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Abstract

This thesis studies the applications of Reinforcement Learning (RL) in designing an intelli-

gent MAC protocols for linear chain Underwater Acoustic Sensor Networks (UASNs) suitable

for marine pipeline monitoring. The key objective is to explore and devise simple strategies that

re-imagine RL based algorithms with reduced inefficiencies due to overheads to improve chan-

nel utilisation and adaptability. Inspired by the successful implementation of RL on ALOHA in

the recently proposed terrestrial ALOHA-Q, we explored the feasibility of applying similar ap-

proach in UASNs. The evaluation of ALOHA-Q in UASN, has shown the potential benefits to

employing RL for adaptable underwater MAC design, however, new strategies on slot structure

and method of feedback are needed for good utilisation.

Based on the relationship between packet duration and propagation delay, this thesis pro-

posed two efficient slot structures. The viability of these slot structures are pictorially anal-

ysed and empirically evaluated for incorporation in MAC protocol implementation. The thesis

presents novel RL based algorithms without any explicit feedback signal. Rather, it exploits

packet flow in a two stage mechanism to simultaneously drive a slot selection Q-learning algo-

rithm and a stochastic averaging function that heuristically measured the network wide optimal

flow harmony, thereby, effectively creating a simple, powerfully adaptive intelligent scheduling

with huge performance improvement.
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Chapter 1

Introduction

1.1 Motivation

As an analogue of terrestrial Wireless Sensor Networks (WSNs), Underwater Acoustic Sensor

Networks (UASN) are envisaged to enable a multitude of civilian and military applications,

such as: environmental and infrastructural monitoring, to assisted navigation, surveillance, and

exploration [1, 2, 3]. Monitoring of offshore infrastructure particularly, in the oil and gas sector

is of immense economic valuable [4, 5], and in the event of sabotage or accidents, they pose

huge risks of ecological damage. Moreover, the dwindling oil prices are making the industry

resort to measures of extending the useful lifespan of offshore installations such as marine

pipelines, arguably, that will increase the associated risks. An underwater acoustic multi-hop

network of sensors deployed along the asset or distributed on site has the potential to monitor

assets integrity and also proximity coverage for the whole site. To enable and advance these

applications, sensor nodes are being developed to be small/compact for easy transport, given

that the environment is characteristically challenging to access. There is interest in new sensor

nodes being energy efficient for longer deployments; as currently, there is no viable energy

harvesting technology. Nodes should also be inexpensive to lower the overall cost, since UASNs

are envisaged to be deployed to cover substantial marine areas and require a large number of

devices.

1
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The use of acoustic waves in UASNs instead of Electromagnetic waves (EM) imposes some

unique channel-centric constraints, such as limited capacity, long and variable propagation de-

lay. Medium Access Control (MAC) is one of the key requirements for the development of

UASNs. Moreover, in the highly dynamic underwater environment, MAC protocols need to

be adaptive to changing conditions as well. As such, there is growing demand for efficient

MAC solutions, especially adaptive MAC protocols for practical networks. Researchers have

proposed several adaptive techniques that combined two or more existing/different schemes

to create hybrid MAC protocols with some notable performance gains in utilisation, energy

efficiency and delay performance. However, given the typical need for pre-planning of each

potential situation, this approach is inherently complex.

Reinforcement Learning (RL) is an intelligent promising solution used in MAC protocols

to provide adaptability and robustness in wireless sensor networks. The RL Algorithm employs

an online learning that continually assess the network condition through feedback and appro-

priately responds with a view towards maintaining (as much as possible) a collision-free sched-

ule. This intelligent solution inherently addressed the need for smart channel sharing policy,

self-organisation due to dynamic changes in environment or network conditions and simplicity.

however, owing to its reliance on Acknowledgement (ACK) to work the protocol is not suitable

for UASNs. Notwithstanding the demonstrably degraded performance, there are adaptability

benefits to the approach. The simplicity of random access strategy and distributive robustness

of Q-learning, inspired this work in devising a set of simple strategies on efficient slot struc-

turing, and exploitation of packets streams in a dual control stages to propose a novel MAC

protocol capable of huge improvements in performance. Simulations results have empirically

demonstrated that it is possible to for MAC protocols to achieve huge performance improve-

ments whilst maintaining adaptability without waiting for an explicit feedback for nodes action.
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1.2 Hypothesis

The cardinal function of MAC protocol is to efficiently share and regulate channel access be-

tween competing nodes by mitigating or eliminating collisions. All MAC schemes and design

techniques aims to ensure a ”healthy” flow of data between source(s) and intended destina-

tion(s), with a quantifiable improvement in utilisation, delay and energy performance. Given

no single MAC scheme is suitable for all scenarios nor efficient for all performance measures,

for a specific scenario or target application, researchers have proposed several MAC strategies

with the goal of optimising performance in terms of one or a combination of utilisation, delay

or energy consumption. There are tradeoffs between these performance optimisations benefits

and an increase in control signals/measures or overall protocol complexity, however.

This thesis is based upon the following hypothesis:

”It is possible to effectively achieve the optimal (achievable utilisation) network performance by

devising new time slots based on the relationship between packet duration and hop propagation

delay, coupled with intelligent MAC scheduling using packets flow in lieu of explicit reward

signal to drive a reinforcement learning algorithm.”

The hypothesis has assisted us to design and propose MAC strategies that are inspired by re-

inforcement learning. Our MAC approach whilst distributively intelligent, autonomously robust

is also simple and computationally cheap making it suitable for less powerful nodes.

1.3 Thesis Structure

This thesis is comprises of seven chapters and are structured as follows;

Chapter 2 presents the fundamentals and literature review of relevant fields. It opened with

the general background on wireless sensor networks with emphasis on UASNs. The back-

ground highlights the similarities and differences in the enabling technologies and applications

between WSN and UASNs. The chapter also introduces fundamentals on Medium Access Con-

trol protocols of sensor networks, covering aspects such as; classification, examples of several

representative MAC protocols with a discussion on their merits demerits. The sections con-
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clude with MAC design challenges. The chapter conclude with an introduction on theoretical

Reinforcement Learning, by presenting the fundamental principles and techniques Q-learning,

Single Agent (SA), Multi Agent Reinforcement Learning (MARL) and Partially Observable

Environments (POMDP).

Chapter 3 presents the methodology and the simulation tools used in the design, implemen-

tation and validation of the network and elements. It particularly details the components of

the simulation environment and modeling and of the network components. The performance

metrics considered in this thesis are employed to validate the models by presenting the results

of some well known protocols (namely ALOHA and ALOHA-Q).

Chapter 4 investigates the feasibility and performance evaluation of ALOHA-Q protocol

in an underwater multi-hop chain network scenario. Variable frame sizes and multiple source

operations are investigated to analyse the impact of long propagation delay on synchronization

and performance. The novel contributions of this chapter are:

• Translation and investigation of the feasibility of an RL powered MAC scheme by evalu-

ating ALOHA-Q protocol in linear chain underwater sensor network environment.

• Understands and highlights the effect of synchronisation and frame length on the per-

formance of ALOHA-Q and ALOHA variants in underwater chain networks suitable for

pipeline monitoring.

• Investigates the effect of multiple source operation on ALOHA-Q performance underwa-

ter and to propose the replacement of the existing FIFO queuing with RR queuing for

improved fairness and overall performance.

The work performed in this chapter resulted in the following conference presentation:

Alhassan, Ibrahim, and Paul Daniel Mitchell. 2019. “Monitoring Free Span Sections of

Subsea Pipeline with ALOHA-Q.” URSI Festival of Radio Science ; Conference date: 16-12-

2019 Through 16-12-2019.



CHAPTER 1. INTRODUCTION 5

Chapter 5 presents an analysis on a typical random access scheme to investigate the impact

of frame structure on performance. The analysis involves simplifying the utilisation equation to

inspire an aggressive frame duration. Whilst the size of the ACK packet might be small relative

to the data packet size, however in UASNs the the impact of the incurred propagation delay on

the frame duration is typically costly. Hence, a detailed pictorial analysis employed to drive

the achievable utilisation of the representative protocol and network model is presented. The

chapter proposes a novel MAC scheme (ALOHA-QUPAF) that exploits negative and positive

RL on a dual Q functions to create the optimum schedule in a chain UASNs. The work presented

in this chapter contains the following novel contributions:

• A set of proposed new frame sizes that can be preconfigured based primarily on the rela-

tionship between the propagation delay and the packet transmission duration for improved

channel utilisation.

• Application of pictorial analysis for theoretical analysis to describe the achievable sys-

tem utilisation levels using the proposed frame size in a random access scheme, thus

providing the insight on the possible performance gains with intelligent MAC scheme.

• Employing packets ingress as a negative reinforcement signal for reception slot isolation

using negative RL.

• Employing packets flow (ingress and egress) at node level to implicitly derive the positive

reinforcement signal for the transmission slot selection, to ultimately achieve a network-

wide packet flow harmony.

These contributions culminated in the the following journal article:

Alhassan, Ibrahim B., and Paul D. Mitchell. 2021. “Packet Flow Based Reinforcement

Learning MAC Protocol for Underwater Acoustic Sensor Networks.” Sensors 21 (7).

https://doi.org/10.3390/s21072284.
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Chapter 6 presents areas of further research that expands on the scope of current work.

These include specific recommendations on more complex scenarios, mathematical analysis on

convergence properties and energy efficiency studies of ALOHA-QUPAF.

Chapter 7 draws the conclusions of the thesis. It summarises the contributions and presents

the discussions on how the hypothesis was addressed.



Chapter 2

Literature Review

This chapter provides the review of the background research that inspired this thesis. Following

a top-down approach, from network level down to protocol level; the chapter presents a brief

history, applications and the principal components of underwater acoustic sensor networks. An

overview is then given on the general classification of the medium access protocols with exam-

ples. The chapter then presents a focused review on underwater MAC protocols. Furthermore,

a review of the concepts, applications and framework domain of RL are presented.

2.1 Wireless Sensor Networks

2.1.1 Introduction

By the turn of the century, the world saw an unprecedented leap in technological advancement,

which in turn resulted in a paradigm shift on how we collate, transport and process information.

Traditional information processing has been human-centric, then, embedded devices facilitate

interacting with the environment to monitor and control physical processes. The massive de-

mand for our need to monitor and control our environment sparked the development of sensors

and actuators to meet the required tasks, but deployment of such devices demands a means

of transporting (conveying) the accrued data to the desired destination. Wiring is the obvious

interconnection option, but becomes impractical as internetwork (inter-device) distance, and

7
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number of participating devices scale higher. Thus, practicality dictates wireless interconnec-

tion between nodes/devices [6], and that was the birth of a new class of networks appropriately

named; WSNs. As we push the boundary of what is possible, interactions at different levels

manifest themselves; human-to-human,human-to-machine, machine-to-machine, and by exten-

sion human-to-physical world. WSNs are the networks deployed with components (nodes)

configured to collaborate in tackling a common task; i.e. nodes could be of homogeneous or

heterogeneous nature but their collective computation/processing resources are harmonized to

optimally engage a common target scenario and fulfil task(s). Typically, these nodes are archi-

tecturally low power miniaturized devices endowed with a small processing unit, sensing unit

and a transceiver. However, the huge computing power from the aggregated network entities

ushers in a new frontier whereby potentially no task is too big or too complex to undertake, as

such, the WSNs applications domain keeps expanding [2, 7, 8, 9].

2.1.2 Applications

Broadly speaking, the applications of WSNs fall under the domain of either monitoring or

control, but a significant number of applications tend to have both monitoring and control com-

bined. Some of the specific applications areas are:

• Agriculture and conservation Sensors can be attached directly to plants or soil and tag

livestock, the resulting network can be employed to establish precision in; irrigation,

fertilizing and pest control and monitor health status of livestock [10]. Similar to the

WSNs applications in conservation [11], UASNs can also be adopted and used for marine

biodiversity mapping, and in conservation whereby endangered sea animals can be tagged

and tracked so they can be protected against unsustainable hunting practices.

• Infrastructure monitoring Another widely popular area of WSNs is application of sen-

sors to wide range of facilities; pipelines, bridges,smart homes and building facilities.

Depending on the target facility, WSN applications can range from monitoring structural

integrity, localizing failure points to providing security, access control and movement of
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people and goods. Industrial facilities where safety is of major concern can be compre-

hensively covered with sensors to monitor and report status of processes from inaccessible

locations to a central control on-site or off-site. This application area can be especially

useful in monitoring subsea oil and gas assets that could prove to be costly ecologically

and economically if left unmonitored.

• Health care Using smart wearable devices for monitoring personal health status for a

doctor-patient tracking system [12]. With the number of injuries and fatalities directly

attributable to a lack of up-to-date patient status and medical information, health care is

an area where WSN is getting a lot of attention and acceptance. WSNs can eliminate

the dangling wires from the sensors pads attached to patients either in recovery rooms or

intensive care wards.

• Disaster monitoring and early warning WSNs can be deployed to disaster prone re-

gions, for example networks on seismic and active volcanic sites could be deployed for

monitoring and advance warning for preparation and evacuation to the authorities. Wild

fires [13] and flood profiles (e.g temperature map) can be gathered for identification of

early response and rescue mission entry points. This is another application that UASNs

could be crucial in saving lives and property by providing an early warning system for

tsunamis.

• Mining Mining sites represent a hazardous working environment, to which WSNs can

play a major role in tracking miners (or equipment), monitoring of air pollution and pre-

diction of seismic shifts induced by mining activity [14] or otherwise. With fatalities

resulting from suffocation, tunnel collapse, lack of structural integrity information after

collapse can often cause delay and uncertainty in proper rescue operation which can take

months. With the proper network setup potentially disastrous situations could be avoided.

• Logistics and Transportation WSNs provide a nice platform for vehicle [15] and par-

cel tracking and smart inventorying at storage facilities and warehouses, as an upgrade

to the popular passive Radio Frequency Identification (RFID) system which depends on
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the tagged object coming into the vicinity of the monitoring station, however this setup

requires active system which can help track both stationary and mobile objects and addi-

tionally provide objects history (activity logs).

2.2 Underwater Acoustic Wireless Sensor Networks

As a complement of terrestrial WSNs, Underwater Sensor Networkss (USNs) are envisaged to

be integrated into the conventional terrestrial radio networks, thus bridging both worlds, thus,

finally enable access to the elusive underwater world [2, 3]. It should be noted that the choice of

the choice of sound waves for USN over EM is out of practicality. Radio and experiences high

attenuation [16, 17] and optical waves greatly affected by scattering. Nevertheless, successful

transmission with both type of waves underwater has been reported [8, 18, 19, 9] albeit to lim-

ited distances (maximum 100m for radio and 10m for optical) thereby limiting their practical

application. Sound may not offer the desired speed and datarate/bandwidth, but currently it is

the least affected by attenuation and can therefore cover the distance of any relevance to prac-

tical application [17]. Broadly speaking, the applications of UAWSNs fall under the domain of

either monitoring or control, but a significant number of applications tend to have both elements

of monitoring and control. The applications areas based on deployment purpose/intent: Civilian

or Military are given as follows:

2.2.1 Civilian Applications

A broad array of civilian applications are envisaged for UWASNs such as: Deploying undersea

networks for conservation studies especially in mapping and tracking of marine biodiversity and

pollution studies. Undersea infrastructural monitoring, fault localisation or to enable control of

assets remotely. Lost of lives and property can also be alleviated or prevented by employing

UAWSNs as a disaster and early warnings systems of undersea events, such as, an underwater

earthquakes and tsunamis. Subsea mining and assisted navigation are other areas UAWSNs can

be used.
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2.2.2 Military Applications

UAWSNs can be deployed for both offensive and defensive purposes. Coastal defenses can be

reinforced with subsea sensors against territorial breach or attack. Sensor nodes can potentially

be deployed to provide assisted navigation for submarines, weapons guidance systems and also

for tactical surveillance behind enemy lines.

2.2.3 Differences between WSNs and UAWSNs

Given the overlapping or similar application domain shared by terrestrial radio and underwater

acoustic sensor networks it is important to highlight some of the key differences between them

especially the enabling technologies, so as to appreciate the challenges of designing underwater

networks.

• The power consumed by underwater nodes is typically higher than that consumed by

terrestrial (RF) nodes for all operating modes i.e transmit, receive and idle, primarily due

to the difference in physical layer technology.

• Terrestrial nodes are typically more densely deployed than underwater networks, whereas

data correlation is common practice in WSN, large separation between nodes makes data

correlation in UAWSNs unlikely.

• The cost of an underwater sensor node is more expensive than terrestrial node and the

gap is expected to widen in the near future; this can be attributed to the extra level of

protection measures that must be incorporated on acoustic nodes for the device to operate

in the harsh environment, and significantly fewer number of vendors to effect competition

in pricing.

• Terrestrial nodes are designed with limited on-board processing power and storage, whereas

underwater nodes relatively require more on-board processing power, especially large

memory so as to cache more data in anticipation of the highly probable link disruptions.

However, radio nodes offer higher capacity.



CHAPTER 2. LITERATURE REVIEW 12

• Spatio-Temporal Uncertainty is the uncertainty associated with packet arrival(s) at a re-

ceiver from the uncertainties in the relative propagation delays between separate trans-

mitters to that receiver and the transmissions time. This uncertainty is especially promi-

nent in UASNs, as the peculiar propagation delay underwater can potentially makes

two different transmissions from unequally displaced transmitters to arrive at a receiver

at the same time. Similarly, it also enables transmissions from equidistant nodes to

arrive at different times due to the effect of dissimilar channel conditions on the two

links (such as pressure/depth and temperature difference, salinity). Therefore, conven-

tional MAC techniques that purely relies on transmitter-centric solutions (such as TDMA,

CSMA, synchronised time slotting) to mitigate this uncertainty underwater need to be re-

examined [20].

2.2.4 Offshore Pipeline Monitoring

Due to increasing global energy demand, the offshore oil and gas industry has a global market

growth rate estimated at 6.8% CAGR 1 [21] and subsea pipelines are the lifeline of that in-

dustry[22, 23]. These pipelines are laid along the seabed with some sections buried or exposed.

Uneven seabed geometry causes some of these exposed sections to have reduced support as they

cross valleys along the seabed or pipeline sleepers2. These free span sections particularly be-

come vulnerable to slugging, vibrations and ship anchors, all these can potentially damage the

pipeline section, thereby disrupting pipeline operation and causing damage to the environment

in the event of leak or rupture. To maintain pipeline integrity and to conform with regulations,

various monitoring approaches are currently employed, including retrofitting sensors at appro-

priate intervals [24], guiding Remote Operated Vehicles (ROVs) or sending Autonomous Un-

derwater Vehicles (AUVs) along the pipeline to inspect or measure: motion, vibrations, lateral

displacement, and detect leaks [25]. However, sensors attached to pipelines to record data lack

”real time” reporting, provide outdated, incomplete and possibly corrupted data that is realised

1CAGR - Constant Annual Growth Rate
2Constructed to control displacement and buckling
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at a much later time. Furthermore, the limited battery capacity impedes long term operation.

While ROVs and AUVs are accurate in their task, however, they are notably expensive to pro-

cure and deploy with operational cost up to $5000 per day[26], they are slow during operation

for in situ exercises and it is highly improbable for ROVs and AUVs to report incidents as they

happen. Conventional methods of underwater monitoring activities are undertaken with sensing

equipment that is placed in the location of interest to be retrieved later, or with equipment on

ship(s) for data collation in situ. The first approach is susceptible to the problems of possible

equipment failure, data corruption, or not been collected and late access to data, all of which

might be realised much later. While the later approach is typically limited to short and sparse

time intervals between data gathering and also depends on favorable weather conditions [27].

