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ABSTRACT 

A finite element code has been developed at the University of Sheffield to simulate 
the structural response of steel and composite framed buildings subjected to fire. The 

steel skeleton is represented using two-noded line elements, the steel-to-steel 

connections using spring elements and the flooring system by isotropic flat shell 

elements. Structures are therefore considered as a complete entity, allowing a more 

realistic prediction of structural behaviour at elevated temperature. 

A series of numerical simulations of fire tests carried out on the full-scale, eight- 

storey composite frame at the BRE. laboratory at Cardington in 1995 and 1996 have 

been conducted. These tests have been subject to a number of significant parametric 

studies including slab thickness and secondary beam connection strength and 

stiffness. 

The concrete floor slab element has also been extended to a layered flat shell element 

allowing the inclusion of material non-linearities, thermal bowing, thermal 
degradation, anisotropic properties and a more advanced cracking model. 

Using the new concrete floor slab element the Cardington fire tests have been 

simulated in detail, to further understanding of the structural reaction in fire. Another 

series of parametric studies have been conducted considering again the thickness of 
the floor slab, the effect of the slab temperature gradient, the compressive strength, 
tensile strength and load ratios. These have all been compared to results from the 
Cardington fire tests. 

Current design methods based on isolated element design are considered by 

comparing the results of analyses in which the concrete floor is either included as a 
continuous slab in an extensive subframe, or is treated simply as forming the flanges 

of composite beams in a three-dimensional skeleton. These examples show clearly 
the effects of membrane and bridging actions of the continuous floor slab. 

The implications for future design developments are discussed with particular 
reference to the parametric studies conducted. 
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NOTATION 

Only general notations used in this thesis are presented here. Symbols that have been 

only used once and are of a more specific nature have been explained when they arise 
in the text. 

A Arbitrary point. 
B Strain-displacement matrix. 
C Generalised stress-strain matrix. 
CS Specific heat of steel. 
E2o Elastic modulus of the material at 20'C. 

Et Tangent modulus of the material. 
f Shear force. 

F Vector of externally applied nodal force. 

G Shear modulus. 
h Shape functions 

H, Matrix of shape functions. 

Iyy, etc Second moment of area. 
i Jacobian operator. 
K Local stiffness. 
[K] Tangent stiffness matrix. 
k, Thermal conductivity of steel. 
I Member length. 

Mf Applied moment at the fire limit state. 
MP Plastic moment. 
Mcr Elastic critical stress. 

M, if ... etc Stress resultants. 
0 Arbitrary point on the centroidal axis 
P Elastic critical load. 

Py Yield stress. 
IQ) External nodal forces (Local co-ordinates). 
(q) Nodal displacements (Local co-ordinates). 
R External nodal forces (Global co-ordinates). 
R Load ratio. 

xxii 



rb r2 
... etc Sampling points. 

Vector of displacements at nodal positions. 
Identity matrix. 

Y-11 Y, Z Global co-ordinates. 

X, Y, Z Local co-ordinates. 
W Virtual work. 

cc Weighting factor. 

A Prefixed to other term,, denotes an increment. 

Prefixed to other term, denotes virtual variation. 
Denotes partial differentiation. 

C Strain. 

a,, -C Stress. 

CY20 Stress at 20'C. 

0 Rotation. 

Shear strains. 

Slenderness ratio. 

Potential energy. 

Denotes a column vector. 

Denotes a row vector. 

Denotes a matrix. 

Denotes a matrix inverse. 

2 Denotes a norm vector. 

Denotes a summation. 
d Denotes ordinary differentiation. 

Denotes differentiation with respect to a single argument. 

Denotes second derivative with respect to a single argument. 
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Chgpter I -Introduction 

1. INTRODUCTION 

Fires happen on a daily basis, forcing the average person to run a risk of 1: 1500 of 
being involved in a fatal building fire accident 1. Of fatalities in building fires, 76% 

occur in domestic buildings such as hotels, offices and shops 1. Fire safety in 

buildings is essential to ensure safety of life and to minimise material and financial 

losses to both the occupants and associated organisations such as insurance companies 
(it was estimated that the cost of fire to UK business in 1983 was over 1900 million 

per year 2). Smoke detection equipment and reduced travel distances to fire-protected 

stairs are classed as typical safety measures. To protect property, active measures 

using sprinkler systems, or passive measures such as structural protection and 

containment are commonly used. The Building Regulations 3 are used to control the 

fire resistance that a building must attain, on the basis that, 

"Yhe building shall be designed and constructed so that, in the event of 
fire, its stability will be maintainedfor a reasonable period. " 

The Building Regulations 3 fire resistance criterion is based not just on the minimum 

evacuation time of the building, but concerns also for the safety of fire fighters, risk of 

structural collapse and fire spread. Time periods are classified as 0.5,1 and 2 hours 

and are dependent on type of building, height, floor area and cubic capacity of the 

building or compartment. 

Steel is a major construction material in the UK, being used in an estimated 57% of 

multi-storey buildings and between 90 and 95% of single-storey factory and 

warehouse structures during the 1991 to 1992 period 4. Steel has become so popular 

of late, because of its fast erection sequences and lighter structures, allowing longer 

spans and smaller foundations. Steel does have a disadvantage compared to other 

structural materials in that it has high thermal conductivity, therefore rising in 

temperature and losing strength and stiffness rapidly in fire. The steel industry has 

recognised this deficiency and has invested much research into the use of protective 

materials and design methods with the aim of reducing protective material costs and 
the impact of protection on the construction programme. 
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1.1. THE GROWTH OFA FIRE 

In order to gain an understanding of fire resistance of structural elements, it is 

essential to form some knowledge on the growth of fire. The growth and decay of fire 

is complex because it is dependent on fuel load and the surrounding environment. It 

may be simplified into the following phases, shown schematically in Figure 1-01. 

Me Growth Period - The reason for fire growth is the progressive ignition 

of materials, usually from a small local source. The feedback of generated 
heat results in further generation of flames. A sufficiently high temperature 

of the gases emitted from the fuel must be attained during the ignition phase 

at which point, provided a ready supply of oxygen is available, the fire 

becomes self-sustaining. This point at which the fire reaches ignition 

temperature is called the 'flash point' or 'ignition temperature'. 

After ignition has been established, the fire spreads from the ignition source. 
In the early stages, interaction with the compartment will be negligible due to 

their relative sizes, and the fire behaviour will be similar to a fire in the open. 
Once the fire becomes established at a local level, it will continue to grow 

provided fuel and oxygen are available. Hot gases begin to rise to the ceiling 

and to form a layer, causing both the ceiling and walls to heat up and to re- 

radiate the heat. The fire at this stage may be referred to as a compartment 
fire, as the geometry and physical properties of the compartment begin to 

influence the fire. Ventilation of the compartment is significant in 

controlling the supply of oxygen, and hence the rate of fire growth; therefore 

if a door is opened or the windows are broken the rate of growth may change 

dramatically. The temperature within the compartment is now increased 

through radiation from the walls and ceiling, with fuel remote from the 
ignition site increasing in temperature. The fire growth continues until the 
fuel vapour within the compartment reaches ignition temperature, at which 

point there is a sudden transition from a growing fire to a fully developed 

fire, which is known as 'flashover'. 

Steady State Combustion - The fire severity from this point becomes totally 
dependent upon the ventilation of the compartment. It is usually openings 

2 
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3. 

such as windows that control the rate of burning of the fire. Provided fuel is 

available, the fire will continue to bum at a steady rate until it begins to run 

out of fuel and the decay stage is entered. 

Decay - As the fuel supply decreases, the fire reduces gradually in severity 

and will eventually die. 

+ Temperature 

Natural fire curve 

ISO 834 standard 
fire curve 

Flashover 
ý-- 300'C 

Phi-, t-. nf Time 
ure 
growth: ýIgnitioti 

_Smoulderi Phase N% phase 
rvr%x,, -. %ýnA 

Heating Cooling phase 

5v v %. I 11%, u 1-11 I; EemperatuEq Fire load Ventilation conditims by: I- -I- .ý density 
Inflammabilty 

Pre-flashover Post-flashover > 

Figure 1-01.7he development of an uncontrolledfire andISO 834 standardfire 
curve 

1.2. FIRE TESTING 

To define the growth of a fire for experimental purposes is problematic, as no two 
fires are ever alike since the surrounding environment influences the growth and 
decay of the fire. For this reason, a standard rate of heating assumed to vary with 
time is given in BS 476: Part 20 5 and the International Standard ISO 834 6, which is 

given by 

where 

T= 20+345loglo(8t+1) 1-01 
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T is the furnace temperature 

To is the ambient temperature prior to testing, 

I is the test time (minutes). 

As Figure 1-01 shows, the standard fire curve does not follow the pattern of a natural 
fire as it neglects the growth phase prior to flashover and the decay phase. Other 

factors that affect the rate of growth of a fire include the size and nature of the fire 

load, the degree of ventilation and the size and shape of the compartment. However, 

the use of the standard curve allows comparison of results between different fire tests. 

Three criteria are required to be met during a fire test, being insulation, integrity and 
load-bearing capacity. Insulation and integrity are predominantly dealt with by non- 

structural fire protection materials and are therefore not considered here. For load- 

bearing beams the structure is considered to have failed when either the deflection 

rate reaches L 2/9000d (where L is the beam span and d is the beam depth) for 

deflections that are greater than L130, or when a maximum deflection of L/20 is 

reached. A column is considered to have failed when the applied load can no longer 

be supported. These definitions of failure are based on BS 476: Part 217. These 

procedures of testing raise a number of questions concerning the interpretation of 

results and the limitations of standard tests; for example 

1. Member behaviour subjected to the standard fire curve may be different from 

other fire scenarios encountered. 

2. It may not be justifiable to consider an isolated member if the test is to model 

a beam within a continuous structure subject to restraint from surrounding 

areas. 

3. The cost of tests is extremely high, so that the effect of the member's cross- 

sectional size, span (which is controlled by the furnace size), restraint and 

structural configuration cannot economically be investigated in full. 

Figures 1-02 and 1-03 show schematic column and beam testing facilities. 
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slabs, 630 x 130mm 

Roller 
bearing 

Fumace 
wall 

4000 mm furnace width 

4500 mm span 

Figure 1-03. Typical test arrangement. for simple beams 

1.3. REVIEW OF CURRENT FIRE DESIGN PHILOSOPHIES 

Support 
frame 

An early philosophy of fire engineering used in permi ssib I e- stress design codes was 

that passive protection (in the form of insulation) should be applied to limit the steel 

temperature to a maximum permitted value of approximately 550'C at the end of the 

required fire resistance period. This method fits well with permi s sib le- stress design 

codes such as BS449 8. The passive method is based on the assumption that the yield 

strength of steel has been reduced at this temperature by a factor that is equal to the 

Fig-ure 1-0. ý. 4pical test arrangementfor simple columns 

Segmented concrete 1125 mm 1125 mm 1125 mm 
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design reduction factor inherent in the permissible stress used at ambient temperature. 

This is a very simplified view in that it assumes that members are heated uniformly 

and are fully stressed in fire. Also the stress-strain curves of steel are highly 

curvilinear at high temperatures, and the concept of discrete "Yield strengtw' lacks 

credibility. 

More recent design codes (BS5950, Part 8 92 EC3, Part 1.2 10 and EC4, Part 1.2 11) are 

based on a fire engineering philosophy in which the fire may be treated as one of the 

basic design limit states. These methods allow the designer to accommodate non- 

uniform heating of members (created by partial protection either inherent in the 

structure or deliberately added), actual steel stress-strain characteristics at elevated 

temperatures and a probability-based assessment of load levels in fire. Fire 

engineering methods are also concerned with predicting the actual rate of rise of 

temperature within the steel members. 

These codes are limited in that they still only consider isolated member design. The 

approach is clearly more rational than the purely defensive measures discussed above. 

However it is questionable whether design philosophies based on isolated members in 

fire are actually relevant when these form part of a continuous structure. 

MATERIAL PROPERTIES AT ELEVATED TEMPERATURES 

The mechanical properties of steel must be known before an understanding of 

structural elements such as composite beams, connections and concrete in fire can be 

established. 

1.4.1. THERMAL PROPERTIES OF STEEL 

The most important mechanical properties of steel are strength (yield stress), stiffness 

(elastic modulus) and thermal expansion coefficient (cc). 

The stress-strain behaviour of steel at elevated temperatures is highly dependent on 

the rate of heating, due to the onset of creep at temperatures exceeding 4501C (creep 

being defined as a continuous time-dependent deformation under constant load and 

constant temperature). Making the assumption of a linear heating rate up to a limiting 

temperature of 6000C, and failure times of 30 to 120 minutes, practical heating rates 
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may be defined as 5"C/minute for well-insulated sections and 20'C/minute for 

exposed sections (Lawson and Newman) 12. Therefore, if the heating rates of small- 

scale tests are kept between these limits the results obtained should be representative 

of the behaviour of steel in large-scale tests. The stress-strain characteristics of steel 

may be established using either of two methods. 

Isothermal (steady state) tests, in which a constant temperature is applied to the 

tensile test specimen. The specimen is then loaded to induce strain at a steady rate 

that will produce the stress-strain curve for a given temperature. Traditionally, 

isothermal tests have been used for mechanical engineering applications. 

Anisothermal (transient) tests, in which a constant load is applied to the tensile 

test specimen and then the temperature is increased. The resulting strains are 

measured, with the effect of thermal strains being deducted after obtaining results 

from unloaded specimens subjected to the same temperature conditions. Stress- 

strain curves at particular temperatures are obtained by interpolation from a family 

of curves at different stresses. 

13 
A review of both types of test has been conducted by Kirby and Preston , who 

conclude that anisothermal tests indicate lower strengths but that they can be claimed 

to be more realistic. 

Stress (N/mm 2 
3001 

250 
20T ý 

---- --7 

200 

150 

loo 

50 
NOT 

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 
Strain 

Figure 1-04. Ramberg-Osgood stress-strain diagram for grade 43 Steel with 
275N MM2 yield stress 
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British Steel 12 conducted a series of anisothermal tests to obtain the family of stress- 

strain curves for Grade 43 steel which are embodied within BS5950, Part 8 9. These 

are shown in Figure 1-04. It may be assumed that the effect of creep is implicitly 

accounted for in the stress-strain characteristics. 

Traditionally, assumptions have been made that critical conditions would normally be 

reached at a temperature lower than 600'C. Thus investigations of the mechanical 

properties of steel have normally been restricted to a maximum of 600'C. Recently, 

advances have been made in the understanding of structural response to fire, leading 

to the realisation that structures can survive steel temperatures beyond 600T. This 

has called for the range of temperatures to be reconsidered, and BS5950, EC3 and 

EC4 have both responded with stress-strain characteristics for temperatures of at least 

8000C. 

Strength Retention Factor 
I 

0.91 
0.8 
0.7 1 

I I 

0.6 BS 5950 BS 5950 
0.5 0.5% 1.5% 
0.4-- 
0.3-- 
0.2-- 
0.1-- 

0 
0 loo 200 300 400 500 600 700 800 

Temperature (T) 

Figure 1-05. Degradation (? f steel strength with temperature 

Steel begins to lose strength (yield stress) at temperatures above 300T, continuing to 

weaken to approximately 10% of its original strength at 800'C. The degradation of 

this small residual strength then continues at a slower rate until melting begins at 

approximately 1500T. The strain value at which the residual strength of steel should 
be measured when strength reduction factors are specified in the design codes is 

questionable. In this context, the strength reduction factor is defined as the residual 
strength of steel at a particular temperature, relative to its basic yield strength at room 
temperature. At ambient temperatures, mild steels have a yield stress that is defined 
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as the value consistent with a yield plateau. At elevated temperatures there is a 

gradual increase in stress with increasing strain. BS5950: Part 89 adopts a strain limit 

of 1.5% for beams and 0.5% for columns, whereas ECI Part 1.2 11 uses a strain limit 

of 2.0% for all members. These strength reduction factors are shown in Figure 1-05. 

Beyond 800'C, a linear steel degradation to zero strength retention at 1200'C may be 

assumed. 

The stiffness of steel is defined by its elastic modulus, which is the tangent of the 

stress-strain curve at zero stress. It is known that increasing temperatures cause the 

elastic modulus of steel to deteriorate. As the stress-strain curves are curvilinear, it is 

difficult to define a consistent proof strain at which to assess the elastic modulus of 

structural steels at elevated temperatures. 

Stress-strain characteristics given in EC3: Part 1.2 11 are linear to the limit of 

proportionality of approximately 0.1% strain. However, BS5950: Part 89 adopts a 

fully non-linear form of stress-strain curve. In the case of the EC3 11 curves, provided 

the analysis remains within the limits of proportionality, there is no need to define a 

suitable level of strain. It may be seen in Figure 1-06 that a close correlation exists 

between the recommendations of both codes of practice. Beyond 800'C a linear 

degradation to zero stiffness retention at 1200'C may be assumed. 

For the purpose of later validation of the laminated flat shell finite element, a linear 

form of steel stiffness degradation will be used, being: 

E, 
=, _( 

T) 
E20 1200 

where, 

T is the specified temperature, 

ET is the elastic modulus at the specified temperature, 

E20 is the elastic modulus at the ambient temperature. 

1-01 
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Stiffness Retention Factor 
1 

0.9 
0.8 
0.7 
0.6 

0.51 BS81 10 
0.4 
0.3 
0.2 
0.1 L 

0 100 200 

EC4 

300 400 500 600 700 800 
Temperature (T) 

Figure 1-06. Degradalioil of steel sfiffness with leml)erature 

The thermal expansion of steel becomes significant at elevated temperatures. The 

coefficient of thermal expansion, cc, for steel is typically assumed to be IN 10 -6 PC at 

low temperatures, increasing to 14xlO-6/'C at 6000C. At approximately 720T, steel 

undergoes a phase change, producing a reduction in the rate of thermal expansion as 

energy is absorbed and the material adopts a denser internal structure. 

Thermal strain 
0.02 

0.018 
0.016 
0.014 
0.012- 
0.01 

0.008--- 
0.006 
0.004 
0.0021- 

0- 
0 200 
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4 
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Figure 1-0 7. Steel thermal strain 

In BS5950- Part 89, the assumption is made that the linear 

1000 1200 

coefficient of thermal 

expansion continues with no account taken of the phase change and the consequent 
behaviour. EC3. Part 1.2 " uses a tri-finear relationship to account for this phase 

10 
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change. The EC3 11 and BS 5950 9 coefficients of thermal expansion are compared in 

Figure 1-07. 

For the purpose of later validations of the laminated flat shell element, a constant 

coeff icient of thermal expansion of 0.0000 14 /C will be used. 

1.4.2. THERMAL PROPERTIES OF CONCRETE 

When concrete is exposed to high temperatures, such as those produced by fires, 

sudden (and possibly disastrous) changes in its behavioural properties occur. As its 

temperature increases the concrete will expand, and the absorbed energy will 

progressively evaporate the moisture within the concrete matrix, reducing the rate of 

temperature increase. This loss of moisture will also cause shrinkage of the concrete, 

offsetting its rate of thermal expansion. Concrete has a low thermal conductivity, and 

thus a rise in the temperature of its surface will be transferred slowly throughout the 

section. 

Different types of concrete possess different mechanical and thermal properties when 

exposed to fires, which are also dependent on the type of aggregate used, those with 
low or regular rates of thermal expansion giving the best performance. Aggregates 

such as gravel, flint and granite a have high silica content and are liable to sudden 

volume increase at certain temperatures due to crystal structure changes. This may 
have the effect of causing excessive spalling due to the high internal stresses from the 

sudden expansion of these aggregates. Aggregates found in lightweight concrete, 

such as furnace slag, have excellent fire resistance since they do not expand as the 

silica-based aggregates do. 

Concrete using lightweight aggregates has thermal properties that are a significant 
improvement when compared to normal-weight concrete, due to its reduced rate of 

thermal expansion and thermal conductivity, and a higher percentage of residual 

strength. BS 8110: Part 29 uses a strength retention factor which is shown in 

Figure 1-08, and this is compared to EC4: Part 1.2 11. 

Again the coefficient of thermal expansion for concrete is highly dependent on its 

mineralogical composition. If the aggregate is of a flint or quartzite type, producing 
normal-weight concrete, the coefficient of thermal expansion is greater than that due 

11 



Chapter I- Introduction 

to the lightweight aggregates. Figure 1-09 shows the variation of thermal expansion 
for both BS81 10- Part 29 and EC4- Part 1.2 11. When validating the laminated flat 

shell finite element, a coefficient of thermal expansion of 0.00001 1'C will be used. 

Strength retention factor 
I 

0.91 
0.8 
0.7 
0.6 
0.5 
0.41 
0.3 EC4, lightweight concrete 
0.2 
A1 IIi BS 8110, lightweight concrete 

11 

0 200 3300 400 500 600 700 800 
Concrete temperature (OC) 

100 

Figure 1-08. Strength retention. factors of normal-weight and lightweight concrete at 
elevated temperatures. 
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0.01 BS 8110, normal-weight concrete 

0.008 
EC4, lightweight concrete v. vvo 

0.004 
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Figure 1-09. Ihermal elongation (? f normal-weight and lighm, eight concrete at 
elevated temperatures 
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Chgpter I- Introduction 

SCOPE AND LAYOUT OF RESEARCH 

The primary aim of the present research is to investigate the effect of a fire on whole- 

structure behaviour and the predominant parameters that affect the structural 

performance of the building in different fire scenarios. 

Chapter 2 introduces the Building Research Establishment's composite test frame 

situated at the Cardington laboratory. The data gained from the six fire tests 

conducted by British Steel and the Building Research Establishment will be used for 

comparison against the parametric studies that follow. 

In Chapter 3 the finite element program, VULCAN, developed by the University of 
Sheffield, is reviewed in its state at the start of the research project, and validations 

are given by comparison against established solutions. 

Chapter 4 reviews a series of parametric studies on the Cardington test frame using 

the isotropic flat shell element of Chapter 3 to simulate the composite floor slab. The 

parametric studies concern variation of the floor slab thickness, the influence of steel- 

to-steel connection strength and stiffness, the positioning of loading on the structure 

and the size of subframe required when modelling. 

The isotropic floor slab flat shell element is extended in Chapter 5 to a laminated 

variant which allows the inclusion of thermal bowing, material non-linearities, 

material degradation and a more advanced cracking model. Validations and a short 

study follow. 

Using the laminated flat shell element, Chapter 6 details a second series of parametric 

studies which consider the structural effects of slab thickness, temperature gradient 

through the slab, and the effects of the compressive and tensile stresses and load 

ratios, on the basis of the Cardington tests. 

In Chapter 7a qualitative analysis of the Cardington parametric studies is undertaken 

with particular reference to Chapters 4 and 6. 

Finally, in Chapter 8 general conclusions are drawn and suggestions for further work 
are presented. 
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Charter 2- The Cardin-eton Test Frame 

2 THE CARDINGTON TEST FRAME 

Since the mid-eighteenth century, engineers have realised the need for large-scale fire 

tests to ensure that a fire is confined to the room of origin. Some tests were conducted 

using rather unorthodox methods such as David Hartley's test of 1776 in Putney 

Heath 2, where he stayed on the upper floor of a house, the floor of which had been 

protected with metal plates, with a fire burning in the room below. Fortunately, 

David Hartley remained unharmed. 

Current fire tests are far safer than those of 1776 as many standard test procedures 
based on past experiences are now in circulation 14 

. Assessment of the fire resistance 

of members relies heavily on the testing of isolated members under standard test 

procedures 14 as specified in BS 476: Part 20 7 and ISO 834 6. The emphasis on testing 

isolated members means that the action of whole buildings in fire is not fully 

understood. This however was addressed in the concept of the Cardington test frame, 

in which whole building action in loading, vibration, fire and explosions was to be 

tested. 

A full-scale, eight-storey building, of composite steel/concrete construction was 

erected at the Large Building Test Facility at the Cardington laboratory of BRE 15. 

With a footprint of 45m by 21m. and a total height of 35m, this structure was designed 

and built to resemble a typical modem city centre office block. 4m. x 4.5m stairwells 

were placed at both ends and a 9m. x 2.5m lift core was placed centrally within the 

building. An atrium is located in the reception area and two columns in the first two 

storeys were omitted to accommodate this. Above this level deep beams are 

incorporated to transfer loading from upper columns. A general arrangement of the 

Cardington building is shown in Figure 2-01. The beam sizes are as follows: 

305 x 165 x 40 UB (Grade 43) for all secondary beams. 

610 x 228 x 101 UB (Grade 50) for all 9m main beams. 

356 x 171 x 45 UB (Grade 50) for all 6m main beams, perimeter beams and 
for all trimming beams (Around lift shaft voids etc. ). 

14 
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Figure 2-01. General arrangement of the Cardington Test Frame 

Peter Brett Associates (Consultant engineers) conducted the structural design of the 

building to BS5950 9. The fabrication and building erection was carried out by 

Caunton Engineering Limited. This was completed in March 1993. All the steel 

members were shot-blasted, but left unpainted. The original intention was for the 

rolling of the steel to be conducted at one mill only, and each rolled bar to be tested 

three times. This was not possible as the rolling was split between three British Steel 

mills (Lackenby, Shelton and Scunthorpe), and some of the mills only carried out 

standard tests. Therefore the reported tensile test results of the steel members are not 

comprehensive. However, using the available data, it can be shown that for Grade 43 

steel (S275) the yield strength ranged from 291 to 318 N/mm2 and for Grade 50 steel 

(S355) the yield strength ranged from 371 to 413 N/mmý. 

The structural design concept was based on the assumption that the structural ffame 

would be braced. This was effected by Grade 50 flat steel cross bracing down the 

three vertical access shafts. Grade 43 rolled steel angle windposts were positioned at 
3m centres from ground to the fourth floor. Above this the windposts were positioned 

at 2.25m centres. Accidental damage must be localised - according to BS 5950 9- by 

the use of 'key elements". This led to the transfer beams at second floor level, in 

conjunction with their supporting columns and restraining members, being designed 
for a blast load of 34kN/rný, and hence the requirement for horizontal tying members 
to the columns at the level of the first and second floors. 
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Chapter 2- The Cardtnjzton Test Frame 

An underlying principle at the design stage was that the building was to use a minimal 

amount of material and be inherently simple to manufacture. This had the effect of 
the secondary beams being designed as simply supported, whilst acting compositely 

with the floor slab through the use of 95mm x 19mm 0 shear studs at 225mm 

spacing. A continuous composite flooring system with a nominal depth of 130mm 

was used, comprising 0.9mm steel decking (PMF C1770), lightweight concrete and 
A142 anti-crack mesh. A survey has shown the actual slab depths vary from 128mm 

to 175mm, as detailed in Section 2.8. A characteristic imposed load of 2.5kN/m2 with 

an additional load of l. OkN/m2 to account for partitions was assumed for all floors, 

except the roof The roof was assumed to support plant, and a characteristic imposed 

loading of 7.5kN/m2 was used. In order to simulate the imposed serviceability 
loading sandbags, each weighing II kN, were used. 

Flexible end plates were used for beam-to-column connections and fin-plates for the 

beam-to-beam connections. Column splices consisted of cap and base plates. The 

perimeter columns and approximately 75% of those around the bracing cores were 

spliced once over the building height, whilst the heavier internal columns were 

spliced twice. 

2.1 THE CARDINGTON FiRE TESTS 

This test frame was subjected to a series of fire tests during 1995 and 1996 to 

investigate the importance of whole-structure behaviour under various types of 

compartment fires. The cost of such testing, and of fire tests in general, is extremely 
high, and one objective of the Cardington programme is to provide data over a range 

of fire scenarios in a real structure so that different computer modelling approaches 

may be tested and evaluated. A summary of the test programme is shown in Table 2- 

01. 

The imposed serviceability loading applied to the test area and the surrounding 

structure was MkN/mý, and this remained constant during the fire tests. The load 

ratio applied to the beams (defined as the load applied at the fire limit state divided by 

the load causing the member to fail under normal conditions 16) was 0.45 for the 9m 

secondary beams, 0.43 for the 6m primary beams and 0.29 for the 9m. primary beams. 
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Chapter 2- The Cardinjeton Test Frame 

As these load levels are relatively low, there was an inherent reserve of strength that 

was utilised during the Cardington fire tests. 

Test Sponsor Description Date 

I ECSC Restrained beam January 1995 

2 ECSC Plane frame May 1995 

3 ECSC I' Comer July 1995 

4 BRE 2 nd Comer October 1995 

5 BRE Large compartment April 1996 

6 ECSC Large office compartment June 1996 

Table 2-0 1. Summary of the Cardington test programme 

Figure 2-02 shows the extent of each of the Cardington fire tests. The tests were 

conducted on different floors and this will be detailed later in the chapter. 

Large compartment test 
fire compartment 

-1 

. 4- 

.r 

Large compartment 
demonstration test fire BRE comer test 
compartment fire compartment 

H_________ H 
III 

Restrained beam test 
fire compartment 

I 

Plane frame test British Steel comer 
fire compartment test fire compartment 

Figure 2-02. Schematic plan showing locations of the Cardinglonfire tests 

The temperatures for each of the fire tests are recorded in this chapter, at the positions 

shown in Figure 2-03 
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Section A-A 

Figure 2-03. Location of restrained beam test sample temperatures. 

2.2 RESTRAINED BEAm TEST 

The restrained beam fire test involved the heating of a single secondary beam 

supporting a section of the 7h floor and the surrounding slab. The member tested was 

a 305 x 165 x 40 UB spanning between columns D2 and E2 as shown in Figure 2-02. 

Figure 2-04. Restrained beam lestfire compartment 

The gas-fired furnace used in the test was built from the & floor with the capacity of 
heating a floor area of 8m x 3m. A flexible ceramic fibre fire barrier was fitted 
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between the metal decking soffit and the top of the furnace walls to prevent hot gases 

escaping the compartment whilst allowing unimpeded deflection of the beam and 

surrounding floor slab. The voids between the metal decking and steel beam upper 
flange were filled with mineral fibre in an attempt to reduce the thermal gradient 
through the heated beam; this was intended to simplify computer simulations. A 

schematic diagram of the restrained beam test fire compartment is shown in Figure 2- 

04. 

A total of 300 channels of instrumentation were used on the restrained beam test. 

These measured: 

1. Atmosphere, steel and concrete floor slab temperature profiles at specific 
17 locations within the test compartment 

18,19 2. Vertical and horizontal deflections of the test compartment 

3. Rotation of the beams within the test compartment 20. 

4. Structural movement of the floor slab immediately surrounding the test 
18,19 

compartment 

5. Strain re-distribution at the ends of the beams (outside the furnace) and the 

immediate surrounding structure 21 
. 

The beam was heated at a rate between 3 to I OIIC per minute until temperatures were 

recorded in the range 800 to 900'C within the beam section. A maximum bottom- 

flange steel temperature of 832"C was reached at the end of a 150-minute period. 

Figure 2-05 shows the distribution of temperatures through the centre of the restrained 
beam and floor slab cross-section as shown in Figure 2-03. It will be noted that there 
is no temperature data for the atmosphere and beam for the first 5 minutes. Other data 

taken during the test shows that there is a rapid, approximately linear, increase up to 
200'C in this time period, which indicates a lag in the beam and slab temperatures. It 

can also be noted that the temperatures of the bottom flange and the web are similar. 
The top flange temperature is lower, due to only being exposed to heat on the lower 

side and to the floor slab acting as a heat sink. The floor slab temperature increases 

more slowly than that of the beam. A 'plateau' in the slab temperature increase 
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occurs at 100T. This is a consequence of the high water content (a normal 

characteristic of lightweight concrete) reaching boiling point and the energy 

requirement associated with latent heat of evaporation. 

Temperature ('C) 
1000 

0 200 

50 minutes 100 minutes 
Figure 2-06. Temperature profiles across the centre of the restrained beam test at 50 

minutes and 100 minutes. 

Figure 2-06 shows a temperature profile of the cross-section at the centre of the beam 

at times of 50 minutes and 100 minutes. 

The test beam is highly restrained against thermal expansion due to the continuous 

nature of the slab over the beam and its position relative to the supporting columns 

and cross bracing. The principal aim of the test was to investigate the effect of this 

phenomenon locally. The lower flange did buckle at the ends of the furnace during 

the test, due to the large induced compressive forces, combined with the intrinsic 

hogging moment near the support, as shown by Figure 2-07. This is similar to local 

buckling found during the investigation of the Broadgate Phase 8 fire 22 
. As Bailey 23 

points out, this local buckling may not constitute failure, since formation of hinges at 
these locations would essentially create a simply- supported beam between them. 

50 I(X) 
Time (min) 

150 

Fýgure 2-05. Temperature profile across the beam and concrete. 
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Figure 2-0 7. RestraMed beam bottomflatige buckle 

By studying the deflections and rotations of the restrained beam during the fire test 

the time, and consequently the temperature, at which the bottom flange buckled can 
be estimated. 

550 550 1800 1800 1800 1800 
___________________- - 

-- 

16 11 T-ý-T 1ýý la i! ý 
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a 
14 15 

leý 17C T-IT 
I 

Figure 2-08. Location of measured deflections and inchnometers in the restrained 
beam test 

Figure 2-09 shows a plot of the time and vertical deflection of the restrained beam test 

at the locations shown in Figure 2-08. Following Figure 2-09 it can be seen that for 

position 13 (the centre of the restrained beam), the beam deflects, easing gently at 

approximately 30 minutes, then continuing until approximately 70 minutes when 
there is a suddenly increase in deflection. The deflection then continues at an 
approximately linear rate until the end of the test. The beam follows a similar pattern 
to location 13 at locations 12 and 14. At locations 11,15,16 and 17 the beam has a 
similar action to that previously described until 70 minutes, at which stage there is a 
significant decrease in the rate of deflection. It will be noted that at positions 11 and 
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15 the deflection slowly increases, whereas at positions 16 and 17 it remains constant. 
This indicates that a possible buckle has occurred between positions 11 and 16 and 

positions 15 to 17. Extra confirmation of the buckle at 70 minutes may be made using 

the rotational data from the test. 

20 40 
Time (mins) 

60 80 100 120 140 160 

Deflection (mm) 
P'igure 2-09. Time vertical deflection plot of the restrained beam test 

The rotations along the beam (shown in Figure 2-10) were measured using 
inclinometers at the locations shown in Figure 2-08, symmetry along the length of the 
beam should be noted. The rotations at the centre of the beam (location 13) are 

negligible. All the rotations follow a logical increase, with a slight plateau forming at 

approximately 30 minutes corresponding to that found in the vertical deflections. The 

rotations increase until approximately 70 minutes, at which stage the rotations at 
locations 11,12,14 and 15 continue to increase. However, the inclinometers at 
locations 16 and 17 both record a small decrease in rotation at this point before 

stabilising at a constant value. This indicates that the beam is still rotating at locations 

11,12,14 and 15, whereas at locations 16 and 17 rotations have stopped. This could be 

due to a hinge (such as a local buckle) forming. 

