, and chatter is avoided by changing the cutting parameters (e.g. depth cut and

spindle speed) in the process or out-of-the-process. Therefore, progresses in analytical

or numerical prediction of the chatter stability limits or the online chatter detection

methods contribute to the first group. The second group involves disturbing the delay

term by continuously changing the spindle speed or using special tool geometries.

The last group relies on the manipulation of the structural dynamics. Higher chatter

stability can be provided by modifying the components of the machine, using passive

or active control devices, or utilizing special tool geometries.

Methods for Chatter Avoidance & Suppression

Setting
Cutting Conditions

Disturbing
Delay Term

Modification
Stuctural Dynamics

Out-of-
process
method:
Based on
prediction
of the sta-

bility limits

In-process
method:
Based on
detection

chatter dur-
ing cutting

In-process
method:
Variable

spindle speed

Special tool
geometries

Passive
control

methods
Active
control

methods

Designing
machine

components

Figure 2.1 A classification of methods for chatter avoidance and suppression
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The methods in the first two groups mostly depend on the advancement of the

regenerative chatter model, while the methods given in the last group depends on both

the advancement of the regenerative chatter model and the structural dynamics. Hence,

a literature review of the studies which have been contributed to the understanding

of the chatter mechanism will be given first. Following this, the methods for chatter

mitigation will be presented.

2.1.2 Chatter prediction

Initial efforts focusing on chatter were made by Arnold [25], Hahn [26], and Doi and

Kato [27]. However, the first satisfactory analysis for the chatter was presented by

Tobias and Fishwick [2], and Tlusty and Polacek [3] almost at the same time but

independently of each other. Their works have constructed the fundamental basis

of our understanding of the chatter mechanism. Assuming a continuous single-point

cutting, Tlusty and Polacek [3] showed that the critical depth of cut for the absolute

stability was proportional to the dynamic stiffness of the machine. Tobias and Fishwick

[2] presented a similar relation and also showed that the stability limit for the depth

of cut in their conclusion was a function of the time delay between the inner and

outer modulation of the surface with the inclusion of the rotational frequency in

their model. This approach brought the establishment of the stability pockets (or

lobes) in the stability charts, the so-called stability lobe diagram. Tobias [2] utilised

a velocity-dependent factor, additional to the orthogonal cutting force, in order to

express the effect of the dynamic cutting force. Tlusty and Polacek [3] neglected this

velocity-dependency due to the lack of sufficient evidence of its existence and its small

effect on the cutting force. Merritt [28] in 1965 represented the regenerative chatter of

Tobias and Tlusty as a closed-loop system and applied Nyquist stability criterion for
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the stability analysis. Merritt also employed an orthogonal cutting force and neglected

the velocity-dependent term. He indicated the process damping for the contribution of

this term [29], which occurs due to rubbing of the flank face to the wavy surface of

the workpiece at lower cutting speeds. The three linear stability theories of chatter

suggested to that date assumed a continuous cutting operation where the directions of

the cutting force terms do not change as it is turning.

Milling operations involve a multi-point and interrupted cutting where one or more

teeth may remove material at the same time depending on the start and exit angles of

the teeth. The stability analysis of milling is more complicated than turning due to

the rotating tool. Sridhar et al. [13, 14] and Hohn et al. [15] developed a two-DOF

mathematical model for the milling process and determined the stability limits using

numerical evaluation of the dynamic milling system’s state transition matrix. The

force coefficients in the model were time-periodic because of the rotation of the cutter.

By preserving the linear assumptions, these time-periodic cutting force coefficients

converts the equation of motion into a linear periodic time-delay differential equation

and make the stability analysis more complex due to the infinite number of characteristic

multipliers [30]. An average value of the periodic cutting coefficients was utilised to

simplify the stability analysis considering the direction of the average of the total

cutting force caused by teeth in cut [31] and the time-averaged values of the directional

force coefficient [32, 33]. It has shown that this method causes inaccurate prediction of

the stability in milling [34].

Time-domain simulations were considered as another approach to overcome the difficulty

in the stability of the milling operation owing to the periodic force coefficients. Tlusty

et al. [34] used time-domain simulations to assess the stability of the milling process

having a two-DOF model. They also included the nonlinearity of the tool jump-out
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(called the basic nonlinearity) by taking the cutting force zero when the cut leaves

the workpiece surface. Later, time-domain analysis was frequently utilized to evaluate

the stability limits of the milling operation [35–39]. Although time-domain simulation

presents an accurate prediction of the real case and allows to be taken the nonlinearities

into account, they are computationally expensive. A number of repetitive simulations

need to be run to define the stability limits for a range of spindle speeds, and this

number can be very high for a high-resolution picture of the stability chart.

Minis and Yanushevsky [40] showed the first analytical perspective for the stability

analysis of the two-DOF dynamical milling model developed by Sridhar et al. [13].

They used Floquent’s theorem and applied Fourier analysis into the solution of the

milling dynamic equations to determine the characteristic equation of the system.

However, their method involved the numerical evaluation of the characteristic equation

to determine the stability using the Nyquist stability criterion. Budak and Altintas [17]

developed an analytical method, so-called the zero-order approach (ZOA), to derive the

milling stability condition. They expanded the directional milling coefficients matrix,

which is periodic at tooth passing frequency, into the Fourier series and determined the

stability condition analytically by considering the only constant term in the Fourier

expansion. This method was extended to three-dimensional milling operations by

Altintas [19]. The ZOA applied for variable pitch cutter [41, 42] and ball end mills [43].

The zero-order approach offers an accurate and fast prediction of stability limits of

milling operations except cutting operations with very low radial immersions.

Although the ZOA can handle the time-periodic directional cutting coefficient by

averaging and obtain the stability of milling operation with cuts with high immersion,

it neglects the intermittency of the cutting process, which becomes dominant with

highly intermittent cutting operations. In the earlier 2000s, some researchers [44–47]
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presented the existence of additional lobes (due to period doubling bifurcations) at

high speed for the cutting operations with low radial immersions. It was shown that

the ZOA approach is incapable of predicting these additional lobes as the severity

of the harmonics increases due to impulse-like cutting forces [48]. The first direct

analytical solution to present the additional lobes was given by Davies et al. [44, 45] by

considering one direction interrupted cutting operation with an extremely small ratio

of time spent in cut to out of the cut. They determined the stability of the system,

describing a map that consists of two stages: the solution of a free-damped system

and the solution of a system forced by an impulse. The method proposed by Davies

et al. [44, 45] losses its accuracy when the time spent in cut increases. In order to

remove the restriction of the short time in cut, Bayly et al. [47] developed the temporal

finite element analysis (TFEA) where the vibration response is obtained by the exact

solution of free vibration out of the cut and approximate solution in the cut applying

finite elements in time.

Insperger and Stepan [22] developed and improved [24, 49] the semi-discretization

method (SDM), which is capable of the prediction of the classical Hopf instability and

the period doubling instability appearing at high-speed [48]. In the SDM, the time-

variant delay part of the delay differential equation is only discretised while the rest of

the terms remain the same in order to obtain an approximated finite-dimensional system

of the infinite-dimensional system. The effectiveness and the reliability of this method

have been proved in the studies, including experimental verification [48], unstable

islands [50], variable helix, and variable pitch milling tools [51, 52]. However, it requires

more computational effort than direct analytical methods. It can be computationally

expensive depending on the number of modes of the system and its sampling interval

for accurate predictions. Moreover, the requirement of computation of modal matrices



14 Literature Review

limits its use in the industry due to the lack of robust automatic modal analysis

software [53].

The establishment of the stability analysis in the frequency domain, which can predict

both instabilities (Hopf and period doubling) was reported by Merdol and Altintas [20]

by extending the ZOA to the multi-frequency approach (MFA). Budak and Altintas

[17] had already introduced the multi-frequency approach by including the harmonics

in the solution. However, they had not realised the additional lobes as they had

not focused on low immersion cuts. Merdol and Altintas [20] demonstrated that the

additional lobes can be predicted by considering the MFA in the stability analysis.

However, the inclusion of the higher harmonics prevents a direct solution to the depth

of cut. Stability analysis requires iterative eigenvalue calculations and consequently,

the computational cost becomes larger compared to the ZOA. Bachrathy and Stepan

[53] extended the use of this method to general tool geometries, including distributed

delays.

There have been other time-domain based methods proposed to predict the stability

limits of a metal cutting operation, such as the Chebyshev polynomial method [54],

the Chebyshev collocation method [55] and the full-discretization method [56–58]. The

accuracy of the stability prediction of metal cutting operation can be reduced due to

neglecting the effects such as process damping (at low spindle speeds) and the mode

coupling. Therefore, there have been efforts to increase the accuracy in the stability

prediction by including the effects of process damping [59, 60] and the mode coupling

into the regenerative chatter model [61, 62].

Accurate prediction of the stability limit serves to improve chatter avoidance and

mitigation methods. Chatter avoidance can be simply provided by choices of the depth
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of cut and spindle speed based on the prediction of the stability limits. This is known

as the out-of-process method, and it completely depends on the accurate prediction

of the stability limit. Alternatively, the chatter can be avoided with the in-process

method based on detection of chatter during cutting. In this method, the depth of

cut and/or spindle speed are set to a stable region as soon as the occurrence of the

chatter is detected. Therefore, full chatter avoidance is not possible in this method as

the chatter has already occurred, but its harmful effects can be attenuated.

For instance, Smith and Tlusty [63] proposed adjusting the spindle speed online by

taking the tooth frequency equal to the natural frequency in high-speed milling. The

speed regulation system proposed determines the Fast Fourier Transform (FFT) using

the sound pressure during the cutting. If the chatter frequency starts to dominate the

system, the feed is stopped and the new spindle speed is set according to the chatter

frequency [64, 65]. In that way, they ensured that the spindle speed is always set to

the best spindle speed without a priori knowledge of the machine tool dynamics. This

method extended to a wide range of spindle speed by considering the integer fractions

of the chatter frequency [66, 67]. The detection of the chatter is critical for the success

of this method. Another in-process method, variable spindle speed, will be discussed

in the next section.

2.1.3 Variable spindle speed

The method of variable spindle speed disturbs the regenerative chatter mechanism by

continuously changing the spindle speed. In one of earlier studies, Sexton and Stone

[68] investigated the effect of the spindle speed variation on chatter improvement in

turning process. They showed that the improvement in stability due to the variable
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spindle speed was only modest and noted that vibration induced by continuously

changing spindle speed also led to poor surface finish. A turning process with a variable

spindle speed is governed by a differential equation with a time-varying delay term that

depends on the amplitude and frequency of the variation of the spindle speed. Jayaram

et al. [69] transformed this equation into a solution of an infinite order characteristic

equation applying a Fourier series expansion. They built the stability chart using

the approximate solutions obtained by the truncated version of the characteristic

equation. This approach allowed fast evaluation of the effect of the variable spindle

speed parameters on the stability for the choice of the optimal values. Sastry et al.

[70] extended this method to face-milling operations which also involves time-varying

periodic force coefficients. They experimentally verified stability improvement using

their method.

The semi-discretisation method was also used to investigate the effect of variable

spindle speed on machining chatter improvement [23, 71–74]. Insperger et al. [23]

proved that variable spindle speed can cause period-one bifurcation additional to

the classical Hopf and period doubling bifurcations which can occur in a machining

process with constant spindle speed. Different forms of modulation including sinusoidal

[75, 76, 69, 71], triangular [75, 72, 77], rectangular [68], and random [78] have been

tested and sinusoidal form of modulation was found to the most favourable form [75, 1].

Although it was shown that the technique of variable spindle speed can suppress period

doubling chatter seen at high spindle speeds [72], it is known as a more effective

technique at low spindle speeds, i.e. high order lobes [77, 71, 1]. For higher spindle

speeds, discretely selection of spindle speed is a more favourable technique.

It is also possible to use two in-process techniques at the same time to suppress

chatter in a wide range of spindle speeds. For instance, Bediaga et al. [79] proposed
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an automatic spindle selection method that chooses the best suppression techniques

depending on the given initial cutting conditions. The algorithm sought the best stable

spindle speed for low order lobes or uses variable spindle speed for high order lobes.

Even though variable spindle speed is an easy method to implement, the performance

of this method is subjected to the power and quick response of the spindle drive system.

Another factor that affects the performance of this method is the selection of the

parameters of the applied modulation, i.e. the amplitude and the frequency of the

variation of the spindle speed. This is also one of the main difficulties that hinder the

widespread use of this method in the industry. To overcome this difficulty, Al-Regib et

al. [80] developed a simple formula using an energy-based method to select the optimal

parameters for a sinusoidal spindle speed variation for given chatter frequency and

spindle speed. However, their method does not consider machine limitations.

2.1.4 Special tools

Milling tool geometries, including variable pitch and variable helix tools, can be

employed to improve regenerative chatter stability of the cutting operation. These

special geometries can suppress the regenerative mechanism by disturbing the delay

between adjacent cuts. Variable helix tools lead to discrete disturbance of the delay

while variable helix tools cause disturbance of the delay continuously. Research focus

in the use of these irregular tools in chatter suppression is mostly on accurate stability

prediction considering disturbance effects and optimisation of tool geometry in a way

that the best chatter suppression is obtained.
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Varying pitch angle to suppress chatter was proposed by Hanh [26] as early as the 1950s.

Slavicek [81] first presented the analysis of the use of variable pitch in a milling tool

considering two cutting edges with an infinite tool radius. His analysis was supported

with experimental verification, albeit for a limited spindle speed range. Although

achievement of chatter suppression using varying pitch tools has been theoretically and

experimentally presented, a random selection of the pitch angles does not guarantee

stability improvement [82]. Therefore, optimisation of the tool geometry is essential to

accomplish the best chatter performance.

Initially, time-domain simulations were used to seek the best pitch angles for varying

pitch tools [83, 84]. Altintas et al. [41] adopted ZOA considering variation in pitch

angles. This analytical approach provided fast optimisation of the pitch angles. Budak

[42, 85, 86] developed and applied an analytical optimal design strategy to obtain

the best pitch angles maximising the stability for a given chatter frequency, spindle

speed and number of teeth. Sims et al. [51] presented semi-analytical stability

prediction of milling with variable pitch and helix tools, including low radial immersion

cuts. The predicted stabilities obtained by semi-discretisation [87], time-averaged

semi-discretisation [41] and temporal-finite element methods [88] were compared with

time-domain simulation but no experimental verification was presented. Comak and

Budak [89] developed a practical design method for variable pitch tools to achieve

maximum stability. As the chatter frequency and the delay changes with the pitch

angle variation, the design method involves iterative solutions of time-averaged milling

dynamics to determine the optimal pitch angle variation by obtaining the chatter

frequency and phase difference to eliminate the delay for a given spindle speed and

system’s dynamics. Stepan et al. [52] proposed the Brute Force method to improve

tool optimisation of the pitch angle variation by considering time-dependent milling
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dynamics. The effectiveness of the method was demonstrated by Iglesias et al. [82]

conducting milling experiments.

The use of variable helix tools, where the delay changes together with the axial of

the tool, has been researched for the chatter resistance increment. Turner et al.

[90] introduced an analytical prediction of the stability for variable helix angle. A

reasonable prediction was validated for only low axial engagement. They also compared

the chatter suppression performance of variable helix and variable pitch. Variable

helix tools presented a better suppression performance in their experimental results.

Analytical predictions of the stability of variable helix tools were also presented adopting

ZOA [91] and MFA [92]. Also, Sims [93] proposed alternative MFA using the harmonic

transfer function approach. This method provides an explicit appearance of the phase

changing term, unlike classical MFA.

Sims et al. [51] showed that the semi discretisation method can be effectively utilised

for the stability of variable helix tools. Yusoff and Sims [94] optimised the variable helix

using the differential evolution algorithm integrated to the semi-discretisation method.

The stability improvement provided by variable helix tools was experimentally investi-

gated compared to the regular tool. Dombovari and Stepan [95] modelled a variable

helix with weighted distributed delay and analysed the stability of milling operations

with non-uniform and harmonically varied helix tool using the semi-discretisation

method. The results indicated stability improvement at the lower spindle speed region.

The focus of the special tool geometry has been mostly on the variable pitch tools

rather than variable helix tools. Variable pitch tools show stability improvement at

higher spindle speeds compared to variable helix tools. For both tools, optimisation of
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tool geometries is essential for stability improvement, which brings the necessity of fast

and accurate stability prediction of milling operations with these tools.
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2.1.5 Passive chatter control

Chatter stability depends on the dynamic behaviour of the structure of the machining

system. Improvement of the structural dynamics of the system can increase the chatter

resistance. One way to achieve this is to use passive control devices. Passive control

devices generally provide inexpensive solutions with easiness of implementation. One

of the most commonly applied passive control devices in vibration suppression as well

as chatter mitigation is the tuned mass damper (TMD). Therefore, although some of

the other passive control devices, such as friction dampers and viscoelastic dampers,

are reviewed, the focus of this section is mainly on TMD applications in machining

chatter suppression.

The Lanchester dampers consisting of only the damper and auxiliary mass was con-

sidered for chatter mitigation. In one of the earlier studies, Kato et al. [96] employed

the Lanchester damper to increase the chatter stability in boring operations. They

attached a mass to the end of the boring bar and benefited from the damping property

of the thin air film surrounding the mass. They experimentally verified the chatter

suppression. A similar pneumatic Lanchester damper was later developed by Gubaniv

[97] improved the chatter performance in a milling operation. They used a cylindrical

weight covered by a thin-walled shell, and the damping was realised with air filling the

gap between the shell and the weight. Their experimental results showed a significant

chatter improvement.

Impact and friction dampers have also been investigated to increase chatter resistance.

Ema and Mauri [98, 99] proposed impact dampers to enhance the damping capacity

of slender parts such as boring bars. Marui et al. [100] used micro-slip between the

tool shank and tool post by placing a plate into a rectangular hole cut in the long
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cutting tool bar. The friction between the rectangular hole and the plate increased the

damping capacity of the system, and therefore, the machining stability improvement

was provided. Similarly, Ziegert et al. [101] placed a multi-fingered cylindrical insert

inside milling cutters to enhance the damping capacity. The damping is increased due

to the bending of the milling cutter during cutting operation, which leads to friction

between the milling cutter and the insert. Edhi and Hoshi [102] developed a friction

damper to increase the stability of a boring operation at high frequencies. Their friction

damper consists of an additional mass mounted at the end of the boring bar with a

permanent magnet and needs no tuning for the parameters.

Seto and Tominari [103] used a tuned mass damper with a variable stiffness mounted

on the end of a long ram and tuned the parameters of the damper using Den Hartog’s

method. The machining tests showed that the TMD significantly improves the limited

critical depth of cut. Liu and Rouch [104] investigated the use of the TMD to increase

the chatter stability in milling. They numerically obtained the optimal parameters of

the TMD and showed that the TMD doubles the limited critical depth of cut. Rivin

and Kang [105] presented a comprehensive study to increase the stability of boring

bars in cutting operations. They proposed a tooling structure design with a light

overhang section, which allows high mass ratios for TMDs. They also analysed the

boring bar with a TMD, including the tuning optimal parameters and design of the

TMD. Significant performance improvements in chatter stability were reported in their

study. Tarng et al. [106] utilised a piezoelectric inertia actuator as a TMD for the

elimination of the chatter in turning. They manually tuned the parameters by setting

the natural frequency of the vibration absorber equal to the natural frequency of the

cutting tool. Six time higher chatter stability in cutting tests were achieved.
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Tuning of parameters is important to obtain the best performance from TMDs. Earlier

studies that utilised TMDs to increase machining stability generally applied Den

Hartog’s method [107], numerical or manual strategies for tuning parameters. However,

it was shown that the absolute stability of machining operation is inversely proportional

to the negative real value of the FRF [3, 2]. Using this relation, Sims [108] suggested

a new analytical tuning strategy for vibration absorbers used to improve machining

stability. The author showed that three fixed-points (instead of two fixed-points in Den

Hartog’s method) exist in the real part of the frequency response. Following the same

procedure applied in Den Hartog’s method, the optimal stiffness and damping values of

the absorber can be analytically obtained for equal real peaks and equal real troughs.

This tuning methodology was tested in a milling time-domain simulation, and a 40-50%

performance improvement was shown compared to Den Hartog’s method. Analytical

expressions in Sims’ method, as in the case of Den Hartog’s method, were derived for

an undamped main system. Although they do not guarantee the best performance,

they could be applicable to a lightly damped system to an extent.

The performances of TMDs in boring operations have been further evaluated by

modelling the boring bar as an Euler-Bernoulli cantilever beam, including the effect

of a selection of tuning strategies [109–111]. Moradi et al. [109] investigated the best

position of the absorber along the boring bar to minimise the free-end deflection. They

stated that the analysis results regarding the position of the absorber are valid for

chatter suppression as well. Miguelez et al. [110] evaluated the chatter suppression in

boring bars by modelling a bar as an Euler-Bernoulli cantilever beam and showed that

Sims’ method demonstrates a better performance than Den Hartog’s method. They

also presented a local analysis of the analytical expressions from Sims’ method [108] to

obtain a better tuning frequency which improves the chatter suppression performance.

Rubio et al. [111] studied the parameter optimisation of TMDs to increase chatter
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stability in a boring bar involving the structural damping in the bar. They showed

the effectiveness of Sims’ method over Den Hartog’s method. They also employed a

numerical optimisation method to maximise the critical depth of cut and achieved a

better performance than Sims’ method.

Applications of TMDs embedded in a boring bar or milling tool were also proposed.

Yadav et al. [112] modelled the boring bar as an Euler-Bernoulli cantilever beam in

boring operation and applied the receptance coupling method to obtain the tool-tip FRF.

The optimal parameters of the absorber were obtained by numerical optimisation, and

chatter stability improvement was demonstrated with experimental results. A similar

analysis was conducted by Ma et al. [113] for milling tools. They also numerically

obtained the optimal design parameters of the absorber by obtaining the tool-tip FRF

of the milling tool with the receptance coupling method and experimentally validated

the results.

Viscoelastic dampers for chatter stability have also been theoretically and experi-

mentally studied in the literature. Kim and Ha [114] evaluated the optimal design

parameters of a viscoelastic damper following Den Hartog’s optimisation criteria. They

implemented a viscoelastic damper mounting on a tool post of a lathe and achieved

stability improvement in turning tests. Rashid and Nicolescu [115] analysed and tested

a viscoelastic damper to reduce the vibrations in a milling operation. The damper

mounted on the workpiece provided significant vibration suppression. However, neither

of the works of Kim and Ha [114], or Rashid and Nicolescu [115] directly focused on

chatter stability. Saffury and Altus [116] analysed the optimisation of a viscoelastic

turning bar for chatter stability by considering the real part of the FRF. The results

were given with a comparison of the tuning of an elastic turning bar with a TMD
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whose parameters were obtained by Sims’ method. Advantages of the viscoelastic bar

in the use of different stability measures were reported.

Enhancement of chatter performance of traditional TMD was sought by investigating

multiple, nonlinear and two-DOF TMDs. Yang et al. [117] employed multiple TMDs

to improve the chatter stability. They analysed the effect of the number of TMDs by

keeping the total mass ratio constant. It was shown that multiple TMDs provided better

performance than single TMD for the same mass ratio. However, the improvement was

not the same for each TMD added. For instance, there was not a significant improvement

was not shown after adding three TMDs in their study. They experimentally verified

their result with a turning operation. In another study, Nakano et al.[118] also employed

multiple TMDs in the end milling through a collect chuck and experimentally verified

chatter stability improvement compared to the uncontrolled structure.

Employment of nonlinear elements alongside linear elements has been investigated in

the context of machining stability. Wang et al. [119, 120] studied nonlinear a TMD,

which consists of a friction-spring element in parallel to a traditional TMD. The FRF of

the machining system with the nonlinear TMD was obtained by the harmonic balance

method, and the parameters were tuned to minimise the real part of the response [120].

The authors tested the nonlinear TMD manufactured in a turning operation and the

experimental results showed that the limited critical depth of cut was significantly

increased with the nonlinear TMD [119]. Habib et al. [121] studied a nonlinear

TMD that involves a cubic stiffness in parallel to a spring-damper arrangement. A

nonlinear cutting force was considered in a linear model of a turning system. Their

study concluded that, unlike a linear TMD, a nonlinear TMD with a cubic stiffness

can increase the robustness of the system against subcritical bifurcations for known

operational spindle speed.
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Further chatter stability improvement succeeded with a two-DOF TMD. Yang et

al. [122] designed and implemented a two-DOF TMD in milling operation. They

numerically tuned the parameters for minimum amplitude peaks and achieved more

than 100% improvement in the critical limiting depth of cut. Yang et al. [123] utilised

eddy current damping with two permanent magnets in a two-DOF TMD for machining

vibration suppression. They applied the damper into a thin-walled workpiece in

milling tests and accomplished significant vibration reduction by matching the natural

frequencies of the dampers with two dominant vibration modes of the workpiece.

Thin-walled or flexible workpieces are frequently machined in especially aerospace

applications. Passive control devices have been evaluated for these workpieces to

increase chatter stability. Yang et al. [124] developed an eddy current damper

consisting of a permanent magnet and springs. The damper was applied to a thin-

walled workpiece for chatter stability improvement. They experimentally showed that

the damper was effective in increasing chatter stability by enhancing the damping

of the thin-walled structure. Yang et al. [125] developed a passive damper whose

stiffness is adjustable by changing the rotational orientation of the damper. The device

was effective against the variation in dynamic properties of the thin-walled workpiece

due to the material removal. Stability improvement was also shown with machining

tests. Another passive damper with variable stiffness was proposed by Yuan et al.

[126]. The working range of the damper was designed by examining the effect of the

material removal on the dynamic properties. Design parameters were determined

following Den Hartog’s methods. It was experimentally tested by mounting it on a

thin-walled workpiece in a milling operation and improved the chatter stability of

the cutting process. Yuan et al. [127] also developed a TMD for a milling operation

of the free-end of flexible cylindrical parts. They employed a sequential quadratic

programming algorithm to obtain the design parameters of TMD to improve chatter
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resistance of the system. The milling tests demonstrated that the TMD designed

successfully reduced the vibration and increased the stability of the milling process.

Instead of adding passive control devices to machining structure, damping increment

has also been studied to improve machining chatter stability. For instance, Zhang et

al. [128, 129] conducted milling cutting tests of a thin-walled workpiece in a viscous

fluid (silicone oil) to suppress the chatter. They reported stability improvement due to

increase of damping of the thin-walled workpiece in the viscous fluid and considerable

cutting force coefficients reduction due to the lubrication effect of the viscous fluid.

They also concluded that noise during the cutting operation could be reduced since

the viscous fluid provides an isolated environment around the cutting area. Butt et al.

[130] increased the damping in the machining by applying non-contact eddy current

damping to the tip of the milling cutter. Their proposed method leads to no change

in the dynamic properties due to the mass of passive control device addition. They

used permanent magnets held by an apparatus whose orientation and distance to the

milling cutter can be adjusted by two servo motors. They mounted the apparatus on

the spindle head and experimentally showed the damping increment in the vibration

response.

Passive methods to support flexible workpieces have been investigated to increase

chatter resistance. Fei et al. [131] studied the use of a moving damper acting with the

milling cutter to support the workpiece from its other side and increase the chatter

stability. They designed the damper considering the varying dynamic properties due

to material removal and experimentally verified the stability improvement. Wan et

al. [132] applied pre-stress to long thin-walled workpieces to improve local stability in

milling operation. They obtained the relationship between pre-stress and the natural
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frequency of the workpiece. They experimentally demonstrated chatter improvement

using this relationship.

It is also possible to increase the chatter stability by designing a clamping system or

using a passive control device to support fixtures on which workpieces are mounted.

Munoa et al. [133] designed a clamping table with adjustable stiffness and damping for

milling of a thin-walled part. Milling tests proved that their design of the clamping table

provides a significant stability improvement for the thin-walled workpiece. Wang et al.

[5] experimentally investigated the effect of supporting the fixture using an inerter-based

configuration to suppress vibration in milling. They analysed the vibration response

under forced vibration by directly connecting two different inerter-based configurations

to the ground. They conducted the experiments using limited components. Although

both simulation and experimental results provided performance improvements in

vibration suppression, the improvement ratios showed clear differences between some

simulation and experimental results. Therefore, although their work was important in

terms of presenting the potential benefits of the use of the inerter, a more comprehensive

study is needed, analysing not only the forced vibration under the cutting force but

also chatter stability improvement of the use of the inerter in a machining process.

2.1.6 Semi-active chatter control

Although passive control methods offer robust, reliable and low-cost solutions to

increase regenerative chatter resistance, their performances are generally limited and

only applicable to a narrow frequency band. In order to increase chatter resistance

performance and broaden the frequency band, semi-active or active methods have

been utilised in machining applications. External energy is introduced into the system
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in both methods. However, the energy inserted into the system in an active control

method acts against the disturbance in a manner of suppressing vibration while the

energy in a semi-active method is used to adjust the dynamic properties of control

device such that the performance is increased. The energy requirement of semi-active

control applications is low as opposed to active control applications as the energy is

only used to adjust the control parameters, and then it acts as a passive control device.

All passive dampers which allow variable stiffness, damping and mass can be classified

as a semi-active control method. Within this context, the damper proposed by Seto

and Tominari [103] where the stiffness of the damper can be adjusted by changing the

position of the sliding damper mass through the overhung length of the ram can be

classified as a semi-active control application. Munoa et al. [134] also proposed the

use of a TMD with variable stiffness where its stiffness is set by a rotary spring. Their

design aimed to suppress the chatter in heavy-duty milling operations by mounting

the TMD into fixtures. They automatically tuned the stiffness of the rotary spring

using a small motor to match the natural frequency of the TMD with the chatter

frequency that is also automatically obtained by evaluating the FFT of the measured

acceleration. They utilised eddy currents for the damping and experimentally showed

the effectiveness of the proposed design by testing it on fixture systems in heavy-duty

milling.

It is also possible to obtain similar natural frequency adjustment by changing the

damper mass instead of changing the stiffness. Burtscher and Feischer [135] proposed

a TMD with variable mass to compensate for the detuning effect stemming from the

position of the machine tool in milling operations. They used a liquid tank as the

damper mass, which can be filled with coolant liquid or emptied to the desired level

via hydraulic connections. In that way, the natural frequency of the damper between
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the natural frequencies obtained from a fully filled tank and a empty tank could

be continuously adjusted. They were also experimentally tested the manufactured

prototype for different positions of the machine tool by mounting the damper to the

spindle head and validated its effectiveness.

Smart fluids such as Magnetorheological (MR) or Electrorheological (ER) fluids whose

viscosity can be controlled applying a magnetic or an electric field, respectively, have

been studied to improve the stability of machining operations. Changing elasticity

with increasing magnetic or electric field leads to change in the dynamic properties

of the structure interacted with or filled with MR or ER fluids, and this change has

been used to increase in favour of chatter resistance in the proposed methods in the

literature. Lei [136] first proposed the use of ER squeeze film damper to improve

chatter performance of machining operations. In this study, only the basic principle of

the application was presented without any theoretical analysis or experimental work.

Aoyama and Inasaki [137] utilised an ER shear film damper into the table system in a

milling operation. The damping of the table that was supported by four linear-motion

bearings was increased with two ER film dampers. It was experimentally shown that

the chatter vibrations which existed with zero voltage applied to ER film damper were

suppressed with applied voltage. Wang and Fei [138] also showed how to improve the

chatter stability using a boring bar with ER fluid.