On the other hand, underwater exploration and undersea asset inspections employ highly spe-

cialised and expensive remote controlled machines with restrictive cabling or short range au-

tonomous machines. Accounting for 30% [4, 5] of global oil production, these assets and their

smooth operations are immensely valuable economically [28], and in the event of sabotage or

accidents, they pose huge risks of ecological damage. Moreover, the dwindling oil prices are

making the industry resort to measures of extending the useful lifespan of offshore installations

such as marine pipelines, arguably, that will increase the associated risks. Typically, these assets

covers a substantial marine area that is not readily accessible nor easily guarded. Arguably, an

underwater acoustic multi-hop network of sensors deployed along the asset or distributed on

site has the potential to monitor assets integrity and also proximity coverage for the whole site.

2.2.5 Network Deployment Scenarios and Topologies

Whilst UASN topologies are application specific, additional factors such as technological lim-

itations, communication range, channel conditions, terrain layout and accessibility determine

the manner in which a link is established between the source and the sink. However, a simpli-

fied categorization can be made based on the number of effective connections/links required for

data from source node to reach its destination node in a given network [6].

• Single-Hop is a fully connected topology, where both source and sink can establish a di-
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rect link because they are within range despite the effect of prevailing channel conditions.

This scenario can best suited for centralized networks whereby every node reports to (or

controlled by) one central node, and distributed deployments in which case each node is

its own master and connections between nodes of a given network is initiated individually.

• Multi-Hop is designed for a situation whereby establishing an effective source(s) to sink(s)

link is not feasible various reasons. For example, due to transceiver power limitations, the

sensor nodes are unable to cover the communication range necessary to setup a link, or

poor channel conditions due weather, presence of shadow zones, and obstruction caused

on the wave path by an underwater object(s) or general terrain topology. Application con-

straints can also demand a multi-hop implementation by imposing a certain network wide

granularity in the collation of the sensed data and the direction of data flow. Typically, a

relay network is setup with multiple nodes participating in the source to sink link creation.

Notwithstanding the overall nodes density in this category, there are three approximate

realisations of multi-hop topologies; random, linear-chain, or cross-chain. It is possible in

some applications to reconfigure and aggregate multiple existing single hop networks to

realize a multi-hop network, thereby upscaling the network to cover larger area or adapt

it to new task.

2.2.6 Network Architecture

Underwater networks are designed and deployed in accordance with the application and loca-

tion. Notwithstanding the diversity of applications, two architecture options are available to suit

all implementations. Presumably, no matter the engaged underwater phenomena, the sensed or

collated data has to be transported ashore, a common denominator found in these networks is

a surface gateway. The node designated as the surface gateway is afloat and situated within

the range of onshore station(s) and submerged node(s), it is therefore equipped with both and

acoustic transceivers. The RF transceiver partake in relaying signal from onshore or satellite

and the node (surface link) whilst the acoustic transceiver maintains the underwater link. This
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Figure 2.1: 3D Underwater Network Architecture [Directly reproduced from [17]]

gateway serves as the relay between the surface network and the undersea network by accepting

acoustic signal from submerged nodes and converting to RF then transmitting onshore/satellite

and vice versa. The nodes and relevant underwater network components are secured directly

to the seafloor seabed and anchored at varying depths [17], the depths can be regulated elec-

tronically when the node is equipped with a motorized system. In this case however, due to

the presence of undersea activity (related to:currents,creatures, ships) node motion is unavoid-

able which can be detrimental to network connectivity. Additionally, Autonomous Underwater

Vehicless (AUVs) can be incorporated into this architecture for added robustness, sensing and

communication range. Typically, when a large area is to be covered which is beyond the range

of the nodes, a cluster-based or multihop approach is used. In a cluster based scenario, a group

of nodes within range of each other in a particular area are considered a cluster and one of

the nodes is chosen as the head (cluster-head) than can communicate with neighboring cluster-

heads and this node may (or may not) be more powerful than the other members of the same

cluster. In other cases, polling or the role of the cluster-head can be rotated between the nodes

based on some elaborate election algorithm (e.g based on power reserve or fault detection).



CHAPTER 2. LITERATURE REVIEW 16

2.2.7 Data Collection Modes

Sensor networks are all about interacting with the environment that is under observation. A

cardinal aspect of such interaction involves the manner in which data is collated at the source.

In order to appropriately and adequately meet/represent the varying applications, one of the

following devised strategies are employed [29, 30]:

• Polling entails taking turns in data sensing/requests from sensor nodes by a central ap-

plication or a master/central node. This can also be expanded to include on-demand data

collection based on proximity to node in the case the requesting node (master node) is

mobile.

• Event-driven data is only gathered based on a triggering event sensed by the node. Here

the nodes are typically on high alert to any activity regarding a change in the observed

environmental conditions. Examples include seismic activity monitoring, smoke/fire sys-

tems and intrusion systems.

• Periodic sampling is performed at regular intervals on the environment and the accrued

data can also be requested from the node in similar fashion. This strategy is suitable for

environmental monitoring applications, such as pollution monitoring and climate change

monitoring.

2.2.8 Acoustic Sensor Node Technology

Embedded in a typical sensor node is an acoustic modem. This is the device that establishes

and maintains the link(s). The fresh attention garnered by UAWSN in recent years, spurred

researchers to focus on proposals and development of various standards, simulators, platforms

and test-benches for acoustic modems [31]. Figure 2.2 illustrates the general block constituents

parts of a typical acoustic sensor node used for UAWSN setup. The components are:

• Acoustic modem is responsible for converting the generated electrical data traffic from

the node into modulated acoustic analog signal and finally transmitting the signal, also



CHAPTER 2. LITERATURE REVIEW 17

Figure 2.2: Block Diagram of Underwater Sensor Node

receiving the acoustic signal from other transmitters demodulating and converting the

signal to electrical signal suitable for the node to process.

• Power supply all the components draw their power from this unit, and is typically battery

based which is one of the challenging aspects of UWASN design, since the size/capacity

of this unit plays a key role on the lifespan of the node.

• Sensor and sensor interface circuitry depending on the phenomena under observation

the sensor(s) output (response) is appropriately filtered, formatted and conveyed to the

processing unit (or controller) by the sensor interface circuitry. For example a temperature

transducer’s output is analog signal with lots of noise to which the interface circuitry will

filter out the noise and correctly feed the controller the appropriate digital levels.

• Processor and Memory units whereas the processor and associated controlling unit co-

ordinate and monitor the activities of the other components, the memory unit stores the

processor’s instructions and also provides a permanent or temporary location for storage

of sensed data in-transit prior to transmission.

All things considered, among the above sensor node components, the acoustic modem is of
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Figure 2.3: Block Diagram of Underwater Acoustic Modem

special interest to researchers and underwater acoustic network designers. Functionally it is the

most distinctive component that define this class of networks. Architecturally, acoustic modems

can comprise of everything found in underwater sensor node but the sensor unit. Figure 2.3

depicts the architecture of a typical acoustic modem. A brief description of their functions is

given below. Some of the units are grouped together owing to the similarity in their functions

(differ only in direction of data flow).

• Projector and Hydrophone these are the analogues of a loudspeaker and microphone;

the set makes up the transceiver interface of an acoustic modem. In an underwater envi-

ronment, the projector is an electro-acoustic transducer is used to map the generated elec-

trical signal into sound signal suitable for the water medium. Conversely, the hydrophone

picks up and converts the incident sound signals into electrical signals for further process-

ing in the internal circuitry.

• ADC/DAC units convert between the two basic means of signal representation. Both the

projector and hydrophone are analog devices whilst the internal circuitry of the modem

itself works with digital signals. An Analog to Digital Converter (ADC) accepts the hy-

drophone’s analog output and converts it to digital form for the receiver circuitry. Digital
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to Analog Converter (DAC) converts the transmitter digital output into analog for the

projector.

• Transmitter/Receiver circuitry these units are functionally the mirror identical to each

other. Depending on the direction of data movement. Signals from the Central Process-

ing Unit (CPU) are passed to the transmitter for coding and modulation and then send

out, likewise receiver accepts the incoming signal for demodulation and decoding and

subsequently passed on to the CPU.

• External interface provides the means to upload programs (or reprogramming and di-

agnostics) the modem or routine download of stored data from on-board flash storage as

is common in most of the commercially available devices. These ports can be USB or

RS-232.

• Controller(CPU) this unit controls and coordinates all the other components especially

with respect to data flow and also housed the storage space for the ROM programs. This

unit may be optional especially if the modem is part of a sensor node.

2.2.9 Practical Implementations, and Deployment

A fairly exhaustive study of acoustic modems [32] both commercially available and from re-

searchers reveals a wide range of design goals and philosophies. Whilst the experimental mo-

dem implementations have varied design goals with some focusing on cost [33, 34], adaptability

[35], offered flexibility through reprogramming [36, 37, 38], or dual operation modes with vari-

able bit rates [39]. On the other hand, the commercial offerings are generally designed for

specific application(s) in mind, thereby achieving a compromise of optimising the critical pa-

rameters and tuning other quoted parameters to an acceptable levels. Due to the challenges of

supplying power to the devices, majority of current modems are designed with power efficiency

considerations. Even though the relatively more expensive commercial modems are generally

superior to the experimental modems, however, comparison between the two options based

on maximum transmission range is more definitive: Commercial modems cover longer ranges
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Figure 2.4: OSI vs WSNs models

0.5km to 25km versus experimental 100m to 2km respectively, however, at the expense of more

energy consumption [32, 40, 41].

2.2.10 Communication Protocol Stack

The OSI model developed by the ISO in the 80’s consists of seven groups of logically defined

functions in a stratified (layered) manner. This model decomposes the complex communication

tasks into functionally dependent sub-tasks [42, 43, 44]. The OSI model inspired the existing

practical internetwork model employed in WSNs. The model used by sensor networks is a

simplified version made up of five layers, two factors influenced the modified model namely;

the overall reduced functions and size requirements of nodes, and the feasibility of seamless

merger of closely related layers while maintaining the abstracted functionality. Figure 2.4 is an

illustration of both the OSI and the sensor network model.

The Application layer is where the application interface resides, here the information (data)

is manipulated and given access to the network. The Transport layer delivers data from process

to process that by mainly establishing and maintaining a logical route between the source(s)

and the destination(s) nodes. The Data link layer is sandwiched between the network and the

physical layer, overall this layer is in-charge of link establishment, link termination and channel
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access control between devices. This layer is further sub divided into two layers, the Logical

Link Control (LLC) and MAC respectively. The MAC sub-layer is responsible for orchestrating

channel access, and collision resolution. This sub layer is the focus of this research, and more

details on it will follow in the subsequent sections. The physical layer is the bottom layer of

the stack tasked with basic services needed by the node to properly send and detect signal over

the physical link. These functions range from coding, modulation, frequency selection and

generation, and selection of transmission and reception power.

2.2.11 Challenges

Noise, cost, interference, and power are some of the major constraints to a varying degrees

affecting all communications systems [2, 45, 7, 46, 1]. Hence, communication system design

practices involve a compromise on amongst the constraints. However, the harshness of under-

water environment and the peculiarity of the acoustic channel amplifies and introduces fresh

challenges that demand new strategies and solutions in achieving a functional and practical

UASNs. Some of the impacting factors are highlighted below:

• Noise/Interference: Sounds originating from sea ambiance, aquatic life, and shipping and

other man made activities are some of the various types of noises in the underwater en-

vironment that poses a serious challenge to acoustic network link stability and reliability.

These sounds can be in the form of short impulses (e.g shrimp snapping), or longer du-

ration (e.g ship propellers, drilling or mining activities) that could interfere and disrupt

connections.

• Power : The Power supply is generally an issue in sensor networks, this is because nodes

are mainly powered by batteries. once the battery power has been depleted. the current

energy scavenging techniques have not adequately matured for recharging to be practical.

Indeed, developers are resorting to exploring new sustainable energy saving solutions in

both hardware and software to optimise and reduce energy consumption in devices. For

example, employing shorter communication ranges (shorter hop distance) for reduced
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transmission power requirements per node and incorporating sleep cycles to reduce idle

listening.

• Cost : Despite the huge application potential, UASN nodes unit cost is expensive to

procure because of the technology is young ( relative to terrestrial sensor nodes). Also

nodes have to be ruggedly encased for protection against fouling from both environmental

factors (such as the water pressure with increasing depth) and animal activities. With few

manufacturers means there is limited competition to drive prices down as the industry is

currently a niche market. UASNs are deployed to cover substantial area, hence, increasing

the network size ( number of nodes required ) increases the overall nodes unit cost as

well. Furthermore, network deployment is an expensive undertaking requiring specialised

equipment for transportation and personnel protection.

• Environmental Dynamics/Conditions : The underwater environment is both harsh and

predominantly unpredictable, therefore location access and targeted deployment of sensor

nodes are equally challenging.

• Channel Characteristics : The greatest challenge to designing UASNs is arguably the

acoustic channel, as the long propagation delay, multipath limited bandwidth, and high

Bit Error Rate (BER) are all linked to a channel property.

2.3 Medium Access Control

This section introduces the Medium Access Control (MAC), including some classic MAC

schemes, and some specific radio MAC schemes because they inspire some of the UASN

schemes. It also presents the current state-of-the-art solutions in UASN MAC protocol im-

plementations.

The MAC protocols define the set of rules that control channel access to networked devices.

This is necessary because the medium is a constrained resource and unsystematic use of the

channel by multiple devices will result in partial or total communication failure due to interfer-
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ence. Hence, the medium needs to be efficiently shared amongst the competing devices. That

is why the cardinal function of MAC layer is to prevent/alleviate collision and/or resolve con-

tention during communication [47]. Supplementary network tasks of MAC protocols include:

improving throughput, energy efficiency, robustness, latency, and scalability [48]. In reality,

no single MAC scheme is sufficient to satisfy all applications requirements. Therefore, when

designing MAC protocols, optimum weights are identified for each metric through appropriate

trade-offs based on the requirements of the target application. Although the application design

goals dictate the choice of scheme and the overall MAC protocol design, the following key

properties are deemed important for any good MAC protocol;

• Effective channel sharing through proper protocol initialisation and effective capacity

allocation.

• Robustness to failure of equipment or channel conditions.

• Efficiency with respect to throughput, latency and energy consumption.

• Flexibility to different types of traffic.

• Stability to changing load conditions.

• Fairness in that protocols should have a justified means of channel access among nodes.

In addition, limitations of power supply to the sensors place constraints on lifetime of sensor

networks. Many MAC protocol designs advocate a special focus on energy efficiency. The

following were identified as some of the primary causes of energy waste in sensor networks [45,

49].

• Deafness due to the half-duplex nature of UASNs a deafness situations occurs when a

node misses an incoming packet(s) while the node itself is busy transmitting.

• Overhearing whereby node keeps receiving packets not destined to it. The energy con-

sumed in processing the packet before discarding becomes a serious source of energy
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Figure 2.5: Classification of MAC protocols

wastage as the network becomes dense. Proposed solutions include sleep cycles, wake-

up tones, and multichannelling.

• Collisions of two or more packets transmitted simultaneously are susceptible to overlap

at the receiver and when recovery attempts failed additional energy has to be consumed

in retransmission and reception.

• Idle listening is also another significant source of energy waste in sensor networks, where

the transceiver unit is kept active for both receive and transmit phases, as the unit con-

sumes relatively equal energy (in UASNs the transmit power is significantly greater than

the receive power).

In the literature MAC protocols are conventionally categorised based on the whether chan-

nel access is contention-free or contention-based. Another popular category in the research

community is the hybrid MAC protocols as included in Figure 2.5.

2.3.1 Contention-free

The techniques under this category ensure collision free access on a shared channel based on

assigning distinctive: time slots, frequency bands or codes to each participating device in a

network. Accordingly, three(3) classic schemes found here: Time Division Multiple Access
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(TDMA), Frequency Division Multiple Access (FDMA) and Carrier sense Multiple Access

Control (CSMA). The nature of pre-allocating a particular channel resource in this category,

makes the schemes inherently centralized. TDMA is one of the major scheme used in UASNs.

Due to the long and variable propagation delay, node mobility, and the complexity of imple-

menting distributed TDMA, this scheme in its purest form is not entirely good/appropriate for

UASNs [50]. However, its potential for true collision-free transmission, simplicity, flexibility

and sleep-cycle incorporation has inspired development of many enhanced and hybrid MAC

strategies for UASNs.

2.3.2 Contention-based

In this class, protocols are designed such that nodes compete for channel access and control

on-demand. Consequently, pre-allocation of channel access is eliminated. Because the proto-

cols are distributive architecturally, contention-based strategy is one of the major approaches in

developing UASN MAC protocols.

The core idea is to simply grant unrestricted channel access to users with little or no coordi-

nation. The disadvantage of this freedom is reduced performance at high loads due to rampant

collisions. Random access protocols are predominantly ALOHA-based [51]. CSMA is one of

the most popular protocols used in terrestrial networks. Carrier sensing is offered to address

the rampant collisions suffered by blind transmissions in ALOHA variant protocols. By al-

lowing nodes to listen for channel activity before transmitting, users will make an informed

decision prior to engaging the channel and avoid potential interference. However, because of

the long propagation delay in underwater environment this carrier sensing is ineffective and

fewer CSMA inspired protocols have been developed.

Handshaking protocols/Reservation based schemes are based upon the principle of exchang-

ing short messages between devices to acquire the channel prior to data transfer. This dialogue

between the communicating devices to secure the channel is entirely contention-based. Some

strategies utilise a TDMA like approach of dividing time into periodic frames, whereby in each

frame there are separate fixed slots for data and reservation messages, as such nodes compete
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for channel access using the reservation slots and if successful, data is transferred in the reserved

slot otherwise the node will try again in the next frame. Other schemes employ ALOHA ap-

proach to transmit request packets and if unsuccessful, transmission is deferred with a back-off

timer before trying to request again. The reservation schemes are typically implemented on a

single channel due to the limited underwater acoustic bandwidth, notwithstanding multi-channel

techniques are being proposed. Essentially, in the multi-channel approach the data and control

packets occupy different channels [52], whilst in the single channel case both handshaking and

data exchange will happen on the same channel.

2.3.3 Hybrid

Hybrid protocols are gaining wide attention in the research community especially in the UASNs

because they provide a needed versatility for changes in networks status effected by a dynamic

environment, traffic or power reserves. A protocol can combine elements of different MAC

schemes to achieve improved performance. The approach tends to be more complex and com-

putationally intensive, requiring more capable nodes. There are a variety of realisations which

include: switching and activating the most suitable component protocol, or optimum settings

aided by an intelligent learning algorithm to adapt to changing conditions. The following are

some examples of the relevant MAC protocols in the literature:

The ALOHA Protocol

In an attempt to connect the remote terminals located on different islands with a central terminal

of the university of Hawaii over a packet radio network, Abramson in the 70’s created the

ALOHA protocol [51]. In its purest form ALOHA used two distinct frequency bands f 1 and

f 2 (similar to uplink and downlink channels in satellite system), one band (say f 1) shared by

the remote terminals to connect with the central terminal, and the other band( f 2) for the central

terminal to broadcast messages to the remote nodes. A terminal with packet to send simply do so

immediately, the terminals monitor the central terminal broadcast channel for acknowledgement

(ACK) indicating the transmission was successful for a period equal to the maximum round
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trip time of packets between the nodes, failure to receive an ACK packet after the round trip

timed-out the node assumes collision has occurred and retransmission is initiated. The ALOHA

scheme is a fully distributed but the problem with this scheme is the rampant destruction of

packets due to collisions as multiple nodes attempt simultaneous transmissions.

For a packet A of fixed duration (τ) any other transmission originating within time T-τ and

T+τ will collide with A. This period of 2τ is called the vulnerable period. Analytically the

throughput defined as the average number of successful transmissions (S) is a function of the

offered load (G) and is given by; S =Ge−2G, based on this, the maximum theoretical throughput

achievable by ALOHA is 18.4% at 50% offered load [51]. This translates to under utilization

at lower offered loads and above the 50% load too frequent collisions degrade the throughput.