Assuming that the 'hinge' formed at 70 minutes, this corresponds to a bottom flange 

temperature of 530'C. 
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Figure 2- 10. Restrained beam rotations 

2.3 PLANE FRAME TEST 

The plane frame test was conducted in May 1995. This test involved heating a 

number of primary beams and columns across the full depth of the frame supporting 

the fourth floor as shown on Figure 2-02. The aim of the test was to ascertain the 

influence of beam-column interaction. 

Figure 2-11. Plane frame testfire compartment 
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The fire compartment was created by a furnace built on the 3rd floor using lightweight 

concrete block walls to form a corridor 21.15m long and 2.5m wide. The blockwork 

was taken around the comers to close each end of the corridor and stopped 200mm 

short of the edge of columns on gridlines EI and E4. The furnace was heated by eight 

independently controlled industrial gas burners. These were installed 450mm above 

the floor and were served by a 75mm gas main and a 200mm air supply. The fire 

compartment is shown schematically in Figure 2-11, 

To allow the concrete floor to deflect unimpeded the top course of the furnace wall 

was finished 400mm below the metal decking. A flexible ceramic fibre fire barrier 

was used to close the remaining height. The wall was slotted where it was possible 

that the wall would impede the deflection of the secondary beams. Any remaining 

gaps in the blockwork were filled with ceramic fibre. 

Figure 2-12. Photograph (? f the head of buckled column on gridline L'. 1 

Studies by Najjar et al 24 to simulate the plane fi-ame test using a skeletal frame 

analysis had indicated that, if the columns were unprotected, failure could occur at 

relatively low temperatures. The columns in the fire compartment were therefore 
insulated with ceramic fibre blanket. The top 500mm of all columns was unprotected, 

since it was assumed that in practice the column would be encased to a height just 

above the suspended ceiling. Unfortunately this unprotected zone at the inner column 
heads (located on grid positions E2 and E3) suffered an extreme local plastic buckling 
deformation, with a sudden vertical displacement of approximately 100mm taking 
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place at a control temperature (the heated beam's lower flange temperature) of about 

620'C. This is shown in Figure 2-12. 

Instrumentation was installed on the plane frame test to measure. 

1. Atmosphere, steel, concrete floor slab and connection (Beam to beam and beam to 

column) temperature profiles at specific locations within the test compartment 
25, 

26 

2. Vertical and horizontal deflections of the main beams 27. 

3. Horizontal deflections of the columnS27. 

4. Rotation of the columns and beams at the main connections within the test 

compartment 28. 

5. Strain re-distribution in the columns and the immediate surrounding members 29 
. 
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Figure 2-13. Planeftame test temperature profile across beam and slab at the centre 
of thefurnace 

The temperatures attained within the centre of the plane frame furnace are shown in 

Figure 2-13 and should be read in conjunction with Figure 2-03. This plot includes 

the standard ISO 834 6 curve for comparison. The initial atmospheric temperatures 

within the test increase rapidly to approximately 500'C. The steel temperatures 
follow this with the bottom flange and web at approximately equal temperatures 

whilst the top flange is approximately 80% that of the bottom flange throughout the 

ý. tmosphere 

ISO 8 34 curve 

e 
a 

200.0 250.0 300.0 
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test. The temperatures of the steel decking for both troughs and ridges increase 

rapidly following the atmospheric temperature rise. These are approximately 70% of 

the bottom flange temperature. The temperature of the concrete increases to I OO'C at 

which stage the water contained within the concrete matrix begins to evaporate. This 

again causes a marked reduction in the rate of temperature gain. This stage could 

continue until all moisture had been removed. Following this the concrete would 

slowly increase in temperature. 

The positions of the deflections recorded during the test are shown in Figure 2-14 and 

the corresponding test data in Figure 2-15. 
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Figure 2-14. Locations of measured deflections in the planeftame test 
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Figure 2-15. Planeftame test deflection plot 

The initial increase is due to thermal bowing, where the temperature difference 

between the steel beam and the concrete slab causes different rates of expansion 
between the materials, causing curvature to occur. For temperatures higher than 

rýT 

300 
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approximately 550"C (80 minutes), the steel strength and stiffness reduces 

significantly causing the structure to deflect further. This continues until 

approximately I 10 minutes when there is a sudden increase in the rate of deflection. 

This is probably a direct consequence of the plastic deformation at the head of the 

columns, although not due directly to vertical movement as the displacements were 

measured from the floor above and therefore all deflections are relative. However, 

the plastic deformation allows the head of the column to act as a hinge, dramatically 

reducing the rotational resistance of the column. 

2.4 BRITISH STEEL CORNER TEST 

The British Steel comer test was conducted in July 1995. This was carried out on a 

comer bay of the structure heated by burning wooden cribs. The comer compartment 
is shown in the plan presented in Figure 2-02. 

The compartment was constructed using lightweight concrete blockwork, giving final 

internal dimensions 9980mm. wide by 7570mm. deep. To allow the concrete floor 

above to deflect freely the top course of the compartment wall was finished 400mm. 

below the metal decking and the remaining height was completed by fitting ceramic 
fibre blanket. Slots in the compartment walls were also provided to allow unimpeded 

movement of the steel beams, with any remaining gaps loosely filled with ceramic 
fibre. The blockwork wall was built into the webs of the column sections or butted up 

against the flanges, leaving a nominal gap of 10mm. between the steel and masonry. 
At the edge of the building (along gridline F), the existing wall was completely 
detached from the edge beam and column by the removal of wall restraints and steel 

ties. The fibreboard in the expansion joints between the columns and blockwork was 

also removed. The compartment floor was protected with sand. 

A movable steel-reinforced ceramic fibre screen that covered a single opening along 
the external wall was designed to control the ventilation to the test. 

Exposed surfaces of columns on gridlines E2, El, F1 and F2, the connections and the 

perimeter beams were all protected using 25mm ceramic fibre blanket. However, all 
the internal primary and secondary beams were left fully exposed, and voids between 
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the upper flange and the metal decking were left unfilled. The fire compartment of 

the British Steel comer test is shown in Figure 2-16. 

In-situ blockwork 
gable end wall 

rl*h 

Figure 2-16. British Steel comer festfire compartment 

Instrumentation was installed on the British Steel comer test to measure: 

Steel temperature profiles at specific locations along the primary, secondwy and 

edge beams 30,31,32. 

30,31,32 
2. Temperature profiles through the metal decking and concrete floor 

3. Steel temperature profiles around the beam-to-beam and beam-to-column 
30,31 and 32 

connections 

4. Steel temperature profiles at specific locations along the columns 31,3',, d32. 

5. Vertical and horizontal deflections of the beams, columns and the floor slab 33 

6. Beam and column rotations at the main connections 34. 

7. Strain profiles across the columns within the compartment and the surrounding 

structural members 35. 
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Strain across the surface of the concrete slab 35 
. 

The temperatures measured at the centre of the compartment are shown in Figure 2-17 

and should be read in conjunction with Figure 2-03 which shows the positions of the 

thermocouples. 
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Figure 2-17. British Steel Comer Test Temperatures at centre of compartment 

At the start of the test, the timber cribs burned but generated little increase in the 

compartment temperature, but at about 16 minutes flashover occurred. The 

temperatures of the beam at the bottom flange and web positions are similar 

throughout the test, and follow closely the atmospheric temperature with a lag of 

approximately 5 minutes. The top flange temperature is approximately 80% of that of 

the bottom flange. The temperature of the metal decking increases rapidly until it 

reaches I OOOC. The metal decking then maintains a constant temperature for 

approximately 10 minutes while thermal energy is expended through the evaporation 

of the water held within the concrete. After this stage the metal decking quickly 
increases in temperature until it is approximately equal to the top flange temperature. 

The temperature within the concrete slowly increases due to its inherently low thermal 

conductivity. When the internal matrix of the concrete reaches 100'C, it remains at 

this temperature for approximately 20 minutes. 

Deflections in this test were recorded at the locations shown in Figure 2-18 and the 

values are shown in Figure 2-19. 
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Figure 2-18. British Steel corner test position of measured deflections 
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Figure 2-19. British Steel corner test deflections 

0 

For the first 16 minutes there was no increase in deflections as the fire was developing 

at this stage. The secondary and primary beams began deflecting at this stage due to 

thermal bowing. After approximately 35 minutes, the steel had lost significant 

strength and stiffness, increasing the deflections until approximately 100 minutes. 

2.5 BRE CORNER TEST 

The BRE comer test comprised a compartment 9m wide by 6m deep giving a total 
floor area of 54M2 . The test was conducted on the second storey, so that the floor 

under test was the floor above (i. e. the third floor). The position of the comer test is 

shown in Figure 2-02. The test took place during October 1995. 

The fire compartment comprised aIm high, blockwork, dado wall along gridline 4, 

this being where the windows would be positioned. Along gridline F the existing 
gable end wall was utilised as a boundary for the fire compartment. Finally on 

D4 
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gridlines 3 and E, walls were built to the soffit of the steel beams using plasterboard 

walling. The fire compartment is shown in Figure 2-20. 

r 

-ì 

Plasterboard fire wall 

Figure 2-20. BRE corner lestfire compartment 

The BRE comer test was heated using timber cribs designed to give a fire loading in 

the compartment of 40 kg/m. 

The following instrumentation was used on the BRE comer fire test: 

1. Thermocouples were used to measure the temperatures within the compartment 

atmosphere, the concrete slab, columns, primary beams, secondary beams and the 

temperature of the environment outside the building 36. 

2. Strain gauges were used to monitor the columns, beams and the concrete floor 

slab and its reinforcement mesh 36 
. 

3. Displacement transducers were used to determine the deflection of the floor slab. 
The column deflections about the major and minor axes were also measured 36 

. 

4. An innovative laser system was used to measure the movement of the masonry 
panels exposed to the fire placed on gridline F 36 

. 

Existing blockwork 
gable end wall 
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5. Inclinometers were used to record the rotations of the connections within the 

compartment 36. 

6. Heat flux meters, steel billets and their associated thermocouples were also placed 
in the compartment 

36 
. 

7. Load cells were used to monitor the weight loss of three of the timber cribs 36 

As part of the experiment, support from a local double-glazing firm was procured who 

supplied three double-glazing units which were placed in the window opening of the 
fire compartment along gridline 4. These double-glazing units had a significant effect 

on the ventilation in that while they remained intact the temperature in the 

compartment did not seriously exceed approximately 200'C. The temperatures at the 

centre of the compartment are shown in Figure 2-21, which should be read in 

conjunction with the location plan, Figure 2-03. 

After 60 minutes, the double-glazing was clearly contolling the fire, and so the middle 

of the three windows was broken to increase the ventilation so that the test might 

continue. This had the effect of increasing the temperature to approximately 350'C 

but then a steady state was again reached. One of the remaining two windows was 
then broken which allowed enough ventilation for flashover to be achieved at 95 

minutes, leading to a maximum temperature in the centre of the compartment of 
980T. The steel bottom flange and web temperatures shown in Figure 2-21 closely 
follow the atmosphere temperature, with the top flange temperature lagging at 

approximately 80% that of the bottom flange temperature. The metal decking 

temperature follows closely, though slightly lower, than that of the top flange. This 

difference is due to the adjacent concrete having low thermal conductivity and acting 

as a heat sink. Temperatures on the reinforcement and on the top of the concrete 

slowly increase to 100'C, at which stage the moisture contained within the concrete 
begins to evaporate, causing the temperature to remain static. Once the moisture has 

been removed the temperature will begin to increase slowly. 

The temperatures from the tests were not intended to follow the ISO 834 curve; 
however, this standard fire test curve is shown for the purpose of comparison. 
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P'igure 2-21. BRE corner lest sample temperatures at centre offire compartment 

Deflections in the test have been measured at the locations shown in Figure 2-22, 

Figure 2-23 shows the corresponding deflection data. 
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Figure 2-22. Location of the BRE corner measured deflections 
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Figure 2-23. BRE corner test deflections 
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The deflections of the BRE comer test are negligible up to 60 minutes, and beyond 

this point the deflections increase slowly up to a maximum of 75mm at 95 minutes. 
Once flashover is attained a sudden increase is experienced over a 5-minute period, 

after which the temperature begins to peak, slowing the rate of deflection. 

It is interesting to note the deflections at the centre of the beam on gridline 3, which 

actually begin to reverse towards the end of the test. 

2.6 LARGE COMPARTMENT TEST 

The large compartment fire test was conducted in April 1996. This fire compartment 

was constructed between the second and third floors, covering a total plan area of 
342n?. Figure 2-02 shows the location of the test. 

In the test, timber cribs were used to heat the compartment. The cribs were designed 

to give an early flashover - taking 20 minutes to peak - followed by a steady burning 

time of 40 minutes. 

A large firewall was built along gridline C to compartmentalise the fire. This was 

constructed using plasterboard with a sliding system under the floor soffit to allow 

unimpeded deflection of the floor. The fire compartment is shown in Figure 2-24. 

Access shaft protective blo. ckwork wall 

(D 0 
Fire compartment wall 

Dado wall across constructed using OC 
plasterboard v, indow opening 

Figure 2-24. Large compartment testfire compartment 
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On a test of this scale it is not possible to instrument all members within and adjacent 
to the compartment, and so a balance of desirability against practicality must be made. 
The following instrumentation was used on the large compartment test: 

1. Thermocouples were used to measure the atmospheric temperatures within the 

compartment 37 
. 

2. Thermocouples measured the temperature of the concrete slab at different depths 

in 6 different locationS37. 

3. The temperatures of columns, primary beams and secondary beams were recorded 

using thermocouples 37 
. 

4. Thermocouples were also placed outside the building to measure the spread of 

temperatures outside the building and seven thermocouples were positioned to 

monitor the heat transferred through the fire resistant partition 37 
. 

5. Strain gauges were used to monitor the columns throughout their cross-sections. 

No strain gauges were placed on beams in this test 37. 

6. The concrete floor slab and its reinforcement mesh were both monitored using 

strain gauges 37. 

7.50 displacement transducers were used to determine the deflection of the floor 

slab. In order to ascertain the absolute movements of the 3rd floor, a number of 
37 

additional displacement transducers were located on the e floor . 

8. The displacement of the firewall. along gridline C was monitored by 6 

displacement transducers placed along the length of the firewall 37. 

9. An innovative laser system was used to measure the movement of the masonry 

panels on gridline A which were exposed to the fire 37 
. 

In addition to the instrumentation listed above, a complete record using video and still 
photography was made of the large compartment fire test. 
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The temperatures presented in this thesis are taken from the centre of the fire 

compartment and are shown in Figure 2-25, which should be read in conjunction with 

the location plan, Figure 2-03. 
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Figure 2-25. Large compartment demonstration test typical temperatures at the 
centre of thefire compartment 

It may be seen that the bottom flange temperature is very close to that of the web, and 

these are 'shadowed' by the temperature of the top flange at approximately 80%. The 

temperatures of the metal decking both follow closely that of the top flange with the 

decking 'trough' logically slightly hotter than the decking 'ridge' due to its greater 

exposure to the fire. The temperatures within the floor slabs increase slowly until 
100T is reached. At 100T the temperature remains constant as the water contained 

within the concrete matrix evaporates. At the centre of the concrete the constant 

temperature is slightly higher than 100'C due to the increased pressure, as the pores 

within the concrete through which the vapour must escape are small. 

Deflections in the large compartment test were taken at points across the whole of the 

tested floor slab-, the points illustrated within this thesis are presented in Figure 2-26. 

Deflections around the structure are shown in Figure 2-27. Until approximately 16 

minutes into the test no deflections were recorded, as at this stage the test fire was 

growing very slowly. The test beams then deflected due to the temperature difference 

between the steel beam and concrete slab causing thermal bowing. Beyond this (from 

approximately 30 minutes) the steel's loss of significant amounts of strength and 

stiffness increasingly produced the deflections. 
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Figure 2-26. Location of the deflection measurements in large compartmentfire test 
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Fore 2-2 7. Deflections at centres of various secondary and main beams of the large 
compartment test 

2.7 DEMONSTRATION TEST 

The British Steel demonstration test was carried out during June 1996. The test was 
located between the first and second floors of the Cardington test frame as shown in 

Figure 2-02. 

The fire compartment was built using lightweight blockwork to provide an open-plan 

office 18m wide and up to 10m deep, as shown in Figure 2-28. The wall was finished 

approximately 250mm below the soffit of the floor slab, and ceramic fibre blanket 
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was used to fill the remaining height to allow uninterrupted movement of the floor 

slab. Slots were cut in the wall around the beams to allow free movement. No 

structural alterations were made to the frame. All existing restraints and ties on the 

gable wall, and the windposts, were left in position. 

The existing dado wall along gridline 4 was increased by 2 courses, and for a distance 

of 1.125m on either side of the columns the wall was built up to within 450mm of the 

edge beams. Single-pane aluminium glazing units were installed between the 

blocked-in columns and the windposts, leaving the central gap open to ventilate the 

compartment. The voids between the underside of the edge beam and the top of the 

blockwork and glazing units were filled with ceramic fibre blanket. 

Figure 2-28. Demonstration testfire compartment 

The internal column was protected to its full height, including the connections, with 

25mm ceramic fibre; the columns on the perimeter of the fire compartment were 

treated similarly on their internal surfaces. All beams and beam-to-beam connections 

were left exposed. 

Instrumentation for the demonstration test was installed to record: 

1. Steel temperature profiles along the primary, secondwy and edge beams 38,39 and 40. 
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2. Steel temperature profiles at selected beam-to-bearn and column-to-beam 

connection S 
38,39 and 40. 

38,39 and 40 3. Steel temperature profiles along the protected columns 

38,39 and 40 4. Temperatures of the atmosphere gases 

5. Vertical deflection of the floor beams 41. 

6. Strain profiles across the columns within and above the compartment 42. 

Temperatures found in the centre of the fire compartment during the test are shown in 

Figure 2-29 and should be read in conjunction with Figure 2-03. The standard ISO 

834 curve has been included for comparison. After the fire was lit, the fuel 

smouldered for approximately 10 minutes, at which stage flashover occurred, with a 

maximum temperature of approximately I 100'C being reached at 30 minutes. The 

steel temperatures followed the atmosphere temperatures closely, with a bottom 

flange temperature lag of about 5 minutes over the preliminary stages of the fire. The 

top flange temperature was found to be 80% that of the bottom flange and the web. 

_ 
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Figure 2-29. Temperatures at the centre of the large compartment demonstration test 

Six of the key deflections - as located in Figure 2-30 - are shown in Figure 2-3 1. All 

six locations deflect nominally during the first 10 minutes whilst the fire smoulders. 
All members begin deflecting initially through thermal bowing due to the temperature 
differential between the steel beam and concrete slab. After approximately 20 

minutes the compartment temperatures are sufficient for the steel members to begin to 

39 



Chapter 2- The Cardington Test Frame 

lose strength and stiffness rapidly, therefore inducing greater deflections. The central 
deflection of the 6m main beam may be compared to the large compartment test, 

which has approximately the same deflections for the same temperature. The 

structure reached equilibrium after approximately 40 minutes. 
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Figure 2-30. Location of the large compartment demonstrationfire test 
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Figure 2-31. Beam deflections in large compartment demonstration test 

2.8 SLAB THICKNESS SURVEY OF THE CARDINGTON TEST FRAME 

Floor slab thicknesses in buildings of normal composite construction are known to 

vary significantly from those specified. This is normally due to 'ponding' as 
formwork (either permanent or temporary) supporting the setting concrete deflects 
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due to its self-weight. This was observed in a survey by the Building Research 

Establishment 43 covering an area of approximately 81 m2 of the composite test frame 

at Cardington. It was decided that a larger survey should be conducted covering half 

the test frame floor area, and on two adjacent floors. This was to provide a more 

extensive statistical data check to be used with the slab thickness parametric studies 
included later in this thesis. 

SURVEYING TEcumQuE EMPLOYED 

A number of techniques were investigated for measuring the thickness of the floor 

slabs. These included the use of ultrasonic equipment, covermeters and conventional 
levelling techniques. 

Whilst ultrasonics offered a potentially viable approach, the system requires an 

operator to be situated on either side of the floor, with the transmitter and receiver 
directly opposed to one another. Communication would have been difficult, due to 

extensive work being carried out on the building. 

A covermeter measures, by electromagnetic means, the distance between a concrete 

surface and the steel reinforcement bars, and because of uncertainties relating to the 

position of the reinforcement relative to the bottom of the slab it was felt that such an 

approach would not be sufficiently accurate. 

Although levelling is more prone to human error than ultrasonics or covermeter 

measurement, it can be acceptably accurate if all results are checked properly using 

recognised levelling techniques. This method was therefore adopted. 

SURVEYING METHOD 

Before any work commenced, the two-peg test was conducted to check the accuracy 

of the level. On the frame a grid was set out on the 6h floor and the floor levelled at 
6! h r all grid points, via a change-point in the lift shaft. The floor sof It was surveyed at 

the corresponding grid points. The process was repeated for the top and bottom 

surfaces of the 5"' floor. The survey was closed via the change-points in the lift shaft 
back to the datum point. The closing error was found to be negligible. Care had to be 
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taken to ensure that the levelling staff was at all times positioned on the fibs in the 

floor construction as shown in Figure 2-32. 

Gfidline- 

Staff 
Finished floor ReInforcement layer 

level 
V 

----------- ---- 

Steel decking 
Staff 

Measured thickness 

Figure 2-32. Cardingtonfloor construction 

SURVEY RESULTS 

The areas surveyed on both the 5hand 6hfloors are as shown in Figure 2-33. 

Area of B. R. E. Survey University of Sheffield 
Survey area 

Figure 2-33. Cardington lesiftame plan showing. floor area surveyed 

BRE. had previously conducted a slab thickness survey of a small area of the 
Cardington test frame. The results from this survey are shown in Figure 2-34. 

42 



Chapter 2- The Cardinvon Test Frame 
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Figure2-34. COlilour plot of BAE slab thickness survey on 51hfloor 

The measured floor thicknesses are shown as contour plots in Figures 2-35 and 2-36 

for the 5"' and 6thfloors respectively. 

It has been established that the floor slab thickness varies quite considerably from the 

nominal 130 mm specified in the design of the building, and is very often well in 

excess of this value. The maximum thickness measured was 173 mm (134% of 

specification). The minimum thickness was 124 mm (95% of specification). 
Approximately 15% of the floor area is below the nominal thickness of 130 mm. 

It should be noted that these variations in slab thickness will affect the load ratios to 

beams as described in section 2.1 
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ERRORS IN THE SURVEY 

It should be noted that the end of the building surveyed had previously been subjected 
to fire tests that had resulted in large floor displacements. The columns on grid 

references E2 and E3 had 'squashed' locally (during the plane frame test) and as a 

result shortened by approximately 200 mm. This caused a change in the angle of the 
floor, influencing the apparent slab thickness, as shown in Figure 2-37. 

6000mm 

, fw 

200mm 

IM 

T 

Measured slab 
thickness 

a 

V 

C., T 

Real slab thickness 

1 <1ý 

Figure 2-3 7. Error in the thiclaiess of thefloor slab due to slope 

Angle of floor slab, 

tan-' 
L=1.909' "0 (6000) 

a= cos(I. 9091) x 130 129.93mm 

b= sin(I. 909') x 130 4.33mm 

c= sin(I. 9091) x 13 0 0.1 4mm 

Therefore, distance through stab is (Length 'a' + length V), 

129.9 + 0.14 = 13 0.4mm 
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The effect of the slope on the floor slab's measured thickness is deemed to be 

negligible. 

This 'error' could be magnified if, when surveying the underside of the floor, the staff 
position did not correspond exactly with the survey point on the top of the slab. This 

could be caused simply by operator inaccuracy or by the staff having to be moved to 

avoid a trough in the composite decking. Assuming the point measured on the soffit 
is within 100 mm of the grid point, as shown by Figure 2-38, then the maximum error 
is, 

(200) 
D= ý- 6000. 6006) x 100 = 333mm 

When considering the overall depth of the floor this error is again deemed to be 

negligible. 
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Figure 2-38. Errorproduced by misplacement of the staff whilst measuring thefloor 
S off, 1. 
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DEVELOPMENT OF THE FINITE ELEMENT PROGRAM - 
VULCAN 

3.1 INTRODUCTION 

As was briefly outlined in Chapter 1, furnace testing is inherently limited by the 

physical size of the specimen and the financial costs involved. To continue with 

studies of the effects of fire action on steel structures, organisations have heavily 

invested time and money in developing reliable analytical models to reduce these 

costs and to gain an understanding of structures outside the capacity of a normal 
furnace. A brief history of the simulation of behaviour of steel structures in fire has 

been outlined by Bailey". 

3.2 HISTORY AND FINITE ELEMENT PROCEDURE OF VULCAN 

The finite element method is widely used in structural analysis, but can also be 

applied to a wide range of physical problems such as heat transfer, seepage and fluid 

flow. The finite element method idealises a continuum as an assemblage of elements 
(of finite size) with specified nodes, and hence specified unknowns at the nodes 

replace the infinite number of degrees of freedom across the continuum. 

In the finite element program VULCAN, three different types of element have been 

used to represent various structural components, namely beam elements (for beams 

and columns), spring elements (for steel-to-steel semi-rigid connections) and flat shell 

elements (for floor slabs). These are described in the following sections. 

3.2.1 BEAM ELEMENTS 

EI-Zanaty and Murray 45 of the University of Alberta originally developed their beam 

finite element model in the context of a frame program for large deflection analysis 
including spread-of-yield, in two-dimensional steel frames at ambient temperatures. 
This program was named INSTAF, an acronym for 

-INelastic 
STability Analysis of 

Frames. 
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EI-Zanaty and Murra)ý5 made three basic assumptions in the beam element 
formulation: 

1. The element is straight, prismatic and symmetric about its axis, which coincides 

with the centroid of the cross-section. 

2. Loads are applied only at the ends of an element, at nodes. 

3. Only in-plane deformations occur, and cross-sections that are originally normal to 

the member longitudinal axis will remain undistorted and normal to the beam axis 

after deformation. 

Nodal positions are assumed along the length of a beam, separating it into a number 

of elements. The nodes are positioned at the centroid of the beam section, the 

placement of which is determined at ambient temperature and remains constant 

throughout the analysis. The displacements of the nodal points are the basic unknown 

parameters of this problem. There are two different methods available to determine 

the solution, known as the displacement field and the stress field procedures, both of 

which are described by Zienkiewicz 46. As the displacement field procedure is 

simpler to implement than the stress field procedure when accurate displacements are 

required, it has been adhered to throughout the formulation. The displacement of the 

reference axis within the element, bounded by the nodal points, is defined by 

interpolation (shape) functions. If the displacement of the reference axis is known, it 

is possible to determine the displacement anywhere within the cross-section of the 

beam, and using the large displacement-strain equation the state of strain may be 

obtained 47. As the large displacement-strain equation retains higher-order terms 

within its formulation, geometrically non-linear behaviour may be introduced. As the 

constitutive properties of steel are known, the state of stress throughout the member 

may be calculated, together with the nodal stresses. Equilibrium is enforced between 

the boundary stresses and the externally applied loads. 

Considering the work done by the steel element and the external loads, the Principle 

of Virtual Work may be used to enforce equilibrium by: 

f a, &, dv - (Q) (8q) 
v 

3-01 
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where, 

c;. is the axial stress, 

be, is the virtual axial strain (corresponding to the imposed virtual 

displacements), 

(Q) is the row vector of external loads, 

(5q) is the column vector of imposed virtual displacements. 

If the standard finite element procedure is followed 48,46,47 
equation 3-01 results in a 

stiffness relationship, 

[KNq) = (Q) 3-02 

where, 

[K] is the tangent stiffness matrix, 

(q) is the vector of nodal displacements, 

IQ) is the vector of nodal forces. 

If non-linear analysis is considered, an iterative procedure is required to find the 

solution, and so the above equation becomes 

[K RAq) = (AQ) 3-03 

where, 

(Aq) is the vector of incremental nodal displacements, 

JAQJ is the vector of out-of-balance forces, which on the first iteration is 

equal to the external loads. 

As it is necessary to integrate equation 3-01 across the volume, Gaussian Integration 

is used to evaluate the integral over the cross-section at sampling (Gauss) points, in 

conjunction with weighting factors used to calculate the internal work by calculating 

along the element length. The accuracy of this process is dependent on the positions 
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of the Gauss points and the corresponding weighting factors, and the number of 

sampling points used. Within INSTAF, four Gauss points have been used on each 

element, and the positions of these (in conjunction with the weighting factors) can be 
4 46.47 

obtained from textbooks by authors such as Bathe 8 and Zienkiewicz 

12 3'1 

9 101 V, 12 13 

Figure 3-01. Cross-sectionpositions at which displacements, strains andstresses are 
defined, 

Stress resultants across the beam section are found by integration, either by the use of 

section properties or more easily in inelastic cases by direct numerical integration of 

the stresses. The cross-section is split into 12 segments, allowing the displacements 

and strains to be determined at 13 points as shown in Figure 3-01, which allows 

relatively accurate stress distribution across the section. 

Basic structural mechanics reveals that yield of a member starts to occur where the 

bending moment forces the outer fibres of a section to exceed the yield stress of the 

material. This often occurs at the position of the maximum bending moment. As El- 

Zanaty and Murray 45 assumed that all loads are positioned at the nodal points of the 

beam elements, the maximum bending moment will typically occur at a node, 

although a few exceptional cases occur. Hence, in the initial INSTAF validations it 

was found that spread of yield in the areas local to nodes was not reflected in the 

element tangent stiffness due to the even distribution of the four Gauss points used in 

the numerical integration. The element length was therefore divided into three sub- 

elements with the central sub-element covering 80% of the element and the remaining 
two sub-elements 10% each. This resulted in the outer sub-elements containing four 

Gauss points clustered in the locality of the node; effectively incorporating the 
inelastic strains within the element stiffness matrix when necessary. Static 

condensation 48 is then used to eliminate the internal degrees of freedom created by 

the initial sub-division. 
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Saab 49,50 developed this basic formulation of INSTAF and analysed two-dimensional 

steel frames in fire conditions. The thermal material non-linearities were included 

within the formulation using stress-strain-temperature relationships, and also by 

specifying the tangent modulus of the material at specific strain values by the use of 

the transformed section concept 45 
. The method transforms the width of each of the 

twelve segments shown in Figure 3-01 based on the average tangent modulus of the 

material to find an equivalent elastic cross-section. 

Thermal strains are included in the formulation by considering the temperature profile 

across the section, and these are added as mechanical strains of the opposite sign, as 

shown in Figure 3-02. 

Temperature 
profile 

(+) 

Mechanical 
strai n 
profile 

Thermal 
strain 
profi Ie 

Figure 3-02. Ihe addition of thermal strains in INSTAF 

The unbalanced force in equation 3-03 now becomes, 

(AC)): "':: ý)apphed 
- Qintemal - Qthemal I 

This procedure is followed as the elements increase in temperature. 

3-04 

Najjar 51 further developed INSTAF to allow analysis of three-dimensional bare steel 
frame behaviour in fire conditions. In local three-dimensional co-ordinates each beam 

element node has eight degrees of freedom. These become eleven degrees of freedom 

when transformed to global co-ordinates as shown in Figure 3-03. 
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Izeal co-ordinates 
8 degrees of freedom 

Global co-ordinates 
II degrees of freedom 

Figure 3-03. Degrees offreedom in local and glohal co-ordinales 

The original formulation assumed a reference axis at the centroid of the steel section. 

Bailey 44 revised INSTAF so that it was possible to place the reference axis at any 

arbitrary point on the vertical axis. This was achieved by evaluating the sectional and 

sectorial properties, and the stress resultants required for the repositioning of the 

reference axis. It was necessary for the reference axis to be movable was so that the 

flat shell element could be 'attached' to the beam element nodes without the use of 

additional elements which are computationally expensive. 

The final development of the steel beam element was also by Bailey 44 
, who included 

provision for lateral-torsional buckling. The analyses conducted within this thesis 

concern either beams restrained against lateral-torsional buckling, compression 

members or tension members, all of which are subject to negligible lateral-torsional 

buckling. 

The finite element program INSTAF was renamed VULCAN during May 1997. 
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3.2.2 STEEL-TO-STEEL CONNECTIONS 

Steel-to-steel connections within a structure are represented within the finite element 

code using zero-length non-linear spring elements that were added by Bailey 44 
. 

The 

spring elements use the same eight degrees of freedom as the beam elements (in local 

co-ordinates), which when transformed to global co-ordinates become eleven degrees 

of freedom, as shown in Figure 3-03. The spring element is flexible in its use and 

may be placed at any position within the structure, as axial movement, rotations, 

strains, torsion and warping are all included within the formulation. 

Moment (kNm) 
140v-- -1 

120 
200'C 20'C 

100 

80 

60 

40 

20 

600'C --- 

0.02 0.04 0.06 0.08 0.1 1.2 1.4 
Relative rotation (Rads) 

Figure 3-04. Postulated moment-rotation curves at increasing temperature based on 
an extended endplate used in one of the tests conducted by the Steel Construction 

Institute and British Steel 53. 

To model the behaviour of steel-to-steel connections in fire, the moment-rotation 

characteristics for the connection are required at various temperatures. For bare steel 

connection behaviour at elevated temperature only twelve tests on different steel 

sections had been carried out 52 
. This data was not sufficiently comprehensive enough 

to be used directly. However, EI-Rimawi et al 53 postulated a family of in-plane 

moment-rotation curves at elevated temperatures on the basis of the extended end- 

plate connection test data by Lawson 52 
. Although the spring model is capable of 

modelling axial and shearing displacements, no data exists for these actions, and they 

are considered to be of infinite stiffness. This seems a reasonable assumption since 
there is clearly less flexibility in these senses than in bending. The connection 
moment-rotation characteristics for a typical Cardington test frame secondary beam 
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connection is shown in Figure 3-04, and more information concerning them may be 

found from EI-Rimawi et al 53 and Bailey 44. 

More recent data concerning connection moment-rotation data is now available from 

Leston-Jones 53 who investigated the behaviour of bare steel connections at elevated 

temperature, and AI-Jabri el al 54,55 who studied the behaviour of composite 

connections at elevated temperature. These results are very recent and have not been 

introduced into VULCAN at this time. 

3.2.3 SLAB ELEMEM 

The floor slab is represented by the use of flat shell elements, the formulation of 

which is described fully in Chapter 5. A simple overview will be given in this 

section. 

Floor slabs were originally represented using isotropic hybrid elements that combine 

the properties of a plate element, allowing bending and twisting, with those of a plane 

stress element that includes membrane forces 44,48 
. The basic flat shell formulation 

uses Mindlin/Reissner theory with selective or reduced integration to overcome shell- 
locking 56 

. This hybrid element is limited in that only uniform temperature may be 

assumed across the thickness, and the slab must be isotropic. 

The development of the VULCAN finite element program presented within this thesis 

embodies the development of a more sophisticated concrete slab model using a 
laminated flat shell element technique. This new approach for the slab will allow the 

inclusion of thermal gradients and hence thermal bowing, thennal material 
degradation, material non-linearities, orthotropic properties and a more sophisticated 

cracking arrangement than that formerly introduced by Dailey 44. This eXtension will 
be discussed in greater detail in Chapter 5. The formulations used in VULCAN are 

not shown here, though a brief overview is given. 

