
Turing Learning: Advances and

Applications

Yue Gu

Supervisors:

Dr Roderich Groß
Prof. Neil Lawrence

A Thesis Submitted for the Degree of Doctor of Philosophy

in the

Department of Automatic Control and Systems Engineering

September 2021

https://www.sheffield.ac.uk/acse/staff/rstu/yuegu/index
https://www.sheffield.ac.uk/acse

I’m afraid that the following syllogism may be used by some

in the future.

Turing believes machines think

Turing lies with men

Therefore machines do not think

—Alan Turing

Abstract

Turing Learning is the family of algorithms where models and discriminators are

generated in a competitive setting. This thesis concerns the coevolutionary frame-

work of Turing Learning and investigates the advances for improved model accu-

racy and the applications in robotic systems.

Advances proposed in this thesis are as follows: an interactive approach to en-

able the discriminator to genuinely influence the data sampling process; a hybrid

formulation to combine the benefits of the interactive discriminator in improv-

ing model accuracy and the advantages of the passive discriminator for reducing

training cost; an exclusiveness reward mechanism to promote candidates with the

exclusive performance during the coevolutionary process.

Applications presented in this thesis are as follows: an approach for a mobile

robotic agent to automatically infer its sensor configuration; an approach for the

robot agent to automatically calibrate its sensor reading; a novel approach to infer

swarm behaviours from their effects on the environment.

The interactive approach has been validated in the inference of sensor configura-

tion and calibration model, leading to the self-modelling/self-discovery process of

robotic agents. Results suggest an improved model accuracy with the interactive

approach in both cases, compared with the passive approach. The hybrid formu-

lation and the exclusiveness reward mechanism have been demonstrated in the

inference of the calibration model. Results show that almost half of the training

cost can be reduced without a decrease in model accuracy by applying the hybrid

formulation. The novel reward mechanism can accelerate the convergence without

a decrease in model accuracy. The indirect way of inferring swarm behaviours

requires a small amount of training and reveals novel behavioural controllers for

individual robots.

Acknowledgements

Thanks to my supervisors, Dr Roderich Groß and Prof. Neil Lawrence, for their

support throughout my PhD study. Special thanks to Roderich for his profes-

sional suggestions and essential insights, not only on my research but on the whole

academia life.

Thanks to my lab mates for their help, collaboration and critical feedback. They

made my journey of PhD an unforgettable one.

Thanks to anonymous reviewers for their constructive comments.

Thanks to my friends in Sheffield. They made my stay a cheerful one.

Thanks to my family. To my parents, thank you for your consistent support, and

selfless sacrifices, which made me who I am today. To my girlfriend, Xia, thank

you for your unwavering love, trust and company, which always encourages me to

keep a positive life attitude.

Lovely thanks to my cat. You lighted up the lockdown time during the Covid-19

pandemic.

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 6

1.3 Preview of Contributions . 7

1.4 Publications . 9

1.5 Thesis Outline . 10

2 Background and Related Work 14

2.1 Development of AI and Robotics 14

2.1.1 A Historical Review of AI 14

2.1.2 Combining AI and Robotics 19

2.2 Evolutionary Computation . 21

2.2.1 The Inspiration from Biology 21

2.2.2 Introduction to Evolutionary Computation 23

2.2.3 Applications . 29

2.3 Swarm Intelligence . 35

2.3.1 Natural Swarms . 35

2.3.2 Swarm Optimisation . 36

2.3.3 Swarm Robotics . 38

2.4 Problem Formalisation . 42

2.4.1 Generative Adversarial Networks 43

2.4.2 Turing Learning . 46

2.4.3 Turing Learning Formalisation 47

3 Inferring Sensor Configuration through Self-Discovery 52

3.1 Introduction . 52

3.2 Methodology . 53

3.2.1 Coevolutionary Framework of Turing Learning 54

3.2.2 Simulation Platform . 57

3.3 Case Study . 58

3.3.1 Problem Formulation . 59

viii

ix

3.3.2 Turing Learning Implementation 60

3.3.3 Simulation Setup . 63

3.3.4 Simulation Results . 65

3.4 Summary . 71

4 Combining the Best of Active and Passive Learning 73

4.1 Introduction . 73

4.2 Methodology . 75

4.2.1 Hybrid Turing Learning Formulation 75

4.2.2 Exclusiveness Reward Mechanism 76

4.3 Case Study . 78

4.3.1 Robot Simulation Platform 79

4.3.2 Hybrid Turing Learning Implementation 81

4.3.3 Simulation Results . 85

4.4 Summary . 95

5 Inferring Swarm Behaviours from Their Effects 97

5.1 Introduction . 97

5.2 Methodology . 99

5.2.1 Problem Formulation . 99

5.2.2 Simulation Platform . 100

5.2.2.1 Sensor . 101

5.2.2.2 Controller . 101

5.2.3 Turing Learning Implementation 101

5.3 Case Studies . 104

5.3.1 Object Clustering . 104

5.3.1.1 Simulation Setup 104

5.3.1.2 Simulation Results 110

5.3.2 Shepherding . 114

5.3.2.1 Simulation Setup 114

5.3.2.2 Simulation Results 119

5.4 Summary . 129

6 Conclusion 132

6.1 Summary . 132

6.2 Future Work . 134

Bibliography 137

Chapter 1

Introduction

In 1950, Alan Turing proposed the Turing Test to answer the question “Can ma-

chines think?” [1] and established the birth of Artificial Intelligence (AI). The field

of AI was formally instituted at the Dartmouth Conference in 1956. Researchers

at the conference determined that the ultimate goal of developing AI is to realise

human intelligence on machines. Over the past decades, the development of AI

has introduced significant benefits to our daily life and improved our living quality.

Most current techniques implemented in AI are rooted in machine learning, of

which supervised learning is the most broadly used form. Supervised learning aims

to find the associated mapping from each input to each output in a given dataset

of example input-output pairs. Although supervised learning often leads to better

accuracy than humans, the training process requires millions of data samples.

Worse, these data samples usually rely on human supervisors to provide labels.

In order to learn from fewer data and reduce human supervision, many studies

focus on another form of machine learning: unsupervised learning. By definition,

unsupervised learning aims to identify useful patterns that are not well-defined

from a dataset of unlabelled inputs.

Generative modelling has been widely applied to achieve unsupervised learning.

Traditional approaches to generative modelling depend on optimising an explicit

representation pmodel(x;θ) of parameters θ to estimate an unknown distribution

1

Yue Gu - PhD Thesis 2

pdata(x) of data samples x. However, for some complex data, such as realistic im-

ages, explicit representations are usually complicated and computationally difficult

to be optimised. Other approaches avoid this issue by building implicit generative

models that can generate samples directly from the distribution pmodel. The most

popular and successful approach in this category is the Generative Adversarial

Networks (GANs) [2]. GANs are frameworks where generative models are inferred

in a competitive setting with discriminators: The discriminator aims to correctly

classify samples generated from either the model or the training data distribution.

The model aims to misguide the discriminator to categorise its samples as train-

ing data. In the perspective of game theory, GANs are implemented as a game

between two players: the model and the discriminator [3]. Since its inception in

2014, GANs have been subsequently studied in various variants and successfully

applied in developing generative models for complex distributions, especially for

the generation of images.

Another field where explicit methods are not always available is the identification

process of robotic systems. Traditional system identification approaches rely on

predetermined metrics to minimise the difference between the output of the model

and that of the target system. However, determining a metric for complex sys-

tems can be challenging. For example, it is hard to evaluate agents’ behaviour in

a robotic system with an explicit function as the behaviour is usually generated

from complex interactions and can be stochastic due to noise. In order to achieve

a metric-free approach, Turing Learning [4], inspired by the Turing Test, was de-

veloped to optimise models simultaneously with discriminators in a game setting.

The idea of Turing Learning was first proposed in [5] and has been demonstrated

to infer behavioural rules of robot agents in a swarm, where the discriminator’s ob-

jective is to identify the trajectory data from either the agents under investigation

or the agents executing the rules defined by models [6].

Even though Turing Learning and GANs were developed separately, the idea be-

hind them is similar. Assuming a Turing perspective in [7], GANs and their

variants can be generalised as instances of the Turing Learning algorithms. The

Yue Gu - PhD Thesis 3

framework of Turing Learning algorithms does not propose a concrete implemen-

tation. Instead, it enables the designer to choose their own implementations, in-

cluding representations for the model and the discriminator (other than the neural

networks) and the optimisation algorithm (other than the gradient-based ones).

As a result of this, Turing Learning holds the promise of feasibility in a wide range

of scenarios.

1.1 Motivation

The theoretical model of the original GANs suggests that there is only one Nash

equilibrium where the model distribution pmodel is identical to the training data

distribution pdata [2]. However, it is difficult to reach equilibrium in practice. Dis-

cussions about the convergence of GANs are still open, and many works have

focused on this [8–12]. On the other hand, the Turing Learning framework allows

not only a single candidate as implemented in regular GANs but a population of

candidates for the model and the discriminator as implemented in [5]. In the latter

case, the convergence to a Nash equilibrium can be interpreted as the competitive

coevolution between the model and discriminator populations. Although conver-

gence can not be guaranteed, the coevolution effect could lead to a more stable

optimisation for both the model and the discriminator. Recently, more and more

studies have also focused on the coevolution effect in GANs [13–16] and presented

a more stable training.

One motivation for this thesis comes from the techniques that could promote the

convergence of the coevolutionary process in Turing Learning. In general, the com-

petitive coevolution leads to an “arms race”, where individuals compete against

each other and obtain fitness through the competition [17]. Ideally, improved so-

lutions could continually occur for both populations during the coevolution. How-

ever, this relies on the arms race running for a significant long time, which is diffi-

cult to achieve in practice. A reason for the failure of maintaining a steady process

Yue Gu - PhD Thesis 4

is the lack of diversity in populations [17]. Without enough new individuals intro-

duced into the population, the evolution could easily get stuck in local optimums.

In Turing Learning, this issue could be avoided by enabling the discriminator to

interact with the model and the system under investigation. The discriminator

could hence examine between different local optimums and push the convergence

towards the Nash equilibrium. The inspiration comes from the interrogator’s role

in the Turing Test, where the interrogator influences the data sampling process by

posing questions to the other two players. Previous studies on Turing Learning

have shown the advantage of a pre-determined interaction sequence in the infer-

ence of a simple one-dimensional behaviour [5]. However, whether a fixed protocol

of interaction is capable enough for the inference of complex behaviours needs to

be further investigated.

Another reason for the failure of competitive coevolution is the vanishing fitness

gradient when one population is extremely dominant in the competition. Then,

both populations stop evolving due to the loss of selection pressure. Then, the

subjective fitness in coevolution no longer represents the quality of solutions as

it becomes constant in each population [17]. Inspired by the Elo system [18]

for rating the strength of players in chess, continual selection pressure on both

populations in Turing Learning could be achieved by establishing a new fitness

mechanism to evaluate the exclusive abilities of candidates.

The other motivation for this thesis comes from the possibility of Turing Learning

in opening up new application domains in robotics. Robotics is the field where

perception is connected with action. AI plays an essential role in enabling such

connections to be intelligent [19]. One promise of combining AI and robotics is to

enhance the perception, which is not only for planning but also for bringing the

sense of self-awareness to robots [20]. This opens up an interesting topic about the

self-modelling/self-discovery of a robotic agent. Inspired by the resilient machine

in [21], the interactive approach of Turing Learning could contribute to the self-

modelling process of a robotic agent to infer its characteristics, such as the sensor

configuration and sensing capabilities.

Yue Gu - PhD Thesis 5

However, the interactive approach with robotic systems could be expensive. Each

generated sample can not be reused as specific to the interaction, which leads

to a costly process. In general, the energy expended and time spent increase,

usually linearly, with the amount of data to be collected. Hence, how to adapt

the interactive approach of Turing Learning to applications in robotics would be

another promising topic.

Furthermore, Turing Learning was initially proposed as an automated reverse en-

gineering method of agent behaviours. Compared with the forward engineering,

where high-level abstractions and logical designs are transferred into physical im-

plementations, reverse engineering is the process of replicating an exciting system

without “drawings, documentations or a computer model” [22]. In terms of the

study of animal behaviours — ethology, the robotic system is commonly used

to duplicate and demonstrate the behavioural rules of how living organisms re-

spond to internal and external stimuli [23]. These rules are usually designed by

researchers based on observation, which is time-consuming and exhausting. More-

over, it is typically hard for researchers to manipulate the environmental features

in an effective way to provide more insights into the biological system under obser-

vation. Turing Learning offers an automated way to carry out the whole process

of observing, designing and demonstrating. For example, it has been applied to

infer controllers for the behaviours of a swarm of robots, such as the aggregation

and the object clustering in [4]. In both cases, the inference relies on full observ-

ability of the robotic agents (i.e. full knowledge of individual agent’s velocities).

The third possible application with Turing Learning is mostly curiosity-driven.

If swarm behaviours could be learned by monitoring some tractable features, in-

stead of directly observing the swarm, the inference could be easily applied in the

physical world.

Yue Gu - PhD Thesis 6

1.2 Problem Statement

In general, the robotic agent considered in this thesis consists of a rigid body,

a class of onboard sensors, and actuators. Case studies will be conducted with

a simulation platform that has been broadly verified and shown to be able to

provide an effective transition into the physical lab. The robot is placed into

an environment along with other robots and/or objects. It moves around and

perceives the surroundings with its sensors. The model is executed on the robot

and determines its way of sensing and operating. The discriminator can observe

the robot’s sensor reading values and potentially control the robot’s motion.

In the first case study, we focus on the active self-discovery of robotic systems.

Robots have been used in many practical scenarios, for example, industrial robots

that are used to perform repetitive tasks in well-structured production lines.

Achieving reliable performance in complex environments with uncertainties is still

challenging for robotic systems. During the operation, unexpected topological

changes may be introduced to the robot’s body due to damage or collisions. These

changes would affect the ability of the system to plan actions. In particular, sen-

sors can not provide accurate information about the environment if they are not

mounted precisely, or their positions are physically changed. To address this prob-

lem, we present a case study where a robotic agent uses Turing Learning to infer its

sensor configuration. The robot moves in a bounded environment with obstacles

but has no knowledge about its relative positions to obstacles. The discriminator

has full control of the robot’s motion and observes sensor readings at the same

time. The task requires the discriminator to construct some active patterns of

control to examine the inferred configuration.

We also consider the training cost of the coevolutionary process in Turing Learning,

where a pairing strategy is required to evaluate fitness for individuals. To provide

stable training, we use the “all vs. all” pairing, where each discriminator candidate

is evaluated against each model candidate. However, this pairing approach results

in a large amount of training data being generated, which could be challenging

when the evaluation is conducted with a physical robot. To address this problem,

Yue Gu - PhD Thesis 7

we present a hybrid formulation of Turing Learning which consists of two types of

discriminators: the interactive one, to maintain the advantages of interaction, and

the passive one, to reuse the recorded training data. We demonstrate the hybrid

formulation in our second case study, which is about a fully autonomous robot self-

calibrating its distance sensor without any global knowledge about its environment

(e.g. the ground-truth distance). Moreover, we present a novel reward mechanism

to take into account the exclusiveness of each candidate so that the coevolution

process can be enhanced.

In the third case study, we investigate the inference of swarm behaviours through

Turing Learning. Modelling swarm behaviours is usually done by designing con-

trollers that can capture the features of biological swarms. In previous studies,

the inference relies on the full observability of the robot’s behaviour. For example,

in [6], Turing Learning has been implemented to infer the sense-act controller [24]

of individual robots by observing the trajectory of robot agents in a swarm. Al-

though, the observation is not always available, especially for complex behaviours

where the interactions within individuals are hard to be observed. In this case

study, we investigate if swarm behaviour can be inferred indirectly by monitoring

its effects on the environment. Particularly, we study two behaviours: object clus-

tering and shepherding. In all situations, the individual’s motion follows a simple

sense-act rule. To reveal such a rule, the Turing Learning algorithm observes

(i) a single object being clustered; (ii) a single sheep of the flock. This study is

promising as it requires a small amount of information. It may also potentially

discover new possibilities for the solution.

1.3 Preview of Contributions

• An approach for a mobile robotic agent to automatically infer its own sensor

configuration when starting from a random position in a given environment.

The approach is an example of active self-modelling that requires no prede-

fined performance measurement. It does need any global knowledge, such

Yue Gu - PhD Thesis 8

as positional information. It is validated by simulation. The inferred model

parameters accurately matched those defined in the simulator.

• An interactive approach of Turing Learning in which the discriminator ac-

tively influences the data sampling process, thereby assuming the role of an

interrogator (as opposed to a passive observer), akin to the one in the Turing

Test. The approach allows a bi-directional flow of information between the

discriminator and either the model or the system under investigation. The

approach is validated in the above study and has shown its advantage in

improved model accuracy compared with the passive approach.

• An approach for the robot agent to automatically calibrate its sensor reading

when starting from a random position in a given environment. The approach

is an example of active self-calibrating that requires no ground-truth informa-

tion as traditional approaches do. It is validated in simulation. The inferred

model parameters accurately matched those defined in the simulator.

• A hybrid formulation of Turing Learning that combines the use of interac-

tive discriminators to retain the advantage of active learning with the use of

passive ones to allow recorded training data to be reused. The formulation

is validated in the self-calibrating study and has shown an almost 50% re-

duction of the training cost, compared with the purely interactive approach,

with no decrease in model accuracy.

• An exclusiveness reward mechanism for Turing Learning to take into account

the exclusive performance of each player in the game. The mechanism pro-

motes the individuals that perform well against rarely defeated opponents.

The mechanism is validated in the self-calibrating study, and it was shown

that it is able to boost the coevolution process with no decrease in model

accuracy.

• A novel approach to automatically infer swarm behaviours from their effects

on the environment. To the best of our knowledge, this is the first instance

where the behaviour of a swarm is inferred indirectly. The approach is

Yue Gu - PhD Thesis 9

validated in simulations of learning two behaviours: object clustering and

shepherding, where the inference is done by observing the position changing

of a single object or sheep agent that is randomly picked. Compared with

previous studies, the approach requires a reduced amount of information.

• A novel controller for a swarm of robots with binary, line-of-sight sensor to

cluster objects, which enables a relatively small number of robots to effec-

tively cluster a large number of objects; Another novel controller for a swarm

of robots with binary, line-of-sight sensor to accomplish shepherding, which

enables shepherd robots to efficiently herd a group of sheep robots towards

a dynamical goal.

1.4 Publications

This thesis presents the author’s own work, and parts of the work have been

published.

A short version of Chapter 3 was included in the publication:

• R. Groß, Y. Gu, W. Li, and M. Gauci, “Generalizing GANs: a turing

perspective,” in Advances in neural information processing systems, Curran

Associates Inc. (2017), pp. 6316-6326.

It was orally presented at the 31st Conference on Neural Information Processing

Systems (NIPS 2017), held at Long Beach, CA, USA.

A preliminary version of Chapter 4 was included in the publication:

• Y. Gu, W. Li, and R. Groß, “Turing Learning with Hybrid Discrimina-

tors: Combining the Best of Active and Passive Learning,” in Proceedings

of the 2020 Genetic and Evolutionary Computation Conference Companion

(GECCO 2020), ACM Press, pp. 121-122.

Yue Gu - PhD Thesis 10

It was orally presented by the author at the respective conference, held online.

Apart from his main work, the author has also contributed to other projects that

are not presented in this thesis. These led to the following publication:

• M. J. Doyle, J. V. A. Marques, I. Vandermeulen, C. Parrott, Y. Gu, X. Xu,

A. Kolling, and R. Groß, “Modular Fluidic Propulsion Robots,” in IEEE

Transactions on Robotics, in press.

1.5 Thesis Outline

This thesis is structured as follows:

• Chapter 2 presents an overview of the background that this thesis is posi-

tioned in and previous work that relates to the main topic of this thesis.

The background starts with the development of artificial intelligence (AI)

and robotics in Section 2.1, including a historical review of AI (Section 2.1.1)

and AI in robotics (Section 2.1.2). Then, Section 2.2 briefly discusses the evo-

lutionary computation, including the inspiration in biology (Section 2.2.1),

an introduction of different methods (Section 2.2.2) and their applications

(Section 2.2.3). The final part of the background presents an overview of

swarm intelligence (Section 2.3), including swarms in nature (Section 2.3.1),

two swarm optimisation methods (Section 2.3.2) and the development of

swarm robotics (Section 2.3.3). The related works include the Generative

Adversarial Networks (GANs) (Section 2.4.1) and previous studies on Turing

Learning (Section 2.4.2).

• Chapter 3 presents the Turing Learning framework and demonstrates the

method, particularly an interactive approach, to infer the sensor configura-

tion of a robot agent. Section 3.2.1 describes the definition of the framework

within the context of coevolution. Section 3.2.2 introduces the simulation

platform used in this chapter and thesis. Section 3.3 presents a case study to

Yue Gu - PhD Thesis 11

demonstrate the framework, including a formal problem formulation (Sec-

tion 3.3.1). Section 3.3.2 lists the implementation options that are chosen

for this scenario. Section 3.3.3 describes the simulation setup designed for

carrying out the investigation. The simulation results are presented in Sec-

tion 3.3.4, including an analysis of the inferred model, a discussion about

the coevolutionary dynamics, a comparison between the interactive setup

and passive setups and an illustration of the discriminator’s control pattern.

Section 3.4 summarises the chapter.

• Chapter 4 presents the hybrid formulation of Turing Learning and an ex-

clusiveness reward mechanism. They are applied to calibrate the distance

sensor of a robot agent. Section 4.2.1 describes the hybrid formulation in de-

tail. Section 4.2.2 formally defines the novel reward mechanism. Section 4.3

presents a case study to demonstrate the method, including an introduction

of the simulation platform (Section 4.3.1). Section 4.3.2 lists the imple-

mentation options of hybrid formulation that are chosen for this scenario.

The simulation results are presented in Section 4.3.3, including an analy-

sis of the non-hybrid Turing Learning formulations, a consideration of the

practical cost, a discussion about the coevolutionary dynamics among three

populations and the impact of the exclusiveness. Section 4.4 summarises the

chapter.

• Chapter 5 presents a novel way to infer swarm behaviours from their effects

via Turing Learning. Section 5.2 describes the methodology, including a de-

tailed definition of the problem (5.2.1), an introduction about the simulation

platform (5.2.2) and the implementation of the Turing Learning algorithm

(5.2.3). Section 5.3 presents two case studies to demonstrate the method.

Section 5.3.1 illustrates how the object clustering behaviour could be learned

by Turing Learning through observing the trajectory of the object, and Sec-

tion 5.3.2 implements Turing Learning to infer shepherding behaviour via

monitoring the trajectory of sheep. The inferred controllers in both cases

are analysed in terms of their resulting emergent behaviours and scalability

with respect to the different numbers of agents. At the same time, their

Yue Gu - PhD Thesis 12

performance is compared with one of the controllers designed in the liter-

ature. In addition, Section 5.3.1 investigates how the training data affects

the scalability of the clustering controller learned by Turing Learning, and

Section 5.3.2 shows the potential of the inferred controller to accomplish the

shepherding task with a dynamical goal. Section 5.4 summarises the chapter.

• Chapter 6 concludes the thesis and discusses the potential directions for

future work.

Chapter 2

Background and Related Work

2.1 Development of AI and Robotics

2.1.1 A Historical Review of AI

The Birth

In 1950, the British mathematician Alan Turing tried to answer a highly ambiguous

question, “Can machines think?”, in his Mind paper “Computing Machinery and

Intelligence” [1]. He proposed the Imitation Game to transform the abstract

question into a particular situation. The original game is played among three

people: a man (A), a woman (B), and an interrogator (C) who can be either man

or woman. C stays apart from the other two and puts questions on any subjects

in writing; A and B write down their answers and pass them back to C. The

objective of the interrogator is to distinguish between the man and the woman

based on their answers. Both the man and the woman are to let the interrogator

believe they are the woman. Then, Turing raised new questions to replace the

original one:

“What will happen when a machine takes the part of A in this game?

Will the interrogator decide wrongly as often as when the game is

14

Yue Gu - PhD Thesis 15

played like this as he does when the game is played between a man

and a woman?” [1, p.433]

Ignoring the gender issue, the imitation game played between a machine (A), a

human (B) and an interrogator (C) is also widely known as the Turing Test (as

shown in Figure 2.1). What Turing tries to answer is whether a machine has the

ability to imitate a human. His idea has been acknowledged by some as the origin

of Artificial Intelligence (AI), and the Turing Test has been as its ambition [25].

The field of AI was formally instituted at the Dartmouth summer research project

(or Dartmouth Conference) in 1956. McCarthy, Minsky, Rochester and Shannon

proposed the main problems that are aimed to solve [26]:

“to make machines use language, form abstractions and concepts, solve

kinds of problems now reserved for humans, and improve themselves”

The success of the Dartmouth Conference gave rise to a new age of discovery and

stimulated the longing for new knowledge [20]. Researchers were attracted and

engaged in the development of AI, many of whom were eventually considered the

founders of the field.

Seasons

The evolution of AI has experienced several “seasons” (the ups and downs) since

the birth of the field. We generally summarise them as:

• First spring: Dartmouth Conference remarks the beginning of the first spring

of AI for nearly two decades. That time had seen many significant successes

in the field, for example, the natural language processing program ELIZA [27]

and the General Problem Solver [28].

• First winter: Unlike the general optimism since the birth of AI, the pub-

lic and media started to question the promising prospects claimed by AI

Yue Gu - PhD Thesis 16

Figure 2.1: Transformation from Imitation Game to Turing Test. Turing’s
idea set the ultimate goal of Artificial Intelligence, that is, imitating humans.

Yue Gu - PhD Thesis 17

researchers. In 1973, Lighthill stated that machines would never break the

level of an “experienced amateur” in chess games and would never be able to

solve common-sense problems as humans [29]. Following the sudden ending

of support of the British and U.S. government, the research of AI entered its

first winter.

• Second spring: In the early 1990s, the second spring came with the revival

of several techniques, such as expert systems and neural networks. Expert

systems were developed in the mid-1960s by AI researchers. They are rep-

resented as collections of rules that formalise human intelligence in specific

domains into “If-Then” statements by human experts [30]. However, the

top-down approach of expert systems performs poorly in complex forms of

intelligence. As the lack of ability of processing external data, expert sys-

tems are technically not considered the true AI [31]. The discussion about

statistical methods for realising true AI can be traced back to the 1940s

when psychologist Donald Hebb proposed an idea of replicating the process

of human brain neurons [32], which led to the research of artificial neural net-

works. Due to the limited ability of computers at that time, the applications

and benefits of artificial neural networks came up in the later years.

• Fall: Since 2000, along with the increased computer power and the Big Data

revolution, artificial neural networks were back to the stage and AI finally

entered its first golden season. Machine learning, especially Deep Learning,

has become the cornerstone of AI. Many applications were developed in

wide areas, including image processing, speech recognition, natural language

processing, computer vision, auto-driving and robotics.

Debates

The birth of AI brought a lot of discussions into the field. First of all, the definition

of “artificial intelligence” was and still is highly debated. Inspired by Turing’s idea,

some AI researchers described AI as the ability to simulate human intelligence.

In [33], Charniak gave a definition as: “Artificial Intelligence is the study of mental

Yue Gu - PhD Thesis 18

faculties through the use of computational models”. Moreover, Minsky offered

another definition as: “ Artificial Intelligence is the science of making machines do

things that would require intelligence if done by men” [34]. However, McCarthy

argued that AI is not always about simulating the behaviours observed in humans

or animals. Instead, “the situation in AI study is the reverse” [35, p.3]. The

methods involved in AI are usually not the ones used by humans and requires

plenty of computing efforts that humans don’t have. He summarised that this is

due to the lack of knowledge of the intellectual mechanisms that humans have [35].