This poor performance called for an improvement and come in the slotted ALOHA scheme

which introduced two modifications; creating time slots equal to the packet duration and forcing

nodes to only transmit at the beginning of a slot. These two modifications effectively reduced

the vulnerable period by half and more than doubled the throughput (37%) of pure ALOHA at

full load. However, such techniques employed in improving ALOHA in radio were found to be

ineffective underwater, for example, slotted ALOHA which has twice the channel utilisation of

pure ALOHA, was found to under-perform and lose its advantage underwater due to the lack of

synchronisation and the presence of spatial-temporal uncertainty (See Section 2.2.3).

-

Multiple Access Collision Avoidance (MACA)

MACA is one of the original approaches that utilises handshaking between devices before data

is transmitted [53, 54]. Prior to data transfer, the transmitting node initiates the session by

sending a Request To Send (RTS) control packet to the receiver, which in turn replies with a

Clear To Send (CTS) packet. Nodes in the neighborhood that hear the RTS signal will wait

for the CTS response, upon hearing the CTS nodes will defer their transmissions for a preset

time ( adequate for the transmission duration ). However, not hearing the CTS signal signifies

to the neighboring nodes the receiver is outside their range and are free to compete for channel
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access themselves. This handshaking exchange will reserve the channel for the pair of nodes

until data transmission is completed and the mechanism addresses the shortcomings suffered

by CSMA in ad-hoc sensor networks, especially the hidden/exposed terminal problems, and

the degrading inefficiency with increasing propagation delay. MACA-U [55] is a proposed

MACA variant for multi-hop UASNs. In this adaptation, unlike MACA whereby when nodes

that have sent RTS packets and overhear another RTS/CTS packet automatically defer their own

transmissions (reservation deemed unsuccessful), MACA-U introduces a waiting states for both

the CTS at the transmitter and the data packets at the receiver to address collisions of control

packets due to the effect of propagation delay. In UASNs the handshaking is still ineffective in

eliminating collisions and the schemes suffer from reduced channel utilisation as a result of the

added handshaking overheads, latency, and energy inefficiency from excessive overhearing.

Slotted Floor Acquisition Multiple Access

Slotted-Floor Acquisition Multiple Access (FAMA) [46] is based on the FAMA [56]. FAMA

scheme itself is an improvement over MACA. It incorporates carrier sensing (CS) and hand-

shaking as defined in MACA. However, to achieve collision-free transmission using CS, Slot-

ted FAMA address the two conditions that must be satisfied: the RTS packet lengths must be

greater than the maximum propagation delay, and the CTS packet must be greater than twice the

propagation delay plus the RTS packet combined. In order to meet the collision-free conditions,

the long propagation delay in UASN will result in an unpractical RTS and CTS packet lengths,

thereby rendering FAMA highly ineffective. Therefore, the slotting in Slotted FAMA removes

the asynchronous aspect of FAMA and limits the length of the control packets that may become

excessively long underwater. The slots are structured such that the length is duration of CTS

plus the maximum propagation delay, and transmissions are restricted to the beginning of time

slots. Additionally packet trains, ARQ and backoff strategies in a high BER environment are

also included to improve the overall performance. These modifications in Slotted FAMA added

to its complexity, reduced system utilisation from the control packets and long guard duration

overheads. The propagation delay makes carrier sensing ineffective as a channel maybe sensed



CHAPTER 2. LITERATURE REVIEW 29

idle whilst another transmission is active. Furthermore, at high load and connectivity, the chan-

nel reservation becomes highly contentious and difficult achieve leading to waste of power due

to retransmission attempts.

A Receiver-Initiated Reservation-Based Protocol for UANs (RIPT)

RIPT is another handshaking protocol proposed for multihop UASNs [57]. However, unlike

in MACA and its variants, the handshaking is initiated by the receiver. It polls multiple nodes

by broadcasting Request To Receive (RTR) packets to its neighboring nodes, and the trans-

mitters then respond with a packet with their individual number of intended packets to send.

The receiver then creates and broadcasts the schedule. In this way, the receiver accepts a syn-

chronised packet stream and since collisions occur at the receiver, this approach eliminates the

transmit-receive type of collision suffered by transmitter initiated sessions. By requesting and

coordinating several packet trains the network performance is improved. The main disadvan-

tages of this protocol is the dynamics of acoustic channel and variable traffic conditions limits

its efficacy in UASNs.

A Traffic-Adaptive Receiver-Synchronized MAC Protocol for Underwater Sensor Net-

works (TARS)

TARS [58] is an adaptive protocol that leverages the long propagation delay between nodes to

create a receiver synchronised schedules. Each node gathers and stores the propagation delay

information between its neighbors, this delay is then used to compute the transmission phase

(within a slot) between any transmitter-receiver pair. Generated traffic is assigned to separate

queues for each outgoing receiver. This queues are then used to generate Q-tables for both

incoming and outgoing transmissions. The protocol employs a traffic-adaptive algorithm to

create the transmission schedules. This algorithm is a probabilistic routine that also relies on

a both local Q-tables and shared Q-tables from all nodes in the neighborhood. Although, this

approach has demonstrated how to avoid cross-slot reception, the reliance on shared information

between nodes for the algorithm to work is complex, unreliable and will reduce the efficiency.
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Furthermore, description on how to compute the slot size which is an integral part of the protocol

was not given.

ALOHA-Q

ALOHA-Q is an intelligent hybrid MAC protocol initially developed for terrestrial sensor net-

works [59]. It employs Q-learning to intelligently create collision-free schedules in framed-

ALOHA. The basic idea is to create a set of un-assigned time slots for nodes to independently

find and occupy. The frame is formed by grouping a fixed number of time slots. Each slot is

then assigned a unique index in a Q-table. During protocol execution, at the beginning of each

frame, every node with data to transmit will looked in the the Q-table and schedule transmission

in the slot with the highest Q-value. The result of each transmission attempt (ACK signal) is

used as the reward/punish signal (±1) that updates the Q-table. Therefore, successful slots are

positively reinforced and unsuccessful slots negatively reinforced, this process which initially

starts in trial and error eventually enables each node to occupy a unique transmission slot. The

overall result is dramatic improvement in channel utilisation as the final collision-free schedules

offers TDMA like performance without the investment in planning resources. However, the pro-

tocol suffers from reduced performance due to the effect of propagation delay on the slot size

and is unfair under multiple sources. Nevertheless, due to its less complexity and adaptability

has been considered for further studies in Section 4.2.

2.4 Reinforcement Learning

RL is a class of problems defined by learning through experience that is found in the natural

world. Living organisms learn by interacting with the environment, and the feedback received

shapes their behaviour. RL traced its roots in psychology and has since gained popularity in

Computer science and Engineering applications. The principal idea is for an agent interacting

with an unknown or dynamic environment to learn how to behave by trial-and-error [60, 61].

RL differs significantly from other machine learning paradigm namely, supervised and un-
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Figure 2.6: RL elements in agent and environment interaction

supervised learning. Whereas both receive training data, in the case supervised learning, full

feedback is provided for its actions at all times, while unsupervised learning receives no feed-

back for its actions. No training data is given to the learning agent in RL, thus, it must learns

from experience through its action and the associated feedback signal. The fact that RL does

not require a priori knowledge of the environment makes it an attractive approach in designing

adaptable and resilient sensor networks such as the UASNs, where the environment is statisti-

cally un-classified and currently un-modeled [62, 17, 63].

RL is comprises of three core and one optional sub-components as used in its standard for-

mulation: A policy function, a value function, reward signal and the model of the environment

respectively [60]. Figure 2.6 is a representation of the agent-environment interaction. The for-

mal RL model comprises of a set of environment states si ∈ S, a set of available actions per

state ai ∈ A and a set of scalar reward signals per action per state ri ∈ r(si,ai). At each time

step, an agent perceives the current state of the environment (st) and performs an action (at) to

interact with and change the environment state (si to si+1) and receives a consequence of that

action (ri). Thus the process is described as a Markov Decision Process (MDP). The agent is

principally tasked with finding the optimal policy π∗ (policy function); mapping of states with

actions that maximizes the overall received rewards. The reward signal is typically a scalar

number responded to the agent by the environment that defines the quality or polarity (in terms

of good or bad) of an action taken by the agent. This reward signal is immediate and depends

on both the current state and the action taken. On the other hand, the value function defines
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the long term attractiveness of states with respect to the following states and their actions. The

value function (also Q-function) is formulated as the expected cumulative future rewards in a

state-action pair mapping from each state onward. The downside of accumulating the maximum

rewards (r) to achieve optimality is that in an unbounded RL problem this becomes problematic

as r→ ∞. Hence the rewards are typically bounded by a discount factor γ < 1 [60, 61]. In this

way the choice of whether immediate reward or future reward should dictates the agent’s action

can be asserted. The value function is given by [64]:

Q(si,ai) = E[r+ γQ(si+1,ai+1)] (2.1)

where Q(si,ai), Q(si+1,ai+1), r, γ denote the Q-value of the current state, Q-value of the

next state, the reward and the discount factor respectively.

Following the Bellman’s optimality condition (Equation 2.2) [64], the optimal policy π∗ can

be directly derived by greedily choosing the action with the maximum reward.

a ∈ argmax
a∈A

Q(s,a) (2.2)

Hence,

π
∗ = argmax

a∈A
Q∗(s,a) (2.3)

However, the problem of exploration and exploitation poses a major dilemma to the RL

paradigm. This is because, if an agent greedily decides to always chooses the best rewarding

action based on its experience it exploits the system and risks ( by not exploring ) missing

a potential new and better rewarding action. Some of the exploration-exploitation strategies

developed in balancing this dilemma includes, ε−greedy which chooses the best action with

probability 1− ε and a random action with probability ε (ε ∈ [0,1]) the disadvantage of this

approach is there is a risk of choosing the worst action, in random walk strategy the agent

discards the any relevant experience and chooses new action always, and softmax (Boltzmann

exploration) is one of the advanced strategy that balance exploration based on individual actions

utility, and therefore minimises the risk of choosing a bad action [65, 61].



CHAPTER 2. LITERATURE REVIEW 33

2.4.1 Learning an Optimal Policy

There are two main approaches for reinforcement learning algorithms to learn the optimal pol-

icy. In model-based the algorithm learns/builds a model of the environment and use it to com-

putes the optimal policy. Therefore, the state transition function (S) and the reward function

(r) are known beforehand. However, obtaining the optimal policy from a developed model in

advance deviate from the core premise of RL. The scope of this thesis is concerned with the

interaction between multiple agents (sensor nodes) interacting in a dynamic environment, and

thus we consider the model-free implementation.

Q-Learning

Q-Learning is one of the most influential and popular off-policy Temporal Difference (TD)

algorithms of RL. The algorithm learns and directly approximates the optimum value function

regardless of the policy followed by the agent. A necessary condition for an optimal policy

to converge in an MDP is that each state-action pair must be continually visited and updated,

Q-learning has been shown to simplify analysis and is proven to converge with certainty [60,

64]. The standard formal Q-learning is recursively updated using Equation 2.4 [60].

Q(si,ai)→ Q(si,ai)+α[r j + γ max
a j

Q(s j,a j)−Q(si,ai)] (2.4)

where Q(si,ai), (si,ai), maxa j Q(s j,a j), (s j,a j),r j,γ , and α denote the Q-value of current state,

current state-action pair, maximum Q-value of next state actions, next state-action pair, the

reward signal, discount factor, and the learning rate.

Single State Q-Learning

A environment is classified as stationary, when the complete history of the environment can be

sufficiently described by the information in the current state. As such, the environment states

reduce to one and the learning agents become stateless. Accordingly, the Q-learning is signifi-

cantly simplified with only single state recursive update with the reward one action. Since, the
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policy estimation in the standard Q-learning requires significant recursive updates of multiple

states Q-values, the single-state update will potentially reduce the computational cost and the

associated number of trial iterations needed to for the policy approximation. In order to study

the multi-agent cooperative learning problem the standard Q-learning algorithm is redeveloped

and simplified to remove the state dependency for solving stateless/single-state game prob-

lems(Equation 2.5) [66], however, the technique has since then being applied to similar single

state multi-agent problems [67, 68] and in development of intelligent MAC protocols [59, 69].

Q(a) = (1−α)Q(a)+αr (2.5)

where Q(a) is the Q value of current action a, α is the learning rate and r is the reward of the

chosen action.

Multi Agent Reinforcement Learning

MARL describes a learning involving multiple agents in a single environment. This presents

additional challenges and complexity to the learning problem of varying degrees depending

on the learning objective(s). An important consideration is that, the environment is no longer

static, as actions of other agents affects others. In a situation whereby the learning is coopera-

tive, such as the sensor networks, formulating an optimum policy becomes complicated. Most

of the MARL algorithms are inspired by the early studies of MARL problems as reported in

cooperative game theory [66, 70, 67]. To extend RL into MARL problem the works in [66, 67]

both assumes independent learners to justify reducing the MARL to a single state MDP. This

is because an independent learner can perform actions and update the Q-learning algorithm di-

rectly without any regard to the actions of others. Although, the assumption of stationary state

has been shown to generate remarkably good results in developing intelligent MAC protocols,

to prove convergence and computational tractability some aspects of the environment have to

be explicitly modeled [69, 59]. In reality, the environment in MARL is definitely unpredictable

and information regarding other agents and the environment are shrouded by noise.
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2.4.2 Partially Observable Environments

The agent-environment interaction in RL problem is modeled as an MDP because it certifies the

Markov property [60]. In most practical systems perceiving the state of the environment is not

always possible. Interacting with these environment states only emits probabilistic observations.

Similar to the MDP, it consists of finite set of discrete states(S), probabilistic state and action

transitions, however the current state is uncertain and all actions result in a noisy observations

that are probabilistic function of the states [71]. POMDP are then treated as a continuous MDP

with belief state (b) that is the probability distribution over the entire states [72]. Figure 2.7

depicts the elements of POMDP. At each discrete time step, the objective of the controller is

to compute an optimal policy π∗ that controls the transitions of the states and observations (

si ∈ S and yi ∈ Y ) in the Hidden Markov Model (HMM) by choosing actions(ai ∈ A) that that

maximise the expected reward based on the perceived belief state( bi).

Decentralised Partially Observable Environments (Dec-POMDP) is a formal framework that

extends the POMDP framework to cooperative/social multi-agent systems [73]. As stated in

MARL, the environment is not stationary, and the noisy observations include contributions of

other agents actions in the system, hence, the interaction between agents influence the decision

of others. De-POMDP is specially designed to address at least three class of uncertainties: due

to action outcome, environment state and multi-agent. In UASNs where explicit communication

between agents may not possible or ineffective. Agents have to locally make decisions by esti-

mating the state conditions from the noisy observations without any explicit knowledge of other

agents actions. There is a lot of potential source of uncertainty. Given the techniques applied

to solving MDPs such as the Bellman’s equation are computationally intractable in POMDP

models, stochastic approximation strategies and heuristcs algorithms are principally used in-

stead [71]. Algorithms developed in Dec-POMDP framework have the potential to provide

the missing component in developing effective and practical system protocols and controllers

for sensor networks [73]. The work in [74] demonstrated the feasibility of using stigmergy

(implicit) communication in MAC protocol.
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Figure 2.7: Block representation of POMDP components

2.5 Summary

This chapter presented a review into wireless sensor networks from terrestrial to Underwater

Acoustic Sensor Networks (UASNs), Medium Access Control (MAC) protocols and Reinforce-

ment Learning and Partially Observable Markov Decision Processes(POMDP). The chapter

starts by introducing the fundamentals on wireless sensor Networks and UASNs, from back-

ground concepts, applications to deployment challenges. It follows with a review on MAC

protocols, whereby elements of MAC designs considerations, and classifications, some specific

example protocols from the literature and challenges were presented. While contention-based

protocols currently dominates the UASNs MAC space, hybrid MAC are gaining traction in

recognition of their versatility and better performance capability. In particular, because of its

simplicity and intelligent collision avoidance and adaptive properties, ALOHA-Q has been sin-

gle out as a candidate for adapting in UASNs and further studies. Finally, the chapter presents

a sections on Reinforcement Learning, with the aim of introducing Q-learning as formulated in

a cooperative domain similar to sensor networks. The section on POMDP framework gives an

insight into a better approach of looking at multi-agent learning. The background knowledge

on POMDP is contextualised in our proposed MAC algorithm in Section 5.4.



Chapter 3

System Modeling and Methodology

3.1 Introduction

This thesis present intelligent algorithms for UASN MAC protocols. Simulation is principally

employed to empirically evaluate and demonstrate operation of the developed protocols. This

chapter presents Riverbed modeler (formerly, OPNET) as the simulation environment used in

this exercise. It follows with the methodology and the performance measures considered for

the performance evaluation. Finally, the performance metrics used to demonstrate how the

developed models have been validated are described based on known baseline results.

3.2 Simulation Environment And Protocol Development Us-

ing OPNET

Discrete Event Simulation (DES) is one of the popular paradigms developed to simulate the

complex operations of discrete-event systems such as WSNs.

3.2.1 Riverbed Modeler

Riverbed Modeler is an efficient, complete and powerful industry-leading object-oriented net-

work simulator and analyser [75]. Because of its versatility and accuracy in modeling, simula-

37
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tion and analysis the tool has been embraced by network operators, equipment manufacturers,

civilian and military research institutions. As a compiled environment with parallel simulation

capability, the Modeler offers relatively faster execution speed compared to other interpreted

simulators. It is feature-packed with a substantial built-in library of ready to use, and fully

editable models of established networking devices and protocols for fast modeling and design.

Riverbed Modeler offers three interactive tools; graphical interface, run and debug, and the

dynamic observer [76, 77]. Furthermore, the Modeler is currently capable of interfacing with

other popular modeling software and with other programming languages such as Python through

Riverbed’s Open APIs for added portability.

Flexible and scalable system modelling is achieved through three distinctive domains: the

process, the node and network. The object-oriented programming facilitates precise parameter

definitions and settings of models. Although, the top-down approach (network-node-process) is

typically followed during modelling, only the final harmonisation is essential. The components

are described in a bottom-up approach as follows:

3.2.2 The Process Domain

This is where the underlying behavior of the modules present in the upper level node domain

is designed and implemented. The process models are translated into PROTO-C, which is a

specially developed programming language that incorporates and accepts C/C++ library and

syntax [77]. The set of tasks a model is to perform defines the complexity of the model. Typ-

ically, individual tasks are represented by state objects. This approach mirrors a finite state

machine structure and achieves event based modelling through the scheduling of interrupts and

the defined transitions between states. Switching between states or procedures is event-driven

when the system deliver events to the process models in the form of interrupts. During system

run, the predefined sequences create events that are queued in an event list (ordered based on

execution time and/or priority) and removed from the list for execution. In this regard, only

one state/procedure is activated at a time. Simulation is successfully terminated when either

the allocated simulation time has elapsed, or until the event list has been exhausted, or when
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a specified number of events have occurred. In both multi state and single states aggregation,

task switching is invoked by distinctly associating the right interrupts with the task functions

or code branches. These states (or functions and code branches) may be conditionally inter-

linked or otherwise. Figure 3.1 is an example of a multi state process along side a functionally

equivalent condensed single state version. The states are colored with red state as unforced

state representing and green states representing forced states.Whereas an event in needed to

transitioned out of an unforced state, forced state transitioned out immediately after executing

its routine.

Figure 3.1: Process model of a packet generator: right: Multi-State, left: Single State.

3.2.3 The Node Domain

Defines and models the internal modules and connections of a node. These internal modules

represent the different functionalities supported by the node, such as transmission/reception,

storage, processing and interfacing. Therefore, for proper operation each module holds the

corresponding process model implementation from the lower level. Processor, Queue and the

External System(esys) modules are the three containers provided in the node domain to im-

plement various functional entities. These modules can be linked by either packet streams for

transporting packets or statistics wires for values/signals between modules. Esys modules are

models that represent the behaviour of objects external to the modeler, in this way the modeler

can interface with an external object to exchange data. Figure 3.2 depicts an example node

model with four(4) modules. The Processor module (GENERATOR) models the packets gen-
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erator which outputs a stream of packets to the Queue module (MAC) for storage, sorting in

queues/sub-queues and processing. The transceiver modules (TX and RX) is represented by

two separate wireless radio modules one each for the transmitter and receiver. Because our

models are for acoustic media, some modifications have to be made to the default radio pipeline

element of the Communication link domain, as discussed in Section 3.2.5.

