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Abstract

As animal tracking data is becoming more readily available, statistically modelling the movement of

animals is an increasingly utilised approach with which we can analyse their behaviours. Typically

though, these models have been developed for the analysis of individual animals and so they fail

to account for the social drivers of movement. In this thesis, we aim to build those social drivers

into our movement models. Not only will doing so provide a more complete explanation for their

behaviours, but it will also provide useful insight into their social structure in general.

Our solution is inspired by orderly social hierarchies — a simple, widely used construct that is

easy to interpret whilst providing an in-depth view of social behaviours. The flexibility and level

of insight gained from this approach is increased as we capture the dynamism of social behaviours

through a continuous-time behavioural switching process. Alongside this framework, we define a

multivariate diffusion process that can model the collective movement that results from such social

interaction. We first develop our model in the simpler context of spatial homogeneity and explore

Markov chain Monte Carlo inference methods with which we can estimate the model parameters

in a Bayesian setting.

We then extend the above model to the spatially heterogeneous case, increasing the scope of its

applications. We develop a novel model-fitting algorithm which allows us to circumvent a sizeable

portion of the increased complexity and computational cost resulting from this extension. We

are then able to explore additional customisation of our approach, such as building in a radius of

interaction — a feature which can provide some further biological realism to the model.

The above models have been developed in continuous time to gain the resulting flexibility with

regards to the temporal resolution and completeness of the data.
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Chapter 1

Ecological Motivation

In this chapter, we provide a broad overview of the statistical movement models with which we can

analyse animal movement behaviours. We do so mostly with respect to modelling the collective

behaviours of multiple animals, but we also cover some key developments that were made with

individual-based models. Additionally, we cast an eye on other methods which are used to study

the social behaviours of animals in order to obtain an overview of the techniques used and what

information will be valuable output from a movement model. We summarise the state of play in

Section 1.4, along with outlining the aims of this thesis.

1.1 Tracking Animal Movement

1.1.1 Movement Data

Animal movement is heavily interlinked with other natural processes in our world. Understanding

the hows and the whys of that movement can provide essential insight, from species-specific be-

haviours to ecosystem function (Kays et al., 2015). Typically, the animal movement trajectories

analysed are expressed as a series of geographical coordinates collected by tracking devices (Pat-

terson et al., 2017), which are attached to the animals themselves. Advances in these tracking

technologies are providing more opportunities to study moving animals (Kays et al., 2015).

In particular, advances in GPS technology are facilitating these opportunities. Studies on animal

movement have traditionally been undertaken on data collected with very high frequency (VHF)

devices. However, data collected with these devices are subject to a large measurement error (200m

– 600m) and range limitations have generally restricted them to investigations of home ranges —

ones that are accessible at that (Frair et al., 2010; Kays et al., 2015). GPS devices, on the other

hand, have a smaller error (typically less than 10m), can provide a continuous record of an animal’s

location over long distances and are increasingly accessible (i.e. cheaper and smaller) (Kays et al.,

2015). As a result, animal movement can be studied at a global scale using these tags (Tucker

1
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et al., 2018).

This increase in accessibility also provides new opportunities to tag multiple individuals within

a group of animals simultaneously. Moreover, the high resolution of the data has the ability to

capture fine-scale interactions between animals — thereby allowing us to study the social drivers

of movement behaviours in the wild (Hughey et al., 2018). Researching collective movements

had, until recently, been largely restricted to laboratory or simulation approaches (Westley et al.,

2018). However, the scenario may still arise where the duration of an interaction is smaller than

the temporal resolution of the data. Care is therefore needed when undertaking such studies and

ideally the rate of data collection should be matched with the behaviours being investigated (Kays

et al., 2015).

Whilst data collection is typically undertaken at regular intervals, irregularities can be introduced

both accidentally and by design. For instance, GPS devices can fail to record locations when an

animal moves under a dense canopy cover. When tracking multiple animals, the individual tags

may not be in sync with each other. Due to battery and/or storage constraints in some devices, the

tracking device might be programmed to collect less data during periods of low activity in order to

monitor a longer period of time (Williams et al., 2020).