Although both ER and MR fluids have advantageous features such as controllability,

reversibility and quick response, MR fluids provide higher yield stress and operation in

a wider temperature range with lower power supply [139]. Similar to ER dampers, MR

dampers were also investigated to increase chatter resistance in turning operations [140–

142] and boring operation [143]. Ma et al. [144] proposed to use MR fluids to support

the thin-walled workpiece in milling operation. They placed the thin-walled workpiece
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in MR fluid inside a guiding block between two coils. The stability improvement was

achieved by applying a magnetic field to the MR fluid through the coils during the

cutting tests.

The studies of MR or ER fluids mentioned above were conducted considering a constant

electric or magnetic field. Smart fluid applications with the time-varying electric or

magnetic fields were also considered. It was shown that a sinusoidally varying electric

field gives better chatter suppression performance for an ER fluid [145]. Mei et al.

[146, 147] showed how to improve chatter stability with an MR fluid-based boring bar

by applying a current in a square waveform to the coil to induce the magnetic field.

They concluded that the square waveform presents the best performance compared to

sinusoidal and triangular waveforms.

2.1.7 Active chatter control

Active control applications generally offer higher performance than passive and semi-

active control methods. Different from semi-active applications, the actuator contin-

uously generates force to suppress the chatter. An active control method requires

an actuator to produce a counteracting force, sensors to feed the system with the

measured data, a controller and other supporting equipment such as an amplifier and

signal conditioner.

Earlier attempts of chatter suppression with active control methods in machining

operations focused on improving the dynamic behaviour of boring bar in boring

operations. Klein and Nachtigal [148, 149] actively manipulated the slope of the

boring bar around a pivot by using an electrohydraulic servo to improve the chatter
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stability of boring operation. The controller in their application was fed back with a

torsional strain gage placed near the tool insert, and a considerable chatter suppression

improvement was presented in cutting tests. Similarly, Glaser and Nachtigal [150] used

a torsional strain gage for the measurement, but the actuation force was provided by a

pressure difference between two hydraulic chambers inside the boring bar. Piezoelectric

actuators were also implemented to create the actuation force by directly attached

piezoelectric ceramic plates to the boring bar [151] and by utilising a proof mass

absorber where the piezoelectric actuators move the auxiliary mass inside the boring

bar [152]. In these works, the actuation force was applied uniaxially. Pratt and Nayfeh

[153] proposed the use of biaxial actuator forces to obtain the best chatter performance

in boring operation. The active control of the boring bar in their work was considered

with a nonlinear model and applied using magnetostrictive actuators.

Active control techniques have been frequently applied to the tool-tool holder-spindle

system, workpiece-fixture system or structure of the milling machine using different

types of actuators. Dohner et al. [154] developed a smart spindle unit for the

implementation of an active control to improve the stability of a milling operation.

Four electrostrictive actuators in the spindle unit provided actuation force over the

spindle through a static cartridge and ball bearings. The bending of the cutting tool

was measured by the strain gages placed to the tool. The smart spindle unit was

tested under real cutting conditions, and the active control method provided a higher

maximum stable depth of cut of up to five times.

There are a considerable number of application that employs active tool holder-spindle

systems supported by piezoelectric actuators to increase chatter resistance of milling

operation. Monnin et al. analysed the use of the active control [155] implemented

using a spindle shaft supported with piezoelectric actuators from its front bearing [156].
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They achieved more than 50% improvement in the limited critical depth of cut using

a model-based disturbance rejecting controller. The controller was fed back by data

measured by the accelerometers placed near the actuators. Similar applications of

smart tool systems supported by piezoelectric actuators were presented with different

controllers, including an adaptive controller [157], a model-predictive controller [158],

a controller based on H∞ almost disturbance decoupling problem [159] and a robust

controller [160].

Some researchers employed a piezoelectric actuator with an open-loop control approach,

where the controller is not fed by a sensor, in order to reduce the complexity of the

control methods and use of expensive equipment. Wang et al. [161] proposed a time-

varying stiffness technique for mitigation chatter in milling operation. The control force

was applied to the tool holder by a piezoelectric actuator through the rolling bearings

to vary the stiffness of the machine tool system. They evaluated the effect of stiffness

variation in two radial directions, including sinusoidal, square and triangular waveforms

with different frequencies and amplitudes. The best chatter performance was obtained

with a square waveform with small amplitudes and frequencies of 40-60 Hz. Later,

they showed that multi-harmonic and random stiffness variations presented better

chatter suppression than the single frequency stiffness excitation studies previously,

albeit with increased computational costs to obtain optimal excitation parameters

[162]. Using an identical spindle-tool holder setup with piezoelectric actuators, Li et

al. [163] implemented an asymmetric stiffness in two radial directions. The analyses

and experimental results showed that having a higher stiffness in one of the radial

directions can help to improve the milling stability depending on the type of the milling

operation (up and down).
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Active magnetic bearings (AMBs) serve as non-contact supports to a spindle system

by producing magnetic forces. These magnetic forces can also be used to increase

chatter suppression by manipulating the spindle shaft through a control method.

AMBs were frequently employed in chatter suppression of milling operation [164–168].

Chen and Knospe [165] proposed three control strategies to enhance the machining

stability for spindle speed-independent, a specific spindle speed, and a given spindle

speed band. Although only the controller for spindle speed-independent control was

tested by a turning operation that mimicked the dynamics of a milling spindle, three

control schemes showed improvements when compared to a PID controller, which

was considered a standard controller for AMBs, during impact tests. Experimental

cutting tests showed 63% improvement in the critical limiting depth of cut for spindle

speed-independent control strategy.

Van Dijk et al. [169, 170] developed an active robust control scheme using µ-synthesis

where the process parameters (spindle speed and depth of cut) were considered as

uncertainties to ensure stable cut for a range of process parameters for high-speed

milling. Van de Wouv et al. [171] first experimentally verified the µ-synthesis control

method presented in [169, 170] using an active spindle supported by AMB. Wu et al.

[167] also utilised the AMB with µ-synthesis approach but for a low immersion milling

operation. Huang et al. [168] proposed an optimal controller considering rotor stability

including acceleration and spindle speed variation in air cutting and an adaptive

controller for chatter suppression in material cutting for a spindle supported by AMBs.

In the work, only numerical simulations of milling operations were considered, and no

cutting tests were conducted.

Active magnetic actuators were directly applied to the spindle shaft without using

active magnetic bearings. Bickel et al. [172] developed a spindle prototype whose shaft
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can be actively controlled by an electromagnetic actuator. The initial results obtained

from milling tests indicated 50% improvement in the limited critical depth of cut.

Similarly, Wan et al. [173] built a spindle system with a non-contact electromagnetic

actuator that can generate control forces in both radial directions of the spindle shaft.

The displacement sensors placed around the spindle shaft were used for the feedback

signal. They conducted experimental milling tests using, first, a simple PD control

[173] and later, sliding mode control [174]. Chatter suppression was verified in both

control methods, but no direct comparison of experimental results was presented.

There are also considerable active control studies applied to workpieces or workpiece

fixturing systems. Huyanan and Sims [175] examined three control strategies, including

the virtual passive-active absorber controller, the skyhook controller, and the virtual

passive absorber controller with the consideration of machining chatter performance.

They employed an electromagnetic proof-mass actuator attached to the workpiece

excited by a shaker to evaluate the dynamic behaviour. The results showed that the

virtual passive absorber was the most favourable controller with less sensitivity to

measurement noise and relatively lower control energy consumption. Although no

machining test was presented and only peak magnitude of FRF was considered in

this study, later, milling tests for the virtual passive absorber controller with Sims’

method was presented [176]. However, the performance of the virtual passive absorber

controller, like other model-based control approaches, is possibly degraded due to

change in the dynamics of the workpiece during material removal or unaddressed

modes. To deal with this, Beudaert et al. [177] employed a portable electromagnetic

proof-mass actuator with a model-independent control scheme where parameters were

automatically determined to maximise the dynamic stiffness. The effectiveness of the

portable actuator with the proposed control scheme was also verified with milling tests

in laboratory conditions as well as an industrial application.
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Zhang and Sims [178] proposed the use of a thin piezoelectric actuator attached to

the surface of the workpiece to improve the stability of a milling operation. Stability

improvements were verified under real cutting conditions for both the open-loop and

the closed-loop cases with a positive position feedback controller. The authors reported

saturation of the piezoelectric signal observed in many tests with the closed-loop

control as a possible performance reduction factor. Piezoelectric actuators integrated

into workpiece holding systems were studied to mitigate specifically chatter [179, 180]

and excessive vibration [181]. Brecher et al. [179] developed an active workpiece

holder consisting of piezoelectric actuators and flexural guides. They achieved chatter

suppression with the control strategy applied by minimising the dynamic compliance in

milling tests. Sallese et al. [180] used a similar workpiece holder to suppress chatter with

a high chatter frequency beyond the controllable frequency by a piezoelectric actuator.

The control strategy applied for this purpose involves amplitude modulation of the

piezoelectric actuation at low frequency. The preliminary results obtained from slope

cutting tests verified the improvement in the absolute stability limit. Parus et al. [182]

employed a piezoelectric actuator in a flexible workpiece-fixture system to address the

chatter problem caused by flexible workpieces connected non-rigidly. Applying Linear

Quadratic Gaussian algorithm, experimental milling tested validated improvement in

the suppression performance for both chatter and forced vibration. A high voltage

requirement was reported as the challenging point for the workpiece-workpiece holder

system integrated with the piezoelectric actuator [181, 182].

The structure of the machine tool becomes the critical mode with its low frequencies

in heavy-duty milling. It was shown that the structural mode can be actively damped

using an inertial actuator and stability improvement could be achieved for heavy-

duty milling operations. Chung et al. [183], for instance, experimentally evaluated

the negative real response of a milling machine controlled by a magnetic inertial



2.1 Machining chatter research 37

actuator. The results demonstrated that a significant stability improvement in the

structure modes can be achieved. Brecher et al. [184] accomplished an inertial actuator

excited by an electrohydraulic system with the capability of producing large forces to

suppress chatter in heavy-duty milling. The controlled structure with velocity feedback

control provided more than double improvement in cutting tests. Munoa et al. [185]

developed an active control by placing a biaxial inertial mass actuator on the ram

of the milling machine. They compared different control strategies, including direct

acceleration, velocity and position feedbacks, as well as delayed position feedback. The

best performance obtained by the direct velocity feedback and the stability improvement

was experimentally verified for different ram positions of the milling machine. Zaeh

et al. [186] presented active chatter suppression of structure mode of milling machine

using an inertial actuator. In the proposed method, the inertial actuator was used

for both automatic system identification and subsequently, active control where the

parameters of the controller were obtained automatically. By applying this control

method, stability improvements were achieved for the direct velocity feedback and H∞

controller under real milling operations.

2.1.8 Summary of machining chatter review

Stability prediction is an essential tool for chatter avoidance as an out-of-process

technique. The zero-order approach method is a fast and accurate method for cuts with

high radial immersions. One of the most frequently used methods that are accurate

for both low and radial immersion cuts is the semi-discretisation method. It has been

employed in the prediction of the stability of milling, even including variable spindle

speed and using special tool geometries. However, this method is computationally

more expensive and less suitable for industrial applications compared to the frequency-
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based ZOA as well as the MFA. Utilising the ZOA is generally more preferable to the

semi-discretisation method for high radial immersion cuts conducted by a standard

tool with constant helix and pitch angles as it provides fast and accurate prediction.

Moreover, using the ZOA provides an extra benefit since it explicitly presents the direct

relationship between the system’s stability and structural dynamics. Therefore, in this

study, the ZOA is adopted to evaluate the performance of using inerters in milling

operations.

Chatter stability improvement is possible to different extent for all chatter control

methods presented above. However, each method shows different drawbacks that

limit its use. Variable helix and variable pitch tools require optimisation of the tool

geometries, which can be challenging due to computational cost. Variable spindle speed

needs spindle drives that are capable of meeting the requirement of the amplitude

and frequency variations. Also, its stability improvement is more effective at lower

spindle speeds. Implementations of active, semi-active and passive control methods

might need structural modifications. The performance of the passive control methods

is limited compared to active control methods and they could lose their effectiveness

with the change in dynamic properties. Semi-active and active controls can be adaptive

and provide better performance. However, their applications are more complex and

expensive compared to passive control methods so this justifies the exploration of using

inerters instead. Although using inerters increases the complexity and cost of passive

solution, it still offers a cheaper and simpler method than semi-active/active methods.

Furthermore, it does not have disadvantages of leading to instabilities, as can occur in

active control methods. However, its application requires more effort in the analysis,

optimisation and analysis stages.



2.2 Inerter review 39

Finally, although applications of the passive control methods in the literature are rich,

they are generally limited to traditional control elements. Integration of inerter into

traditional passive control devices such as TMD could bring the improvement of chatter

stability. Promising results in this direction were already presented by Wang et al.

[5]. Their studies approached to the undesirable vibration in milling operation as a

forced vibration problem rather than a stability problem. However, the major issue

in milling operation is the stability problem, the so-called chatter. Chatter vibration

is more detrimental than forced vibration as chatter is cause by instability and lead

to an increase in vibration level with time. Also, they conducted the experiments

with limited elements by using only available springs, dampers and inerters instead of

manufacturing them in their optimal values. Therefore, this thesis provides a more

comprehensive study by focusing on the chatter stability and presenting a more versatile

implementation of the inerter.

2.2 Inerter review

There has been an increasing number of research activities that focus on the inerter

and its application in the vibration control community. For the past two decades, the

inerter has been employed in a wide range of vibratory systems. Therefore, research

studies regarding the inerter and its application deserve a separate section. Having

presented the literature review of machining chatter, this second section focuses on the

inerter and its applications.
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2.2.1 Introduction

The tuned mass damper (TMD) as an effective passive vibration control device has

been frequently employed to mitigate undesirable vibrations in mechanical structures.

The concept was initially introduced by Frahm [187] by adding spring and secondary

mass to the vibratory system. Later, it was improved by Ormondroyd and Den Hartog

[188] by including a damper in parallel to the spring. Adding a damper prompts the

energy dissipation in the structure and enhances the effectiveness of the device by

broadening the frequency range. The parameters of TMD are needed for tuning to

obtain the best performance. For this purpose, analytical tuning strategies based on

the fixed-point theory, such as Den Hartog’s method [107] and Sims’ method [108]

aiming general vibration suppression and machining chatter suppression respectively,

were presented. The TMD with a proper tuning strategy has been extensively used in

a wide range of engineering applications.

The performance of a classical TMD can be further improved by integrating an inerter.

The inerter is a two terminal mechanical device that generates forces proportional to the

relative acceleration between its terminals. The forces in an ideal inerter are equal in

magnitude and opposite in direction [189]. The concept of inerter was first introduced

by Smith [4] to develop a two-terminal representation of a capacitor in a mechanical

context based on the force-current analogy between mechanical and electrical contexts.

A simple realisation of the inerter was presented with a rack-and-pinion inerter in his

work. He also demonstrated performance improvement and possible application of the

inerter in a vibration absorption and vehicle suppression systems.

Prior to Smith’s study, other mechanical devices applying the same principle had

been proposed under different names. In 1997, Okumura [190] patented an inerter
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device named the gyro-mass. Kuroda et al. [191] and Saito et al. [192] analysed a

relative-acceleration inertial mechanism, called the gyro-damper. Historical reviews of

inerter and inerter-like devices were covered in more detail in [193, 194]. Following the

introduction of the inerter concept in Smith’s work [4], the inerter has been widely

utilised in many engineering applications to improve the system performance, as it will

be reviewed in the following sections.

2.2.2 Mechanical inerter devices

Different types of physical realisation of the inerter were developed to investigate the

performances of the inerter and inerter-based control device in a configuration with

other traditional components (e.g. spring and damper). Three types of the inerter that

have been commonly employed in literature are rack-and-pinion inerters, ball-screw

inerters and fluid-based inerters, as depicted in Figure 2.2. All inerter devices consist

of an inertial body (e.g. flywheel or fluid) and a mechanism scaling the inertia (e.g.

gears, nut/threaded rod or helical tube).

As its name shown suggests, a rack-and-pinion drives a flywheel in a rack-and-pinion

inerter as shown in Figure 2.2a. The gear ratio between the gear and pinions defines

the factor of inertia of the flywheel scaled. Neglecting the masses of all components

but the flywheel, the inertance of the rack-and-pinion inerter is written as

b = m
(

γ0

r1

)2(r2

r3

)2
, (2.1)

where m is the mass of the flywheel, and r1, r2, r3 and γ0 are the radius of the flywheel

pinion, the gear, the rack pinion, and the gyration of the flywheel in Figure 2.2a.
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Figure 2.2 Some of possible physical realisations of mechanical inerters: Ball-screw
inerter, (b) rack-and-pinion inerter and (c) helical-fluid inerter.

Papageorgiou et al. [195] presented experimental results of a rack-and-pinion inerter

and a ball-screw inerter. The manufactured rack-and-pinion inerter was capable of

producing an inertance of 700 kg with a mass of 3.5 kg. Although the experimental

results were close to an ideal inerter, friction and backlash observed in the device

were highlighted. Experimental analyses of the manufactured inerters for vehicle

suspension systems were performed by Smith and Wang [196], and Wang et al. [197].

The inerter device, known as gyro-mass, patented by Okumara [190] also employed a

rack-and-pinion mechanism with a spring.

The interaction between the nut and the threaded rod leads to rotation of the flywheel

in a ball-screw inerter as shown schematically in Figure 2.2b. The factor that scales

the inertia of the flywheel is the function of the transmission ratio of the ball-screw.
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Neglecting the masses of all components except flywheel, the inertance of the ball-screw

inerter is written as

b = m
(2πγ0

p

)2
, (2.2)

where m is the mass of the flywheel, γ0 is the radius of the gyration of the flywheel, and

p is the pitch of the screw with the unit of m/rev in Figure 2.2b. Earlier inerter devices

named gyro-dampers [191, 192] and tuned viscous mass damper (TVMD) [198] utilised

a ball-screw system to amplify the inertial effect. Wang and Su [199] experimentally

evaluated a ball-screw inerter for a vehicle suspension system. The experimental results

showed the existence of friction and the elastic effect in the ball-screw inerter. Even

though these nonlinearities reduced the performance of the suspension system tested,

their performance surpassed a conventional suspension system. Gonzalez-Buelga et

al. [200] analytically and experimentally analysed a ball-screw inerter connected in

series to a parallel-connected spring-damper arrangement with a dry friction model.

They concluded that the detrimental effect of the friction was only apparent in low

amplitude excitations and was improved by retuning parameters. However, re-tuned

parameters for low amplitude excitations degraded the performance in high amplitude

excitations.

In order to achieve a mechanical inerter device, the employment of a flywheel is not a

necessity. A helical fluid inerter, as given in Figure 2.2c, where the inertance is provided

by rotating fluid through helical channels. Neglecting the masses of all components

except the fluid, the inertance of the helical fluid inerter is written as :

b = ρl
(

A1

A2

)2
, (2.3)

where ρ, l, A1 and A2 are the density of the fluid, the channel length, effective cross-

sectional area of the main cylinder, and the helical channel in Figure 2.2c. First



44 Literature Review

examples of the helical fluid inerters were reported in patent applications [201–203].

Swift et al. [204] first built and experimentally examined a helical fluid inerter. They

considered nonlinear parasitic damping in parallel with an ideal inerter in the model to

reflect the pressure drop in helical channels. Later, De Domenico et al. [205] employed a

similar model for experimental investigation of a helical fluid inerter to improve seismic

control of buildings. Liu et al. [206] provided a generalised model of a helical fluid

inerter considering different parameters, including friction, coupler stiffness, backlash

and fluid stiffness. Their proposed model was experimentally verified with different

design settings.

The friction that was observed in the experimental investigations of most of the inerter

devices presented above possibly cause detrimental effects. In order to eliminate friction,

a pivoted flywheel with living-hinges was developed by John and Wagg [207]. Inspired

by the DAVI of Flannelly [208], they employed a pivoted rotating disc as both the

flywheel and a lever arm to amplify its own inertance through the distance between

the pivots. In their design, living-hinges in the pivot connections provided frictionless

rotation of the flywheel. The effectiveness of the device in base isolation was also

demonstrated by experiments. Although the achieved inertance-to-mass ratio by their

inerter device was small compared to other types of mechanical inerter devices, the

potential use of the inerter such as applications with small amplitude is promising.

Types of mechanical inerter devices are not limited to the above-mentioned examples.

Other types of mechanical inerter devices were also proposed in the literature including

fluid-based inerter with flywheel [209], fluid inerter with a rubber membrane where

the stiffness element is integrated into inerter [210], the mem-inerter [211], clutched

inerters [212] and semi-active inerters [213]—see also [193, 189]. Feasibility and benefits
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of inerter-based control devices with any type of mechanical inerter devices mostly

depend on the layout of the elements of the control device and application.

2.2.3 Performance evaluations and applications

Inerter-based applications have been widely applied in many fields of engineering to

increase the vibration performance of the system. A series of different inerter-based

layouts were investigated in the vehicle suspension systems to increase the different

performance measurements, including passenger comfort, handling, tyre grip, and

suspension deflection [196, 214, 197, 215–218]. The inerter was employed in motorcycle

steering compensator to increase the stability [219, 220] and in suspension systems

of railway vehicles to enhance the ride comfort and lateral body movement [221–

223]. Its application areas have been extended to aircrafts’ landing gear to improve

both its shimmy suppression [224] and touchdown performance [225]. There have

been considerable number of studies regarding civil engineering applications including

buildings suppression [198, 226–229], wind turbines [230, 231] and cables [232–234]. It

was also proposed to be used for the vibration reduction in milling machines [5]. Besides

these application-based studies, a more general investigation was also conducted. For

instance, Chen et al. [235] theoretically showed that inerter can reduce the natural

frequency of a system. Hu et al. [236] also demonstrated that the natural frequencies

of a mass-chain system can be designated by solely inerters and springs.

In theory, there is an infinite number of possible layouts consisting of control elements:

inerters, springs and dampers. However, layouts with low complexity are preferable

due to technical difficulties of physical realisation and space limitations. Thus, on one

hand, researchers investigated the best simplification of the layouts by restricting the
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number of elements while keeping the performance as high as possible [217, 237–240].

On the other hand, the structural-based approach where the low-complexity is already

guaranteed with the predefinition of the inerter-based layout was widely applied. Three

well-known layouts utilised in vibration suppression and isolation systems are the tuned

inerter damper (TID), the tuned mass damper inerter (TMDI) and the tuned viscous

mass damper (TVMD) as illustrated in Figure 2.3.

Figure 2.3 Three well-known layouts of the inerter: (a) Tuned inerter damper (TID),
(b) Tuned mass damper inerter (TMDI), and (c) Tuned viscous mass damper (TVMD).

An inerter is in series with a parallel-connected spring-damper arrangement in a TID

as shown in Figure 2.3a. Lazar et al. [226] proposed a TID to mitigate the vibration of

a multi-storey building. They employed an iterative optimisation process based on Den

Hartog’s method to obtain the optimal design parameters. It was shown that the TID

provided the same performance as a TMD for the same mass ratio but a lighter device’s

mass. Also, the best performance was obtained when the TID was located at the

bottom storey, which reduces the structural loads at higher floors. They also studied

the TID attached to ground from its one terminal for the suppression of vibration of

cables [232]. Sun et al. [233] considered the use of a TID by interconnecting cables.

The TID showed superior performance over traditional passive methods. This layout

was also evaluated for seismic control of structures [241, 242] considering the effect of

the soil type [243] and structural damping [244].
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The TMDI layout is similar to a TID but with a secondary mass between the series-

connected elements as present in Figure 2.3b. In this respect, a TID can be accepted

as a special form of the TMDI with zero secondary mass. Marian and Giaralis [245]

proposed a TMDI by attaching an inerter to a classical TMD to suppress vibrations of

SDOF and MDOF structures induced by stochastic base excitation. Optimal design

parameters were also analytically obtained for an undamped SDOF main system. They

concluded that a TMDI can achieve better performance than a TMD with the same

auxiliary mass or provide the same performance as a TMD but with lighter mass.

Later, they also considered harmonic base and forced excitations for an undamped

SDOF system and obtained analytical closed-form solutions for the optimal design

parameters [246]. In this study, the energy harvesting performance of TMDI was also

investigated by replacing the damper with an electromagnetic motor.

Giaralis and Taflanidis [247] enhanced the optimal design strategy involving high-order

modes and uncertainties for the seismic control of MDOF structures. The authors also

considered inertance as a design parameter in the optimisation process, and TID as a

special case of a TMDI. They concluded that the TMDI showed a better performance

than a TMD, including the higher modes. It was also added from the results that

the TMDI exhibited robustness against both uncertainties in excitation and structure.

Matteo et al. [248] investigated the TMDI for base isolated MDOF systems to suppress

the seismic vibrations. They developed an analytical formula for the optimal design

parameters. Although their formula involves some assumptions, its effectiveness was

proven by testing with real earthquake data and the comparison with the design

parameters obtained by numerical optimisation.

Wang and Giaralis [249] examined the performance of the TMDI attached to the free

end of cantilever-like structures with different shapes for the effect of the location
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of the inerter’s connection. It was found that the best performance was obtained

when the inerter was grounded. They also noted that the control of the shape of the

structure with a more flexible upper part than the lower part requires less secondary

mass or shorter connection distance for the inerter, which means cost reduction in the

implementation. TMDI were further studied to suppress the vibration induced by wind

in tall buildings [250, 251] and vortex-induced vibration in long-span bridges [252].

De Angelis et al. [253] evaluated the seismic control performances of a TMD, a

TID, and a TMDI together with a base isolation system considering a generic model.

Both inerters in the TID and the TMDI were grounded in their study. They showed

that both the TMDI and the TID have better performance than the TMD. However,

the performances of all control devices, including TMD, lose their effectiveness with

increasing damping in the base isolation system. Deastra et al. [254] utilised a

linear hysteretic damping in a TMDI and a TID, instead of linear viscous damping.

Behaviours of both hysteretic devices differed from the TMDI and TID at higher

frequencies. In addition to frequency domain analysis, they also evaluated time-domain

response of the hysteretic devices via their developed time domain method based on

the time-reversal technique.

A TVMD consists of a spring in series to a parallel-connected a viscous damper and

an inerter as given in Figure 2.3c. Ikago et al. [198] analysed the use of the TVMD for

the control of an SDOF structure for seismic control. They also obtained a closed-form

solution for optimal design parameters for harmonic base excitation using fixed-point

theory. The TVMD exhibited a better performance than a classical TMD in shaker

table tests conducted with real earthquake data. Pan et al. [255] also studied a TVMD

(named as parallel-layout viscous inerter damper in their study) for the control of a

damped SDOF. Instead of using fixed-point theory, they proposed a numerical design
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strategy where both the displacement response of the structure and the damping force

are taken into consideration. Later, Pan and Zhang [256] proposed a more practical

method for the designs of both the TVMD and TID as well as the series layout inerter

system (that consists of a series-connection of an inerter, a spring and a damper) for

the mitigation of seismic response. Their method employed the closed-form solution of

stochastic mitigation ratio as the design indicator considering structural damping in

the main system under white-noise excitations.

Hu et al. [257] derived the closed-form solutions for optimal design parameters of five

different layouts of isolator system, including a TID and TVMD. They considered

both H∞ and H2 optimisations, where the design parameters were optimised for

minimisation of the maximum amplitude of the system under harmonic excitation and

minimisation of the mean squared displacement of the main system under random

excitation, respectively. The authors highlighted the potential benefits of the inerter-

based isolators due to the obtainability of large inertance with small physical mass. The

results demonstrated that some layouts can achieve better H∞ and H2 performances

with the same inertance-to-mass ratio compared to a classical TMD. Zhang et al. [258]

presented the relationship between the energy dissipated and the vibration suppression

by evaluating the stochastic response of the damping elements in a TVMD and TID.

Using this relationship, they proposed a design strategy where both the vibration

suppression and the damping enhancement are taken into consideration as objectives

to be satisfied.

Vibration absorption of an SDOF system where the inerter-based device is attached

in a similar way to a classical TMD was considered by Hu and Chen [259]. They

analysed performances of inerter-based dynamic vibration absorbers (IDVAs) where

the damper in a classical TMD is replaced with six different inerter-based layouts.
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The IDVAs were mounted on an undamped SDOF main system subjected to force

excitation. The optimal design parameters were numerically determined for the H∞

and H2 performances (except the Layout C3 analytically derived for H2 performance).

The results showed that connecting only an inerter in series or parallel to the damper

of a classical TMD presented no increase in the suppression in both performances while

the layouts which added a spring, such as a TID or TVMD (C4 and C6 in their work),

can improve the H∞ and H2 performances by 20% and 10%, respectively, compared to

a TMD. Analytical expressions for the optimal design parameters of layouts with the

best performance (C3, C4 and C6) were presented by Barredo et al. [260] by extending

the fixed-point theory. Javidialesaadi and Wierschem [261] derived the closed-form

solution of the design parameters of a TVMD (named the rotational inertial double

tuned mass damper in their work or C6 in [259]) for random base and force excitations.

The researchers noted that the optimal design parameters for the two excitation types

exhibited significant differences. The implementation of IDVAs (C3, C4 and C6) with

an additional damper connected in parallel was also theoretically examined for an

off-shore wind turbine to reduce loads induced by wind and wave [262]. The results

obtained from numerical H2 optimisation for a simplified linear model showed an

increment in the performance in general.

The performance of the layouts were further increased by adding more elements. For

instance, Javidialesaadi and Wierschem [263] proposed to attached a spring in series

with the TMDI’s damper to enhance the performance of the TMDI. Nontraditional

IDVAs attached to an SDOF main system whose one or more elements are directly

connected to ground [264–266], even including negative stiffness [267, 268], were also

investigated to further increase vibration suppression performances of IDVAs. Moreover,

designated nonlinearity in the inerter element and/or the stiffness element in the control

system have been examined to enhance the system performance. A nonlinear energy
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sink was improved by an inerter by replacing the linear stiffness with a cubic stiffness in

the TID [269] and TMDI [270]. Both studies reported the performance increment and

the reduction in the mass of the control device compared to their linear counterparts.

Hua et al. [271] achieved to increase the vibration performance and robustness of an

isolation system by applying a friction element in parallel to the TID. Moraes et al.

[272] geometrically applied nonlinear inerter by horizontally attaching an inerter to the

vertical spring-damper isolation system. Numerical results showed better performance

at higher frequencies due to the shift of the anti-resonance. Moreover, Yang et al. [273]

considered the geometrically nonlinear inerter to improve the performance of the quasi-

zero stiffness isolator. The nonlinear inerter enhanced the frequency band for the overall

performance and lowered peak in the force transmissibility. Even though complex

inerter-based layouts and the inclusion of the nonlinear elements generally showed

better performance compared to simple and linear layouts, the physical realisation of

these layouts is challenging.

2.2.4 Summary of inerter review

The inerter has been increasingly studied to enhance dynamic response of system

in the last two decades. Among different possible realisations of the inerter, the

most common types of mechanical inerter device are the rack-and-pinion inerters,

ball-screw inerters and fluid-based inerters. The implementation of these devices could

involve some nonlinearities such as friction and backlash. Moreover, inerter devices

are generally designated for relatively large applications such as building isolation

or vehicle suspension systems. The implementation of them into small-scale small-

amplitude applications can be problematic except the living-hinge inerter [207], which

was proposed as a small-scale inerter. Therefore, in this thesis, the living-hinge inerter
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forms the basis of the inerter design. It is modified for being capable of producing

small inertance and integration into localised additions.

There have been different inerter-based layouts proposed in the literature. Applications

have been mostly focused on civil engineering applications or vehicle suspension systems

where the inerter-based layout is grounded or deployed between two parts of the primary

structure. IDVAs, on the other hand, can be applied without need for such connection

limitations. However, it was only studied theoretically. Physical implementations

of IDVAs, especially in small scales, have not been presented yet. Therefore, the

experimental validation of the study in this thesis considers such implementation in

Chapter 4.