Figure 3.2: Node model of an acoustic transceiver

3.2.4 The Network Domain

The network domain is the top level description of the entities, their locations, links and config-

urations in the complete simulated system. Hence, the network model implement the familiar

aspect of network objects and systems, such as nodes, subnetworks, topology, scenario and

type of physical interconnections for conveying data/information between devices. Figure 3.3

shows an example of a linear topology of five(5) nodes in a wireless system. At this level nodes

can be defined as static or mobile. Furthermore, non-network objects present in the physical

environment (such as, buildings and machinery) and their interactions with the devices can be

modelled to accurately represent the scenario. The modeler enables various simulations results

to be defined and collected either network wide or on individual per node selections.
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Figure 3.3: Network model of a linear chain network

3.2.5 Pipeline Stages

The communication link models support various types of standardized wired (point-to-point and

bus) and wireless (radio broadcast) links [75]. Similar to the models in the above domains, the

link models have an open architecture for modification by the developer to suit the application.

The radio transceiver pipeline define a sequence of computational stages modelled to reflect spe-

cific behaviour involved in establishing and transferring data/signals in a radio link. Figure 3.4

represent the standard radio link computational stages in the Modeler.

Figure 3.4: Wireless Transceiver Pipeline Stages

There are thirteen stages that are executed each time data is to be sent from a transmitter

(six stages including the “receiver group” shown in Figure 3.5) to receiver (eight stages shown
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in Figure 3.6). The stages have access to the Transmission Data Attributes (TDA) to read/write

in data for the relevant processing. To simulate the acoustic networks in this thesis, the propa-

gation delay (stage 5) and error correction (stage 13) were identified as two relevant stages for

modification. This setting primarily simulate the network with the average acoustic speed in

water of 1500m/s [62] and the assumption of a collision model which ensures that any packet(s)

that overlap at the receiver are dropped.

Further modifications were made to interference noise, background noise and signal to noise

ratio (stages 8, 9 and 10 respectively) with data obtained from BELLHOP of simulated sea con-

ditions to reflect practical conditions (See Appendix A).Specifically, the gain and noise outputs

from BELLHOP are employed effect the modifications. The following sections provide de-

scription, functionality and where applicable the detailed modifications to the default pipeline

stage as used in this work.

Transmitter Module Attributes

Figure 3.5: Default Radio Transmitter Module Attributes

1. Receiver Group (Stage 0) is the initial stage that and a non dynamic component of the

radio transceiver pipeline. In order for the Simulation Kernel to models the broadcast

behaviour of wireless (radio) each individual transmitter channel is linked with a set of
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receiver channels. Therefore, the primary function of the receiver group stage is the com-

putation and assemblage of a group of potential receiver channels that is then maintained

by the transmitter channel for future transmissions. The “rxgroup model” attribute of the

transmitter module implements the stage. The following are the source code sections of

the default and the modified receiver group stage implementation used in this thesis.

• Default:

////////////////////////////////////////////

int rx group template (Objid tx channel objid, Objid rx channel objid)

{

int result;

FIN (rx group template (tx channel objid, rx channel objid))

FRET (result)

}

• Modified:

////////////////////////////////////////////

/*setting the receiver group for one receiver scenario*/

/* Extract this node (X, Y) position*/

op ima obj attr get(node id,”x position”,&x);

op ima obj attr get(node id,”y position”,&y);

/*Reseting the default receiver group*/
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op radio txch rxgroup set(txch id,0,OPC NIL);

/*LOOP THROUGH ALL NODES IN THE NETWORK*/

for(i=0;i¡nodes;i++)

{

other node id=op topo child(subnet id,OPC OBJTYPE NDFIX,i);

op ima obj attr get(other node id,”user id”,&other user id);

/* Extract neighbor node (X, Y) position*/

op ima obj attr get(other node id,”x position”,&sx);

op ima obj attr get(other node id,”y position”,&sy);

/* Compute distance between this node and other node*/

dist = sqrt(pow(x-sx,2)+pow(y-sy,2));

}

/* Add receiver channel of any node to this node’s receiver group if within interfer-

ence rage*/

if ((dist ≤ infx range))

{

other rx id=op topo child(other node id,OPC OBJTYPE RARX,0);

other rxcomp id=op topo child(other rx id,OPC OBJTYPE COMP,0);

other rxch id = op topo child(other rxcomp id,OPC OBJTYPE RARXCH,0);

op radio txch rxch add(txch id,other rxch id);

}
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2. Transmission Delay is defined by the “txdel model” attribute of the transmitter module.

The stage is executed at the beginning of every packet transmission. Given the invocation

of this stage is handles the computation of the complete packet transmission duration

from the packet’s first bit to the last bit, the resulting output from this stage is shared with

all the remaining pipeline stages to support their operation. The default model has not

been altered in this thesis.

3. Link Closure is defined by the “closure model” attribute of the transmitter module and its

function is to compute the effect of any transmissions on a particular receiver. In essence,

the closure model determines whether a transmission will affect a receiver channel, re-

gardless of the transmission’s validity or viability. The default model has not been altered

in this thesis.

4. Channel Match is specified by the “ channmatch model” attribute of the transmitter

module. Its function is the classification of packet transmissions as one of three possible

outcome for each receiver channel, namely; valid, noise or ignored. This model has not

been altered in this thesis.

5. Transmitter Antenna Gain is defined by the “tagain model” attribute and its function is

to computing the transmitter gain from the antenna using the resultant vector between the

transmitter and the receiver. This output is employed in the calculations of the received

power. This model has not been altered in this thesis.

6. Propagation Delay is specified by the “propdel model” attribute of the transmitter mod-

ule. The primary purpose of this stage is the computation of the elapsed time for packet

to transfer between the transmitter and the receiver. Therefore, the result of this stage is

typically dictated by the transmitter-receiver separation. Primarily, the propagation speed

of radio is replaced by the speed of sound underwater from the default radio “propdel

model” attribute.
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Receiver Module Attributes

Figure 3.6: Default Radio Receiver Module Attributes

1. Receiver Antenna Gain is the first pipeline stage of the receiver module. The function of

this stage is similar to the transmitter antenna gain, and is specified by the “ragain model”

attribute of the receiver module. This model has not been altered in this thesis.

2. Receiver Power is defined by the “power model” of the receiver module, and its function

is the computation of the received power on an incoming packet. The output of this stage

is critical in further stages (snr and error allocation) for reading and differentiating valid

packets from noise. The default source code and the modified sections of the receiver

power used in this thesis are given below.

• Default:

/* Compute the amount of in-band transmitter power. */

in band tx power = tx power * (band max - band min) / tx bandwidth;

/* Get antenna gains (raw form, not in dB). */

tx ant gain = pow (10.0, op td get dbl (pkptr, OPC TDA RA TX GAIN) / 10.0);
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rx ant gain = pow (10.0, op td get dbl (pkptr, OPC TDA RA RX GAIN) / 10.0);

/* Calculate received power level. */

rcvd power = in band tx power * tx ant gain * path loss * rx ant gain;

/* Assign the received power level (in Watts) */

/* to the packet transmission data attribute. */

op td set dbl (pkptr, OPC TDA RA RCVD POWER, rcvd power);

• Modified:

////////////////////////////////////////////

//Get tx and rx node IDs

tx node id=op topo parent(op td get int (pkptr,OPC TDA RA TX OBJID));

rx user id = op topo parent(op td get int (pkptr, OPC TDA RA RX OBJID));

/*/Read the file bellhop file

gain list ptr = op prg gdf read (”bellhop tab”);

lst size = op prg list size (gain list ptr);

/* Test for error in reading. ////

if (gain list ptr == OPC NIL)

{

sprintf (err str, ”File Name: %s”, ”bellhop tab”);

}

else

{



CHAPTER 3. SYSTEM MODELING AND METHODOLOGY 48

//Initialize to below the noise level(81.5755db from bellhop in niger delta) -100db

tx gain db=-100;

//Skip the first tittle row

for(iter=1;

iter¡lst size;

iter++)

{

field list ptr = op prg str decomp (op prg list access (gain list ptr, iter), ” ,/�”);

//Extracting columns elements from the bellhop table(source, destination, gain)

tx s = atoi (op prg list access (field list ptr, 0));

rx d = atoi (op prg list access (field list ptr, 1));

gain col = atof (op prg list access (field list ptr, 2));

/*Extracting gain for the exact transmitter-receiver pair*/

if(tx s != tx node id)

continue;

else if (rx d == rx user id)

{

tx gain db = gain col;
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break;

}

}

}

/*Convert gain in dB to Watt*/

tx gain w = pow(10, tx gain db/10.0);

/*Computing the recieved power using the using the */

rcvd power = tx gain w *tx power*tx ant gain*rx ant gain;

///////////////////////////////////////////////////////////////

/* Assign the received power level (in Watts) */

/* to the packet transmission data attribute. */

op td set dbl (pkptr, OPC TDA RA RCVD POWER, rcvd power);

3. Interference Noise is defined by the “inoise model” attribute of the receiver module,

and its main function is to monitor the concurrent receptions activity at a given receiver

channel. This model has not been altered in this thesis.

4. Background Noise functioned as the stage that accounts for all noise sources other than

the incoming packets which are already monitored by the interference model, asnd it is
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defined by the “bkgnoise model”. The output of this stage is used in the calculations

of the signal-to-noise ratio at the next stage. The noise from the Bellhop simulation is

the sum total of the ambiance and background noises, hence it is used accordingly in the

model as follows:

• Default:

/* Put the sum of both noise sources in the packet transmission data attr.*/

//op td set dbl (pkptr, OPC TDA RA BKGNOISE, (amb noise + bkg noise));

• Modified:

///Noise power in watts -81.2db from “Bight of Benin”

bellnoise = pow(10,BELLHOPNOISE/10.0);

op td set dbl (pkptr, OPC TDA RA BKGNOISE, bellnoise);

5. Signal to Noise Ratio is defined by the “snr model” attribute of the receiver module,

and its main function is to used the outputs of the earlier pipeline stages such as received

power and the noise sources to calculate the current average SNR power of an incoming

packet. The output of this stage is crucial in the correct reception of packet’s contents by

the receiver. Because the ouptut of this stage is entirely dependent on the results from the

preceding stages, this model has not been altered in this thesis.

6. Bit Error Rate is defined by the “ber model” attribute of the receiver module. The func-

tion of this stage is the computation of the expectation of bit error rate for the previous

constant SNR readings. The output of this stage is also dependent on the type of modula-

tion being used. This model has not been altered in this thesis.

7. Error Allocation is defined by the “error model” attribute of the receiver module. The
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function of this stage is to used a constant bit error rate (from the output of the ber model)

to estimate the number of errors in a given packet segment or its entirety. this model has

not been altered in this thesis.

8. Error Correction is defined by the “ecc model” attribute of the receiver module. The

function of this stage is to ascertain the acceptance or otherwise of a received valid packet.

This acceptance criteria is computed from number of collisions, error rate experienced by

the packet and the ability of the receiver to correct the bit error detected in the packet.

However, the in this thesis, the primary error correction is implemented based on the

number of collisions to reflect the collision model used. Below is the default code section

of the “ecc model” with the only corresponding modifications made to the default “ecc

model” source file.

• Default:

////////////////////////////////////////////

/* Obtain number of errors in packet. */

num errs = op td get int (pkptr, OPC TDA RA NUM ERRORS);

/* Test if bit errors exceed threshold. */

if (pklen == 0)

accept = OPC TRUE;

else

accept = ((((double) num errs) / pklen)≤ ecc thresh) ? OPC TRUE : OPC FALSE;

• Modified:

////////////////////////////////////////////
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/* Obtain number of collisions experienced by packet. */

num colls = op td get int (pkptr, OPC TDA RA NUM COLLS);

/* Test if number of collisions is at least 1. */

if (pklen == 0)

accept = OPC TRUE;

else

accept = (int) num colls > 0 ? OPC FALSE : OPC TRUE;

3.2.6 Traffic Modelling

The traffic generator models the distribution of packet generation that load the network. A

saturated model considers that there is always at least one packet ready to send in the queue,

whilst Poisson traffic offers variable load with an exponential distribution. The Erlang is the

unit of offered traffic in a fixed capacity network. Its value ranges from zero (0) to unity (1),

respectively equating to unloaded and fully loaded channel in any given time.

Saturated Traffic

This traffic is modelled to ensure constant generation of packets by source nodes. It is employed

to demonstrate the network ability to handle cope when subjected to constant stream of packets.

Therefore, by maintaining a non-empty queue (at least one packet in the queue) at all times

source nodes schedule and transmit packet during each transmission cycle. A saturated model

maximises monitoring rates as a new measurement is sent whenever the opportunity arises.

However, when an event occurred and the sensors are triggered, delivery of data may then

be restricted by the MAC layer, ultimately, the network cannot offer better performance than

achievable with a saturated model. Furthermore, it is useful to ascertain the resilience of the
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network when a critical event loads the system. Hence, we use the saturated traffic principally

in evaluating our proposed protocol.

Poisson Traffic

Poisson traffic model is originally developed to model traffic in the telephone networks [78].

However, the model is now well established and extensively used traffic generator that models

events with varying magnitudes and duration in sensor networks [79, 59]. As a Poisson process,

it is described by the Poisson distribution with mean arrival rate of events translated to the packet

inter-arrival times. For a given node density in a neighborhood N, bit rate B bps, offered load G

Erlang, and Packet size Pd bits, the mean inter-arrival time λ of the Poisson process is described

by:

λ =
PdN
GB

(3.1)

The packets generation event can be scheduled in the Modeler from the output of the ex-

ponential distribution function: op dist exponential(λ ). Poisson traffic is demonstrated in Sec-

tion 4.2.

3.3 Performance Measures

The following are some of the typical system parameters and performance metrics considered

in the evaluation and design of the protocols in this work.

• Utilisation measured in Erlangs, it describes the percentage of time useful data is suc-

cessfully received at the designated sink node. For example, a measured utilisation of 0.5

Erlangs means, the network has delivered data 50% of the time to the sink node. A num-

ber of factors, such as communication overheads, network topology and the interference

model determine the achievable utilisation. For a given a number of packets (Np) recieved

at the sink node in the simulation time (T), The Utilisation (U) is computed using:



CHAPTER 3. SYSTEM MODELING AND METHODOLOGY 54

U(Erlang) =
NpPd

T B
(3.2)

Where: Pd ,and B denote the data packet length and the datarate respectively.

• System Channel Capacity is the quoted datarate of the system in bits per second (bps).

Therefore, it defines the maximum amount of data the acoustic channel medium can ac-

commodate, typically in the kbps range.

• Offered Load is the average amount of active data traffic placed on the channel. The of-

fered traffic comprehensively covers both the freshly generated data plus any re-transmitted

data as a result previously unsuccessful transmissions. differs with the generated traffic,

because, some packets could be re-transmitted due to failed transmission attempts at high

contention. Similar to the utilisation, a 1 Erlang traffic corresponds to a fully engaged

channel.

• End-to-end Delay End-to-End (E2E) delay is one of the most important metrics in

UASNs performance, especially with the long propagation delay involved underwater.

The E2E delay gives packets’ latency as they traverse the network. Generally, low E2E

delay is desirable, however, some non critical applications may prioritise other metrics

such as energy efficiency and utilisation.

• System Convergence Time Learning is a gradual process that requires an exploratory

phase prior to finding an optimal solution by the algorithm. This average time whereby

the initial learning completes is an important metric that affects the effectiveness of the

algorithm, when convergence is achievable. Whilst some algorithms stop further searches

after finding an initial solution, others continually look and update the solution dynami-

cally.In the later case, the system convergence time is useful in determining the average

time the algorithm makes no discernible improvements to the initial solution. Tradition-

ally, in Q-learning MAC protocols, the solution refers to when all nodes find and occupy
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a unique collision-free transmission slots. However, the solution herein, refers to the

optimum channel utilisation, since, unique transmission slots is not a prerequisite for a

collision-free transmission in UASNs due to the pronounced spatio-temporal uncertainty

(see Section 2.2.3) and the nature of our proposed slot structure (see Fig. 4.3).

To adequately represent the system performance, the time to start collecting the network

data for the performance metrics is usually stated. In this thesis, the developed algorithms

never settle, as they are continuously adapting to the dynamic underwater acoustic environment.

Hence, the initialisation stage is included in the data collection. In the beginning this may

negatively affect the overall performance, however, this effect is cancelled out when the network

is allowed to run for a sufficient time. The system models, simulation environments and the

results obtained are predicated upon the following assumptions:

• All nodes are homogeneous in a network.

• The network layer handles packet routing based on Dijkstra’s shortest path algorithm.

• In synchronous operations, all nodes are time synchronised across the network.

• All nodes operate on a half duplex mode.

• Average underwater acoustic propagation speed is 1500m/s.

3.4 System Models and Result Validations

In order to validate the simulated networks, firstly, the correctness of the implemented system

models need to verified. This is achieved by matching the simulation results of the network

running an established MAC protocol, namely the popular Aloha protocol[51] in both radio and

acoustic medium. Secondly, the simulated results of the developed protocols are then validated

through comparison with the results of some analytical models. Simulation parameters are given

in Table 4.3 The raw data is exported into MATLAB for plotting and visual representation.
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Figure 3.7: Model Validations: Aloha Protocol in Radio and Sound Channels

3.5 Comparison Schemes

Framed ALOHA, and its reinforcement learning powered variant : Aloha-Q modified with

underwater parameters were chosen for comparison with our proposed protocol in the later

chapters(see Section 5.4). Whilst ALOHA suffers from low utilisation and notoriously unstable

at high loads, its simplicity and benefits of been extensively studied is still highly regarded

and it continues to provide a solid foundation for developing complex/sophisticated schemes.

ALOHA-Q is one of such intelligent variant developed for WSNs, as the concept it employs in

part inspire this work, we feel it provides a reasonable baseline for comparison.

3.6 Summary

In this chapter, we present the need for simulation in UASNs development and the powerful

software tool we employ in this endeavor. An expanded overview on the Modeler’s system-
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atic modelling approach with the three main hierarchical modelling domains, namely the pro-

cess, node and the network domains was also presented. It follows with the metrics used in

performance evaluation of the developed MAC protocols based on the simulated system wide

assumptions. Finally, the validation process and techniques are also discussed.



Chapter 4

Reinforcement Learning in Underwater

Acoustic Sensor Networks

4.1 Introduction

The previous chapter presented pre-requisite tools, methodology and models of the network,

sub-systems and basic process entities employed in execution and evaluation of the developed

networks and protocols in this thesis. Generally, the target application has the specifications

that define the scope and hence guide the choice of an appropriate scenario for network imple-

mentation and evaluation. The scenarios are typically chosen between single-hop and multi-hop

(refer 2.2.5). The use of a single-hops for networks is appropriate for short-range communi-

cation networks and this scope limits its usage in UASNs. Underwater applications are largely

envisaged to be implemented using multi-hop scenarios, since UASNs typically cover a sub-

stantial marine area. There are several advantages of using multi-hop networks, such as large

scale coverage, and increased connectivity for efficient and robust communication routing as

nodes can discover alternative and better or new routes. Underwater pollution monitoring, ma-

rine bio-diversity, rescue missions, tsunami/disaster early warning, and offshore infrastructure

monitoring are some of the examples applications that can benefit from multi-hop However,

multi-hops network topologies have characteristic transmissions and interference patterns that

58
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increase the challenges and complexity of developing network protocols, especially underwa-

ter MAC protocols, whereby low capacity, long and variable propagation delay, high dynamic

nature of the acoustic channel demand MAC schemes that are highly efficient, robust and adap-

tive for optimum performance and best Quality of Service delivery. Topology consideration

is an important natural next step prior to network deployment. This is because the topology

represents the applications network deployment by translating the scenario to an approximate

spatio-temporal positional layout and orientation of components and network integration.