As the development of computers was at its early stage, AI researchers attempted

to represent human intelligence into a declarative form, like symbols and rules for

manipulation, which led to the primary paradigm, symbolic AI, from the middle

1950s to the late 1980s. Researchers believed that symbolic AI was the way to

achieve the ambitions, although they realised that computers have a vastly differ-

ent mechanism than the biological one observed in humans.

Symbolic AI has had remarkable successes. For example, expert systems have

been applied in assisting humans in decision making. However, not all philoso-

phers were convinced by the promised outlooks of symbolic AI. John Searle argued

that it is incoherent for a non-biological machine to be intelligent. He proposed

the Chinese room argument in 1980 to illustrate the symbol grounding problem of

“strong AI”, which he referred to as the belief of realising real cognition in machines

with symbolic AI [36]. The argument outlined that a human could communicate

in Chinese by manipulating Chinese characters, but without truly understanding

Chinese. Searle concluded that machines could pass the Turing Test if they ma-

nipulate symbols reasonably without the need of understanding the meaning or

grounding of these symbols. However, that is opposite to AI’s ambitions.

In the last decade of the 20th century, researchers started to realise that philoso-

phers’ criticisms on the goal of achieving human intelligence on machines through

symbolic AI was justified. Rodney Brooks revealed a fact that “Early hopes di-

minished as the magnitude and difficulty of that goal was appreciated. Slow

progress was made over the next 25 years in demonstrating isolated aspects of

Yue Gu - PhD Thesis 19

intelligence” [37]. Brooks argued that the reason for the limited success in the

early development was the obsession with a complete and explicit representation

of the complex human-level intelligence. As he entitled one of the sections in [37],

“Abstraction as a dangerous weapon”. Brooks thus called for a new view of in-

telligence as “Intelligence Without Representation” [37] or “Intelligence Without

Reasons” [38]. In the later work [39], Brooks suggested a bottom-up manner for

the development of AI: comprehending every aspect and mechanism of low-level

intelligence, like the insect-level intelligence, before moving up to a higher-level

one, like the human-level intelligence.

2.1.2 Combining AI and Robotics

Robotics has its roots in the human history of designing mechanical tools. After

World War II, the boost of the nuclear industry and advances in control theory

encouraged engineers to design robot arms to replace the telemaipulator in trans-

porting nuclear materials. Robot-like machines started to emerge [40]. These

techniques began being introduced in general manufacturing in 1956. In the next

two decades, applications like industrial manipulators and automated guided ve-

hicles were under development, during which time the AI experienced its first

spring. Although AI and robotics were not combined originally, the early success

of symbolic AI inspired researchers to solve problems in the physical world. In the

meantime, the progress of producing computationally powerful embedded devices

gave AI researchers a chance to demonstrate complicated algorithms on robots.

As introduced previously, symbolic AI was developed on the basis of the physical

symbol system hypothesis, which requires a symbolic formalisation of the problem

under consideration and the solutions as well. However, the physical world does

not provide available symbols to the robot. The main challenge of building robots

with intelligence was to find the approaches that allow robots to realise such

formalisation of the information they obtain from the environment. Moreover,

the symbolic solutions need to be converted into actions that robots can execute.

This led to the three primitives of robotics: sense, perceiving the environment with

Yue Gu - PhD Thesis 20

sensors and generating sensory readings for extracting symbols; plan, processing

symbols and producing tasks and a plan of actions for the robot; act, outputting

actuator commands for the robot [40].

From 1967-1990, the widely used paradigm of organising intelligence in robots is

known as the Hierarchical Paradigm, under which the robot follows a sequential

architecture: “sense→ plan→ act”. The planner uses a global world model to

transmit all sensing information into actions. The first concrete robot that car-

ried out this paradigm was the Shakey, developed between 1966 and 1972 at the

Artificial Intelligence Centre of the Stanford Research Institute (now SRI Interna-

tional) [41]. Shakey is arguably considered the first robot that is capable of AI.

However, similar to other projects at that time, Shakey operated only in simpli-

fied environments with well-controlled conditions. This is because that the need

for generic global world models for Hierarchical Paradigm is hard to be met in

complex environments, which is also the shortcoming of symbolic AI. To adapt

to more realistic situations, each community is faced with challenging problems

in its own field. AI and robotics diverged from each other, while both achieved

enormous progress during this period of time.

In the early 90’s, Brooks’s new view of intelligence also inspired “New Approaches

to Robotics” [42]. He proposed the subsumption architecture, which breaks the

chain of information processing modules in the traditional approach, and instead,

connects the signals from the real world directly to actions and allows different

behaviour-generating modules running in parallel (which is also referred to as

behaviour-based robotics [43]):

“There was no central model of the world explicitly represented within

the systems. There was no implicit separation of data and computation

[. . .] There were no pointers and no easy way to implement them, as

there is in symbolic programs. [. . .] There was no central locus of

control. [. . .] There was no notion of one process calling on another as

a subroutine. [. . .] The boundary between computation and the world

was harder to draw as the systems relied heavily on the dynamics of

Yue Gu - PhD Thesis 21

their interactions with the world to produce their results.” [42, p.1229-

1230]

This idea is related to the Reactive Paradigm of robotics, under which the robot

follows multiple concurrent “sense→ act” couplings. Each coupling generates one

behaviour, and the final action of the robot is a combination of all behaviours. The

subsumption architecture encouraged various research groups to reunion AI and

robotics and create many famous robots, for example, Allen [44], Raibert’s hopping

robots [45] and Genghis [46]. But, sooner, it became clear that an entirely dropping

plan was too narrow for organising high-level intelligence. On the basis of the

Reactive Paradigm, the Hybrid Paradigm let robots plan to break down a task into

subtasks before executing Reactive Paradigm. In other words, “plan, sense→ act”.

At the end of 90’s, more and more robots were created as an integration of AI

and robotics, such as Flakey [47], Rhino [48], Minerva [49] and Deep Space One

spacecraft [50, 51].

2.2 Evolutionary Computation

2.2.1 The Inspiration from Biology

Darwinism

Darwin’s theory of evolution was first formally introduced in his book “On the

Origin of Species” [52] in 1859. It explains the diversity of living organisms and

the underlying process from a macroscopic view, that is, natural selection. As-

suming in an environment with limited resources (e.g. capacity), the instinct of

individuals producing offspring eventually leads to the selection. In a natural way,

individuals that are better adapted to the environment are more likely to survive

and reproduce, which is also referred to as survival of the fittest. This phenomenon

reveals one of the two essentials in the evolutionary process: competition. The

other one is referred to as phenotypic variations among individuals.

Yue Gu - PhD Thesis 22

Within a population, each member is represented as a combination of phenotypic

traits, which consists of the biological and behavioural features determining the

way of interaction with the environment and other members, for example, organs.

During natural selection, those traits that are favoured by the environment have a

higher chance to be retained through offspring. Otherwise, they are dying out as

evolution proceeds. Darwin identified that mutations happen during reproduction,

which introduces new phenotypic traits (e.g. beneficial organs [53]) as well as new

combinations (e.g. hippopotamuses into whales). Eiben summarised Darwin’s

theory as a model of a population of individuals, where individuals are “units of

selection” and “the population is the ‘unit of evolution’ ” [54].

Modern Synthesis

Modern synthesis, or modern evolutionary synthesis, explains the natural evolu-

tion from a microscopic perspective, that is, genetics. Under genetics, an individ-

ual’s phenotypic traits are encoded from its genotype. In other words, evolution

happens on the genotypic level, where genes are the basic unit. Nature favours

individuals that have beneficial genes to generate phenotypic features for survival.

As a result, they have a higher chance to propagate this genotype information

through offspring. Meanwhile, phenotypic variations are the consequences of mu-

tation and/or recombination of genes during reproduction.

Although the whole genetic process is not fully understood yet, the modern study

has provided more insights. Genes are carried by DNA, the double helix of nu-

cleotides, and govern the production of proteins that form all living organisms on

Earth. The information from DNA is passed to RNA first and then is translated

to proteins. One concept dogma is that this information path is a single-way path,

which means that phenotypes cannot affect genotypes. Consequently, the genetic

diversity in a population only derives from the variations in genes and natural

selection. The features that are learned during an individual’s lifetime cannot be

retained in its genes. Eiben emphasised this view as:

Yue Gu - PhD Thesis 23

“It is important to understand that all variations (mutation and com-

bination) happen at the genotypic level, while selection is based on

actual performance in a given environment, that is, at the phenotypic

level.” [54, p.7]

2.2.2 Introduction to Evolutionary Computation

Since the biological evolution has created multiple optimal solutions in nature,

such as the fish body for less resistance in the water, the birds’ wings for more

lift force to fly and the geckos’ feet for strong stickiness on surfaces, many re-

searchers attempted to mimic the mechanisms that drive biological evolution in

order to develop computational techniques for optimisation problems. These at-

tempts have motivated a large amount of research leading to many algorithms that

have resulted in a wide range of applications.

Motivation

The motivations of developing evolutionary computation can be summarised as

follows:

• Desire for automated problem solvers. Searching for automated problem

solvers has been one of the ambitions in mathematics and computer science,

and solutions in nature provide many inspirations [54]. The biological evo-

lution, which created the most powerful problem solver - the human brain,

encouraged researchers to apply nature’s answer in design [55], leading to

the original idea of evolutionary computation.

• Need for robust algorithms. The increasing problem complexity urged re-

searchers to develop algorithms that could widely adapt in different domains

and provide good solutions, but without much tailoring. The biology diver-

sity has proved the robustness of evolution, which motivated researchers to

Yue Gu - PhD Thesis 24

copy the mechanisms of natural evolution in developing powerful algorithms

for adaptation and optimisation problems [56].

• Human curiosity. Similar to the development of other techniques, curiosity

drove researchers to simulate the biological evolution in computer programs,

which could not only deepen the understanding of the evolutionary process

and also benefit in developing better algorithms [54].

Evolutionary algorithm

The earliest attempt to explain the evolutionary system from an algorithmic view

could be traced back to the 1930s when Wright illustrated the problem domain as

a multi-peaked landscape and visualised the mechanism as dynamically searching

candidate solutions from lower peaks to higher peaks [57]. Wright’s perceptive ex-

posed the nature of the evolutionary system as an optimisation process. Another

perceptive is to understand the evolutionary system as an adaptive system inter-

acting with a dynamical problem domain, which leads to the insight of a process

of maintaining system static in changing conditions via feedback-control [58]. For

example, Friedman applied mechanisms to evolve robotic control circuits [59].

Throughout history, many evolutionary algorithms (EAs) have been implemented.

The majority can be categorised into four related approaches that were developed

independently: genetic algorithms, evolution strategies, evolutionary programming

and genetic programming.

• Genetic algorithms (GAs) were initially formulated by Holland [60] as an ap-

proach of evolving adaptive behaviours and have been widely implemented

in optimisation problems. Individuals are represented as genetic-like strings

which consist of binary, integer or real-valued genes. Accordingly, the re-

production of offspring, including the mutation and recombination, operates

on the string level as well. For example, for a binary string, the muta-

tion could be a bitwise flip with a small probability, and the recombination

Yue Gu - PhD Thesis 25

could be a one-point crossover where two children are created by exchang-

ing the remaining sequence from a random point chosen in parents’ genetic

sequences. Two GA models are studied in the literature: the generational

model, where µ parents are selected in each generation and λ = µ offspring

are produced to replace the whole population in the next generation; the

steady-state model [61], where λ < µ offspring are produced to replace λ

individuals in next generation.

• Evolutionary strategies (ESs) were invented by Rechenberg and Schwefel [62,

63] and typically deal with continuous parameter optimisation problems.

Therefore, individuals are represented as vectors of floating-point variables.

For each object variable xi, the mutation in ES is operated by adding a

random noise drawn from a Gaussian distribution N (0, σi). One particular

feature of ES is the self-adaption that is done by coevolving the step size,

leading to an adaptive mutation operator. Hence, the individuals’ represen-

tations are extended with strategy variables σi and doubled in size. Accord-

ingly, the recombination operates on both the object and strategy variables.

One commonly used ES model is (µ + λ), where the fittest µ individuals

are selected as the parent population and forms the whole population in the

next generation together with λ produced offspring.

• Evolutionary programming (EP) was originally proposed to create artificial

intelligence [64, 65]. Individuals are evolved as Finite State Machines (FSM),

adapting their behaviour in the environment. Thus, the mutation in EP is to

generate new FSMs by modifying the structural features, such as states and

arcs. In practice, EP is implemented without the recombination operator as

it is hard to design an appropriate one but is still able to achieve impressive

results [66]. This leads to asexual reproduction in EP.

• Genetic programming (GP) was introduced in the early 1990s by Koza [67]

as an approach to evolving computer programs. Unlike the other members

in the EA family were developed as optimisation approaches, GP is rooted

in machine learning and modelling tasks. Individuals are represented as

Yue Gu - PhD Thesis 26

Figure 2.2: An illustration of evolutionary algorithms in the flowchart. Af-
ter initialising the original population, the process proceeds to evaluate all in-
dividuals, select better ones and reproduce new candidates through variation
operators, and then repeats until the termination criteria are met. Reproduced

from [69]

.

parse trees in GP, including arithmetic and logic formulas and the program-

ming procedure. Mutation and recombination operators in other EAs can be

adapted in GP to operate in tree structures. Meanwhile, evolution models

can be referenced to the two GA models as explained above.

Although different algorithms were developed under different principles, they all

contain several important components, including a population base, the repre-

sentation for individuals, an evaluation method (i.e. fitness function), a parent

selection mechanism, recombination and/or mutation operator(s), and a survivor

selection mechanism, many of which are stochastic. The general scheme of all EA

variants can be presented with a unified view [54, 58, 68]. Given a population,

the environment evaluates each candidate’s performance with a fitness function

and thus causes natural selection. The fittest candidates are selected to reproduce

offspring for the next generation through variation operators, which leads to new

candidates emerging and replacing some old ones in the population. This process,

as illustrated in Figure 2.2, is repeated for generations until a sufficiently good

candidate emerges or a pre-set computational limit is met. More importantly, the

process is drove by two essentials:

Yue Gu - PhD Thesis 27

“Variation operators (recombination and mutation) create the neces-

sary diversity and thereby facilitate novelty; Selection acts as a force

pushing quality.” [54, p.16]

Coevolutionary algorithm

Darwin’s idea of coadaptation of two or more species leads to the special form of

evolution in nature: coevolution [70], where the fitness of one species adapting to

the environment is determined by not only its own genes but also the interactions

with other species. Similarly, in coevolutionary algorithms (CoEAs), two or more

populations are coevolved simultaneously1. The coevolutionary process can be

considered several sub-processes for all populations, each of which doesn’t interact

with others unless for the fitness evaluation. In other words, the individual’s fitness

is determined by the correlation of its own performance and others’ performance

in other populations. Depending on the type of such correlation, CoEAs can be

categorised into cooperative and competitive ones.

• Cooperative CoEAs are mainly used in the situation where a complex prob-

lem is decomposed into tractable sub-problems, and each population repre-

sents the candidate solutions for a part of the problem. Hence, populations

cooperate with each other to come up with a combined solution. Example

applications could be optimising high-dimensional functions [74] and Job

Shop Scheduling (JSS) problem [75]. A major issue when applying cooper-

ative CoEAs is to design an effective pairing strategy between populations

during the fitness evaluation process. This issue has been broadly studied

in [74–77].

• Competitive CoEAs produce an arms race between populations [17]. Indi-

viduals from different populations compete against each other and obtain

1It is debatable whether a single-population algorithm, where individuals are evaluated
through interacting with others, is also called coevolutionary [71]. When we talk about coevolu-
tionary algorithms in this thesis, we refer to the multi-population case. For the single-population
coevolutionary, we recommend [72, 73] for further readings.

Yue Gu - PhD Thesis 28

rewards at each other’s loss [54], leading to the evolution of all populations.

The most famous example is the iterated prisoner’s dilemma (IPD) proposed

by Axelrod [72], where each of two players needs to decide either cooperation

or defection in each iteration, while how many rewards each can receive de-

pends on the other player’s action. Other examples include finding minimal

sorting networks [78] and optimising classification systems [79].

In the following, we continue to discuss specifics about competitive CoEAs and

competitive coevolution in general.

In CoEAs, there is no determined fitness function. Instead, an individual’s fitness

depends on the outcomes of interaction with other individuals. This is so-called

subjective fitness, compared with the objective one calculated by direct metrics in

traditional EAs [71]. For competitive CoEAs, a simple way to measure an individ-

ual’s subjective fitness is to calculate how many opponents it defeated. To achieve

that, competitive CoEAs require a careful pairing strategy to choose opponents

and set the competition. Common strategies are: Round Robin, under which an

individual is paired with all individuals from other populations one by one [72, 80];

Random Pairing, literally choosing a random opponent in populations [81]; Single-

Elimination Tournament, under which individuals are randomly paired, but losers

are eliminated from the tournament after one game [82]. Different ways of pairing

may influence the quality of competitions and the computational cost of the co-

evolutionary process. Usually, Random Pairing costs less but performs not well;

Round Robin behaves better but costs more.

As discussed above, competitive coevolution relies on the arms race between popu-

lations. Good solutions only occur after a certain number of generations. However,

maintaining such an arms race in practice is difficult. This issue can be summarised

as the synchronisation challenges of the competitive coevolutionary process:

• The Red Queen Effect. It is introduced by the pure subjective fitness mea-

surement. It happens when the subjective fitness of two populations con-

tinuously improves. However, neither of them constantly makes progress on

Yue Gu - PhD Thesis 29

the absolute quality, or when they actually improve their absolute quality,

but the subjective fitness fails to reflect their progress [83].

• Cycling. It happens due to the instant subjective fitness criteria. As the op-

ponents are changing over generations, individuals with good abilities may be

lost and rediscovered in future generations, performing a cycling behaviour.

At the same time, the same individuals may have different outcomes against

different opponents [83].

• Disengagement. It occurs when one population dominates the competition.

Subjective fitness no longer represents the quality of solutions as it becomes

constant in each population. Thus, selection pressure is lost. Evolution is

suspended in all populations [84].

Several methods have been introduced in the literature to improve the competi-

tive coevolutionary process and tackle the above challenges. For example, Rosin

and Belew [17] proposed competitive fitness sharing to reward individuals with

outstanding abilities others don’t have, shared sampling to maintain the diversity

in populations and hall of frame to save good solutions from previous generations.

Moreover, reducing virulence [84] and reducing sharing [85] were introduced to

address the disengagement issue.

2.2.3 Applications

Evolutionary computation has been widely applied in solving real-world problems.

From a system analysis perceptive, Eiben [54] positioned various applications into

three types of problems: optimisation, modelling or system identification, and

simulation. Considering a working system composed of inputs, outputs and the

internal model, these three problems can be illustrated in Figure 2.3. In an opti-

misation problem, the objective is to find inputs that can lead to desired outputs

via a known model. In a modelling problem, the objective is to build a model that

can connect the given inputs and outputs. In a simulation problem, the objective

is to design the outputs given the model and inputs.

Yue Gu - PhD Thesis 30

(a) Optimisation problems

(b) Modelling or system identification problems

(c) Simulation problems

Figure 2.3: From a system analysis perceptive, applications of evolutionary
computation fit in three problem domains. Reproduced from [54].

In the following, we focus on three particular domains.

Black-Box Optimisation

Black-Box Optimisation (BBO) problems refer to the situation where the optimiser

aims to find the optimal inputs that minimise (or maximise) the outputs of an

objective function without knowing its internal structure. According to [86], a

mathematical representation of BBO could be:

In a search space Ω, a candidate solution x is a N-dimensional vector, that

is, x = (x1, . . . , xN). For a black-box function f : Ω→ R, the objective is to

find the optimal solution x∗ ∈ Ω that leads to the global minimum2 f(x∗).

The optimiser is supposed to sample Ω to find a sufficiently good solution x

that has a small value of f(x)− f(x∗).

2A maximisation problem could be converted to a minimisation problem by applying −f

Yue Gu - PhD Thesis 31

The challenges of solving BBO problems are [87]:

• high-dimensional. The objective function’s dimension, N , results in an ex-

ponential explosion in the search space, which is also identified as the curse

of dimensionality in [88].

• non-separable. The objective parameters in f(x1, . . . , xN) are coupled. Thus

the optimisation cannot be simplified as multiple sub-processes that are

tractable.

• highly multi-modal. The objective function has a landscape with multiple

local optima. Hence, the optimiser could be easily trapped in the local

optima and missed the global one.

• multiple objectives. The objective function is usually formulated with multi-

ple objectives and/or constraints in real-world problems. Hence, the search

space is divided into several regions, which increases the difficulty of finding

the global optimal.

As the representation of f is unknown, operational research methods are not ap-

plicable. Moreover, as the derivative of f is not accessible, gradient-based methods

are not feasible. However, given the nature of evolutionary algorithms (EAs), they

are best suited in solving BBO problems.

System Identification

In the control community, system identification is the process of building dynami-

cal models from observation data, including input and output signals of the target

system. It shares the basic features of the common modelling process in other

areas [89].

Generally, system identification concerns two situations: black-box models, where

no prior knowledge is available, either of the structure or of the parameters; grey-

box models, where the system structure is known, but no information about the

Yue Gu - PhD Thesis 32

parameters is known, or only a few parameters are known. EAs have been largely

considered in these two situations since the research done by Kristinsson and

Dumont [90]. They applied genetic algorithms (GAs) in both continuous-time

and discrete-time identification problems and reported better results compared

with traditional methods but with a notable high computational cost.

There are two important problems that can be distinguished in system identi-

fication: modelling and estimation. In both areas, EAs has been subsequently

implemented:

• Modelling. In system identification, a model is composed of the input, out-

put and the delay term. EAs contribute a simple way to find the desired

structures linking these terms. Non-linear AutoRegressive Moving Average

eXogenous (NARMAX) [91] have been widely used to represent non-linear

systems, for which Fonseca et al. [92] applied an EA to select terms in poly-

nomial models. In further studies, EAs were also used to identify NARMAX

models [93, 94]. Moreover, the tree-based framework of genetic program-

ming (GP) naturally contributes the structure identification. Particularly,

Marenbatch et al. [95] proposed a general approach to apply GP with block

diagrams, including the time-delay, switch, loop and domain-specific com-

ponents. Gray et al. [96] applied GP to find block-like and equation-like

representations of non-linear models. Furthermore, multi-objective GP ben-

efits in building multi-objective NARMAX polynomial models. For example,

seven objectives and constraints, involving the number of terms, degree, lag,

variance, prediction error and correlation aspects, were optimised at the same

time in [97]. However, the complexity in structure may cause the growth of

trees in GP, which is also known as the bloating problem [98].

• Estimation. After structuring a model of the target system, the next step

is to estimate the unknown parameters inside the model. Traditional meth-

ods are least-square estimation for linear models or gradient-based recursive

techniques [99]. For non-linear models or situations where the gradient is not

applicable, or problem with multiple local optima, EAs potentially fit in. For

Yue Gu - PhD Thesis 33

example, the evolutionary strategy (ES) was implemented to estimate pa-

rameters in friction models [100]. Usually, the modelling and estimation are

achieved simultaneously, such as in the evolutionary NARMAX approaches

discussed above.

Evolutionary Robotics

Evolutionary robotics (ER) is a concept of designing robots with embodied intel-

ligence and aims to improve the robustness and adaptability of robots [101, 102].

An essential feature of ER is that the robot is considered as a whole, distinguished

with traditional approaches where many aspects, including the morphology, sen-

sory mechanism, actuation system and controller, are designed separately and

simultaneously with high interdependence [103]. The procedure of implementing

ER (as shown in Figure 2.4) is [102]: (1) converting the genotype in the initial

population into the phenotype feature of a robot, for example, the controller or

morphology; (2) placing the robot in an environment and observing its behaviour;

(3) determining the fitness based on observations; (4) the fitness is transferred

back to evolutionary algorithms for selection, and the population is then updated

via reproduction; (5) the above cycle is repeated until termination.

ER originated from engineering and biology, then contributes to both areas:

• In engineering, ER breaks the boundaries of individual fields in robotics,

integrates multiple sub-processes in robot design, and thus introduces new

possibilities and perspectives. For example, instead of designing the mor-

phology as a prior, Lipson and Pollack [104] combined the morphology and

control in the evolutionary process. Bongard [105] considered the impact

of morphological changes on the behaviour and found that more robust be-

haviours emerged as the complexity in morphology increased.

• In biology, ER provides an alternative way to understand biological evo-

lution and allows researchers to study hypotheses efficiently in a realistic

environment or simulation. Particularly, AVIDA [106] and AEvol [107] are

Yue Gu - PhD Thesis 34

Figure 2.4: An illustration of evolutionary robotics in flow-chart. After initial-
ising the original population, the process proceeds to evaluate the genotype in
the phenotype level - the robot’s behaviour, determine fitness on the basis of ob-
servations and operate the reproduction, and then repeats until the termination

criteria are met. Adapted from [102]

.

simulation tools to study the evolution of bacterial. Also, ER was applied

to study some unique properties, such as how cooperation evolves [108, 109]

and when efficient communication strategies emerge [110].

One challenge in ER and in robotics generally is to transfer principles into phys-

ical devices. Researchers attempted to apply the evolutionary process directly

to real robots, like Aibo robots, who learn to walk in the real-word with ER

techniques [111]. However, due to the need for long training time and continual

human intervention and safety reasons [112], the design in ER is usually conducted

in simulations. The reality gap [113] is thus introduced between the outcomes in a

simulated environment and the performance in real-world systems. ER opens up

many angles to tackle this issue. For example, mixing the transferability into the

objectives of ER led to optimal solutions in both simulation and reality [113]. This

also introduces resilience in ER, such as a resilient robot updates its morphology

model after a motor or mechanical failure and adapts its controller automati-

cally [21]. Another challenge is online learning, which is about the adaptability of

Yue Gu - PhD Thesis 35

ER in dynamical or unknown environments. Online ER has been considered both

with single robots and multiple robots. The resilient robot introduced in [21] is

a try to address online learning on a single robot. Attempts with multiple robots

lead to the distributed online ER, also known as embodied evolution [114]. The

nature of evolutionary algorithms makes it possible to distribute over a population

of real robots [115] or virtual ones [116].

ER provides new insights into the research in the AI community, that is, the emer-

gence of intelligence. Similar to the human brains evolved in biological evolution,

ER is motivated to build a robot “brain” in a long evolutionary process, which

could run for the robot’s lifespan to maintain the adaptability [102]. The cognitive

framework, proposed by Bellas and Duro [117], allows a robotic system to adapt

to its environment in a life-long evolutionary process. The learning of the robot’s

brain, in turn, also inspired neuroscientists with models to understand mechanisms

of the human brain [118].

2.3 Swarm Intelligence

2.3.1 Natural Swarms

Swarms have been widely seen in nature, for example, a group of ants, a flock of

birds or a school of fish. From a top view, a swarm is a group of simple agents, each

of which is governed by local rules but achieves some emergent behaviours as a

group through cooperation with other agents [119]. There are two core mechanisms

in swarm systems:

• Self-organisation is defined as “a process in which pattern at the global level

of a system emerges solely from numerous interactions among the lower-

level components of the system” [120, p.8]. In other words, patterns in a

swarm system are formulated via a bottom-up process, without top-down

Yue Gu - PhD Thesis 36

procedures. One should note that interactions among individuals can hap-

pen directly or indirectly by modifying environmental conditions that affect

others’ behaviours, which leads to the second mechanism: stigmergy.

• Stigmergy is defined as “one means of information flow within a decen-

tralised system that involves gathering information from the shared envi-

ronment” [120, p.60]. In other words, it allows individuals to communicate

with each other through changes to the environment which enables the infor-

mation to be passed beyond space and time. Stigmergy is first observed as

significant stimuli in the insect colony [121] and later named as a particular

way of communication [122]. Stigmergy can encourage complex patterns by

considering the environmental states and the individual distribution both in

the spatial and time domain [123].