Finally, although inerters have been utilised a wide range of engineering applications,

there has been no study of inerter regarding machining chatter stability as discussed in

the summary of machining chatter review. This thesis address this gap in the literature.



Chapter 3

Theoretical Background

3.1 Introduction

This chapter introduces the theoretical background of machining stability analysis

applied in the following chapters of this thesis. The mechanism underlying the regener-

ative chatter has differences from the classical vibration theory of free/forced vibrations

utilised in the analysis of the general vibratory problem. It is induced by instabilities

due to the waviness of the cut surface. In Section 3.2, a basic understanding of the

regenerative chatter mechanism established by Tobias and Fishwick [2], and Tlusty

and Polacek [3] is presented considering a continuous single-point cutting operation.

The introduction of the concept of the stability lobe diagram is also given in the

same section. Section 3.3 extends the theory to stability analysis of milling through

the zero-order approach (ZOA) proposed by Budak and Altintas [17]. This approach

enables the analytical stability analysis involving the Fourier expansion of time-periodic

coefficients to obtain averaged time-invariant coefficients. The details of the method
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are presented for a general two-DOF milling system. Then, the stability criterion is

reduced to the milling of an SDOF structure for the milling application in the following

chapters.

3.2 Theory of regenerative chatter

Regenerative chatter is a self-excited vibration caused by the waviness of the cutting

surface on the workpiece. In a cutting process, the tool indented to the workpiece

induces cutting forces during the material removal. The flexible cutting tool and

workpiece excited by these cutting forces lead to waviness imprinted on the surface

of the workpiece in each cut. The total contribution of the waviness remained from

the previous cut and vibration in the current cuts can increase the chip thickness

removed, which results in high cutting forces. These high forces again cause higher

chip thickness and higher cutting forces. Consequently, the amplitude of the vibrations

continuously grows. This regenerative mechanism is known as chatter. The analysis

of the regenerative chatter mechanism was first presented by Tobias and Fishwick [2],

and Tlusty and Polacek [3]. Here, it is explained with a simplified example of turning

where a continuous single-point cut is considered.

A schematic view of turning operation with a rigid rotating workpiece and flexible

cutting tool in the y-direction is illustrated in Figure 3.1a. There is no vibration

considered in x-direction as both the cutting tool and the workpiece are assumed to be

rigid in this direction. Considering an orthogonal cutting operation where the cutting

edge is perpendicular to the cutting velocity, the cutting tool fed in the workpiece’s

radial direction generates two cutting forces with constant directions: tangential
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Figure 3.1 Schematic view of turning operation in (a) where a continuous single-point
cutting is considered with (b) the phase and modulation of chip thickness due to the
undulations of surface in previous and current cuts. The figure is adopted from [274].

cutting force, Ft and normal cutting force, Fn. The cutting forces can be assumed to

be proportional to a cutting coefficient, and chip area [275]. Therefore, the cutting

forces can be written as

F (t) = Kcah(t), (3.1)

where Kc is the cutting stiffness in unit N/m2 and determined separately for each

direction. The chip area is the product of the chip thickness h(t), and the axial depth

of cut a. A flattened view of the surface of the cylindrical workpiece after several

rotations of the workpiece in the cut is depicted in Figure 3.1b. The flexible cutting

tool under the cutting force causes undulations on the surface of the workpiece in each

cut. Due to the phase difference between the successive cuts, the chip thickness varies

from the desired chip thickness h0 as shown in Figure 3.1b. The instantaneous chip
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thickness is written as

h(t) = h0 +
(
y(t − τ) − y(t)

)
(3.2)

where y(t) is the vibration of the tool in the current cut while y(t − τ) is the vibration

of the tool in the previous cut with the time delay τ due to workpiece rotation.

The dynamic cutting force leads to vibration of the cutting tool that causes the surface

waviness. The vibration of the cutting tool can be written in the Laplace domain:

Y (s) = F (s)G(s) (3.3)

where G(s) is the transfer function of the system in the Laplace domain. F (s) is the

cutting force in Equation 3.1 in the Laplace domain, which is expressed:

F (s) = KcaH(s). (3.4)

Noting that the Laplace transform of the vibration in the previous cut is L {y(t−τ)} =

e−sT Y (s) and taking the Laplace transform of Equation 3.2, the dynamic chip thickness

in the Laplace domain is written

H(s) = H0 +
(
e−sτ − 1

)
Y (s). (3.5)

Substituting Equation 3.4 into Equation 3.3 and thereafter, Equation 3.3 into Equation

3.5 yields:

H(s) = H0 +
(
e−sτ − 1

)
KcaH(s)G(s). (3.6)
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Equation 3.6 presents a mathematical relationship between the instantaneous chip

thickness and the desired chip thickness, which can be expressed:

H(s)
H0

= 1
1 + (1 − e−sτ )KcaG(s) . (3.7)

Equation 3.7 is in the form of a closed-loop transfer function. Thus, it is possible to

consider the regenerative chatter mechanism as a closed-loop system shown in Figure

3.2a. The stability analysis of Equation 3.7 determines whether the chatter occurs

or not in the cutting operation. The denominator of Equation 3.7 is defined as the

closed-loop characteristic equation and the stability of the system is identified by its

roots, s = σ + jωc. The system is stable if the real part is larger than zero (σ > 0). The

system is unstable if the real part is smaller than zero (σ < 0). Finally, the system is

critically stable in the case that real part equals zero (σ = 0). The stability border can

be determined by considering the critical stable case and equalling the characteristic

equation zero for s = jωc. Alternatively, the stability can be determined by the Nyquist

criterion for s = jωc:

KcacrG(jωc)(1 − e−jωcτ ) = −1. (3.8)

where acr is the critical axial depth of cut, which defines the stability border, ωc is the

chatter frequency, and the phase between subsequent cuts can be given by ϵ = ωcτ .

Equation 3.8 can be rewritten by defining the critical axial depth of cut:

acr = − 1
KcG(jωc)(1 − e−jϵ) (3.9)

Since both the axial depth of cut and the cutting stiffness are physical quantities

with real and positive values, G(jωc)(1 − e−jϵ) requires a real and negative value for a

legitimate stability limit. This condition is only satisfied with a complex conjugate
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Figure 3.2 (a) Closed-loop block diagram representation of regenerative chatter mech-
anism and (b) vectorial representation G(jω)(1 − e−jϵ) of Equation 3.10 in Nyquist
diagram. The figure is adopted from [275].

pair of G(jωc) and e−jϵG(jωc) as illustrated in the Nyquist diagram in Figure 3.2b:

G(jωc)(1 − e−jϵ) = 2Re
(
G(jωc)

)
. (3.10)

Substituting Equation 3.10 into Equation 3.9 gives:

acr = − 1
2KcRe

(
G(jωc)

) . (3.11)

It should be noted that Re
(
G(jωc)

)
still needs to have a negative sign for a physically

meaningful depth of cut value. Equation 3.11 shows that the stability limit is inversely

proportional to the negative real part of the system’s response and the cutting stiffness.

There is a relation between the chatter frequency ωc (fc = 2πωc), and the rotational

frequency of the workpiece n (rev/s), which can be given as:

fc

n
= k + ϵ

2π
(3.12)
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Figure 3.3 Stability lobe diagram with its absolute stability region highlighted (grey
region).

where k is the integer number of waves and

ϵ = 2π − 2 tan−1
(
Re
(
G(jωc)

)
Im

(
G(jωc)

)). (3.13)

The real part of the transfer function is a function of chatter frequency. Choice of

different a chatter frequency ωc not only changes the rotational frequency of the

workpiece due to the relationship given in Equation 3.12 but also affects the stability

limit acr in Equation 3.11 due to change in the corresponding real part value. Therefore,

the stability of a cutting process is generally obtained for a set of chatter frequencies

at the negative real part of the transfer function. For different integer values of k in

Equation 3.12, the stability limit of a cutting operation is presented with the so-called

stability lobe diagram as shown in Figure 3.3. In a stability lobe diagram, the region

below the stability limit shows the stable cuts while the above region indicates chatter.

Finally, the absolute stability of the cutting process is obtained by the most negative

real part of the transfer function. It is defined by the limited critical axial depth of cut
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as

alim = − 1
2Kcmin

(
Re
(
G(jωc)

)) (3.14)

where min
(
Re
(
G(jωc)

))
represents for the most negative real part of the frequency

response of the cutting system. The limited critical axial depth of cut alim indicates

the absolute stability limit and ensures limit of stable cut regardless of the rotational

speed of the workpiece (or spindle speed in milling operation) as indicated in grey in

Figure 3.3.

Improving the stability limit increases the material removal rate, which turns into

an increase in productivity. Therefore, the stability analysis presented in this section

demonstrates the relation between the productivity and the structural dynamics of a

cutting system.

3.3 Stability analysis of milling

Milling operation involves material removal from a stationary workpiece by a rotating

cutting tool. The cutting tool generally has multiple teeth and material removal can

be succeeded by one or multiple teeth at the same time, depending on the milling

parameters. Unlike the turning operation, cutting forces continuously vary with the

rotation of the tool. The basic theory of regenerative chatter presented for turning

operations generally remains insufficient for an accurate stability prediction of milling

operations. It requires a more advanced stability analysis approach where the varying

cutting forces, multiple teeth engagement and intermittency of cutting are involved in

the dynamic model.
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Although a comprehensive dynamic milling model was developed as early as the 1960s

[13], its stability analysis suffered from difficulties due to the time-periodic force

coefficient induced by the rotation of the cutting tool. Therefore, the stability analysis

of the model was restricted to inaccurate methods based on the averaged time-varying

constants [31, 32] or time-consuming methods (e.g. time-domain simulations [34, 35]

or iterative technique [40]). Fast and accurate stability analysis for cutting operations,

ZOA, was developed by Budak and Altintas [17], where the stability limits of a milling

operation can be obtained in seconds. This approach is utilised in the evaluations of

the stability analyses of milling scenarios in this thesis.

3.3.1 Milling stability analysis

A milling operation where a flexible cutting tool removes material from a rigid workpiece

is presented in Figure 3.4a. The cutting forces vary in both direction and magnitude

with rotation of the cutting tool θj(t). The cutting forces induced by tooth j act on

the radial (r) and tangential (u) directions while the cutting tool vibrates in x- and

y-directions. Since the cutting force is a function of the instantaneous chip thickness

that depends on the tool vibration, the projection of the vibration in x- and y-directions

on the radial direction is first determined by:

r = −x sin(θj) − y cos(θj). (3.15)

It should be noted that the intended chip thickness, as shown in Figure 3.4b is a

function of the tool rotation h0 = ft sin(θj) where ft is the feed of the cutting tool.
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The instantaneous chip thickness is written:

h(θj) =
(
ft sin(θj) + rj−1 − rj

)
g(θj) (3.16)

where the index j represents for the current cut and j − 1 indicates the previous cut.

g(θj) is the switching function which defines whether tooth j is in cut or not. It is

written:

g(θj) =


1 for θs ≤ θj ≤ θe

0 for θj < θs, θj > θe

(3.17)

where θs and θe indicate the angles of the tool j when it starts and exits the cut.

The static part ft sin(θj) can be neglected as there is no contribution to the dynamic

chip load regeneration mechanism. Substituting Equation 3.15 into Equation 3.16 and

neglecting the static part, the dynamic instantaneous chip thickness can be rewritten:

h(θj) =
(
∆x sin(θj) + ∆y cos(θj)

)
g(θj) (3.18)

where ∆x = xj − xj−1 and ∆y = yj − yj−1. Assuming that the cutting force is

proportional to the chip area and the cutting stiffness, the tangential and the radial

cutting force is written:
Ft,j = Ktah(θj)

Fr,j = Krah(θj)
(3.19)

where Kt and Kr are the cutting stiffnesses. The cutting stiffnesses describe the

required force to remove a unit chip area and are determined by the material, geometry

of the tool and the friction between the tool and the chip. Therefore, the cutting forces

obtained by using Equation 3.19 are highly realistic as long as the axial depth of cut a

and the cutting stiffnesses Kt and Kr remain constant. However, any variation in the

cutting stiffnesses (e.g. wearing in tool) or the axial depth of cut due to the vibration



3.3 Stability analysis of milling 63

of the tool in axial direction leads to deviation in the cutting force. In order to obtain

the vibration of the tool caused by the cutting force, the cutting forces are projected

to x and y directions:

Fx,j = −Ft,j cos(θj) − Fn,j sin(θj),

Fy,j = Ft,j sin(θj) − Fn,j cos(θj).
(3.20)

Combining Equations 3.18, 3.19 and 3.20, and applying trigonometric identities, the

cutting forces in x- and y-directions are rewritten:

Fx,j = −1
2Ktag(θj)

[
∆x

(
sin(2θj) + Kn

(
1 − cos(2θj)

))
+ ∆y

(
1 + cos(2θj) + Kn sin(2θj)

)]
,

Fy,j = −1
2Ktag(θj)

[
∆x

((
1 − cos(2θj)

)
− Kn sin(2θj)

)
+ ∆y

(
sin(2θj) − Kn

(
1 + cos(2θj)

)]
.

(3.21)

The cutting forces presented here involve only the contribution of one tooth in the cut.

Contribution of all teeth in the cut is given:

Fx =
Nt∑

j=1
Fx,j and Fy =

Nt∑
j=1

Fy,j (3.22)

where Nt is the number of teeth of the cutting tool. The cutting forces can be expressed

in the matrix form:

F = 1
2aKt[A(θ)](∆) (3.23)

where

F =

Fx

Fy

 , A(t) =

axx(θ) axy(θ)

ayx(θ) ayy(θ)

 and ∆ =

∆x

∆y

 (3.24)

where A(θ(t)) is the time-dependent matrix, which is referred to as the directional

dynamics force coefficient matrix. The forces in Equation 3.21 are a function of time

as the rotation of the cutting tool θj(t) is time-dependent. Thus, all time-dependent
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Figure 3.4 (a) Schematic view of milling operation with multiple teeth and (b) the
change in the intended chip thickness h0 = ftsin(θj) due to rotation of the cutting
tool.
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terms of A(t) result from the rotation of the cutting tool. The matrix A(t) is periodic

at the tooth passing frequency ftp = NtN/60 (where N is the spindle speed in unit

of rev/min). Budak and Altintas [17] expanded A(t) into Fourier series and only

considered the zeroth harmonic term with a time-invariant average component. By

doing so, time-varying matrix A(t) is reduced to a time-invariant form in which the

analytical solution is possible. The zeroth harmonic term can be obtained:

[
A0

]
= Nt

2π

αxx αxy

αyx αyy

 (3.25)

where

αxx = 1
2
(

cos(2θ) − 2Knθ + Kn sin(2θ)
)∣∣∣∣∣

θe

θs

,

αxy = 1
2
(

− sin(2θ) − 2θ + Kn cos(2θ)
)∣∣∣∣∣

θe

θs

,

αyx = 1
2
(

− sin(2θ) + 2θ + Kn cos(2θ)
)∣∣∣∣∣

θe

θs

,

αyy = 1
2
(

− cos(2θ) − 2Knθ − Kn sin(2θ)
)∣∣∣∣∣

θe

θs

.

(3.26)

Substituting Equation 3.25 into Equation 3.23, the time-varying directional dynamic

force is averaged based on the Fourier series expansion involving the contributions of

all teeth in the cut.

The vibration differences in the x- and y-directions of subsequent teeth can be written

in the frequency domain using the transfer function of the flexible structure [G(jωc)]:

∆X

∆Y

 = (1 − e−jωcτ )

Gxx Gxy

Gyx Gyy


Fx

Fy

 (3.27)
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where e−jωcτ is the delay term with a period of tooth passing frequency and Gxy =

Gyx = 0 assuming that x- and y-directions are orthogonal. Replacing Equations 3.25

and 3.27 into Equation 3.23, the dynamic milling force equation is rearranged in the

frequency domain:

F = 1
2aKt[A0](1 − e−jωcτ )[G(jωc)]F . (3.28)

For critically stable system, its nontrivial solution is obtained by equalling the determi-

nant zero:

det
(

[I] − 1
2Kta(1 − e−jωcτ )[A0][G(jωc)]

)
= 0, (3.29)

which is the characteristic equation. It can be simplified by expressing the product of

[A0][G(jωc)] with the oriented FRF:

[A0][G(jωc)] = Nt

2π
[Gor(jωc)] (3.30)

where

[Gor(jωc)] =

αxxGxx(jωc) αxyGyy(jωc)

αyxGxx(jωc) αyyGyy(jωc)

 . (3.31)

Giving the eigenvalue of the characteristic equation as

Λ = −Nt

4π
aKt(1 − e−jωcτ ) (3.32)

results in the characteristic equation as

det
(

[I] + Λ[Gor(jωc)]
)

= 0 (3.33)

where it is straightforward to obtain the eigenvalue for given chatter frequency ωc,

cutting coefficients Kt and Kn, start and exit angles (θs, θe) which are defined by

the milling type and the radial immersion, and the FRF of the milling system. The
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assumption of no cross-talk between directions leads to a quadratic form of the

characteristic equation, which can be easily solved. Using the eigenvalue, the critical

axial depth of cut acr and the spindle speed N are found as

acr = −2πRe(Λ)
NtKt

(
1 +

(
Im(Λ)
Re(Λ)

)2)
(3.34)

N = 60
Ntτ

(3.35)

where τ is the tooth passing period as given

fcτ = k + ϵ

2π
(3.36)

where k indicates the integer number of waves between subsequent cuts and ϵ/2π is

the fractional wave. The phase angle is written:

ϵ = π − 2 tan−1
(
Im(Λ)
Re(Λ)

)
. (3.37)

Using Equations 3.34 and 3.35, the stability limits of milling operations can be an-

alytically predicted. The stability limits are generally presented in stability lobe

diagrams.

The milling type (up or down milling as given in Figure 3.5) and radial immersion

of the cutting tool into the workpiece affect the averaged time-invariant [A0] as they

specify the start and exit angles θs and θe. This method is also independent of the helix

angle of teeth since the helix angle only reduces the harmonics of the cutting force and

does not change the average of the force [275, 134]. Although the ZOA is an accurate

method for cuts with high radial immersions, it could show inaccuracy for the stability

prediction of highly intermittent milling with low radial immersion (e.g. less than 10%
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[48]) due to the increasing number of harmonics of the cutting forces . However, the

method of zero-order approach is assumed to be an accurate method since only milling

operations with high radial immersions (50%) will be considered throughout this thesis.

Also, its advantage of being a fast method will be greatly benefited by the optimisation

process to reduce the computational cost.

Figure 3.5 Schematic views of up milling where the cutting tool rotates against the
feed and down milling where the cutting tool rotates together with the feed.

3.3.2 Stability of milling of SDOF structure

The focus in this thesis will be the stability improvement of milling of an SDOF

structure (the most flexible mode) as similar to most of the inerter-based applications

in the literature. A milling system involves different vibration modes related to machine

tool structure, the spindle, the tool and the workpiece. The most critical mode in

terms of chatter stability is the most flexible mode or modes. In order to consider a

milling system as a SDOF, only one mode must be the most flexible and adequately

far away from the other modes. This can be the case in milling a thin-walled workpiece

while it cannot be appropriate, for instance, if the most flexible mode is related to the

tool as tools have similar flexibilities in two directions due to its cylinder geometry.
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The mechanical model of the milling system in Figure 3.4 assumes that the tool is

flexible while the workpiece is rigid. However, it is worth noting that this model is

exactly applicable for the reverse case, where the tool is rigid and the workpiece is

flexible as the relative compliance between the tool and the workpiece does not change.

The milling system in Figure 3.4 is considered to be allowed to vibrate only in the

y-direction. The characteristic equation in Equation 3.29 reduces to:

1 − 1
2aKt(1 − e−jωcτ )Nt

2π
αyyGyy(jωc) = 0 (3.38)

where αyy is the zeroth-order harmonic given in Equation 3.26 and Gyy(jωc) is the

transfer function of the SDOF structure. The critical axial depth of cut acr can be

written:

acr = 1
2KtNtURe

(
Gyy(jωc)

) (3.39)

where Nt is the number of teeth, and U involves the averaged force term due to rotating

cutting tool:

U = αyy

4π
. (3.40)

The critical axial depth of cut in Equation 3.39 is in a similar form of the stability

limit of the turning operation (as described in Section 3.2 and Equation 3.11 ) but

the inclusion of the number of teeth and a cutting force coefficient that depends on

immersion and milling type. The spindle speed is obtained from:

N = 60
Ntτ

where fcτ = k + ϵ

2pi
, (3.41)
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and the phase angle is found:

ϵ = 2π − 2 tan−1
(
Re
(
Gyy(jωc)

)
Im

(
Gyy(jωc)

)). (3.42)

Equation 3.39 indicates that the critical depth of cut acr is inversely proportional

to the real part of the transfer function and the cutting stiffness as in the turning

operation. Additionally, it is inversely proportional to the number of teeth Nt and αyy.

αyy represents the effect of the average cutting force. Therefore, it depends on the type

of milling and radial immersion for given a tool diameter as they define the start and

exit angle of the cut (θs, θe). Whether the stability limit is defined by the negative

or the positive real part of the transfer function depends on the milling type (up or

down milling) as it changes the sign of αyy. For instance, in the case of a down milling

operation, the sign of αyy becomes negative, and thus the stability limit is defined by

the negative real part. In that case, the absolute stability limit alim equals the most

negative real part of the transfer function.

The study in this thesis focuses on the structural dynamics part of the stability analysis.

Employment of an inerter either as a localised addition or integrating into one of

the parts of the machine (machine structure, spindle-tool holder system or workpiece

holder) only improves the transfer function of the structure. Therefore, the interest

of this study is the structural dynamics part of Equation 3.39, which is the real part

of the transfer function. Other parameters of Equation 3.39 Kt, αyy and Nt defines

by the specifications related to the material and the cutting conditions. They will be

mostly excluded in the evaluation of the performance analysis.
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3.4 Summary

The theoretical background of the stability analysis of milling has been presented in this

chapter. The theory of regenerative chatter was first explained for a continuous single-

point cutting operation, and the concept of the stability lobe diagram was presented.

Next, the stability analysis was extended to milling operations where intermittent

cuts with multiple teeth involved. The stability limit of the milling operation acr was

derived for a general two-DOF milling and reduced to the milling of an SDOF structure.

The stability limit derived was finally discussed in respect to the structural dynamics.



Chapter 4

Chatter Stability Analysis of

Inerter-based Vibration Absorbers

This chapter introduces the analysis of the use of inerter-based absorbers in milling

operations to increase regenerative chatter. The application of the inerter is consid-

ered in a localised addition, and performances of different inerter-based layouts are

investigated. Selection of optimal design parameters to obtain the best performance is

discussed, and numerical optimisation based on a genetic algorithm is presented. Using

the optimal design parameters obtained, the performance of each layout is evaluated

with the frequency response functions and stability lobe diagrams considering a milling

scenario. Finally, global sensitivity analysis is conducted to examine the sensitivities

of the design parameters on the chatter performance.
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4.1 Introduction

The inerter element has been frequently studied to improve the dynamic performance

of systems. It has been employed in vibratory systems in different fields of engineering.

However, the author’s knowledge, it has never been examined for machining applications

with a particular emphasis on chatter stability. The only study which investigates the

use of the inerter in machining application is the work of Wang [5], but this study

focuses on the vibration suppression in milling machines rather than the stability of a

cutting process. It presents a simpler investigation to show the benefits of the use of the

inerter in milling operation. It lacks detailed and comprehensive analysis considering

the regenerative chatter, which is the major problem in milling operation. Instead, this

study examines the analysis of inerter-based dynamic vibration absorbers considering

regenerative chatter stability.

A milling operation can be modelled as an SDOF system. The chatter problem can

be modelled similar to the vibration absorption of the primary system under forced

excitation but the interest is in chatter stability rather than forced vibration. The

grounded connection of a passive control device or deployment between two components

of the machine is also restricted due to constructional limitations. Therefore, the

application of the inerter-based passive control device in a milling operation is considered

as a localised addition [6]. This approach provides a more versatile solution similar

to a classical TMD application where no grounded connection or attachment between

two components is needed. It also saves the milling structure from requiring major

modifications.

The complexity of the layouts is kept as low as possible considering its physical

realisation and limited-space that milling application generally has. Layouts are formed
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by replacing the damper in the TMD with all possible networks consisting of an

inerter, a spring and a damper. These layouts, named inerter-based dynamic vibration

absorber (IDVA), have been studied by Hu and Chen [259] for vibration suppression

analysis. It has been shown that the layout without an extra stiffness element provides

no improvement in comparison to a TMD. Therefore, these layouts consisting of two

springs, an inerter, a damper and an auxiliary mass are evaluated for chatter stability

performance in this chapter. The selection of the design parameters are obtained by

performing self-adaptive differential evaluation (SaDE) algorithm. The performance of

each configuration is evaluated considering the real part of the frequency response and

the stability lobe diagram for milling. Also, a global sensitivity analysis is conducted

to assess the effect of the change in each design parameter on the performance.

4.2 Layouts and transfer functions

A SDOF milling system controlled with an IDVA is given in Figure 4.1a. The milling

system is subject to unwanted vibrations, which cause poor surface quality, noise,

breakage or failure of the cutting tool. It has parameters mass M (kg), spring stiffness

K (N/m), and viscous damping C (Ns/m.) Although these parameters are defined by

the contribution of all components of the milling system, they are dominated by the

most flexible part of the milling (such as the tool or workpiece). The IDVA is mounted

on the most flexible part of the machine as the localised addition in order to increase

regenerative chatter stability. In practice, mounting the IDVA to a rotating tool is

not possible due to practical limitations. Therefore, it is designed and applied to the

workpiece in Chapters 5 and 6. Each IDVA has an auxiliary mass ma (kg), two springs
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ko and ki (N/m), inerter b (kg), and viscous damper c (Ns/m), as shown in Figure

4.1b.

Figure 4.1 (a) A SDOF milling system with the IDVAs where (b) four different inerter-
based layouts are considered by replacing the damper in TMD with networks consisting
of an inerter, a spring and a damper.

Stability analysis of milling requires the transfer function of the system. The transfer

function of the machining system with the IDVA can be derived by writing the equations

of motion. The equations of motion of the SDOF system controlled with the IDVA in

Figure 4.1 can be written in the Laplace domain:

Ms2Xm(s) + CsXm(s) + KXm(s) − Fc(s) = F (s),

mas2Xa(s) + Fc(s) = 0,

(4.1)
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Table 4.1 Impedances Y(s) of the networks consisting of an inerter, a spring and a
damper in Figure 4.1.

L1 L2 L3 L4

1
s

ki
+ 1

c
+ 1

bs

1
1

ki
s +c

+ 1
bs

1
1

ki
s +bs

+ 1
c

1
1

bs+c
+ s

ki

where Xm(s) and Xa(s) are the Laplace transforms of the displacements of the primary

and auxiliary masses, respectively. M , ma are the modal mass of the primary system

and auxiliary mass of the absorber, K and C are the stiffness and damping of the

primary system, ko, ki, c and b are the stiffnesses of the outer spring and the inner

spring, damping of the absorber and the inertance of the inerter, respectively. F (s)

and Fc(s) are the Laplace transforms of cutting and control forces. The control force

written as

Fc =
(
ko + sY (s)

)(
Xa(s) − Xm(s)

)
(4.2)

where Y (s) is the impedance1of each layout in Figure 4.1b as given in Table 4.1.

Substituting Equation 4.2 into Equation 4.1 and applying algebraic manipulations, the

transfer function of the system in Figure 4.1a can be written in the Laplace domain:

G(s) = Xm(s)
F (s) = mas2 + sY (s) + ko(

Ms2 + Cs + K
)(

mas2 + sY (s) + ko

)
+ mas2

(
sY (s) + ko

) (4.3)

where transition from the Laplace domain to frequency domain is made by replacing

s = jω.
1Here, the impedance is defined as

F (s) = Y (s)v(s)

where F (s) is force, Y (s) is impedance and v(s) is velocity [259, 276].
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Using the following dimensionless parameters:

µ = ma

M
, δ = b

ma

, Ω = ω

ωn

, γ = ωa

ωn

,

α = ωb

ωa

, ζm = C

2
√

KM
, ζa = c

2
√

koma

,

(4.4)

where ω is the forcing frequency and ωn, ωa and ωp can be expressed as

ωn =
√

K

M
, ωa =

√
ko

ma

, ωb =
√

ki

b
.

the dimensionless transfer function can be found in this form:

G̃i = Xm

F/K
= Ai(Ω, δ, γ, α, ζa) + jBi(Ω, δ, γ, α)

Ci(Ω, µ, δ, γ, α, ζm, ζa) + jDi(Ω, µ, δ, γ, α, ζm) (4.5)

Full expressions for Ai, Bi, Ci, and Di are presented in Appendix A. The stability limit

of an SDOF structure is inversely proportional to the real part of the transfer function.

Optimal dimensionless design parameters that provide the best stability performance

can be obtained from using Equation 4.5.

4.3 Optimisation/tuning parameters

The selection of the design parameters has an important effect on the performance

of the absorber. Tuning parameters can be done manually (e.g. setting the natural

frequency of the absorber to the natural frequency of the main system), iteratively,

numerically or analytically. The analytical method, which provides a set of generic

formulas for the values of the optimal design parameters, is the most sophisticated

method among them. For instance, Den Hartog [107] and Sims [108] derived analytical
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expressions that give the optimal design parameters considering amplitude peak in the

FRF for a vibratory system and the real part of the FRF for a machining operation,

respectively. However, such analytical expressions involve assumption of undamped

primary systems in the derivation. The optimal design parameters vary on the level of

damping when the damping exists in the primary system.

Numerical optimisation strategies, on the other hand, are capable of dealing with

the damping in the main system. Although they could be computationally costly,

they could provide accurate values for the optimal design parameters. With the

advent of computing speed and cost-effective computational algorithms, the numerical

optimisation method has become a powerful method for the obtainment of the design

parameters. In this thesis, a self-adaptive differential evolution algorithm is applied

for numerical optimisation to obtain the optimal design parameters of the IDVA. In

this section, before the details of the numerical optimisation, fixed-points technique

as a possible analytical tuning method will be discussed. Then, objective functions,

a brief explanation of SaDE and finally, the optimal design parameters obtained by

performing SaDE will be presented in the following sections.

4.3.1 Identification of the fixed points

Den Hartog’s method [107] uses the damping-ratio-invariant points, the so-called fixed

points, for H∞ optimisation for a TMD. In this method, the amplitudes at two fixed

point frequencies are first set to be equal by frequency ratio. Then, the damping ratio

is obtained considering the slope of the amplitude at the fixed point frequencies. Sims’

method applies the same criteria but is interested in the real part of the FRF, where

three fixed points appear. Only two of the existing three fixed points are considered to



4.3 Optimisation/tuning parameters 79

provide equal peaks or troughs depending on the cutting parameters. Barredo et al.

[260] demonstrated that there exist four fixed points for the magnitude of the FRF for

the IDVAs. They can be employed for analytical expressions for the optimal design

parameters by applying a similar scheme to Den Hartog’s. Although this approach

provides only quasi-optimal design parameters, using the analytical expressions are

more convenient and sufficiently effective.

