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Abstract

The interpretation of geophysical field measurements of seismic anisotropy is presently
limited by our knowledge of the controls of the elastic anisotropy of sedimentary rocks
in the subsurface. Traditionally, laboratory ultrasonic velocity measurements have becn
used to provide important information on bulk aggregate seismic anisotropy, however,
they do not allow the discrimination of the contribution from the various microstruc-
tural parameters (e.g., crystallographic lattice preferred orientation (LPO), preferentially
aligned porosity, aligned fractures and the non-random spatial distribution of mineral
phases). In this study the results from scanning electron microscope-electron backscat-
tered diffraction (SEM-EBSD), quantitative X-ray diffraction (QXRD), image analysis,
ultrasonic velocity measurcments, palacomagnetism, anisotropic magnetic susceptibility,

and numerical modelling are combined to elucidate the controls of the elastic anisotropy

of siliciclastic sedimentary rocks from an oil reservoir.

SEM-EBSD was used to measure both the overall and individual constituent mineral

phase LPO (Maddock et al. 2004). As phyllosilicates are both very fine-grained, with

a high aspect-ratio and low crystallinity, their LPO contribution was established via
a combination of image analysis and numecrical modelling (Bingham approximation).
These analytical and predictive methods for determining phyllosilicate fabric intensity
produced consistent results. For the first time, the azimuthally preferred orientation
of elongate grains within sedimentary rocks was determined using anisotropic magnetic

susceptibility of ferrous mincrals and were compared to those predictions obtained using

EBSD.

The strength of the fabric-texture (J), as determined by EBSD, is proportional to the

maximum compressional and shear-wave anisotropy, as calculated from the Christoffel
cquation, by taking a Hill average of the bulk aggregate elastic constants. The quartz

and feldspar velocity maxima aligned in a constructive fashion throughout most of the



v

samples. It is possible that the preferred alignment of crystals detected by EBSD reflects
the palaeoflow direction. The predicted symmetries of velocity anisotropy ranged from
orthorhombic in the phyllosilicate-free, well-sorted, mature sandstones to strong vertical
transverse isotropy in the unfractured phyllosilicate-rich mudstones. Vertical transverse
isotropy is predicted to be oriented, such that, the plane of azimuthal isotropy is aligned
parallel to bedding i.e., parallel to the horizontally aligned clays and micas. Similarly,
orthorhombic symmetry is predicted to be oriented, such that, one plane of symmetry
is aligned approximately parallel to bedding whilst the other symmetry plane is aligned
parallel to the single most dominant fracture set. The results from this study provide the
input needed for a gencral mathematical model for the reservoir allowing the prediction
of scismic anisotropy for any rock in the reservoir given accurate modal proportions.
The resulting model is an advance on the empirical correlations that are usually used to
determine how scismic velocities are affected by factors such as clay content and porosity.
In particular, the bulk aggregate elastic stiffness tensor obtained during this study can
be integrated with high-pressure ultrasonic measurements to enable the prediction of the
additional contribution from grain-scale effects such as shape-preferred orientations, and
grain boundary compliances (Hall et al. 2007). The results from this study have also
provided the basic data to allow ficld scismic data to be inverted to obtain estimnates of

in situ fracture density and oricntation (Kendall et al. 2006).

In summary, analysis of a suite of siliciclastic hydrocarbon reservoir rocks has shown that
the LPO of constitutive minerals can offer information about the nature of a reservoir.
The results suggest that scismic anisotropy is not only indicative of lithology but can

also be an indicator of reservoir quality and palaeoflow direction.
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Chapter 1

Fundamentals

1.1 Introduction

Hydrocarbon production from siliciclastic reservoirs varics considerably, and is of great

importance in an era of rapidly declining oil stocks and ever harder to find commercially