Aside from tracking tags, other methods of data collection to study collective behaviours include

using software to track the movement of animals throughout a video (e.g. Katz et al. (2011)) or a

series of photographs (e.g Ballerini et al. (2008)). Whilst these methods were previously limited to

captive studies (as in Katz et al. (2011)) or capturing particular behaviours (e.g. location specific

starling murmurations as in Ballerini et al. (2008)), technological developments have also allowed

for these approaches of data collection to be expanded upon. For instance, Torney et al. (2018) use

a commercial unmanned aerial system (UAS) to film multiple caribou in the wild. Such a method

has advantages over GPS tags in that the animals don’t need to be tagged and so it is perhaps

better suited to capturing complete information on larger, more fluid social groups. That is, tagging

all of the animals in a social group can create a sizeable logistical and ethical challenge. Aerial

footage can also provide additional information, such as the headings of the animals. However, the

battery life of UASs are currently a limiting factor as the longest individual track length in Torney

et al. (2018) was 9 minutes, whilst tracking devices have been used to monitor animals over their

entire life span (Kays et al., 2015).

Whilst we will discuss some studies that utilise the above alternative methods of data collection, we

will focus on modelling movement trajectories obtained through tracking tags due to their prominent

use in monitoring animals and the scale of data they can provide. That is, they are becoming ever

more accessible, they can provide high-frequency data for long periods of time and they are not

bound by range or habitat accessibility. We will only discuss two-dimensional data (i.e. longitudinal

and latitudinal), though one-dimensional (e.g. diving depth) or even three-dimensional trajectories

are sometimes collected. When analysing two-dimensional longitudinal and latitudinal data, we



CHAPTER 1. ECOLOGICAL MOTIVATION 3

will convert it into the Universal Transverse Mercator (UTM) coordinate system to navigate the

spherical nature of geographic coordinates.

It is also worth prefacing further discussions with a note on a key debate within animal move-

ment modelling which concerns time formulation. That is, should we treat time as discrete or

continuous (McClintock et al., 2014)? Although animal movement is a continuous-time process, it

is perhaps more intuitive to think of movement as a discrete-time one. For instance, visualising

movement as a series of steps and turns, rather than, say, a diffusion process (McClintock et al.,

2014). Though, work has been undertaken to bring the intuition of a discrete-time formulation into

a continuous-time framework (Parton & Blackwell, 2017). A disadvantage of discrete-time models

is that they require temporally-regular data, which often does not occur as mentioned above. Addi-

tionally, discrete-time analyses are not time invariant, whereas their continuous-time counterparts

are (within limits). Thus, matching the temporal scale of the model with the temporal scale of

the movement behaviours to be studied (along with obtaining data with a suitable resolution) is

key (McClintock et al., 2014). Currently, discrete-time models are the more prominent of the two

approaches. Software making the models available, and the efficiency at which they can be fitted

to data, has largely driven that trend.

1.1.2 Individual-Based Statistical Movement Models

As previously stated, we are focusing on modelling collective movement. However, key developments

in movement modelling that have informed our work have been made in the context of individual-

based models, and so we will discuss them here. We will be focusing on the behavioural state

switching class of models, which go some way to accounting for the complexity and dynamism of

animal movement by allowing it to be expressed by a number of different processes.

Various metrics can be used when modelling animal movement. For instance, the step lengths and

turning angles as mentioned above, velocity or the positions themselves (Patterson et al., 2017).

Regardless of the approach taken, movement models were initially developed with a single process

or behaviour in mind. In discrete-time models, random walks (RW) are a popular mechanism to

model movement. Whilst basic random walks, where each movement step is independent, may be

too simplistic, variations such as correlated (CRW) and biased (BRW) random walks can represent

more complex behaviours (Morales & Ellner, 2002). That is, CRWs can capture persistence in

movement whilst BRWs can capture some preference towards a certain direction. Often, these

more complex RWs are characterised by a distribution for step lengths and a distribution for either

turning angles (CRW) or bearings (BRW).

In continuous time, diffusion processes are commonly used to model movement. Dunn & Gipson

(1977) model the locations of an animal with an Ornstein-Uhlenbeck (OU) process in order to

estimate their home range. An OU process was deemed a natural fit for this purpose as it is

a mean-reverting process with some drift towards a central location, continuous (movement is
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continuous by nature), stationary (matching the physical requirement of a home range), Gaussian

(matching their assumption on the nature of a home range) and Markovian (accounting for the

lack of independence between successive locations). Alternatively, the velocity of an animal can

be formulated as an OU process to give rise to a continuous-time analogue of a correlated random

walk (Johnson et al., 2008). This approach captures the inertia that the animals are assumed to

have. That is, they will move at a similar rate over successive intervals. This velocity process can

be integrated to produce the positional process.