In this chapter, the original Aloha-Q is presented. The purpose is to adapt the Q-learning

MAC scheduling onto a multi-hop linear chain underwater network. Aloha-Q was initially

developed for terrestrial radio WSNs, therefore to extend its utility underwater, its performance

is evaluated in both synchronous and asynchronous operation modes. The evaluation study

gives us an insight on how to introduce some modifications to achieve better performance in

terms of both utilisation and fairness.

4.2 ALOHA WITH Q-LEARNING

This section presents the background and working principles of Aloha-Q protocol. The proto-

col performance in terms of the channel is evaluated and compared in both the terrestrial and

underwater acoustic network environments.

4.2.1 Operational Principles

Aloha-Q (introduced in Section 2.3.3) employs Q-learning as a reinforcement learning tech-

nique with the goal of optimizing and learning distinct transmission schedule/slots by nodes

that are initialized with framed slotted Aloha. To ensure reliable communication between any

two nodes, provisions for an acknowledgement (ACK) response is typically made following a

successful reception. The ACK signal is translated in ALOHA-Q to provide the essential re-

ward parameter (Equation (4.1)) for the scheme to work. Therefore, a slot must be structured to

be wide enough to accommodate at least: the transmission time of a data packet, an acknowl-
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edgement packet, and propagation delays. A guard interval is also incorporated into the slot

size such that a timeout period is defined within the slot boundary whereby acknowledgement

packets not received before the timeout will incur a packet retransmission in the next transmis-

sion cycle. Scheduling is achieved by grouping a contiguous pre-specified number of slots into

a repeating block (Fig. 4.6); the frame.

In addition to having an appropriate slot size, the frame has to be composed with the opti-

mum number of slots as well, in order for the for the nodes to find and occupy unique trans-

mission slots. A vector of values is maintained representing the Q values of the slots per frame,

whereby each slot is assigned a Q-value which is updated according to the stateless Q-function

rule (4.1). At the beginning of each frame, nodes will choose the slot that corresponds to the

highest Q value and transmit in that slot provided there is a packet in the queue to send. How-

ever if there is more than one highest Q value, one will be chosen at random amongst them

and the node will transmit in that slot. The reward is given as the outcome of the transmission:

successful transmission earns (+1) and failed transmission gets punished (−1). Therefore, rule

4.1 is continuously updated each time a node receives an acknowledgement packet or a timeout

occurs. Initially, nodes will be competing for transmission slots until eventually every node

manages to occupy a distinct slot when the protocol converges. Convergence means, as nodes

find unique slots the Q-values of each selected slots will continue to rise and approach one

(1) and Q-values of the unselected slots either remain unaffected from the initialized values or

decrease and approach zero (0). However, convergence may not always be possible if the en-

vironment is constantly changing (as is the case underwater), nevertheless, as online learning

has the ability to track and adapt to the changing environment, using the Q learning algorithm

offers a lot of benefits as demonstrated in Aloha-Q [69, 59] and subsequently in this work.

Therefore, employing Aloha-Q on sensor nodes for an underwater pipeline monitoring network

can provide the benefits of TDMA like scheduling, improved channel performance without the

constraints of central controller, precise knowledge of the environment, and also adaptability to

changing conditions and robustness against changes in network topology due to nodes removal

and/or addition. The complete Aloha-Q algorithm is given in Algorithm 1.
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Qi = (1−α)Qi +αr (4.1)

Where: Qi is the Q value of ith slot, α is the learning rate and r is the reward/punishment.

Algorithm 1: ALOHA-Q algorithm.
Initialization;
Q values,learningrate, and reward;
while node is online do

// Previous transmission outcome;
if ACK then

// Rewarded;
reward←+1;

else
// Punish;
reward←−1;

end
// Update Q value of transmission slot;
Qi← Qi + learningrate(reward−Qi);
// Next transmission slot selection;
next slot← [i|i 3 argmaxi∈I Qi];
//Resetting the reward;
reward← 0;

end

Q-Learning Update Example

This section demonstrates the underlying Q-learning update procedure as employed in the origi-

nal Aloha-Q protocol. To develop a MAC protocol, this is translated to a node taking the action

of transmitting the data packet, and the successful/unsuccessful reception of an ACK packet

represents the reward/punish signal. Each node is given a vector of Q-values (Q-table), and

each Q-value is in turn assigned to one slot in the frame. At the beginning of each frame, a node

will scan the Q-table and select the slot with the highest Q-value to schedule transmission in

that slot. Successful transmissions are rewarded and unsuccessful transmissions punished based

on the reception or otherwise of an ACK packet and updating the Q-value of the transmission

slot using Equation (4.1).
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Table 5.3 illustrates an example of the Q-learning as implemented in ALOHA-Q. Consider

an initial situation (Frame 0) whereby a node i with data to send randomly chooses Slot 2 (

because all slots have equal Q-values) at the beginning of a frame to schedule transmission and

the transmission was unsuccessful.

• The new Q-value of Slot 2 becomes;

Q2← 0+0.1(−1−0) ; updated to −0.1

• In the next frame, Slot 2 has the lowest Q-value and is not considered, and the node

again chooses Slot 1 randomly (among Slots 0, 1 and 3). Following a successful ACK

reception, the new Q-value of Slot 1 is updated.

Q1← 0+0.1(+1−0) ; updated to 0.1

• For Frame 2, the node chooses Slot 1 as it has the highest Q-value (0.1) and sends data;

with successful ACK reception, the Q-value is updated accordingly.

Q1← 0.1+0.1(+1−0.1) ; updated to 0.19

The table gives the Q-values up to twenty frames assuming Slot 1 continues to be successful.

This simple, yet effective recursive Q-learning update bootstraps the trial-and-error mechanism

to a robust collision-free schedule as each node will eventually and independently occupy a

unique transmission slot. For the purpose of implementation in the simulation environment,

a 1-D array is generated to store the Q-values, where the Q index represent the slot number,

the following notation is employed accordingly: Q[i] represents/returns the Q value of ith slot.

However, while the ACK signal is crucial to the Q-value update operation, owing the long

Table 4.1: Example of Q-value update in Aloha-Q

Frame/Q-values Q[0] Q[1] Q[2] Q[3]
FRAME 0 0 0 0 0
FRAME 1 0 0 -0.1 0
FRAME 2 0 0.1 -0.1 0
FRAME 3 0 0.1900 -0.1 0
FRAME 4 0 0.2710 -0.1 0

... ... ... ... ...
FRAME 20 ... 0.8499 -0.1 0
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slot0 slot1 ... slotn slot0 slot1 ... slotn slot1 slot2 ...
FRAME 0 FRAME 1 FRAME 2

Figure 4.1: Frame/Slot Structure

propagation delay, it extends the frame duration to a level that puts an additional burden on the

scarce network resources underwater with the downside of: reduced utilisation due to overheads

and increased delay due to the ACK signal wait times. one of our goals is to address the

reduced performance by devising a scheme that exploit/utilise the wide underutilised frame gap

to improve the channel utilisation and end-to-end delay.

4.3 Modeling Aloha-Q in a Linear Chain Underwater Net-

work

This section presents the scenario and parameters employed in the evaluation of the Aloha-Q

protocol by adaptation and modeling in the underwater network. The adaptation and evaluation

of Aloha-Q is performed on a linear chain multi-hop topology.

4.3.1 Linear Chain

A multi-hop chain network can be applied to several underwater applications by placing sensor

nodes along a target general trajectory (in this case linearly spread nodes), or an established

multi-hop route through a distributed network (randomly spread nodes). Fig. 4.2 depicts an

example 10-hop linear chain network, whereby the source and the destination nodes are at the

opposite ends and data is routed hop-by-hop along the chain via the relay nodes. While the

straight line and the equidistant regularity of node positioning may seems an idealistic simpli-

fication given that nodes are typically deployed in a random manner to cover the site, such as

in ad-hoc networks for in disaster monitoring. Multi-hop linear chain can be found in oil/gas

pipeline monitoring networks. Notwithstanding, the more complex interference signature of

randomly distributed networks, a linear chain route abstraction can typically be established
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from the source to the destination, as such linear chain networks are popularly used for analysis

and evaluations of scenarios and protocols [74].

In Fig. 4.2, rX and iFX illustrate the reception and the interference ranges of a transmitting

node (node 5 in this illustration) respectively. The protocol model is used to characterise the

interference relationship of the network. As defined in the protocol model, a transmission is

successful if the receiving nodes fall within rX of the intended transmitter and outside iFX of

any non-intended transmitters [80]. This simplicity of the protocol model relative to the con-

sidered complex reference SINR model made the protocol model widely used by researchers

in characterising the behaviour of wireless interference for developing network protocols [81].

Since accurate definition of the communication and interference ranges (i.e rX and iFX) in real

applications especially in underwater may not be feasible, therefore we follow the convention

of defining the ranges in terms of hops. This boundary assumption in terms of hops is reason-

able in idealised simulation conditions for a network with homogeneous wireless nodes having

identical hardware features and specifications.

TxSource Sink
Relays

rX

iFX

1098765
d

0 4321

Figure 4.2: A simple 10-Hops Linear Chain Network, showing both the reception and interfer-
ence ranges.

The interference characterisation is of importance in creating time slots for TDMA like

scheduling in multi-hop networks whereby the structure of the time slot is defined by taking the

effect of interference into consideration with the goal of establishing collision free schedule.

Moreover, spatial reuse of the same time slot(s) by multiple nodes for concurrent transmissions
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Table 4.2: Theoretical Throughput of Interference Ranges

Interference Range Unit Population Theoretical Throughput (Erlangs)
1-hop 3 0.333
2-hops 4 0.250
3-hops 5 0.200

can be achieved when the physical separation between the nodes is sufficiently large to remove

interference. Referring to Fig. 4.2, nodes can communicate with each other within rX 1 hop

away and potentially interfere with nodes iFx 2-hop away, as such we can derive the theoretical

maximum/achievable throughput of the system. Consider the situation whereby node 5 is trans-

mitting packet to the downstream node 6, for a successful reception the none of the three nodes

(4, 7 and 8) should transmit during that period, because as per the model their transmissions will

interfere and cause collision(s) at node 6. Furthermore, for a successful reception node 6 itself

must not be transmitting since, the nodes cannot transmit and receive at the same time. Thus,

in a given interference neighborhood only 1 in 4 nodes is guaranteed to successfully transmits

data. This translates to a theoretical throughput of 0.25 Erlangs. Varying the interference ranges

to cover different number of hops also varies the theoretical throughput. For example when the

interference range covers 1-hop, then 1 in 3 nodes can transmit and hence with achievable

throughput of 0.33 Erlangs. Table 4.2 summarises three examples for completeness.

Therefore, for a sufficiently long chain so the interference model is applicable, we can

create a periodic schedule (frame) that assign distinctive time slots to nodes in a given unit

of interference locality and systematically be reused in the subsequent units in such a fashion

that the overall network schedule is collision free and achieves the optimum throughput.

4.3.2 Optimum Frame Length

The determination and pre-allocation of the appropriate number of slots per frame is critical

to the optimum channel utilization [59, 69]. For every interference model there is an optimum

number of slots necessary to guarantee the best performance. Both over-allocating and under-

allocating the number of slots per frame against the number of nodes in a network will have a

degrading effect on performance. Based on the assumptions of treating each individual pack-
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ets originating from different sources along the chain as a separate flow, [59] postulated the

generalised frame duration FD for each node with Eq. (4.2).

FD ≥ FDmin =


((S j +S j−1 +∑

iFx−1
i=0 S j−2−i)SL, N ≥ 2.

SL, N = 1.
(4.2)

where: S j, SL, and N denotes the jth source node, slot duration, and the number of nodes

along the chain respectively.

However, by marshalling the understanding from Section 4.2.1 and Section 4.3.1, the FDmin

is principally dictated by the interference range (iFx). That is, the interference range (hops) will

provide the minimum necessary scaling factor to the slot duration that guarantee a particular

node will have a successful transmissions. Furthermore, since the Aloha-Q algorithm is inher-

ently designed to choose and transmit only one packet per frame, regardless of the number of

sources along the chain, it puts an upper limit on the amount of data packets that gets delivered

to the sink per frame. The system throughput (utilisation) is defined as the ratio of delivered

data against time, which can be then expressed in terms of total received packet duration per

frame duration.

Utilization = G
Pd

FD
(4.3)

where: Pd , and G denote the packet duration (sec) and the normalized offered load in Erlangs

(i.e percentage of the total time the network is actively loaded by each source). From 4.3 the

lower the value of FD the better for the utilisation, however, allocating lower value below what

is allowable per interference range ( fewer slots for competing nodes) will potentially cause

collisions especially with increase in traffic loads, in the same token, large value FD in excess

of the optimum will allocate extra/unused slots that ultimately degrade the throughput. For

example, referring to Table 4.2 when neighboring nodes can only interfere with their closest

neighbour (1-hop) the ideal optimum frame duration (FD) must be three slots wide as only 1-

in-3 nodes can successfully transmit, similarly for 2-hop interference range FD should be four
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slots wide.

4.3.3 Modes of Operation

This section presents an investigation on the performance Aloha-Q in a simulated asynchronous

operation underwater, for the purpose of gaining an insight with respect to performance by

evaluating the protocol whereby network wide synchronisation may not be feasible.

Synchronicity

The original Aloha-Q assumes all nodes in the network to be synchronised, however, at the

current level of technological advancement this is not always practical in underwater networks

due to the lack of: GPS like positional capability, high precision clocks on nodes, and the high

dynamics of the environment. Therefore, to fairly reflect a potential out of sync situation occur-

ring underwater, additional simulation was conducted with the nodes initialized asynchronously

with a uniformly distributed random frame start times as depicted in Fig 4.3. The network is

in synchronous operation when each node initialises with the global reference τ (i.e 0 or any

other starting value), and asynchronous when nodes individually choose τ randomly. The con-

sequence of initializing the frames asynchronously means packets will arrive at the receiver

out of sync, thereby increasing the risk of collisions in the network. However, in the case of

underwater acoustic communication, due to the substantial portion of the slot occupied by the

propagation delay, even packets transmitted in the same numbered slot(s) could potentially be

received at the receiving node without collision.

0
... Frame N

timeτ

Frame 1

Figure 4.3: Frame initialisation
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Multi source

The protocol is further simulated with all nodes acting as sources nodes, this scenario can be

found on a flowline connecting a subsea wellhead to the base of a vertical riser to an offshore

platform is retrofitted with acoustic sensor nodes for monitoring operations, such as of free

span sections along the flowline in a multimodal fashion. Since, the setup is for monitoring pur-

poses every node but the sink is considered a source node and can relay packets from upstream

sources along the chain. To achieve this multi source scenario, we propose a modification to the

original Aloha-Q by incorporating a systematic round robin update in the queue of each node.

This is necessary given that Aloha-Q is only extensively evaluated for a single source in chain

network and thus, unfair with the First In First Out (FIFO) queuing in a multisource chain net-

work, especially in high loads. Therefore, as an improvement to make the protocol suitable for a

pipeline monitoring in a chain network where multiple nodes could potentially be both sources

and relays we replace the FIFO queuing with Round Robin (RR) queuing [82]. The problem

with the FIFO queuing is that, the upstream sources will be starved by the downstream nodes

acting as both sources and relays, therefore nodes closer to the sink will capture the channel

and degrades further as the network load increases. Figure 4.4 illustrates the insertion of the

flow de-multiplexer and an RR scheduler on the existing FIFO mechanism to implement the

fair queuing block. Therefore, sources/relay nodes will separate and insert incoming packets

from different sources into the corresponding flows and so that packets are forwarded by the

round robin scheduler. Treating packets originating from different sources as separate flows

and taking turns in forwarding packets in a round robin fashion all packets from all sources are

treated fairly. Furthermore, when the flow queue for the next packet is empty, the RR scheduler

maintains efficiency by skipping flow queue(s) that are empty and schedules transmission from

the next available queue.
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FAIR QUEUE

RR
Flow

Demux

Receptions Transmissions

Flow N

Flow 3
Flow 2

Flow 1

Figure 4.4: Fair Queue by FIFO to RR Queue Modification

Jain’s fairness index [83] is a performance metric used to show fairness in network with

multiple flows in a shared communication network.

J =

(
n
∑

i=1
xi)

2

n∗ (
n
∑
i

x2
i )

(4.4)

where: xi and n are the recorded utilization of ith source at the sink and the number of source

nodes in the network respectively.

4.3.4 Network Scenario

Basic Scenario and Assumptions

This section presents the topology setup and basic parametric configurations for the perfor-

mance evaluation of the original Aloha-Q as simulated in the underwater environment. Fig. 4.5

depicts the simulated scenario for a chain network consisting of nine (9) nodes along a chain

network of 1600m length with inter-hop distance of 200m. This type of scenario is applicable

to a pipeline monitoring network. Data flows from the source node(s) and is relayed hop-by-

hop along the path to the sink node node 8. The size of Data packets and Acknowledgement

packets are fixed and the optimum data route is assumed to be established in the network layer
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using the shortest path algorithm. In terms of network connectivity, in this work, nodes transmit

and receive on the same channel therefore with half duplex operation within 1-hop reception

range and can interfere with nodes within 2-hop distance. Network wide synchronisation is

established and maintained unless otherwise stated ( such as for asynchronous mode), transmit-

ting nodes can only transmit one packet per frame and finally all internal processing delays are

ignored. Finally, to avoid accepting overlapped packets during reception a protocol model is

used.

Figure 4.5: Simulated Scenario

4.3.5 Traffic Models

In this chapter both Poisson arrival and saturated traffic were employed in the simulations.

While our eventual objective is focus on Saturated traffic (refer Section 3.2.6), we include the

Poisson traffic model because a major contribution of this chapter is to explore the feasibility of

extending and adapting the original Aloha-Q underwater ( this entails validation and comparison

with the original Aloha-Q protocol model) to which the Poisson traffic is an important validation

component [59]. For the rest of this thesis however, we primarily use the saturated traffic,

whereby new packet is generated whenever a source node is ready to transmit, this is particularly

suited to real-time monitoring applications such as in oil and gas pipeline monitoring whereby

in the event of leaks or other compromises in structural/operational integrity, timely and robust

relaying of data is critical for accurate analysis and reaction to the problem.



CHAPTER 4. REINFORCEMENT LEARNING IN UNDERWATER ACOUSTIC SENSOR
NETWORKS 71

Table 4.3: Simulations Parameters

Parameter Radio Channel Acoustic Channel
Transmission/Reception Data Rate 25000bps 640bps
Data Packet Size 1060bits 512bps
Acknowledgement Packet Size 16bits 16bits
Slot Size 1100bits 710bits
Slots per frame 4 4
Reception Range 200m 200m
Interference Range 400m 400m
Propagation Speed 3E8m/s 1500m/s

4.3.6 Simulation Parameters

The overall simulation parameters are given in Table 4.3. The acoustic channel utilises the

quoted parameters of the Newcastle University’s nano modem [84] and the radio channel pa-

rameters are from the original Aloha-Q. These parameters values are employed in all simulation

in this chapter. Whilst the propagation speed in the radio channel is negligible, the impact of the

slow propagation speed on the slot size of the acoustic channel can be seen on the corresponding

calculated value of the acoustic slot size.

Figure 4.6: Acoustic Frame/Slot Structure

4.3.7 Performance Evaluation and Results

The simulation was run for 15000 frames each for both radio and acoustic channels. Packets are

generated according to Poisson arrivals and saturated load, nodes are allowed to send only one



CHAPTER 4. REINFORCEMENT LEARNING IN UNDERWATER ACOUSTIC SENSOR
NETWORKS 72

packet per frame. The statistical data is collated from the beginning of the simulation, primarily

because we are interested in the overall performance including the learning phase as in reality

the network will be deployed long enough for the effect of the learning process to be neutralised.