The use of the fixed points to obtain the optimal design parameters for the IDVAs

in Figure 4.1b can also be considered for machining chatter stability which is defined

by the real part of the FRF as discussed in Chapter 3. There are four dimensionless

design parameters γ, ζa, δ, and α. For constant γ, δ, α and undamped main system

ζm = 0, there are five fixed-points identified in the real part response for each layout

which is obtained by using Equation 4.5. An example that indicates the fixed points

for L1 is given in Figure 4.2 and the fixed points for other layouts are presented in

Appendix B. Moreover, numerical evaluations showed that values for γ, δ and α that

make the fixed points equal provide slightly better performance than a classical TMD

for L1, L2 and L4 as long as the damping ratio is properly chosen. However, the fixed

points technique could not provide better performance than the numerical optimisation

method as presented in Appendix B. The evaluation to obtain the analytical expressions

was conducted in Maple software. Even though it was straightforward to obtain the

frequencies of the fixed points, it was challenging to obtain expressions for the optimal

design parameters due to the excessive number of terms. This is because the solution

involves the roots of cubic equations.

Besides the difficulty in obtaining analytical expressions due to the excessive number of

terms and lower performance obtained compared to numerical optimisation, the fixed

points technique is only valid for an undamped primary system. Therefore, numerical
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Figure 4.2 Five the damping-ratio-invariant fixed points in the Layout L1. The values
of the real part at frequencies from P1 to P5 are fixed for different damping ratios ζa

but constant values for the rest of the design parameters γ, δ and α. Zero and infinitely
large damping ratios are shown in the legend. Other lines represent different values of
the damping ratio in 0 < ζa < ∞.

optimisation is considered as a more suitable method for the applications in this thesis.

The evaluation regarding the fixed points is kept limited with only this subsection, and

the rest of the chapter focuses on numerical optimisation to acquire optimal design

parameters.

4.3.2 Optimisation problems

Four dimensionless design parameters γ, ζa, δ, and α are the inputs of the optimisation

for given mass ratio µ and structural damping in the primary system ζm. The

optimisation algorithm attempts to minimise or maximise the output value of the

objective function by searching the pool of the input values. Three objectives are

defined in this study for the evaluation of chatter stability. The first and main objective
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is to maximise the limited critical depth of cut alim so that chatter-free depth of cut

is increased regardless of the spindle speed. The second objective is to maximise the

largest stable depth of cut value as possible. However, this objective could end up a

deep but narrow stable region in the stability chart since it does not consider a spindle

speed band. Thus, the third objective is to enhance the deep stability region in the

first stability pocket (between the first and second stability lobes). This objective aims

to increase the stable area between predefined spindle speeds instead of maximisation

of the largest stable point.

The stability limit of milling with an SDOF structure was determined in Section 3.3.2

as:

acr = 1
2KtNtURe

(
G(jω)

) (4.6)

where U is defined by the milling type and radial immersion, Nt is the number of teeth,

and Kt is the tangential cutting coefficient. Substitution of the dimensionless transfer

function Equation 4.5 into Equation 4.6 yields the critical depth of cut expressed as

follows:

acr = K

2KtNtURe
(
G̃(jΩ)

) (4.7)

where K is the stiffness of the primary system and Ω = ω/ωn. As the dimensionless

analysis is employed, K is here just a scaling factor (or gain) like the milling parameters

Kt, Nt and U . With this approach, the stability performance only depends on the

dimensionless real part response, which is defined by the dynamic behaviour of the

inerter-based layouts. The rest of the parameters only scale the stability limits and

can be excluded from the analysis from the structural dynamics point of view. Non-

dimensional spindle speed is given by the frequency ratio Ñ = NtN/(60fn) where N is

the spindle speed as discussed in Equation 3.35.
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A

Figure 4.3 Stability lobe diagram where the absolute stability (alim) is shown with the
dashed line AE. Point C indicates the largest stable depth of cut, whose maximisation
is the second optimisation objective. The third objective of the optimisation is the
enhancement of the first stability pocket (blue region).

The limited critical depth of cut alim, which indicates the absolute stability limit,

depends on the negative or positive real part and it is independent of the spindle speed.

However, the optimisations for the maximisation of the largest depth of cut and the

maximisation of the stability pocket have to consider spindle speeds due to overlaps of

the lobes (as shown with black dotted line in Figure 4.3). These lobes are caused by

different integer k in Equation 3.12 as discussed in Section 3.2. There can be more than

one critical depth of cut values yielded by different k for the same spindle speed. The

stability border for that spindle speed is defined with the lowest critical depth of cut

value. In order to achieve the optimisations of the maximisations of the largest depth

of cut and the stable area, the stability limit is expressed as an one data set (bold

black line in Figure 4.3) by eliminating higher critical depth of cut in the overlapped

areas. The three objectives are presented in detail below:
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Objective 1: Maximisation of limited critical depth of cut

The first objective of the numerical optimisation is to maximise the limited critical

depth of cut in the stability lobe diagram. It defines the absolute stability limit of the

cutting operation, as illustrated with the dashed line (AE) in Figure 4.3. For given

mass ratio µ and structural damping ζm, the objective function can be written as

J1 = −maxΩ
(
|Re(G̃i(jω̃))|

)
, i = L1, . . . , L4 (4.8)

subject to 
Re(G̃i(jω̃)) < 0 for down milling

Re(G̃i(jω̃)) > 0 for up milling

where G̃ is the transfer function of the controlled structure. For the consistency

with the following optimisation objectives, a negatives sign is assigned to perform the

optimisation for the maximisation of the objective value.

Objective 2: Maximisation of largest stable depth of cut

The second objective of the numerical optimisation is to maximise the largest stable

point in the stability chart. In that way, the cutting operation can be conducted at the

spindle speed where the largest stability point is obtained. The largest stable point in

a stability lobe diagram considering the machine limit is generally obtained between

the first and second lobes, as shown with Point C in Figure 4.3. The design parameters

that give the largest stable depth of cut are sought in this optimisation. For given mass

ratio µ, structural damping ζm and the milling parameters, the problem formulation
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can be established as

J2 = max
(
acr

)
(4.9)

where acr is the critical depth of cut vector that contains all critical depth of cut values

in the combined stability lobe diagram (bold black line in Figure 4.3). Due to the

machine limitation, ultra-high speed zone (k < 0.5 in Equation 3.12) is excluded in the

optimisation.

Objective 3: Maximisation of the stability pocket

It is possible that the maximisation of the stable depth of cut at one spindle speed

in the previous optimisation could lead to a stable region with a high limiting depth

of cut but narrow spindle speed band. If the spindle speed of the stable region is too

narrow, the cutting operation can easily shift to the unstable region even with a small

change in the spindle speed (e.g. spindle speed uncertainties). Furthermore, this stable

region with a narrow spindle speed band might not be seen in practice as theoretical

stability analysis contains assumptions such as linear cutting force and linear system

behaviour. Therefore, the third objective of the numerical optimisation is to increase

the stable region between two chosen spindle speeds, instead of increasing the stability

at one chosen spindle speed. As the most stable region in a stability lobe diagram

occurs between the first and second lobes, the area of the stable region between these

two lobes is aimed to enhance the stability. This region is illustrated in blue colour

between Points B and D in Figure 4.3. For given mass ratio µ, structural damping ζm

and the milling parameters, the problem formulation can be established as
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J3 = 1
(ND − NB) + 1

ND∑
i=NB

acr,i (4.10)

where ((ND − NB) + 1) is the total number of spindle speed points between two chosen

spindle speeds. acr represents each critical depth of cut in the range of [NB, ND].

All three optimisations are performed for the maximisation of the objective values by

utilising the SaDE algorithm.

4.3.3 Self-adaptive differential evolution (SaDE) algorithm

The self-adaptive differential evolution algorithm is a differential evolution algorithm

with the capability of adapting its control parameters after a pre-defined learning

period. Differential evolution (DE) algorithm is a simple and powerful population-based

stochastic search method, which is capable of handling non-differentiable, nonlinear

and multimodal functions [277, 278]. Traditional DE requires four control parameters

that needs to be defined: Mutation strategy, scaling factor F, crossover ratio CR, and

population size. The control parameters have an important effect on the performance

and the convergence speed of the optimisation.

The optimisation algorithm of DE is illustrated in Figure 4.4. DE searches the

parameters which give the best objective value in a population pool. In each generation,

this population pool is updated applying three operations called mutation operation,

crossover operation and selection operation, respectively. The initial pool population

is constructed by uniformly distributed values from constrained vectors which define

upper and lower boundaries for each design parameter. The set of design parameters

in the initial population is named as target vectors X and the objective value for
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each target vector is determined. Mutation operation uses mutation strategies, which

involves the manipulations of target vectors, including multiplication by scaling factor

F , to obtain a mutant vector V. Each mutation strategy has different strong sides

(e.g. fast converge, strong exploration capability [278]) and thus, it is important to

choose a suitable mutation strategy depending on the optimisation problem. Crossover

operation generates a trial vector U utilising the binomial crossover:

um
n,G =


vm

n,G, if (rand[0, 1) ≤ CR)

xm
n,G, otherwise

, m = γ, ζa, δ, α (4.11)

where CR is the crossover rate and its range is [0, 1].

The objective value of each trial vector created in the crossover operation is compared

with the corresponding target vector in the selection operation. If the target vector

has a better objective value, the target vector is transferred to the next generation and

placed into the new population pool. Otherwise, the trial vector is moved to the next

generation.

Instead of manually specifying the control parameters as in traditional DE, SaDE

adaptively determines the mutation strategy, scaling factor F, and crossover ratio CR

by learning from the previous generation. This self-adaptation during the optimisation

allows a suitable choice of the control parameters for not only overall search space but

also different sections in the search space [278]. Settings for the self-adaptive part of

the algorithm are established by following the implementation in [279]. Four mutation

strategies chosen to obtain the mutant vector are:

1. rand1: Vn = Xra + F
(
Xrb

− Xrc

)
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Figure 4.4 Schematic illustration of the SaDE algorithm where the next generation is
obtained through mutation operation, crossover operation and selection operation.

2. current-to-best2: Vn = Xn + F
(
Xbest − Xn

)
+ F

(
Xra − Xrb

)
+ F

(
Xrc − Xrd

)
3. rand2: Vn = Xra + F

(
Xrb

− Xrc

)
+ F

(
Xrd

− Xre

)
4. current-to-rand1: Vn = Xn + F

(
Xra − Xn

)
+ F

(
Xrb

− Xrc

)

where Xra , Xrb
, Xrc , Xrd

, and Xre are randomly chosen target vectors while Xn

and Xbest are the current target vector and the target vector with the best objective

value, respectively. F is scaling factor. The mutation strategy is chosen from the

four predefined strategies according to probabilities which are determined considering

success rate. Initially, the probability for selection of each strategy is equal: P =
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{0.25, 0.25, 0.25, 0.25}. The numbers of trial vectors that are transformed and discarded

in the next generation are stored in the first generations, the so-called learning period.

At the end of the learning period, the selection probabilities are updated according

to the ratio of the number of successful trial vectors to all trial vectors, including

successfully transformed and discarded for each mutation strategy. After the learning

period, the probabilities are updated for every generation by considering only the last

generation.

Scaling factor F and crossover ratio CR are normally distributed with N (F , 0.3) and

N (CR, 0.1), respectively. Initially, both F and CR are considered as 0.5 in the learning

period. They are updated through the same method as the selection probabilities of

the mutation strategies by taking the averages of the F and CR values of trial vectors

which are transformed to the next generation. Adaptation of the F and CR is carried

out individually for each mutation strategy as each mutation strategy could require

different optimal values for F and CR for the best performance. The range of scaling

factor F is taken [0, 2] and it is kept in its range by considering the closest boundary if

it exceeds its range. Similarly, each parameter in the trial vector during the mutation

operation is forced to remain in its range [Xmin, Xmax].

Having explained the key points of SaDE, four design parameters X = {γ, ζa, δ, η} were

optimised through optimisation problems defined by performing the SaDE algorithm.

Initially, different values were tested for upper and lower boundaries of the initial

population pool. After the initial runs, it was observed that the objective value settled

after 250 generations, and it did not show significant improvement, as presented for

the absolute stability in Appendix C. For given mass ratio µ, structural damping ζm

and the milling parameters (for the second and third optimisation objectives), the

optimisation using SaDE was conducted for 500 generations for each configuration and
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each optimisation problem defined above. Since DE is a stochastic method to seek the

global maximum, each case was repeated several times to assure the achievement of

the best objective value. The optimal design parameters obtained are presented in the

next section.

4.3.4 Optimal design parameters

Optimal design parameters for four layouts for three optimisation problems were

obtained by performing the SaDE algorithm. For the first objective aiming the max-

imisation of the limited critical depth of cut, optimal dimensionless design parameters

for down milling were found for the mass ratios of 0.01, 0.05 and 0.2 considering three

different structural dampings of 0, 0.01 and 0.023. The optimal design parameters

for all cases evaluated for down milling were also determined for up milling. In the

optimal design parameters, only the frequency ratio γ showed differences between up

and down milling. The rest of the design parameters were very close in both milling

types. The dimensionless optimal design parameters are given in Table 4.3 for the

down milling for the three mass ratios and structural damping values. For the up

milling, the parameters are presented for only one case in Table 4.4. The objective

value J1, which is the most negative/positive real part, is given with J1 in the tables.

The absolute limits were also evaluated considering a milling scenario. The parameters

obtained for the milling scenario are presented in Table 4.2. It should be noted that there

is no effect of these milling parameters on the dimensionless design parameters for given

modal parameters (M , fn and ζm). Although stability limit acr is the function of these

parameters in Table 4.2, the non-dimensional transfer function G̃(jΩ) is independent

of these parameters. The analysis with the dimensionless design parameters maintain
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its validity for the same milling type with different milling parameters. Considering

the milling scenario, the limited critical depth of cut (alim) and stability improvement

(Imp.) of each layout for each case compared to the TMD are also given in Table 4.3.

The TMDs were tuned using the same objective functions for the reference values.

Table 4.2 Milling simulation parameters

Main stiffness, K 5.8122 x 106 N/m
Tangential cutting coefficient, Kt 796.1 N/mm2

Radial cutting coefficient, Kr 168.8 N/mm2

Tool diameter 16 mm
Radial immersion 8 mm
Number of teeth 4

The same milling scenarios were also utilised for the second and third objectives of

the optimisation, where the maximisation of the largest stable point and the first

stability pocket are considered. It is known that the largest stable point occurs in a

stability lobe diagram when the machining system is excited at its natural frequency

since the value of the real part approaches zero. Therefore, the required spindle speed

range for the third objective was chosen as [0.9Ñfn , 1.4Ñfn ] where Ñfn corresponds to

non-dimensional spindle speed for fc=fn and k = 0. The optimal design parameters for

both objectives are presented in Tables 4.5 and 4.6 for µ = 0.05 and ζm = 0.023. For

these optimisations, only the down milling was considered and the performance of the

TMD tuned for the same objectives was used as the benchmark for the performance

evaluations.
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Table 4.3 Optimal design parameters obtained for the absolute stability of down milling
(alim). Improvements (Imp.) are calculated, taking the performance of TMD tuned for
the same objective as reference.

ζm µ γ ζa δ α J1 alim (mm) Imp. (%)
TMD

0 0.01

1.0269 0.0629∗ - - -6.59 1.30 -
L1 1.0383 0.0546 0.0238 1.0050 -5.01 1.70 30.3
L2 1.0442 0.0026 0.0241 0.9853 -5.04 1.69 29.8
L3 1.0101 0.0665 2.1306 1.1273 -5.95 1.44 10.3
L4 1.0319 0.0026 0.0232 1.0251 -5.01 1.70 31.0

TMD

0 0.05

1.0369 0.1322∗ - - -2.71 3.18 -
L1 1.0640 0.1199 0.1146 1.0241 -2.01 4.28 34.7
L2 1.0883 0.0219 0.1057 0.9430 -2.06 4.17 31.4
L3 0.9975 0.1504 1.7337 1.3330 -2.40 3.58 12.8
L4 1.0346 0.0253 0.0965 1.1222 -2.01 4.28 34.7

TMD

0 0.2

0.9967 0.2502∗ - - -1.16 7.39 -
L1 1.0537 0.2244 0.4085 1.0943 -0.83 10.39 40.6
L2 1.1157 0.0999 0.3249 0.8510 -0.90 9.55 29.1
L3 0.9230 0.2929 1.1307 1.8812 -0.99 8.66 17.1
L4 0.9642 0.1324 0.2190 1.4890 -0.83 10.39 40.6

TMD

0.01 0.01

1.0348 0.0641∗ - - -5.25 1.64 -
L1 1.0459 0.0562 0.0255 1.0058 -4.18 2.05 25.0
L2 1.0516 0.0025 0.0240 0.9867 -4.20 2.03 23.9
L3 1.0175 0.0679 2.1405 1.1319 -4.82 1.78 8.6
L4 1.0392 0.0028 0.0245 1.0260 -4.18 2.05 25.0

TMD

0.01 0.05

1.0433 0.1346∗ - - -2.42 3.56 -
L1 1.0702 0.1214 0.1190 1.0248 -1.84 4.68 31.7
L2 1.0956 0.0230 0.1091 0.9409 -1.88 4.57 28.5
L3 1.0027 0.1526 1.7076 1.3411 -2.17 3.97 11.7
L4 1.0400 0.0263 0.0988 1.1248 -1.84 4.68 31.7

TMD

0.01 0.2

1.0006 0.2538∗ - - -1.10 7.85 -
L1 1.0580 0.2255 0.4090 1.0953 -0.79 10.90 38.8
L2 1.1204 0.1006 0.3271 0.8506 -0.86 10.05 27.9
L3 0.9279 0.2925 1.1239 1.8882 -0.94 9.15 16.5
L4 0.9661 0.1356 0.2207 1.4980 -0.79 10.90 38.8

TMD

0.023 0.01

1.0452 0.0629∗ - - -4.11 2.09 -
L1 1.0559 0.0581 0.0270 1.0054 -3.41 2.51 20.1
L2 1.0626 0.0030 0.0267 0.9847 -3.43 2.50 19.4
L3 1.0261 0.0705 2.0360 1.1402 -3.84 2.24 7.1
L4 1.0488 0.0031 0.0260 1.0270 -3.41 2.51 20.1

TMD

0.023 0.05

1.0517 0.1356∗ - - -2.12 4.06 -
L1 1.0784 0.1232 0.1227 1.0256 -1.65 5.21 28.3
L2 1.1045 0.0237 0.1116 0.9403 -1.69 5.08 25.1
L3 1.0115 0.1529 1.7014 1.3473 -1.92 4.35 7.0
L4 1.0475 0.0270 0.1005 1.1285 -1.65 5.21 28.3

TMD

0.023 0.2

1.0062 0.2547∗ - - -1.02 8.46 -
L1 1.0633 0.2270 0.4160 1.0958 -0.74 11.58 36.9
L2 1.1260 0.1014 0.3294 0.8519 -0.80 10.69 26.5
L3 0.9316 0.2951 1.1052 1.9045 -0.89 9.79 15.8
L4 0.9698 0.1380 0.2222 1.5055 -0.74 11.59 37.1
∗ ζa = c

2
√

koma
for TMD, where c is the damping of the damper in parallel

to the spring.
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Table 4.4 Optimal design parameters obtained for the absolute stability of up milling
(alim). Improvements (Imp.) are calculated, taking the performance of TMD tuned for
the same objective as reference.

ζm µ γ ζa δ α J1 alim (mm) Imp. (%)

L1

0 0.05

0.8693 0.1199 0.1142 1.0250 3.01 -5.72 23.1
L2 0.8926 0.0216 0.1050 0.9441 3.06 -5.61 21.0
L3 0.8382 0.1500 1.7258 1.3331 3.40 -5.05 8.9
L4 0.8449 0.0257 0.0972 1.1231 3.01 -5.2 23.1

Table 4.5 Optimal design parameters obtained for the maximisation of the largest
stable depth of cut for down milling.

ζm µ γ ζa δ α Imp. (%)

TMD

0.023 0.05

1.6420 0.0618 - - -
L1 1.6433 0.0614 1.4160 1.0442 2.8
L2 1.6396 0.0619 16.2429 0.0147 0.2
L3 1.6296 0.0599 5.8019 1.0815 3.5
L4 1.5491 0.1151 0.0155 4.0203 4.4

Table 4.6 Optimal design parameters obtained for the enhancement of the first stability
pocket for [0.9Ñfn , 1.4Ñfn ] for down milling.

ζm µ γ ζa δ α Imp. (%)

TMD

0.023 0.05

0.9894 0.1208 - - -
L1 1.2303 0.6344 0.3005 1.0402 15.2
L2 1.3089 0.0288 0.3019 0.8811 11.4
L3 0.9003 0.1798 7.6489 1.1849 -0.2
L4 1.1309 0.0297 0.2119 1.2746 15.6
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4.4 Stability performances of the layouts

The performance improvements of each layout for each case are presented with the

optimal design parameters in Tables 4.3, 4.4, 4.5 and 4.6. The performances of the

layouts are evaluated with different comparisons. Figure 4.5 compares the real part

of the FRFs of each layout with the TMD. The comparison is given for the mass

ratio of 0.05 and no structural damping (ζm = 0). As the primary system includes no

damping in this case, the TMD results are given for Sims’ method [108] considering

equal positive peaks (for up milling) and equal negative troughs ( for down milling)

of the real part. The IDVAs results are for the optimal design parameters in Tables

4.3 and 4.4 for the down and up milling, respectively. It should be noted that the

optimal design parameters obtained from numerical optimisation for TMD were almost

identical with the values obtained from Sims’ method [108] for undamped structure.

The comparisons of real parts of the FRFs of the four layouts with the uncontrolled

case and TMD are presented in Figure 4.6. The results were obtained for down milling

with the structural damping of 0.023 in the main system and the mass ratio of 0.05.

These real parts were used to obtain the stability lobe diagram as given in Figure 4.7.

The results demonstrate that all layouts for undamped and damped primary systems

indicated better performance in improving the absolute stability limit by improving

the most negative/positive real part. More than 25% improvement was provided in

the limited critical depth of cut for L1, L2 and L4.

As for the maximisation of the largest stable depth of cut, IDVAs with the design

parameters in Table 4.5 are compared with TMD tuned for the same objective. The

largest stable depth of cut showed a significant increment with this tuning. However,

all IDVAs showed almost identical performance with the TMD. Therefore, only the
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stability limit obtained by L2 (solid orange line) and TMD (dashed black line) are

presented in Figure 4.8. The third optimisation focused on the maximisation of the

first stability pocket in the non-dimensional spindle speed range of [0.9, 1.4]. The TMD

was also optimised for this objective and compared with the IDVAs. This optimisation

results exhibited that the L1, L2 and L4 broadened the spindle speed band for the stable

cut in the pocket. Moreover, the largest stable depth of cut was comparable to the

values obtained in the second optimisation. L1, L2 and L4 show similar performance

improvements to each other, while L3 presented similar performance to the TMD. In

Figure 4.8, only the stability limit of L2 (solid green line) compared to TMD (blue

dotted dash line) for this optimisation is presented. Both TMD or L2 improved stability

limits of more than 12 mm. However, the IDVA-L2 provided two times higher spindle

speed band where 12 mm depth of cut is stable, compared to the TMD.

4.5 Discussion

The optimisation results showed that all layouts improved the absolute stability perfor-

mance compared to a classical TMD for the same mass ratio. The best performances

were obtained for L1, L2 and L4. L1 and L4 showed almost identical improvement for

all cases while L2 performed slight less. The performance improvement of L3 remained

limited compared to other three layouts. The layouts for higher mass ratios and smaller

structural damping generally showed greater improvement.

One of the important points from the results is that the optimal inertance-to-mass ratio

values δ were quite small. For instance, for the layouts with the best performances
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Figure 4.5 Real part responses of the IDVAs for µ = 0.05 and ζm = 0 in comparison
with the TMD. The IDVAs responses are obtained from the optimal design parameters
in Tables 4.3 and 4.4. The TMD responses are obtained from Sims’ method [108].
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Figure 4.6 Comparisons of the real part responses of the IDVAs for down milling
obtained from the design parameters for µ = 0.05 and ζm = 0.023 in Table 4.3 for
milling parameters in Table 4.2.
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Figure 4.7 The stability lobe diagram for the structure controlled with the IDVA in
comparison with the uncontrolled case and the TMD. The stability limits are obtained
from the real part responses presented in Figure 4.6.
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0.9)max in legend represents for the maximisations of the largest stable depth of cut
(J2) and first stability pocket in [0.9Ñfn , 1.4Ñfn ] (J3).
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(L1, L2 and L4), the inertance-to-mass ratio values were around 0.1, which leads

to inertance of 0.005 kg for the primary system with unit modal mass. This value

increased for the higher mass ratios but using a high mass ratio can be problematic for

the limited space applications. Therefore, the physical realisation of the inerter that

can produce such small inertance should be evaluated for the limited-space applications.

It is well-known that the inerter is employed to achieve a higher inertial effect with a

small mass. However, having determined small inertance for the optimal value indicates

that inerter functions act more like a control element that increase the order of the

transfer function rather than acting like an inertial amplifier.

Comparing the up and down milling operations it can also be seen that a transition

from equal real troughs to equal real peaks occurs with only a change in the optimal

dimensionless design parameters, which was the frequency ratio γ. The rest of the

parameters remained almost identical. This is parallel to Sims’ method [108] where

only the frequency ratio changes while the damping ratio remains constant during the

transition from equal real troughs to equal real peaks.

It might be preferable to try and use the stability pockets for cutting with a higher

depth of cut. It was shown that tuning a TMD to maximise the largest stable depth

of cut provided more than 50% improvement at the maximum stable point. There

was no additonal benefit exhibited presented by the IDVAs and all layouts presented

TMD-like behaviour for this optimisation. One clear example of this can be seen in

L2 since this layout turns into a TMD with an infinite inertance in theory. It was

observed from the optimal design parameters of L2 in Table 4.5 that the behaviour of

the L2 converged to a TMD by having a high optimal inertance value. However, using

IDVAs (L1, L2 and L4) improved the spindle speed band where a high depth of cut is

possible. High stable depth of cut with narrow spindle bands predicted in theory can
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be a chatter region in practice due to assumptions made in the stability analysis and

the uncertainties. Employment of the IDVAs can be beneficial by improving the spindle

speed band and machining at a high depth of cut. Nonetheless, the computational

cost of this optimisation is heavy as it involves interpolation and obtainment of the

stability lobes.

Using an IDVA as a localised addition seems more promising for performance improve-

ment of the absolute stability rather than the maximisation of the stability pocket.

Therefore, the main focus will be the absolute stability improvement in the rest of the

thesis. The following section will investigate the sensitivity of the design parameters.

4.6 Global sensitivity analysis

The milling chatter performance of different layouts of inerter-based dynamic vibration

absorbers have been evaluated by directly looking at the performance outputs. Nu-

merical simulations were conducted assuming the exact optimal value for each design

parameter. However, due to assumptions made in the theoretical calculations in the

design stage and manufacturing errors, it is difficult to obtain the exact optimal design

parameters in practice unless elements of the control device are adaptive (e.g. variable

stiffness and/or variable damping). Therefore, the analysis of the effect of each design

parameter deviation from its exact optimal value on the chatter resistance performance

is important, especially in a design study or in a model with multiple input factors.

The importance of each input factor in terms of the effect on the chatter suppression

performance can be different. Some of them can be unimportant and have a very

small effect on the output, while some of them can be very influential. The sensitivity
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analysis provides this information about the input factors, which can be helpful in the

evaluation of the feasibility of a particular layout in the design study.

A global sensitivity analysis, where the sensitivity of the parameters is not assessed

locally but over the full range of the possible values (sample space), is conducted

to evaluate the sensitivity of the design parameters for the layouts with the best

performances (L1, L2 and L4). Only the first optimisation case stated in the previous

section is examined and thus, the limited critical depth of cut is considered as the

performance output. Sobol’s method—a variance-based global sensitivity method— is

employed to handle the nonlinear and nonmonotonic relationship between the design

parameters and the output (the limited critical depth of cut).

4.6.1 Problem foundation

Each layout of inerter-based absorber has four dimensionless design parameters γ, ζa, δ,

and α. For given mass ratio µ and the structural damping ζm, the sensitivity analysis

problem can be described as

alim = f(γ, ζa, δ, α) (4.12)

where alim is the output as the limited critical depth of cut and γ, ζa, δ and α are

the input factors which defines the output. In the sense of the sensitivity analysis,

Equation 4.12 is described as the model, and the sensitivity becomes the measure of

how much the variation in the input parameters affects the output.
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The input factors are the actual values of the control elements that cannot be changed

unless they are not adaptive. It is important to assess how much the differences

between the input factors and the optimal values affect the output, which eventually

defines the productivity of the cutting operation. The outputs are created via Monte

Carlo simulations and determined by randomly selected input factors. The variations

observed in the outputs due to the change in each input factor indicates the sensitivity

of the parameters. Therefore, a reasonable choice of the input factors has an essential

role in the sensitivity results.

Each input factor is chosen from a pre-defined range that covers possible actual values

of a control element considering its optimal value. Input factors are randomly chosen

from the pre-defined range. However, complete randomness could lead to a poor

representation by choosing most of the samples from the same section. Therefore, it is

also important to have a representation of all sections according to the distribution

function.

4.6.2 Latin hypercube sampling

The Latin Hypercube sampling (LHS), which was first developed by McKay et al. [280]

in 1979, is an efficient method to generate random sampling. A simple sampling does

not assure the representation of all sections of the distribution functions. The LHS

defines the vectors of the input factors by dividing the range of each variable into equal

intervals and chooses a value with respect to the distribution function in the interval.

Therefore, the samples in this method are chosen evenly to represent its distribution

function. With a fewer number of samples, it provides better coverage of the sample

space of the inputs than a simple random sampling.
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A simple example of the sampling for two input vectors with two elements, which

are created by the LHS, is given in Figure 4.9. For a uniform distribution U(0, 10),

the LHS divides each input factor into 10 and chooses one random value inside that

interval for both input factors as shown in Figure 4.9a. Thus, a representation of each

section of the sample space is provided. The sample space for a normal distribution

N(5, 2) is demonstrated in Figure 4.9b. In that case, more samples are selected near

the mean values of the input factor as following the distribution function.
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Figure 4.9 Samples generated using the Latin Hypercube sampling

The purpose of the generation of samples for the four design parameters is to evaluate

the effect of the changes in the parameters on the result. Although designs of the

components are made considering the optimal design parameters obtained from the

optimisation method, they are likely to have different parameters in practice due to

the manufacturing process and the assumptions in the design process. Assuming that

the possibility of having a large variation from the targeted design parameter is less

likely than the possibility of having a small variation, samples can be chosen with a

normal distribution of the samples over the sample space.

Sensitivity analysis was considered for the dimensionless design parameters obtained for

down milling with µ = 0.05 and ζm = 0.023 as presented in Table 4.3. The mean values
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and the standard deviations for the normal distribution are given in Table 4.7 with the

optimal design parameters. The mean values are the optimal design parameters for

each layout. The standard deviations were considered as 10% of the mean value for

the parameters γ and α, considering that the deviations in the dimensional parameters

are relaxed in these dimensionless parameters due to the square root. The standard

deviations were taken 20% of the mean value for the parameters ζa and δ.

Table 4.7 Optimal design parameters for the three layouts for µ = 0.05 and ζm = 0.023
with the mean values and the standard deviations for a normal distribution for the
Monte Carlo simulation.

Layouts γ =
√

k/ma

K/M
ζa = c

2
√

mako
δ = b

m
α =

√
ki/b

ko/ma

Optimum
Values

L1 1.0784 0.1232 0.1227 1.0259
L2 1.1045 0.0237 0.1116 0.9403
L4 1.0475 0.0270 0.1005 1.1285

Mean ±
Sd. dev.