producable rescrvoirs. Seismic data is currently used to help guide such exploration
as it contains information about the geological structure, and the lithologies present
beneath the subsurface (Strandness 1991, Grechka et al. 2002, Olofsson et al. 2002).
Recent advances in acquisition and processing have scen the development of a range
of seismic techniques for inferring reservoir properties (Hall et al. 2002, Kommedal et
al. 2004, Tabti et al. 2004). These include time-lapse seismic surveys, converted-wave
and shear-wave surveys, and passive scismic monitoring (Kendall & Kendall 1996, Caley
et al. 2001, Sayers 2002a). The conventional use of scismic lithology analysis aims to
estimate lithological, and reservoir properties from scismic-wave attributes alone, such
as, velocity analysis and amplitude variation with offsct (AVO)(Blangy 1992, Alkhalifah
& Rampton 2001). These technologies are based upon the simple yet extremely effective
assumption of isotropy. Whercby, the various properties of the medium are not dependent
upon direction. Regardless of the location of the transmitter or receiver the exact same
propertics are recorded at all locations for an isotropic medium. However, seismic-
wave attributes can also possess a directional dependence, known as seismic anisotropy.
A numbecer of methods have been developed for estimating scismic anisotropy using a

wide range of attributes in scismic data (Winterstcin 1986, Van der Baan & Kendall

2002, Helbig & Thomsen 2005). However, the anisotropy itself is an indicator of a wide

range of propertics and as such is a scismic attribute that is scnsitive to both past and
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present processes (Raymer et al. 2000a, Smith & McGarrity 2001, Thomsen 2002). A key

challenge with its interpretation is untangling the various contributions to the anisotropy

(Wendt et al. 2003, Valcke et al. 2006).

In sedimentary rocks there are many factors which control seismic anisotropy: alignment
of scts of fractures, mineralogy, partial grain alignment, and layering. However, the rela-
tive contributions of these various parameters towards observations of seismic anisotropy
are presently not well understood. The SAIL project (seismic anisotropy as an indicator
of lithology) was dcsigned to address this issue. The aim of the SAIL project was to
determine the causes of seismic anisotropy through linked analyses of core, and seismic
data to aid the understanding of scismic interpretation. The SAIL project was a joint
industrial consortium funded through an Industry Technology Facilitator (ITF) Grant.
SAIL was designed to be a joint rescarch project combining experience and technical
ability between Manchester University and Leeds University. This thesis which repre-

scnts a component of the SAIL project is concerned with the link between petrofabric

propertics of siliciclastic hydrocarbon reservoir rocks and seismic anisotropy.

In general, siliciclastics constitute approximately 75% of basin in-fill, and therefore are of
forecmost importance to hydrocarbon production (Hornby 1998). Recent improvements
in the data acqusition and processing techniques used in exploration secismic surveys
mean that observations of scismic anisotropy are better characterised than ever before.
Therefore, it is a good time to attempt to discriminate the various contributions made
by fracturcs, lithological layering and lattice prefered orientation in producing seismic
anisotropy. Information obtained from seismic anisotropy analyses could in the future

provide valuable information on reservoir attributes, such as, preferential flow directions,

in situ stress distributions, fracture orientation, and lithology.

1.2 Overview of seismic anisotropy

Scismic anisotropy is considered here to be the variation of the seismic wave vector veloc-
ity with angle. The term angle covers a wide range of meanings but specifically here refers

to the polar angle (angle from the vertical) and the azimuthal angle. Seismic anisotropy
can also be due to the angle of propagation and the angle of polarisation of shecar-waves.

Scismic anisotropy is principally a result of some order in the arrangement of sub-seismic

wavclength heterogencities (Babuska & Cara 1991). Ordered heterogneities include, the




3 Chapter 1: Fundamentals

partial alignment of anisotropic minerals, grains, microcracks, fractures, and bedding
planes. Hence, seismic anisotropy is simply the larger-scale manifestation of smaller
scale ordering (Thomsen 2002). Therefore, anisotropy in sedimentary basins can be
considered as being indicative of some physical phenomenon, for example, horizontal or

oblique shortening due to tectonic compression (Kendall 2000).

Seismic anisotropy effects seismic wave propagation in a wide variety of ways. These
include azimuthal variation in seismic properties such as stacking velocitics, AVO (am-
plitude variation with offset), and converted wave amplitudes. Shear-wave splitting, or
the propagation of two independent shear waves, is the most unequivocal evidence of the
presence of anisotropy (Figure 1.1). If a shear-wave enters a medium that is anisotropic
it splits into fast and slow shear-wave componcnts. Shear-wave splitting is commonly
quoted in terms of percent and generally refers to the lag between the first arriving
shear-wave (fast) and the second arriving shear-wave (slow). Shear-wave splitting (S-
wave anisotropy) can not only depend on the intrinsic propertics of the aggregate but
also on the propagation and polarisation angle. P-wave anisotropy is very different to S-
wave anisotropy as a P-wave is a compressional, non-longitudinal wave it is not affected
by polarisation angle. On the other hand,to be able to calculate a P-wave anisotropy
requires several different angles of measurements positioned at various locations through-

out and across the sample. Whilst, P- and S-wave anisotropy mat scem very similar the

controlling parameters can be very different.

