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Abstract 

The interpretation of geophysical field measurements of seismic anisotropy is presently 
limited by our knowledge of the controls of the elastic anisotropy of sedimentary rocks 
in the subsurface. Traditionally, laboratory ultrasonic velocity measurements have been 

used to provide important information on bulk aggregate seismic anisotropy, however, 

they do not allow the discrimination of the contribution from the various microstruc- 
tural parameters (e. g., crystallographic lattice preferred orientation (LPO), preferentially 

aligned porosity, aligned fractures and the non-random spatial distribution of mineral 

phases). In this study the results from scanning electron microscope-electron backscat- 

tered diffraction (SENI-EBSD), quantitative X-ray diffraction (QXRD), image analysis, 

ultrasonic velocity measurements, palaeomagnetism, anisotropic magnetic susceptibility, 

and numerical modelling are combined to elucidate the controls of the elastic anisotropy 

of siliciclastic sedimentary rocks from an oil reservoir. 

SEM-EBSD was used to measure both the overall and individual constituent mineral 

phase LPO (Maddock et al. 2004). As phyllosilicates are both very fine-grained, with 

a high aspect-ratio and low crystallinity, their LPO contribution was established via 

a combination of image analysis and numerical modelling (Bingham approximation). 

These analytical and predictive methods for determining phyllosilicate fabric intensity 

produced consistent results. For the first time, the azimuthally preferred orientation 

of elongate grains within sedimentary rocks was determined using anisotropic magnetic 

susceptibility of ferrous minerals and were compared to those predictions obtained using 
EBSD. 

The strength of the fabric-texture (J), as determined by EBSD, is proportional to the 

maximum compressional and shear-wave anisotropy, as calculated from the Christoffel 

equation, by taking a Hill average of the bulk aggregate elastic constants. The quartz 

and feldspar velocity maxima aligned in a constructive fashion throughout most of the 
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samples. It is possible that the preferred alignment of crystals detected by EBSD reflects 
the palaeoflow direction. The predicted symmetries of velocity anisotropy ranged from 

orthorhombic in the phyllosilicate-free, well-sorted, mature sandstones to strong vertical 
transverse isotropy in the unfractured phyllosilicate-rich mudstones. Vertical transverse 

isotropy is predicted to be oriented, such that, the plane of azimuthal isotropy is aligned 

parallel to bedding i. e., parallel to the horizontally aligned clays and micas. Similarly, 

orthorhombic symmetry is predicted to be oriented, such that, one plane of symmetry 
is aligned approximately parallel to bedding whilst the other symmetry plane is aligned 

parallel to the single most dominant fracture set. The results from this study provide the 
input needed for a general mathematical model for the reservoir allowing the prediction 

of seismic anisotropy for any rock in the reservoir given accurate modal proportions. 
The resulting model is an advance on the empirical correlations that are usually used to 

determine how seismic velocities are affected by factors such as clay content and porosity. 
In particular, the bulk aggregate elastic stiffness tensor obtained during this study can 
be integrated with high-pressure ultrasonic measurements to enable the prediction of the 

additional contribution from grain-scale effects such as shape-preferred orientations, and 

grain boundary compliances (Hall et al. 2007). The results from this study have also 

provided the basic data to allow field seismic data to be inverted to obtain estimates of 
in situ fracture density and orientation (Kendall et al. 2006). 

In summary, analysis of a suite of siliciclastic hydrocarbon reservoir rocks has shown that 

the LPO of constitutive minerals can offer information about the nature of a reservoir. 
The results suggest that seismic anisotropy is not only indicative of lithology but can 

also be an indicator of reservoir quality and pa-laeoflow direction. 



V 

Contents 

Acknowledgments 
.................................. ii 

Abstract ........................................ iii 
Contents ........................................ xi 
List of Tables ..................................... xiii 
List of Figures .................................... xxii 

1 Fundamentals 1 

1.1 Introduction ................................... 1 

1.2 Overview of seismic anisotropy ........................ 2 

1.3 Elasticity .................................... 4 

1.3.1 Anisotropic symmetry systems .................... 6 

1.3.2 Calculation of seismic velocities from the stiffness tensor ...... 7 

1.3.3 Seismic wave theory .......................... 8 

1.4 Causes of anisotropy .............................. 11 

1.4.1 Lattice preferred orientation ...................... 11 

1.4.2 Grain fabric ............................... 12 

1.4.3 Non-random spatial distribution of mineral phases ......... 14 

1.4.4 Preferentially aligned fractures, pores, and cracks .......... 14 

1.5 Observations of seismic anisotropy ...................... 15 

1.5.1 Field observations of scismic anisotropy ............... 15 

1.5.2 Laboratory studies of scisn-dc anisotropy ............... 17 

1.6 Thesis aims, objectives and motivation .................... 21 

1.6.1 Project goals .............................. 22 

1.7 Thesis outline .................................. 22 

2 Clair field, N. W. Scotland 26 

2.1 Overview .................................... 26 



CONTENTS 

2.2 Structural history ................................ 26 

2.3 Hydrocarbon migration ............................ 28 

2.4 Reservoir geology ................................ 28 

2.4.1 Matrix mineralogy and reservoir quality ............... 30 

2.5 Provenance ................................... 31 

2.6 Clair field seismic data review ......................... 32 

2.7 Samples analysed ................................ 33 

2.8 Diagcnetic history ............................... 44 

2.9 Summary .................................... 47 

3 Quantiflcation of mineralogy 49 

3.1 Introduction ................................... 49 

3.2 Review of techniques used to determine modal composition ........ 50 

3.2.1 Point counting ............................. 50 

3.2.2 Image analysis ............................. 51 

3.2.3 Electron backscattered diffraction .................. 52 

3.2.4 X-ray diffraction ............................ 54 

3.2.5 Quantitative X-ray diffraction ..................... 57 

3.3 Results - Modal Composition ......................... 62 

3.4 Conclusions ................................... 62 

4 Ultrasonic analyses 65 

4.1 Introduction ................................... 65 

4.2 Ultrasonic analysis technique ......................... 66 

4.2.1 Sample preparation .......................... 68 

4.2.2 Ultrasonic core evaluation ....................... 69 

4.2.3 Atmospheric conditions velocity measurements ........... 71 

4.2.4 High-pressure velocity measurements ................. 73 

4.2.5 Split transducer shear-wave analysis ................. 77 

4.3 Ultrasonic analyses results ........................... 
79 

4.4 Discussion 
.................................... 

87 

4.4.1 Introduction 
.............................. 

87 

4.4.2 Discussion of atmospheric conditions velocity measurements .... 87 

4.4.3 Discussion of high-pressure velocity measurements ......... 92 



vii CONTENTS 

4.4.4 Causes of anisotropy .......................... 98 

4.4.5 Application to the subsurface ..................... 103 

4.5 Conclusions ................................... 108 

5 Petrofabric analysis 110 

5.1 Introduction ................................... 110 

5.2 Scanning electron microscope - fundamentals ................ 112 

5.3 Electron backscattered, diffraction - introduction .............. 114 

5.3.1 Electron backscattered diffraction - fundamentals .......... 115 

5.3.2 Automated electron backscattered. diffraction ............ 116 

5.3.3 Problems indexing low-symmetry mineral phases .......... 117 

5.4 Electron backscattered diffraction sample preparation ........... 119 

5.5 Stercological approach to the determination of phyllosilicate orientations . 121 

5.5.1 Introduction .............................. 121 

5.5.2 Probability distribution of intersections of phyllosilicate basal planes 

and the surface of the specimen .................... 122 

5.5.3 Bingham model distribution ...................... 125 

5.5.4 Model probability distribution of intersection orientation ...... 125 

5.5.5 Determination of a general phyllosilicate elastic stiffness tensor .. 127 

5.6 Samples analysed ................................ 
129 

5.7 Petrofabric data presentation ......................... 129 

5.8 Petrofabric quantification ........................... 130 

5.9 Mineral phase crystallographic pole figure distributions ........... 134 

5.9.1 Quartz .................................. 
134 

5.9.2 Feldspar ................................. 136 

5.9.3 Calcite .................................. 
138 

5.9.4 Phyllosilicates .............................. 
140 

5.10 Petrofabric results ............................... 
140 

5.11 Discussion .................................... 
148 

5.12 Conclusions ................................... 
149 

6 Seismic anisotropy 151 

6.1 Introduction ................................... 
151 

6.2 Estimation of seismic anisotropy from polycrystaHine properties ...... 153 



viii CONTENTS 

6.3 Calculating seismic properties ......................... 154 

6.4 Individual constituent mineral phase seismic anisotropy .......... 156 

6.4.1 Overview ................................ 156 

6.4.2 Single mineral phase seismic anisotropy pole figures ........ 157 

6.5 Bulk aggregate seismic anisotropy predictions ................ 160 

6.5.1 Overview ................................ 160 

6.5.2 Bulk aggregate seismic anisotropy pole figure predictions ..... 160 

6.5.3 Ternary plots representing seismic anisotropy due to modal pro- 

portions ................................. 160 

6.6 Predictions of seismic anisotropy using modal proportions ......... 16T 

6.6.1 Velocity anisotropy-modal proportion model: predictions using the 

elastic tensor .............................. 167 

6.6.2 Anisotropy-modal proportion models: empirical relations for sili- 

ciclastic rocks .............................. 170 

6.6.3 Modal proportion model results .................... 176 

6.6.4 Confidence intervals and significance tests: modal proportion-anisotropy 
forward models ............................. 179 

6. T Discussion .................................... 18T 

6.8 Conclusions ................................... 191 

7 Crack density inversion 194 

7.1 Introduction ................................... 194 

7.2 Crack density inversion - theory ........................ 196 

7.3 Inversion Strategy ............................... 200 

7.3.1 Step 1: Inversion for aij ........................ 200 

7.3.2 Step 2: Peturbation analysis of)3ijk, ................. 201 

7.3.3 Diagram notation ............................ 201 

7.4 Results - Inversion for aij ........................... 202 

7.4.1 Sample 1784 .............................. 202 

7.4.2 Sample 1788 .............................. 202 

7.4.3 Sample 1841 .............................. 202 

7.4.4 Sample 1909 .............................. 202 

7.4.5 Sample 1950 .............................. 202 

7.4.6 Sample 2129 .............................. 202 



ix CONTENTS 

7.4.7 Sample 2192 .............................. 203 
7.4.8 Sample 2194 .............................. 203 

7.4.9 Summary of the results for the inversion of aij ........... 203 
7.4.10 Inversion using compressional and shear-wave data ......... 203 

7.5 Results - Inversion for Oijkl .......................... 203 

7.5.1 Sample 1788 .............................. 203 

7.5.2 Sample 1909 .............................. 206 

7.5.3 Summary of the results for the inversion ofOijkl .......... 206 
7.6 Discussion .................................... 206 

7.7 Conclusions 
................................... 209 

8 Magnetic Properties 211 

8.1 Introduction 
................................... 211 

8.2 Methodology 
.................................. 212 

8.3 Grain fabric determination by anisotropy of magnetic susceptibility .... 214 

8.4 Pore fabric and permeability anisotropy ................... 217 

8.5 Results ...................................... 217 

8.5.1 Palacomagnetic orientation ...................... 217 

8.5.2 Anisotropy of magnetic susceptibility ................. 217 

8.5.3 Horizontal anisotropy ......................... 219 

8.5.4 Degree of anisotropy .......................... 225 

8.5.5 Scale-dependence of grain fabric measurements ........... 225 

8.5.6 Permeability anisotropy ........................ 227 

8.6 Discussion 
.................................... 229 

8.7 Conclusions ................................... 232 

9 Synthesis 234 

9.1 Introduction ................................... 234 

9.2 Methodologies .................................. 235 

9.2.1 Petrophysical properties ........................ 235 

9.2.2 Ultrasonic analysis ........................... 236 

9.2.3 Palacomagnetics ............................ 237 

9.2.4 Damage tensor inversion ........................ 237 

9.2.5 Seismic anisotropy forward model ................... 238 



CONTENTS 

9.3 Results ...................................... 238 

9.3.1 Petrophysical Properties ........................ 238 

9.3.2 Ultrasonic analysis ........................... 239 

9.3.3 Palaeornagnetics ............................ 239 

9.3.4 Damage tensor inversion ........................ 240 

9.4 Controls of seismic anisotropy ......................... 241 

9.4.1 Upscaling ................................ 242 

9.5 Application of results .............................. 243 

9.5.1 Overview ................................ 243 

9.5.2 Predictions of the symmetry of seismic anisotropy ......... 243 

9.5.3 Indicators of reservoir quality ..................... 244 

9.5.4 Palaeoflow indicators .......................... 244 

9.5.5 Well position optimisation ....................... 245 

9.5.6 Case Study: AVOA analysis of the Clair field, N. W. Scotland 
... 

246 

10 Conclusions 251 

A Quantifying microtexture 269 

B Sample notation 271 

C Experimental Analyses 272 

D Single crystal elastic tensors 275 

E Quartz pole f1gures 277 

F Feldspar pole figures 282 

G Calcite pole figures 287 

H Crystal velocity pole figures 292 

I Quartz velocity pole figures 297 

J Feldspar velocity pole figures 301 

X Calcite velocity pole f1gures 305 



xi CONTENTS 

L Bulk velocity pole figures 

M Average elastic tensor 

N Ultrasonic Data - Group 1 

0 Ultrasonic data - Group 2 

P Ultrasonic data - Group 3 

Q Appendix Disc 1 

R Appendix Disc 2 

308 

312 

314 

320 

328 

333 

334 



xii 

List of Tables 

2.1 Samples analysed from Well 206/8-8 ..................... 36 

2.2 Samples analysed from Well 206/13a-2 .................... 37 

2.3 Summary of the diagenctic and deformational history of the Clair Group. 48 

3.1 Sample mineralogy, porosity, permeability, and stratigraphic location ... 63 

4.1 Ultrasonic analyses individual sample categories for Well 206/8-8 ..... 88 

4.2 Ultrasonic analyses individual sample categories for Well 206/13a2 .... 89 

4.3 Comparison between previous and current study of wave-velocity and 

VpIV, ratios of various sedimentary rocks .................. 105 

4.4 Comparison between previous studies and the current study of wave- 

velocity anisotropy ............................... 107 

5.1 Individual mineral texture-indices for Well 206/8-8 ............. 142 

5.2 Individual mineral texture-indices for Well 206/13a-2 ............ 143 

5.3 Average texture-index for the predominant mineral phases ......... 145 

5.4 Average texture-index for each mineral phase after removal of anomalous 

results ...................................... 
145 

6.1 Calculated minimum and maximum compressional and shear-wave anisotropy 

attributed to 100% of a single mineral phase ................. 159 

6.2 Individual sample compressional and shcar-wave velocity and anisotropy 

for Well 206/8-8,1663m - 1950m ....................... 163 

6.3 Individual sample compressional and shear-wave velocity and anisotropy 

for Well 206/8-8,2073m - 2198m ....................... 164 

6.4 Individual sample compressional and shcar-wave velocity and anisotropy 

for Well 206/13a-2 ............................... 
165 



xiii LIST OF TABLES 

6.5 Average bulk aggregate compressional and shear-wave velocity and anisotropy 

predictions ................................... 166 

6.6 Comparison of the EBSD determined maximum compressional-wave anisotropy, 

empirically derived formula, and simple elastic tensor averages ...... 181 

6.7 Comparison of the EBSD determined maximum shear-wave splitting, em- 

pirically derived formula, and simple elastic tensor averages ........ 182 

6.8 Comparison of the ability of the two different predictive models to cor- 

rectly and accurately determine compressional-wave seismic anisotropy .. 185 

6.9 Comparison of the ability of the two different predictive models to cor- 

rectly and accurately determine shear-wavc seismic anisotropy ....... 185 

8.1 Palacomagnetic: core orientation data ..................... 218 

8.2 Mean orientation of K,,,.,., axis in each core determined from enhanced 

anisotropic magnetic susceptibility measurements .............. 224 

8.3 Comparison of K,,,.,, and K .. i,, directions of original samples and mean 

directions for corresponding sets of sub-samples ............... 226 

8.4 Angular separation between anisotropic magnetic susceptibility axes of 

original sample and the mean of the sub-samples .............. 227 

C. 1 Sample mineralogy, porosity, permeability, and stratigraphic location ... 273 

C. 2 Sample mineralogy, porosity, permeability, and stratigraphic: location ... 274 



xiv 

List of Figures 

1.1 Diagram illustrating shear-wave splitting ................... 4 

1.2 A semi-realistic real life example of orthorhombic symmetry ........ 7 

1.3 Relationship between wavefront, ray direction, phase velocity, group ve- 

locitY and particle motion ........................... 9 

1.4 Wavefronts in anisotropic media ....................... 10 

1.5 Shear-wave propagation in a fractured medium ............... 11 

1.6 Schematic illustration of the development of phyllosilicate lattice preferred 

orientation .................................... 
12 

1.7 Diagram of an azimuthal anisotropy due to a preferred depositional flow 

direction ..................................... 13 

1.8 A diagrammatic illustration of shape preferred orientation ......... 13 

1.9 A diagram illustrating seismic anisotropy as a result of periodic thin layering 14 

1.10 Fracture orientations and anisotropy magnitude derived from AVOA analysis 17 

1.11 Interpreted fracture map for the top chalk horizon, Valhall compared to 

fault traces determined from coherency analysis ............... 18 

1.12 Variations in shear-wave splitting with time ................. 19 

1.13 Shear-wave splitting in shallow overburden at the Valhall field, Norway. . 20 

2.1 Location and structural configuration of the Clair field, N. W. Scotland - 
UKCS ...................................... 

27 

2.2 Dip-linc section through the Ridge, Core-Graben, and Horst ........ 27 

2.3 Stratigraphy of the Clair Group ........................ 29 

2.4 Distribution of permeability, authigcnic carbonate, and clay mineral type 

with depth - Well 206/8-8 ........................... 
31 

2.5 Provenance of mincrals comprising the Clair Group ............. 32 

2.6 Clair reservoir streamer data and ocean bottom seismic data ....... 34 



xv LIST OF FIGURES 

2.7 Clair field Well locations ............................ 35 

2.8 Optical microscope image of a sample typical of Unit VI within Well 

206/8-8 ..................................... 39 

2.9 High resolution optical microscope image of a sample from Unit VI within 
Well 206/8-8 .................................. 39 

2.10 Optical microscope image of a sample typical of Unit V within Well 206/8-8 40 

2.11 High resolution optical microscope image of a sample from Unit V within 
Well 206/8-8 .................................. 40 

2.12 Optical microscope image of a sample typical of Unit I-III within Well 

206/8-8 ..................................... 42 

2.13 High resolution optical microscope image of a sample from Unit I-III 

within Well 206/8-8 
.............................. 42 

2.14 Ternary plot illustrating the variation in sample mineralogy ........ 
43 

2.15 Colour photograph of a typical Clair sandstone ............... 
45 

2.16 Backscattered electron photomicrograph of a typical Clair sandstone ... 
45 

2.17 Colour photograph of a typical Clair mudstone ............... 
46 

2.18 Backscattered electron photomicrograph of a typical Clair mudstone ... 
46 

2.19 High magnification backscattered electron photomicrograph of a typical 

Clair mudstone ................................. 
47 

3.1 Electron backscattered. atomic contrast image of a clayýmica rich specimen 53 

3.2 Binary converted electron backscattered atomic contrast image of a clay- 

mica rich specimen ............................... 
53 

3.3 Bragg's Law derived using reflection geometry and trigonometry ..... 
56 

3.4 3D schematic diagram of the geometry of the X-ray diffractometer ar- 

rangement ..................................... 57 

3.5 Schematic representation of the angular relationships within a diffractometer 58 

3.6 Secondary electron photomicrograph. of spray-dried kaohnite 
........ 

58 

3.7 X-ray diffraction strip chart output ...................... 
59 

4.1 Core sampling strategy used for velocity anisotropy analysis ........ 70 

4.2 Elastic tensor as determined from ultrasonic analyses ............ 71 

4.3 Core sample orientation with respect to elastic tensor components .... 72 



xvi LIST OF FIGURES 

4.4 Atmospheric conditions set up for radial and axial ultrasonic velocity mea- 

surements .................................... 73 

4.5 Diagram of the rig used to determine ultrasonic velocity at high-pressure 74 

4.6 High-pressure rig piston ............................ 75 

4.7 Interior workings of the high-pressure piezoelectric transducer assembly . 75 

4.8 Cubic polynomial fit of velocity variation with change in confining pressure 76 

4.9 Combined shear-wave transducer strategy .................. 77 

4.10 Silver & Chan (1988) method for determining the degree and orientation 

of velocity anisotropy .............................. 78 

4.11 Frequency histogram of maximum compressional-wave anisotropy using 

ultrasonic velocity measurements at in situ confining pressure ....... 88 

4.12 Polar diagram of radially acquired compressional-wave velocity measure- 

ments at atmospheric conditions on a typical Clair mudstone ....... 91 

4.13 Polar diagram of axially acquired shear-wave velocity measurements at 

atmospheric conditions on a typical Clair mudstone ............. 91 

4.14 Polar diagram of radially acquired compressional-wave velocity measure- 

ments at atmospheric conditions on a typical oil stained Clair sandstone . 93 

4.15 Polar diagram of axially acquired shear-wave velocity measurements at 

atmospheric conditions on a typical oil stained Clair sandstone ...... 93 

4.16 Polar diagram of radially acquired compressional-wave velocity measure- 

ments at atmospheric conditions on a typical highly porous Clair sandstone 94 

4.17 Polar diagram of axially acquired shear-wave velocity measurements at 

atmospheric conditions on a typical highly porous Clair sandstone .... 94 

4.18 Room temperature and pressure compressional-wave radial measurements 

on an oil-rich sample .............................. 95 

4.19 Room temperature and pressure shear-wave radial measurements propa- 

gating parallel to the core direction on a sample which has been cleaned 

of all organics and oil ............................. 95 

4.20 High pressure compressional-wave velocity measurements typical of a mud- 

stone (Group 1 sample) ............................ 97 

4.21 Compressional-wave velocity anisotropy with respect to an increasing con- 
fining pressure typical of a mudstone (Group 1 sample) .......... 97 



xvii LIST OF FIGURES 

4.22 High pressure compressional-wave velocity measurements typical of a sand- 

stone (Group 2 or 3 sample) .......................... 99 

4.23 Compressional-wave velocity anisotropy with respect to an increasing con- 

fining pressure typical of a sandstone (Group 2 or 3 sample) ........ 99 

4.24 Compressional-wave velocity anisotropy with respect to an increasing con- 

fining pressure for all the samples ....................... 100 

4.25 Han's empirical relations for shaley-sandstones: velocity-porosityýclay mod- 

els ........................................ 
104 

5.1 Schematic diagram of the main components of a scanning electron micro- 

scope ....................................... 
113 

5.2 Scanning electron microscope electron beam and sample interaction ... 114 

5.3 Example of a high-quality backscattered electron photomicrograph .... 115 

5.4 Electron diffraction, sample, and resultant Kikuchi band geometric set-up 116 

5.5 Illustration of a quartz unit cell, and schematic representation of the re- 

sulting Kikuchi bands ............................. 
117 

5.6 SENI-EBSD sample orientation ........................ 
120 

5.7 Bingham's distribution - representative contours for varying shape param- 

eter magnitudes ................................. 
122 

5.8 Electron backscattered atomic-contrast image of a clayýmica rich specimen 124 

5.9 Binary conversion of an atomic-contrast image of a clay-mica rich specimen 124 

5.10 Schematic diagram representing the calculation of the probability of find- 

ing a particular orientation .......................... 
127 

5.11 Intersection probability profiles for stereologically determined phyllosili- 

cate orientations ................................ 
128 

5.12 EBSD data presentation strategy - stercographic projections ........ 131 

5.13 Illustrative crystallographic pole figures ................... 
132 

5.14 Illustrative example of SEM-EBSD determined quartz crystallographic 

pole figures ................................... 
135 

5.15 Illustrative example of SEM-EBSD determined feldspar crystallographic 

pole figures ................................... 
137 

5.16 SETNI-EBSD determined calcite crystallographic pole figures (random) .. 138 

5.17 SEM-EBSD determined calcite crystallographic pole figures (approximately 

single crystal) .................................. 
139 



xviii LIST OF FIGURES 

5.18 SEM-EBSD determined phyllosilicate crystallographic pole figures .... 140 

5.19 Texture-index frequency histogram for all samples analysed containing 

quartz ...................................... 144 

5.20 Texture-index frequency histogram for all samples analysed containing 
feldspar ..................................... 145 

5.21 Texture-index frequency histogram for all samples analysed containing 

calcite ...................................... 146 

5.22 Matrix scatter-plot of each constituent mineral phase and respective texture- 

index ....................................... 147 

6.1 An example of single crystal velocity-anisotropy pole figures ........ 156 

6.2 Typical quartz single mineral phase velocityýanisotropy pole figure distri- 

butions ..................................... 157 

6.3 Typical feldspar single mineral phase velocity-anisotropy pole figure dis- 

tributions .................................... 158 

6.4 Typical calcite single mineral phase velocity-anisotropy pole figure distri- 

butions ..................................... 158 

6.5 Semi-log plot of texture-index vs. maximum compressional-wave anisotropylGI 
6.6 Semi-log plot of texture-index vs. maximum shear-wave anisotropy .... 162 

6.7 Ternary diagram of modal proportion with respect to maximum compression al- 

wave anisotropy (I) ............................... 168 

6.8 Ternary diagram of modal proportion with respect to maximum shear- 

wave anisotropy (I) ............................... 168 

6.9 Ternary diagram of modal proportion with respect to maximum compressional- 

wave anisotropy (II) .............................. 169 

6.10 Ternary diagram of modal proportion with respect to maximum shear- 

wave anisotropy (II) .............................. 169 

6.11 Standardised. normal probability plot of compressional-wave anisotropy .. 173 

6.12 Plot of compressional-wave standardised residuals .............. 173 

6.13 Standardised normal probability plot of shear-wave anisotropy ...... 175 

6.14 Plot of shear-wave standardised residuals .................. 175 

6.15 Maximum compressional-wave seismic anisotropy as a function of depth 

for WcUs 206/8-8 and 206/13a-2 ....................... 177 



xix LIST OF FIGURES 

6.16 Maximum shear-wave seismic anisotropy as a function of depth for Wells 

206/8-8 and 206/13a-2 ............................. 178 

6.17 EBSD derived seismic anisotropy predictions compared to the predictions 

obtained from the empirically derived formulae and the average of the 

constituent single mineral phase elastic tensors ............... 183 

6.18 Comparison of the P- and S-wave seismic anisotropy predictions obtained 
from the average elastic tenser method and the linear regression method- 

ology ....................................... 184 

6.19 Lithological end member velocity-anisotropy pole figures .......... 189 

7.1 Crack density tensor inversion using compressional-wave data ....... 204 

7.2 Crack density tensor inversion using compressional and shear-wave data . 205 

7.3 Crack density tensor inversion for Oijkl using compressional and shear- 

wave data .................................... 207 

8.1 Anisotropic magnetic susceptibility sampling strategy ........... 213 

8.2 Principle of palacomagnetic core orientation ................. 214 

8.3 Principle of grain fabric determinations from anisotropic magnetic suscep. - 
tibility measurements ............................. 215 

8.4 Grain fabric orientation and the resulting stercographic projections .... 216 

8.5 Natural anisotropic magnetic susceptibility data for all plug samples - 
Well 206/8-8 .................................. 219 

8.6 Enhanced anisotropic magnetic susceptibility data for all plug samples - 
Well 206/8-8 .................................. 220 

8.7 Natural anisotropic magnetic susceptibility data for all plug samples - 
Well 206/13a-2 ................................. 221 

8.8 Enhanced anisotropic magnetic susceptibility data for all plug samples - 
Well 206/13a-2 ................................. 222 

8.9 Azimuthal preferred orientations of grain long axes determined from en- 
hanced anisotropic magnetic susceptibilty measurements .......... 223 

8.10 Maximum and minimum 'permeability' directions in Well 206/8-8 as de- 

termined by magnetic porosity analyses ................... 228 

8.11 Maximum and minimum 'permeability' directions in Well 206/13a-2 as 
determined by magnetic porosity measurements ............... 228 



xx LIST OF FIGURES 

9.1 Non-hyperbolic moveout inversion ...................... 246 

9.2 The influence of aligned fractures on the elasticity and reflectivity of a 

medium ..................................... 
247 

9.3 Observed AVOA for the Top Unit V horizon within Well 206/8-8 ..... 249 

9.4 Frequency histogram of the magnitude of absolute anisotropy for the Top 

Unit V horizon within Well 206/8-8 as determined from "OA ...... 250 

9.5 Synthetic "OA response using varying magnitudes of fracturing within 

Unit V and Unit VI with the assumption of an intrinsic anisotropy due to 

lattice preferred orientation .......................... 250 

E. 1 SEXI-EBSD determined quartz crystallographic pole figures (1663m - 1909m)278 

E. 2 SENI-EBSD determined quartz crystallographic pole figures (1950m - 2028m)279 

E. 3 SEM-EBSD determined quartz crystallographic pole figures (2028m- 2194m)280 

EA SENI-EBSD determined quartz crystallographic pole figures (2194m- 2198m)281 

F. I. SENf-EBSD determined feldspar crystallographic pole figures (1663m - 
1909m) ..................................... 

283 

F. 2 SEM-EBSD determined feldspar crystallographic Pole figures (1950m - 
2028m) ..................................... 284 

F. 3 SEXI-EBSD determined feldspar crystallographic pole figures (2028m - 
2194m) ..................................... 285 

FA SE. NI-EBSD determined feldbpar crystallographic pole figures (2194m - 
2198m) ..................................... 286 

G. 1 SENI-EBSD determined calcite crystallographic pole figures (16631n- 1950m)288 

G. 2 SENI-EBSD determined calcite crystallographic pole figures (1950111- 2070m)289 

G. 3 SE. NI-EBSD determined calcite crystallographic pole figures (2073m - 2198m)290 

GA SE. NI-EBSD determined calcite crystallographic pole figures (2198m) ... 291 

H. 1 An example of single crystal muscovite velocity-anisotropy pole figures .. 292 

H. 2 Quartz single crystal seismic properties ................... 293 

H. 3 Orthoclase single crystal seismic properties ................. 294 

H. 4 Calcite single crystal seismic properties ................... 
295 

H-5 Muscovite single crystal seismic properties .................. 296 



xxi LIST OF FIGURES 

I. 1 Quartz (1663m - 1963m) - P- and S-wave velocity, and anisotropy pole 
figures (assuming 100% modal proportion) .................. 298 

1.2 Quartz (1963m - 2194m) - P- and S-wave velocity, and anisotropy pole 
figures (assuming 100% modal proportion) .................. 299 

1.3 Quartz (2198m) - P- and S-wave velocity, and anisotropy pole figures 

(assuming 100% modal proportion) ...................... 300 

J-1 Feldspar (1663m - 1963m) - P- and S-wave velocity and anisotropy pole 
figures (assuming 100% modal proportion) .................. 302 

J. 2 Feldspar (1963m - 2194m) - P- and S-wave velocity and anisotropy pole 
figures (assuming 100% modal proportion) .................. 303 

J. 3 Feldspar (2198m) - P- and S-wave velocity and anisotropy pole figures 

(assuming 100% modal proportion) ...................... 304 

K. 1 Calcite (1663m - 1963m) - P- and S-wave velocity, and anisotropy pole 
figures (assuming 100% modal proportion) .................. 306 

K. 2 Calcite (2015m - 2198m) - P- and S-wave velocity and anisotropy pole 
figures (assuming 100% modal proportion) .................. 307 

L. 1 Bulk aggregate velocity, and anisotropy pole figure predictions (1663m - 
1963m) ..................................... 309 

L. 2 Bulk aggregate velocity and anisotropy pole figure predictions (1963m - 
2194m) ..................................... 310 

L. 3 Bulk aggregate velocity and anisotropy pole figure predictions (2198m) .. 311 

N. 1 Group - 1. Well 206/8-8, sample 1784 .................... 315 

N. 2 Group - 1. Well 206/8-8, sample 1788 .................... 316 

N. 3 Group - 1. Well 206/8-8, sample 1841 .................... 317 

NA Group - 1. Well 206/13a-2, sample 1963 ................... 318 

N. 5 Group - 1. Well 206/8-8, sample 2070 .................... 318 

N. 6 Group - 1. Well 206/8-8, sample 2073 .................... 319 

0.1 Group - 2. Well 206/8-8, sample 1663 .................... 320 

0.2 Group - 2. Well 206/8-8, sample 1909 .................... 321 

0.3 Group - 2. Well 206/8-8, sample 1909 .................... 322 

0.4 Group - 2. Well 206/8-8, sample 1950 .................... 323 



xxii LIST OF FIGURES 

0.5 Group - 2. Well 206/13a-2, sample 1959 ................... 324 

0.6 Group - 2. Well 206/13a-2, sample 2015 ................... 324 

0.7 Group - 2. Well 206/13aý2, sample 2023 ................... 325 

0.8 Group - 2. Well 206/13a-2, sample 2028 ................... 326 

0.9 Group - 2. Well 206/8-8, sample 2129 .................... 327 

P. 1 Group - 3. Well 206/13a-2, sample 2028 ................... 328 

P. 2 Group - 3. Well 206/8-8, sample 2088 .................... 329 

P. 3 Group - 3. Well 206/8-8, sample 2192 .................... 330 

PA Group - 3. Well 206/8-8, sample 2194 .................... 331 

P. 5 Group - 3. Well 206/8-8, sample 2198 .................... 332 



2odii 

Abbreviations 

4C Four component 
AI Acoustic impedance 

AMS Anisotropic magnetic susceptibility 

AVOA Amplitude variation with offset and azimuth 
CTI Cylindrical transverse isotropy 

EBSD Electron backscattered diffraction 

EWT Extended well test 

HTI Transverse isotropy with a horizontal symmetry axis 

LPO Lattice preferred orientation 
MAD Mean angular deviation 

OBS Ocean bottom seismic 

ODF Orientation distribution function 

PTL Periodic thin layering 

QXRD Quantitative X-ray diffraction 

SEM Scanning electron microscope 

SPO Shape preferred orientation 

TTI Tilted transverse isotropy 

VRH Voigt-Rcuss-Hill averaging scheme 

VSP Vertical seismic profile 

VTI Transverse isotropy with a vertical symmetry axis 

XTG X-ray texture goniometry 



I 

Chapter 1 

Fundamentals 

1.1 Introduction 

Hydrocarbon production from siliciclastic reservoirs varies considerably, and is of great 

importance in an era of rapidly declining oil stocks and ever harder to find commercially 

producablc reservoirs. Seismic data is currently used to help guide such exploration 

as it contains information about the geological structure, and the lithologics present 
beneath the subsurface (Strandness 1991, Grechka ct al. 2002, Olofsson et al. 2002). 

Recent advances in acquisition and processing have seen the development of a range 

of seismic techniques for inferring reservoir properties (Hall ct al. 2002, Kommedal et 

al. 2004, Tabti et al. 2004). These include time-lapse seismic surveys, converted-wave 

and shear-wave surveys, and passive seismic monitoring (Kendall & Kendall 1996, Caley 

et al. 2001, Sayers 2002a). The conventional use of seismic lithology analysis aims to 

estimate lithological, and reservoir properties from seismic-wave attributes alone, such 

as, velocity analysis and amplitude variation with offset ("O)(Blangy 1992, Alkhailifah 

& Rampton 2001). These tedmologies are based upon the simple yet extremely effective 

assumption of isotropy. Whereby, the various properties of the medium are not dependent 

upon direction. Regardless of the location of the transmitter or receiver the exact same 

properties arc recorded at all locations for an isotropic medium. However, seismic- 

wave attributes can also possess a directional dependence, known as seismic anisotropy. 

A number of methods have been developed for estimating seismic anisotropy using a 

wide range of attributes in seismic data (Winterstein 1986, Van der Baan & Kendall 

2002, Helbig & Thomsen 2005). However, the anisotropy itself is an indicator of a wide 

range of properties and as such is a seismic attribute that is sensitive to both past and 
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present processes (Raymer et al. 2000a, Smith & McGarrity 2001, Thomsen 2002). A key 

challenge with its interpretation is untangling the various contributions to the anisotropy 
(Wendt et al. 2003, Valckc et al. 2006). 

In sedimentary rocks there are many factors which control seismic anisotropy: alignment 

of sets of fractures, mineralogy, partial grain alignment, and layering. However, the rela- 

tive contributions of these various parameters towards observations of seismic anisotropy 

are presently not well understood. The SAIL project (seismic anisotropy as an indicator 

of lithology) was designed to address this issue. The aim of the SAIL project was to 

determine the causes of seismic anisotropy through linked analyses of core, and seismic 
data to aid the understanding of seismic interpretation. The SAIL project was a joint 

industrial consortium funded through an Industry Technology Facilitator (ITF) Grant. 

SAIL was designed to be a joint research project combining experience and technical 

ability between Manchester University and Leeds University. This thesis which repre- 

sents a component of the SAIL project is concerned with the link between petrofabric 

properties of siliciclastic hydrocarbon reservoir rocks and seismic anisotropy. 

In general, siliciclastics constitute approximately 75% of basin in-fill, and therefore are of 

foremost importance to hydrocarbon production (Hornby 1998). Recent improvements 

in the data acqusition and processing techniques used in exploration seismic surveys 

mean that observations of seismic anisotropy are better characterised than ever before. 

Therefore, it is a good time to attempt to discriminate the various contributions made 

by fractures, lithological layering and lattice prefered orientation in producing seismic 

anisotropy. Information obtained from seismic anisotropy analyses could in the future 

provide valuable information on reservoir attributes, such as, preferential flow directions, 

in situ stress distributions, fracture orientation, and lithology. 

1.2 Overview of seismic anisotropy 

Seismic anisotropy is considered here to be the variation of the seismic wave vector veloc- 

ity with angle. The term angle covers a wide range of meanings but specifically here refers 

to the polax angle (angle from the vertical) and the azimuthal angle. Seismic anisotropy 

can also be due to the angle of propagation and the angle of polarisation of shear-waves. 
Seismic anisotropy is principally a result of some order in the arrangement of sub-seismic 

wavelength heterogeneities (Babuska & Cara 1991). Ordered heterogneitics include, the 
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partial alignment of anisotropic minerals, grains, microcracks, fractures, and bedding 

planes. Hence, seismic anisotropy is simply the larger-scale manifestation of smaller 

scale ordering (Thomsen 2002). Therefore, anisotropy in sedimentary basins can be 

considered as being indicative of some physical phenomenon, for example, horizontal or 

oblique shortening due to tectonic compression (Kendall 2000). 

Seismic anisotropy effects seismic wave propagation in a wide variety of ways. These 

include azimuthal variation in seismic properties such as stacking velocities, "0 (am- 

plitude variation with offset), and converted wave amplitudes. Shear-wave splitting, or 

the propagation of two independent shear waves, is the most unequivocal evidence of the 

presence of anisotropy (Figure 1.1). If a shear-wave enters a medium that is anisotropic 
it splits into fast and slow shear-wave components. Shear-wave splitting is commonly 

quoted in terms of percent and generally refers to the lag between the first arriving 

shear-wave (fast) and the second arriving shear-wave (slow). Shear-wavc splitting (S- 

wave anisotropy) can not only depend on the intrinsic properties of the aggregate but 

also on the propagation and polarisation angle. P-wave anisotropy is very different to S- 

wave anisotropy as a P-wave is a compressional, non-longitudinal wave it is not affected 
by polarisation angle. On the other hand, to be able to calculate a P-wave anisotropy 

requires several different angles of measurements positioned at various locations through- 

out and across the sample. Whilst, P- and S-wave anisotropy mat seem very similar the 

controlling parameters can be very different. 

Seismic anisotropy and it's effects on various seismic wave attributes have been used 
in the investigation of a variety of rock properties. For example, Crampin & Lovell 

(1991) used shcar-wave splitting to characterisc aligned fractures. Moreover, Kendall 

& Kendall (1996) observed that there existed direct correlations between shear-wave 

amplitude anomalies and areas containing high hydrocarbon production. It has long 

been recognised that AVO could also be used as a useful indicator of lithology and 

fluid fill (Ostrander 1984). P-wave amplitude variation with offset and azimuth (AVOA) 

has also been identified as a useftil tool in the identification of fracture alignment as it 

provides good vertical resolution (Hall ct al. 2002). The limited availability of useful data 

sets meant that the SAIL project primarily concentrated upon the effects of amplitude 

variation with offset and azimuth (AVOA). 
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01 

Figure I. I: A diagram illastrating shear-wave splitting. Shear-wave splitting is the 'most un- 

cquivocal evidence of the presence of anisotropy. If a shear-wave enters a medium u)hich is 

anisotropic it splits into fast and slow shear-wave components (Crampin 1981). 

1.3 Elasticity 

The degree of order within a medium can be described mathematically through the elastic 

stiffness tensor (Cijkl). Stress ((Tij) and strain (fkl) are second-order symmetric tensors. 

For an infinitesimal deformation of an elastic body, Hooke's law for a general anisotropic, 

linear elastic solid states that e7ij is linearly proportional to (k, via the fourth-order Cijkl 

elastic tensor (Nlavko et al. 1998). Where, 

l7ij ý Cijktfkl, (1.1) 

in which, summation is implied over the repeated subscripts k and 1. 

Or, where the stress and strain tensors are related to the compliance (sijkl), 

Cii ý -9ijklO'kl- 

Such that, 

Cijkl ý -'3- ijkl* 

Strain is defined as, 
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1 OUk O'Ul 
6kl - -57- - 2 X, OXk) 

for displacement ui and spatial rcference coordinate xi. 

The Cijkl elastic tensor is a four-dimensional array and has 81 components, however, not 

all 81 components are independent. Since, 

Cijkl ý Cjikl ý Cijlk ý Cjilki 

because, 

aij = oji and fkl ý flk- 

Therefore, reducing the number of significant (distinct, independent, and non-vaiiishilig) 

constants to 36. Furthermore, tile cxistence of all unique strain energy potential requires 

that, 

Cijkl ý Ck-Iii, 

further reducing the number of constailts to 21. Therefore, 21, is the maximum number 

of elastic constants that are rcquircd to describe any medium. Isotropic elastic materials 

such as volcanic glass, which have maximum symmetry are completely characterised 

by 2 independent constants. In comparison plagioclase feldspar has the lowest possible 

symmetry, and requires all 21 constants. 

It is, however. easier to use an abbreviated notation, sometimes called the Voigt notation 

when dealing with elasticity, which reduces the number of subscripts of the stiffness and 

compliance tensors to two (Thomsen 2002). Each pair of indices ii(ki) is simply replaced 
by one index I(J) as follows, 

ij(kl) I I(J) 

11 1 

22 2 

33 3 

23,32 4 

13,31 5 

12,21 6 
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III tile two-index notation, C1,1, is represented bv a 2D, 6x6 matrix. Note tile symmetry, 

cij = C. ) 

CII C12 C13 C14 C15 C16 

t'l 2 C22 C23 C24 C25 t'26 

C13 C23 C33 C34 C35 ('36 

('I I C24 C34 C44 C45 16 

(' 15 C25 C35 C45 C55 -A i 

C16 C26 C36 C46 C56 1" 66 

The ability to transform the elastic tensor into two-diniensions enables the simplified 

comparison, vistiaiisatiozi and manipulation of fourtli-order tensors. 

1.3.1 Anisotropic symmetry systems 

The Icast sYninictric system is triclinic, with 21 independent elastic constants (Babilska 

, ýz Cara. 1991). In reality rocks generally show more symmetry. A simple semi- realistic 

sYmmetry in sedimentary rocks is vertical transverse isotropy (VTI), otherwise known 

as polar anisotropy or as hexagonal symmetry with it vertical symmetry axis. VTI 

symmetry is characterised by scismic velocities azimuthally symmetrical about a single 

axis, which vary with declination from the axis (Array 1.9). c, I and ('22 can be considered 

as being contained Within the horizontal plane (parallel to the plane of bedding and 

rotationallY invariant) with c: j: j therefore perpendicular to bedding (vertical). 

CI I CI 2c1: 1 

('12 CI IC 13 

Cm r i: i C*3 

000 ('14 0 

0000 C5 50 

()()()()() Cmi 

The saine principles hold for tilted transverse isotropy (TTI) where the axis of sYninle- 

trY is inclined to the vertical. Both VTI and TTI are commonly associated with the 

symmetry pattern ofa horizontally finely-layered sequence, e. g., shale. CTI (cylindrical 
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transverse isotropy) can be thought of as when there is a single verticnl set of frac- 

tures that are azimuthally isotropic (have an niniost, perfectly equal radial distribution). 

This type of fracture set is commonly observed in cylindrical samples which have beell 

siibjected to non-hydrostatic stresses aligned parallel to the long axis of the sample. 

However. a combination of multiple fracture sets, layering, inclusions, and crYstal align- 

iiient will generate anisotropy with a lower degree of sYninietry. A coninion example 

in crustal rocks is ortliorlionibic syllillietry which is typicallY associated with horizontal 

layering and a single set of vertically aligned fractures (Figure 1.2). Nine independent 

elastic constants are required to define an orthorhoinbic elastic tensor. CII alld ('22 call 

be considered as being contained within the horizontal plane (parallel to the plane of 

bedding and rotationally variant) with c: j: j therefore perpendiciflar to bedding (vertical). 

CII ('12 ('13 

CI 2 C'22 ('23 

C ri ('23 C: m 
t. lo) 

00c. 0 

0000, -, -, 0 

00000 c(i(i 

Figure 1.2: The combination of horizontal layering and a vcifically alignedfi-acture set leads to 

ao orthoi h ombic style of symmetry. 

1.3.2 Calculation of seismic velocities from the stiffness tensor 

Single crystal or bulk aggregate scismic velocities are calculated by solving the Christoffel 

equation (Cliristoffel 1910). 

The equations of motion for elastic media, are writtten, 
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Oxj 012 

at time t, Where p is the density of the medium, (, Tij is the 3D stress tensor. iii is the 

displacement, and xj is the spatial coordinate, system (Kendall 2000). Substitution of 

Equations (1.1 and 1.4) into Equation (6.7) gives for honlogencous illedia, 

1921t, ý)271 
(, ijKt aXjO9Xk at2 

A plane-wave harmonic soltition of (6.8) takes tile form, 

iii = Aje'w(t±x, p'i1'?,, ), 

where A is the amplinide and ý,; the frequency of a plane wave with unit nornial. ni and 

phase Velocity, 1"'. Substituting Equation (6.9) into Equation (6.8) rives, 

(, i. jkl(ni, rýl - 1)'1't2,6jkAk) ý 0, 

where (5jk is the Kronocker delta. Assuming A gives non-wro terms, 

fI0l('ijA-1nklll - Pl' 2 6,. j it 

and 

d(, tl('ijA-lPkPI - P6ijl = 0- 

Thus the phase velocities of the three wave fronts can be determined from the three 

Of ('i. jklPil)j Wllidl correspond to one quasi-P wave and two quasi-S waves 

(Love N-14, Nye 1957). 

1.3.3 Seismic wave theory 

In isotropic media a P-wave will propagate with a velocity that is parallel to the wavefront 

normal and is also coincident with the ray direction and particle motion. In lioniogencons. 

anisotropic media, llow(., vcr, the P-wave particle motion is not, in gencral, parallel to the 

wavefront normal or the raY direction. Additionally, the shear-wave particle motions will 

not be orthogonal to the wavefront normal or ray direction. Therefore, waves propagating 
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in an anisotropic media should strictly be defined as quasi-P and quasi-S-xvit-ves. From 

this description of wave propagation in anisotropic inedia three significant directions can 

be defined, the wavefront normal, the polarisaton and the raY direction (Figure 1.3). The 

wavefront wrinal, defined by vector rti corresponds to the direction of the slowness pi 

and the phase velocity v, of the propagating phase. A fin-ther velocitY nnist be defined in 

anisotropic inedia, the group velocity which is parallel to the nty direction and direction 

of energy transport. 

9 

T( 

Figure 1.3: Relationship b0a, ccil 11'al-cf1olit. vay dircctiorl. phum 1-clocity. pollp I-clof Ity and 

pat-ticle inotion. A wavefront has constant phase (7-(xi) =cc is a constant), phase velocity (v,, ), 

aligned with the ivavefturit normal (it), and a group velocity (v, j along the ray (birction. The 

p(l7liClC MON071 OTPOIaliSati0ft (! /") is (it aii angle to both the ray direction and 11'al'off-olit flol-Inal 

(Sheriff V Geldart 099). 

Ill anisotropic media, pure S- and P-Waves IllaY exist 0111Y ill certaill directions. Ill 

transvcrsel. ý,,, anisotropic media SV- and P-modes of propagation are coupled. Wavefronts 

are not ill general orthogonal to tile directions of wave propagation. Phase velocity is 

velocitY perpendicular to a surface of constant phase (wavefrout), and group %, (, I()(-it. v is 

the velocity with which tile energy travels is in a different direction (Figure 1.1)(Sheriff 

& Geldart 1999). 

As stated previously layering and parallel fractitring tend to produce transverse isotrop. y. 

The symmetry axis is perpendicular to tile bedding With tile VVIOCitivs of P- alld S- 

T(x) =c +Sc 
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Fso dkecfion 

Skow di 

I+W 

0 Isc, cOsc 

fl. IscIor 0 Mlp. C 

(b) 

Figure 1.4: 11'arefrold-S '/I 11"Isotropic Inc(ba. (1) Application of Hay! Icti's plinciph, to (III 

fullsotropic Inc(bum, 11111stratcs direction and maynitudc differcnces betuIccit phasc and grvuP Vc- 

locity. c) S11 walyffrolits ill hurisverscly isotropic inedin are elliptical. P and St'-wavefivrits are 

tiot elliptical c. rcipt ill spccial instariccs. Vj, > Vv, with a vertical axis of sIpyanctry. V, is the 

yloap 1'('IO(, It! / as (I function. of the anyle with file syrranctry axis (Shcriff U Gc1dart 1999). 

waves that involve motion parallel to the bedding larger than those involving motion 

perpendicular to the bedding. The velocity parallel to the bedding is greater because 

the highel-velocity laýyvrs carry the energy first whereas for wave motion perpendiciflar 

to the bedding, each laYer contributes in proportion to the tinic taken to traverse it. 

Non-horizontal fracturing and micro-cracks produce azimuthal anisotropy with a sym- 

incti-Y axis perpendicular to the fracturing. The velocity of the waves that involve motion 

parallel to the fracturing (SI) is larger than that of waves with motion perpendicular to 

the frachiring (S, 
-))(Sheriff 

k Geldart 1999). If the inotion is neither parallel nor perpen- 

dicular to the fracturing, an S-wave splits into two waves with orthogonal polarisations 

(Figure 1.5). 

V*rmbog m lw» 1 
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4-9 

lew 

Figure 1.5: Shcar-wave propagation in. a fractiard incdium laith clucks oviclitcd N 151v. All 

S-wavc fravc1ling parallel to fracturing, tlt(' I'clovity (.,; '2) i-4 
-40111f'l' 

f07' (I COMPoliClit ifil'olVilig 

motion PC77)('71dicillar to the fracturing than for ouc involving rnotion, par-allcl to the fivicturing 

(SI ). 

1.4 Causes of anisotropy 

1.4.1 Lattice preferred orientation 

Almost (wery rock forming mincral is to some extent intrinsicallY anisotropic (Mainprice 

et al. 2000). Phyllosilicates, for example, can exhibit up to 60(Yu and 72'Y( P-wave and 

S-Wave anisotropy (shear-wave splitting), r(, sl)(, (-tiv(, I. v. whervas halite has a maxilmilli 

P-wave anisotrojýy of 7.4Y(, and 15.9(/c S-wave anisotropy. 

For ill aggregate to exhibit elastic anisotropy (hie toa lattice preferred orientation (LPO), 

the constituent mineral phases are re(Iiiired to have a 11oll-randoill orientation and sig- 

nificalit intrinsic anisotrop. y. Aggregates are thmight to develop it ITO ill it variety of 

different ways. For example, through plastic and viscotis How ill the tipper and lower 

mantle (Hess 1960, Kendall 2000) or by depositional processes ill sedillientarY basills 

(Kaarsbvrg 1959). 

Upon deposition the predominant Iliechanism orienting individual mineral grains is grav- 

ity. Platy mineral phases (phyllosilicates) tend to align their basal plalles parallel to 

suh-parallel to bedding. IniniediatelY after deposition the fabric is r(, Ittiv(, I. v disordered 

and contains it large amount of space. It is upon mechanical compaction that the pore 
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space is reduced and the platy grains re-align to form a strong LPO (Figure 1.6) (Helfing 

1970). 

A_ 

B 

Figure 1.6: Sclicniatic diagram of settling detrital phyllosilicate platelets. A- phyllosilicate 

platelets drop out of suspension and settle through the water column. B- the platelets are ran- 

doinly deposited upon the plane of bedding with a la7ge amount of iater-grain pore space. C- 

during inechanical compaction the platelets reorient their basal plane parallel to bedding. Such 

deposition results in a vertical transverse isotropy style of symmetry. 

Similar to the flow that call occur in igneous rocks, which re-orientates elongated crys- 

tallites, sedimentary rocks can exhibit ail azimuthally non-random distribution of grain 

axes due to a depositional flow direction (Figure 1.7)(Hailwood &- Ding 2000). This 

type of preferred depositional flow direction inight be expected to occur in submarine 

(turbidites) and subaqueous environments (slope debris flows). 

1.4.2 Grain fabric 

The affect of grain morphology on seismic anisotropy in sedimentary environments is 

inextricably linked to the effect grain boundaries have on bulk aggregate elastic prop- 

ertics. If grain boundaries, and therefore crack-like discontinuities, are preferentially 

aligned by some extrinsic mechanism (e. g., tectonic activity) they can significantly affect 

the bulk aggregate seismic anisotropy (Figure 1.8). Oriented systems of cracks can cause 

a velocity anisotropy even if the matrix of the rock is isotropic (Babuska & Cara 1991). 

The velocity is reduced most significantly in the direction normal to the long-axis of the 

plane of oriented cracks (parallel to the maximum compressive stress). It was shown 
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Figure 1.7: Diagram illustrating the developutent of azimuthal anisotropy due to a preferred 

depositional flow direction. Azimuthal anisotropy is commonly found in depositional environ- 

ments which have a predominant direction of flow, such as in submarine and subaqueous settings 
(Modified from Garnero, E. ). 

by Burlini &- Kunze (2000) that the measured seismic anisotropy of the Carrara marble 

could not simply be explained by the LPO of calcite and phyllosilicates alone. It was, 

however, shown to be related to grain boundary effects. The results of this qualitative 

correlation demonstrate that the nature of microdiscontinuities in crustal rocks plays a 

vital role oil seismic anisotropy. 

v horiz. 

Figure 1.8: Diagram illustrating the preferential alignment of grains during tectonic defor7na- 

tion. Horizontal or vertical shortening of the crust due to tectonic activity, such as during periods 

of mountain building can cause grains to realign in panillel with the maximant cornpre-ssive stress. 
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1.4.3 Non-random spatial distribution of mineral phases 

It has long been recognised that the propagation of elastic waves in layered media is 

likely to have an anisotropic velocity distribution for wavelengths longer than the layer 

spacing (Figure 1.9)(Backus 1962). Observations of laver-induced anisotropy led to two 

independent studies by Postina (1955) and Krey & Helbig (1956). For example, when a 

P-wave propagates perpendicular to a lavered sequence the softer, more compliant, layers 

compress and the wave experiences a compliant formation. On the other hand, when a 

similar wave propagates parallel to layering, both rigid and compliant layers compress 

with great resistance. Since both the soft and stiff layers compress concomitantly, the 

wave experiences the formation as much less compliant and the wave propagates faster. 