L1

γopt ± 10% ζa,opt ± 20% δopt ± 20% αopt ± 10%L2

L4

4.6.3 Sobol sensitivity analysis

Sobol’s method [281, 282] is employed for the analysis of the sensitivity of parameters.

It is a global sensitivity analysis method and is based on the decomposition of the

variance of the output. One of the most important advantages of this method is

the ability to tackle problems with a nonlinear and nonmonotonic model as it is a

variance-based method, and the major drawback is its high computational cost [282].

It has been extended by Homma and Saltelli [283] to obtain the total effect sensitivity

of the input factors. The first-order and total effect sensitivity indices, which are the

outputs of the Sobol sensitivity analysis and its extension, are briefly explained in this

section.
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The changes in the influential parameters in a system cause higher variations in the

output. Therefore, variance-based methods for sensitivity analysis evaluate the variance

of the output by fixing one or some input factor(s). Assuming that an input factor is

fixed, the variance which is taken over the rest of the factors give information about

the sensitivity of that parameter on the output.

Assuming a model with an output y = f(x1, ...xn), where x is the vector of n input

factors, the first-order sensitivity index for input factor is written as [281, 282]

Si = V (E(y|xi))
V (y) (4.13)

where V (E(y|xi)) is the variance of the mean of y is taken over all factors but xi

by keeping xi constant and V (y) is the unconditional variance of the output. The

first-order index indicates the main effect contribution of each input factor to the

variance of the output.

The decomposition of the unconditional variance of the output proposed by Sobol [284]

contains the conditional variances, which correspond to the first-order effects and the

interactions between the input factors. The total output variance V (y) for a model

with n orthogonal input factors can be decomposed as [281, 282]

V (y) =
∑

i

Vi +
∑

i

∑
ij

Vij + ... + V1...n (4.14)
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where

Vi = V (E(y|xi)) (4.15)

Vi,j = V (E(y|xi, xj)) − Vi − Vj (4.16)

Vi,j,m = V (E(y|xi, xj, xm)) − Vij − Vim − Vjm − Vi − Vj − Vm (4.17)

where V (E(y|xi, j)) and V (E(y|xi, xj, xm)) are the joint effects and represent the

interaction effects of the in put factors of (xi,xj) and (xi,xj and xm), respectively.

The total effect sensitivity index, which considers both the main effect contributions

and the interaction effects between the input factors, is described by Homma and

Satelli [281, 283] :

ST i = V (y) − V (E(y|x−i)
V (y) = E(V (y|x−i))

V (y) (4.18)

where V (y) − V (E(y|x−i) is the sum of all terms in variance decomposition (Equation

4.13) which include xi. The total effect of the first parameter for a model with four

input factors can be determined as:

ST 1 = S1 + S12 + S13 + S14 + S123 + S124 + S1234 (4.19)

From Equations 4.13 and 4.18 , the importance of an input factor is evaluated by

looking at how close to 1 the first-order and the total effect sensitivity indices are since

both of them are found by normalised by total variance V (y). If the sensitivity index is

close to 1, it is an important input factor. If it is close to 0, it is an unimportant one.
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More detail for the sensitivity indices and the application of the theory into a model

can be found in [281, 282]. In the following section, the total effect sensitivity indices

will be evaluated for four design parameters of the absorber.

4.6.4 Total effect sensitivity indices

The sensitivity of the dimensionless design parameters was found for down milling

with the parameters in Table 4.2 for the structural damping ζm=0.023 and different

mass ratios µ from 0.01 to 0.4. The choice of structural damping value ζm = 0.023

is not arbitrary. It is the structural damping value measured for the main system

in the experimental setup as presented in Chapter 6. The output was considered as

the absolute stability (alim) as presented in Equation 4.12. The LHS with a normal

distribution function was utilised for the selection of the samples as given in Table 4.7.

The total effect indices in Equation 4.18 were calculated for the Layouts L1, L2 and

L4. The analyses were first made for the mass ratio of 0.05 for the different number of

samples, and the total effect indices showed little change after the number of samples

of 1000 as presented in Figure 4.10. The total effect sensitivity indices of the three

layouts obtained for 25000 samples are presented in Figure 4.11 for different mass

ratios. It has been found that the dimensionless parameter γ, which is associated

with the outer spring stiffness for a given main structure damping ratio, is the most

influential parameter on the output regardless of the layout of the absorber.
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Figure 4.10 Convergence study for sensitivity indices of the Layouts L1, L2 and L4 for
mass ratio of 0.05 and structural damping of 0.023.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.5

1

Figure 4.11 The total effect sensitivity indices of the design parameters for the
Layouts L1, L2 and L4 for ζm = 0.023 and different mass ratios. ( )γ =
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4.6.5 Discussion

The total effect sensitivity indices ST i in Figure 4.11 reflects both the main contribution

effect of each design parameter and the interaction effects between the parameters.

For all three layouts, the most influential design parameter is the frequency ratio γ

as the highest total effect indices value belonged this parameter. The dimensionless

design parameter γ is related to the outer spring. Considering an analogy between the

IDVA and the TMD, the outer spring in the IDVA directly corresponds to the spring

in TMD while the whole subnetwork, consisting of the inerter, the damper and the

inner spring in the IDVA, corresponds to the damper in the TMD. Hence, any change

in any element in the subnetwork corresponds to a portion of the damper in the TMD.

Hence, these elements have less influence compared to the outer spring. Furthermore,

the outer spring defines the stiffness of the whole control device. For instance, the

higher the stiffness of the outer spring is, the harder the relative motion between the

two ends of the subnetwork becomes. Therefore, it is reasonable to expect that the

outer spring is the most influential parameter.

The effects of the rest of the parameters vary depending on the layout and the mass

ratio. For the Layout L1, the second influential parameter is η for small mass ratios

and ζa for high mass ratios. δ, which is directly associated with the inertance for given

mass ratio, becomes more influential with increasing mass ratio in the Layout L2 and

the effects of the other two parameters on the performance are limited. For the Layout

L4, only the influence of η seems important after the frequency ratio γ for small mass

ratio. With increasing mass ratio, all design parameters become influential.

The relations between the dimensionless parameters and the dimensional parameters

were given in Equation 4.4. The dimensionless design parameters γ and δ are directly
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defined by the outer spring ko and the inertance b. The change of the viscous damping

c affects more the damping ratio ζa than the outer spring ko since ko involves in the

square root. Therefore, the damping ratio can be mostly associated with viscous

damping. It is difficult to associate the dimensionless parameter α with only one

parameter as it includes all dimensional design parameters except the damping. It can

only be stated that the inner spring ki is uninfluential if the total effect index is small

for α. Having considered these relations, the importance of the dimensional design

parameters can be evaluated. The most critical value is the stiffness of the outer spring

for all three layouts. The inertance seems an unimportant parameter for all mass ratios

evaluated in the Layout L1. Similarly, the viscous damping shows no importance on

the performance of the Layout L2, and the inertance becomes more influential with the

increasing mass ratio in this layout. Finally, all dimensional parameters in the Layout

L4 become influential on the result with increasing mass ratio.

4.7 Summary

This chapter investigated the benefits of the using an inerter as a localised addition

through numerical simulations. The investigation mostly focused on the improvement

of absolute stability. It was discussed that there are fixed points for the real part

response for each layout, which can be employed for an analytical tuning strategy

like Sims’ method [108]. However, this attempt remained limited to identifying the

fixed points due to the difficulty in the derivation and the limitation in the application.

Numerical optimisation by performing SaDE was utilised to obtain optimal design

parameters. The performances of four inerter-based layouts were evaluated from the

real part of the FRF and stability lobe diagrams considering a down milling operation.
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The results showed that all layouts outperformed a classical TMD. The three layouts

L1, L2 and L4 achieved to enhance the stability more than 20% for almost all cases

examined. The improvements extended even further for higher mass ratios. Moreover,

the layouts were analysed to improve the stability pocket. For this, a classical TMD

was first optimised for this objective and achieved 50% improvement in the largest

stable point. Taking this result as a benchmark, it was shown that none of the layouts

presented an important improvement in the largest stable depth of cut. However, they

enhanced the spindle speed band at a high stable depth of cut.

The sensitivities of the design parameters were studied for only the three layouts with

the best performance. Instead of applying local sensitivity analysis, global sensitivity

analysis was conducted by applying Sobol’s method. Running Monte Carlo simulation,

the sensitivity of the design parameters were determined by evaluating the variance of

the critical limiting depth of cut against the change of the design parameters. Results

showed that the most influential design parameter is the outer spring ko in all layouts

studied. This indicates that the most of the care in the experimental design should be

given to the outer spring to achieve an actual stiffness as close to its optimal value as

possible.

The novelty in the study presented in this chapter is that the benefits of using inerters

in machining operations were investigated, focusing on the machining chatter stability

for the first time. Numerical evaluations showed that the chatter stability could be

improved by using inerters. The improvement can only be achieved with the proper

choice of design parameters. For this, even the inertance was included optimisation as a

design parameter instead of considering it as a given parameter. This approach indicated

that choosing a high inertance value does not guarantee performance improvement,

and there was an optimal inertance value. It was seen that the optimal inertance values
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were generally small for small mass ratios. Therefore, the physical implementation

of the IDVAs in a milling operation requires to be in small scale and capable of

producing small inertance values. The direct implementation of the idealised layouts

in such a small scale might not be possible due to the constructional limitations. Also,

nonlinearities such as friction and backlash can be more problematic in small scale

applications. Thus, experimental validation of the results obtained in this chapter

becomes an important part of this thesis.



Chapter 5

Design Study

5.1 Introduction

All layouts in the previous chapter were analysed by assuming idealised (i.e. theoretical)

IDVAs without physical implementation. Milling operations generally have limited

spaces for passive control devices. Therefore, one of the main challenges in using

IDVA in milling operations is that the physical realisation of an idealised IDVA can

be impracticable for relatively small scale applications. This chapter investigates the

practical application of the Layout L2, updating the mechanical model and presents

the absorber’s design study including a new mechanical design of the inerter and

the realisation of the damping mechanism. Among the layouts which provide the

best performance in the previous chapter, L2 is chosen for the design study since

its realisation is more straightforward than the others. Although only one layout is

considered throughout the chapter, the design studies presented in this chapter can be

used as a base study for the other layouts.
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The main difficulty in realising the idealised L2 that could reduce the performance

improvement achieved in Chapter 4 is the parasitic mass effect caused by structural

masses of absorber elements. In Chapter 4, the optimal design parameters were obtained

for idealised configurations where no parasitic mass was considered. The parasitic mass

effect, which is likely to be encountered in any real system could lead to a detuning

effect and reduce the chatter resistance performance of the absorber. Therefore, this

chapter first evaluates the structural masses of the elements in L2 in terms of whether

they create a parasitic mass effect in the system or not. Secondly, a hysteretic gel

damper is considered for the practical design of L2 based on its simplicity and easiness

of implementation. Having considered the parasitic mass and the linear hsyteretic

damping, an updated model of the idealised L2 is presented with the performance

analysis.

The physical design of the inerter and L2 is then studied in order to verify the

performance improvement in milling operations. Although applications of the inerter

have been widely studied in the vibration community, most of the works either presented

a theoretical analysis of the performance or focused on relatively large scale applications

such as building vibration suppression, or vehicle suspension systems. The use of

mechanical inerter devices developed in those studies in small-scale applications could

be problematic due to the backlash and friction between mechanical parts and flow

losses (for fluid-based inerters) that become prominent on small scales. Moreover,

most inerter implementation in the literature needs a grounded connection of the

passive control device or its deployment between different structural parts. Milling

operations generally have limited spaces and no availability of a grounded connection

to apply to a passive control device. Implementing the IDVAs as a localised addition

in a milling operation requires a small-scale design of the IDVAs without the need for

inertial ground. To the author’s knowledge, the only inerter which is applicable for the
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small scale application is frictionless living-hinge inerter proposed by John and Wagg

[207]. Based on their design concept, a pivoted-bar inerter device with living-hinges is

developed in this chapter. Also, the implementation of the gel damper is presented.

Using the developed inerter and the gel damper, a new mechanical design of IDVA can

be applied to the limited-space applications without the requirement of inertial ground

or deployment between two parts of the host structure.

The chapter is organised as follows. Section 5.2 assesses the influence of the parasitic

mass on the chatter performance. Section 5.3 updates the idealised L2, including the

parasitic mass and the hysteretic damping to the model and examines the performance

of the updated model. Section 5.4 introduces the pivoted-bar inerter with living hinges.

This section also discusses the stiffness effect in the inerter due to the living hinges and

analysis the fatigue life cycle of the inerter. The implementation of the gel damper is

presented in Section 5.5. The final design of the absorber is demonstrated in Section

5.6. After discussion in Section 5.7, a summary of the chapter is given in the last

section.

5.2 Parasitic mass effect

5.2.1 Influence of parasitic mass on IDVA-L2

The Layout L2 is constructed with a spring in series to an inerter network consisting of

a parallel-connected spring and damper arrangement in series to an inerter (also known

as a TID). It has a relatively complex layout compared to a classical TMD consisting of

a spring and a damper in parallel. It is vital to assess the possible parasitic mass effect
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due to the structural masses of the element in a complex layout as it can degrade the

performance. The structural masses of the elements in a TMD generally do not cause

a problem as they can mainly be compensated for. Masses of the spring, damper and

connection elements, for instance, can be counted to either the main mass or auxiliary

mass. However, for L2, this cannot be possible because of the serial-connected elements.

As a result, the inertial effect of some elements or the connection elements becomes

unavoidable between the absorber components. If the influence of this parasitic mass

acting in the system is large, it leads to a detuning effect and reduces the performance

of the IDVA-L2.

The influence of the parasitic mass acting between the components can be evaluated by

deriving the equations of motion of the IDVA-L2 with a parasitic mass. A schematic

representation of an IDVA-L2 with a parasitic mass mounted on an SDOF milling

system is illustrated in Figure 5.1. The parasitic mass is considered to act between the

serial-connected element; the inerter and the spring-damper arrangement. Depending

on the orientation of the IDVA, there are two possible connections; one of terminals of

the inerter is directly connected to the primary system (named in this study as icms)

as shown in Figure 5.1a and one of the terminals of the inerter is directly connected to

the auxiliary mass (named in this study as icma) as shown in Figure 5.1b.

The equations of the motion for the icms case in Figure 5.1a is written as

Mẍm(t) + Cẋm(t) + Kxm(t) − b
(
ẍp(t) − ẍm(t)) − ko

(
xa(t) − xm(t)

)
= F (t),

mpẍp(t) + b
(
ẍp(t) − ẍm(t)

)
− c

(
ẋa(t) − ẋp(t)

)
− ki

(
xa(t) − xp(t)

)
= 0,

maẍa(t) + ko

(
xa(t) − xm(t)

)
+ c

(
ẋa(t) − ẋp(t)

)
+ ki

(
xa(t) − xp(t)

)
= 0,

(5.1)
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Figure 5.1 Mechanical models of the idealised IDVA-L2 with parasitic mass between
the series-connected elements: (a) the icms case where the inerter is positioned close
to the machining system, and (b) the icma case where the inerter is positioned close
to the auxiliary mass ma.

where mp is the parasitic mass, and xp(t) is the displacement of the parasitic mass. If

the inerter is connected between the parasitic mass and the auxiliary mass ma, the

equations of motion differ from the icms case. The equations of the motion for the

case icma case in Figure 5.1b is written as

Mẍm(t) + Cẋm(t) + Kxm(t) − c
(
ẋp(t) − ẋm(t)

)
− ki

(
xp(t) − xm(t)

)
− ko

(
xa(t) − xm(t)

)
= F (t),

mpẍp(t) − b
(
ẍa(t) − ẍp(t)

)
+ c

(
ẋp(t) − ẋm(t)

)
+ ki

(
xp(t) − xm(t)

)
= 0,

maẍa(t) + b
(
ẍa(t) − ẍp(t)

)
+ ko

(
xa(t) − xm(t)

)
= 0.

(5.2)

Additional to the dimensionless parameters presented in Equation 4.4, the dimensionless

parameter β = mp/ma for the parasitic mass is introduced for the dimensionless analysis.

Taking the Laplace transform and replacing s = jω into Equations 5.1 and 5.2, the

equations of motion with dimensionless parameters can be written for the icms and
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the icma cases, respectively:

[
− (1 + δµ)Ω2 + j2ζmΩ + 1 + γ2µ

]
Xm + (δµΩ2)Xp − (γ2µ)Xa = ∆,

(δΩ2)Xm +
[

− (δ + β)Ω2 + j2ζaγΩ + α2γ2δ
]
Xp − (j2ζaγΩ + α2γ2δ)Xa = 0,

− (γ2)Xm − (j2ζaγΩ + α2γ2δ)Xp + (−Ω2 + j2ζaγΩ + α2γ2δ + γ2)Xa = 0,

(5.3)

and

[
− Ω2 + j2(ζm + ζaγµ)Ω + γ2µ(α2δ + 1) + 1

]
Xm − (j2ζaγµΩ + α2γ2δµ)Xp − (γ2µ)Xa = ∆,

− (j2ζaγΩ + α2γ2δ)Xm +
[

− (β + δ)Ω2 + j2ζaγΩ + α2γ2δ
]
Xp + (δΩ2)Xa = 0,

− (γ2)Xm + (δΩ2)Xp +
[

− (1 + δ)Ω2 + γ2
]
Xa = 0,

(5.4)

where X represents the Laplace transform of the displacement with indices for the

corresponding masses M , mp and ma. ∆ = L{F (t)}/K is the scaled excitation signal

in the Laplace domain. It is noted that both equations of motions give identical results

when reduced to the idealised IDVA-L2 which corresponds to the case when β = 0.

The dimensionless parasitic mass β is always coupled with the dimensionless inerter

term (δ = b
ma

) as given in Equations 5.3 and 5.4. If δ is big enough than β, the

influence of the parasitic mass in the system diminishes as δ in the governing equations

always appears as being summed by β. However, adjusting the inertance to eliminate

the parasitic effect is not possible since all inertance terms in the governing equations

are not coupled with the parasitic mass.

The parasitic mass mp is defined by the structural mass of the element that creates

the parasitic mass effect. It is directly related to the size of the element, while the

inertance is obtained by the optimisation. For instance, Table 5.1 gives the selected

optimal inertance values from Table 4.3 for a down-milling operation. Assuming the
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Table 5.1 Selected optimal design parameters for down-milling operation from Table
4.3.

ζm µ =
(

ma

M

)
δ =

(
b

ma

)
µδ =

(
b

M

)
0 0.05 0.1056 0.0053
0 0.20 0.3249 0.0650

0.023 0.05 0.1116 0.0056
0.023 0.20 0.3294 0.0659

primary system with a modal mass of 10 kg and damping ratio of 0.023, the parasitic

mass of 33 grams corresponds to 5% of the optimal inertance for the mass ratio of 0.2.

This value decreases to 2.8 grams as the mass ratio decreases to 0.05. This means even

a relatively small structural mass between the elements connected in series (e.g. mass

of the connection part between the damper and the terminal of the inerter) presents

an influential parasitic mass effect.

The influence of the parasitic mass on the chatter performance of IDVA-L2 can be

evaluated from the real part response. Manipulating Equation 5.3 and 5.4 (in Maple

symbolic computation software), the dimensionless transfer function for the icms and

the icma cases in Figure 5.1 are written in the following form:

G̃i = Xm

∆
(5.5)

where i represents either the icms or the icma case.

The influence of the parasitic mass on the real part response for a mass ratio of 0.05

and structural damping of 0.023 is shown in Figure 5.2. The results are obtained from

the design parameter given in Table 4.3. The effects of a parasitic mass of 5% of the

inertance are considered for both the icms and the icma cases. The figure indicates



118 Design Study

0.8 1 1.2 1.4 1.6 1.8 2

-2

-1.5

-1

-0.5

Figure 5.2 A visual example that shows the effect of the parasitic mass on the real part
of the response for the icms and the icma cases. The result for no parasitic mass is
obtained from the optimal design parameters considering the idealised IDVA-L2 for
the mass ratio of 0.05 and the damping of 0.023. The icms and the icma are obtained
using the optimal design parameters for no parasitic mass but considering a parasitic
mass of 5% of the inertance.

that the parasitic mass leads to a detuning effect and decreases the most negative real

part values in both cases. It is observed from the figure that the deterioration of the

performance is higher in the icma case.

5.2.2 Retuning design parameters

Even a small parasitic mass leads to a detuning effect and decreases the cutting stability,

as the previous numerical example suggests. In order to avoid the detuning effect

induced by a parasitic mass, the mechanical model with the parasitic mass must be

employed in tuning the parameters instead using of the idealised model. For the

mechanical model presented in Figure 5.1, the design parameters were retuned via

SaDE. The objective for the optimisation was the minimisation of the most negative

real part, which refers to the same optimisation problem given in Equation 4.8. The real
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Figure 5.3 Change in the real part of the response from the optimal result for different
parasitic mass ratios. The result for no parasitic mass is obtained from the optimal
design parameters considering the idealised IDVA-L2 for the mass ratio of 0.05 and
the damping of 0.023. The icms and the icma are obtained using the optimal design
parameters for no parasitic mass but different parasitic mass ratios mp/b.

Table 5.2 Optimal design parameters, where β = mp/ma, for µ = 0.05 and ζm = 0.023
after tuning parameters considering the parasitic mass of 5% of the optimal inertance
that was obtained for no parasitic mass case as shown in Figure 5.1.

Case β γ ζ δ η

No parasitic mass − 1.1045 0.0237 0.1116 0.9403
icms 0.0053 0.9027 0.0236 0.1063 0.9625
icma 0.0058 0.9058 0.0258 0.1166 0.9623

part response was determined from Equation 5.5 and the optimal design parameters

found are given in Table 5.2. Figure 5.4 demonstrates the results with the new optimal

design parameters. Using the new optimal design parameters, identical real part

response to the idealised IDVA-L2 was obtained for both the icms and the icma cases.

It is important to include the parasitic mass effect, especially for small-scale small-

inertance applications as even small parasitic mass can easily lead to a detuning effect.

In L2, the parasitic mass effect occurs due to the series-connected element, and a
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Figure 5.4 Real part responses of the icms and the icma after their re-tuning considering
the parasitic mass.

more accurate model should reflect a mass between elements in series. It was observed

from the analysis that the reason for the performance loss is not the L2 with parasitic

mass but the change in the optimal design parameters. Identical performance to the

idealised L2 was achieved by updating the optimal design parameters.

5.3 Model update with complex stiffness

The previous section presented results that showed that the implementation of the

idealised L2 can be impractical due to the parasitic mass effect. Therefore, the

mechanical model was updated by considering the parasitic mass and the tuning

parameters were obtained using the updated model. Similar consideration for the

design of the damping in the L2 in practice is presented in this section. A hysteretic

gel damper, which is modelled as a complex stiffness, is considered to be employed

for the physical realisation of the spring-damper arrangement. In that way, the inner

stiffness element and the damping can be easily implemented as one component. The
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implementation and the dynamic properties of the gel will be presented in detail in

Section 5.5. This section further updates the mechanical model with the parasitic

mass in the previous section employing a complex stiffness as the inner spring-damping

arrangement. It evaluates the update model’s performance in terms of stability of

milling operation by comparing with the idealised L2 and the L2 with the parasitic

mass. To make the notation clearer, the L2 with parasitic mass in the previous section

will be named D1. The L2 involving both the parasitic mass and hysteretic damping

will be named D2, while the idealised L2 will be called just L2 in the rest of the thesis.

The dynamic behaviour of the gel damper can be modelled with the complex stiffness

k(1 + jη), where η is the loss factor and j =
√

−1. Assuming time and frequency

invariant damping coefficient, the force dissipated through the hysteretic damping

(kη) is independent of the forcing frequency while the force dissipated through viscous

damping (cω) is proportional to the forcing frequency. Although equivalent viscous

damping can be represent the loss factor for a certain frequency, this method will

lose its effectiveness for applications with a wide range of working frequency bands.

Chatter frequency varies with the changing spindle speed in cutting operations. Hence,

the optimal loss factor will be directly obtained by SaDE instead of using equivalent

viscous damping.

A schematic representation of the L2 with complex stiffness and parasitic mass (named

D2 in this study) is illustrated in Figure 5.5. The equations of motion of the updated

mechanical model with the complex stiffness are written as

Mẍm(t) + Cẋm(t) + Kxm(t) − b
(
ẍp(t) − ẍm(t)

)
− ko

(
xa(t) − xm(t)

)
= F (t),

mpẍp(t) + b
(
ẍp(t) − ẍm(t)

)
− ki

(
1 + jη

)(
xa(t) − xp(t)

)
= 0,

maẍa(t) + ko

(
xa(t) − xm(t)

)
+ ki

(
1 + jη

)
(xa(t) − xp(t)) = 0.

(5.6)
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Figure 5.5 Updated mechanical model with both parasitic mass and complex stiffness
which employs loss factor (η) instead of viscous damping.

where ki and η are the stiffness of the gel damper and the loss factor, respectively.

It should be noted that the loss factor is a dimensionless coefficient which is the

measure of the level of damping dissipated at each cycle. Using the dimensionless

design parameter defined in Equation 4.4 and parasitic-mass-to-auxiliary-mass ratio

β = mp/ma, taking the Laplace transform and replacing s = jω, the equations of

motion with the dimensionless parameters are derived as

[(−1 − δµ)Ω2 + j2ζmΩ + 1 + γ2µ]Xm + (δµΩ2)Xp − (γ2µ)Xa = ∆,

(δΩ2)Xm + [(−δ − β)Ω2 + α2γ2δ(1 + jη)]Xp − [α2γ2δ(1 + jη)]Xa = 0,

(−γ2)Xm − [α2γ2δ(1 + jη)]Xp + [−Ω2 + γ2 + α2γ2δ(1 + jη)]Xa = 0.

(5.7)

where ∆ = L{F (t)}/K is the scaled excitation signal in the Laplace domain.
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Table 5.3 Optimal dimensionless design parameters of D2 in comparison with optimal
design parameters for the TMD, L2 and D1. All parameters are obtained for µ = 0.5
and ζ = 0.023.

β γ α δ ζa η

TMD − 1.0517 − − 0.1356 −
IDVA-L2 − 1.1045 0.9403 0.1116 0.0237 −
IDVA-D1 0.05 1.1361 1.1999 0.0704 0.0253 −
IDVA-D2 0.05 1.1214 1.1447 0.0803 − 0.5385

Using Maple symbolic computation software, the dimensionless transfer function is

written in the form:

G̃i = Xm

∆
(5.8)

where i stands for IDVA-D2.

For a down-milling operation, the optimisation’s objective is to maximise the most

negative real part of the FRF. For µ = 0.05, β = 0.05 and ζm = 0.023, the optimal

design parameters obtained via SaDE are given in Table 5.3 in comparison with the

optimal design parameters for a classical TMD, IDVA-L2 and IDVA-D1. Using the

optimal design parameters in Table 5.3, the real part responses are shown in Figure

5.6. Assuming a down-milling operation with the same milling parameters in Table

4.2, the stability lobe diagrams obtained from the real parts of the responses in Figure

5.6 are also demonstrated in Figure 5.7. All three layouts: L2, D1 and D2, showed

identical stability performance.

The L2 has evolved the D1 with consideration of the parasitic mass, and then the

D2 replacing the viscous damping with the hysteretic damping. D2 is more feasible

in practice than either L2 or D1 since it considers both the parasitic mass effect and
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the damping solution, which offers a more compact physical design and easiness in its

implementation. Furthermore, it shows no performance loss in the chatter stability in

terms of the absolute stability of the milling operation (alim). The following sections

will conduct physical design studies of the absorber components, including the inerter

and the gel damper.
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Figure 5.6 Negative real part of the FRFs of D2 in comparison with the uncontrolled
system response, the TMD, L2 and D1 as a performance indicator of the chatter
stability. The design parameters in Table 5.3 were used for the controlled systems.
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Figure 5.7 Stability performance of D2 in the stability lobe diagram of a down-milling
operation with 4 flutes and half-immersion in comparison with the uncontrolled system
response, the TMD, L2 and D1.
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5.4 Inerter design

The most important part of the absorber in terms of its design and manufacture is

the inerter since it is a relatively new mechanical device and has a relatively more

complex structure than the other conventional components such as spring and damper.

This section aims to achieve a design of inerter that can be applicable to milling

operations. It thereby presents a pivoted-bar inerter with living hinges, including

design studies that investigate the effect of the stiffness of the living hinges on the

inerter’s performance and the fatigue life cycle of the inerter.

The inerter concept was introduced by Smith [4] with the rack-pinion inerter as an

example of the physical realisation of the inerter device. Following that, different types

of inerter including ball-screw inerter [198, 199] and helical fluid inerters [201–203] were

further proposed as possible realisations of the inerter. However, most of the inerters

proposed as yet have been developed for relatively large structural applications. Using

of these inerters in small-size applications could be ineffective since the friction and

backlash between the mechanical parts and flow losses in fluid-based inerters could

become an important issue as the size of the mechanical device shrinks. Therefore, the

implementation of one of these inerters into a milling operation as part of localised

addition would not be feasible.

To the author’s knowledge, the only inerter device that is applicable into small-scale

applications was proposed by John and Wagg [207], which is a pivoted flywheel inerter

with living hinges. Inspiring the DAVI of Flannelly [208], they developed their inerter

device by introducing a rotating disc as a flywheel instead of the lever-arm mechanism

in the DAVI and rearranging the pivot position in a way that balanced forces are

generated as expected from an inerter. They also added living hinges in the pivots



5.4 Inerter design 127

to eliminate friction. The inerter design presented in this section is the synthesis of

the DAVI and the living-hinge inerter of John and Wagg [207]. A pivoted-bar with

additional lumped masses is arranged so that it acts as an inerter. The additional

lumped masses placed to the bar provides easy adjustment of the inertance even after

its establishment.

The DAVI works as an isolator to suppress the vibration caused by a base excitation.

It consists of a lever-arm and an auxiliary mass connected to the end of the lever-arm

as shown in Figure 5.8a. It can produce unbalanced forces as it was not specifically

designed to behave as an inerter. The inerter of John and Wagg [207] uses a rotational

disc as a flywheel shown in Figure 5.8b. The relative acceleration between the pivot

points is transformed into a rotational acceleration of the flywheel and therefore, an

inertial force proportional to the relative acceleration is produced. The factor of the

relative acceleration, named inertance, is determined as

b = I

l2
a

(5.9)

where la is the distance between the pivots, and I is the moment of inertia of the

flywheel disc.

Inerters are inherently designed to amplify the inertial effect. For instance, the ball-

screw inerter in [285] is able to produce 60 − 240 kg inertance with its structural mass

of 1 kg. Similarly, the living-hinge inerter [207] succeeded at producing almost six

times amplification of the inerter device’s mass. However, the optimal inertance values

for IDVA can be very small for a small mass ratio, as shown in the optimisation results

in Chapter 4. If the inerter device with a disc flywheel is considered to have small

inertance, either the moment of the inertia I should be small or the distance between
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Figure 5.8 Schematic views of (a) the DAVI of Flannelly [208], and (b) the living-hinge
inerter proposed by John and Wagg [207].

the pivot points la should be chosen largely as Equation 5.9 suggests. However, the

maximum la is limited to the radius of the disc. This means that if the radius of the

flywheel disc is getting smaller to reduce the moment of inertia to have small inertance,

la is also getting smaller, which increases the inertance. The minimum inertance of an

inerter device with the disc flywheel is mdisc

2 taking the moment of inertia I = 1
2mdiscr

2

and la = r2, where r and mdisc are the radius of the disc and the mass of the disc. It

can be possible to obtain a small inertance by choosing a small radius but this could

lead to very limited space on the flywheel for the connection of the living hinges.