However, animals are unlikely to exhibit constant movement behaviour — they may alter their be-

haviour according to their physiological state or due to encountering a different habitat for example

(Morales & Ellner, 2002). As such, developing methods that can accommodate those changes in

behaviour will be better suited to modelling the complexity of animal movement. Morales et al.

(2004) do just that by modelling the movement of elk as a mixture of random walks, where each

observation is generated by one of the RWs. Each random walk is associated with an unobserved

behavioural state (‘encamped’ or ‘exploratory’ in the two state case) and each have their own distri-

butions for the step lengths and turning angles. ‘Encamped’ corresponds to short step lengths and

frequent changes in direction, whilst ‘exploratory’ corresponds to longer, more persistent movement

— differences that would be lost in a single state model. Morales et al. (2004) explore different

models for switching between the behaviours, with the more structured approaches (e.g. Marko-

vian) outperforming less structured approaches where the state could change freely. Note, whilst

behavioural states are usually given biological labels, they should only be interpreted as statisti-

cal descriptions of the movement (e.g. short step lengths in the ‘encamped’ case) as opposed to

biological descriptions of an animal’s behaviour.

Some of the models examined by Morales et al. were early applications of a hidden Markov model

(HMM) to animal movement data. In a HMM, the unobserved behavioural process is modelled

with a discrete-time Markov chain, with the state of an animal at any one time only conditional

on the previous state. The models in Morales et al. (2004) were fitted to data with Markov chain

Monte Carlo (MCMC) methods. However, HMMs have assumed a dominant place in the animal

movement modelling world in part due to an efficient likelihood maximisation algorithm with which

we can estimate the model parameters and decode the behavioural states (Patterson et al., 2017).

HMMs can also be extended to include covariates (Patterson et al., 2009) and a semi-Markovian

state process when Markovian behaviour is not biologically reasonable (Langrock et al., 2012).

That is, the dwell time in a state is not geometrically distributed. The two main disadvantages of

HMMs (as well as the aforementioned limitations of discrete-time models in general) are that they

require regularly-spaced data and that they assume negligible measurement error. When the latter

cannot be assumed, the more flexible, but complex, state-space models can provide an alternative

route (Patterson et al., 2017).

In a continuous-time framework, Blackwell (1997) combines behavioural state switching with diffu-

sion processes — OU positional processes in particular. They also include Brownian motion (BM),



CHAPTER 1. ECOLOGICAL MOTIVATION 5

which can be considered as a limiting case of an OU process — one that doesn’t contain any drift

towards a central location. Whilst a perhaps overly simplistic model on its own, the inclusion of BM

can provide some flexibility to a diffusion-switching model — capturing moments of non-stationary

movement for instance. This diffusion-switching approach can navigate the overly simplistic uni-

modal home range estimation, which results from a single state model (Dunn & Gipson, 1977),

as the different processes may correspond to different patches of the home range. Alternatively,

the different processes may represent different behaviours altogether (e.g. foraging and travelling).

Again, the behavioural process is assumed to be Markovian as state switches are modelled with a

continuous-time Markov chain. Blackwell (2003) introduces an inference algorithm to fit this class

of models to data, though only the case where both the locations and behaviours are observed is

discussed in detail.

In the method outlined by Blackwell (2003), the behavioural process is considered missing (between

the observations) and it is reconstructed in continuous time in order to determine exactly when

state switches occurred. The location of the animal at these switching times is not considered

though, and so this method is generally suited to the spatially homogeneous case. However, Harris

& Blackwell (2013) demonstrate with numerous examples the benefits of extending these diffusion-

switching models to spatial heterogeneity. Blackwell et al. (2016) present a much more flexible

method that accounts for a completely unobserved behavioural process and both the state switches

and locations of an animal are reconstructed in continuous time. Subsequently, the transitions

between states can now depend on the location of the animal. This approach, fitted with MCMC

methods, allows for the exact inference of the model parameters in a Bayesian setting.