Anisotropy is greatest when the layering is thin and the difference in rigidity between 

the lavers is large (Backus 1962, Berryman 1979). 

Vhoriz > Vvertical 

Figure 1.9: Scismic anisotmpy as a result of periodic thin layering only ever ocrars when the 

layrr thickness is significantly less than flint of the scismic wai, clength. Vl,,,,. i- and V, -t refer to 

P-wave velocities in the horizontal and veitical. 

1.4.4 Preferentially aligned fractures, pores, and cracks 

Fractures often have a significant impact oil reservoir performance and consequently are 

the ulost commonly studied cause of seismic anisotropy in sedimentary rocks. Fractures 

can occur in a range of different sizes, froin grain boundary micro-discolitinuitities (tim), 

to large-scale regional faults (kni's). Deforniation-induced fracturing is usually asso- 

i 

PTL 
i high vel- 
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ciated with a significant maximum regional stress in a single direction with fractures 

generally appearing to align in sets (Crampin 1985). In these situations each set of pref- 

crentiallY aligned fractures will contribute to the overall anisotropy of the rock. In the 

simplest scenario where there is a single direction of fracture alignilicilt, wave propaga- 

tion will be slower perpendicular to the fracturing than parallel. A vertically propagating 

shear wave in all azimuthally anisotropic Illedillill will split into two coulpollents with 

different polarisations if the source polarisation is not aligned with the principal axes of 

tile medium. So in the case of a single set of aligned vertical fractures tile fast shear wave 

for vertical propagation has particle motion parallel to the fracture planes, whilst the 

slow shear wave has particle motion perpendicular to the fracture planes (Sayers 2002a). 

1.5 Observations of seismic anisotropy 

Seismic data analysis is one of the key technologies used in the characterisation of reser- 

voirs and monitoring of subsurface fluids. While there have been significant advances in 

3D seisinic data processing, effective niedia modeling, and laboratory investigations of 

the data, rock property interpretations still pose an exceptional challenge. The relative 

importance of each feature in producing the anisotropy in ally given rock type is not 

presently known. This is an important limitation, because were it possible to determine 

what is responsible for the anisotropy that is observed in exploration seismic surveys, a 

great deal of information relevant to the exploration and extraction of petrolcum could 

be recovered from the scisiniological data alone. 

Observations of seismic anisotropy in sedimentary rocks range in scale froin field wide 

studies (e. g., Krcy & Helbig 1956) to laboratory based investigations (e. g., Nur &, - Situ- 

mons 1969). A substantial aniount of evidence has already been collected which high- 

lights the occurrence of anisotropy in the subsurface. Although in the past this lim been 

primarily shown to exist within core samples examined in laboratories, there have also 

been observations of field wide seismic anisotropy. 

1.5.1 Field observations of seismic anisotropy 

Even though the ideas behind anisotropy were first formulated about 175 years ago 

(Fresnel 1821, Green 1837) it has only been through the advancement of tmhnology that 

it has become of significant importance in seismic exploration. Including among others: 

longer offset P-wave data (shows nonhyperbolic inoveout), 3Cx3C data (highlights shear- 
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wave splitting), wide-azinluth 3D data (shows azinluthal anisotropy), and OBS data 

(incorporates all the previous effects). 

One of the earlier references to anisotropy was following a field study by ?. As a result 

of velocity anisotropy it was shown that the depths calculated froin S-wave stacking 

velocitics always exceeded the actual depths by up to 25%, and those calculated from 

P-waves by 10%. Alkhalifah & Rainpton (2001) conducted a study in Trinidad that 

showed a VTI media induced nonhyperbolic moveout of reflections. It was also found 

that processing tile data using algorithms that took anisotropy into account improved 

tile resolution when compared to those from isotropic processing. Similarly, Grechka 

et al. (2002) concluded that ignoring seismic anisotropy could cause serious errors in 

processing, and interpretation of multicomponent seismic data. They went oil to say that 

tile CCP (conlinon-conversion-point) stacks of PS-waves generated by the VTI model 

had inuch higher quality than those by tile isotropic model. Accounting for anisotropy 

was deemed essential for obtaining ail accurate AVO (aluplitude variation with offset) 

response for tile PS reflections. 

It was shown by Hall et al. (2002) and Hall & Kendall (2003) that anisotropy simply 

could not be ignored in wide-azininth P-wavc surveys. It was suggested that, because 

fractures are often vertically aligned and produce azinluthal anisotropy, directional dc- 

pendmice in scismic properties (AVOA) could provide inforination about fracture density 

and orientation. The AVOA observations showed considerable spatial variability in both 

orientation and magnitude (Figure 1.10) and were further shown to correlate well with 

independent fracture pattern analysis (Figure 1.11) (Hall ct al. 2002). 

It was also noticed by Caley et al. (2001) that the anisotropy of the overburden may 

have a tinic-dependence relating to production of a hydrocarbon reservoir (Figure 1.12). 

The production of oil from a highly compliant chalk reservoir (such as Valhall) causes 

collapse of the reservoir formation, deformation of the overburden, and subsidence of the 

sea floor (Olofsson et al. 2002) (Figure 1.13). Helbig & Thomsen (2005) also believed 

that the Valliall reservoir would be very sensitive to small changes in reservoir conditions, 

and thus exhibit dramatic time-dependent anisotropy effects. 

Rayiner et al. (2000a) suggested that part of the difficulty associated with finding hy- 

drocarbon targets near salt structures could be not only due to the highly 3D nature of 

salt bodies and their large velocity contrasts but also because salt structures primarily 

min 
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Figure 1.10: Frachire. orientations and anisotropy magnihide from the northern flank of Valhall 

derived from A VOA analysis. The magnitude is the normalised difference of the two principal yra- 
dients. The areas of high anisotropy magnitnde and directions of finctnring (large-scale faidting 

marked by solid lines) are related (Ifall et al. 2002). 

consist of halite which is elastically anisotropic. Numerical simulations as determined 

by Rayiner et al. (2000b), and based upon a visco-plastic self-consistent approach, pre- 

dicted that a 600in thick salt sill could produce up to 20ins P-wave anomalies, and 60nis 

S-wave anomalies with respect to isotropic models. The resulting inis-interpretation of 

salt velocities and thickness would potentially result in a costly mistake that could have 

been avoided if an anisotropic Earth model was applied. 

1.5.2 Laboratory studies of seismic anisotropy 

Ali objective in many rock-physics experiments is to determine how lithology, porosity, 

pore fluid type, saturation, and anisotropy effect P- and S-waves in sedimentary rocks. 

Experimental studies in laboratories in the 1950's and 1960's showed that the best way 

of determining velocity and attenuation oil reservoir rock specimens was to employ tile 

pulse first arrival or pulse echo technique using sensitive cerainic piezoelectric transducers 

(Birch 1960, King 1966). 

Numerous studies have been conducted with tile intention of determining the relationship 

between rock type and velocity (e. g., Tosaya, & Nur 1982, Castagna et al. 1985, Hail 1986). 
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Figure 1.11: Intczywted fracture map for the top chalk horizon at the Valhall field COMpay-ed 

to faalt traces deteiinined frorn coherency analysis. This shows a good correlation between the 

inferred fincture patterns and the laige scale faalting (Hall et al. 2002). 

It is commonly understood that shales exhibit intrinsic scismic anisotropy (Tosaya & Nur 

1982, Vernik k Nur 1992b). Kaarsberg (1959) first linked the alignment of clay particles 

to observed laboratory P-wave anisotropy. It was shown that as compaction increased, 

tile strength of clay particle alignment increased; concomitantly, there Nvas all increase in 

tile difference between tile bedding parallel and bedding perpendicular P-wave velocities. 

Since the publication of the earliest work significant progress has been made on accu- 

rately nicitsuring and quantifying scismic anisotropy in sedimentary rocks and at in situ 

conditions (e. g., Wang 2002). Previous studies, however, have concentrated largely upon 

observations of velocity anisotropy in shales and hydrocarbon source rocks (Verilik & 

Nur 1992b, Vernik & Liu 1997). Both studies record levels of scismic anisotropy in the 

region of 40% to 50%, which they attribute to kerogen content, microstructure and mat- 

uration levels. In an investigation conducted by Wang (2002), an unfractured reservoir 

rock such as carbonates and massive sandstones were considered to have insignificant 

levels of anisotropy at around 2%. Whereas, tight-sands, shaly-sands, siltstones and 

shales exhibited in excess of 10VO anisotropy. 

. Jones & Wang (1981) measured both P-wave and S-wave velocities in typically VTI 

shales. It was qualitatively inferred from SENI image analysis that the VTI svinintery 

was caused 1ýy clay particle alignment. Furthermore, they also suggested that ail in- 

crease in preferred orientation with compaction might cause an increase in seismic wave 

velocity, but not necessarily an increase in seismic anisotropy, as previously suggested 

mob. - 
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Figure 1.12: Vanations in shear-wave splitting with time. (a) histogmin of Valhall seismicity. 

(b) variations in the estintated shear-wave anisotropy. (c) ineasnrentents of the fast shear-wave 

polanisation. Note the ninety-degree shift in azimzith of the fast shear-wave polarisation &aing 

the eight week period. Time in days goes from left to right (0 - 60 days)(Calcy et al. 2001). 

by Kaarsberg (1959). 

Sayers (1994) presented a theoretical inodel of the elastic anisotropy of a shale resulting 

froin tile partial orientation of clay particles also derived qualitatively bv SENI inlage 

analysis. It was one of the first studies to use estimates of preferred orientation of clay 

particles to calculate seismic anisotropy. It was suggested that only two of the expansion 

coefficients of the ODF (orientation distribution function) affect seismic anisotropy of 

shales with VTI symmetry. By adjusting the values of these two parameters, the study 

investigated the anellipticity of shale anisotropy i. e., tile degree of anisotropy. Results 

of the modelling showed that shales could develop strong anelliptic anisotropy due to 

intrinsic textural properties. 

Carlson et al. (1984) measured the preferred orientation of calcite c-axes in carbonate- 

10 20 30 40 so so 

Time (days) 
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Figure 1.13: Shcar-wave splitting io fh(ý shallovi overburden at thc Valhall jicld, Norway. The 

ticks show the fast shear-wave dircction. and thc length of tick is proportional to thc tinle, delay 

Ilchi, cf-it thc fast and slaw slicar-tvarcs. The thin lines indic-ate the rcceiver lincs. Production at 

Volhall (wascs thc rescrvoir to collapse which dcforms the overbla-den, and causes subsidence of 

tht, sca floor (Olofsson ct al. 2002). 

hearing deep-sea sediments using XTG and compared the results to the observed P- 

\vave ani. soti-op. y. TheY conchided that the concentrations of calcite c-axes norimil to 

hedding seemed insufficivilt1v strong to contribute appreciably to the seismic anisotropy 

of calcal-volis deep-sea sediments. 

III oile of the most comprehensive studies of iiltrasonic velocity aiiisotrofýy in sedinien- 

tary rocks, \Vang (2002) condticted measurements oil I suite of shales, sandstones, and 

carbonates under fluid saturated and in situ confining pressures. It was postulated that 

clay content and fille laYering in siliciclastic sedimentary rocks could be one of the inain 

causes of the observed scismic anisotropy. Furthermore, NVang (2002) observed that un- 

fractured saildstolles mid carbonates show very little intrinsic anisotropy in comparison 

to sonle of the very clay mid organic-rich shales. 

It has been suggested 1ýy soille of the earlier empirical studies that relatively sinipIC 

relationships exist between seismic velocities and rock parameters. For exampic Vernik &- 
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Nur (1992a) constructed a database of petrophYsical measurements at higil 1)1. (, Sslll. (, Oil a 

suite of clastic sedimentary rocks and categorised the rocks into four petrological groups, 

based upon their mineralogy, texture, and clay content. These empirical formulas are 

obtained statistically from experimental data sets and provide a simple, YO convenient 

forin of suininarising experimental data. 

Despite substantial advances in the understanding of sliale clasticitY based on numerous 

laboratory ultrasonic measurements and significant progress in the modelling of shale 

elasticity, significant ambiguity related to the in situ causes of svismic anisotropY in 

other sedimentary rocks still exists. 

1.6 Thesis aims, objectives and motivation 

Ill exploration, as weli its ill the production of hydrocarboll", tll(' overall go'd is to ('X- 

tract information and estimate uncertainty about lithology and fluid ill thc siibsurface. 

Traditionall. y. standard prospect evall lilt ioll has focused Oil identifying structural trap. s. 

To fullY enable the titilisation of seisillic-wave velocitics ill IlYdrocal-boll exploration and 

rock property characterisation. it is vital to have a conipicte understanding of what ill(, 

seisinic waves call tell its about ill(, intrinsic and extrinsic parameters of the rocks in 

situ. Understanding the interaction hetween the variotis parameters that control rock 

properties is crucial to better interpretation of gcophYsical measurements. With the 

rapid advancement and inclusion of anisotropic processing algorithins ill scisinic data it 

is now all appropriate tinie to svc whether it is possible to determine ill(, relative ini- 

portance of the different factors that control anisotropy. Evidence ofseisinic anisotropy 

ill sedinientarv rocks clearlY has the potential to provide important inforil lilt ion Oil the 

relative contributions of the controls of elastic ailisotropy of rocks ill the subsurface. This 

project was; intended to investigate the relative contributions to cla-stic anisotropY froill 

grain fabric alignment, fracture alignment. and crYstal alignment. 

AccuratelY predicting petrophysical properties re(lifires a (piantitative description of the 

complex inicrostructure of the niedillill. III the absence of a flill sti-lictill"ll chill-acteri- 

sation, attempts to relate the elastic properties of rocks to petrological properties have 

been limited to empirical relationships and effective inedium theories. Furthermore, 

previous studies have largel. v failed to quantify the intrinsic and extrinsic variables that 

control scismic anisotropy. Moreover. studies that have attempted to quantify the intrin- 
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sic anisotropy of sedimentary rocks have concentrated largely upon shales and clay-rich 

mudstones. 

The structure of the SAIL project, and the role which this thesis played within it, meant 

that it was ideally positioned to tackle the issues outlined above. This thesis combined 
the results of a variety of different analytical and computational techniques to be able 

to fully understand the extrinsic and intrinsic controls of seismic anisotropy of silici- 

elastic hydrocarbon reservoir rocks. The experimental techniques employed included: 

electron microscopy, X-ray diffraction, palaeomagnetics, anisotropic magnetic suscepti- 
bility and ultrasonic velocity analysis. The results of the experimental techniques were 
integrated, utilised, and verified through a variety of geomathematical models, which 
included, among others: crack density tensor inversion, Bingham distribution modeling, 

empirical relations, and upscaling techniques. 

1.6.1 Project goals 

The principal goals of this project were to: 

1. Develop methodologies to characterise petrofabric using complementary analytical 

and numerical techniques. 

2. Compare results obtained from pctrofabric analysis with laboratory based investiga- 

tions into velocity anisotropy. 

3. Interpret results determined from petrofabric analyses, ultrasonic measurements, and 

palacomagnetics. 
4. Identify how measurements of seismic anisotropy can be used to make inferences 

about rock and fluid type in the subsurface. 

1.7 Thesis outline 

Chapter I provides an introduction to the SAIL project which this thesis was a fun- 

damental part of. It further goes on to describe why seismic anisotropy could be an 

important attribute to understand in the hydrocarbon industry. The latter parts of this 

introductory chapter address the parameters controlling seismic anisotropy. The chapter 

concludes with examples of observed seismic anisotropy in both laboratory experiments 

and field wide scisinic surveys. 
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Chapter 2 presents a detailed background of the field area that this project was based 

upon. It provides a complete background of the location, structural setting, and struc- 
tural history of the Clair field, N. W. Scotland. The reservoir geology of the Clair Group 

is also presented with accompanying details regarding the main sedimentological hori- 

zons (I-X), and their respective Supercycles (1-11411). A review of the most recent seismic 

surveys conducted are also examined and the details of their results are also presented. 
The chapter concludes with the mineralogy (as determined by QXRD) of the samples 

analysed. 

Chapter 3 contains detailed descriptions of the various commonly employed methods 

used to determine modal mineralogy. The techniques that are described include: point 

counting, image analyses, EBSD, and QXRD. Each of the techniques are then critically 

assessed with any associated uncertainties highlighted. A detailed description of XRD is 

presented with information regarding the theory and analytical set up for use as QXRD. 

The chapter concludes with the results of the QXRD analyses. 

Chapter 4 describes the techniques, and methodologies used to determine the ultrasonic 

velocity of cylindrical rock samples at atmospheric and at high pressure (approximately 

in situ). The chapter begins with the core sampling technique used to investigate seismic 

anisotropy in heterogeneous siliciclastic rocks. For comparison, the same core samples 

were used for atmospheric and high pressure analyses. Details are presented of the high 

pressure (potentially very high) pressure vessel set-up and position of the piezoelectric 

transducers. Furthermore, an interesting technique using split-shear wave transducers 

and the method of Silver & Chan (1988) is applied to determine orientation and mag- 

nitudc of shear-waves at high pressure. The chapter concludes with the results of the 

atmospheric and high pressure ultrasonic analyses. 

Chapter 5 is primarily concerned with electron microscopy techniques. It begins with an 

overview of the SEM that includes, its workings, set-up, and sample-clectron interaction. 

It further describes the application of the SEM to high-resolution imaging using DSE's. 

Electron backscattered. diffraction (EBSD) is a technique for obtaining crystallographic 

information in the SEAL EBSD is then introduced, with an overview of the fundamentals 

of orientation determination, and the specific analytical set-up. Problems are encoun- 

tered, however, when attempting to index low symmetry and weak crystalline mineral 

phases, such as feldspar and phyllosilicates, respectively. The problem of mis-indexing 

is addressed within this chapter and a possible solution proposed. The methodology 
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used to display and quantify the results obtained from EBSD analyses are presented 
(texture-index). The chapter goes on to present the results of the analyses for the pre- 
dominant mineral phases present, in frequency histogram , and crystallographic pole 
figure distributions. 

Chapter 6 begins with an explanation of how the data obtained from EBSD analyses is 

used to determine an estimate of seismic anisotropy of a polycrystalline aggregate using 
Voigt-Reuss-Hill averaging, and the Christoffel equation. Problems can be encountered 

when using EBSD to index low crystallinity mineral phases, such as muscovite. The 

Bingham method is presented as an analytical methodology of determining the orienta- 
tion distribution of phyllosilicates. The results obtained from the Bingham model were 

compared to those obtained from EBSD analyses for verification. The single crystal 

seismic properties for quartz, feldspar, calcite and muscovite are also presented to aid 
interpretation of the predictions of bulk aggregate seismic anisotropy. The chapter also 

contains the bulk aggregate seismic anisotropy pole figure predictions based on the re- 

sults obtained from QXRD, and EBSD analyses. Moreover two different models were 
developed that could be used to determine velocity and anisotropy from modal propor- 

tions alone. The first model was based upon an understanding that the texture-index for 

the constituent mineral phases did not vary systematically throughout the reservoir. It 

used a simple average of the single mineral phase elastic tensors to predict velocity and 

anisotropy from modal proportions alone. The second model was based upon empirical 

relations. The model used an ANOVA analysis and a multiple linear-regression to deter- 

mine formulae to predict P- and S-wave anisotropy from modal proportions alone. The 

ability of these two models to predict P- and S-wave anisotropy was investigated using 

a paired t-test and the Wilcoxon signed rank test. Comparisons of the different models 

can be observed in tables presented at the end of the chapter. 

Chapter 7 uses the results obtained from ultrasonic analyses and the bulk aggregate elas- 

tic tensor predictions from EBSD to invert for crack density. The theory of microcracks 

and their ability to control seismic anisotropy is presented along with the possible uses 

of remotely determining crack magnitude and orientation. The theory and equations of 

Sayers & Kachanov (1991) and the orthorhombic gcneralisations are presented in detail 

(Hall et al. 2007). Contained within the results of this chapter are inversion schemes 

using, CNit Ajkl, P-wave, and S-wave ultrasonic data. 

Chapter 8 is principally concerned with palacomagnetism and ANIS. The chapter begins 
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with an introduction as to why palacomagnetism is a useful technique. It goes onto to 

deal with the methodologies, techniques, and apparatus used to determine palaeomag- 

netism and ANIS. The theory and methodology behind the determination of grain fabric 

is also presented. Similarly so methodologies, techniques, and results used in the de- 

termination of pore fabric, permeability anisotropy, palacomagnetism core orientation, 

horizontal anisotropy, degree of anisotropy, and permeability anisotropy are also de- 

scribed. The concluding parts of this chapter describe a study into the scale dependence 

of the analyses of grain fabric measurements. 

Chapter 9 brings together the results obtained from various SAIL project investigators 

to enable broad conclusions to be drawn from the results of this project. For example, as 

a result of this project we now have a framework for interpreting anisotropy on various 

length scales: crystal (LPO), intergrain (SPO), and fracture or bedding scale (scismics). 

The data obtained from LPO analyses has been used in determination of an expected 

AVOA response from crystal alignment alone and therefore allows more confidence in 

interpreting fracture induced anisotropy. 
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Chapter 2 

Clair field, N. W. Scotland 

2.1 Overview 

The Clair field is located approximately 75kin West of the Shetland Islands, and for 

twenty years was the largest undeveloped oil discovery on the UK Continental Shelf 

(Smith k Lappin 1997)(Figure 2.1). The Clair field consists of Old Red Sandstone rocks 

that were deposited over a Lewisian basement at the end of the Caledonian Orogcny (c. 

350-40ONla)(Concy et al. 1993). Sedimentation was largelY controlled by the closure of 

the lapetils Occall. 

2.2 Structural history 

The Clair ficId is located on the SE flank of the NFSW trending Rona Ridge. The 

lield consists of a Lewisian liask! "Icut onlapped by Devoidan-Carboniferous sediments 

(Allen &- Mange-Rajetzky 1992) and can be divided into thi-ce lilain structural elements: 

Core-Graben, Horst, and Ridge (Figure 2.1) (Sinith & Lappin 1997). 

The Ridge forins the highest part of the field's structure and is a continuation of the 

Rona Ridge. Tile Core-Graben area lics to the SE of tile Ridge in the southern half of 

the field and is in the hanging wall of the eastern bounding fault of the Ridge. To the 

SE of the Core-Graben is the Horst (Figure 2.2). 

The NE-SW regionally trending faults that run parallel to the ridge are associated with 

the opening of the Clair basin (hiring the Caledonian orogeny. The predominant move- 

nicut on these Caledonian faults is (lip-slip, but their is sonic evidence to suggest both 

sinistral and dextral strike-slip movement (Sinith & Lappin 1997). The fractures which 

q" 
Mý 
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Figure 2.1: Location, and structural configuration of the Clair field. N. W. Scotland - UKCS. 

The field is located in water depths of up to 1507n. and. P.., rfends over 220krII2 covering five licence 

blocks - 20617a, 206112,20618,206113a and 20619. One block is approximately 75kin wide and 

150bn long. 

Bac Cmtwwus '- 

Figure 2.2: Dip-line section through the Ridge (left, hand-side), Com-Graben, and Horst. The 

section is presented in two-way-time. The entire depth of the section is 2.5secs TWT which is 

app7vximately 3000m. 
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I-III] parallel to the Calvdolliffli fillilts telid to be closed, whilst a second set of faults 

orivnted N-S off,., (, t the NFSW faults (Coiley vt a]. I f)! m). 

2.3 Hydrocarbon migration 

Oi IIII igraho II is %%ýidvl. v believed to have begun in the Late Cretaceous wit 11 filling act, ively 

occurring until the carly Tertiary (Conev et al. 1993). However, the majority of the 

appraisal wells drilled within the Clair field have produced disappointing hydrocarbon 

flow rates (hie to poor reservoir quality and a high concentration of low permeability 
deformation bands (Sillith k Lappin 1997, Knipe et al. 1998). Three recent appraisal 

wells have, however, produced economic flow rates with well test data and mud loss 

during drilling sligge'sting that the good flow rates are probablY associated with breccia 

zones and open fracturcs. The breccia zones are thought to have fornied by tliv linkage 

and brecciation of' closelY spaced tension fractures during strikc-slip motion. It has been 

suggested that the breccia zones developed in response to transtensional shearhil g durilig 

dcxtral strike-slip movement along the Rona Ridge and Southern Horst finilts (Knipe et 

al. 1998). 

2.4 Reservoir geology 

The overall stratignwhic framework f'()r t he Clair field was first established by Blackbourn 

(1987) and later r(, vis(, (i by Allen &- Mange-Rajetzky (1992) (Figure 2.3). The best 

(piality reservoirs are found in Ujjjtsý III and V. But there are also some good qualitY 

1-csvi-voirs within Units IV and VI ((! 011(,. v et '11.1993). 

The Clair field can be divided into two main groups: the Lower Clair Group (Units I to 

VI), and the If pper Clair Group (Units V11 to X) (Allen k Mange. -Rajetzky 1992). There 

are two lield-wide unconforinitics. One separates the Lower and Upper Clair Groups. 

The second is at the top of the Clair Group. and is overlain by the Cretaceous Shetland 

Gnmp (sliales) that form the wgional scal (ConeY et al. 199: 3). 

Lower Clair Group 

The Lowcr Clair Group consists of the following units: 

Unit I- 1"llivial llllldstollvsý both cross, mid imi-directional laminations with thin fining 

lipwards lillits. \II. illl. v composed of shales similar to those found in modern day lakes. 
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Figure 2.3: S117IIIllaVised Clair Grotip stratigraphy (Alle, 7t t", ý Alan! jr-Rajcf-ky 1992). 

Unit 11 - Lower fluviatile, matrix supported cmiglomerates, with cross-stnitified medium 

to coku-se 1-rithied smidstwiv. s. 

Unit III - Aeolian environincilt with irregularly hinihmted siltstmics, cross-stratified 

fine to medium grained swidstoiies and mudstmies. This unit is probably associated 

with acolim dime facies, with iiiterdune. sabkhLs, mid sporadic river floods. 

Unit IV - Middle fluviatile stage composed of interbedded brvcciýls, coarse, mid compo- 

Sitioll, 111Y imillature sall(Istones. This imit is thought to have bevii deposited bY bed-load 

domimited rivers with acolimi iiiteractiozis ill the dried 111) beds. 

Unit V and VI - The main lithologies contaiiied withiii 17iiit V arv cross-stratified smid- 

stmies. mid fiiiel. v Imniiiated smidstoiles. iiiterbedded with silty sawlstmes. Whil. st the 

main lithologies Nvithin I Tnit VI are horizontally and wave-rippled fill(, grained sandstolics, 

and inudstones. It is thought to have bccll deposited ill a porilact ist fille clivirollillent 

with aeolian, and river activity, with fringing sabkhas, and pla. vas. 

Upper Clair Group 

The UI)I)er ('hiir Gronj) consists of the following tinits: 

Units VII to IX - Upper fluviatile stage. Sedimeiits hiclude: arkosic, texturallY jillilla- 

ture itiodiiiiii-coarse grained sandstonvs, pebbly sandstones, and horizontally laminated 
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nindstones. The depositional environment is thought to be a high-sinuosity river con- 

taining low angle point bars, and chilte channels. 

Unit X- Marginal Illarille clivirolinient containing imidstones, coarse. riibbly sand- 

Stolles, aild rippled Sandstones. Thesw sediments are thought to represent inolith bars, 

and distriblital-Y cimilliels. 

Allen k, Mange-Rajetzky (1992) identified three major supercycles within the lithos- 

tratigraphic lillits. I (Units I-II-111) is thought to represent a change from rift, 

f1m)(1phiin Likes to sand laden streams. This suggests a change from external drainage in 

the rift basin to internal drainage. Cycle 2 (Units IN'-V-N'l) is believed to reflect a silli- 

ilar trend towards internal drainage, with sand-rich streams being replaccd Jýy shallow 

lakes. CYcle :3 (Units VII-Vlll-IX-X) is held to be rcpresentative of a change from high 

sifillosity river systems to fluvio-deltaic, and marine environments representing a further 

ill river discharge. 

BroadIN., the Clair is thmight to have evolved (hiring two phases with contrasting 

provellonce and drainage patterns (Morton et al. 2002). Cycles I and 2 are believed 

h) have beell deposited by sinall intra-rift drainage networks, while Cyclc 3 represents 

all ('111111-genicill "f the Watershed, with river systenis draining back into Shetland, the 

Scottish Illaililand, Scandinavia, and Greenland (Allen &, Nlaiig(, -R. a. jetzk. v 1992). 

2.4.1 Matrix mineralogy and reservoir quality 

It %vas demollstrated bY Pay vt al. (2000) that thc depositional facies of the Clair Group 

were all important control upon the abundance of clay minerals. It was found 

that the (IlIvial Sediments gcncrally cxhibited it higher claly inincral content compared to 

those deposited in acoliall settings. Matrix porosity and permcabihtY was detcrinined 

to be severelY restricted \vli(, r(, pore-lining clays were in abundance (> 15(/(, ), and where 

I lic (. I; I. \, s bridgc or fill pores. Figure (2.1) illust rat, cs the direct correlat ion betwecil low 

pernicabilifY zones and clay mineral almindance. Moreover, where calcite cement is in 

ablindance, (. I; I. v mineral content inverselY colist-itlit-es 0111Y a 111111or proportion of the 

ovendl 1110dal content, and Vice 

The following chov 111ilivrals have been i(Ivntified within the Clair lield reservoir 

sillectite - graill (. Olt ing and pol-v filling, tYpically c. 10 - 30pin long, and occurs CXclll- 
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19oo 

Figure 2.4: Distribation of pf, rincability, antliqlf mc catbomitc. emd clay mincyTil typt, with dcpfh 

- WcH 20618-8 (Pay ct al. 2000). 

sivelY in the UCG (Upper Clair Group). 

Kaolinite - veriniform Uolinite is found randolillY distriblited throligholit the CG. tN. I)- 

icall. v c. I - : 30/1111 long, and c. 5 - 10/1111 Wide. 

Illite - occurs sporadically throughoW the LUG (Lower Clair Group) as graill coatings 

()i- pore bridging ribbotts <5- 10jan thick. and < -10/nn long. 

2.5 Provenance 

Lower Oak Group - Hvmy ndmml asselliblages %vith goodsollingaild high slAlclicity 

mmysts tot dw (QhRIN MN MINI mninly kmn PnWXisting. sedillivilts, mostly 

nietasediments and high-grade Ilichilliol-pilics of the I'l-ecallibliall cryst'll1ille Imselilent 

(Nlorton ct ni. 2002). 

Upper Clair Group-The ll(-, tv. v (J(! ('. 

ent to Him of the LCG. Ali abundmice of coal-se, I)OOHY-sorted, 1111stlble ', [)('(-i('S suggcSts 

it considcrable cluinge ill both Sedimentation and Imlavogeogral)hY. It is bY AlIvii 

k- Mange-Ra. ictzky (1992) that the collibill'Itioll of st-1.11chind events eximsilig ('()Illl)l('X 

lithologics and all enlarged (Intinage nvtwork contributed to the significult chailge ill 

Illiller'll 'Issellibllge. 

Clay W PW. 
-F S'.. CLim M TAW ýhk- 

. 

LIH11.0 

K. 4kw 
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UltilmitclY, it is thought that the sedinients can be considered as having derived from the 

precnillbriall and Caledonian complexes of West Shetland. Shetland Islands. Greenland, 

mid Scmidinavin. At that tinic the larger rivers may well have reached into areas of 

("l-cellhuld, which Nvas ill close proximity, whilst also draining regions of Shetland (Figure 

2.5). 

"- ,1 13 

Figure 2.5: Provcwincc of mincrals romprising thc Dct, onlan- Carboll if(! I. o as Clair Irscl-voir. 

Arroll's toth bloAcri, hill's arc minorsomy-cs. WSP- WcstShetlandPlatfor-iri; ES11- EastSlictlaild 

Plalforill. li. sIcrisk marks loca-looi) of Clow-fichl (Allcii 114 Alange-Hajetzky 092). 

2.6 Clair field seismic data review 

Scisillic interpretation is l; "*9VI. v based upon the fullY migrated 3D stack volmlle. which 

comprises the 1990,1992, and 1996 3D surveys, covering approximately 350kin, 2 (SIllit'll 

k Lappin 1997). The seismic data shows good agreement With both tile Ivell and VSP 

(vertical svismic profile) data. Altbough the Clair 'ýD scismic data set is acknowledged 

; Is having all optillial ac(plisition geometry, new technologies such as OBC (occan bottom 

cable) havc beell investigated to aid field development. 

It wýls proposed after the illifial extended well test (ENAT) that an intimate under- 

ý, talldijlg of Clair's complex fracture netmork would be crucial to achieving the fields 

full potcntial. The primary investigation comprised of a multiazinnith walkawaY VSP 

and "'as intended to chal-acterise fracture orientations and densities (Sillith & McGarrit. N 

2001). It was, Ilowevvr, demonstrated by Smith k- McGarrity (2001) that, the technol- 
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ogy would not prove sigilificantlY heneficial witholit a xvider azimuthal coverage and 

consistent Signal-to-noise levels. 

ConsequentlY, three 2D occan bottom svisinic (OBS) lines were acquired ill 2000 ill 

preparation for a YD OBS study (Kommedal et al. 2004). The ? D-4C OBS data %%-; Ls 

acquired ill 2002 with a view to cliaracterisug azimuthal variations ill elastic properties 

(Kominedal et al. 2004, Tabti et al. 2004). Tit(, '; D-4C OBS sm-veY was also used to 

improve the imaging resolution within the Clair field, wilich liLs high levels of water 

laýyer multiple contamination. A comparison betwecii the OBS iniage and the streamer 

data image. (! all be seen ill Figure (2.6). Tit(, 3D-4C OBS sin-vev improved signal-to- 

noise ratio and cnabled a reduction ill 1111certailitY ill the Structural imaging. re.. "Illting 

ill modification of the geological model. 

2.7 Samples analysed 

A suite of siliciclastic sedimentarY rocks were collected from two welk,: 206/8-S and 

206/13a-2, located within the Core and florst, respectivelY (Figm-c 2.7). The samples 

were chosen to be representative of both Clair field lithotYpes and tYpical silicid. l. stic 

hYdrocarbon reservoir rocks. More specificallYl the samples were extracted from the 

three main horizons of the Clair field Units I-III, V, and VI (Tables 2A and 2.2). Unit 

IV was not sampled because the lithotypes present Within it had beellsampled previollsi. % 

(Figure 2.3). 
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is approximately 33007n, 

Figure 2.6: Clair reservoir streanter data (top) compared with OBS (occan bottont seismic) 

data (bottom). 71te main reflectors in the OBS data are: Base Tertiary ls, Basr Cretaceous 

UnMnfOrMily 1.6s, infra-resenioir refleclor 1.8s, and 'Top Base7nevi 2s (Kom7nedal el al. 2004). 

The section is presented in two-way-time. The entire depth of the section is 3. Osecs TWT which 
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Figure 2.7: Clair field. N. W. Scotland, UKCS - Well locations. Wells 20618-8 and 206113a-2 

are situated within the Core and Horst respectively. 
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Table 2.1: Samples analysed from Well 20618-8. Sample number also jefers to core depth. Sst 

- sandstone, Mdst - irtudstone. 
Unit Lithology Sample 

vi Sst 1663 

vi Mdst 1763 

vi Mdst 1784 

vi Mdst 1788 

vi 1841 

v Sst 1909 

v Sst 1950 

v Sst 2073 

v Sst 2088 

I-III Sst 2129 

I-III Sst 2192 

I-Ill Sst 2194 

I-III Sst 2198 
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Table 2.2: Samples analysed fi-om Well 206113a-2. Sample number also refers to core depth. 

Sst - sandstone, Mdst - mudstone. 

Unit Lithology Sample 

v Xldst 1959 

v Xldst 1963 

v Sst 2015 

v Sst 2023 

v Sst 2028 

v Sst 2034 

v Sst 2070 

LEEDS UNIVERSITY LIBRARY 
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A description of the various lithotypes typical of each unit sampled is provided as follows: 

Unit VI 

A ineditun-grained, nioderately-well sorted, weakly laminated, clean sandstone that has 

been extensively cemented by calcite. Tile ductile components comprise rare quantities of 

partially grain-rinlining brown detrital clays and isolated and deformed illitic mudclasts 

(Figure 2.8). Authigenic minerals are dominated by pore-filling non-ferroan calcite and 

fine-grained calcite, which is possibly in part, replacing detrital clays and mudclasts 

(Figure 2.9). The macropore system comprises well connected primary interparticle 

niacropores that are typically c. 150 - 300jim in diameter and are distributed in discrete 

laminae that are free from authigenic minerals. Micropores will be present between 

detrital clays and within mudclasts but may also be present within finely crystalline 

calcite patches. Tile layered nature of the calcite cement will seriously reduce vertical 

permeability. 

Unit V 

A ineditini-grained and moderately well sorted massive sandstone, displaying a weakly 

compacted fabric (Figure 2.10). Ductile minerals are typically rare and comprise very 

thin, discontinuous, green and brown detrital clay rims on a significant proportion of 

grains. The macropore system comprises moderately to inoderately-well connected pri- 

inary interparticle inacropores, which range in size from c. 50 - 300/im in diameter and 

are evenly distributed throughout the section. Secondary oversized macropores are poor 

to moderately connected to the primary pore system and range in size up to c. 450pni in 

dianicter (Figure 2.11). 

Unit I-III 

A fine-grained and moderately well sorted laminated sandstone, which displays an open 

to weakly compacted fabric (Figure 2.12). Laminae are defined by grain size, detrital 

clay and K-feldspar abundance differences. Ductile grains comprise relatively continu- 

ous, but thin illitic clay coatings on the majority of the framework grains. Finer grained 

laminae are typically dominated by ductile grains and contain a higher proportion of pore 

filling detrital clays. Atithigenic ininerals are dominated by noti-ferroan calcite, which is 

present principally within coarser grained and cleaner laminae. The pore system com- 

prises moderate to nioderately-well connected primary interparticle macropores, which 

are typically r. 15 - Wpm in diameter and are distributed throughout the section but are 

less abundant within calcite cemented horizons (Figure 2.13). Micropores; are distributed 
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Figure 2.8: Optical inicroscope image of a inedium-graincd. modcrately- well sorted. weakly 

laminated clean sandstone. The lithotype prescitted typifies Unit VI Within Well 20618-8 (Sample 

- 1663m). Quartz grains appear clear and colourless. Undifferentiated feldspars are yellow in 

colour. The calcite cement is stained blue for ease of identification. Slide is 3cm long and 

oriented perpendicular to bedding. 

Figure 2.9: High resolution optical microscope image of the authigenic P07-C filling mincnils 

from a Unit VI lithotype from Well 20618-8 (Sample - 1663m). The pore-filling matemal is 

dominated by calcite spar and fine gralned calcite. Quartz grains appear clear and colourlrss. 

Undzfferentiated feldspars are yellow in colour. The calcite cement is stained blue for ease of 

identification. Slide is 1.3cm long and oriented perpendicular to bedding. 
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Figure 2.10: Optical microscope image of a Tnedium-grained, well-sorted clean sandstone. The 

lithotYpe presented typifies Unit V within Well 20618-8 (Santple - 1909m). Quartz grains appear 

clear and colonrless. Undifferentiated feldspars are yellow in colour. The calcite cement is stained 

blne for ease of identification. Slide is 3cm long and oriented perpendimilar to bedding. 

Figure 2.11: High resolution optical microscope image of the Tnac7Vpoi-e space froM a Unit 

V lithotype fi-om Well 20618-8 (Sample - 19097n). Quartz grains appear clear and colourless. 

Undifferentiated feldspars are yellow in colour. The calcite cement is stained blue for ease of 

identification. Slide is 1.3mi long and oriented perpendicular to bedding. 
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throughout the section being principally held within detrital clays. The discontinuous 

calcite cemented horizons will form local baffles to vertical fluid movement. 

In general, the samples range from medium grain sized, inature sandstones (quartzo- 

feldspathic rich) to fine-grained, finely-laininated mudstones (phyllosilicate rich). The 

samples are broadly classified as arenites, arkoses, and wackes. To illustrate the variation 

in modal proportion, individual sample inincralogy is conveniently plotted on a ternary 

diagram (Figure 2.14). 
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Figure 2.12: Optical microscope image of a fine-grained. moderately well sorted sandstone. 

The lithotype presented typifies Unit I-III within Well 20618-8 (Sample - 2194m). Quartz grains 

appear clear and colourless. Undifferentiated feldspars are. yellow in colour. The calcite cement 

is stained blue for ease of identification. Slide is Arn long and oriented perpendicular to bedding. 

Figure 2.13: High resolution optical microscope image of interparticle macropores and calcite 

cemented horizons from Unit I- III of Well 20618-8 (Sample - 2194, m). Quartz grains appear clear 

and colourless. Undifferentiated feldspars are yellow in colour. The calcite cement is stained blue 

for ease of identification. Slide is 1.3cm long and oriented perpendicular to bedding. 
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0 

Figure 2.14: A ternary diagram illustrating the variation in modal proportion throughout the. 

samples. Phyllosilicates include biotite, muscovite, and illite. Based on quantitative X-ray diffrac- 

tion results from Chapter (3). The side which contains the label represents 100%. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Oý8 0,9 
Phyllosilicates 
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The mature sandstones have an average porosity and permeability of 15% and 50mD 

respectively. The clean sandstones were often relatively massive with only minor vari- 

ations in mineralogy and subtle bedding features (Figure 2.15). BSE imaging indicates 

that the clean sandstones have a simple mineralogy, with lots of pore space and rounded 

to sub-rounded grains with a high sphericity (Figure 2.16). 

In complete contrast are the inudstoncs which have a much lower porosity and pernic- 

ability of approximately 77c and 1rnD respectively (Figure 2.17). The microtextures 

observed at high magnification are typical of inudstones, with poor sorting, low porosity, 

and strongly aligned phyllosilicates; (Figure 2.18). During mechanical compaction the 

phyllosilicate grains re-align to form a high degree of preferred orientation but are bro- 

ken in the process as they are bent around the much stiffer quartz and feldspar grains 
(Figure 2.19). 

2.8 Diagenetic history 

The Clair reservoir experienced prolonged tectonic subsidence during the Devonian and 

Carboniferous with a period of inversion at the time of the Carboniferous-Permian 

boundary prior to continued deposition (Smith & Lappin 1997). The Clair reservoir 

was buried to a maximum depth of approximately 2.6km before it was uplifted to 0-6kni 

at the end of the Perinian. 

The mineralogy and poroperin properties of the reservoir sandstones within the Clair field 

have midergone significant diagenetic modification (Table 2.3). Authigenic K-feldspar 

occurs as < l5prn wide ovcrgrowtlls on detrital K-feldspar grains with petrographic cv- 

idence suggesting that it occured during shallow burial. Most calcite observed occurs 

as a coarse grained pore filling cement which precipitated after the authigenic quartz. 

Calcite was also observed in association with pyrite as a vein filling cement. Moreover, 

the presence of authigenic corrensite is also important because it appears to have sup- 

pressed quartz overgrowth precipitation, which in turn may havc suppressed K-feldspar 

dissolution (Smith & Lappin 1997). In general, the undeforined sandstones within the 

Clair field are well lithified despite the lack of quartz cement. This reflects the fact that 

it has experienced some pressure solution. It is possible that the silica generated by 

pressure solution may have been utilised during clay inincral transformation within the 

reservoir (Knipc et al. 1998). 1% 
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Figure 2.15: Half-core colmir photoymph of a typical Clair sandstone, with the four cores 

removed prior to it1trasonic testing. Sample manber 21987n (Y-com) from Well 20618-8. 
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Figure 2.16: BSE photomicy-opuph of a typic(ll Clairsandstonc: mattim. awlls"vtcd. modclutc 

porosity with withigenic calcite. Sample nianber 21297n (Y-co7w. ) fyvTit WfIl 20618-8. 
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Figure 2.17: Half-core colour photograph of a typical Clair mudstone. with the four cores re- 

inoved for altrasonic analyses. Sarnple number 17847n (Y-core) front Well 20618-8. 
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Figure 2.18: BSE photomicrograph typical of the Clair inudmcks: poorly soited, low porositY, 

well aligned phyllosilicates. Sautple number 1841'rn (Y-corr) from Well 20618-8. 
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Figure 2.19: High magnification BSE photonticroyraph of a typical Clair Tnud-storle. Softer 

phyllosilicates bend around the stiffer quartz and feldspar graims. Sample number 1784m (Y- 

core) front Well 20618-8. 

2.9 Summary 

Presented within this chapter is a brief introduction to the Clair field's geology, struc. - 

tural history and location. Furtliermore, this chapter also claborates upon tile structural 

complexity of the Clair field addressing the location and structural significance of tile 

Core, Graben and Horst. It also identifies the reservoir geology detailing the environ- 

mental interpretation of the different horizons, and the three major super-cycles within 

which tile lithologies were deposited. Later in tile chapter the most recently acquired 

seismic data for the Clair field is presented, and reviewed. The chapter concludes with 

sample descriptions, photonlicrographs, and locations of the samples analysed. 
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Table 2.3: Summary of the diagenetic and deformational history of the Clair Croup. Time 

increases from left (E. Devonian) to 7ight (Present day). K-fspr. - potassium feldspar, Press. 

soln. - pressure solution and Oil mig. - oil migration. The position of the asterisk marks the 

timing of the event. 
Burial depth Shallow Deep Intermediate 

K-fspr. 

Calcite 

Smectitc 

Corrensite 

Quartz 

Press. soln. 
Oil mig. 

Deformation 
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Chapter 3 

Quantification of mineralogy 

3.1 Introduction 

In the majority of studies of seismic anisotropy bulk aggregate properties have been 

investigated using ultrasonic laboratory measurements. Although direct analysis of a 

sample's seismic anisotropy is informative it does not allow the discrimination of the 

various factors that control the measured anisotropy. The aim of this project was to 

assess and understand both the intrinsic and extrinsic controls of seismic anisotropy of 

siliciclastic rocks. The intrinsic seismic properties of a sample are controlled by the bulk 

aggregate elastic properties which are in turn controlled by individual grain orientation, 

grain distribution, and porosity. For the purposes of this study understanding the min- 

eralogy is important because it provides the basis for the calculations of intrinsic seismic 

anisotropy due to grain orientation. Moreover, accuratc and reliable quantification of 

the mineralogy of petroleum bearing rocks provides a fundamental understanding on the 

controls of reservoir quality so that it is possible to predict reservoir quality away from 

the borehole. Presented in Chapter (5) is the microstructural investigation of the in- 

trinsic properties of siliciclastic hydrocarbon reservoir rocks. To accurately calculate the 

elastic stiffness tensor requires both an accurate assessment of a rocks modal mineralogy 

and it's individual mineral phase orientation distribution. Hence, this then provides a 

means with which to begin to investigate the relevance and importance of the various 

properties that ultimately control the seismic anisotropy of rocks. 

Presented within this chapter is a review of the most commonly used techniques to de- 

termine modal composition, these include: point counting, image-analysis (optical and 
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electron acquired), EBSD, and X-ray diffraction. The modal composition of the sam- 

ple's analysed in this project were determined by QXRD (quantitative x-ray diffraction) 

analysis. QXRD was used because of its ability to quickly, and accurately quantify the 

sample's modal mineralogy including the fine-grained clay mineral content. 

3.2 Review of techniques used to determine modal composition 

3.2.1 Point counting 

Point counting is a relatively accurate method of establishing modal composition al- 
beit a very time consuming one (Galehouse 1971). It must first be assumed that the 

thin-section used for the point counting is representative of the bulk rock modal compo- 

sition. Moreover, with point counting it must be remembered that values are computed 
from 2D. For inhomogencous sediments, particularly those with a strong fabric, total 

measurement of modal composition should be a combination from three perpendicu- 
lar thin-sections. To highlight porosity, and hence ease identification of calcite cement 

optical microscopy thin-sections are usually impregnated with a blue-dye. The most 

commonly used technique for point counting is spot identification (Van der Plas & Tobi 

1965). Essentially, there are two methods for determining modal composition using spot 

identification. Both methodologies use the same basic approach the only difference is 

that one uses a systematic grid whilst the other relies upon random sampling. 

Using the approach of the systematic grid the thin-section is usually placed on a me- 

chanical stage which is screwed to the rotating stage of the optical microscope. The 

mechanical stage is also connected to a counting unit that controls the movement of the 

stage over a predetermined distance. The distance is dependent upon grain size; the 

finer the grain size, the smaller the interval. The mineral phases are represented by a 

key on the counting stage which is pressed each time that mineral phase is visible under 

the cross hairs of the microscope. Several traverses arc made for each thin section and 

a total of c. 250-300 points per thin-section are required to give accurate percentages Of 

the components present. The only difference with the random-walk is that the thin- 

section is moved manually in a random fashion, otherwise, both methods use the same 

basic counting principals. Thus, for the ith mineral, found at xi points out of a total 

of N points counted, the best estimate of its percentage in a rock is P= 100xilN. An 

awareness of the error associated with this type of counting procedure is essential. 
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Chayes (1956) estimated that the total error would be the sum of the counting errors 

and the size of the sample taken from the rock. Chayes (1956) approximated the error 
to be of a binomial distribution even though the Bernoulli criteria would not be satisfied 
during point counting. To be considered a Bernoulli trial, an experiment must meet each 

of three criteria. There must be only two possible outcomes, such as: black or red, sweet 

or sour. One of these outcomes is called a success, and the other a failure. Each outcome 
has a fixed probability of occurring; a success has the probability of p, and a failure has 

the probability of 1-p. Each experiment and result are completely independent of 

all others. The basic problem is that the counting process depends on two unrelated 
factors. The operator selects the grid size distance, it could be bigger than the grain size 

or smaller than the grain size. The second factor affecting the counting error is that the 

rocks constituent minerals could be stochastically independent or dependent. The error 

can be calculated a number of ways either by using the graph of Van der Plas & Tobi 

(1965) or by the empirical relationships as devised by Bayly (1965). However, the graph 

as devised by Van der Plas & Tobi (1965) only relates to Bernoulli sampling processes 

and even if the operator selects a grid distance greater than the diameter of the largest 

grain there is no assurance that the observations are stochastically independent. The 

relationships calculated by Bayly (1965) are based upon a select number of samples and 

would not necessarily apply to any other rock. 

It is recommended that the following procedure should be followed to minimise errors: 
determine the largest diameter of crystal and fix the grid size separation to slightly 

exceed it, collect k sets of a total N points whereby each traverse contains VIN points 

on a square grid of v1N- traverses and use a random point to get the x, y coordinates for 

the counting stage (Chayes 1956, Bayly 1965) - 

3.2.2 Image analysis 

Determining modal composition from image analysis broadly involves the post-acquisition 

evaluation of a digital image. Image analysis can be conducted using digital photomicro- 

graphs either collected from optical microscopy thin-sections or backscattered electron 
images. Typically, however, atomic number contrast BSE photomicrographs are used to 

determine modal composition. Prior to conducting image analysis it is useful to have a 

p7imi knowledge of the mineral phases present. 

The digital image is first imported into one of the many publicly available image anal- 
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ysis programs, such as Scion Image and ImageJ. The images are then processed in the 

following procedure: 

1. The photornicrographs are cropped to 512 x 1024 pixels. and greyscaled (if not al- 

ready) - software prerequisites (Figure 3.1): 

2. Upper and lower thresholds are defined within the greyscale that correspond to the 

mineral phases required to be calculated. The image is then converted to a binary image 

(Figure 3.2); 

I The binary iniage is then processed using a closure function. This function performs 

a dilation operation followed by an erosion. which in effect smooths the object outlines, 

fills holes, and removes any wildspikes; 

4. Using the analyse function and then the measure particle function. the number of 

pixels that the greyscale thresholded image occupies is calculated. Knowing that the im- 

age measures 512 x 1024 pixels, the inodal proportion of that particular mineral phase 

can thus be determined. 

Image analysis has numerous drawbacks. It is time-consuming because of tile cuttillg 

and preparation of the orthogonal sections. Problems can also occur when; tile contrast 

between mineral phases is low, the grain size is similar to that of the image resolution, 

there is a non-random spatial distribution of mineral phases, and when the sample has 

a range of different grain sizes (Schofield et al. 2002). 

3.2.3 Electron backscattered diffraction 

Automated EBSD has proven its utility in the characterisation of inicrostructure in POIY- 

crystalline materials (Schwartz et al. 2000). For a full description of the technique see 

Chapter (5). Orientation imaging microscopy differentiates between phases by indexing 

a pattern using the pertinent structure parameters for each phase. The phase that pro- 

vides the best fit to the pattern is assunied to be the correct phase. EBSD determines 

modal mineralogy and composition in the following manner: 

1. An EBSD pattern is obtained from the region of interest; 

2. Tile chemistry is qualitatively determined by EDS (X-ray energy dispersive spcctrom- 
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Figure 3.1: Elcctron backscattcrcd atomic contrast anayt, of a clay-mica rich sp, virlicl). Samplf, 

17847n ( Y-core) from Well 20618-8. 
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Figure 3.2: Binary cOnverted electron back8cattemd atontic contrast image of a clay-mica rich 

specinten. Sample 1784m ( Y-core) from Well 20618-8. 
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ctry); 

3. The chemistry is then used to search the crystallographic database for the correct 

reflector file. The search takes only a few seconds and returns approximately 20 possible 

matches; 
4. The pattern is then indexed using the database information and a comparison is 

made between the simulated and experimental pattern until a consistent set of indices 

are found. 

EBSD is well suited to differentiate between phases that are similar in chemical compo- 

sition but dissimilar in crystallographic structure (Schmidt & Olesen 1989, Schwartz et 

al. 2000). It is postulated that EBSD cannot correctly and repeatedely identify poorly 

crystallised phases, and fine-grained mineral phases, such as clay minerals and phyllosil- 
icates. Moreover, modal determination using EBSD is also time consuming in that the 

samples are required to be prepared to a high standard. Furthermore, the actual sample 

modal proportion determined is also very small in comparison to that analysed by other 

techniques, for example, image analysis, and XRD. 

3.2.4 X-ray diffraction 

XRD (X-ray diffraction) is a commonly used tool in the mineralogical analysis of sedi- 

ments because of its rapid, precise, and accurate ability to quantify phases in fine-grained 

polymineralic rocks (Schofield et al. 2002). The determination of the modal proportions 

of the phyllsilicate content (biotite, muscovite, kaolinite, and illite) on whole-rock XRD 

analysis, however, is at best frequently semi-quantitative (Hillier 2000). This is largely 

attributed to the difficulties associated with clay mineral compositional variation, min- 

eralogical structural disorder, and the tendency for phyllosilicates to adopt a preferred 

orientation in the powder sample holder prior to analysis. To obtain the correct relative 
intensities of all peaks in the diffraction pattern X-ray powder diffraction completely 

relies upon the preparation of a random powder sample. 

Sample preparation issues can be almost entirely eliminated by using spray dried samples 
(Hillier 1999). This arguably provides the most effective preparation technique for the 

quantitative analysis of modal mineralogy. Spray drying essentially involves spraying 

a sample as an aqueous solution into a heated chamber so that it dries in the form of 
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spherical droplets. Spray drying is not currently a widely used method of sample prepa- 

ration for X-ray powder diffraction because of the high cost of commercially available 

equipment and because it is not suitable for samples of less than 1g. 