A bar design can be more favourable in terms of having a smaller moment of inertia

and their assembly to the other elements. The moment of the inertia of a bar rotating

around its center of mass is I = 1
12mbarl

2
bar and the inertance of the inerter device with

a bar flywheel becomes mbar

3 considering a distance between the pivots la = lbar

2 . A

bar-type flywheel has a smaller moment of inertia than the disc type flywheel for the

same structural mass of the flywheels, assuming that both flywheels are homogeneous

and rotate about their centre of mass. From the above discussion, it is considered that

the pivoted-bar design is preferable for the inerter device with small inertance.
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Figure 5.9 Generic model of a pivoted-bar with two additional lumped masses mb and
mc where lb and lc are the distances of the additional masses to the closest pivot, and
la is the distance between two pivots. The pivoted-bar freely rotates around its pivots.

5.4.1 Pivoted-bar design as an inerter

The position of the pivots along the bar is the key parameter to enable a pivoted-bar

that acts as an inerter. For the investigation of the different arrangements, a generic

model of the pivoted-bar, on which different locations of the pivots and additional

two small masses for fine tuning can be set, is given in Figure 5.9. The pivoted-bar

can freely rotate around the pivots. It is assumed that the pivoted-bar consists of

all inertial elements (lumped masses and a rigid bar). The equations of motion are

derived by using Lagrage’s equation to find the inertial terms in the system, and they

are classified as the relative inertial and the non-relative inertial terms. The relative

inertial term refers to the factor of the relative acceleration term that exists in both

equations of the motion. The rest of the terms (e.g. factors of ẍ1, ẍ2 and ẍ1 + ẍ2)

are named non-relative inertial term. As an ideal inerter produces equal but opposite

forces at its terminals, the aim is to eliminate or minimise the non-relative inertance

terms in the equations of motion to have a system acting as close to a pure inerter as

possible.
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Related parameters are shown in Figure 5.9 where mb, mc and mbar are the masses

added to the leftmost and the rightmost points of the bar and the mass of the inerter

bar, respectively. lb, lc and la are the distances between the first pivot and mb, the

second pivot and mc and the two pivots. x1 and x2 are the displacements of the

first pivot and the second pivot. The displacements of mb and mc and the angular

displacement of the inerter bar are defined as xb, xc and θ, respectively. The masses of

the legs connected to the pivots are neglected.

Assuming that the bar is homogeneous, the kinetic energy of the system depicted in

Figure 5.9 can be written as

T = 1
2mbẋ

2
b + 1

2mcẋ
2
c + 1

2Iθ̇2 + 1
2mbarẋ

2
cm (5.10)

where xcm is the displacement of the centre of the inerter bar. I is the moment of

inertia of the bar. x3, x4, θ and xcm can be described with x1 and x2 by assuming the

small-angle approximation in the inerter bar as

xc = x2(
la + lc

la
) − x1(

lc
la

), xb = x1(
la + lb

la
) − x2(

lb
la

),

θ = x1 − x2

la
, xcm = x1

la
(la − lbar

2 + lb) + x2

la
(la − lbar

2 + lc)
(5.11)

where lbar is the length of the bar.
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Substituting the first derivative of the expressions in Equation 5.11 into Equation 5.10

yields:

T = 1
2mb[(1 + βb)2ẋ2

1 + β2
b ẋ2

2 − 2βb(1 + βb)ẋ1ẋ2]

+ 1
2mc[β2

c ẋ2
1 + (1 + βc)2ẋ2

2 − 2βc(1 + βc)ẋ1ẋ2]

+ I

2l2
a

[ẋ2
1 + ẋ2

2 − 2ẋ1ẋ2]

+ 1
2mbar[ẋ2

1(1 − βa + βb)2 + ẋ2
2(1 − βa + βc)2 + 2(1 − βa + βb)(1 − βa + βc)ẋ1ẋ2]

(5.12)

where βa = lbar/2la, βb = lb/la and βc = lc/la. There is no potential energy, V , in

the system as it consists of only inertial elements. The Lagrange’s equation for the

pivoted-bar system is written as

d

dt

∂T

∂q̇n

− ∂T

∂qn

+ ∂V

∂qn

= Qn (5.13)

where V = 0 and Qn = 0 as there are no dissipative or external forces acting on

the system. n represents the number of degrees of freedom. qn is the generalised

coordinates, which are x1 and x2 for the system in Figure 5.9. Therefore, two equations

of motion are obtained with respect to x1 and x2. Substituting the kinetic energy T
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and the potential energy V into Equation 5.13, the equations of motion are found as:

With respect to x1:

mc[β2
c ẍ1 − βc(1 + βc)ẍ2] + mb[(1 + βb)2ẍ1 − βb(1 + βb)ẍ2] + I

l2
a

(ẍ1 − ẍ2)

+ mbar[(1 − βa + βb)2ẍ1 + (1 − βa + βb)(1 − βa + βc)ẍ2] = 0
(5.14a)

With respect to x2:

mc[(1 + βc)2ẍ2 − βc(1 + βc)ẍ1] + mb[β2
b ẍ2 − βb(1 + βb)ẍ1] + I

l2
a

(ẍ2 − ẍ1)

+ mbar[(1 − βa + βc)2ẍ2 + (1 − βa + βb)(1 − βa + βc)ẍ1] = 0
(5.14b)

where mbar is the mass of the inerter bar and I is the moment of inertia of the

pivoted-bar, which is given 1
12mbarl

2
bar.

5.4.1.1 An example arrangement acting as an inerter

Equation 5.14 will be used to examine different arrangement of the pivoted-bar but an

example is first presented to explain the relative inertial term and non-relative inertial

term clearly. Assuming that one pivot is at the centre of the mass (lb = lbar

2 ) while

the other pivot can be positioned freely between the centre and the rightmost end

(lc = lbar

2 − la), and two equal lumped masses of m added two end of the bar in Figure

5.9, Equations 5.14a and 5.14b yield:

[
2
(

lbar

2la

)2
m + I

l2
a

]
(ẍ1 − ẍ2) + (mbar + 2m)ẍ1 = 0 (5.15a)[

2
(

lbar

2la

)2
m + I

l2
a

]
(ẍ2 − ẍ1) = 0 (5.15b)
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mbar + 2m is the total mass of the pivoted-bar with the two additional lumped masses

(i.e. inerter). Equation 5.15a, which is related to motion with respect to x1, consists of

two terms: the relative inertial term, which expresses the inerter behaviour and the

term proportional to ẍ1 (non-relative inertial term), which expresses the translational

motion of the total system (rigid body motion). It should be noted that the rigid

body motion is proportional to ẍ1 since the system only moves translationally with

the motion of the pivot at the centre of the mass. Equation 5.15b, on the other hand,

has only the relative term. Therefore, the relative inertial term defines the inertance of

the pivoted-bar as

b = 2
(

lbar

2la

)2
m + I

l2
a

(5.16)

The form of both equations of motion is the same as the equations of motion of an

inerter. The rigid body motion is neglected in an ideal inerter as the inertance of the

inerter is generally much larger than the structural mass of the inerter (b >> mbar +2m).

The inertance is proportional to the moment of the inertia of the bar and inversely

proportinal to the square of the distance between the pivots. The inertance can also

be adjusted by changing m in Equation 5.16, which is easily done by adding equal

lumped masses to the ends of the bar. Equation 5.16 yields the same formula as the

living-hinge inerter in [207] for m = 0.

5.4.1.2 Consideration of small inertance

One of the key criteria in the design of an inerter is to produce small inertance due to

the small optimal inertance obtained in Chapter 4. From Equation 5.16, the minimum

inertance can be achieved with minimum possible I and maximum possible la for

m = 0. Keeping in the mind that the optimal inertance can be very small for small

mass ratios, and a very small value of I is difficult due to the manufacturing limitations.
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Therefore, considering the maximum possible la = lbar

l2
and the moment of inertia of

the bar I = 1
12mbarl

2
bar, the minimum inertance is written:

b = mbar

3 + 2m (5.17)

where m = 0 in theory but it is still shown in the formula as it might be needed in

even small inertance for fine tuning.

The inertance found in Equation 5.17 is smaller the total mass of the pivoted bar

(mbar + 2m) and thus, the non-relative inertial term in Equation 5.15a cannot be

neglected. Although this non-relative term looks problematic when the inerter is

analysed without attachment, it becomes negligible as the whole control system is

considered. If the pivot in the centre of the mass of the pivoted-bar is connected to the

primary system, the non-relative inertial term (mass of the inerter) acts with the main

mass, M , as shown in Figure 5.10a. It should be noted that the mass of the inerter

is directly dependent on the inertance magnitude (Equation 5.16), and the optimal

dimensionless design parameters of L2 ensures that the optimal inertance values for

small mass ratios are always much smaller than the main mass M >> mbar + 2m, as

discussed in Chapter 4. Therefore, the non-relative inertial term can be now regarded

as negligible.

For a numerical example, a primary system with a modal mass of 1 kg is assumed.

The optimal dimensionless inertance-to-mass ratio δ = 0.0267, which equals b/ma, is

given in Table 4.3 for µ = 0.05 and ζm = 0.023. Ignoring the additional lumped mass

m, the mass of the inerter (three times the inertance) is found to be just 0.004 kg,

which is even smaller than 1% of the primary mass. This value slightly increases for
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smaller structural damping. For the same system but ζm = 0, the mass of the inerter

becomes 0.016 kg, which is still smaller than 2% of the primary mass.

However, if the pivoted-bar is connected to the host structure from the other pivot as

demonstrated in Figure 5.10b, the mass of the inerter increases the parasitic mass effect

and escalates the detuning effect. Even in this scenario, chatter performance could be

improved to some extend by retuning the parameters. However, this type of connection

is to be avoided since even fine tuning of inertance by adding small mass requires a

new optimisation due to the increase in the parasitic mass with the additional masses.

Figure 5.10 Connection arrangements of the inerter and the related equations of motions.
The mass of the inerter is included in the mass of the host structure if the inerter is
mounted to the host structure from the pivot at the centre of the mass in (a). If the
inerter is connected from the other pivot, the mass of the inerter increases the parasitic
mass effect by being added to the existed parasitic mass mp in the system in (b).
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5.4.1.3 Analysis of different arrangements of the pivoted-bar

Six different arrangements of the pivoted-bar are demonstrated in Figure 5.11 in order

to find similar behaviour as in the above example. Using Equations 5.14a and 5.14b,

the equations of motion of each arrangement were obtained and their inertial terms are

presented in Table 5.4. The arrangements discussed above are illustrated in Figures

5.11a (first example) and 5.11d (example with small inertance). The results in Table

5.4 states that the three arrangements in Figures 5.11a, 5.11c and 5.11d have the

relative inertial term (factor of relative acceleration) and the non-relative inertial term

proportional only to ẍ1. Only arrangements where the first pivot is at centre of the

mass of the total system consisting of the pivoted-bar and the additional lumped mass

have this non-relative inertial term. Each of the three arrangements can be a candidate

for the inerter design. For the other arrangement, the translational inertia of the total

system is distributed over two pivots and the non-relative inertial terms in the equation

of motion with respect to x1 of these arrangements involves the factors of both ẍ1 and

ẍ2. Thus, these arrangements cannot be employed as an inerter.
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Figure 5.11 Different arrangements of the pivoted-bar with the additional lumped
mass which can be derived from the generic model. Two pivots are connected from
the centre of mass of the homogeneous bar in (a) and (d). (d) is a special case of (a)
that considered for small inertance. (b) is the DAVI concept[208] if the second pivot
is grounded. (c) is the same as (b) but the centre of the mass of the total system
consisting of the pivoted-bar and the additional lumped mass coincides with one of
two pivots. There are two additional lumped masses considered at the ends of the
pivoted-bar in (d) and (f), while no additional lumped mass is considered in (e).
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Among arrangements, the arrangement in Figure 5.11d was chosen as the design of the

inerter device due to the advantages of being capable of producing small inertance and

fine tuning property. Its inertance is already derived in Equation 5.17 as

b = mbar

3 + 2m (5.18)

Important points of the chosen pivoted-bar arrangement are listed following:

• Acting as an inerter: Although there is a non-relative inertial term proportional

to the acceleration of the centre of the mass of the pivoted-bar, this term is

negligible if the inerter is connected to the host structure from the pivot at the

centre.

• Generating small inertance: One of the design objectives of the inerter is to pro-

duce small inertance due to the optimal inertance obtained from the optimisation.

This can be achieved with the proposed arrangement.

• Simple fine tuning of the inertance: The inertance can be adjusted by simply

placing two equal additional masses at the ends of the pivoted-bar. It allows

the fine tuning of inertance after its establishment. This can be very helpful

to eliminate performance loss due to manufacturing errors and uncertainties

stemming from the primary system or the other components of the absorber.

It has been shown that the pivoted-bar in Figure 5.11d fulfils the requirements of the

inerter employed in D2 to improve the chatter resistance of a milling operation. Next,

the physical design of the pivoted-bar with flexure hinges will be presented and tested

in the next section.
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Figure 5.12 Physical realisation of the pivoted-bar as an inerter consisting of the
inerter bar, flexural-hinges and the inerter base. The schematic views of the inerter
are illustrated in (a) the equilibrium position and (b) rotating. The additional lumped
masses for fine tuning is presented with the side view in (c). The manufactured
prototype is given in (d).

5.4.2 Physical design and the test of the inerter

The pivoted-bar arrangement chosen as the inerter desing is given in in Figure 5.11a.

The bar is pivoted from one of its two ends and the middle of the homogeneous inerter

bar with two additional masses at the ends of the bar. The flexure notches as living

hinges as shown in Figure 5.12a eliminates friction and provides low stiffness. They

allow the inerter bar to rotates around only one axis as shown in Figure 5.12b. The

inertance of the inerter is initially set from the mass of the inerter bar mbar. After

that, the fine tuning of the inertance is possible by altering the additional two equal

masses at both ends of the bar as illustrated in Figure 5.12c.

For the physical parameters in Table 5.5, an aluminium inerter device was manufactured

as illustrated in Figure 5.12d. It was experimentally tested to obtain dynamic properties.

If the inerter is fixed from one terminal, the force generated by an ideal inerter is the

function of the acceleration of the free terminal. In order to evaluate the inertance, the
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Table 5.5 Physical properties of the pivoted-bar

ρ (kg/m3) Area (m2) la (m) lbar (m) mbar (kg)

2700 0.015 x 0.015 0.040 0.080 0.0486

inerter device was fixed from the inerter base and excited from its free terminal (upper

terminal in Figure 5.12d) with an impact hammer (Dytran 5800B2). The accelerance

response of the same terminal was measured by an accelerometer type PCB 3553B18

with a mass of 2 grams. The measured inertance was the sum of the inertance of the

inerter and the mass of the accelerometer as the inerter device was fixed from the

inerter base. The inertance was determined by taking the inverse of the accelerance

since inertance is defined as

b = F

ẍ
(5.19)

where ẍ is the acceleration of the upper terminal of the inerter and F is the applied

force from the same terminal. The experiment was conducted with different additional

masses used for fine tuning. The measured inertances were normalised by subtracting

the mass of the accelerometer. The inertance values are presented in Figure 5.13. The

intended inertance value obtained from Equation 5.18 is given with dashed line for

each test.

The experimental results showed that the pivoted-bar succeeded the intended iner-

tance value for frequencies larger than 80 Hz for each additional mass despite small

fluctuations. The frequency band below 80 Hz, where the inertance varies, corresponds

to resonance region of the pivoted bar occurring due to the stiffness of the flexural

notch. Even though resonance region cannot be entirely eliminated as zero stiffness

of the flexural notch is not possible, the natural frequency of the inerter can be as

low as almost zero with a flexural notch with very small stiffness. However, this can
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Figure 5.13 Experimental inertance of the inerter obtained for different additional
lumped masses. The inerter was tested by fixing from the lower flexure via inerter base
and exciting the upper flexure with an impact hammer. The acceleration was collected
from the same flexure via an accelerometer. The ratio of the measured excitation
force to measured acceleration is presented inertance of the pivoted-bar. The intended
inertance value is shown with dashed horizontal line in each test.

also involve some difficulties, such as manufacturing flexural notches with very small

thickness. Alternatively, high inertance also decreases the natural frequency of the

inerter. However, the flexural notch’s stiffness remains as an important factor in this

case as the optimal inertance obtained from the optimisation process is small.

Although notch stiffness prevents the pivoted-bar working as an ideal inerter by

generating steady inertance along with a frequency band, the pivoted-bar still operates

as an ideal inerter far from the resonance region. Thus, the stiffness of the flexural

hinge is an important parameter that should be considered in the design stage of the

inerter. The following section will study the effect of the stiffness of the flexural hinge

on the inertance performance of the inerter.
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5.4.3 Design of the flexural-hinges

Flexure hinges employed in the pivoted-bar eliminate the friction at the pivots but

introduce a stiffness to the inerter device. Although this stiffness can be very small,

it cannot be eliminated. For especially the pivoted-bar system that produces small

inertance, even small stiffness values can easily create a resonance region where the

device is prevented from working effectively as an ideal inerter. Hence, the natural

frequency of the inerter device consisting of the pivoted-bar and flexure hinges should

be designed as far away from the operating frequencies as possible. Otherwise, the

device should be modelled as a parallel-connected spring-inerter arrangement to reflect

the variation in the inertance around the resonance region.

The flexure hinges used in the device are semi-circular notch type hinges as shown

in Figure 5.14a, where R, t and w are the radius, thickness and width of the notch,

respectively. The dashed line in the middle of the notch passes through the centre of

rotation and θ indicates the rotation angle around the centre of rotation. The most

influential parameter that defines the stiffness of the semi-circular notch hinge is the

thickness of the notch t. The higher the thickness is, the higher the stiffness the notch

hinge has. A more accurate mechanical model of the pivoted-bar with flexural-hinges is

an inerter in parallel to a spring, as given in Figure 5.14b. The pivoted-bar turns into

a pure inerter device for knotch = 0, where there is no stiffness considered at the notch

hinge (t = 0). The mechanical model turns into an inerter-spring arrangement in the

existence of stiffness. However, even in cases where the stiffness exists, the device can

effectively operate as an inerter by producing a constant inertance at frequencies after

its resonance effect diminishes. For very small stiffness values, the natural frequency

becomes very close to zero and the notch stiffness can be neglected entirely for all

frequencies.
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Figure 5.14 Pivoted-bar inerter with (a) semi-circular notches as flexural hinges and
(b) the mechanical model of the pivoted-bar including non-zero notch stiffness.

It should be noted that an even more accurate model of the pivoted bar in Figure 5.14a

would be given with the structural mass of the inerter connected to the one of the

terminals of spring-inerter arrangement in Figure 5.14b. However, it can be neglected

as being directly connected to the host structure as discussed in Section 5.4.1. For

the same reason, there was no effect of the structural mass of the inerter grounded

from the centre of mass in the experiment in the previous section. Therefore, the mass

of the inerter is also neglected here in the analysis of the effect of the stiffness of the

flexural hinge on the inertance performance.

The stiffness for a semi-circular notch hinge in Figure 5.14a can be predicted as [286]

kθz ≈ 2Ewt5/2

9πR1/2 (5.20)

where E, w, t and R are Young’s Modulus, depth of the hinge, thickness of the flexure

notch and radius of the flexure notch, respectively. knotch in Figure 5.14 corresponds to

total stiffness of the four flexural-hinges connected to the bar. The total translational

stiffness knotch is determined from the rotational stiffness in Equation 5.20 for given

distance between the pivots on the bar la.
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The relative accelerance of the inerter device is derived as

(ẍ1 − ẍ2)
F

= −ω2

knotch − bω2 (5.21)

where F is the amplitude of force produced by the spring-inerter arrangement, and

ω is the excitation frequency. From Equation 5.19, the inertance of the system is

determined by taking the inverse of the accelerance to evaluate the inerter performance

of the device. As it can be seen from Equation 5.21, the accelerance becomes 1
b for

knotch = 0 and a constant inertance value is obtained for all frequencies. If the stiffness

exists (knotch > 0), a resonance peak appears in the accelerance response and inertance

varies near the natural frequency. The natural frequency approximates to zero for very

high inertance or very small stiffness values. However, even small stiffness values could

lead to resonance regions at relatively higher frequencies for small inertance values.

Therefore, the analysis of the effect of the flexure notch becomes important since the

inerter device in this design study also requires the ability to produce small inertance

values obtained from the optimisation results.

The most influential geometric parameter on the stiffness is the thickness of the notch t.

The stiffness of the notch for the design parameters given in Table 5.6 was determined

as 5020.3 N/m for the thickness of 0.5 mm. The effect of the notch stiffness on the

inertance of 0.030 kg was shown by changing only the thickness of the notch and taking

the other parameters constant. Substituting the notch stiffness found from Equation

5.20 into Equation 5.21, the relative inertance values of the spring-inerter arrangement

in Figure 5.14b for different notch thicknesses are presented in Figure 5.15.

As it can be observed from Figure 5.15, the thickness of the notch of 0.1mm provides

constant inertance after almost 50 Hz and thus, the pivoted-bar with the flexural hinges
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Table 5.6 Design parameters of the semi-circular notches and theoretical prediction of
the total stiffness of four notches connected. The total stiffness knotch is determined
from the distance between the pivots la and the rotational stiffness kθ of one notch.

E (GPa) w (mm) t (mm) R (mm) la (mm) kθ (Nm/rad) knotch (N/m)
70 5 0.5 4.75 40 2.008 5020.3
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Figure 5.15 The effect of the thickness of the notch on the relative inertance performance
of the spring-inerter arrangement in Figure 5.14b obtained from Equation 5.21 for
constant inertance b = 0.030 kg. The result was shown for the thicknesses of 0.1 mm,
0.3 mm and 0.5 mm.

acts as a pure inerter with constant inertance. With increasing thickness, frequency

band where constant inertance is obtained shifts to higher frequencies as the stiffness

of the notch and thus, the natural frequency of the pivoted-bar system increases. The

working frequency of the absorber for the milling operation is determined as 100 − 200

Hz as it will be discussed in Chapter 6. It is reasonable to choose the thickness of the

notch as 0.1 mm as it provides constant inertance along with the working frequency

band. However, the prototype of the inerter was manufactured with a notch thickness

of 0.5 mm due to manufacturing limitations. This leads to a different inertance value

from the targeted (optimal) inertance in the frequency band of 100−200 Hz and reduces

the performance of the absorber. However, this difference can be easily amended by
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fine tuning the inertance through additional lumped masses, and the performance loss

is then componsated for as will be shown in Chapter 6.

5.4.4 Fatigue analysis

Notch hinges have been frequently used as compliant mechanisms, for especially where

precision motion is needed. However, one of the major issues that could limit their

usage under cycloid loading, such as milling operations, is their fatigue strength. This

can be especially problematic for milling operations where the excitation (or chatter)

frequencies can reach relatively high frequencies. Under dynamic loading with high

frequencies, the completion of the reduced fatigue life cycle can be very short. For

instance, it takes less than an hour to complete 1 million cycles for a dynamic loading

frequency of 300 Hz. Fatigue life cycle defines the life of the passive absorber device

as fatigue failure of the notch hinges causes the malfunction of the inerter device and

consequently, the passive absorber. Therefore, the fatigue life cycle of the notch hinges

is discussed in this section.

The details of the fatigue analysis are given in Appendix D. Here, only the important

points to improve the fatigue life are listed as following:

• One of the most important design parameters that define the fatigue life of the

notch hinge is the notch thickness. The fatigue life can be improved by decreasing

the notch thickness. However, having a very small notch thickness is mostly

defined by the manufacturing capability.

• Choosing a different material affects the fatigue life. There is no doubt that the

most influential parameters are the material parameters, specifically both Young’s
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modulus E and fatigue strength Sf . Fatigue strength could be increased to levels

as high as 500 − 800 MPa with the use of steel alloys, instead of aluminium alloy.

However, stiffness of the notch also increases with increasing Young’s modulus,

which leads to resonance region at high frequencies as discussed in Section 5.4.3.

• Increasing the radius of notch R improves the fatigue life by decreasing the

maximum stress occurring at the notch. Increasing R also decreases the stiffness

of the notch. However, a high radius of notch could increase the overall height

and length of the flexural hinge.

• Manufacturing process applied can also improve the fatigue life by increasing

the surface roughness reduction factor as explained in Appendix D. Improving

surface roughness by improving the manufacturing technology provides increase

in the fatigue life as well.

With the analysis of the fatigue life cycle, the design studies of the inerter is completed.

The following section will present the implementation of the damping.

5.5 Implementation of damping

After having presented the inerter design, another critical component in terms of

manufacturing is the damping element. As the passive device focuses on the small-

scale small-amplitude application, the damper design should be compatible with this

requirement and work with the inerter device presented in the previous section. For

this reason, a silicone gel material is employed for the damping. It is applicable to

small sizes and easy to implement. Moreover, the silicone gel has damping elastic

characteristics that can be used as the stiffness element. The gel, by showing both the
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damping and elastic properties, enables the physical realisation of the spring-damping

arrangement compactly without needing a separate spring. This section first discusses

the specification of the gel. Secondly, it presents the design of the gel damper and

finally, test results for the performance evaluation of the gel are presented.

The gel damper is modelled with complex stiffness, assuming that the gel’s mechanical

properties are independent of frequency. A hysteretic damping term is assumed in the

complex stiffness model. It has been shown in Section 5.3 that using complex stiffness

instead of a spring-viscous damping arrangement provides identical performance in the

frequency domain. The silicone gel utilised in the damper is based on polyorganosilox-

anes (called Magic Power Gel, from Raytech) and obtained from a mixture of two

liquids. Depending on the mixing ratio, the gel shows different damping and elastic

characteristics. The hysteretic damping (loss factor) and elastic (Young’s Modulus)

behaviour of the silicon gel were tested under different temperatures and different

dynamic strains at room temperature in [287]. It was found that the loss factor and

Young’s modulus of the gel is independent of the temperature and the dynamic strain.

It was also presented in [287] how to obtain loss factors and Young’s Modulus of the gel

for the mixing ratios of 1:1 and 1:2. The mixing ratio for desired mechanical properties

by using linear interpolation was determined. The same method was followed to obtain

the desired loss factor and Young’s Modulus here.

After mixing two liquids to prepare the gel damper, a vacuum pump extracted the air

bubbles in the mixture. Then, the mixture in liquid form was poured into the gap in

the gel damper. It waited until the mixture takes the non-fluid gel form. The silicone

gel with a mixing ratio of 1:1.1 was applied to two sides between the base and the

sliding plate as shown in Figure 5.16a.
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The gel on both sides works on the shear plane and thus, noting that the shear modulus

equals G = τxy

γxy
= E

2(1+ν) , the stiffness of the gel damper can be calculated as:

k = EA

(1 + ν)d (5.22)

where E is Young’s modulus corresponding to 1:1.1 mixing ratio, A is the area of the

gel, d is the thickness of one layer of the gel and ν is the Poisson’s ratio, which is

assumed 0.5 [288]. Equation 5.22 shows that the stiffness of the gel damper can be

adjusted by setting the area and the thickness of the gel. The gel damper with two

identical gel layers with an area of 35x45 mm2 and a thickness of 3 mm on both sides

was manufactured as shown in Figure 5.16b.

Figure 5.16 Manufactured gel damper consisting of a sliding plate, two layers of silicone
gel and damper base as shown in (a). Isometric view of the gel damper is shown in (b).

In order to measure and evaluate the frequency-dependency of the mechanical properties

of the gel under the working frequencies (100-150 Hz as presented in Chapter 6), an

impulse hammer test was applied to the gel damper. It was fixed from the damper base

and a small aluminium block was added to the sliding part to enable the connection of

the accelerometer. The natural frequency of the gel damper was increased by adding

a mass as the effect of the loss factor and the gel’s stiffness becomes more apparent

around resonance. Experiments of three cases: no additional mass added, the total
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mass was increased by 11 gram and 28 gram, were conducted. The impulse hammer

was applied by hitting the small aluminium block. The accelerance of the gel damper

is written as:
ẍ

F
= −ω2

ki(1 + jη) − mω2 (5.23)

where ki and η are the stiffness and the loss factor of the gel, ω is the forcing frequency

and m is the total mass of the sliding plate, aluminium block and the accelerometer,

which is 38.5 grams. The loss factor and the stiffness of the gel were found by fitting

ki and η in Equation 5.23 to the experimental curve for known mass values m. It is

known that the experimental curve obeys Equation 5.23. Only unknown parameters

in Equation 5.23 are properties of the gel ki and η. These values were obtained by

applying the least-squares fitting in Matlab.

The mechanical properties of the gel that provide the experimental curves are given in

Table 5.7. The experimental results in comparison with the numerical simulation using

the corresponding mechanical properties are presented in Figure 5.17a-c, respectively.

They are also compared with the average values of the loss factors and the stiffness

obtained from three cases.

Table 5.7 Loss factor and the stiffness for the gel

Total mass,
m (gram)

Natural frequency,
ωn (Hz)

Loss factor,
η

Stiffness,
ki (kN/m)

Test A (Fig. 5.17a) 38.5 110 0.545 23.4

Test B (Fig. 5.17b) 49.5 130 0.515 26.3

Test C (Fig. 5.17c) 66.5 141 0.505 25.3

Average − − 0.5217 25.0
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Figure 5.17 Three experimental cases with different total masses to determinate the
loss factor and the stiffness of the gel damper where each experimental result (solid
blue line) was compared with the simulation result obtained using Equation 5.23 for
the mechanical properties in Table 5.7. The average result (orange dashed line) was
obtained using the averages of mechanical properties presented in Table 5.7.

It was observed that there is no significant change in the stiffness and the loss factor of

the gel between 100 Hz and 150 Hz, which are the working frequency of the absorber.

Therefore, the average values of the loss factors and stiffnesses obtained from the three
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experiments were accepted as the dynamic properties of the gel damper. As a result,

the loss factor and the stiffness were determined as 0.5217 and 25 kN/m.

5.6 Final design of the absorber

The designs of the inerter device and the gel damper, which provides the stiffness and

the hysteretic damper, were already discussed. As for the outer spring, a notch type

linear spring was employed. According to design studies presented above, each absorber

component was manufactured and the assembly was completed. The prototype of the

D2 manufactured is demonstrated in Figure 5.18.

Figure 5.18 The manufactured prototype of D2 after its assembly

The mass of the base of the gel damper is accounted for by the auxiliary mass. In

order to obtain the mass ratio, an additional mass is mounted on the gel damper. The

total auxiliary mass becomes the sum of the mass of the gel damper and the additional

mass. The prototype is mounted on the machining system from the absorber base.

The prototype manufactured device relates to the updated mechanical model in Figure
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5.5: Specifically, the gel damper is connected in series to the inerter while the outer

spring is connected in parallel to the series-connected inerter-gel damper arrangement.

The mass of the sliding plate acting between the layers of the gel, as demonstrated in

Figure 5.16a is an isolated mass that cannot be counted towards the auxiliary mass nor

the mass of the machining system. Therefore, its mass of 0.026 kg creates the parasitic

mass effect. Even a very small mass of the sliding mass will act as the parasitic mass

due to small inertance as discussed in Section 5.2. Hence, complete elimination of the

parasitic mass effect caused by the sliding plate is difficult.

Although the inerter design can have steady inertance for thin notch thickness of the

living hinges, this was not possible due to the manufacturing limitations. It was shown

that the notch stiffness affects the inertance. This effect is presented in the equations of

motion in Appendix E, and it will be utilised to obtain the optimal equivalent inertance

in the optimisation in the next chapter.

The prototype requires an area of 50 mm x 65 mm on the base for the connection. It

has a total length of 100 mm and its width reaches a maximum 90 mm in the damper.