Swarm Intelligence (SI), firstly proposed by Beni and Wang [124] in 1989, then

refers to the collective behaviour of such swarm systems, both in natural and arti-

ficial forms. For example, in nature, a swarm of animals is able to solve problems

that are difficult or impossible for single individuals, for example, a group of ants

foraging for food, a flock of birds or a school of fish avoiding predators during trav-

els. In the artificial field, SI inspired two main applications: swarm optimisation

and swarm robotics, as discussed in the following sections.

2.3.2 Swarm Optimisation

We briefly review two main techniques: ant colony optimisation (ACO) and parti-

cle swarm optimisation (PSO), which are nature-inspired and developed for solving

combinational problems and real-valued problems, respectively. They were both

introduced in the 1990s and attracted much attention in their own fields. Many

variants appeared later on both sides, and some have been applied in the other’s

domains. For example, ACO was applied in continuous domains without funda-

mental modifications in structure [125]; A PSO-based algorithm was implemented

to solve the flow shop scheduling problem [126].

Yue Gu - PhD Thesis 37

Ant Colony Optimisation

Ant Colony Optimisation (ACO) was introduced by Dorigo et al. [127] in 1991

and later named in [128, 129]. It is a search algorithm inspired by the foraging

behaviour of ants (e.g. the stigmergy mechanism described above). When ants

search for food, they tend to randomly explore the area around their nest and

leave pheromones on the path when they carry food back home. The amount of

pheromone represents the quality or quantity of the food so that another ant is

guided back to the food source.

Similar to the capability of real ants, the algorithm is implemented with a pheromone

model of virtual ants to sample the search space with a probability distribution. In

ACO, virtual ants are dispersed randomly among nodes. The searching starts with

each ant moving between nodes randomly, but each node is not visited twice. Af-

ter one tour is completed, each ant follows the same route and leaves pheromones

on its way back to the origin point. The strength of the pheromones indicates the

distance of the tour the ant has completed. For the next tour, each ant prefers to

choose the node with the strongest pheromone next to its current node. To avoid

the convergence towards the local optimal, the pheromone fades slowly if no ant

reinforces it.

ACO was initially proposed to solve hard combinational problems, that is, finding

the optimal combination of a finite set of problem components. Classic examples

include scheduling and routing problems. In [127], ACO is applied to the trav-

elling salesman problem where a salesman needs to plan the shortest tour of a

number of cities. Other applications of ACO are like the assignment optimisation

in [130], scheduling solution in [131] and vehicle routing plan in [132]. For more

implementation details about ACO, we refer to [133].

Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was introduced by Kenedy and Eberhart [134]

in 1995. It was designed for optimising parameters of non-linear equations in

Yue Gu - PhD Thesis 38

continuous space, such as the weights of neural networks in its initial application.

The inspiration source of PSO is from a group of animals locating a desirable

pace as a whole, for example, bird flocks searching for food. PSO is implemented

with a swarm of agents, called particles. Each agent’s fitness is determined by its

location within an N-dimensional search space. Communication between agents is

available to exchange information about their fitness during moving in the search

space.

In the original PSO, for a particle i, it is defined with three vectors: its loca-

tion in the N-dimensional search space xi = (xi,1, . . . , xi,N), its velocity vi =

(vi,1, . . . , vi,N) and the best location it has identified so far xbest
i = (xbesti,1 , . . . , x

best
i,N).

All particles are initialised at a random location based on a uniform distribution

and with a random velocity. Particles are updated at each time step t by the

following rules [135]:

v
(t+1)
i = v

(t)
i + c1δ

(t)
1 (xbest

i − x(t)
i) + c2δ

(t)
2 (xbest

goal − x
(t)
i)

x
(t+1)
i = x

(t)
i + v

(t)
i

(2.1)

where c1 and c2 are constants; δ
(t)
1 and δ

(t)
2 are constant N-dimensional vectors

that are randomly generated at time step t; xbest
goal is the best location found by

neighbours of particle i. Hence, each particle moves towards a combined objective

of its previous direction, the direction of the best location it found and the direction

of the best location its neighbours found. For more details about PSO, we refer

to [136, 137].

2.3.3 Swarm Robotics

Another application motivated by swarm intelligence is swarm robotics:

“[...] is the study of how large number of relatively simple physically

embodied agents can be designed such that a desired collection be-

haviour emerges from the local interactions among agents and between

the agents and the environment.” [138]

Yue Gu - PhD Thesis 39

From the definition of swarm robotics, a swarm robotics system is composed of

several main characteristics: autonomous robots, situated in the environment,

cooperate, through local sensing and communication, with no access to centralised

control and/or global knowledge [139].

Motivations

The motivation for developing swarm robotics comes from the properties of swarm

behaviours observed in nature. In general, these behaviours are unique for robust-

ness, scalability and flexibility.

• Robustness. Generally, it is the ability of a system to maintain operation

when undesired disturbances occur. In swarm robotics, these disturbances

usually come from the failure of some individual agents, for example, the

malfunctions of the sensor, motor or communication units, which could hap-

pen both at the hardware and software level. The robustness of swarm

animals is achieved by the redundancy of individuals and the absence of a

leader. Similarly, the robustness of swarm robotics is promoted by a large

number of simple and homogeneous individual agents. Each agent behaves

locally to tackle small tasks and can be replaced by other agents if it fails.

However, as the “No Free Lunch” theorem, this advantage does not come by

default and needs to be properly considered [140].

• Scalability. In swarm robotics, it refers to the ability to maintain emergent

behaviour despite small changes in the number of agents. The scalability

of swarm animals is promoted by local sensing and communication [139].

Similarly, the coordination mechanism is essential to enable a swarm robotic

system to perform desirably with different group sizes [138].

• Flexibility. In general, it is the ability of a system to achieve effective perfor-

mance in different scenarios. In social animals, such as honeybees, multiple

tasks can be conducted by a group of individuals. The flexibility of swarm

robotics is benefited from the simplicity of each agent’s behaviour.

Yue Gu - PhD Thesis 40

Applications

The research on swarm robotics covers a wide range of problems, including pat-

tern formation (e.g. aggregation, lattice formation, covering of areas and map-

ping), specific problems (e.g. goal-searching, homing and forging) and complex

behaviours (e.g. transporting, mining and flocking) [124]. We briefly discuss two

specific problems that are related to the work in this thesis.

Object-clustering is a self-organised aggregation problem. The behaviour is ob-

served in ant colonies sorting the food. The study of this problem with swarm

robots was firstly proposed by Deneubourg et al. [141], where a decentralised algo-

rithm, based on a probabilistic finite state machine, was implemented in simula-

tion. Beckers et al. [142] firstly demonstrated with physical robots, each of which

was embedded with two infra-red proximity sensors and a gripper. The robot’s be-

haviour followed a deterministic finite state machine. Later, the object-clustering

problem has been subsequently studied in the literature. In particular, Gauci et

al. [24] proposed a simple memory-less mechanism to cluster objects, demonstrated

both with virtual and physical robots. The robot’s controller basically maps its

binary sensor reading to its wheel velocities.

Shepherding is the process of guiding a group of dynamic agents towards the

desired location, for example, dogs herding sheep into the sheepfold or officials

guiding the human crowd moving in one direction. The process can be done

with one or multiple shepherd agents. Vaughan et al. [143] used a single robot

to herd real ducks, which is considered one of the earliest studies of the shep-

herding problem with robots. Lien et al. [144] suggested multiple robots could

solve the problem more efficiently than a single one. In the latter study, different

shepherding algorithms have been developed for swarm robotic systems [145, 146].

Particularly, a similar memory-less mechanism like the one in [24] was proposed

to herd sheep-behaving-like robots with shepherd robots [147].

Yue Gu - PhD Thesis 41

Evolutionary Swarm Robotics

Designing controllers that lead to emergent behaviours of a swarm of robots rely

on a definition of the behavioural rules that results in a desired pattern of the

swarm. This is also referred to as the design problem [148]. The challenge to solve

this problem is to decompose the global behaviour into local interactions between

the individual robots and between robots and the environment where the robots

operate. However, it is usually difficult to predict what emergent behaviours that

a given set of behavioural rules can lead to [149]. Thus, it is difficult to achieve

decomposition.

Evolutionary robotics offers an effective way to deal with the design problem by

eliminating arbitrary decomposition [148]. This leads to the field of evolutionary

swarm robotics (ESR). ESR takes account of the swarm robotics system as a

whole. It evaluates the definition of the behavioural rules based on the emergence

of the desired global behaviour. The procedure of ESR can be simplified as:

“[...] the controller encoded into each genotype is directly evaluated

looking at the resulting global behaviour. The evolutionary process is

responsible of selecting the ‘good’ behaviours and discarding the ‘bad’

ones. Moreover, the controllers are directly tested in the environment

[...]” [148, p.50]

Applications of ESR focus on multiple tasks, for example, evolving the aggregation

behaviour and the coordinated motion by Dorigo et al. [150] and evolving soli-

tary transport and group transport behaviours by Groß and Dorigo [151]. Apart

from the standard evolutionary approaches, some distinctive techniques have con-

tributed to the research of swarm robotics as well.

Novelty search, proposed by Lehman and Stanley [152] in 2011, replaced the

objective-based evolution in standard evolutionary computation with a dynamic

measurement that evaluates the novelty of candidate solutions among the current

Yue Gu - PhD Thesis 42

population in order to avoid premature convergence. Gomes et al. [153] demon-

strated this approach with swarm robotic tasks and showed that simple and diverse

solutions are evolved.

Minimal surprise, proposed by Hamann [154] in 2014, positioned the selection

pressure on a world model that predicts the robot’s future perceptions instead of on

the behavioural model. In the original application, it evolved two neural networks:

one for the robot’s controller and the other one for predictions. Results showed that

by minimising prediction errors, some basic behaviour, like aggregation, dispersion

and flocking, were usefully evolved. In the later work, this approach has been

applied to evolve complex behaviours, such as the collective construction [155]

and the resilient self-assembly after damages [156].

2.4 Problem Formalisation

Machine learning is a discipline that addresses two correlated questions — a scien-

tific question: “What are the fundamental statistical-computational-information-

theoretic laws that govern all learning systems, including computers, humans, and

organisations?” and an engineering question: “How can one construct computer

systems that automatically improve through experience?” [157]. Experience refers

to the information that a learner obtained in the previous learning. Such informa-

tion typically consists of electronic data that could take the form of human-labelled

training sets or other forms of data collected from the environment via interac-

tions. Since the success of a learner relies on the quality and size of the data used

for analysis, the learning approaches are data-driven methods that merge statis-

tics, probability and optimisation into computer science [158]. Broadly speaking,

machine learning methods can be defined as a set of computational methods “that

can automatically detect patterns in data, and then use the uncovered patterns to

predict future data, or to perform other kinds of decision making under uncertainty

(such as planning how to collect more data!)” [159, p.1].

Yue Gu - PhD Thesis 43

Within artificial intelligence, the definition gives one of the main objectives of

machine learning is to design algorithms that predict accurately on unseen data,

which leads to a broad range of practical applications for wide areas, including

computer vision and robot control. Recently, a new class of algorithms has pro-

gressed dramatically, where models and discriminators are improved competitively

in a game setting: The discriminator’s task is to correctly classify the data gen-

erated by the model and the one from the training set; The model’s task is to

produce data that is miss-classified as the training data by the discriminator.

The most popular algorithm designed with this setting is Generative Adversarial

Networks (GANs) [2] which have been widely applied and studied in the area of

image generation. The first attempt to infer models in a competitive setting with

discriminators was introduced in [5]. The method was named Turing Learning

in the subsequent work [4]. Turing Learning has been applied to study the be-

havioural rules of robotic agents since its inception. In the following sections, we

start with discussions about GANs and previous works on Turing Learning and

then formalise the Turing Learning algorithm for this thesis.

2.4.1 Generative Adversarial Networks

For most applications of machine learning, it is easier to train a system with desired

input-output examples than to design it manually to meet the desired outputs for

all possible inputs, which leads to the most commonly used machine learning

method — supervised learning [157]. By definition, supervised learning requires

an output label provided by a human supervisor for each input example. From

a probabilistic perspective, the goal of supervised learning is to find a function

f(x) that maps an input vector x to an output label y, based on N input-output

examples in a training set T = (x(i), y(i))
N

i=1 [159]. To achieve that, existing

approaches often rely on a training set comprising millions of examples. While,

another widely studied machine method, unsupervised learning, reduces both the

human effort and the training size. The goal of unsupervised learning is not clearly

Yue Gu - PhD Thesis 44

defined. Generally, it aims to find useful patterns from an unlabelled training set

T = (x(i))
N

i=1.

One approach to implementing unsupervised learning is generative modelling,

where GANs are categorised. Generative modelling aims to learn a model distribu-

tion pmodel of training samples x that matches an unknown distribution pdata(x).

Specifically, a function pmodel(x;θ) optimises its parameters θ to estimate pdata as

closely as possible. In traditional statistics, explicit density functions have been

widely used to model data distributions. The optimisation task is then to search

for parameters that fit best pdata. A common approach to achieve that is the

maximum likelihood estimation which minimises the Kullback-Leibler divergence

between pmodel and pdata. The explicit density modelling works well for simple

representations, but for complex ones, such as the deep neural network, it is com-

putationally difficult to solve. Alternatively, approximation techniques are usually

applied to deal with this intractable issue. However, either the deterministic ap-

proximations, like the one used in variational autoencoder [160], or stochastic

approximations, like the Markov chain approximations used in Boltzmann ma-

chine [161], would limit the quality of models even with an ideal optimisation

method. Some generative models avoid explicit functions, instead they directly

sample from the pmodel. For example, the generative stochastic network [162] relies

on Markov chains transition operator running multiple times to generate samples.

However, when handling samples with a high dimension, such as realistic images,

the Markov chain would become inefficient, and the convergence could be very

slow and unclear [163]. GANs were introduced to build deep implicit generative

models, where samples could be generated in a single step, without the need for

heavy computational effort and Markov chains.

As introduced above, GANs are based on a game setting of models and discrimi-

nators. The model, often called the generator, is able to draw samples from pmodel.

The discriminator is able to examine samples and predict whether the input sam-

ple is from pdata or from pmodel by running the generator. Within this setting, the

training process involves the training of both the generator and the discriminator.

Yue Gu - PhD Thesis 45

The generator is trained to fool the discriminator; simultaneously, the discrimina-

tor is trained as a classifier to label input samples. In [3], GANs are interpreted

as a competition between counterfeiters and police:

“[...] the counterfeiters make fake money while the police try to arrest

counterfeiters and continue to allow the spending of legitimate money.

Competition between counterfeiters and police leads to more and more

realistic counterfeit money until eventually the counterfeiters produce

perfect fakes and the police cannot tell the difference between real and

fake money.”

The original promise of GANs is to generate high-quality realistic images. Be-

sides the straightforward generation, GANs have shown their potentials in accom-

plishing many other tasks in computer vision, for example, image synthesis [164],

image-to-image translation [165] and superresolution [166]. For a broad review of

applications of GANs, we refer to [167, 168]. Even though GANs and their variants

have been widely studied in recent years, the convergence of GANs is still an open

question. Major problems are: mode collapse, where only a single mode of the

distribution can be learned by the model; partial mode convergence, where only

a small set of modes of the distribution can be captured by the model; vanishing

gradient, where the gradient for model vanishes if the discriminator dominates the

game, leading to suspended optimisation both of the model and discriminator.

Meanwhile, the discriminator may choose to forget parts of the input space that

are not covered by the model. Many researchers have focused on the convergence

of GANs: Arjovsky and Bottou [8] conducted a theoretical analysis of the training

dynamics; Arora et al. [9] discussed the existence of the equilibrium of and in-

troduced a new framework MIX+GAN to improve the performance; Unterthiner

et al. [10] proposed Coulomb GANs and proved that only one Nash equilibrium

exists in potential fields; Nagarajan and Kolter [11] discussed the gradient-based

optimisation process and showed that with a regularisation gradient decent GANs

are locally stable; Mescheder et al. [12] analysed the numerics of training algo-

rithms and presented an improved convergence. On the other hand, Oliehoek et

Yue Gu - PhD Thesis 46

al. [169] provided a novel perceptive. They closely related GANs to game-theoretic

methods and formulated the original GANs as finite zero-sum games: GANG (e.g.

Generative Adversarial Network Games), so that the convergence is guaranteed.

Meanwhile, researchers also investigated the coevolution effect on GANs [13–16].

In general, they implemented multiple sub-GAN frameworks and studied the co-

evolutionary process of multiple generators and discriminators. The properties of

coevolution have shown improved performance on GANs.

2.4.2 Turing Learning

Considering the definition of machine learning, a learning problem can be consid-

ered the problem where the measure of performance on some tasks is improved

through the training experience. Thus, conceptually speaking, machine learning

algorithms are searching techniques that target to find a program from a large

candidate space to optimise the performance metric [158]. In some cases, the dif-

ficulty is not only to design an effective and efficient algorithm but to define a

suitable performance metric. The quality of the metric can determine the quality

of the obtained program or even direct the searching progress.

In the domain of system identification, one limitation of the current methods is

also that they depend on predefined metrics, such as the square errors, to evaluate

how close is the model to the system under investigation, which can be challenging

for complex systems. Turing Learning was first introduced as a metric-free system

identification method to avoid this issue. As introduced above, Turing Learning

shares a similar game setting with GANs, while its inspiration was actually from

the Turing test. Considering the setup in Figure 2.1, the objective of the model,

referring to player A, is to imitate the behaviour of the system under investigation,

referring to player B, and the objective of the discriminator, referring to player C,

is to distinguish between the model and system through observations.

Yue Gu - PhD Thesis 47

Originally, Turing Learning was motivated to infer the behaviour of a natural or

artificial system, especially a swarm system. The identification of collective be-

haviours in a swarm system could be particularly difficult as individuals interact

with both the environment and each other, and their motion tends to be stochas-

tic [170]. In the early works on Turing Learning, the method has been applied

to infer the deterministic behaviour of an agent in a simple environment [5], and

to infer the behavioural rules of a swarm of robots both in a simulated environ-

ment [6] and a physical environment [4]. In [5], the discriminator was allowed to

perform a pre-designed sequence of interactions to control the environmental stim-

uli, and such interaction encouraged a more accurate inference. Moreover, in [4],

it has shown that Turing Learning outperforms a metric-based system identifica-

tion method in terms of the inference of swarm behaviours. In the most recent

work, Turing Learning was implemented to model and generate realistic human

movements [171].

Since its inception, the Turing Learning method has used coevolutionary algo-

rithms, where a population of models and a population of discriminators are op-

timised at the same time. While, in principle, other optimisation algorithms can

also be implemented, considering the successes of previous works, we continuously

investigate the coevolutionary approach of Turing Learning.

2.4.3 Turing Learning Formalisation

The core idea of Turing Learning and GANs are similar, that is, optimising two

components simultaneously in a competitive game setting, although these two

methods were developed separately and in different contexts. Assuming a Turing

perceptive, Groß et al. [7] considered GANs and their variants as members of

the Turing Learning family and generalised the defining features of the Turing

Learning algorithm as: a training agent, a model agent, a discriminator agent,

a process where the discriminator observes or interact with the other two agents

and an optimisation mechanism. One should note that the interaction becomes

Yue Gu - PhD Thesis 48

one of the central features. These features allow the Turing Learning algorithm

to be tailored for a wide range of problems.

In the following, we provide a formalisation of the Turing Learning algorithm as

the standard problem we discuss and investigate in this thesis.

Model

A modelM is represented as a generative function which is able to draw samples

from a distribution pmodel:

Mu(h),u ∈ U , (2.2)

where u is a set of parameters that defines the model’s strategy. U can be any

set of data structures, for example, the N -dimensional real-valued search space

RN , the integer search space ZN , the state space SN of finite state machines, the

trees TN as used in genetic programming and a mixture of spaces. The input h is

problem specific and can take any form, for example, a noise vector or time-series

data. Given an input, a sample x can be generated by x =M(h). The main role

of a model is to find a functionM(h) so that pmodel is similar (preferably identical)

to a training distribution pdata.

Discriminator

A discriminator D is represented as a function which is able to classify whether a

given sample is real (drawn from pdata) or fake (drawn from pmodel):

Dv(x), v ∈ V , (2.3)

where v is a set of parameters that defines the discriminator’s strategy. D is

typically a neural network in practice, then V is a N -dimensional real-valued

search space RN . Given an input sample x, D(x) returns a scalar that indicates

the “realness” of x. The main role of a discriminator is to learn a function D(x)

that outputs a high value when x is real and a low value when x is fake.

Yue Gu - PhD Thesis 49

Two-Player Game

The game between the model and the discriminator is defined by two objective

functions:

OM(u,v), OD(u,v)→ opt., (u,v) ∈ U × V . (2.4)

The goal of the model is to maximise OM, whereas the goal of the discriminator

is to maximise OD. A Nash-equilibrium of the game occurs at a point o(u∗,v∗)

given by the two conditions:

u∗ ∈ arg max
u

OM(u,v∗),

v∗ ∈ arg max
v

OD(u∗,v).
(2.5)

Roughly speaking, OM encourages the model to generate samples that the dis-

criminator classifies as real; OD encourages the discriminator to correctly label

the input sample as real or fake.

Examples

• GANs. In GANs, the model M, often referred to as the generator G, and

the discriminator D are defined as differentiable functions represented by

multilayer perceptrons.

G takes a noise variable z as input, which is sampled from a prior distribution

pz, then generates a sample x = G(z). D outputs a single scalar in [0, 1]

representing the probability of the input sample to be real.

The objective functions OG and OD are referred to as cost functions JG

and JD. Each player attempts to minimise its own cost. In the original

version of GANs, JD was defined to be the negative log-likelihood that the

discriminator assigns real and fake labels:

JD = −1

2
Ex∼pdata [logD(x)]− 1

2
Ez∼pz [log(1−D(G(z)))]. (2.6)

Yue Gu - PhD Thesis 50

The original work of GANs offered two versions of the cost for the generator.

One version, JG = −JD, leading to a minimax game of the objective function

O(D,G):

min
G

max
D

O(D,G) = Ex∼pdata [logD(x))] + Ez∼pz [log(1−D(G(z)))]. (2.7)

In practice, D rejects samples generated from G with high confidence early

in learning when G is poor. In this case, log(1 − D(G(z))) saturates. The

other version, instead of training G to minimise log(1−D(G(z))), trains G to

maximise logD(G(z)). This objective helps to avoid the gradient saturation.

• Coevolutionary Framework of Turing Learning. In the coevolutionary frame-

work of Turing Learning, both the model and the discriminator are repre-

sented as populations of candidate solutions, and the coevolution operates

between the two populations.

For the model population of size PM, an individual mi with index i comprises

a set of parameters ui and defines a distribution pimodel. Similarly, for the

discriminator population of size PD, an individual dj with index j comprises

a set of parameters vj.

The Two-Player Game then includes the games between each candidate

model and each candidate discriminator. In the context of evolution, the

objective functions OM and OD are usually referred to as the fitness functions

FM and FD. In the following, we use fmi
and fdj to represent the fitness

values for model mi and discriminator dj respectively.

After a game finishes, the discriminator’s output is simply used to determine

the fitness value. Each candidate’s final fitness is calculated as the normalised

sum of the values it obtains from all games:

fmi
=

1

PD

PD∑
j=1

dj(x | x ∼ pimodel), (2.8a)

fdj =
1

2PM

PM∑
i=1

dj(x | x ∼ pimodel) +
1

2PM

PM∑
n=1

dj(xn | xn ∼ pdata), (2.8b)

Yue Gu - PhD Thesis 51

where xn is the nth sample drawn from pdata. For convenience, dj(x) ∈ {0, 1},

where 0 denotes that dj classifies x as fake; 1, otherwise, as real. In other

words, the discriminator is implemented as a regular binary classifier.

Throughout the evolutionary process, each candidate tries to learn a strategy

in order to maximise its fitness and survive in its population.

Chapter 3

Inferring Sensor Configuration

through Self-Discovery

3.1 Introduction

Turing Learning has been applied to infer behaviours, including those of swarms

of agents [6], those of swarms of real robots [4] and those of humans [171], through

observation. In order to fully reveal the behavioural features, high observability

of the system is thus essential. However, when the observability is limited, the

inference may not be reliable.

In [5], the discriminator used a pre-determined sequence of interactions to infer a

simulated behavioural rule. Therein, it was shown that the algorithm performed

better with interaction than with passive observation. However, such an interactive

approach would not be able to learn all the features of complex systems. In this

chapter, we extend the discriminator agent in Turing Learning with the ability

to genuinely interact with the system under investigation, which makes it more

like the interrogator in the Turing Test [172]. We assume that, by allowing the

discriminator to influence the data sampling process, the algorithm could explore

the system as it tends to and benefit the inference. Similar methods have been

applied by ethologists to understand the relationships between animal behaviour

52

Yue Gu - PhD Thesis 53

and its environment. In [173], biologists adjusted the environmental conditions

during the experiments to study how the dung beetle behaves to adapt to the

changes.

In this chapter, we focus on the active self-discovery of robotic systems. It is

a process designed for the system continuously modelling its own morphology.

For example, a four-legged robot was able to infer its topology and then use this

model to perform desired motions [21]. Similarly, we investigate how a robot can

use Turing Learning, particularly with the interactive discriminator, to infer its

own sensor configuration through the process of self-discovery. To validate the

advantage of the interaction, we compare the accuracy of inferred configuration

from the interactive approach with that of the inferred configuration from the

passive approach.

This chapter is organised as follows. Section 3.2 describes the methodology, in-

cluding a detailed definition of the Turing Learning framework with a perspective

of coevolutionary (3.2.1) and an introduction about the simulation platform used

in this chapter and thesis(3.2.2). Section 3.3 presents a case study to demonstrate

the framework, including a formal formulation of the problem (Section 3.3.1). Sec-

tion 3.3.2 lists the implementation options of the algorithm that are chosen for this

scenario. Section 3.3.3 describes the simulation setup designed for carrying out

the investigation. The simulation results are presented in Section 3.3.4, including

the analysis of the inferred model, dynamics of the coevolutionary, a compari-

son between the interactive setup and passive setups and an illustration of the

discriminator’s control pattern. Section 3.4 summarises the chapter.

3.2 Methodology

In this section, we start with an introduction to the Turing Learning framework,

including the key components. We then describe the simulation platform used in

this chapter. The same platform will be used to carry out investigations in the next

two chapters, but with different settings according to the problems considered. As

Yue Gu - PhD Thesis 54

for the implementation details of Turing Learning, we will specify them for each

problem.

3.2.1 Coevolutionary Framework of Turing Learning

As introduced in Section 2.4.3, machine learning algorithms where models and

discriminators are generated in a competitive setting can be considered as instances

of Turing Learning. In this thesis, we take account of a coevolutionary framework

of Turing Learning. Thus, there are a population of candidate solutions for both

the model and discriminator. In the following, we present the framework with

respect to the defining features of Turing Learning.

• Training Agent, T . The training agent is the system under investigation.

It could take any form (e.g. robots and human beings) that one expects

to learn or imitate. The data samples obtained from it are referred to as

genuine data samples (i.e. the training data). In this thesis, we focus on the

study of robotic systems, where the training agent could be a single robot

(Chapter 3 and 4)or a swarm of robots (Chapter 5). Therefore, the genuine

data samples come from the robot’s perception or motion, which are usually

time-series data.

• Model Agent, M. The model agent is assumed to have the potential to

produce the equivalent behaviour as the training agent. In other words, the

counterfeit data samples (i.e. the model data) generated by the model agent

are expected to be indistinguishable from the genuine ones. In the context of

robotic systems, the model agent is executed on a replica robot that has the

same sensing and actuation ability as that of the system under investigation.