X-rays are produced by bombarding a metal anode (copper, iron or silver) with high 

energy electrons from a heated filament. The X-rays are then collimated before passing 
through a divergence slit, which controls the angle at which the analysis will be carried 

out, for example, -LO or 40 for low and wide angle work respectively. The beam is directed 12 
towards the sample and any X-rays that satisfy the Bragg equation will therefore diffract 

according to this law (Equation 3.1). Bragg's Law states that, 

nA = 2d sin 0. (3.1) 

The Bragg equation explains why the cleavage faces of crystals appear to reflect X-ray 

beams at certain angles of incidence (0). The variable d is the distance between atomic 
layers in a crystal, A is the wavelength of the incident X-ray beam, and n is an integer. 

Consider the conditions necessary to make the phases of the incident beams (e. g., ions, 

electrons and neutrons) coincide, i. e., when the incident angle equals the reflecting angle 
(Figure 3.3). The rays of the incident beam are always in phase and parallel up to the 

point at which the top beam strikes the top layer at atom, z. The second beam continues 

to the next layer where it is scattered by atom, B. The second beam must travel AB+BC 

if the two beams are to continue travelling adjacent and parallel. This extra distance 

must be an integral (n) multiple of the wavelength (A) for the phases of the two beams 

to be the same, 

nA = AB + BC. (3.2) 

Therefore, 

AB = dsin0, (3-3) 

and because AB=BC, Equation (3.2) becomes 

nA = 2AB. (3.4) 

Substituting Equation (3.3) into Equation (3.4) we get, 
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Figure 3.3: Deriving Bragg's Law using reflection geometry and trigonometry. 

nA = 2d sin 0. (3.5) 

The reflected beam is then passed through a collimator to reduce its scatter before 

entering the final detector (Figures 3.4 and 3.5). The output is a strip chart, which is 

synchronised with the detector so that the x-axis is in 200 (Figure 3.7). 

Good sample preparation is absolutely fundamental to obtaining good quality results. 
The ideal specimen is a statistically infinite amount of randomly oriented powder with 

crystallite size less than 10jAm. 

XRD analysis requires that corundum is added to the finely ground specimen, this is 

known as a spike. The crushed rock specimen and corundum mixture is then combined 

with 1% aqueous PVA (polyvinyl alcohol), with a solid to liquid ratio of 1: 1.5 to 1: 2.3. 

The PVA acts as a binder giving strength to the dried product. A single drop of I-octanol 

is then added to the slurry to stop the sample foaming during grinding. 

The slurry mixture is then dispersed (ground) for 12 minutes using a McCrone Mill. 

The resulting solution is then sprayed into the drying chamber at 5-10 psi allowing 

small droplets to form (c. 501im) and fall to the bottom. Operating at such low pressures 
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Figure 3.4: Geometry of the X-ray difftuctometer, sample, and electron source. 

means that even clay fractions consisting of smectites can be successfully spray dried with 

recovery of up to 70%. The aim of spray drying materials for X-ray powder diffraction 

is to produce a sample which can be loaded into a powder holder without inducing a 

preferred orientation and to present a relatively constant bulk density to the X-rays 

(Figure 3.6) (Hillier 1999). The data obtained from the XRD analysis is output as a 

strip-chart (Figure 3.7). The 20 angle increases from left-to-right on the horizontal scale 

and intensity of the diffracted peak above background is given by the vertical scale. 
The various large peaks at different 20 spacings are indicative of a particular mineral 

phase. Spray-dried X-ray powder patterns are completely reproducible and operator 
independent and do not exhibit any preferred orientation. 

3.2.5 Quantitative X-ray diffraction 

Quantitative analysis of diffraction data refers to the determination of the amounts of 

different phases in inulti-phase samples. In quantitative analysis, an attempt is made to 

determine phase proportions with quantifiable numerical precision from the experimental 

data itselL 

The X-ray powder diffraction data was collected using a Philips PWI050 Coniometer 

with a Philips PW1730 CuKa X-ray tube (graphite monochromator). AV divergence 

and anti-scatter slit was used with a receiving slit of 0.20. The data was collected 

over a range of 3- 70', with a step size of 0.02' and a counting time of 2 see per 

step. The data was analysed using Hiltonbrooks HBX data acquisition software and 
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Figure 3.5: Geometry of the angular relationships within a diffractometer. 

Figure 3.6: Secondary clectron photo mic 7 -og raph of spray-dried kaolvate. The spheres present 

a relatively constant balk density to the X-rays and do not acquire a preferred orientation during 

mounting into the XRD specimen holder. 
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Figure 3.7: X-ray diffraction strip chart diffraction pattern. The 20 angle incirases front left- 

to-right on the horizontal scale and intensity of the diffracted peak above background is given by 

the vertical scale. The various large peaks a/ different 20 spacings arr. indicative of a particular 

mineral phase. 
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Diffraction Technology's TRACES software using the International Centre for Diffraction 

Data Powder Diffraction Files for the database of phase identification. 

The diffraction pattern includes information about peak intensity and positions (Figure 

3.7). The peak positions axe indicative of the crystal structure and the symmetry of the 

contributing phase. The peak intensities reflect the total scattering from each plane in 

the phase's crystal structure and axe directly dependent on the distribution of particular 

atoms in the structure. Thus intensities are ultimately related to both the structure and 

composition of the phase (Jenkins & Synder 1996). 

The diffraction intensity equation (Chung 1974) is described as foUows, 

J., \3 e22 
M(hkl) 

12(l 
+ COS 2 (20)coq 2 (20,,, ) )! L-. I(hkl)a 

--` ý4- (3.6) 
Irr 

IF(hkl)a 
Irr 

(;; j: 
C-2 

) -Tý7 20 
ea sin cosO hki Us 

Where: 

1(hkl)a 

I. 

r 

A 

(e2/rnC2)2 

Ila 

va 

Mhkl 

0 

va 

intensity of reflection of hki in phase a; 

incident beam intensity; 

distance from the specimen to detector; 

X-ray wavelength; 

square of the classical electron radius (cm); 

linear absorption coefficient of the specimen; 

volume fraction of phase a; 

multiplicity of reflection hkI of phase a; 
Lorentz-polarisation correction; 

volume of the unit cell of phase a; 

20,, the angle between the goniometer and electron source (diffraction angle); 

FhkIa structure factor for reflection hk1 of phase a. 

As many of the terms remain constant for a particular experimental set-up we can define 

an experimental constant, K.. For a given phase it is possible to define another constant, 
IC(hkt)a- Substituting the weight fraction Xc, for the volume fraction, the density of 

the phase for the volume and the mass absorption coefficient for the linear absorption 

coefficient yields, 
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I(hkl)a " 
KeK(hkl)aXa 

(3.7) 
Pa 

This equation describes in simpler terms the intensity of peak hkI for phase a. 

If the mass absorption coefficient (julp). is known, the calculations are simple. However 

(jalp). is a function of the amount of the constituent phases present, and hence is the 

object of the experiment (Jenkins & Synder 1996). 

Numerous methods have been developed to use peak intensities for quantitative analysis 

of diffraction data. The RIR (Reference Intensity Ratio - internal standard method) 

method is the most widely used technique and is the basis of the methodology used in 

this study (Chung 1974). 

The internal standard method circumvents the absorption coefficient problem by dividing 

two intensity equations to yield, 

I(hkl)a 
=k 

La 
(3.8) 

I(hkl)'# X0, 

I Where a is the phase to be determined, P is the standard and k is the calibration 

constant. 

The most general definition of the RIR for phase a to reference phase 0 is, 

RIR.,, 3 
lhk' a )( 

Ihklolel 
) XO 

(3.9) 
IWO Ihklarel 

Where the I,, j term ratios the relative intensities of the peaks used. RlRs may be 

experimentally determined for any phase using any material as a standard. 

Rearranging the above equation yields, 

ra rel 

(. 
L(hki)a 

) (ý(hklYß X 
Xß 

I(hkl)'0 I(hki)a RIR�, ß 

The RIR value is then obtained through careful calibration. Best results are obtained if 

as many possible variables (RIR and P*11) are experimentally determined. Each phase 
determined is independent of the whole, this method works well for complex mixtures 

including unidentified or amorphous phases (Jenkins & Synder 1996). 
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3.3 Results - Modal Composition 

The results obtained from the QXRD modal proportion analysis axe presented in Table 

(3.1). 

3.4 Conclusions 

There arc several techniques which quantify modal composition, these include, among 

others: point counting, image analysis, EBSD and QXRD. The accuracy and speed, 

however, at which these various procedures determine modal proportions varies dra- 

matically. Presented within this chapter are the advantages and disadvantages of using 

anyone of the particular techniques. For example, point counting can provide results 

relatively quickly when compared to some other techniques. Furthermore, it doesn't rc- 

quire particularly sophisticated equipment or a high level of training to be able to apply 

the technique. However, it does not accurately quantify the modal composition in 3D, 

which requires the cutting and preparation of numerous orthogonal sections. Moreover, 

it does not accurately and repeatedly quantify the fine-grained mineral content of aggre- 

gates, such as, clays or mineral phases in highly-deformed rocks. Image analysis requires 

either a selection of digital images acquired using clcctron microscopy or optical light 

microscopy. As with point counting to ensure an accurate representation of the rocks 

mineralogy in 3D orthogonal sections arc required. The most prominent draw back of 

image analysis is that if the minerals within the sample have very similar properties. For 

example, in BSE imaging both quartz and certain types of feldspar have approximately 

the same atomic contrast (Z-contrast), which makes identification and quantification of 

these two very different minerals extremely difficult. Furthermore, if the grain size of 

the constituent minerals are particularly small this can cause problems with pixelation 

and identification of grain boundaries. Among the main benefits of image analysis is 

that there axe numerous open source software packages available for the post-acquisition 

processing of the images. EBSD has been shown here and in previous studies to be a 

good way of determining modal proportion (Goldstein et al. 1992, Randle 2003, Prior 

et al. 1999). However, it does have some serious drawbacks, the basic understanding 

of clcctron microscopy analytical techniques required to conduct this type of analysis 

is very high. Moreover, the area of which EBSD determines the modal composition is 

also very small, with a maximum of usually 1CM2, which is not necessarily reprosen- 
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Table 3.1: Sample mineralogy, porosity, permeability, and stratigraphic location. The Well refers 
to the number the samples was extracted from 20618-8 or 206113a2. Stratigraphic unit devised by 

Allen & Mange-Rajetzky (1992), sample depth (m), individual sample mineralogy (76), porosity 
(7,, ) and permeability (mD). Qtz. - quartz, Fspr. - jeldpsar, CIc. 1DoL - calcite + dolomite, Phyllo. 

- muscovite + biotite + illite and Kaol. - kaolinite. Por. - Porosity was deter7nined using helium 

porosimetry and Perm. - permeability by air porosity (Smith V Lappin 1997). Tech. - technique 

used to measure modal proportion. 

Well Unit Sample Qtz. Fspr. Clc. /Dol. Phyllo. Kaol. Por. Perm. Tech. 
8-8 VI 1663 57.60 6.81 12.37 8.13 0.00 15.10 0.65 QXRD 

8-8 VI 1763 17.02 20.64 1.90 47.35 1.18 11.90 0.00 QXRD 

8-8 VI 1784 38.64 18.26 18.26 6.20 6.65 12.00 24.00 QXRD 

8-8 VI 1788 30.89 25.41 1.32 34.38 0.00 8.00 0.02 QXRD 

8-8 VI 1841 30.97 21.77 5.92 30.24 0.00 11.10 0.07 QXRD 

8-8 v 1909 54.95 16.07 10.48 3.73 1.78 13.00 2.80 QXRD 

8-8 V 1950 44.19 30.46 7.45 3.10 0.00 14.80 84.00 QXRD 

13a2 v 1959 39.11 23.36 14.30 6.54 0.00 16.70 5.48 QXRD 

13a2 V 1963 45.77 7.69 16.46 17.43 5.55 7.10 0.15 QXRD 

13a2 V 2015 54.54 17.12 5.57 5.97 0.00 16.80 177.00 QXRD 

13a2 v 2023 54.00 19-88 2.53 6.15 1.35 16.10 12.30 QXRD 

13a2 V 2028 49.60 19.98 0.71 9.72 1.18 18.80 4.84 QXRD 

13a2 V 2034 39.96 16.02 0.32 19.86 5.45 18.40 138.00 QXRD 

8-8 V 2070 47.46 17.57 7.75 7.75 7.06 12.40 3.80 QXRD 

8-8 V 2073 46.78 16.85 6.13 15.95 3.79 10.50 0.05 QXRD 

8-8 V 2088 53.79 14.57 2.30 19.34 0.00 10-00 1.20 QXRD 

8-8 1-111 2129 74.30 8.22 2.51 0.78 0.00 14.20 79.00 QXRD 

8-8 1-111 2192 63.76 9.51 6.43 3.17 1.63 15.50 55.00 QXRD 

8-8 1-111 2194 61.05 12.62 8.06 1.70 4.48 12.10 1.40 QXRD 

8-8 1-111 2198 58.49 13.58 6.32 1 13.11 1 0.00 
_L _8.50 

1 0.36 1 QXRD 
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tative of the larger samplc. In this study it was decided that QXRD would provide 

the most reliable and quick method of accurately determining modal composition. The 

advantages include: it's ability to accurately and repeatedly quantify fine-gained clay 

content, operator independence, and the speed of data collection and analysis. 

Using the results obtained from the QXRD modal mineralogy analyses combined with 

the helium porosimetry measurements it was possible to categorisc the various samples 

into three groups. Group 1 was defined as having a high phyllosilicate and clay-mineral 
(c. 15 - 20%) content combined with relatively low permeability (c. 0.05mD). Group 2 was 
defined as having a dominant quartz, feldspar and calcite mineral assemblage (c. 75%) 

with a highly variable permeability (0.4 - 84.0 mD) and relatively high porosity(> 15%). 

Group 3 was defined as having a high proportion of quartz, feldspar and calcite (c. 75%) 

but with a low permeability (c. 0.01 - 1O. OmD) and generally moderate porosity (c. 10 - 
14%). 
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Chapter 4 

Ultrasonic analyses 

4.1 Introduction 

Recent developments, such as, vertical multi-component seismic, VSP (vertical seismic 

profiling), and cross-well seismic methods, mean that it is now possible to measure 

the seismic anisotropy of reservoir rocks in the subsurface. Such measurements offer a 

potentially powerful tool for determining rock and fluid properties. The interpretation 

of such data is, however, presently limited by our understanding of the causes of seismic 

anisotropy in sedimentary rocks. For example, it is well known that the presence of 

oriented fractures, aligned grain-boundarics, and an alignment of mineral grains can 

result in anisotropy. There is, however, relatively little understanding of the relative 

contributions of each of these to the overall anisotropy of sedimentary rocks. 

It is possible to theoretically calculate the amount of seismic anisotropy resulting from 

some of the individual contributory elements. For example, effective media modeling 

allows an estimation of the effect of cracks on seismic anisotropy (e. g., Eshelby 1957, 

Castafieda & Willis 1995). However, other causes of anisotropy, such as the contribu- 

tion from aligned grain boundaries, are more difficult to model. Therefore, laboratory 

measurements are required to better quantify the amount of anisotropy resulting from 

such causes. Unfortunately, the interpretation of laboratory data in terms of the causes 

of anisotropy is often non-unique. It is therefore important to integrate laboratory mea- 

surements with microstructural analysis. Very few studies have been published that 

combine laboratory and microstructural analysis (e. g., Louis ct al. 2003, Wendt et al. 

2003). In this study compressional and shear-wave velocity measurements have been 
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conducted on a suite of samples obtained from the Clair field, N. W. Scotland whose mi- 
crostructurc and mineralogical composition have been rigorously established (Chapter 

5 and Chapter 3, respectively). Samples ranged from clean, porous sandstones to clay- 

mica-rich siltstones. An extensive set of laboratory ultrasonic analyses was caxried out 

under dry conditions at both atmospheric and elevated confining pressures. Atmospheric 
(bench-top) measurements were conducted to provide a method of rapidly obtaining a 
large set of acoustic velocity measurements that could be compared to elevated confining 

pressure results. Measurements have been made at a variety of confining stresses to gain 
information on the stress-dependence of seismic anisotropy, which may be of value in 

understanding how pressure depletion affects the seismic properties of reservoirs during 

production and extended life programs. 
The following chapter begins by describing the experimental techniques (Section 4.2). 

Sampling methods are described in Section (4.2.1) before the results are presented in 

Section (4.3). The results are discussed in Section (4.3) and then the results of the 

chapter are summarised in Section (4.4). 

4.2 Ultrasonic analysis technique 

To assess the influence of subsurface environmental conditions on the physical properties 

of rocks, it is necessary to exert strict control over certain key laboratory parameters in 

order to detect interesting seismic responses in the rocks. Ultrasonic velocity experiments 

at the Rock Deformation Laboratory at Manchester University use the pulse transmis- 

sion technique with a central frequency close to one megahertz. This technique is widely 

recognised and accepted in both mechanical non-destructive evaluation and rock physics 
testing. Efficient piezoelectric transducers combined with electrical impedance matched 

pulse generator, millivolt sensitivity pre-amplifier and oscilloscope allow the pulse trans- 

mission technique to be used as an accurate estimation of velocity in rock physics testing. 

Using the pulse transmission technique of Birch (1960) measurements of travel times of a 

compressional (P-wave) and a tangential pulse (S-wave) through a short cylindrical rock 

specimen were used to calculate velocity. The best way to evaluate the anisotropy of any 

physical property in the laboratory is to work on spherical samples to avoid uncertainties 
due to rock heterogeneity between multiple samples (Vickers & Thill 1969). Due to the 

difficulty of machining spheres from a block, it is generally easier to work on cylindrical 
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cores. 

The basic methodology is to use piezoelectric transducers to produce and measure ul- 
trasonic waves. Essentially, a piezoelectric transducer is a piece of polarised material 

with electrodes attached to its opposite faces, with some parts of its positively and other 

parts of it negatively charged. Application of an electric field causes the piezoelectric 
transducer to change its dimensions, which produces an electric field (this is known as 
the piezoelectric effect). The opposite is also true. In particular, application of a strain 
to a piezoelectric transducer produces an electrical signal. The method of Birch (1960) 

takes advantage of the piezoelectric effect by placing a transducer on either side of the 

rock sample. A piezoelectric transducer is used to convert electrical pulses into mechan- 
ical vibrations and back into electrical signals again. A transducer identical to the one 

used to initiate the mechanical wave is then used to convert the waves received at the 

other end of the rock sample back into a measurable electrical signal. 

In the ultrasonic pulse transmission technique, the wave velocity is not measured directly. 

Instead, the travel time of an ultrasonic transient pulse wave is measured. The velocities 

are then calculated with the following equation, 

L 
vij = i'-', 7 -t, 

where Vij is either P-velocity or S-velocity, L is the length of the sample, tAl and tT are 

pulse wave travel times with the sample under measurement in place and without the 

sample in place (the transmitter in direct contact with the receiver), respectively. 

Then, the error may be analysed by partial differentiation, 

JV 3V JV 
AV = T-AL + Tt-AtAl + ý-tAtT (4.2) 

)LI LmT 

and the absolute error can be evaluated as, 

1 AtM AtT 
AV = ALIjm-=f I+ ALI - 21 

+ ALIT- Z =, ýt7--: -t-T)2 t'X7 T)21 
(4.3) 

tT tA T) 

where AtT and AtAf are the oscWoscope's time resolution, AL is the absolute error in 

sample length measurement, which can be less than 0.05mm. 

Since tM - tT is usually larger than 101is and typically nearer 15jus, the second and third 

terms in Equation (4.3) may be neglected. Then, the maximum absolute error AV could 
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be less than 50mlsec, and the corresponding relative error could be estimated to be less 

than 3% in P-wave velocity estimation and 5% in S-wave velocity estimation. 

In this study a 100V sine-wave with a 5ms repeat rate was used to excite a piezoelectric 
(lead-zirconate titanate) transducer with resonant frequency of approximately 1MHz. 

The time-of-flight along the length of the sample was determined using a 300NIHz digital 

storage dual-tracc oscilloscope. The P- and S-wave transducers were randomly oriented 

with respect to each individual sample. 

At 1MHz the wavelength is approximately 3 to 4mm, comparable to the dimensions of 
the grains in many of the coarser samples analysed. Under these conditions, scattering 
becomes important in reducing the amplitude especially of the high-frequency compo- 

nents of the pulse. This is due to heterogeneities at the scale of the ultrasonic wavelength, 

which results in diffraction of the waves and as a consequence, high attenuation values 
(Lucet & Zinszner 1992). This leads to the problem of accurately recognising the first 

break of the first arriving wave in many of the coarser samples analysed. In the coarse 

grained samples it is often the case that the first break is obscured by noise and even 

when the first motion is strong it is found to arrive gradually even at high amplification. 

4.2.1 Sample preparation 

Considering all significant parameters in the pulse transmission experiments, it is essen- 

tial to minimise pulse-wave energy dissipation caused by diffraction, scattering, mode 

conversion, and reflective phenomena. In the pulse-transmission experiments, the dele- 

terions effect by these phenomena are reduced through judicious optimisation of the 

transient pulses, in view of all that is known of a given rock sample's relevant physi- 

cal characteristics. The foHowing parameters may be considered when preparing rock 

samples for laboratory ultrasonic measurements. 

1. To avoid waveguide effect, the geometric diffraction, the sample radius r should 

exceed the wavelength A of the ultrasonic pulse wave that is transmitted along the sample. 
When r<A, the waveguide effect attenuates and slows the propagating waves, which 

causes the wave to travel at a reduced velocity (Schreiber 1973). 

2. To ensure that the ultrasonic pulse waves are transmitted through the sample 

rather than displacing the sample uniformly, the path of the pulse wave from the source 

to receiver, usually the rocks sample's length L, should be greater than one wavelength 
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of the pulse wave, LIA >1 (Kolsky 1953). 

I To avoid scattering of the ultrasonic wave by the pores or grains in a rock sample, 
the wavelength of the transmitted pulse should be at least three times longer than the 
largest grain size d, or pore size in the sample, A. /d, >3 (Plona. & Tsang 1979). 

4. To avoid cancellation of the direct first arrival amplitude by interference with 

waves reflecting off of the sample sidewalls, the sample length should be less than five 

times sample diameter d, L< 5d, to assure a more distinct first arrival for an accurate 

velocity estimation. 

In general, the cylindrical specimens were 1-inch in diameter and 2 to 3 inches long 

(dependent upon original core length). The samples were cored in water using a steel 
diamond-tiPped drill, then ground to right circular cylinders with flat ends to within 
0.01mm, and dried in an oven at 100'C for at least twenty-four hours before analysing. 
Four cores were drilled from each half-core: two in the horizontal bedding plane (X and 
Y), one parallel to the long axis of the borehole (Z), and one inclined at fbrtyýfive degrees 

to the long axis of the borehole (XYZ) (Figure 4.1). The core orientations were chosen 

with a TI (transverse isotropy) set of properties in mind with the core parallel to the 
Y direction used as a check on the isotropy in the XY plane. Transverse isotropy is 

considered to be the simplest semi-realistic symmetry system that could be observed by 

field wide seismic surveys. It has long been known, however, than natural rocks can and 
do exhibit far more complex symmetry patterns the next simplest being orthorhombic. 

Nonetheless, the non-transverse components of anisotropy (i. e., the variation of velocity 

within the bedding plane) are often very weak and currently difficult to quantify using 

field wide seismic data. Hence, to enable a direct comparison between laboratory and 

field wide measurements of seismic anisotropy a simple TI system of anisotropy was used. 

Some of the samples were oil stained, acoustic measurements were conducted on these 

samples before and after cleaning with dicholoromethane (a solvent that removes oil). 

4.2.2 Ultrasonic core evaluation 

Experimentally the measurements commonly used to evaluate the five independent elas- 
tic stiffnesses in TI materials are (Figure 4.2): 

1. measurement of Vp in the XY plane (Vp(900)) and measured on a core oriented with 
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Figure 4.1: The COTC sampling strategy used in detecToUltog tilt VelOCItq (IfliS0tI-(IPY' X- parallel 

to bcdding aud purpcitdicular to F (the fiducial direction andflatfacc of the half-core), Y- parallel 

to bedding, perpendicular to F but also in the same plane as X. Z- perpendicular to the plane 
XY (parallel to the borehole core axis). and XYZ - 45" to the borehole core. axis. 

the core axis parallel to bedding providing ell; 

2. measurement of V,, parallel to the Z axis (Vp(O')) and measured on a core oriented 

with the core axis normal to bedding providing C33; 

3. measurement of V, for a shear-wave polarisation plane which contains the Z axis 

often measured on a core oriented with the core axis normal to bedding. so that the 

propagation direction is parallel to the Z axis (V,,, (01)) providing (-. 14:, 

4. measurement of V, for a shear-wave polarisation plane parallel to the XY plane 

(V 
1,1, 

(90')) and measured on a core with the core axis parallel to bedding providing C66; 
5. measurement of Vp in a propagation direction at 450 to the Z axis (V (45')) and P 

measured on a core oriented with the core axis at 45' to bedding which provides (-13 

WIICII C11, r33 and r44 are known. 

Since this suite of measurements requires three differently oriented cores (cored normal, 

parallel, and at 45' to bedding) it is easy experimentally to recover one P-wave velocity 

and two orthogonal S-wave velocities. Rather more velocity measurements are acquired 

than is necessary, so a selection of what is deemed to be the most reliable measurement is 
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Figure 4.2: Elastic tensor as determined ft-om ultrasonic analyses. Single ended arrows show 

propagation direction; double ended arrows show polarisation direction. 

used (Figure 4.3). Reliability and consistency are inter-related, if a set of measurements 

provides a good apparent consistency of results it is deemed to be reliable and thus used 

in the calculations of P- and S-wave anisotropy. Generally, the P-wave data sets provided 

more reliable data due to high attenuation problems associated with shear-waves. 

Using the results of the ultrasonic analysis it is possible to calculate the elastic stiffness 

tensor under the assumption of transverse isotropy as follows: 

ril [(Vp)ll, + (V,, )//yl/2 

('33 (vp)//ý; 

C44 a7, crage(V, )//,; 

C66 [(V, )xy + (V, )//zl/2; 

C12 cil - 2cfjti; 

C13 (Vp)//45: 
rz- 

4.2.3 Atmospheric conditions velocity measurements 

Compressional-wave measurements were conducted both radially at atmospheric condi- 

tions at intervals of twenty-degrees (Figure 4.4). The sample is rotated about its long-axis 

when conducting P-wave radial measurements, thereby varying the propagation direc- 

tion in a plane that has the core axis as its normal. Anisotropy is determined froin V,,,., 

and V,,, i,,, where, 
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Figure 4.3: Corr sample orientation with respect to elastic tensor components. Single-ended 

arrows show propagation direction; double-ended arrows show polarisation direction. 

A% = 200(V,,,, - 
(4.4) 

and where 

V ...... = (V//x + V//V-)/2, (4.5) 

and 

V771in ý V//Z- (4.6) 

In determining V ... ., and Vritin the average of measurements 180' apart were used. 

S-wave measurements were conducted axially at bench top conditions at intervals of 

twenty-degrees. The sample was rotated about its long axis, thereby varying the ori- 

ciltation of the polarisation plane while keeping the propagation direction constant. 

Anisotropy was determined as for the radial P-wave measurements by finding V,,,,, and 

V,,, j, in this propagation direction (Equations 4.4 and 4.5). It is important to remember 

that in P-wave analyses the propagation direction is incrementally changed whilst ill 

S-wave analyses it is the polarisation orientation that is being altered. 

Tile results of the atmospheric ultrasonic velocity analysis for P- and S-waves for each 

individual sample were plotted on polar diagrams. The X-, Y- and Z-core were plot- 

ted to show the azimuthal variation in velocity with each assigned a different colour 
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Figure 4.4: Illustration of the atmospheric conditiorm set tip for- indial (L), arid axial (R) altra- 

sortie velocity rneasarements. It is important to remember that in P-wave analyses the *pivp(, tga- 

tion direction'is incmmentally changed whilst in S-wave analyses it is the polayisation orientation 

that is being altered. The transducers at either end of the rock sample were ry)tated thimigh 360 

degrees with measurements conducted every 20 degrees. The tMnsdacers and rock sample were 

clamped in place to ensure a good contact and accurate alignment of transdiwers. 

and notation. P-wave anisotropy is with respect to the wave vector whereas S-wave 

anisotropy is with respect to the polarisation vector. Tile S, Sy and S- measurements 

were determined by conducting S-wavc measurements axially oil the sanipVs three core 

orientations X. Y and Z. 

4.2.4 High-pressure velocity measurements 

Seismic velocities in rocks are sensitive to stress (Sayers 2002b). The presence of micro- 

cracks, and inicroporosity along grain boundaries greatly affects the velocity of' elktsti(- 

waves in rocks (Sayers 1994). This is generally attributed to the closing of compliant 

cracks and grain boundaries. Cracks are pushed together as the confining pressure in- 

creases. As more and more of the cracks are closed the mechanical stiffness and hence 

velocities of the rock increase (Sayers et al. 1990). The apparatus used for the high- 

pressure ultrasonic velocity measurements was designed and built in the Rock Defor- 

mation Laboratory at Manchester University (Figure 4.5). Porous materials. such Is 

reservoir rocks, are prone to high attenuation problems. To reduce these effects it is nec- 

essary to put as much energy as possible into the sample, hence the transducers had to 

be placed inside the pressure vessel (Figure 4.6). The high-pressure rig was designed to 

perform velocity measurements at room temperature and hydrostatic pressures ranging 

from 0 to 700NIPa, far exceeding in situ conditions. 
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Figure 4.5: Diagram of the high-pressure 7jg that was designed and biiilt in the Rock Deformation 

Laboratory at Manchester University. 

In this study P- and S-wave velocities were measured between 0-50NIPa (approximately 

maximum in. situ pressure) at increments of 5-10NIPa. Several sets of analyses were 

collected at both increasing and decreasing pressures to ensure reliable results were ob- 

tained and averages could be easily determined. In general, a sample will be subjected to 

four cycles of increasing and decreasing confining pressure with measurements conducted 

at a variety of pressures. It was noticed that hysteresis sceined to be insignificant and 

(lid not noticeable affect the velocity of a sample with respect to the repcated cycling 

of increasing and decreasing confining pressures. The samples were arranged with the 

P-wave propagation direction parallel to the sample axis, and the S-wave propagation 

direction parallel to the sample axis with the polarisation plane rotatcd through intervals 

of 45". 

The specimens were enclosed within a rubber jacket and mounted between the two trans- 

ducers as shown in Figure (4.7). The rubber jacket was used to exclude the pressurised. 

hydraulic fluid from the spaces between transducers, backing pieces, and tile specimen. 
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Figure 4.6: Close up of the high-pressityr, rig piston. 

As the pressure is raised these pieces clanip together with normal stresses nearly equal 

to hydrostatic pressure. A light filin of honey is also applied to the surfaces of the spec- 

imen and transducers to fill sinall irregularities that may be present on the ends of the 

specimen. The zero setting of the delay wa-s obtained by finding thesettings correspond- 

ing to the first arrivals through steel samples of different lengths and extrapolating to 

zero length. The zero setting is the approximate tinic taken for the ultrasonic wave to 

travel from one transducer to the other when no sample is present. The steel standards 

were cut from the saine bar of 1-inch steel to avoid the complexities associated with 

heterogeneity 

piezoelectric jacket piezoelectric 
transducer transducer 

backing connector 

Figure 4.7: Illtistration of the high-prrssitre piezoelechic transditcer assembly. The backing is 

made of pyrophyllite (which was nsed to insalate the connector fivin the piston and snppmss 

signals from the back of the transducer) and the connector was made f7vin bruss. 

In calculating the anisotropy, tile velocities used at any given presstire in a given direc- 

tion were determined froin cubic polynomial fits to velocity and pressure data in that 

direction. The use of tile cubic polynomial strategy was employed because velocities 
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measured on different cores were not all measured at identical pressures. The cubic 

polynomial fit provides a good approximation of the velocity magnitudes throughout the 

pressure intervals analysed within experimental error and measurement reproducibility 
(Figure 4.8). 

Sample 1784 

4.7 
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4.4 
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Figure 4.8: An example of the best fit cubic polynomial trend line using all of the data obtained 

for sample 1784m. It can be seen that the cubic polynomial fit provide's a good approximation of 

the velocity magnitudes throughout the pressure intervals analysed within experimental error and 

ine(Lsurement reproducibility. 
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4.2.5 Split transducer shear-wave analysis 

It is possible to propagate two orthogonally polarised shear-waves at elevated confining 

pressure through modification of the piezoelectric transducer assemblY. This is done 

by carefully splitting two conventional shear-wave transducers into two and then taking 

one half, and rotating it through ninety-dcgrecs andjoining thein back together (Figure 

4.9). Furthermore, by taking advantage of the methodology devised by Silver & Chan 

(1988) it is possible to determine the degree of shear-wave splitting (% in isio t, ropy) and 

orientation of anisotropy (in degrees) in one single measurement (Figure 4.10). Whilst 

this methodology would have undoubtedly yielded very interesting results unfortunately 

due to time restraints the analysis was not performed. Tile technique and methodology 

is presented so as to provide future researchers with assistance. 

Figure 4.9: Assembly of the combined split shear-wave tryinsdaccrs ased to analysc shcar-Iravc 

splitting in one incasm-ement. The double headed amows indicate the polaiisation plane of the 

shear-wave. 

It is possible to describe the Silver A. Chan (1988) relatively briefly, as in the follow- 

ing statement, however, should the reader require further details of the technique and 

mathematical equations used here it is recommended that, they refer to the original paper 

Silver &-- Chan (1988). The Silver & Chan (1988) method attempts to ininimise the effect 

of anisotropy (i. e., remove the slicar-wave splitting) by correcting for a range of possible 

lag times (R) and the fast directions ((p) implemented as a grid search. For each pair of 

values (each node oil the grid) the cigenvalues of the covariance matrix of tile two shear- 

waves recorded oil the horizontal components are calculated. The best-fitting R and 0 

correspond to the point of smallest A2 (the smallest cigenvalue). These parameters best 

linearise the ellipticity of the particle motion. The error in the results is estimated by 

applying a statistical F-test, and using the extent of the 95% confidence interval (Silver 

& Chan 1988, Wookey et al. 2002). 
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Figtire 4.10: This figure shows or) exo7ople. of the output of the Silver and Own method for 

analysing shear-- wave splitting for a direct S-trave amival. a) Original traces (E. N, Z). b) D-aces 

rotated into I? and T directions before and after the anisotropy correction. R component is the 

initial shear wave polarisation before entering the anisotropic region. () Top traccs show the 

fast/sloir shear waveforrits for uncorrected (left) and corrected (7-ight) seismograins. The bottom 

pancls show the particle inotion for uncorrected (left. ) and comected (right) seisynograms. A good 

result will show sintilar fast/slow shear wavefoims (in(] any elliptical particle motion will have 

bcen lincarised. d) Results of the grid search over 61 and o. The OptilrlIL7n splitting parameters 

are. represented by the cross and the first surrounding contmir denotes 95% confidence region. 
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4.3 Ultrasonic analyses results 

Polar plots are used ill this stud. v to COIIV('Ili(, Iltl. N, illustrate the ilzillilithal variation ill 

velocity, and are annotated as follows: X-corv ý red/dashed line: Y-core ý bluc/dotted 

Iine: Z-core = green /dasi i-dot line. The point t he (lata was acquired from and is located 

oil the polar plot is indicated bY the asterisk and cross. this is dependent upon which 

core is anaiysed. A list of the smilples amilYsed using both atmospheric and elevated 

confining pressure ultrasonic analYses is present ed ill Table (3.1). 

The complete set of results obtained from the individtial samples are presented in Ap- 

pendices (N: 0: P). The P-wave polar diagrams are detel-Illilled from radiallY 

measurements on the three core directions (X, Y and Z). Whereas. the S-wave 

nients are acquired from axial ineastirenlents of the three core directions (X, Y and Z) 

with tile variation of polarisation angle of the transducers. III this studY thc 

velocity measurements (3(Y(, error) are considerv(I ; is being more reliable than the S-wave 

measurements (5% error). The S-wave invasm-enlents are considered to he less reliable 

than the P-waves due to problems of high attenuation 1('%'('IS of. slivar-waves propagating 

through highlY porous Ille'dia and coupling. The main restraint on the amount of energy 

that is transferred into the sample is the coupling of the transducer to the sample surface. 

The more energy that can be transferred into the sample the more reliable the 

should be. Nevertheless, P-waves are less affected by poor Or bad coupling 11(mcc S-waves 

are considered to provide less reliable data sets because of the linlit oil the cliergy that 

can be exerted onto the sample. 

Well 206/8-8, sample 1663m The azimuthal Variation ill P-wavv velocitY at atillo- 

spheric pressure: X-core c-3-Okm/s, Y-core c. 3.0kni/s and Z-corv c. 3.0-3.2kni/s. The 

azimuthal variation in S-wave velocitY at atmospberic pressure: X-corv c. 2.0kni/s, Y- 

core c. 2.0kin/s and Z-core c. 1.8km/s. Both the P- and S-wave nivastirements show good 

correlation, a high level of confidence in the analYsis and within experimental error. 

The P-wave analYsis shows that the sample is approximatelY isotropic except for soille 

ininor variations. The S-wave analysis is slightlY different in that the Z-core which is 

still isotropic is about 0.25kiii/s slower than the X- and Y-cores. It is most likelY that 

the sample analysed was atypical When compared to tile others allalYsed from 1663. 

This sample did not have anY elevated confining pressure ultrwsonic velocity analysis 

conducted upoll it. 
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Well 206/8-8, sample 1784m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 3.0-4. Okm/s, Y-core c. 2.5-4. Okm/s and Z-core c-4. Okm/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.0-2.5km/s, 

Y-core c. 2.0-2.5km/s and Z-core c. 1.5km/s. High pressure P-wave velocities from ONIPa 

to 50NIPa: X-core 4.0-4.5km/s, Y-core 4.2-4.5km/s, XYZ-core 3.84.5km/s and Z-core 

2.4-3.4km/s. At low confining pressures (up to 30NIPa) the X- and Y-cores have no- 

ticeably different velocities. As hydrostatic pressure increases from 1OMPa to 50NIPa 

the bulk P-wave anisotropy decreases very rapidly from c. 50% to c. 28%. The initially 

very high P-wave anisotropy is likely to be due to crack and grain boundary microcrack 

relaxation. The resulting anisotropy at 5OMPa is considered to be representative of the 

intrinsic anisotropy of the sample after all the cracks have been closed. The sample has 

an orthorhombic symmetry at low pressures but becomes approximately VTI at in situ 

pressures (50MPa). There is also a small amount of hysteresis which is probably due to 

the partial closure of small bedding parallel fractures within this heterogeneous sample. 

Well 206/8-8, sample 1788m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 2.5-3.5km/s, Y-core c. 2.5-3.2km/s and Z-core c. 3.2km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.0-3-Okm/s, 

Y-core c. 2.0-2.5km/s and Z-core c. 1.5km/s. High pressure P-wave velocities from ONIPa 

to 50MPa: X-core 3.5-4. Okm/s, Y-core 3.5-4. Okm/s, XYZ-core 3.1-3.6km/s and Z-core 

2.5-3.2km/s. At both atmospheric conditions and at elevated confining pressures the X- 

and Y- cores have almost identical velocity-pressure profiles, whilst the Z-core (which 

is perpendicular to bedding) is significantly slower and azimuthally isotropic. The S- 

wave atmospheric pressure analysis shows some variability within the X- and Y-corcs, 

which is most likely due to the highly attenuative nature of the bedding parallel phyl- 

losilicates. Generally, all the high-pressure P-wave core samples show good consistency 

of results and little variance due to heterogeneities or hysteresis. As hydrostatic pres- 

sure increases from 1OMPa to 5OMPa the P-wave anisotropy decreases very rapidly from 

c. 35% to c. 20%. The initially very high P-wave anisotropy is likely to be due to crack and 

grain boundary microcrack relaxation (as in sample 1784). The resulting anisotropy at 

50NIPa is considered to be representative of the intrinsic anisotropy of the sample after 

all the cracks have been closed. As with 1784 the velocity perpendicular to bedding is 

much slower than the others at all pressures. Furthermore, the sample has a simple VTI 

symmetry pattern across all pressures. 
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Well 206/8-8, sample 1841m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 2.0-3.5km/s, Y-core c. 1.8-4. Okm/s and Z-corc c. 4. Okm/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.0-3. Okm/s, Y- 

core c. 1.5-2.5km/s and Z-core c. 1.7km/s. High pressure P-wave velocities from 0111'a to 

5OMPa: X-core 4.2-4.7km/s, Y-core 4.2-4.5km/s, XYZ-core 3.4-4. Okm/s and Z-corc 2.0- 

3. lkm/s. As hydrostatic pressure increases from 10111a to 50AIPa the P-wave anisotropy 

decreases very rapidly from c. 70% to c. 32%. The scatter in S-wave measurements at at- 

mospheric conditions is likely to be as a result of one or more of these problems: noise, 

high-attenuation, and scattering effects. FortunatelYP the P-wave data collected at atmo- 

spheric conditions appear to be far more robust. The X- and Y-core show a high degree 

of ellipticity and give approximately coincident results. The Y-, XYZ, and Z-corcs all 

show a nice cubic polynomial type curve of increase in P-wave velocity with increasing 

pressure. The X-core, however, after a gradual increase in P-wave velocity over the first 

c. 25NIPa from 4.2km/s all of a sudden jumps up c. 0.25km/s to 4.5km/s. This particular 

phenomenon is not observed throughout any of the other samples analysed. It is postu- 

lated here that the sudden jump in velocity is due to the abrupt closure of cracks and 

fractures within the sample as the confining pressure is gradually increased. Sample 1841 

is certainly ail extreme case, whereby, at low confining pressures there is a substantial 

amount of layer parallel microcracks as a result of the opening up of grain boundaries 

due to stress relaxation. However, over the first 20AIPa almost half of the total P-wave 

anisotropy has been reduced. The slowest velocity is perpendicular to bedding. At lower 

pressures it has a distinct VTI symmetry whilst at higher pressures it tends towards an 

orthorhombic symmetry, Vp33 << Vp22 < VP11- 

Well 206/8-8, sample 1909m with oil The azimuthal variation in P-wave velocity 

at atmospheric pressure: X-core c. 3.8km/s, Y-core c. 3.8km/s and Z-core c. 3.8km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.25km/s, Y- 

core c. 2.25km/s and Z-corc c. 2.25km/s. Both the P- and S-wavc measurements show 

good correlation, a high level of confidence in the analysis and within experimental error 

no observable anisotropy. The sample is completely isotropic throughout all cores under 
both P- and S-wave analysis. This sample did not have any elevated confining pressure 

analysis conducted upon it. 

Well 206/8-8, sample 1909m without oil The azimuthal variation in P-wavc velocity 

at atmospheric pressure: X-core c. 3. Okm/s, Y-core c. 3.2km/s and Z-corc c. 3.4km/s. The 
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azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.1km/s, Y- 

core c. 2. lkm/s and Z-core c. 2.3km/s. High pressure P-wave velocities from OMPa to 

5OMPa: X-core 3.25-4.4km/s, Y-core 3.3-4.25km/s, XYZ-core 3.1-4.2km/s and Z-core 

3.2-4.25km/s. As hydrostatic pressure increases from 1OMPa to 5OMPa the P-wave 

anisotropy increases very rapidly from c. 0% to c. 8% at 15MPa before decreasing again 

at c. 50MPa to 1%. Unusually, the P- and S-wave analysis shows that the core with the 

fastest velocity is the Z-core direction with the Y-core next and then the X-core direction 

the slowest. The elevated pressure analysis on the separate cores firmly supports the 

supposition that the sample is indeed isotropic. The X-core direction was analysed up 
to 120MPa with a P-wave velocity of 4.5km/s which all the core directions appear to 

be asymptotically approaching. This pressure is considerably higher than that it would 
have undergone at maximum burial depth. Moreover, it is to be noted that at this high 

a confining pressure the sample will have changed appreciably. The increase and then 

decrease in P-wave anisotropy with increasing confining pressure is thought to be due 

to the removal of the oil. That is, under an increasing hydrostatic confining pressure 

certain fracture directions will close preferentially when compared to other directions. 

The oil would likely be present within layer parallel porosity (i. e., intra- and interparticle 

microporosity) and after its removal it would leave small gaps between adjacent grains. 
This theory is supported by the fact that the Z-core direction (perpendicular to bedding) 

had the highest P- and S-wave velocities. 

Well 206/8-8, sample 1950m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 3.5km/s, Y-core c. 3.8km/s and Z-core c. 3.2km/s. The az- 

imuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.2km/s, Y-core 

c. 2.5km/s and Z-core c. 2. lkm/s. High pressure P-wave velocities from OMPa to 50NIPa: 

X-core 3.6-4.2km/s, Y-core 4.1-5.5km/s, XYZ-core 3.7-5. Okm/s and Z-core 3.6-4.2km/s. 

As hydrostatic pressure increases from 1OMPa to 5OMPa the P-wave anisotropy decreases 

from an initial c. 6.6% to c. 6% at 5-10MPa before increasing again to 1% at c. 50MPa. At 

atmospheric conditions the sample is roughly isotropic. At elevated confining pressures 

the Y- and XYZ-corcs are the fastest directions. that is to say that Vp22 >> VP1 I' VPM- 

1950 is very much an oddity in that the anisotropy decreases first before increasing again 

and that the X- and Z-corcs are the slowest directions. This is the only sample that at 

elevated pressures there is still a significant difference in velocities between the various 

cores. Such is the difference between the X- and Y-cores it is likely that the X-core 
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intercepts layers of high-porosity or microfracturing. 

Well 206/13a2, sample 1959m The azimuthal variation in P-wave velocity at at- 

mospheric pressure: X-core 3.0-3.5km/s, Y-core cA0km/s and Z-core c. 4. Okm/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core 2.2-2.8km/s, Y- 

core c. 3. Okm/s and Z-core c. 3. Okm/s. The sample is broadly isotropic except for the 

X-core direction which has a distinct azimuthal variation in P-wave velocity. On analy- 

sis of the results it appears that the data is reliable and consistent. Therefore, the X-corc 

anomaly is likely to be as a result of intersecting a clay-mica rich band. This sample did 

not have any elevated confining pressure analysis conducted upon it. 

Well 206/13a2, sample 1963m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 3.0-3.5km/s, Y-core c. 3.0-3.5km/s and Z-core c. 3.5km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.0-2.5km/s, 

Y-corc c. 2.0-2.5km/s and Z-core c. 2. Okm/s. Unlike, previous samples both the P- and 
S-wave measurements appear to be quite consistent between each core analysed. This 

is most likely because the sample is well consolidated, and has less clays and micas in 

grain supporting locations. Sample 1963 did not have any elevated confining pressure 

analysis conducted upon it. 

Well 206/13a2, sample 2015m The azimuthal variation in P-wave velocity at at- 

mospheric pressure: X-core c. 3.2km/s, Y-core c. 3.2km/s and Z-core c. 3.2km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 1.7km/s, Y- 

core c. 1.9km/s and Z-core c. 2.2km/s. There are notable discrepancies between the P- 

and S-wavc analyses. P-wave analysis shows that all the cores have approximately simi- 
lar velocity profiles. Whilst the S-wave analysis suggests that the X- and Y- directions 

are about 0.5km/s slower than the Z-direction. This sample did not have any elevated 

confining pressure analysis conducted upon it. 

Well 206/13a2, sample 2023m The azimuthal variation in P-wave velocity at at- 

mospheric pressure: X-core c. 3.5km/s, Y-corc c. 3.5km/s and Z-corc c. 3.5km/s. The az- 

imuthal variation in S-wave velocity at atmospheric pressure: X-core c. 1.5km/s, Y-core 

c. 1.5km/s and Z-corc c. 1.5km/s. Both the P- and S-wavc results show good correlation 

and consistency across different core directions. This sample did not have any elevated 

confining pressure analysis conducted upon it. 

Well 206/13a2, sample 2028m The azimuthal variation in P-wave velocity at at- 
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mospheric pressure: X-core c. 3. lkm/s, Y-core c. 3. lkm/s and Z-core c. 3. lkm/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2. Okm/s, Y- 

core c. 2. Okm/s and Z-core c. 2. Okm/s. High pressure P-wave velocities from ONIPa to 

50. NiPa: X-core 3.54.2km/s, Y-core 3.44.2km/s, XYZ-core 3.54.2km/s and Z-core 3.6- 

4.2km/s. Both the P- and S-wave atmospheric conditions azimuthal analyses show good 

consistency and reliability of data. The sample has only a very small anisotropy (5.5%) 

at low pressures (51NIPa) which decreases to 0.5% at 45NIPa. At atmospheric pressure 

the sample could be considered to have a very slight VTI symmetry but at elevated 

confining pressures becomes completely isotropic. 

Well 206/13a2, sample 2034m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core 2.5-3.5km/s, Y-core 2.5-3.5km/s and Z-core c. 3.5km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core 2.0-2.5km/s, Y- 

core 2.0-2.5km/s and Z-core c. 1.7km/s. The correlation between the P- and S-wave 

data is not entirely reliable as the S-wave data has considerable variability. The P-wave 

data indicates that the sample has a strong VTl symmetry which is not immediately 

apparent from core inspection. A more than Wwly explan tion of the variability within 

the S-wave data and the high anisotropy is that the sample has a lot of layer parallel, 
horizontally aligned porosity. This sample did not have any elevated confining pressure 

analysis conducted upon it. 

Well 206/8-8, sample 2070m. The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 3.54. Okm/s, Y-core c. 3.54. Okm/s and Z-core c. 3. Okm/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-corc c-1.8-2. Okm/s, 

Y-core c. 1.8-2. Okm/s and Z-core c. 2. Okm/s. Sample 2070 is not highly anisotropic but 

does show good cross-core agreement in velocities. This sample did not have any elevated 

confining pressure analysis conducted upon it. 

Well 206/8-8, sample 2073m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 1.8-3.5km/s, Y-core c. 1.8-3.5km/s and Z-core c. 3.5km/s. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2.0-2.5km/s, 

Y-core c. 2.0-2.5km/s and Z-corc c. 1.6km/s. Both the P- and S-wave measurements show 

good correlation, a high level of confidence in the analysis and substantial anisotropy. 
The Z-core in the P-wave measurement is azimuthally isotropic and relatively fast in 

comparison to the X- and Y-cores. Whereas, the Z-core in S-wave analysis is signifi- 

cantly slower than both the X- and Y-cores but yet also has an isotropic distribution of 
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velocities. This sample did not have any elevated confining pressure analysis conducted 

upon it. 

Well 206/8-8, sample 2088m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 2. Okm/s, Y-core c. 2. Okm/s and Z-core c. 3.5km/s. Sample 

2088 did not have any S-wave analysis performed upon it. As a result of the difference 

in velocities between the two horizontally aligned cores X- and Y- and the Z-core it is 

possible to determine that there is a significant difference between the horizontal and 

vertically aligned porosity, possibly grain boundary related. This sample did not have 

any elevated confining pressure analysis conducted upon it. 

Well 206/8-8, sample 2129m without oil The azimuthal variation in P-wave velocity 

at atmospheric pressure: X-core c. 2.5km/s, Y-core c. 2.5km/s and Z-core c. 2. lkm/S. The 

azimuthal variation in S-wave velocity at atmospheric pressure: X-core c. 1.5km/s, Y- 

core c. 1.5km/s and Z-core c. 1.5km/s. High pressure P-wave velocities from ONIPa to 

50INIPa: X-core 2.25-3.5km/s, Y-core 2.5-3.6km/s, XYZ-core 2.25-3.5km/s and Z-core 

2.4-4.6km/s. At atmospheric conditions the sample is isotropic within experimental 

error. At elevated pressures Vp33 is much faster than Vp22, Vp33, and V450 leading to a P 
M symmetry style (cylindrical transverse isotropy - single vertical set of fractures that 

have an azimuthally isotropic distribution in spacing, commonly observed in cylindrical 

samples which have been subjected to non-hydrostatic stresses aligned parallel to the 

long axis of the sample). This likely means then that there is at least one set of vertical 

fractures throughout sample 2129. The vertical fracturing could be as a result of a 

variety of natural and unnatural activities from in situ fracturing to drilling. As the Z- 

core direction is by far the fastest direction the P-wave anisotropy becomes increasingly 

more negative as the confining pressure is increased. At low confining pressure (OMPa) it 

has approximately 4% P-wave anisotropy which increases rapidly to a maximum of 26% 

at 25NfPa, as the pressure continues to increase the anisotropy remains almost constant 

up to 45NIPa. 

Well 206/8-8, sample 2192m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 2.2km/s, Y-core c. 2.4km/s and Z-core c. 2.5km/s. The az- 

imuthal variation in S-wave velocity at atmospheric pressure: X-core c. 1.5km/s, Y-core 

c. 1.5km/s and Z-core c. 1.5km/s. High pressure P-wave velocities from ONIPa to 501kfPa: 

X-core 2.54. lkm/s, Y-core 2.4-4. lkm/s, XYZ-core 2.5-4.2km/s and Z-core 2.3-4. Okm/s. 

P-wave anisotropy increases from approximately 6.5% at atmospheric pressure to a max- 
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imum. of 9.5% at 17AIPa before decreasing again until it reaches 0% at c. 50-NIPa. At 

atmospheric conditions P-srave Vp33 is faster than the other directions, whereas it is 

isotropic using S-wave analyses. Analysis of the P- and S-wave data suggests that the 

samples have a very slight VTI symmetry. This is is also supported by the elevated pres- 

sure P-wave analysis. Moreover, the P-wave data does appear to show good consistency 

and reliability of results. The increase and then decrease in anisotropy with increasing 

pressure is as a result of the bedding parallel cracks closing first and more rapidly than 

any other crack orientation. As the pressure continues to increase the other crack ori- 

entations also start to close thus giving elevated P-wave velocities at higher pressures. 

It is not until apprcDdmately 40111'a that the cracks oriented parallel to bedding and 

the Z-core direction appear to have closed fully thus leading to an isotropic symmetry 

system at high pressure. 

Well 206/8-8, sample 2194m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c-2.5km/s, Y-core c. 2.5km/s and Z-corc c. 2.5km/s. The az- 

imuthal variation in S-wave velocity at atmospheric pressure: X-core c. 1.6km/s, Y-core 

c. 1.6km/s and Z-core c. 1.6km/s. High pressure P-wave velocities from OMPa to 50. NlPa: 

X-core 2.74. Okm/s, Y-core 2.5-4. Okm/s, XYZ-core 2.2-3.5km/s and Z-core 2.4-3.5km/s. 

The P-wave anisotropy increases from c. 8% at low confining pressure (c. 5xfPa) to a max- 

imum of 15% at 22', XIPa and then decreases again until reaching 12% at 45NIPa. Even 

though their is a noticeable P-wave anisotropy when the sample is in the high-pressure 

rig their is not a noticeable difference within experimental error between the X-, Y-, and 

Z-core directions at atmospheric conditions on the bench-top. As the pressure increases 

both the X- and Y-core directions increase in velocity concomitantly. Even at 60NIPa 

the Z-core direction is still almost 0.5km/s slower than the X- and Y-cores meaning 

that their could either be residual crack orientations that have not been fully closed or 

that the sample contains an inherent intrinsic anisotropy due to bedding parallel clays 

and micas or grain boundary parallel aligned pore space. The fact that even at in situ 

confining pressures their exists a relatively strong P-wave anisotropy suggests that the 

sample contains an inherent intrinsic anisotropy. 