It can be directly mounted to a host structure in the same way as a classical TMD.

Most importantly, it is possible to manufacture an even smaller version of the proposed

design to apply the inerter-based absorber into smaller applications.

5.7 Discussion

A design study of the physical realisation of L2 in Chapter 4 was presented in this

chapter. The application of such an absorber into a milling operation requires small-

scale absorbers as milling operations generally has limited spaces for the passive control
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device application and small inertance as the optimal inertance obtained in Chapter 4 is

very small for small mass ratios. In order to succeed in these objectives, the mechanical

model of L2 was evolved to D2 in Figure 5.5 by updating the model with the parasitic

mass and the hysteretic damping. Section 5.2 investigated the parasitic mass effect

and concluded that the elimination of the parasitic mass effect was challenging even

with rigorous design of the absorber due to small inertance. This was shown with a

numerical example considering a machining system with the main mass of 10 kg and

the damping of 0.023. Optimal inertance for this system was found as 55.8 gram, which

is very small. Even the mass of a very small connection component of the absorber

can be 5 − 10% of the inertance and this leads to 5 − 40% performance loss as shown

in Figure 5.3. For small modal mass for the primary system, the performance loss

becomes even more deteriorated. This numerical example is important because it is a

very close example to the milling operation case for the experimental verification, as

presented in Chapter 6.

The compact design of the gel damper by providing stiffness and damping through

the silicone gel was also important as it eliminates the need for a separate spring for

the inner stiffness. After including the parasitic mass and the complex stiffness, D2

provided an identical performance improvement in the frequency domain as for the

idealised L2. However, the performance analysis in the time domain has not been

evaluated. The time domain results of L2, D1 and D2 may contain some differences

but only the performance in the frequency domain was found sufficient for the chatter

stability assessment.

Different pivoted-bar arrangements were investigated using a generic pivoted-bar model

where the position of the pivots and a pair of additional lumped masses attached to

two ends of the bar can be set differently. The mass of the inerter (mbar + 2m) was
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always included in the analysis. When considering that the absorber is connected

to the host structure whose mass is guaranteed to be much larger than the mass of

the inerter due to optimal dimensionless parameters obtained, it was shown that the

pivoted-bar in Figure 5.11d acts as inerter. For this, three important remarks could

be highlighted: one of two pivots must be positioned at the centre of the mass of the

pivoted-bar and additional lumped mass. Secondly, additional lumped masses attached

to the end of the pivoted-bar must be equal if fine tuning requires. Finally, the inerter

must be attached to the host structure from the pivot at the centre of mass. Otherwise,

the mass of the inerter increases the parasitic mass. This design of the inerter was

specifically proposed for small inertance. The distance between the pivots la was set

as maximum as possible to keep the inertance small. Furthermore, it is reasonable to

keep la small by amplifying the rotational inertia of the bar.

One of the novelties in the proposed design of the inerter is the fine tuning property

by simply adding two equal masses to the ends of the pivoted-bar. In that way, the

minor adjustment of the inertance becomes possible without significant structural

modification of the pivoted-bar. Fine tuning is also helpful to eliminate or alleviate the

detuning effects stemming from uncertainties of the other components in the system.

In the design, the mass of the pivoted-bar (mbar) and the distance between the pivots

la were considered as the main design parameters and the use of the additional lumped

masses (mb and mc) was considered as the secondary design parameter used for fine

tuning. The experimental inertance given in Figure 5.13 showed fluctuations from the

intended inertance as the additional lumped mass were increased. Moreover, excessive

use of the additional mass could decrease the natural frequency of the second mode of

the pivoted-bar and flexural hinge system such that its resonance region could prevent

constant inertance in the working frequency band. Therefore, care should be taken if
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using of excessive additional lumped masses since it could deteriorate the performance

of the design.

The absorber was considered to be utilised for relatively small-scale small-amplitude

applications such as milling operations. Therefore, semi-circular notches as flexural

hinges were used to eliminate the friction that is possibly problematic. However,

employment of the flexural hinges due to the stiffness of the notch causes a resonance

region that prevents constant inertance for a frequency band. Therefore, it is important

that the resonance region of the pivoted-bar should be avoided in the working frequency

band of the absorber as much as possible. Having small inertance easily increases the

natural frequency with even small stiffness of the notch. It was shown that the thickness

of the notch should be as small as 0.1 mm to have the inerter generating constant

inertance above 50 Hz. However, due to manufacturing limitations, the prototype was

manufactured with thickness of 0.5 mm. It is therefore expected that the prototype

leads to differences in inertance from the intended inertance values at 100 − 150 Hz.

These differences could cause performance loss in the stability of the milling operation

as the inertance obtained from the inerter is different from the optimal inertance that

gives the best performance. It is possible to amend the performance loss by using the

fine tuning of the inerter as it will be presented in Chapter 6. The performance loss is

because the pivoted-bar acts an inerter connected in parallel to a spring due to high

notch stiffness (or equally low inertance) rather than a pure inerter. A pivoted-bar with

high notch stiffness can also be used for a simple realisation of a parallel-connected

spring-inerter arrangement.

The silicone gel employed provided the damping and stiffness properties. It was

assumed that the gel properties are frequency-independent and they were tested for

only the working frequency range, 100 − 150 Hz. It was observed that the mechanical
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properties were mainly stable. The sliding plate of the gel damper causes the parasitic

mass effect. Although it can be possible to reduce the sliding plate’s mass, it is very

difficult to be completely avoided due to small inertance.

Another novelty presented in this chapter is that the final design of the absorber

given in Figure 5.18 is directly applicable to the host structure in the manner of a

classical TMD. Unlike the other practical applications in the literature, this design of

D2 requires no need for grounded connection of the absorber or its deployment between

two parts of the host structure. The absorber can be built even in a smaller size than

the prototype if the application requires it.

5.8 Summary

This chapter aimed to design the physical realisation of L2 for the experimental

verification of its performance improvement in a milling operation. Design studies

showed that it is reasonable to have the D2 rather than idealised L2 considering the

parasitic mass effect and the implementation of the damping. The silicone gel applied

the damping, which was modelled with a complex stiffness consisting of a stiffness

element and the loss factor. Numerical simulations showed that D2 and L2 have an

identical performance, so the modal update in D2 leads to no performance loss in

milling operation stability.

A pivoted-bar with flexural hinges was employed as the inerter. One novelty presented

was that the pivoted-bar proposed could generate very small inertance considering its

attachment to a host structure as a part of localised addition. The second novelty in

the design of the inerter was that the design allowed small adjustment of the inertance
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without the need for significant structural modification by simply adding two equal

masses to the ends of the pivoted bar. The fatigue analysis and the effect of the stiffness

of the semi-circular notch hinges employed as flexural hinges in the design to eliminate

friction and backlash were also investigated.

Finally, the physical design of D2 was presented by assembling the inerter with the gel

damper and a notch type linear spring. It was a novel feature that the design of D2

did not need to have a grounded connection or the placement between two parts of

the host structure. It enabled direct application between the host structure and the

auxiliary mass, similar to implementing a classical TMD. A prototype of the D2 design

was manufactured.



Chapter 6

Experimental Verification

6.1 Introduction

This chapter presents experimental verification of the performance of the prototype of

the inerter-based absorber. The focus is chatter suppression in milling operations by

improving the real part response of the system. To verify this, the dynamic behaviour

of the prototype is first explored using impact hammer tests in the laboratory condition.

Later, performance is examined under real milling conditions by conducting cutting

tests. Moreover, the vibration suppression capability of the prototype is also examined

by setting the mass ratio and the inertance during the impact tests. This is particularly

straightforward because the prototype allows adjustment of its inertance by simply

adding equal lumped masses at the ends of the inerter bar. This is also beneficial for

fine tuning the design parameters that could be required due to structural uncertainties

induced by both primary and control systems.
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Section 6.2 presents the experimental setup for the impact tests and their results

with the consideration of the vibration suppression case. Milling tests, including the

experimental setup, results and discussion, are presented in Section 6.3. Finally, Section

6.4 summarises the chapter.

6.2 Preliminary impact test

The effectiveness of the prototype was first evaluated with a vibration suppression case

and the investigation was further continued applying a series of impact hammer tests

for different auxiliary masses and inertance values.

An aluminium workpiece attached to a compliant mechanism was considered in the

experiments as shown in Figure 6.1. The compliant mechanism was designed to have

one flexible mode in the horizontal x direction and it was assumed rigid enough in the

other directions. In order to identify the dynamic properties, the structure was fixed

from the bottom of the compliant mechanism and the modal tests of the structure with

and without the prototype were conducted. In the impact hammer tests, the impact

hammer Dytran 5800B2 was applied to the aluminium block in parallel to the flexible

mode and the acceleration of the structure was recorded from the same direction using

the accelerometer PCB 353B18. For all experimental tests in the laboratory, LMS

Test.Lab. was used for the data acquisition as well as processing data.

The first modal test was conducted to identify the modal parameters of the uncontrolled

host structure without attaching the prototype. The natural frequency of the flexible

mode of the structure, modal mass and structural damping were found as 117.3 Hz,

10.7 kg and 2.3%, respectively. Next, a series of modal tests were utilised, as presented
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below, for the vibration suppression case and evidence that the prototype is operating

as expected.

6.2.1 Optimal design parameters for vibration suppression

According to the modal parameters, optimal design parameters in D2 were determined

for vibration suppression and chatter stability cases considering the notch stiffness.

The SaDE algorithm was utilised for the optimisation of the objective function. For

the vibration suppression of the structure, H∞ optimisation was conducted to minimise

the maximum amplitude of the FRF and therefore, the objective function evaluated is

written:

Jvs = max
(
|G(jω)|

)
(6.1)

where |G(jω)| is the amplitude of the FRF of the system and full expression in given

in Appendix E. The objective function is optimised to minimise the objective value.

The optimal design parameters were first obtained when neglecting the notch stiffness

(knotch = 0) where a constant inertance is produced at each frequency. The stiffness in

the notches prevents the inerter from generating constant inertance in the resonance

region as discussed in Section 5.4.3. Although this effect is avoidable for an effective

working frequency band, the notch thickness of 0.5 mm does not allows this in these

experimental cases due to manufacturing limitations. Therefore, an equivalent optimal

inertance value was determined accounting for the spring-inerter arrangement instead

of only an inerter element in the optimisation process. Though the notch stiffness was

theoretically calculated as 5020.3 N/m, the estimation for the actual stiffness value

was around 9000 N/m because of manufacturing errors and possible stress stiffening

effect (due to assembly conditions and load of inerter bar and added masses). Thus,
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Figure 6.1 Experimental setup of the structure with the prototype for the impact
hammer test: the illustrations of (a) the prototype in detail and (b) the whole setup,
and (c) an image of the experimental setup.
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the equivalent optimal inertance values were found for notch stiffness values of 5020.3

N/m and 9000 N/m, restricting all design parameters except the inertance to their

optimal values.

The optimal design parameters obtained for µ = 0.045 and β = 0.054 are presented

in Table 6.1. The parasitic mass effect in the controlled structure is induced by the

mass of the sliding plate moving in the gel damper. It is worth reiterating that β is

the ratio of the parasitic mass to auxiliary mass and it was determined for the mass of

the sliding plate of 26 gram. Table 6.1 also presents the maximum amplitude Hmax

observed in the frequency response for each set of design parameters. The actual value

of each control element in the experiment in the prototype: the outer spring ko was

found as 251.89 kN/m, the stiffness ki and the loss factor η of the gel damper were

identified as 24.97 kN/m and 0.5217, respectively.

Table 6.1 Optimal design parameters for H∞ optimisation determined by performing
SaDE for the notch stiffness of 0, 5020.3 N/m and 9000 N/m. Hmax represents the
maximum amplitude obtained in the FRF from numerical optimisation.

ko (kN/m) ki (kN/m) η b (kg) Hmax (m/N)
D2 (knotch = 0) 254.51 24.84 0.5114 0.032 7.52 x 10−7

D2 (knotch = 5020.3 N/m) 254.51∗ 24.84∗ 0.5114∗ 0.043 7.69 x 10−7

D2 (knotch = 9000 N/m) 254.51∗ 24.84∗ 0.5114∗ 0.052 7.86 x 10−7

*constrained parameters

6.2.2 Experimental result for vibration suppression

The prototype was attached to the top surface of the aluminium workpiece as shown

in Figure 6.1. Both glue and screw connections were utilised to ensure the rigidity

of the connection between the bottom side of the prototype and the top side of the

workpiece. The inertance of the inerter was set to the optimal inertance of 0.052
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Figure 6.2 Experimental results of the structure with the prototype with µ = 0.045 and
β = 0.054 in comparison with the experimental result of the uncontrolled host structure,
and the numerical simulations of D2 for knotch = 0 and knotch = 9000 N/m with the
design parameters presented in Table 6.2 and a classical TMD. ( ) Uncontrolled
structure (experiment), ( ) TMD (simulation), ( ) IDVA-D2 with knotch = 0
(simulation), ( ) IDVA-D2 with knotch = 9000 N/m (simulation), ( ) prototype
(experiment).

kg for knotch = 9000 N/m by adding equal masses to the end of the inerter bar as

illustrated in Figure 6.1a. For this setup, the impact hammer test was conducted for the

vibration suppression case. The resulting FRF is presented in Figure 6.2 compared to

uncontrolled experimental result, TMD, and numerical simulations for the IDVA. In the

comparison, the TMD was numerically optimised for the same mass ratio considering

the structural damping. The inertial effect of the parasitic mass was neglected since

no significant contribution of the parasitic mass to the performance is observed if the

parameters are tuned optimally.
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Figure 6.2 shows that the prototype achieved 79.7% vibration suppression by decreasing

the peak value of 36.34 x10−7 m/N to 7.37 x 10−7 m/N as is very close to numerical

simulation. With this result, the prototype has improved the TMD performance

(numerically obtained) by almost 21.2%, as observed in the figure. The notch stiffness of

5020.3 N/m and 9000 N/m caused only slight reduction in the suppression performance

by 2.3% and 4.5%, respectively, as presented in Table 6.1. This was achieved thanks to

the adjustment of the inertance. It must be noted that the reduction in the performance

due to the notch stiffness can be further recovered if the constraints are removed on the

design parameters (marked with an asterisk in Table 6.1). The absorber’s performance,

even with the notch stiffness of 9000 N/m as in the experiment, can be accomplished

as very close to the performance with zero notch stiffness.

6.2.3 Exploratory modal tests

The dynamic behaviour of the structure controlled by the prototype was further

explored applying a number of modal tests where the inertance and auxiliary mass

values vary. The aim of these test is to ensure that the prototype acts as the IDVA

D2 by showing that the controlled structure reflects the expected dynamic responses

for the change in the design parameters. The modal tests were conducted for three

auxiliary mass values of 0.365 kg, 0.480 kg and 0.530 kg, and four inertance values of

0.020 kg, 0.030 kg, 0.043 kg and 0.054 kg.

The magnitudes of the FRFs are presented in Figures 6.3. Since the chatter stability

is proportional to the real part responses, they are also presented in Figure 6.4. The

experimental results were compared with the numerical simulations obtained for the

notch stiffness of knotch = 9000 N/m and the actual values of the components identified
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where the outer spring ko = 251.89 kN/m, the gel damper’s stiffness of ki = 24.97

kN/m, and the loss factor of 0.5217. The results will be discussed in the following

section.

6.2.4 Discussion

The experimental result showed that the prototype could effectively suppress the

vibration by performing better than a classical TMD. Furthermore, the IDVA was

physically applied without need for a grounded connection or deployment between two

parts of the structure. To the author’s knowledge, this was the first experimental study

using an IDVA as a localised addition similar to a classical TMD in such a small scale

application.

Another important and novel feature was that the inerter enabled the adjustment

of the inertance by simply attaching additional small masses. This was especially

beneficial for fine tuning after the inerter device was built. It was shown that although

the design parameters were optimised, neglecting the notch stiffness, the inerter device

was capable of capturing comparable performance by increasing the inertance. The

fine tuning with adjustable inertance would be possibly used to compensate detuning

effect due to uncertainties in other control elements such that it was used for the notch

stiffness in the experiment. The vibration suppression performance could be further

improved by re-optimising all design parameters without the constraints. However,

this would require the re-manufacturing of components other than the inerter where it

was easy to adjust inertance.
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Figure 6.3 Magnitude of the FRFs obtained from the modal tests for different auxiliary
masses and inertance values. The numerical simulations consider the actual values of
the components. Auxiliary masses of 0.365 kg, 0.480 kg and 0.530 kg (column from
left to right, respectively), and inertance of 0.020 kg, 0.030 kg, 0.043 kg and 0.054 kg
(row from top to bottom) are presented.
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Figure 6.4 Real parts of the FRFs obtained from the modal tests for different auxiliary
masses and inertance values. The numerical simulations consider the actual values of
the components. Auxiliary masses of 0.365 kg, 0.480 kg and 0.530 kg (column from
left to right, respectively), and inertance of 0.020 kg, 0.030 kg, 0.043 kg and 0.054 kg
(row from top to bottom) are presented.
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Further investigation conducted by several modal tests indicated that the changes in

the inertance and auxiliary mass were well reflected in the dynamic responses of the

prototype as given in Figures 6.3 and 6.4. Simulation results obtained for knotch = 9000

N/m for especially smaller inertance (0.020 kg) exhibit relatively large deviation

compared to higher inertances. Using the theoretically obtained notch stiffness of

5020.3 N/m in the numerical simulation provides a better match for this inertance

value. This can be attributed to the fact that increasing the load due to additional

masses in the inerter bar also increases the stiffness because of a stress stiffening effect

in the notch hinges.

Most of the experimental results in Figures 6.3 and 6.4 were consistently lower in

magnitude compared to the numerical analyses. The reason for these lower magnitudes

could be the additional damping introduced in several points of the structure. The

living hinges and the connection between the prototype and the workpiece might have

led to extra damping. Also, the damping property of the gel damper was tested for a

complete horizontal motion of the sliding plate between the gel. However, the sliding

plate was not able to move in a complete horizontal direction due to the imperfection

in the assembly. Most importantly, clamping conditions of the workpiece to the

worktable could introduce additional damping to the main system which leads to lower

magnitudes.

In the modal tests, the real part responses of the prototype have also shown promising

results in terms of chatter stability. The chatter stability performance of the prototype

under actual cutting conditions will be evaluated in the following section.
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6.3 Milling stability experiments

The chatter stability performance of the prototype is experimentally examined through

milling tests. The aluminium workpiece (Al 7075-T6) is fixed to the table in the CNC

machine and modal tests are conducted to determine the optimal design parameters

through a similar optimisation procedure as in the vibration suppression case. The

cutting stiffnesses that are required for the stability prediction of the stability analysis

were identified. Finally, the cutting tests are conducted to validate the absolute stability

improvement. The details of the experimental process will be explained below.

6.3.1 Identification of the cutting coefficients

Identification of the cutting stiffnesses was made from milling tests. For this, a

40x20x150 aluminium alloy block, which was the same material as the workpiece: Al

7075-T6, was directly attached to the dynamometer Kistler Type 9257B to measure the

cutting forces in x and y directions. The cutting forces obtained from a half-immersion

down milling operation were evaluated to estimate the cutting stiffness values of the

material. The cutting tool with the diameter of 16 mm and 30◦ constant helix angle

was utilised for the axial depth of cut of 1 mm, constant feed rate of 0.04 mm at 1500

rpm spindle speed.

The cutting force results indicated that the runout existed in the cut. Therefore, the

cutting coefficients were determined using time-domain simulation [274], instead of

using cutting forces for different feed rates [275]. Considering the tool runout, the

tangential and radial cutting coefficients Kt and Kn were estimated as 660 N/mm2

and 180 N/mm2, respectively. Time-domain simulation obtained with these cutting
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coefficients and the experimental cutting forces in both directions are presented in

Figure 6.5. The steady-state portion in the time-domain simulation is compared with

the experimental results. The time lag between the two results in Figure 6.5 is manually

adjusted so it is arbitrary.
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Figure 6.5 Cutting forces obtained in the x (a) and y (b) directions by the dynamometer
for half immersion down milling with 1 mm axial depth of cut at 1500 rpm. The
experimental results are in comparison with time domain simulation.

2000 4000 6000 8000 10000

0

1

2

3

4

5

6

7

10
-7

100 200 300 400 500 600 700 800

0

1

2

3

4

5
10
-6

Figure 6.6 Frequency responses obtained by the impact hammer tests from (a) the
aluminium workpiece and (b) the tip of the machine tip.
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6.3.2 Optimal design parameters for chatter stability

The impact hammer test identified the dynamic properties of the aluminium workpiece.

The modal tests were conducted for the workpiece with the prototype as well as the tip

of the end mill in both horizontal directions (x and y) to assure that the dominant mode

in the machining system is the horizontal y direction of the workpiece as designated.

The results showed that other modes were adequately far away as shown in Figure 6.6

so that the milling system could be considered as an SDOF and the dominant mode

can be assumed to be the only cause of the chatter instability. For the most flexible

mode, the natural frequency, modal mass and the structural damping were obtained

as 118 Hz, 10.7 kg and 1.9%, respectively. The possible reason for the slight change

in the natural frequency and the damping ratio between tests in the CNC machine

and the laboratory, where the previous impact tests are conducted, is the clamping

conditions that were provided with different clamping equipment in the two tests.

The chatter stability performance depends on the real part of the SDOF structure

transfer function G(jω). For the experimental verification, the chatter stability im-

provement was considered as the absolute stability border (alim). Also, only down

milling operations were conducted in the milling trials. As a result, the chatter stability

performance of the system depends on the most negative real part as explained. Hence,

the objective function can be expressed as

Jcs = −max
(
|Re(G(jω))|

)
(6.2)

where Re(G(jω)) < 0 is considered. By assigning a negative sign into Equation 6.2,

the objective function can be optimised to maximise the objective value.
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Table 6.2 Optimal design parameters for the most negative real part of the FRFs
determined by performing SaDE for the notch stiffnesses of 0 and 9000 N/m. Re(H)min

represents for the most negative value of the real part in the FRF obtained from
numerical optimisation.

ko (kN/m) ki (kN/m) η b (kg) Re(H)min (m/N)
D2 (knotch = 0) 273.10 22.39 0.4557 0.013 −3.33 x 10−7

D2 (knotch = 9 kN/m) 268.93 25.80 0.6087 0.038 −3.36 x 10−7

D2 (knotch = 9 kN/m) 251.89∗ 24.97∗ 0.5217∗ 0.038 −3.72 x 10−7

*constrained parameters

Considering the mass ratio of µ = 0.037 and β = 0.066 (for a parasitic mass of 0.026

kg due to the sliding plate), the optimal design parameters were determined for both

notch stiffnesses of zero and 9000 N/m as presented in Table 6.2. Considering the

differences between the optimal values for knotch = 9000 N/m and the actual values

of the control elements manufactured, the optimal inertance was also determined by

constraining all parameters but the inertance to their actual values.

The real part of the response for each case obtained from numerical simulation is

illustrated in Figure 6.7a compared to the uncontrolled case (black dotted line) and a

classical TMD (black dashed line). In comparison, the TMD was numerically optimised

for the same mass ratio considering the structural damping in the main system. Possible

performances can be commented on from the real part responses. The unconstrained

optimal design parameters regardless of whether the notch stiffness is zero (green

solid line) or 9000 N/m (orange dash-dotted line) provides considerable improvement

compared to a classical TMD by increasing the real part responses from 4.32 x 10−7

m/N to −3.33 x 10−7 m/N and −3.36 x 10−7 m/N, respectively. When the actual values

of the control elements are considered (blue dash-dotted line), the performance reduces

because of the detuning effect. However, significant stability improvement (16.1%

considering the absolute stability limit) compared to TMD performance is achievable
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only by adjusting the inertance. The most negative real part of the experimental FRF

was measured −3.65 x 10−7 m/N, which indicated slightly better performance than

the numerical simulation (−3.72 x 10−7 m/N).

Figure 6.7b presents the experimental results of the real part of the frequency response

(solid red line) compared to uncontrolled structure, TMD and the expected response

(blue dash-dotted line). Using these FRFs, the stability lobe diagrams obtained are

presented in Figure 6.8. According to these stability limits, a classical TMD can

already improve the absolute stability limit (alim) from 0.76 mm to 3.85 mm. The

expected FRF has improved the absolute limit to 4.46 mm. It is worth pointing out

that although this limit was 4.87 mm in theory, it has been reduced due to the actual

values of the control elements. Finally, the stability limit was estimated from the

measured FRF as 4.51 mm. The validation was made through milling tests.

6.3.3 Milling tests

6.3.3.1 Experimental method

The aluminium block fixed to the table of the CNC machine and the experimental setup

is presented in Figure 6.9. The prototype was attached to the workpiece to control

the vibration in the most flexible mode, which was the y direction of the workpiece.

The vibration of the workpiece in the y direction was measured by the accelerometer

PCB353B18 from the side of the workpiece. One revolution of the spindle speed was

identified through a hall effect sensor attached to the spindle facing the tool holder at

a proximity. The change in the sensor’s voltage due to two slots on the tool holder was
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Figure 6.7 Real part of the FRFs obtained from the numerical simulations using the
design parameters in Table 6.2 in (a). The real part response obtained from the
impact hammer test is in comparison with the real part responses of the uncontrolled
structure, numerically obtained TMD and IDVA-D2 obtained for the optimal design
parameters for the actual values of the components in (b). Uncontrolled structure,
( ) TMD, ( ) IDVA-D2 optimised for knotch = 0, ( ) IDVA-D2 optimised for
knotch = 9000N/m, ( ) IDVA-D2 optimised for knotch = 9000N/m constraining
parameters to the actual values of the components, and ( ) experiment.
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Figure 6.8 Stability lobe diagrams obtained from the real part of the FRF in Figure
6.7 including the experimental FRF
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recorded during the rotation of the spindle. The NI DAQ USB-4431 acquired both

data.

Figure 6.9 Experimental setup of the milling test: (a) an illustration of the setup
showing the locations of the accelerometer and the hall effect sensor, and (b) an image
of the setup.

The properties of the cutting tool and the cutting parameters of the down milling for

all cuts are given in Table 6.3. The dimensions of the workpiece were the length of

250 mm, the width of 200 mm and the height of 50 mm. The cutting operations were

conducted from only one side opposite the location of the prototype. Each cut was

made for constant 50 mm length and 8 mm radial immersion of the cutting tool while

the axial depth of cut was set for each cut. The feed direction of the end mill was into

the page as shown in Figure 6.9. The maximum material removal from the workpiece

was set to not exceed the change of the natural frequency of the uncontrolled structure

more than 1% by considering the formula of the natural frequency:

1 <

√
M

M − ∆M
< 1.01 (6.3)
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where M and ∆M are the modal mass of the uncontrolled structure and the mass of

the removal material. Consequently, the maximum material removal was calculated

0.210 kg per workpiece.

Table 6.3 Milling parameters for cutting tests

Tool diameter 16 mm
Radial immersion 8 mm
Number of teeth 4
Helix angle 30◦ (constant)
Feed per tooth 0.04 mm

6.3.3.2 Chatter detection methods

The FFT spectrum and once per revolution sampling are two methods that have

been frequently utilised for chatter detection. In a milling operation with non-zero

runout, the measured signal is expected to be periodic at the tooth passing frequency,

ftp = NtN/60 (where N and Nt are the spindle speed in the unit of rev/min and the

number of teeth, respectively) and its harmonics. If runout exists in a milling operation,

the measured signal also involves the spindle rotation frequency, fs = N/60, and its

harmonics [289]. Any frequency other than these in the frequency response indicates

chatter [289, 290]. Hence, the detection of the onset chatter can be made by taking

the FFT spectrum.

The once per revolution sampling technique is based on the synchronised sampled

signal in stable cutting [291, 292]. This method was introduced by Davies et al. [291]

with a Poincaré map showing the x− and y−directions motions of tool sampled once

per revolution. The tool is located almost the same position in each revolution in

steady-state conditions for a stable cut. Thus, after initial transient motion, the sample

point repeats for each revolution of the spindle in a stable cut while it shows variations
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in the case of chatter. This can be observed as synchronised data points in a stable cut

or distributed data points in chatter scenarios, in the time domain output of the signal

sampled once per revolution. Alternatively, this technique can be visualised with a

Poincaré map whose the x− and y−axes indicates the current and previous motions

of the tool. In the maps, a small cluster of the data points indicates a synchronised

motion and thus stable cut, while a distributed cluster is the indicator of chatter.

The FFT spectrum and once per revolution sampling were employed to detect the

chatter for the cutting tests in this thesis. Both techniques were applied after the

completion of each cut as an out-of-process technique and acceleration of the workpiece

was used as the measured signal. The two visualisations methods, time-domain plot

and Poincaré map were utilised for once per revolution sampling.

6.3.4 Results

The aim was to verify the absolute stability of the structure with the prototype

considering only the first lobe in the milling tests. The stability border was first

experimentally verified for the spindle speed of 2800 rpm with the depth of cut starting

from 3 mm to 5 mm. Later, cuts were extended for the lower and upper spindle speeds

from 2400 rpm to 4200 rpm as shown in Figure 6.10. The location of the stability

pocket was verified with the cuts at 2200 rpm. Stable cut examples A(2200 rpm, 7

mm) and B(3400 rpm, 4.6 mm), chatter example C(3400 rpm, 5 mm) are presented

in Figure 6.11. Data points sampled once per revolution in Figure 6.11 verify stable

cutting operations for A(2200 rpm, 7 mm) and B(3400 rpm, 4.6 mm) as they indicate

synchronised data points. The Poincaré map regarding these cuts shows a tight cluster

of data points. Also, only the tooth passing frequencies, spindle rotation frequencies,
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their harmonics are observed in the FFT spectrum regarding these cuts. Unlike stable

cuts A(2200 rpm, 7 mm) and B(3400 rpm, 4.6 mm), the cut C(3400 rpm, 5 mm) has a

distributed (unsynchronised) data point in the time domain plot and the Poincaré map,

which the evidence of the occurrence of chatter. The chatter frequency also appears in

the FFT spectrum.

Also, the stability of the uncontrolled and the controlled structures was compared for

2800 rpm. As it can be seen in Figure 6.12, the stable cut observed with 0.8 mm depth

of cut D(2800 rpm, 0.8 mm) turns into an unstable cut by increasing the depth of

cut to 1.2 mm E(2800 rpm, 1.2 mm) for the uncontrolled structure. In the controlled

case for the same spindle speed, the stable cut was achieved until 4.4 mm depth of cut

(F(2800 rpm, 3 mm) and G(2800 rpm, 4.4 rpm)). The chatter occurred for 4.8 mm

H(2800 rpm, 4.8 mm). Like in Figure 6.11, the evidence of chatter in Figure 6.12 can

be observed from once per revolution and the FFT spectrum for the cuts E(2800 rpm,

1.2 mm) for the uncontrolled structure and H(2800 rpm, 4.8 mm) for the controlled

structure. It can be clearly seen from the figure that the chatter occurring for depth

of cut of 1.2 mm for uncontrolled structure was suppressed with the attachment of

the prototype as the results for depth of cuts of 3 mm and 4.4 mm for the controlled

structure suggested. All experimental results regarding the cuts presented in Figure

6.10 are given in Appendix F. The results will be discussed in the following section.
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Figure 6.10 Stability lobe diagrams with the experimental cuts. ( ) Uncontrolled,
( ) TMD, ( ) IDVA(predicted FRF), ( ) IDVA(experimental FRF), ( ) stable
cut (uncontrolled), ( ) chatter (uncontrolled), ( ) stable cut (controlled), ( ) marginal
cut (controlled), ( ) chatter (Controlled).