For example, the model agent could determine how sensors are distributed

on the robot’s body (Chapter 3), how the robot perceives the environment

(Chapter 4) or behaves (Chapter 5). It could take any form (e.g. vectors,

neural networks and computer programs) as long as the representation is

expressive enough to produce data with the same distribution as the training

Yue Gu - PhD Thesis 55

data. In this thesis, we use parametric vectors to represent our models

(i.e. sensor configuration vector in Chapter 3, sensor calibration vector in

Chapter 4 and the controller vector in Chapter 5).

• Discriminator Agent, D. The discriminator agent is assumed to have the

ability to distinguish between genuine data samples and counterfeit data

samples. It could take any form. In this thesis, given the sequential data

from robotic systems, we represent the discriminator as a recurrent Elman

neural network [174] with the structure shown in Figure 3.11. The network

has a context layer that can store the hidden neuron values and feedback

these values to the input layer. This feature equips the network with an

internal memory to process arbitrary sequential inputs. With the recurrent

neural network, the discriminator is able to observe input samples for a

certain period of time and make judgements. The activation function for all

hidden and output neurons is a logistic sigmoid function that has the range

(0, 1):

sig(x) =
1

1 + e−x
, ∀x ∈ R. (3.1)

The discriminator is trained as a regular binary classifier. After the obser-

vation for a set period of time, the final value of one of the output neurons

(O) is used to label the input data samples as either genuine (O ≥ 0.5) or

counterfeit (O < 0.5) samples. The network’s memory is then reset for the

next period of observation. Other output neurons depend on the design.

For example, if the interaction is allowed, other neurons can be used to pass

the information from the discriminator to the model and system (Chapter 3

and 4).

• Evaluation Process. The evaluation process is a process where D observes

the data samples from either T or M for a certain period of time and then

make judgements. While observing, D could also influence the sampling

process by interacting with T and M.

1In principle, other networks could also be used to process the time-series data, such as the
long short-term memory (LSTM). Given the success of the Elman network in previous works of
Turing Learning, we continuously use it in this thesis.

Yue Gu - PhD Thesis 56

Figure 3.1: An Elman Neural Network with i inputs, h hidden neurons and
o outputs. It can be considered as a feedforward network with an additional
context layer. Considering a biased network, it has (i+ 1) · h+ h2 + (h+ 1) · o

parameters in total.

• Optimisation Process. D andM are optimised at the same time. According

to the classification made by D after a period of observation,M is rewarded

when D mistakenly labels its data samples as genuine. Otherwise, D is re-

warded when it labels input data samples correctly, that is, labelling data

samples from T as genuine and labelling data samples fromM as counterfeit.

As introduced in Section 2.4.3, we implement coevolutionary algorithms as

the optimisation methods, for example, the (µ + λ) evolution strategy with

self-adaptive mutation strengths in Chapter 3 and 4 and the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) in Chapter 5. The opti-

misation process is composed of two sub-processes: one for the population

of D and the other one for the population of M. These two sub optimi-

sation processes run separately and don’t interact with each other except

when fitness values are calculated. Hence, the synchronisation challenges

as introduced in Section 2.2.2 might be raised for the coevolutionary of D

andM. In our case, the synchronisation comes from the evaluation process:

Yue Gu - PhD Thesis 57

Assuming the population sizes for D and M are PD and PM respectively,

each of the discriminator candidates is evaluated once with each of the model

candidate, and additional PM times with T as well. After all evaluations

finish, the fitness value for each candidate can be calculated according to

Equation 2.8. The evolution of each population then proceeds based on the

fitness values of all candidates. The optimisation process continues until the

termination criteria is met (e.g. a certain number of generations).

3.2.2 Simulation Platform

We constantly use the open-source Enki library [175] in this thesis, which has

been verified broadly to model kinematics and two-dimensional dynamics of rigid

objects. As for the robot agent, we use the built-in model of the e-puck robot [176].

Figure 3.2 shows a physical e-puck robot. In Enki, it is represented as a cylinder of

diameter 7.4 cm, height 4.7 cm and weight 152 g. It has two symmetrically aligned

differential wheels with the inter-wheel distance of 5.1 cm. Each wheel’s ground

velocity can be set within [-12.8, 12.8] cm/s. Random noise is applied in Enki

for each wheel velocity by multiplying the velocity value with a random number

chosen uniformly in the range (0.95, 1.05). The robot has a few sensors embedded

on its cylindrical body, for example, infrared proximity sensors. We also extended

the robot model with some additional sensors, such as a laser-based distance sensor

described in Chapter 4 and a binary line-of-sight sensor described in Chapter 5.

In all simulations presented in this thesis, the control cycle is 0.1 s, and physics is

updated 10 times per control cycle.

According to [177], given a pair of wheel velocities, the differential-wheel robot,

for example, the e-puck robot, moves in a circular trajectory as illustrated in

Figure 3.3. Assuming the robot moves from position a to position b with its

left and right wheel ground contact velocities of vl and vr respectively, its actual

trajectory follows a circular arc centred at O with a radius R and an angular speed

Yue Gu - PhD Thesis 58

Figure 3.2: An e-puck robot. It has two differential wheels and a circular body
with diameter 7.0 cm and height 4.5 cm, approximately. The robot is embedded
with multiple sensory capabilities, for example, eight infrared proximity sensors
and a VGA colour camera. Image used under the Creative Commons License.

ω:

R =
l

2

(
vr + vl
vr − vl

)
,

ω =
1

l
(vr − vl) ,

where l is the inter-wheel distance.

3.3 Case Study

In this section, we present a case study of a robot inferring its own sensor con-

figuration and show that the interactive discriminator could improve the model

accuracy. We start with a formal definition of the problem considered in this

Yue Gu - PhD Thesis 59

Figure 3.3: Kinematics of differential-wheel robot. From position a to b, the
robot (green) follows a circular trajectory. R indicates the radius of the curve
which is centred at O. vl and vr are the left and right wheel velocities along the

ground, respectively. l is the inter-wheel distance.

chapter, then explain the implementation details of the framework described in

the above sections.

3.3.1 Problem Formulation

Given the defining features of Turing Learning, if the training agent is a physical

system while the model agent is represented in simulation, the issue of the reality

gap needs to be addressed. It is a well-known problem in robotics: Often, be-

haviours that work well in simulation do not translate effectively into real-world

implementations [113]. This is because simulations are generally unable to cap-

ture the full range of features of the real world, and therefore make simplifying

assumptions. Yet, simulations can be important and are widely used to speed

up the planning and optimisation process, even on-board a physical robot. So-

lutions to reduce the gap could be improving modelling accuracy of the robot-

environment interactions [178], or of reality properties that are relative to the

desired behaviours [179]. We assume that our method has the potential to benefit

Yue Gu - PhD Thesis 60

this process. To validate that, we investigate how a robot can use Turing Learn-

ing to improve the accuracy of a simulation model of itself through a process of

self-discovery. In a practical scenario, the inference could take place on-board a

physical platform. For convenience, we use the simulation platform introduced

above.

Specifically, we consider an e-puck robot inferring its sensor configuration. The

robot perceives the surrounding environment with eight infrared proximity sensors

that are distributed on its body, as shown in Figure 3.4. The sensors provide noisy

reading values (s1, s2, . . . , s8) in the range of [0, 3000], but do not provide the

information about the distance. The reading value indicates how close the robot

is to the perceived objects (the larger the readings, the closer the objects). We

assume the robot does not know where its sensors are placed. Similar situations

are common in practice as sensors may not be precisely mounted, or the sensors’

locations may change due to collisions with other objects during operation or might

be reconfigured by the robot itself. The sensor configuration can be described

with orientations relative to the robot’s front direction and displacements from

the robot’s centre, which is denoted as follows:

q = (θ1, θ2, . . . , θ8, d1, d2, . . . , d8) , (3.2)

where θi ∈ [−π, π] represents the orientation of sensor i, and di ∈ (0, R] (R is the

robot’s radius) represents the displacement of sensor i. The inference task is thus

specified to finding the q.

3.3.2 Turing Learning Implementation

Given the defining features, the Turing Learning framework can be applied in a

wide range of problem domains. In the following, we present the implementation

options of the framework in a general view and introduce the options designed

specifically for this case study. In different scenarios, these options allow users to

choose the appropriate and familiar ones for the given problem.

Yue Gu - PhD Thesis 61

Figure 3.4: The e-puck robot discovers its environment via eight infrared
proximity sensors (IR 1-8). We assume the robot is unaware of the configuration
of these sensors and has to infer it. Each sensor’s location is determined by the
orientation (θ) and displacement d in the X-Y frame. The configuration is
thus composed of 16 parameters to determine the configuration of 8 proximity

sensors. The one to be inferred is as the one on a physical robot.

• Training data. The training data comes from the eight proximity sensors of

an e-puck robot using the sensor configuration q as defined in Figure 3.4.

According to the Enki library, q = (θ,d) is given as:

θ = (−0.31,−0.79,−1.57,−2.48, 2.48, 1.57, 0.79, 0.31) rad,

d = (3.5, 3.5, 3.3, 3.4, 3.4, 3.3, 3.5, 3.5) cm.
(3.3)

• Model presentation. The model is represented as the estimated sensor con-

figuration q̂:

q̂ =
(
θ̂1, θ̂2, . . . , θ̂8, d̂1, d̂2, . . . , d̂8

)
, (3.4)

where θ̂i ∈ [−π, π] represents the inferred orientation of sensor i, and d̂i ∈

(0, R] (R is the robot’s radius) represents the inferred displacement of sen-

sor i. Hence, there are 16 parameters to be estimated. The model data is

obtained from an e-puck robot using configuration q̂. We assume all parame-

ters vary continuously so that the eight proximity sensors can be distributed

Yue Gu - PhD Thesis 62

at arbitrary locations on the robot’s body. The remaining aspects of the

robot are exactly the same as the ones used to obtain training data.

• Discriminator presentation. As discussed in Section 3.2.1, the discriminator

is represented as an Elman neural network. In detail, the network has 5 hid-

den neurons and 8 inputs and 3 outputs. This gives a total of 88 parameters

to be inferred. At each time step t, the normalised reading values from the

robot’s proximity sensors (s1, s2, . . . , s8) are fed into the input layer. The

network is then updated, and one of the outputs is used to label the input

data. Moreover, the interaction comes from the other two outputs, which

are used to determine the robot’s wheel velocities (vleft and vright) at time

t + 1, where vleft, vright ∈ [−1, 1] represent the normalised ground contact

velocities of the left and right wheel respectively (negative values correspond

to the wheel rotating backwards). In each trial, the discriminator observes

and controls the robot for 10 s. As the robot’s sensors and actuators are

updated 10 times per second, this results in 100 time steps.

• Optimisation algorithms. We use a standard (µ+λ) evolution strategy with

self-adaptive mutation strengths for both the model and discriminator popu-

lations. Compared with (µ, λ) evolution strategy, (µ+ λ) evolution strategy

has the advantage to pass good candidates in the current generation to the

next generation, which shares a similar idea of “hall of frame” [17] to tackle

the cycling challenges in the coevolutionary process. We set µ = λ = 50.

Thus, for each population, it consists of 100 candidate solutions. All candi-

dates are initialised at zero. The implementation details of this algorithm

are as described in [180].

• Coupling mechanism between the model and discriminator optimiser. Given

the synchronisation of the two sub-optimisation processes of the model and

discriminator populations, each of the 100 discriminator candidates is evalu-

ated once for each of the 100 model candidates, and 100 times with the train-

ing agent as well. Each time when the candidate gains a reward, it receives

one point. Hence, in Equation 2.8a, dj(x | x ∼ pimodel) = 0, if model data

Yue Gu - PhD Thesis 63

samples are labelled as counterfeit; otherwise, dj(x | x ∼ pimodel) = 1. Each

model’s fitness value sits in {0, 1, . . . , 100}. Meanwhile, in Equation 2.8b,

dj(x | x ∼ pimodel), dj(xn | xn ∼ pdata)re = 0 if the discriminator mistakenly

labels input data samples; otherwise, dj(x | x ∼ pimodel), dj(xn | xn ∼ pdata) =

1. This gives each discriminator’s fitness value sits in {0, 1, . . . , 200}. Given

the total points received, a normalised fitness value is calculated for each

candidate.

• Termination criterion. It is challenging to choose a suitable criterion to ter-

minate the coevolutionary process as the performance of the model popula-

tion and that of the discriminator population are correlated with each other.

In this case study, we use a fixed time limit. The optimisation stopped after

1000 generations.

3.3.3 Simulation Setup

The robot operates in a bounded square environment with sides 50 cm as shown

in Figure 3.5. The environment also contains 9 moveable objects. The object is

simulated as a cylinder of diameter 3.7 cm, height 10 cm and mass 152 g with a

ground friction coefficient of 0.58. Before each trial starts, the objects are arranged

in a 3× 3 grid. The distance between objects is just wide enough for the robot to

pass through. The robot is placed randomly into the environment with a random

orientation2.

We have two simulations running in parallel: the training simulation, where an

e-puck robot with the sensor configuration defined as the physical one operates in

the environment and generates training (genuine) data samples; the model simu-

lation, where the same robot but with the sensor configuration defined by a model

candidate operates in the same environment and generates model (counterfeit)

data samples. Each discriminator candidate is involved in both simulations. This

procedure is illustrated in Algorithm 1.

2As the robot does not know its sensor configuration or its relative location to the objects,
this scenario can be considered as a chicken-and-egg problem.

Yue Gu - PhD Thesis 64

Algorithm 1 Turing Learning

1: procedure Inferring Sensor Configuration
2: initialisation of PM model candidates and PD discriminator candidates
3: while termination criterion not met do
4: for all models i ∈ {1, . . . , PM} do
5: obtain model parameters
6: for all discriminators j ∈ {1, . . . , PD} do
7: observe Training Simulation
8: reward discriminator j for correct classifications
9: observe Model Simulation

10: reward model i for misleading discriminator j
11: reward discriminator j for correct classifications
12: end for
13: end for
14: update populations based on corresponding rewards
15: end while
16: end procedure
17:

18: procedure Training Simulation
19: create e-puck robot with sensor configuration q
20: for all time steps do
21: obtain sensor reading values
22: obtain and store outputs of discriminator
23: execute corresponding actions
24: end for
25: reset simulation world
26: end procedure
27:

28: procedure Model Simulation
29: create e-puck robot with sensor configuration q̂
30: for all time steps do
31: obtain sensor reading values
32: obtain and store outputs of discriminator
33: execute corresponding actions
34: end for
35: reset simulation world
36: end procedure

Yue Gu - PhD Thesis 65

Figure 3.5: The e-puck robot (green) operates in a bounded square environ-
ment with nine moveable objects (blue). At the beginning of each trial, the
objects are placed in a grid, and the robot is placed at random into the envi-

ronment.

3.3.4 Simulation Results

A set of 20 evolutions was conducted. Each evolution lasted for 1000 generations.

In each generation, the candidate with the highest fitness among its population is

considered the best candidate. Therefore, for each evolution, the best candidate

in the last generation is chosen as the best solution found in that evolution. We

present our results as follows3.

Inference Analysis

Figure 3.6 shows the evolutionary dynamics of the model parameters. Both of

the orientations and displacements of all eight proximity sensors are inferred well

after 500 generations. Interestingly, the orientation parameters corresponding to

the two sensors placed at the back of the robot’s body (i.e. θ4 and θ5) converged

3The choice of hyper-parameters, including the number of hidden neurons of the Elman
network, the parameters regarding the (µ + λ) evolution strategy, the number of generations
and the simulation settings, was not studied in this case study. They were chosen from some
preliminary experiments and by experience as well. Noises were implemented as the ones in the
Enki simulator. Different noise levels were not studied in this case study.

Yue Gu - PhD Thesis 66

to the true values not closely as others did. This could be due to how the sensors

are distributed on the robot. Given the sensor configuration in Figure 3.4, most of

the sensors are placed at the front half of the circular body. In order to achieve an

accurate classification, the discriminator may control the robot in a certain motion

and pay more attention to the reading values from the sensors in the front. At

the same time, the model parameters that are relevant to these sensors achieved

better accuracy than the parameters of other sensors.

Coevolutionary Dynamics

We also studied the coevolutionary process of the Turing Learning framework.

The fitness dynamics of the model and discriminator reveals how these two popu-

lations are evolved influence each other, as shown in Figure 3.7. The fitness of the

discriminator population begins at 0.5, as all candidates are initialised identically,

and they treat the training agent and models equally. Meanwhile, the fitness of

the model population starts from 1.0, as all discriminators classify the candidates

as the training agent. After that, there is an obvious increase in the average

fitness of discriminators accompanied by a sharp decrease of the average fitness

of models, which means that all models performed poorly in the early evolution.

However, when the models are improved, the average fitness of discriminators in-

creases slowly and then starts decreasing. Although there is a minor drop in the

average fitness of models, it keeps increasing until it reaches a steady state. After

around 700th generation, the fitness of discriminators and of models remain stable

until the process is terminated, which means the two populations finally find a

way to balance each other in the course of coevolution. During the whole pro-

cess, the population of the model did not manage to beat the population of the

discriminator in terms of fitness values.

Yue Gu - PhD Thesis 67

(a)

(b)

Figure 3.6: Evolutionary dynamics of the inferred sensor configuration: (a)
orientations; (b) displacements. Curves represent the average values across 20
evolutions of the models with the highest fitness in each generation. Black

dashed lines represent the ground truth.

Yue Gu - PhD Thesis 68

Figure 3.7: Fitness of the model and discriminator populations in Turing
Learning framework. The evolution of the two populations remains balanced
after around 700 generations. Curves represent the average values across 20

evolution runs.

Interaction Study

We refer to the above setup as the “Interactive” setup: the discriminator is able

to control the movements of the robot while observing its sensor readings. To

validate the advantage of the interactive approach, we implemented two passive

setups where the discriminator observes the robot’s sensor readings in a passive

way; that is, besides the classification output, the other two outputs are not used

to determine the movements of the robot. Instead, the robot moves in a random

trajectory where its wheel velocities are chosen uniformly randomly at the begin-

ning and change with a probability of 0.1 at every time step. In other words, the

robot is expected to move in a random pattern every 10 time steps. In “Passive

1” setup, the discriminator network also has 8 inputs to receive sensor readings

(s1, s2, . . . , s8) from the 8 proximity sensors on the robot. In “Passive 2” setup,

the discriminator network has additional two inputs to observe the wheel veloci-

ties vleft and vright. The remaining aspects of the passive setups are implemented

exactly as the “Interactive” setup. For each passive setup, a set of 20 evolutions

were conducted. Figure 3.8 presents the distribution of the inferred model param-

eters with the highest fitness value in the 1000th generation. The passive setups

Yue Gu - PhD Thesis 69

failed on the inference of the orientation parameters, while the “Interactive” setup

achieved that with good accuracy. The displacement parameters were inferred in

all setups, but none of them managed to estimate these parameters accurately.

One reason could be the noise applied to the sensors. As the dimension of the

robot is relatively small to the sensing range of its proximity sensors, any small

disturbance or noise could affect the detection accuracy in the distance, which will

reflect on the shift of displacements.

Behavioural Study

In order to understand how the robot moves under the control of a discrimina-

tor, we present a typical example of the relationship between the sensor readings

and the corresponding wheel velocities in Figure 3.9. Considering the differential

wheeled robot kinematics in Section 3.2.2, the robot rotates in the clockwise di-

rection at the beginning (vleft is positive and vright is negative). It perceives the

environment with its sensors (s7, s6, . . . , s2 are activated successively). The robot

moves forward when sensor s1 and s8 detects one object (vleft and vright turn pos-

itive while s1 and s8 are activated after around 20 time steps). The discriminator

leads the robot to push the object and keep reading s1 and s8, which confirms

these two sensors are facing forward. The process is repeated once the robot has

no object in its front. Similar behaviour of the robot can be found with other

discriminators. As most sensors are facing forward or sides, the robot could easily

miss the object at its back, even though the discriminator is able to drive the

robot backwards. This also explains why the parameters corresponding to sensor

s4 and s5 were not inferred as well as other parameters.

To validate if the sensor-to-motor correlation is essential for the discrimination

task, we recorded the trajectory of the robot (wheel velocities at each time step)

controlled by each best discriminator of the 20 evolution runs. We conducted

50 trials with the robot using the genuine sensor configuration and another 50

trials with the robot using the best model configuration of the corresponding evo-

lution. In these 2000 “closed-loop” experiments, the discriminator made correct

Yue Gu - PhD Thesis 70

-4

-2

0

2

4

6

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

model parameters

p
a
ra
m
et
er

va
lu
e
(r
ad

)

Interactive
Passive 1
Passive 2

(a)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d1 d2 d3 d4 d5 d6 d7 d8

model parameters

p
a
ra
m
et
er

va
lu
e
(c
m
)

Interactive
Passive 1
Passive 2

(b)

Figure 3.8: Distribution of model parameters in interactive and passive setups:
(a) orientations; (b) displacements. In the “Interactive” setup, the discriminator
drives the robot moving in the environment and observes its sensor readings.
In passive setups, the discriminator observes sensor reading and/or movements
while the robot moving in a random manner (for more details, see text). Each
box indicates the models with the highest fitness in the last generation of 20

runs. Black dashed lines represent the ground truth.

Yue Gu - PhD Thesis 71

0 20 40 60 80 100

time step

0.2

0.4

0.6

0.8

1

s
c
a

le
d

 s
e

n
s
o

r
re

a
d

in
g

s

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

0 20 40 60 80 100

time step

-10

-5

0

5

10

s
p

e
e

d
 v

a
lu

e
s
 (

c
m

/s
)

v
left

v
right

Figure 3.9: Example of how one discriminator controlled the movements
of the robot. The discriminator processes the robot’s sensor reading values
(s1, s2, . . . , s8, shown at the top) and determines the velocities of the robot’s
left and right wheel (vleft and vright, shown at the bottom). See text for more

details.

judgements in 69.45% of the cases. We then repeated the 2000 trials, now ignor-

ing the discriminator’s control outputs but rather using the movements recorded

earlier. In these 2000 “open-loop” experiments, the discriminator made correct

judgements in 58.60% of the cases. There is a significant drop, though it is still

better than random guessing (50%).

3.4 Summary

This chapter presents the coevolutionary Turing Learning framework where the

discriminator agent and the mode agent are represented as populations of multiple

candidate solutions. We demonstrated this framework with a case study of a

robot agent inferring its own sensor configuration via a process of self-discovery.

To implement that, the discriminator is able to control the movements of the

robot while observing its sensor reading values. By comparing the “Interactive”

approach with the passive way, we have shown that allowing the discriminator

to influence the data sampling process could improve the model accuracy. The

inference task was not simple, as the robot started randomly in the environment

Yue Gu - PhD Thesis 72

and had no knowledge about either its sensor configuration or the relative locations

of obstacles. At the same time, the robot’s actuators and sensors were affected

by noise. The discriminator thus needed to come up with an effective control

sequence that drives the robot to stay close to an obstacle so that it could test the

sensor configuration.

The case study has been done in simulation, but we believe it could serve as a

template for modelling physical devices. If the training data comes from a physical

system while the model data is simulated, there is a concern about the reality gap

issue. Our framework has shown that its potential to reduce the gap and improve

the accuracy of the simulator. In the future, we intend to implement this study

on a physical e-puck robot, as well as build models of more complex systems.

A current limitation of this work is that the control process needs to be repeated

for every classification the discriminator makes, which slows down the learning

process of the algorithm. It could also be a problem for experiments with physical

robots as it can lead to large energy consumption.

Chapter 4

Combining the Best of Active and

Passive Learning

4.1 Introduction

A disadvantage of current Turing Learning algorithms is that they tend to rely on

the availability of vasts amounts of training data [2]. This is a particular problem

for applications in robotics. For example, in [6], the training data comprised the

recorded trajectories of individual robots of a swarm. In general, this is a costly

process, as the energy expended and time spent increase, usually linearly, with the

amount of training data to be collected. For certain problems, methods have been

proposed to augment the training data [181] or incorporate regularisation, though

the approaches tend to be sensitive to the choice of hyper-parameters [182].

In prior work, the discriminators of Turing Learning algorithms have been either

all active [5, 7], or all passive [2, 4, 6, 183]. A passive discriminator would merely

observe a data sample and make a judgement. An active discriminator would,

while observing, control the conditions under which the data sample is produced.

The discriminator would thus act like an interrogator, akin to the setup in the

Turing test [172]. This may be considered a step towards optimal experimental

design [184, 185]. In the context of a mobile robot inferring its sensors’ positions, it

73

Yue Gu - PhD Thesis 74

was shown that Turing Learning with active discriminators outperformed Turing

Learning with passive ones in terms of model accuracy [7]. However, the active

learning approach is costly, as, for each judgement, a bespoke data sample has to

be created.

In this chapter, we present a hybrid formulation of Turing Learning, in which the

model population competes against two discriminator populations, one composed

of active discriminators, the other composed of passive discriminators. We evalu-

ate the system using a simulated scenario, where a fully autonomous robot, which

has no knowledge of where it is located within its environment, infers a model for

calibrating its laser-based distance sensor. It is shown that the hybrid formulation

requires fewer data samples from the system under investigation than a purely ac-

tive formulation. At the same time, it outperforms the purely passive formulation

in model accuracy. Using the hybrid formulation of Turing Learning could enable

robots to self-calibrate their sensors in situations where it is not possible or too

costly to involve humans for manual calibration, for example, in highly confined

or hazardous environments such as pipe networks, nuclear reactors, mines, deep

sea or space.

This chapter is organised as follows. Section 4.2 describes the methodology, includ-

ing the hybrid Turing Learning formulation (4.2.1) and the exclusiveness reward

mechanism (4.2.2). Section 4.3 presents a case study to demonstrate the method,

including an introduction of the simulation platform (Section 4.3.1). Section 4.3.2

lists the implementation options of hybrid formulation that are chosen for this

scenario. The simulation results are presented in Section 4.3.3, including the anal-

ysis of the non-hybrid Turing Learning formulations, consideration of the practical

cost, dynamics of the coevolutionary between three populations, the impact of the

exclusiveness. Section 4.4 summarises the chapter.

Yue Gu - PhD Thesis 75

4.2 Methodology

In this section, we will present a hybrid formulation of Turing Learning and a

novel reward mechanism that takes into account the exclusiveness of the model’s

and discriminator’s behaviour.

4.2.1 Hybrid Turing Learning Formulation

The Turing Learning formulation that is discussed here was proposed in [7] as a

generalisation of a family of algorithms where models and discriminators are com-

petitively optimised. The standard framework has been discussed in Section 3.2.1.

It includes three agents: A training agent T , a model M and a discriminator D.

D is able to observe or interact with T and M. In this chapter, we define the

discriminator as a hybrid agent D which contains two types of discriminators, an

interactive discriminator Di, which acts as an interrogator and thus may influence

the sampling process, and a passive discriminator Dp, which acts as a passive ob-

server. Hence, D = (Di,Dp). Note that although Di and Dp are referred to as

single agents here, they are in general populations of agents.

The hybrid formulation of Turing Learning is illustrated in Figure 4.1. It allows

information to flow in multiple ways among the involved agents. Agent Dp obtains

purely observational information, as it lacks the ability to influence, in real-time,

the agent generating the data (M or T). By contrast, agent Di can influence, in

real-time, the agent generating the data, making closed-loop control a possibility.

The hybrid formulation of Turing Learning requires a new coupling mechanism

that determines how the rewards for the agents are to be obtained. As in the

standard formulation of Turing Learning, the model and discriminator agents are

competitively optimised, and individual discriminators receive rewards that re-

flect the quality of their judgements (e.g., the percentage of correct judgements).