Seismic anisotropy and it’s effects on various seismic wave attributes have been used

in the investigation of a variety of rock propertics. For example, Crampin & Lovell

(1991) used shear-wave splitting to characterise aligned fractures. Morcover, Kendall
& Kendall (1996) observed that there existed direct correlations between shear-wave
amplitude anomalics and areas containing high hydrocarbon production. It has long
been recognised that AVO could also be used as a uscful indicator of lithology and
fluid fill (Ostrander 1984). P-wave amplitude variation with offset and azimuth (AVOA)
has also been identified as a useful tool in the identification of fracture alignment as it
provides good vertical resolution (Hall et al. 2002). The limited availability of useful data
scts meant that the SAIL project primarily concentrated upon the effects of amplitude

variation with offset and azimuth (AVOA).
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Figure 1.1: A diagram illustrating shear-wave splitting. Shear-wave splitting is the most un-
equivocal evidence of the presence of anisotropy. If a shear-wave enters a medium which s

anisotropic it splits into fast and slow shear-wave components (Crampin 1981).

1.3 Elasticity

The degree of order within a medium can be described mathematically through the elastic
stiffuess tensor (Cjjkr). Stress (o) and strain (ex;) are second-order symmetric tensors.
For an infinitesimal deformation of an elastic body, Hooke's law for a general anisotropic,
linear elastic solid states that o;; is linearly proportional to ¢ via the fourth-order Cjjki

clastic tensor (Mavko et al. 1998). Where,

aij = Cijki€kl, (1.1)

in which, summation is implied over the repeated subscripts k& and /.

Or, where the stress and strain tensors are related to the compliance (s;jx),

€ij = SiiklOkl; (1.2)

such that,

(1.3)

Strain is defined as,
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1 /0 )
Ehl = (ﬁ + w) , (1.4)

for displacement u; and spatial reference coordinate z;.

The C}ji elastic tensor is a four-dimensional array and has 81 components, however, not

all 81 components are independent. Since,

Cijki = Cjirt = Cijik = Cjitk, (1.5)

because,

Oij = Oji and €x] = €. (1.6)

Therefore, reducing the number of significant (distinct, independent, and non-vanishing)
constants to 36. Furthermore, the existence of an unique strain energy potential requires

that,

Cijkt = Chiij, (1.7)

further reducing the number of constants to 21. Therefore, 21, is the maximum number
of elastic constants that are required to describe any medium. Isotropic elastic materials
such as volcanic glass, which have maximum symmetry are completely characterised
by 2 independent constants. In comparison plagioclase feldspar has the lowest possible

symmetry, and requires all 21 constants.

It is, however, easier to use an abbreviated notation, sometimes called the Voigt notation
when dealing with elasticity, which reduces the number of subscripts of the stiffness and

compliance tensors to two (Thomsen 2002). Each pair of indices ¢7(kl) is simply replaced

by one index I(J) as follows,

ij(kl) | 1(J)
11 1
22 | 2
33 | 3

23,32 | 4

13,31 | 5

12,21 | 6




6 Chapter 1: Fundamentals

In the two-index notation, C7y, is represented by a 2D, 6x6 matrix. Note the syminetry,

Cij = Cji,

(1.8)

Cl15 €25 C€C35 C45 C55 C56

Cl6 €26 €36 C46 C56 C66

The ability to transform the elastic tensor into two-dimensions enables the simplified

comparison, visualisation and manipulation of fourth-order tensors.