To evaluate the effect of frame size, the overall network throughput is plotted against the frame

duration for each operation mode run.

Fig. 4.7 compares the performance of pure Aloha and Aloha-Q in both radio and acous-

tic channels as measured at the sink node. As can be seen from Fig. 4.7, Aloha-Q manages

to achieve 0.24 Erlangs in a terrestrial chain network and it only manages 0.18 Erlangs in an

underwater network. However, Aloha-Q outperforms pure Aloha because of the blind trans-

mission strategy in pure Aloha, thereby only achieving maximum utilization of 0.11 Erlangs.

The computed results in the simulation based on (4.5) is consistent with the expected results

of Equation (4.3) and illustrate the impact of the overhead due to the long propagation delay

on the channel utilisation in the underwater environment. Overall, Q-learning helps elevate and

stabilise Aloha to achieve near perfect channel utilization in a radio channel and offers similar

performance in an acoustic channel.

Utilization=
Total packets received× packet size

data rate× simulation time
(4.5)
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Figure 4.7: Underwater Performance

Fig. 4.8 compares the maximum channel utilization against number of slots per frame from

simulating Aloha-Q at full load (G=1). The Aloha-Q ideal plot is based on Equation (4.3) and

is the result without any interference taken into account with the expected inverse relation be-

tween maximum utilization and the number of slots per frame. The Sync:Aloha-Q curve shows

how the interference model affects the protocol to under-perform versus the ideal case. For

example 2-slots (0.36 Erlang versus 0.3 Erlang). Simulating Aloha-Q asynchronously gives

the Async:Aloha-Q plot and shows how the protocol performance degrades and swings signifi-

cantly to almost zero for 2 slots and 3 slots (0.16 Erlang). Overall, however, the protocol pivots

at the optimum 4-slots (0.18 Erlang) and remains unaffected by the interference model and the

lack of synchronisation as the number of slots increases due the sufficient number of slots per

frame and slot size. This is a significant result that highlights feasibility of exploiting the long

propagation delay to achieve good performance whilst violating the recommended FD. Due to

the intelligent scheduling strategy, the asynchronous Aloha-Q protocol still outperforms both
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synchronous and asynchronous framed Aloha on the pipeline network except for the 2-slots

case.

Figure 4.8: Variable Frame Size Operation Modes

Fig. 4.9 is the result that compares the fairness achieved by the protocol, FIFO queuing and

Round Robin(RR) queuing, which clearly shows a significant improvement as the modification

achieved 100% fairness while the original Aloha-Q achieves less than 40% fairness.
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Figure 4.9: Jains Fairness Index

4.4 Summary

In this chapter the Q-learning based Aloha protocol modelled and evaluated in underwater chain

network. The protocol has also been shown to be suitable for applications in underwater chain

network, whereby the protocol achieve good performance. Whilst it is possible to leverage the

long propagation delay to run the protocol asynchronously, nevertheless the fundamental frame

duration employed by the Aloha-Q protocol needs to be reduced as this can become costly to

the overall performance. Furthermore, for the protocol to be fair and useful in multi source

applications the first-in-first-out (FIFO) queue needs to be replaced with a Round Robin (RR)

Queue to achieve 100% fairness.



Chapter 5

Dual Control Q-learning for Medium

Access Control in Multi hop chain UASNs

5.1 Introduction

In the previous chapter, a translation and evaluation of the ALOHA-Q protocol in an underwater

scenario was presented. In principle, the intelligent Q learning approach has a clear advantage

and promise to transform MAC protocols in UASNs. However, the preliminary evaluations

have demonstrated that the original ALOHA-Q implementation has some inherently limiting at-

tributes that called for a new approach in employing the Q-learning paradigm in the underwater

acoustic sensor network application domain. Whilst scoring high on the simplicity, decentrali-

sation and adaptability metrics, the original ALOHA-Q is demonstrably inefficient underwater.

Given the limited capability of acoustic nodes in terms of capacity and energy efficiency, it is

imperative the devices are deployed with the most efficient protocols in order to have a practical

network.

This chapter presents a novel MAC protocol for underwater acoustic monitoring chain net-

work. This new MAC scheme is based upon two core approaches: a new and improved time slot

structure and a reformulated Q-learning coupled with implicit feedback mechanism. With the

aid of a simple network model, we analyse and identify the limitations of frame based random

76
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access scheduling (in terms of achievable channel utilisation) to re-imagine a new slot struc-

ture that minimises the underutilised gap in the traditional framed based slot structures. The

intelligent scheduling is achieved by coupling two separate reinforcement learning (RL) func-

tions: Q-learning for the slot selection and another to serve as an averaging function for overall

packet flow detection. Results show a substantial utilisation improvement and resilience with

increasing network range.

The rest of the chapter is structured as follows. Section 5.2 presents a baseline frame based

random access MAC scheme with our proposed slot structure. The scheme is pictorially anal-

ysed to ascertain the viability of the proposed time slots and characterise the achievable utilisa-

tion and followed by a discussion on the theoretical and the simulation results. In Section 5.4,

we proposed and detailed a dual-control intelligent MAC scheme, and the results obtained when

applied to varying lengths of chain networks.

5.2 Frame Based Random Access MAC Protocol

Framed ALOHA is not just one of the baseline protocols we compare against our proposed

intelligent scheme. Framed ALOHA provides the underlying scheme to which the Q-learning

was applied. In contrast to slotted ALOHA, whereby time is divided into slots and nodes can

only transmit at the beginning of each slot, a frame is used in framed ALOHA, which comprises

a fixed number of contiguous slots Ns. In the framed ALOHA random access strategy, each

node independently and randomly chooses one of the transmission slots at the beginning of

each frame.

Typically, a slot is structured such that it accommodates: a data packet of duration (τd), an

acknowledgement packet of duration (τA if required), the associated propagation delays of each

packet (τpg) and a small guard band (τg): the band is essential to correct and guard against drifts

in clock precision and synchronisation. The slot structure is shown in Figure 5.1, for cases with

and without acknowledgements. Whereas, in radio networks, the overheads due to the wait

period between successive data transmissions in a slot/frame can be of negligible length with
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respect to the packet duration, in an underwater acoustic channel however, the physics impose

a long propagation delay, plus low capacity (bandwidth and therefore data rate), making the

overheads significant, thus negatively impacting the channel utilization and end-to-end delay.

Defining the channel utilization (U) as the rate of delivering data at the designated sink

node (Equation (5.1)), then, in frame/slot based protocols, the utilization is also a function of

the number of slots (Ns) in the frame. For example, if a node is allowed to transmit N packets

per frame, then the maximum effective utilization at the sink is going to be upper bounded

at N/Ns. The value of Ns is determined from the topology and interference population of the

network. Setting Ns inappropriately will negatively affect not just the utilisation, but potentially

the stability of the MAC protocol as well. For example, in a star topology, Ns is equal to the

number of transmitting nodes (Nn); as each node should have a unique transmitting slot, setting

Ns > Nn adds extra un-utilised slot(s), and Ns < Nn will cause contention as some nodes will

not exclusively own a slot. Therefore, for a particular topology and interference model, there

is an optimum Ns (Nopt) [69]. Erlang [78] is a dimensionless unit that represents continuous

channel usage (for example 0E = zero channel activity, 0.5E = half channel activity and 1E =

full channel usage).

Unormalised(Erlang) =
Nτd

NsSL
(5.1)

therefore, the optimum utilization is:

Unormalised(Erlang) =
Nτd

NoptSL
(5.2)

where SL, τd denote the slot duration and packet duration in seconds respectively.

One of the consequences of having low capacity is the long transmission duration, which

presents two situations for a given transmitter and receiver pair: the transmission duration could

be greater, equal or less than the propagation delay between the nodes. For practical purposes,

since each slot will ultimately be padded with a small guard band, henceforth, we are treating

the the rare ”equal” situation as a special case of the ”greater than” situation. Following [85], if

we introduce the parameter Kτ (Equation (5.3)), then the resulting slot structure can have either
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of two sets of transmission-reception patterns: overlapping and non-overlapping based on the

value of Kτ , as shown in Figure 5.1.

Kτ =
τd

τpg
(5.3)
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Figure 5.1: Typical slot structures: (a) Overlapping, transmission-reception occurs concurrently
for the data packet. (b) Non-overlapping, data transmission completed before reception occurs.

Sa1
L and Sa2

L represent the slots’ length with ACK and are typically used by slotted protocols

employing an ACK signal such as ALOHA-Q. Similarly, Sn1
L and Sn2

L are the slots without ACK

as used in framed ALOHA and TDMA. Equations (5.4) and (5.5) are used to calculate the slot

sizes.

Sa
L = τd + τA +2 τpg + τg (5.4)

Sn
L = τd + τpg + τg (5.5)

In this slotted concept, nodes are allowed to transmit only one packet per frame (i.e., N = 1),

and the expression of maximum utilisation (U) can be simplified to the ratio of packet duration-

to-frame size (Equation (5.6)). We can combine Equations (5.2) and (5.6) to calculate the

expression of the utilisation below:

U =


τd

No pt ( τd+2τpg+τA+τg ) , Sa
L

τd
No pt (τd+τpg+τg ) , Sn

L

(5.6)
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As τd,τpg >> τA,τg, Equation (5.6) approximates to:

U ≈


τd

No pt ( τd+2τpg ) , Sa
L

τd
No pt (τd+τpg ) , Sn

L

(5.7)

From Equation (5.7), it can be seen that, since τd and τpg dominate, the value of Kτ will

guide us on how to improve channel utilisation by restructuring the slot size. For Kτ > 1, we are

constrained with respect to any change to the slot size. Any reduction will create overlapping

slot reception that will effectively render the slotting meaningless, as demonstrated with the

downgrade of slotted ALOHA to pure ALOHA underwater [85].

In most UASN applications, the propagation delay is longer than the transmission duration

because of sparse connectivity. Therefore, Kτ < 1 best describes such scenarios. We propose the

slot structure in Figure 5.2. The slot size is now reduced to approximate the propagation delay

(SL ≈ τpg), which is possible since with Kτ < 1, the data packet can be safely accommodated in

τpg. This simple slot structure aims to reduce and fill the otherwise wide gap in the conventional

slots with useful data (compared to Figure 5.1). Therefore, for a given chain UASN, designed

with nodes separated by a dm transmission range, we demonstrate that there are advantages to

the performance improvements of using our slot structure; for example, the peculiar character-

istic of the underwater communication channel in terms of its distance dependent capacity, that

is, the acoustic transmission bandwidth and data rates decrease with increasing transmission

distance [86]. Thus, given the flexibility, instead of employing relatively fewer hops to transmit

over longer ranges (requiring high power) with low capacity, we can potentially achieve higher

capacity transmissions with additional hops added to route data over shorter ranges (suitable for

low power and cheaper nodes). To investigate the achievable utilisation, the slot structure shown

in Figure 5.2 is based on Kτ ≈ 1: a special case of Kτ < 1. This is purely to limit the overhead

in the slot, as increasing the slot size beyond τpg negatively affects the utilisation according to

Equation (5.6).
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5.2.1 Scenario and Network Model

Consider a scenario comprising quasi-stationary equally spaced nodes in an N hop underwater

network chain topology, with data delivered along the chain from one end to the other. Fig-

ure 5.3 depicts an example of such a network with N = 4 and hop distance d. This topology is

representative of pipeline monitoring. As such, during the reporting cycle, the network can be

considered loaded to capacity; accordingly, this work is primarily concerned with the achievable

utilisation. To aid the analysis, the following assumptions are made:

1. All nodes are homogeneous and communicate over a single channel, half-duplex mode.

2. The collision model (non-capture) is used, i.e., if two or more packets overlap at the

receiver, they are discarded.

3. Nodes are globally synchronised, an assumption commonly employed to simplify analy-

sis and applicable to quasi-stationary nodes synchronised before deployment.

4. The interference range (Ifx) is twice the reception range (Rx); this model is typically em-

ployed for chain networks as an illustrative model to incorporate the effect of interference

from nodes that are two hops away.

5. A source node has saturated traffic, i.e., always has a packet to send, to provide the maxi-

mum monitoring rate based on the transmission opportunities offered by the MAC layer.

Similar research papers are concerned with achievable utilization [87, 88, 74].

6. All source/relay nodes can only transmit one packet per frame, a consequence of As-

sumption (4) yielding a frame consisting of four slots [69], as only one of four connected

nodes can transmit successfully at a given time.
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Figure 5.2: Proposed slot structure.

Figure 5.3: An example scenario.

We re-write Equation (5.7) of Sn
L to get the new utilisation for the proposed slot structure:

Unormalised(Erlang) =
τd

No ptτpg
(5.8)

and in terms of Kτ , it becomes:

Unormalised(Erlang) =
Kτ

No pt
(5.9)

In summary, while the traditional slot structure that incorporates the propagation delay

and/or ACK packet within the constraints of the available channel resources, we show that

with Kτ < 1, the propagation delay is sufficient to accommodate the data packet, and it is then

possible for the slot size to be effectively reduced and restructured (by at least 50% of the cases

in the Kτ < 1 regime), and as long as a protocol does not require an ACK packet, there is a

potential for a dramatic improvement in performance (Equation (5.9) vs. Equation (5.7)).
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5.3 Model Analysis

To analyse the network with the proposed slot structure (Figure 5.2), we consider a baseline

scheme whereby each node initialises by randomly choosing a transmission slot. The purpose

of considering this scheme is first to demonstrate the inefficiency of a random access scheme by

analysing the distribution of the achievable channel utilization, second to investigate the feasi-

bility of applying intelligent techniques to the model that could lead to a significant performance

improvement and, finally, to evaluate the efficacy of the proposed slot structure coupled with

the intelligent techniques relative to similar intelligent approaches and random access baseline

schemes.

To build the frame, we start with the optimal number of slots per frame Nopt . In a linear

chain network (such as Figure 5.3 and longer,) Nopt is four as computed according to the two

hop interference model [69]. This is because in a linear topology with the two hop interference

model, technically only one in four nodes can successfully transmit at a given time. Similarly,

for one hop and three hop interference conditions, one in three and one in five nodes can transmit

successfully [69, 74]. Therefore, for a distributed MAC protocol, such as framed ALOHA

employed in this setup, each node is free to chose any of the available four slots in the frame,

resulting in 44 = 256 ways for nodes to independently select and occupy transmission slots.

Table 5.1 lists the range of the 256 possible slot combinations in a four column array of 64

unique patterns, with each column vector signifying the transmission slot pattern from Node 0

to Node 3. That is, the vector [0000] denotes all nodes selecting and occupying Slot 0; likewise,

slot sequence [2210] signifies both Nodes 0 and 1 choosing Slot 2, while Nodes 2 and 3 choose

Slot 1 and Slot 0, respectively.

5.3.1 Pictorial Analysis

Pictorial timing depictions are employed to observe and obtain the theoretical bounds of the

scheme in terms of channel utilisation. The diagrammatic method provides a visual intuition of

our core idea. For each pattern, N 0 is the source node; it generates and transmits data in every
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Table 5.1: Possible Slot Permutations

S/N SLOT SEQUENCE
SEQ 0XXX SEQ 1XXX SEQ 2XXX SEQ 3XXX

0 [ 0 0 0 0 ] [ 1 0 0 0 ] [ 2 0 0 0 ] [ 3 0 0 0 ]
1 [ 0 0 0 1 ] [ 1 0 0 1 ] [ 2 0 0 1 ] [ 3 0 0 1 ]
... [ ... ] [ ... ] [ ... ] [ ... ]
... [ ... ] [ ... ] [ ... ] [ ... ]
62 [ 0 3 3 2 ] [ 1 3 3 2 ] [ 2 3 3 2 ] [ 3 3 3 2 ]
63 [ 0 3 3 3 ] [ 1 3 3 3 ] [ 2 3 3 3 ] [ 3 3 3 3 ]

frame to N 1, which forwards the packet (if successfully received) to N 2 in the next frame, and

so on. Overall, individual packets are traced frame-by-frame as they traverse the network from

source to sink (N 0 to N 4). The final utilisation is measured when an overall periodic pattern

emerges at the sink node (vertical red lines in each example figure; refer to Section 5.3.1).Fig-

ures 5.5-5.10) are provided to illustrate the process as follows:

Packet
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ith packet
ith frame

slots

DescriptionLabel

3210

t
r
i
x
*i
Fi Fi

hop range

Nj

Ni

Figure 5.4: Legend for packet labels and illustrations.
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Figure 5.5: SEQUENCE:[ 2 2 1 2 ]: “Worst” measured utilisation based on zero packets being
delivered = 0.0 E.

Figure 5.6: SEQUENCE:[ 0 0 2 3 ]: “Intermediate” measured utilisation based on one packet
in five frames (20 slots) = 0.05 E.

Figure 5.7: SEQUENCE:[ 0 0 0 3]: “Intermediate” measured utilisation based on two packets
in six frames (24 slots) = 0.083 E.
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Figure 5.8: SEQUENCE:[ 1 1 1 0 ]: “Intermediate” measured utilisation based on two packets
in five frames (20 slots) = 0.1 E.

Figure 5.9: SEQUENCE:[ 0 0 3 0 ]: “Half” measured utilisation based on one packet every two
frames (8 slots) = 0.125 E.

Figure 5.10: SEQUENCE:[ 0 2 1 1 ]: “Best” measured utilisation is one packet in every frames
(4 slots) = 0.25 E.
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5.3.2 Results

In order to empirically evaluate the performance of the above random access scheme, we ran a

simulation on a network of five nodes (Figure 5.3) configured with the proposed slot structure

analysed in Section 5.3. Each node is pre-configured to run a MAC protocol that randomly

selects and maintains a transmission slot at the beginning of each simulation run. It should

be noted that in this simulation, since Kτ ≈ 1, the transmission delay and propagation delay

are abstracted to 1:1 for the best results. Moreover, the choice of four transmitting nodes in

this analysis is based upon the minimum number of nodes for the chosen two hop interference

range model effect to manifests, thus, the analysis is not limited to four transmitting nodes, but

can be scaled to network(s) with different number of hop and/or different interference ranges.

Theoretically, replicating slot patterns with perfect collision free schedules along longer chain

should have proportional effect on average end-to-end delay without affecting utilisation.

Figure 5.11 shows and compares the utilisation results from both the analytical distributions

of the slot patterns and the simulations. Overall, there are three prominent utilisation levels

and some spurious intermediate levels, as summarised in Table 5.2. The summary provides

individual proportions of levels in each plot, and the overall column is the contribution of each

sequence in the combined set of 256 slots.
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Figure 5.11: Distributions’ comparison.

Table 5.2: Summary of Utilisation Levels

Level Proportions(%)
SEQ 0XXX SEQ 1XXX SEQ 2XXX SEQ 3XXX Overall

Worst case (0E) 45.3 50.0 53.1 43.8 48.1
Intermediate (0.03E - 0.1E) 9.4 10.4 6.3 10.9 9.4
Half (0.125E) 21.9 15.6 17.2 21.8 19.1
Maximum (0.25E) 23.4 23.4 23.4 23.4 23.4

Depending on the chosen slot by the source node, transmissions could be initiated from ei-

ther the frame edge (Slots 0 or 3) or mid-frame (Slots 1 or 2), and to some degree, the results

show how the position of a chosen slot affects the utilisation. As shown in the result summary

(Table 5.2), there is a subtle, but clear advantage in performance when the source node initiates

transmissions with emerging slot patterns at frame edges (i.e. SEQ 0XXX, SEQ 3XXX) rela-

tive to the mid frames (i.e. SEQ 1XXX, SEQ 2XXX) or there is at least an 8% better chance

of getting a packet received at the sink node when the source node transmits at the edges of

a frame compared to when source node uses mid frame (in terms of the worst case utilisation
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levels).