Well 206/8-8, sample 2198m The azimuthal variation in P-wave velocity at atmo- 

spheric pressure: X-core c. 2.8km/s, Y-core c. 2. Skm/s and Z-core c. 2.7km/s. The az- 

imuthal variation in S-wave velocity at atmospheric pressure: X-core c. 2. Okm/s, Y-core 

c-1.6km/s and Z-core c. 2. Okm/s. In both the P- and S-wavc analysis the Y-core direc- 
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tion is slightly slower than both the X- and Z-core directions. The data does seem to 
be reliable, and consistent suggesting that the difference in velocity might be as a re- 
sult heterogeneities within the Y-core direction. These heterogeneities are likely to be 
bedding parallel cracks which just happen to be more abundant in the Y-core direction. 

Sample 2198 has a very slight P-wave anisotropy c. 1-2%. 

4.4 Discussion 

4.4.1 Introduction 

Presented within this section is a detailed discussion of the results obtained from atmo- 

spheric and elevated confining pressure ultrasonic analyses. The results of the elevated 

confining pressure ultrasonic data are conveniently summarised by a frequency histogram 

of the maximum P-wave anisotropy at what is estimated to be the approximate in situ 

confining pressure (Table 4.11). The results obtained from the elevated confining pres- 

sure analyses are used here because it is believed 
that 

they will most closely represent 
the maximum P-wave anisotropy observed by field wide seismic surveys in the reservoir. 
At low confining pressures the samples contain an abundance of horizontal relaxation 

cracks due to the sample coring process and removal from the subsurface which will 

significantly contribute to and exacerbate the maximum observed P-wave anisotropy at 

atmospheric conditions. 

4.4.2 Discussion of atmospheric conditions velocity measurements 

This section comprises a brief overview of the results obtained from the atmospheric 

pressure and temperature P-, and S-wave ultrasonic velocity analysis. The results of 

the analysis are categorised into their three respective groups with overviews of both 

velocities and anisotropies provided. 

On the basis of the room temperature and pressure velocity measurements the samples 

could be grouped into three main categories (Tables 4.1 and 4.2). Group I samples 

were typified by high velocities (c. 3.8km/s) and strong anisotropy (> 20%). Group 2 

samples had high velocities similar to Group 1 samples but had weak levels of anisotropy 
(< 10%). Group 3 samples had low velocities (c. 2.5km/s) and intermediate amounts of 

anisotropy (10 - 20%). 

Group IL samples are typified by high velocities (c. 4. Okm/s) and strong anisotropy (c. 
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Figure 4.11: Frequency histogram of the maximum P-wave anisotropy obtained using ultrasonic 

velocity measurements at in situ confining pressurc. The X-axis represents inmrintunt P-wave 

anisotropy binned into intervals of 10%. The Y-axis represents the frequency of occurrences 

within a specified bin. 

Table 4.1: Ultrasonic analyses individual sample categones for Well 20618-8. 

Sample Group 

1663 2 

1784 1 

1788 1 

1841 1 

1909 2 

1950 2 

2070 1 

2073 1 

2088 3 

2129 2 

2192 3 

2194 3 

2198 3 
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Table 4.2: Ultrusonic analyses for Well 206113a2. 

Sample Group 

1959 2 

1963 1 

2015 2 

2023 2 

2028 2 

2034 3 
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> 20%). P-wave velocity measurements: X direction cores typically vary from 2.5kin/s 

to 4km/s, Y direction cores typically vary from 2.5km/s to 4km/s (note X- and Y- 

cores were used to clieck for reliability of measurements) and Z direction cores typically 

varied from 3km/s to 4km/s. Whereas. S-wave velocity measurements: X direction cores 

typically vary from 2km/s to 3kin/s, Y direction cores also typically vary from 2ki-n/s 

to 3km/s and Z direction cores typically vary from 1.5kni/s to 2kni/s. The scatter 

and inconsistency of the S-wave velocity measurements is thought to be largely due t(3 

attenuation problems within highly porous and mica-rich samples. 

Due to the bedding parallel microfabric of the phyllosilicatcs and associated bedding par- 

allel inicro-porosity the X- and Y-corcs show a high-degree of P- and S-wave anisotropy 

ranging from 20 to 50% (typically illustrated by dumbbell shaped polar plots). Maximum 

P-wave and S-wave velocity is found when the laver parallel microfabric is aligned parallel 

to the propagation direction of the elastic wave. Minimum P-wave and S-wave velocity 

occurs when the inicrofabric is aligned perpendicular to the propagation direction of the 

waves. The Z-core can be considered as approximately azimuthally isotropic and shows 

minimal change in velocity with angle (circular velocity (list ribut ion). The samples are 

broadly termed as having strong VTI symmetry with weak components of orthorhoixibic 

symmetry as-well (Figures 4.12,4.13). The small components of orthorhombic symmetry 

could however be due to natural heterogeneities within the X- and Y-core half-core. 

Group 2 samples had high velocities similar to Group 1 samples (c. 4. Okm/s) but had 

weak levels of anisotropy (c. < 10%). P-wave velocity measurements: X direction cores 

typically vary from 2.5km/s to 3.5km/s. Y direction cores typically vary from 2.5km/s 

to 3.5kin/s and Z direction cores typically vary from 2.5km/s to 4.0kin/s. Whereas, 

S-wave velocity measurements: X direction cores typically vary from 1-5km/s to 3kill/s, 

Y direction cores typically vary from 1.5km/s to 3kni/s and Z direction cores typically 

vary from 1.5kni/s to 3km/s. 

The X-core of sample 1959 was the only specimen that had atypical velocity measurc- 

ments for both P- and S-waves. Sample 1959 showed a significant overall decrease in 

velocity when compared to the other core directions and an element of P-wave anisotropy. 

Furthermore, when coulparing tile oil stained sample of 1909 with the cleaned sample it 

is evident that the velocities are approximately 0.5kin/s slower in tile clean sample than 

the oil stained sample. It is evident then that the removal of oil from tile pore space and 

pore throats of a sandstone in a hydrocarbon producing reservoir measurably decreases 
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Figure 4.12: Rooin tempernhire and prrssure P-wave radial Yne. asarements on a GTT)np 1 sample 

(1784). X-core = red1dashed line; Y-core = blaeldotted line; Z-core, = green1dash-dot line. The 

P-wave polar diagrams are detemined front radially acqaired ineasurements on the three (-Ore. 

directions (X, Y and Z). Whereas, the S-wave measurements are acqairrd froin axial Tnea8are- 

ments of the three core directions (X, Y and Z) with the variation of polarisation angle of the 

transducers. 
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Figure 4.13: Roorn temperature and pressure S-wave axialtneasurernents propagating parallel to 

the com direction on a Group 1 sample (1784). X-core = md1dashed line; Y-coyr = blueldotted 

line; Z-core = greenldash-dot line. The P-wave polar diagrarns are deter7nined frorn radially 

acquired measurements on the three core directions (X, Y and Z). Whereas, the S-wave rneasure. - 

ments am acquired froin axial measurements of the three core dim-rtiowi (X. Y and Z) with the 

variation of polarisation angle of the transducers. 
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the bulk velocity of the drained reservoir compartment. 

In general Group 2 samples Avere homogeneous and lacked any significant proportions of 

phyllosilicates and clays. The azimuthal distribution of P- and S-wave velocities withiti 

the X-, Y-, and Z-cores can be broadly described as isotropic with the exception of 

sample 1959 (Figures 4.14,4.15). 

Group 3 samples had. low velocities (c. 2.5kin/s) and intermediate amounts of anisotropy 

(c. 10-20%). P-wave velocity measurements: X direction cores typically vary from 1.5km/s 

to 3. Okm/s, Y direction cores typically vary from 1.5km/s to 3. OkIn/s and Z direction 

cores typically vary from 1.5kni/s to 3. Okni/s. Whereas, S-wave velocity measurements: 

X direction cores typically vary from 1.5km/s to 2.0kni/s. Y direction cores typically vary 

from 1.5kin/s to 2. Okm/s and Z direction cores typically vary from 1.5kni/s to 2. Okm/s. 

Broadly, all the samples showed quite good P- and S-wave data correlation between 

the various cores. Except for the S-wave measurements in the X-core direction for 

sample 2034 which showed significant variability when compared to the Y-core directiort. 

In general, Group 3 samples were broadly clean, high porosity sandstones. The low 

velocities and TI symmetry patterns in son-le of the samples reflect the high variability 

in porosity and the variation in porosity between tile beds, respectively (Figures 4.16; 

4.17). 

It was found that removing oil from samples reduces the P-wave velocity but has little 

effect on the S-wave velocity and also a negligible effect on the anisotropy. The cleaning 

causes some grain boundary damage thereby assisting the lowering of velocities (Figures 

4.18; 4.19). There are really only two easily distinguishable sample groups: group 1, 

clay and phyllosilicate rich samples. and group 2, phyllosilicate poor samples with high 

porosity. It is postulated that the third group. group 3, is down to the effect of oil. 

4.4.3 Discussion of high-pressure velocity measurements 

This section provides a brief overview of the results obtained from elevated hydrostatic 

confining pressure compressional-wave ultrasonic analysis. The results of the analysis are 

categorised into their respective groups with overviews of both velocities and anisotropics 

with respect to increasing confining pressure provided. 

Group 1 samples have high levels of intrinsic anisotropy (30-50VO), which rapidly de- 

crease with increasing confining pressure. At elevated confining pressures P-wave velocity 
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Figure 4.14: Room temperature and pressure P-wave radial measn'rements on a Grymp 2 sample 

(1909). X-core = red1dashed line; Y-core = blueldotted line; Z-core = greenldash-dot line. The 

P-wave polar diagrams am determined from radially acquired measurements on the three core 

directions (X, Y and Z). Whereas, the S-wave measurements are acqaired jrom a-vial measare- 

ments of the three core directions (X. Y and Z) with the variation of polarisation angle of the 

transducers. 

Figure 4.15: Room ternperaturr and pressure S-wave axial measurements propagating parallel to 

the core direction on a Group 2 sample (1909). X-core = red1dashed line; Y-core = blueldotted 

line; Z-core = greenldash-dot line. The P-wave polar diagrams are determined from radially 

acquired rneasurements on the three core directions (X, Y and Z). Whereas, the S-wave measure- 

rnents are acquired from arial measurements of the three core directions (X, Y and Z) with the 

variation of polarisation angle of the transducers. 
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Figure 4.16: Room temperature and pressure P-wave radial measurements on a Group 3 sample 

(2028). X-core. = red1dashed line; Y-core = blueldotted line: Z-core = green1dash-dot line. The 

P-wave polar diag7ums are detemnined from radially acquired measurements on the three core 

directions (X, Y and Z). Whereas, the S-wave measurements are acquired from axial measure- 

ments of the three core directions (X, Y and Z) with the variation of polarisation angle of the 

transducers. 
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Figure 4.17: Room temperatnre and pressure S-wave axial measavements propagating parallel to 

the cove direction on a Group 3 sample (2028). X-core = red1dashed line; Y-core = blueldotted 

line; Z-core = green1dash-dot line. The P-wave polar diagrams are dete77nijted from radially 

a(ýquired, riteas-iii-e., rrte? tts on the three core dire. ctions (X, Y and Z). Whereas, the S-wave measare- 

7nents are acqnired from axial measurements of the three core directions (X, Y and Z) -ith the 

vanation of polarisation angle of the transducers. 
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Figure 4.18: Room temperature and pressure compressional-wave radial measumments on an 

oil-rich sample (1909 - oil). X-core = red1dashed line: Y-core = blueldottcd line, - Z-cO? v = 

green1dash-dot line. The P-wave polar diagrants are determined fivm rudially acquired mca- 

surements on the three core directions (X, Y and Z). Whereas, the S-wave measuir7nents arc 

acquired fi-om anal measurements of the three core dimctions (X, Y and Z) with the variation of 

polarisation angle of the transducers. 

0 
330 30 3 30 

300 60 

4 
2 

270 go 

240 

210 w 

180 

Figure 4.19: Room temperature and pressure shear-wave radial measurements propagating lxz7-- 

allel to the core direction on a sample which has been cleaned of all oil (1909 - no oil). X-(-()Yy! 

= red1dashed line; Y-core = blueldotted line; Z-corc = green1dash-dot line. The P-wave polar 

diagrams are. determined from radially acquirrd measarements on the three core directions (X, Y 

and Z). H/here(, Ls, the S-wave measarernents are acqaired fiwn axial measure. rnents of the three 

core directions ()(, Y and Z) with the variation of polarisation angle of the transdacers. 
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measurements vary as follows: X direction cores typically rise from 3.5kni/s at 1OMPa 

to 4.5kni/s at 50NIPa, Y direction cores also typically rise from 3.5km/s at 1OMPa 

to 4.5kin/s at 50NIPa and Z direction cores typically vary from 2.5kin/s at IONIPa to 

3.2kin/s at 50MPa (Figure 4.20). X- and Y-cores have almost unnoticeable velocity 

differences whereas the Z-core which is perpendicular to bedding is approximately half 

the velocity. As the confining pressure increases the rate at which the velocity of the 

individual cores increases decreases asymptotically reaching its maximum velocity at 

c. 50-601\lPa (Figure 4.21). 

As the confining pressure increases P-wave anisotropy very quickly drops from 30-50510 at 

10NIPa to 20-28% at 50NIPa which is at approximately in situ conditions. As confining 

pressure increases the gradient of the slope of the percent anisotropy decreases rapidly 

over the first 20MPa before approaching an intrinsic value of individual sample anisotropy 

at 50MPa or approximately in situ conditions. Broadly, Group 1 samples have very high 

intrinsic anisotropy (c. 50%) at approximately atmospheric conditions with very rapidly 

decreasing values as confining pressure increases before reaching a minimum value at 

stress equivalent to maximum burial depth. 

Group 2 and 3 samples have. relatively low levels of intrinsic anisotropy which decrease 

with increasing confining pressure. At elevated confining pressures P-wave velocity mea- 

surcinctits vary as follows: X direction cores typically rise from 3.0-3.5kni/s at 10NIPa to 

3.5-4.2kni/s at 50NIPa, Y direction cores also typically rise from 3.0-3.5kni/s at 10NIPa 

to 3.5-4.2kiii/s at 50NIPa and Z direction cores typically vary from 3.2-4.2kiii/s at 10NIPa 

to 4.2-4.6kni/s at 50NIPa (Figure 4.22). In sample 2028 X-, Y-, and Z-corcs have almost 

minoti(vable velocity differences. As the confining pressure increases the rate at which 

the velocity of the individual cores increases, decreases, asymptotically approaching a 

maximum velocity at c. 50-60NIPa. 

As the confining pressure increases P-wave anisotropy very quickly drops from 5% at 

IONIPa to 1% at 50MPa which is at approximately in situ conditions (Figure 4.23). 

As confining pressure increwses the gradient of the slope of the percent anisotropy do- 

cren, ses rapidlY over the first 40NI[Pa before approaching an intrinsic value of individual 

sample anisotropy at 50NIPa or approximately in situ conditions. The rapid decrease 

in anisotropy is thought to be primarily linked to the closure of micro-porosity (pref- 

erclitially aligned grain boundary cracks) during the incremcntal increasc ill confining 

pressure. Determination of what was the principal cause of the micro-porosity is a non- 
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Figure 4.20: High pressure. P-wave velocity Tneasamrnent8 typical of Grvap I samples. V, 11Z 
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Figure 4.21: 7ypical results for a Group I highly anisotropic sample. P-wave anisotropy with 

rc, spcct to increasing confining pressurc (1784). As thc pirms urv incrrascs thc dc. gmc of anisotropy 

quickly decreases bcfom reaching an intrinsic ani8otropy (due to inicrotcxtuyv) (it in situ condi- 
tioms. The initial very high level of P-wave anisotropy is pinbably due to layer payullcl 7irlaxation 

microfracturing. 
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trivial matter. It is likely to be either related to stress relaxation on removal from the 

reservoir's in situ stress regime or during removal of the cores in the laboratory. The 

grain boundaries which are approximately perpendicular to the principal compressive 

stress are pushed together at relatively low confining pressures (< 20NIPa) thus dramat- 

ically reducing the bulk aggregate anisotropy. The fact that only low confining pressures 

are required to close the grain boundaries together suggests that they are related to a 

late stage mechanical process such as coring. Ultimately Group 2 and 3 samples are 

isotropic and at the limit of there elastic pore closure. 

In sample 2129 (after oil removal) because the Z-core direction is significantly faster than 

all the other directions the bulk P-wave anisotropy increases from c. 5% at 1OMPa to a 

maximum of c. 27% at 20MPa where it remains constant up to 50MPa. It is believed that 

because the pores are more compliant in some directions than others there is a different 

rate of pore closure with pressure in different directions. Moreover, samples 2192 and 

2194 have very similar velocitý-pressure profiles. Both 2192 and 2194 exhibit an increase 

in P-wave anisotropy over the first 20MPa from c. 6-951c, to c. 9-14% respectively. After 

approximately 201%IPa P-wave anisotropy begins to decrease back to approximately its 

original values at 50TNIPa. 

The results for all the samples are sunimarised in Figure (4.24). Generally, group I 

samples could be distinguished by their rapid decrease in anisotropy with increasing 

pressure and group 2 and 3 samples with low to moderate levels of anisotropy as is evident 

from Figure (4.24). Negative values for seismic anisotropy occur when tile velocities 

rccorded parallel to the Z-core are faster than those parallel to tile X- and Y- cores. 

4.4.4 Causes of anisotropy 

On the scale of the samples investigated their is no doubt that wave-velocity anisotropy 

exists, and that it is principally controlled by, aniong other factors, stress. It is apparent 

from the P- and S-wave ultrasonic analyses that intrinsic wave-velocity anisotropy could 

be controlled by systems of inicro-cracks which exist in planes parallel to bedding, and 

interbedded bedding parallel fine clay-mica rich layers (these are inextricably associated 

with inter-grain boundary inicro-porosity and inicro-cracks). For example, in samples 

which have a defined bedding parallel clay-mica rich layers. It is commonly observed 

during the hydrostatic loading of the X- or Y- and Z- orthogonal core directions that 

the Z-corc direction is the slowest direction. It is believed therefore that the ultrasonic 
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Figure 4.22: Typical high pressure P-wave velocity measarements for the core phigs, X. Y, Z 

and XZ45 for a Gro? ip 2 and 3 sample (1909 - no oil). As the ron-fining pyrssia-c increases, 

the P-wave velocity for all directions increases at the sante rate as cracks and grain boandary 

fractures are closed concomitantly. X- red cross, Y- blae star, Z- green cross, and XZ45 (X YZ) 

- black hollow circle. 
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Figure 4.23: Typical P-m-ave anisotropy with respect to incre. asin. q confimn. q pre. smirr for a Gronp 

2 or 3 sample (1909 - no oil). The total anisotropy increased slightly at low confining pywssares 

befove decreasing to isotropy at in situ conditions. The increase in anisotropy at low pressares 

is believed to be related to the removal of oil ftv? n the pom space, thas rcstilting in additional 

micro-fractures. 
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Figure 4.24: P-watie anisotropy with respect to increasing confining pressure. for all the samples- 

Group I samples = solid line, and Group 2+3 samples = dotted. Generally, Group 1 samples have 

high levels of initial anisotropy which decreases rapidly with the increasing confining pressure. In 

comparison, the Group 2 and 3 samples have initially low levels of anisotropy which remain 

approrimately isotropic with increasing confining pressure. Group allocation in this diagram is 

based upon QXRD analyses. 
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waves have to pass through bedding parallel micro-cracks, which are associated with 

grain boundary stress relaxation or through any inica-clay layers. During hYdrostatic 

loading, however, the Z-core velocity can very quickly converge to within velocities which 

are very similar to those of the X- or Y-core directions. Therefore it (-an be postulated 

that the velocity anisotropy, in this case, was principally controlled by inicro-cracks (i. e., 

grain boundaries) which are quickly closed up by the increase in confining pressure. This 

sanic theory can be applied to any of the core directions should another core intersect a 

principal fracture system orientation or identify any grain boundary alignment. 

If after the sample has been returned to it's approximated in situ confining pressure there 

still exists a significant degree of anisotropy then it is likely that the sample has an inher- 

ent intrinsic anisotropy due to either clay-mica rich layers or a preferential grain bound- 

ary or micro-porosity alignment. Whether a sample's suspected intrinsic anisotropy 

is ultimately controlled by clay-mica layers (clay-inica grain mineral alignment) or by 

the associated intcr-grain boundary inicro-porosity at in situ confining pressures is not 

distinguishable as they are inextricably linked. 

The results obtained froin atmospheric and elevated confining pressure ultrasonic analY- 

sis provide useful complementary data sets. Atmospheric analysis provides a quick and 

easy way of understanding a sample's azinluthal anisotropy and style of sYnimetrY of 

anisotropy. Whereas, in elevated pressure analysis it provides a fundamental understand- 

ing of what the sample would be like at depth, its variation in anisotropy with change in 

pressure and anisotropic symmetry style. Using apparatus similar to that of this project, 

where a single core direction is analysed, both bench-top and elevated confining pres- 

sure nicasurements are required to obtain a detailed and fundamental understanding of 

a sample's anisotropic properties. This is because it is far too time consuming to use 

the elevated pressure rig used in this study to conduct azimuthal anisotropy analysis at 

elevated pressures. In general the velocities obtained at atmospheric pressure agree well 

with the low confining pressure results obtained within the high-pressure rig. In general 

all high-pressure velocities are significantly faster than the bench top analysis possibly 

because of relaxation cracks which will be closed very quickly and easily at moderate 

confining pressures. Hence, in this study bench-top measurements did not provide a 

realistic representation of the sample's velocities but did provide a useful description of 

the sample's azimuthal variation in velocity which could not be determined from the 

high-pressure analysis. Consequently, the velocities obtained at what is approximately 
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in situ pressure will be used for comparison between previous studies of velocity and 

anisotropy. 

Direct comparison between previous studies of velocity and anisotropy and this inves- 

tigation will provide a useful guide as to whether the siliciclastic samples studied yield 

commensurate results. The rocks analysed within this study have never been previ- 

ously analysed. Detailed mineralogical analyses was conducted on all the samples within 

this study which will allow for a quantitative comparison between similar samples in 

previously published work where accurately quantified mineralogical data is available. 

When studying velocity anisotropy in the laboratory, it is generally held that observations 

of P-waves are more diagnostic than observations of S-waves. The sensitivity of response 

and the larger magnitude variation with changes in stress results from the sensitivities 

of P-waves to the longitudinal compressional stress along the wave front path. Whereas, 

S-waves depend equally on the longitudinal and transverse compressional stresses in 

the sense of wave propagation and polarisation and so show a convolved response to 

anisotropic stresses. A third principal stress parallel neither to an S-wave propagation 

direction nor to its polarisation direction has only a negligible effect on the S-wave 

anisotropy. Hence, in this study only P-wave velocity anisotropy measurements were 

calculated at elevated confining pressures. 

When the results obtained from this study are compared with the P- and S-wave veloc- 

ities from previous studies it can be seen that the three different groups approximately 
fall into the categories of weakly-consolidated sandstones and mudstones (Table 4.3). 

Moreover, there is no notable difference in velocities between Groups 1 and 2. There- 

fore, with the addition of measurements of seismic anisotropy it could be possible to 

further sub-categorise previously determined lithologics. For example, it could be possi- 

ble to determine the difference between a sandstone which has horizontally as opposed to 

vertically aligned porosity or whether a sandstone is strongly cemented. Previous studies 

of P-wave velocity anisotropy in siliciclastic reservoir rocks vary from 37% for gas sat- 

urated tight-sands and shaly-sands to -0.07% for a brine-saturated sand (Wang 2002). 

The results obtained from this study show that Group I rocks (clay-mica rich) typically 

have on average 20-30% P-wave anisotropy at in situ confining pressure. Whilst Group 

2 (clay-mica poor, low porosity) and 3 (clay-mica poor, highly variable porosity) have 

on average 4-8% and c. 12% P-wave anisotropy respectively. The Bcntheim sandstone 
is essentially a Quartzite with a porosity of c. 24%. The Rothbach sandstone is also a 
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highly porous Quartzite but with pore filling clays (illite). Benson et al. (2005) in a 

recent publication calculated the Bentheim and Crab Orchard sandstones to have a P- 

wave anisotropy of 4.7% and 19.1% respectively. Benson ct al. (2005) also calculated the 

Bentheim and Crab Orchard sandstones to have a S-wave of 3.0% and 7.6% respectively. 
It was also calculated that under a hydrostatic pressure the Crab Orchard sandstone 
decreases from 3% and Moat 5NIPa (P-wavc and S-wave) to 1.5% and 1% respectively at 

effective pressures in excess of 40MPa. The Bentheim sandstone was calculated to have 

a significantly less decrease in anisotropy with increasing confining pressure (Benson et 

al. 2005). In comparison Louis ct al. (2003) analysed the P-wave velocity and anisotropy 

of both the Bentheim and Rothbach sandstones under dry and saturated conditions. 
Louis ct al. (2003) calculated the Benthcim and Rothbach sandstones to have a P-wave 

anisotropy under dry conditions of 11.6% and 4.1% respectively. Whereas, under satu- 

rated conditions Louis et al. (2003) calculated the Bentheim and Rothbach sandstones 

to have P-wave anisotropics of 4.7% and 7.0% respectively. 

4.4.5 Application to the subsurface 

A fundamental understanding of the variation in P- or S-wave anisotropy with lithology 

offers another way in which to remotely discriminate between the various properties 

of siliciclastics in the subsurface. For example, a velocity versus porosity plot is one 

of the most basic rock physics planes providing information about texture, mineralogy, 
lithology and diagenesis (Tosaya & Nur 1982). Nonetheless, this simple plot does not 

allow the accurate identification of the various microstructural properties of lithologies 

in the subsurface. A good rock physics plane for pore fluid analysis is Vp versus V. 

crossplots. Where siliciclastic rocks tend to plot along the Mudrock line (Castagna et 

al. 1985), while gas saturated rocks fall on the line between quartz point and the origin 

where VpIV, is equal. Furthermore, one of the most well established relationships between 

velocity and the porosity and clay content of sandstones and shales is that published by 

Han (1986) which was based upon a series of laboratory studies. Han (1986) found 

empirical regressions relating ultrasonic velocities to porosity and clay content (Figure 

4.25). These were determined from a set of eighty sandstones with porosity's ranging 

from 3 to 30% and clay fractions ranging from 0 to 55%. 

The main problem with using the VpIV, ratio as an indicator of fluid and lithology is 

that various lithologically and microstructurally distinct rocks can have a very similar 
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Figure 4.25: Han*s empirical relations for shaley- sandstones: velocity-porosity- clay models. A 

tem. ary diagram showing a set of Han's Vp's. The elevation of the Tnesh corresponds to the 

velocity values (kinls) and is contoured as shown by the colour bar. The Afatlab software used to 

produce this diagram was urritten by the current author. 
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V IV, ratio (Table 4.3). Analysis of Table (4.4) shows that having an understanding of P 
the variation in P- or S-wave anisotropy provides more information about the structure 

and lithology of a sample in the subsurface than from analysis of the VpIV. ratio alone. 
For example, the VpIV, ratios of the Group 1 and Group 2 samples are both very similar 

and do not vary much throughout the samples within each group. By taking into consid- 

eration the bulk aggregate anisotropy it then becomes possible to differentiate between 

a clay-poor and clay-rich rock if the clays are grain supporting and not pore lining. 

Furthermore, it also provides detailed information on how the rock might respond to 

pressure variations caused by drilling or injection that VpIV, ratios would not provide 

any information on. 

The observations of high-pressure ultrasonic velocity-anisotropy provide an insight into 

how a sample's anisotropy might vary with increasing depth. Moreover, in conjunction 

with the bulk aggregate elastic tensor predictions as determined by electron microscopy 

the data provides a methodology to determine crack density which in turn can be used to 

provide bedding scale data for reservoir models and intelligent well positioning programs. 

The elevated pressure ultrasonic analyses also provides a means of understanding how the 

observed anisotropy in a particular lithology in a reservoir might respond to a re-injection 

program. For example, if a time-lapse anisotropic survey was conducted the variation 

in anisotropy within the different horizons would provide a deeper understanding of the 

types of rocks present and the orientation of their fractures. 

There a several known problems of using laboratory obtained ultrasonic data which must 

be considered when relating the results to a larger scale (i. e., reservoir or unit scale). 

All the ultrasonic tests in this study were conducted under dry conditions which is an 

unlikely assumption in the real world. Which means that ideally the dry laboratory 

results should be transformed using some known relation such as the Cassmann relation 
(Gassmann 1951). Cassmann's equations allow the prediction of saturated rock moduli 

from dry rock moduli and vice versa. Essentially, Cassmann's relations are used to 

estimate the change of low-frequency elastic moduli of porous media caused by a change 

of pore fluids. Moreover, the scale of the detected anisotropics in the laboratory is also 

far smaller than that which would be detected by field-wide or even wireline log scale 

seismic attribute analysis. Hence, upscaling presents itself as a major issue concerning 

the elastic properties of rocks. Not necessarily the best but has proved to be useful is the 

Effective Medium Theory (ENIT) which is based upon the assumption that the average 



107 Chapter 4: Ultrasonic analyses 

Z 

L, 

.e 

Z;, 

(3 
-3 

u2 
Co Co 

CD 
ci 
cb 

e4 
cb 8 

CD 
'10 CD 

-4 
CD 

LO Le5 = t- 

9 @. @. s. 

t 

C! 
cs 
cu e 
- 

(Z) 



108 Chapter 4: Ultrasonic analyses 

rock properties on a macroscopic scale are statistically homogeneous (Gueguen et al. 

2006). 'Nonetheless, EMT becomes ineffective when the degree of heterogeneity is too 

large because basically EMT is a perturbation theory that fails beyond some point. 

4.5 Conclusions 

It is possible to draw the following conclusions from the experimental observations in 

this chapter. 

On the basis of the atmospheric ultrasonic velocity analyses three distinct groups could 
be identified: 

Group 1- high velocities (c. 3.8km/s), and strong anisotropy (> 20%). Probably due 

to the bedding parallel microfabric of the phyllosilicates, and associated bedding parallel 

micro-porosity. 

Group 2- high velocities (c. 3.8km/s), and weak anisotropy (< 10%). These samples 
had high velocities and weak anisotropy. They were generally oil stained, homogeneous 

and lacked significant proportions of phyllosilicates and clays 

Group 3- low velocities (c. 2.5km/s), and intermediate amounts of anisotropy (c. 10- 

20%). These samples were broadly clean, high porosity sandstones. 

The conclusions determined from the atmospheric ultrasonic analysis provide a detailed 

understanding of the azimuthal variation in velocity and anisotropy with respect to 

lithology. A clay-mica rich sample (> 15%) is expected to have no azimuthal variation 
in velocity within the bedding plane. Whereas, a quartz-feldspar rich sample could have 

a strong azimuthal variation in velocity due to mineral grain alignment and hence grain 

boundary or micro-porosity alignment. Furthermore, the bench top analyses allow a 

far more detailed investigation into lithology velocity-anisotropy relationships because 

of the speed of analysis. The bench top analyses provide a simple and convenient way to 

quickly characterise a samples group. The results of the atmospheric pressure ultrasonic 

analysis are in agreement with the high-pressure analysis. 

On the basis of the high pressure ultrasonic velocity analyses two distinct groups could 

be identified. The third group is not identifiable at high pressure: 

Group 1- high velocities (c. 3.5-4.5km/s), and strong intrinsic anisotropy (20-30%). 

Likely to be due to the high phyllosilicate, and clay content. P-wave anisotropy very 
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quickly decreases during an increase in confining pressure. 

Group 2- group 2 samples (likely contains both group 2 and 3 atmospheric deter- 

mined samples) have low to moderate levels of anisotropy (c. 1-5%). Ultimately isotropic 

at the limit of elastic pore closure. P-wave velocity anisotropy for the group 2 samples 
initially increases, and then decreases with increasing confining pressure (c. 3.0-4. Okm/s). 

Using the methodology of Silver & Chan (1988), and two split shear-wave transducers 

the orientation, and magnitude of shear-wave anisotropy could be quantified in one-single 

measurement. This novel approach described provides both a quick and very useful way 

of understanding a samples anisotropy, orientation of heterogeneity and a clever way of 

determining the magnitude of heterogeneity in a quantifiable manner. The approach 

as determined by Silver & Chan (1988) has been in use for some years within research 

into the deep-carth using seismological techniques. As a result of this study it has been 

shown that on the scale of ultrasonic analysis the main controlling parameter of wave- 

velocity anisotropy is grain boundary micro-porosity. This technique would most lend 

itself to the dynamic ultrasonic analysis of fractured or controlled-fractured samples 

during hydrostatic or anisotropic loading. This in turn would then provide a means 

of analysing the velocity-anisotropy stress dependence of different fracture systems on 
different lithologies. 
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Chapter 5 

Petrofabric analysis 

5.1 Introduction 

It is commonly understood that seismic anisotropy is controlled by: LPO (lattice pre- 
ferred orientation), the non-random spatial distribution of mineral phases, aligned poros- 
ity, and aligned fractures (Crampin 1981, Babuska & Cara 1991, Mainprice et al. 2000, 

Wendt et al. 2003, Kendall et al. 2006, Valcke et al. 2006). Therefore, in principle, 

any directional variation in these variables could then be inferred from seismic veloc- 
ity anisotropy observations alone. Direct laboratory ultrasonic velocity measurements 
have traditionally been used to investigate the seismic velocity anisotropy of various 

rock properties. However, this type of investigation does not allow discrimination of the 

contributions from the various n-licrostructural vaxiables. Therefore, the relative con- 

tribution to observations of seismic anisotropy in sedimentary rocks from each of the 

individual causes is not well understood. 

Hence, laboratory ultrasonic velocity measurements made on well microstructurally char- 

acterised rock aggregates could be used to improve the understanding of the controls of 

observations of seismic anisotropy. Until recently, the complex nature of the Earth's 

crust particularly when compared to the mantle has made it difficult to justify assump- 

tions about the continuous microstructural elements on the scale of a seismic wavelength. 
Progress, however, in the resolution of controlled source seismic exploration and process- 
ing techniques have now made it possible to explore whether any link exists between 

microstructural observations and seismic data in crustal rocks. The aim of this part of 

the study was to quantify the LPO (fabric strength) of the constituent mineral phases 
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in a suite of siliciclastic hydrocarbon reservoir rocks using electron microscopy, EBSD 

(electron backscattered diffraction). Presented within this chapter is an overview of a 
SEXI and its applications to BSE imaging and EBSD analysis. The results of EBSD 

petrofabric analyses are presented as lower hemisphere pole figure projections. In turn, 

the results of these analyses have been used to calculate the intrinsic seismic anisotropy 
due to the LPO of mineral phases alone (Chapter 6). 

SEM-EBSD is a relatively robust technique to determine the lattice preferred orientation 

of sedimentary rock forming minerals (Valckc et al. 2006). SENI-EBSD, however, com- 

monly encounters problems associated with the automated indexing of minerals which 

possess strong basal cleavage planes, such as, phyllosilicates and clay minerals (Ulle- 

meyer et al. 2000). Phyllosilicates in sedimentary rocks are often very fine-grained, have 

poor crystal structure, and consistently align their foliation parallel to the SENI electron 
beam. This means that when the electron beam is incident upon a platy-mincral grain it 

does not reflect off any of the crystal's lattice planes, thus providing a diffraction pattern 

which has poor contrast and weakly identifiable Kikuchi bands. What is required, there- 

fore, is an accurate and reliable technique that will allow the statistical determination 

of the 3D orientation of phyllosilicates in thin-section. 

The most commonly employed technique in the analysis of phyllosilicate mineral orien- 

tation is EBSD manual indexing. Manual indexing is simply the process of determining 

the mineral's orientation by hand and eye analysis of the Kikuchi band patterns. This 

methodology is particularly time consuming, nevertheless, in past experiments of this 

nature it has proven to be a very reliable technique (Valckc et al. 2006). The manual 
indexing of phyllosilicate-rich samples was used in this project as a means of not only dc- 

termining the orientation but as a way of verifying the results obtained from alternative 

methodologies. 

An alternative approach to the determination of phyllosilicate orientation is based upon 

the Bingham distribution. Bingham's distribution represents the portion of a trivariate 

Gaussian distribution that intersects the surface of a unit sphere, with varying ellipsoidal 

shapes of the underlying Gaussian contours hence producing a variety of distributional 

forms on the sphere (Cheeney 1983). The Bingham model is simplified here by making 

some underlying assumptions about the expected 3D orientation distribution of phyllosil- 

icate mineral phases. The first is that the preferred orientation produced by compaction 

has uniaxial symmetry (azimuthally symmetrical about a single axis). The second is 
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that the distribution can be described by two parameters in the Bingliam distribution 

(Bingliam 1974). Finally, that the distribution of orientations of lines of intersection of 

phyllosilicate basal planes is related to the uniaxial preferred orientation by projection. 

5.2 Scanning electron microscope - fundamentals 

The SEM (scanning electron microscope) uses a finely focused electron beam scanned 

across a saniple's, surface to produce high-resolution images. A SENI can resolve features 

inuch smaller than those of ail optical inicroscope because. it uses electrons to image 

the sample*s surface as opposed to light waves. In the SEM, high-energy electrons 

are produced bY a cathode filament (usually tungsten but other materials (-an be used 

e. g., La136) and are accelerated down the electron colunin (Goldstein et al. 1992). The 

electrons pass through a series of coils and elect roinagnet ic condenser lenses progressively 

focusing the beam diameter (Figure 5.1) (Reed 1996). The spatial resolution is ultimately 

dependent upon the diameter of the incident electron beam on the sample surface and 

is approximately 1jun for a tungsten filament in a thernial emission SENI (Goldstein et 

al. 1992). 

Upon incidence with the surface of the sample the electrons travel through the target in a 

random manner until they arc either ejected from the sample through elastic scattering 

(no energy loss) or come to rest within the target by inelastic scattering (significant 

energy loss) (Goldstein et at, 1992). In either case tile interactions can result in other 

electro-magnetic signals. Tile various types of signals produced from the interaction of 

the electron beam with the specimen include: secondary electron emission, backscattered 

electrons, Auger electrons, X-rays, and cathodluminescence (Figure 5.2). Typically the 

interaction depth for electrons is approximately 0.1 - 31im (Reed 1996). One of tile 

most widely utilised signals is the secondary electron emission. A secondary electron is 

produced when an electron from the SENI electron beam collides with a specimen*s atom 

and losses energy to it. Secondary electron images are particularly i1seful for examining 

surface structure and provide the best resolution of any of the signals. A backscattered 

is defined as one which has undergone a sitigh, or multiple scattering events 

and escapes with ; in energy greater than 50cV (Rced 1996). Backscattered electrons arc, 

produccd as the result of elastic collision with the atonis of the sample and usually retain 

80% of their original energy. The number of backscattered electrons produced increases 
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with increasing atomic number of the specinien (Goldstein et ill. 1992). Elements that 

are of higher atomic number will produce more backscattered electrons and will therefore 

appear brighter (Figure 5.3) (Lloyd 19,87). The (Ictector for BSEs is very different to 

that used in the detection of secondal-Y electrons, ill that. it uses silicoll device. s. 0111N, 

those electrons that travel ill a straight path from the specimen to the detector vo 

towards forming the backscattered image. So that enough electrons are collected to 

produce. all image. SENIs ilse quadrant backscattered detectors positioned abovv 

the specimen. The most prominent draw back of' BSEI (backscattered electron illiaging) 

is that if the minerals within the sample have v(, i-. N- similar prolwi-tiv. s. For example, ill 

BSEI both quartz and certain tYpes of f'Cldspar (e. g., plagiochise) have approximatelY the 

saine atomic contrast (sometimes referred to as Z-contra-st), which makes identification 

oftliese two verv different minerals extremely difficidt witllollt the lise ofan F. DS (energy 

dispersive spectroscop. v). 

In summary SENI-BSE imaging call be used ill conjunction with Other techniques, Sll(. Il 
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Figure 5.2: Scanning electron microscope electron beam and sample interaction. Signals gener- 

ated by intcractions between specimen atoms and incident electron beam. Backscattered electrons 

(BSE) are SEM beam electrons that have undeiýqone elastic scattering. The BSEs are produced 

from the uppermost third of the interaction volume. 

as optical microscopy, to provide a thorough understanding of the petrography and 

microtexture of an aggregate (Triniby &, - Prior 1999). 

5.3 Electron backscattered diffraction - introduction 

EBSD (Electron backscattered diffraction) is a technique for obtaining crystallographic 

information in the SENI. Basically, EBSD uses a beam of electrons which are directed 

onto a tilted crystalline sailiple. The electrons undergo various interactions with the 

atonis in the crystal's lattice and sonic of the electrons emerge from the sample to 

project onto a fluorescent screen. Projected onto the screen is the sainple's diffraction 

pattern. The symmetry and appearance of the pattern is related to the crystal structure 

at the, point where the beam inects the sample. EBSD lias many uses, including the 

coniplete quantification, and characterisation of the crystallographic orientation of rock 

forming minerals (Venables & Harland 1973). Automated EBSD has now become a well 

established analytical technique to determine 3D crystallographic orientation (e. g., Prior 

et al. 1999, Mainprice et al. 2000, Wendt et al. 2003, Lloyd & Kendall 2005, Valcke et 

at. 2006). 

EBSD analysis (-an be conducted on most SEMs as the onlY requirements are a tilted 
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sample and a suitable detection system. Tile latter have been designed with the intentioll 

of completely optimising EBSD geonictry and therefore performance. The system used 

in this study was a CamScail 4 SENI, with a low-light camera. FSED (forescatter dectron 

detector) and HKL Technology Channel 5 software (including franiv grabber i. e.. non- 

digital). 

5.3.1 Electron backscattered diffraction - fundamentals 

The sample is placed in the SEINI's specimen vacumn chamber and tilted to a high-angle 

to the electron beam (approximately 75"). The SENI electron beam strikes the inclined 

sample surface. The BSE's that satisfy the Bragg Equation (Chapter 3; Equation 3.1). 

diffract to define two cones of electrons which project onto at fluorescent (phosphor) 

screen (Prior et al. 1999). Diffraction of these electrons occurs simultaneously on all of the 

sample's atonfic lattice planes. The sample is tilted at a high angle to the electron beam, 

to optimise both the contrast in diffraction pattern -and the fraction of backscattered 

electrons (Goldstein et al. 1992). These large angle cones are known a.,; Kikuchi lines 

or bands. Each corresponds to a particular lattice plane within the incident mineral 

(Figure 5.4). The complete diffraction pattern consists of a set of Kikuchi lines that 

are indicative of the crystal structure (phase) and orientation (Figure The crystal 

orientation of most mincrals can now be measured with a spatial accuracy of > 1pni and 

an angular resolution of > lym, (Day 1993). 
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Figure 5.4: This diagrain illustrates the relationship between sample geometry, the paired 

diffractrd (4rctrov. cones, and the resulting Kikuchi lines (Alodifiedfrom Day, A. ). 

5.3.2 Automated electron backscattered diffraction 

The advancement of computing power has facilitatc(l complete autoniatism of EBSD 

(Schmidt &, - Olesen 1989). Numerical algorithms automatically detect cornPlete sets of 

Kikuchi lines an(l then in(iepenclently determine the 3D crystallographic orientation and 

corresponding mineral phase. 

Tile Kikuchi lines are projected onto a phosphor screen where a charged couple device 

camera captures the image, digitiscd, and transferred to a computer for analysis using 

HKL's Channel 5 program to calculate possible crystallographic orientations (Prior et 

al. 1999). The algorithin calculates all possible orientations of tile crystal that give a 

match to tile observed set of lattice planes of tile target typically to within 3" MAD 

(Mean Angular Deviation). The MAD can be thought of as the accuracy of the fit, that 

is, the difference between the observed Kikuchi hand patterns and the nearest matching 

predictions. 

The following information is required to accurately apply the indexing algorithm: unit- 

cell parameters, crystal symmetry, and a reflector file containing a list of the lattice 

planes that give rise to visible bands oil electron backscattered patterns (Prior et al. 

1999). Unit-cell parameters and crystal symmetry are widely available information in 

X-ray diffraction tables and in electronic crystallographic databases. Given the atomic 

positions in the unit-cell, kinematical theory call be used to determine the diffracting 

planes for electron diffraction (Schwartz et al. 2000). Determining the number of re- 

flectors used to identify the mineral phase is not straight forward because the number 
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Figure 5.5: Schematic diagram illustrating the formation of the clertron barkscattcre. d diffraction 

pattern for a quartz unit cell. Electrons front a divergent source simultaneously interact ulith all 

of the Mlstal*.,; lattice planes but only those electrons that obey Bragg's Law wy, difftyirtrd into a 

pair of cones to form the Kikuchi lines of the diffraction pattern (Modified from Lloyd, G. E. ). 

of reflectors per crystal structure is theoreticallY infillite. In general the mon, complex 

phases require more identifying reflectors (bands). Too many bands. however. will slow 

down the algorithin unnecessarily and too few bands will lower the indexing rate. In 

practice, however, modern EBSD software pacýmgvs. stich as. HKUs Channel 5 program 

contain pre-existing libraries of elements and common mineral phases (defaults). 

In automated crystal orientation mapping, the electron heani steps over the sample, on 

a pnA&mn&wd g6d and at eadi p(Ant a cli%wtion Imttcrn is obtained and the crystal 

orientation deterinined (RancHe 2MMY At each grid point the mineral phase, Euler 

angles. and MAD are recorded and saved in a data file. 

Errors in crystal orientation measurements from the diffraction pattern will depend prin- 

cipally oil the accuracy of the Kikuchi band position Illeasurement and tile system cali- 

bration (Schwartz et al. 2000). To ensure accuracy and reliability of the measured data, 

it is routine to remove indexed grid-points that have a MAD > 1" (LIoYd 2002, Xie et 

al. 2003). 

5.3.3 Problems indexing low-symmetry mineral phases 

Problems are commonly encountered when attempting to alltonlaticallY index low-sYmnietry 

minerals, such as feldspars and phyllosilicates (Prior k Whecler 1999. Ullemeyer et al. 

2000). For example, diffraction patterns froin muscovite arc clearly of lower quality (low 
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colit rast alld difflise hand edges) than patterns from quartz or calcite. Moreover, it xvkiýs 

Shown ill Prior k-, "'Ilecler (1999) that autonlated EBSD call correctly identify only 75(, Y(, 

of FBS'P patterns first tinie. The best remedy for minerals that have severe inis-indexing 

pr(Odellis is Illaillial indexing (Prior &, - Wheelcr 1999, Valcke 2003). Manuai indexing of 

Illilleral plia. ses also acts iLs a good method of checking set-tip calibrations and updated 

(. 1-Yst al fil(. S. 

Experience 
'pailled 

front indexing low-syllinletrY and inineralogically con1I)Iex PIMM's, 

stich w; orthoclase, and muscovite has denionstratc(i tIle, jle(, (i to 111)(late crystal reference 

files. Fm. example, inicas ill sedimentary rocks tend to be very fine-grained, and are 

gencrallY a tYpe 1.11 or I'lld (disordered) structure (Deer et al. 1999). By comparison, 

t he indexilig filc traditionally used for micas is a 2AII polytype more usually found ill 

tectonifes. Both, however, are coninion stacking scquellee..,, ý111(1 lead to cither oil(, - or 

I "'o-la. vervd 111olloclillic pOI. vt. vpvs (Deer et al. 1999). But, by not taking into the account 

t It(- significan( differences ill space group between the different polYtypes the operator is 

sYstemat icallY restricting tit(' abilitY of tit(' algoritilln to accurately and correctly identify 

I Itv crvstals orientation. 

The indexing tilt, lised for the identification of' the feldspar group of minerals present is 

t hat of pselido-111olloclinic ort h0clase type C21m. The orthoclase reflector file was chosen 

becallm. it Would best rellect t he mineralogy of the constituent feldspar group. As shown 

b. N. Prii)l vt al. ( 1999), Priol, k Wheeler (1999) the orthoclase indexing file will also act 

as a ýýood go-114.1-al fOldspar indexing file allowilig tll(. i(l(ýJjtifi(ýatiojj of 01-thoclase feldspar 

isohqws. Orthoclase is tYpically one of the more stable minerals from the feldspar family 

and theref'Ore more likelY to withstand the crosive and dvp()Siti()IIiJj Moreover. 

the "wil-ce region f, ()I. the Clair field was lik(-I\, to be from the North-X\ est and thlis t1w 

resulting mineralogy wwlld likely 1. (! fl('(-t the catchillent al-va of the I'misiall acid "Ilvisses 

which ct)[11111milY give rise to) orthoclase its it detrital mineral phase (Allen k- Uallge- 

Hajetzky 1992). Finally, it wLs also observed after completing QXRD (quantitative 

X-I.; k\. diff'ractiml) allalYscs that (wthoclase feldspar wil. " tll(, lll()St (. ()Illllloli feldspilt- pluLse 

presvill . 

IL, 
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5.4 Electron backscattered diffraction sample preparation 

EBSD as a technique in geosciences has previolislY beell largel. N. applied to tectonitcs 

(e. g., Mainprice et al. 2000, Wendt ct al. 2003, Lloyd &-- Kendall 2005). However. there 

are exceptions, such as, Valcke et al. (2006). Sections are tYpicallY cut normal to folia- 

tion and parallel to lineation. In sediments, however, 110 such convenient reference plane 

exists. In nlicrola. vered sediments, sections normal to layering provide the best sampling 

strategy, where the cut plaile intersects a series of laminae. whereas sections cut parallel 

to layering oillY intersect one. layer (Valckv et al. 2006). Ideally the sample would be 

cut parallel to regional strike and perpendicular to the maxinimn dip of bedding. The 

samples in this study were extracted froin well core, where it is not alwaYs possible to 

cut samples with respect to regional strike and dip. So they were (, lit and mounted with 

respect to the long axis of the borchole (Figim, 5.6). This particular methodology of 

sample mounting Nvas considered acceptable for three supporting reasons: 

(1) the wells froin which the samples were extracted were drilled vertically (±3"); 

(2) bedding structures and laiiiiiiae Were approxiniatelY horizontal oil the Scale of the 

well core: 

(3) due to the sampling strategy eniplqved sonic, samples intersected honiogenvons sv- 

quences that did not possess an. v deterniiiiable sedimentary structures. 

This inethod of salliple inolintilig and anal. yses was conducted because a u-01-livad tra- 

jectory and numerous seismic survey's had been carried out that provided detailed infor- 

ination about the regional structure and 110", Inlich dip Correction Should be applied to 

any deviated well data (Crisp 1997, Smith k Lappin 1997). 

A well prepared sample is an absolute prerequisite to obtaining good diffraction patteri is 

as EBSD pattern recognition software is very sensitive to surface imperfections. Fin- 

thermore, diffracted electrons escape froin within only a few tens of nanometres of the 

specimen surface. EBSD pattern formation can be severely impaired if material ncar the 

surface is defornied or has ul. v surface contaminant (Prior et al. 1999). It is essential not 

to dainage the surface during sample preparation. 

Prior to undertaking anY sample preparation, the sailipies co"tkillilig oil Nvere clcalwd 

using dichloromethane, a solvent which removes oil contained withil, pore space. The 
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......................... 

Figin-v 5.6: Sclu inatic diagrall) I-clo. c. sclitilig thf, 1-clationship between the uicll-corv, atulply'Pawd 

ýIllllpfi to lot to (Irmlysis. To ovold cl-l-ors associatcd with samptc pi-cparatior) it) ('07, all 

smilph. s cut pcip, l)(lu-111111. to thl, 101)! / axis of thc Ilu'll-col. c. 

salliples Nvere then impregnated with all vpoxy-resill to hold the more J)ol'011. S 

logellier during Ihe polishing process. Progressive Inechallical polishing using increas- 

inglY fillci abi-asix-c-, (diailloild or clibic bol-oll nitridc. then silicoll cm-bide) 
docs not 

provide a s1litable S111-1,11ce for analYsis with EBSD as it callses phYsical dalliage to the 

I; II kgrý IpII ic Iý If t ice. So a fI Irt lic r st ýI ge of po I is IIiIIg is rcquirc( Ito remove tI Iv III Cd I it I I- 

icallY illdilco'd dalliage. This ll('Xt stage ill the polishing process lises a chvillo-Illechallical 

1 1. ( ý; It II It ýI It (dt 114 ý ,I Irf"we tI) ren I( )vv t he n wchanically indiwv( I( bi mage ( Fy IIII 

I! I-,! )). 

IIItII is st I I( I%. iIII; ts bvcol I Ic evidel It tII; It porosity cof It vI It didI lot sigi I ifica I It I. N. a ffect tI le 

standard polishing process of' SENI samples (Fynn k Powell 1979). Problems call bC 

1 . 11(. ( mill orc( 1, Ilowever, ill Samples t hat colit aill significalit proportion's of ailt Iligellic claYs 

hecamse the aylvoll., polishing sollitioll reacts With the clays weakening their sti-lict"re. 

call"ing them to 1()(). S(-Il and Wash awav. Alithipcilic clays are extrellich, fill(-grailled. 

Iml-c filling with 1()w clYstallinitY and werc therefoa-v not analYscd bY 1,13, SD and are 

lls.. "11111c(I t(ý have a raildmil LPO. millerals an, ()f*t(, Il a 1. (. Slllt of diagellesis and lisliallY 

gl. ()%%- %% it hill I 11v Space and hence are ralldmil ill I heir cr. ystallographic Orientation. 

III . 1-f -1( )1. (. ( 114 .. N. ( lo I I( )I i Id %'(. I . ScI. v MUCH the ITO alial. N. Se. " restilts. 

One of the wit 11 SENI imaging results froill electrical currents Oll 



121 Clulpter 5: Petrofablic 111,11. N. Sis 

the sample surface (tile to the interaction between the incident dectron beam and tile 

target specimen. Tile, target, surface can slowly develop all electrical charge if it is not 

appropriately earthed. Charging in ilon-conductive materials can he eliminated as for 

X-ray microanalysis by depositing a thin layer of carbon approximaWlY 2 to 3mn thick 

oil tile sample surface (Reed 1996). 

5.5 Stereological approach to the determination of phyllosilicate orien- 

tations 

5.5.1 Introduction 

In this section a stercological approach is presented its a nivtliod with which to statisti- 

call. v determine the orientation of phYllosilicate mineral phases. There are a varict. N. of 

models available which would suffice, including among others those devised hY 'March 

(1932) and Binglinin (1974). Valcke et A (2006) used a model that was determined 

originally by March (1932) which assuilles that individual crYstals (v. g.. phYllosilicates) 

re-orient in the sanic manner under the same stre,; s conditions. such as, compaction. 

The approach which was applied here, however, was that of Bingliain ( 197-1). The Bing- 

hain (list ribi it ion is a general distriblitioll of axial data and depending Oil the vallies of 

its parameters it may be used to describe it lilillierical S11111111,11-Y of a wide varict. N. of 

distributions (Cliceney 1983). 