However, a particular model can now be tested against discriminators of both

Yue Gu - PhD Thesis 76

Figure 4.1: Hybrid formulation of Turing Learning. A modelM can compete
with two types of discriminators, an interactive discriminator, Di, and a passive
discriminator, Dp. The interactive discriminator can influence, in real-time,
the agent (i.e., the model, M, or training agent, T) while observing it. The
passive discriminator only observes the agent. The hybrid approach promises
to combine the advantages of active learning (i.e., higher model accuracy) and
passive learning (i.e., fewer data samples, as they can be reused for different

discriminators).

types. This opens up many possibilities. For example, where the model is tested

against both types of discriminators, a mechanism to combine individual rewards

becomes necessary, such as a weighted sum reflecting the percentage of times the

model misled discriminators of either type. Another approach would be to use

a protocol that identifies the type of discriminator to be used in the evaluation.

For example, as the training progresses, model candidates could be exposed to

discriminators of either type, though not necessarily simultaneously.

4.2.2 Exclusiveness Reward Mechanism

In previous studies on Turing Learning in [4] and the case study in the previous

chapter, an agent is rewarded one point each time it wins a “game”. That is,

a model receives a point for misleading a discriminator and zero otherwise. A

discriminator receives a point for making a correct judgement (where the data

is either genuine or not) and zero point otherwise. Each game is hence equally

important. Such a pure subjective measurement could lead to the Red Queen

Effect during the coevolutionary process. To avoid this, we borrowed the idea

of the Elo rating system [186], invented by Arpad Elo, which is widely used to

estimate the strength of players in chess. The points that a player could obtain

depend on the relative difference between the opponents. For example, a low-rated

Yue Gu - PhD Thesis 77

player could win more points by defeating a high-rated player than the other way

around.

We propose a novel reward mechanism, which is not directly based on the oppo-

nents’ strength but takes into account the exclusiveness of the game’s outcome.

To illustrate this, consider a setting with two populations: one of the models and

one of the discriminators. If an agent loses in a game, its corresponding reward is

0 points. Otherwise, the corresponding reward points, r ∈ [0, 1], are

r = α + (1− α) · β, (4.1)

where α ∈ [0, 1] represents a reference reward, which the agent receives irrespective

of the outcome of other games, and β ∈ [0, 1] represents an additional reward,

based on how exclusive the outcome of the game is compared with all other games

involving the same opponent.

For example, let us assume there are n models and k discriminators and that

every model plays against every discriminator once. The results of these games

are summarised in Table 4.1, where “0” and “1” indicate a discriminator agent that

labels data samples of a model agent as counterfeit or genuine, respectively. For a

particular discriminator di, model mi is the only one who misleads di, consequently

its exclusive points βmi
= number of failed models

n−1 = 1, resulting in the maximum reward

of r = 1 points for that game. For dj, there are other models, such as mj, who

also misleads dj, therefore βmi
= number of failed models

n−1 < 1, resulting in a lower

reward of r < 1 points for that game. The rewards of discriminators follow the

same calculation, though also taking into account the games against the training

agents.

It is hoped that the refined mechanism for calculating rewards provides a more

accurate reflection of an agent’s importance relative to the other agents within its

own population, thereby boosting the optimisation process. This is highly related

to the motivation of novelty search [152]. Both approaches aim to encourage

the candidates that have outstanding performance in the current generation by

giving them extra rewards, which leads to the increasing diversity of the current

Yue Gu - PhD Thesis 78

Table 4.1: Illustration of the exclusive rewards mechanism. Each of n model
candidates (m1, . . . ,mn) plays one game against each of k discriminator candi-
dates (d1, . . . , dk), with “0” indicating the discriminator won, and “1” indicating
the model won. The reward of any agent winning a game is determined by how
exclusive the outcome was compared to all games involving the same opponent.
In the case presented here, mi obtains a higher reward for winning against di

than for winning against dj .

m1 . . . mi . . . mj . . . mn

d1 1 . . . 0 . . . 1 . . . 1
...

...
...

...
...

di 0 . . . 1 . . . 0 . . . 0
...

...
...

...
...

dj 0 . . . 1 . . . 1 . . . 0
...

...
...

...
...

dk 0 . . . 0 . . . 0 . . . 1

population. The reference reward α determines the extent to which exclusiveness

is taken into account. The process used in [4–6] corresponds to the nonexclusive

case with α = 1.

4.3 Case Study

With the reality gap problem introduced in Section 3.3.1, as simulators are unable

to capture all features of the real world, in many cases, a controller that gave rise

to a certain behaviour on a simulated robot gives rise to a different behaviour when

transferred onto a physical robot. The latter is a critical problem, especially in

evolutionary robotics, where simulations play a significant role in speeding up the

optimisation process [187]. Through a process of trial and error, a human could

carefully tune a simulator to faithfully reproduce a system’s behaviour within

certain constraints. However, in general, this process is costly and would have to

be repeated manually every time the robot or environment had changed.

In the following, we present a case study to investigate how an autonomous mo-

bile robot can use the hybrid formulation of Turing Learning to build an accurate

model of a simple rangefinder sensor it is equipped with. The study is conducted

Yue Gu - PhD Thesis 79

in simulation. Hence, the exact ground-truth parameters can be used to evalu-

ate the final derived model parameters, enabling us to quantify the performance

of the overall approach. As in Chapter 3, we distinguish between two types of

simulations:

• Training data simulations obtain data directly from the system under inves-

tigation. They produce genuine data samples. If employing Turing Learning

on a real robot, the training data would be collected from the sensor while

the robot is moving. As this is costly, the fewer training data are needed,

the better.

• Model data simulations obtain data using a candidate model. They produce

counterfeit data samples. Even if employing Turing Learning on a real robot,

this data could be produced using a computer simulation. Hence, model data

are considered less costly to produce than training data.

For our purposes, we continue to use the Enki platform, for which it was possible

to port simplistic behaviours from simulation to reality without modification [188].

In the following sections, we will describe the robot platform used in this case study

and present the implementation details of the hybrid Turing Learning formulation.

4.3.1 Robot Simulation Platform

The environment is a horizontal plane with a rectangular boundary of dimensions

50 cm and 20 cm. It contains a robot and two unmovable obstacles, as shown in

Figure 4.2(a).

The obstacle is modelled as a cylinder of diameter 3.7 cm, height 10 cm. We

consider the second version of the e-puck robot, e-puck2, as our robot. It shares

the same model as e-puck in Enki. Recall that the robot has a cylindrical body of

radius 3.7 cm, height 4.7 cm and weight 152 g and two wheels, which are arranged

as a differential drive, at a distance of 5.1 cm from each other. The velocity of each

wheel, vleft and vright, can be set within [-12.8, 12.8] cm/s relative to the ground.

Yue Gu - PhD Thesis 80

(a)

(b)

Figure 4.2: Case study involving a mobile robot that is tasked to infer a
model of its distance sensor. (a) Simulation environment with the robot (green
cylinder; arc indicates forward direction) and two static obstacles (blue cylin-
ders). The robot starts from a random position and orientation and obtains
sensor reading values while moving around. It is not aware of its position and
has no access to the ground-truth distance corresponding to the sensor reading
value. (b) Illustration of the robot, an e-puck2. The robot has two wheels and
perceives the environment with a time-of-flight (ToF) distance sensor heading

forwards.

As introduced in 3.2.2, random noise is applied every control cycle by multiplying

each velocity value with a random number chosen uniformly in the range (0.95,

1.05). The control cycle is 0.1 s.

The real robot has a rangefinder, more specifically, a laser-based time-of-flight

(ToF) distance sensor located on the edge of its cylindrical body, as illustrated

in Figure 4.2(b). The sensor returns an estimate of the distance (in cm) to the

Yue Gu - PhD Thesis 81

closest object in the robot’s front. The estimate is given as an integer value. In

our simulation study, the sensor provides an integer value too, which is calculated

as

d∗ = round(k∗ · d · δ + b∗), (4.2)

where d ∈ Z is the true distance (in cm) from the sensor to the first object ahead

of the robot, k∗ and b∗, respectively, are the slope and offset parameters of a linear

function, and δ is a multiplicative noise term, which is uniformly chosen from the

range (0.95, 1.05).

4.3.2 Hybrid Turing Learning Implementation

The Turing Learning implementation for this case study is as follows:

• Training data. To generate a data sample, the robot is placed at a uniformly

random position and orientation within the environment. It is observed for

a fixed duration, T . Every control cycle, one sensor reading, d∗, is obtained

from (4.2) with the ground-truth slope and offset parameters, k∗ = 1.167

and b∗ = −1.789, respectively. Although a linear approximation is used,

the distribution of the training data involves some nonlinearity, which is

introduced by the noise and limited resolution of the simulated sensor, as

shown in Figure 4.3. The movements that the robot performs depend on the

type of discriminator (see Discriminator representation).

• Model representation. To generate a data sample, the robot is placed at a

uniformly random position and orientation within the environment. It is

observed for a fixed duration, T . Every control cycle, one sensor reading, d∗,

is obtained from (4.2) with the model parameters for the slope and offset, k̂

and b̂, respectively, as well as δ = 1. Both parameters are initialised at zero

and can freely evolve in R during the optimisation (subject to the limited

precision of computers). The movements that the robot performs depend on

the type of discriminator (see Discriminator representation).

Yue Gu - PhD Thesis 82

Figure 4.3: Training data distribution for ground-truth distances from 1 cm
to 54 cm (the maximum point-to-point distance in the environment, ignoring
obstacles). The dashed line represents the linear transformation of the ground-
truth distance, ignoring the limited sensor resolution and noise. Note that
Turing Learning has no access to the ground-truth data for the system under

investigation.

• Discriminator representation. The hybrid discriminator consists of two types:

the interactive one and the passive one. The structure of both is represented

as an Elman neural network with one input, five hidden neurons and one

classification output. Hidden and output neurons use the logistic function

sig(·) = 1
1+e−(·) as the activation function, which results in a number within

[0, 1]. For classification outputs of 0.5 or higher, the data sample is cate-

gorised as “genuine”; otherwise, it is categorised as “counterfeit”.

The interactive discriminator has two additional outputs which determine

the robot’s wheel velocities (vleft and vright). This is done by using the afore-

mentioned logistic function, followed by linear scaling. Hence, the network

of the passive discriminator has 41 parameters, whereas the network of the

active discriminator has 53 parameters. All parameters are initialised at zero

and can freely evolve in R during the optimisation (subject to the limited

precision of computers).

For the passive discriminators, a data sample of duration T = 5 s is produced.

During this time, the robot follows a pre-designed passive manner. For the

Yue Gu - PhD Thesis 83

active discriminators, a data sample of duration T = 5 s is produced. The

outputs of the discriminator are used to control the movements of the robot

in real-time.

• Optimisation algorithms. A coevolutionary algorithm is used to solve the

optimisation problem. The algorithm is comprised of three populations: one

of the models, one of the interactive discriminators and one of the passive

discriminators. Each population is evolved by the (µ+λ) evolution strategy

with self-adaptive mutation strengths. We set µ = λ = 50 leading to 100

candidates in each population (PM = PD = 100). These three populations

are optimised independently except when fitness values are calculated. More

details of the evolutionary algorithm can be found in [6, 180].

• Coupling mechanism. The model population is evaluated in every generation

of the optimisation process. In the first np generations, the models are

evaluated against the passive discriminators. In the following ni generations,

the models are evaluated against the interactive discriminators.1 The process

is then repeated. By default, np = ni = 1.

We first consider a generation where the passive discriminators are evaluated.

To reduce the amount of training data, which in reality would be costly to

obtain, only a single training data simulation is performed. The resulting

data sample is used for every passive discriminator. Moreover, µ + λ =

100 model data simulations are performed, that is, one per model. The

resulting data samples are tested on every passive discriminator. The fitness

of the passive discriminator is a weighted percentage of its correct judgements

(equal weight is assigned to the sets of genuine and counterfeit data samples).

In generations where the active discriminators are evaluated, one training

data simulation is performed per active discriminator, that is, µ + λ = 100

training data simulations in total. Moreover, µ+λ = 100 model data simula-

tions are performed, that is, one per model. The resulting data samples are

1We hypothesise that it is simpler to evolve passive discriminators than active ones. By
starting the evaluation with the passive discriminators, the models are more likely to obtain
meaningful rewards early on, which then guide their development.

Yue Gu - PhD Thesis 84

tested on every active discriminator. The fitness of the active discriminator

is a weighted percentage of its correct judgements (equal weight is assigned

to the sets of genuine and counterfeit data samples).

The final reward values are adjusted using (4.1), as described in Section 3.2.1.

By default, α = 1. Thus, the exclusiveness reward is discarded. The above

process can be illustrated in Algorithm 2.

Algorithm 2 Hybrid Turing Learning

1: procedure Calibrating Distance Sensor
2: initialisation of PM candidate models and PD candidate discriminators
3: while termination criterion not met do
4: create e-puck2 robot with calibrated sensor
5: perform defined passive manner and record data samples for one trial
6: reset simulation world
7: repeat
8: for all models i ∈ {1, . . . , PM} do
9: obtain model parameters

10: for all passive discriminators j ∈ {1, . . . , PD} do
11: observe recorded Training Simulation
12: reward passive discriminator j for correct classifications
13: observe Model Simulation
14: reward model i for misleading passive discriminator j
15: reward passive discriminator j for correct classifications
16: end for
17: end for
18: update populations based on corresponding rewards
19: until np generations
20:

21: repeat
22: for all models i ∈ {1, . . . , PM} do
23: obtain model parameters
24: for all interactive discriminators j ∈ {1, . . . , PD} do
25: observe Training Simulation
26: reward interactive discriminator j for correct classifications
27: observe Model Simulation
28: reward model i for misleading interactive discriminator j
29: reward interactive discriminator j for correct classifications
30: end for
31: end for
32: update populations based on corresponding rewards
33: until ni generations
34: end while
35: end procedure

Yue Gu - PhD Thesis 85

36: procedure Training Simulation
37: create e-puck2 robot with calibrated sensor
38: for all time steps do
39: obtain sensor reading values
40: obtain and store outputs of discriminator
41: if interaction is available then
42: execute corresponding actions
43: else
44: perform defined passive manner
45: end if
46: end for
47: reset simulation world
48: end procedure
49:

50: procedure Model Simulation
51: create e-puck2 robot with uncalibrated sensor
52: for all time steps do
53: obtain calibrated sensor readings with model parameters
54: obtain and store outputs of discriminator
55: if interaction is available then
56: execute corresponding actions
57: else
58: perform defined passive manner
59: end if
60: end for
61: reset simulation world
62: end procedure

• Termination criterion. The optimisation process terminates after a fixed

number of generations. We consider up to 50 generations, though the exact

limit depends on the particular study.

4.3.3 Simulation Results

This section presents the simulation results of the case study2. Throughout this

section, we use the Mann-Whitney test with a significance level of 0.05 and present

the resulting p values for each text.

2Similar to the case study in Chapter 3, the choice of hyperparameters, including the number
of hidden neurons of the Elman network, the parameters regarding the (µ+λ) evolution strategy
and the simulation settings, was not studied in this case study. They were chosen from some
preliminary experiments and by experience as well. Noises were implemented as the ones in the
Enki simulator. Different noise levels were not studied in this case study.

Yue Gu - PhD Thesis 86

Figure 4.4: Parameters (k̂ and b̂) that interactive formulations of Turing
Learning inferred. Shown are the models of the highest subjective fitness of the
final generation. Each run lasts n generations. Each box comprises 100 runs.

Black dashed lines indicate the ground truth.

Analysis of Interactive Formulation

Before evaluating the hybrid formulation, Di&Dp, we characterise the performance

of the two non-hybrid formulations. In the passive formulation, Dp, only passive

discriminators are considered. In the interactive formulation, Di, only interactive

discriminators are considered.

For the active simulations, 100 Turing Learning runs were performed for n =

10, 20, . . . , 50 generations. Figure 4.4 presents the results. Shown are the inferred

parameters of the model with the highest subjective fitness in the final genera-

tion of each run. The interactive formulation achieves high performance on both

parameters for n = 30. The slope parameter required only 20 generations to be

inferred (p = 0.442, 0.292, 0.427, paired with n = 30, 40, 50 respectively). After

that, increasing the number of generations didn’t bring significant improvement

to the model accuracy, which means the interactive formulation is able to solve

the inference task with a small training data set.

We also investigated how frequently the interaction is required during the sim-

ulation. We enabled the control of Di for every δ time steps. For each of

Yue Gu - PhD Thesis 87

Figure 4.5: Parameters (k̂ and b̂) that interactive formulations of Turing
Learning inferred when the interaction enabled every δ time steps of 50 steps
in total. Shown are the models of the highest subjective fitness of the final
generation. Each run lasts 30 generations. Each box comprises 100 runs. Black

dashed lines indicate the ground truth.

δ = 1, 2, 3, 4, 5, 10, 20, 50, 100 Turing Learning runs were performed. Each run

lasted for n = 30 generations. When δ = 1, the formulation is implemented ex-

actly as the above; when δ = 50, no interaction is implemented and the robot

stands still through the whole simulation. Figure 4.5 illustrates the distribution

of the inferred model parameters with the highest fitness in the final generation.

Interestingly, the inference was not affected much if the interaction is implemented

less frequently, given that p = 0.06, 0.02 regarding k̂ and p = 0.08, 0.02 regarding

b̂ in the paired tests between δ = 1 and δ = 10, 20 respectively.

We statistically analysed the control behaviour of the inferred discriminator with

the highest fitness in the final generation. Table 4.2 presents the percentage of

time when the robot was controlled to move “linearly” (i.e. move forward or

backward with vleft = vright) throughout 100 simulations for each δ. The active

discriminator adapts to the increase of δ and tends to control the robot moving

in a straight line most of the time, which provides some guidance to design the

behaviour in the passive formulation.

3Note that it is not 100% when δ = 50. This is due to the control outputs of the active
discriminator at the last time step, which was not implemented as the simulation terminated.

Yue Gu - PhD Thesis 88

Table 4.2: Percentage of time when the robot moved forward or backward
in interactive formulation with the interaction implemented every δ time steps
of 50 steps in total. Each number represents the statistical result across 100

simulation3.

δ 1 2 3 4 5 10 20 50
percentage(%) 43 43 53 55 52 66 65 98

To validate the advantage of interactive setup, we implemented three passive se-

tups where the control outputs of the active discriminator are ignored. Instead,

the robot follows determined movements. As shown in Table 4.2, when the in-

teractive discriminator interacts with the robot less frequently, it acts more like a

passive discriminator and prefers to control the robot moving linearly. Therefore,

we considered two linear movements and a random movement of the robot in the

passive setups. In “Passive 1” setup, the robot moves in a random trajectory

where its wheel velocities are chosen uniformly randomly at the beginning and

change with a probability of 0.1 at every time step. In other words, the robot is

expected to move in a random pattern every 10 time steps. In “Passive 2” setup,

the robot moves forward with a velocity of 10 cm/s. This corresponds to 1 cm

per iteration, though due to noise on the actuation and potential collisions with

objects, the distance covered is likely to vary between iterations. In “Passive 3”

setup, the robot moves backwards with a velocity of 10 cm/s. For each setup, we

performed 100 runs, and each run lasted 30 generations. Figure 4.6 shows the

inferred model parameters in each setup. The interactive approach is essential to

achieve a good inference on the slope parameter; “Passive 3” setup failed to infer

both parameters. Surprisingly, by implementing passive manners, the inference of

the offset was slightly improved, especially in “Passive 2” setup (given p = 0.19).

In order to understand sensor-to-motor correlation in the interactive setup, Fig-

ure 4.7 presents an example of the discriminator controlling the robot’s wheel

velocities based on the corresponding sensor readings. Considering the differential

wheeled robot kinematics in Section 3.2.2, the robot approximately rotated in the

anti-clockwise direction when its sensor perceived the wall or an obstacle far away;

otherwise, it relatively moved forward if the wall or an obstacle was close. Similar

behaviours can also be found with other discriminators.

Yue Gu - PhD Thesis 89

Figure 4.6: Parameters (k̂ and b̂) inferred with interactive and passive setups.
Shown are the models of the highest subjective fitness of the final generation.
In the “Interactive” setup, the active discriminator drives the robot moving
in the environment and observes its sensor readings. In passive setups, the
discriminator observes sensor reading while the robot moving in determined
manners (for more details, see text). Each run lasts 30 generations. Each box

comprises 100 runs. Black dashed lines indicate the ground truth.

Figure 4.7: Example of how one discriminator controlled the robot in the
interactive setup. The discriminator processes the robot’s sensor reading values
and determines the velocities of the robot’s left and right wheel (vleft and vright).

See text for more details.

Yue Gu - PhD Thesis 90

Analysis of Passive Formulation

Recall that the robot is expected to move in a straight line more often if the

discriminator controls it less frequently. We design the robot’s manner in passive

formulation exactly as the one in the “Passive 2” setup above, that is, the robot

moves forward with a velocity of 10 cm/s for 5 s, resulting in 1 cm per time step

(ignoring obstacles and noise). Similarly, 100 Turing Learning runs were performed

for n = 10, 20, . . . , 50 generations. Figure 4.4 presents the results. Shown are the

inferred parameters of the model with the highest fitness in the final generation of

each evolution run. The passive formulation performed poorly regarding the slope

parameter, in particular, when taking into account that it is applied as a factor

rather than an addend. However, it achieved a fairly good level of performance

regarding the offset parameter, even in 20-generation runs. Consider a model

that uses a slope parameter of zero. As a result, all sensor reading values it

produces match its offset parameter. It is then not too difficult for the model offset

parameter to get further optimised. This makes it hard for a passive discriminator

to detect that the data samples are not genuine. The robot could have simply

moved against an obstacle for the duration of the trial, which would cause the

ground-truth distance to be 0, making the sensor reading match the genuine offset

parameter. This is where the disengagement could have occurred. Both the model

population and discriminator population stopped being optimised as the evolution

was suspended. One should note that increasing the number of generations didn’t

improve the model accuracy. Instead, the inference of the offset parameters tended

to be less accurate, which could indicate a possible overfitting problem of the

passive formulation when the training data set increases.

Analysis of Practical Cost

The practical costs of employing each formulation on a real robot are also to be

considered. They are likely dominated by the number of hours the robot is busy

collecting the training data, whereas the costs of the model data simulations are

negligible. For all three formulations of Turing Learning, including the hybrid

Yue Gu - PhD Thesis 91

Figure 4.8: Parameters (k̂ and b̂) that passive formulations of Turing Learning
inferred. Shown are the models of the highest subjective fitness of the final
generation. Each run lasts n generations. Each box comprises 100 runs. Black

dashed lines indicate the ground truth.

Table 4.3: Hours of training data required by the interactive (Di), hybrid
(Di&Dp), and passive (Dp) formulations of Turing Learning. When inferring the
sensor model for a real robot, this number is a good indication of the true costs.
Note that in the present study, the training data is obtained from simulations,

lasting 5 s for both the interactive and passive discriminators.

setup Di Di&Dp Dp

cost 13.89·n 6.95·n 0.0014·n

one, the practical costs of performing a single run of n generations are shown in

Table 4.3. As can be seen, the interactive formulation is by far the most costly

formulation. By using the hybrid formulation, almost half of the costs can be

saved. The costs of the passive setup are remarkably low.

Analysis of Hybrid Formulation

We now consider the situation that only a limited budget is available, preventing

us from conducting more than 10 generations of the costly interactive formulation.

We evaluate a hybrid formulation of 20 generations. In half of the generations,

the passive discriminators are trained, whereas, in the other half, the interactive

discriminators are trained. Figure 4.9 shows the results. We have also included the

Yue Gu - PhD Thesis 92

Figure 4.9: Comparison between the hybrid formulation using 20 generations
(Di&Dp) and its two components in isolation: the interactive formulation using
10 generations (Di) and the passive formulation using 10 generations (Dp). Each

box represents the distribution of estimates k̂ and b̂ of the model with the highest
fitness in the final generation and contains 100 runs.

results of performing only 10 generations of either non-hybrid formulation. This

makes it possible to quantify what each part of the hybrid formation adds beyond

and what the other part could achieve on its own. It can be seen that the non-

hybrid formulations are unable to accurately infer both parameters. The hybrid

formulation outperforms the interactive formulation with 10 generations regarding

k̂ (p < .0001) and b̂ (p = 0.0002). It outperforms the passive formulation with

10 generations regarding k (p < 0.0001). When compared with an interactive

formulation using 50 generations [see Figure 4.4], the hybrid formulation achieves

a similar performance regarding k̂ (p = 0.046) and b̂ (p = 0.231) while saving

almost 80% of the cost.

In general, the passive discriminators help infer the offset parameter well, for the

reasons discussed earlier. However, they do not help to infer the slope parameter.

The performance stagnates as the number of generations increases, posing the

risk of over-fitting. The interactive discriminator helps infer the slope parameter,

as it can control the robot to not get stuck but rather observe a wide range

of sensor readings. But it is too costly to be used exclusively. By using the

Yue Gu - PhD Thesis 93

hybrid discriminator, the advantages of either type of discriminator are combined.

The hybrid formulation gives additional degrees of freedom to adjust the learning

strategy to the budget at hand.

Coevolutionary Dynamics and the Impact of Exclusiveness

Figure 4.10 shows the dynamics of fitness values of the three populations in the

hybrid formulation of Turing Learning. The average fitness of the passive discrim-

inators starts from 0.5, then increases slowly until the end of 20 generations. The

fitness of the best candidate increases rapidly and reaches a high value (about 0.9)

within 5 generations. This means that some candidates can easily distinguish the

model data samples by observing the effect of b̂ when operating the passive man-

ner. The fitness value of the interactive discriminator shares a similar curve with

the passive discriminator, except that best fitness has a lower value. This is due

to the fact that without a direct insight into the effect of b, the classification task

becomes more difficult. The fitness value of models shows that models are able

to adapt to the improvement of two types of discriminators. After 5 generations,

the curve has obvious fluctuations, and the fitness drops every generation when

the interactive discriminators get involved. But in general, the fitness of models

increases till the end of evolution. This phenomenon shows that when the models

adapt to the passive discriminators and have a good estimation on b, the interac-

tive discriminators can filtrate the model population by the effect of estimation of

k. The models, in turn, are optimising themselves to improve their inference.

It is known that Turing Learning (and similar co-evolutionary) algorithms can

suffer from unstable behaviour. For example, generative adversarial networks [2]

can experience model collapse when the discriminator dominates the “game”, re-

sulting in vanishing gradients for the generative models. Possible solutions are to

weaken [189, 190] or regularise the discriminator [191]. In our case, the discrimi-

nators tend to have higher fitness than the models. This can lead to the situation

that they dominate the competition.

Yue Gu - PhD Thesis 94

Figure 4.10: Normalised fitness of discriminators and models in the hybrid
formulation of Turing Learning over 20 generations. Each curve represents the

average value across 100 runs.

In the following, we examine whether the performance of the hybrid Turing Learn-

ing formulation can be improved by introducing the novel reward mechanism that

takes the exclusiveness of the games’ outcomes into account. We evaluate a setting

with only 10 generations, 5 for each type of discriminator, where the novel reward

mechanism is only applied to the reward calculation of the interactive discrimi-

nators. As can be seen in Figure 4.11, without exclusiveness taken into account,

neither the slope parameter nor the offset parameter can be accurately inferred

unless the number of generations is doubled. By applying 20% exclusiveness on

Di (αi = 0.8) and 50% exclusiveness on Dp (αp = 0.5), the slope parameter can

be more accurately inferred (p-values 0.002) compared with the nonexclusive case.

The exclusiveness mechanism enables the hybrid formulation to solve the inference

task with reasonable good accuracy even with only n = 10 generations. Adding

exclusiveness to the evaluation process increases the difficulty of corresponding

candidates to obtaining rewards, especially where the diversity of solutions is lim-

ited. This leads to high selection pressure, promoting solutions that possess unique

skills, helping them to defeat opponents in ways that may otherwise be overlooked.