Intuitively, the distribution of the utilisation of the patterns can be assumed to be similar,

since it can be demonstrated that each column sequence can be translated to another corre-

sponding sequence in the remainder of the columns (Table 5.1). However, due to the transmis-

sion strategy of the protocol of scheduling packet transmission at the beginning of each frame,

the simple slot structure guarantees that packets transmitted at sloti be received at sloti+1. This

means sequence translations will result in packet reception/interference across frames, conse-

quently causing the distribution of the utilization outcomes to vary. For example, consider the

corresponding slot selection sequences: [ 0 0 3 0 ], [ 1 1 0 1 ], [ 2 2 1 2 ] and [ 3 3 2 3 ]. [ 0

0 3 0 ] and [ 3 3 2 3 ] both have cross-frame receptions and have a similar utilization of 0.125

Erlangs (Figure 5.10). In contrast, [ 1 1 0 1 ] and [ 2 2 1 2 ] have no cross-frame reception and

yield 0 Erlangs (Section 5.3.1: Figure 5.5). Only 60 out of the total 256 slot sequences yield

the maximum utilization level as a whole and remain immune to the slot sequence translations

because they are perfectly collision-free. In Figures 5.5–5.10 (Section 5.3.1), we show how we

computed six of the ten prominent utilisation levels for brevity.

The simulation results are in agreement with our analytical results, as they show that no data

is delivered 48% of the time. This corresponds to the average of the possible 43–53% worst

cases in the given original slot patterns, as expected. Most importantly, the simulation result

confirms that the full channel utilization is achievable with the exact proportion of 23%. Finally,

the simulation result shows the average performance of the random slot selection protocol and

will serve as a baseline with which to demonstrate the merit of slot based learning in the new

protocol ALOHA-QUPAF. However, as previously stated, while the ACK signal is crucial to

the Q-value update operation, it puts an additional burden on the scarce network resources

underwater: reducing utilisation due to overheads and increased delay due to the ACK signal

wait times. Our goal is to implement a novel Q-learning approach that maintains the level of

intelligence without this explicit ACK signal, thereby maximising the channel utilisation and

improving end-to-end delay.
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5.4 Underwater Packet Flow ALOHA-Q: ALOHA-QUPAF

The proposed slot structures in Figure 5.2 pose a critical question: how do we apply a sim-

ple reinforcement learning algorithm to ultimately achieve collision-free scheduling without an

ACK packet? In this section, we present a two stage solution using a reformulated Q-learning

coupled with a simple stochastic averaging expression inspired by [89], where the harmonised

stages are succinctly described in Algorithm 2. We demonstrate the efficacy of our dual-mode

learning approach in improving performance in a chain network as introduced in Section 5.2.1.

5.4.1 Protocol Design

In order to achieve the goal of realising a collision-free schedule without an explicit ACK sig-

nal, we modified the Q-value update process ( Section 4.2.1) while maintaining the remaining

protocol settings and assumptions ( Section 5.2.1). Specifically, at the beginning of each frame,

a relay node chooses the slot with the highest Q-value (if more than one slot has the highest

Q-values, one is chosen at random) to forward a received packet on to the next hop. In the

case of the source node, it initialises by randomly selecting and maintaining a constant slot for

transmission. This is because we employ a Q-learning process that utilises packet receptions

to update and reinforce transmission slot selection. Our solution involves a two stage approach

based on the following intuitions:

1. In a network with half-duplex nodes, they cannot transmit and receive at the same time (in

the same slot); therefore, we employ Q-learning to isolate all reception slots by punishing

those slots to lower their Q-values. As such, when a node scans the Q-table, reception

slots will have low Q-values and are unlikely to be selected for transmission.

2. A continuous flow of packets over the chain is expected in saturated traffic with a healthy

channel. Thus, a relay/sink expects a new packet(s) in every frame after receiving the first

packet, and a packet collision is inferred whenever that stream of packets gets disrupted.

To exploit this realisation, every time a relay node transmits a packet, it rewards the
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chosen transmission slot (positively updates the slot’s Q-value) if and only if a new packet

is received afterwards.

We denote the two stages in the dual mode control as slot selection and flow harmony, and

a detailed description of the process is given below:

• Slot selection: This is implemented by Q-learning to eliminate the reception slot(s).

When a source node generates a packet and transmits, upon receiving the packet, the

receiver (relay node) will record the reception slot (rx s) and update the Q-value of the

slot according to (Equation (4.2.1)). Specifically, each slot in a frame is mapped to a value

in the vector of Q-values (Q[ns]), and the Q-values are initialised with a uniform random

number less than one, whereby for each reception, the node computes rx s and updates

Q[rx s] accordingly with ψ = −1. Consequently, this continual negative reinforcement

of reception slots isolates those slots, and the slot(s) with the highest Q-value(s) signifies

a probable collision-free slot at the local level, therefore a good candidate(s) slot(s) for

transmission. For a relay node, at the beginning of each frame, if a node has a packet(s)

in its queue, it will schedule a packet transmission in a slot with the maximum Q-value;

however, if more than one slot shares the maximum Q-value, one will be chosen at ran-

dom from amongst them. Whilst the Q-value of the reception slot is always punished

following any reception, the Q-value of the transmission slot is only updated after every

transmission. If there is a subsequent packet reception, the transmission slot is rewarded

(ψ = 1), otherwise it is punished (ψ =−1). However, since this scheme lacks a definitive

feedback signal based on this node action(s) of transmissions, the success of any trans-

mission in the chosen slot is uncertain. This is because, unless the packet flow is network

wide, a continuous transmission and reception by a relay node does not mean that a given

node’s transmissions are not interfering with some other transmissions especially for the

downstream links. Therefore, to avoid nodes from getting stuck in local minima, a control

mechanism has to be devised to regulate the Q-values especially of the transmission slot.

• Flow harmony: Although we devise a means to obtain feedback from the environment
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(reward/punishment), the node cannot directly link these signals to its own action(s);

hence, at any given time during the network run, we only have a partial observation of the

channel condition; this type of process is best modelled as a partially observable Markov

decision process (POMDP) (see in Section 2.4.2). This is because, instead of certainty

in the network wide flow, the packet flow experienced by each node gives us a partial

observation on the channel at the local level. The POMDP framework enables us to model

the local observations by agents to generate a probability distribution of a belief state (in

our case, settled or unsettled flow). The network can be in either stable or unstable packet

flow states, and we therefore designate two belief states accordingly. We employ a simple

heuristic strategy based on stochastic averaging [90], whereby each node independently

tracks its overall local packet flow in a given window, which we then translate as the

distribution of the belief state. The distribution of the belief states is computed with

Equation (5.10). For each reception in a frame, f lτ is updated by λt steps at the tracking

rate γ . While the expression monotonically approaches one, it is continually windowed

every (Wn) frames and compared to a fixed threshold (thresh). Based on our simulation

experiment, ideally, f lτ will reach 98% by the 20th frame; hence, we heuristically set

(Wn = 20) to check for f lτ with a tolerance of thresh = 95%, which should be achieved

at (Wn = 14).

If we designate the belief states S1 and S2 respectively as the initial state (both Q-values

and f lτ reset; the network is assumed to have no stable flow during learning) and the flow

harmony state, S1 is decided when the averaging function exceeds the threshold, which

indicates that flow harmony has been achieved at least in the node’s local interference

group, otherwise the node resets to S2. In essence, every node has a window of 20 frames

to isolate incoming reception slots and settle on a transmission slot. Whenever a particular

node(s) fails to settle and join the flow, the reset will make the node switch to another slot

and potentially notify other nodes in the neighbourhood as well.

f lτ ← (1− γt) f lτ +λt (5.10)
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where f lτ , γt and λt denote the flow averaging, the learning/tracking rate and the incre-

ment scale, respectively.

In order to infer and glean the signal that drives f lτ from the flow of packets, the function

is heuristically chosen to have an identical trend to the underlying slot selection Q-learning. In

Fig. 5.12, Qs and Q f are an idealised/stable trajectory of continuously successful and failing

slot respectively, whilst Fl is the trend of f lτ for different learning rates. However, in practice

the trajectory of the slot selection is not expected to be smoothly reinforced initially, since at

that stage the node is still learning and exploring the slots. Running f lτ at the same or lower

learning rate as Q means either delaying the flow harmony checks or lowering the threshold.

On the other hand, setting f lτ to track at a faster learning rate means earlier checks. Therefore,

f lτ has to balance fast checks whilst avoiding unnecessary resets to Q.

Figure 5.12: Trends of both Q value and f lτ

By using this two stage solution, ALOHA-QUPAF unlike ALOHA-Q effectively isolates
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Algorithm 2: ALOHA-QUPAF algorithm.
Result: S1,or S2
S1;
Initialization;
α , γt , λt , ψ // From Table 5.4;
// For all n ;
Q[n]← rand([0,1));
Wn← 20, thresh← 0.95, f lτ ← 0;
S2;
while node is online do

if Reception then
get rx s ;
//Activating the packet reception flag;
Rx τ ← True;
Q[rx s]← Q[rx s]+α(ψ−Q[rx s]);

end
// Frame Block;
Wn−= 1;
if Rx τ then

f lτ ← (1− γt) f lτ +λt ;
Q[tx s]← Q[tx s]+α(ψ−Q[tx s]);

end
// Belief State Block: compares flow rate with threshold;
if Wn == 0 then

if f lτ < thresh then
// Node resets parameters;
node← S1;

else
// Maintain parameters;
node← S2;

end
Wn = 20;

end
// Transmission slot selection;
tx s← [x|x 3 argmaxx∈X Q[x]];
//De-activating the packet reception flag;
Rx τ ← False;

end

both reception slots from the transmission slots and finds an implicit way of getting the feed-

back signal of the node’s action based on the individual nodes experiencing successful reception

of a continuous stream of packets. Furthermore, it differs from framed ALOHA, since it can in-

telligently create and maintain a robust collision-free schedule. The complete ALOHA-QUPAF

algorithm is given below.
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Aloha-QUPAF Update

Table 5.3 illustrates an example of the learning implementation in ALOHA-QUPAF. Consider

for example a situation whereby a node i that has in the previous frame received two packets in

Slots 0 and 3. To forward a data packet the node chooses Slot 1 ( 0.9649, the highest assigned

with uniform random Q-value, in accordance with Section 4.2.1) at the beginning of the current

frame to schedule transmission. The Q-values of Slots 0 and 3 are updated below.

• The new Q-value of Slots 0, 1 and 3 becomes;

Q[0]← 0.1576+0.1(−1−0.1576) ; [0.0418]

Q[3]← 0.9572+0.1(−1−0.9572) ; [0.7615]

• In the next frame, Slot 0 has the lowest Q-value and is not considered, and the node

chooses Slot 1. Since there was packet(s) receptions in Slots 0, and 3, previous trans-

mission is assumed successful given no apparent disruption to the packet stream. Hence,

both reception and transmission slots Q-values will be updated.

Q[0]← 0.0418+0.1(−1−0.0418) ; [−0.0623]

Q[1]← 0.9649+0.1(1−0.9649) ; [0.9684]

Q[3]← 0.7615+0.1(−1−0.7615) ; [0.5853]

• Similarly, for Frame 2, with successful packets receptions at Slot 0 and 3, the node

chooses Slot 1 again as it has the highest Q-value (0.9684) and sends data; , the Q-values

are updated accordingly.

Q[0]←−0.0623+0.1(−1−0.9652) ; [−0.4073]

Q[1]← 0.9684+0.1(1−0.9684) ; [0.9716]

Q[3]← 0.5853+0.1(−1−0.5853) ; [0.4268]

• Finally, with each reception/transmission cycle f lτ is also updated to track and average

the flow of packets ( Eq. (5.10)), following our example, f lτ becomes 0.9820 which has

exceeded the threshold of 0.95 needed to maintain the current state of transmission slot

selection.



CHAPTER 5. DUAL CONTROL Q-LEARNING FOR MEDIUM ACCESS CONTROL IN
MULTI HOP CHAIN UASNS 96

The table gives the Q-values up to twenty frames assuming both receptions and transmis-

sion patterns is maintained; packets continually received at Slot 0 and Slot 3. This simple,

yet effective recursive Q-learning update bootstraps the trial-and-error mechanism to a robust

collision-free schedule as each node will eventually and independently occupy a transmission

slot that will join and maintain the flow.

Table 5.3: Example of Q-value update in Aloha-QUPAF

Frame/Q-values Q[0] Q[1] Q[2] Q[3]
FRAME 0 0.1576 0.9649 0.7572 0.9572
FRAME 1 0.0418 0.9684 0.7572 0.7615
FRAME 2 -0.0623 0.9716 0.7572 0.5853
FRAME 3 -0.1561 0.9744 0.7572 0.4268
FRAME 4 -0.2405 0.9770 0.7572 0.2841

... ... ... ... ...
FRAME 20 -0.8436 0.9953 0.7572 -0.7356

5.4.2 Simulation Parameters

Table 5.4 provides the parameters used in this thesis to simulate and evaluate ALOHA-QUPAF

and the comparison protocols.

Table 5.4: Simulation Parameters

Parameter Value
Transmission/Reception Data Rate 640bps
Data Packet Size 632bits
ACK Packet Size 16bits
Slot Size 640bits
Slots per frame 4
Reception Range 200m
ψ ±1
α 0.1
λt 0.2
γt 0.2
1 hop Propagation Delay (Relative to packet size) 1s
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5.4.3 Results

Since the focus of this work is principally to improve performance in terms of channel utiliza-

tion measured at the sink, ALOHA-QUPAF is compared to a state-of-the-art ALOHA-Q, which

employs a similar Q-learning technique, and a baseline framed ALOHA scheme in terms of

the normalised utilization. We simulated networks of varying hop lengths with the protocols

configured with respect to the structures in Figure 5.2. For a fair comparison, as our proposed

slot structure is constrained to Kτ > 1, we only compare ALOHA-QUPAF with the other pro-

tocols in the Kτ > 1 regime. The network was simulated in the Riverbed Modeler (formerly

OPNET) environment, and the setup used the parameters given in Table 5.4, which were based

on a modem developed by Newcastle University [84]. In all cases, the network was simulated

for 15,000 frames, with a single saturated source at one end of the network and a sink at the

other end. In terms of result collection, due to the continuous nature of the learning of the

ALOHA-QUPAF algorithm, the results were collected from the beginning of the simulation.

Figures 5.13 and 5.14 are the results obtained when the network was simulated on four and

eight hop networks, respectively. The figures compare the performance of ALOHA-QUPAF

with ALOHA-Q and framed ALOHA. This comparison is particularly important as the proto-

cols share similar reception conditions in the Kτ > 1 scenario; transmission and reception occur

in the same slot (Figure 5.1). Evidently, in this setup, both ALOHA-QUPAF and ALOHA-Q

are dramatically affected as the network size increases (four hops to eight hops). The maximum

utilisations of ALOHA-QUPAF (0.217 Erlang) and ALOHA-Q (0.191 Erlang) are both sharply

halved for about 40% and 58% of the simulated cases, respectively. This performance drop

can be explained by the presence of the hidden node phenomenon [43, 44]. This is simply the

situation whereby a particular communication between any two nodes is interfered by another

transmission within range of the receiver.
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Figure 5.13: Kτ > 1: 4 hops utilisation performance comparison.

Figure 5.14: Kτ > 1: 8 hop utilisation performance comparison.
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Figure 5.15 depicts the hidden node problem in an eight hop chain network, in a situation

whereby both N2 and N5 share the same transmission slots; thus, transmission from N2 to N3

will be periodically interfered by N5 transmitting to N6, as packets are relayed along the chain.

The effect of the hidden node problem as the reason for the performance degradation is con-

firmed by the agreement shown in the simulation results obtained when the interference range

(Ifx) is reduced from two hops to one hop in the eight hop chain (Figure 5.14) with the results

in the four hops network (Figure 5.13). This is because, in a two hop interference range model,

a four hop range chain network is of insufficient length for the issue to manifest. Mitigating the

hidden node issue is a subject of further work. Another important metric worth mentioning is

the end-to-end delay; however, it is not presented here, since ALOHA-QUPAF does not imple-

ment packet retransmissions. Therefore, neglecting any processing and queuing delays in the

nodes, the E2E delay is fixed as a function of the number of hops in the network. The simu-

lations show that ALOHA-QUPAF achieves 0.124 Erlangs at its worst and 0.248 Erlangs at its

best, outperforming both ALOHA-Q (0.19 Erlangs best) and framed ALOHA (0.069 Erlangs)

respectively by at least 13% and 148% in all simulated scenarios.

Figure 5.15: The hidden node problem.

Figure 5.16 presents the performance of ALOHA-QUPAF with our proposed slot structure

(Figure 5.2) in the Kτ < 1 scenario. To demonstrate how the ALOHA-QUPAF protocol is

affected by the network length, we extend the range to 16 hops and evaluate its performance.

The results show a subtle drop in the overall performance from four to 16 hops. The decrease

in performance is attributable to the increase in the hidden node spots (bottlenecks points) and

the time needed for the protocol to find a collision-free schedule as the network size increases.
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Each time a node switches to a different transmission slot, this will have a ripple effect across

the neighbouring nodes, causing others to potentially switch slots as well, essentially resetting

the process. Despite the lack of an explicit acknowledgement signal, the protocol demonstrates

significant performance improvement with more than 90% of cases achieving 0.24 Erlangs for

networks in the 4–12 hop range and 80% for the 16 hop range.

Figure 5.16: ALOHA-QUPAF utilisation for 4, 8, 12 and 16 hops networks using the proposed
slot structure.

5.5 Summary

This chapter presents a simple slot structure based on the relationship between packet trans-

mission duration and propagation delays in conjunction with two stage reinforcement learning

techniques to develop a novel MAC protocol (ALOHA-QUPAF) that can achieve near channel

capacity utilisation in a UASN chain topology. Our solution addresses the excessive overhead

required in slot structures used by typical slotted/framed protocols. Incorporating Q-learning
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in the protocol makes it robust against network and channel changes due to the high dynamic

underwater environment. Furthermore, one of the primary goals is for the protocol to be dis-

tributed, adaptive, simple and computationally inexpensive so that it is suitable for use in inex-

pensive and low capacity modems.

To implement our solution, firstly, we analyse the slot structure using an intuitive diagram-

matic representation to map the achievable channel utilisation levels. We then reformulate a

Q-learning routine that exploits an implicit feedback signal to negatively reinforce and isolate

reception slots in the slot selection phase. Secondly, by averaging the packet flow rate, we

are able to generate a distribution for belief states that control and consolidate the choice of

transmission slot to achieve overall network wide packet flow. We finally evaluate and demon-

strate that ALOHA-QUPAF significantly outperforms the comparable protocols with similar

Q-learning and slotting concepts.



Chapter 6

Future Work

This chapter presents a some additional related areas of future research that will potentially

enhance and extend the work in this thesis.

6.1 Mathematical Translation of the Pictorial Analysis

In chapter 5 a pictorial analysis is employed to analytically describe utilisation levels and vi-

sualise the operation of a baseline random access scheme. Through a combination manual

hop-by-hop tracing of packets along the network and simulation runs, the complete achievable

utilisation performance can be established. However, whilst the approach is arguably effective,

accessible and intuitive, the technique’s efficiency and universality is sub par to a mathemat-

ical formulation. For example, only a few results of the analysis was given in Section 5.3.1,

as an exhaustive picture is not feasible. Whereas mathematical equation(s) could concisely de-

scribe the entire idea. By translating the pictorial analysis in to the corresponding mathematical

framing will comprehensively improve and convey the core idea and potentially facilitate better

integration with additional performance metrics.

102
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6.2 Power saving measures

Although the work presented in this thesis is principally concerned with applying intelligent

scheduling to maximise utilisation efficiency of linear chain multi-hop UASNs. The signifi-

cance of MAC protocol on energy efficiency is of major importance as well. Owing to the

constraints of power supply and the need to deploy sensors for extended monitoring period,

power efficient MAC protocols are critical to UASNs. The use of negative reinforcement in iso-

lating slots can be exploited to incorporate power management techniques such as sleep cycles.