3.2.4 THE ITERATivE (NEWToN-RAPHsoN) PROCESS 

As VULCAN is highly non-linear, to obtain equilibrium it is necessary to use an 
iterative process, this being the Newton-Raphson method. 
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If the structure is firstly considered at ambient temperature, the first iteration will give 

zero displacements throughout the structure, which results in zero internal forces and 

an elastic stiffness matrix based purely on the sectional properties. With reference to 
Figure 3-05, equation 3-03 is solved. 

Extemal load 

Arl Ar2 I Ar3 
(_: K > 

/7 ----- -- 
Out-of-balance force calculated 
from total displacements (Arj+Ar2) 

Internal forces calculated from 
total displacements (Arj+Ar2) 

Displaceme-nt 

Figure 3-05. Newton-Raphson procedure 

The displacements calculated for the increment are added to the total displacements, 

and this may be used to define the state of strain throughout the members. The out- 

of-balance forces are calculated with the new corresponding tangent stiffness matrix 

and equation 3-03 is again solved. The process is repeated until the incremental 

displacements and the unbalanced forces are within specified tolerances. 

As temperature increases, the same procedure is adopted for all non-linearities 

excepting the inclusion of thermal effects, which is explained in Section 3,1.1. The 

displacements calculated for the previous temperature increment at equilibrium are 

used as a4 starting point' for the solution sequence. 

Recently, problems have been encountered in the analysis of columns due to the 

Newton-Raphson procedure when 'snap-through' is encountered 57. 'Snap-through' 

occurs when a highly stressed column forms a hinged mechanism. To illustrate an 

example of this, consider a heated column in a steel frame such as Figure 3-06. 

As the column is exposed to fire, it will initially expand forcing the beam-ends 

framing into the centre column to deflect upwards. As the temperature increases, the 

steel material strength will reduce and the column will begin to fail in the manner of 
an Euler buckle with a plastic hinge forming at the top, center and bottom of the 
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column 58. At this stage the structure is in a state of instability because of the loss of 

axial stiffness of the heated column, which the Newton-Raphson method cannot 

accommodate until stable equilibrium has again been reached. The Newton-Raphson 

procedure may be able to continue once stability has been regained although this 
depends on being able to find the re-stabilised equilibrium state. To remove this 

problem the arc length method is due to replace the Newton-Raphson method in 
59 VULCAN in the near future 

-f- 

Figure 3-06 Example of where 's7jap-through'may be encountered 

3.2.5 IDENTIFICATION OF STRUCTURAL FAILURE 

CONVERGEWCE CONDITIONS 

To check whether the equilibrium position has been reached by the Newton-Raphson 

procedure, VULCAN uses two convergence criteria to check that the incremental 

displacements and out-of-balance forces are within acceptable tolerances, so that the 

iteration process can be terminated. The first of these, based on the incremental 

displacements, is given 48,60 by, 

IlAq 112 

_ :9 TOL llq +, AqII2 

where, 

Y2 

IlAqll (qj )' ) 

Loadin 

3-05 

3-06 
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llq+Aqll= ±((q, )+(Aql))' 
Y2 

i=l 
3-07 

n is the number of elements in the vector, which corresponds to the number of 
degrees of freedom. 

TOL is the tolerance specified. 

The second convergence criterion is obtained by measuring the out-of-balance force 

vector and is given by 48,60, 

ll(Q. I: M. I) - 
fantemal N2 

:!! ý TOL Illaxternalt 

where, 

2 )Y2 

Jj(Q. 
l. mal)-(Qinternaj12 

(ýi,.. J- ýi(internaj) 

Y2 
Oi(Wernal) Y) 

3-08 

3-09 

3-10 

Care must be taken when specifying the tolerance limits for the above convergence 

criteria. If the tolerance is too 'loose', - inaccurate results will be obtained, and 

conversely if the tolerance is too 'tight' extra unnecessary iterations are performed to 

obtain an increase in accuracy which is unjustifiable. 

TERmiNA770NOF THEMODEL DUE TO STRUC771RAL FAILURE 

All iterations require the linear equation 3-03 to be solved for incremental 

displacements, and this is carried out using Gaussian Elimination. Physically, this 

means that each step of the Gaussian Elimination is the relaxation in turn of one 
degree of freedom and the carry-over of its effect to the remaining degrees of 
freedom. Therefore the remaining coefficient matrix at any stage is the tangent 

stiffness matrix of the structure, with the degrees of freedom corresponding to the 

eliminated equations relaxed. If any of the terms on the leading diagonal of the 
tangent stiffness matrix is zero or negative, the structure must be unstable. To ensure 

i=l 

i=l 
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that the correct failure point is attained, calculation of the tangent stiffness matrix 

must be correct and small changes in temperature adopted near the failure point. 

Tangent stiffness matrix 
updated during iteration 
process. 

Displacement 
Equilibrium position from 
temperature step T,. 

Figure3-07. Newton-Raphson procedure in the proximity of structuralfadure 

An automatic procedure is implemented internally in the model to refine the 

incremental temperature increase in the zone close to structural failure. This 

procedure is necessary to ensure that 'true' failure is identified, and that a termination 

of the analysis due to purely numerical failure is not encountered. During the initial 

stage of the analysis, the temperature is increased in increments specified by the user 

(normally 50'C or 1000Q. At some stage the finite element program will show a 

negative number on the tangent stiffness matrix-leading diagonal. This is shown in 

Figure 3-07 as taking place at temperature T,,,,. Since a more accurate prediction of 

failure temperature is required, and to ensure that numerical instability does not occur 

at temperature Tn, 1, the increment of temperature from the last recorded equilibrium 

position at Tj is reduced to 50% of the original increment. The analysis then 

continues from Tn until a negative again appears on the leading diagonal of the 

stiffness matrix. This process of bisection continues until the temperature increment 

is equal to or less than 0.1 T. 

3.3 VALIDATION OF ME EXISTING VERSION OF VULCAN 

The validation of the single-layer flat-shell slab elements is detailed in Chapter 5 and 

will not be covered in this section. 
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3.3.1 VALIDATION OF BEAM ELEMENTS 

To validate the beam elements, a steel beam shown in Figure 3-08 will be analysed 

using VULCAN. The validation is identical to one conducted by Bailey 44 in order to 

compare the predictions. The beam will support three point loads at equal spacing 

giving a load ratio of 0.6. The beam is to be exposed to a uniform temperature across 

the cross-section; the semi-rigid connections are to be at 70% of the beam 

temperature. At 20'C, the elastic modulus is 205000 N/MM2 and the yield stress is 

275 N/mM2. Moment-rotation curves for the semi-rigid connections at elevated 

temperatures are as shown in Figure 3-04. 

Semi-figid 
connection 
S4 ý 

P 
137S 117S 1171 137S 

3 N' Loads at 44.928 kN 

Iii 

305 x 165 x 40 UB 

Figure 3-08. Simply supported beam validation 

The beam has been analysed for completely rigid and simple cases, and for 25%, 

50%, 75% and 100% of the standard semi-rigid connection strengths and stiffnesses. 
The deflections are shown in Figure 3-09. The deflections found are seen to be 

identical to those published by Bailey". 
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Figure 3-09. Effect of semi-rigid connections on a beam at elevated temperatures. 
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The sensitivity of the beam's deflection to connection stiffness at ambient temperature 

is shown in Figure 3-10. This allows comparisons to be made against closed-form 

solutions for the two extreme cases of simply supported and rigid connections. 

0 Connection rigidity of Extended End-plate44 
e., 
kl') 
(14 

'01ý110 C) 
tn 

"p 
0"' C 

C 
I- 

Closed form solution 
for encastr6 case 

-20f, Closed form solution for 
simply supported case 

-25 --- 'I- 
Deflection (mm) 

Ici 

Figure3-10. Sensitivity of beam deflections to semi-rigidconnection stiffness at 20'C 

3.3.2 SymmETRY TEST 

The square composite beam and slab with isotropic material properties, of which a 

quarter is shown in Figure 3-11, was heated to check that the results generated by 

VULCAN are symmetrical in all aspects. 

C 

3.5 kN point 
load 

V 
Line of 
symmetry 

. x, w 

-, ý> Z, u 

Vertical 
support 

305 x 165 x 40 UB (Grade 43) 

Figure 3-11. Finite element arrangement of the square symmetrical slab 
A point load was placed at the centre of the slab. The deflection at the mid-span 

positions of the edge beams is shown in Figure 3-12. Initially an asymmetric 

response was observed in which the beam lying on the z-axis had greater deflections 

than that on the x-axis. 
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Figure 34Z Central deflection of beams 
Following this investigation, the slabs were removed from the subfi-ame and I kN 

point loads were placed at the mid-span positions of the two perimeter beams. The 

horizontal deflections along the beam were compared. The vertical deflections were 
identical. Numerically, the horizontal movements were identical, but in opposing 
directions, as shown schematically in Figure 3-13. By this test the transformation 

matrix was found to be incorrect for the beam elements and required to be corrected. 

Line of symmetry 

m 

+ 
Line of symmetry 

I) 

\ý --so. :tt. 
Vertical 

305 x 165 x 40 UB (Grade 43) support 
Figure 3-13. Horizontal direction of movement of thebeams at 20"C 

The effect of the error within the transformation matrix was a cause for concern; this 

was corrected and incorporated in all subsequent analyses. To assess the effect the 

error might have had on earlier analyses, comparisons were conducted on both the 

restrained beam test and the British Steel comer test, shown in Figures 3-14 and 3-15 

X, w 

4u 
m> 

I kN point load 

1000 
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respectively. (Subfi-ames for these tests ý are shown later in Figures 4-03 and 4-26 

respectively. ) These tests were chosen because of the extremes of restraint imposed 

upon these subframes. The variation for both the Cardington tests between the 

analyses for the original and corrected transformation matrices is negligible. 
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Figure 3-14. Restrained beam central deflection comparison between old and new 
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Figure 3-15. British Steel comer test central deflection comparison between old and 

new transformation matrices 
3.3.3 SuBFRAmm MEsH CoNvERGmcE STuDy 

The objective of this convergence study was to vary the density of the finite element 
mesh to ensure adequate confidence that acceptable convergence may I be obtained for 

1000 
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the parametric studies presented in Chapters 4,6 and 7. To this end a standard 

structure, shown in Figure 3-16, was developed. Four 356 x 171 x 45 universal beams 

line the perimeter, with a longitudinal heated secondary beam (305 x 165 x 40 UB) 

placed centrally. All beams are grade 43 steel. The secondary beam was exposed to a 

constant temperature regime across its whole cross-section and the floor slab and 

perimeter beams were considered to be at ambient temperature, The floor slab was 
65mm thick, and was laid directly onto the upper flanges of the steel beams, allowing 

the assumption of a fully composite beam-to-slab interface. 

6m 

65mm thick concrete floor slab. 
25N/mm 2 maximum compressive stress 
I ; N/MM 2 

mnyimiim tP1nQiIt-. qtre. qq 11) C-IK AC -AAT TlD -. -. 11 

356 x 171 x 45 LJB 5.5kN/m2 Loading intensity 
Penmeter beams 

Figure 3-16. General details of the mesh convergence subframe 

The maximum compressive stress of the concrete was 25N/mm 2 and the maximum 

tensile stress was 2.5N/mM2 The loading intensity was 5.5kN/M2, uniformly 
distributed. The subftame was supported vertically at its four comers and was free to 

expand in all directions. The different meshes used in this subftame are shown in 

Figure 3-17. 

Subframe 1 

Subframe 3 

ii LL1 

Subframe 2 

Subframe 4 

Subframe 5 Subframe 6 
Fore 3-17. Varying subframe meshes 
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The results of the convergence study for the subframe mesh are shown in Figure 3-18. 

The coarser meshes tend to give lower deflections, whereas the finer meshes appear to 

converge onto a specific deflection path. The 'kinks' to subframes 3,4 and 5 are 

produced by the crudity of the concrete cracking model. 
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Figure 3-18. Absolute deflections in the subftame mesh sensitivity study 

Temperature ('C) 
400 600 800 1000 

T 

64 



Chapter 4- Cardingaton Parametfic Studies Using the Isotro&c Slab Element 

4 CARDINGTON PARAMETRIC STUDIES USING THE 

ISOTROPIC SLAB ELEMENT 

The first set of parametric studies conducted on the Cardington test frame within this 

thesis uses the flat shell element as formulated by Bailey 44. 

4.1 GENERAL ASSUMPTIONS OF THE SIMULATIONS 

These general assumptions apply to all the analyses throughout the Chapter, except 

where noted otherwise in Section 4.2. 

4.1.1 ASSUMPTIONS OF THE SUBFRAME LIMITS 

To produce accurate results when modelling the structural response of a frame in fire, 

structural areas (referred to as subframes) must be considered beyond the extent of the 

fire, rather than simply considering the heated area in isolation. This was shown by 

Bailey el al 44 in previous analyses. For simplicity the subframe has generally been 

defined at least a beam or a bay half-span beyond the fire compartment. The 

assumption at these cut edges is that the concrete slab normal to the beam or bay half- 

span remains horizontal and with no horizontal lateral movement. This would be the 

normal condition across an axis of symmetry. 

4.1.2 SIMULATION ASSUMPTIONS 

For the computer simulations the following assumptions are made, following Bailey 

et al 23: 

1. The steel has a yield stress of 308 N/mm2 for Grade 43 and 390 N/mM2 for Grade 

50, based on coupon test results provided by the supplier. 

2. The elastic modulus of steel is 210 Mmmý. 

3. The steel: concrete modular ratio at ambient temperature is 15. This figure is to be 

reduced by 30% over the heated area. This reduction is based on data given in 

EC4 11, which indicates that the elastic modulus of concrete is reduced by 29% at 
I OOOC. 
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4. The exposed (lower) flange and web of the steel section are heated uniformly with 

the upper flange being at 0.8 of this value. This is a simplification of the actual 

temperatures found in Chapter 2. Previous studies 53 have shown that varying this 

pattern has only a limited effect on the overall results. 

5. The temperature of the concrete in the heated area is uniform throughout the slab, 

at 101/6 of that of the lower beam flange. As shown in Chapter 2 the slab 
temperatures are actually rather more complex than those assumed, due to the low 

thermal conduction and water evaporation. 

6. Only the top 70mm of the slab is considered, This represents the continuous 

concrete thickness above the top of the trapezoidal steel deck, and is consistent 

with normal design assumptions for composite beams. Although this ignores the 

effect of the influence of the ribs in the transverse direction, a uniform thickness 

must be used, as Bailey's 44 formulation assumes that the slab elements are 
isotropic. Deflections obtained using the full depth of 130mm (i. e. a solid slab) 

were found to be very small and no cracking was evident. 

7. The limiting bending stress difference in the slab in compressive regions is 25 

N/mmý. 

8. The limiting bending stress difference in the slab in tensile regions is 2.5 N/mm 2. 

9. All secondary and perimeter beams parallel to the secondary beams have fin-plate 

connections at either end. Details of these may be found in Section 3.2.2. 

IO. Unfactored loading across the structure is 5.48 kN/m2 (including the slab dead 

load). 

I I. The concrete floor slab in the immediate vicinity of the secondary beam 

connections is assumed to have cracked and is therefore reduced to the thickness of 
the reinforcement. 

4.1.3 BOUNDARY CONDITION ASSUMPTIONS 

As detailed in Chapter 3, VULCAN uses eleven global degrees of freedom at each 
node. These are: 
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" Displacement in each of the three dimensions, 

" Rotations about the three orthotropic axes, 

" Strains along each of the three axes, 

" Twisting, 

" Warping. 

Imposing either a fixed or free condition on each of the eleven degrees of freedom at a 
boundary node may simulate most boundary conditions. A description of the 

common cases where a subframe meets an external boundary follows. 

Axis of symmetry. An axis of symmetry is used where, in the full structure, the 

continuous floor slab or steel beam continues past the edge of the chosen 

subframe. This axis of symmetry is best located either halfway across a building 

bay or at the edge of a bay. Here the slab or beam is assumed to remain horizontal 

in the direction normal to the line of symmetry. Horizontal movement normal to 

the line of symmetry is assumed to be zero. 

Column base. At a column base, if the base is assumed rigid (i. e. capable of 

sustaining moments without rotation), then all degrees of freedom are fixed. If the 

column has a pinned base, then the degrees of freedom corresponding to 

displacements are fixed, together with axial rotation about the column centre-line, 

and the remaining rotations are left free. 

Column head. This (as for the column base) depends upon whether it is 

considered pinned or fixed. At a fixed column head, lateral and rotational 

movements are suppressed, allowing only vertical movement. At a pinned column 
head, lateral movements and rotation about the longitudinal axis are restrained, but 

vertical movement and all rotations are left free. 

4.2 DESCRIPTIONS OF THE PARAMETRIC STUDIES CONDUCTED 

All the parametric studies adopt the assumptions outlined in Section 4.1 unless noted 
in the following sections. All temperatures shown in the parametric studies are the 
bottom flange average temperatures. 
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4.2.1 PARAMETRIC STUDY 1: SLAB TWCKNESS 

The slab thickness parametric studies have been conducted by holding constant all 

parameters except the thickness of the slab. The thickness of the slab in these 

analyses represents the continuous top layer of concrete, with the slab corrugations in 

the decking region ignored, as illustrated in Figure 4-01. The temperature profile 

retained the same temperature ratios to the bottom flange average temperature 

regardless of thickness. 

Reinforcement mesh 
Finished floor level 

Profiled sheet steel decking 

Figure 4-01. Floor slab arrangemetil 

70 mm nominal 
thickness 

I 
ý60 

mm 

4.2.2 PARAMETRIC STUDY 2: SECONDARY BEAM CONNECTION STRENGTH AND 

STIFFNESS 

The steel-to-steel secondary beam connection characteristics were varied from an 

almost pinned condition up to double the estimated strength and stiffness of the tab 

plate connections actually used. The rotational characteristics for a tab-plate 

connection (expressed as a Ramberg-Osgood equation) were multiplied by factors 

between 0 and 2 in increments of 0.2 for all four tests. The details of the assumed 

moment-rotation relationship for the Cardington tab-plate connection (secondary 

beam connections) at ambient temperature are given in Section 3.2.2. Semi-rigid 

joints have only been placed at the ends of the secondary beams in these studies and 

not at the ends of the primary beams, since the depth of these beams produces a much 

stiffer connection. All other parameters are held constant. 

4.2.3 PARAMETRIC STuDy I. SPACING OF SECONDARY BEAMS 

This is a rather contrived parametric study, conducted only on the restrained beam 

test, in which the secondary beams adjacent to the restrained beam are moved by a 

small amount either towards or away from the restrained beam. This is done in 

increments of 100mm to a maximum displacement of 400mm. 
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4.2.4 PARAMETRIC STuDy 4: POSITIONING OF SANDBAGS 

During some of the tests it was noticed that, in order to avoid interference with the 

displacement transducers, inclinometers and strain gauges, some of the sandbags were 

not in their pre-selected locations. This naturally leads to slightly changed load paths, 

and so it was decided to see how these new load paths would affect the overall 

performance of the structure. 

4.2.5 PARAMETRIC STUDY 5: EXTENT OF SUBFRAMEE 

This parametric study was conducted only on the restrained beam test. It involves 

performing a series of analyses using a number of different sizes of subframe to 

determine how much of the whole structure must be modelled in order to obtain 

sufficient accuracy. 

4.3 RESTRAINED BEAm TEST PARAMETRIC STUDIES USING THE 

ISOTROPIC SLAB ELEMENT 

A plan of the Cardington test frame is shown in Figure 4-02 detailing the location of 

the restrained beam test and the assumed subframe for studies I to 4. 

Restrýined beam test 
fire compartment 

Extent of subframe used 

Figure 4-02. Location of the restrained beam test 

The subframe and finite element mesh used for the parametric studies are shown in 

Figure 4-03, which also shows the position at which deflections are compared. 
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Perimeter beam 

Line of symmetry 

Deflection I 

Figure 4-03. Restrained beam test subfiramefinite element mesh arrangement 

4.3.1 RESTRAINED BEAM TIST - PARAMETRIC STUDY 1 

Results of the slab thickness parametric study for the restrained beam test are shown 
in Figure 4-04 for the restrained beam central deflection (Deflection 1). It can be seen 

that the actual test deflection is best approximated by slab thicknesses in the range 
90mm to I l0mm. This could be because the average slab thickness is greater than the 

nominal 70mm, as has been discussed earlier in Chapter 2. 
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Figure 4-04. Restrained beam test - Parametric study I for deflection I 

0 

For continuous slab thicknesses of 30mm and 50mm, the test beam expands against 
the restraint of the columns, surrounding slab and adjacent beams, and largely because 

of thermal bowing it begins to displace. Beyond approximately 500T, the large 
deflections cause the slab to crack significantly, and the beam starts to act more like 
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an isolated composite beam. This is illustrated by the 'runaway' nature of the two 

analyses in the region 6000C to 9500C. 

The medium-depth continuous slabs of thickness 70mm. and 90mm act similarly. The 

restrained beam displaces significantly due to thermal bowing until temperatures in 

the region of 700'C are reached. Above 700'C the continuous concrete slab spanning 

across the restrained beam from the adjacent cold beams begins to 'pull back' the 

restrained beam. This 'pull-back' occurs when the steel has lost significant strength 

and stiffness and the slab, which is at uniform temperature, is capable of carrying the 

load without its help. 

Slab thicknesses of II Omm and 13 Omm tend to 'pull back' at lower temperatures than 

the medium-depth slabs, as they have a higher bending stiffness. Negligible amounts 

of cracking have been predicted in these cases. 

Figure 4-05 shows the propagation of cracks across the concrete floor slab for a slab 

thickness of 70mm. 

At 20T the assumption is made that the floor area immediately adjacent to the 

columns is cracked. Nominal cracking is seen to occur up to 500T. At around 
600T, the concrete floor slab begins to crack along the main beams, these areas being 

where the composite beam hogs and the slab is therefore in tension. At 700T, the 

floor begins to crack adjacent to the secondary beam, and at this stage the restrained 
beam begins to act as an isolated beam. 

20'C 1000C 

F-ý Cracked element 

Figure 4-05. Restrained beam tesifloor slab crack propagation 
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F-I 
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Figure 4-05. (continued) Restrained beam lestfloor slab crack propagation 

4.3.2 RESTRAINED BEAm TEST - PARAMETRIC STUDY 2 

Results from the VULCAN analyses for the parametric study on steel-to-steel 

secondary beam connection strength and stiffness are shown in Figure 4-06. These 

show the effects of the rotational restraint of the connections to be negligible up to 

600'C beyond which some small variation occurs. This apparent insensitivity to the 

characteristics of the semi-rigid joints Is almost certainly attributable to the slab 

continuity across the connection, which dominates the bending resistance in these 
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areas, especially with the simple slab model used for these studies. Beyond 600'C the 

concrete floor slab becomes more vulnerable to cracking in the area immediately 

surrounding the connection, thus reducing the moment available from the tension in 

the slab. 
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Figure 4-06. Restrained beam test - Parametric study 2for deflection I 

1000 

If a slab thicker than the nominal 70mm were to be considered, then the effect of the 

connection strength and stiffness would be reduced, as the overriding stiffness of the 

continuous slab would be increased significantly. The influence of the connections on 

a case with a thin slab (between 30mm and 50mm) would be greatly increased as the 

slab cracks, causing the beam to act as an isolated composite beam, thus reducing the 

dominant continuous slab effect. 

4.3.3 RESTRAINED BEAM TEST - PARAMETRIC STUDY 3 

Figure 4-07 shows a plan view of the finite element mesh used for the restrained beam 

test, including the sign convention which indicates the direction in which the 

secondary beams have been moved. 

Temperature (T) 
300 400 500 600 700 
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Figure 4-07. Sign conventionfor parametric study 3 

The results at the centre of the restrained beam are shown in Figure 4-08. As 

expected, these show a slight difference in the central deflection due to a slight 

increase or decrease in loading onto the restrained beam. It should be noted that there 

is negligible difference between the analyses until temperatures in excess of 6000C 

are reached, as up to this temperature the composite steel beam is supporting the load. 

Above this temperature the slab begins to span between the cold beams adjacent to the 

restrained beam, and so the difference in deflection is due to the distance the floor 

slab is required to span. 
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Figure 4-08. Restrained beam test - Parametric study 3for deflection 1. 

4.3.4 RESTRAINED BEAM TEST - PARAMETRIC STUDY 4 

The actual positions of the sandbags are superimposed on the restrained beam finite 

element mesh in Figure 4-09. 

Temperature ('C) 
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+ 

Figure 4-09. Restrained beam test showing position of sandbags (for parametric 
study 4) 

Figure 4-10 shows the central deflection of the restrained beam test, comparing 

analyses for the assumed uniformly distributed load and the actual loading with the 

test results. The UDL and actual loading begin to diverge significantly at 500'C, as 
below this temperature the dominant actions are thermal bowing and restraint from 

the surrounding continuous structure. However, beyond 500'C the steel beam begins 

to lose strength and stiffness and so the less demanding load path of the actual loading 

causes less deflection than the UDL. 
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Figure 4-10. Restrained beam test - Parametric stuaý 4for deflection 1. 

It is difficult to hypothesise about the potential effects of slab thickness on this 

parametric study, as little is known of the load paths in the structure from the point 
loads simulating the sandbags, although load paths similar to those for a UDL may be 

assumed. The effect of a slab thicker than the nominal 70mm on this parametric study 
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may be to increase the effect of the 'pull-back' phenomenon, as the load paths have 

changed to reduce the effect on the restrained beam. A slab thinner than 70mm would 

possibly crack more quickly and begin to run away as the load from the sandbags may 

not be capable of being diverted to the surrounding beams. 

4.3.5 RESTRAINED BEAm TEST- PARAmiETRic STUDY 5 

The restrained beam subframe study was conducted simply by taking the larger 

subframes used for other analyses, such as the large compartment demonstration fire 

test and the comer test, and modifying the finite element mesh to enable a reliable 

simulation. 

Subframe I 

Subframe I is the basic subframe, as used in the previous four parametric studies, and 
is shown in Figure 4-02. The finite element layout has been shown in Figure 4-03. 

This layout makes several obvious approximations, as three of the external edges of 

the subframe are assumed in the analysis to be fixed against rotation about the 

boundary, and translation at the boundary is prohibited. The structure surrounding the 

restrained beam is also assumed to be symmetrical about its mid-span. This was the 

standard arrangement, also used for comparitive studies by researchers at TNO 

(Delft), CTICM (France) and British Steel Swinden Technology Centre on the 

restrained beam test. 

Subframe 2 

The extent of Subframe 2 is shown in Figure 4-11 and the finite element mesh 

arrangement in Figure 4-12. It can be assumed that this subframe will give more 

accurate results than Subframe 11, as more structure is modelled. Subframe 2 extends 
to the perimeter of the building along two edges, although it should be noted that the 

assumption is still made that the structure acts symmetrically about the mid-span of 
the 9m restrained beam by restraining horizontal movement and rotation about this 

axis of symmetry. 
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Figure 4-11. Restrained beam test - Subframe 2 locationfor parametric study 5 
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Fore 4-12. Restrained beam test - Subftame 2for parametric study 5 

Subframe 3 

/---\ IIIII 

Qj 

0 

ü 

Extent of subframe 3 
Figure 4-13. Restrained beam test - Subftame 3 locationfor parametric study 5 

Subframe 3 is more extensive than the two previously discussed. It does not involve 

the implicit assumption that symmetry is maintained about the mid-span of the 

restrained beam. The subframe continues for a whole bay beyond the restrained beam 

to an area where it is assumed that the structure will act as continuous. This is again a 

more justifiable assumption than Subframe I as the building perimeter is included on 
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a number of edges of the subframe, rather than just one. The area modelled and the 

finite element arrangement are shown in Figures 4-13 and 4-14 respectively. 

Line of syjnmetry 
To act as a normal composite 
perimeter beam 

To act as a normal composite 
perimeter beam. 

P'igure 4-14. Restrained beam test - Subftame 3forparametric study 5 

Subframe 4 

The location of Subframe 4 is shown in Figure 4-15. This is the most extensive 

subfi-ame modelled to date, and improves on the majority of the assumptions made in 

the previous three subframes. The subframe extends across the structure for an extra 

half bay and continues along the structure to the same extent as Subframe 3. The 

finite element mesh arrangement is shown in Figure 4-16. 

07 

Extent of Subframe 4 

Figure 4-15. Restrained beam test - Subframe 4 locationfor parametric study 5 

Figure 4-17 shows the mid-span deflection of the restrained beam relative to the 

column deflection at the beam-ends, recorded against the bottom flange temperature. 

The use of relative deflections also allows the actual test results to be compared with 

the model predictions. 
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Figure 4-16. Restrained beam test - Subframe 4for parametric study 5 

Temperature ('C) 
200 400 600 800 1000 

-50 

-100 

-150 

-200 

-250 

-300 Deflection (mm) 

Subfi-ame size 

Figure 4-17. Restrained beam test - Parametric study 5for deflection 1. 

From the evidence presented in Figure 4-17 it is clear that the two most extensive 

subframes produce the best computer simulations of the test below 600'C, and are 

consistent with each other, but that Subframe 4 has no real advantage over Subfi-ame 

3. This leads to the conclusion that subframes need to be rather more extensive than 
had previously been assumed in cases where restraint from surrounding structure 

needs to be represented. This is true particularly where axial expansion of a steel 

member is directly resisted by boundary support conditions in line with the member, 

as is the case in Subframe 1. However, where there is simply restraint via membrane 

shear transmission to surrounding parallel areas of structure, the subframe need not be 

as extensive or as carefully chosen. It is well known that a finer finite element mesh 
will also increase accuracy, and hence it may be reasonably assumed that by choosing 
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a large subframe and a fine finite element mesh, the accuracy can be improved. 

However, a large subframe and a fine mesh will dramatically increase the amount of 

computing resources required to run such a simulation, and a compromise must be 

found. 

It can be seen that there is a small constant difference below 600 IC between the 

simulations and the test results in Figure 4-17, which may indicate a zero error in the 

test instrumentation since the gradients appear almost identical. The abrupt reduction 
in deflection at around 600 "C is probably attributable to the rather crude concrete 
failure model used, which probably acts in an over-stiff and over-strong fashion in 

this region. This, along with the general nature of the slab formulation in VULCAN, 

was later developed, and a parallel set of studies is reported in Chapter 6 66 
. 

It may be expected that slabs thicker than 70mm would produce a 'pull back' action 

as the continuous slab spans increasingly between the surrounding cool areas. Slabs 

thinner than 70mm would be more prone to cracking and the beam would begin to act 

as an isolated member as described in Section 4.3.1. 

4.4 PLANE FRAME TEST PARAMETRIC STUDIES USING THE ISOTROPIC 

SLAB ELEMENT 

The plane frame test involved heating three primary beams and parts of the columns 
to which they were connected across the full-depth of the frame supporting the fourth 

floor, as shown in Figure 4-18. The aim of the test was to ascertain the influence of 
beam-column interaction using a two-dimensional cross-structure frame similar to that 

which a designer would use for analysis. 
Pre-test design studies on skeletal frames using VULCAN 51 had indicated that, 

should the columns be left unprotected, failure could occur at relatively low 

temperatures due to a combination of column buckling and squashing. The columns 
in the fire compartment were therefore insulated with ceramic fibre blanket. The top 
500mm of all columns was left unprotected, since it was assumed that in practice the 

column would be encased to a height just above the suspended ceiling. Unfortunately 

this unprotected zone at the inner column heads (located on grid positions E2 and E3 

on Figure 4-18) suffered an extreme local plastic buckling deformation, with a sudden 
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vertical displacement of approximately 200mm taking place at a control temperature 

(the heated beam's lower flange temperature) of about 6200C. 

1 
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fire compartment 
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Figure 4-18. Location of the planeftame test. 

The deflections in the plane frame test analyses are taken at two positions at the mid- 

spans of the 6m and 9m main beams of the test, as shown in Figure 4-19. In order to 

maintain compatibility with the test deflections, which were measured relative to the 

upper storey, these deflections are plotted relative to the mean of the member end- 

deflections. 

Perimeter beams 

Deflection 2 
Lines of symmetry 

Figure 4-19. Finite element mesh arrangementfor the planeftame test. 
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4.4.1 PLANE FRAME TEsT - PARAMETRIC STUDY I 

Results of the analyses for the plane frame test parametric study on slab thickness are 

shown in Figures 4-20 and 4-21. 

The secondary beams were heated over a length of only 1.25m adjacent to the primary 

crossbeams, and therefore retained strength and stiffness over the majority of their 

length. It is possible that the secondary composite beams may be the major factor in 

supporting the heated structure so that the floor slab spanning between secondary 
beams may make only a minor contribution to the mechanics of load-redistribution to 

adjacent structure. It should be noted that the plane frame test does not exhibit the 

C, pull back' phenomenon experienced in the restrained beam analyses. This could be 

due to- 

The short heated length of all the adjacent secondary beams reducing the 

rotational stiffness at the ends connected to the main beams. 

The secondary beam connections are of a tab-plate type that is not particularly 

resistant to rotation, even at ambient temperature. 

The concrete floor slab is in tension, and will therefore be susceptible to cracking 

parallel to the main test beams. 
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Figure 4-20. Planeftame test - Parametric study ]for deflection 2 (9m main beam) 
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The VULCAN analysis ends at approximately 630'C, with a runaway deflection due 

to rapid softening of the elements exposed to heating over the top 500mm of the inner 

columns, which causes numerical instability. This is a fair representation of the high 

plasticity that resulted in a considerable distortion of the tops of each of these 

columns, starting at about 620'C. 
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P'igure 4-21. Planeftame test - Parametric study ]for deflection 3 (6m main beam) 

Figure 4-22 shows the progression of cracking in the concrete floor slab for a slab 

thickness of 70mm. At 200C and IOOOC there is minimal cracking around the 

connections at the ends of the secondary beams. As the temperature exceeds 200'C, 

the deflecting beams cause cracks to extend along the main beams. At 300'C the 

cracks propagate laterally from the centre of the 9m main beam. These lead to 

extensive cracking across the whole of the continuous floor slab at temperatures 

above 4000C. 
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Figure 4-22. Planeftame testfloor slab crack propagation 

4.4.2 PLANE FRAME TEsT - PARAMETRIC STuDy 2 

Wooc 

300'C 

500, C 

The semi-rigid secondary beam joints can be seen from Figures 4-23 and 4-24 to have 

almost negligible effect on the performance of the plane frame. This provides some 

confirmation that the test is essentially of a plane frame with only minor support from 

the third dimension. As noted previously, the secondary beams and the slabs 

spanning them transversely are connected in very flexible fashion at both ends, and 

therefore resemble pinned linkages rather than beams in bending. 
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Figure 4-23. Planeftame test - Parametric study 2for deflection 2 (9m main beam) 

Temperature ('C) 
100 

-10 

-20 

t 

-30- 

-40.. 