More specifically, the Binpham (list riblitioll is contained withill the discipline (A vil-cular 

and directional statistics. Similar distributions exist oll aM sphere, such aýs the Kent 

distribution, Von-Mises-Fisher and 5-paraineter Fisher-Binghain (list ribution-s which can 

be used to construct probability (list ribut ions over rotation matrices (Cliceney 1983). 

The Bingham (list ribution can be described as a trivariate Gaussian vector with zero 

nican and arbitrar. v covariance matrix, conditioned on the length of the vector being 

unitY (Kenney k Keeping 1962a). Bingliam's distribution thus v, presents the portion 

of a trivariate Gaussian distribution that intersects the surface of ,I imit sphere, with 

varying c1lipsoidal shapes of the undcri. yijig QuIssian contours pro(hicing a of 

(list ribut ional fornis on the sphere (Figure 5.7). 

In this study the Bingliam model is used to determine the probahilit. N. of di. stribution of 

orientations under tll(, followilig jisslilliptions: 
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U1 

U2 

U3 

a. uniform b. symmctric bipolar 
kI = k2 =0 kI = k2 << 0 

c. asymmetric bipolar 
k1 < k2 << 0 

d. asymmetric girdle 
k1 << k2 <0 

e. symmetric girdle 
ki << k2 =0 

Figtire 5.7: Ilitigham *.,; distributton - rcIrmscidative contours for varying shapo parametel' 71-9- 

fl it ll(/f s. 

I. TI Iv prel'Cl-red oric I It ý It imI prod I Iced bY col I ipactiol III Its IIII iaxia I s. v IIIII Ic tr. v (azi IIII It IIaI IY 

S. N. 111111cluical abolit a single axis): 

2. Tbc distribution can be described bY two parameters in the Bingliam (list ribi it ion 

(Bingliam 1971): 

: 1. The distribillim) of (wientations of lines of intersection of phYllosilicate basal plailes 

i", related h) the lilliaxi'll pref'Cl-red Orientation bY projection. 

5.5.2 Probability distribution of intersections of phyllosilicate basal planes and the 

surface of the specimen 

'I'lle Illet lim I, )h )gy which %%-; Is Ilsed t let vrillille the jilt(. I, s(, (. tioll probabilit v profiles for 

sterclogicallY defermilled phYllosilicatc orientations is olitlilled explicitI. N. ; is follows. 

I -'igitrv (5-8) is a back.,, ca II vre( I ato III ic-col It 1., 1., 4 (Z-co I It n I. ', t)iIII age of kI IIIII(I. Sto I Iv, Sal IIp Iv 

I TS hn from ell 206/8-S. 'I'lle pjIN, IIosiIi(-atvs in Figure (5.8) show III) as fairly light-grey 

graill" wit II a high-degree of vilipticit. y. The phYflosilicate grains arc then densitY sliced 

oil I heir -scalc It'vel Mid converwil to a billarY image as shown in Figm-e (5.9). The 

aIIiI IYse part I(. Ivs hII Ict it )I I of I mageJ (lit) (igc. 1 Nat iona II nstit i It c of Ife; I It II) wws tI Iv II 

11.1141d to obtain a table of vallies of orientation ()I, the Iong axes and the area of the 

In IrI ides. TI Ic 01, ivI It; It it II of tI wse axes were tI wn taken to be t he oric I It; It iol I of' t he IiI Ie 
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of intersection of the phyllosilicate basal plane and the plane of the section. 

The angle output by ImageJ is then the angle of the long axis from the positive x-axis 
(with a positive angle as an anti-clockwise rotation). The bedding plane normal was 

used as a frame of reference (long axis of borehole), and a clockwise angle of rotation 

was considered to be a positive value. The angle from bedding plane pole, 0, can then 

be considered to be related to the angle from the positive x-axis, w whereby, 

0= 1180 - wl. (5.1) 

Each data point obtained from the image analysis is convoluted with a function of the 

angle from the measurement and added to profile points in the range 0 to f. The 

convolution is given by, 

C9, = exp(-(1 _ COS(o _ o'))2 F)A, (5.2) 

where, C., is the contribution to the profile point 0' of the data point at 0, F is a 

parameter determining the rate of fall of the contribution away from 0, and A is the 

area of the current elliptical particle (normalised counting circle procedure whereby an 

ODF can be determined from a set of discrete data points, i. e., the volume fraction 

of crystallites having the orientation g of their crystallographic axes with respect to a 

sample reference system)(Cheeney 1983). This procedure simply spreads the current 

data point over a certain range of the angular space. The function is only applied within 

a pre-determined distance, of the order of 12* of the current measurement. All values 

are then taken into consideration and the results of applying (5.2) are accumulated for 

points on a 5" mesh in the angle from the bedding plane normal. The value at 0 is taken 

to be proportional to the probability of finding an intersection line perpendicular to 0, 

and the actual probability is estimated by normalising to unit probability over the range 

0 to , 79 

C(O) 
P(O) = Y- (5.3) 

where, p(O) is the probability, c(O) is the sum of convolutions, and N is the normalisation 

factor obtained from, 

N=l c(0)sin0d0. (5.4) 10 w 
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Figure 5.8: Eb-ctron bw ks(ottt . ((f (It(, qjIlt ý Z-(, ntraýt) minyf of a clay-mic-a rich spec- 

imen. Sample 17847T, from Well 20618-8. The image is approjimately 2mm across. 
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Figure 5.9: Binary converted image of an electry)n barkscatternd atomic-contm8t (Z-contrast) 

image of a clay-mica rich specimen. Sample 1784m from Well 20618-8. The image is aPProxi- 

mately 2m7n across. 
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5.5.3 Bingham model distribution 

The Bingham distribution is simply a distribution of probability on a sphere obtained 

from the formula, 

(c) =N-1 (exp(Ki (C. tl )2) + exp(K2((--t2 )2) + CXP( 1, ý. l (,.. t: 3) 
2)) (5.5) 

where, N is a normalisation factor, KI, K2, and K3 are parameters of the distribution 

(K,, can be thought of as being broadly representative of the strength of alignment in 

a particular direction), tj, t2, and t3 are the vectors corresponding to KI, K2, and K3, 

and c is the orientation factor for which we wish to find the probability (Bingham 1974, 

Cheency 1983). 

For a uniaxial distribution the parameter K, is greater than K2, which is equal to K3, as 

shown by (c) in Figure (5.7). The vector for K, is considered here to be parallel to the 

bedding plane normal, with the other two other vectors lying within the bedding plane. 

For a uniaxial distribution in the range of 0 frow 0 to 1 the distribution is, 2 

(c) =N-1 (exp(Ki (c. t1 )2) + exp(K2(C. t2 )2) (5.6) 

and the normalisation factor can be determined using (5.4). The full uniaxial pole figure 

call be obtained from tile 0 profile. The full distribution is based oil spherical coordinates 

with polar angle. 0 from 0 to f and the longitude, 6, from 0 to 27r. It is usual to use a 2 

mesh with spacing of 5' in each direction. The full uniaxial pole figure is then obtained 

from the 0 to 1211 profile by putting the single profile values at all niesh points with constant 

0 in the o direction. 

5.5.4 Model probability distribution of intersection orientation 

In the full spherical coordinate distribution (Kenney & Keeping 1962a) the vector of the 

plane normal corresponding to 0, (5 is given by, 

n., = sinOcoso, (5.7) 

ny = sin0sino, (5.8) 
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Itz = coso. (5.9) 

0 (angIc of rotation) and (") (jjjlgj(, ()f specify all ()I-j(, lltjition ill polar coor- 

dinates in 3D space. 'Fliv intersuction angle ill tlie X, Z plalle of a pliiiie Ivitli norinals 

(11., 111/, n. ) is given by, 

talla Itz (5.10) 
lix 

where (I is the angle of the lille perpendicular to thc intersection fille ill the range 0 to 

rr 2 

F(Imition (5.10) gives all values of the orientation of a phyllosilicate c-axis, ill tel"lls of 

sphcric; d aný. 'Ics, that wolild give all orientation of the lionnal to the intersectioll ill the 

x, - plane of o. To calc III ate tIw probabilit. N. of finding this orientation n. Nve can iI Iteg"itV 

t1w probabilitics oil the lille given b. N. all those vahles of 0 and (, ) through the full pole 

figill. e. This is expressed LS, 

/ J)(O. (5)(! I: (5.11) 

where is tit(' proklbilitN of tit(, uniaxial model Bingilant. (list riblitioll expressed 

ill a 11111 pole figilre and the path of* tit(- integral L is given bY tit(, condition of Equation 

(. 5.10). The integration is carried out for cl, at. 5" intcrvals ill the range 0 to 1 (Figure 
2 

'I'llc pal-allic(cus, that dclillc Hic Billp'llaill distribution Were calculated as th()se that gave 

IIIc bcst briwet-11 (11(. profilc and that deterillilled from tllc specillicil. With 

(MlY tw() pal-allich'i's a direct search can be made I)v varN-ing KI and K2 over ranges 

wit Il small illiervals. The millillulln is found bY calcillating the S11111 of the squal-es of the 

(I iI N-1.1 . 11(. ( -S. 

Plesvilted ; lre the results (A), ailled fi. mll the intersection probabilitY profile defermilled 

friml the data (i. c., fi-mil the SEM-11SE image). Hie model intersection probabilit. N. and 

flic pr(diles ()I* Imles to basal philics c(n-respoildilig to the illodcl intersection 

pr(O)ahiliI. N. (Figill-c 5.11). It can be scen from the probability profiles that the 

data and have a goml approximation. 
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alpha = Ive degrees 

ýhl 

Figure 5.10: Sclicniatic diagrant represc7diny the calculation of thc probability of findlity a par- 

tictilar orientation. Theta and phi are the spherical coordinates, L is the path, the intcylill follows 

(using five degrer intervals). p ii the probability of the orientation occurring in the Bingharn dis- 

Ir7bution. uma. Tial pole figure., and s is the efist-rch, data points where 1) 'iý calculated (it Intcl-l-al. s 

offirc dcgrees. The area under the discrete set of data points is the probability. The integration 

is carried out for n (it 5) intervals in the range 0 to 11 and maps out the 1xith integral L. 
2 

The Bingham distribution is a convenient Wiky of describing ulliaxial probabilit. N. distri- 

butions. In this instance the Bingham distribution can be considered to be described 

bY two parameters. These two parameters effectively characterise the strength of the 

preferred orientation and could offer some advantages over the texture-index. In that 

these parameters are related to a particular distribution and do not just quantifY the 

difference froin the nican as in the texture-index (J). 

5.5.5 Determination of a general phyllosilicate elastic stiffness tensor 

The muscovite elastic stiffness tensor is then calculated by first expanding the proba- 

bility profile into a full ODF (orientation (list ribut ion function). There is an implicit 

assumption that imiaxial syninictrY exists about th(I pole normal to cleavage. Using 

intervals of five degrees, and based upon the probabilit. v profile obtained From the Bitig- 

hain approximation a full ODF is popilated at five degree intervals. The ODF is then 

integrated using a muscovite single crystal elastic stifffiess tensor and a simple Voigt- 
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Figure 5.11: hitcr. secho? i probabdily projiles for sfereol(ýqically delermiurd phyllosilicale orirn- 

lations. Interm'010,11 Probability profit(: determined from data, the inodcl intersection probability 

and the probability profiles of poles to basal planes corresponding to the model intersection prob- 

ability proýlilc. nind - mean uniforin disInbution (i. e., multiples of a uniforni distribuboll): polar 

anylc - is the angle front the vertical in degrees. 

Reiiss-Hill average. Each component of the elastic stiffiiess tensor is multiplied by the 

individual value of the ODF. It was assumed in the calculations of the elastic stiffiiess 

tensor for phyllosilicates that biotite, muscovite., and chlorite would all be aligned sinii- 

larlY. The predicted elastic stiffiiess tensor of the phyllosilicate components of the Clair 

rocks as (Ictermined Jýy using a Bingham approximation distribution is shown in (5.12). 

In comparison, the elastic tensor calculatc(I froin tile manual EBSD indexing of 96 dif- 

fcrent muscovite grains is shown in (5.13). The elastic tensor as calculated from the 

manual indexing of pilyllosilicate grains does not have a perfect VTI style of symmetry. 

To some extent this is to be expected with the analysis of a relatively small number of 

individrial grains. Hence, the muscovite elastic stiffness tensor that was used in the bulk 

aggregate seismic anisotropy predictions was calculated by taking an average of the two 

indelwildent1v derived tensors. 
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1.4648 0.3907 0.2970 0.0000 0.0000 0.0000 

0.3907 1.4648 0.2970 0.0000 0.0000 0.0000 

0.2970 0.2970 0.6505 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.2432 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.2432 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.5371 

1.3287 0.3514 0.3403 0.0102 0.0009 -0.0061 

0.3514 1.3276 0.3403 0.0084 -0.0061 -0.0031 

0.3403 0.3,580 0.6926 0.0002 0.0100 -0.0051 

0.0102 0.0084 0.0002 0.3272 -0.0049 -0.008o 

0.0009 -0.0061 0,0100 -0.0049 0.3259 0.0070 

-0.0061 -0.0031 -0.0051 -0-0080 0.0070 0.4874 

5.6 Samples analysed 

(5.12) 

(5.13) 

Presented in Table (3A) is a list of all tile samples analysed using EBSD. The table 

contains data regarding: well number. unit number, depth. modal composition, porosity 

and perineabilit. y. The modal composition was determined bY QXRD, tile porosit. v bY 

iising helium porosinietry. and the pernicabilitY by air porosity anal. ysis. 

5.7 Petrofabric data presentation 

CrYstallographic texture's are coninloill. N. particularly complicated its they describe ori- 

entations in 3D space of thousands or even millions of individual grains. It is possibic 

to represent them graphically using either of two different tools, the pole figure hased 

oil the stereographic projection of the orientation distrilmition function (ODF) based oil 

tile three Euler angles of rotation required to coordinate a unit cell with a reference 

coordinate sYstelli. 

The simplest and most convenient way to display the as-nicasured data points determined 

by EBSD is by stereographic projection. A stereographic projection is a graphical inethod 

of portraying YD geometrical data in 2D. The raw data for a conventional macrotexture 

stereographic projection is a distribution of a familY of directions or poles. A stereograph 
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that consists of discrete data points is tile most direct and simple nicans of displaying 

the statistics of orientations (Schwartz et al. 2000). When the quantity of inicrotexture 

data is large, as in EBSD analyses, detail in the projection is lost because individual 

points are massed together. Therefore, it is more convenient to smooth the discrete data 

into contours (Randle 2003). 

A random distribution of discrete orientations corresponds to a uniform distribution, 

therefore, the normalised, continuous densities in textured samples are multiples of uni- 

form distribution. Hence, the contouring scheme employed throughout all tile stereo- 

graphic pole figure projections was in density of the orientation distribution function 

expressed as multiples of a uniform distribution (NIUD) (Bunge 1982). 

To visualise how a stereographic projection works it can be thought of as the plane of pro- 

jection onto which everything is mapped. Points oil the lower hemisphere arc brought up 

to the plane of projection by moving them along lines which pass through the uppermost 

point of the sphere. In this way any point on the hemisphere projects to give a point on 

the plane of projection (Figure 5.12) (Leyslion &- Lisle 1996). Tile crystallographic 

pole figures and contouring were calculated directly from tile samples mineralogical 

ODF using a Fortran program originally developed by D. Mainpricc (freely available at 

littp: //www. isteem. uiiiv-iiloiltp2. fr/TECTONOPHY/petropliyiscs/softwarc/petrophyises- 

software. litlnl). The pole figure plotting software used to plot the individual mineral 

phase crystallographic pole figures used the following input parameters: bedding wM 

aligned horizontally (X), bedding perpendicular was vertical (Z), mean angular deviation 

of 1', non-polar data. lower-henlisplicre projections, rainbow coloured scale (rcd-blue- 

green), inverse colour scheme (blue - maximum and red - minimum), linear colour scale, 

Gaussian Half Width - 10, dashed line for the lowest value, automatic shading and an 

Elder angle cell size of 1'. A real example of a series of crystallographic pole figures for 

quartz poles to lattice planes can be seen in Figure (5-13). 

5.8 Petrofabric quantification 

LPO is conurionly presented in the forin of pole figures that show the crystallographi( 

distribution of orientations of individual data points with respect to a globally knowr 

reference franic. Although important variations in the distribution of the data can b( 

determined qualitatively from individual crystallographic pole figures it is useful to havc 
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Figure 5.12: Sterroginphic projection - a. orientation of EBSD analysed sample with respect 

to bedding and the borehole core fi-om which it was rernoved. So represents bedding. b. the 

horizontal plane is the plane of projection and it is placed so that it passes throagh the rentre. of 

the sphere, points on the lower hemisphere are bronght up to the plane of projection by moving 

them along lines which pass thrmigh the apper7nost point of the sphere. c. in this way any point 

on the hemisphere projects to give a point on the planr of projection. The final result of this 

projection is to prod? L(. r. a representation on a flat piece of paper of 3D orientatzons. N rrfrrs to 

the direction perpendicalar to bedding (ap). 
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Figure 5.13: Illustrative non-polar, lower-hentisphere, crystallogryiphic stereonets of an indi- 

vidual mincral phase (qunrtz). Crýystalloýqraphic pole figures are contoured stereographic plots of 

the poles to the crystallog7uphic planes of a particular constituent mineral phase. Bedding is the 

horizontal line bisecttng the pole figures and bedding perpendicular is at North (represented by 

the firk). The individual pole figurrs are contoured in. multiples of uniform, distribution (MUD). 

(IIKL) = the pole to lattice plane. Iuvw] = poles to crystallographic directions (not required here). 

N= the number of indexed points with a MAD of < 1. The black square represent.,; the ? nax, - 

in"'In cOncCliftntion of crystallographic orientations (blue), and the empty circle represents the 

Ininint-11111 concentyntion of crystallographic orientations (red). Note different contour interuals 

between pole, figures. pf J refers to the individual pole figure fabric intensity (Equation 5.15). 
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a quantitative description of the fabric intensitY. Therefore, it becomes necessary to 

quantitatively characterise the strength of the fabric texturc without considering the 

details of the distribution ky using the texture-index (Equation 5.14) (Sturcken k Croach 

1963). 

The tcxture-index (J) is described ky 

j= 
J[f 

(g)12 dg, (5.14) 

where, f (g) is the ODF (orientation distribution function) (f (01, ý', (52) With 01 - U. 02 

being Euler angle's) in the case of general texture, dy is the element of orientation 

(orientations in all infinitesimal element about a particular V'I, (5,02) and f is the integral 

over the total orientation space. Tile texture index varies between 1 in the case of randoill 

orientation. and oc in the case of one or more ideal single crystals. See Appendix (A) for a 

full derivation of the texture-index (J), and individual crystal axis intensity (pf. j)(Bunge 

1982). 

Tile texture-index is calculated by expanding the ODF into a series of spherical harnion- 

ics, which requires truncating the expansion at it finite number. A Gaussian smoothing 

function is also applied where each data point is replaced by a Gaussian probability 

distribution (Gaussian Half Width - GHW) and the bin size for the Euler angle space 

is defined. In this study the spherical harmonic expansion was set at 22, the GHW was 

set at 10, and the Euler angle cell size was set to 1' degree. Týruncation of the series 

expansion at a finite value of 22, has the effect of applying a noise filter. Tile harmonic 

method is also very stable, and gives good results even when the input data are of low 

quality, such as when the sample has a large grain size or low diffracted intensity. There 

is an implicit assumption in the harmonic method, however, that the orientation distri- 

bution is a smooth function, and that the truncation of an infinite series at a low order 

will not degrade the solution (Bunge 1982). 

It is also possible to define a measure of the sharpness of individual pole figures, similar 

to that of the tcxture-index (J) by, 

Jj, i ý1 Ir [pl,, (Y)12 dy, 
4j 

where, Jj, j is the texture-index of the pole figure, Pjj is the pole figure associated with 

the crystal direction, y is the sample direction and dy is the element of solid angle 
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(Bunge 1982). It logically follows then that the measure of sharpness of an arbitrary 

pole figure can only be smaller than or at most equal to that of the 3D ODF (Jhj :5 J). 

A pole figure represents the sum of probabilities along a path through the ODF, i. e., all 

those orientations which out the chosen critical crystal direction (HKL) parallel to one 

orientation in the pole figure. Thus, a summation, similar to that of the texture-index, 

will never produce a result with more variance than that of the ODF itself. 

5.9 Mineral phase crystallographic pole figure distributions 

Presented are the crystallographic pole figure distributions obtained from EBSD mi- 

crostructural analyses for the principal constituent mineral phases. Plotting individual 

mineral phase pole figure distributions assist in the determination of the relevance and 

contribution of individual phases to bulk aggregate properties. Furthermore, it also pro- 

vides another means of checking for anomalous data to ensure there is no bias in the 

results. nirtherinorc, by simply examining orthogonal sections for similarities, anoma- 

lous data can be determined and removed. 

5.9.1 Quartz 

An explanation of the notation used in the crystallographic pole figures for quartz are 

shown in Figure (5.14). The crystallographic pole figure distributions for each individual 

sample containing quartz is presented In Figures (E. 1, E. 2, E. 3 and EA) within Appendix 

(E). The (001) direction tends to align preferentially, whilst the other crystallographic 

directloni are more randoinly distributed. The maximum alignment of (001) directions in 

quartz Is commonly found either parallel to the bedding plane, normal to the plane of the 

cut section, or oblique to the bedding plane, parallel to the plane of the the cut section. 

Similar patterns such as the location and shapes of girdles and maxima can broadly 

be observtA throughout the other pole rigure. q. However, it nimst be noted that the 

Intensity of alignment of quartz's crystallographic axes is generally quite low. Patterns 

which appear to bo quite striking In the pole figure projectiow; can be ruq a result of the 

colourIng scheme employed whereby red is the minimum value and blue is the maximum 

regArillem of the number of intervAl. s or spcific maximum Rnd minimum valum.. The 

colouring scheme employed does, however, provide a useful Ricans of identifying trends 

tind distributions which black and white would not show. 
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Using the Mainprice (standard) convention, Miller (101) and (011) are the same as 
Miller-Bravais (10-11) and (01-11). These are the r and z poles respectively. They are 

not equal but opposite, they arc the rhonlb terminations and arc exchanged by a 60" 

rotation about the c-axis, i. e., a Dauphine twin operator. If using the Channel (non- 

standard) convention they are not r and z but sorne combination based oil the orthogonal 

crystal lattice. They occupy the same relative positions oil tile plane containing xz and 

yz respectively but these are not the saine or equivalent and they may never be opposite. 
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Figure 5.14: Illustrative non-polar, lower hemisphere, crystallographic stereonets of quartz. 
IIKL notation: (2-10) - a; (100) - c, (-001) - z; (101) -r and (011) - 7n. Bedding is the 

horizontal line bisecting the pole figures, and bedding perpendicular is at North (represented by 

the tick). The zndividual pole figurcs are. contoured in multiples of uniform distribution (MUD). 

(HKL) = the pole to lattice plane. N= the number of indexed points with a MAD of < 1. The 

black square represents the maximum concentration of crystallo. ( jraphic orientations (blue), and 

the empty circle represents the minimum concentration of crystallographic orientations (red). 

Note the different contour intervals between pole figures. pf J refers to the individual pole fiyare 

fabric intensity (Equation 5.15). Samples which were analysed from cOves extracted perpendicular 

to bedding (Z-direction cores) do not contain a horizontal line as the bedding plane is represented 

by the perimeter of the pole figure (Appendices E; F: C). For an explanation of sample number 

notation see Appendix. (B). 
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5.9.2 Feldspar 

Figures (F. 1, F. 2, F. 3 and F. 4) in Appendix (F) contain tile crý-stallographic pole figures 

for feldspar for all tile samples analysed. Figure (5.15) is representative of the style 

of symmetry throughout all the samples analysed. There are two distinct systems Of 

alignment, however, both of which generate the same style of grain alignment. In the 

[010] pole figure there is a single cluster in the. upper-half of the circle which is related 

to tile broad girdle in [001]. Similarly, the broad girdle in [010] is directly related to 

the tight cluster in [0011. It call be seen that in general tile feldspar grains adopt 

a preferential alignment, whereby they are imbricated with tile down-dip direction of 

imbrication varying azimuthally within the bedding plane. [uvw] represent the directions 

in a crystallographic system. Whereas, (HKL) represent the poles to lattice planes. In a 

nionoclinic system, such as orthoclase, [0101 = (010) (that is, they are coincident), hence, 

the [010] direction hasi been omitted in all further feldspar pole figure distributions. 
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Figure 5.15: Illustrative non-polar, lower hemisphere, crystallographic stereonets of f(Idspar. 

Bedding is the horizontal line bisectiRq the pole figures and bedding perpendicular is (it North 

(represented by the tick). The individual pole figures are contoured in multiples of uniform dis- 

tribution (MUD). [uvw] = directions in a crystallographic system. (HKL) = the poles to lattice 

planes. In a monoclinic system, such as orthoclase, [0101 = (010) (that is, they are coincident), 

hence, the [UIOj direction has been ontitted in all further feldspar pole figure distributions. N= 

the nu'rnber of indexed points with a MAD of :51. The black square represents the Tna-rim um con- 

centrution of crystallographic orientations (blue), and the empty circle represents the rninirnurn 

concentration of crystallog7uphic orientations (red). Note the varying contour intervals between 

pole figures. pf J refers to the individual pole figure fabric intensity (Equation 5.15). Z-direction 

samples are perpendicular to bedding, and therefore do not contain a horizontal line (bedding). 

The bedding plane is represented by the perimeter of the circle. For an explanation of sample 

number notation see Appendix (B). 
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5.9.3 Calcite 

Two distinct pole figure distributions were observed within the samples analysed which 

contained calcite. Firstly, similar to quartz, calcite is observed to have a very weak fabric 

texture and an almost random crystallographic fabric (Figure 5.16). Secondly, it is also 

observed that a single calcite crystal can occupy up to tens of mm's of pore space and 

therefore (-an significantly affect the LPO analyses over the scale of an EBSD sample 

(Figure 5.17). The crystallographic pole figure distributions for all Samples containing 

calcite are presented in Figures (C. 1, G. 2, C. 3 and GA) in Appendix (G). 
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Figure 5.16: Randont fabiic of detrital calcite. Illustrative non-polar, lower hemisphere, Crystal- 

lographic Ster-conets of calcite. Bedding is the horizontal line bisecting the pole jigure-1; and bedding 

pcipcridicular is at North (mpirsented by the tick). The individual pole figures are contouird in 

multiples of unifor7n distribution (NIUD). (HKL) = the pole to lattice plane. N= the number of 

indexed points with a MAD of < 1. The black square represents the maximum concentration of 

ci-ystallographic orientations (blue), and the empty circle represents the minimum concentration 

of crystallographic orientations (red). Note the varying contour intervals between pole figures. 

pJ*J refers to the individual pole figure. fabric intensity (Equation 5.15). Z-direction samples are 

perpendicular to bedding, and therefore do not contain a horizontal line (bedding). The bedding 

plane is irpre. sented by the perimeter of the circle. For an ezplanation of sample nutriber notation 

see Appendix (B). 
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Figure 5.17: Single crystal calcite pole figure after 34129 measurements on a IcmxIcrn polished 
block. Illustrative non-polar, lower hemisphere, crystallographic stereonets of calcite. Bedding is 

the horizontal line bisecting the pole fiyures arid beddiny purpf, ndicular is (it North (irpresentrd by 

the tick). The individual pole figures are contoured in multiples of uniform distribution (MUD). 

(HKL) = the pole to lattice plane. N= the number of indexed points with a MAD of < 1. The 

black square represents the maximum concentration of crystallographic orientations (blue), and 

the empty circle represents the rninimum concentration of crystallographic orientations (red). 

pf J refers to the individual pole figure fabric intensity (Equation 5.15). 
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5.9.4 Phyllosilicates 

Using automated EBSD analyses muscovite crystallographic orientation determination 

wws not successful primarily because of poor quality diffraction patterns. Manual EBSD 

indexing was, however, shown to be more successful in the determination of muscovite's 

crystallographic orientation. The results of manually indexing muscovite grains are pre- 

sentcd in (Figure 5.18). Note that the results of the manual indexing are based upon 

96 individual grains. Due to there platy structure, muscovite, and in general phyllosili- 

cates, adopt a very simple orientation distribution whereby the basal platic approximately 

aligns parallel to the plane of bedding, whilst the a- and b- axes are more or less free 

to rotate about the c-axis within the plane of bedding. This observation of broadly 

uni-axial symmetry of muscovite crystallographic axes will be the basis of an analyt- 

ical stereographic approach used to calculate a phyllosilicate elastic stiffncss tensor in 

Chapter (6). 
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Figure 5.18: Phyllosilicate pole figurr. Th. e c-axis is aligned approximately normal, to the bed- 

ding plane, whilst the a- and b- axes freely rotate within this plane. Illustrative non-polar, lower 

hernisphcre. crystallographic stereonets. Bedding is the horizontal line bisecting the pole figures 

and bedding per7wndirular is at North (represented by the tick). The individual pole figures are 

contoumd in multiples of uniforin distribution (MUD). (IIKL) = the pole to lattice plane. N= 

the number of indexcd points with a MAD of < 1. The black square represents the inarintunt 

COYMC71trUtiOn Of crystallographic orientations (blue), and the empty circle represents the 'rnini- 

Tnuin concentration of crystallographic orientations (red). Note the variation in contour intervals 

between the pole figures. pf. ] refers to the individual pole figure fabric intensity (Equation 5.15) 
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Presented in Tables (5.1 and 5.2) is the raw data for the individual mineral phase texture- 

index calculations (J). Sample number notation is as follows; the small letter refers to 
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any number of repetitions of the same sample, X-Y-Z refers to tile direction of core 

that it was removed from, a large letter followed by a number represents that a sample 

was also used for palacomagnetic re-orientation. Where n/a appears, it means that the 

sample did not contain sufficient quantities of a mineral phase to enable its indexing. For 

example, 1663DY = sample number 1663, D the core was also used for palaeoniagnetic 

re-orientation and was removed from core plug Y (parallel to bedding). 

Frequency histograms have been plotted to facilitate the investigation of the relation- 

ship between mincral phase and absolute values of texture-indices (Figure 5.19,5.20 and 

5.21). Quartz has a very weak fabric texture (Figure 5.19). The text 1 ire- index of quartz 

throughout most of the samples (excluding any outliers) varies between 1, a completely 

random fabric, and 1.5, indicative of a very weak fabric texture. Tile frequency distri- 

bution of feldspar texture-indices suggest somewhat more clustered distributions than 

quartz, with a nican of 2.6 ± 0.8 (Figure 5.20). Most of the fabric text ure- ind ices for 

calcite are bctweeii 1.25, and 2.50 but with outliers at c. 12.50 for the single crystal cases 

(Figure 5.21). 
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Table 5.1: Calculated texture indices for all samples within Well 20618-8. Qtz. - quartz, Fspr. 

- feldspar and CIc. - calcite. See Appendix (B) for an explanation of the sample notation. 

Samplc Qtz. Fspr. CIC. 

1663b 1.22 2.71 5.74 

1663DY 1.43 2.86 12.20 

1663Z 1.40 3.69 3.22 

1784 1.31 2.30 2.43 

1784a 2.26 3.31 n/a 
1784b 1.28 1.92 1.49 

1841 1.13 1.56 1.20 

1909 1.21 2.55 6.73 

1909L3 1.14 2.00 1.20 

1950 1.46 3.24 1.41 

195ONY1 1.40 2.83 1.30 

207OX 1.20 2.06 1.14 

2073 1.23 3.29 1.48 

2073Z 1.53 2.69 1.90 

2129 1.32 3.62 1.71 

2129G3 1.36 3.62 1.71 

2192 1.28 5.15 1.94 

2194 1.18 2.21 1.11 

2194KY2 1.20 2.94 1.52 

2198 1.10 1.96 1.35 

2198NI1 1.07 1.76 1.41 

2198Z 1.16 2.25 1.49 

2198Za 1 1.11 1 1.84 1 1.47 
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Table 5.2: Calculated texture indices for all samples within Well 206113a-2. Qtz. - quartz, 
Fspr. - jeld9par, and CIc. - calcite. n/a - not pmsent. See Appendix (B) for an explanation of 
the sample notation. 

Sample Qtz. Fspr. CIC. 

1959 1.15 1.98 2.27 

1963a 1.11 2.05 2.88 

1963a2 1.27 3.00 1.75 

1963AX 1.19 2.54 1.74 

2015 1.25 2.19 1.75 

2023 1.15 2.24 1.56 

2028 1.28 3.31 1.83 

2028B2 1.11 1.90 n/a 

2034 1.21 2.10 n/a 

207OX 1 1.20 1 2.06 1 1.14 
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Figure 5.19: Frequency histogram for the quartz texture- index for all samples analysed. The 

textur-c-index (. 1) is represented by the x-axis and increases from the left (randorn = 1) to the 

right (increased crystal align7nent). Mean - 1.27, and standard deviation - 0.21. 

The mean, standard deviation (Kenney k Keeping 1962a), variance (Kenney & Keeping 

1962a), mininumn and maximum for the pre-processed (before removal of data outwith 1.5 

standard deviations) data for the constittient mincral phases are presented in Table (5.3). 

Any problems encountcred with anomalous data are identified and removed by applying it 

oil(, and it lialf standard deviation (S. D. ) filter to tile data. After applying a 1.5 S. D. data 

filter quartz liws tile lowest inean fabric intensity, S. D., variance, inininium and maximum. 

reldspar has the highest mean, S. D., variance, inininium and maximmil. whilst. calcite 

has intermediate values of fabric intensity (Table 5.4). The random distribution of 

individual mineral phase text ure-indices means that an approximation for the strength 

of fabric texture (:, in be (Ictcrinined by taking the nican of all calculations (excinding 

mithers): quartz = 1.27, orthoclase = 2.49, and calcite = 1.73. 

The texture-index (J) of all mincral phases is independent of both modal proportion and 

tile texturc-inclex and modal proportion of all other mineral phases (Figure 5.22). Given 

it Set Of Variables X1, X2, 
---Xk, tile scatter plot inatrix contains all tile pairwise scatter 

plots of the variables on it single niatrix format. If their are k variables, tile scatter plot 

inatrix will have k rows and k colunins and the ill, row and jtj, column of this niatrix 

is it plot of Xi versus Xj. Since Xi versus Xj is equivalent to Xj versus Xi tile Plot 

is omitted. This observation is important because ill multiple linear-regression when 

predictor variables are highly correlated, any one, variable may act as a surrogate for any 
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Figure 5.20: Frequency histogram for the feldspar texture-indev: for all samples analyscd (ap- 

proximately log-noi7nal). The texture-index (J) is represented by the x-axis and increases from 

the left (random = 1) to the right (increased crystal alignment). Mean - 2.60. and standard 

deviation - 0.76. 

Table 5.3: A verage texture-index properties for each constituent lninerul phase. Qtz. = quartz. 

Fspr. = feldspar. and Clc. = calcite. S. D. = standani deviation, Var. = variance, Mill. = 

inini, mum, and Max. = maximum. 

Phase Mean S. D. I Var. Min. Max. 

Qtz. 1.27 0.21 0.05 1.08 2.26 

Fspr. 2.92 2.05 4.20 1.56 13.4 

c1c. 2.41 2.27 5.16 1 1.11 1 12.2 

Table 5.4: The texture-index for each constituent mineral phase with a 1.5 S. D. filter. A bbrevi- 

ations - S. D. = standard deviation, Var. = variance, Min. = minimum and Max.. = inarintuin. 

Bold type - new texture index due to the filter of anomalous data. Qtz. - quartz. I-.,; pr. - frldspar, 

and Clc. - calcite. 

Phase Mean S. D. Var. I Min. Max. 

Qtz. 1.27 0.21 0.05 1.08 2.26 

Fspr. 2.49 0.59 0.35 1.56 3.69 

c1c. 1.73 0.53 0.29 1.11 3.22 
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of the others. Hence, as non of the samples are correlated it is possible to determine 

a function which describes the relationship between modal proportion and the intrinsic 

scisinic ailisotropy (Chapter 6). 
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Figure 5.22: Matrix scatter plot of each constituent mineral phase (Qtz = quartz, Fspr = 
feldspar-, and Clc = calcite) and respective texture-index (mineral phase+J). Plotted within each 
individual cell is the modal proportion (increasing front left to right) for each sample with m. spect 

to its texture-index (increasing upwards within each cell) and every other samples texturr-index 

and modal proportion. The scatter plot shows whether any correlation exists between an individual 

sample's modal proportion and respective texture-index and when cix)ss-correlated to all other 

sample's texture -indices and modal proportions. The matrix scatter plot (msists the determination 

of independent variable dependence. Given a set of variables XI, X2, - -. Xk, the scatter plot matrix 

contains all the pairwise scatter plots of the variables on a single matrix foi7nat. If there are k 

variables, the scatter plot matrix will have k rows and k columns and the iti, row and jth column 

of this matrix is a plot of Xi versus Xj. Since Xj versus Xj is equivalent to Xj versus X, the 

plot is omitted. 
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5.11 Discussion 

Calcite has been shown to generally exhibit a relatively weak fabric texture (c. 1.5 - 2.0), 

however, one sample contains an almost single crystal orientation. It is believed that 

as a result of early stage fluid flow that calcite has precipitated in crystal orientation 

uniformity into all the available pore space on at least a centimetre scale. Therefore, on 
the scale of an EBSD sample (1CM2) it appears as though there is only one calcite crystal 

orientation. Analysis of several different core orientations extracted from sample 1663 

has repeatedly shown the same result thus suggesting that the single crystal orientation 

could occupy up to 10cm's of pore space. Hence, the calcite cementation could act as a 
horizontal baffle to fluids and significantly reduce potential flow rates. 

Feldspar (orthoclase) and quartz have quite similar densities 2.57 and 2.65, respectively. 
Moreover, quartz is also significantly more resistant to weathering than orthoclase. Anal- 

ysis of the crystallographic depositional patterns of quartz and feldspar suggests that they 

are controlled by two quite different fluid flow processes. For example, quartz grains ap- 

pear to have a random crystallographic orientation irrespective of the depositional flow 

regime. Whereas, feldspar grains appear to be imbricated, with their longer axis oriented 

parallel to the predicted maximum flow direction. However, the alternative hypothesis 

is that the apparent difference in depositional patterns are actually only remnants of a 
biased sampling procedure. For example, the total number of orientation measurements 
for orthoclase ranged from four to eight thousand whereas for quartz the total number of 

orientation measurements varied between fifty and one hundred thousand. However, the 

law of large numbers states that the average of a randomly selected sample from a large 

population is likely to be close to the average of the whole population. On average each 

section contains approximately two to three hundred and fifty grains hence a sample 

selection of several tens of thousands is more than adequate sampling. 

Confidence in the ability of EBSD to automatically index silicielastic mineral phases 

correctly is a common concern within gcosciences. SEM-EBSD in this study, however, 

has proven to be a relatively robust and reliable technique for analysing most mineral 

phases commonly found in siliciclastic hydrocarbon reservoir rocks. Minor problems 

were encountered on occasion when attempting to index low symmetry minerals (e. g., 
feldspars) and poorly-crystallised phases (e. g., phyllosilicates). In general, it has been 

found that feldspars provide relatively good Kikuchi patterns, that is, quite strong and 
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distinct band patterns whereas, phyllosilicates were found to produce weak, diffuse band 

patterns. The addition of two new indexing files for orthoclase and muscovite have 

proved to be of some benefit as demonstrated by the broadly improved indexing rate. 

5.12 Conclusions 

Although it is well known that elastic rocks, especially shales, are elastically and there- 

fore scismically anisotropic there have been relatively few investigations into the various 

causes. Factors controlling seismic anisotropy include: LPO, non-random spatial dis- 

tribution of mineral phases, SPO, and aligned cracks, pores or micro-discontinuitics. 
However, as yet the relative contributions from each of these different factors has not 
been sufficiently quantified. Using SENI-EBSD analyses this chapter has investigated 

and successfully quantified the strength of fabric texture of the main constituent mineral 

phases of a suite of siliciclastic reservoir rocks. The results of these analyses have been 

further used to calculate the intrinsic seismic anisotropy due to the lattice preferred 

orientation of mineral phases, as shown in Chapter (6). 

In general, when compared to some highly-deformed rocks the strength of fabric inten- 

sity for the three main constituent minerals was relatively low. Quartz has been shown 

to have an almost random crystallographic orientation in siliciclastic rocks, with most 
indices occurring between 1 and 1.5. Feldspar's crystallographic orientations have on 

average been shown to be more clustered and possess a log-normal frequency histogram 

distribution. Calcite can also be thought to have a random crystallographic orientation 
(usually between 1 and 1.5) except where it occurs as the dominant pore filling cement. 

When Calcite occurs as the pore filling cement it can grow freely and thus in crystal- 

lographic uniformity. The texture-index (J) after the removal of potentially anomalous 

results using a 1.5 standard deviation filter is as follows: quartz 1.27, feldspar 2.49 and 

calcite 1.73. Hence, apart from possibly phyllosilicates, feldspars are considered to have 

the greatest affect on the bulk aggregate seismic anisotropy. Even though on occasion 

calcite can have a very high fabric intensity these particular results have been shown to 

be anomalous and unrepresentative of the entire sample population. 

The distributions of the quartz crystallographic axes are particularly weak and thus 

quite hard to determine. The c-axis of quartz (001) usually contains the strongest fabric 

alignment. The maximum alignment of (001) directions in quartz is usually either parallel 
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to the bedding plane, normal to the plane of the cut section, or oblique to the bedding 

plane, parallel to the plane of the the cut section. The location of girdles and position of 
the maximum crystal alignment arc also broadly similar throughout all the quartz polc 

figures. 

On aggregate the feldspar grains appear to have the strongest fabric alignment. Analysis 

of the individual feldspar pole figures suggests that the individual grains appear to be 

imbricated with their down dip direction varying with azimuth within the bedding plane 
(Appendix F). Two distinct yet similar systems of alignment can be identified, both of 

which generate the same style of grain alignment (grain imbrication). There is a single 

cluster within the [010] pole figure which is related to the girdle in [0011. Moreover, there 

is a single cluster in the upper-half of the [001) pole figure which is related to the broad 

girdle in [010]. These two different crystallographic orientations adopted by the feldspar 

grains both give rise to an imbricated style of grain fabric alignment. 

Two very different pole figure distributions are observed within the samples analysed 

which contained calcitc. Calcite is either observed to have a very weak fabric texture, 

almost random or a single calcite crystal orientation that can be up to tens of mm's and 

therefore significantly affect the LPO analyses. The single crystal orientation is likely to 

be due to cm scale porc occluding diagenetic calcite. 

Automated EBSD analysis of the crystallographic orientation of muscovite was not par- 

ticularly successful because of poor quality diffraction patterns. However, manual EBSD 

indexing was shown to be successful in the accurate determination of muscovite's crys- 

tallographic orientation. It is thought that due to muscovite's platy structure it adopts 

a very simple orientation distribution whereby the basal plane approximately aligns par- 

allel to the plane of bedding, whilst the a- and b- axes are more or less free to rotate 

about the c-axis within the plane of bedding. 

A matrix scatter plot of modal proportion versus strength of fabric intensity for every 

mineral phase against every other mineral phase demonstrates that their is no obvious 
linear correlation. This is an important observation in a number of ways. The fact that 

no relationship exists between modal proportion and strength of fabric intensity means 

that any model which is fitted to the data is not likely to be highly correlated. 
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Chapter 6 

Seismic anisotropy 

6.1 Introduction 

Seismic anisotropy is controlled by: LPO (lattice preferred orientation), the non-random 

spatial distribution of mineral phases, aligned porosity, and aligned fractures (Crampin 

1981, Babuska & Cara 1991, Mainprice ct al. 2000, NVendt ct al. 2003, Kendall et al. 
2006, Valcke et al. 2006). Because of the control of microstructure on seismic anisotropy 
it follows that seismic anisotropy could be used as a diagnostic for specific rock types. 

The calculation of the physical properties of a bulk aggregate from microstructural infor- 

mation is fundamental to understanding the importance of the role microstructure plays 
in bulk rock seismic properties. To experimentally determine anisotropic bulk aggregate 

properties using ultrasonic analysis would require many different directions of measure- 

ment to characterise it fully. It would also be difficult to isolate a SPO effect from other 

grain scale effects. Although it is understood that sedimentary rocks can be scisinically 

anisotropic, there have been relatively few investigations of the various individual un- 

derlying causes. The relative contribution from the various factors to observations of 

seismic anisotropy in sedimentary rocks is not well understood. In this part of the study 

the seismic anisotropy due to preferred mineral orientation will be investigated. Chapter 

(5) quantified the LPO (fabric strength) of the constituent mineral phases in a suite of 

siliciclastic hydrocarbon reservoir rocks using EBSD (electron backscattered diffraction). 

This Chapter will present the results of the calculations of seismic anisotropy due to the 

LPO of mineral phases alone. 

To enable and constrain the interpretation of P- and S-wave anisotropy data a forward 



152 Chapter 6: Seismic anisotropy 

model was devised. The model which is based upon a simple assumption about the 

nature of the fabric strength of the constituent mineral phases enables the prediction 

of anisotropy and velocity with different models of anisotropy and will in turn help 

guide the interpretation of the real data. The ability to quickly and accurately provide 

information about a rock's intrinsic seismic anisotropy from modal mineralogy alone is 

a useful tool to have. Assessment of the results obtained from SEM-EBSD analyses 

shows that the texture-index (J) or fabric strength of the individual mineral phases 

does not vary significantly or predictably throughout the reservoir. Therefore, with this 

observation in mind it is possible to take a simple-averagc of the individual texture-indices 

for each mineral phase and hence determine it's average elastic stiffness tensor. Then, 

with a prio7i knowledge of the modal mineralogy of a particular horizon as obtained 
from wircline logs or laboratory experiments it is then possible to predict the expected 

intrinsic elastic stiffness tensor. Using the prediction of expected elastic stiffness tensor 

it is then possible to calculate the expected P- and S-wave velocities in any direction 

from the Christoffel equation. 

Several workers have supported the simple, if not obvious, idea that P- and S-wave Veloc- 

ities of rocks arc related to mineralogy and porosity (Nur & Simmons 1969, Vcrnik & Nur 

1992a). Han (1986) found empirical regressions relating ultrasonic (laboratory) veloci- 

ties to porosity and clay content. Similarly, Ebcrhart-Phillips (1989) used a multivariate 

analysis to investigate the combined influences of effective pressure, porosity, and clay 

content on Han's measurements of velocities in water-saturatcd shalcy-sandstones. Using 

this simple idea the results of the analyses obtained from SEM-EBSD measurements were 

assessed using a linear multivariate regression to detertninc models which would predict 

the intrinsic P- and S-wavc anisotropy from modal mineralogy alone. This would then 

provide a means with which to estimate the expected intrinsic seismic anisotropy from 

a priori knowledge of the modal mineralogy of a paxticular reservoir unit. Nonetheless, 

these relations arc only empirical and strictly speaking only apply to the rocks studied. 

Future studies will decide how generally applicable these relations arc. By determin- 

ing models which accurately predict intrinsic seismic anisotropy from modal mineralogy 

alone allows a quick assessment to be made of the expected anisotropy for a particular 

horizon without the effort of having to analyse it using SEM-EBSD. 
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6.2 Estimation of seismic anisotropy from polycrystalline properties 

Given petrofabric characterisation a number of different methods are available to deter- 

mine the effective macroscopic property, such as, Voigt-Reuss-Hill (VRH), self-consistent 
(SC), and differential effective medium (DEM) modelling. Each averaging technique 
deals with an increasing order of microstructural complexity but with each method pre- 
dicting values that are progressively closer to those obtained by experimental methods 
(Alainprice et al. 2000, Wendt et al. 2003). 

The simplest and best known averaging technique for determining the effective elastic 
bulk properties due to LPO alone is VRH. Where LPO is the sole microstructural feature 

under investigation the Voigt and Reuss averaging schemes arc the best suited, in which 

upper and lower bounds are placed on material properties by taking weighted arithmetic 

and harmonic means respectively of the single crystal elastic stiffness tensors of each 

constituent phase. The VRH average is completely heuristic but does provide a useful 

approximation. These averages only use the: volume fraction, orientation, and individual 

crystal elastic constants of the constituent phases. No information regarding the shape 

or position of the grains is taken into consideration. The initial assumptions are that 

the aggregate is macroscopically uniform with microscopic heterogeneities and that the 

each constituent phase is isotropic, linear, and elastic. These basic assumptions can be 

justified to a certain degree because when the number of anisotropic grains is sufficiently 
large the orientations can be thought of as randomly distributed and thus the effective 

macroscopic behaviour will be isotropic (NIavko et al. 1998, Nfainprice et al. 2000). 

Nonetheless, the samples are physically not isotropic and therefore the assumption is 

inaccurate. However, the simplicity of VRH and the accuracy of the calculated results 

to experimentally obtained values mean that it is a useful way of estimating the bulk 

aggregate properties. 

The procedure for determining the aggregate elastic moduli devised by Voigt (1928) 

assumed that the strain was constant throughout the sample. In contrast, Reuss (1929) 

assumed that the stress was constant throughout the sample. Hill (1952) showed that 

the Voigt and Reuss estimates were upper and lower bounds, respectively. The Voigt 

average is very simply found by assuming that the strain is constant throughout the 

sample and that the strain is equal to the macroscopic strain of the sample (Alainprice 

et al. 2000). The effective macroscopic modulus, C*, is then estimated by a volume 
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average of the local stiffnesses C(gi) with orientation gi and volume fraction Vi, where, 

c ; Z:, cwoigt vic(gi)]. (6.1) 

The Reuss average is then found by assuming that the stress is equal the macroscopic 

stress of the sample. C* or S* is then estimated by the volume average of the local 

compliances, SOO, where, 

C* ; z2 CReuss V , S(gi)]-l (6.2) 
i 

and, 

S* ;: Zz, SReuss V (6.3) 

These two estimates are not equal for anisotropie solids where the Voigt is an upper 

bound and the Reuss a lower bound. A physical estimate should therefore be found 

somewhere between the bounds. Hill (1952) found that the arithmetic mean of the Voigt 

and Reuss bounds was often close to the experimental values. The Hill average is simply 

determined as the arithmetic mean of the Voigt and Reuss averages (Hill 1952) but has 

no theoretical justifcation. 

6.3 Calculating seismic properties 

Each indexed point obtained by EBSD analysis is associated with a set of Euler angles 

(according to Eulcr's rotation theorem, any rotation may be described using three an- 

gles). The ODF, f (g), is defined as the volume fraction of crystal orientations with an 

orientation in the interval, g to g+ dj in a space containing all possible orientations, 

AV/V =ff (g)dg, (6.4) 

where AVIV is the volume fraction of crystals with orientation g, f (9) is the texture 

function, and dg 17r2sinodVjdodý02 is the volume of the region of integration in 

orientation space (Mainpricc ct al. 2000). 

For every individual measured orientation, g, each reference crystal co-ordinate frame 

has to be rotated into the specimens co-ordinate frame using the rotation matrix, gij, 
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Cijkl(g) ý gipgjqgkrgitCmrt(go)i (6.5) 

where Cijkl(g) (Section 1.3) is the elastic tcnsor of the crystal in the sample co-ordinate 
frame, gij ý9 ((PI 9 OY (P2) the direction cosines based on the Euler angles, and CP, 'j (90) 

is the elastic tensor in the crystal co-ordinate frame. 

It is then possible to calculate the elastic tensor of the polycrystal by integrating the 

ODF over all possible orientations, 

Cijkl >M--'ý 
f 

Cimjki(g)f (g)dg, (6.6) 

where, < Cijkl >m is the bulk aggregate elastic tensor of mineral, m (Bunge 1982). 

The single crystal elastic tensors for all minerals used in this study to determine aggregate 

scismic properties are listed in Appendix (D). 

The elastic constants of the polycrystallinc aggregate obtained from the averaging pro- 

cedure of Hill (1952) are then used to calculate the seismic anisotropy attributed to the 

LPO of constituent mineral phases by solving the Christoffel equation (Christoffel 1910). 

The equations of motion for elastic media, are written, 

02U. 

at2 (6.7) 
axi 

at time t, where p is the density of the medium, aij is the 3D stress tensor, uj is the 

displacement, and xj is the spatial coordinate system (Kendall 2000). Substitution of 

Equations (1.1 and 1.4) into Equation (6.7) gives for homogeneous media, 

-3jout 
alut 92U, 

(6.8) 
oxjaxk gt2 

A plane-wave harmonic solution of (6.8) takes the form, 

t±xini/vn) 

ui = Aiew( (6.9) 

where A is the amplitude and w the frequency of a plane wave with unit normal, ni and 

phase velocity, vn. Substituting Equation (6.9) into Equation (6.8) gives, 

eijkl(nini - PVnäjkAk) ý Oe (6.10) 
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where 6jk is the Kroneckcr delta. Assuming A gives ilon-zero terms, 

detlrijklnknl - PV 26, jl =0 

and 

defl(-ijklPkP1 - Mil = 0. (6.12) 

Thus the phase velocities of the three wave fronts can be determined from tile three 

CigCllvaI1lC8 Of CijklPiPj which Correspond to one quasi-P wave and two quasi-S waves 

(Love 1944, Nye 1957). 

The phase velocities ill this study are presented m two lower hemispherical pole fig- 

tire projections. These illustrate tile P-wavc velocity, and fast shear-wave polarisation 

orientation (denoted by black ticks) with the degree of slicar-wave splitting contoured 

in the background (Figure. 6.1). The seisinic velocity pole figures were produced using 

open source software originally written by D. Mainprice (Mainprice 1990). Presented in 

Appendix (H) are thesingle crystal scismic properties for the constituent mineral phases. 

Vp Contours (krn/s) Vsl Polansation Planes 8 13 72ý09 
(DIhad 

ti, Itnoar 

1. 

6M, ix Vol-tV H 13 M, n Vol-ty -4 53 ýInadmg - hnear 

, 

Af-; ýýoPy -,,, 5,6 7", 
lower he-sphere 

,.., 3r-p 

Figure 6.1; Illustrahvc lower henusphem, velocity pole, figuye, foj. illyl, y. ystal 1,111, s(: ovitc (look- 

ing down onto the bedding planc/basal plane). The basal plane is represented by the perimeter 

of the, 771c polc figures from left-to-right represent: P-wave velocity distribution (k-mls), 

and (Ityrre of shcar-wave splitting (7o), the black ticks repirsent the polarisation orientatioft Of 

the fast -sit car-uya vc. Blue - Ifigh velocitYlanisotropy, and Red - Low velocitylansiotmPY. 

6.4 Individual constituent mineral phase seismic anisotropy 

6.4.1 Overview 

Presented in this section are the results of the single inincral phasc compressional and 

slivar-wave vclocity-anisotrolýy calculations. The single mineral pliase calculatiolis are 
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presented here to assist in the determination of the contribution made bY a particular 

mineral phase to the bulk aggregate intrinsic scismic anisotropy. 