1.3.1 Anisotropic symmetry systems

The least symmetric system is triclinic, with 21 independent elastic constants (Babuska
& Cara 1991). In reality rocks generally show more symmetry. A simple semi-realistic
symmetry in sedimentary rocks is vertical transverse isotropy (VTI), otherwise known
as polar anisotropy or as hexagonal symmetry with a vertical symmetry axis. VTI
symmetry is characterised by seismic velocities azimuthally symmetrical about a single
axis, which vary with declination from the axis (Array 1.9). ¢1; and e22 can be considered
as being contained within the horizontal plane (parallel to the plane of bedding and

rotationally invariant) with c33 therefore perpendicular to bedding (vertical).

cip ci2 ci3 0O 0 0
cr2 ci1 ci3 0 0 O
&1 £l C3: 0 () ()

13 C13 €33 (1.9
0 0 () C44 () ()

() () 0 0 c¢55 O

0 0 0 0 () C66

The same principles hold for tilted transverse isotropy (TTI) where the axis of symme-

try is inclined to the vertical. Both VTI and TTI are commonly associated with the

symmetry pattern of a horizontally finely-layered sequence, e.g., shale. CTI (cylindrical
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transverse isotropy) can be thought of as when there is a single vertical set of frac-
tures that are azimuthally isotropic (have an almost perfectly equal radial distribution).
This type of fracture set is commonly observed in cylindrical samples which have been

subjected to non-hydrostatic stresses aligned parallel to the long axis of the sample.

However, a combination of multiple fracture sets, layering, inclusions, and crystal align-
ment will generate anisotropy with a lower degree of symmetry. A common example
in crustal rocks is orthorhombic symmetry which is typically associated with horizontal
layering and a single set of vertically aligned fractures (Figure 1.2). Nine independent
clastic constants are required to define an orthorhombic elastic tensor. (' and ¢99 can
be considered as being contained within the horizontal plane (parallel to the plane of

bedding and rotationally variant) with ¢33 theretore perpendicular to bedding (vertical).

ci1 ci2 c13 0

ci3 23 ¢33 0

0 ()
clrg ¢ c3 0O 0 0
() ()
(1.10)
0 )

0 () 0 Cq4

0O O 0 0
0 () () 0 0(755

Figure 1.2: The combination of horizontal layering and a vertically aligned fracture set leads to

an orthorhombic style of symmetry.

1.3.2 Calculation of seismic velocities from the stiffness tensor

Single crystal or bulk aggregate seismic velocities are calculated by solving the Christoffel

equation (Christoffel 1910).

The equations of motion for elastic media, are writtten,
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dmj 52111'
oz — P ote ’ (1.11)

at time t, where p is the density of the medium, o;; is the 3D stress tensor, u; is the
displacement, and x; is the spatial coordinate system (Kendall 2000). Substitution of

Equations (1.1 and 1.4) into Equation (6.7) gives for homogenecous media,

0%, 0%u;
Cs sl I — " 1-12
Uua.’rja.’rk P Ot? ( )
A plane-wave harmonic solution of (6.8) takes the form,
w; = Aiﬁiw(t::ﬁ”i/””), (113)

where A is the amplitude and w the frequency of a plane wave with unit normal, n; and

phase velocity, v,. Substituting Equation (6.9) into Equation (6.8) gives,

r-.ijk;(nm; - p?‘-’.ﬁ(Sj};Ak) — 0, (114)

where 04 1s the Kronecker delta. Assuming A gives non-zero terms,

detlciikmkm - p’l.?.ﬁ(sijl = { (1-15)

and

d(’ft‘(fijkgpkp( - pcﬁ}-j| = ), (116)

Thus the phase velocities of the three wave fronts can be determined from the three
cigenvalues of ¢;;ppip; which correspond to one quasi-P wave and two quasi-S waves

(Love 1944, Nye 1957).

1.3.3 Seismic wave theory

In isotropic media a P-wave will propagate with a velocity that is parallel to the wavefront
normal and is also coincident with the ray direction and particle motion. In homogeneous,
anisotropic media, however, the P-wave particle motion is not, in general, parallel to the

wavefront normal or the ray direction. Additionally, the shear-wave particle motions will

not be orthogonal to the wavefront normal or ray direction. Therefore, waves propagating

—
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in an anisotropic media should strictly be defined as quasi-P and quasi-S-waves. From
this description of wave propagation in anisotropic media three significant directions can
be defined, the wavefront normal, the polarisaton and the ray direction (Figure 1.3). The
wavefront normal, defined by vector n; corresponds to the direction of the slowness p;
and the phase velocity v,, of the propagating phase. A further velocity must be defined in

anisotropic media, the group velocity which is parallel to the ray direction and direction

of energy transport.