1.2 Studying Social Animals

Whilst a broad range of statistical movement models have been developed to investigate individual

behaviour and how that behaviour is dependent on factors such as the surrounding environment,

they inherently fail to account for the social factors that drive social groups. Conspecifics of var-

ious taxa form social groups. The motivation for this may most commonly be due to kinship

(‘inclusive fitness’ (Hamilton, 1963, 1964a,b; Clutton-Brock, 2009)), but there are other mech-

anisms which bring animals together, related or not. These include: reciprocity (e.g. repeated

grooming assistance), mutualism (e.g. cooperative foraging or defence) and manipulation (e.g. sub-

ordinates grooming dominants to earn favour/protection) (Clutton-Brock, 2009). This sociality

has a profound impact upon the fitness of the animals. Social behaviours can: reduce the cost of

reproduction and rearing (Clutton-Brock, 2009); reduce navigational error (Codling et al., 2007);

have implications for disease transmission (Hamede et al., 2009) and how information propagates

through a population (Voelkl & Noë, 2008); decrease the risk of predation (Sueur et al., 2011); dic-

tate spatial use (Wittemyer et al., 2007); impact obstacle avoidance (Croft et al., 2015); enhance

their environmental gradient-tracking ability (Berdahl et al., 2013) and many more.
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It is clearly prudent then to account for the sociality of animals when modelling their movement

(Bode et al., 2010). Not only will doing so help better explain that movement, but we will also be

able to investigate the nature of the social interactions that produced it. For instance, identifying

animals which have high levels of influence on a group’s movement will provide us with important

information on their social structure, which then has useful applications in conservation efforts

(King et al., 2018; Westley et al., 2018). Studies of social structure can also help highlight the

pressures placed on a group of animals from external factors or change, which can then impact

their fitness. For example, giraffe communities closer to humans have been shown to contain

weaker social relationships (Bond et al., 2020). Additionally, accounting for social behaviours in

animal movement can improve our analysis of population dynamics (Haydon et al., 2008; Morales

et al., 2010).

Whilst previous developments in animal movement modelling were limited by the data available,

with an increasing ability to obtain simultaneous tracking data from multiple animals within a

group (Westley et al., 2018), we now have the opportunity to build these social interactions into

our models. In order to do so though, we must develop some social framework — one that is ideally

flexible enough to be able to model a broad array of taxa.

1.2.1 Social Network Analysis

Social network analysis (SNA) is a commonly used method with which we can form a picture of

the social structure of a group of animals. SNA provides a framework “with which we can study

the social organisation of animals at all levels (individual, dyadic, group, population) and for all

types of interaction (aggressive, cooperative, sexual etc)” (Krause et al., 2009). It therefore can

be deployed to better understand: the social structures in general; the causes and consequences of

individual variation on network position; the implications of network structure of transmission of

information and disease; and the relationship between the environment and social structure (Farine

& Whitehead, 2015).

The social networks consist of nodes (individual animals), which are connected by edges. The

edges can be directed or undirected and they can quantify the strength of a relationship between

two animals (weighted) or merely acknowledge whether there is a relationship or not (unweighted).

These networks are typically constructed from data that has been pooled over some time period

and they are not limited to the acyclic case. For example, there can be directed edges going each

way between two animals.

Various types of data (or some combination of) are used to construct these networks which broadly

fall into two categories: interaction data and association/proximity data (Castles et al., 2014).

Interaction data is obtained from directly observing the animals and thus different types of inter-

action, such as cooperative, agonistic and affiliative, can be differentiated (Farine & Whitehead,

2015). These observations of dyadic interactions, such as grooming or pecking, can then be used to
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construct interaction-based networks (Farine & Whitehead, 2015) or be distilled to create a domi-

nance hierarchy (Chase & Lindquist, 2016). Proximity networks are constructed in much the same

way — using dyadic information to construct a wider group structure — but here the strength

of a dyadic relationship is dictated by spatial proximity or shared resource use (Castles et al.,

2014).

With SNA, we are able to investigate the properties of a social network, such as whether the

network is more structured than expected from random (Farine & Whitehead, 2015). Group and

individual-level metrics are derived from the network to describe the social structure and the

position of individuals within it respectively. For example, there are measures to determine the

density of a network and how central each animal is to it (Farine & Whitehead, 2015). The

individual-level metrics provide a tool to link social position to age, sex, reproductive success and

disease status amongst others (Silk et al., 2015). For instance, Hamede et al. (2009) investigate if

there are highly connected individuals or demographics in a population of Tasmanian devils, with

the view that targeted culling or treatment could control the transmission of an infectious disease.

Ellis et al. (2017) found that the survival probability of male killer whales is related to measures of

social ‘centrality’. However, care is needed when interpreting metrics as they depend on how the

population is structured and how the data is collected (Farine & Whitehead, 2015).