6.4.2 Single mineral phase seismic anisotropy pole figures 

The velocity and anisotropy single crystal pole figures for quartz are shown in Figures 

(1.1,1.2 and 1.3) in Appendix (I). Presented in Figure (6.2) is an example of a typical 

quartz single inineral phase pole figure distribution. The velocity anisotropy symmetry 

patterns associated with quartz are broadly similar throughout samples that have a high 

quartz modal proportion (> 50%). Figures (J. 1, J. 2 and J. 3) in Appendix (. 1) show thc 

consitentcy of alignment of feldspar maximum P-wave velocity and the consistent ori- 

entation of fast shear-wave polarisation throughout all the samples analysed. Presented 

in Figure (6.3) is an example of typical feldspar single mineral phase pole figure distri- 

butions. Calcite has rather more randoin velocity-a n isotropy pole figure distributions Ls 

shown in Figures (K. 1 and K. 2) within Appendix (K). Presented in Figure (6.4) is an 

example of typical calcite single mineral phasc pole figure distributions. A summary of 

the P- and S-wave single crystal scisinic anisotropy calculations is shown in Table (6.1). 

M,. --ry =6 14 
24 

-, h. -DýI- 

V, I Pd--t- 

2 50 

Figure 6.2: Typical quartz single mineral phase velocity- anis ot ropy pole figure distributions. For 

an explanation of the diagram notation see Figure (6.1). 

A senii-log transform is shown to approximately lincarise the relationship between fabric- 

intensity (J) (Chapter 5), and the maximum P- and S-wave anisotropy. Plotting tile 

tcxturc-index for all phases and samples versus degree of maximum P- and S-wave 

anisotropy results in the degree of anisotropy approaching a inLxinium achievable value 

which is probably dependent upon the particular inincral phase. Every individual phase 

has a maximum texture-index associated with a single crystal orientation and an as- 

sociated maximum value for intrinsic scisinic anisotropy. Quartz is predicted to have 
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the least affect on the Imilk aggregate seismic anisotropy, with calcite next. and feldspar 

exhibiting the highest degree of inftence on the P-wave aggregate anisotropy, excluding 

affects from phyllosilicates. Phyllosilicates are not considered here because their orien- 

tation (list ribift ion wms calculated from the Bingham distribution and manual indexing. 

, ne relationship is stich that the degree of P-wave anisotropy increases rapidly as tllc' 

texture-index incrementally increases (Figure 6.5). Quartz produces a relatively tight 

cluster cxcluding a couple of outliers, that have low texture-indices and single mincral 

scismic anisotropy. reldspar, however, is observed to have the higher variability in both 

t('xtllt*(ý-il'(1(, x and restilting single iiiiii(, r«il anisotropy than quartz. On average tlie seis, - 

nkic anisotropy arising fro,,, t1le effect of feldspars is significant. Thv tvxtur(ý-indices 

and associated seismic anisotropy as a result of calcite is the most highly variable. In 

general, however, excluding potential sample anomalies (1663DY), calcite generally has 

a relatively low text III-e-index between 1-2 and thus resulting scismic anisotropy in the 

region of 2-4'Y,,. Qmtrtz Im-s the lowest amount of shear-wave splitting and has a signif- 
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Table 6.1: Calculated minimum (min. ) and maximum (max. ) P- and S-waiw anisotropy quoted 

in per cent attributed to a single mineral phasc. Qtz. - quartz, Fspr. - feldspar, and CIc. - 

calcite. 

Phase P-wave - niiii. P-wave - inax. S-wave - min. S-wave - max. 

Qtz. 1.20 4.80 1.47 6.43 

Fspr. 2.50 10.90 4.46 10.70 

c1c. 1.40 9.20 1.61 
1 

13.04 
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icant variation. Feldspar is no longer the most anisotropic mineral phase, calcite has 

the greatest variation, and is predicted to have the highest slicar-wave splitting (Figures 

6.6). 

6.5 Bulk aggregate seismic anisotropy predictions 

6.5.1 Overview 

The bulk aggregate seismic anisotropy predictions were calculated using QXRD deter- 

inined modal proportions (Chapter : 3), fine-clays (e. g., Laolinite) were approximated as 

having an isotropic distribution, an approximated phyllosilicate elastic tensor (as deter- 

inined bY taking an average of the Bingham approximation and EBSD manual indexing). 

and With the assumption of all isotropic distribution of a gas filled pore space. 

6.5.2 Bulk aggregate seismic anisotropy pole figure predictions 

The bulk aggregate velocity-anisotropy pole fimires for the entire suite of samples anal- m 

ysed arc presented in Figures (L. 1, L. 2 and L. 3) in Appendix (L). Presented iii Tables 

(6.2,6.3 and 6.4) are the intrinsic seismic velocit. y and anisotropy predictions for all of 

the samples analysed using EBSD. A summary of the bulk aggregate P- and S-wave 

velocit. v and aiiisotrojýv predictions are shown in Table (6.5). 

6.5.3 Ternary plots representing seismic anisotropy due to modal proportions 

Whell a svsteni, slich is a clastic rock, can be considered to consist of only tlirve main 

coinponciits the relative fractions of vach component call be easily plotted oil a simple 

ternar. N. diagrain. A typical rock with so,,, (, coll, I)OSitioll will plot at tile poilit that corrv- 

spoilds to the fractional vollillies of tile three components. Unfortunately, there are four 

conwolients within the rocks in this study: quartz, feldspar, calcite and phyllosiliCiltVs- 

To const riict it diagrain ws outlined previously some assumptions about a mineral pliases 

fabric-ilitensitY have to be Illade. Hence, quartz and calcite hroadly have or as near to wS 

possible a compleWly randoin mineral fabric, and, thus it was decided that there iliodal 

proportions would be added together oil a single axis. Plotting phyllosilicate content and 

t I'v conibilled total of quartz, calcite, and feldspar oil a ternary diagram with tile degree 

of both P- and S-wavc scisillic anisotrojýy as colour coded symbols clearly dcalonst rates 

I liat phYllosilicate content lia: s a significant impact oil the degree of predicted anisot ropy 
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Figure 6.5: A se7ni-log plot of the tex-ture-index versas the calcalatcd P-tvart, amsotropy fol thc 

individual constituent mineral phases. Notation: qaartz - red circle, feldspar - blae cryms, and 

calcite - green star. A senti-log t7unsform approximately linearises the relationship between fabric 

strength intensity (J) and the degree of P-wave anisotropy. Hence, the. model that describes the 

relationship between fabric intensity, and P-wave anisotropy is intrinsically linear. 
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Table 6.5: Statistical descriptives for the suite of samples for bulk aggregate P- and S-wave 

anisotropy quoted in lo. S. D. = standard deviation, Var. = variance, Min. = minimum and 

Max. = maximum. 

Wave typc Mean S. D. Var. Min. Max. 

p 

S 

7.29 

6.42 

2.91 

2.80 

8.48 

7.86 

3.10 

2.31 

14.30 

13.65 
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(Figures 6.7 and 6.8). Moreover, by plotting different combinations of constituent min- 

crals, such as, feldspar and calcite it becomes evident that the feldspar component is 

also a significant contributor to the bulk aggregate seismic anisotropy (Figures 6.9 and 

6.10). 

6.6 Predictions of seismic anisotropy using modal proportions 

6.6.1 Velocity anisotropy-modal proportion model: predictions using the elastic tensor 

With only a limited number of LPO SENI-EBSD measurements available and to allow 

estimates of the intrinsic seismic properties of sections of the reservoir not sampled, it 

is important to derive a predictive model. The following is a recipe that ultimately 

allows the prediction of the velocityýanisotropy (Cij tensor) of any rock within the Clair 

field. This assumes, however, that the intrinsic nature of the mineral alignment does 

not vary significantly or consistently throughout the reservoir. In addition, individual 

sample directional information related to the Cij is lost as it is only an average of the 

suite of mineral phase elastic tensors that is used in the calculations. The tcxturc-index 

does not vary significantly with modal proportion nor are they correlated, which has been 

demonstrated in Chapter (5). Therefore it is possible to use a fixed value which describes 

the strength of fabric for each constituent mineral phase, and thus in turn, determine 

the relevant elastic tensor which describes the strength of fabric for the particular phase 

(Figures 6.5 and 6.6). 

The program rock. f calculates the effective elastic constant of a rock comprised of quartz, 

feldspar, calcite/dolomite, micas (muscovite, biotite, and chlorite), fine-clays (kaolinite 

and illite), and pores (Appendix D). The quartz, feldspar, and calcite elastic tcnsors were 

determined by EBSD analyses. The mica elastic tensor was determined based upon an 

average of the Bingham model, manual EBSD indexing, and image analysis. The fine- 

clays were assumed to be isotropic in their distribution. The pores were assumed to be 

randomly distributed, and spherical in shape. The volume fractions were determined by 

QXRD analyses of core samples. The porosity was determined from Well logs, and Hg 

injection of core samples. 

Calculation of the elastic stiffness tenser requires a p7iori information about the modal 

proportions. The program needs a data file containing an the modal fractions of the 

different mineral phases for the desired sample. The format is as follows with: modal 
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Figure 6.7: Tcrnary diagrant illushuting hou) the modal content controls absolute P-wave an- 

siotmpy. The colour scale bar irpresents the degree of anisotropy in per cent. The data points 

arc colou'rrd ry, lativc to their position on the scale bar. Fspr. - feldspar, Phyllo. - phyllosilicates, 

Qtz. - quartz and Cal. - calcite. The Matlab software used to produce this diagrain was written 

by the CUITC71t author. 
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The data points an, cololard rylative to their position on the scale bar. Fspr. - feldspar, 

Phyflo. - phyllos i1i cat cm, Qtz. - quartz and Cal. - calcite. The Matlab soffivair. ased to produce 

this diagm? n was written by the camwt author. 



169 Chapter 6: Scisinic anisotropy 
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Figure 6.9: Ter7tary diagrain illustrating how the modal content controls absolute P-wavc ari- 

siot7r)py. The colour scale bar represents the degree of anisotropy in per cent. The data points 

are coloured relative to their position on the scale bar. Fspr. - feldspar-, Phyllo. - phyllosilicates, 
Qtz. - quartz and Cal. - Calcite. The Afatlab software used to produce this diagrarn was written 
by the current author. 
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Phyllo. - phyllosilicates, Qtz. - quartz and Cal. - calcite. The Matlab softwarv used to produce 
this diagram was written by the current author. 
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number (each mineral phase was assigned a number), and volume fraction expressed 

as a fraction of 1 (not per cent). The program also requires the single crystal elastic 

stiffness tensors for each constituent mineral phase. The program reads in the modal 

proportion file and the relevant elastic stiffness tensors and then performs a simple Voig-t 

average as described in Section (6.2). As an extension it would also be possible to add 

additional compliance terms to the calculations based on auxiliary information (e. g., 

cracks), and use the model to provide a tool for interpreting estimates of anisotropy 
from seismic data. The model could also be used to predict anisotropy parameters that 

are commonly required in seismic data processing, such as, anisotropic depth migration. 

6.6.2 Anisotropy- moda I proportion models: empirical relations for siliciclastic rocks 

Empirical relations have been devised which enable the interpretation of P- and S-wave 

anisotropy data in sections of reservoir not previously sampled. Using a simple multiple 

linear-regression combined with a test of ANOVA (analysis of variance) it was possi- 

ble to calculate models which forward predict the approximate intrinsic P- and S-wave 

anisotropy attributed to modal proportion alone. This was conducted using Gauss- 

Alarkov assumptions. Gauss-Markov essentially states that the errors are not assumed 

to be normally distributed, nor are they assumed to be independent but only uncorre- 

lated, nor are they assumed to be identically distributed. 

Multiple linear-regression is a straight forward extension of the simple linear model. 
Multiple linear regression attempts to model the relationship between two or more ex- 

planatory variables and a response variable by fitting a linear equation to the observed 

data. Every value of the independent variable x is associated with a value of the depen- 

dent variable y. Given n observations, the model is specified as, 

Yi ` 00 + 01XI + 02X2 + i6mXmg 
(6.13) 

where: 

xj, j 1,2., M, represent m different independent variables; 
00 intercept; 

)3j, 1,2, ..., M, represent the corresponding m regression coefficients; 
0021 ... I Om explanatory variables. 
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The values of these parameters are estimated by the method of least squares. The 

method of least squares minimises the sum of the squares of the residuals as follows, 

n 

SSE = minp( ...... q, 
1: (Yi 

_ po _, 3 1X, l p 
px, P)2. (6.14) 

i=l 

In the least squares model, the best fitting line for the observed data is calculated by 

minimising the sum of the squares of the vertical deviations from each data point to the 

line. Because the deviations are first squared, then summed, there are no cancellations 
between positive and negative values. This is carried out by solving p+1 simultaneous 

equations for the p+1 unknowns. The estimates of P are given by the unstandardised 

coefficients. As in single regression the residuals are used to check the model assumptions. 

Multiple linear regression attempts to fit a regression line for a response variable using 

more than one explanatory variable. The ANOVA (analysis of variance) calculations for 

multiple regression are nearly identical to the calculations for simple linear regression, 

except that the degrees of freedom are adjusted to reflect the inunber of explanatory vari- 

ables included in the model. The modal proportions of quartz, feldspar, calcite/dolomite, 

phyllosilicates (muscovite, bioitite and chlorite), and the fine-clays (kaolinite and illite) 

were analysed using an ANOVA multiple linear regression to determine the appropriate 

input parameters. An ANOVA, is sometimes called an F-test, and is closely related to 

the t-test. The major difference is that, where the t-test measures the difference between 

the means of two groups, an ANOVA tests the difference between the means of two or 

more groups (Miller 1997). ANOVA essentially consists of calculations that provide in- 

formation about levels of variability within a regression model and form a basis for tests 

of significance. Then by perforn-dng a stepwise multiple linear-regression using the modal 

proportions of the constituent mineral phases (as determined from the ANOVA test), 

and a 95% confidence interval, results in the following function 

Y= 27.257 + 0.129.,, - 0.288.,, - 0.305.,, - 0.189,,, (6.15) 

where: 



172 Chapter 6: Scisinic anisotropy 

y predicted value for P-wave anisotropy 

XI phyllosilicate modal proportion ((Y(, ); 

3.2 quartz modal proportion ((/()-, 

X: i feldspar inodal proportion (VO); 

X. 1 calcite modal proportion (%). 

Using tit ANOVA for multiple linvar regression shows that to calculate. the vxPcctcEI 

intrinsic compressional-wave anisotropy to within 957c confidence. the percentage of 

tine-claYs and porosity are not required (Equation 6.15). The. residuals of the regression 

(goodness of fit) (-all be assessed by examining the standardised normal probability plot 

(otherwise known a.,,, the P-P plot) (Figure. 6.11). A probability-probability (P-P) Plot 

is iised to see if it given set of data follows a specified (list ribution. The P-P plot shOws 

tit(, observed cumulative probabilities of occurrence of the standardised residuals oil the 

X-axis and tit(, expected normal probabilities of occurrence oil tit(, Y-axis. such that it 

45" line will appear when tit(, observed conforms to normality and tit(' ass'llilPtioll of 

normally distributed error is met. Simply, the straighter tile. line formed bY the P-P 

plot. tit(' Illore tit(' vilriable's (list ribut ion conforms to the selected test distribiltiOll. It 

is observed that the residuals approximate a normal distribution and as such show that 

the "I'lltilAc regression is it reasonablc tit. 

TllV Rlsidllals of the P-Wave multiple regression call further be assessed agaillst a Plot 

of Stalldardised re'sidlials against standardised prc(licted values (Figure 6.12). A stall- 

dardised scatterplot of the standardised predicted dependent variable (ZPRED) bY the 

slandardised residuals (ZRESID) should show a random pattern across the entire range 

of' ZPRED When. ill regression, error is honioscedastic (a set of statistical (list rihi itions 

having the same varinnev). That is, when the regression model is vqiially accurate across 

ardised resi( hials shows a random distri- tlW rallge of the deiwndent. Thv plot of standi 

butioll of data points and further supports the models adequacy ill describilig 

anisotrop. v from Equation (6.15). 
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Normal P-P Plot of Regression Standardized Residual 

Dependent Variable: Penis 
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Figure 6.11: Standardiscd normal piobability plot of P-a-avc amsotropy. At P-P pfi)t shows 

the obscrvcd carnalativc probabilities of occart-cricc of the staridardiscd irsidnals on thc X-axis 

and the expected not7nal pmbabilitiCS Of 0CCIIT7Y'71CC 071 thC Y-axis. Pic stmightcr thc line formed 

by the P-l' plot, the more the variable's distribidion confoi-ots to thc scIcctctl tf, st distriblitiol). 

SPSS was itsed to produce this figin-c. 
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Figure 6.12: Plot of P-wave standardiscil 1-csid"al. s. A staodard/scd sctiftcrldot of the staliflard- 

iscd predicted depentictit variable (ZPRED) by tlic standardiscd residuals (ZHESID) should shou, 

a random pattern across the entim, 7nnge of ZPHED when, in wgirssion, thf, vi holoosce-das- 

tic (a set of statistical distributions having the saint, variance). SPSS was uscd to pinduce, this 

figurp. 

Regression Standardized Predicted Value 
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Performing the salliv procedim, (ANOVA intiltiple linvar i-(, gr(, ssioii) to predict the degree 

of shear-wave splitting results in. 

Zý 14.73 + 0.244.,., - 0.153,,.., - 0.166-131 (6.16) 

z predicted value for shear-wave splitting 

niodai proportion ('/0); 

X. ) (piartz niodal proportion (Yo); 

X: j feldspar modal proportion ((Y(, ). 

Using an ANOVA for nitiltiple linear regression shows that to calculate the expectv(I 

intrinsic shear-wave allisot. ropy (() within ! )5/( confidencc. the percentage of* fin(-cla. vs, 

calcite and porositY nre not required (Equation 6.16). The same procedure for assessing 

I lic abilitY of tlic to I'lilly determine the S-wave anisotrop. v from modal proportions 

is shown in Figurcs (6.13: G. 1 1). It can be seen that the model does satisfactorilY pi-vdict 

, S-w; iv(, anisotropy from modal proportions. 
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Normal P-P Plot of Regression Standardized Residual 

Dependent Variable: Sanis 
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Figure 6.13: Statidardised normal probability plot of S-irave anisotiy)py. The P-P plot sh"Irs 

the observed carnalative probabilities of occurrence of the standanliscd irsiduals oit the X-axis 

and of expeCted norinal probabilities of occurnvicc on the Y-axis. The stryzightcr the 1mc formed 

by the P-P plot, the 7norc the variabIc's distribution conforms to the selected test disti-ibntion. 

SPSS was ased to produre th7s figurc. 
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Figure 6.14: Plot of S-warc standardiscd irsidual. s. .1 statidaryll-"'(1 -s((Ittt 17)/Ot of the' 8MIld"'(1- 

iscd pirdicted dependent variable (ZPRED) by the standardised irsiduals (ZRESID) should shote 

a random pattern across the entire range of ZPRED when, in, ir"firrssioll. the cl-mr. is hooloscc(Ins- 

fie (a set of statistical distributions having the saine variance). SPSS was used to pmducc this 

foure. 
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These relations are empirical and thus strictly speaking they only apply to the rocks 

studied. The result, however, should extend in general to many siliciclastic reservoir 

rocks. If possible the regression coefficients should be recalibrated at the site being 

studied. Note the extrapolation of the results to values of modal proportions outside the 

range of the experiments is not recommended. 

6.6.3 Modal proportion model results 

Presclited within this section are the results obtained from the modal proportion models 

as described previously (Figures 6.15; 6.16). On average the niultivariatc linear regres- 

sion model underestimates the bulk aggregate anisotropy when compared to the values 

predicted by the average of tile elastic stiffness tensor. Nonetheless, it appears that 

qualitatively both models broadly agree. Simply plotting and taking all average of the 

compressional and shear-wave velocity anisotropics as a function of depth highlights the 

variation in bulk aggregate anisotropy throughout both wells (Figures 6.15; 6.16). The 

predicted anisotropy is high, at the top of both wells (in the overburden), as would be 

expected of phyllosilicate, and clay-rich rocks, whilst within the reservoir tile prc(licted 

anisotropies are oil average significantly lower (approximately < 10%). 

A simple average of the anisotropies within each horizon appears to serve as a good esti- 

mate of expected intrinsic anisotropy on a global field wide scale. Consider a wave which 

lia. s it short wavelength compared to the layer thickness, the wave will then travel through 

each layer inore-or-less independently. But, a problem arises because the fundamental 

underlying assumption (A/L << 1) is not valid in the earth's subsurface as layers usually 

have it much shorter wavelength than the seismic wavelength. So when a long-pcriod 

wave passes through a sequence of thin layers it deforms many layers at once and so the 

velocity is a different average of the layer properties. This problem was solved by Backus 

(Backus 1962). It was previously shown, however, by Valcke (2003), Valcke et al. (2006) 

that their appears to be no advantage gained by doing a more complicated Backus style 

average. Moreover, it was further shown by Valcke (2003) that no extra anisotropy is 

gained by taking into consideration the effect of inicrolayering as the difference between 

the clay-rich and sand-rich elastic tensors were not sufficiently different. Quite, possibly 

the difference in stiffness between the apparently notably different sand-rich and clikv-rich 

layers were not in fact that different. Hence, when a layer is predominantly doininated 

by it stiff mineral phase such as quartz or calcite in comparison to say phyllosilicates 
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that a greater difference in stiffness may exist between the layers and thus the Backus 

style average inight prove to be useful. 
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Figure 6.15: Maximum rompressional-wave scisinic anisotropy as a fiinction of depth dize to 

crystal orientation effects alone. The left hand well log is the per cent anisotropy (/'0) as deter- 

mined by linear regression methods whilst the Tight hand well log is as deter7nined by averaging the 

elastic tensor. Thr GAIT program ? isrd to proAce this fig? ire was written by Prof . 1-M. Kendall. 
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Figure 6.16: Alaximain shcar-wave anisotropy as a fanction of depth dw, to crystal orientation 
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r(girssion incthods whilst the right hand well log is as deterntined by a-ve7nging the elastic tensor. 
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6.6.4 Confidence intervals and significance tests: modal proportion-an isotropy for- 

ward models 

Presented in this section is the procedure with which the empirical relation models (P- 

and S-wave anisotropy predictions) and the elastic stiffness tensor model are qualiti- 

tatively criticised using two statistical methods, the paired t-test (Coulden 1956) and 

Wilcoxon test (Wilcoxon 1945). Statistics allows us to make inferences about tile. ex- 

pected global data set (those expected observations) oil the basis of tile sample data set 

(limited number of observations). Statistics, however, cannot prove beyond all doubt 

but it does provide a means with which to determine tile plausibility of competing Ily- 

potheses. The model predictions, are exactly that, and will not necessarily be identical 

to those predicted by EBSD, as EBSD determined values of anisotropy also take into 

account natural variation. 

Quite simply a confidence interval is an interval in which a measurement or trial falls 

corresponding to a given probability (Kenney & Keeping 1962b). Whereas. a significance 

test is a test for determining the probability that a given result could not have occurred 

by chance. Essentially, this section will analyse and test the capabilities of the two 

models (empirical relations and average text ure- i udex) to accurately determine those. 

values of scisinic anisotropy as determined froin SE'Nl-EBSD derived data. 

Presented in Table (6.6) are the maximum P-wave anisotropy values as determined from 

the SEM-EBSD, empirical formula regressions, and elastic tensor averages. Furthermore, 

presented in Table (6.7) are the maximum shear-wave splitting (S-wave anisotropy) val- 

ues as as determined from SE. NI-EBSD analyses, empirical formula regressions, and shn- 

plc elastic tensor averages. The P- and S-wave tables of anisotropy predictions against 

the values of anisotropy as determined by EBSD provide a quick way to rapidly anal- 

yse how well the two models (empirical relations and elastic tensor average) predict 

anisotropy throughout all the samples. Where, no value for P- or S-wave anisotropy 

exists for EBSD analyses, it means that the sample was either not well consolidated or 

had a very high clay-inica content and thus could not be reliably analysed by clectron 

microscopy. Presenting the information for comparison in tables is a relatively good 

method of analysing the fit of the data but it does not allow a quantitative comparison 

to be made. 

The easiest way to determine whether a model accurately and correctly predicts the 
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as-measured data as predicted from SENI-EBSD analysis is by simply using an x-y cross- 

plot (Figure 6.17). It can be seen from a cross-plot of the different models that predict 

anisotropy that the results of the predictions are normally distributed about the linc 

x=y. Ideally, the values would lie perfectly upon the line x-y, however, there does seem 
to be a little negative drag on the y-axis values. This suggests that the values of P- 

and S-wave anisotropy as predicted from the two models (empirical relations and elastic 
tensor average), on average, under predict the bulk aggregate anisotropy as expected 
from the LPO effect of grains alone. Figure (6.18) shows a comparison between the 

P- and S-wave seismic anisotropy predictions obtained from the average elastic tensor 

method and the linear regression method. 

Presented in Tables (6.8; 6.9) are a comparison of the different statistical descriptives 

of the predictive models for P- and S-wave anisotropy. It is apparent from analysis 

of the P-wave anisotropy predictions in Table (6.8) that the empirical relation models 

most accurately predict the expected data set. In general, however, both the predictive 

models appear to under and over estimate the values of maximum and minimum P-wave 

anisotropy. As the empirical formulae were derived from a multiple linear regression it is 

expected that the predictions would be more accurate than those obtained from a simple 
linear average of the single mineral elastic stiffness tensors. Moreover, the empirical 
formulae used to derive seisudc anisotropy were determined using a 957b confidence 
interval, and hence should on average better approximate the values obtained by EBSD 

analyses. As with the P-wave anisotropy predictions the predictions of S-wave anisotropy 
by the two models (empirical linear regression and average elastic stiffness tensor) appear 

to both under and over estimate the maximum and minimum values. As with the P-wave 

anisotropy predictions the empirical formula most accurately predict S-wave anisotropy. 
So far, analyses of the ability of the two different methods of predicting anisotropy were 

based upon relatively qualitative assessments. Here, relatively standard statistical tests 

have been applied to assist in the determination and verification of the ability of the two 

different mathematical models (empirical linear regression and average elastic stiffness 

tensor) to accurately and correctly predict bulk aggregate seismic anisotropy. A paired 

t-test (Goulden 1956) and the Wilcoxon Test (Wilcoxon 1945) were performed. 

The t-test is described as follows, given two paired sets Xi and Yi of n measured values, 

the paired t-test determines whether they differ from each other in a significant way 

under the assumptions that the paired differences are independent, and are identically 
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Table 6.6: Comparison of the EBSD determined maximum P-wave anisotropy, empirically 
derived formula, and simple elastic tensor averages. Model refers to the predictive model used. 
EBSD - derived from LPO analysis, Emp. - empirical formula derived by linear regression and 
Cij - average of the single phase constituent elastic tensors. Depth is in metres and anisotropy 
is in per cent. 

Depth EBSD Emp. Cij. 

1663 7.63 7.30 4.60 

1784 8.50 7.90 4.08 

1788 - - 16.2 

1841 14.30 14.47 14.5 

1909 3.10 5.03 3.3 

1950 4.90 4.23 4 

1959 5.60 7.00 4.70 

1963 - 10.87 7.9 

2015 4.10 6.04 4.40 

2023 5.70 5.96 3.50 

2028 7.70 7.99 6.40 

2034 12.90 13.36 10.90 

2070 9.60 7.76 4.9 

2073 10.45 9.54 8.20 

2088 - - 9.5 

2129 3.55 2.18 2.2 

2192 4.60 5.18 3.00 

2194 4.85 4.52 2.50 

2198 6.85 1 6.77 1 6.7 
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Table 6.7: Comparison of the EBSD determined niaximunt shearýwave splitting (S-wave 

anisotropy), empirically derived fomula, and sintple elastic tensor averages. Model refers to 

the p7rdictive 7nodel used: EBSD - derived froin LPO analysis, Ernp. - empirical formula derived 

by lincar irgressi . on and Cij - average of the single phase constituent elastic tensors. Depth is in 

inctirs and anisotropy is in per cent. 

Depth EBSD Einp. cij. 

1663 7.25 6.77 4.08 

1784 7.26 7.29 12.00 

1788 - - 14.78 

1841 13.65 13.76 13.41 

1909 2.89 4.56 2.93 

1950 4.06 3.67 4.23 

1959 5.16 6.46 4.23 

1963 - 10.7 7.32 

2015 3.35 5.00 3.80 

2023 4.15 4.66 3.28 

2028 6.32 6.19 5.35 

2034 11.18 10.82 9.54 

2070 7.86 6.44 4.28 

2073 9.73 8.66 7.19 

2088 - - 8.17 

2129 3.19 2.19 2.02 

2192 4.10 4.17 2.57 

2194 4.21 3.71 2.29 

2198 5.58 6.73 5.76 
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Figure 6.17: EBSD derived seismic anisotropy pyrdiction8 compared to the p7j, dictions obtailloyl 

from the empirically derived formulae and the average of the constituent single mineral phase 

elastic tensor8. The x-axis represents the values as predicted from calculations using EBSD and 

the y-axis represents those values calculated fry)Tn the empirical f677nulae or by averaging the 

single constituent mineml phase elastic tensors. The black line repir. sents x=y. 



184 Chapter 6: Seisinic anisotropy 

uu 

I 

a 
3 

10 

00 

10 

ýr 

Figure 6.18: (7omparison of the P- and S-wave seismic anisotropy predictions obtained from 

the avcrage elastic lensor inrlhod and the linvar Trqrrssion, mrlhodol(ýqy. 

2Z r4 12 m 10 r r4 (D 

JOSWI j! lsma a21wAv 



185 Chapter 6: Seismic anisotropy 

Table 6.8: Comparison of the, ability of the two different predictice models to correctly and 

accurately determine P-wave seismic anisotropy. Model refers to the predictive model used (EBSD 

derived, Emp. - empirical fo? -mula and Ave. - average elastic tensor), mean is the average of 

all predictions, S. D. is the standard deviation, the minimum refers to the lowest value, and the 

maximum the highest value for seismic anisotropy (Yo). 

Model Mean S. D. Min. Max. 

EBSD 7.30 2.91 3.10 14.30 

Emp. 7.30 2.72 2.98 14.48 

Ave. 6.90 4.14 2.20 16.20 

Table 6.9: Comparison of the. ability of the two different prp. dirli?, p models to roy-m. rtly and 

accurately determine S-wave seismic anisotropy. Model refers to the predictive model used (EBSD 

derived, Emp. - empirical formula and Ave. - average elastic tensor), mean is the average of 

all predictions, S. D. is the standard deviation, the minimum refers to the lowest value. and the 

maximum the highest value for scisrnir anisotropy (Y, ). 

Model Mean S. D. Min. Max. 

EBSD 6.41 2.80 2.31 13.65 

Enip. 6.57 2.68 2.18 13.76 

Ave. 6.13 1 3.86 2.02 1 14,78 
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normally distributed. 

To apply tile, test, let ýj = (Xi X) and (Yi 

Then define t Iýy, 

(ýkl fl)2 

With referei ice tot lie t-tal)le at (, n I+ 712 - 2) degree of freedom (assuillilig p=0.05), if the 

calculated t value exceeds the tabulated value then the means are significantly different. 

For example. if the calculated t value exceeds the tabulated value for p=0.05 then there 

is a 95(/v chance of the means being significantly different (or 99X for p=O. ()()l). 

The Wilcoxon signed rank test is a non-parametric (no underlying assninptions about 

the distribution of the observed data) alternative to the paired t-test. It assumes there 

is informatimi in the inagnitildes of the differences between paired observations as well 

; is the signs. A rank test uses statistical ranks of data points. Tile differences of t1w 

paired Observations are calcillated and then ranked from smallest to largest by absoltite 

value. All the ranks associated with positive differences are added together giving the 

T+ statistic. 

Applying tile paired t-test, and Wilcoxon signed railk test to tile, empirically derived for- 

nuilac predicts that there is significant evidence to suggest that tiley J)otjj have compara- 

We inenns, mid variances. The results of the paired sample t-test for P-wave anisotropy 

have a paired difference: standard deviation of 1.02. inean of -0.01, and standard error 

nican of 0.18. Applying tile, saine tests to tile S-wave data as derived I)y tile. empiri- 

cal fornuila also resillts ill , positive assessment of means and variances with (11011911 

to sliggest that they are related. The results of the paired sample t-test for 

S-WaVe anisotropy have a paired difforence: standard deviation of 1.15, nivan of -0-16, 

and standard error nican of 0.20. 

Applying t1w paired t-test to the P-wave anisotrojýy as (Icterinined by averaging tile 

COlist it I if-lit single illilicral elastic stiffness teiisors results in a paired differences: inean of 

1.22, stan(bird deviation of 1.65. and a standard error of 0.41. Furthermore, performing 

the Same paired Samples test on the S-wave data results in a paired differences: 111"ll 

of 0.85, a standard deviation of 1.88, and a standard error nivail of 0.471. Using both 

the paired f-test, and Wilcoxon signed rank test there is sufficient evidence to sliggest 
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that both P-wave, and S-wave anisotropy approximate the predictions of anisotropY as 

determined by EBSD mineral analyses. 

It has been shown that both methods of determining bulk aggregate P- and 

anisotropy provide good approximations of aiiisotrojýv as determined experimentallY bY 

EBSD analyses. 

6.7 Discussion 

The Bingliain approach provides it nivans of predicting phyllosilicate mincra I orici it; it iol I 

in samples which have a very high clay-mica niodal proportion and which cotild not be 

examined by standard clectron microscopy techniques, stich as, SENI-EBSD. EBSD is 

restricted to samples which have a relativelY 101A, phYllosilicate content because of the 

uncertainty of EBSD to repeatedlY and rcliabl. v index crYstal orientations autoniaticall. y. 

The Bingliain model has been shown to be. successfid at determining the probabilitY 

of the orientation distribution of plat. y-niiiieral grains. The success of the Bingliani 

approximation. however, quickly breaks down in the circumstance wherebY t licre is not a 

uniaxial s. viiiiiietry of rotation about the vertical in tliv orientation of the platy surfaces. 

Moreover. it also falls down when there is not an iiiiiaxial s. vinnicti-Y (if orientation 

and reorientation of plat. y minerals (hiring compaction. These assumptions would not 

necessarilY hold in ati environment of 11011-11Ydrostatic compaction or NvIlen there is :1 

single (1011iiiialit flow direction (e. g., turbidites). Nonetheless, when the results of the 

Binghain approach were compared to those as determined bY mamial EBSD analYses 

thvY did closelY approximate one another. Similarly, the approximations of J)li. N. 1losili(-, It(, 

orientation also compared favourablY with those determined from the image anal. N. Sis of 

thin-sections. This, however, is also based 111)011 the assiIIIII)tion that the intersection of 

phyllosilicate basal planes is related to uniaxial symmetry of projection. 'nis as.. ", iniption 

would also break down and invalidate the results of the analYsis if the phYllosilicate 

orientations were also controlled within the bedding plane by some exterior mechanism. 

As stated, however, the Bingham approach in this series of experiments did approximate 

the results obtained from image analysis and manual EBSD indexing thus suggesting 

that either the assumption of uniaxial sYninietry of conwaction is valid and. or that 

there was no mechanism within the bedding plane consistentlY orienting phYllosilicate 

basal planes. 



188 Chapter 6: Seismic anisotropy 

The absolute values of velocity for the individual samples analysed as determined by 

the VRH (Voigt-Reuss-Hill) averaging scheme are high for porous sandstones and when 

compared to those obtained by laboratory testing (Chapter 4). The VRH scheme is based 

upon an approximation that all grains experience the same strain (Voigt) or the same 

stress (Reuss). However, to obtain a more sensitive and thus more accurate indication of 

the effect of LPO on elastic anisotropy a more detailed approximation is required which 

would take into account such variables as grain-shape, graiii-orientation, and the spatial 

distribution of mincral phases. Such that, the stresses and strains at the grain scale 

vary in a manner which satisfies stress equilibrium and strain compatibility. To recover 

values which are physically realistic therefore the method of Ponte Castaneda and Willis 

is proposed as a means for examining the compositional and microstructural controls on 

the elastic properties of siliciclastic rocks (Castafieda & Willis 1995). 

Presented are the bulk aggregate seismic anisotropy pole figure predictions for two dis- 

tinct end member lithotypes; a clean sandstone (quart zo- feldspathic rich), and a inud- 

stone (phyllosilicate rich) (Figure 6.19). The symmetries observed are typical of a Clair 

sandstone (orthorhombic) and mudstone (VTI). The sandstones are commonly corn- 

pletely dominated by a single point maximum of P-wave anisotropy and a complicated 

distribution of Vs, polarisations. The anisotropy observed within tile bedding plane 

varies azimuthally, whist also varying with increasing inclination. Njudstoncs have a 

far simpler symmetry pattern, whereby they have maximum P- and S-wave anisotropy 

within tile plane of bedding and minimum P- and S-wave anisotropy perpendicular to 

bedding. Vsl is aligned parallel to bedding within the bedding plane and at increasing 

intersection angles to bedding with increasing inclination. In general, samples near the 

top of tile two Wells have VTI symmetry styles whilst those deeper down tend to be 

more orthorhoinbic. 

The modal proportion empirical relations as determined by ANOVA multiple linear re- 

gression appear to provide a relatively good approximation of P- and S-wave anisotropy 

(Ille to LPO mineral affects alone. The relations, however, only provide an absolute Vallie 

of P- and S-wave anisotropy with no information provided about the overall expected 

syninietry of the sample. Furthermore, sensitivity issues will likely surround the phyl- 

losilicate modal proportion parameter and a small difference, in modal proportion will 

likely dramatically effect the output. No sensitivity aiialvsis has been conducted on the 

various parameters and it is unclear as to effect of the error propagation and instability. 
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Figure 6.19: Bulk- aggregate seismic anisotropy pole figures typiral of two end member lithotypes 

u-71hin thc (7airfield. Top - sandstone, and Bottom, - mudstone. Thr sandstone has a romplirnted 

orthorhombic style of syinmetry, whereas the Tnudstone is strongly vertically traits versely isot7y)pi(-. 

'The maximum P-wave, and S-wave anisotropy is significant in both lithotypes. Por diagram 

explanation see Figure (6.1). 

Therefore, it is suggested that all accurate determination of the phyllosilicate modal 

proportions with this methodology is absolutely paramount. Furt licri i lore, it is be noted 

that these results, strictly only apply to the rocks analysed within this study and that 

extrapolation of the results outwith the samples analysed could yield erroneous results. 

These relations do provide a quick incans of determining intrinsic anisotropy from inodal 

proportions alone and therefore will prove to be a useful implement ill the interpreters 

tool box. It is proposed that to r(-apply these formulae in different hydrocarbon field 

areas that the regression coefficients should be re-calibrated. nirtherinore. it is strongly 

suggested that sensitivity and instability analyses should be conducted to determine the 

robustness of the formulae and hence resolve the formulas limits of applicability. 

The arithmetic average of elastic stiffuess tensors provides a useful and reliable tool 

as a means of determining the effective elastic stiffness tensor of an aggregate. The 

methodology provides a convenient and yet simple means of upscaling the results of the 

small EBSD analyses to that of the scale of scismically observable horizons. As with the 

empirical relations no sensitivity analysis has been conducted and ideally a Monte-Carlo 
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investigation should be con(lucted. The approximation really falls down and hence the 

program breaks down at tile very limit of the text i irc- index values ass onlY a limited 

number of values have been obtained for very high single inincral content aggregates. 

This could be all even more pronounced problem with respect to a rock containing a very 

high proportion of phyllosilicate minerals. The main benefit over the empirical formulae 

is that it provides a means of determining the bulk aggregate elastic stiffness tensor 

and hence in turn the bulk aggregate seismic anisotropy. 'Nonetheless, as shown ill the 

confidence interval and significance tests it has been shown to be the least accurate of the 

two methods at approximating the absolute values of seismic anisotropy when compared 

to those obtained by EBSD analyses. The best approach that cotild be applied in the 

future is trying to determine a relationship, most likely. linear between the tc. xturc-indcx, 

modal proportion and maximum anisotropy of the individual constituent mineral phases. 

In the situation where all understanding of the nature of intrinsic seismic anisotropy of a 

unit within a hYdrocarbon reservoir is required tile empirical and elastic tensor averages 

offer a quick and easY waY to roughly approximate the expected anisotropy. For example, 

interwil velocities determined from wireline logs call he and are used when processing a 

field wide seismic survey. Likewise, estimates of seismic anisotropy andstyle of symmetry 

(-all be quickly determined from the average of the elastic stiffness tensor and used to 

assist, in the interprchtion of non-hyperbolic moveout data (typical of highly anisotropic 

horizons), for example, it would provide a useful starting point to aid the interpretation 

of the horizon being investigated. 

Estimating anisotropy parameters from surface scisinics is a very challenging topic. 

Knowledge of anisotropy is however required for accurate tiule-to-c[epth conversion and 

to improve. quality of stacked and migrated sections. It is essential that as much a 

pr-im-i information is gathered as possible. For example. using P-P waves with a 2D 

data set is severely limited by the acquisition gcouletr. v as no azinluthal information 

call be extracted. It is therefore only possible to look for evidence of anisotropy from 

non-hyperholic moveout. if noll-hyperbolic nloveout occurs then VTI anisotropy maybe 

present (Van der Ba. an &-- Kendall 2002). Successful estimation of actual anisotropy Pa- 

railleters can only be obtained with large offset/depth ratios (xlz > 2). Tile empirical 

and tvnsor averages provide the ability to forward predict anisotropy withill units ill the 

reservoir which have not beell analysed or determined by field wide anisotrop. v allalv- 

sis. Hence, an average of the individual layers individual scisinic anisotropy predictions 
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within a scisinically observable unit can be determined to aid interpretation of moveotit 

characteristics, AVOA analYsis and slicar-wave splitting. 

6.8 Conclusions 

SE. NI-EBSD commonly encounters problems associated with thc automated indexing of 

ininerals which possess strong basal cleavage planes, such its, phYllosilicates and fill(- 

grained clay minerals (Ullenleyer et al. 2000). Tile most coninionlY eniploYed technique 

in the analysis of phyllosilicate mineral orientation is EBSD manual indexing. Ali al- 

tenlative approach to the determination of phyllosilicate orientation is based upon the 

Bingliani model (Bingliain 1974). The Bingham model was chosen to be the most appro- 

priate model with Nvhich to determine froin a stervological approach the . YD orientation 

distribution of phyflosilicates (Bingliam 1974). BinglianCs distribution represents the 

portion of a trivariate Gaussian (list ribi it ion that intersects tile surface of it unit sphere, 

with varying ellipsoidal shapes of the underl. ving Gaussian contours producing it varict. v 

of distributional forms oil the sphere. Using the approach its determined by Bingham 

(Bingham 1974). phyllosilicate orientation was approximated from the probabilitY distri- 

bution of thin-section intersections. It was also found that the Bingham approximation 

for phYllosilicate orientations compared well with those determined from EBSD manual 

indexing, and from image analYsis of thin-sections. The absolute values of anisotropY 

obtained front image analYsis, manual indexing and stercological determination werv 

very similar. Moreover, the strength of the phylllosiiicate orientation's as determined by 

the various methods was also coincident thiis supporting the proposal that setcrological 

determination of phyllosilicate orientation was an acceptable approach. 

It has been shown in this chapter that undeformed siliciciastic hydrocarbon reservoir 

rocks can exhibit a substantial intrinsic scismic anisotropy due to the lattice preferred 

oriciftation of constituent mineral phases. NVith calciflations of compressional-wave seis- 

inic anisotropy due to ITO effects varying from cAT/c to c. 14.0(X for quartz-rich, dean 

sandstones and mudstones, respectively. Moreover, calculations of shear-wave anisotrop. % 

due to LPO effects alone varied from c. 2.3(7t to for (111artz-1-ich, cleall sandstolles 

and mudstones. respectively. Hence. this studY of scismic anisotrojýy has proved that 

there exists a potential to reveal interesting attributes about a rocks inicrostructure and, 

or modal mineral content from field wide observations of seismic anisotropy alone. The 
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styles of symmetry observed within the scismic anisotropy calculations are strongly con- 

trolled by the constituent mineral phases. Samples which are rich in qtiartz and feldspar 

generally possess an orthorhombic style of symmetry. Whereas. those rich in clays and 

micaýs (> 15(Y( ) tend to have a very strong VTI style of sYmnictry. It is observed that 

the relationship that exists between maximum P- and S-wave scismic anisotropy is di- 

rectly and linearly related to the log transform of the text ure-index (J). Nlorcover, it 

was also shown that both feldspars and micas appear to have considerable control over 

the absolute values of kilk aggregate scismic anisotropy and thus the styles of symmetry 

produced. 

To cimble mid constrain the hitcrpreta, tion of P- and S-wave anisotropy data a forward 

model was devised. Tile mode. 1 is based upon a simple inultiple-linear regression of 

the constituent Iniller'll pimses modal proportions and the resultant maxinitlin scislilic 

anisotropy as obtained from EBSD analyses. The resulting formulae have been shown to 

enable the accurate prediction of anisotropy and will in turn help guide the interpretation 

of tile observed data. Two verY simple empirical forinuale were derived that enabled tile 

prediction of the absolute values of maximum P- and S-Nx-ave anisotropy from modal 

proportions alone. 

Mirtherniorc, it similar model was derived from the. basic miderlying assumption that the 

strength of the texture-index for each individual mineral phase does not vary consistently 

or significantly throughotit the reservoir. Based npon this simple observation it lvas 

possible to take a simple-averagc of the individual texttire-indiccs for each mineral phase 

; 111(1 hence determille it's average elastic stiffness tensor. The individnal mineral pllase 

averages Were implemented into a simple calenlation that enabled the forward prediction 

of the expected intrinsic clastic tensor and lienuc using the Christoffel equation the 

determination of the p- and S-wave velocity and anisotropy. A simple program was 

written which would lise the modal proportions as an input and thus determine the 

expected intrinsic bulk aggregate clastic stiffness tcusor. The input components were: 

quartz, feldspar, calcite/dolomite, phyflosilicates (muscovite, biotite and chloritc). clays 

(illitc and kaolinite) and pore volmne. The calculation was conducted using a Voi9t 

average. 

Qualitative and quantitative assessments were conducted on the two different predic- 

tive "Ictliodologies to (111alitify the accuracy and ability of the varions 111o(jels to predict 

and standard anisotropy and velocity. The basic statistical descriptives such as nican, 
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deviation of the various methods were compared to provide a broad understanding of the 

failings of the individual models. Morcover, paired t-tests and Wilcoxon tests were con- 

ductcd to also ascertain quantitatively the ability of the techniques to predict anisotrop. " 

and velocity. Broadly, the empirical formulae have been shown to provide a more accu- 

rate description of the expected intrinsic anisotropy. Nonetheless, the empirical formulae 

only provide absolute values of anisotropy whereas the simple average of the elastic tensor 

provides insight into the symmetry of the expected sample. 
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Crack density inversion 

7.1 Introduction 

The causes of -Scislilic allisotrojýy are commonly considered to be the lattice preferred ori- 

entation of mineral phases (LPO). shape preferred orientation of grains (SPO), the non- 

random Spatial distributioll of mineral phases and preferentially aligned fractures, cracks 

and pores (Crampin 1981. Babuska S- Cara 1991, 
-Alainprice et al. 2000, Wendt et al. 2003, 

Ken(lall et al. 2006, Valcke ct al. 2006). Tile controls of scisinic anisotropy are therefore 

ultimately governed by a varietY of factors including aniong others the depositional flow 

direction and the in situ stress field during lithification. Therefore, all understanding of 

"(, isllli(. allisotropy could Yield inforniation useful for reservoir characterisation, such as, 

palvao. -flow directions, in sitit stress distributions and lithology. Nonetheless, most real- 

life rocks will contain a complicated inix of all the scismic anisotropy controlling features 

making it difficult to (Ictermine the impact of all individual feature. Hence. determining 

a method which allows tile differentiation and quantification ofthe variables controlling 

extrinsic and intrinsic scismic anisotropy would provide useful information for the better 

interpretation of observations of scismic anisotropy. 

Seismic velocities in rocks are sensitive to stress (Sayers 2002b). The presence of micro- 

cracks, and microporosity along grain boundaries greatly affects the velocity of elastic 

waves in rocks (Savers 1994). This is generally attributed to the closing of compliant 

cracks and grain boundaries. Cracks are puslied together as the confining pressure in- 

creases. As more and more of the cracks are closed the mechanical stiffness and hence 

velocities of the rock increase (Savers et al. 1990). It is well known that rocks containing 
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non-randonilY oriented cracks or which have a strong grain shape fabric are coninlonl. N 

elastically anisotropic. Similarly, in the presence of non-isotropic stress fields seisinic 

wave velocities in hydrocarbon reservoir rocks often show considerable stress-iii(hiced 

anisotropy (Savers &- Kachaiiov 1995). This is because the response of a discontinifitY 

to the applied stress depends oil its orientation relative to the applied stress field. 

There have been numerous studics of scisinic wave anisotropy as a consequence of applý- 

ing an anisotropic stress, including Holt k- Fjacr (1987), Savers ct al. (1990) and Scott et 

al. (1993). In general. most previous experimental work on the sensitivity of seismic wave 

velocities to an applied stress have largely concentrated upon the empirical relationships 

of the observed trends. Morcover. to ftilly cliaracterise the anisotropy of it natlirall. N 

occurring rock sample inany different ultrasonic velocity measurements are required. In 

this study it is assumed that the sample has at least it VTI style of symmetry. A VTI 

symmetry can be considered its a reasonable assumption because of the predominance 

of horizontal layering within sedimentary rocks. Only five different measurements are 

required to cliaracterise a %'TI style of sYninietry. However, it is more often than iiot that 

naturally occurring rock samples contain a variety of these lithological microst ri ict tires 

superimposed upon one another. such as, layering and it set of aligned fractures. There- 

fore, in sandstones which can contain horizontal layering, fracturing and grain boundar. N 

alignment can result in a less sYnimetric object, which would require significantlY m(m, 

measurements than that of VTI symmetry. 

The work carried out in this chapter is art anialgaination of the results obtained from the 

ultrasonic analyses (Chapter 4) and the elastic tensor predictions obtained from EBSD 

analyses (Chapter 5). Sayers (2002b) showed that it wits possible to predict crack densit, N 

and orientation from P- and S-wave ultrasonic measurements from an approximated 

isotropic elastic tensor. In this chapter the inversion scheme of Savers (2002b) has been 

expanded to include a pi-iori knowledge of the elastic stiffness tensor its determined by 

EBSD. It is important to note that the resultant scisinic anisotropy observations may 

not necessarily be related to cracks. It has to also be considered that similar observations 

of the sensitivity of elastic wave velocities to stress could be as a conse(Inence of grain 

boundarics and the soft interparticle constituents of ph. -Olosilicates (Savers 200,5)). 
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7.2 Crack density inversion - theory 

The approach used here in the determination of the orientation and density of crack-like 

micro-discontinuities (cracks, grain boundary udcro-cracks and compliant phyllosilicate 
interparticle material) is largely based on Sayers (2002b) with added extensions to utilise 
the multi-axis velocity measurements (Chapter 4) and a prioH knowledge of the rock 

matrix (Chapter 5). The anisotropy of the rock samples in this study are assumed to 

be at most orthorhombic. To fully characterise the elastic tensor requires P- and S-wave 

velocity measurements along the three principal axes, plus the off-axis P-wave velocities 

within each symmetry plane. The assumption that the background (intrinsic stiffness and 

symmetry of the sample) is orthorhombic seems reasonable for the samples considered 

since the LPO determined stiffness tensors show only small non-orthogonal terms. The 

following expressions as derived by Sayers & Kachanov (1991), allow ultrasonic velocity 

measurements to be inverted for to obtain the crack density tensor components. 

As shown in Sayers & Kachanov (1991) the elastic compliance of a sandstone can be 

written as follows, 

Sijkl ý 4jkl + ASijkl- 

Where S?, kl is the compliance of the rock matrix (which will be the aggregate anisotropic 

compliance of all the constituent grains). ASijkl represents the additional compliance due 

to the presence of micro-discontinuities contained within the rock matrix (i. e., cracks, 

grain boundary micro-cracks and compliant interparticle phyllosilicate material) and can 
be given in terms of a second and fourth order crack density tensors aij and flijkl (Sayers 

& Kachanov 1991, Sayers 2002b). Where, 

1 
ASijkl ý (Jik(lit + Jilajk + 8jkail + Jjlaik) + i3ijkli 

(7.2) 

and 8ij is the Kronecker delta. For a distribution of r planar discontinuities with surface 

areas AM and surfacc-normal vectors ný'*) in a volume V, these crack density tensors 

can be defined in terms of two crack compliance terms describing the additional normal 
and tangential compliances, BN and BT, due to each discontinuity, 

1 
aij 

EBT(")nýr)nj(r)A(') (7.3) 
r 
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and 

1rr (r)n (r (r flijkl 1: (BN() - BT())nýr)nj )n )A("). (7.4) 
%kI 

r 
(Sayers & Kachanov 1991, Sayers 2002b). BN and BT are therefore the normal and 

tangential displacement discontinuities due to the normal and tangential traction's acting 

upon the crack faces. Therefore, aij and flijkl can be thought of as characterising the 

cumulative magnitude and orientation distribution function of the additional normal and 

shear compliances due to all the discontinuities present in the sample plus the relative 

ease to undergo shear or opening along different orientations. Additionally, the trace of 

aij normalised by a factor h (as given below for open, planar penny-shaped cracks, or an 

equivalent adapted for the specific crack conditions) is the commonly used crack density 

tensor Na3 
, Vý, for N cracks of diameter a in a volume V (Gueguen & A. 2003). The trace 

Of Pijkl is similarly related to this crack density scalar but its definition also involves a 

term relating to the crack aperture and the moduli of crack fill. 

For open, planar penny-shaped cracks of diameter a in a dry, isotropic rock with Young's 

modulus E0 and Poisson's ratio vo, BN and BT are given by Sayers & Kachanov (1995), 

16(l _ V02)a 32(l - tYO2)a B, N - 3rEo , 
BT = 31rEo(2 - vo)' 

(7.5) 

Sayers & Kachanov (1995) point out that for the case, of dry penny-shaped cracks, BN 

and BT have approximately the same magnitude, and so can, for simplicity, often can be 

assumed to be equal (the validity of this approximation will be reduced if, for example, 

the cracks were fluid filled). 

On the basis of Equations (7.5), a convenient normalising factor for the crack density 

terms can be defined, 

h= 
3Eo(2 - vo) (7.6) 
32(l - V2) 0 

which leads to non-dimensional crack density tensors that are only a function of their 

number density, diameter cubed and orientation (this is equivalent to the normalising 

parameter of Sayers & Kachanov (1995), Gueguen & A. (2003)). The first two factors can 
N, 3 be combined to provide the well known crack density scalar, i?, = -, V- , as used by Hudson 

(1981), for example. For an anisotropic rock matrix with orthorhombic symmetry this 
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normalising factor must be defined for each of the three principal symmetry directions, 

i=1,2,3, 

h= 
3Ei(2 - vi (7.7) 
32(1 - vj2)' 

It can be assumed that irregulax grain boundaries are generally only ever in partial 

contact and so the contribution from the fourth-rank tensor, 6ijkl can be neglected (Sayers 

2002 b). Based upon the assumption that flijkl =0 and the medium is isotropic, the Cjj 

can be described as follows, 

n2 G C; (7.8) Cll ý (S12 
- 

(Sil + C922)(Sil + C133))ID 

C22 ý (S, *22 - (Sl*l + all)(Sil + a33))/D (7.9) 

C2 (7.10) 33 ` (SIO2 
- 

(Scl; 
l + all)(SIGI + a22))/D 

C12 ý S102(Slol - S102 + a33)/D 

C13 = S, 02(Slr'2 - Slc2 + a22)/D (7.12) 

C23 ý S102(Slol 
- SI'2 + all)ID (7.13) 

C44 ý 11(2S, ', - 2S, *2 + a22 + C133) (7.14) 

C55 = 11(2Sr', - 2S, '2 + all + a33) 

C6r, = 11(2SIl - 2S, '2 + all + a22) (7.16) 

where 

D=S' 2 (3S, ', - 2S, '2 +all +Ck22 +a33) - (Slo, +all)(Slo, +a22)(Siol +a33)- (7.17) 
12 
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The components of aij can be estimated from C44, C55 and C66 as, 

2yall = -L- + -L- - -L- -1 C55 C66 C44 

21ta22 ` -L- + -L- -p-1 (7.19) 
C44 C66 C55 

21ta33 = -L- + -L- -P-1 (7.20) 
C44 C55 C66 

where p= 11(2S, 01 - 2S, 02) (Sayers 2002b). 