6.3.5 Discussion

From the experimental results, three key points could be remarked on. First of all, the

milling tests were verified that the prototype can effectively operate and provide a very

close performance to the stability limit obtained from the experimental FRF from the

impact hammer test. This indicates that the prototype’s dynamic behaviour was not

affected from the actual cutting conditions in stable cuts. This was important in terms

of the applicability of the design for the milling operations.

Chatter in the milling test was detected applying both once per revolution sampling

and the FFT, as presented in Figures 6.11 and 6.12. Once per revolution sampling is

based on the synchronised data points, which was observed as data points aligned in

a straight line in time domain plot or a tight cluster of data points in the Poincaré
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Figure 6.11 Once per revolution samples, the Poincaré maps and the FFT spectrums
for chosen cuts: stable cut A(2200 rpm, 7 mm), stable cut B(3400 rpm, 4.6 mm), and
chatter C(3400 rpm, 5 mm).
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Figure 6.12 Once per revolution samples, the Poincaré maps and the FFT spectrums
showing different axial depth of cut at 2800 rpm for uncontrolled and controlled cases.
Uncontrolled structure: stable cut D(2800 rpm, 0.8 mm) and stable cut E(2800 rpm,
1.2 mm), and controlled structure: stable cut F(2800 rpm, 3 mm), stable cut G(2800
rpm, 4.4 mm) and chatter H(2800 rpm, 4.8 mm).
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map in the case of a stable cut. The FFT spectrum of stable cut involved only the

tooth passing frequency, the spindle rotation frequency (due to the existing runout

in the tool) and their harmonics. In the case of chatter, unsynchronised data points

in the time domain plot and large elliptic-shaped clusters in the Poincaré map were

monitored. The chatter was also verified with the additional peak in the FFT spectrum

other than the peaks appearing in the stable cut. The second important point is that

the prototype was designed to improve the absolute stability and achieved the limited

critical depth of cut of 4.4 mm, which is close to the numerical simulation obtained

for the actual values of the control elements (blue dash-dotted line in Figure 6.10).

This result improved the absolute stability by 14.3% compared to a classical TMD

performance. This improvement was close to the simulation result obtained by using

the actual design parameters (16.1%), as presented in Table 6.2. However, further

improvement is possible by up to 28.6% with accurate actual design parameters as

indicated in the simulation result. It is also worth noting that the amplitude of the

acceleration in the first 6 seconds in the chatter cut E(2800 rpm, 1.2 mm) was lower

than the amplitude in the stable cut G(2800 rpm, 4.4 rpm). However, the actual

danger was the unstable behaviour of the cut E as the vibration would grow in time

and become detrimental. On the other hand, the cut G would not show an increase in

the vibration as it was a stable cut.

Finally, though the minimisation of the most negative real part of the response was

achieved and the absolute stability limit was improved as expected, the negative real

part showed a deviation from the numerical simulation between 120 − 135 Hz. This led

to an extra stable region in the stability pocket between especially 2000 − 2500 rpm in

the stability lobe diagram. Similar deviations were also observed in the exploratory

modal tests in Figure 6.4.
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It should also be noted that the excessive vibration in the case of chatter in the

experiments was detrimental to the connection between the workpiece and the prototype.

Therefore, the tests of the higher depth of cut with chatter were limited. These excessive

vibrations could lead to breakage of the notch hinges due to uncontrolled higher rotation.

Adding a stopper that limits to the rotation of the inerter bar after a certain level can

be considered in the future to protect the notch hinges.

6.4 Summary

This chapter investigated experimental verification of the inerter-based absorber design

through the prototype. The prototype was first tested, considering the vibration

suppression case. It was shown that it could effectively suppress the vibration as

expected. Then, further investigation was conducted with a series of modal tests where

different inertances and auxiliary masses were considered. Both the magnitude and

the real part of the FRFs obtained from the tests exhibited similar dynamic responses

to the numerical simulations. These results presented the proof of the design concept

proposed in Chapter 5.

The prototype was later examined under actual cutting conditions. Although the mass

ratio was chosen to have optimal design parameters as close as possible to the actual

design parameters, there were still differences between the actual and optimal design

parameters. As setting the inertance was straightforward, the optimal inertance was

optimised considering the actual values of the control elements. Despite the loss in

the optimal performance, the impact hammer test result indicated 16% improvement
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compared to the TMD. Similar improvement was also validated through the milling

tests and it was shown that the prototype could effectively improve the chatter stability.



Chapter 7

Conclusions

7.1 Summary of thesis

Chapter 2 presented the literature review of both machining chatter stability and

the inerter applications. In the part on machining chatter stability, the methods for

stability prediction, including the ZOA and more advanced methods such as SDM

and MFA, were reviewed. Later, the techniques to avoid and mitigate chatter were

presented with a focus on passive methods. In the part of inerter after giving the initial

works related to inerter, different realisations of the inerter device were presented.

Three well-known inerter-based layouts (TID, TMDI and TVMD) and IDVA were

evaluated with their applications.

Chapter 3 introduced the theoretical background of the milling stability analysis. The

chapter explained the basic regenerative chatter mechanism with a simplified cutting

operation where a single-point continuous cut was conducted in a turning operation.
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The stability analysis was then extended to milling operation where the cutting occurs

intermittently via a rotating cutting tool. The stability analysis of milling was presented

using ZOA where the time-varying dynamic cutting coefficient due to rotating cutting

tool is averaged to a constant term (zeroth order) of the Fourier series. The concept of

the stability lobe diagram was also introduced in this chapter.

Chapter 4 numerically evaluated four different inerter-based layouts attached to an

SDOF milling system as a localised addition. The layouts examined in this chapter were

chosen from simple arrangements consisting of two springs, one inerter and one damper,

by considering the physical realisation for experimental verification. After having

presented the transfer function of each layout, the stability analysis was conducted by

mostly evaluating the real part of the FRF. The main focus in the stability evaluation

was the absolute stability, but also the stability enhancement in the stability pocket

was examined. Moreover, the global sensitivity analysis of the design parameters of the

best three layouts was made via Sobol’s method. One of the objectives of the thesis

was achieved in this chapter by numerically evaluating the performance of four different

layouts of inerter-based passive control devices as localised additions in milling. All

layouts investigated showed performance increment in milling stability.

Chapter 5 involved design studies considering the physical realisation of one of the

layouts. It was shown that there were different factors to prevent achieving an ideal

layout, as presented in Chapter 4. First, the parasitic mass effect, which was shown to

be inevitable in real structures due to the mass of the components, was included and

analysed to assess its effect on the performance of the layout. Using a gel damper, the

realisation of the damping mechanism and the realisation of the inner spring in the

layout was accomplished in a relatively simple way. Therefore, the effect of hysteretic

damping behaviour of the gel on the effect of the performance was examined. A
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small-scale small-amplitude inerter device with living hinges was also developed to

apply the passive device into a milling operation. Finally, the effect of the stiffness

of the living hinges on the inertance was shown at the working frequency near the

resonance region of the inerter device with living hinges. As the developed inerter

allowed the adjustment of the inertance by simply adding equal masses to the end

of the inerter bar, the stiffness effect of the living hinges could be compensated for

by an equivalent optimal inertance value. To achieve this, the stiffness of the living

hinge was included in the mathematical model to optimise the design parameters in

the experimental verifications. The importance of the fatigue analysis of the living

hinges was also highlighted in this chapter since the living hinges were expected to

be exposed to high frequency loading in milling applications. Employing the inerter

device developed, the physical realisation of the layout with the above-mentioned modal

updates was presented and the prototype was manufactured. Two objectives were met

in this chapter by having developed an inerter device applicable to milling operations

and by having designed an inerter-based passive control device that can be applied as

a localised addition in a similar way to a classical TMD.

Chapter 6 demonstrated the experimental verification of the dynamic behaviour of

the prototype and the improvement of the milling stability. Several modal tests for

different inertances and auxiliary masses were conducted to validate whether the

prototype reflects the dynamic behaviour obtained from the numerical simulations.

The capability of vibration suppression of the prototype was also tested in one of the

modal tests. Finally, the prototype attached to a workpiece with one flexible mode

was tested through milling tests. Thus, the functionality of the prototype and the

stability improvement was tested under actual cutting conditions. The chapter fulfilled

two more objectives by testing the prototype’s dynamic behaviour and validating the
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functionality and the stability improvement of the proposed device under real cutting

conditions.

Conclusions and contributions to knowledge will be discussed in the following section.

7.2 Conclusions and original contributions

Several conclusions from this research are drawn as follows:

• All four IDVAs tested can improve the absolute stability limit of milling compared

to a classical TMD while the Layouts L1, L2 and L4 provide significant increments

in the absolute stability. For the Layouts L1, L2 and L4, the performance

improvement was generally more than 20% for almost all cases tested and it

reached the maximum up to 40% for low structural damping and high mass

ratios.

• The benefit of the use of an inerter in these layouts was limited for the first

stability pocket enhancement. Comparing the TMD and IDVA whose design

parameters are tuned for the same purpose considering the same mass ratio,

no significant improvement was observed in terms of maximising of the deepest

possible lobe. The only benefit of using an IDVA in this scenario was to broaden

the spindle speed band for a higher stable depth of cut.

• The global sensitivity analysis has shown that the most sensitive parameter to

the absolute stability limit is the outer spring ko regardless of layouts. This

analysis was important because it showed the element to which the most care
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should be taken to avoid the performance loss due to the deviation of the actual

parameters from the optimal ones.

• Optimal design parameters obtained via SaDE showed that the optimal inertance

is tiny for the IDVAs with the best performances for small mass ratios. This

primarily requires attention to be paid to the parasitic mass effect that becomes

apparent even with small values and the design of the inerter device capable of

producing such small inertance.

• Physical realisation of the idealised L2 for a small mass ratio is difficult due to

parasitic mass effect. However, it has been presented that including the parasitic

mass effect in the model and replacing the viscous damping with the hysteretic

damping did not lead to performance loss. The IDVA with the parasitic mass

and the hysteretic damping (IDVA-D2) provided an identical performance to the

idealised IDVA-L2.

• A prominent feature of the new design of the inerter device is that it allows

adjusting the inertance for fine tuning by simply adding equal lumped masses

to both end of the inerter bar. The benefit of this feature was presented in

the experimental study of the vibration case, where the possible performance

loss due to notch stiffness was compensated for by adjusting the inertance. The

inerter device, which was designed as an ad hoc solution for the localised addition,

can produce small inertance in practice. However, for application with higher

inertance, the design in Figure 5.11a with small la, which is similar to living-hinge

inerter in [207] but with adjustable inertance, is suggested.

• Fatigue life analysis and the effect of the stiffness of the living-hinges have shown

that implementation of the living-hinges with smaller notch thickness is beneficial

in increasing the fatigue life cycle and reducing the effect of the notch stiffness.
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• The proposed design of the IDVA functions as an inerter-based absorber. This

was tested through the modal tests considering different combinations of the

auxiliary mass and inertance. The absolute stability improvement was also

verified with milling tests, albeit some reduction in the improvement due to

deviation between the optimal design parameters and their actual values. It was

also noted that the experimental stability limits showed an extra stable region in

the pocket stability compared to numerical stability analysis. This was due to

deviation in the experimental frequency response in the real part of the system

transfer function. However, the experimental results of the cutting test matched

well with the stability limit created using the experimental FRF of the workpiece

controlled by the prototype. This indicates that the prototype shows similar

performance to the modal test under actual cutting conditions for stable cuts.

However, excessive vibration for unstable cuts beyond the stability limit can

be a challenging issue to maintain healthy connection of the prototype to the

workpiece.

The major contributions of the research to knowledge are outlined as follows:

• Chatter stability performance of using inerters in machining operation has been

evaluated for the first time. Although Wang et al. [5] presented some advan-

tages of utilising inerters for vibration suppression for milling machines with

experiments, their approach did not include the consideration of the regenerative

chatter mechanism and the stability analysis. In this thesis, the vibration problem

in milling operation has been approached as a chatter stability problem and the

analyses have been conducted in this direction.



7.2 Conclusions and original contributions 193

• The design parameters of the TMD and IDVAs have been numerically tuned for

the enhancement of the stability pocket, unlike traditional tuning methods of

Sims [108] and Den Hartog [107]. Even the TMD improved the largest stable

point in the stability border, albeit for a narrow spindle speed band. Optimising

the parameters to enhance the stability lobe diagram can be beneficial for the

cut conducted in the stability pocket range.

• A mechanical small-scale inerter device with adjustable inertance has been

developed. The adjustment is as simple as attaching additional masses to the

inerter bar and it can be used for fine tuning the inertance.

• A new absorber design for the physical realisation of the layout consisting of

two springs, one inerter and one damper has been proposed. The new design

is applicable in a similar manner to a classical TMD without the need for a

grounded connection or deployment between two components of the host structure.

Therefore, it provides a potentially more versatile solution for chatter as well as

vibration absorption problems.

• Finally, the absolute stability improvement has been experimentally validated

through milling tests. This was the first experimental study of the inerter that

considers chatter stability in milling as presented in the literature of the machining

community.

To date, these contributions to knowledge have been disseminated via three conference

papers, along with a journal paper that is currently under review. These publications

are listed in Appendix G
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7.3 Discussion and future works

There are some limitations for the use of inerter and the absorber presented in this

study. Firstly, the absorber was designed for the workpiece and it cannot be applied to

the rotating tool. Secondly, the rotation of the inerter is allowed to a certain angle. The

high rotational angle of the inerter reduces the fatigue life of the absorber. Moreover,

the inerter does not show a linear behaviour due to the violation of the small-angle

approximation applied in the design study. Lastly, the absorber can act only in one

direction so the chatter suppression provided by the absorber is limited to SDOF

systems.

The analysis and experiments have shown that there is an effect of the notch stiffness

on the inertance. The notch stiffness in practice was higher than the theoretical

estimation. Possible reasons for this were noted as the manufacturing errors and the

stress stiffening effect. Even though this increase in stiffness might be problematic

in practice, the performance loss can be compensated for by adjusting the inertance.

Indeed, the effect of the stiffness would be almost entirely eliminated with very thin

notch thickness. However, this was limited to manufacturing technology. Although the

notch stiffness is undesirable to achieve a pure inerter, it did not significantly reduce

its effect in practice. The use of designated notch stiffness can be promising to realise

an inerter-spring arrangement. The analysis of this has remained as future work. In

the case of zero stiffness in the notch, the pivoted-bar acts as a pure inerter whilst it

becomes a cantilever beam acting as a spring in the case of elimination of the notch

completely. These two marginal cases of the pivoted-bar present a transition from an

inerter to a spring element. Applying a continuum mechanics, the pivoted-bar can be

designated as an inerter-spring arrangement with desired inertance and stiffness.
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Fatigue analysis showed that higher notch thickness leads to a reduction in fatigue life

due to increasing stress. This analysis was presented theoretically. However, as the

experimental part of this project was considered the proof of concept of the absorber

design, the fatigue analysis results have not been experimentally verified. In future

work, this verification can easily be provided with an experiment setup where the notch

is exposed to a controlled cyclic load and the number of fatigue life cycles is recorded.

The scale of the application in this project was small compared to other experimental

studies in the literature regarding inerter. The design concept is promising for even

much smaller applications. However, this also needs experimental verification with

a smaller prototype. The monolithic design of the whole absorber is possibly more

beneficial in terms of performance and application, although its manufacture might

be more challenging. The application of a much smaller prototype with a monolithic

design can be considered as another future work. For this, a similar workpiece with a

smaller modal mass can be employed, and additive manufacturing might be considered

for the manufacturing of the monolithic design, albeit with cost implications.

In numerical evaluations, the enhancement of the stable region in the stability pocket

was examined but was not experimentally tested. The experimental verification of this

enhancement for both TMD and IDVA has remained in future work. Implementing

this kind of verification requires a new prototype with the optimal design parameters

addressing this objective. Then, the similar verification process presented in Chapter

6 can be considered to show its effectiveness. Also, the experimental verifications

of the prototype used in this thesis can be extended to milling tests with low radial

immersions, which has not been considered in this project.
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Appendix A

Expressions for dimensionless

transfer functions

AL1 = − 2δα2γ2Ω2ζa + 2α2γ4ζa − 2α2γ2Ω2ζa − 2γ2Ω2ζa + 2Ω4ζa

BL1 =δα2γ3Ω − δα2γΩ3

CL1 =2δα2γ2Ω4µζa + 2δα2γ2Ω4ζa − 2α2γ4Ω2µζa − 2α2γ4Ω2ζa + 2α2γ2Ω4ζa − 2δα2γ2Ω2ζa

+ 2γ2Ω4µζa + 2α2γ4ζa − 2α2γ2Ω2ζa + 2γ2Ω4ζa − 2Ω6ζa − 2γ2Ω2ζa + 2Ω4ζa

DL1 = − δα2γ3Ω3µ − δα2γ3Ω3 + δα2γΩ5 + δα2γ3Ω − δα2γΩ3

AL2 = − δ2α2γ2Ω2 + δα2γ4 − δα2γ2Ω2 − δγ2Ω2 + δΩ4

BL2 = − 2δγΩ3ζa + 2γ3Ωζa − 2γΩ3ζa

CL2 =δ2α2γ2Ω4µ + δ2α2γ2Ω4 − δα2γ4Ω2µ − δα2γ4Ω2 + δα2γ2Ω4 − δ2α2γ2Ω2

+ δγ2Ω4µ + δα2γ4 − δα2γ2Ω2 + δγ2Ω4 − δΩ6 − δγ2Ω2 + δΩ4

DL2 =2δγΩ5µζa + 2δγΩ5ζa − 2γ3Ω3µζa − 2γ3Ω3ζa + 2γΩ5ζa − 2δγΩ3ζa + 2γ3Ωζa − 2γΩ3ζa

AL3 =δα2γ4 − δα2γ2Ω2 − δγ2Ω2 + δΩ4

BL3 =2δα2γ3Ωζa − 2δγΩ3ζa + 2γ3Ωζa − 2γΩ3ζa

CL3 = − δα2γ4Ω2µ − δα2γ4Ω2 + δα2γ2Ω4 + δγ2Ω4µ + δα2γ4 − δα2γ2Ω2 + δγ2Ω4

− δΩ6 − δγ2Ω2 + δΩ4

DL3 = − 2δα2γ3Ω3µζa − 2δα2γ3Ω3ζa + 2δγΩ5µζa + 2δα2γ3Ωζa + 2δγΩ5ζa − 2γ3Ω3µζa

− 2γ3Ω3ζa + 2γΩ5ζa − 2δγΩ3ζa + 2γ3Ωζa − 2γΩ3ζa
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AL4 = − δ2α2γ2Ω2 + δα2γ4 − δα2γ2Ω2 − δγ2Ω2 + δΩ4

BL4 =2δα2γ3Ωζa + 2γ3Ωζa − 2γΩ3ζa

CL4 =δ2α2γ2Ω4µ + δ2α2γ2Ω4 − δα2γ4Ω2µ − δα2γ4Ω2 + δα2γ2Ω4 − δ2α2γ2Ω2

+ δγ2Ω4µ + δα2γ4 − δα2γ2Ω2 + δγ2Ω4 − δΩ6 − δγ2Ω2 + δΩ4

DL4 = − 2δα2γ3Ω3µζa − 2δα2γ3Ω3ζa + 2δα2γ3Ωζa − 2γ3Ω3µζa − 2γ3Ω3ζa + 2γΩ5ζa

+ 2γ3Ωζa − 2γΩ3ζa
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Fixed-point technique for IDVAs

Five the damping-ratio-invariant fixed points have been identified for each layout as

shown in Figures B.1a, B.2a, B.3a, and B.4. All fixed points are called P1-P5 from

left to right. In the fixed-point technique, analytical expressions that give the optimal

design parameters are analytically obtained. However, although the analytical solutions

for the fixed point frequencies were obtained, further implementation of the technique

could not be taken due to the extensive number of terms stemming from the roots

of the cubic equation. Therefore, substituting the fixed point frequencies into the

function, giving the real values of the transfer function, could not be succeeded. The

fixed points were numerically taken equal instead in order to evaluate the possible use

of the fixed points.

Considering only equal real troughs for ζm = 0, the design parameters (γ, δ, and α)

except the damping ratio ζa were optimised to make some of the fixed points equal.

Two cases where the four fixed points from P2 to P5 and the three fixed points from

P3 to P5 are taken equal were examined. After finding the optimal values for the three
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design parameters γ, δ, and α, the optimal damping ratio was obtained by considering

the maximisation of the most negative real part value as the optimisation objective.

The results for both cases for the Layouts L1, L2 and L4 are presented in Figures

B.1b-c, B.2b-c, and B.3b-c, respectively. The results are also compared with the TMD

tuned with Sims’ method [108] in Figures B.1d, B.2d, and B.3d.

The results showed that using the fixed-point technique, applied by taking three and

four fixed points equal in this study provided very limited improvement compared to

the TMD. The numerical optimisation applied without considering the fixed points

(indicated with the legend ’H∞’) presented a better performance than the fixed-point

technique. The result of the Layout L3 is not presented since the fixed-point technique

as it was applied in this study showed no improvement compared to the TMD. Therefore,

only the existence of the fixed points is demonstrated in Figure B.4.



201

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-6

-4

-2

0

2

4

6

8

10

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-6

-4

-2

0

2

4

6

8

10

12

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-6

-4

-2

0

2

4

6

8

10

12

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-6

-4

-2

0

2

4

6

8

10

12

Figure B.1 Fixed-point technique for the Layout L1 where (a) indicates the fixed points.
The fixed-point techniques are apply for four equal fixed points from P2 to P5 in (b)
and three equal fixed points from P3 to P5 in (c). The results are compared with the
TMD tuned with Sims’ method [108].
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Figure B.2 Fixed-point technique for the Layout L2 where (a) indicates the fixed points.
The fixed-point techniques are apply for four equal fixed points from P2 to P5 in (b)
and three equal fixed points from P3 to P5 in (c). The results are compared with the
TMD tuned with Sims’ method [108].
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Figure B.3 Fixed-point technique for the Layout L4 where (a) indicates the fixed points.
The fixed-point techniques are apply for four equal fixed points from P2 to P5 in (b)
and three equal fixed points from P3 to P5 in (c). The results are compared with the
TMD tuned with Sims’ method [108].
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Figure B.4 Fixed points for the Layout L3
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SaDE convergences for absolute

stability

The objective values in each generation are presented in Figure C.1. The results were

obtained for each layout by performing SaDE multiple times.
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Figure C.1 Convergence studies for SaDe for each layout.
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Fatigue analysis

A schematic view of the flexural hinge is already given in Figure 5.14a. The maximum

stress occurs in the thinnest section of the notch due to the rotation of the pivoted-bar.

The angle of rotation depends on the distance between the pivots and the relative

displacement of two pivots (terminals) as stated in Equation 5.11. The bending stress

at the notch is directly proportional to the rotational angle of the notch while it

is inversely proportional to the thickness of the notch t. The maximum allowable

thickness of a notch for maximum angular rotation is predicted by Smith [286] for safe

operation:

tmax = 9π2R

16K2
t E2

(
σy

θmax

)2
, (D.1)

where R, E, σy and θmax are the radius of the notch in Figure 5.14a, Young’s Modulus

of the material, the yield stress of the material, and the maximum angle of rotation of

the notch hinge, respectively. Kt is the stress concentration factor, which is:

Kt = (1 + βn)9/20, (D.2)
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where βn is a dimensionless parameter, which is βn = t
2R . Equation D.1 is accurate

providing that 0 < βn < 2.3, which is met through the design study. Equation D.1 can

be modified to determine the maximum stress at the notch for given thickness and the

radius of the notch is found to be

σmax =
√

16K2
t E2t

9π2R
θ (D.3)

where the θ indicates the angular rotation of the notch hinge. The maximum amplitude

of the angular rotation, θmax(ω), in the frequency domain should be chosen in order to

obtain the maximum stress over all working frequencies.

It can be observed from Equation D.3 that the maximum stress observed at the notch

increases with increasing thickness of the notch and angle of rotation. For a safe

operation under static loading, the maximum stress observed at the notch should be

smaller than the material’s yield stress. For a safe operation under dynamic loading,

the maximum stress at the notch should be smaller than the fatigue strength of the

notch hinge, which depends on the material, the loading conditions, geometry of the

flexure hinge, and the manufacturing technology.

The fatigue strength of a material is reduced by some factors stemming from a

notched structure, the surface effect due to manufacturing process and thermal effects

[286, 293, 294]. Irregularities in the geometry of a structure such as a notch or a

hole lead to a concentration in the stress flow near the irregularity and reduce the

strength of the material by stress concentration factor Kt. However, it was reported

that using the stress concentration factor leads to an inaccurate estimation of the

fatigue strength as the stress concentration factor is determined considering static

loading [294]. The stress concentration is updated with the notch sensitivity and the
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effective stress concentration is used in the fatigue analysis. Finally, the effect of the

surface roughness is introduced by the surface roughness reduction factor, which is

highly dependent on the manufacturing process applied [293]. Thermal effects which

reduce the fatigue strength are assumed as negligible.

The endurance limit is generally defined as the stress value for which a material can

resist a very high number of cycles without failure. Even though there is no endurance

limit for some materials such as aluminium, the endurance limit can be typically

expected to be of the order of 100-500 million cycles [286]. The relation between

the ultimate tensile strength and bending fatigue strength for 100 million cycles of

aluminium alloy can be written as stated in [293]:

Sfb ≈


0.4SU for SU ≥ 325 MPa,

130 MPa for SU ≤ 325 MPa
(D.4)

where SU is the ultimate tensile strength of the material. The relationship in Equation

D.4 is also coherent with the endurance limit (assumed 500 million cycles) for aluminium

alloy given in [295]. Therefore, it is reasonable to determine the fatigue strength for

aluminium alloy for an endurance limit of 100-500 million cycles. According to the

supplier’s specification sheet of Aluminium Alloy 6082-T6, the material’s ultimate

tensile strength is SU = 340 MPa. Thus, the bending fatigue stress can be assumed as

Sfb = 130 MPa. This value is valid only for dynamic loading with zero mean stress

(σmax = σmin). If the mean stress of the dynamic loading is non-zero, the permissible

stress amplitude can be given by the Goodman criteria [296, 286, 293]:

Sa = Sf (1 − σm

SU

) (D.5)

where if σm = 0 or σm ≪ SU , Sa equals Sf .
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The permissible stress amplitude in Equation D.5 is only valid for very smooth parts

without geometric irregularities such as notches. The stress concentration factor Kt

due to a notch is already given in Equation D.2. However, it is an overestimated

factor for the dynamic loading. Hence, the effective stress concentration factor Ke is

introduced as [294, 293, 296]

1 ≤ Ke = Sf,Unnotched

Sf,Notched

≤ Kt (D.6)

and Ke is determined utilising the notch sensitivity:

q = Ke − 1
Kt − 1 (D.7)

The average notch sensitivities q for steel and aluminium alloy materials presented

with a chart depending on the radius of the notch R in [294] are given in Figure D.1.

Figure D.1 Average notch sensitivities q for steel and aluminium alloy with notch radius
R as stated in [294].
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The manufacturing method also affects on the fatigue strength as it defines the surface

quality and surface roughness. Increasing surface roughness leads to a reduction in the

fatigue strength as it escalates the crack propagation. The reduction is defined by the

surface roughness reduction factor κ. The notch hinges were manufactured applying

electric discharged wire erosion. Therefore, it is reasonable to take a surface reduction

factor of κ = 0.75 for electrical discharge machined aluminium alloy part as discussed

in [293].

The permissible stress amplitude yields with the inclusion of the reduction factors

considering the Goodman criteria:

Sa = κSf

Ke

(
1 − σm

SU/Kt

)
, (D.8)

where σm is the mean stress and reduction factors: the stress concentration factor Kt,

the effective stress concentration factor Ke, and the surface roughness reduction factor

κ.

The fatigue analysis for a notch hinge was conducted for the parameters given in Table

5.6. The effect of the change in the thickness of the notch was examined for two notch

thicknesses: 0.1 mm and 0.5 mm. The notch sensitivity was taken to be 0.91 for the

constant radius of the notch of 4.75 mm for aluminium alloy from Figure D.1. The

stress concentration factor Kt and the effective stress concentration factor Ke were

determined from Equation D.2 and Equation D.7, respectively, for the thickness of the

notch. The fatigue performance of the notch hinges with the different thicknesses was

evaluated with the safety factor, which is expressed as the ratio of the allowable stress
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amplitude to the maximum stress observed at the notch:

Safety Factor = Sa

σmax

. (D.9)

The safety factors for both zero mean stress (σm = 0) and the mean stress of 50 MPa are

demonstrated in Figure D.2. It is safe to operate the flexure hinges for the values of the

safety factor larger than 1. Safety factors are determined for the relative displacements

between two terminals (pivots) of the inerter. For the relative displacements with a

safety factor higher than 1, the fatigue life cycle is expected to be between 100 − 500

million cycles.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

Figure D.2 Fatigue life analysis of the flexural hinge for notch thicknesses of 0.1 mm
and 0.5 mm was made considering zero mean stress (σm = 0) and mean stress of 50
MPa (dashed lines). Safety factors are determined for relative displacement between
two terminals of the inerter. A safety factor larger than 1 indicates that the flexural
hinges can operate more than 100 million cycles.

Flexural hinges with notch thickness of 0.5 mm are expected to operate safely for at

least 100 million cycles under relative displacement of the terminals of the inerter

of 410 µm, assuming no mean stress and distance between the pivots la = 40 mm.

This relative displacement value could be smaller if mean stress exists (e.g. due to
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pre-stress caused by assembly). In this analysis, only the effect of thickness of notch

was presented and it was shown that choosing small thickness improves the fatigue

life cycle. It is also possible to improve the fatigue life by changing the other design

parameters of the notch:

• Choosing a different material affects the fatigue life. There is no doubt that

the most influential parameters are the material parameters, specifically both

Young’s modulus E and fatigue strength Sf . Fatigue strength could be increased

at as high levels as 500 − 800 MPa with the use of steel alloys. However, stiffness

of the notch also increases with increasing Young’s modulus, which leads to

resonance region at high frequencies as discussed in Section 5.4.3

• Increasing the radius of notch R improves the fatigue life by decreasing the

maximum stress occurring at the notch (as given in Equation D.3) albeit slightly

increasing in notch sensitivity q. Increasing R also decreases the stiffness of the

notch. However, a high radius of notch could increase the overall height and

length of the flexural hinge.

• Manufacturing process applied can also improve the fatigue life by increasing the

surface roughness. In this analysis, an estimated surface reduction factor κ of

0.75 was used. This corresponds 25% reduction in the permissible stress ampli-

tude. Therefore, improving surface roughness by improving the manufacturing

technology applied can increase the fatigue life as well.



Appendix E

Equations of motion of IDVA-D2

with notch stiffness

The mechanical model of IDVA-D2 with the notch stiffness is illustrated in Figure E.1.

The equations of motion of the updated mechanical model with the complex stiffness

is written as

Mẍm(t) + Cẋm(t) + Kxm(t) − b
(
ẍp(t) − ẍm(t)

)
− knotch

(
xp(t) − xm(t)

)
− ko

(
xa(t) − xm(t)

)
= F (t),

mpẍp(t) + b
(
ẍp(t) − ẍm(t)

)
+ knotch

(
xp(t) − xm(t)

)
− ki

(
1 + jη

)(
xa(t) − xp(t)

)
= 0,

maẍa(t) + ko

(
xa(t) − xm(t)

)
+ ki

(
1 + jη

)
(xa(t) − xp(t)) = 0.

(E.1)

where knotch is the notch stiffness.
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Figure E.1 IDVA-D2 with the notch stiffness.



Appendix F

Milling test results
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