-50 

-60 

-70 1 

-80 1 

0.4 

-0.8 
-1.2 
-1.6 
-2 

I 

I 

200 300 400 500 600 700 

-0.2 
-0.6 
-1 
-1.4 
-1.8 
- Test 

Secondary beam stren 
and stiffness 

;q 

H 

Deflection (mm) 

Figure 4-24. Planeftame test - Parametric study 2for deflection 3 (6m main beam) 

The analysis by VULCAN again ends at approximately 630'C in all cases due to the 

column elements being unprotected over the top 500mm, causing numerical instability 

to occur. 
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4.5 BRITISH STEEL CORNER TEST PARAMETRIC STUDIES USING THE 

ISOTROPIC SLAB ELEMENT 

The British Steel comer test comprised a compartment lOrn wide by 7.6m deep 

between the first and second floors. The location of the comer test and the subframe 

used is shown in Figure 4-25. 

&- 1-1 
__I-I-I 

_______________ 

II II 

Bntish Steel comer 
test fire compartment 

Figure 4-25. Location of the British Steel corner test. 
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Figure 4-26. Finite element mesh arrangement. for the British Steel corner test. 

The columns within the compartment were protected to their full height. All 

perimeter beams were protected over their full length, and for the purpose of the 

analysis the perimeter beams were assumed to experience temperatures which were 
50% of the internal secondary beam lower-flange temperature. Studies have shown 
that wind-posts along the perimeter beam affect the structural response of the 
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compartment because they act in tension as the beam deflects to the limit of the wind- 

post movement slots, hence supporting the edge beam 44. 

Deflections are plotted at the mid-span of the internal secondary beam as shown on 

Figure 4-26. Once again, these are relative to the mean of the beam end deflections. 

4.5.1 BRITISH STEEL CORNER TEST - PARAMETRIC STUDY I 

Figure 4-27 shows the deflections at the centre of the internal secondary beam 

(Deflection 4) for the slab thickness parametric study, compared with those from the 

actual test. This test differs from the restrained beam test in that the fire compartment 

is situated in an area where the restraint from the surrounding structure is very limited, 

with floor slab continuity only into the bay beyond and a small portion of the adjacent 

bay. Therefore, the initial phase of deflection for all slab thicknesses, up to 

temperatures of approximately 500'C, is primarily due to thermal bowing with 

negligible effect from restraint. 
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Figure 4-27. British Steel corner lest - Parametric study I for deflection 4 
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The thinner concrete slabs of 50mm and 70mm continuous thickness continue 
deflecting beyond temperatures of approximately 500T in a manner similar to an 
isolated beam which exhibits 'runaway'. This is due to the concrete cracking 
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(through tension on the bottom face) parallel to the secondary beam, producing 

something akin to an effective-width flange. 

The concrete slab thicknesses between 90mm and 150mm all exhibit a general pattern 

of 'pull back' similar to that found in the restrained beam test. This is where the slab 

retains enough structural integrity to resist the continued bending of the beam. The 

support stiffness for the 'pull back' phenomenon is supplied by the perimeter beam 

(as previously discussed), which is supported by the windposts acting in tension ftorn 

the cold floor above. 

All the analyses finish at temperatures below that of the test due to simultaneous 

concrete cracking over the 6m main beam causing the finite element analysis to 
become numerically unstable as a result of the massive and sudden loss of stiffness. 

The development of cracking for the British Steel comer test for a 70mm slab 

thickness is shown in Figure 4-28. Nominal cracking occurs at 20'C and 100T. At 

200'C the continuous floor slab begins to crack along the perimeter beam and this 

slowly spreads across the structure at 300T. Large areas of the floor slab are cracked 

at 400T, allowing the secondary and main beams to act as isolated beams. 

2000C I 3000C 

Cracked element 

Figure 4-28. British Steel corner testfloor slab crack propagation 
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Cracked element 

8000C 
Figure 4-28. (continued) British Steel corner festfloor slab crack propagation 

4.5.2 BRITISH STEEL CORNER TEST - PARAMETRIC STuDy 2 

Deflections of the secondary beam (Deflection 4), compared with the test results, are 

shown in Figure 4-29. The general characteristics of these analyses are as outlined in 

Section 4.5.1 for a slab of 70mm thickness. The effect of the semi-rigid Joints at the 

ends of the secondary beams for this case is negligible up to 600'C due to the 

dominant action of the floor slab connected to the surrounding beams, particularly the 

edge beam. Beyond 600'C a slight variation in deflection is found for each of the 

differing strengths and stiffnesses of the connections. This is emphasised for the 

70mm slab, as significant cracking is observed, causing the secondary beam to act 

almost as an isolated composite beam whose behaviour is dependent to some extent 

on the moment resistance of its supports. 

For thicker floor slabs, in the range 90mm to 150mm, the previous study has shown 
that slabs of these thicknesses largely retain their integrity. This would override the 

small effect produced by the connections at the higher temperatures studied. 
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Figure 4-29. BritishSleel corner test - Parametric study 2for deflection 4 

Once again the analyses conducted in this parametric study all finish before the test, 

due to sudden concrete cracking over the 6m main beam causing the finite element 

analysis to become numerically unstable. 

4.6 B. R. E. CORNER TEST PARAMETRIC STUDIES USING THE 

ISOTROPIC SLAB ELEMENT 
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Figure 4-30. Location of the BRE corner test. 
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The BRE comer test location on the Cardington test frame is shown in Figure 4-30. 

The finite element mesh, including the position at which deflections have been 

measured, is shown in Figure 4-3 1. As in the British Steel comer test the windposts 
have been included in these analyses. 

Lines of symmetry 
Figure 4-3 1. Finite element mesh arrangementfior the BRE corner lest. 

The columns bounding the compartment were protected to their full height. The edge 
beams and the beams on the perimeter of the fire compartment were treated as being 

heated at 50% of the temperature of the lower flange of the internal beam. 

4.6.1 B. P. A. CORNER TEST- PARAMETRIC STUDY I 

Results from the slab thickness parametric study on the BRE comer test are shown in 
Figure 4-32. This test was very similar to the comer test conducted by British Steel 

and the same actions discussed in Section 4.5.1 occur in this test. 

It should be noted that, as the slab becomes progressively thicker, the analyses are 

able to go to higher temperatures as the cracking over the 6m main beam was less 

severe when compared to the British Steel comer test. 

Figure 4-33 shows the propagation of cracks for the concrete floor slab in the BRE 

corner test. Nominal cracking occurs at 20'C and I OO'C 
- 

At 200'C the slab over the 

perimeter beam is subject to cracking which spreads across the area of the test 

compartment as temperatures of 300'C are reached. The cracking progresses across 
the area outside the fire compartment as temperatures of 400'C are exceeded. 
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Figure 4-33. BRE corner lestfloor slab crack propagaiion 
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Figure 4-33. (continued) BRE corner tesifl(x)r slab crack propagation 

4.6.2 B. PLE. CORNER TEST- PARAMETRIC STuDy 2 

The variation of deflection with secondary beam connection strength and stiffness is 

shown in Figure 4-34 for the BRE comer test. Results are again found to be similar to 

those from the British Steel comer test detailed in Section 4.5.2, with very little 

change in the prediction. 
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Figure 4-34. BRE corner test - Parametric study 2for deflection 5 
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4.7 LARGE COMPARTMENT TEST PARAMETRIC STUDIES USING THE 

ISOTROPIC SLAB ELEMENT 

The location of the large compartment test in the Cardington test frame is shown with 

the extent of the subframe used in Figure 4-35. 

Extent of subframe used 

(i) 

-i_-I 
___________ 

jI II 

Large compartment 
test fire compartment 

Figure 4-35. Location of the large compartment test. 

Line of symmet. ry 

To act as a normal composite 
pen meter beam 

Line of sy I mmetry 

Deflection 7 

Fire compartment 

Deflecbon 6 

To act as a nonnal composite 
penmeter beam. 

To act as a normal composite 
pertmeter beam. 

Figure 4-36. Finite Element Arrangement of large compartment test 
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Figure 4-36 shows the subfi-ame and external boundary conditions used for the large 

compartment test. The positions at which deflections are studied are also shown, 

being the centre of the 9m main beam (deflection 7) and the centre of the marked 

secondary beam (deflection 6). It should also be remembered in studying the results 

for this subfi-ame that the entire fire compartment is not modelled, but continues 

across the line of symmetry. 

4.7.1 LARGE COMPARTMENT TEST - PARAMETRIC STUDY I 

Figures 4-37 and 4-38 show the results of the slab thickness parametric study at the 

centre of the secondary beam (Deflection 6) and the centre of the 9m main beam 

respectively (Deflection 7). The large compartment test exhibits little restraint, as one 

end of the whole structure is being heated and is therefore allowed to expand laterally 

across the structure, the only restraint being the inherent sway resistance of the 

columns. Due to this lack of restraint, the initial displacements - up to approximately 

500'C - for both Deflections 6 and 7 must be caused primarily by thermal bowing due 

to the temperature differential between beam and slab. Beyond 500'C the structure 

continues to increase its displacement for all slab thicknesses, as the whole steel 

support frame is gradually weakening with temperature increase and hence the floor 

slab is incapable of bridging from any of the weakened elements. 
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Figure 4-3 7. Large compartment test - Parametric study I for dýflecfion 6 
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Figure 4-38. Large compartment test - Parametric study I for deflection 7 

Figure 4-39 shows the progression of cracks across the concrete floor slab for the 

large compartment test with a slab thickness of 70mm. 

20'C I 1000C 

200'C 3000C 

Fý Cracked element 

Figure 4-39. Large compartment tesifloor slab crack propagation 
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400'C 500, C 

6001C I 7001C 

Cracked element 

Figure 4-39. (continued) Large compartment lestfloor slab crack propagation 

At 100T, cracking is observed along the main beams, and this spreads as the 

temperature increases to 200'C. The cracks then propagate as the temperature 

increases to NOT to cover the majority of the test compartment area. Above NOT 

the cold areas of the floor slab also begin to crack, until eventually at 700'C all the 

floor slab elements are cracked. 

4.7.2 LARGE COMPARTMENT TEST - PARAMETRIC STUDY 2 

The results of the parametric study of the effects of secondary beam connection 

strength and stiffness on deflections at the mid-span of the secondary beam 

(Deflection 6) and the mid-span of the 9m main beam (Deflection 7) are shown in 

Figures 4-40 and 4-41 respectively. 

A similar scenario is experienced for the parametric study on the effects of secondary 
beam connection strength and stiffness for this test. The initial deflections (to 500'C) 

are mainly due to thermal bowing as this test lacks external restraint. Beyond 500'C 

the steel strength begins to decrease significantly, and hence members throughout the 

whole test area deflect with no possibility of the floor slab bridging from any cool 

areas of the building. The effect of the strength and stiffness of the connections on the 
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secondary beams appears to be negligible, this is again due to the concrete floor slab 

that spans continuously over the steel beams dominating the rotational action around 

the connections. 
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Figure 4-40. Large compartment test - Parametric study 2for deflection 6 
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Figure 4-41. Large compartment test - Parametric study 2for deflection 7 

As in the slab thickness parametric study, when the analyses reach temperatures in the 

region of 700'C the beam deflections begin to 'run away' as exhibited by the test. 
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4.8 LARGE COMPARTMENT DEMONSTRATION TEST PARAMETRIC 

STUDIES USING THE ISOTROPIC SLAB ELEMENT 

Figure 4-42 shows the location of the large compartment demonstration test and the 

extent of the subframe used. 

-I- 

To act as a normal 

I-I-I 
11 11 

Demonstration test 
fire compartment 

Extent of 
subframe 
used 

I 

Figure 4-42. Location of the large comparimew demotistratim test. 

Line of synpetry T : -- LAIM Ul ZlyllllliVLly 

composite perimeter beam Reinforcement mesh 
not lapped 

To act as a normal 
composite perimeter 
hP. qM Deflection 

Deflection 8 To act as a normal 
composite perimeter beam 

Figure 4-43. Finite element mesh arrangementfor the large compartment 
demonstration test. 

Figure 4-43 shows the subframe used to simulate the large compartment 
demonstration test. Also shown are the positions where deflections were measured in 
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the subsequent analyses, being the mid-span of a secondary beam (deflection 9) and 

the mid-span of the 6m main beam (deflection 8). 

4.8.1 LARGE CONVARTMENT DEMONSTRATioN TEST - PARAMETRIC STUDY I 

The results from the VULCAN analyses are shown in Figures 4-44 and 4-45. The 

slab thickness in the demonstration test does not appear to have as much effect on the 

behaviour as in the restrained beam test or the comer tests. This is probably due to 

the fact that the members whose deflections are being plotted are some distance away 
from the surrounding cooler structure, and hence the possibility of bridging back to 

stiff support is greatly reduced. 

it was noted after the actual test that slabs had sheared cleanly at the primary beam, 

with no sign of fractured reinforcing mesh, and it was concluded that there had 

actually been no continuity of reinforcement across this beam. The position of this 

fracture is shown on Figure 4-43. This is clearly at variance with the assumptions 

made in modelling, and probably accounts to a great extent for the rather large 

discrepancy between experiment and analysis which is evident in Figure 4-44. 
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Figure 4-44. Demonstration test - Parametric study I for deflection 8 
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Figure 4-45. Demonstration test - Parametric study I for deflection 9 

Figure 4-46 shows the propagation of cracks predicted by the analysis in the 

demonstration test for a floor slab thickness of 70mm. 

At 20'C there is nominal cracking at the ends of the secondary beams. At 100'C the 

concrete floor slab begins to crack along the main beams, as these are the zones 

subject to hogging. At 200T and 300T the cracks progress across the concrete floor 

slab within the confines of the fire compartment. At 400T and above, the cracking of 

the floor extends beyond the fire compartment. 
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Figure 4-46. Large compartment demonstratiotl lestfloor slab crack prcpagation 
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4001C 
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Cracked element 
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Figure 4-46. (continued) Large compartment demonstration lest. floor slab crack 
propagation 

4.8.2 LARGE COMPARTMENT DEMONSTRATION TEST - PARAMETRIC STIJDY 2 
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F`igure 4-47. Demonstration test - Parametric studý 2for deflection 8 

The deflections found during VULCAN analyses for the mid-span of the secondary 
beam and the mid-span of the 6m main beam are shown in Figures 4-47 and 4-48 

respectively. These figures also contain the results of the actual test for comparison. 
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Once again the influence of secondary beam joint stiffness on the structural behaviour 

within the compartment appears to be negligible. 
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Figure 4-48. Demonstration test - Parametric study 2for deflection 9 

4.9 CONCLUSIONS DRAWN FROM THE PARAMETRIC STUDIES 

General conclusions for the parametric studies conducted within this chapter follow. 

4.9.1 PARAMETRIC STUDY 1: SLAB THICKNESS 

The slab thickness has been shown to be a very important factor influencing the 

performance of composite slabs in fire. General observations from the six tests are as 

follows: 

When there is restraint from the surrounding structure, as is the case in the 

restrained beam test, the British Steel comer test and the BRE comer test, a 'pull- 

back' phenomenon is experienced. This occurs where the floor slab bridges from 

the hot beams to cooler sections of structure. As the steel beam's stiffness begins 

to decrease rapidly, the slab's stiffness begins to dominate, attempting to return 
the slab to its original shape. This is a very pronounced effect with the slab model 

used in this set of analyses, since it does not allow a temperature distribution 

across the slab thickness, and thus prohibits thermal bowing of the slab. 
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When there is little restraint, for example in the plane frame test, large 

compartment test and the demonstration test, the slab thickness is less crucial. In 

the first case this is probably because of low stiffness at the ends of the transverse 

members, and in the others it is because there is no stiff (cold) support to assist the 
bridging action. 

This parametric study is repeated in Chapter 6 using a new slab element developed in 

Chapter 5, although similar results might be expected. These studies will provide a 
datum as to the effectiveness of the new element. 

4.9.2 PARAMIETRIC STuDy 2: SEcoNDARY BEAM CONNELMON STRENGTH AND 

STIFFNESS 

The secondary beam connection strength and stiffness has been found to have little 

effect on the overall action of the subframe. However, it may be expected that if a 

slab thickness thinner than the nominal 70mm were used the connection would have 

more effect, as the concrete would then crack causing the beams to act more as 
isolated composite beams. Conversely, if the thickness of the slab were to be 

increased the effect of the connections would decrease, as the slab would dominate 

the structural action. 

The secondary beam connection strength and stiffness parametric study will not be 

repeated in the following set of parametric studies in Chapter 6 because of the low 

sensitivity of the behaviour to this parameter. 

4.9.3 PARAMETRIC STUDY 3: SPACING OF SECONDARY BEAMS 

The third parametric study, considering the spacing of the secondary beams has 

limited scope for generalisation as this study could only reasonably be conducted on 

the restrained beam test due to the relative complexity of the other tests. 

4.9.4 PARAMETRIC STuDy 4: PosrriONING OF SANDBAGS 

The positioning of the actual loading of the structure is clearly important in a test of 
limited area, such as the restrained beam test. Unfortunately difficulties arise when 
trying to analyse the test qualitatively as the load paths change. The following 
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parametric studies in Chapter 6 will continue to assume a uniformly distributed load at 

all times. 

4.9.5 PARAMETRIC STUDY 5: EXTENT OF SUBFRAME 

The extent of a subframe is clearly important, and thus the largest practical subframes 

will be used in the following set of parametric studies using the new slab element in 

Chapter 6. Some general rules for the selection of a subframe follow: 

The subframe should extend for at least one bay beyond the fire compartment in 

the direction of the continuous structure. 

If possible, the subframe should extend to any nearby free edges of the structure, 

as the boundary conditions at this point are easily definable. 

Artificial rigid restraint to axial expansion of a steel member should be avoided as 
this may have an extreme effect on the internal forces, and thus give an incorrect 

view of the structural mechanics in the fire condition. 

105 



Chapter 5- Modelling Floor Slabs Using Laminated Flat Shell Elements 

5 MODELLING FLOOR SLABS USING LAMINATED FLAT 

SHELL ELEMENTS 

A hybrid flat shell element may be formed by superimposing a plate bending stiffness 

matrix and a plane stress membrane stiffness matrix, as shown in Figure 5-01. 

Flat shell element Plate element Plane stress element 

Figure 5-01. Flat shell element 

The basic shell formulation is similar to that used by Bathe 48 
. Bailey 44 also 

incorporates this formulation in the VULCAN finite element code. The laminated flat 

shell element consists of a series of laminae so that different material properties may 
be allocated to each lamina within the shell depth (as opposed to a nonnal flat shell 

element in which the material properties are assumed to be uniform throughout). This 

will also allow temperature gradients, thermal bowing, modulus of elasticity 
degradation relative to temperature, and a greater accuracy in the estimation of 

stresses throughout the element. The laminated flat shell element therefore offers a 

potential improvement for the modelling of reinforced concrete floor slabs compared 

with the flat shell element adopted by Bailey in representing concrete slabs exposed to 

fire. 

5.1 PLATE ELEMENT FORMULATION 

The following assumptions are made within the plate element formulation (after 

Bailey): 

1. The stress normal to the surface of the plate is zero. 

2. Any points within a plate that were originally in a straight line normal to the mid- 

surface of the plate remain in a straight line as the plate deforms. the Kirchhoff 
(thin plate) theory 47,4' excludes shear deformations, and therefore straight lines 

originally perpendicular to the mid-surface remain perpendicular during 
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deformation. The Mindlin/Reissner (thick plate) theory 47,48 includes shear 
deformations and therefore lines originally normal to the mid-surface will, in 

general, not remain perpendicular to the mid-surface during deformation. A 

physical comparison between the Mindlin/Reissner and the Kirchhoff theories is 

shown in Figure 5-02. 

Original state 

Deformed state 
Kirchoff theory 
(Thin plate) 

Deformed state 
Mindlin/Reissner theory 
(Thick plate) 

Figure 5-02. Comparison of Kirchhoff andMindlinlReissner shear assumptions 

The Kirchhoff theory 47,48 uses a single variable (v) to represent out-of-plane 
deformation; this corresponds to the lateral displacement of the mid-plane of the plate. 
The generalised strains are represented by the second derivatives of the lateral 

displacement. The lateral displacement and the slope (the first derivative of v) must 
be continuous between element boundaries to ensure finite values for the strains. This 

continuity requirement is known as C, continuity, and causes mathematical and 

computational difficulties in defining shape functions for the plate elements. 

The Mindlin/Reissner theory 47,48 uses different variables to define the lateral 

displacement and the slope, each with independent shape functions. The first 

derivatives of the slope represent the generalised strains, and therefore the slope and 
lateral displacement must be continuous at the element boundaries. This continuity 

criterion is referred to as Co continuity 47 and is easier to implement than C, 

continuity. The Mindlin/ Reissner theory may normally only be used for thin plates if 

higher-order elements (elements with 9 or 16 nodes) are used. Lower-order elements, 
when used to model thin plates, tend to become artificially stiff, causing a 
phenomenon called shell locking. Methods have been developed to overcome shell 
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locking by the use of selective or reduced integration, or the use of discrete Kirchhoff 

theory 47,48. 

It has been shown that these approaches may be integrated into a more general 
formulation to approximate the shear and bending deformations independently (a 

method known as mixed interpolation). It was decided to adopt the Mindlin/Reissner 

theory with mixed interpolation so that; 

1. Lower-order elements (mainly four-noded) can be used when modelling thin 

shells. 

2. Any form of thick or thin shell or plate can be modelled. 

3. The formulation can be extended to geometric and material non-linearity. 

The basic isoparametric finite element (as defined by Bailey 44 and Bathe 48) has a 
predefined relationship between displacements at any point within the element and the 

element nodal displacements, by the use of interpolation (shape) functions. These 
interpolations express the element co-ordinates and displacements in the form of the 

natural co-ordinate system of the element, which has variables r, s and t, which vary 
from -I to +1 , as shown in Figure 5-03. 

Figure 5-03. Natural co-ordinate system of the element 

The general three-dimensional element co-ordinate interpolations are, 

qqq 

x= Ehixi y= Lhiy, Z=2, hz, 
i=1 i=1 i=1 

where, 

5-01 

x, y and z are the local co-ordinates of any point within the element, 
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xi, yj and zi (i = 1,2,3.... q) are the co-ordinates of the element nodes, 

hi Q=1,2,3.... q) are the shape functions (or interpolation functions) defined 

in the natural co-ordinate system relating to the global co-ordinateS48 

The element displacements are interpolated in a similar way to give 

qqq 

u=Lh, u, v= Lhivi w= Ehw, 5-02 
i=l i=l i=l 

where 

u, v and w are the local element displacements at any point within the element, 

ui, vi and wi (i = 1,2,3.... q) are the element nodal displacements. 

In the formulation of the element stiffness matrix, elemental strains are required. 
These are obtained in terms of the derivatives of element displacements with respect 
to the local co-ordinates. Since the element displacements are defined in the natural 
co-ordinate system, the x, y and z derivatives must be related to the r', s and I 
derivatives. Let 

X= fl(r,, s, ') Y= A(r, 
-S. 

') z=f, (r, s, l) 5-03 

which implies also that 

r= f4(XPYIZ) S= f5(X'Y'z) 1= f6(XsYPZ) 5-04 

To obtain the derivatives 0/&, alo'y and alaz, the product rule is used: 

a&a c9s 
-ýr7- + -- + 

C')X as & 

The derivatives &c'y andb/a. - are performed similarly. 

5-05 

To obtain a/&, the value arl& is needed, which requires the relationship defined in 

equations 5-04 to be evaluated. However, these relationships are generally difficult to 
establish explicitly, and so the required derivatives are obtained in the following way. 

109 



Chapter 5 -Modellinte Roor Slabs Usinz Laminated Rat Shell Elements 

Using the product rule, the following relationship may be formed: 

a' 
ar 
a 
as a 
at, 

which can also be expressed in matrix form as 

a =J ar 

5-06 

5-07 

where J is the Jacobian operator, relating the natural co-ordinate derivatives to the 
local co-ordinates derivatives. Since alo'x is required we obtain 

a= 
j-, a 

5-08 

which requires that the inverse of J exists. This will be the case provided that there is 

a one-to-one correspondence between the natural and local co-ordinates of the 

element. Once the derivatives are obtained, the strain-displacement transformation 

matrix B can be obtained, which allows the strains at any point within the element to 
be calculated using 

A E= u 

where 

c is the strain vector, 

B is the strain-displacement matrix, 

fi is the vector of displacements at nodal positions. 

5-09 

It should be noted that the formulation presented up to this stage is for a general three- 
dimensional element; this will be simplified for the following two-dimensional 
elements. 
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oz 

Figure 5-04. Plate element 

Considering the plate element shown in Figure 5-04, and following the sign 

convention of the existing model, the displacement components of a point having co- 

ordinates x, y, z (assuming small-displacement bending theory) are 

u= -Y PAX, Y) W=-Yp. (x, y) V= qxly) 5-10 
The bending strains, c., s, y,,,, vary linearly throughout the plate thickness and are 

given by the curvatures of the plate 

ap 
z 

zz 
xx 

3x, 

ap 

t fly 
ap 

ýt aox 
6a 

5-11 

The transverse shear strains are assumed to be constant throughout the thickness and 

are given by 

5-12 

Considering an isotropic material, the stress gradient can be obtained from 

zz 

xv 
T2x 

E 

-v 

Iv0 

v10 

00 I-V 
5-13 

2 

az 

ex 
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and 

E ZY 
Txy 2(l + v) CIV 

16X a 

5-14 

The expression for the total potential energy (n) of the plate element is given by 

+h12 

rI = 2f 
f {c 

' g. 
A -h/2 

where 

5-15 

p is the transverse loading per unit area, 

k is a constant shear stress correction factor (generally set to 5/6) 41. 

Substituting equations 5 -11 to 5-14 into 5 -15 and integrating with respect toy over the 

thickness produces, 

n= If ic"Cbxd4 +If yCyd4 -f wpd4 5-16 
2A2AA 

where 

7= 

TU 
+h/2 kf fý, T: y -fwp d4 dy d4 +2A 
-h/2 

y 
V.,, 

y T*-Y 

I 

dy d4 
A 

5-17 

5-18 
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a3 

%-'b - 
V2) 

r- 

Iv0 

v10 

00 
I-V 

2 

-" 20 + v) Lo I 

5-19 

5-20 

Since the normal stress in the plate has been integrated, Cb is the generalised stress- 

strain matrix relating moments per unit length to bending strains 

aBz 

Lm. JI ap I ap 11 

M. 

Cbj 

M-- II& 

az & 

5-21 

Similarly, C, is the generalised stress-strain matrix relating shear force per unit length 

to shear strains 

v 

2y 

! ý-y 

I=C. 

xyl 

:y 
5-22 

For equilibrium 8rl=O, and since Cis symmetrical we obtain from equation 5-16 

f 8icCic. d4 +f Sy "Cy dA -f Bwp d4 
AAA 

5-23 

This is the Principle of Virtual Displacements for a plate element based on the 

Mindlin/Reissner theory 48 
. The first two terms represent internal work due to virtual 

strains (corresponding to the imposed virtual displacements due to bending (Cb) and 

shear (Q) and the last term represents external work due to nodal loads subject to 

virtual displacements. 

In finite element analysis we use 

qq 

Lhv, 

Ehk 
-[l 

0- 
2(1+ý) 0 1_ 

ON 

q 

Ox = EhO'. 
i=l 
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qq 

z= Ehzi x= Ehx, 

and adopt the following notation: 

5-24 

y(r, s) = By ̂  ic (r, s) = B, U^ u v(r, s) = H. U^ 5-25 

where 

B. and By are generalised strain-displacement matrices, 

H,, is a matrix of the shape functions, 

fi is a matrix of nodal displacements. 

Substituting the notation of equation 5-25 into equation 5-23, and letting the imposed 

virtual nodal displacements be uý', gives 

-Z ZT 
uT[ýB, T, CbB�d, 4+fB, TC, B, tL4]U^=U HTpcL4 5-26 fw 

To solve equation 5-26 for unknown nodal displacements, a unit virtual displacement 

is applied in turn for all the displacement components used. Therefore, U^ is an 
identity matrix, which allows equation 5-26 to be expressed as 

Kfi =R 5-27 

where 

Kf (BTCI, B, + BfTCbB, ) tL4 5-28 
A 

and 

R= Ii Tp 
cL4 5-29 fW 

A 

Equations 5-28 and 5-29 have to be converted to natural co-ordinates (r and s) which 
requires the area derivative to be expressed as 
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dA = det J drds 5-30 

where detJ is the determinant of the Jacobian operator. Therefore, equation 5-28 may 
be written as 

+1 +1 

K= detJff (BTCbB, + BrC, B, ) dr ds 

and equation 5-29 may be expressed as 

+1+1 
R= det Jf f H, ', p dr ds 

1-1 

The shape functions are 

11 (1 - r)(I + s) 44 

5-31 

5-32 

r)(I - s) h, =I (I + r)(I - s) 5-33 
4 

Therefore, the co-ordinate interpolations are given by 

Z=I 
(I + r)(I + s)z, +I (I 

- r)(I + s)z, +I (I 
- r)(I - s)z, +I (I + r)(I - S)'-4 

4444 

5-34 

x=I (I + r)(I + s)x, +I (I - r)(I + s)x, +I (I - r)(I - s)x, +I (I + r)(I - s)x,, 4444 

5-35 

and the displacement interpolations are given by 

v=I I+ r)(I + s)vl +I (I 
- r)(I + S)V2 +I (I 

- r)(I - 
+3 +I (I + +4 

4444 

5-36 
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=I 
(I r)(I + s)o' +I (I 

- r)(I +S)02+1 (I 
- r)(I - S)03 +I (I + r)(I _s 

04 DZ 
4x4x4x4)x 

5-37 

=I I+r(l+s)O. ', +I(I-r)(I+s)O'+ I (I - r)(I - s)o' +I (I + r)(I - s)o' y44y4y4y 
5-38 

To evaluate the displacement derivatives we need to calculate 

ar 
a 

as 
ar ar 

,a &ý 2x a 
as es OIX 

5-39 

which may be expressed as 

a 

=J Or 

Now 

5-40 

az 
=I 

(I + S)Z, -I 
(I + S)Z, -I 

(I 
- S)Z, +1 (1 

- s)z4 5-41 
ar 4444 

az 
=I (I + r)z, -I (I + r)z, -I (I - r)z, +I (I - r)z, 5-42 

as 4444 

(I+ 
S)X, 

(I+ S)X, (I 
- S)X, +1 (1 

- s)x4 5-43 
4 c444 

&=I (I+ r)x, -I (I+ r)x, -I (I -+I (I - r)x. 5-44 
as 4444 

Therefore the Jacobian operator can be obtained for any values of r and s (-I :! ý r: 5 +1 

and -1 -5 s: 5 +1), which allows the displacement derivatives to be evaluated for any 

value of r and s using 
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Now 

az 
a 

& 
r, =ri&s--sj 

J-1 
y 
r-alls I OSJ 

r=r, &s--sj 

5-45 

ap 
L=II_ 

1(1+ 
2_1(1_ 03 

1 
I+SPX so s+ (I-S)O' 546 

&44)x4)x4x 

ap 
L (I+r)ol 

, 
(I+ r)O' - (I - r)O' + (I - r)O' 547 

as 44x4x4 

DO. 
L =I 

(I + S)OI _I 
(I + S)02 -1 

(1 
-yI 

(1_ 4 

ar 4y4y4 S)O'+ 4 S)o y 
5-48 

00.1. 
= 

! (1 +,, )0 1, - -1 (1 + r)O' -I (I - r)o' +I (I - rp' 549 
as 44y4 -' 4y 

Therefore the displacement derivatives are given by 

ap, 

OZ 0 
-(1 + S) 00+ S) 00 S) 00 S)- 

400 -(1 + r) 00 -(1 - r) 00 -(1 - r) 00 -(1 + 

J 
ax 

5-50 

-(I + S) 00 (1 + S) 00 (1 - S) 00 -(1 - S) 
. C. 11 =I J'l 

Oll 
A) 

aox 40 -(1 + r) 00 -(1 - r) 00 (1 - r) 00 (1 + r) 
u 

ax 

5-51 

where, 

j-)=(vl 01 01 02 02 V3 03 03 V4 04 04 
T 

x 
V2 

9x9x9 X) 

Therefore, from equation 5-25, the generalised strain-displacement, B,,, is given by 

=iu1 ýa 
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I 
J-1 

4 

+ r) -(I s) 

000 

-(I+S) + r) 
00 

+ s) 
-(I - r) 

0 
(I-S) 

-(I - r) 
0 

-(I-S) 
-(I + r) 

VI -V2 ZI - Z2 (01 
+ 02) 

2+4xx 

To obtain the generalised stress-displacement matrix for shear strains, the derivation 

by Bathe and Dvorkin 56 was adopted. This expresses the shear strains as 

y, =y, sinp-y, sina 

7, =-YYcosp+yv Cosa 5-53 

Where, cc and 0 are the angles between the r and x-axes, and the s and x-axes 

respectively. In this formulation it is assumed that the plate is not originally 
deformed. Therefore 

a= 900 

Using the derivation by Bathe and Dvorkin 56 the following expressions are used: 

7-. = 

V[(C, 
rP, ++ rP. 

)2 1 

. 1., 8 det J 

(1+s) (XI 
- X2) (0.1 

. 
+02) 

A -T 

5-52 

V4 -V3 
+ 

Z4 -Z3 04 +03 
24(x 1) 

- s) X4 - X3 (04 
_ 

03) 

4zz 

5-54 
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and 

(1 +r 

YSY 

ý[(A, 
ro, 

)2 
+ (A.,, + ro. 

)21 

VI -V4 ZI - Z4 «)l 
+ 04 

2+4x X) 
(XI 

-X4)(01 
+o4 

49 
8detJ V2 -V3 ZI -Z3 (02 

+03)] 

1.. II+Axx 

I 
+(l - S)l X2 - X3 «)2 

_ 
03 

5-55 

where 

Az =Z I -Z2 -Z3 +Z4 Ax= XI -X2 -X3 +X4 

=z -z +z -z B., =x _X +X -X4 1234123 

=Z +Z -Z -Z 1234C, =XI+X2-X3-X4 

when 

zi (i=l, 2,3,4) are the nodal z co-ordinates, 

xi (i--1,2,3,4) are the nodal x co-ordinates. 

Now 

T-Y BIU 
, "Y 

using the notation 

BI, 

s Yj 
By = By 

y 

where 
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By 
ry = Tr, 

in which 

Tr. = 

-'(I+S) 2 

-L(-x 41 
+X2)('+S) 

I (z, - Z, )(I + S) 4 
JL(I + S) 
2 

+x 
4 

(-Xl 
2)('+S) 

-L 
(ZI 

- Z2 + S) 
4 

- -L(1 - S) 
2 

(X4 + X3 S) 
4 

-L(z -Z3)(1-S) 44 
1 (1 

- S) 
2 

-L 
(-X4 + X3 

)(1 
- S) 

4 

-L 4 
(Z4 

- Z3)(1 - S) 

A(C. 