Yue Gu - PhD Thesis 95

Figure 4.11: Benefits of a reward mechanism that takes exclusiveness into
account. If α = 1, all games that are won are equally important. If α < 1,
games against opponents that are rarely defeated count more than other games.

Based on n generations, 100 simulation runs per box.

4.4 Summary

This chapter presented a hybrid formulation of Turing Learning that allows models

and both interactive and passive discriminators to be optimised at the same time.

To evaluate the hybrid formulation, we presented a case study where a simulated

robot calibrates its own distance sensor without having access to ground-truth

data. The hybrid formulation combines the advantages of either approach. It

was shown to outperform the passive approach in terms of model accuracy while

outperforming the interactive approach in terms of the amount of training data

that is needed. Minimising the latter is critical when the tasks involve real robots

that shall learn autonomously.

The setup is particularly challenging, as the robot does not know its position within

the environment. In fact, it started from a purely random position and orientation.

It could be already touching a wall or be far away from it. By learning a closed-

loop controller, as a byproduct of the discrimination task, the hybrid formulation

succeeded in identifying the parameters of the sensing model with good accuracy.

Yue Gu - PhD Thesis 96

We also proposed a novel reward mechanism that takes into account how frequently

the opponent was defeated by the competing solutions. The case study presented

in this paper showed that using this mechanism for the reward calculation of

interactive discriminators improved the model accuracy in situations where only

limited training data was available.

The result demonstrates that the purely interactive formulation outperforms other

approaches if the available budget is not constrained. The hybrid formulation

maintains a good performance where the budget is of concern.

In the future, we intend to run the hybrid formulation of Turing Learning on a

computer connected to a real e-puck2 robot to investigate whether the robot can

infer its own sensing model without any intervention by humans.

Chapter 5

Inferring Swarm Behaviours from

Their Effects

5.1 Introduction

In previous chapters, we implemented the Turing Learning framework in order

to the sensor configuration and the sensor calibration model of a single robot

agent. In both cases, the robot operated in an environment with obstacles. The

inference was accomplished on the basis of the robot’s sensor readings only and

didn’t require any knowledge about the environment, e.g. locations of obstacles,

or any other information about the robot itself, e.g. the relative location between

the robot and obstacles. Following a similar idea, in this chapter, we investigate

how Turing Learning could benefit the inference of swarm behaviours when the

observability is limited.

As introduced in Section 2.3, swarm behaviours are emergent behaviours of simple

individuals following local behavioural rules [120]. In the field of swarm robotics,

robots are used to mimic the swarm behaviours that are observed in nature, such

as foraging of ant colonies, which, in turn, helps to provide a deeper understanding

of such behaviours. Usually, behaviours of swarm robotic systems are generated by

designing controllers for individual robots to capture the features that are found

97

Yue Gu - PhD Thesis 98

in biological swarms. Considering the simplicity of the robot agent, the con-

troller usually has a relatively simple structure and does not require centralised

mechanisms. The memory-less controller proposed in [188] pushes the simplistic

nature to the extreme. It is built with a sense-act architecture, implemented as

a lookup table between the binary sensing and the corresponding motion. The

Turing Learning algorithm has been demonstrated to infer such controllers for

aggregation and object clustering in previous studies [4]. In both cases, the in-

ference relies on the full observability of the robot agent (i.e. full knowledge of

the robot’s velocities). However, when the observation is not fully available, the

inferred controller is hard to capture the features of the desired behaviour.

In this chapter, we consider an extreme situation where the robots in a swarm are

not available to observe at all. Instead, we investigate if the local behavioural rule

can still be inferred by examining its effects on the surrounding environment. The

motivation for this case study is mainly curiosity-driven, but it still has practi-

cal meanings. Considering the design problem in Section 2.3.3, the advantage of

evolutionary swarm robotics is that it searches for the optimal solutions by evalu-

ating the emergence of the desired global behaviour. For some swarm behaviours,

their emergence reflects on the effects on the embedded environment. By observ-

ing these effects, the evolutionary process tends to find the optimal individual

controllers from the global level.

Specifically, we focus on two swarm behaviours: object clustering and shepherding.

In general, the clustering behaviour of robots results in objects being transferred

into one cluster and, in shepherding, robots would herd the “sheep” towards a

desired goal position. In both cases, Turing Learning is only allowed to observe

the changes of objects or sheep but has no access to the robot or other information

about the environment, including the goal of shepherding.

This chapter is organised as follows. Section 5.2 describes the methodology, in-

cluding a formal definition of the problem (5.2.1), an introduction about the sim-

ulation platform (5.2.2), and implementation details of the Turing Learning algo-

rithm (5.2.3). Section 5.3 presents two case studies to demonstrate our method.

Yue Gu - PhD Thesis 99

Section 5.3.1 illustrates how the object clustering behaviour could be learned by

Turing Learning through observing the trajectory of a single object, and Sec-

tion 5.3.2 implements Turing Learning to infer shepherding behaviour through

observing the trajectory of a single sheep. The inferred controllers in both cases

are analysed in terms of emergent performance and scalability. At the same time,

the performance is compared with that of the controller designed by the method

introduced in the literature. In addition, Section 5.3.1 investigates how the train-

ing data affects the scalability of the clustering controller inferred through our

method, and Section 5.3.2 shows the ability of the inferred shepherding controller

to herd the sheep group tracking a dynamical goal. Section 5.4 summarises the

chapter.

5.2 Methodology

In this section, we formally define the problem considered in this chapter and

introduce the simulation platform used in this scenario, including the sensing and

control capabilities of the robot agents. We then explain the implementation

options of the Turing Learning algorithm for solving this problem. The general

algorithm framework applied in this chapter is similar to the ones in previous

chapters. We will highlight the differences and briefly describe what has been

introduced before.

5.2.1 Problem Formulation

Different swarm behaviours in nature have been studied throughout the literature,

which naturally inspired researchers to imitate these behaviours in swarm robotic

systems. In most cases, the principles of such systems are designed through the

decomposition of desired behaviours into local rules for individual robots, during

which the understanding of nature is the fundamental factor. The Turing Learning

algorithm has been applied to learn the behavioural rules of robotic agents for

Yue Gu - PhD Thesis 100

performing aggregation and object clustering [4]. In both cases, individual robots

follow a simple reactive controller, which is inferred through the observation of

their trajectory data.

In our formulation, we consider an environment where neither the human designer

nor the learning algorithm has access to observe the desired behaviours at the

global level or the local level. In other words, individual robots in a swarm are

“invisible” all the time during the designing process1. Instead, we apply the Turing

Learning algorithm to find the local rules of individuals through observing the

effects on the environment. This formulation has practical meaning. In some

cases, the behaviour of individuals in a swarm can be complicated and difficult

to observe directly, while the effects can be accessible to notice and monitor. We

demonstrate this formulation in an unbounded simulation environment studying

two swarm behaviours, object clustering and shepherding, which cause effects on

the surroundings. When clustering objects, a swarm of robots would transfer the

objects between different positions. On the other hand, when herding sheep (or

sheep-like robots), a swarm of shepherd robots would cage the sheep in a group

and march them towards the desired goal.

5.2.2 Simulation Platform

Similar to Chapter 3 and Chapter 4, we use the open-source Enki library and

the built-in e-puck model as our simulation platform and implement some specific

capabilities for the robot. Recall that in Enki, the e-puck robot is modelled as

a cylinder of radius 3.7 cm, height 4.7 cm and weight 152 g, with an inter-wheel

distance of 5.1 cm. Each wheel’s velocity, vleft and vright, can be set within [-12.8,

12.8] cm/s relative to the ground. As introduced in 3.2.2, random noise is applied

every control cycle by multiplying each velocity value with a random number

chosen uniformly in the range (0.95, 1.05). The control cycle is 0.1 s. The physics

is updated 10 times per control cycle.

1As there is no direct knowledge about the behaviour under investigation, the scenario can
be considered as a black-box system identification problem.

Yue Gu - PhD Thesis 101

5.2.2.1 Sensor

Each robot is equipped with a line-of-sight sensor I at its front. The sensor is able

to return the type of items it detects (e.g. other robots, objects, the empty space or

the boundary of the environment) but does not provide any more information, for

example, the distance to a perceived item or the number of items in front of it. In

general, the possible sensor state can be represented as I ∈ {0, 1, . . . , n−1}. Each

state indicates one particular item. In our simulations, the sensor is simulated

as a ray cast from the robot’s front and returns the type of the very first item it

intersects, or nothing if there isn’t any. The sensor has an unlimited range.

5.2.2.2 Controller

The robot is embedded with a memoryless controller with an identical structure

as the one introduced in [24, 188]. The controller uses a simple sense-act logic,

i.e. at each time step t, each robot’s motion is solely determined by the current

sensor state I t. Given the discrete sensor state above, the controller can thus

be considered as a mapping from each state to a pair of wheel velocities. We

use vl,I , vr,I ∈ [−1, 1] to represent the normalised angular velocities of the left

and right wheel, respectively, corresponding to the sensor state I, where negative

velocities indicate the wheel rotating backwards. Therefore, the controller can be

represented as a 2n-valued vector:

v = (vl,0, vr,0, vl,1, vr,1, . . . , vl,n−1, vr,n−1), v ∈ [−1, 1]n. (5.1)

5.2.3 Turing Learning Implementation

In Chapter 3, we have introduced that Turing Learning is a family of algorithms

where models and discriminators are optimised in a competitive game setting.

Recall that the framework can be applied to a wide range of problems by choosing

different implementation options. In the following, we will present the options

that are designed for the problem considered in this chapter.

Yue Gu - PhD Thesis 102

• Training data. The training data comes from the observation of the en-

vironmental change caused by a swarm of robots, that is, change of the

object’s absolute position in the study of object clustering or change of the

sheep’s absolute position in the study of shepherding. Training data is ob-

tained when robots operate a determined controller, which is referred to as

the training controller and represented as the vector v. The controller is

designed through the method in the literature and can provably generate

the desired behaviour on the global level (i.e. by the swarm) [24, 147]. On

the other hand, the model data has the same form as the training data but

is obtained while robots operate a model controller, which is defined by a

candidate model.

• Model presentation. The model is considered as a substitution of the training

controller vector v (given in Equation 5.1). We use v
′

to represent the model

controller vector, which has the same form as v:

v
′

= (v
′

l,0, v
′

r,0, v
′

l,1, v
′

r,1, . . . , v
′

l,n−1, v
′

r,n−1), v
′ ∈ [−1, 1]n. (5.2)

Similarly, each pair of (v
′

l,I , v
′
r,I) represents the normalised angular velocities

of the left and right wheel, respectively, with respect to the sensor state

I. The inference task is thus to find a parameter setting so that robots

embedded with controller v
′

are able to generate the desired behaviour. In

other words, a total of 2n parameters are to be inferred. Note that v
′

is

not necessarily required to be identical with v, as it is possible that different

local rules wound end with similar emergent behaviour on the global level.

We will then illustrate and evaluate the behaviour with the learned model

controller and compare the performance of the model controller to that of

the training controller.

• Discriminator presentation. The discriminator is implemented as an Elman

neural network with a similar structure as the passive one introduced in

Chapter 4. In this scenario, the discriminator observes the environmental

changes and determines whether the individual robots are operating the

Yue Gu - PhD Thesis 103

training controller or a model controller. The network has 5 hidden neurons

and one classification output. For each classification it makes, the network

receives a data sample from either the training data or the model data. The

remaining features are implemented exactly as in the previous chapter. We

assume all parameters of the network can vary in R. For each trial, the

observation lasts for a certain period of time (i.e. t seconds). Given that the

robot’s control cycle is updated 10 times per second, this results in 10t time

steps.

• Optimisation algorithm. In order to compare the performance of the con-

troller learned with Turing Learning and that of the controller found in [24,

147], We use the same optimisation method, Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [192], for both the model and discriminator

population. CMA-ES is a stochastic method to optimise real-valued vectors

associated with self-adapted variance of each variable and all covariances

between variables2. The same constraint as the one used in [24] is applied

to the model optimiser by processing each parameter of the candidate so-

lution obtained from CMA-ES with a sigmoid-based function (as shown in

Equation 5.3) to ensure parameters in vector v
′

vary in [−1, 1].

sig(x) =
1− e−(x)

1 + e−(x)
∀x ∈ R (5.3)

The discriminator optimiser is applied with the standard form of CMA-ES.

Furthermore, there are three external parameters required for CMA-ES: the

population size p, the initial candidate vector m(0) and the initial step size

δ(0). For both of the model and discriminator optimiser, we set m(0) to be a

zero vector and δ(0) to 0.72. As shown in Monte Carlo simulations, these ex-

ternal parameters give an initial model population approximately uniformly

distributed in [−1, 1]n with the above constraint [24]. The population size is

given by the suggested setting in [192, 193]:

p ≈ b4 + 3 ln dc, (5.4)

2For more details about CMA-ES, we refer to [192, 193].

Yue Gu - PhD Thesis 104

where d is the number of variables in decision vector. For example, an n-state

sensor leads to a model population size pM ≈ b4 + 3 ln 2nc.

• Coupling mechanism between the model and discriminator optimiser. The

coupling mechanism is implemented exactly as the one in the case studies of

Chapter 3 and Chapter 4. Each discriminator candidate is evaluated once

with each model candidate and pM times with the training controller. It

is rewarded one point for each time it correctly distinguishes between the

training data and model data. Each model candidate is rewarded one point

every time it misleads a discriminator candidate to judge its data as training

data. Given the total points they gain, the normalised fitness values for

each discriminator and model candidate are calculated by Equation 2.8b

and Equation 2.8a separately.

• Termination criterion. Similar to previous studies, the optimisation process

is terminated after a fixed number of generations.

5.3 Case Studies

In the following, we validate the method described above on learning two swarm

behaviours: the object clustering and the shepherding, which are simulated as the

studies in [24] and [147] respectively3.

5.3.1 Object Clustering

5.3.1.1 Simulation Setup

Similar to the study in [24], we consider an unbounded environment with 2 robots

and 5 objects. The object is simulated as a cylinder of radius 5 cm, height 10 cm

3Similar to the case studies in Chapter 3 and Chapter 4, the choice of hyperparameters,
including the number of hidden neurons of the Elman network, was not studied in this case
study. They were chosen from some preliminary experiments and by experience as well. Noises
were implemented as the ones in the Enki simulator. Different noise levels were not studied in
this case study.

Yue Gu - PhD Thesis 105

and weight 35 g, with a ground friction coefficient of 0.58. In this case, the robot’s

sensor has 3 states (i.e. n = 3 in Equation 5.1 and 5.2, which gives the model

population size pM = 10): I = 0 when it detects nothing, I = 1 when it detects

an object and I = 2 when it detects another robot. The robots and objects are

initialised uniformly in a virtual square of sides 111.8 cm. That gives the average

area per object is 2500 cm2. In addition, each robot’s initial orientation is chosen

uniformly randomly in [−π, π].

Similar to previous studies in Chapter 3 and Chapter 4, we have two simulations

running in parallel: the training simulation, where the training data samples are

collected, and the model simulation, where the model data samples are collected.

Both of these two simulations are conducted with the same setup as described

above.

• Training Simulation. The individual robot operates the training controller

v, as shown in Figure 5.1. The controller was found through the method

introduced in [24], where its performance was evaluated by measurement

U(T)4:

U(T) =
T∑
t=1

tu(t), (5.5)

where T is the total number of the time steps of the simulation and

u(t) =
1

4r2O

m∑
i=1

||x̄(t)− xi(t)||2, (5.6)

where rO and m are the radius and the number of the objects respectively,

x̄(t) is the centroid position of object group at time t and xi(t) is the po-

sition of the object i at time t. Thus, u(t) takes account of how widely the

objects are dispersed. U(T) benefits the solution that collects objects fast by

introducing the time index t. In other words, lower values of U(T) indicate

better and faster solutions of the controller. We re-implemented the study

4In order to replicate the previous study, U(T) is adapted directly from [24] and is used to
evaluate the performance of the controller learned with Turing Learning as well.

Yue Gu - PhD Thesis 106

Table 5.1: The training controller v operated by individual robots during the
training simulation process in the study of object clustering.

vl,0 vl,1 vl,2
0.9832 -0.7797 0.7866
vr,0 vr,1 vr,2

0.5591 0.7524 0.0501

in [24] and found the best controller as shown in Table 5.15. With such a

controller, a swarm of robots performs the object clustering behaviour for

100 s (i.e. 1000 time steps), during which we randomly choose a single object

and record its absolute position (x(t), y(t)) at each time step as training data

samples. That gives 2 input neurons of the discriminator network, leading

to a total of 46 parameters to be inferred. The discriminator population

size is determined as pD = 20. Figure 5.2 shows the snapshots of a training

simulation lasting for 100 s. The cluster of objects emerged after 65 s.

• Model Simulation. Within the same simulation environment as in the train-

ing simulation, robots and objects are initialised with random configura-

tions6 and individual robots operate the model controller v
′

defined by a

model candidate (shown in Figure 5.3). Same as the training simulation,

model simulation lasts for 100 s, and the model data samples consist of the

absolute positions of a single object which is randomly picked.

5We noticed that it is not possible to fully replicate the study in [24] due to the version
of Enki library, the computing platform on which simulations are conducted and some other
uncontrollable factors. We then re-implemented the study with the sources we have at hand.
Although the controller we found is different from the one reported in [24], it is still able to
achieve the desired behaviour with similar performance. We assume that such difference would
not affect the learning outcome of Turing Learning as the robot’s motion is not considered in our
formulation. To maintain the consistency of our study, we use the above controller to generate
training data samples.

6We noticed that if the model simulation and the training simulation have the same initial
configuration of objects and robots, the discriminator might simply compare the position of the
object at each time step. To avoid the discriminator taking advantage of the difference between
single data samples, the initial configuration is set differently for the model simulation and the
training simulation.

Yue Gu - PhD Thesis 107

(a)

(b)

Figure 5.1: (a) The snapshot presents the training simulation environment
of the object clustering study, where 5 blue objects and 2 robots (shown as
disks with arrows) are randomly placed. Green colour indicates that the robots
are executing the training controller. (b) The schematic illustrates the robot’s
training controller, which maps what the sensor detects in its front onto a pair

of wheel velocities.

Yue Gu - PhD Thesis 108

initial configuration after 25 s

after 50 s after 65 s

after 75 s after 100 s

Figure 5.2: Emergent behaviour of object clustering with robots (green disks)
operating the training controller. The absolute positions of a single object (blue
disk) are recorded as training data samples and evaluated by the discriminator

in Turing Learning.

Yue Gu - PhD Thesis 109

(a)

(b)

Figure 5.3: (a) The snapshot presents the model simulation environment of the
object clustering study, where 5 blue objects and 2 robots (shown as disks with
arrows) are placed randomly. Red colour indicates that the robots are operating
a model controller. (b) The schematic illustrates the robot’s controller, which

maps what the sensor detects in its front onto a pair of wheel velocities.

Yue Gu - PhD Thesis 110

5.3.1.2 Simulation Results

A set of 30 evolutions were conducted, and each evolution was run for 1000 genera-

tions. In each generation, pM = 10 model candidates were evaluated in the model

simulation with different initial configurations and generated 10 model data sets.

Additionally, the training simulation was implemented 10 times with different ini-

tial configurations to generate 10 training data sets. Each of these data sets was

unlabelled and then evaluated by each of the pD = 20 discriminator candidates.

At the end of each evaluation, fitness values were assigned according to Equa-

tion 2.8b and Equation 2.8a. The model candidate with the highest fitness value

in the last generation was considered as the best controller found in that evolution,

which gives 30 best controllers in total. We processed a post-evaluation process

for each of these controllers, and each controller is reevaluated 100 times with

different initial configurations. The controller with the lowest average value of

U(T) was chosen as the best controller throughout the 30 evolutions, as given in

Table 5.2. Figure 5.4(a) shows its evolutionary dynamics during the learning with

Turing Learning. Parameters v
′

l,0, v
′
r,1 and v

′
r,2 were inferred parameters within 100

generations, followed by the rest converging after 600 generations. Note that the

first three convergent values are close to the velocity limit, and then the others

are searched in the middle. That means the algorithm came up with a strategy

to fix one parameter of each pair (v
′

l,I , v
′
r,I) and optimised the other one in later

generations. To measure the quality of the controller, we compared its perfor-

mance with the training controller v in terms of U(T) during the post-evaluation

process. Figure 5.4(b) shows that there is no significant difference between these

two (paired Wilcoxon signed-ranked test7 with p = 0.49).

Behavioural Analysis

Considering the differential wheeled robot kinematics in Section 3.2.2, each sensor

state I is mapped onto a circular movement of the robot: when I = 0 (nothing

7The Wilcoxon signed-ranked test is used to compare data that is not assumed normally
distributed. In this case study and the following case study, the test is used to compare the
performance of different controllers.

Yue Gu - PhD Thesis 111

Table 5.2: The best model controller v
′

for object clustering learned through
Turing Learning.

v
′

l,0 v
′

l,1 v
′

l,2

0.9873 -0.4130 -0.1857

v
′
r,0 v

′
r,1 v

′
r,2

0.5745 0.9984 -0.9995

(a)

(b)

Figure 5.4: (a) Evolutionary dynamics of the parameters of the best model
controller learned through Turing Learning for object clustering. (b) Compari-
son, in terms of the performance in object clustering task, between the training
controller v found by the method in the previous study and the best model
controller v

′
learned through Turing Learning in our formulation. Each box

contains 100 trails in simulation.

Yue Gu - PhD Thesis 112

detected), the robot travels in a clockwise manner; when I = 1 (an object de-

tected), the robot takes a sharp turning in anticlockwise; when I = 2 (another

robot detected), the robot avoids the other robot by reversing in clockwise. A

sequence of snapshots in a simulation trial with 50 objects and 5 robots shows

the emergent behaviour with the best model controller in Figure 5.5. Initially, all

robots are inside of the object group, but they eventually manage to move to the

periphery after 30 s. After this, the robots move in a circular formation around

objects and push them towards the centroid so that the periphery shrinks until all

objects end within one cluster after 800 s.

The emergent behaviour described above is similar to the one generated by the

training controller in Table 5.1 and the controller reported in [24]. We also found

that this behaviour is robust and can be observed with different initial configura-

tions. However, the robots could miss the objects that are placed very far from

others at the beginning. We found that 91 out of 100 simulations ended up with

one cluster of objects.

Scalability Study

We investigated the performance of the best controller found in our formulation

relative to the number of robots. We considered an environment with 50 objects

and conducted 100 simulations with n = 2, 5, 10, 15, 20, 30, 40, 50 robots. Each

simulation lasted for 1000 s (i.e. 10000 time steps in total). For each number of

robots, we implemented the training controller v given in Table 5.1 and the best

model controller v
′

given in Table 5.2 separately, and recorded the trajectories of

objects. Figure 5.6(a) shows the compactness of objects at the final time step,

which is defined as the second moment of objects u(t) in Equation 5.6 with t = T .

The dotted line indicates the lowest value of compactness for 50 objects theoret-

ically, as given in [194]. Controller v
′

showed its benefits with a small number of

robots (paired Wilcoxon signed-ranked test with p < 0.001 when n = 5, 10), but

it failed to collect all objects in one cluster when n ≥ 15. In contrast, controller

v has better scalability with a large number of robots. The measurement U(T)

Yue Gu - PhD Thesis 113

initial configuration after 30 s

after 300 s after 500 s

after 700 s after 800 s

Figure 5.5: Emergent behaviour of object clustering with the best model
controller. The robots (red disks) travel to the periphery and move in a circular
formation. They push the objects (blue disks) inwards when they have contacts.

All objects end within one cluster.

Yue Gu - PhD Thesis 114

given in Equation 5.5 revealed a similar phenomenon as shown in Figure 5.6(b),

where the dotted line indicates the value of U(T) if no robot moves throughout

the simulation (observed in Monte Carlo simulations [24]). Controller v
′

achieved

its lowest value at n = 10 (paired Wilcoxon signed-ranked test with p < 0.001),

which means that it is able to accomplish the task faster with 10 robots. But its

performance degrades beyond this point. The performance of v keeps improving

as the number of robots increases.

We observed that with controller v
′
, as the number of robots increases, it becomes

easier for robots to get stuck in the circular formation. This is due to the robot’s

vision being occluded by other robots for most of the time. The parameter setting

in Table 5.2 didn’t manage to deal with this situation. The reason why the solution

was not further optimised in our formulation could be the Turing Learning learned

from a small scale setup (5 objects and 2 robots) where the situation above is less

likely to occur. Without a well-defined metric to measure the behaviour globally

(e.g. for example, U(T) used in [24]), the learning outcome is easily limited to the

training data that has been given. To alleviate the problem, we re-ran the learning

process but with a large scale setup of 50 objects and 50 robots and validated the

best model controller with different numbers of robots. Figure 5.7 shows that

the performance with a large number of robots has been dramatically improved

and a small number of robots could accomplish the task as well with the same

controller8.

5.3.2 Shepherding

5.3.2.1 Simulation Setup

Same as the study in [147], we consider an environment with 10 shepherds, 20

sheep and one goal. The shepherd and the sheep are both simulated as e-puck

robots. The shepherd robot is embedded with the sensor and controller described

8Its parameters are given as: v
′

= (v
′

l,0, v
′

r,0, v
′

l,1, v
′

r,1, v
′

l,2, v
′

r,2) =
(0.743818, 1.0, 0.301877,−0.995316, 0.524595, 0.982407).

Yue Gu - PhD Thesis 115

(a)

(b)

Figure 5.6: Both in (a) and (b), simulations were evaluated with different
numbers of robots, n, operating the training controller v found by the method
in literature and the best model controller v

′
learned through Turing Learning

in our formulation. Each box contains 100 simulations. (a) Compactness of 50
objects at the final time step. The dotted black line represents the theoretical
lowest value. (b) The performance quality of clustering 50 objects. The dotted

black line represents the situation when robots do not move.

Yue Gu - PhD Thesis 116

(a)

(b)

Figure 5.7: Both in (a) and (b), simulations were evaluated with different
numbers of robots, n, operating the training controller v found by the method
in the previous study and the best model controller v

′
learned through Turing

Learning from a large scale setup of 50 objects and 50 robots. Each box contains
100 simulations. (a) Compactness of 50 objects at the final time step. The
dotted black line represents the theoretical lowest value. (b) The performance
quality of clustering 50 objects. The dotted black line represents the situation

when robots do not move.

Yue Gu - PhD Thesis 117

in Section 5.2.2. In this case, the shepherd’s sensor has 4 states (i.e. n = 4 in

Equation 5.1 and 5.2, which gives the model population size pM = 20): I = 0

when it detects nothing, I = 1 when it detects a sheep, I = 2 when it detects

another shepherd and I = 3 when it detects the goal. According to [147, 195],

the sheep robot’s behaviour is determined and designed as a magnitude-dependent

motion. Each sheep moves off all shepherds and all sheep as well, but with a lesser

extent. The repulsion force that drives the sheep robot can be formalised as:

Fi =
∑

k∈S\{i}

ck
‖xi − xk‖2

r̂ki , (5.7)

where S is the set of all agents, xi is the position vector of sheep i, xk is the

position of agent k (either a shepherd or any other sheep), r̂ki is the unit vector

from agent k to sheep i, and ck = 450, if agent k is a shepherd, or ck = 100, if

agent k is a sheep. The actual motion of each sheep is a combined result of the

repulsion force and a default tendency to move forward, as shown in the following:

(
vl
vr

)
=

K1 K2

K1 −K2

(fx
fy

)
+

(
u

u

)
, (5.8)

where fx and fy are the components that the repulsion force applies on the sheep’s

local coordinate frame, K1 = 2.0 and K2 = 1.3 are the linear and angular gain.