The above equations as devised by Sayers (2002b) were modified to incorporate or- 

thrhombic Cjjs based on having a primi knowledge of the background matrix and the 

fourth-order crack density tensor terms (Hall et al. 2007). 

0 )2 023 + 02233 _ 
(S2ý2 + a22 + 02222)(S, ý3 + a33 + fl3333))/D, (7.21) Cll 

'2 

C= ((So +, 3 133)2 _ 
(Slcl + CtIl + fljjjj)(S, ý3 + a33 +, 333m))/D, (7.22) 22 13 1 

0 )2 _ (Slo, C33 ý 012 + 
#31122 

+ Cill + 01111)(S202 + Ct22 + 
J62222))/D, 

(7.23) 

0a C12 ý ((SI2 +, 81122)(S. ý3 + a33 + 03333) - (S103 + #1133)(S23 +, 82233))/D, (7.24) 

C13 = ((Slo 0 
3+ #1133) (S; a + a22 + 02222) - (YI2 + 01122) (S23 + 02233))/D, (7.25) 

0 C23 
--ý 

((S23 + 02233)(Sici + Ctil + #1111) - 
(S102 + 01122)(Sc3 + 01133))/D, (7.26) 

C44 = (S404 + a22 + a33 + 402233)-', (7.27) 
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C55 ý (S505 + all + a33 + 4,31133)-li (7.28) 

C66 ý (S& + all + a22 + 4i3ll22)-lv (7.29) 

and where 

)2+ (So +#, 133)2+(S303+a33+fl3333) 
D= (Slol+all+, Ollll)(S203+, 32233 (S202+C'22+, 62222) 

13 

(c )2 c0 S12+01122 -2(Sl2t3ll22)(SI3+01133)(S203+i62233) 

0 (Sil +all +i3llll)(S22+Cf22+02222)(S, ý3+a33+03333)- (7.30) 

7.3 Inversion Strategy 

It is important to note that the inversion strategy is based upon the assumption that 

any heterogeneity that exists between samples is minimal. Furthermore, that the EBSD 

derived elastic properties are representative for all specimens of a single sample. 

Equations (7.21 - 7.30) can be used to invert the multi-axial velocity data to derive the 

crack density tensors (Sayers 2002b). The approach involves two steps. The first step 

derives the aij terms for assumed scalar cracks (either using just the principal P-wave 

data or using all the data) and the second step derives Aikig which is considered as a 

perturbation to the scalar crack model. 

7.3.1 Step 1: Inversion for aij 

The inversion uses Equations (7.21 - 7.23), when considering just the principal P-wave 

data, and Equations (7.21 - 7.29) when all the data arc used. In both cases the flijkl 

are assumed to be zero in this initial step. The inversion uses the appropriate set of 

simultaneous Equations (7.21 - 7.23 or 7.21 - 7.29) and background elasticities (the 

SP terms from the EBSD-based calculations) to related the model vector, containing the 

three terms all, a22 and a33 to the data vector of the Cý' which are the elastic properties 

determined from the measured velocities and density. The inversion is performed using 

an iterative, Newton-Raphson approach (Press et al. 1992) . The available velocity data, 

in this example, allow the definition of seven components of the observable stiffness 
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tensor, Cfý'- "b" fNobs, f-výs, fNobs, fNobs, fNobs and fob4' Thus the Jacobian matrix ii , -11 , -22 -33 ý13 ý44 -55 -66 * 

which describes the variation of C'iljnodd as a function of variations in the three non-zero 

components of aij, is 7x3. It is assumed that the principal axes of the background 

anisotropy and crack anisotropy are coincident and aligned with the axes of the velocity 

measurements. 

7.3.2 Step 2: Peturbation analysis Of 8ijkl 

It is assumed that all of the deviations of the velocities back-calculated using the prior 

scalar-crack model, from the measured velocities are due to the influence Of flijkl (i. e., due 

to unequal BN and BT). Thus, Equations (7.21 - 7.30) arc used with the EBSD-based 

SP and fixed values of all, a22 and a33 from Step I of the inversion. With the available ii 
velocity data, the components Of flijkl that can be resolved are, 61111,02222,03333,022331 

)31133 and 31122- 

7.3.3 Diagram notation 

The results for the inversion procedures for aij and flijkl are presented in the next section 

using the following notation: 

VZ p Green circle 
VX p Red triangle 

VY p Blue diamond 
VXZ45 

p Black triangle 

V-y Blue square 

vxz Pink star 

vvz Yellow cross 

all Red (x-direction) 

a22 Blue (y-direction) 

a33 Green (z-direction) 
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7.4 Results - Inversion for aij 

7.4.1 Sample 1784 

At low pressures a33 >> all, C122 therefore implying that it has a lot of horizontal 

microcracks. During loading it can be seen that the horizontal cracks close up but even 

at very high pressure there still exists a strong VTI symmetry (Figure 7.1). 

7.4.2 Sample 1788 

As a33 > all > a22 it has an orthorhombic symmetry at lower pressures but becomes 

VTI at higher pressures (Figure 7.1). 

7.4.3 Sample 1841 

It has a very strong VTI symmetry at low pressure, and an orthorhombic style of sym- 

metry at high pressure where a33 > a22 > all (Figure 7.1). 

7.4.4 Sample 1909 

At low pressures it is weakly orthorhombic but at high pressures it has an approximately 

isotropic crack distribution. The change in a33 with pressure is significantly different to 

the other two and leads to higher densities of horizontal cracks at intermediate pressures 

(Figure 7.1). 

7.4.5 Sample 1950 

At low pressures it has an orthotropic crack distribution where a33 > all > a22- By ap- 

proximately 1OMPa the crack distribution changed to a HTI symmetry style (horizontal 

transverse isotropy) where Ck33 , ali > a22 (Figure 7.1). 

7.4.6 Sample 2129 

At low pressures CM ' a22 < all. As the pressure increases both C122 and all decrease 

at the same rate whilst a33 reduces much more rapidly, although they all level out at the 

same pressure. It could either be described as a CTI symmetry style, where there is a 

vertical distribution of cracks with their normals distributed in the x1X2 plane or there 

are two alignments of cracks with equal densities along the xi and X2 planes (Figure 

7.1). 
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7.4.7 Sample 2192 

At low pressure all < C122 - a33 but at higher pressures it assumes a VTI symmetry 

with more horizontal cracks than vertical (Figure 7.1). 

7.4.8 Sample 2194 

In general, a33 >> a22 , all but it tends to a VTI style of symmetry at higher pressures 
(Figure 7.1). 

7.4.9 Summary of the results for the inversion of aij 

In general, it appears that the scalar-crack model provides a reasonable fit to the data 

particularly so at higher pressures but there does exist some slight deviations that may 
indicate there is some effect due to the fourth-order tensor terms. 

7.4.10 Inversion using compressional and shear-wave data 

Using both the P- and S-wave available data to invert for crack density it is found that 

there is only a small change in the derived ceij. As would be expected with more data 

the fit of the back calculated velocities to measured velocities is far better (Figure 7.2). 

7.5 Results - Inversion for 6ijkl 

7.5.1 Sample 1788 

Inclusion of the flijkl term leads to an improved fit of the velocity data and the back 

calculated velocities when compared to the scalar crack model. The fourth-order tensor 

magnitudes are significantly smaller than those determined for aij with the exception 

of P1133 which though smaller than the aij values is relatively large. Interpretation of 

the fourth-order term is not as simple as it is for the scalar term but importantly two 

of the principal components , #1111 and, 33333 are positive indicating that the effective 

cracks with normals in x, and X3 (horizontal cracks) have values of BNjBT. This is 

most significant for the horizontal cracks at low pressure but #111, -- 33= at higher 

pressures. 
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7.5.2 Sample 1909 

In comparison to 1788 the values for Oijkl are significantly lower. "Moreover, it appears 

that the fit to the velocity data is much better for 1909 than for 1788. All three 3ijkl 

(01111,32222 and 03333) components for 1909 are negative which means that BN < BF 

at low pressures. 

7.5.3 Summary of the results for the inversion Of /Iijkl 

The inisfit for the predicted and experiniental shear-wave velocities is attributed to 13ijkl - 
Oijkl is often inuch less than aij and negative, which indicates that BT > BN, nicaning 

that cracks arc more compliant in shear than traction (Figure 7.3). 

7.6 Discussion 

To determine quantitatively the extrinsic controls of seismic anisotropy on a sample it 

is first necessary to have a quantitative description of the sample's intrinsic anisotropy. 

In this , study the sample's intrinsic anisotropy was calculated from data obtained froin 

EBSD analysis (Chapter 5). EBSD determines an orientation distribution function of 

a sample's constituent mineral phases and call thus be used to determine the samples 

anisotropy due to the constituent minerals alone (i. e., intrinsic elastic anisotropy). Tile 

pre-deterinined or a pHoTi knowledge of the sample's intrinsic anisotropy can then be 

integrated into all investigation of the extrinsic anisotropy. Combining the data obtained 

from Chapters (4 and 5) provides a means with which to quantitatively investigate the 

impact of extrinsic anisotropy causing variables on a sample. Using an expanded version 

of the inversion scheme as devised by Sayers (2002b) as developed by Hall ct al. (2007) it 

was possible to establish and separate out the sample's intrinsic seismic anisotropy from 

it's extrinsicanisotropy controlling variables. It is important to note that the crack effects 

could be as a result of a variety of different crack-like components within the saniPle, 

including, for example: cracks, porosity, micro-porosity, nlicro-discontinuitics, and grain 

boundaries. The results of the study show that the samples, in general, contain much 

Illore horizontal (! racking than vertical and that any vertical cracking that does occur has 

little or no preferential alignment. Hence this suggests that the extrinsic anisotropies, 

scein to be related to simple depositional fabrics (bedding parallel inicro-fabrics). 

The velocity and crack anisotropy symmetries are notably similar with significant crack 
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densities still remaining at approximately 5OMPa. This observation suggests that the 
intrinsic and extrinsic anisotropics could be linked because it is believed that grain 

alignment controls both the LPO and SPO. Moreover, at approximately in situ confining 

pressure these samples are close to isotropic or VTI in symmetry and in some cases are 

extremely sensitive to pressure variation. Broadly, it seems the case then that any 

azimuthal variation in anisotropy could be observed in situ and would most likely be 

due to fracturing. Samples 2129,2192 and 2194 all show a very strong stress sensitivity 

which suggests that under a deviatoric stress that the samples could exhibit a detectable 

azimuthal anisotropy. 

The investigation presented within this chapter appears to have been very successful in 

providing a quantitative understanding of the extrinsic and intrinsic parameters that 

control bulk aggregate seismic anisotropy. However, concerns regarding the underlying 

assumptions of this investigation could be considerable. The assumption that the hetero- 

geneity between the different core samples is minimal is probably an over simplification 

and as a result would yield erroneous results when the core's velocities are inverted. 

Moreover, its is also assumed that the EBSD derived elastic tensor is representative of 

all the cores used in the inversion procedure. On investigation of the individual core 

properties it is apparent that in some of the heterogeneous samples that this assumption 

would break down. Nonetheless, the sampling strategy employed for the EBSD analysis 

should help circumvent this problem as they were chosen to be parallel to the long axis 

of the core, thus intersecting a variety of layers. The approach adopted for EBSD sam- 

ple preparation would then act as an early stage average of the whole samples intrinsic 

elastic properties if only over a few cm's. Furthermore, a consistently apparent problem 
is that of the difference in scale that is being analysed with this type of strategy. EBSD 

investigates intrinsic anisotropic properties on an individual grain-scale (nm's to mm's) 

whereas ultrasonic velocity measurements investigate intrinsic and extrinsic anisotropic 

properties on a larger scale (mm's to cm's). This is a problem inherent with all studies 

of this nature. It is not immediately apparent that the properties identified by ultrasonic 
investigation would be acknowledged as a mechanism causing anisotropy at the larger 

scale. The small scale intrinsic anisotropy causing properties would only show up as an 

average effect at the scale of the investigative frequency. In fact, it is very likely that 

grain-scale properties arc entirely over shadowed by those on the larger scale, such as, 

cracks and micro-porosity. 
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Louis et al. (2005) determined the shape and spatial distribution of both grains and voids 
by computer image processing. Moreover, they also used X-ray computcrised tomogra- 

phy and laser scanning confocal microscopy to characterise the inner 3D structure of the 

rock samples. To fully support the hypotheses presented within this Chapter ideally a 

similar approach would be used as in Louis et al. (2005) to determine the internal grain 

shapes and whether there is a preferential alignment of grain contact regions. This type 

of investigation would then provide a means with which to differentiate the predominant 

mechanisms controlling elastic wave velocity sensitivity during loading. 

This study has provided a wealth of very useful information which could be used to 

assist in the understanding of crack distribution within the samples and hence determine 

information which is fundamental to the understanding of a reservoir. It is postulated 
that any variation in the reservoir's pressure during either well injection or production 

would have a significant impact on the in situ reservoir anisotropy. Non-hypcrbolic 

moveout analysis would be most suited to detect the observed anisotropics because of 
the predominantly horizontal cracks within the rock samples studied. Nonethelm, the 

ability to detect any azimuthal variation in anisotropy due to stress sensitivity would 

require some sort of azimuthal analysis such as AVOA. 

7.7 Conclusions 

Anisotropy has been detected in seismic data in many hydrocarbon reservoirs and is 

now becoming an important factor in reservoir characterisation. The causes of seismic 

anisotropy are commonly considered to be lattice preferred orientation of constituent 

mineral phases (LPO), shape preferred orientation of grains (SPO), the non-random 

spatial distribution of mineral phases and preferentially aligned fractures, cracks and 

pores (Wendt et at. 2003). The work carried out in this chapter is an amalgamation 

of the results obtained from the ultrasonic analyses (Chapter 4) and the elastic tcn- 

sor predictions obtained from EBSD analyses (Chapter 5). The approach used here in 

the determination of the orientation and density of crack-like micro-discontinuities (i. e., 

cracks, grain boundary micro-cracks and compliant phyllosilicate interparticle material) 
is largely based on Sayers (2002b) with added extensions to utilise the multi-axis velocity 

measurements (Chapter 4) and a prioH knowledge of the rock matrix (Chapter 5). 

The results show that the extrinsic crack-induced anisotropy is strong relative to that of 
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the intrinsic anisotropy (i. e., LPO effects). In general, the predominant crack-set in the 

samples studied was aligned parallel to the depositional fabric. That is samples generally 

contained a much larger horizontal crack density than vertical. It is, however, observed 

that the LPO and extrinsic anisotropies appear in general to align, this indicates that 

they are very probably linked in some way. It is likely that the cracks are related to the 

grain boundary contacts which are aligned with the grains which are coincident with the 

LPO measurements. Furthermore, it was also determined that if any vertical cracking 

was detected that it had little or no preferential alignment. 

There are several sample specific observations of interest. Sample 2129, for example, 

has a lot more vertical cracking than horizontal, although it is not clear whether the 

cracking is preferentially aligned. Analysis of thin-sections and core photos shows that 

the horizon was significantly fractured and also oil stained, both observations would 

support the conclusions drawn from the inversion (Smith & Lappin 1997, Knipe et al. 

1998). Sample 2129,2192, and 2194 all showed significant pressure sensitivity of the 

vertical crack sets. Moreover, these samples mentioned previously and samples 1784, 

1788 and 1841 all show a strong variation in the horizontal crack set with loading. 
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Chapter 8 

Magnetic Properties 

8.1 Introduction 

Technological developments, such as, 4D seismic profiling, increasingly more complicated 

migration algorithms, and a proliferation of computational processing power mean that 

it is now possible to measure, amongst other attributes, seismic anisotropy of reservoir 

rocks in the subsurface. Measurements of seismic anisotropy offer a potentially powerful 
tool for remotely determining the properties of rocks and fluids prior to drilling. The 

interpretation of such data, however, is presently limited by our understanding of the 

causes of anisotropy in sedimentary rocks. Laboratory measurements of velocity and 

anisotropy currently provide important information on the seismic anisotropy of the bulk 

aggregate but do not discriminate the contributions from the numerous microstructural 

variables, such as, LPO, the non-random spatial distribution of mineral phases, aligned 

porosity, and fractures (Crampin 1981, Babuska & Cara 1991, Alainprice ct al. 2000, 

Wendt et al. 2003, Kendall et al. 2006, Valcke ct al. 2006). 

Compressional and shear-wave velocity anisotropy measurements have been conducted 

on a suite of samples obtained from the Clair field, N. W. Scotland whose microstructure 

and mineralogical composition have been rigorously established (Chapter 5 and Chapter 

3 respectively). To enable direct comparisons between the various analytical techniques 

used in this study and with independent studies of anisotropy the core samples were 

oriented using palacomagnctic techniques. The minerals responsible for a magnetic fabric 

are weakly magnetic and are present in small proportions in most rocks (Hailwood & 

Ding 1995). Sedimentary rocks usually contain either one or two difrerent components 
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of renlanent inagnetisation (Hailwood & Ding 2000). Viscous rcinancilt niagnetisation 
(VRM) gradually builds up over tinic and records the direction of incan magnetic North 

over the past several thousand years and provides the absolute dircction of present-day 

geographic North. Whilst VRM builds up over time it also undergoes continuous decay 

and therefore must be continuously reacquired. The primary component magnctisation 

is acquired at the time of deposition (assuming the rock does not undergo significant 

re-working prior to litbification), and provides a record of palaeo-North. The primary 

component is used to orient the core, provided any significant post-depositional rotation 

of the region (due to plate motion) is known and accurately corrected. The palaconiagntic 

analysis of the core samples also provides useful inforination regarding sand transport 

directions and can help place important constraints on the positions of sand input points 

in sedimentary basins thus facilitating prediction of sand distribution and the geometry 

and direction of elongation of sand bodies. 

Two independent Illethods were used to determine the anisotropy of magnetic suscepti- 

bilitY. One method measured the natural ATNIS of each individual sample, that is, the 

preferred orientation of naturally occurring magnetic minerals (e. g., magnetite). The 

second method measures tile enhanced AMS, produced after a thin-filin of magnetic 

particles have been precipitated onto tile pore space. The information obtained from 

magnetic anisotropýy is in many respects superior to optical microscopy, and coniple- 

mentary to electron microscopy methods as it provides 3D information regarding grain 

orientation phis it quantitative assessment of the intensity of grain fabric (Hailwood 

Ding 2000). 

Presented in this chapter is an analysis of the palaeoniagnetic properties of a suite of 

siliciclastic samples extracted from the Clair field, N. W. Scotland. The work was con'- 

inissioned, analysed, and interpreted by myself but the ineasurcments were performed 

by Dr. E. Hailwood of Core Magnetics, Cumbria. The chapter includes the results of 

palavoinagnetic core orientation and an investigation into the grain and pore fabric of 

the same set of core samples. 

8.2 Methodology 

Pitliteoiiiagii(, ti(ý orientatioil, and ailisotroj)ic niagnetic stisceptibility nicasureilients (AMS) 

were made on 1 inch diameter core plugs and enhanced AMS and magnetic porosity mca- 
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3 surements were made on I inch cubes. Four plug samples had previously been drilled 

from each piece of half-core for the laboratory ultrasonic velocity measurements. Three 

of these core plugs (X, Y, and Z) were orthogonal to each other, while the fourth wass in- 

clined at 45" to the borehole long axis (Figure 8.1). The samples for the palaconiagnetic 

study were cut from offcuts of the X, Y, and Z plugs. 

F 

%. 35 

-- 

Figure 8.1: The core sampling technique used in determining anisotropic magnetic suscepti- 
bility. Notation: X- perpendicular to the borehole axis (approximately parallel to bedding), Y 

- perpendicular to the borehole axis and perpendicular to the X-(-Olr ((Ipp7y)xilnately parallel to 

bedding), Z- parallel to the borehole axis (approximately perpendicular to bedding), XYZ - . 15" 

to bedding and the borehole axis, and F- perpendicular to the flat face! of the borehole half core. 

In the plug samples used for palaconiagnetic orientation, spurious components of mag- 

netisation associated with drilling are removed and the geologically-significant conipo- 

iients are isolated from each other by incremental thermal deinagnetisation. In most 

cases, the VRNI is isolated by thermal demagnetisation at relatively low temperat tires 

(< 300'C) and the primary inagnetisation at temperatures close to the Curic point of 

the magnetic constituents (- 550'C). 

In a core from a vertical or nearly-vertical well, as in this study (as determined from 

wellhead trajectorv data), the incan horizontal component, Jh, of the VRNI defines the 

direction of present-day geographic North (Figure 8.2A). The core plug is then rotated 

about the vertical axis until Jh coincides with geographic North (Figure 8.2B). 
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Figure 8.2: Principle of palaeotriagnetic com orientation in a vertical or near-vertical well. In a 

core from a vertical or near vertical well (as in this study, as detemined from borehole trajectory 

data) the inean horizontal component JI, of the VRAI defines the direction of present day North. 

All phig samples were subjected to incremental thermal deniagnctisation using a Nfag- 

netic Measurements Therinal Deniagiletiser (NII\ITD1). Their renlanent magnetism -as 

measured after each heating step with an automated high-sensitivity spinner magne- 

tonictcr (AGICO JR5A). Both instruments were situated within the sarne magnetically 

shielded enclosure to minimise exposure of samples to external inagnetic fields during 

laboratory handling. 

During therinal demagnetisation, temperature increments in the range 25 to 40"C were 

used, starting at 75"C. Demagiletisation was contimied until vither the renianent inag- 

netisin became too weak for further reliable meastirculent or until iiiagneto-iiiiiierilogical 

transformations began to occur. The thermal deniagnetisation data was processed by 

3D principal component analysis (Kirsclivink 1980). 

8.3 Grain fabric determination by anisotropy of magnetic susceptibility 

Anisotropic magnetic susceptibility provides a quick and accurate way of determining 

tliv statistical 3D oricntation of constituent grains (Hailwood k- Ding 1995). 

The method of measurement and calculation estimates a susceptibility (dimension less 

sonletillies denoted )( ... ) ill tile form of a second railk symmetric tensor, K, which relates 
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the inagnetisation Ji induced in a specimen by a field, Hj, (Equation 8.1). 

ii = Kij Hj (8.1) 

This susceptibility can be specified by six ternis, three relating to the magnitudes of its 

principal axes and three relating to their orthogonal directions. 

For a single non-spherical grain of magnetite, the magnetic susceptibility has a maximum 

value K,,,,,, (grain long axis) and a mininium value K,,, i,, (grain short axis). In 'ID the 

variation of magnetic susceptibility with direction within the grain can be represented 

by a triaxial ellipsoid with principal axes Kmax, Kjw, and K,, j,, where the intermediate 

susceptibility axis K is orthogonal to the other two (Figure 8.3). 
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Figure 8.3: Principle of gmin fabric deteminations f7v"i anisotropic 7nagrictic susct-ptibility 

measurements. A single non-sphe7ical gmin of magnetite has a maximain sasceptibility, K,,,,,,. 

the grain long dimension and K 
.. j,, along its shoilest axis. In 3D the vaHation can he, repm8ented 

by a tHarial ellipsoid with axes, K 
... ,K... j, and K, a, which is orthogonal to the othcr two 

axes. 

Depositional processes produce priinary-style sedimentary fabrics from which sediment 

transport directions can be inferred (Hamilton & Rees 1970). Secondary-style fabrics, 

however, are caused by post-depositional processes, such as, slumping, bioturbation or 

de-watering. Samples which have a very weak natural ANIS. however, call produce tile 

secondary style fabrics as a result of a low signal- to- noise ratio. Consequently, secondary- 

style fabrics rarely provide reliable information oil sediment transport directions (Hail- 
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wood & Ding 2000). 

During deposition grains generally exhibit one of two orientations, either with their 

long axes parallel (FP - flow parallel) or perpendicular (FT - flow transverse) to the 

direction of deposition. These cases can be easily discriminated oil the basis of their 

characteristic imbrication patterns (Hamilton & Rees 1970). When deposition occurs 

oil ail essentially flat bed, ail upward imbrication of grain long axes (K,,,. x) occurs in 

the down-current direction (Figure 8.4). Under conditions of traction (where grains roll 

along the substrate), however, it produces a flow-transverse aligninent of grain long axes 

(Figure 8.4). In this case, Knax usually show no systematic inibrication (approximately 

equal numbers are distributed at either end of the flow-transverse axis), but K,, i,, still 

show ail upward inibrication in the up-current direction. 
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8.4 Pore fabric and permeability anisotropy 

Magnetic porosity analysis involves flooding a sample's pore network with a inagnetic 

fluid. ANIS measurements of the ferrofluid-saturated samples then define the pore fabric 

(i. e., the preferred orientation of pore long and short axes) (Hailwood &-- Ding 1995). 

Furthermore, the degree of magnetic anisotropy has been suggested to be related to the 

degree of permeability anisotropy (Hailwood & Ding 2000). Consequently, this method 

provides precise information oil the 3D permeability anisotropy (Hailwood & Ding 1995). 

Magnetic porosity analysis qualitatively defines azimuthal permeability, whereas, routine 

permeability measurements only measure the vertical and horizontal permeability. 

Nleasurements were made on core plugs to determine the degree and direction of perine- 

ability anisotropy and the results were oriented to geographic North using the palI(X)- 

magnetic data. Thus, this provides valuable information on fluid-flow properties of the 

reservoir. for incorporation into a reservoir model. 

8.5 Results 

8.5.1 Palaeornagnetic orientation 

Tile direction of geographic North in each half-core piece is determined from tile mean 

of the low temperature magnetic vectors. The circular standard error (c. s. c. ), a lileasure 

of the angular uncertainty of the orientation data for each core, is also provided. Oil the 

basis of the c. s. e. and number of vectors contributing to the mean, the palaeoinagnetic 

orientation data for each core piece has been assigned a reliability class ranging from 1 to 

3. Class 1 represents the most reliable results, for which the angular reliability is < 15". 

Class 2 represents moderate reliability results with angular uncertainties in the range 

15" to 20', and class 3 represents poor reliability data with angular uncertainties > 20". 

The geographic azimuth of the reference direction, F, (measured in degrees clockwise 

from geographic North) for each core piece is listed in Table (8.1). 

8.5.2 Anisotropy of magnetic susceptibility 

The anisotropy of magnetic susceptibility directions have been referred to geographic 

North using the palaeornagnetic core orientation data and corrected for structural vari- 

ation. K,,, axes are shown as coloured squares and K,,, i,, axes as crosses. 
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Table 8.1: Palacontagnetic core orientation data. F- degrees East of North (perpendicular to 

the flat face of the borehole half core), Vectors - number of vectors contributing to the mean. 

c-s-e- - circular spherical error (measure of the angular uncertainty of the re-orientation data), 

and Class - reliability class of data (I -< 15". 2- 1511 - 20" and3 -> 20"). 

Depth (m) F (OE of N) Vectors c. s. c. Class 

1663 032 5 9 1 

1788 280 4 21 3 

1841 348 2 25 3 

1909 314 3 11 1 

1950 050 3 6 1 

1963 231 3 11 1 

2028 041 3 9 1 

2070 059 4 31 3 

2073 004 5 15 2 

2088 037 3 9 1 

2129 047 3 14 1 

2192 105 5 15 2 

2194 327 5 10 1 

2198 165 5 6 1 

Natural and enhanced AINIS upper hemisphere stereographic projections for Well 206/8-8 

are shown in Figures (8.5; 8.6) respectively. K,,,,,, and Kirlir, axes lie within - 35" of the 

horizontal and vertical respectively, typical of depositional fabrics. This suggests that 

tile fabries of these sediments have not been significautly disturbed by post-depositional 

processes. Both the natural and enhanced ANIS plots show a broad clustering of upward 

pointing ends of K ... ax axes in the S or SE and a complementary offset of K ... j,, axes from 

tile vertical towards the NNW. These features are particularly clear for tile enhanced 

AMS data from samples with Class 1 orientation. The incan sediment transport direction 

throughmit NA"ell 206/8-8 is toward tile SSE. 

Grain fabric data for 206/13a-2 obtained from natural and enhanced ANIS measurements 

are shown in Figures (8.7; 8.8). The AMS results exhibit considerable dispersion but 

there is some indication of a weakly-defined flow parallel fabric in the. enhanced ANIS 
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data and flow tranverse fabric in the natural AMS data. This may reflect a tendency 

for dense particles to roll over the substrate in flow-transverse mode (reflected in natural 

ANIS). In contrast, other less dense detrital grains (quartz etc. ) are aligned flow parallel. 

The mean sediment transport direction of Well 206/13a-2 is also inferred to be towards 

the SE. 
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Figure 8.5: Natural AMS data for all plug samples from Well 20618-8 plotted on upper ho, mi- 

spherestemogmphic projections after palaeomagnetic orientation and structural correction. 'K .... xx 

axes are shoum as coloured squares and K,,, m axes as crosses. Azimuthal direction., # are shown 

on co-centred rose plots. 

8.5.3 Horizontal anisotropy 

The azimuthal distribution of K,,,,,, axes sampled froin 206/8-8 determined from en- 

hanced ANIS measurements are shown in Figure (8.9). These plots represent the prC, 

ferred, orientation of long dimensions of the dominant elastic grains. All directions have. 

been oriented to geographic North using the palacomagnetic data. The azimuths of the 

upward pointing end of the mean Km,, axis and corresponding c. s. c. for each individual 

core is shown in Table (8.2). 



220 Chapter 8: Magnetic Properties 

2OW" Enh AMS. Str Coff. 

^I rum 

RUM wm cwm 1 

Ruun&, w4h CLUS 23 

Figure 8.6: Enhanced AMS data for- all plug sarriples f7-o7n Well 20618-8 plotted on upper- 

heinisphcm stciwýtjmphic p7-ojections after- palaeomagnetic orientation and sh-urtui-al comection. 

K,,, (,.,. axes am. shown as coloui-ed squams and K ... j,, axes as crosses. Azimuthal di7-ections air. 

shown on co-ccnh-cd 7-ose plots. 



221 Chapter 8: Nlagnetic Properties 

lb 

Figure 8.7: Natural AMS data for all plug samples ftvm Well 20611,7a-2 plotted on upper 

hemisphere stereographic projections after palaeornagnetic orientation and structural rorrection. 

K ... ., axes are shown as coloured squares and Kynir, axes as crosses. Azimuthal directions are 

shown on co-centred rose plots. 
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Figure 8.8: Enhanced AMS data for all plug samples ft-om Well 206113a-2 plotted on upper 

hemisphere stereogryiphic projections after palaeomagnetic orientation and sti-tictural correction. 

K ....... axes are shown as c0loured squares and K?,, i, t axes as crosses. Azimuthal directions are 

shourn on (, O-(7entn! d rose plots. 
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Figure 8.9: A zi7nuthal prefer7rd oHentations of grain long axes deteminedftVin enhanced A AfS 

measuremcnts. 



224 Chapter 8: Magnetic Properties 

Table 8.2: Mean orientation of K.. aris (irpresenting preferred orientation of grain long di- 

mensions) in each core, determined from enhanced AMS measurements. The declination (Dec. ) 

is referred to geographic North and the inclination (Inc. ) is upward directed. The circular stan- 

dard error (c. s. e. ) provides a measure of the grouping of K,,,.., axes of the sets of Samples from 

each core piece. 

Depth (m) Dec. (OE of N) Inc. (upwards) c. s. e. 

1663 337 -10 26 

1788 151 -8 2 

1841 94 -2 12 

1909 321 -2 11 

1950 202 -6 15 

1963 101 -29 21 

2028 189 -16 21 

2070 121 -5 17 

2073 206 -13 14 

2088 181 -30 5 

2129 173 -33 17 

2192 231 -2 10 

2194 145 -7 7 

2198 157 -6 1 12 
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8.5.4 Degree of anisotropy 

The percent anisotropy reflects the degree of preferred alignment of the constituent 

gains. It can be specified in three separate ways: total anisotropy (the ratio of the 

maximum to the minimum susceptibility in 3D), planar anisotropy (the ratio of the 

mean vertical value to the horizontal value), and as azimuthal anisotropy (variation 

within the horizontal plane). In both wells total anisotropy typically ranges from 5 to 

30% with a mean of - 11%. The majority of this anisotropy reflects the tendency for 

grains to lie with their long axes near horizontal and short axes near vertical, resulting 
in a dominant planar anisotropy with a mean of - 9%. Azimuthal anisotropy in these 

particular sediments is relatively weak typically ranging up to about 3% but with a mean 

of only , 1.5%. 

8.5.5 Scale-dependence of grain fabric measurements 

Enhanced ANIS measurements were made on sub-samples cut from the core plugs. The 

enhanced ANIS of these sub-cubes was measured to explore the scale-dependence of the 

grain fabric data. The directions of the K,.. 
-, and K,,, i,, axes of the original samples are 

compared with the mean K ..... and K .. i,, axes of the corresponding sub-samples in Table 

(8-3). The fabric type, whether flow parallel (FP) or flow transverse (FT) alignment of 

grain long axes is also summarised in Table (8.3). The angle between the K,,,.... axis 

of each original sample and the mean K,.... of the corresponding sub-samples and the 

corresponding angle for the K,,, i,, axes is listed in Table (8.4). 

The mean K,, ýj,, of the sub-samples for all samples analysed are similar to that of the 

original sample. In all cases, the angular separation of these two directions is :5V. The 

mean a)ds of the sub-samples differs from that of the original host sample by: 5 151 

in most samples. In two of the samples for which these directions differ by larger angles, 

the percentage anisotropy and bulk magnetic susceptibility are no weakcr than in other 

samples, so the difference cannot be attributed to measurement inaccuracies arising from 

a weak signal. Instead, these results seem to represent real differences in the grain fabric 

properties of these two samples when measured on different spatial scales. 

In the case of sample 2194KI, for which the angular difference is 65.10, it appears that 

this sample exhibits a flow transverse grain fabric style when measured on a scale of 

-15mm, but a flow parallel style on a scale of -5mm. This suggests that both flow 
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parallel and flow transverse grain fabrics exist within the original sediment, but one or 
the other dominates depending on the scale of the measurement. 

Table 8.4: Angular separation between AMS axes (Kn.. and K .. i,, ) of original (uncut) sample 

and the mean of the eight sub-samples cut from each. 

Sample K,,,. ang. sep. K .. i,, ang. sep. 
C2.2 10.9 2.5 

G1 15 1.2 

IY 4.9 6.0 

12.3 11.4 2.5 

K1 65.1 2.2 

KY3.2 4.7 4.3 

N12 4.6 2.3 

MY 24.5 3.0 

L2 6.7 5.2 

8.5.6 Permeability anisotropy 

Maximum and minimum permeability directions in Wells 206/8-8 and 206/13a-2 deter- 

mined by the magnetic porosity measurements are shown in Figures (8.10; 8.11). 

In Well 206/8-8, the maximum permeability is relatively close to the horizontal and well 

grouped about a NW-SE axis. The minimum permeability directions in this well are 

nearly vertical. Permeability anisotropy is more variable in NVeU 206/13a-2. Maximum 

permeability directions in this well are generally steeper than in Well 206/8-8, dipping at 

20P to 40' to the horizontal. Azimuthally, the directions fall into two main clusters with 
NW and SE orientations. These agree reasonably well with the azimuths of principal 

maximum permeability modes in Well 206/8-8. The plots for both wells also display 

subsidiary clusters in the NE and SW quadrants. Alinimurn permeability directions 

in Well 206/13a-2 are also more variable than Well 206/8-8 and the main cluster of 
directions is offset from the vertical by about 15". 

For Well 206/8-8 the mean total and planar permeability anisotropy values, 13.7% and 

11.2% respectively, are broadly similar to the corresponding grain fabric magnitudes, 
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Figure 8.10: Maximum (red) and minimum (blue) permeability directions in Well 20618-8 as 

determined by magnetic porosity analyses. 
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Figure 8.11: Maximurn (red) and minimum (blue) permeability directions in Well 206113a-2 

as deteMined by magnetic porosity analyses. 



229 Chapter 8: Magnetic Properties 

11.1% and 9.65c. The mean azimuthal permeability anisotropy is 7.4%, which is sig- 

nificantly greater than the grain fabric linear anisotropy of 1.0%. This indicates that 

the strength of the pore fabric parallel to bedding is significantly greater than that of 

the grain fabric in this Well. This suggests that effective pore shapes tend to be more 

elongate or better aligned than grain shapes in these sediments. 

Although the number of samples measured from Well 206/13a-2 is much smaller than 

from Well 206/8-8, the degree of permeability anisotropy of these samples is significantly 

greater with a mean total permeability of 20.8% and azimuthal anisotropy of 10.5%. 

8.6 Discussion 

The Clair field was first discovered back in 1977 but is as yet undeveloped. Essentially, 

the Clair reservoir is difficult to produce from for a variety of reasons: as it contains 

significant sedimentary heterogeneity, a viscous oil, and is heavily fractured (Coney et 

al. 1993). Hence to facilitate the efficient production of hydrocarbons from the Clair 

field's complicated reservoir structure requires a detailed knowledge of it's geometry, 

and architecture. To gain a full understanding of the geometry and architecture of 

hydrocarbon reservoirs requires a knowledge of the source of the reservoir sand and its 

dispersal pattern over the depositional area. This information is important for predicting 

continuity between reservoir sands in different wells and in seeking likely extensions of 

known reservoir sands into surrounding areas. 

The most significant benefit and main reason for conducting palaeornagnetic core orien- 

tation was that the results obtained from the ultrasonic analyses and electron microscopy 

could be directly compared. Moreover. the seismic anisotropy predictions obtained from 

electron microscopy were also compared to the results obtained from the AVOA analyses 

and damage parameter tensor inversions. 

Furthermore. the results of this study have also provided useful information that could 

be used to build working models of the Clair field*s reservoir. The accuracy and preci- 

sion of the high quality data allows the transport direction and dispersal pattern of the 

reservoir sands to be predicted. This suggests that niore-detailed grain-fabric analyses 

could be used to distinguish individual flow units which are not apparent from visual 

observation. Moreover, studies of the natural and enhanced ANIS of these sediments are 

both well defined with the majority of the samples characterised by depositional rather 
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than deformational style fabrics. This suggests that any fracturing that is prevalent 
throughout the Clair reservoir (which is shown to be the case from independent studies 

of seismic data and well log data) is on a larger scale than that of the samples stud- 
ied. Likewise, pore fabric studies have shown that the maximum natural connectivity 
between units is within the horizontal plane with grains aligning with their long axes 

parallel to bedding. This is based upon the assumption that there exists a direct rela- 

tionship between maximum permeability, grain shape and magnetic susceptibility. There 

is mounting evidence to suggest that a relatively simple relationship does exist between: 

permeability anisotropy, grain-shape orientation and magnetic susceptibility (Hamilton 

& Rees 1970, Hailwood & Ding 2000). Therefore, under this assumption it is possible 

that this information could be used to determine the most suitable well location. For 

example, maximum permeability is determined as being relatively close to the horizon- 

tal about a NW-SE axis whereas minimum permeability is shown to be near vertical. 

11oreover, large scale faulting is aligned NE-SW as determined from field wide seismic 

surveys and from field structural wide interpretation. 

The azimuthal anisotropy has been shown to be only very slight approximately 1-3% 

where as the total anisotropy (difference between vertical and horizontal) ranges quite 

considerably from c. 5-30%. These results are in broad agreement with those determined 

by EBSD and acoustic velocity measurements. It is unfortunately not possible to make a 

direct comparison between the results obtained from enhanced and natural AMS analyses 

with the individual mineral phase crystallographic pole figures because of the complexity 

and subtlety of the crystallographic pole figure patterns. It is, however, possible to 

compare the results obtained from the individual mineral phase seismic pole figures 

with the natural and enhanced AMS analyses. It is important to remember that when 

making a direct comparison between the two different techniques that the results of 

AMS are plotted in the upper-hemisphere whilst EBSD is conventionally plotted in the 

lower-hemisphere. The most reliable ANIS results are those obtained from the class 

one samples, that is, with a standard deviation of less than 150. The results obtained 
from the class one samples from the natural and enhanced AMS analyses from well 

206/8-8 and to a lesser degree 206/13-a2 (less sampling has possibly skewed the results) 
illustrate the predominant NW-SE orientation of the long-axis of the constituent grains. 
Whilst, no finite directional information can be extracted from the ANIS analyses (i. e., it 

could possibly be a difference of 1800) the orientation of the long-axes of the constituent 
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mineral grains are in agreement with the orientation of the maximum velocity of both 

the quartz and feldspar seismic velocity pole figures. Under the basic assumption that 
the long-axis of both the quartz and feldspar single crystals represent the maximum 
velocity (which is broadly true) it is evident then that both SPO and LPO are not only 
linked but coincident. This then leads to the conclusion that EBSD could be used to 

provide directional palaeoflow information or as a check for AMS analyses. Nonetheless, 

the assumption that the long-axis of the crystal represents the fastest direction is an 

oversimplification and indeed a further relationship may exist which is not immediately 

apparent using the pole figure plotting program used in this project. 

Concerns regarding the reliability and accuracy of palacomagnetic and magnetic sus- 

ceptibility analyses are considered to be a problem whereby the data population is not 

sufficient enough to provide a detailed assessment of the magnetics of a sample. Further- 

more, potential problems might include, compaction shallowing, and thermal overprint- 
ing. Errors may also include natural variations of the magnetisation directions at the 

scale of the sample. Under normal circumstances it is not possible to distinguish between 

the dispersion produced by natural directional variations of magnetisation and the dis- 

persion due to experimental errors (Bohnel & Schnepp 1999). Sager & Singleton (1989) 

conducted a palacomagnetic study of sediments in combination with a high resolution 

seismic survey in the Gulf of Alexico. It was observed from the seismic data that the 

samples extracted were from sites where the tilt due to diapiric uplift was about eight 
degrees. However, after structural corrections were made to the cored samples only six 
agreed with the geocentric axial dipole for the site whilst four showed significantly lower 

inclinations. It was suggested that the anomalous results could be because of sub-aerial 

exposure during a sea level low stand. 

Detailed information regarding individual data population of production models is of 

great importance in accurately predicting fluid flow properties and individual well pro. 
duction rates. Information obtained from well logs has the benefit of providing scaleable 
data but unfortunately cannot provide information on a reservoirs depositional and dis- 

persal pattern in 3D. This study has shown that not only have the reservoir sands 
travelled from the NW to the SE but they have also travelled with their long axes in 

flow parallel (see Figure 8.4 for an illustration). The approximately horizontal orienta- 
tion of the K,,,.., axes and the vertically oriented K,. i,, axes of the class 1 orientation 
data obtained from the natural and enhanced ANIS analyses confirms that the fabrics 
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of these sediments have not been disrupted significantly by post depositional processes 
(Figure 8.6). 

8.7 Conclusions 

Compressional and shear-wave velocity anisotropy measurements have been conducted 

on a wide range of samples extracted from the Clair field, N. W. Scotland. The sample's 

microstructure and mineralogical composition have previously been established (Chapter 

5 and Chapter 3). To be able to fully interpret the data obtained from the cores, such 

as, fracture directions and anisotropy orientations it is first necessary to restore the core 

pieces into their original in situ position with respect to North and vertical. The basic 

assumption is that almost all rocks contain one or more components of magnetisation 

which were aligned with the geomagnetic field at the time of deposition. These then 

provide a record of the direction of geographic North either in recent times of at the 

time of formation. 

Palacomagnetic core orientation has proven to be an useful and relatively successful tech- 

nique in defining the direction of geographic North throughout all the samples analysed. 

Furthermore of those samples analysed each core orientation was assigned a reliability 

class from 1 (best) to 3 (poor). 64% of the samples analysed fell into class 1,14% into 

class 2, and the remaining 22% into class 3. The palacomagnetic core orientation can be 

thought of as being successful when considering that on average 64% of the orientation 

data had a circular error of less than or equal to 150. It was, unfortunately, not possi- 

b1c to conduct an independent study which analysed the reliability and accuracy of the 

palacomagnetic orientations because of a shortage of suitable material. 

It was determined from AMS analyses that in general K,,,,, and K,. i,, lay within 35* 

of the horizontal and vertical respectively. This in turn means that the fabrics of the 

sediments deposited within the Clair field have not been disturbed significantly post- 

deposition. Furthermore, it has been shown that the mean sediment transportation 

direction is towards the SSE which is in accordance with independent studies of sediment 

pathway dispersal patterns at Clair. 

Total grain anisotropy, that is, the difference between the vertical and horizontal through- 

out all the samples studied ranged from c. 5-30% with a weighted mean of approximately 

11%. Azimuthal anisotropy, the variation between the maximum and minimum orienta- 
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tions within the bedding plane, was significantly weaker than total anisotropy, ranging 
from c. l. - 3%. 

Enhanced ANIS measurements were conducted to investigate the scale dependence of 
the samples but their was not sufficient evidence to suggest that the samples exhibited 

any scale-dependence. All but two of the samples analysed showed that their was no 
indication of a scale dependence. In the two samples which demonstrated a significant 
difference between the parent and daughter specimens the percentage anisotropy and 
bulk magnetic susceptibility were no weaker than any of the other samples. Hence, the 

observed difference of these samples is thought to be because the sample exhibits a flow 

transverse grain fabric and a flow parallel grain fabric but at different scales. 

Permeability anisotropy analyses provides a qualitative assessment of the orientation 

of the maximum and minimum permeability directions. It is important to note that 

permeability anisotropy does not provide a quantitative assessment of the magnitude and 

orientation of the maximum and minimum permeability directions. It was determined 

in Well 206/8-8 that the maximum relative permeability was close to the horizontal and 

aligned about a NW-SE axis with the minimum permeability approximately vertical. 
The mean azimuthal anisotropy for Well 206/8-8 was significantly greater than that of 
the grain fabric anisotropy which suggests that the effective pore shapes tend to be more 

elongate or better aligned than the grain shapes in the Clair rocks. The data population 
for Well 206/13a-2 is sparse, however it can be deduced that the maximum permeability 

anisotropy was at about 20 - 30* to the horizontal with the minimum permeability 

grouped into two clusters. 
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Chapter 9 

Synthesis 

9.1 Introduction 

Seismic data is often used by the petroleum industry in an attempt to extract information 

and estimate uncertainty regarding the lithology and fluid distribution in the subsurface 
(Strandness 1991, Blangy 1992). Understanding the interaction between the various 

parameters that control rock properties is crucial to better interpretation of seismic data. 

In particular, to fully utillse seismic data it is vital to have a complete understanding 

of what seismic waves can reveal about the parameters that control in situ intrinsic 

and extrinsic rock properties. Technological developments, such as, 4D seismic profiling, 

increasingly sophisticated migration algorithms, and a proliferation of computational 

processing power mean that it is now possible to measure, amongst other attributes, 

seismic anisotropy of reservoir rocks in the sub-surface (Helbig & Thomsen 2005). Seismic 

anisotropy in sedimentary rocks arises from the partial alignment of anisotropic minerals, 

fractures, bedding planes and heterogeneities on a length scale smaller than the seismic 

wavelength (Crampin 1981, Babuska & Cara 1991, Sayers 1994, Mainprice et al. 2000, 

NVendt et al. 2003, Kendall et al. 2006, Valcke et al. 2006). Therefore, observations 

of seismic anisotropy in the sub-surface could potentially be used to determine rock 

and fluid properties prior to drilling (Sayers 2002a, Kendall et al. 2006). However, for 

a more detailed interpretation of measures of anisotropy from field seismic data more 

quantitative information is required on the relative importance of the various factors 

thought to contribute to anisotropy. 

Traditionally, acoustic laboratory measurements of velocity have been utilised to pro- 
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vide important information on bulk aggregate rock properties but they do not allow the 

discrimination of the various microstructural controls on anisotropy, such as, lattice pre- 
ferred orientation, the non-random spatial distribution of mineral phases, aligned poros- 
ity, and fractures (Crampin 1981, Babuska & Cara 1991, Mainprice et al. 2000, Wendt 

et al. 2003, Kendall et al. 2006). The authors research presented in this thesis combined 

the results of a variety of different analytical and computational techniques to fully 

understand the extrinsic and intrinsic controls of seismic-wave velocity anisotropy of sili- 

ciclastic hydrocarbon reservoir rocks. The experimental techniques employed included: 

electron microscopy (SENf-EBSD), quantitative X-ray diffraction (QXRD), palaeomag- 

netism and ultrasonic velocity analysis. A break down of the individual sample analysis 

is presented in Appendices (C. 1 and C. 2). The results of the experimental techniques 

were then integrated by both the present author and research associates to provide a 

more complete understanding of the controls on seismic anisotropy. The present author 

conducted the petrofabric, and ultrasonic analysis whilst Dr Andrew Carter interpreted 

the field seismic data and Dr James Wookey, Dr Stephen Hall and Prof Michael Kendall 

conducted the reservoir modelling. The pro-processed sample data is contained within 
Appendices (Q and R). In particular, goomathematical models, which included, among 

others: crack density tensor inversion, Bingham distribution modelling, empirical rclam 

tions, and upscaling techniques have been used to identify the key controls on seismic 

anisotropy of a suite of reservoir rocks from the Clair field. 

Presented within this Chapter is a brief overview of the various analytical and com- 

putational techniques used in the determination of the controls of seismic anisotropy. 

Furthermore, this chapter also presents an analysis of the controls of seismic anisotropy 

and some potential uses of seismic anisotropy. 

9.2 Methodologies 

9.2.1 Petrophysical properties 

Accurately predicting the petrophysical properties of a rock aggregate requires a quan- 

titative description of the complex microstructure of the medium (e. g., Budiansky 1965, 

Brevik 1995, Castafieda & Willis 1995). Petrofabric analysis using SENI-EBSD has pro- 

vided the means with which to fully characterise the strength of elastic anisotropy created 

by the orientation of minerals within a suite of siliciclastic hydrocarbon reservoir rocks. 
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A bulk aggregate elastic tensor is calculated for every sample analysed by EBSD; this 

is considered to represent the intrinsic anisotropy (i. e., matrix) of a specific siliciclas- 

tic reservoir specimen. The bulk aggregate elastic tensor is based upon the results of 

the EBSD analysis of fabric intensity, QXRD analysis of modal proportions, porosity 

analysis, and a Voigt-Reuss-Hill average (Voigt 1928, Reuss 1929, Hill 1952). The Voigt- 

Reuss-Hill average is used to estimate the effective elastic moduli of a rock in terms of 

it's constituents and pore space. Where LPO is the sole microstructural feature under 

investigation the Voigt and Reuss averaging schemes are the most suitable in which up- 

per and lower bounds are placed on material properties by taking weighted arithmetic 

and harmonic means respectively of the single crystal elastic stiffness tensors of each 

constituent phase. The elastic constants of the polycrystalline aggregate obtained from 

the averaging procedure of Hill (1952) are then used to calculate the seismic anisotropy 

attributed to the LPO of constituent mineral phases by solving the Christoffel equation 

(Christoffel 1910). 

9.2.2 Ultrasonic analysis 

The theoretical calculation of the degree of of seismic anisotropy resulting from the LPO 

if mineral phases alone (Voigt 1928, Reuss 1929, Hill 1952, Budiansky 1965, Brevik 1995, 

Castafieda & Willis 1995) ignores other causes of elastic anisotropy, (e. g., the contribu- 

tion from aligned grain boundaries are more difficult to model). As shown previously 

it is possible to theoretically calculate the amount of seismic anisotropy resulting from 

the LPO of mineral phases alone (Voigt 1928, Reuss 1929, Hill 1952, Budiansky 1965, 

Brevik 1995, Castafieda & Willis 1995) ignores other causes of elastic anisotropy (e. g., 

the contribution from aligned grain boundaries are more difficult to model). Laboratory 

measurements are therefore required to provide a comprehensive understanding of the 

controls of seismic anisotropy of rock aggregates (Kaarsberg 1959, Birch 1960, Tosaya 

& Nur 1982, Vernik & Nur 1992b). Compressional and shear-wave velocity anisotropy 

measurements were conducted on a suite of samples obtained from the Clair field, N. W. 

Scotland whose microstructure and mineralogical composition have been rigorously es- 

tablished. Compressional and shear-wave ultrasonic velocity measurements were con- 

ducted by the present author at the University of Manchester upon a suite of samples 

obtained from a siliciclastic reservoir. An extensive investigation of laboratory ultrasonic 

analyses was carried out under dry conditions at both atmospheric and elevated confin- 



237 Chapter 9: Synthesis 

ing pressures (Birch 1960). Unfortunately, the interpretation of laboratory data in terms 

of the causes of anisotropy is often non-unique (Jizba 1991). It is therefore important 

to integrate laboratory measurements with the complete quantitative microstructural 

analyses (Louis et al. 2005, Valcke et al. 2006). 

9.2.3 Palaeomagnetics 

To enable direct comparisons between the various analytical techniques used in this 

study and with independent studies of anisotropy the core samples were oriented using 

palaeomagnetic techniques (Hailwood & Ding 1995, Hailwood 2004). The laboratory 

analyses were conducted by Dr. Ernie Hailwood at Core Magnetics but the interpretation 

and data representation was conducted by the present author. The primary component 

magnetisation is acquired at the time of deposition (assuming the rock does not undergo 

significant re-working prior to lithification), and provides a record of palaeo-North. The 

palacomagnetic analysis of the core samples also provides useful information regarding 

sand transport directions and can help place important constraints on the positions of 

sand input points in sedimentary basins thus facilitating prediction of sand distribution 

and the geometry and direction of elongation of sand bodies (Hailwood & Ding 2000). 

9.2.4 Damage tensor inversion 

Rocks contain one or more feature that can cause seismic anisotropy. It is therefore diffi- 

cult to quantitatively determine the impact of an individual feature on seismic anisotropy. 
Hence, determining a method that allows the differentiation and quantification of the 

variables controlling extrinsic and intrinsic seismic anisotropy would provide useful infor- 

mation for better interpretation of observations of seismic anisotropy (Sayers & Kachanov 

1991, Sayers 2002b). 

The presence of fractures, cracks, microcracks, and microporosity greatly affects the ve- 
locity of elastic waves in rocks (Sayers 1994). It is well known that rocks containing 

non-randomly oriented cracks or which have a strong grain shape fabric are commonly 

elastically anisotropic (Sayers & Kachanov 1995). It has to also be considered that 

similar observations of the sensitivity of elastic wave velocities to stress could be as 

a consequence of grain boundaries and the soft interparticle constituents of phyllosili- 

cates (Sayers 2005). Studies that consider the extrinsic and intrinsic controls of seismic 

anisotropy on sedimentary rocks are rather rare with some recent exceptions (Louis et al. 
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2003, Han et al. 2004, Louis et al. 2005, Valcke et al. 2006). The present author gathered 

and interpreted all the data whilst Dr Stephen Hall wrote the computer programs and 

inverted the data (Hall et al. 2007). The theoretical framework, however, for considering 

multiple causes of anisotropy and in particular cracks and fractures in an anisotropic 

matrix have long been established (Sayers & Kachanov 1991). The main objective was 

to distinguish the intrinsic (LPO) from the extrinsic (SPO) effects and thus quantita- 

tively describe the grain-boubdary architecture. The methodology used is based upon 

the approach of Sayers (2002b) but with added extensions to utilise multi-axis velocitY 

measurements and a known matrix anisotropy (Hall et at. 2007). 