Much of the SNA literature presents a static overview of the social structure, obtained by collating

interactions over some time period, but there is a branch of it that aims to capture the dynamics

of social behaviours (Blonder et al., 2012; Psorakis et al., 2012; Hobson et al., 2013; Farine, 2018).

After all, all animal social networks are dynamic to a certain extent (Farine & Whitehead, 2015).

At the very least social groups will change with deaths and births within it. Additionally, there

is much interest in the interplay between social behaviours and dynamic phenomena such as the

environment and transmission of diseases in order to aid conservation efforts (Snijders et al., 2017).

We will be able to gain a more complete picture of those links by accounting for the dynamism

of social structures. For example, analysing disease transmission with a dynamic approach will

provide more information as to the exact nature of the transmission (Farine, 2018).

Blonder et al. (2012) discuss two common approaches to studying dynamic social networks: time-

ordered networks and time-aggregated networks. The former is the more dynamic of the two as

time-ordered networks represent the interactions (and therefore the network) that occurred at any

given particular time — they retain all information regarding the timing, duration and ordering of

the interactions. Thus, for instance, they are a useful method to investigate how information or a

disease propagates through a group and highlight important individuals for doing so. Alternatively,

time-ordered data can be pooled into discrete time windows to provide time-aggregated networks —

essentially a series of static structures. As well as being used to assess changes in network structure

in response to external factors or identify persistent communities within a group (Blonder et al.

(2012), Hobson et al. (2013) and Mbizah et al. (2020) for example), time-aggregated networks have

been used to develop stochastic actor-based models (Snijders et al., 2010). In the approach of



CHAPTER 1. ECOLOGICAL MOTIVATION 8

Snijders et al. (2010), the network evolves stochastically according to network (e.g. a tendency to

reciprocate an interaction), individual (e.g. a preference to interact with others of the same sex)

and dyadic (e.g. kinship) characteristics.

McDonald & Shizuka (2013) and Shizuka & McDonald (2015) look to assess the orderliness of

interaction networks across a range of taxa with regards to dominance (the interaction observed

being dominance based). The orderliness of a group depends on the transitivity of the dominance

relationships, as well as the stability and ‘steepness’ of the dominance rankings — that is, the level

of disparity in the dominance scores for the animals (McDonald & Shizuka, 2013). They investigate

this by breaking down the network into
(
n
3

)
triads (for n animals) and classify each one as one of

seven directed network motifs. Five of these motifs are of particular interest here. The double-

dominant (one animal is dominant to the other two), double-subordinate (one animal is subordinate

to the other two) and transitive triads are orderly. The cyclic triad is disorderly whilst the pass-

along triad (a cyclic triad with a missing edge) has the potential to go either way depending

on how the missing edge is filled in. Both studies find that there is a significant excess of the

orderly double-dominant and transitive triads when compared to the expected number in a random

network. Similarly, there is a significant deficit of the pass-along and cyclic triads. This finding

was consistent across the range of taxa analysed in the aforementioned studies (birds, primates,

nonprimate mammals, fish and invertebrates) and across group size (Shizuka & McDonald, 2015).

The analysis of McDonald & Shizuka (2013) also concludes that groups are typically orderly from

the point of view of rank stability and steepness (i.e. there is a large disparity in the rank scores).

Thus, whilst cyclic structures do sometimes occur, they find social networks are highly orderly.

This finding coincides with those of Chase & Lindquist (2016): that disorderly structures quickly

transition to an orderly one.

Assuming transitivity across all observed relationships, interaction networks can be reduced to a

dominance hierarchy in the form of a directed acyclic graph (DAG). When there is complete data

on all possible pairwise interactions, these structures can be reduced further to a linear hierarchy

— where the animals are effectively ordered by dominance (Chase & Lindquist, 2016). Wittemyer

et al. (2007) take this approach after observing various agonistic interactions, such as tusk pokes

and trunk slaps, between African elephants. They then use this data to produce a dominance

ranking of the animals and use that ranking to investigate how social dominance interplays with

spatial use. This approach again only utilises a static view of the network.