T(x)=c+dc

Figure 1.3: Relationship between wavefront, ray direction, phase velocity, group velocity and
particle motion. A wavefront has constant phase (t(x;) = ¢ ¢ is a constant), phase velocity (v, ),

aligned with the wavefront normal (n), and a group velocity (v, ) along the ray direction. The

particle motion or polarisation (g7 ) is at an angle to both the ray direction and wavefront normal

(Sheriff & Geldart 1999).

In anisotropic media, pure S- and P-waves may exist only in certain directions. In
transversely anisotropic media SV- and P-modes of propagation are coupled. Wavefronts
are not in general orthogonal to the directions of wave propagation. Phase velocity is
velocity perpendicular to a surface of constant phase (wavefront), and group velocity is
the velocity with which the energy travels is in a different direction (Figure 1.4)(Sheriff

& Geldart 1999).

As stated previously layering and parallel fracturing tend to produce transverse isotropy.

The symmetry axis is perpendicular to the bedding with the velocities of P- and S-
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Figure 1.4: Wavefronts in anisotropic media. a) Application of Huygen’s principle to an
anisotropie medium illustrates direction and magnitude differences between phase and group ve-
locity. ¢) SH wavefronts in transversely isotropic media are elliptical. P and SV-wavefronts are
not elliptical except in special instances. Vi > Vy with a vertical axis of symmetry. V, is the

group velocity as a function of the angle with the symmetry axis (Sheriff € Geldart 1999).

waves that involve motion parallel to the bedding larger than those involving motion
perpendicular to the bedding. The velocity parallel to the bedding is greater because
the higher-velocity layers carry the energy first whereas for wave motion perpendicular

to the bedding, each layer contributes in proportion to the time taken to traverse it.

Non-horizontal fracturing and micro-cracks produce azimuthal anisotropy with a sym-
metry axis perpendicular to the fracturing. The velocity of the waves that involve motion
parallel to the fracturing (5;) is larger than that of waves with motion perpendicular to
the fracturing (.52 )(Sheriff & Geldart 1999). If the motion is neither parallel nor perpen-

dicular to the fracturing, an S-wave splits into two waves with orthogonal polarisations

(Figure 1.5).
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Figure 1.5: Shear-wave propagation in a fractured medium with cracks oriented NA5°W. An
S-wave travelling parallel to fracturing, the velocity (Su) is slower for a component involving

motion perpendicular to the fracturing than for one involving motion parallel to the fracturing

(S1)-

1.4 Causes of anisotropy

1.4.1 Lattice preferred orientation

Almost every rock forming mineral is to some extent intrinsically anisotropic (Mainprice
et al. 2000). Phyllosilicates, for example, can exhibit up to 60% and 72% P-wave and
S-wave anisotropy (shear-wave splitting), respectively, whereas halite has a maximum

P-wave anisotropy of 7.4% and 15.9% S-wave anisotropy.

For an aggregate to exhibit elastic anisotropy due to a lattice preferred orientation (LPO),
the constituent mineral phases are required to have a non-random orientation and sig-
nificant intrinsic anisotropy. Aggregates are thought to develop a LPO in a variety of
different ways. For example, through plastic and viscous flow in the upper and lower

mantle (Hess 1960, Kendall 2000) or by depositional processes in sedimentary basins

(Kaarsberg 1959).

Upon deposition the predominant mechanism orienting individual mineral grains is grav-
ity. Platy mineral phases (phyllosilicates) tend to align their basal planes parallel to
sub-parallel to bedding. Immediately after deposition the fabric is relatively disordered

and contains a large amount of space. It is upon mechanical compaction that the pore
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space 1s reduced and the platy grains re-align to form a strong LPO (Figure 1.6) (Helfing
1970).

Figure 1.6: Schematic diagram of settling detrital phyllosilicate platelets. A - phyllosilicate
platelets drop out of suspension and settle through the water column. B - the platelets are ran-
domly deposited upon the plane of bedding with a large amount of inter-grain pore space. C -
during mechanical compaction the platelets reorient their basal plane parallel to bedding. Such

deposition results in a vertical transverse isotropy style of symmetry.

Similar to the flow that can occur in igneous rocks, which re-orientates elongated crys-
tallites, sedimentary rocks can exhibit an azimuthally non-random distribution <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>