- 
+rP, )2 +(C., +rP.,, )2 1 

a8 det J 

and 

Bysr = Tr2 

in which 

I(I + r) 2 

-, 
(-x 

1+ 
X4)(1 + r) 

(z, 
-- 

)(I+ 
r) 

4 '4 

--L(I + r) 2 
(-X2 + x, + r) 

(Z2 
z, + r) 

4 
(I 

- r) 2 

.L 
(x 

2+x 
)(I 

- r) 43 
I (Z2 

- Z3 r) 4 
I(I 

- r) 2 

-L 
(-x 

4, 
+X4)(1-r) 

-1 
(z, 

- z,, r) 
4 

Tr, - 

V[(A, 
+ rB, )' + (A.,, + rB., 

)21 

8detJ 

T 

T 

5-56 

5-57 
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Obtaining the generalised strain-displacement matrices B", and By allows the element 

stiffness matrix to be obtained from 

+1 +1 

K= det Jf f (BTCbB,, +BTCbB. 
) 

dr ds 
-1-1 

5-58 

Gaussian numerical integration is used to evaluate the expression 5-58. Let 

+1 +1 

K= f ff drds 
-1-1 

where 

5-59 

TCbBx j B, f= det J(B,, + BITCb 

Using numerical integration 

K= lccijfijtij 5-60 
ii 

wherefy is the matrix f evaluated at points ri and sj, ty is the thickness at this point and 

aij is a constant known as a weighting factor which depends on the positions of r, and 

Si. 

0.577 

ts 

77 

r op-ý 

-0.577 
7f,. ý A-I 

+1 

r= -0.577 r=0.577 
Figure 5-05. Position of Gausspoints in the element 

The positions of ri and si, together with the values of the weighting factors, are such as 

to give maximum integration accuracy for the number of Gauss points (i. e. ri and sj) 

used. In this formulation 2-point Gauss integration is employed, which means that the 

matrixfij is calculated at four points as shown in Figure 5-05. The weighting factors 

I I 
I 
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corresponding to the positions of these Gauss points can be found in many textbooks 

on numerical methods, for example those by ZienkiewiCZ 47 and Bathe 48. 

5.2 PLATE ELEMENT FORMULATION EXTENDED To ACCOMMODATE 

LAMINATIONS 

The laminated shell formulation is an extension of that found in Section 5.1 for the 

simple plate formulation. 

A sequential numbering system is adopted, starting at the top surface of the flat shell, 

as shown in Figure 5-06. Stress points are taken at the mid-surface of each lamina. 

The stress components are computed at these stress points and are assumed to vary 

linearly over the thickness of each lamina. These are then transposed accordingly (or 

condensed) to form an element stiffness matrix in the manner of the static 

condensation method 48 
. 

Figure 5-06 Lcryered shell element 

First consider the element as a plate element allowing bending. The Principle of 
Virtual displacements (equation 5-23) states that 

f Br, 'C,, ic d4 +f 8y "Cy d4 -f 5wp d4 =0 
AAA 

As stated in Section S. 1, the first term is the effect of bending on the plate, the second 
term is the effect of shear, and the final term is the external work due to nodal loads 

subject to virtual displacements. 
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First consider the shell element in bending. For a single lamina of thickness h the 
bending stiffness corresponds to that of a simple non-laminated element and is 

defined by equation 5-19 

F V 
Cb 

12(1- V2) 

10 

0 
I-V 

00 
2 

When considering a laminated system, it is important that we take into account the 

position of the overall reference axis. By definition, the second moment of area for a 

strip of unit width, can be found using 

1 +2 dV 

evaluated between limits ony representing the two faces of the strip. 

5-61 

Inserting this into the bending stiffness matrix, with reference to Figure 5-07, 

produces for each lamina about the element mid-surface (as Howlett el al 61) 

I 

Element - 
mid-plane 

. consideration 

n 

Figure5-07. Plate element divided into layers 

Cb = 
E((y I)' - 

(Y2 

3(1- V2) 

Iv0 

v10 

- I-V 00 
2 

FY2 II 

5-62 

Summing this over the full plate thickness to form the elemental stiffness matrix 
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Cb 
Ei((y, 

)3 
-(Y2 

)3) 

3(1- V2) 

Iv0 

v10 

-- I-V 
00 

2 

5-63 

The shear stiffness matrix (with reference to equation 5-23) is summed to find the 

total shear stiffness along the edge of each lamina 

Ehik [1 01 
2(1+v)LO II 

where k is the shear coefficient, 

5-64 

The number of laminae which are necessary for discretizing and integrating in the 

thickness direction depends on the particular problem. Hinton and Owen 62 have 

suggested that between 6 and 10 laminae should be acceptable to represent non-linear 

behaviour in moderately thin structures. 

5.3 PLANE STREss ELEMENT FORMULATION 

For the plane stress membrane stiffness, consider the element in Figure 5-08. 

Plan view 

Node 3 Node 4 
-z, u 

Figure 5-08. Plane stress element 

As for the plate formulation, the Principle of Virtual Displacements gives 

f 8c"r &4 

where 

is the concentrated external force at node i, 

5-65 
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fi' is the nodal displacement at node i. 

Using e=Bil and letting the imposed virtual displacements equal -Uý7 gives, 

-Z . -Z 
uT 

[ý 
B'CB d, 4]u =uT (F) 

where 

(F) is the vector of externally applied nodal forces. 

5-66 

Using the virtual nodal displacement method of applying a unit virtual displacement 

in turn to all displacement components gives u as an identity matrix, allowing 

equation 5-68 to be expressed as 

Kfi=F 

where the stiffness matrix K, is given by 

5-67 

K=f BTCB d4 5-68 
A 

Converting this equation to the natural co-ordinate system (as shown in the derivation 

of the plate element) produces 

+1 +1 

K=detJf f(B T CB) dr ds 
1-1 

5-69 

Considering Figure 5-08, the co-ordinate and displacement interpolations are given by 

qqqq 

x= Lhx, z= Lhizi w=Zhjwj u=l: hiu, 5-70 

where 

x and z are the local co-ordinates at any point within the element, 

xi and zi are the local co-ordinates at the e node, 
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w and u are the local displacements at any point within the element, 

wi and u, are the local displacements at the e node, 

hi are the interpolation functions, which are the same used for the plate 
element (equation 5-33), and are shown again below. 

h, =1 (1+ r)(I + s) h2 =I 
(I 

- r)(I + s) 
44 

r)(I - s) h,, =I (I + r)(I - s) 5-71 
4 

Therefore the local co-ordinates at any position within the element are given by 

Z=I (I + r)(I + s)z, +I (I - r)(I + s)z, +I (I - r)(I - s)z, +I (I + r)(I - s)z 4444 '4 

5-72 

x=I I+r (I+s)x, +I (I 
- r)(I + s)x, +I (I 

- r)(I - S)X3 +I (I + r)(I - s)x4 
4444 

5-73 

and the local displacements at any position within the element are given by 

u=II+ r)(I + s)u, +I (I 
- r)(I + S)U2 +1 (1 

- r)(I - s)u3 +I (I + r)(I - S)U4 
4444 

5-74 

W=I (I + r)(I + s)w, +I (I 
- r)(1 + s)w, +I (I 

- r)(I - s)w, +I (I + r)(I - S)W4 
4444 

5-75 

The element strains in a plane stress element are given by 
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where 

cz 

cx 

, lu 0 ew &U (9w 
zz xx ix az 5-76 

The displacement derivatives can be evaluated at any values of r and s using 

0L NJ 
at r=ri and s=sj 

-'XJ 
at r=ri and &=sj 

5-77 

The formulation of the Jacobian matrix J has been shown in the derivation of the plate 

element. Now 

N=I 
(I+ 

S)U, -I 
(I + S)U, -I 

(I 
- S)U, +1 (1 

- s)u4 5-78 
&4444 

au 
=I (I+ r)u, +I (I+ r)u, -I (I - r)u, +I (I - r)u, 5-79 

as 4444 

I 
(I + S)W, -I 

(I+ 
S)W, -1 

(1 
- S)W3 +1 (1 

- S)W4 5-80 
4444 

ow (I+ r)u, +I (I+ r)u, -I (i - r)u, -I (I - r)u, 5-81 
as 4444 

Therefore the displacement derivatives are given by 

= 
lij(i+S) 0 -(i+S) 0 -(i-s) 0 (i-s) ID a 

'a 

au 4 L(I + r) 0 (1 - r) 0 -(1 - r) 0 -(1 + r) 0]1 u ý -la"x 

'u 

ax 

5-82 
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ii-I o O+S) o -(i+s) o -(I-S) o (I-S) 
4 

[0 
(1 + r) 0 (1 - r) 0 -(I-r) 0 -(I+r)] 

5-83 

where 

W= (z, 
XI Z2 X2 Z3 X3 Z4 X4 

)T 

Therefore, using 

e= BU^ 

the strain-displacement matrix B is given by 

B= 
I 

J-1 
4 

O+S) o -(i+s) o -(I-S) o (I-S) 
0 (1 +0 (1 - r) 0 (1 - r) 0 
+ r) (I + s) (I - r) -(I+s) -(I-r) -(I-s) -(I+r) 

5-84 

Therefore the element stiffness matrix can be formed using 

+1 +1 

K= detJf f (B T CB) dr ds 
1-1 

where C is the stress-strain matrix given by 

E 
V2 

- I- . -1 --. -1 -- -/ -I- -" 

110 0 (I+r) 0 (1 - r) 0 -(I-r) 0 -(I+r) 

Iv0 

v10 

00 I-V 
2 

5-85 

5-86 

Gaussian numerical integration is used to evaluate the member stiffness matrix; this 

method has been explained previously in the derivation of the single-layer plate 
stiffness matrix. 
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5.4 EXTENSION OF PLANE STRESS ELEMENT FORMULATION TO 

ACCOMMODATE LAMINATIONS 

The formulation for a laminated element follows that for the virtual nodal 
displacement method. Equation 5-67 is 

Kfi =F 

in which 

F is the vector of externally applied nodal force, 

fi is the nodal displacement. 

K is the tangent stiffness matrix defined by equation 5-85. 

In the laminated plate element formulation, the average in-plane stiffness is calculated 

assuming that the thicknesses of the layers used are equal. 

c= 

E 
V2 

Iv0 

v10 

00 I-V 
2 

n 
5-87 

For situations where the thicknesses of the layers are not equal, it would perhaps be 

more appropriate to apportion the stiffness of each layer accordingly into the stress- 

strain matrix. 

5.5 CALCULATION OF STRESS VALUES 

After the nodal displacements of the element have been found it is possible to 
determine the stress values at any position throughout the element using 

,c= CBh 5-88 

where 

-r is the generalised stress, 
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C is the generalised stress-strain matrix, 

B is the generalised strain-displacement matrix, 

fi is the matrix of nodal displacements. 

The accuracy of stress values within a displacement-field finite element formulation is 

dependent upon the positions at which they are calculated within an element. Under 

normal circumstances, convergence of all criteria ensures that all displacements 

across an element will be continuous. However, continuity across boundaries does 

not generally apply to stress values unless the formulation is based on stress fields, 

which has the effect of 'slower' convergence of the stresses than displacements. 

Previous research 44,47,48 has been conducted into the accuracy of predicted stress 

values for displacement-field formulations in relation to their locations within the 

element. These conclude that the most accurate stress values are obtained at the 

Gauss integration points. It is therefore logical that a dense-mesh finite element 

model will give more accurate results for stress distribution than those for a sparse 

mesh. This will be demonstrated in the following sections. It was decided to take the 

stress values at each of the four Gauss points and to average them across the whole 

element. From the geometric properties of the element, the stress gradient due to 

bending, and the shear and in-plane stresses for each layer may be calculated. 

5.6 VALIDATION OF THE LAMINATED FLAT SHELL ELEMENT 

The validation of the laminated flat shell element is intended to begin with simple 
elastic, single-lamina examples, and to proceed in logical steps to more complicated 
composite beams with slabs, including cracking, reinforcement and full thermal 

effects. The planned progression is shown in Figure 5-09. 
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Validation of the laminated bending shell element 
Includes validating the laminated bending shell and in-plane characteristics 

for one layer and multiple layers using different materials. 

T17 

Thermal degradation of laminated shell elements 
Covers the material thermal degradation properties for steel and concrete, 

their implementation into VULCAN and their validations. 

t 
Thermal expansion and bowing of laminated shell elements 

Thermal expansion properties are first considered and their application in 
VULCAN, followed by validations for both steel and concrete examples. 

, ý: 7 
Bending of anisotropic laminated plates 

Firstly the formulation of the bending shell element is extended and then 
validations are carried out. 

Simulation of concrete cracking 
Cracking of concrete is discussed in relation to VULCAN and three 

different analyses are compared with experimental results. 
9 

Investigation of the laminated flat shell element 
A composite beam and slab are studied for their sensitivity to various 

parameters. 

Figure 5-09. Validation sequencefor laminated, flat-shell elements. 

The validations will, where possible, involve three different cases with established 

closed-form solutions for both deflections and stresses. Case I is a concrete 

cantilever beam, Case 2 is a simply supported steel plate and Case 3 is a deep steel 
beam. Cases 2 and 3 were previously used by Bailey 44 for his simpler validations. 

During the validations differences will occur in comparisons between the closed form 

solutions for stresses and the finite element analyses. These have two main causes: 
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1. The finite element method used is concerned with the displacement field and not 
the stress field, as was discussed in Section 5.5. 

2. The stresses calculated during the analyses are averaged across the elemental 
Gauss points, which are themselves a short distance from the nodes. 

5.6.1. CASE I -CONCRETE CANTILEVER BEAM 

The concrete cantilever beam is 2000mm long, 300mm deep and 300mm wide with a 

point load of 2kN at its free end. The boundary conditions at the built-in end of the 

cantilever are fully fixed, (i. e. no rotation, movement or strain is allowed at this 

position). The assumed elastic modulus at 20*C is E2o = 14 000 N/mm 2 and Poisson's 

ratio at 20'C is v=0.3. The load is positioned at the tip of the cantilever; and is 

distributed uniformly between the nodes at this point. Case I will be used to study the 

bending properties of the flat shell elements. 

300 mm 
300 mm 

Figure 5-10. Case I- Concrete cantilever beam 

The closed form linear elastic theoretical solution for the deflection caused by a point 
load at the end of a cantilever beam is given by 

pe 
3EI 

The second moment of area is given by 

n 7-%3 003 DIU 300x3 ixx =-= -6.75 XIOSMM4 
12 12 

Therefore using equation 5-89 gives a total deflection of 

2000 x3=0.5644mm 
3x (14 X 103) x (6.75 x 108) 

5-89 

5-90 
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The stress gradient at the support of the cantilever may be found using classic bending 

theory, which gives 

cr = 
MY 

I= 5-91 

where 

M is the bending moment at the point where the stress is required, 

y is the dimension from the neutral axis to the outermost fibres of the beam, 

For the cantilever beam example, the bending moment at the support will be 

M= 2000 x 2000 = 400000ONmm 

Therefore the stress at the outermost fibres of the beam at the support is 

4000000 x 150 
= 0.889N/mm' 

6.75 x 10' 

5.6.2. CASE 2- STEEL SIMPLY SUPPORTED PLATE 

A 2000mm square steel plate with a thickness of 8mm has been used in many of the 

validations; this is shown in Figure 5-11. Poisson's ratio at 20'C is v---0.3 and the 

elastic modulus at 20T is E2o = 205000 N/mmý. Case 2 will be used to validate the 

plate bending properties. 

looomm 

--Z71 1000M Thickness 8. Omm 

Figure5-11. Steel simply supportedplate 

Using the symmetry inherently found within this type of plate example, it is possible 
to model only a quarter of the plate provided the correct boundary conditions are 
implemented. These are shown in Figure 5-12. 
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Simply supported, i. e. the only 
restrained movement or rotation 
is vertical displacement 

Centre line 
Rotation about the centre line is 
restrained in conjunction with 

K. 7-\movement normal to the centre 
line. All other displacements 
are considered free. 

Figure 5-12. Boundary conditionsfor modelling one quarter of a simply supported 
plate using symmetry 

Timoshenko 63 gives the linear elastic theoretical solution for the central deflection as 

0.0116 
pe 
D 

where 

P is the central point load 

L is the side length of the square plate 

1) =, 
EP 

12(l - 

Therefore 

X10 
3 8.0 3 

=9.6x 106 Nmm 
12(1-0.3 2) 

Giving a central deflection of 

Ac = 
0.0116 x (2.0 x 103) x 20002 

= 9.65mm 
9611721.6 

5-92 

5-93 

An approximation by Timoshenk063 gives the bending moment per unit width at the 

centre of the elastic square plate subject to a point load as 

M= = 0.298P = 0.298 x 2000 = 596Nmm 5 94 
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Timoshenko63 gives the solution for the maximum stress at the extreme fibres of an 

elastic plate as 

a= 
6Mxv 

_ 
6x596 

= 56NImm 
h282 

5.6.3. CASE 3- DEEP STEEL BEAM 

5-95 

To validate the plane stress membrane characteristics, a deep beam analysis is carried 

out. The material is steel with an assumed elastic modulus of 20500ON/mM2 and 
Poisson's ratio of 0.3. 

3000 mm 1 3000 mm 

r mm 7100omm 

Figure 5-13. Deep steel beam 

In elementary beam bending theory it is assumed that plane sections remain plane 
during bending, with no account taken of the presence of shear deformation. Shear 

stresses cause plane cross-sections to distort during bending, and significantly affect 

the stresses and displacements of the beam when the depth of the beam is a substantial 

proportion of its length. To validate the membrane characteristics of the flat shell 

element, the deep beam shown in Figure 5-13 was analysed. Timoshenko 64 gives the 

theoretical solution for the central deflection; this method takes into account the effect 

of the shearing force. 

5 qr + 
12 c2 (4 

+r 
2j 24 EI 

[5 
iT 5 2] 

where notation is shown in Figure 5-14 

5-96 
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C 

C 

Figure 5-14. Deep beam deflection and stress equation notation 

The central deflection is given by 

5 500 x3 0004 12 (500)2 4 0. ý 
Ac =- 1+ 

000)2 

(5 
+ 

2.3 173 Imm 
5 (3 2. 

) 

24 205 x 103 x 23 x 109 

[ 

Timoshenko also provides a calculation for stress gradients across a deep beam: 

ax = 
1- (L 2 

_X2 +q 
ýy 3_ 2c2 

21 21(3 5 Y) 

Therefore the central extreme-fibre stresses are 

a nux 
= - 

500 (3 0002 _ 02 
b 

oo+ 

2x 2F5 x 10') 

- 
500 

500, _2 5002 X 50 = 453.3 NImm 2 
2x [2.5 

x 109)(ý3 5 
0) 

5-97 

Symmetry was utilised for the computer model predictions, and the boundary 

conditions were as shown in Figure 5-15. 

Fixed in longitudinal rotation 
and in-plane displacement. 

Fixed in vertical displacement only. 
Figure 5-15. Boundary conditionsfor modelling deep steel beam using symmetry 
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5.7 VALIDATION OF A SINGLE-LAMINA, ELASTIC, FLAT SHELL 

ELEMENT 

The single-lamina, elastic, flat shell element is now tested against the three cases 
defined in Section 5.6. 

5.7.1 VALIDATION OF THE SINGLE- LAMINA, ELASTIC, FLAT SHELL ELEMENT IN 

BENDING 

The validation of the cantilever example, Case 1, uses a conventional convergence 

test in which the number of elements along the beam is progressively increased, as 

shown in Figure 5-16. 

n=l n=2 n=4 

Figure 5-16. COnvergence study. for the cantilever beam 

Figure 5-17 shows the results of the convergence study of the cantilever beam in 

terms of deflection. It will be noted that the finite element analysis quickly converges 

to a satisfactory result of less than 1% error from the closed form solution when five 

elements are used. 
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Figure 5-17. Convergence study of a cantilever beam 
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Figure 5-18 shows a convergence curve for the extreme stress given by the finite 

element solution for the cantilever beam at its built-in support compared to the closed 

form solution. 

Bending stress (N/mm' 
0.9"t -I 
0.8-- 

0.7- 

0.6. 

0.5, 

0.4 

0.3- 

0.21 

0.1 

0 

Closed form solution 

Finite element solution 
- 

2 3 
Number of elements 

Figure 5-18. Convergence of siress gradient alsupporl of cantilever beam 

I 
6 

There is an expected variation within the results because the closed form solution 

gives the stress at the support point whilst the finite element procedure gives an 

approximation at the Gauss points, which are situated away from the built-in end. 

The stresses calculated at the Gauss points are also averaged across each element. 
This leads to the phenomenon described in Section 5.5, in which the stresses converge 

more slowly than the displacement solution. Although it is possible, no attempt has 

been made to hand-calculate the stresses at the Gauss points, as their positions will 

relocate progressively with the increase in element density. 

I element 4 elements 9 elements 16 elements 25 elements 

Figure 5-19. Mesh arrangement. for simply supported plate 

Case 2 has been used also to validate the bending of the single-lamina, elastic flat 

shell element. A convergence study was carried out using different meshes, as shown 
in Figure 5-19, to determine the number of elements required for an accurate result. 
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Figure 5-20 shows the convergence study for deflection. The result converges 

quickly as the number of elements increases, and even a sparse mesh of just four 

elements gives an acceptable error of below 1%. 

Number of elements 
10 15 

Finite element solution 

-104- 

I 

-121 
Deflection (mm) 

Figure5-20. Cotivergetice studyfor the sitigle layer plate example 

25 

Figure 5-21 shows the corresponding results for the convergence study in tenns of the 

stress at the centre of the steel plate. 

Stress (N/mM2) 
60 r--- -- 

50 ý 

40 t 

30 

20 

10 1 

Closed form solution 
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20 

Closed form solution 

Finite element solution 

10 15 20 25 30 
Number of elements 

Figure 5-21. Stress convergence of a simply supportedplate 

A surface deflection plot for the plate is shown in Figure 5-22, which exhibits a 

synclastic curvature at the supporting comer. 
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Figure 5- -) i. Deflectedsurface qf the simp4, supporledplate 

To validate the plane stress component of the flat shell element, Case 3 was subjected 

to a convergence study by increasing the number of elements, as shown in Figure 5- 

23 

ii -4--4 

20 

n=b 

'1 

-4 
Es 

n=48 

ii 

A 

I 

n=24 n=96 
Figure 5-23. Alesh configurations usedfor convergence stuuý-Jbr plane stress 

characteristics of the laminatedflat shell element 
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Figure 5-. N. I)eflecti(mc(miergent-e. vtuitt-forpkvw. vtre. Kvcharacteri. stic. vofa. vingle 
laminated. flat shell element 

The results for the deflection convergence test are shown in Figure 5-24. Once again 
this test shows that as the number of elements is increased the computed results 
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converge quickly towards the exact solution. In this particular solution, when 48 

elements are used, the percentage error is below 1%. 

The maximum stress gradient will occur at the centre of the beam span; this stress 

gradient will be approximated by a sequence of uniform steps of stress across the 

section as shown in Figure 5-25. These may be compared to the calculated stress 

gradient. It can be seen that the stresses do vary from the theoretical stress gradient. 
This will be due a combination of. 

The finite element code working in convergence criteria relative to a displacement 

field (as opposed to stress field criteria). 

The gauss points (used for calculation of the stresses) being remote from the 

nodes. 

9 The stresses averaged across the element. 

453.3 N/mm 2 187 N/mm 2 

-453.3 N/mm 2 

327 N/mM2 

-361 N/mm 2 
-511 N/mm 2 

362 N/mm 2 

-443 

400 N/mM2 

-441 N/mM2 
Actual 6 elements 24 elements 48 elements 96 elements 

Figure 5-25. Convergence of stress gradient within the deep beam 

5.7.2 VALIDATION OF IAMINATED, ELAsTic, FLAT SHELL ELEMENT IN BENDING 

A contrived composite steel-concrete cantilever beam of rectangular section, similar 

to that used in case I, has been used to validate the laminated bending shell element. 

This is shown in Figure 5-26. The theoretical deflection was calculated using the 

transformed (or equivalent) cross-section approach. 

2 kN 3N/MM2 Steel z E. c,, -t. = 14 x 10 11 
117 _-, If%c_, lf%3XTI--2 

E3 00 mm 
r-deel -, 4v-) A IV IN/111111 

'vooncrcto ý-- U-4 

vü��i = 0.3 
300 mm 

Figure 5-26. Composite material cantilever beam (Two layers) 
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The interface between the steel and concrete (dimension Y) has been increased in 

10mm intervals through the depth of the section, in order to check that the 

contribution to the element stiffness matrix for each layer is correct. 

A typical closed form solution for the case where the steel/concrete interface (z) is at 

a depth of 150mm is given below. 

The position of the neutral axis (plane of zero strain) is found by taking moments 

about the beam soffit. 

NA = 
(150x 225)+(150x 75 x (14000/205000)) 

= 215.4 Imm (150)+ (150x (14000/205000)) 

Therefore the second moments of area of the steel and concrete portions of the beam 

are 

ISfee 
=3 

00 x (3 00 - 215.4 1)' 
+3 

00 x (215.41 - 150)' 
= 8.85 X 107 nIM4 33 

I, 
--- = 

300 x 215.41' 3 00 x (215.41 - 150)' 
= 9.72 X lot MM4 

33 

Hence the deflection is (equation (5-89)) 

I 
pp 

A= 

A= ---- ll---- --0.168mm 3x 11105000 x (8.85 x1 o7 »+ (14000 x) x (9.72 x 10'» ul- 

3 ((Es,,, 
el 

ISteel + (Ec,,,,,,,,, )) 

. -)Ann v jAAA3 

Figure 5-27 shows the deflection of the computer model compared to the deflection 

found by hand calculations. The maximum percentage error found is 1.78%. 
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Position of material interface (mm) 
50 100 150 200 250 300 

Finite element solution 
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-0.21--- 
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-0.4-1---- 

-0.5 4------ 

Tlosed form solution 

-0.61 - -- -- L- IIII 
Deflection (mm) 

Figure 5-2 7. Convergence study of a two layer composite cantilever 

Figure 5-28 shows the bending stress found in each of the layers. These are 

satisfactory. 

2 0.44 N/mM 

0.889 N/mM 
7 

Actual bending 
stress 

Analysis stress 
block 
approximation. 

1.403 N/mm' 0.889 N/mm 

Interface at 50mmftom lopface Interface at bottom ofelement 

Figure 5-28. Layer stress blocks at intervals through the cantilever 

5.8 ELASTIC THERMAL MATERIAL DEGRADATION OF LAMINATED 

SHELL ELEMENTS 

The material degradation of laminated shell elements due to increase in temperature 

can be achieved simply by reducing the elastic modulus of the material. For the 

degradation of steel and concrete Eurocode 4 provides a way of modelling the stress- 

strain characteristics. 
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5.8.1 THERMAL MATERIAL DEGRADATION OF LAMINATED PLATE ELEMENTS - 

VALIDATION 

A simple plate example (as used previously in section 5.4.1) has been used with a 

single steel lamina, and hence it is only possible to impose a uniform temperature 

profile across the depth of the plate. Because of symmetry, it is necessary to model 

only a quarter of the whole plate. This in turn will be divided into a further 16 

elements since this gave an acceptable accuracy (below 1%) for ambient 

temperatures. Figure 5-29 shows the arrangement of finite elements used and the 

steel material properties at ambient temperature. 

1000 mm 1000 mm 1()3 M2 < -- >, E= 205 x N/m 
v=0.3 
Simply supported 
along all four sides 

2 kN 

looomm 

looomm 
f -z-1--/--) 

I-) 8. Omm 

Area and element 
configuration modelled 

100% 

Uniform temperature 
distribution 

Figure 5-29. Simply supported steel plate with uniformly distributed temperature 
degradation 

Temperature ('C) 
200 400 600 800 1000 1200 

II --I 

-100 

-200 

Finite element solution 
(Linear approximation) 

Closed form solution ý 
-300 (Linear Approximation) 

-400 Finite element solution (EC4) 

-500 Closed form solution (EC4) 

-600 J- --- - -- II 
Deflection (mm) 

Figure 5-30. Central deflection of a simply supportedplate subject to thermal 
material degradationftom EC4 and a linear representation of EC4 degradation 

Finite element analyses have been carried out using both the linear approximation and 
the EC4 non-linear approximation. Calculated deflections in relation to temperature 
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are shown in Figure 5-30. A comparison is made between the closed form solution 

and the finite element solution for both the linear and non-linear approximations and 

it can be noted that the correlation is excellent with the maximum percentage error 

being 1.1%. 

5.8.2 NON-UNIFoRm TEMPERATURE DiSTRIBUTION 

A convergence test was carried out on the steel plate shown in Figure 5-3 1. A linear 

temperature gradient was assumed between bottom and top face temperatures of 

100% and 50% respectively. All thermal bowing effects were restrained. The 

number of laminae used to represent the plate was then varied between two and nine. 

The results of this convergence study are shown in Figure 5-32. 

1000 mm 1000 mm 103 rn2 <E= 205 x N/m 

2 kN 

looomm 

looomm 
(I // 

fI/zý 

v=0.3 
Simply supported 
along all four sides 

8.0 mm 
ý : -ý II 

100% 

I InIfhrm temnevitnre 
Area and element 
configuration modelled gradient 

Figure5-31. Simply supported steel plate with a linear gradient distributed 
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Figure 5-32. Convergence study of the number (? f layers required. for the simulation 
of an irregular temperature gradient. 

temperature degradation 
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5.9 THERMAL ExPANSION AND BOWING OF LAMINATED SHELL 

ELEMENIS 

If it is assumed that the lower surface of a plate has a temperature that exceeds that of 
the upper surface, the plate will have a tendency to bow downwards due to the non- 

uniform heating pattern. Within a laminated plate element, a thermal gradient is 

represented as previously, with each lamina having a different uniform temperature 

across its depth. The free strain of each lamina is computed and applied as an axial 
force at the mid-plane of the lamina. The equivalent moments and axial forces 

necessary for restraint may then be calculated about the reference plane of the element 

and applied implicitly to the initial force vector. This is shown schematically in 

Figure 5-33. 

-------------------------- 

Undeformed element 

Moment Moment 
-%9---- 

F-A 

Axial force 

Thermal 77 
Restrained layers gradient 

Figure 5-33. Ihermal bowing ofa laminatedplate element 

Thermal strains may be incorporated into the model by treating them as bi-axial 

forces at the comer of every layer. The Principle of Virtual Displacements may then 

be extended for a plane stress element (equation 5-65) 

18JT dA = 18u^TF' + 
18£Tri 

where 

5-98 

f 8s', r' is the external work of the initial stress due to the virtual strains 
A 

corresponding to the imposed virtual displacements. 

Equation (5-68) can therefore be extended to 
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ur[f BTCB dA ü=uT [F]+u Tf BTV dA 5-99 

-Z'T 
Since u is an identity matrix, then the axial forces for each layer are given by 

Ri f By dA 
A 

where 

4 Ea 
r. =- 

I_V2 

Iv0 

v10 

00 
I-V 

2 

I 

I IT 
- T. ) 

0 

5-100 

5-101 

in which 

T. is the initial temperature, 

T is the temperature of the lamina. 

cc is its coefficient of thermal expansion, 

These axial laminar forces may then be added into the analysis by calculating their 

resultant moments and forces about the mid-surface. 

5.9.1 THERMAL ExPANsioN AND BOWING OF ]LAMINATED SHELL ELEMENTS - 

VALIDATIONS 

The square steel plate used in previous validations has also been utilised to validate 

the thermal bowing within the finite element analysis (Figure 5-34). A convergence 

study was conducted in which the number of layers within the depth of the plate was 
increased from 2 to 9, to approximate the temperature gradient shown in Figure 5-34. 

At this stage of validation, thermal material degradation has been ignored. The plate 
is not loaded. 
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Figure5-34. Aermal bowing ofa simply supported steelplate with a linear 
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Figure 5-35. Convergence study of thermal bowing ofa steelplate with a constant 
coefficient of thermal expansion 

Figure 5-35 shows the results of the thermal bowing of the plate for a constant 

coefficient of thermal expansion of 0.000014; the temperature shown on the 

horizontal axis is that of the bottom face. The temperature has been limited to 

1000T as a linear relationship between temperature and deflection is found. This is 

due to not including material degradation at this stage of the analyses, and to 

assuming a constant temperature gradient and a constant coefficient of thermal 

expansion. It will be seen that a solution has converged from the finite element 

analysis when 6 layers or more are used; this is at a constant percentage error of 
23.73% when compared to the closed form solution 63 

. This is possibly due to 
Timoshenko's 63 solution being an approximation in that it is not able to take shear 

p,.,,, � 
(I /14 

200 
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into account. A convergence using 6 or more layers confirms Hinton and Owen's 62 

statement that 6 to 10 layers will give acceptable results. 

5.10 BENDING OF ANiSOTROPIC LAMINATED SHELL ELEMENTS 

The formulation described in Sections 5.1 and 5.2 is general for isotropic plates; this 

can easily be advanced to allow orthotropic materials to be considered within the 

finite element formulation. This is necessary for the modelling of cracking within the 

plate elements, the uni-axial nature of reinforcement layers, and in situations where 

the floor is cast on a profiled sheet decking. Timoshenko 63 advises that, for 

reinforced concrete, the rigidity of the laminae should be calculated using the 

following approximation. 

First, consider the shell element in bending. For a single lamina (or a simple 

unlaminated element) it is known that the bending stiffness is defined by equation 5- 

191, 

D(l, l) D(2,1) 0 
Cb= D(1,2) D(2,2) 0 

00 D(3,3) 

where 

Tl%ll IN Exh 
Jill,! ) = 

12(1 - v, ') 

F h' 
D(2,1) = v., 2) 12(l -x 

D(1,2) = v, 
E, h' 

2) 12(l - v. 

D(2,2) 
Erh' 

12(1- VZ2 

D(3,3) 1-((v+v)/2)) 
., 
FD(ll) -xD(2,2) 

2 

5-102 

This may then be applied within the finite element program using the methods 
described in Section 5.2. 

149 



Chapter 5- Modellinz Floor Slabs Usinz Laminated Flat Shell Elements 

5.10.1 BENDING OFANisoTRopic LAmiNATED SHELL ELEMENTS- VALIDATIONS 

To validate the anisotropic laminated shell elements, the same steel plate as used in 

previous validations has been utilised; this is shown in Figure 5-36. The validation is 

conducted by holding all material properties constant, except the elastic modulus in 

the z-direction. 

" Zý 
r-I Izz 

(1fff 
I-z-z-" 

- 

E. = 205 x 103 N/mm2 
v. = 0.3 
Eý = Varies 
v,, = 0.3 
Simply supported 
along all four sides 

Area and element 8.0 mm 
configuration modelled 

Figure5-36. Simply supported steelplate with a varying elastic modulus in one 
direction 
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Figure5-37. Central deflection of a simply supportedplate where the elastic modulus 
in the z direction has been varied 

Validation of this ambient temperature anisotropic plate in bending against analytical 
solutions is impossible except through the use of the finite element method, because 

the variation in torsional properties cannot be accounted for in closed-form or finite 
difference solutions. The logical limits to this are shown on the figure. These are: 
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1. When the elastic modulus is equal in both directions, this can be treated as a 

simple isotropic plate. 