For example, since ALOHA-QUPAF uses incoming packets as an aversive stimulus for the re-

ception slots, by identifying the incoming and transmission slots all other slots can potentially

be used for sleep modes.

6.3 Aloha-QUPAF Implementation on Mobile Nodes

Monitoring of subsea assets is the focused application scenario in this thesis. For example,

the network is envisaged to be deployed by retro-fitting sensor nodes on/along a pipeline, con-

sequently, ALOHA-QUPAF is designed and simulated on a quasi-stationary network. This

enabled us make some reasonable assumptions: synchronisation and fixed transmission ranges.

In other applications nodes could be intentionally mobile, such as an Autonomous Underwa-

ter Vehichle (AUV) or unitentionally displaced nodes by sea currents or marine life. Hence,

global synchronisation and transmission ranges ( thereby changing the interference population

of neighborhood (s)) initially assumed are no longer the case. Given ALOHA-QUPAF is al-

ready light and simple with an aggressive no overheads design, it is possible to greatly enhance

the capability of ALOHA-QUPAF to cover mobile nodes in a network by incorporating ro-

bust synchronisation and adaptive frame sizing techniques base on the prevalent interference

population.
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6.4 Practical Evaluation of ALOHA-QUPAF

Arguably, the evaluation of ALOHA-QUPAF in a simulation environment with preset or com-

puted set of parameters and assumption is limited. Implementing and running the protocol

in real underwater scenario will provide an essential validation. The empirical evaluation of

ALOHA-QUPAF has shown remarkable improvement relative to the comparison schemes (

ALOHA-Q and framed ALOHA). Practical tests will be helpful in evaluating how ALOHA-

QUPAF performs when subjected to both hardware and other real world random variables. The

test will additionally provide an insight on potential areas/variable modifications for improve-

ments.



Chapter 7

Conclusion

The harsh and extremely dynamic underwater environment makes the application of adaptive

and intelligent techniques an essential approach for efficient implementation of viable under-

water acoustic sensor networks (UASNs). Despite sharing similar underlying concepts and ap-

plication paradigm with terrestrial wireless sensor networks (WSNs), adoption of conventional

schemes to the underwater networks have largely been found to be ineffective. Consequently,

new strategies that takes into account the peculiar characteristics of underwater environment

are required to enable the UASNs technologies. Reinforcement Learning (RL) is a promis-

ing approach that has been demonstrated to be powerfully robust and able to achieve good

performance in WSN. RL exhibits distributed properties that eliminates the need for typically

challenging and advance planning of resource allocations whilst intelligently self organise to

efficiently manage the network resources. Given the majority of challenges faced by UASNs

can be linked to the physics of the acoustic channel and limitations of current technologies,

RL is well suited to equip MAC protocols with an effective mechanism of collisions resolution

and flexible transmission capabilities specially needed for practical and successful operation of

UASNs.

ALOHA-Q was a recently proposed MAC protocol that employs the RL paradigm in WSNs,

despite the original incompatible assumption about propagation delay made in implementing

ALOHA-Q, owing to its inherent simplicity and adaptability it has the potential to be a con-
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tender for mainstream adoption and in UASNs. However, ALOHA-Q rely on a crucial ex-

plicit feedback signal to drive the RL algorithm which can be unreliable underwater and further

constraints the capacity and delay performance of the network thereby rendering the protocol

inefficient.

The work undertaken in this thesis focused on devising a restructured time slot that elim-

inates overheads and an implicit feedback signal thereby improving the overall utilisation and

delay in a linear chain UASNs. Firstly, two tight hop time slot structures based on the relation-

ship between data packet duration and propagation delay was proposed to improve data to slot

utilisation and delay. This is followed by a pictorial analysis of random access scheme to empir-

ically evaluate the achievable utilisation and thus, the feasibility of utilising the new structure

with practical gains in performance. Secondly, we proposed a two stage RL mechanism that

uses a Q-learning algorithms for incoming packets as a negative feedback signal to reinforce

arrival slots and a second one dimensional averaging function to continuously track packet flow

in a given window. The proposed two stage strategy is driven by consistent stream of packets

across the n effectively achieve collision free scheduling by isolating reception slots from

7.1 Original Contributions

The main contributions of this thesis are summarised as follows:

7.1.1 Adaptation of ALOHA-Q to Linear Chain UASNs

We implemented and evaluated the performance of ALOHA-Q in linear chain UASNs. The

results obtained primarily demonstrated the impact of underwater parameters particularly the

long propagation delay on the performance of the protocol under ideal conditions and asyn-

chronously. The simulation additionally validates the relationship between utilisation and the

number of slots per frame (frame size). While accurate predetermination of such number in

an uncertain environment is challenging, however, since the target application scenario of this

thesis is concerned with quasi-stationary nodes in monitoring network, devising dynamic frame
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adaptation mechanism will introduce an unnecessary complexity to the ALOHA-Q protocol.

In a monitoring applications each node is a potential source/relay, therefore MAC protocols

has to guarantee fair access, this is to avoid having few nodes from capturing the channel and

starving others. The fairness of ALOHA-Q has not been studied in the previous works, and our

evaluation has shown that in multiple source setting the protocol is not fair overall. By simply

modifying the default FIFO queuing system with a RR the protocol is able to achieve 100%

fairness in all settings.

7.1.2 New frame size for UASN

MAC protocols use an acknowledgement to signify successful communication session(s), the

absence of which triggers a re-transmission. This is essential for applications that require guar-

anteed delivery, for most UASNs monitoring applications, however, are more concerned with

prompt delivery of the most up to date data. This is because, freshly generated data is usually

the most relevant in describing the current status of the system, in which case MAC protocol

with best effort delivery is sufficient. Therefore, we proposed two aggressive no overhead time

slot structures based on the ratio of packet duration to one hop propagation delay for maximal

slot utilisation. This approach greatly improves on the existing state-of-the-art techniques that

account for longest possible propagation delay in creating the frame size, such as [91, 92].

7.1.3 Application of Pictorial Analysis for Theoretical analysis

By using diagrammatical representation we visualise the operation of a random access scheme

based on our proposed slot structure. This enables us to describe the idealised frame-by frame

system transitions and traced the packets as they traversed the network. The utilisation describ-

ing the system can easily be computed at the designated sink node by observing the periodic

pattern arrival that eventually manifest. Similarly, the average delay ca also be discerned for

each slot selected pattern across the network. There is an excellent agreement between the

simulation results and the analytical results when compared. The pictorial method provide an
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alternative approach to the conventional mathematical especially in conducting network analy-

sis that may require advance techniques to describe.

7.1.4 Reception slot isolation using negative RL

The reformulation and application of Q-learning algorithm in MAC protocol has introduced a

novel approach that solve the problems of excessive collision and low utilisation of framed

ALOHA based protocols. Instead of nodes learning unique transmission slots through ex-

ploratory trial-and-error by receiving feedback of their actions, in this reversed strategy, streams

of packets provide an aversive stimulus that continuously reinforces the reception slot(s) and

therefore those slots will be effectively isolated and unlikely to be used as transmission slot dur-

ing selection by the Q-algorithm. Since nodes can only receive or transmit at a time, the goal of

this branch of the algorithm is to avoid collisions at the node level. Due to the new slot structure

perfect scheduling can still be accomplished whilst two adjacent nodes in a particular interfer-

ence population share same transmission slot. By making the RL signal reception-centric most

of the data transfer uncertainty is improved and robust compared to the explicit ACK needed

in [59, 74, 69].

7.1.5 Packet Flow Harmony

In a multi hop networks data flow along the route from source(s) to destination(s), thus, nodes

are typically expected to forward data from other upstream nodes to downstream nodes. Es-

sentially when a route is established in an active network, a consistent stream of data along the

route can provide a fair indication of certain type of network stability, and perfect/collision free

scheduling is attained when the measured flow across the network approximates the optimum

channel capacity. Taking into account the initial learning stage of the Q-learning, we have pro-

posed a second averaging function that will track the flow of data. A perfect scheduling will

results in node independently recording flow rate that exceeds the threshold, otherwise some

nodes will lag and hence indicates a flow disharmony somewhere in the network.
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7.1.6 Revisiting the Hypothesis

The following is the hypothesis stated for work in this thesis:

”It is possible to effectively achieve the optimal (achievable utilisation) network perfor-

mance by devising new time slots based on the relationship between packet duration and hop

propagation delay, coupled with intelligent MAC scheduling using packets flow in lieu of explicit

reward signal to drive a reinforcement learning algorithm.”

We hereby summarise the main contributions presented in Section 7.1 of this thesis in con-

textualised to the above hypothesis in the following:

• The Chapter 4 evaluation of ALOHA-Q in UASNs provides proof of concept study for

the feasibility and suitability of adopting and extending the RL paradigm in the design

of MAC protocols underwater. RL has the capacity to enable adaptability in the dynamic

underwater environment and potentially improve performance with the right time slots

and feedback approach.

• Following the assumption of an interference range and the associated computation of the

optimum frame duration. The proposed time slot structures in Chapter 5 aggressively

reduce overheads based on a relationship between two components of communications:

packet duration and hop propagation delay. When the packet duration is longer than the

propagation delay the slot size incorporates the propagation delay, otherwise the slot size

is approximated to the propagation delay. The design of these slots aims for the most

maximum achievable in-slot utilisation in a flexible manner relative to the conventional

slot structures employed in framed-ALOHA and ALOHA-Q.

• ALOHA-QUPAF is an intelligent protocol that employed dual control to achieve perfect

scheduling without explicit feedback of interaction with the network. Packet arrivals

provide the negative reward for the Q-learning algorithm to punish receptions slots, in this

way the reception slots will be negatively reinforced and become unlikely to be selected

by the Q-policy for transmissions, hence local level collision is eliminated. The slot

selection component provide local level intelligent scheduling.
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• Flow harmony is needed to fairly judge the overall condition of the network. Since no

explicit feedback is received following each transmission, the success of the chosen trans-

mission slot is difficult to ascertain. Therefore, subsequent flow of packets after each

transmission is used as an implicit feedback signal to reinforce the transmission slots,

however, a separate averaging function that tracks the overall flow with respect to the

optimum channel utilisation is employed to validate and control the choice of current

transmission slot over a given window. Flow harmony achieves global level scheduling.

The contributions outlined above have been empirically shown to dramatically achieve

the optimum channel capacity, whilst intelligently maintaining adaptability at varying length,

hence, proving the hypothesis of this thesis.



Appendix A

BELLHOP TABLE

Table A.1: BELLHOP GAIN DATA OF NIGER DELTA

SRC INDEX RX INDEX CH GAIN CH DELAY SPREAD

1 2 -54.9 0.1323 0

1 3 -64.52 0.2744 0.0001

1 4 -82.44 0.4022 0

1 5 -93.6 0.5357 0

1 6 -104.07 0.669 0.8119

1 7 -114.3 0.805 0.7424

1 8 -123.89 0.9368 0.6827

1 9 -133.57 1.0732 0.6283

2 1 -54.9 0.1323 0

2 3 -53.2 0.1421 0.0005

2 4 -68.56 0.2699 0.0003

2 5 -82.55 0.4034 0

2 6 -93.67 0.5367 0.8893

2 7 -103.66 0.6727 0.0002

2 8 -114.58 0.8045 0
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2 9 -124.19 0.9409 0.6815

3 4 -54.3 0.1279 0

3 2 -56.18 0.1421 0

3 5 -69.43 0.2614 0

3 1 -70.71 0.2744 0

3 6 -80.39 0.3946 0.0002

3 7 -91.57 0.5306 0.8935

3 8 -101.64 0.6625 0.0001

3 9 -111.31 0.7988 0.0001

4 3 -54.3 0.1279 0

4 5 -55.07 0.1336 0

4 6 -69.96 0.2668 0

4 2 -70.28 0.2699 0

4 1 -82.44 0.4022 0.9795

4 7 -82.24 0.4028 0.0002

4 8 -93.51 0.5346 0.8919

4 9 -104.22 0.671 0.8124

5 6 -54.11 0.1333 0.0007

5 4 -54.13 0.1336 0.0007

5 3 -69.43 0.2614 0

5 7 -70.21 0.2693 0

5 8 -82.35 0.4011 0

5 2 -82.55 0.4034 0

5 1 -93.6 0.5357 0

5 9 -93.74 0.5375 0

6 5 -55.03 0.1333 0

6 7 -55.39 0.136 0
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6 4 -69.96 0.2668 0

6 8 -70.07 0.2679 0

6 3 -81.78 0.3946 0

6 9 -82.62 0.4042 0

6 2 -93.67 0.5367 0.8906

6 1 -104.07 0.669 0.8129

7 8 -54.84 0.1319 0

7 6 -55.39 0.136 0

7 9 -70.11 0.2682 0

7 5 -70.21 0.2693 0

7 4 -79.2 0.4028 0.0001

7 3 -91.2 0.5306 0.0001

7 2 -104.35 0.6727 0.8104

7 1 -114.3 0.805 0.7426

8 7 -54.84 0.1319 0

8 9 -55.44 0.1364 0

8 6 -66.92 0.2679 0.0003

8 5 -82.35 0.4011 0

8 4 -91.96 0.5346 0.0002

8 3 -103.57 0.6625 0

8 2 -108.64 0.8045 0.7432

8 1 -123.89 0.9368 0.6838

9 8 -55.44 0.1364 0

9 7 -70.11 0.2682 0

9 6 -82.62 0.4042 0

9 5 -93.74 0.5375 0.8896

9 4 -104.22 0.671 0.8114
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9 3 -113.84 0.7988 0.7456

9 2 -124.19 0.9409 0.6817

9 1 -133.57 1.0732 0.629



References

[1] A Gkikopouli, G Nikolakopoulos, and S Manesis. “A survey on Underwater Wireless

Sensor Networks and applications”. In: 2012.

[2] R Otnes et al. Underwater Acoustic Networking Techniques. Springer, 2012.

[3] J Guan et al. “The underlying design in underwater acoustic wireless sensor network”.

In: 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013). Oct. 2013,

pp. 1–5.

[4] Offshore production nearly 30% of global crude oil output in 2015 - Today in Energy -

U.S. Energy Information Administration (EIA). https://www.eia.gov/todayinenergy/

detail.php?id=28492. Accessed: 2018-9-28.

[5] Jude Clemente. “The Quiet Rise In U.S. Offshore Oil Production”. In: Forbes Magazine

(Apr. 2018).

[6] H Karl and A Willig. Protocols and Architectures for Wireless Sensor Networks. Wiley,

2005.

[7] Mandar Chitre, Shiraz Shahabudeen, and Milica Stojanovic. “Underwater acoustic com-

munications and networking: Recent advances and future challenges”. In: Mar. Technol.

Soc. J. 42.1 (2008), pp. 103–116.

[8] J Heidemann et al. “Research challenges and applications for underwater sensor network-

ing”. In: vol. 1. 2006.

[9] S Climent et al. “Underwater Acoustic Wireless Sensor Networks: Advances and Future

Trends in Physical, MAC and Routing Layers”. In: Sensors 14.1 (2014), pp. 795–833.

115

https://www.eia.gov/todayinenergy/detail.php?id=28492
https://www.eia.gov/todayinenergy/detail.php?id=28492


REFERENCES 116

[10] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, and Joan Garcia-Haro. “Wire-

less sensor network deployment for integrating video-surveillance and data-monitoring

in precision agriculture over distributed crops”. In: Comput. Electron. Agric. 75.2 (Feb.

2011), pp. 288–303.

[11] W Dargie and C Poellabauer. Fundamentals of Wireless Sensor Networks: Theory and

Practice. Wiley, 2010.

[12] João Martinho, Luı́s Prates, and João Costa. “Design and Implementation of a Wireless

Multiparameter Patient Monitoring System”. In: Procedia Technology 17 (Jan. 2014),

pp. 542–549.

[13] Kechar Bouabdellah, Houache Noureddine, and Sekhri Larbi. “Using Wireless Sensor

Networks for Reliable Forest Fires Detection”. In: Procedia Comput. Sci. 19 (Jan. 2013),

pp. 794–801.

[14] Sudipta Bhattacharjee et al. “Wireless sensor network-based fire detection, alarming,

monitoring and prevention system for Bord-and-Pillar coal mines”. In: J. Syst. Softw.

85.3 (Mar. 2012), pp. 571–581.

[15] A Pascale et al. Motorway speed pattern identification from floating vehicle data for

freight applications. 2015.

[16] Leonid Maksimovich Brekhovskikh. Fundamentals of ocean acoustics. Springer Science

& Business Media, 2003.

[17] Yang Xiao. Underwater acoustic sensor networks. CRC Press, 2010.

[18] Almir Davis and Hwa Chang. “Underwater wireless sensor networks”. In: 2012 Oceans.

IEEE. 2012, pp. 1–5.

[19] M Chitre and W S Soh. “Reliable Point-to-Point Underwater Acoustic Data Transfer: To

Juggle or Not to Juggle?” In: IEEE J. Oceanic Eng. 40.1 (2015), pp. 93–103.



REFERENCES 117

[20] Affan A Syed et al. “Understanding spatio-temporal uncertainty in medium access with

ALOHA protocols”. In: Proceedings of the second workshop on Underwater networks.

ACM, 2007, pp. 41–48.

[21] “Offshore Pipeline Market – 2019 Global Industry Analysis By Size, Growth, Merger,

Share, Trends, Revenue, With Regional Forecast To 2024 - Reuters”. In: Reuters ().

[22] James G Speight. Handbook of Offshore Oil and Gas Operations. en. Elsevier, Oct. 2014.

[23] Huacan Fang and Menglan Duan. Offshore Operation Facilities: Equipment and Proce-

dures. en. Gulf Professional Publishing, Sept. 2014.

[24] Ahmed A Elshafey, MR Haddara, and H Marzouk. “Free spans monitoring of subsea

pipelines”. In: Ocean Systems Engineering 1.1 (2011), pp. 59–72.

[25] Subsea Asia 2015-Jakarta. “Structural Monitoring of Subsea Pipelines and Role in Re-

ducing Mitigation Costs”. In: ().

[26] C Mai et al. “Subsea infrastructure inspection: A review study”. In: 2016 IEEE Interna-

tional Conference on Underwater System Technology: Theory and Applications (USYS).

Dec. 2016, pp. 71–76.

[27] Nord Stream Ag. Maintenance - Nord Stream AG. https://www.nord-stream.com/

operations/maintenance/. Accessed: 2019-11-4.

[28] Cheng Hong et al. “Subsea production layout: design and cost”. In: International Con-

ference on Offshore Mechanics and Arctic Engineering. Vol. 57694. American Society

of Mechanical Engineers. 2017, V05AT04A053.

[29] Elena Gaura et al. Wireless Sensor Networks: Deployments and Design Frameworks. en.

Springer Science & Business Media, 2010.

[30] Yueh-Min Ray Huang. Sensors: Advancements in Modeling, Design Issues, Fabrication

and Practical Applications. en. Springer Science & Business Media, 2008.

[31] Javier Poncela-Gonzalez et al. “Investigation of Underwater Acoustic Modems: Archi-

tecture, Test Environment & Performance”. In: (2016).

https://www.nord-stream.com/operations/maintenance/
https://www.nord-stream.com/operations/maintenance/


REFERENCES 118

[32] S Sendra et al. “Underwater Acoustic Modems”. In: IEEE Sens. J. 16.11 (2016), pp. 4063–

4071.

[33] Antonio Sánchez et al. “An ultra-low power and flexible acoustic modem design to de-

velop energy-efficient underwater sensor networks”. en. In: Sensors 12.6 (2012), pp. 6837–

6856.

[34] G Cario et al. “SeaModem: A low-cost underwater acoustic modem for shallow water

communication”. In: 2015.

[35] L Wu et al. “Designing an Adaptive Acoustic Modem for Underwater Sensor Networks”.

In: IEEE Embedded Sys. Lett. 4.1 (Mar. 2012), pp. 1–4.
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