The default forward velocity u is 2.0 cm/s. The maximum velocity for a sheep is

truncated at 6.4 cm/s.

Each sheep is assumed to be able to see all other sheep and shepherds but is

not aware of the goal, which is modelled as a steady cylinder of radius 22.2 cm.

The sheep and shepherds are initialised uniformly in a virtual circle of radius

200 cm and 400 cm away from the goal. Each sheep and shepherd are distributed

with random orientations in [−π, π]. Additionally, we define a circular area of

radius 100 cm centred with the goal as our goal region. Any sheep is considered

to successfully reach the goal if it stays inside of the region.

Yue Gu - PhD Thesis 118

Similarly, we have two simulations running in parallel: the training simulation and

the model simulation, both with the same setup described above.

• Training Simulation. Individual shepherd operates the training controller v,

as shown in Figure 5.8. The controller was optimised by the method used

in [147], where the objective function is given as F (T)9:

F (T) =
T∑
t=1

tf(t), (5.9)

where T is the total number of the time steps of the simulation and

f(t) =
1

4nr2S

m∑
i=1

||x̄(t)− xi(t)||2||x̄(t)− g||2, (5.10)

where rS and m are the number and radius of the sheep robot, x̄(t) is the

centroid of sheep swarm at time t and xi(t) is the position of object i at

time t. The position of the goal is represented as g, which is not relative

to the time. Thus, f(t) evaluates how disperse the sheep swarm is and how

far to the goal. Minimising F (T) will optimise the controller to accom-

plish the task as fast as possible. We re-implemented the study in [147] and

obtained the best controller given in Table 5.310. In each simulation, shep-

herds execute the controller for 1500 s (i.e. 15000 time steps). At the same

time, we let the discriminator randomly pick one sheep robot and monitors

its absolute position (x(t), y(t)) changing throughout the simulation, which

gives the exact same network structure as the one used in clustering study.

The discriminator population size is pD = 20 as well. Figure 5.9 shows the

snapshots of a training simulation lasting for 1500 s. The shepherds tend to

cage all sheep and then herd them towards the goal, which is similar to the

9In order to replicate the previous study, F (T) is adapted directly from [147] and is used to
evaluate the performance of the controller learned with Turing Learning as well.

10Similar to the object clustering study, the controller we found here is different to the one
in [147]. We assume these differences would not affect the learning outcome of our formulation
as the shepherd’s motion is not considered by Turing Learning. To maintain the consistency of
our study, we use the above controller to generate training data samples.

Yue Gu - PhD Thesis 119

Table 5.3: The training controller v operated during the training simulation
of shepherding.

vl,0 vl,1 vl,2 vl,3
0.7895 0.9989 -0.0970 0.9779
vr,0 vr,1 vr,2 vr,3

1.0000 -0.4205 0.0501 0.9998

behaviour presented in [147]. The sheep flock reaches the goal region after

400 s.

• Model Simulation. As shown in Figure 5.10, the shepherds and sheep are

initialised randomly in the same simulation environment as in the training

simulation11 and the model controller v
′

defined by a model candidate is

operated by shepherds each time. The simulation lasts for 1500 s for each

trial, during which the absolute positions of a randomly chosen sheep are

collected as model data samples.

5.3.2.2 Simulation Results

A set of 30 evolutions were performed, and each evolution lasted for 80 generations.

For each generation, 20 model data sets were generated from the model simulation

with shepherds running each of the pM = 20 model candidates. In addition, 20

training data sets were collected from 20 trials of the training simulation. Each

of these data sets was provided for each of the pD = 20 discriminator candidates

to determine which label the data belongs to, after which fitness values were cal-

culated based on Equation 2.8b and Equation 2.8a. At the end of each evolution,

the best controller was selected as the model candidate with the highest fitness

value. Then, each of the 30 best candidates was re-evaluated 100 times with differ-

ent initial configurations, among which the average value of F (T) in Equation 5.9

was computed. Finally, the one with the lowest F (T) was considered as the best

controller throughout 30 evolutions. Its parameters are given in Table 5.4, and

the evolutionary dynamics of each parameter are shown in Figure 5.11(a). Unlike

11Similar to the object clustering study, the model simulation is initialised differently with the
training simulation.

Yue Gu - PhD Thesis 120

(a)

(b)

Figure 5.8: (a) A snapshot presents the training simulation environment of
the shepherding study, where 20 sheep robots (orange disks) and 10 shepherd
robots are randomly placed in a circular area of radius of 200 cm. The goal (blue
disk) is located 400 cm away with a region of radius 100 cm (dotted blue circle).
Green colour indicates that the shepherds are executing the training controller.
(b) A schematic illustrates the shepherd’s training controller, which maps what

the sensor detects in its front onto a pair of wheel velocities.

Yue Gu - PhD Thesis 121

initial configuration after 80 s

after 200 s after 300 s

after 400 s after 1500 s

Figure 5.9: Emergent behaviour of shepherds (green disks) herding sheep
(orange disks) towards the goal (blue disk) with the training controller. The
absolute positions of the sheep are recorded as training data samples and eval-

uated by the discriminator in Turing Learning.

Yue Gu - PhD Thesis 122

(a)

(b)

Figure 5.10: (a) A snapshot presents the model simulation environment of the
shepherding study, where there are 20 sheep robots (orange disks), 10 shepherd
robots and a steady goal (blue disk). They are initialised with the same rules
as in the training simulation. Red colour indicates that the shepherds are ex-
ecuting the model controller. (b) A schematic illustrates the shepherd’s model
controller, which maps what the sensor detects in its front onto a pair of wheel

velocities.

Yue Gu - PhD Thesis 123

Table 5.4: The best model controller v
′

of shepherding learned through Turing
Learning.

v
′

l,0 v
′

l,1 v
′

l,2 v
′

l,3

0.9998 -0.9370 0.0909 -0.9615

v
′
r,0 v

′
r,1 v

′
r,2 v

′
r,3

0.8551 0.9377 -0.6495 0.9779

the object clustering study, the model came up with a strategy to learn the pair of

wheel velocities with respect to each sensor state one by one. The (v
′

l,0, v
′
r,0) was

firstly inferred after 10 generations, followed by (v
′

l,1, v
′
r,1) after 30 generations and

(v
′

l,3, v
′
r,3) after 40 generations. All of these 3 pairs of parameters converged close

to the maximums. (v
′

l,2, v
′
r,2) drifted in the middle. Figure 5.11(b) compares the

quality of the best model controller v
′

with the training controller v in terms of

F (T) during the post-evaluation process. As can be seen, v achieved lower values,

which means that it is able to accomplish the shepherding task faster than v
′
. This

is due to the different emergent behaviours generated by these two controllers.

Behavioural Analysis

Considering the differential wheeled robot kinematics in Section 3.2.2, each sensor

state I is mapped onto a circular motion of the shepherds: when I = 0 (nothing

detected), the shepherd behaves in a clockwise manner; when I = 1 (a sheep

detected), the shepherd rotates in anticlockwise; when I = 2 (another shepherd

detected), the shepherd reverses in clockwise to avoid the other shepherd; when

I = 3 (the goal detected), the shepherd takes a similar move as I = 1 and rotates

in anticlockwise. A sequence of snapshots of a simulation trial with 100 sheep

and 40 shepherds shows the emergent behaviour with the best model controller

in Figure 5.12. Initially, most shepherds are inside of the sheep flock, but they

eventually manage to move to the periphery after 100 s. After this, the shepherds

move to form a circular formation which includes all of the sheep and the goal

inside, then force the sheep to move towards the centroid so that the periphery

shrinks and all sheep stay in one cluster with the goal (after 600 s). Interestingly,

if there are shepherds that are not required to keep all sheep together, they would

Yue Gu - PhD Thesis 124

(a)

(b)

Figure 5.11: (a) Evolutionary dynamics of the parameters of the best model
controller learned through Turing Learning for shepherding task. (b) The per-
formance quality of the training controller v found by the method in the previous
study and the best model controller v

′
learned through Turing Learning in our

formulation. Each box contains 100 trails in simulation.

Yue Gu - PhD Thesis 125

wander outside of the group. We also found that this behaviour is robust and can

be observed with different initial configurations.

The emergent behaviour described above is significantly different to the one gen-

erated by the training controller in Table 5.3. At the beginning of the simulation,

the shepherds prefer not to cage the sheep. Instead, they treat the goal as an-

other “sheep” that does not move and orbit around them. This also explains why

controller v
′

has higher values of F (T) than v. We also noticed that with such a

feature, the controller could potentially deal with the situation where the goal’s

position is dynamically changing. To illustrate that, we tested both the training

controller and the best model controller in an environment of twenty sheep, ten

shepherds and one goal that moves relatively slowly in a circular. Figure 5.13

and Figure 5.14 present snapshots of the simulation with controller v and v
′

re-

spectively. As can be seen, the caging behaviour is not very efficient to track the

dynamical goal. However, by circling the goal and sheep all the time, controller v
′

is able to herd the sheep flock with respect to the changing of the goal’s position.

The reason for this different behaviour could be that the Turing Learning for-

mulation has no knowledge about the objective function F (T). By observing the

trajectory of a single sheep robot, the discriminator figures out that the sheep

tends to move towards the goal in general. However, it could not infer how the

sheep flock behaves due to the lack of global information. To validate that, We de-

composed the objective function and extracted two key opponents: one measures

the average distance from the individual sheep to their centroid; the other mea-

sures the distance from the centroid to the goal. We re-implemented the learning

process of our formulation but fed the discriminator network with this global infor-

mation. Unsurprisingly, a set of 30 evolutions ended with two different controllers.

One controller (among 20 out of 30 evolutions) generates a similar behaviour as

shown above, and the other one from the rest of evolutions performs similarly to

the training controller found with the objective function F (T)12.

12Such controller is given as: v
′

= (v
′

l,0, v
′

r,0, v
′

l,1, v
′

r,1, v
′

l,2, v
′

r,2, v
′

l,3, v
′

r,3) =
(0.935648, 0.755371,−0.990944, 0.997309, 0.0677969,−0.623122, 0.534335, 0.830297).

Yue Gu - PhD Thesis 126

initial configuration after 100 s

after 300 s after 600 s

after 1000 s after 1500 s

Figure 5.12: Emergent behaviour of shepherding with the best model con-
troller. The shepherds (red disks) travel to the periphery and move in a circular
formation that encompasses the goal (blue disk). They herd the sheep (orange

disks) moving inwards so that all sheep successfully reach the goal.

Yue Gu - PhD Thesis 127

initial configuration after 100 s

after 500 s after 600 s

after 1000 s after 1500 s

Figure 5.13: Emergent behaviour of shepherding with the training controller
and a dynamical goal (blue disk). The shepherds (green disks) prefer to cage

the sheep (orange disks) but only reach the goal if it is close to them.

Yue Gu - PhD Thesis 128

initial configuration after 100 s

after 500 s after 600 s

after 1000 s after 1500 s

Figure 5.14: Emergent behaviour of shepherding with the best model con-
troller found in our formulation and a dynamical goal (blue disk). The shep-
herds (green disks) manage to herd the sheep flock (orange disks) following the

goal.

Yue Gu - PhD Thesis 129

Scalability Study

We examined the performance of the best model controller found in our formu-

lation relative to the number of shepherds (nsd ∈ 5, 10, 15, 20, 30, 40) and sheep

(nsp ∈ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100). For each combination of nsd and nsp,

we performed 100 simulations with the training controller v given in Table 5.3 and

the model controller v
′

given in Table 5.4 separately. Each simulation lasted for

1500 s (i.e. 15000 time step in total). To measure the performance, we used the

success rate, which is exactly the same as the one defined in [147] and calculated

the percentage of sheep inside of the goal region at the end of the simulation.

Results are shown in Figure 5.15. The performance of controller v degrades as the

number of shepherds is scaled up to 20, which is due to the same reason reported

in [147]. As the density of robots increases in the environment, the shepherd’s

vision could be easily occluded by others. The performance of controller v
′

scales

up well to a large number of shepherds. With enough shepherds, it can always

accomplish the task with almost all sheep reside within the goal region. This is

very similar to the extended controller in [147], which has two additional sensor

states to ensure the goal is constantly detected by the shepherd.

5.4 Summary

This chapter has presented the simulation results of the Turing Learning algorithm

inferring swarm behaviours indirectly from their effects. In the case study of

object clustering, our method successfully found a controller for robots to collect

all objects in one cluster. The algorithm requires minimal information. The

inference has been done by only observing the trajectory of a single object. The

emergent behaviour is visually close to that of the reference swarm system, but the

controller has different parameter settings. The scalability analysis showed that,

with such a controller, a small number of robots is enough to cluster a relatively

large number of objects. However, the controller is not well scaled up to a large

number of robots. By providing the training data from a large scale simulation, the

Yue Gu - PhD Thesis 130

(a)

(b)

Figure 5.15: Success rates of shepherding (averaged over 100 trials in simula-
tion) for different numbers of sheep and shepherds. (a) The training controller
found by the method reported in the previous study (b) The best model con-

troller learned through Turing Learning in our formulation.

scalability could be dramatically improved. The process of obtaining training data

samples could be inefficient, especially when considering coevolutionary robotics,

given a large number of robots evolved in the simulation. The learning process

could be tailored according to the availability of sources. In the case study of

shepherding, our method successfully found a controller for shepherd robots to herd

all sheep towards the goal position. Again, minimal information is required. The

inference has been done by monitoring the trajectory of a single sheep robot only.

Yue Gu - PhD Thesis 131

From a behavioural analysis, the result controller generated a different emergent

behaviour, where the shepherd robot considered the goal as another “sheep” and

forced all sheep to move together, that is, close to the goal. This is due to the lack of

global information on the sheep flock. Such controller has shown better scalability

with respect to different numbers of shepherds and sheep compared with the pre-

designed one. With enough shepherds, it is able to accomplish the task with a

relatively large number of sheep. An additional study showed that the learned

controller has the potential to be implemented in a situation with a dynamical

goal position. In this chapter, our method has no knowledge about the robot agent

which operates the pre-designed controller. Thus, it is not necessary to compare

the parameter values. The learned controller has been evaluated with manually

designed metrics, and its emergent behaviour has been visually examined.

Chapter 6

Conclusion

6.1 Summary

This thesis presented the advances and applications of the coevolutionary Turing

Learning algorithm in which the population of model candidates and the popu-

lation of discriminator candidates are optimised simultaneously in a competitive

game setting through coevolutionary approaches. Advances are regarding the

techniques that can improve the convergence of coevolution towards better model

accuracy and methods that can achieve a low computational cost without a de-

crease in model accuracy. Applications are regarding the inference of a robotic

agent’s characteristics and the inference of the behavioural controllers for swarm

behaviours. We summarise our findings as follows.

• We extended the discriminator in Turing Learning with the ability to influ-

ence the sampling process through genuine interactions with the model and

the system under investigation and showed that the interactive approach

leads to a better model accuracy compared with the passive approach where

the model and the system are passively observed by the discriminator. We

demonstrated the approach with two case studies: one for a robotic agent in-

ferring its sensor configuration and the other for a robotic agent calibrating

132

Yue Gu - PhD Thesis 133

its distance sensor. The later case study leads to the self-modelling/self-

discovery process of intelligent robots. In both case studies, the interactive

discriminator can freely control the robot’s movements while observing the

robot’s sensor readings in a simulated environment with obstacles. In the

case study of inferring the configuration, the discriminator came up with

a control strategy to examine the robot’s sensor configuration by tracking

obstacles it perceives from any direction. We validated that the sensor-to-

motor correlation is essential for the discrimination task, which means a

fixed sequence of interactions would not be sufficient. In the case study of

calibration, we investigated the effect of the frequency of the discriminator’s

interaction and found that the less frequent the interaction is, the more of-

ten the linear movements (i.e. moving backwards or forward) occur. The

inference tasks in these two case studies are not simple, as the robot starts

from a random location and has no access to the global information (i.e.

relative position and distance to obstacles), and randomness of its motion

and sensing are introduced by noise.

• We presented a hybrid formulation of Turing Learning where the discrimina-

tor is a combination of the interactive one and the passive one. We demon-

strated this hybrid formulation in the calibration case study. We validated

that the hybrid discriminator can retain the advantage of the interactive

discriminator and achieve an almost 50% reduction of the training cost by

reusing recorded data for the passive discriminator. We also demonstrated

a novel reward mechanism along with the hybrid formulation in the cali-

bration study. The mechanism evaluates a candidate’s exclusiveness with

respect to other candidates in the population and promotes the candidate

that performs well against rarely defeated opponents. Meanwhile, design-

ers can adjust the amount of exclusiveness to be evaluated for the desired

performance. Results showed that with a certain amount of exclusiveness,

the coevolution process of Turing Learning could be enhanced, at the same

time, without a decrease in model accuracy.

Yue Gu - PhD Thesis 134

• We proposed a novel approach to infer the local behavioural controllers op-

erated by individuals in a swarm of robots indirectly from the effects on the

environment. We presented two case studies: inference of object clustering

behaviour and shepherding behaviour. Instead of observing the movements

of individual robots as implemented in previous studies in [4], the discrimi-

nator of Turing Learning observes the positions of a randomly picked object

to be clustered, or the positions of a randomly picked sheep in the flock. We

compared the performance of the controller inferred with our approach to

that of the controller learned in previous studies in [24] and [147]. Results

showed that the indirect observation is sufficient to infer the behavioural

controllers for swarm behaviours with good quality or even better perfor-

mance in the scalability. This indirect approach requires a small amount

of data and encourages diverse solutions. In particular, the inferred clus-

tering controller can successfully cluster a large number of objects with a

relatively small number of robots, and the inferred shepherding controller

can effectively herd the sheep flock towards a dynamical goal.

6.2 Future Work

Encouraged by the promising finding of this thesis, some future work could focus

on:

• Design protocols. The coevolutionary framework Turing Learning is not

easy to implement as there are many hyperparameters to be determined,

for example, the number of the population size, the number of generations

and settings regarding the simulation. In this thesis, these are chosen from

preliminary experiments and by experience as well. However, how different

parameters affect the learning outcomes needs a systematic study. Moreover,

an appropriate topology of the discriminator network is required to under-

stand the possible data patterns. Otherwise, the model is not able to evolve

towards the desired one. We continuously use the Elman recurrent network,

Yue Gu - PhD Thesis 135

which has shown good performance in the case studies presented in previ-

ous works and this thesis. However, how different network structures affect

learning outcomes is not well studied. Thus, a proper protocol to design the

framework would be helpful to implement Turing Learning in future studies.

• Physical demonstrations. The case studies presented in this thesis were con-

ducted in simulation. There are two types of simulations running in parallel:

the training simulation and the model simulation. In a physical scenario, the

model simulation could run on a PC or on the physical robot’s onboard pro-

cessor, and the training simulation would be replaced by the data sampling

process in a real-world environment. This leads to the self-learning capability

of a physical robot. Challenges to conducting physical experiments include:

(1) the synchronisation between the physical robot and the software running

on PC; (2) tracking of the physical robot to generate input samples for the

discriminator. Meanwhile, it is interesting to investigate whether a joint

model could be inferred by a combined discrimination task. For example,

the inference of the sensor configuration and the sensor calibration could be

conducted simultaneously. We list two possible ways to achieve the joint in-

ference: (1) running two sub-Turing Learning algorithms in parallel, which

requires a suitable synchronisation mechanism; (2) inferring a joint model

that is expressive enough to cover both inference tasks.

• Complex representations. As described above, one option is to evolve com-

plex models in Turing Learning. In this thesis, models were represented as

vectors of real-valued parameters, which is not sufficient to describe com-

plex systems, such as biological systems. One might notice that there is a

large difference in terms of the magnitudes of model parameters and discrim-

inator parameters. It is not clear whether this difference is essential for a

good performance of the current framework. Preliminary experiments have

shown that evolving neural networks as the model with Turing Learning is

difficult. It is promising to improve the current framework so that complex

models can be inferred. Another option is the complexity of the inference

task in general. Some future work could focus on the inference of real-world

Yue Gu - PhD Thesis 136

data, including behaviour data, such as trajectory data of the fish school,

and non-behavioural data, such as realistic images, through Turing Learning,

especially the coevolutionary framework of Turing Learning.

• Interactive approach to inferring swarm behaviours indirectly. This future

work is mostly curiosity-driven. The interactive approach presented in Chap-

ter 3 and Chapter 4 could potentially be adapted to the case studies in

Chapter 5. One option could be implementing the interactive discriminator

as a manipulator, which can manipulate the objects or the sheep during the

learning process.

Bibliography

[1] A. M. Turing. I.—Computing Machinery and Intelligence. Mind,

LIX(236):433–460, 10 1950.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in Neural Information Processing Systems, pages

2672–2680, MA,USA, 2014. MIT Press.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial networks. Communications of the ACM, 63(11):139–144, 2020.

[4] Wei Li, Melvin Gauci, and Roderich Groß. Turing learning: a metric-free

approach to inferring behavior and its application to swarms. Swarm Intel-

ligence, 10(3):211–243, 2016.

[5] Wei Li, Melvin Gauci, and Roderich Groß. A coevolutionary approach to

learn animal behavior through controlled interaction. In Proceedings of the

15th annual conference on Genetic and evolutionary computation, pages 223–

230, 2013.

[6] Wei Li, Melvin Gauci, and Roderich Groß. Coevolutionary learning of swarm

behaviors without metrics. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pages 201–208, 2014.

[7] Roderich Groß, Yue Gu, Wei Li, and Melvin Gauci. Generalizing gans:

a turing perspective. Advances in neural information processing systems,

30:6316–6326, 2017.

138

Yue Gu - PhD Thesis 139

[8] Martin Arjovsky and Léon Bottou. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[9] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. General-

ization and equilibrium in generative adversarial nets (gans). arXiv preprint

arXiv:1703.00573, 2017.

[10] Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Günter Klam-

bauer, Martin Heusel, Hubert Ramsauer, and Sepp Hochreiter. Coulomb

gans: Provably optimal nash equilibria via potential fields. arXiv preprint

arXiv:1708.08819, 2017.

[11] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization

is locally stable. In Advances in neural information processing systems, pages

5585–5595, 2017.

[12] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of

gans. In Advances in neural information processing systems, pages 1825–

1835, 2017.

[13] Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado. Co-

egan: evaluating the coevolution effect in generative adversarial networks.

In Proceedings of the Genetic and Evolutionary Computation Conference,

pages 374–382, 2019.

[14] Victor Costa, Nuno Lourenço, and Penousal Machado. Coevolution of gener-

ative adversarial networks. In International Conference on the Applications

of Evolutionary Computation (Part of EvoStar), pages 473–487. Springer,

2019.

[15] Victor Costa, Nuno Lourenço, João Correia, and Penousal Machado. Neu-

roevolution of generative adversarial networks. In Deep Neural Evolution,

pages 293–322. Springer, 2020.

Yue Gu - PhD Thesis 140

[16] Shiming Chen, Wenjie Wang, Beihao Xia, Xinge You, Zehong Cao, and

Weiping Ding. Cde-gan: Cooperative dual evolution based generative ad-

versarial network. arXiv preprint arXiv:2008.09388, 2020.

[17] Christopher D Rosin and Richard K Belew. New methods for competitive

coevolution. Evolutionary computation, 5(1):1–29, 1997.

[18] Arpad E Elo. The rating of chessplayers, past and present. Arco Pub., 1978.

[19] Michael Brady. Artificial intelligence and robotics. Artificial intelligence,

26(1):79–121, 1985.

[20] Javier Andreu Perez, Fani Deligianni, Daniele Ravi, and Guang-Zhong Yang.

Artificial intelligence and robotics. arXiv preprint arXiv:1803.10813, 2018.

[21] Josh Bongard, Victor Zykov, and Hod Lipson. Resilient machines through

continuous self-modeling. Science, 314(5802):1118–1121, 2006.

[22] Vinesh Raja and Kiran J Fernandes. Reverse engineering: an industrial

perspective. Springer Science & Business Media, 2007.

[23] Johan J Bolhuis and Luc-Alain Ed Giraldeau. The behavior of animals:

Mechanisms, function, and evolution. Blackwell Publishing, 2005.

[24] Melvin Gauci, Jianing Chen, Wei Li, Tony J Dodd, and Roderich Groß.

Clustering objects with robots that do not compute. In Proceedings of the

2014 international conference on Autonomous agents and multi-agent sys-

tems, pages 421–428, 2014.

[25] Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. Turing test: 50 years

later. Minds and machines, 10(4):463–518, 2000.

[26] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shan-

non. A proposal for the dartmouth summer research project on artificial

intelligence, august 31, 1955. AI magazine, 27(4):12–12, 2006.

Yue Gu - PhD Thesis 141

[27] Joseph Weizenbaum. Eliza—a computer program for the study of natural

language communication between man and machine. Communications of the

ACM, 9(1):36–45, 1966.

[28] A Newell and JC Shaw. A variety op intelligent learning in a general problem

solver. RAND Report P-1742, dated July, 6, 1959.

[29] James Lighthill. Artificial intelligence: A general survey. In Artificial Intel-

ligence: a paper symposium, pages 1–21. Science Research Council London,

1973.

[30] Shu-Hsien Liao. Expert system methodologies and applications—a decade

review from 1995 to 2004. Expert systems with applications, 28(1):93–103,

2005.

[31] Andreas Kaplan and Michael Haenlein. Siri, siri, in my hand: Who’s the

fairest in the land? on the interpretations, illustrations, and implications of

artificial intelligence. Business Horizons, 62(1):15–25, 2019.

[32] Donald Olding Hebb. The organization of behavior: a neuropsychological

theory. J. Wiley; Chapman & Hall, 1949.

[33] Eugene Charniak. Introduction to artificial intelligence. Pearson Education

India, 1985.

[34] Blay Whitby. Reflections on artificial intelligence. Intellect Books, 1996.

[35] John McCarthy. What is artificial intelligence. Computer Science Depart-

ment, Stanford University, page 2, 2007.

[36] John R Searle et al. Minds, brains, and programs. The Turing Test: Verbal

Behaviour as the Hallmark of Intelligence, pages 201–224, 1980.

[37] Rodney A Brooks. Intelligence without representation. Artificial intelligence,

47(1-3):139–159, 1991.

[38] Rodney A Brooks et al. Intelligence without reason. Artificial intelligence:

critical concepts, 3:107–63, 1991.

Yue Gu - PhD Thesis 142

[39] Rodney A Brooks. Elephants don’t play chess. Robotics and autonomous

systems, 6(1-2):3–15, 1990.

[40] Robin R Murphy. Introduction to AI robotics. MIT press, 2019.

[41] Nils J Nilsson et al. Shakey the robot. 1984.

[42] Rodney A Brooks. New approaches to robotics. Science, 253(5025):1227–

1232, 1991.

[43] Ronald C Arkin, Ronald C Arkin, et al. Behavior-based robotics. MIT press,

1998.

[44] Rodney Brooks. A robust layered control system for a mobile robot. IEEE

journal on robotics and automation, 2(1):14–23, 1986.

[45] Marc H Raibert. Legged robots that balance. MIT press, 1986.

[46] Rodney A Brooks. A robot that walks; emergent behaviors from a carefully

evolved network. Neural computation, 1(2):253–262, 1989.

[47] Alessandro Saffiotti, Kurt Konolige, and Enrique H Ruspini. A multivalued

logic approach to integrating planning and control. Artificial intelligence,

76(1-2):481–526, 1995.

[48] Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Gerhard

Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. The interac-

tive museum tour-guide robot. In Aaai/iaai, pages 11–18, 1998.