2. When the elastic modulus in one direction is equal to zero, this can be likened to a 
simply-supported steel beam, although this will not allow for the synclastic action 
that is normally associated with this type of deflection. 

These bounds are shown respectively on Figure 5-37, and are comparable to the 

results from the finite element analysis. 

11 SIMULATION OF CONCRETE CRACKING 

At the start of the current project, the program VULCAN contained flat shell elements 
to simulate the effect of the floor slab on a structure during fire. The cracking model 

used within this formulation measured the membrane stress within the plate element 

and the stress gradient between its extreme fibres. Where individual calculated 

orthogonal stresses exceeded those specified by the user, the element was reduced to a 
thickness of 6mm to simulate the A142 anti-crack mesh within the Cardington test 
frame floor slab. 

VULCAN has since been modified to accommodate the laminated flat shell element. 
The general approach for the cracking model is similar to that for the single-layer flat 

shell elements used by Bailey 44. The laminated flat shell elements are formulated 

together with any beam or spring elements within the structure. These are used to 

assemble the global stiffness matrix, and the displacement field is calculated. The 

displacements are then used to determine the membrane stresses and stress gradient 

within the flat shell elements, and these stresses are used to find the orthogonal 

stresses within each lamina. The stresses are compared to limiting compression and 
tension stresses, and if these are exceeded the corresponding lamina is considered as 

cracked. On the next Newton-Raphson iteration of the finite element solution process 
the 'cracked' laminae are ignored in the subsequent formulation of the flat shell 

element, and the stiffness of the element is calculated on the basis of a newly located 

centroid. The subsequent displacements are then evaluated for the cracked element in 

the following Newton-Raphson iteration. 
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In-plane shear stresses within the elements can also be considered for cracking. 

Taking account of the in-plane shear stress makes it possible to obtain the principal 

stresses within the element. This method was not used because during an iteration of 

the solution process the principal stresses may be resolved in a direction causing a 

crack. The crack can then influence the formulation of the principal stresses in the 

next iteration causing them to rotate and cause another series of cracks. The process 

may not be convergent, and can prevent solutions from being reached. 
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Figure 5-38. Stress-strain relationship of concrete at elevated temperatures 
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Figure 5-39. Stress-strain relationship of reinforcing steel at elevated temperatures 

The stress-strain model for concrete is a bi-linear representation containing a cracking 

regime that continues down a non-returnable path to zero, as shown in Figure'5-38. 

-500T 

0.0025 0.003 

152 



Chapter 5- AfodelhnR Floor Slabs Using Laminated Flat Shell Elements 

The gradient of the non-returnable descending path may be varied. A bi-linear 

characteristic is also used to represent the constitutive relationship for the steel 

reinforcement; this is shown in Figure 5-39. 

5.11.1 SIMULATION OF CONCRETE CRACKING - VALIDATIONS 

A number of validations have been conducted on the cracking model, of which four 

are included here. These are- a restrained concrete beam subjected to thermal forces, 

a simply supported slab at ambient temperature 65 
, and two fire tests carried out by 

British Steel on composite beams 14 
. 

Con crete Restrain ed Beam Su bjected to 7h erm al Forces 

A simple concrete prism with a limiting compressive stress of 35 N/mm2 and 

restrained against all longitudinal movement was subjected to uniform temperature 

increase. Assuming an elastic modulus (E) of 14000 N/mM2 and a constant 

coefficient of thermal expansion (a) of 0.0000108, the temperature (T) at which the 

concrete beam reached a stress of 35 N/MM2 was calculated using: 

a= a7E 
35 = 0.0000108 xTx 14000 

.,. T= 231.48 'C 

Stress (N/mM2) 
40 -1-- 

Imposed maximum 
stress (35 N/mM2) 

- Finite element solution 

5-103 

400 600 800 1000 1200 
Temperature (T) 

Figure 5-40. Internalforces of restrained concrete beam 

153 



Chapter 5- Afodelfin2 Floor Slabs Usinz Laminated Flat Shell Elements 

The prism used for this validation was encastr6 at both ends, 2000mm long, 300mm 
deep and 300mm wide, externally unloaded, and split into 5 equal elements along the 
length. Figure 540 shows the longitudinal stress given by finite element analysis 

within the restrained beam. It can be seen that the beam does not appear to crack at 

exactlyMN/mmý. This is due to the difficulty of using temperature increments that 

coincide with the temperature that gives the specified stress (231.48 'C as calculated 

previously). If simple visual extrapolation is applied to Figure 540 it may be 

determined that the beam stress will be 35 N/mm2 at approximately 230 *C. 

Reinforced Concrete Simply Supported Stab at Ambient Temperature 

Hinton and Owen 62 detail a series of tests (conducted by Duddeck et al 65 ) on the 

cracking of concrete slabs at ambient temperature. One of these tests consisted of a 

comer-supported square slab (1170mm square) with a central point load. This slab 

was constructed from lightweight concrete and has the advantage of having well 
defined boundary conditions, being horizontally free. Reinforcing steel within the 

slab is positioned as shown in Figure 541, together with the dimensions of the slab 

and its finite element idealisation. The material properties of the concrete slab found 

from test samples are detailed in Table 5-01. 

Line of symmetry 

65mm 

65mmn 

Line of symmetry 

Simple 
support 

Orthogonal mesh 
comprising 3.8mm 
diameter bars at 
100 c/c, top and 
bottom. 

Figure 5-41. Comer supported concrele slab 
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CONCRETE STEEL 

Elastic modulus (E, )=1640ON/mriý Elastic modulus (F, )=20100ON/mm2 

Poisson's ratio (Q--0.2 Yield stress (fy)=600N/mmý 

Ultimate compressive stress (f, )=43N/mmý Ultimate stress (f. )=700N/mm2 

Ultimate tensile stress (Q=10N/mmý Angle x-axis (O. )=O. O 

Ultimate compressive strain (c. )=0.0035 Angle x-axis (O. )=1.57 

Tension stiffening coefficient (a)=0.7 

Tension stiffening coefficient (en)=0.0020 

Table 5-01. Materialproperties ofcorner supported concrete slab. 

To simulate the layers of reinforcement within the concrete slab, it is necessary to 

utilise the orthotropic formulation. For a lamina of reinforcement within the mesh a 

value for the elastic modulus in one direction is assigned, whilst for the perpendicular 
direction the elastic modulus is set to zero. As it is not possible to model the separate 

reinforcing bars, the elastic modulus is effectively smeared across the width and depth 

of the reinforcement to give an equivalent elastic modulus value. This method is also 

applied to the yield stress. 
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Figure 542. Central dej7eclion of corner supported concrete slab 

Figure 542 shows a comparison of the central deflection comparing the present 
analyses, test deflections, and the results of an alternative finite element analysis 
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(Huang el al "). It will be noted from the figure that Huang's cracking method gives 

a more accurate representation of the test than the author's finite element solution, 

although the author's finite element solution is deemed to be acceptable. This 

difference in results between Huang"s 66 finite element solution and the present 

approach may be due to the more sophisticated cracking model used by Huang 66 
. 

To check that the finite element analysis begins to crack at approximately the correct 

loading, a yield line analysis has been conducted on the comer supported concrete 

slab. Before a slab cracks, the distribution of bending moments is given by elastic 

plate theory. As the tension steel reaches its yield stress, a collapse mechanism will 

start to form along the lines on which the slab yields. 

All calculations have been made with reference to Figure 5-43. 

In yielding, the work done by the external forces must equal the work done by the 

internal forces. Therefore, using small angle theory, 

Mork done hy extenial forces = Mork done by intenzal forces 

4MDO W. O. d 
NF2 

2.83DM 
d 

5-104 

Figure 543. Equilibrium conditionfor the yield line analysis of the conler supported 
square slab. 
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Using the stress blocks shown in Figure 5-44, the force capable of being sustained by 

the slab in compression is 

0.67 x 43 
x 34.6 = 664.5N 

1.5 

Reiýforcing steel 

5-105 

0.67f. 

Strain Profile Stress Blocks 

Figure5-44. Stress hlockprofilefor the comer supported square slab. 

The ultimate moment that the slab may support is therefore 

r 4. M= 664.5 x36 +19.5) = 24454Nmm 

The maximum load that the slab can support is 

2.83 x 1170 x 24454 
-55. IkIV 

1470 

5-106 

5-107 

This method of predicting the ultimate moment of slabs is an upper bound solution. 

The tension cracks shown in Figure 545 all developed in the bottom face of the 

concrete through to the reinforcement. The compressive cracks in the centre of the 

top face began appearing at approximately 28kN and continued as deep as the 

reinforcement. The slab then retained its structural integrity until a load of 

approximately 35kN was exerted upon the slab. Beyond 35kN the yield lines of the 

slab act as hinges where the majority of the central area of the slab is under tension. 

An assumption that has been made within this analysis is that there is no restraint 
given by the simple supports and point load. Even low-levels of restraint from the 

simple supports and the point load (which is exerted onto a 100mm square steel pad 
on the top surface of the slab) could affect the results considerably. 
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a,. 10 kN - Bottom face 

bl. 20 kN - Bottom face 

cl. 30 kN - Bottom face 

a,. 10 kN - Top face 

b,. 20 kN - Top face 

c,. 30 kN - Top face 

..... Tension crack 
-Compressive 

crack 

dl. 40 kN - Bottom face d,. 40 kN - Top face 

Figure5-45. Deflecledshal)e andcrackingpauerns of the corner sul)I)orledconcreie 
slab 
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Composite Beam Subjected to Fire 

Two geometrically identical simply supported composite beams were tested in 1982 

in the Warrington test furnace 14 
. The specimens were as shown in Figure 546. Both 

of the composite beams were loaded to the CP I 1767design loads. For the first (Test 

15) the strength was calculated assuming no composite action, whilst the loading on 
the second beam (Test 16) assumed full composite action. 

Test 15: P=34.79 kN 
Test 16: P=64.90 kN 

Support Conditions 

Grade 30 concrete 
slab, reinforced with 
B503 mesh, 30mm 
nominal cover. 

254 x 146 x 43 UB), 
Grade 43 a. 

Figure546 Slabfinite element arrangement andgeneral structural configuration 
for the simply supported composite beam used in Tests 15 and 16 in the Compendium 

of UK Slwdard Fire Tests 14 

Assumptions that have been made for the simply supported composite beams are: 

1. The material properties of the concrete are 

" Elastic modulus (E) = 14000 N/mm2 

" Poisson's ratio (v) = 0.2 

Maximum stress in compression (a.. p,. ýj. ) = 30 N/mm 2 

Maximum stress in tension =3 N/mm2 

Coefficient of thermal expansion (cc) = 0.0000108 for analysis when using 
Bailey's cracking method. The author uses the thermal strain characteristics given 
by EC4. 

2. The composite beam was assumed to be simply supported. 
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3. The temperature profiles across the steel beam were approximated as a two-step 
form, with the upper flange being at 80% of the temperature of the web and lower 

flange. No data was recorded for the temperature profile in the slab, and it has 

therefore been assumed that the temperatures of the lower and upper faces of the 

concrete slab are 50% and 10% respectively that of the lower flange. This 

concrete temperature profile is in keeping with that measured in the Cardington 

restrained beam test. 

The results of the analyses for both cases, including a comparison with the original 

slab element, are shown in Figures 547 and 548. 
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Test data 

Baile 's finit y e 
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Finite element 
solution 

0 

Deflecüon (mm) 

Figure 547. Comparison hemeen thefinite element solution, Bailey's slab 
assumptions mid the test resultsfor Test 15 

It can be seen from the figures that the analysis predicts slightly greater deflections 

than those found in the tests and slightly higher load capacity, although the correlation 
is generally good. These differences could be due to many assumptions, for example, 

the support conditions, the assumed concrete properties, the slab temperature profile, 

the beam temperature profile, temperature lag of the concrete at the beginning of the 

analysis, slip between the concrete and the slab, or spalling of the concrete. 

The fact that the more highly loaded test (Test 16) deflected less for the first 13 

minutes must cast doubt on the reference positions from which the deflections were 

measured. The basic correlation for Test 16 is good, and if the datum were adjusted 
accordingly the agreement would be much improved for both Bailey's 44 and the 
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author's slab model. Test 15 (Figure 5-44) can be clearly seen to be running away at 
temperatures over 650'C and test 16 (Figure 545) similarly runs away past 600'C. 

The modelling of this run-away is modelled well by Bailey's isotropic element, 
though the author's appears to retain excessive stiffness due to the different cracking 

model. 
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-100 

-150 

-200 
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_ 77 
Finite element 
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Test d ata 

i ' Ba ley s finit e 
ele ment solu tion 

Deflecüon (mm) 

Figure 5-48. Comparison between thefinite element solution, Bailey's slab 
assumptions and the test resultsfor Test 16 

Effects of the Laminated Shell Element on a Small Subframe 
I- 

0 

To ascertain the effects that may now be included within the slab depth, a study has 

been conducted on a contrived composite beam and slab arrangement. The 

supporting beam is a 9000min long 305 x 165 x 40 UB which is attached with full 

interaction to the concrete slab. The concrete slab is 9000mm long by 6000mm wide 

and 120mm. thick, and lies on top of the upper flange of the supporting beam. All 

edges of the concrete slab are supported only in the vertical plane. For computational 

efficiency, only a quarter of the structure has been modelled, and the finite element 

mesh and subframe are shown in Figure 5-49. A constant uniform load of 5.48 Mmý 

has been used at all times throughout the analyses. 
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Edge simply 4500 
supported 

Axis of 
symmetry 
Fixed laterally and 
rotationally about the 
axis of symmetry 
A142 anti-crack mesh 

305 x 165 x 40 UB 
1 00 

T 

Edge simply 
3000 ýupported 

-t 
15 cover 

Figure 549. Beam and slah general arrangement 

This beam and slab arrangement has been analysed for a number of different 

scenarios: 

1. A cold slab with no supporting beams underneath. 
2. A heated slab with no supporting beams underneath. 
3. A cold slab with the beam heated using a uniform temperature profile. 

4. A heated slab where the bottom face of the slab is heated to 30% of the uniform 
beam temperature and the top face to 10 % of the same. 

The concrete compressive strength used is 25 N/mrný in conjunction with a tensile 

strength of 2.5 N/mrn 2. The reinforcement is assumed to be A142, which is the 

equivalent of 6mm bars at 200mm spacing. The yield strength of the steel 

reinforcement layer is 50 N/mm2. 

Figure 5-50 shoiys the central deflections of the supporting beam with a cold slab 

compared to the cold slab with no supporting beam. All temperatures refer to the 
bottom flange of the beam. This analysis has been conducted using the concrete 
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model with orthogonal cracking in response to maximum tensile and compressive 

normal stresses. 
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Figure5-50. Central deflection of the heated beam and cold slab as compared to a 
cold slab with no secondary beam 

As expected the initial deflection at the centre of the beam is less than that of the 

unsupported slab, and this changes as the temperature increases, causing thermal 

bowing to occur between the beam and the cold slab, acting approximately linearly 

until 500'C when the steel begins to soften. Above 500'C the strength of the slab 
begins to dominate the behaviour, forcing the beam back towards the original state of 
deflection of the slab. The force in the slab that causes this 'pull back' phenomenon 
is due entirely to bending strength of the slab because its edges are allowed to move 
laterally. The structure does not reach its original shape due to the weakening of the 

slab caused by cracking. In larger, continuous structures the attempts of the slab to 

return to its original shape may also be affected by catenary action in combination 

with the bending action of the slab. 

A similar comparison is made in Figure 5-51 where the central deflection of the 
heated beam and slab is compared to a heated slab with no beam. The composite 
beam deflects initially due predominantly to thermal bowing. Beyond approximately 
500'C the continued deflection is caused by deterioration in strength and stiffness of 
the steel beam. The heated slab deflects quickly because of thermal bowing, but then 
begins to 'relax' at 300'C as extensive cracking and softening of the concrete material 

'163 



Chapter 5- Modelling Roor Slabs Using Laminated Flat Shell Elements 

allows redistribution of the loads, the effect of which is to allow the centre of the slab 
to rise vertically. As in the previous example, it will be noted that, as the composite 
beam loses appreciable strength and stiffness, the slab (through bending resistance) 

attempts to pull back to the shape that it would have had the beam not been part of the 

original structure. The fact that the deflections at 900*C are nearly identical indicates 

that the cracking in the two cases is very similar. 
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Figure 5-51. Central de/7ection of the heated beam and slab as compared to a heated 
slab with no supporting beam 

Figure 5-52 shows a sequence of deflected surfaces of the heated slab and beam (Case 

4) at increasing temperatures, on which are superimposed the crack patterns for the 

top and bottom faces. It can be noted that the bottom face of the concrete floor slab 

cracks extensively up to approximately 200"C. These cracks occur in the bottom 

15mm of the slab and do not cause yield of the reinforcing mesh. The upper surface 

of the concrete floor slab is seen to form a tension crack at 400'C parallel to the 
beam. Above this temperature the slab continues deflecting and forms two 

compression cracks near the centre of the beam. 

164 



Chapter 5- Modellink Floor Slabs Using Laminated FlatShell Elements 

Bollom Face 20'C 

Hollom Nice 100'C 

Botioni Face 200'C 

Bollom Face 400'C 

Hollom Ftice 600'C 

Bollom F(Ice SOO'C 

7i)p Face 20'C 

Top Fa ce 10 0 'C 

7i)p Eace 200'C 

lip Face 400'C 

761) Tace 600'C 

1,01) F(Ice 800, C 
Compression crack 

Tension crack 

Figure5-52. ýeqiietilitil(, -rcic-kiiiglýallertis (? f the heated beam andslab 

/ L* 

165 



Chapter 5- Modelling Roor Slabs Using Laminated Flat Shell Elements 

Study of Cracking Models 

Figure 5-53 shows a study of the effect of using different cracking models for the 

concrete floor slabs. Four different cracking models have been chosen to assess the 

suitability of the cracking model described in section 5.8. These are defined as 
follows: 

1. If the orthogonal stresses on each lamina exceed the maximum compressive or 
tensile stress, cracking will occur in one direction across the element represented 
by the reduction of strength and stiffness along the relevant axis. (As used in 

section 5.8) 

2. The normal stresses on each lamina are calculated and if either of these exceeds 
the specified maximum stress, the strength and stiffness of the lamina is reduced 
in both directions. 

3. Two-directional cracking occurs if a principal stress within each lamina is greater 

than the maximum compressive or tensile stresses. 
4. Principal stresses in excess of either of the specified maximum compressive and 

tensile stresses cause all concrete strength in both directions to be lost across the 

whole element when a crack occurs, excepting layers representing reinforcement. 
Temperature (C) 
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Figure 5-53. Central deflection of the heated heam and slabfor different cracking 
assumptions. 

Uni-directional cracking is not applicable when principal stresses are used,, as this 
leads to a phenomenon called 'crack rotation', as outlined in Section 5.8. 
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This analysis has been conducted on the beam and slab with both components at 

elevated temperatures. Again the maximum concrete tensile stress is assumed to be 

2.5 N/mmý, the maximum concrete compressive stress 25 N/mrný and the steel yield 

stress is 50 N/mm2. 

The cracking method where principal stresses on each layer crack in two directions 

leads to excessive cracking of the tension face of the concrete occurring at between 

100'C and 200'C. At between 500'C and 600'C the reinforcement layer begins to 

yield and the deflection begins to progressively run-away. The other three cracking 

methods all behave in a similar manner, producing patterns that reflect those in Figure 

5-53. 

Effect of Edge Restraint 
wo 

A study was then conducted on the heated beam and slab to ascertain the effects of the 
boundary conditions. Along the two free edges the boundary conditions were 

methodicallyfixed according to the process indicated in Figure 5-54. The results may 
be seen in Figure 5-55. 

it will be noted that Cases 1.2 and 3 all follow the simply supported case to 

approximately 200"C, after which the restrained thermal expansion of the steel 

section and the concrete floor slab begin to dominate the action, forcing a rapid 
increase in deflection. The restraint against thermal expansion in Case I comes from 

the floor slab expanding against a support where lateral movement is restrained. In 

Case 2 the restraint against thermal expansion will occur due to the combination of 

thermal expansion of the floor slab and steel beam against a support where lateral 

movement is restrained. Case 3 is restrained against all lateral movement at the 

supports. In all three cases the concrete begins to crack rapidly on the underside of 
the slab at 300"C. These tension cracks (caused by bending) extend to the 

reinforcement layer. From this stage, the position of the neutral axis rises and the slab 
bending stiffness is still sufficient to maintain integrity, hence the reinforcement 
begins to act in tension and the upper layer of concrete in compression. As the slab 

continues to sag, compression cracks begin to appear on the upper face of the slab, 
reducing the bending stiffh6ss. The slab then supports the load through catenary 
action, and continues to sag due to material degradation. 
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Figure 5-54. Different boundary condition casesfor the heated slab and heam. 
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The other 6 cases do not crack to the same extent as cases 1,2 and 3. When Cases 1, 

4 and 7 are compared, it will be noted that 4 and 7 give very similar results. This 

leads to the simple conclusion that the overriding effect is the rotational fixity of the 

boundary conditions. This is confirmed by comparison of Cases 2,5 and 8, against 3, 

6 and 9 respectively. Cases 5 and 8- at all temperatures - deflect to approximately 

two thirds as much as the simply supported case. This is logical as the effective span 

has been reduced by the introduction of the end rigidity. 

It may also be noted from comparison of Cases 4 and 5, against Cases 7 and 8 that 

transverse restraint against rotation has a larger effect than rotational restraint about 

the end of the beam when temperatures exceed 400'C. For Cases 4 and 7a bridging 

action is clearly taking place, attempting to return the beam to its original shape, 

whereas Cases 5 and 8 continue to deflect. 

Effect of Stab Thickness 
I 

A parametric study concerning the effect of the thickness of the concrete slab was 

conducted on the beam and slab arrangement illustrated in Figure 549. All 

parameters were held constant except the thickness of the slab, which was varied from 

the extremes of 50mm. to 120mm. 

The results of the slab thickness parametric study are shown in Figure 5-56. All the 

slab thicknesses are seen to be acting in the same manner up to 3000C. This is due to 

the steel beam dominating the action of the beam and slab by thermal bowing. 

Beyond this temperature the steel beam begins to weaken and the slab begins to 
dominate the overall behaviour of the subframe. 

The thinnest slab (50mm) cracks extensively across both the top and bottom faces at 
20'C due to the loading. At 212.5'C the reinforcement in the slab begins to yield, and 
this increases the spread of cracking as the temperature increases, so that the 
deflections begin to 'run-away' in the manner of an isolated beam at high 

temperature. For thicknesses of 60mm and 70mm a similar action is taking place, 

albeit at higher temperatures. Thicknesses of 80mm and above crack nominally, and 
this range of thicknesses (beyond approximately 300T) dominates the structural 
action of the subframe, reaching a steady state in the later stages of the temperature 
development. 
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Figure5-56. Slab thiclaiess parametric study of the heated slab and beam 

Effect of Slab Temperature Gradient 

The beam and slab arrangement shown in Figure 546 was also subjected to different 

slab temperature gradients to ascertain the combined effects of thermal bowing and 

thermal material degradation in such a situation. At all times the concrete model uses 

the normal stress and uni-directional cracking failure criterion, with a compressive 

strength of 25 N/mmý and a tensile strength of 2.5 N/mm2. The slab is 120mm thick 

and its edges are all assumed to be free to rotate and move laterally. 

Temperature 
Profile 

Figure5-57 Temperature profile of beam and slab 

The temperature on the upper concrete face is at 10% of the temperature of the beam; 

the soffit of the concrete slab varies in temperature proportionately to the beam. This 
is illustrated in Figure 5-57. 

The parametric study results are shown in Figure 5-58. 
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Figure5-58. Slab temperature gradient parametric study of the heated slab and 
beam 

The deflection of the slab whose lower face is subjected to 10% of the beam 

temperature is comparable to that of the unheated slab in Figure 5-47. The unheated 

slab has a greater deflection than the heated slab because the thermal bowing effects 

reduce due to the thermal expansion of the heated slab. 

Conclusions 

The beam and slab arrangement studied in section 5.9 has produced the following 

conclusions: 

A 'continuous' beam and slab arrangement will try to pull back to its original 

position, the transverse restraint in bending having the highest effect on this. 
However the original state will not be regained because of the action of cracking 
of the slab. 

The study of the four different methods of modelling cracking concrete show that 

the three less rigorous models give approximately the same results. 

Thin slab thicknesses produce greater cracking around the beam. This causes the 
beam to act as if isolated, causing run-away to occur. Thicker slabs dominate the 
behaviour of the subframe, causing the beam to return to the vicinity of its original 

position. 

* severe temperature gradient will produce large deflections. 
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6 SIMULATION OF THE CARDINGTON TESTS USING THE 

LAMINATED SHELL ELEMENT FLOOR SLAB 

Using the laminated shell element described in Chapter 5a series of parametric 

studies has been conducted on the six Cardington tests and, where possible, analysis 

output has been plotted against test data. This has been done to attempt to improve 

the understanding of the crucial parameters for the ultimate survival of the structure in 

fire. 

6.1 GENERAL MODELLING AsstiMPTIONS 

A number of assumptions have been adhered to for all the analyses unless noted 

otherwise. These are described in the following sections, and refer to certain slab 

characteristics and temperature distributions. 

STRUCTuRE TEMPERATURES 

The beam bottom flange temperature is assumed to be the 'key temperature' (100%), 

and all other temperatures are described relative to this. For the elements of the steel 
beam, the temperature of the web is be assumed to be the same as that of the bottom 

flange with the top flange at 801/6 of this value. The temperatures of the top and 
bottom faces of the concrete floor slab are assumed to be 10% and 50% respectively 

of the key temperature, with a linear gradient between the two. This temperature 

pattern is shown in Figure 6-01. 

L 

50% 

ý 80% 

100% 

Figure 6-01. Assumed slab and beam temperatures 
These approximations were based on the real Cardington temperature distributions 

described in Chapter 2. 
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6.1.2 SLAB CONSrANT PARAMETERS 

Except where otherwise stated the slab thickness is assumed to be a constant 80mm 

for the continuous top section of the slab. This is based on the slab thickness survey 

described in Chapter 2. The concrete compressive strength is 25N/mrn2 and its tensile 

strength is 15N/mmý at ambient temperature. The elastic modulus at ambient 

temperature is 14000 N/mmý. The stress-strain-temperature curves for concrete are 

based on EC4 11 and are shown in Figure 6-02. 
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Figure 6-02. Stress-strain relationship of concrete at elevated temperatures 
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Figure 6-03. Stress-strain relationship of reinforcing steel at elevated temperatures 

The A142 slab reinforcement has been modelled as a continuous smeared layer with 

maximum ambient temperature compression and tension strengths of 50 N/mm' 

i" -7 "i -40 
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across the reinforcement layers. The yield stresses for the steel were reduced in 

accordance with EC4 ", as shown in Figure 6-03. 

As the number of layers within a slab element does not greatly affect the computing 

time, their thickness has been maintained at a depth of Imm throughout. This is 

advantageous, as the cracking model will be more accurate than if thicker layers are 

used. 

The ambient-temperature material properties and dimensions are summarised in 

Figure 6-04 
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Elastic modulus = 21 OOOON/mm 
Figure 6-04 Assumed slah and heam material properties 

6.2 DESCRIPTION OF THE PARAMETRIC STUDIES 

Five types of parametric studies have been conducted on the six Cardington fire tests. 

The general details of the studies are described in the following sections, 

6.2.1 PARAMETRIC STUDY I- SLAB THICKNESS 

The continuous slab thickness was varied throughout these parametric studies in 5mm 

increments between extremes of 70mm and 90mm. These limits are based on the slab 

thickness survey discussed in Section 2. 

15m 
Vaiiable 

60mm 1 TTý 

LZZI ;= 

Figure 6-05. Parametric sjjjdý, I Slab thickness 
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All other variables were held constant throughout the analyses including the position 

of the concrete reinforcement (Figure 6-05). 

This parametric study was previously conducted using the isotropic elements defined 

in Chapter 4 and is repeated to give a comparison between the two slab models. 

6.2.2 PARAMETRIC STUDY 2- SLAB TEMPERATURE GRADIENT 

In studying the influence of the temperature in the concrete slab, the bottom face 

temperature was varied between the extremes of 10% to 80% of the bottom flange 

temperature. The temperature of the top face is 10% of that of the bottom flange 

temperature as described above. At all times the temperature gradient is assumed to 

be linear between the top and bottom faces, and this also defines the reinforcement 

temperatures (Figure 6-06). 

10% 

L---l 

Variable 
Um 80% 

100% 
Figure 6-06 Parametric study 2- slab and beam temperatures 

6.2.3 PARAMIETRIC STUDY 3- SLAB CONCRETE COMPRESSIVE STRENGTH 

The actual compressive strength of concrete within a structural element is generally 

variable, and differs from that found in a standard cube crushing test. BS81 10 68 

suggests a figure of 67% of the cube strength. To study the influence of the 

compressive strength on the overall performance of the structure, a parametric study 
has been conducted with the compressive strength of concrete varied between 

I ON/mm2 and 3 ON/mm2. 

6.2.4 PARAMETRIC STUDY 4- SLAB CONCRETE TENSILE STRESS 

BS81 10 6' also suggests that the tensile strength of concrete may be taken as 10% of 

the compressive strength. This is of course dependent on many factors such as the 

amount and type of aggregate and cement, the moisture content, air voids and the age 
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of the concrete. In this parametric study the tensile strength of concrete with a 

compressive strength of 25N/MM2 has been varied between 5% and 15% in 

increments of 2.5%. 

6.2.5 PARAMETRIC STUDY 5- LOAD RATIO 

As outlined previously in Section 2.1, the load ratio of a typical secondary beam in 

the Cardington test frame is 0.45 according to the normal design assumptions. This 

parametric study involved varying the load ratio from 0.33 to 0.57 in increments of 

0.06 to study the effect of the load ratio on a full structure in fire. 

6.3 RESTRAINED BEAM TEST PARAMETRIC STUDIES 

The subframe used in the VULCAN restrained beam test analyses is shown in Figure 

6-07, which includes a location plan of test in the Cardington test frame. Note that the 

extent of the subframe is rather larger than the original restrained beam subframe used 

in Chapter 4, based on the analysis described in Section 4.3.5. 

V4 
I 

vi 

Figure 6-07. Location andfinite element mesh of the restrained beam test. 
Using the standard assumptions detailed in Section 6.1, a detailed analysis has been 

made for the restrained beam test to assist the understanding of the following 

parametric studies. 
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Figure 6-08 shows the progressive deflections within the subframe. 

F 

0 

20'C 

/ 

Figure 6-08. Progressive deflection of the restrained beam test 
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Figure 6-09 shows deflections determined at different locations across the subframe 
(shown in Figure 6-07) compared with those at the mid-span of the restrained beam 

(VI). 
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Figure 6-09. Restrained beam deflections at various locations around subftame. 

Over the initial 500'C, deflections are caused by thermal bowing of the composite 
beam and thermal expansion against the surrounding structure. Beyond 500'C the 

steel beam begins to lose strength and stiffness significantly, leading to relief of the P- 

A bending deflection component. The effect of bending stiffness of the concrete floor 

slab begins to exceed that of the steel beam, reversing the beam deflection (as 

discussed in Section 5.12.1). Another contributory factor could also be the semi-rigid 

nature of the beam connections dominating the secondary beam. As the finite element 

model is not capable of accommodating cross-sectional distortion, the local buckle of 

the bottom flange, which might effectively act as a pin, cannot be included in the 

analysis. The deflections at locations V2 and V3 are caused by the redistribution of 
load away from the test beam as the concrete slab bridges to the adjacent secondary 
beams. This load redistribution of the restrained beam test compartment is shown 

schematically in Figure 6-10. 

As deflections are considered further away from the test compartment (in locations 

V4 and V5) it is clear that the effect of load distribution decreases. For example, at 
location V4 -at the mid-span of the 9m main beam, deflections due to load 

redistribution increase by I mm. At location V5, the deflections actually reverse by as 
much as 5mm as the test beam sags. 

ý\1 11 
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Figure 6-10. Redistribution of loads in the restrained beam test 

Figure 6-11 shows the progressively deflecting shape of the restrained beam and 

adjoining subframe along the same section line (shown as Section A-A on Figure 6- 

07). Deflections have been scaled by a factor of 10. 

At 20'C the restrained beam deflects under normal loading. This causes the 

supporting columns to deflect horizontally at mid-height between floors by I mm. 

Between IOOT and 500'C the beam expands against the surrounding structure; this 

movement is redistributed to the beams beyond the restrained beam, forcing them to 
hog. The horizontal deflection of the columns increases to a maximum of 8mm. 
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At temperatures over 600'C the beam stiffness reduces significantly. The concrete 
bridges from adjacent beams, reversing the deflection. The test beam also has cool 

semi-rigid connections at each end, which will contribute to the deflection reversal. 
This becomes accentuated as the temperature increases to 950'C. 

(ý (B (D 6ý (ý (ý) 

20'C 

I OOOC 

200'C 

NOT 

400'C 

600'C 

700'C 
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9000C 

9500C 

500'C Unloaded IIII 
structure 

Figure 6-11. Restrained beam progressive deflections along the restrained beam 
The propagation of cracking found from the finite element analysis conducted on the 

restrained beam test is shown in Figure 6-12 for both top and bottom faces. At 20'C a 

nominal amount of cracking may be seen at various locations across the structure on 
both faces. The cracking at IOOT is localised around the restrained beam as it begins 

to expand against the surrounding structure. This expansion forces the beam to sag, 
causing the bottom face of the slab to change from compression to tension. As the 
temperature rises to between 200'C and 400"C, the slab continues cracking in tension 

on its lower face. At this stage, the slab bridging from the secondary beams either 
side of the test beam begins to crack across its upper face as the slab hogs in this 
locality. Beyond this phase - at approximately 5000C - the strength and stiffness of 
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the test beam is reduced, so that the bending stiffness of the concrete slab attempts to 

return the test beam to its original shape, as discussed in Chapter 5. 
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Bottom Face 
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Steel members 

2000C 1-1 1 
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Figure 6-12. Propagation of cracks during the restrained beam test analyses 

6.3.1 PARAMETRIC STUDY I- RESTRAMED BEAm TEST 

The effect of varying slab thickness on the deflection of the test beam is shown in 

Figure 6-13. The analyses give a very good correlation with the test results up to 

400T. It will be noted that the effect of thickness of the floor slab at this stage is 

very small. The dominant action here is thermal bowing due to the temperature 

differential within the steel beam, and between the restrained beam and the concrete 
floor slab. Another factor contributing to the initial beam deflection is the restraint of 
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the surrounding structure. This effectively holds the ends of the beam stationary, so 

that as it tries to expand it is forced to sag. Beyond 400'C, the deflections begin to 

diverge indicating that the thickness of the slab is now more important. Above 500'C 

the strength and stiffness of the restrained beam begin to reduce significantly. This 

lessens the thermal bowing and allows the concrete floor slab to span across the 

adjacent beams, thus reversing deflections. As expected the thicker slabs result in 

smaller beam deflections due to their ability to span between adjacent beams. The 

80mm thick slab ends at 600'C due to a numerical instability. 

it is seems likely that the concrete slab model for cracking, which only allows failure 

in the orthogonal local-coordinate directions, may effectively be making the slab act 

in an over-strong manner, hence the extreme amount of pull-back experienced in the 

analyses. 
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Figure 6-13. Parametric study I- Restrained beam test 

6.3.2 PARAMETRIC STUDY 2- RESTRAINED BEAm TEST 

The second parametric study is concerned with the effect of the slab temperature 

gradient in the restrained beam test. The effects of this on the test beam deflections 

are shown in Figure 6-14. The parametric study follows a similar pattern to that 

discussed for the general restrained beam test in Section 6.3. 