Both types of data (interaction and proximity) used to produce a social network tend to require

labour intensive collection as they involve direct observation of the animals, though the collection

of proximity data can now be more readily automated through the use of tracking tags (Farine &

Whitehead, 2015). Not only is direct observation labour intensive, it is open to human error. For

example, misidentification of animals or biases in the data collectors, such as identifying brightly

coloured animals more often (Davis et al., 2018). Furthermore, when using interaction data, more

robust results may be obtained when combining different types of interaction (Hobson et al., 2013)
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— further increasing the cost of data collection. On the other hand, tagging can collect data for

longer periods of time for animals which may be hard to reach or monitor or whose behaviour

may be affected by observation (Scharf et al., 2016). Farine et al. (2016) suggests that spatial

data alone may be a good proxy for encompassing different types of interactive behaviours, even

though it loses sight of the type of interaction (e.g. agonistic or aggressive). However, assuming

interaction based on spatial proximity alone, whilst based on a fair assumption that interaction in

nonhuman animals requires some sort of proximity, does not account for nonsocial motivation for

that proximity. For example, converging onto a resting site does not necessarily require interaction

(Pinter-Wollman et al., 2013).

1.2.2 Fission-Fusion Dynamics

Fission-fusion dynamics (FFD) refers to the temporal variation in cohesion, subgroup size and com-

position of animal groups and it is a phenomenon widespread across taxa (Ramos-Fernández et al.,

2018) — thus highlighting the importance of modelling dynamic social behaviour. Such variabil-

ity is considered advantageous when animals are seeking resources in a spatially and temporally

heterogeneous landscape (Ramos-Fernández & Morales, 2014) and when individuals have a conflict

of interest (Sueur et al., 2011). Though, Sueur et al. (2011) point out that studies of collective

behaviours have largely been concentrated on relatively stable groups.

In theory, groups exhibiting high levels of fission-fusion dynamics should not contain consistent

leadership. The individual animals in these groups are free to choose their temporary peers and

subgroups that will maximise their fitness at the time. However, there is evidence that in certain

situations (e.g. resources are sparse or a smaller population size facilities frequent interaction),

consistent leadership is found in groups that also demonstrate considerable variation in their group

compositions. Lewis et al. (2011) obtained these findings through observing how long individual

dolphins spent in leading positions in a group.

Ramos-Fernández & Morales (2014) investigated which factors determined individual fissions or

fusions in spider monkeys. The most important factors were whether specific other individuals are

doing the same and sex. The sex of an individual was an important factor in whether it joined

or left a group (males were more likely to fission, females were more likely to fuse), as was the

overall gender composition of the group (individuals were more likely to join subgroups that were

predominately their own sex). Neither group size or dispersal had a significant effect on individual

fissions or fusions. Thus, Ramos-Fernández & Morales (2014) argue that their results show that

subgroup patterns in groups with high rates of FFD are born out of interactions between specific

individuals, rather than the animals paying attention to subgroup properties.

Other studies of FFD include Ramos-Fernández et al. (2018), who quantified temporal variation in

social behaviours through measuring the entropy of subgroup composition. Similarly to much of

the SNA literature, all the studies mentioned in this section were carried out on directly observed
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data. As such, there is a similar discussion to be had on the positives and negatives of the different

data collection (and subsequent analysis) methods. For example, direct observation can provide

information on the nature of an interaction, but tagging can monitor animals for longer time

periods. See the above discussion in Section 1.2.1 for more details.

1.2.3 Local Interaction Rules

Collective behaviours and movement models are brought together in a commonly used class of

models based on the ‘boids’ approach by Reynolds (1987). Here, animals are modelled as self-

propelled particles (SPP) which interact according to local, fine-scale, interaction rules. Typically,

those rules are based on repulsion, alignment and attraction (or some subset of the three) depending

on the distance between the animals. That is, an animal seeks to maintain some distance to all

others to avoid collisions with them. If no animals are within their ‘zone of repulsion’, they interact

with those in their ‘zone of alignment’ and ‘zone of attraction’ as detailed by Couzin et al. (2002)

— the radii of the zones being parameters of the model. Typically, an animal interacts with all of

those in the appropriate zone(s), except for those not in their field of perception, and the effects

are averaged out across all interactions. Usually these models are utilised in the analysis of large

groups of animals, such as flocking birds or schooling fish, and the types of collective behaviours

these models can produce are backed up by experimental evidence (Tunstrøm et al., 2013).

This approach has led to numerous insights, such as investigating how information is shared within

a group on the move and how conflicting information is resolved (Couzin et al., 2005). This work

was taken further by Couzin et al. (2011) to understand the role of uninformed individuals in the

decision making process of a group and del Mar Delgado et al. (2018) investigated how individual

heterogeneity impacts collective movement behaviours. Berdahl et al. (2013) utilises this approach

to ascertain that collective dynamics are the driving forces that allow schooling fish to respond

to environmental gradients whilst Croft et al. (2015) examined how the social structures within a

flock of birds impacts its ability to avoid obstacles. Codling et al. (2007) show that the pooling of

information between animals helps to reduce navigational error.