[49] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard, Armin B Cremers,

Frank Dellaert, Dieter Fox, Dirk Hahnel, Charles Rosenberg, Nicholas Roy,

Jamieson Schulte, et al. Minerva: A second-generation museum tour-guide

robot. In Proceedings 1999 IEEE International Conference on Robotics and

Automation (Cat. No. 99CH36288C), volume 3. IEEE, 1999.

[50] Nicola Muscettola, P Pandurang Nayak, Barney Pell, and Brian C Williams.

Remote agent: To boldly go where no ai system has gone before. Artificial

intelligence, 103(1-2):5–47, 1998.

Yue Gu - PhD Thesis 143

[51] Kanna Rajan, Douglas Bernard, Gregory Dorais, Edward Gamble, Bob

Kanefsky, James Kurien, William Millar, Nicola Muscettola, P Pandurang

Nayak, Nicolas F Rouquette, et al. Remote agent: An autonomous control

system for the new millennium. In ECAI, volume 14, pages 726–730, 2000.

[52] Charles Darwin. The origin of species. PF Collier & son New York, 1909.

[53] Michael M Desai and Daniel S Fisher. Beneficial mutation–selection balance

and the effect of linkage on positive selection. Genetics, 176(3):1759–1798,

2007.

[54] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary com-

puting, volume 53. Springer, 2003.

[55] David B Fogel. Evolutionary computation. the fossil record. selected readings

on the history of evolutionary computation. Classifier Systems, 1998.

[56] Thomas Back and H-P Schwefel. Evolutionary computation: An overview.

In Proceedings of IEEE International Conference on Evolutionary Compu-

tation, pages 20–29. IEEE, 1996.

[57] Sewall Wright. The roles of mutation, inbreeding, crossbreeding, and selec-

tion in evolution. 1932.

[58] Kenneth De Jong. Evolutionary computation: a unified approach. In Pro-

ceedings of the 2016 on Genetic and Evolutionary Computation Conference

Companion, pages 185–199, 2016.

[59] George J Friedman. Selective feedback computers for engineering synthesis

and nervous system analogy. Master’s thesis, UCLA, Engineering, 1956.

[60] John Henry Holland et al. Adaptation in natural and artificial systems:

an introductory analysis with applications to biology, control, and artificial

intelligence. MIT press, 1992.

[61] Darrell Whitley. Genitor: A different genetic algorithm. In Proceedings of the

Rocky Mountain conference on artificial intelligence, 1988, pages 118–130,

1988.

Yue Gu - PhD Thesis 144

[62] Ingo Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der

Medizin und Biologie, pages 83–114. Springer, 1978.

[63] Hans-Paul Paul Schwefel. Evolution and optimum seeking: the sixth gener-

ation. John Wiley & Sons, Inc., 1993.

[64] David B Fogel. Evolutionary computation. IEEE Press, 1995.

[65] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. Artificial intelligence

through simulated evolution. 1966.

[66] David B Fogel and J Wirt Atmar. Comparing genetic operators with gaus-

sian mutations in simulated evolutionary processes using linear systems. Bi-

ological Cybernetics, 63(2):111–114, 1990.

[67] John R Koza. Non-linear genetic algorithms for solving problems by finding

a fit composition of functions, August 4 1992. US Patent 5,136,686.

[68] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. Handbook of

evolutionary computation. Release, 97(1):B1, 1997.

[69] Agoston E Eiben and Jim Smith. From evolutionary computation to the

evolution of things. Nature, 521(7553):476–482, 2015.

[70] John N Thompson. Concepts of coevolution. Trends in Ecology & Evolution,

4(6):179–183, 1989.

[71] Elena Popovici, Anthony Bucci, R Paul Wiegand, and Edwin D De Jong.

Coevolutionary principles., 2012.

[72] Robert Axelrod. The evolution of strategies in the iterated prisoner’s

dilemma. Genetic algorithms and simulated annealing, pages 32–41, 1987.

[73] Karl Sims. Evolving 3d morphology and behavior by competition. Artificial

life, 1(4):353–372, 1994.

[74] Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary

approach to function optimization. In International Conference on Parallel

Problem Solving from Nature, pages 249–257. Springer, 1994.

Yue Gu - PhD Thesis 145

[75] Phil Husbands. Distributed coevolutionary genetic algorithms for multi-

criteria and multi-constraint optimisation. In AISB Workshop on Evolu-

tionary Computing, pages 150–165. Springer, 1994.

[76] Jan Paredis. The symbiotic evolution of solutions and their representations.

In Proceedings of the Sixth International Conference on Genetic Algorithms

(ICGA95). Morgan Kaufmann Publishers, 1995.

[77] Lawrence Bull, Terence C Fogarty, C Langton, and K Shimohara. Horizon-

tal gene transfer in endosymbiosis. In Proceedings of the 5th International

Workshop on Artificial Life: Synthesis and Simulation of Living Systems

(ALIFE-96), pages 77–84. MIT Press, Cambridge, MA, 1997.

[78] W Daniel Hillis. Co-evolving parasites improve simulated evolution as an

optimization procedure. Physica D: Nonlinear Phenomena, 42(1-3):228–234,

1990.

[79] Jan Paredis. Coevolutionary computation. Artificial life, 2(4):355–375, 1995.

[80] John R Koza and John R Koza. Genetic programming: on the programming

of computers by means of natural selection, volume 1. MIT press, 1992.

[81] Liviu Panait and Sean Luke. A comparative study of two competitive fit-

ness functions. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2002), pages 503–511. Citeseer, 2002.

[82] Sean Luke et al. Genetic programming produced competitive soccer softbot

teams for robocup97. Genetic Programming, 1998:214–222, 1998.

[83] Josh C Bongard and Hod Lipson. Nonlinear system identification using

coevolution of models and tests. IEEE Transactions on Evolutionary Com-

putation, 9(4):361–384, 2005.

[84] John Cartlidge and Seth Bullock. Combating coevolutionary disengagement

by reducing parasite virulence. Evolutionary computation, 12(2):193–222,

2004.

Yue Gu - PhD Thesis 146

[85] Hugues Juille and Jordan B Pollack. Coevolving the” ideal” trainer: Applica-

tion to the discovery of cellular automata rules. In University of Wisconsin.

Citeseer, 1998.

[86] Shiu Yin Yuen, Yang Lou, and Xin Zhang. Selecting evolutionary algorithms

for black box design optimization problems. Soft Computing, 23(15):6511–

6531, 2019.

[87] Melvin Gauci. Swarm robotic systems with minimal information processing.

PhD thesis, University of Sheffield, 2014.

[88] Richard Bellman. Dynamic programming and lagrange multipliers. Proceed-

ings of the National Academy of Sciences of the United States of America,

42(10):767, 1956.

[89] Lennart Ljung. System identification. Wiley encyclopedia of electrical and

electronics engineering, pages 1–19, 1999.

[90] Kristinn Kristinsson and Guy Albert Dumont. System identification and

control using genetic algorithms. IEEE Transactions on Systems, Man, and

Cybernetics, 22(5):1033–1046, 1992.

[91] IJ Leontaritis and Stephen A Billings. Input-output parametric models for

non-linear systems part i: deterministic non-linear systems. International

journal of control, 41(2):303–328, 1985.

[92] Carlos M Fonseca. Non-linear model term selection with genetic algorithms.

In Proceedings of IEE/IEEE Workshop on Natural Algorithms in Signal Pro-

cessing, volume 2, pages 271–278, 1993.

[93] GC Luh and CY Wu. Non-linear system identification using genetic al-

gorithms. Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, 213(2):105–118, 1999.

[94] Jinyao Yan and John R Deller Jr. Narmax model identification using a

set-theoretic evolutionary approach. Signal Processing, 123:30–41, 2016.

Yue Gu - PhD Thesis 147

[95] Peter Marenbach and Kurt D Bettenhausen. Data-driven structured mod-

elling of a biotechnological fed-batch fermentation by means of genetic pro-

gramming. Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, 211(5):325–332, 1997.

[96] Gary J Gray, David J Murray-Smith, Yun Li, Ken C Sharman, and Thomas

Weinbrenner. Nonlinear model structure identification using genetic pro-

gramming. Control Engineering Practice, 6(11):1341–1352, 1998.

[97] Katya Rodriguez-Vazquez, Carlos M Fonseca, and Peter J Fleming. Multiob-

jective genetic programming: A nonlinear system identification application.

In Late breaking papers at the 1997 genetic programming conference, pages

207–212. Citeseer, 1997.

[98] William B Langdon and Riccardo Poli. Fitness causes bloat. In Soft Com-

puting in Engineering Design and Manufacturing, pages 13–22. Springer,

1998.

[99] Dag Ljungquist and Jens G Balchen. Recursive prediction error methods for

online estimation in nonlinear state-space models. In Proceedings of 32nd

IEEE Conference on Decision and Control, pages 714–719. IEEE, 1993.

[100] SH Choi, CO Lee, and HS Cho. Friction compensation control of an elec-

tropneumatic servovalve by using an evolutionary algorithm. Proceedings

of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering, 214(3):173–184, 2000.

[101] Josh C Bongard. Evolutionary robotics. Communications of the ACM,

56(8):74–83, 2013.

[102] Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, and Agoston

E Gusz Eiben. Evolutionary robotics: what, why, and where to. Frontiers

in Robotics and AI, 2:4, 2015.

[103] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.

springer, 2016.

Yue Gu - PhD Thesis 148

[104] Hod Lipson and Jordan B Pollack. Automatic design and manufacture of

robotic lifeforms. Nature, 406(6799):974–978, 2000.

[105] Josh Bongard. Morphological change in machines accelerates the evolu-

tion of robust behavior. Proceedings of the National Academy of Sciences,

108(4):1234–1239, 2011.

[106] David M Bryson and Charles Ofria. Understanding evolutionary potential

in virtual cpu instruction set architectures. PLoS One, 8(12):e83242, 2013.

[107] Bérénice Batut, David P Parsons, Stephan Fischer, Guillaume Beslon, and

Carole Knibbe. In silico experimental evolution: a tool to test evolutionary

scenarios. In BMC bioinformatics, volume 14, pages 1–11. Springer, 2013.

[108] Jean-Marc Montanier and Nicolas Bredeche. Surviving the tragedy of com-

mons: Emergence of altruism in a population of evolving autonomous agents.

In European Conference on Artificial Life, 2011.

[109] Markus Waibel, Dario Floreano, and Laurent Keller. A quantitative test

of hamilton’s rule for the evolution of altruism. PLoS Biol, 9(5):e1000615,

2011.

[110] Steffen Wischmann, Dario Floreano, and Laurent Keller. Historical contin-

gency affects signaling strategies and competitive abilities in evolving popu-

lations of simulated robots. Proceedings of the National Academy of Sciences,

109(3):864–868, 2012.

[111] Gregory S Hornby, Seiichi Takamura, Takashi Yamamoto, and Masahiro

Fujita. Autonomous evolution of dynamic gaits with two quadruped robots.

IEEE transactions on Robotics, 21(3):402–410, 2005.

[112] Dario Floreano, Phil Husbands, and Stefano Nolfi. Evolutionary robotics.

Technical report, Springer Verlag, 2008.

[113] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap:

The use of simulation in evolutionary robotics. In European Conference on

Artificial Life, pages 704–720. Springer, 1995.

Yue Gu - PhD Thesis 149

[114] Sevan G Ficici, Richard A Watson, and Jordan B Pollack. Embodied evolu-

tion: A response to challenges in evolutionary robotics. In Proceedings of the

eighth European workshop on learning robots, pages 14–22. Citeseer, 1999.

[115] Nicolas Bredeche, Jean-Marc Montanier, Wenguo Liu, and Alan FT Win-

field. Environment-driven distributed evolutionary adaptation in a popula-

tion of autonomous robotic agents. Mathematical and Computer Modelling

of Dynamical Systems, 18(1):101–129, 2012.

[116] Nicolas Bredeche. Embodied evolutionary robotics with large number of

robots. In Artificial Life Conference Proceedings 14, pages 272–273. MIT

Press, 2014.

[117] Francisco Bellas, Richard J Duro, Andrés Faiña, and Daniel Souto. Multi-

level darwinist brain (mdb): Artificial evolution in a cognitive architecture

for real robots. IEEE Transactions on autonomous mental development,

2(4):340–354, 2010.

[118] Chrisantha Thomas Fernando, Eors Szathmary, and Phil Husbands. Selec-

tionist and evolutionary approaches to brain function: a critical appraisal.

Frontiers in computational neuroscience, 6:24, 2012.

[119] Jens Krause, Graeme D Ruxton, and Stefan Krause. Swarm intelligence in

animals and humans. Trends in ecology & evolution, 25(1):28–34, 2010.

[120] Scott Camazine, Jean-Louis Deneubourg, Nigel R Franks, James Sneyd,

Guy Theraula, and Eric Bonabeau. Self-organization in biological systems.

Princeton university press, 2003.

[121] Pierre-Paul Grassé. Les Insectes et leur univers. Palais de la Découverte,

1949.

[122] Plerre-P Grassé. La reconstruction du nid et les coordinations interindi-

viduelles chezbellicositermes natalensis etcubitermes sp. la théorie de la stig-

mergie: Essai d’interprétation du comportement des termites constructeurs.

Insectes sociaux, 6(1):41–80, 1959.

Yue Gu - PhD Thesis 150

[123] Owen Holland and Chris Melhuish. Stigmergy, self-organization, and sorting

in collective robotics. Artificial life, 5(2):173–202, 1999.

[124] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems.

In Robots and biological systems: towards a new bionics?, pages 703–712.

Springer, 1993.

[125] Krzysztof Socha and Marco Dorigo. Ant colony optimization for continuous

domains. European journal of operational research, 185(3):1155–1173, 2008.

[126] Bo Liu, Ling Wang, and Yi-Hui Jin. An effective pso-based memetic algo-

rithm for flow shop scheduling. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 37(1):18–27, 2007.

[127] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Positive feedback as

a search strategy. 1991.

[128] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: opti-

mization by a colony of cooperating agents. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[129] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a coopera-

tive learning approach to the traveling salesman problem. IEEE Transactions

on evolutionary computation, 1(1):53–66, 1997.

[130] Krzysztof Socha, Michael Sampels, and Max Manfrin. Ant algorithms for

the university course timetabling problem with regard to the state-of-the-art.

In Workshops on Applications of Evolutionary Computation, pages 334–345.

Springer, 2003.

[131] Christian Blum and Michael Sampels. An ant colony optimization algo-

rithm for shop scheduling problems. Journal of Mathematical Modelling and

Algorithms, 3(3):285–308, 2004.

[132] Marc Reimann, Karl Doerner, and Richard F Hartl. D-ants: Savings based

ants divide and conquer the vehicle routing problem. Computers & Opera-

tions Research, 31(4):563–591, 2004.

Yue Gu - PhD Thesis 151

[133] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimiza-

tion. IEEE computational intelligence magazine, 1(4):28–39, 2006.

[134] James Kennedy and Russell Eberhart. Particle swarm optimization. In Pro-

ceedings of ICNN’95-international conference on neural networks, volume 4,

pages 1942–1948. IEEE, 1995.

[135] Daniel Bratton and James Kennedy. Defining a standard for particle swarm

optimization. In 2007 IEEE swarm intelligence symposium, pages 120–127.

IEEE, 2007.

[136] Alec Banks, Jonathan Vincent, and Chukwudi Anyakoha. A review of par-

ticle swarm optimization. part i: background and development. Natural

Computing, 6(4):467–484, 2007.

[137] Alec Banks, Jonathan Vincent, and Chukwudi Anyakoha. A review of par-

ticle swarm optimization. part ii: hybridisation, combinatorial, multicriteria

and constrained optimization, and indicative applications. Natural Comput-

ing, 7(1):109–124, 2008.

[138] Erol Şahin. Swarm robotics: From sources of inspiration to domains of appli-

cation. In International workshop on swarm robotics, pages 10–20. Springer,

2004.

[139] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.

Swarm robotics: a review from the swarm engineering perspective. Swarm

Intelligence, 7(1):1–41, 2013.

[140] Jan Dyre Bjerknes and Alan FT Winfield. On fault tolerance and scalability

of swarm robotic systems. In Distributed autonomous robotic systems, pages

431–444. Springer, 2013.

[141] Jean-Louis Deneubourg, Simon Goss, Nigel Franks, Ana Sendova-Franks,

Claire Detrain, and Laeticia Chrétien. The dynamics of collective sorting

robot-like ants and ant-like robots. In From animals to animats: proceedings

Yue Gu - PhD Thesis 152

of the first international conference on simulation of adaptive behavior, pages

356–365, 1991.

[142] Ralph Beckers, Owen E Holland, and Jean-Louis Deneubourg. Fom local

actions to global tasks: Stigmergy and collective robotics. In Prerational

Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols

and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary

Perspectives on the Behavior of Natural and Artificial Systems, Volume 3,

pages 1008–1022. Springer, 2000.

[143] Richard Vaughan, Neil Sumpter, Jane Henderson, Andy Frost, and Stephen

Cameron. Experiments in automatic flock control. Robotics and autonomous

systems, 31(1-2):109–117, 2000.

[144] Jyh-Ming Lien, Samuel Rodriguez, Jean-Phillipe Malric, and Nancy M Am-

ato. Shepherding behaviors with multiple shepherds. In Proceedings of the

2005 IEEE International Conference on Robotics and Automation, pages

3402–3407. IEEE, 2005.

[145] Daniel Strömbom, Richard P Mann, Alan M Wilson, Stephen Hailes, A Jen-

nifer Morton, David JT Sumpter, and Andrew J King. Solving the shepherd-

ing problem: heuristics for herding autonomous, interacting agents. Journal

of the royal society interface, 11(100):20140719, 2014.

[146] Alyssa Pierson and Mac Schwager. Bio-inspired non-cooperative multi-robot

herding. In ICRA, pages 1843–1849. Citeseer, 2015.

[147] Anil Özdemir, Melvin Gauci, and Roderich Groß. Shepherding with robots

that do not compute. In Artificial Life Conference Proceedings 14, pages

332–339. MIT Press, 2017.

[148] Vito Trianni. Evolutionary swarm robotics: evolving self-organising be-

haviours in groups of autonomous robots, volume 108. Springer, 2008.

[149] Stefano Nolfi and Dario Floreano. Evolutionary robotics: The biology, intel-

ligence, and technology of self-organizing machines. MIT press, 2000.

Yue Gu - PhD Thesis 153

[150] Marco Dorigo, Vito Trianni, Erol Şahin, Roderich Groß, Thomas H Labella,

Gianluca Baldassarre, Stefano Nolfi, Jean-Louis Deneubourg, Francesco

Mondada, Dario Floreano, et al. Evolving self-organizing behaviors for a

swarm-bot. Autonomous Robots, 17(2):223–245, 2004.

[151] Roderich Groß and Marco Dorigo. Evolution of solitary and group trans-

port behaviors for autonomous robots capable of self-assembling. Adaptive

Behavior, 16(5):285–305, 2008.

[152] Joel Lehman and Kenneth O Stanley. Novelty search and the problem with

objectives. In Genetic programming theory and practice IX, pages 37–56.

Springer, 2011.

[153] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. Evolution of

swarm robotics systems with novelty search. Swarm Intelligence, 7(2):115–

144, 2013.

[154] Heiko Hamann. Evolution of collective behaviors by minimizing surprise. In

Artificial Life Conference Proceedings 14, pages 344–351. MIT Press, 2014.

[155] Tanja Katharina Kaiser and Heiko Hamann. Self-organized construction by

minimal surprise. In 2019 IEEE 4th International Workshops on Founda-

tions and Applications of Self* Systems (FAS* W), pages 213–218. IEEE,

2019.

[156] Tanja Katharina Kaiser and Heiko Hamann. Engineered self-organization

for resilient robot self-assembly with minimal surprise. Robotics and Au-

tonomous Systems, 122:103293, 2019.

[157] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations

of machine learning. MIT press, 2018.

[158] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspec-

tives, and prospects. Science, 349(6245):255–260, 2015.

[159] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,

2012.

Yue Gu - PhD Thesis 154

[160] Diederik P Kingma. Fast gradient-based inference with continuous latent

variable models in auxiliary form. arXiv preprint arXiv:1306.0733, 2013.

[161] Geoffrey E Hinton, Terrence J Sejnowski, and David H Ackley. Boltzmann

machines: Constraint satisfaction networks that learn. Carnegie-Mellon Uni-

versity, Department of Computer Science Pittsburgh, PA, 1984.

[162] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep

generative stochastic networks trainable by backprop. In International Con-

ference on Machine Learning, pages 226–234, 2014.

[163] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160, 2016.

[164] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep

generative image models using a laplacian pyramid of adversarial networks.

arXiv preprint arXiv:1506.05751, 2015.

[165] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired

image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE international conference on computer vision, pages

2223–2232, 2017.

[166] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-

ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes

Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using

a generative adversarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690, 2017.

[167] Kunfeng Wang, Chao Gou, Yanjie Duan, Yilun Lin, Xinhu Zheng, and

Fei-Yue Wang. Generative adversarial networks: introduction and outlook.

IEEE/CAA Journal of Automatica Sinica, 4(4):588–598, 2017.

[168] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A Bharath. Generative adversarial networks: An

overview. IEEE Signal Processing Magazine, 35(1):53–65, 2018.

Yue Gu - PhD Thesis 155

[169] Frans A Oliehoek, Rahul Savani, Jose Gallego-Posada, Elise Van der Pol,

Edwin D De Jong, and Roderich Groß. Gangs: Generative adversarial net-

work games. arXiv preprint arXiv:1712.00679, 2017.

[170] Dirk Helbing and Anders Johansson. Pedestrian, crowd, and evacuation

dynamics. arXiv preprint arXiv:1309.1609, 2013.

[171] Alessandro Zonta, Selmar K Smit, Evert Haasdijk, and Agoston E Eiben.

Modelling human movements with turing learning. In 2018 IEEE Symposium

Series on Computational Intelligence (SSCI), pages 2254–2261, Bangalore,

India, 2018. IEEE.

[172] Alan M Turing. Computing machinery and intelligence. Creative Computing,

6(1):44–53, 1980.

[173] Emily Baird, Marcus J Byrne, Jochen Smolka, Eric J Warrant, and Marie

Dacke. The dung beetle dance: an orientation behaviour? PLoS One,

7(1):e30211, 2012.

[174] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–

211, 1990.

[175] S. Magnenat, M. Waibel, and A. Beyeler. Enki: The fast 2D robot simulator,

2011. https://github.com/enki-community/enki.

[176] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christo-

pher Cianci, Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zuf-

ferey, Dario Floreano, and Alcherio Martinoli. The e-puck, a robot designed

for education in engineering. In Proceedings of the 9th conference on au-

tonomous robot systems and competitions, volume 1, pages 59–65. IPCB:

Instituto Politécnico de Castelo Branco, 2009.

[177] Thomas Hellström. Kinematics equations for differential drive and articu-

lated steering. Department of Computing Science, Ume̊a University, 2011.

[178] Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi. Evolving mobile

robots in simulated and real environments. Artificial life, 2(4):417–434, 1995.

https://github.com/enki-community/enki

Yue Gu - PhD Thesis 156

[179] Nick Jakobi. Minimal simulations for evolutionary robotics. PhD thesis,

University of Sussex, 1998.

[180] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a compre-

hensive introduction. Natural computing, 1(1):3–52, 2002.

[181] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky.

Few-shot adversarial learning of realistic neural talking head models. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages

9459–9468, Seoul, Korea, 2019. IEEE.

[182] Akshay Mehrotra and Ambedkar Dukkipati. Generative adversarial residual

pairwise networks for one shot learning. arXiv preprint arXiv:1703.08033,

1(1):1–8, 2017.

[183] He Zhang, Vishwanath Sindagi, and Vishal M Patel. Image de-raining using

a conditional generative adversarial network. IEEE Transactions on Circuits

and Systems for Video Technology, 5(1):1–1, 2019.

[184] Josh C. Bongard and Hod Lipson. Nonlinear system identification using

coevolution of models and tests. Transactions on Evolutionary Computation,

9(4):361–384, August 2005.

[185] Yu Sun and John M. Hollerbach. Active robot calibration algorithm. In

2008 IEEE International Conference on Robotics and Automation, pages

1276–1281, CA, USA, May 2008. IEEE.

[186] Arpad E. Elo and Sam Sloan. The rating of chessplayers, past and present.

Ishi Press, Japan, 2008.

[187] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transfer-

ability approach: Crossing the reality gap in evolutionary robotics. IEEE

Transactions on Evolutionary Computation, 17(1):122–145, 2012.

[188] Melvin Gauci, Jianing Chen, Wei Li, Tony J Dodd, and Roderich Groß.

Self-organized aggregation without computation. The International Journal

of Robotics Research, 33(8):1145–1161, 2014.

Yue Gu - PhD Thesis 157

[189] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-

ford, and Xi Chen. Improved techniques for training gans. In Advances in

Neural Information Processing Systems, pages 2234–2242, USA, 2016. MIT.

[190] Dan Zhang and Anna Khoreva. Progressive augmentation of gans. In Ad-

vances in Neural Information Processing Systems, pages 6246–6256, USA,

2019. MIT.

[191] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. Improved training of wasserstein gans. In Advances in

Neural Information Processing Systems, pages 5767–5777, MA,USA, 2017.

MIT Press.

[192] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-

adaptation in evolution strategies. Evolutionary computation, 9(2):159–195,

2001.

[193] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772, 2016.

[194] Ronald L. Graham and Neil JA Sloane. Penny-packing and two-dimensional

codes. Discrete & Computational Geometry, 5(1):1–11, 1990.

[195] Eliseo Ferrante, Ali Emre Turgut, Cristián Huepe, Alessandro Stranieri,

Carlo Pinciroli, and Marco Dorigo. Self-organized flocking with a mobile

robot swarm: a novel motion control method. Adaptive Behavior, 20(6):460–

477, 2012.

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Preview of Contributions
	1.4 Publications
	1.5 Thesis Outline

	2 Background and Related Work
	2.1 Development of AI and Robotics
	2.1.1 A Historical Review of AI
	2.1.2 Combining AI and Robotics

	2.2 Evolutionary Computation
	2.2.1 The Inspiration from Biology
	2.2.2 Introduction to Evolutionary Computation
	2.2.3 Applications

	2.3 Swarm Intelligence
	2.3.1 Natural Swarms
	2.3.2 Swarm Optimisation
	2.3.3 Swarm Robotics

	2.4 Problem Formalisation
	2.4.1 Generative Adversarial Networks
	2.4.2 Turing Learning
	2.4.3 Turing Learning Formalisation

	3 Inferring Sensor Configuration through Self-Discovery
	3.1 Introduction
	3.2 Methodology
	3.2.1 Coevolutionary Framework of Turing Learning
	3.2.2 Simulation Platform

	3.3 Case Study
	3.3.1 Problem Formulation
	3.3.2 Turing Learning Implementation
	3.3.3 Simulation Setup
	3.3.4 Simulation Results

	3.4 Summary

	4 Combining the Best of Active and Passive Learning
	4.1 Introduction
	4.2 Methodology
	4.2.1 Hybrid Turing Learning Formulation
	4.2.2 Exclusiveness Reward Mechanism

	4.3 Case Study
	4.3.1 Robot Simulation Platform
	4.3.2 Hybrid Turing Learning Implementation
	4.3.3 Simulation Results

	4.4 Summary

	5 Inferring Swarm Behaviours from Their Effects
	5.1 Introduction
	5.2 Methodology
	5.2.1 Problem Formulation
	5.2.2 Simulation Platform
	5.2.2.1 Sensor
	5.2.2.2 Controller

	5.2.3 Turing Learning Implementation

	5.3 Case Studies
	5.3.1 Object Clustering
	5.3.1.1 Simulation Setup
	5.3.1.2 Simulation Results

	5.3.2 Shepherding
	5.3.2.1 Simulation Setup
	5.3.2.2 Simulation Results

	5.4 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