The fact that up to 4001C the curves are almost identical suggests that thermal bowing 

be principally due to temperature variations in the beam, and not to the difference 

between the beam and the floor slab temperatures. 
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Figure 6-14. Parametric study 2- Restrained beam test 

6.3.3 PARAMETRIC STUDY 3- REsTRAmED BEAM TEST 

The influence of the compressive strength of the concrete on the beam deflections is 

shown in Figure 6-15, and within the limits considered is clearly negligible. 
However, for the lowest compressive strength considered (ION/mM2 ) early failure 

occurred due to excessive concrete cracking on the underside of the slab around 

columns D2 and E2. 
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Figure 6-15. Parametric studý 3- Restrained beam test 

6.3.4 PARAMETRIC STUDY 4- RESTRAINED BEAM TEST 

The effect of the concrete tensile strength on the beam deflection is shown in Figure 
6-16. As expected the weaker concrete results in greater deflections, but the effect is 
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small. When this is compared with the compressive strength parametric study, it will 

be noted that the tensile strength has a greater effect than the compressive strength. 

The concrete tensile strength of 0.125 the concrete compressive strength failed to 

converge beyond 600'C. 
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Figure 6-16. Parametric study 4- Restrained beam test 

6.3.5 PARAMETRIC STUDY 5- RESTRAINED BEAm TEST 

Figure 6-17 shows the influence of the load ratio on beam deflections. Within the 

limits considered for the load ratios, the results up to 400T are negligible. However, 

beyond 4000C the results begin to diverge as the steel beam loses strength and 

stiffness. 
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Figure 6-17. Parametric study 5- Restraitied beam test 
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it may be speculated that, if a thicker slab were to be applied to the load ratio 

parametric study, the effect of the load parameter would reduce due to the enhanced 

bending stiffness inherently found in thick slabs. Conversely, should a thinner slab be 

used in the parametric study, the reduced bending stiffness would allow the load to 

have a greater effect by giving larger deflections overall. For thinner slabs deflections 

may also increase due to cracking. 

6.4 PLANE FRAME TEST PARAMETRIC STUDIES 

The extent of the plane frame test subframe and a location plan are shown in Figure 6- 

18. This subframe has been analysed by VULCAN using the standard assumptions 
for the floor slab thickness, loads and concrete strength. As in the test, the top 

500mm of the column positioned on gridline E2 was left exposed throughout the 

analyses. Following this detailed analysis are a series of five parametric studies as 

outlined in Section 6.2. 

The plane frame test has significantly less inherent restraint than the restrained beam 

test, provided only by the column stiffness and slab shear across the structure. 

Figure 6-18. Location andfinite element mesh of the planeftame test. 
Figure 6-19 shows the absolute vertical deflection at various positions (shown in 

Figure 6-18) around the plane frame test. The change in deflection at the mid-span of 
the adjacent 6m main beam (VI) may be seen to be negligible. The deflections taken 

at the mid-spans of secondary beams that frame into the plane frame test (V2, V3, V4 
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and V9) start at 20'C with deflections between 18mm and 25mm and slowly increase 

as the corresponding supporting beam or column deflects. Deflections along the 

primary beams (V5, V6 and V8) increase initially due to thermal bowing. At 

temperatures of approximately 5000C the steel beams have lost significant strength 

and stiffness, thus causing continued deflections. 
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Figure 6-19. Planeftame test analysis deflections at various locations around the 

subftame 

Figure 6-20 shows the deflection at the head of column E2 (V7) relative to its position 

at ambient temperature. As the temperature increases the column expands until 

approximately 650T. Beyond this the column undergoes a severe plastic 

deformation leading to a numerical failure at a temperature of 742T. 
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Figure 6-20. Planeftame test analysis relative deflection at head of column E2 
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Figure 6-21 shows the absolute deflection profile of the plane frame along the main 

beams as the temperature increases. The rate of deflection is approximately constant 

up to 700'C, after which it increases markedly. This is caused partly by the sudden 

plastic deformations at the heads of the two inner columns which effectively act as 

pinned supports, removing the rotational resistance of the lower columns, and partly 

by concrete floor slab cracking around the columns. The loss of rotational resistance 

is seen when the deflected shape of the beams on gridlines 2 and 3 is observed. For 

temperatures up to and including 600'C the hogging of the main beams is primarily 

on the side of the 6m main beam. Beyond 600'C the hogging peak is exactly on the 

column, indicating that the joint has evolved into a pin type at the position of the 

column. Another factor contributing to the rate of increase of deflection of the steel 

beams is the sudden vertical movement at the head of the column, which will also 

cause the supported beams to deflect correspondingly. 
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Figure 6-21. Progressive deflection of the planeftame lest across gridline E 

Figure 6-22 shows the progressive deflection of the test subframe. 
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Figure 6-23 shows a schematic drawing of the load paths at the two extremes of the 

test; 20T and after the column deforms plastically at 742T. 
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P'igure 6-23. Redistribution of loads in the platieftame test 

Figure 6-24 shows the propagation of cracks across the concrete floor slab. At 

ambient temperature the cracking of the concrete slab is negligible. As the 

temperature increases, the propagation of cracks appears to follow a pattern where the 

secondary beams framing into the columns cause the slab to hog over them, forcing 

the top face into tension. The secondary beams which frame into the 6m and 9m main 
beams sag, causing tension in the bottom face of the concrete slab, therefore causing 

cracking along these lines. Along gridline 1, a cracking pattern is shown which 
indicates that the edge beam is alternating between sagging and hogging. This is 

caused by the windposts supporting the edge beam by acting in tension from the floor 

above. The maximum stress due to bending was 15N/mm2. No compression cracks 

were found to appear in the analysis. 
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Figure 6-24. Propagation of cracks thiring the planeftame test analyses 

6.4.1 PARAMETRIC STUDY I- PLANE FRAME TEST 

Figures 6-25 and 6-26 show the central deflections of the 9m and 6m main beam 

respectively for different slab thicknesses, and demonstrate a very good correlation 

with the test results. 

The thickness of the concrete slab appears to have little influence over the beam 

deflections. From this it may be deduced that the initial deflections up to 500'C are 
largely due to thermal bowing for both the 6m and 9m beams, as in-plane restraint is 

predominantly due to the stiffness of the columns. Beyond 500*C, the strength and 

stiffness of the steel beam is reduced significantly, so that the secondary beams 
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spanning across the fire compartment begin to support the beams within it. As the 

secondary beams retain the majority of their strength and stiffness, this will not allow 

the slab thickness to dominate the structural action. 
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Figure 6-25. Parametric study I- Platte Frame Test, mid-span of 9m main beam 
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Figure 6-26. Parametric study 2- Plane Frame Test, mid-span of 6m main beam 

6.4.2 PARAMETRIC STUDY 2- PLANE FRAME TEST 

The influence of the floor slab temperature gradient for the 9m and 6m main beams is 

shown in Figures 6-27 and 6-28 respectively. 

The lack of variation in the deflections indicates that the thermal bowing is dependent 

on the temperature differential across the beams rather than the temperature 
differential between the floor slab and the steel beam. 
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When the temperature gradient is severe, for example a bottom face temperature of 

0.8 or 0.7 that of the bottom flange temperature, the analysis is seen to fail early. This 

is due to sudden loss of concrete strength, allowing excessive cracking of the floor 

slab around the internal columns. 
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Figure 6-27. Parametric study 2- Plane Frame Test, mid-sPan of 9m main beam 
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Figure 6-28. Parametric study 2- Plane Frame Test, mid-span of 6m main beam 

6.4.3 PARAMETRIC STUDY 3- PLANE FRAME TEST 

Figures 6-29 and 6-30 show the central deflections of the 9m and 6m main beams 

respectively for different compressive strengths of concrete. The effect of the 

compressive strength of the concrete floor slab is clearly negligible. 
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Figure 6-29. Parametric study 3- Plane Frame Test, mid-span of 9m main beam 

if the slab thickness were to be decreased or increased within this parametric study, it 

may be assumed that the relative insensitivity to compressive strength will be 

dominated by the slab thickness, and deflections will vary relative to parametric 

study I- 
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Figure 6-30. Parametric study 3- Plane Frame Test, mid-span of 6m main beam 

Supposing the gradient of temperature within the slab is varied either above or below 

the standard 0.5 for the lower face, the relative insensitivity of the deflections to both 

temperature gradient and compressive strength will cause this to have little effect. 
This does not include extreme temperatures, at which the excessive cracking around 
the columns may still be expected. 
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6.4.4 PARAMETRIC STUDY 4- PLANE FRAME TEST 

Parametric study 4 involved varying the maximum tensile strength of the concrete 

floor slab relative to the assumed compressive strength of 25N/mm 2. Figures 6-31 

and 6-32 show the effect of this on the deflections of the 9m and 6m main beams 

respectively. 
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Figure 6-31. Parametric study 4- Plane Frame Test, mid-span of 9m main beam 
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Figure 6-32. Parametric study 4- Plane Frame Test, mid-span of 6m main beam 

The slab tensile strength does not appear to affect the spread in deflections at all for 

the plane frame test, is therefore unimportant. 
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it should be noted that for lower tensile strengths of 0.5 and 0.75 of the original 

2.5N/mm 2 the structure failed early due to excessive cracking around the internal 

columns. 

should the thickness of the slab be increased or decreased during the maximum 

tensile strength parametric study, the deflections will probably follow those of the 

slab thickness parametric study, as the sensitivity to tensile strength is small. 

increasing the slab thickness may be beneficial if a low tensile strength is assumed, as 

greater thickness increases the bending resistance of the floor slab, reducing its stress 

gradient. 

The relative insensitivity of the tensile strength of the floor slab, when combined with 

variation of either the compressive strength or slab temperature gradient will probably 

produce negligible difference. 

6.4.5 PARAMETRIC STUDY 5- PLANE FRAm[E TEsT 

Figures 6-33 and 6-34 show the respective central deflections of the 9m and 6m main 

beams for the load ratio parametric study. The sensitivity of the test to the load ratio 

is small, excepting the higher load ratio of 0.57 which is seen to cause failure at 

approximately 450'C. 
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Figure 6-34. Parametric study 5- Plane Frame Test, mid-span of 6m main beam 

6.5 BRITISH STEEL CORNER TEST PARAMETRIC STUDIES 

The subframe shown in Figure 6-35 was used to model the British Steel comer test. 
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Fore 6-35. Location andfiniie element mesh qf the British Steel corner test. 

-rhe in-plane restraint in this test is low, as only the stiffness of the columns and the 

surrounding floor slab on three sides restrain the expansion of the beams within the 

test compartment. The windposts also support the perimeter beams by providing 
23,44 

vertical restraint as they act in tension ftom the floor above 
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The perimeter beams are heated to half of the assumed temperature of the beams 

within the compartment, as the Cardington tests have shown that this is generally the 

approximate case. 

Figure 6-36 shows the absolute analytical deflections at various locations on the 

13ritish Steel corner test subframe, and should be read in conjunction with Figure 6- 

35. 
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Figure 6-36. British Steel corner test; absolute deflections at various locations 

around the subftame 

The mid-span of the secondary beam within the test compartment (W) deflects 

initially due to thermal bowing caused by the temperature differential between the 

concrete slab and the steel beam. Beyond temperatures of approximately 5000C the 

steel beam continues to deflect because its strength and stiffness are reducing. The 

beam is seen to 'pull-back' at temperatures over 6000C as the slab bridges across the 

compartment from the cooler perimeter beams (which are also supported by 

windposts). The 6m main beam deflections (V5) also increase initially due to thermal 

bowing and then continue from approximately 500'C due to loss of the beam's 

strength and stiffness. Little 'pull-back' is demonstrated on this beam, as the concrete 

slab is less able to span easily from surrounding beams. This lack of restraint leads to 

lower thermally induced axial loads (related to P-A bending deflection) and thus there 

is less scope for 'pull-back'. Other deflections shown in this figure are taken at the 

rnid-span of adjacent secondary beams (VI, V2 and V3) and the mid-span of the 9m 

main beam (W). These all deflect in hogging during the early stages of the analysis 
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as the centre of the test compartment sags, causing the continuous floor to pivot about 

the beams on gridlines E and 2. As the strength and stiffness of the steel within the 

test compartment is lost, the surrounding structure attempts to return to its original 

shape. Figure 6-37 shows the progression of absolute deflections along Section B-B. 
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Figure 6-3 7. British Steel corner test deflection profile along Section B-B 
(see Figure 6-35for location) 
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Figure 6-38. British Steel corner test progressive deflections along Section C-C 
(vee Figure 6-35for location) 

The thermal bowing over the initial 500'C gives a fast rate of deflection, which then 

slows and begins to reverse for temperatures in the region 700'C to 950'C. The 6m 

rnain beam lying on gridline E clearly lends the fire compartment considerable 

support for temperatures up to 500'C. Beyond 500'C the strength and Stiffness of the 
6M main beam is significantly reduced so that it continues to deflect up to 9500C. it 
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may be supposed that at 950T the maximum deflection of the 6m main beam has 

been achieved and the concrete floor slab spans across from the perimeter beam to the 

adjacent secondary beam. 

The progression of deflections along Section C-C is shown in Figure 6-38 and for the 

whole subframe in Figure 6-39. 
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Figure 6-39. Progressive deflection of the British Steel comer test 
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Figure 6-40 represents the load paths at ambient temperature and at temperatures that 

are high enough for the strength and stiffness of the steel beams within the fire 

compartment to be significantly reduced (950'C). 

The load path at ambient temperature is conventional in that the floor slab distributes 

the load to the secondary beams, which in turn transfer it to the relevant primary beam 

or column. At 9501V the load path will differ within the fire compartment due to the 

floor slab bridging across the steel secondary beam within the compartment to the 

perimeter beams. 
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Figure 6-40. Redistribution qf loadv in the British Steel corner test 

f7igure 641 shows the propagation of concrete cracking across the fire compartment. 

At 201C there is little tension cracking. As the temperature increases between IOOOC 
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and 600'C, tension cracks develop mainly within the test Compartment. Conversely, 

the hogging of the surrounding cool floor slabs causes tensile cracks to form over 

beams outside the fire compartment. At 400'C a small compression crack is seen to 

form at Gridline 2 due to extremely high stress gradients encountered around the 

ccolumn. 
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Figure 6-41. Propagation of cracks thiring the British Steel corner test analyses 

6.5-1 PARAMETRIC STUDY I- BRITISH STEEL CORNER TEST 

, Figure 642 shows the effect of variation of slab thickness on the deflection of the 

, entral secondary beam. The variation of the concrete floor slab thickness is 'C 

,, vidently an important parameter in this test, as the slab attempts to bridge from the 
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surrounding structure. As in the restrained beam test, there is an evident relief in the 

P-A bending deflection component due to the softening of the steel material. 
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Figure 6-42. Parametric stuaý, I- British Steel corner test, mid-span of secondwy 

beam 

-400 

f7igure 6-43 shows similar results for the 6m main beam. Again the effect of the slab 

tilickness is important, though not so much so for the secondary beam. 
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Figure 6-43. Parametric stuaý, I- British Steel comer test, mid-span of 6m main 
beam 

6.5-2 PARAMETRIC STUDY 2- BRITISH STEEL CORNER TEST 

, Figures 6-44 and 6-45 show the deflections at the mid-span positions of the secondary 

bearn and the 6m main beam respectively for different slab temperature gradients. 
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Figure 6-44. Parameiric sluqý, 2- British Steel corner test, mid-span of secondary 
beam 

At temperatures up to 500'C the influence of the slab temperature gradient is 

negligible, with a small spread of results due to thermal bowing of the floor slab, 

therefore deflections must be produced by the temperature variation across the beam. 

However, when 500T has been passed the floor slab temperature gradient is 

significant. At this stage 'pull-back' is evident, due to the decreased influence of the 

P-A bending deflection component because of softening of the steel beam material. 

The floor slab temperature gradient contributes a small amount of thermal bowing. 
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it may be surmised that, if a thicker slab were to be used within this parametric study, 

the less severe temperature gradients would lead to earlier bridging causing a severe 

cpull-back' of the secondary beam. For a severe temperature gradient, the thermal 

bowing may be enhanced due to the temperature difference across the depth of the 

floor slab, causing greater deflections. 

A thin floor slab with a mild temperature regime would sag with the secondary beam, 

and due to cracking this would begin to act as an isolated beam, causing the 

temperature regime to be of little consequence. This would be emphasised with a 

severe temperature gradient, causing cracking to occur at lower temperatures. 

6.5.3 PARAMETRIC STtjDy 3- BRITISH STEEL CORNER TEST 

Figures 6-46 and 6-47 show the deflections of the mid-span positions of the central 

secondary beam and the 6m main beam for different compressive strengths of 

concrete. 
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Figure 6-46. Parametric sludy 3- British Steel corner test, mid-span of secondary 

beam 

The initial stages of the analysis give sagging deflections caused mainly by thermal 
bowing of the beam. Beyond 500T 'pull-back' is encountered, but little spread in 

deflection is seen for the different compressive strengths. 

if the effect of the compressive strength is considered for a thinner or thicker slab, it 
may be assumed that the slab thickness will dominate the structural action. Likewise, 
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it may be assumed that the insensitivity to compressive strength will allow slab 

temperature gradients to dominate where these exist. 
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Figure 6-47. Parametric study 3- British Steel corner test, mid-span of 6m main 

beam 

6.5.4 PARAMETRIC STUDY 4- BRITISH STEEL CORNER TEST 

Figures 6-48 and 6-49 show the mid-span deflections for the central secondary beam 

and 6m main beam respectively given variation of tensile strength of the concrete 

floor slab. 
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Figure 6-48. Parametric study 4- British Steel corner test, mid-span of secondary 

beam 

The tensile strength of the concrete floor slab appears to have negligible effect over 
the initial 5001C. Beyond this temperature, the tensile strength does have a small 
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effect, as this is the phase where the slab is dominant as the steel beam softens 

significantly. 
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Figure 6-49. Parametric stucý, 4- BrilishSteel corner test, mid-span of 6m main 
beam 

6.5.5 PARAMETRIC STUDY 
-5 - 

BRITISH STEEL CORNER TEST 

Figures 6-50 and 6-51 show the mid-span deflections of the central secondary beam 

and 6m main beam for different load ratios. 
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Figure 6-50. Parametric study 5- British Steel corner lest, mid-span of secondary 
beam 

Over the initial 500'C the spread of results is very low, as the steel beam retains a 
large proportional of its material properties, thus dominating the structural action. 
Thereafter the load has greater effect as the beam material softens. 
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Figure 6-51. Parametric sfudv, 5- British Steel corner test, mid-span of 6m main 
beam 

Were the slab thickness to be increased during the load ratio parametric study, the 

deflections would logically be decreased, with an increased 'pull-back' on the 

secondary beam. Conversely a decrease of the thickness of the floor slab could lead 

to an increase in cracking for the higher loads, perhaps to the extent where the 

secondary beam would act as an isolated beam. It may be surmised that, should the 

slab temperature gradient be increased during the load ratio parametric study, the 

deflections would be increased due to extra thermal bowing. Should the slab 

temperature gradient be reduced, the thermal bowing deflections would decrease. 

The effects of the maximum tensile and compressive strengths on this parametric 

study are assumed to be negligible, as the sensitivity to these parameters is low. This 

may not be true in the case of a high load with a low tensile strength as this may 

produce extra cracking in sections of the structure outside the fire compartment. 

6.6 BRE CORNER TEST PARAMETRIC STUDIES 

The subframe used for the BRE comer test parametric studies is shown with a 
location plan in Figure 6-52. Windposts have been included within these analyses, as 
Bai ey 23 * 44 has shown them to support the perimeter beam through tension from the 
floor above. Lateral restraint within the BRE comer test is supplied by continuity of 
the steel beams and floor slab. Vertical restraint is supplied to the perimeter beam as 
it is supported by the windposts. 
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Line of symmetry 

Windposts 

Subframe area 
Figure 6-52. Location andfinite element mesh of the BRE corner test. 

Beams on the boundary of the compartment test and the perimeter beams have been 

heated to half the maximum temperatures of the internal secondary beam. 
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Figure 6-53. BRE corner test; absolute analytical deflections at various locations 

around subftame 
The deflections at various locations around the BRE comer fire test are shown in 

Figure 6-53, which is to be read in conjunction with Figure 6-52. 
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The secondary beam within the test compartment (V6) deflects over the initial stages 

of the analysis primarily through thermal bowing caused by the temperature 

differential across the composite beams. As the steel beam expands, lateral restraint 

will also lend a small amount of rigidity, forcing the beam to sag. Beyond 500'C the 

beam will continue deflecting due to loss of strength and stiffness of the steel. At 

approximately 600T, the steel beams begin to 'pull-back' as the softening of the steel 

reduces the P-A bending deflection component. The mid-span of the 6m main beam 

(V5) is also subject to thermal bowing and lateral restraint up to a maximum steel 

temperature of 950'C. As the 6m main beam is heated to 50% of the secondary beam 

maximum temperature, only a nominal loss of steel strength and stiffness occurs. V4 

is the deflection at the mid-span of the 9m main beam and V1, V2 and V3 are the 

deflections at the mid-span of adjacent secondary beams; these are outside the fire 

compartment. As the beams within the fire compartment sag, the beams outside the 

fire compartment will attempt to hog due to the continuity of the floor slab. 

Figures 6-54 and 6-55 show the absolute deflection profiles of Sections D-D and E-E 

respectively. 
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Figure 6-54. BREcorner test absolute deflection profile along Section D-D 
(see Figure 6-52for location) 

The rate of deflection over the initial 500'C (the period when thermal bowing is 

predominant) begins to reduce as the strength and stiffness of the steel beam decrease, 

and at approximately 6000C the secondary beam deflections reverse. The effect of 
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this on the secondary beam positioned between gridlines D and E is to cause it to hog 

up to 500'C, beyond which the rigidity of the beam within the compartment decreases 

rapidly, allowing this secondary beam to relax. The influence of the fire compartment 

beyond gridline D is considered to be small. 
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P'igure 6-55. Progressive deflection of the BRE corner test along, 5ection E-E 
(vee Figure 6-52 for location) 

Surface deflection profiles for the whole subframe are shown in Figure 6-56. 
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Figure 6-56. Progressive dýfleclion qf the BRE corner test 
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950'C 
P'igure 6-56. (conlinued) Progressive dqflection qf the BRE. corner test 

A schematic diagram of the load paths at both ambient and elevated temperatures is 

shown in Figure 6-57 for the BRE comer fire test. The load paths at ambient 

temperature are approximately as designed, although there is continuity of slabs. At 

temperatures at which the steel secondary beam's strength and stiffness is low, the 

floor slab attempts to span between the perimeter beams. This causes the perimeter 
beam and the internal beam on the edge of the fire compartment to take extra loading 

which is transferred to the columns. 
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P'igure 6-57. Redistribution of loads in the BRE corner test 

The propagation of cracking patterns is shown in Figure 6-58. The cracks are mainly 
confined to the fire compartment, except those tensile cracks caused by hogging of 
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beams outside the fire compartment. Compression cracks are found within the fire 

compartment on the soffit of the floor slab where extreme stress gradients occur. 
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1, 'igure 6-58. Propagation of cracks during the BRE corner test atialyses 

6.6.1 PARAMETRIC STUDY I- BRE CORNER TEST 

Figure 6-59 shows the influence of slab thickness on the secondary beam deflection in 
the BRE comer test. Up to temperatures around 500T, the variation in the beam 

deflection is nominal. This shows that the initial deflections are due to thermal 
bowing caused by the temperature differential across the steel beam. As the 

compartment temperatures increase beyond 500'C, the deflections begin to diverge 

and to "pull back". This is due to the concrete floor slab bridging from the perimeter 

II- 

600'C 
Top Face Bottom Face 
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beam, reversing the deflections as the steel beam softens and allowing the P-A 

bending deflection component to reduce. 
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Figure 6-59. Parametric study I- BRE cortier test 

6.6.2 PARAMETRIC STUDY 2- BRE CORNER TEST 

The influence of the slab temperature gradient on the secondary beam mid-span 

deflections is shown in Figure 6-60. 
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Figure 6-60. Parametric study 2- BRE corner test 

There is insignificant variation in deflections up to 500T, and therefore these 
deflections may be attributed largely to thermal bowing of the beam. However, 
beyond 5001C there is a significant spread in results. At these temperatures the beam 

begins to lose strength and stiffness and therefore the P-A bending deflection 
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component reduces. This allows the concrete floor slab to span across the central 

beam, and thus the temperature regime within the slab dictates the subsequent 
deflections. 

It may be surmised that, should the thickness of the slab be increased within this 

parametric study, the resultant deflections would be decreased as the structure begins 

to 'pull-back'. This might be offset by an increased thermal bowing effect causing 

extra deflection. Conversely, should the thickness of the slab be decreased, the 

secondary beam deflections would increase. 

6.6.3 PARAMETRIC STuDy 3- BRE CORNER TEST 

The third parametric study concerned the effect of the maximum compressive strength 

of the concrete. Figure 6-61 shows the effect on the deflection at the mid-span of the 

secondary beam. 
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Figure 6-61. Parametric study 3- BREcorner test 
The effect of the compressive strength appears to be negligible. 

6.6.4 PARAMETRIC STUDY 4- BRE CORNER TEST 

1000 

The effect of concrete tensile strength on the mid-span deflection of the secondary 
beam is shown in Figure 6-62. 
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Figure 6-62. Parametric studý 4- BRE corner test 

The deflection of the secondary beam is insensitive to the tensile strength over the 

initial 500'C. Beyond this temperature, there is some small variation in the deflection 

response, as during this phase the analysis is more sensitive to the floor slab's 

properties as the P-A bending deflection component reduces with temperature. 

6.6.5 PARAMETRIC STUDY 5- BRE CORNER TEST 

Figure 6-63 shows the mid-span deflection of the cerntral secondary beam for 

different load ratios. 
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I-'igure 6-63. Parwnetric study 5- BRE corner test 
For the initial 5000C the deflection of the secondary beam has negligible variation, as 

the steel beam retains the majority of its strength and stiffness at these temperatures, 
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and hence the deflections are dominated by thermal bowing. Above 500'C the 

deflections diverge as the beam softens, leading to a reduced P-A bending deflection 

- the slab then deflects under load as its properties degrade. componentl 

It may be speculated that the effect of a thicker slab on this parametric study would be 

to reduce the deflections of the secondary beam due to the inherent bending resistance 

of the slab. A thinner slab than that used would give increased deflection as the slab 

bending resistance is decreased and its vulnerability to cracking increased. 

Should the slab temperature gradient be increased the effect on this parametric study 

would be to increase the deflections as the strength and stiffness of the concrete slab 
is decreased. Conversely, a decreased slab temperature gradient would reduce the 

secondary beam deflections. 

The compressive and tensile concrete strengths would have a negligible effect on this 

parametric study, except perhaps for the case of thin slabs in conjunction with high 

loads. 

6.7 LARGE COMPARTMENT TEST PARAMETRIC STUDIES 
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I 

" Cý ý D' (E) (Fý 
Figure 6-64. Location andfinite element mesh of the large compartment test. 
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The subframe used for the previous fire test analyses has been extended to that shown 

irl Figure 6-64. This is to allow better continuity across gridline D when modelling 

the large compartment test. Symmetry has been utilised for computational efficiency 

by assuming the structure is symmetrical about the centre-line of the 9m main beam. 

-rhe finite element subframe has been heated uniformly across the fire compartment 

except for the perimeter beams which have been heated to 50% of the steel maximum 

temperature within the compartment. The fire compartment is restrained in-plane 

Orily by the stiffness of the columns and the continuous structure beyond gridline D. 

-rhese perimeter beams are supported by windposts, which act as ties to the floor 

above. 

lFigure 6-65 shows the absolute deflections at elevated temperatures at selected points 

airound the structure, and should be read in conjunction with Figure 6-64. 
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Figure 6-65. Large compartment test absolute deflections at various locations 

arountl the subframe 

peflections within the initial 500T are caused predominantly by thermal bowing of 

the steel beam, as the columns may only apply nominal restraint against thermal 

expansion. Beyond 500'C the steel beams lose strength and stiffness, allowing the P- 

A bending deflection component to reduce. At a half-bay beyond the extent of the fire 

compartment (VI) the deflection begins to reverse due to the structural continuity. 

j3eyond a maximum steel temperature of 5000C the beams within the compartment 

begin to 'relax' as they lose strength and stiffness allowing deflection VI to attempt to 
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return to its original position. Deflection V2 is on the 6m main beam located on the 

edge of the fire compartment. This deflects at approximately the same rate as the 6m 

main beam found on gridline E (V5). The mid-span of the 9m main beam (V8) is 

seen to deflect to a maximum of approximately 120mm. The deflections at the 

centres of the 9m secondary beams (V3, V4, V6 and V7) all give similar results. It is 

interesting to note the deflections at V4 begin to reverse above 600T, due to the 

bending properties of the floor slab as it spans between the cooler edge beams. 

The finite element analysis of this structural subfi-ame 'fails' at 700'C due to cracking 

of the concrete slab around the internal column situated at E3 and its opposite at E2. 

Figures 6-66 and 6-67 show the deflection profiles along Sections F-F and G-G 

respectively. 

-250' 
Deflection (mm) 

Figure 6-66. Progressive deflection of the large compartment test along Section F-1-4 
(see Figure 6-64for location) 

At 20T, the maximum secondary beam deflection is 24mm between Gridlines E and 

F. As the temperature increases the deflection increases due to thermal bowing 

caused by the temperature differentials across the beams. At 500T the strength and 

stiffness is reduced significantly, so that the P-A bending deflection component 

decreases. It may be noted that the secondary beam between Gridlines E and F begins 

to reverse its deflections at 600T as the bending stiffness of the floor now exceeds 

that of the steel beams. 
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Figure 6-67. Progressive deflectim of the large compartmellf test alotig Section (; -G 
(-vee Figure 6-64. for locatim) 

The deflection of the floor slab across the whole of the structural subframe is shown 

in Figure 6-68. The fire compartment area is shown in yellow. 

200C 

2000C 3000C 
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Figure 6-69 schematically shows the load paths across the subframe at both ambient 

temperature and at elevated temperature when the strength and stiffness of the steel 

beams within the compartment is low. 
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Figure 6-69. Redisirihilion of loads in the large compartment test 
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The load transference within the large compartment test at elevated temperatures is 

relatively complicated, as the loss of strength and stiffness of the steel beams requires 

the concrete slab to hang catenary fashion between the structure outside the fire 

compartment, the columns and the cooler edge beams. 
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P'igure 6- 70. Proj)qgalion of cracks during the British Steel corner test analyses 

Figure 6-70 shows the propagation of cracking in the large compartment test. The 

bottom face of the concrete slab is prone to tensile cracking during the initial 100'C, 

particularly where the floor slab spans between secondary beams. The majority of 

these cracks are small surface cracks that do not reach the reinforcement mesh. 
Irregularities in cracking occur along the perimeter of the building, due to the support 

221 



Cyrdiiwion Ie. st. % umitsz the Laininaled. Mell 1-Jement FloorSlab 

of the windposts from the floor above and around some of the columns where the 

C, concrete floor slab takes on a synclastic curvature. 

6.7.1 PARAMETRIC STUDY I- LARGE COMPARTMENT TEST 

IFigure 6-71 shows the deflection of the mid-span of the secondary beam denoted as 

V7 in Figure 6-64, for different slab thicknesses. 

][--)ue to the lack of spread of the deflections during the initial 500'C, deflections may 

be accredited to the thermal bowing action produced by the temperature differential 

across the steel beam. Beyond 500T, softening of the steel beam causes the P-A 

bending deflection component to reduce. However, this case does not exhibit the 

, pull-back' as shown in many of the other tests, and neither does it have a spread of 

results in the latter stages of the analysis. Apart from the edge beams, which are at a 

lower temperature, the slabs do not have stiff supports between which they can span 

when the beams lose their strength. 
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Figure 6-71. Parametric study I- Large compartmetil lest 

6.7.2 PARAMETRIC STUDY 2- LARGE COMPARTMENT TEST 

]Figure 6-72 shows the influence of the slab temperature gradient on the mid-span 
deflection of the secondary beam. 

Over the initial 5000C, the influence of the slab temperature gradient does appear to 

affect the deflection V7, although not greatly. This indicates that initial deflections 
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are caused by thermal bowing due to a temperature differential across the steel beam. 

Beyond this temperature the parameter does significantly affect the deflection, 

indicating that thermal bowing and/or weakening of the concrete is occurring at this 

stage. 
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Figitre 6-72. Parametric studý, 2- Large compartment test 

pue to the insensitivity of deflection to both temperature gradient and slab thickness, 

the effect of changing both parameters would also probably have negligible effect. 

Irwo exceptions could be when a severe temperature profile is combined with a thin 

slab, or a thick slab is combined with a mild temperature profile when the life of the 

structure would be expected to shorten or lengthen accordingly. 

6.7.3 PARAMETRIC STUDY 3- LARGE COMPARTMENT TEST 

,f he influence of concrete compressive strength on deflections of the mid-span of the 

secondary beam V7 is shown in Figure 6-64. 

qFhe variation caused by the maximum compressive stress appears to be small. 
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Figure 6-73. Parametric study 3 -- Large compartment test 

6.7.4 PARAMIETRIC STUDY 4- LARGE COMPARTMENT TEST 

800 

Figure 6-74 shows the influence of the concrete tensile strength on the mid-span 

cieflection V7 of the secondary beam. 

0 

-50 

-100 1 

-150 1 

-200 1 

-2501 - 

-300 
-3501- -- 

-400t- 

100 

-4501 

200 

- 0.05 ý 

-0.075 ýý 

-0.1 
-0.125 1 

-0.15 

- Test 

Concrete 

600 700 

i 

I 

800 

Deflection (mm) 
Figure 6-74. Parametric study 4 -- Large compartmew test 

The variation of deflection due to the maximum tensile stress is deemed to be 

negligible. 