9.2.5 Seismic anisotropy forward model 

To circumvent the problems associated with EBSD analysis the microfabric and ultra- 

sonic velocity data gathered during this study were provided to Prof Michael Kendall 

who created a gcomathematical model to calculate the bulk aggregate elastic tensor 

from a given set of modal proportions as determined by either QXRD or well-log data 

(Kendall et al. 2006). The model was based upon a simple assumption that the strength 

of alignment of constituent mineral grains in each sample did not vary systematically 

throughout the reservoir. Therefore, a simple average of the single mineral phase elastic 

tensors were used as an input into a forward modelling program to calculate the bulk 

aggregate tensor. The program was designed to calculate the effective elastic constants 

of a rock comprised of quartz, feldspar, calcite/dolon-iite, micas (muscovite, biotite, and 

chlorite), clays (kaolinite and illite) and pores. The quartz, feldspar, and calcite elastic 

tensors were determined by EBSD analyses. The mica elastic tensors were determined 

based upon an average of the Bingham model, EBSD, and image analysis. The fine- 

grained clay components were assumed to have an isotropic distribution. Pores were 

also assumed to be isotropically distributed and spherical. 

9.3 Results 

9.3.1 Petrophysical Properties 

The results from this study confirm that undeformed siliciclastic hydrocarbon reser- 

voir rocks can exhibit a substantial intrinsic seismic anisotropy due to the lattice pre- 

ferred orientation of constituent mineral phases. In particular, calculations show that 
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compressional-wave seismic anisotropy due to LPO effects vary from c. 3.1% for quartz- 

rich, clean sandstones to c. 14.0% for mudstones. The same calculations show that shear- 

wave anisotropy due to LPO effects vary from c2.3% for quartz-rich, clean sandstones to 

c. 13.6% for mudstones. The styles of symmetry observed within the seismic anisotropy 

calculations are strongly controlled by the constituent mineral phases. Samples that 

are rich in quartz and feldspar generally possess an orthorhombic style of symmetry. 
Whereas, those rich in clays and micas (> 15%) tend to have a very strong VTI style 

of symmetry. This is a significant step beyond the achievements of previous similar 

projects (e. g., Han 1986, Eberhart-Phillips 1989, Jizba 1991, Strandness 1991, Blangy 

1992) which have not investigated the mineral controls of anisotropy in sandstones. With 

the exception of Hornby (1998) very few studies have attempted to determined the link 

between anisotropy and LPO. 

9.3.2 Ultrasonic analysis 

The conclusions determined from the atmospheric ultrasonic analysis provide a detailed 

understanding of the azimuthal variation in velocity and anisotropy with respect to 

lithology. Investigation of the bulk aggregate seismic anisotropy pole figure plots shows 
that no azimuthal variation in velocity is expected for samples which contain in excess 

of c. 15% phyllosilicates. On the other hand, investigation of the bulk aggregate seismic 

anisotropy pole figure plots also shows that samples which are quartz or feldspar rich are 

expected to show some azimuthal variation in velocity due to mineral grain alignment 

and hence grain boundary or micro-porosity alignment. The results of the atmospheric 

pressure ultrasonic analysis arc in agreement with the high-pressure analysis, i. e., the 

style and relative magnitude of degree of seismic anisotropy is similar. 

9.3.3 Palaeomagnetics 

ANIS analyses suggested that in general K,.. and K,. i,, lay within 35' of the horizontal 

and vertical respectively. This in turn means that the fabrics of the sediments deposited 

within the Clair field have not been disturbed significantly post-deposition. Broadly, 

a significantly higher and more inconsistent angle of orientation is observed for K. '.. 
in sedimentary environments which have undergone tectonic reworking. Total grain 

anisotropy, that is, the difference between the vertical and horizontal throughout all 

the samples studied ranged from c. 5 - 30% with a weighted mean of approximately 
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11%. Azimuthal anisotropy, i. e., the strength of alignment of pore space within the 

bedding plane, (the variation between the maximum and minimum orientations within 

the bedding plane) was significantly weaker than total anisotropy, ranging from c. 1- 3%. 

The mean azimuthal anisotropy for Well 206/8-8 was significantly greater than that of 

the grain fabric anisotropy which suggests that the effective pore shapes tend to be more 

elongate or better aligned than the grain shapes in the Clair rocks. Whilst it has not been 

possible in this study to utilise pore shape data (VRH does not take such information 

into consideration) it could in future studies of this nature be incorporated into more 

complicated models and used as a direction of investigation. 

9.3.4 Damage tensor inversion 

The results of the data inversion by Dr Stephen Hall show that the extrinsic crack- 

induced anisotropy is strong relative to that of the intrinsic anisotropy (i. e., LPO effects). 

In general, the predominant crack-set in the samples studied was aligned parallel to the 

depositional fabric. In other words, samples generally contained a much larger horizon- 

tal crack density than vertical. It was, however, observed that the LPO and extrinsic 

anisotropies appear in general to align, indicating that they are very probably linked in 

some way. It is likely that the cracks are related to the grain boundary contacts which are 

aligned with the grains which are coincident with the LPO measurements. Furthermore, 

it was also determined that vertical cracks had little or no preferential alignment. This, 

however, is in contradiction to both previous field studies of seismic anisotropy (Coney 

ct al. 1993, Smith & Lappin 1997) and the AVOA analyses suggesting that cracks or 

fractures exist on a larger scale than that of the ultrasonics. The presented results have 

provided an understanding of the crack distribution within the samples, which essentially 

relates to the architecture of the compliant grain contacts. Thus, from such results it is 

possible to determine the nature and significance of depositional features versus damage. 

In general, any azimuthal anisotropy observed in situ (using azimuthal amplitude/travel 

time or shear-wave splitting analyses) would most likely be due to damage, e. g. 9 vertical 

fracturing (but as such damage is larger than the scale of this particular part of the 

study it is not assessed in detail here). 



241 Chapter 9: Synthesis 

9.4 Controls of seismic anisotropy 

Integration of petrofabric analysis with ultrasonic measurements has shown that the 

overall anisotropy of the samples is composed of both intrinsic and extrinsic components. 
The intrinsic components are the lattice preferred orientation of mineral phases, and the 

non-random orientation of grains. The extrinsic components of anisotropy are cracks, 

fracturing, and preferentially aligned porosity. Observations of seismic anisotropy by 

ultrasonic analysis are largely controlled by cracks and fractures with minor contributions 

from the affects of SPO and LPO. Whereas, calculations of anisotropy using EBSD 

only take LPO into consideration. Moreover, observations of porefabric anisotropy by 

anisotropic magnetic susceptibility (ANIS) are broadly controlled by the alignment of 

pore space. Consequently, by taking the results of these different experimental techniques 

into consideration it is possible to derive a basic understanding of the controls of seismic 

anisotropy of siliciclastic reservoir rocks. 

Examination of both the experimental and analytical results obtained from this study 

suggest that the principal intrinsic control of seismic anisotropy of siliciclastics is the 

partial alignment of highly anisotropic mineral grains, such as, phyllosilicates. However, 

the contribution LPO has towards bulk aggregate observations of seismic anisotropy is 

regarded as minor when compared to the effect of the alignment of cracks (i. e., grain 
boundaries and layer parallel cracks). Assuming the previous is true here it is postu- 
lated that even for highly phyllosilicate rich lithologics, such as, shales that LPO is still 

subordinate to the effect of fractures and cracks. For example, the maximum calculated 

anisotropy as a result of the LPO of mineral phases alone in this study was 14% P-wave 

anisotropy (Sample 1841m) for a phyllosilicate rich sample. In comparison, the maximum 

observed ultrasonic P-wave velocity anisotropy in the same phyllosilicate rich rock was 

approximately 70% at room temperature and pressure (Sample 1841m). Nonetheless, at 

approximately in situ pressures there still exists a significantly higher level of anisotropy. 

Therefore, it is likely that the significant difference between the two measurements of 

anisotropy is either due to the effects of grain boundaries or cracks. Seismic anisotropy 

due to mineral grain alignment alone, however, at in situ reservoir conditions could ac- 

count for the degree of seismic anisotropy observed in field wide studies. It is also possible 

that the majority of the cracks and micro-fractures contained within the samples are as 

a result of uplift and that even after they have been returned to approximately in situ 

pressures that there still exists a high level of residual cracking that was not present in 
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reservoir. Moreover, at room temperature and pressure many shales do not contain any 

cracks and therefore any elastic anisotropy is assumed to be controlled by the fabric. For 

example, shear-wave splitting at the Valhall field is calculated to be approximately 1% 

and is thought to be related to dilation of grain boundaries. Whereas, non-hyperbolic 

moveout at the Valhall field records much higher levels of anisotropy which is believed 

to be related to the dominant horizontal fabric of the shale sequence. Analysis of the ef- 

fects grain boundaries have on seismic anisotropy by crack density tensor inversion (i. e., 

inversion for the compliance matrix) by Dr Stephen Hall suggests that layer parallel 
(i. e., depositional bedding) cracks and fractures and not grain boundaries are the most 

predominant mechanism contributing to the observations of bulk aggregate anisotropy. 

However, in general the affects of grain boundaries on observations of seismic anisotropy 

may be significantly different in rocks which contain a stronger SPO. 

It has become clear from the data obtained during this study that the intrinsic controls of 

elastic anisotropy (e. g., LPO and SPO) at the hand-specimen scale are subordinate when 

compared to the extrinsic controls of seismic anisotropy (e. g., layer parallel cracks and 

fractures) in siliciclastic rocks. The affects of vertically and sub-vertically aligned sets of 

cracks and fractures on seismic anisotropy on the scale of a seismic wavelength have not 

been fully investigated in this study which could provide more useful information in the 

better interpretation of field wide seismic surveys. 

9.4.1 Upscaling 

Petrofabric analysis was conducted upon cm scale samples. These cm scale samples are 

obviously not representative of the entire well section. The sampling strategy employed, 

however, for the EBSD analysis should have helped mitigate the issue concerning scale 

to some extent by only analysing samples that were extracted parallel to the long-axis 

of the core, thus intersecting a variety of layers. Moreover, in a further attempt to help 

overcome the issue of scale, simple averages of several of the sample's intrinsic elastic 

tensors were used as inputs into the larger scale AVOA and non-hyperbolic moveout 

models. 

The issue regarding the various scales of investigation with this project are difficult to 

overcome without producing a complex, multi-paramter self-consistent model. EBSD 

investigates intrinsic anisotropic properties on an individual grain-scale (nm's to mm's) 

whereas ultrasonic velocity measurements investigate intrinsic and extrinsic anisotropic 
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properties on a larger scale (nun's to cm's). It is not apparent that the properties 

identified by the ultrasonic investigation would be acknowledged as a mechanism causing 

anisotropy at the larger (scismics) or smaller scale (EBSD). The smaller scale intrinsic 

anisotropy causing properties would only show up as an average effect at the larger scale 
(ultrasonics and scismics). In fact, it is very likely that grain-scale properties arc entirely 

over shadowed by those on the larger scale, such as, cracks and micro-porosity. Without 

building a completely integrated model which takes into account all the various seismic 

anisotropy controlling variables it will be difficult to definitively say which variables are 

the most dominant in the subsurface. 

9.5 Application of results 

9.5.1 Overview 

This project has developed a framework for interpreting anisotropy on various length 

scales: crystal (LPO), intergrain (SPO), and fracture or bedding scale (scismics) (Hall et 

al. 2007, Kendall et al. 2006). These interpretations have only been made possible due to 

the high-quality of mineral orientation distribution and ultrasonic velocity measurements 

collected during this PhD study. A break down of the individual sample analysis is 

presented in Appendices (C. 1 and C. 2). The pre-processed sample data is contained 

within Appendices (Q and R). 

9.5.2 Predictions of the symmetry of seismic anisotropy 

Using the simple gcomathematical model outlined previously it can be seen that the 

various horizons within the reservoir have a distinctly more VTI style of symmetry 

towards the top of the reservoir, near the overburden and a weaker more HTI style 

of symmetry (HTI has the same the symmetry properties as VTI except that it has 

been rotated ninety degrees about either of the horizontal axes, it can be thought of as a 

single vertical alignment of fracturing, cracks or micro-discontinuity) towards the bottom 

within the main reservoir unit. Acoustic wave velocity analysis, pctrofabric analysis and 

field wide seismic analysis (conducted by Dr Andrew Carter) all broadly agree, in that, 

they all predict a VTI style of symmetry near the top of the wells with high expected P- 

and S-wave anisotropy. Whilst deeper down they all predict a more orthorhombic style 

of symmetry and significantly less P- and S-wavc anisotropy. Even though the studies 
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investigate varying length scales they all appear to broadly agree in magnitude and style 

of symmetry of the observed anisotropy. 

9.5.3 Indicators of reservoir quality 

It has been demonstrated that rocks which contain in excess of 15% layer-paraRel phyl- 

losilicates have a very strong VTI style of symmetry associated with the preferential 

alignment of platy minerals. Therefore, non-hyperbolic moveout detected on P-wave 

reflectivity data may indicate the presence of a medium that has a VTI style of syn- 

metry (Alkhalifah & Thomsen 1994, Alkhalifah 1997). Hence this could be as a result 

of the lithology possessing a significant proportion of clays or micas (e. g., shale or mud- 

stone). Moreover, in areas which have very little to no seismic anisotropy detectable via 

non-hyperbolic moveout on P-wave reflectivity data it is highly likely that the unit is a 

clean, probably relatively randomly fractured sandstone. Consequently, seismic technol- 

ogy (e. g., non-hyperbolic moveout) could be used as an indication of reservoir quality. 

Previously, non-hyperbolic moveout has been used to distinguish sand from shale (e. g., 

Alkhalifah & Thomsen 1994, Alkhalifah 1997). This study, however, has suggested that 

it might also be possible to distinguish sands with varying clay locations and modal 

propoortions. 

9.5.4 Palaeoflow indicators 

The consistent dip and azimuth of the feldspax and quartz velocity and anisotropy max- 

ima strongly supports the idea that seismic anisotropy could act as an indicator of 

palaeoflow direction in areas which contain little to no fracturing. The alignment iden- 

tified from the results of the EBSD analysis seismic anisotropy predictions are in broad 

agreement with the anisotropic magnetic susceptibility analyses which were conducted 

independently (Hailwood 2004). Therefore, independent studies of the Clair field's reser- 

voir palaeoflow direction concur that the depositional sands flowed from the NW towards 

the SE (Smith & Lappin 1997, Allen & Mange-Rajetzky 1992, Coney et al. 1993). These 

results are consistent with the work of Hamilton & Rees (1970) and Valcke et al. (2006). 

It should be noted that the anisotropy resulting from the palaeoflow direction would 

become swamped by fracture-induced anisotropy in areas containing slight to moderate 

densities of horizontal or vertical fractures. Moreover, the palacoflow results obtained 

from this study are not necessarily representative of all siliciclastic hydrocarbon reser- 
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voirs for two reasons. First, the predominant depositional dispersal pattern for the Clair 

field was from the NW. Second, in general, throughout all the analysed samples con- 

stituent mineral grains showed parallel grain long axes alignment. For example, if their 

were to be multiple depositional dispersal patterns as in the Central Graben of the North 

Sea it could very quickly and easily complicate the observed patterns whether the grains 

were in traction or fluid shear. Nonetheless, in this study the maxima of anisotropy and 

velocity of the main constituent minerals have aligned in a constructive fashion and have 

agreed well with studies into AMS which were conducted independently. 

9.5.5 Well position optimisation 

The drilling of wells and production of hydrocarbons lead to changes in the stresses 

acting on the reservoir and surrounding rocks. These changes in stress may lead to 

such problems as well-bore instability, loss of permeability, reservoir compaction and 

surface subsidence (Caley et al. 2001). Elastic wave velocities in sandstones vary with 

stress due to the presence of discontinuities such as grain boundaries, micro-cracks and 
large scale fractures (Sayers & Kachanov 1991). The results of this investigation provide 

useful information on the significance of depositional features and damage properties. 
However, the nature of the damage parameters do not necessarily represent those features 

that would exist in situ because some, if not all, of those observed patterns may be as a 

result of core extraction and preparation. The samples, in general, show greatest pressure 

sensitivity with the micro-cracks that are aligned parallel to bedding (horizontally). This, 

however, is likely to be due to core damage on extraction and preparation and should 
be ignored. It is likely, therefore, that any azimuthal anisotropy observed within these 

rocks at depth would be due to the preferential alignment of fractures and would not be 

observed in the scale of this study. To be able to identify the anisotropies and potential 

changes with reservoir pressure would require analysis of nonhyperbolic moveout since 

the predominant crack set is layer parallel (Figure 9.1)(Alkhalifah & Thomsen 1994). 

The Clair field reservoir has deviatoric stresses (Smith & Lappin 1997) and therefore 

the response of the samples to loading could be significantly different to that identified 

in this study. However, below the damage threshold (i. e., below the threshold where 

applied stresses result in permanent damage to the rocks microstructure) it is possible 

that the observed trends could act as guidelines for identifying pressure sensitive zones. 

Conversely, by monitoring the changes in elastic wave velocities it may be possible to 
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monitor changes in the stress caused by drilling and production (Caley et al. 2001). This 

could lead to an optimised well position in highly stress sensitive units within producing 

reservoirs (Sayers& Kachanov 1995). 

Figure 9.1: An example of nonhyperbolic moucout invursion. X-tu-is - Two-way-tiTne increases 

with depth. Y-axis - Offsetfrom source in metres. 

9.5.6 Case Study: AVOA analysis of the Clair field, N. W. Scotland 

In the presence of azimuthal anisotropy the velocity of the media bounding an interface 

will have an azimuthal dependence and therefore the amplitude of waves reflected from 

such an interface will varýy with the angle of incidence and also with azimuth (Hall ct al. 

2002). AVOA (amplitude variation with offset and azinuith) analysis is now a commonly 

used tool in oil and gas exploration used to characterise fractures in the subsurface (Hall 

et al. 2002, Hall &- Kendall 2003). AVOA analysis provides insight on the properties local 

to a reflector and therefore has the advantage of greater vertical resolution than analyses 

of shear-wave splitting (Hall & Kendall 2003). AVOA analysis has successfully been 

interpreted in terms of fracturing at the Valhall field where it showed spatial variability 

and variation in magnitude and good correlation with independent studies of fracture 

orientation (Hall et al. 2002). 

Amplitude variation with offset (AVO) analysis has for a long time been recognised as a 

useful indicator of lithology and pore fluid. Figure (9.2c) shows the standard 2D AVO 

methodology, where the amplitude of a reflected wave varies as a function of incidence 

ang1c. In the presence of azimuthal anisotropy (Figure 9.2b), the velocity of the media 
bounding the interface will have ail azimuthal depenedence and therefore the amplitude 
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of the waves; reflected froin this interface will vary with both angle of incidence and 

azimuth (Figure 9.2d). Thus azimuthal anisotropy may be characterised using amplitude 

variation xýlth off,, et and a7innith. 

a) Preferentially aligned 
vertical fractures 

I 
Azimuthal anisotropy 

I 
Velocity variations 

with azimuth 
i 

Amplitude Variation with 
offset and Azimuth (AYOA) 

(C - F- F co944)aW 0 tAuv1 0 

Figure 9.2: a-b) The i nfla( nct, of aligned fractures on the elasticity and reflectivity of a 7nediarn. 

c) Standard offset- dependent reflectinty and A VO equation. d) Extension of the A VO methodology 

and equation to determine A VOA. 

SENI-EBSD analyses conducted by the present author oil a limited number of samples 

have been provided to Dr James Wookey who used the SALANII code to calculate the 

expected elastic anisotropy of various discrete hori7. ons within the Clair field reservoir. 

As those. calculated elastic stiffness tensors are for a particular specimen an average of 

several of them is required to calculate what would represent a seisinically observable 

unit (several ten*s of metres). Hence. the intrinsic elastic stiffilms tensors, as deter- 

mined by EBSD analysis. are then averaged over what is scismically observable horizons 

to derive elastic stifflims tensors representative of a unit. The elastic stiffness of tile 

background matrix for Units IN" and V are calculated ky performing a VRH average of 

the relevant suite of elastic stiffness teusors (determined by EBSD analysis). Using the 

data obtained from the palaeoinagnetics it was possible to orient all the elastic stiffness 

tensors into a geographic reference franic before calculating the VRH average. Unit V 

is relatively homogeneous as it is part of the main reservoir section whereas Unit IV is 

heterogeneous. This means that to calculate a general elastic stiffiless tensor for Unit IN' 
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would require many more samples which covered the entire range of lithologies encoun- 

tered. An expected AVOA response is then calculated using the appropriate average of 

tensors for the specific unit of investigation. This then allows expected AVOA responses 

to be modeled and compared to the real observations based upon the quantification of 

the background matrix by adding in fracturing of various magnitudes (Hall 2000). The 

program, SALAMI written by Dr James Wookey, calculates the AVOA response of a 

reflection from the interface between two generally anisotropic layers. It uses the code 

RMATRIX (Thomsen 1998) to calculate the reflection and transmission coefficients be- 

twecii two sets of Cip, (as determined from EBSD analysis), and can calculate the AVOA 

response for either an idealised or realistic survey acquisition geometry. 

To illustrate the point Top Unit V will be used as ail example. Figure (9.3) shows tile 

observed AVOA response for the Top Unit V horizon around Well 206/8-8. A frequency 

histogram of the magnitude of absolute anisotropy as determined from AVOA analysis 

is shown in Figure (9.4). Examination of the observed AVOA response shows that 

oil average tile absolute anisotropy is approximately 0.2 to 0.6 (Figure 9.4). Figure 

(9.5) is a matrix scatter plot and represents the predicted AVOA response for varying 

magnitudes of fracturing within Top Unit V and the overlying Unit VI. Tile x-axis and 

y-axis represent the degree of fracturing within Unit VI and Unit V respectively. An 

increase in the positive direction on both the axes represents an increase in the magnitude 

of fracturing. Tile absolute magnitude of anisotropy is indicated by tile colour scale bar. 

Therefore, to produce magnitudes of anisotropy similar to those observed within Unit V 

(Figure 9.4), Unit V is required to have strong fracturing whilst Unit VI is expected to 

have weak or little fracturing (Figure 9.5). 

This methodology allowed the amalgamation of all the data sets (EBSD. ultrasonics and 

scisinics) but it also meant that when performing the inversion procedure it was assumed 

that the actual AVOA response was as a consequence of all the seismic anisotropy causing 

variables. It was assumed that to a greater or lesser all tile variables causing seismic 

anisotropy would appear in the actual observed AVOA. Hence, the observed AVOA 

contained information about the grain fabric, micro-porosity and larger scale fracturing. 

Oil a local scale there can be significant variability in anisotropy orientation due, for 

example, to perturbation of stress fields around faults or across fold structures. thus, 

flexibility, such as avoiding prior assumptions about regional orientations is necessary 

in the AVOA analysis. AVOA may be interpreted in terms of fracturing but ambiguity 
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exists in this such that even azinluth of fracturing could be misinterpreted. Thus forward 

modeling is necessary to resolve this ambiguity. AVOA analysis interpreted in tcrins of 

fracturing and shows spatial variability in both orientation and magnitude that correlates 

with independently acquired data sets (Sruith & Lappin 1997, Coney et al. 1993). 

10, 

1.8 

1.6 

1.4 

12 

1 

Figure 9.3: Observed A VOA for the, Top Unit V hmizon within Well 20618-8. The absolate 

magnitude of anisot7vpy is indicated by the colouT- bar. Com-tesy of Dr Andmw Carfer. 
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Figure 9.4: Frequency histogram of the magnitude of absolute anisotropy for the Top Unit V 

horizon within Well 20618-8 as determined fivm A VOA. The magnitude of anisotropy increases 

from left-to-7-ight on the x-axis of the graph. Courtesy of Dr James Wookey. 
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Unit VI fracturing 

0.05 0.1 0.15 02 025 0.3 035 

Figure 9.5: Synthetic A VOA response using varying magnitudes of fracturing within Unit V 

and Unit VI with the assuniption of an intrinsic anisotropy due to lattice preferT-ed orientation. 

I- no fractums -6 -highly fractured. The absolute magnitude of anisotropy is indicated by the 

colour bar. Courtesy of DrJaincs Wookey. 
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Chapter 10 

Conclusions 

This thesis presents a petrofabric analysis of scismic aniostropy in silicidastic reservoir 

rocks. The results have been used by the present authors and other researchers be- 

longing to the SAIL research consortium to increase undcrstanding of the controls of 

scisinic anisotropy in siliciclastic reservoirs. As suniniarised below, the rcsults raise the 

possibility that measures of seismic anisotropy from field seismic data can be used to pro- 

dict reservoir parameters, such as, lithology, fracturing, and fracture orientation within 

siliciclastic rocks. Combining petrofabric analysis (conducted by the present author), 

ultrasonic velocity measurements (conducted by the present author at the University 

of Manchester), field scismic data (analysed bY Dr Andrew Carter) via numerical mod- 

elling (conducted by Dr James Wookey, Dr Stephen Hall and Prof Michael Kendall) has 

highlighted sonic of the most important controls. This chapter will contain the main 

conclusions, outline the key contributions of this thesis and discuss potential future di- 

rections for the study of scismic anisotropy in sedimentary rocks. 

Lattice preferred orientation determination methodologies 

Autowated EBSD proved to be a reliable techuique for (Icteriiiiiiiiig LPO of quartz, 

feldspar, aild calcite. Nlatitial EBSD hidexhig of phyllosilicates was re(lifired because of 

their I)Iaty structure, fill(! graiii sizeawl poorly cr. ystallised structilre. 'rh, j)r, (ti(-tive,,,, (l 

aualytical inodels that were both used to deterinhie phyllosilicate oriciitatioii were (, oil- 

sisteirt with each other. Overall, the studies coii(iticted (hil-hig this stwly iiiaY rej)reseiit 

the wost detailed petroffibric aiialyses cotiducted oil a strite of sediniciftarv rocks. 

Seismic anisotropy as a result of lattice preferred orientation 

Undeformed clastic rocks exhibit a significant seismic anisotropY due to the LPO of their 
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mineral phases alone. The modal proportion of phyllosilicate minerals is the single most 
important control upon seismic anisotropy in the samples studied. Furthermore, both 

feldspar and calcite can have a significant impact on the bulk aggregate anisotropy. The 

fabric intensity of the constituent mineral phases is found to be directly proportional 

to the maximum P- and S-wave anisotropy. When the phyllosilicate modal content is 

approximately 15% they become the most dominant mineral phase with respect to the 

symmetry of the bulk aggregate anisotropy. A rock can be assumed to have a completely 
VTI style of symmetry when phyllosilicate content is < 15%. 

Palaeoflow indicators 

The symmetry patterns of quartz and feldspar predicted throughout an the seismic 

velocity stereoplots align in a constructive fashion. The consistent plunge and azimuth 

of the both quartz and feldspar P- and S-wave maxima suggest a dominant palaeoflow 
direction. It is possible therefore that depositional flow direction of intra-reservoir units 

can be inferred from seismic anisotropy alone. This is the first study that has produced 

sufficient data to raise the possibility that seismic anisotropy could be used to identify 

palaeo-flow directions within reservoirs. 

Mathematical models 
High density EBSD analysis has enabled us to model any rock's seismic properties when 

given the modal proportions alone. The relationship between fabric intensity and max- 

imum P- and S-wave anisotropy was the basis for a mathematical model of any of the 

Clair rocks. Furthermore, using a multiple linear-regression, empirical formulae were 
derived which predicted P- and S-wave anisotropy from modal proportions alone. This 

approach is a step further than the empirical correlations between porosity, clay content 

and velocity devised by *Han (1986)* as the geomathematical model allows the calcula- 

tion of seismic velocities as a function of the entire rock mineralogy, the stress conditions 

as well as the direction of wave propagation. 

Room pressure ultrasonic velocity measurements 
P-wave velocities vary between 2 and 5 km/s, whilst S-wave velocities vary between 1 and 

3 km/s. The velocities are typically transversely isotropic or isotropic. The samples could 

be grouped into three main categories: I- high velocities with strong anisotropy, 2- high 

velocities and weak anisotropy, and 3- low velocities with intermediate anisotropy. Group 

1 samples typically had a significant phyllosilicate content and tended to Part easily 

parallel to bedding. Group 2 samples were generally oil rich, and lacked any significant 
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amount of clay minerals. Group 3 samples were clean, high porosity sandstones. 

High pressure ultrasonic velocity results 

The anisotropy decreased rapidly for Group 1 samples over the first 50MPa and the 

velocity perpendicular to bedding increased faster than the velocities parallel to bedding 

which reflects the closure of the bedding parallel porosity. For the Group 2 samples 

there is a small decrease in anisotropy as theprcssure increases but initially with a small 

anisotropy. Ultimately Group 2 samples are isotropic at the limit to elastic pore closure. 

The anisotropy initially increases and then drecrcascs as the pressure increases in Group 

3 samples, suggesting that pores are more compliant in some directions than others and 

hence there is a different rate of pore closure with pressure in different directions; they 

are broadly isotropic. The rapid closure of the horizontally aligned (bedding parallel) 

cracks and micro-cracks are likely to have formed as a result of stress relaxation and 

probably not present in the reservoir. 

Compliance tensor inversion 

Extrinsic crack-induced anisotropy is much stronger relative to intrinsic LPO effects. In 

general, the predominant crack set is aligned parallel to the depositional fabric. Intrinsic 

and extrinsic anisotropics appear to be aligned. This indicates that they are linked in 

origin, for example, the cracks are related to grain boundary contacts and are aligned 

with the grains which give rise to the LPO and SPO. 

Palaeomagnetic core orientation 
Palacomagnetic core orientation has proven to be an useful and relatively successful tech. 

nique in defining the direction of geographic North throughout all the samples analysed. 

The palacomagnetic orientation data was assigned a reliability class ranging from 1 to 

3, where Class 1 represents an angular uncertainty of < 15*, Class 2 15* to 20', and 

Class 3> 20'. 64% of the samples analysed fell into class 1,14% into class 2, and the 

remaining 22% into class 3. The palaeomagnetic core orientation can be thought of as 

being successful when considering that on average 64% of the orientation data had a 

circular error of less than or equal to 15*. 

Grain fabric and palaeoflow indicators 

K ...... and K,,, i,, axes lie within - 35" of the horizontal and vertical respectively. This 

confirms that these sediments have not been disturbed by post-depositional processes. 

The mean sediment transport direction for Well 206/8-8 was towards the SSE. The mean 
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sediment transport direction for Well 206/13a-2 was also towaxds the SE. 

Grain fabric anisotropy 
Total grain anisotropy in both wells typically ranges from ý5 to 30% with a mean of 

- 11%. The majority of this anisotropy reflects the tendency for grains to lie with their 

long axes near the horizontal and short axes near the vertical, resulting in a dominant 

planar anisotropy with a mean of , 9.5%. Azimuthal grain anisotropy is relatively weak 

ranging up to about only 3% but with an overall mean value of only 1%. The results of 

this analysis are consistent with the EBSD analysis of petrofabric intensity. 

Developments in rock characterisation. in both the laboratory and in field wide seismics; 
have played an important role in the improvements made in both exploration and de- 

velopment of hydrocarbon reservoirs. Although many of these improvements have made 

seismic reservoir characterisation and monitoring possible there remains many significant 

challenges, such as, determining the relevance of the relationships between core, log and 

seismic measurements of seismic wave propagation and attenuation. 

Future Directions 

A Voigt-Rcuss-Hill (VRH) average was applied throughout this project to calculate the 

bulk aggregate elastic properties. VRH is one of the simplest and best known averaging 

techniques, however, no information on shape or position of individual grains is used 

when determining the effective elastic constants. It is proposed that in future studies 

carried out in this area, a more complex averaging scheme could be applied such as the 

Pontc Castafieda and Willis method (Castaficda & Willis 1995). The Ponte Castaficda 

and Willis method provides a powerful method for a more detailed assessment of the 

causes of elastic property anisotropy in rocks with more complicated microstructures. 

Automated EBSD is now a relatively well established technique but further work could be 

conducted on verifying the accuracy of its capabilities to identify low symmetry mineral 

phases, such as feldspars. Throughout this project new methodologies were developed 

to assist in the accurate and precise crystallographic orientation identification of low 

symmetry mineral phases. For example, it was decided that to correctly determine 

the orientation of phyllosilicates that they should be manually indexed. Furthermore, 

the crystallographic indexing files used by EBSD to identify feldspars, and muscovite 

orientation were also updated. 
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This study has provided a catalogue of results so that a mathematical model of any rock 

within the Clair field can be approximated on the basis of its mineralogy alone to aid 

the Processing and understanding of field seismic data on what is a structurally complex 

reservoir. This study is however by no means exhaustive and has plenty of room for 

development. For example, approximately two thirds of the world's oil is produced from 

carbonate reservoirs. Therefore carrying out a similarly rigorous and detailed study on 

a suite of carbonates could also assist in the maximising of oil recovery from carbonate 

sequences. 

The suite of samples that were studied were from an atypical clastic reservoir and further 

analytical work of the nature that has been carried out in this project is required to verify 

whether the assumptions made will in fact hold for all clastic reservoirs or whether they 

are unique to the Clair field. It is postulated that rock physics and their related seismic 

properties could be highly controlled by local geological factors. However it could be the 

case that rock physic trends are universal and therefore rock physic models can be used 

in a predictive way if they are constrained by local geological parameters. 
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Appendix A 

Quantifying microtexture 

The integral of the texture function is used here to characterisc the sharpness of a texture 

by a single parameter (Sturcken & Croach 1963), 

j= 
JV(9)]2dg. 

I 

If then the the series expansion is substituted for f (9), it then follows that, 

j Cjl"'C; 4'ý i Tjl"(g)Tj*40(g)dg. (A. 2) 

Becuase of the orthogonality of the gencralised spherical harmonics, it logically follows 

that, 

i=1: 
1 

189112. 
TI +J[c I (A. 3) 

In the instance of a random distribution of orientations, 

il = 11 

and therefore for a single crystal, 

(A. 4) 

1 [T, "(go)], - 00. (A. 5) 
21+1 

The texture index therefore varies between I and oo in the case of random orientation 

and one or more ideal single crystals respectively (Bungc 1982). 
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It is also possible to define a measure of the sharpness of individual pole figures, similar. 

to that of the texture index, by, 

1 J[p 
Jhi h, (Y)12dy. (A-6) 

Ir 

The measure of sharpness of an arbitrary pole figure can only be smaller than or at most 

equal to that of the 3D ODF (Bunge 1982). 
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Sample notation 

Sample number notation - small letter = refers to any number of repetitions of the same 

sample, X-Y-Z = refers to the direction of core that it was removed from, large letter 

possibly followed by a number = sample also used for palacomagnetic re-orientation. 

Qtz. = quartz, Fspr. = feldspar, and Clc. = calcite. Where n/a appears, it means 

that the sample did not contain sufficient quantities of a mineral phase to enable its 

indexing. For example, 1663DY = sample number 1663, D the core was also used for 

palacomagnetic re-orientation and was removed from core plug Y (parallel to bedding). 
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Experimental Analyses 
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Single crystal elastic tensors 

Quartz, p=2.65 (Nicskimin ct al. 1965). 

0.8680 0.0704 0.1191 -0.1804 0.0000 0.0000 

0.0704 0.8680 0.1191 0.1804 0.0000 0.0000 

0.1191 0.1191 1.0575 0.0000 0.0000 0.0000 

-0.1804 0.1804 0.0000 0.5820 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.5820 -0.1804 
0.0000 0.0000 0.0000 0.0000 -0.1804 0.3988 

Orthoclase, p=2.57 (Hearmon 1984). 

0.5960 0.3440 0.2800 0.0000 

0.3440 1.5680 0.2160 0.0000 

0.2800 0.2160 1.1950 0.0000 

0.0000 0.0000 0.0000 0.1360 

-0.1700 -0.0590 -0.1290 0.0000 

0.0000 0.0000 0.0000 -0-0180 

-0.1700 0.0000 

-0.0390 0.0000 

-0.1290 0.0000 

0.0000 -0.0180 
0.2260 0.0000 

0.0000 0.3420 

(D. 1) 

(D. 2) 

Calcite, p=2.71 (Dandekar 1968). 
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1.4627 0.5971 0.5076 -0.2076 0.0000 0.0000 

0.5971 1.4627 0.5076 0.2076 0.0000 0.0000 

0.5076 0.5076 0.8531 0.0000 0.0000 0.0000 

-0.2076 0.2076 0.0000 0.3405 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.3405 -0.2076 
0.0000 0.0000 0.0000 0.0000 -0.2076 0.4328 

Muscovite, p=2.84 (Bingham distribution). 

1.4648 0.3907 0.2970 0.0000 0.0000 0.0000 

0.3907 1.4648 0.2970 0.0000 0.0000 0.0000 

0.2970 0.2970 0.6505 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.2432 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.2432 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.2432 

Kaolinite, p=2.64 (Hearmon 1984). 

0.77867 0.30067 0.30067 0.000 0.0000 0.0000 

0.30067 0.77867 0.30067 0.0000 0.0000 0.0000 

0.30067 0.30067 0.77867 0 0000 0 0000 0.0000 
. . 

0.0000 0.0000 0.0000 0.239 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.239 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.239 

Gas, p=0.179 (Vargaftik et al. 1983). 

0.00073 0.00073 0.00073 0.0000 0.0000 0-0000 

0.00073 0.00073 0.00073 0.0000 0-0000 0-0000 

0.00073 0.00073 0.00073 0.0000 0.0000 0-0000 (D-G) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Quartz pole figures 
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Figure E. I: Non-polar, lower hemisphere, cnjstallographic stereonets of qiiartz poles to lattice 

plancs (166'Int. - 1909m). ror an explanation of fi. qnre details see Figiar (5-14). 
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Figure E. 2: Non-polar, lower hemisphere, crystallog7uphic sterronets of quartz poles to lattire 

planes (1950m - 2028m). For an explanation of figure details see Figure. (5.14). 
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Appendix E: Quartz pole 

Figure E. 3: Non-polar, lower hentispheir, crystallographic stereonets of quaTfz poles to lattice 

plarics (2028m - 2194m). For an explairta/ion offigure, details see Figure (5.14). 
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jj 

Figure E. 4: Non-polay-, lower hemisphere, crystall(Nraphic ster-conets of q7tailz poles to lattire 

planes (21947n - 2198m). For an czplanation of figime details see Figurr (5.14). 
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Feldspar pole figures 
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Figure F. I: Illustrative non-polar, lower heirtisphem, crystallogniphic stemonets of fildsply- 

(1663irt - 190m). For- art explanation of figare details Fiyurr (5.15). 
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Figiire F. 2: Illustrative non-polar, lower hemisphere, crystallopuphic sterronet8 of feldspar 

(1950m - 2028m). Eor an explanation offigure details see Mgure (5.15). 
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CD 
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Figure F. 3: 11histrative non-polar. lower heinispherv, crystall(ýyrnphic stemoncts of fc1d. -Ilmir 

(2028, rit - -1194itt). For an explanation of figum details see Figam (5.15). 
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Figure F. 4: Illustrative non-polar, lower hemisphem, crýystallographic sterconets of f(! Id.,; PaT' 

(2194in For an explanation of figure deta? ls see Figure (5.15). 
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Calcite pole figures 
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00 

00 

Figure G. I: Illushyttive non-polar, lower hemisphenp., cy-jistalloginphic ste, -eo7jets ()f calcite 

(I 663irt - 19507YO. For an explanation of figure details see Figure (5.10). 



289 Appendix G: Calcite pole figures 

Figure G. 2: Ilastintivc non-ImAr. lower hcutisphere. rrystallogruphic stemoncts of calcitt,. 

(195 )07, rt - 2070m). For an explanation of fý(prv details see Figurr. (5.16). 
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Figure G. 3: Ilustrative non-polar, lower hemisphere, crystalltýqraphic stefronets of calcite 

(207.1m, - 9198m. ). For an explanatzon of figurc. details see U?.. q? trc. (5.16). 
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Figure G. 4: Ilustrative non-polar, lower heinisphere, cry8tallographic stemoncts of calcite 

(2198m). For an explanation of figure. details see Fig? irc (5 ). 16). 
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Crystal velocity pole figures 

Vp Contours (km/s) 
8 13 Vsl Polarisation Planes 

72.09 

53 
,,, I fin.., 

-m- V. i""Iy 6 1: 1 M Velocity -4 53 ýhadingo - linear 

pn lower ,. "is lower hemisphere 

Figure H. 1: Illustrative lower hemisphere velocity pole Jigurcs for single crystal muscovite (look- 

ing down mito thc bcdding planc). Bedding is represented by the perimeter of the circle. The 

polc figurrs from. l(ft-to-7ight ry-pirsent: P-wave vclordll distribut?, on, and degree of shear-wave 

splitting (Zv) 
, fhe black ticks repirscid the polarisation of the fast shear-wave. Blue - High veloc- 

dy/amsotropy, and 11cd - Low velocitylansiotropy. The P-wave pole figure also shows the location 

of fit(, maximum (black squart) and minimuni anisotropy (white cirr. le) with the degree of P-wave 

nnisotmpy calculated in pcr cvnt. 
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Figtire H. 2: Single crystal scismic properties for quartz. I rppf r hf-misplicre-, pole figure plots of 

ma. ranum (black squam) and Tninimurn (white dot) velocity (bnls) arid anisotropy Black 

and white tick Tnarks represent fast shear-wave polarisation orientation. Top (from L-R): Vp is 

the P-wave velocities, AVs indicates the degyre ofshcar-wave splitting. and Vs, is the fast shear- 

wave anisotropy, and polarisation orientation. Bottorn (frynn L-R): Vs, is the fast shear-wave 

velocity, Vs2 is the slow shear-wave velocity, and dVx is the difference in vclocity between the 

fast and slow shear-wave. Note that the contour intervals are not the sayne for every diagram. 
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Figure H. 3: Single crystal seismic properties for orthoclase. Upper hemisphere, pole figure Plots 

t)f maximunt (black square) and Tninintum (white (lot) velocity (bn1s) and anisotropy (%). Black 

and white tick marks rePresent fast shcar-wave polarisation orientation. Top (from L-R): Vp is 

the, P-wavc ve, locitics, AV.,; indicates the degree of shcar-wa tie splitting, and Vs, is the fast shear- 

wavc anisotropy, and polarisation orientation. Bottom (from L-R): Vs, is the fast shear-wave 

vc1mity, Vs2 is thf! slow shcar-wave velocity, and dVs is the differunce in velocity between the 

fast and slow shcar-wave. Note that the contour intervals are not the same for every diagram. 
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maximum (black sq-tiare) and ininimarn (white dot) velocity (kmls) and animoty-opy (%)). Black 

and white tick inarks mpirsent fast shear-wave polaii. sation orientation. Top (from L-R): Vp is 

the P-uyave ticlocities, AVs indicates the! degme of shear-wave splitting, and I's, is the, fast shear-- 

wave anisotropy, and polaHsation oHentation. Bottorn (frwrn L-R): Vs, is the fast shcar-wave 

velocity, V82 is the slow shear-wave velocity, and dVs is the fliffvirywc in velocity bctiecen the, 

fast and slow shear-wave. Note that the cOntoar intervals air riot the sarne for cipery diagram. 
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Figure H. 5: Singlo, crystal scismic prope7-tie. s for muscovite. Upper heMisphere, pole figu- Plots 

of rruu-iinum, (blark squarr) and ininimunt (white dot) velocity (km/s) and anisotroPY (YO). Black 

and whitc tick marks n-Pirsent fast shear-wave polarisation orientation. Top (from L-R): VP is 

Hit, P-wavc m-lovitics, A Vx indicates the degree of shear-wave splitting, and Vs, is the fast shear- 

wallf, anisotropy, and polarisation orientation. Bottom (froin L-R): Vs, is the fast shear-wave 

11clOcitY, V82 is the slow shcar-wave vclocity, and (IV. s is the difference in velocity between the 

fast and slow shear-wavc. Note that the contour inteivals are not the same for every diagram. 
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298 Appendix 1: Quartz velocity pole figures 

Figure I. I: Quartz (160m - 1963m) - P- and S-wave velocity-anisotropy pole'. figums. For an 

cxplanation of the, diagium notation see Figure (H. 1). 



299 Appendix L Quartz velocity pole figures 

Figure 1.2: Quartz (19637it - 2194,11) - P- and S-wavc ve, locity-armsoty-opy Ix)lt! fipim. s. For an 

rx-planation of thc di"min notation sce. Figitre (H. 1). 



300 Appendix I: Quartz velocity pole figures 

2198 

2198Z 

Figure 1.3: Qitartz (2198in) - P- and S-iva. ve ve loci, ty- anis o Iropy pole. fkqitreq. For an explanation 

of the diagimn notation see. Figure (11.1). 
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302Appendix J: Feldspar velocity pole figures 

Figure J. 1: Feldspar (1663m, - 1963m) - P- and S-wave velority- anisotropy pole figures. For an 

ev-planation of the diagrain notation see Figure (H. 1). 



303Appendix J: Feldspar velocity pole figures 

Figure J. 2: h'pld. spar (19637n - 2194m) - P- and S-wave velocity-antsotmpy polc fipirrs. For an 

(uplanatiott of the, diagram notation see Figam (H. 1). 



304Appendix J: Feldspar velocity pole figures 

Figure J. 3: F(J(LSP(17- (, 2198m) - P- and S-wave velocity-anisotropy pole figurcs. For an 

nation of thc diagnint notation sce Figure (11.1). 
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Figure K. 1: Calcite (166317t - 1963-rn) - P- and S-wave velocity, and anisotropy pole figures 

ass noting 100% modal proportion. For an explanation of the diagram see Figure (H. I). 
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Figure K. 2: Calcite (2015rit - 21987n) - P- and S-wave velocity, and anisotropy pole figures 

assuming 100% m(mlal proportion. For an c-TPlanation of the diagnzin vf, (, Figurr (H. 1). 
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309 Appendix L: Bulk velocity pole figures 

Figure L. 1: IN& ayprgale velocity, and ani. qotropy pole fi. qijyr prrdictions front 1663m - 1963m. 

For dinpum c. i. planation mcf, Figurr (11.1). 
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Figure L. 2: Bulk figymgate velocity and anisotropy pole jigure predictions front 1963m - 2194in. 

For diagmirt explanation sce. Figum, (11.1). 
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Figtire L. 3: Bulk aggrrgate velocity and anisotropy pole figure predictions. for 2198m. For 

diagrain explanation see Figure (11.1). 
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Average elastic tensor 

LPO determined average elastic tensors for the constituent mineral phases. 

Quartz 

0.9587 0.0803 

0.0803 0.9734 

0.0860 0.0764 

0.0007 0.0013 

0.0029 0.0031 

0.0020 -0.0010 

Orthoclase 

0.0860 0.0007 0.0029 0.0020 

0.0764 0.0013 0.0031 -0-0010 

0.9715 -0.0035 -0.0098 0.0023 

-0.0035 0.4435 0.0045 0.0006 

-0.0098 0.0045 0.4498 -0.0002 

0.0023 0.0006 -0.0002 0.4414 

0.8012 0.2854 0.3269 

0.2854 0.8220 0.2971 

0.3269 0.2971 0.8475 

-0.0039 -0.0018 -0.0059 

-0.0059 -0.0064 -0.0422 
0.0019 -0.0002 0.0059 

-0.0039 -0.0059 0.0019 

-0.0018 -0.0064 -0.0002 

-0.0059 -0.0422 0.0059 

0.2583 0.0051 0.0060 

0.0051 0.2480 -0.0022 
0.0060 -0.0022 0.2585 

(NI. 1) 

(NI. 2) 

Calcite 
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1.2147 0.5557 0.5239 

0.5557 1.1550 0.5258 

0.5239 0.5258 1.1719 

0.0006 -0.0044 -0.0234 
0.0160 0.0070 -0.0176 
0.0140 -0.0261 0.0104 

0.0006 0.0160 0.0140 

-0.0044 0.0070 -0.0261 

-0.0234 -0-0176 0.0104 

0.3156 0.0102 0.0061 

0.0102 0.3115 0.0001 

0.0061 0.0001 0.3425 

(M. 3) 
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Figure N. I: Group - 1. Well 20618-8, sample 1784. Polar diagrams (top): atinospherir 

conditions compre. ssional, and shear-wave velocity variation (bri/s). Scatter plots (Imttoin): 

compressional-wave velorily (A-mls) with respect to an increasing confining pressvire for the X-, 

Y-, Z- and XZ45- (X YZ) cores (left hand plot). Compressional-ulave anisotropy (%) urith T-espeCt 

to an increasing confining pre. s. sare (Wa)(right hand plot). 
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Figure N. 2: Group - 1. Well 20618-8, sarnple 1788. Polar diagrains (top): atmospheric 

conditioms compmssional, and shear-wave velocity variation (knils). Scatter plots (bottom): 

comprrssional-wave velocity (km/s) with respect to an increasing confining pressure for the X, 

Y-, Z- and XZ45- (X YZ) cores (left hand plot). Coutpressional-wave anisotropy (%) with respect 

to (in increasing confining prcs8um (Waffi-ight hand plot). 
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Figure N. 3: Gimip - 1. Well 20618-8, sample 1841. Polar diagmyns (top): atmospheric 

conditions compressional, and shcar-wave velocity variation (bn/s). Scatter plots (bottorn): 

comprrssional-irave velocity (km/s) with respect to an inryrasing confining prrssurr for the X-, 

Y-, Z- and XZ45- (X YZ) corrs (left hand plot). Compressional-wave ariisotry)py (%) with mspect 

to an mrTmOng confining pirssny'r (MPO(right hand Plot). 
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1963 

S-wave 
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Figure NA: Group - 1. Well 206113a-2, sample 1963. Polar diagrams: atrnospheTic conditions 

compirssional, and shear-wave velocity vaTiation(bri/5). 
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Figure N. 5: Group - 1. Well 20618-8, sample 2070. Polar diagrants: atmospheric conditions 

compt-cssional, and shcar-wave velocity variation(kwt/s). 
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P-wave S-wave 

Figure N. 6: GiTnip - 1. Wcll 20618-8, sample 2073. Polar diagryuns: atmosphcric cOnditions 

compmssional, and shcar-wavc v(docity vaTiation(kirils). 
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Ultrasonic data - Group 2 
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Figure 0.1: Group - 2. Wcll 20618-8, sample 1663. Polar diagrams: atinospheric conditions 

comprcssio'nal. and shcar-wave velocity variation (k-mls). 
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Figure 0.2. Group - 2. Well 20618-8. sarnple 1909 (no oil). Polar diagrarro; (top): atmo- 

spheric conditions rompirssional, and shear-wave velocity variation (kyn1s). Scatter plots (bot- 

tom): compressional- wave velocity (km/s) with respect to an increasing ronfining prrmure. for the 

X-, Y, Z- and XZ45- (XYZ) core. s (left hand plot). Compmssional-wave anisotropy (%) with 

respect to an increasing confining pressitre (Wa)(right hand plot). 
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1909 oil 
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Figure 0.3: Group - 2. Well 20618-8, sample 1909 (oil). Polar diagrains: atmospheric condi- 

tions conipressional, and shear-wave velocity variation(kut1s). 
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Figure OA: Group - 2. Well 20618-8, sample 1950. Polar diagrams (top): atmospheric 

conditions compressional, and shear-wave velocity variation(bn/s). Scatter plots (bottom): 

compressional-wave velocity (km/. s) with respect to an increasing confining pressure for the X-, 

Y-, Z- and XZ45- (XYZ) cores (left hand plot). Coinpressional- wave anisotropy (Yj)) with n-spect 
to an increasing confining pressure (MN)(right hand plot). 
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1959 

P-wave 

Figure 0.5: Groap - 2. Well 20611.7a-2, sample 1959. Polar diagrams: atmospheric conditions 

compressional, and shear-wave velocity variation(km1s). 
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Figure 0.6: Gronp - 2. Well 206113a-2, sample 2015. Polar diagrams: atmospheric conditions 

compressional, and shear-wave velocity variation (k-1s)- 
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Figure 0.7: Groap 
- 2. Well 206113a-2, sample 2023. Polar diagrams: atmospheric conditions 

contpressional, and shear-wave velocity variation (km/s). 
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Figure 0.8: Group - 2. Well 206113a-2, sample 2028. Polar diagrams (top): atmospheric 

conditions co Trip ressional, and shear-wave velocity variation(kTrils). Scatter plots (bottom): 

compresxiorial-wave velocity (kai/s) with respect to art increasing con/ininy pressure for the X-, 

Y-, Z- and XZ45- (X YZ) cores (left hand plot). Compressional-wave anisotropy (1%1) with 'respect 

to an increasing confining pressure (NIPa)(right hand plot). 
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Figure 0.9: Gronp - 2. Well 20618-8, sample 2129 (no oil). Polar diagrams (top): atmo- 

spheric conditions compressional, and shear-wave velocity variation(kin1s). Scatter plots (bot- 

to7n): coyripressional-wave velocity (bn/s) with respect to an increasing confining pressure for the 

X-, Y-, Z- and XZ45- (XYZ) cores (left hand plot). Compre. ssional-wave anisotropy (%) with 

respect to an. increasing confining pressnre (Ml'a)(righl hand plot)- 
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Ultrasonic data - Group 3 

2034 
P-wave S-wave 

Figure P. 1: Groap - 2. Well 206113a-2, sample 2034. Polar diagrams: atmospheric conditions 

compressional, and shear-wave velocity variation(k7n/s). 
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2088 
P-wave 

Figure P. 2: Group - 3. Well 20618-8. Polar diagram representing compmssional-wave velocity 

variation at atmospheric conditions (kmls). 
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Figure P. 3: Group - 3. Well 20618-8, sample 2192. Polar diagrams (top): atmospheric 

conditions compressional, and shear-wave velocity variation(kan/s). Scatter plots (bottom): 

COMPIVSSIORal-wave velocity (kinls) with respect to an increasing C011fining PeCSSUre for the X-1 

Y-. Z- and XZ45- (XYZ) cores (left hand plot). Compressional- wave anisotropy (76) with respect 

to an increasing confining pressure. (MPa)(right hand plot). 
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Figure PA: Groap - 3. Well 20618-8, sample. 2194. Polar diag7nms (top): atmosphelic 

conditions coinpre. ssional, and shear-wave velocity variation (k7, rt/.,; ). Scatter- plots (bottom): 

compressional-wave velocity (kmls) with respect to art incivasing confining pmssuiv f07' tlt(, ' X-, 

Y-, Z- and XZ4 5- (X YZ) cores (left, hand plot). Compressional- wave anisotropy (/'P) with mspect 

to an incre. asing confining prrssitre (NIPa)(right hand plot). 
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2198 
P-wave 

Figure P. 5: Group - 3. Well 20618-8, sample 2198. Polar diagrams: atmospheric conditions 

compressional, and shear-wave velocity variation (km/s). 