6.7.5 PARAMETRIC STUDY 5- LARGE COMPARTMENT TEST 

The influence of load ratio has been investigated on deflection V7 at the mid-span of 

the secondary beam, and is shown in Figure 6-75. 
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Figure 6-75. Parametric study 5- Large compartment test 

The resultant variation that is found in the load ratio parametric study is considered to 

be negligible. 

The relative insensitivity of all five parametric studies within this test may be 

attributed to the steel beams (except the edge beams) losing strength and stiffness and 

thus deflecting. The slab has no supports from which to bridge and will therefore 

have a lesser effect than in the other tests. 

6.8 DEMONSTRATION TEST PARAMETRIC STUDIES 

Figure 6- 76. Location andfinite element mesh of the demonstration test. 

225 



Chapter 6- Simulauon of the Cardinjzton Tests usinR the Laminated Shell Element Floor Slab 

IFigUre 6-76 shows the demonstration test finite element subfi-ame and location plan. 

This subfi-ame has been modified from that used for the large compartment test as one 

boundary of the fire compartment coincides with that of the building's axis of 

symmetry. The demonstration test (as previous tests) has nominal lateral restraint 

provided by the adjacent cool structure and column stiffness. Windposts and the 

surrounding cool structure provide vertical support. 

]Figure 6-77 shows the absolute deflection at various locations around the structure'. 

this figure should be read in conjunction with Figure 6-76. 
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Figure6-77. Absolute deflection (? f iariouspoints around the demonstration lest 

over the initial 500'C the area within the fire compartment is subject to deflection 

primarily due to thermal bowing. Lateral restraint is nominal, and therefore restrained 

thermal expansion would hardly cause the structure to sag. Beyond 500'C deflections 

continue, as the strength and stiffness of the steel beam is significantly reduced. This 

overall action is reflected in the deflection measured outside the fire compartment 

(VI) which initially reverses as the fire compartment sags. As the maximum steel 

temperature reaches 5000C the structure within the fire compartment begins to relax, 

thus allowing VI to revert to sagging. The 6m main beams (V2 and V5), due to the 

lack of axial restraint, deflect because of thermal bowing up to 5000C. Beyond this 

temperature, loss of strength and stiffness of the steel cause continuing beam 

deflections. The mid-span of the 9m secondary beams (V3, V4, V6 and V7) 

deflection according to a similar scheme. It is interesting to note the movement at V4 

above 600'C, when the deflections attempt to reverse. This is possibly caused by the 
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I-estraint provided by the bending stiffness of the floor slab spanning across ftom the 

cooler sections of the structure. A series of absolute deflection profiles along Section 

1-1 is shown in Figure 6-78. 
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Figure 6-78. Progressive deflection along Section I-Ifor the demonstration test 

(vee Figure 6-76for location) 

IFigure 6-79 shows the absolute deflections along Section J-J. 
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Figure 6- 79. Progressive deflection along Section J-Jfor the demonstration test 

(see Figure 6-76 for location) 

The absolute deflection profiles of the whole structure at increasing steel temperatures 

are shown in Figure 6-80. 
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Figure 6-80. Progressive deflection (? f the demonstration lestsubftame 

As the structure deflects, the load paths will change through the structure. Figure 6- 

81 shows the load paths at the extremes of temperature, the first at ambient 

temperatures and the second at a temperature (7250C) such that the strength and 

stiffness of the steel beams within the fire compartment are negligible. Hence the 
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concrete slab must bridge from cool sections of the structure and from column 
junctions. 
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Figure 6-81. Redistribution qf loads in the demonstration tesl 

Figure 6-82 shows the propagation of cracks across the concrete floor slab for the 

demonstration test. The cracking patterns are very similar to those experienced in the 

large compartment test, except that along the edge of the fire compartment (half-way 

between gridlines 2 and 3) the upper face has tension cracks due to the slab hogging 

across the boundary line. 
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6.8.1 PARAMETRIC STUDY I- DEMONSTRATION TEST 

Figures 6-83 and 6-84 show deflections at the mid-span of the secondary beam (V6 on 

Figure 6-76) and the 6m main beam (V5 on Figure 6-76). The variation between 

deflections for changes in slab thickness for the 6m main beam is negligible, but for 

the 9m secondary beam a small variation is observed. This lack of variation in the 

parametric study is probably attributable to the supporting beams losing strength and 

stiffness and deflecting at an approximately equal rate, in similar fashion to the large 

compartment test. 
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Figure 6-83. Parametric study, I- Demonstration test, mid-span of secondary beam 
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Figure 6-84. Parametric studý, I- Demonstration test, mid-span of 6m main beam 

6.8.2 PARAMETRIC STUDY 2- DEMONSTRATION TEST 

The influence of the variation of the temperature gradient through the slab on the mid- 

span deflection of the secondary beam and the 6m main beam are shown in Figures 6- 

85 and 6-86. The variation in both cases is almost negligible up to a steel maximum 

temperature of 500'C. Therefore, any deflections in this period must be attributable 
to thermal bowing due to a temperature difference of slab and steel beam. Beyond 

500'C the deflections begin to vary, although no obvious pattern is observed. 
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Figure 6-85. Parametric study 2- Demonstration test, mid-span of secondary beam 
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Figure 6-86. Parametric study 2- Demonstration test, mid-span of 6m main beam 

Should the slab thickness parametric study be combined with that of the slab 

temperature gradient, it might safely be assumed that the effect would be negligible 

due to the relative insensitivity to both parameters. 

6.8.3 PARAMETRIC STuDy 3- DEMONSTRATION TEST 

The influence of the concrete compressive strength on the mid-span deflections of the 

secondary beam and the 6m main beam are shown in Figures 6-87 and 6-88 

respectively. 
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Figure 6-87. Parametric study 3- Demotistration test, mid-spati ofsecondary beam 

The effect of compressive strength on the overall structural action appears to be 

negligible. 
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Figure 6-88. Parametric study 3- Demonstration test, mid-span of 6m main beam 

Should a vatiation of maximum compressive stress be combined with either a change 

of slab thickness or slab temperature gradient, the relative insensitivity to each of the 

parameters will result in negligible difference. 

6.8.4 PARAMETRIC STUDY 4- DEMONSTRATioN TEST 

Figures 6-89 and 6-90 show the deflections at the mid-span of the secondary beam 

and the 6m main beam for a range of concrete tensile strength. 

233 



Chapter6 Simulation of the Cardington Tests usjnR the Laminated Shell Element Floor Slab 

As with the concrete's compressive strength, the sensitivity of deflections to its tensile 

strength is negligible. Again this suggests that the relative movement of the structure 

within the fire compartment is not highly dependent on the rigidity of the concrete 
floor slab. 
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Figure 6-89. Parametric study, 4- Demonstration test, 
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Figure 6-90. Parametric study 4- Demonstration test, mid-span of 6m main beam 

6.8.5 PARAMETRIC STUDY 5- DEMONSTRATION TEST 

Figures 6-91 and 6-92 show the mid-span deflections of the secondary beam and the 
6m main beam respectively for a range of load ratios. 
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As in the previous studies the initial 500'C steel temperature rise results in deflection 

caused by thermal bowing, after which loss of strength and stiffness of the steel 

beams causes continuing deflection. The variation produced by the load ratio 

parameter is not great in the temperature range up to 650 - 700'C, although the curves 

have not continued beyond this range. 
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Figure 6-91. Parametric study 5- Demonstration test, mid-span of 6m main beam 
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7 GENERAL ANALYSIS OF THE CARDINGTON STUDIES 

This chapter describes two sets of analyses based on the Cardington tests. The first is 

a comparison between current design methods, which treat the beam and an effective 

width of concrete flange in isolation, and a more complete building analysis. The 

second is a series of parametric studies to provide direction for future design methods. 

7.1 COMPARISON AGAINST CURRENT DESIGN GUIDES 

The studies conducted compare a full structural subframe with a continuous floor 

slab, a similar skeletal subframe with a concrete flange dimensioned to the effective 

width found in BS5950 9 and an isolated beam with an effective-width concrete 
flange. For completeness, these are compared with the test results and previous 

analytical results by Bailey 44. The isolated beam subframe with an effective-width 

concrete flange and the analysis using the original isotropic element have all been 

inade assuming an 80mm thick slab (excluding decking ribs) as this is the average 
depth of the continuous section of slab found within the survey in Chapter 2. 

7.1.1 RESTRAINED BEAM TEST 

Figure 7-01 shows the finite element subframe and location plan, and the curves 

relating mid-span deflection to temperature are shown in Figure 7-02. The test and 

analytical results generally compare well. The isolated beam model has the greatest 
deflection, as would be expected due to its lack of support from any surrounding 

structure. The original element reaches 950"'C, but due to sudden concrete cracking 

about the column area which causes a numerical instability, it fails to reach a solution 
beyond this. The skeletal subframe with an effective-width flange of concrete fails to 

converge at 725"C, again due to concrete cracking causing instability in the zones 
where concrete flanges intersect. Beyond 500T, the layered element appears to be 

over-stiff and not to crack as expected. This leads to bridging action where the 
diminishing stiffness of the steel beam is increasingly outweighed in importance by 

the stiffness of the concrete slab, and as a result the calculated deflections based on 
this representation are generally less than for other models. 
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Figure 7-01. Location andfinite element mesh of the restrained beam test. 
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Figure 7-02. Central deflection of the restrained beam test - Position VI 

7.1.2 PLANE FRAME TEST 

The finite element mesh and boundary conditions for modelling the plane frame test 

are shown in Figure 7-03. In this case it is possible that the secondary composite 
beams may be the major factor in supporting the heated structure, so that the floor 

slab may make only a minor contribution to the mechanics of the load-redistribution 

to adjacent structure. The top 500mm of the column head has been left fully exposed 
to heating. 
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Figure 7-03. Location andfinite element mesh of the planeftame test 

Figures 7-04 and 7-05 show the mid-span deflections of the outer- and inner-spanning 

primary beams, relative to the average of the beam end deflections, for different slab 

thicknesses. The finite element software cannot represent the cross-sectional 
distortion of the unprotected column tops that took place in the test in the region of 

620T. However, it does indicate a very rapid increase of absolute deflection beyond 

about 650'C and gives runaway deflection at about 680T. It is not possible to see the 

effect of the plastic local buckling from Figures 7-04 or 7-05, since the deflections 

plotted are relative to the line joining the beam-ends. This is also true for the test 

results, as it was only feasible to measure deflections relative to the floor above the 

heated slab. A basic deduction is that the observed plastic local buckling is 

proceeding simultaneously with considerable compressive axial straining, and it may 

be impossible to separate these two effects. 

Figures 7-04 or 7-05 show comparisons between test and analyses for the plane frame 

test at deflection positions V2 and V3. In both cases the isolated beam was found to 

have the greatest deflection, as expected. All other analyses can be seen to follow 

closely the deflection path found during the test until the beam bottom flange 

temperature is approximately 6000C. At this temperature, some of the test deflections 

appear to begin to run away, and this is not predicted by VULCAN. The analysis of 

the skeletal subframe containing simple concrete-flanged beams rather than a fully 
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continuous floor slab becomes numerically unstable at 350'C due to excessive and 

rapid concrete cracking at the ends of the secondary beams. 
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Figure 7-04. Central deflection of the 6m main beam in the planeftame test - 
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Figure 7-05. Central deflection of the 9m main beam in the planeftame test - 
Position V3 

7.1.3 B" CORNER TEST 

The BRE comer test location, and the finite element mesh used, is shown in Figure 7- 

06. For the purpose of the analyses, the heated perimeter beams were assumed to 

have a lower flange temperature of 50% of that of the main beams. Temperatures 

recorded during the test suggest that this is a reasonable assumption. Studies by 

Bailey"have also shown that, when analysing the comer test, it is important to take 
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into account the windposts on the structure perimeter. The windposts have been 

found to provide support to the perimeter beam by acting as tension members 

suspended from the floor above. The subframe is shown in Figure 7-06. 
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Figure 7-06 Location andfinite element mesh of the BRE corner test 
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Figure 7-07. Central deflection of the internal secondary beam in the BRE corner 
test - Deflection V4 

Figure 7-07 shows the deflections predicted by the different model arrangements 

compared to the actual test deflections at deflection position V4. This shows good 

comparison between the full subframe and the actual test data. The isolated beam, as 

expected, gives the greatest deflections. The analyses of the fully continuous 
subframe all give good comparisons and, as in the restrained beam test, bridging 
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action becomes increasingly important at higher temperatures, causing the beam to be 

pulled back towards its original position. 

7.1.4 ILARGE COMPARTMENT TEST 

The location and finite element mesh for the large compartment test are shown in 

Figure 7-08. For this analysis the beams on the perimeter were heated at half the rate 

of those in the centre of the fire compartment. Windposts have been included along 

the perimeter of the building. 

Figure 7-08. Location andfinite element mesh of the large compartment test. 

As the fire compartment extends across the whole building, the centre of the building 

can be treated as a line of symmetry, reducing the extent of structure that is required 
for modelling. Figure 7-09 compares the results for the layered slab, the skeletal 3D 

frame, the isolated beam, the isotropic slab element and the test. As expected the 

isolated beam deflects most quickly 
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Figure 7-09. Central deflection of the internal secondary beam in the large 
compartment test - Deflection V5 

7.1.5 tWLICATIONS FOR CURRENT DESIGN METHODS 

Current regulations in the United Kingdom demand that a structural element be 

designed for resistance to fire as an isolated component. Bare steel sections possess a 

significant, but limited, inherent fire resistance. This resistance can be enhanced 

using combinations of heavy steel sections with high thermal inertia to slow the rate 

of temperature increase; fire-resisting material properties; steel sections built into a 

wall or floor to increase the inherent shielding and insulation; active protection of the 

section and water sprinkler systems. These are largely defensive approaches in which 

the structural elements are not designed for the fire but are simply protected against 
fire effects using mainly passive measures. In contrast, design procedures for other 

actions such as wind or earthquakes become part of the normal design process. 
Typical solutions include moment connections, sway-frames and cross-bracing. 
Current building regulations in the United Kingdom also insist that structures should 
be designed to avoid disproportionate collapse as a result of localised structural 
damage. It is therefore, arguable that the modem structural designer should be 

designing for fire as a basic limit state, rather than simply using retrospective passive 

protection. 
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Each of the comparisons shown indicates clearly that an isolated member deflects 

considerably more than either the test or the analyses that model 3-dimensional 

continuity, and in the cases where the concrete slab alone cannot support the loading 

will eventually give runaway deflection. Although this is a conservative assumption, 
it prevents the designer from making use of the inherent structural fire resistance due 

to bridging via the concrete slab to cooler sections of the structure. This method of 
design inevitably leads either to the use of cumbersome structural members that are 

over-designed or to large amounts of retrospective protection, both at high cost to a 

project. Effects around the members under consideration should be taken into 

account, since actions such as bridging of the concrete slab from cooler sections of the 

structure may occur. This may be an example which future fire-resistant design 

methods should follow. 

7.2 QUALITATIVE ANALYSIS OF THE CARDINGTON PARAMETRIC 

STUDIES 

The parametric studies described in Chapters 4 and 6 for the Cardington fire tests 

have been evaluated qualitatively, particularly with the future of structural fire design 

developments in mind. 

7.2.1 SLAB BRIDGING 

As the temperatures within a fire compartment increase, the steel beams begin to 
decrease in strength and stiffness. This in certain cases will allow the slab - being 

less dominant at low temperatures - to dominate the structural action. This can 

significantly increase the fire resistance of the structure. Three specific cases for the 
Cardington studies follow: 

A single heated beam ivith unheated or mildly heated adjacent beams. A single 
heated beam with adjacent beams that are capable of sustaining extra load will 
perform well. Examples of this case occurring at Cardington are the Restrained Beam 
Test and the British Steel and BRE Comer tests. The beam initially sags due to 

thermal bowing caused by the temperature differential between the steel beam and the 
floor slab. Howeve; beyond approximately 500'C, the increase in deflection is more 
due to loss of strength and stiffness of the steel. At this stage, the concrete slab - 
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through its bending strength - will begin to support the steel beam by spanning from 

the supporting elements. Often the residual bending stiffness of the concrete floor 

slab will dominate the degradation of the steel beam and the thermal bowing effect 

and tend to attempt to return to its original position. The situations in which this 

occurs for the Cardington tests, at least in three- dimensional modelling studies, are 

shown in Figure 7- 10. 

(ý) -f 

ýoid 
oidl 

Restrained beam test BRE and British Steel comer tests: secondary beams 
spanning between two span between two partially heated beams; one of 
cold secondary beams which is supported by Windposts in tension. 

Figure 7-10. Schematic drawing of two examples of afloor slab spanning between 
adjacent beams 

In order to take advantage of this behaviour when designing steel beams for fire, a 

number of issues need to be addressed as follows: 

1. The fire compartment must be clearly defined and the maximum temperatures 

calculated. 

2. The elements supporting the floor slab over the fire compartment should be 

identified. These may be beams in cool sections of the structure or beams 

otherwise protected. For example, a perimeter beam with windposts above may 
be considered to provide effective support, provided that the windposts 
themselves can carry in tension the load usually carried by the edge beam under 
fire conditions. 

3. The ability of the concrete slab to span longer distances (on the assumption that 
the heated beam is capable of carrying no loading) should be considered. The 
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elastic modulus and maximum tensile and compressive stresses for the heated 

section of concrete slab should be reduced according to EC4 " but reduced partial 

safety factors may be applied. Deflection limits may be ignored, because it is the 

overall survival of the structure that is important. However, the vertical 

movement should not be sufficient to jeopardise the performance of any firewalls 

below the slab. 

4. The adjacent cool beams should be able to accommodate the extra loading but 

again lower partial safety factors may be used. Deflection limits need not apply 

provided that the vertical movement of the beams will not destroy any firewalls. 

Heating of main beams with cowl supporting beams remote front fire. The 

Cardington plane frame test is an example of this as shown in Figure 7-11. 

Le" 
rIZ77T 

Plane frame test where floor slab is forced to span 
between main beams or longitudinally between columns. 

Figure 7-11. Schematic drawing of an example of afloor slab spanning between 
adjacent beams. 

In normal circumstances, a concrete floor slab (such as that found in the plane 
frame test) will span between secondary beams. In the event of a fire, the 

secondary beams begin to lose strength and stiffness. In the case of the plane 
frame test only the end portions of the beams were within the fire compartment 

and affected in this way. Consequently, there was a tendency for the concrete slab 

to span the heated area in place of the main beams. 

Large compartments with afl beams heated. The large compartment test and the 
demonstration test are both examples of this, as they cover a large area where all 
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steelwork is exposed to fire. This causes the whole floor area to deflect, and hence all 

steelwork deflects similarly so that the stiffness of the floor (or adjacent beams) 

cannot be utilised. Whether the floor slab may ultimately be used as a tensile 

membrane between the supporting columns is debatable, as the floor slab in the 

regions around a column will be acting in hogging. This forces the floor slab into 

tension leaving the reinforcement as the only reliable structural material in a small, 

highly-stressed region. This situation is shown in Figure 7-12. If the primary 

supporting beams are fire-protected, the floor slab (if continuous across them) should 

be capable of being designed to span between them as a membrane, as this longer line 

of support will produce much lower distributed stresses in the slab. 

____ 
2? 

__ ___ 

____ 

___ 
A' _ 

11 

I ýoid I 
oidl 

0x 
0 is-k 1 -0 'ýk 

Large compartment test where floor slab 
must hang between supporting columns. 

Figure 7-12. Schematic ctrawing of an example of afloor slab spanning between 
adjacent beams 

When this parametric study is considered in the light of the slab thickness survey 
detailed in Chapter 2, it is important to recognise that between the beams the 

thickness of concrete is likely to be higher than that specified by the designer. This is 

due to ponding of the concrete caused by the deflection of decking when casting 

slabs. Whether this phenomenon could (or should) be taken into account at the design 

stage is questionable, as it cannot be guaranteed that slabs will be thicker than 

specified. This leads to the conclusion that it is best to be aware of the extra slab 
thickness, but to treat it as an 'undeclared' factor of safety. 
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7.2.2 CONNECTION STRENGTH AND STIFIVESS 

The rotational strength and stiffness of a steel connection is dependent on the length 

of the lever arm available between its resultant tension and compression forces. This 

is illustrated in Figure 7-13 for a tab-plate (as used at Cardington). 

Mon-composite connection 

M=Pbb+P, c 

Composite connection 

Figure 7-13. Comparison of non-composite and composite connections 

If rotations are considered about the bottom bolt, the non-composite connection has a 

short lever arm to the upper bolt, and in design this type of connection is normally 

treated as pinned although in reality it does have finite strength and stiffness. The 

composite connection also includes the upper bolt, but has the advantage that the 

concrete floor slab mesh is also capable of resisting tension. It was assumed that this 

resistance against rotation could be utilised in fire design, after a series of tests by 

Lawson 69 
. The principle is shown in Figure 7-14. 

Whether connection resistance should be included in design is questionable, as the 
lower flange of the restrained beam was seen to have buckled in the hogging zone at 
the edge of the furnace. This is believed to have happened at approximately 530"C, 

effectively creating a hinge (refer to Chapter 2). Beams also buckled locally in some 
of the other five Cardington tests, but due to their complexity, increased size and 
reduced level of instrumentation compared with the restrained beam test, it was harder 

to determine the temperature at which the buckles occurred. Similar local buckling 
behaviour was also noted in the Broadgate fire report 22. 
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Bending moment diagram 
Beam with no local buckles Beam with local buckles 

Figure 7-14. Effect of local beam buckling on connection influence infire 

Unfortunately, VULCAN is unable to accommodate cross-sectional distortion (such 

as local buckling) of the steel beams. It was found from the parametric studies that 

the effect of the strength and stiffness of the secondary beam connections was 

negligible in all the tests. However, in the restrained beam test a small difference was 

noted at temperatures beyond 7001C. This may be attributed to the cracking of the 

floor slab, allowing the beam to begin to act as an isolated member with an effective- 

width concrete flange. 

Currently, design guidence exists which directs the fire engineer to utilise the strength 

and stiffness of the connections in determining the effectiveness of a building 

structure in fire. The evidence found in the Cardington parametric studies contradicts 

this possibly giving cause for designers to rethink their attitude towards the strength 
44,54 and stiffness of connections in fire 

7.2.3 SuBFRAmiE ExTENTs 

Currently design of composite building structures to resist fire uses BS5950 9 or EC4 
11, both of which encourage designers to treat a beam as having an effective-width 

concrete upper flange. This is obviously a very conservative assumption as the 

continuity of the concrete slab is lost, and use of computer models with continuous 
floor slabs may be feasible in the future. 
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DISCUSSION AND CONCLUSIONS 

Much experimental research has been conducted in the last two decades on the actual 
behaviour of steel and composite members at elevated temperatures, and more 

recently on full-scale test frames. The purpose of this has been to establish the extent 

to which fire protection of structural elements is necessary, as this increases both the 

cost and time of construction. However, these tests are very expensive, and so there is 

a need for accurate computer modelling. By establishing confidence in the ability of 

software to model the response of any frame in any fire scenario, these tests can be 

reduced in number by analytical studies which can be performed much more cheaply. 
Recent full-scale tests on the Cardington composite test frame have shown that 

previous computer simulations (considering plane frames or three-dimensional 

skeletal frames) do not model the true structural behaviour. However, the VULCAN 

finite element model is in principle capable of analysing complex three-dimensional 

composite structures with reinforced concrete floor slabs and has been tested against 

test results whenever possible. Comparisons with test results have shown that the 

model is generally accurate in its predictions of both member and overall building 

behaviour, although some aspects are still under development. 

Extensive studies have been conducted in this work to establish the influence of 

various parameters. These include the thickness of the floor slab, the compressive 

and tensile strengths of the concrete of the floor slab, the secondary beam connection 

strength and stiffness, the floor slab temperature gradient, subframe size and the load 

ratio. 

8.1 CARDINGTON PARAMETRIC STUDIES USING THE ISOTROPIC FLOOR 

SLAB ELEMENT 

The six Cardington fire tests were modelled using the VULCAN finite element 

software and the sensitivity of behaviour to the values of various parameters was 

studied. The conclusions regarding these parametric studies are discussed in detail 

within Chapter 7. However, here they will be dealt with briefly here, and future 

extensions considered. 
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The thickness of the slab is clearly very important to the fire resistance of composite 
buildings, particularly when slabs are able to bridge from adjacent cool steel beams 

surrounding the fire compartment. During the initial stages of a fire, up to 500'C, the 
fire compartment deflects, largely due to thermal bowing of the steel beams. Beyond 

500"C, the behaviour is controlled by the nature of the fire compartment and its 

adjacent cool structure. In the Restrained Beam and the British Steel and BRE Comer 

test analyses the softening of the steel causes its P-A bending deflection component to 

reduce, while the slab is capable of carrying the load by spanning across the heated 

beam, hence producing 'pull-back. In the Plane Frame test, the concrete cannot span 
from the adjacent beams, and the effect of slab thickness is negligible. In contrast, the 

Large Compartment and Demonstration tests include large sections of heated floor. 

There is therefore very little opportunity for the slab to span across the fire-affected 

steel members to supports, and the effect of the floor slab thickness is negligible. 

The secondary beam connections do occasionally have a small effect on the structural 

performance, although this only occurs when the concrete floor stab has extensively 

cracked so that a heated beam acts in the same way as an isolated beam. In large test 

compartments the effect of the secondary beam connection strength and stiffness is 

negligible. Questions have been raised about the validity of design procedures which 

rely on the stiffness of connections in a fire, because of the commonly observed 
formation of a local buckle of the lower flange close to the supports, greatly reducing 

the joint stiffness. This could perhaps be studied using VULCAN by simply placing a 

spring element at the position on the steel beam where a buckle will occur (assuming 

either a known or predicted position). The spring element would be required to 

maintain stiffness equivalent to that of the steel beam until the conditions at which the 
buckle is expected to form occur. Such conditions could be calculated in terms of the 

combination of the axial thrust and connection moment, given the known strength and 

stiffness reductions due to the elevated temperatures. This could at some stage be 

taken further so that a 'buckling spring element' is included at the ends of beams, and 

where steel beams cross the boundary of a fire compartment. The 'buckling spring 
element' would base its moment-rotation curve on a combination of material 
degradation and the local buckling strength at the relevant temperature. Once the 
buckling strength is exceeded, the buckle may be assumed to have formed and so the 
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rotational and axial stiffnesses would be sharply decreased. The buckling capacity 

could be estimated using methods similar to those used by British Steel 72. 

A further program modification which might relieve the heavy computational work in 

modelling extensive subframes is to use a 'super-element'. This would involve 

defining an entire storey (or perhaps a whole building), apart from the actual fire 

compartment, as a single element. This 'super-element' would then provide the 

elastic stiffnesses around the perimeter nodes of the fire compartment, allowing a 

considerably smaller subframe to be used with rotational and axial stiffnesses 

positioned around the perimeter nodes to simulate the action of the surrounding 
building. 

8.2 MODELLING FLOOR SLABS USING LAMINATED FLAT SHELL 

ELEMENIS 

Bai ey 44 and the author have shown that the structural effects of the floor slab acting 

compositely with the supporting steel frame have a significant effect on the building 

behaviour during a fire. Analytical work previous to Bailey's included the floor slabs 

only as the flanges of composite beams, using the effective width concept, and thus 
ignoring the continuous nature of the floor slab. Including the continuous slab has 

two significant effects as follows: 

The floor slab gives rise to greater deflections at lower temperatures as it restrains 
the expansion of the steel beam and therefore increases the thermal curvature 

effect. 

The floor slab may bridge from adjacent cool members, diverting load paths away 
from weakening heated members. It is possible that structural collapse may be 

avoided when very high temperatures are reached due to this bridging action. 

Bailey's floor slab model 44 used an isotropic flat shell element with nodal ]Points 

coinciding with those of the one-dimensional beam-column elements to create full- 

interaction composite action. The concrete floor slab was assumed to be linear-elastic 

with cracking behaviour modelled by reducing its thickness so that a maximum stress 
gradient was not exceeded. 
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Extending the flat shell element to a layered formulation has enabled greater accuracy 
in the inclusion of material non-linearities, anisotropic properties, thermal expansion 

and bowing, material degradation and a more sophisticated concrete cracking model. 
These were incorporated into VULCAN successfully and were validated extensively 
for convergence errors at elevated temperatures and against closed-form solutions. 
The flat shell element was then validated against test data for a simple concrete slab 
loading test at ambient temperature, and against two composite beam tests at elevated 

temperature. 

Following this development a brief study using the new laminated slab element was 

conducted on a subframe comprising a single beam and a concrete floor slab, simply 

supported on all four sides, exposed to increasing temperatures. Firstly, the subframe 

was studied using different cracking assumptions, of which the best option appeared 

to be uni-directional cracking as defined by normal stresses. This was also the 

method used in the test validations. The second study concerned the influence of 
boundary conditions, and confirmed that bridging clearly takes place in circumstances 

where the slab may span across supports. The third study looked at the effect of slab 

thickness, showing that a thin slab may induce 'run-away' due to cracking of the slab; 

this causes the beam to act as if it is isolated. The fourth and final study involved the 

effect of the slab temperature gradient. This concluded that the more severe 

temperature gradients produced larger deflections than uniform temperature patterns. 

The current method of modelling the slab gives a reasonably good representation, 

although extra improvements could be made, as follows: 

PARTuL ComposrFE AcTiON 

Slip between steel beam and concrete slab may be incorporated into the formulation 

using a shear element to join the slab to the beam. These elements would be sited 
between the beam and slab nodes, and would model the shear characteristics of the 

stud connectors as temperatures rise. 

IWROVED MATERLAI MODEL FOR CONCRETE 

The current layered cracking model appears to result in structural behaviour which is 

considerably 'over-stifr, especially when considered in a case such as the restrained 
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beam test where in the latter stages bridging of the slab takes effect. Huang 66 has 

already implemented a more sophisticated model in VULCAN (as discussed in 

Section 5.11.1). Other possibilities for the continued development of VULCAN could 
be to use principal stresses at each of the gauss points, rather than the current system 

of orthogonal cracking across the whole element. Another improvement would be to 

replace the simple cracking envelope for the concrete with one such as that used by 

Rots and Blaauwendraad7o or Feenstra and De Borst 71. 

CONCRETE SPALLING 

Spalling of concrete when subject to elevated temperatures is a subject that has only 

recently begun to be researched in detail. This has two important effects. Firstly, it 

progressively reduces the thickness of the slab and consequently reduces its moments 

of area which control stiffness. Secondly, it removes the protective effect of the lower 

layers of concrete from the reinforcement mesh, allowing it to heat very rapidly. In 

the latter case a real collapse of a slab is a distinct possibility, leading to breaches in 

compartmentation and possible fire spread. Both effects could clearly be 

implemented within the slab formulation, but are in need of input from detailed 

research on the spalling phenomenon itself 

However, when concrete spalling is considered for a slab arrangement that uses 

profiled steel decking as permanent formwork (as at Cardington), the concrete cannot 
fall away and will hence contribute with slightly reduced insulation properties. 

GEOM[ETMC NoN-LmAmIES 

A basic improvement which could be made to the floor slab simulation is to take into 

account the effects of geometric non-linearity 47 
. This is important at high 

deflections, where the lengths of the element's middle surface differs considerably 
from their horizontal projection, as shown in Figure 8-01. This results in a 'P-A' 

effect from lateral stress so that (depending on the boundary conditions) the deflection 

of the slabs may be greatly affected. 

253 



Chgpter 8- Discussion and Conclusions 

L 

- Undeformed Element 

Deformed Element 
Geometric non-linearities 
not accounted for 

Deformed Element 
Geometric non-linearities 
accounted for 

Figure 8-01. Slab element geometric non-finearities 

TEMPERATURE PROFILES 

In the current version of VULCAN the temperature profile through the floor slab has 

been simplified so that a uniformly increasing gradient is maintained at all times. 

This should be generalised to include more specific temperature profiles, including for 

instance the plateau at about 1 OOT which tends to happen for some time as. the water 

content of the concrete is evaporated. This is detailed in Chapter 2. 

Another possibility for future development could be to include a heat transfer model 

within the analysis. 

MODELLING OF REINFORCEMENT 

Reinforcement within the slab could be modelled using a different method from the 

smearing technique now used for elastic modulus and strength. A new method is 

currently being investigated at Delft University of Technology in which the Gauss 

points within the plate elements are 'weighted' to simulate the reinforcement. As no 
publications have yet been published, little is known of this method and its possible 
relevance to VULCAN. Alternatively, it is possible to use steel line elements 
between existing slab nodes to represent bars, either individually or collectively which 
may be a better way to implement reinforcement into VULCAN. One drawback this 
latter method has is that it obviously requires many more elements, potentially 
increasing the computing time and power required. 
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8.3 GENERAL ANALYSIS OF THE CARDINGTON STUDIES 

A comparison against current design documents was made for the fully continuous 

analysis of the Restrained Beam test, the Plane Frame test, the BRE Comer test and 
the Large Compartment test. The current design guides are based on the assumption 

of isolated beams with composite concrete flanges of different effective widths. This 

has been compared against skeletal frame models including an effective-width 

concrete flange, fully continuous floor slab grillages for both the isotropic and layered 

slab elements and the test results. The results indicate that the assumptions made in 

the design guides give much higher deflections than those found when using a 

continuous structure, either in analysis or in reality, for all four tests analysed. This 

ultimately leads to unnecessarily conservative and expensive design, particularly 

where bridging of the floor slab can easily take place. 

It is perhaps advisable that design documents should be extended to allow the modem 
fire engineer to use finite element software to model the continuous structure, as this 

will lead to more efficient protection strategies. It is of course essential that such 

modelling should be carried out with care and some insight into the behaviour. This 

is allowed in the new Eurocodes, but will probably remain the province of relatively 

specialised engineers for some years to come. For the benefit of general structural 
designers it is now possible to use finite element software such as VULCAN to 

examine a range of scenarios with typical fire compartments to postulate simplified 

guidelines for use in routine design. 

8.4 CONCLUDING REMARK 

The future of structural fire engineering must be based on a realistic appreciation of 

the behaviour of continuous structures in fire, relative to the basic requirements of 
integrity and stability. The existing 'standard furnace test' on isolated elements gives 

no real indication of the performance in the majority of cases, although it usually 

constitutes a very loose lower bound to the behaviour. This could be advanced using 

reliable finite element models. It may be argued that as fire is an accidental 

occurrence, these models should only consider the ultimate integrity of the structure. 
Considering a building as an entity could perhaps allow local failure in the form of 
buckling and member deformation, provided that disproportionate collapse is avoided; 
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this is perhaps the direction that future design guides should take. If this is adopted, 
fire protection of many secondary and main beams may be unnecessary, providing 

that slab continuity is maintained. This would lead to much less expensive structures 

with no loss of safety and to reduced construction times. However, fire resistance of 
loaded columns is required in most cases, and this may require some passive 

protection. This is a much more convenient process on site, which causes only 

rninimal disruption to other activities. 
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