A variation of this modelling approach is to use topological distance, as opposed to metric distance,

to neighbouring animals to dictate the rules of interaction (Ballerini et al., 2008; Camperi et al.,

2012). That is, rather than interacting with those within x metres, an animal interacts with its

nearest y neighbours. They argue that topological distance is more robust than metric distance as

it is not at the mercy of the density of the group. Additionally, movements that happen to result in

two animals being further apart than a defined metric distance of interaction will not immediately

terminate that interaction.

Interacting with all animals (aside from those in blind spots) within some proximity ranges, either

metric or topological, won’t provide sufficient biological realism in many cases though (e.g. Katz

et al. (2011), Strandburg-Peshkin et al. (2013) and Rosenthal et al. (2015)). For example, Rosenthal
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et al. (2015) find that the two most important factors in predicting a response of a focal individual

to a startled fish are: how much of the startled fish they can see relative to other fish and the

metric distance to it (provided they can see it). Katz et al. (2011) find that the interactive effects

of neighbouring animals on a focal animal combine in a nontrivial manner — they don’t simply

average out. Herbert-Read et al. (2011) supports this by finding that the social response of their

study species is dominated by the single nearest neighbour. In a similar vein, Nagy et al. (2010)

look at the time-delayed correlation in velocity between each pair of homing pigeons in a small flock

to find a hierarchical structure within their interactions. In baboons, Farine et al. (2016) find that

an individual’s longer-term movement is best predicted by their top 4 to 6 ‘spatial affiliates’ —

those with whom it is most often the nearest neighbour with. Additionally, Tang et al. (2018) find

that adding some network structure into these local-interaction-based models can lead to quicker

swarming behaviour.

1.2.4 Statistical Collective Movement Models

Much of the above analysis using local-interaction models is not undertaken by fitting a model

to data. For instance, Couzin et al. (2002) evaluate global properties of simulations in order to

investigate the effects of different parameter values on the resulting collective behaviours. Katz

et al. (2011) map out features of the movement data to investigate the social forces at play between

fish. For example, they plot the acceleration of a fish against the distance to its neighbour to find

that speed modulation is a key component of interaction that is absent in many local-interaction

models. However, there have been some developments in this area. Lukeman et al. (2010), for

example, weigh up various candidate models (based on metric distance interaction zones) before

fitting the most appropriate one to data of a flock of birds in order to ascertain the weighting of each

interactive force (repulsion, alignment, attraction or some interaction with a frontal neighbour).

Though, the radii for the zones were still inputted as opposed to inferred.

Mann (2011) and Torney et al. (2018) bring the local-interaction modelling framework into the

world of Bayesian statistics in order to obtain the posterior distributions of the model parameters.

Torney et al. (2018) use data collected from unmanned aerial systems (UAS) to investigate the social

cues from neighbours driving migrating caribou. Models using metric distance, topological distance

and exponential decay (influence decreases with distance) are compared to find social cues based on

decay best explain the data. Mann (2011) fit various models (with or without alignment; metric of

topological distance-based interaction) to simulations (derived from the relevant interaction rules)

of swarming animals. The posteriors of the model parameters, such as the attraction and alignment

parameters, are consistent with the true values used for the simulations. Though, when the data

contains a limited snapshot of interaction (e.g. the animals are always in a particular collective

state), they struggle to estimate the interaction radius.

Outside of the local-interaction-rules framework, dyadic interaction metrics are used to statistically

measure how interlinked the movement trajectories of two animals are (Long et al., 2014; Joo
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et al., 2018). For instance: how often two animals were within a certain proximity of each other;

how simultaneous is the use of some area; how correlated certain features of their movement (e.g.

velocity) are. Whilst these are quick to calculate and easy to use, they are limited to the analysis of

two animals, each metric provides an incomplete view of interaction and some are heavily dependent

on assumptions/prior knowledge (e.g. what constitutes proximity) (Joo et al., 2018).

Potts et al. (2014) present a flexible framework in which the movement of an individual is modelled

through a step selection function which contains terms for their movement process, environmental

weighting and social behaviours. All three terms can be configured for the analysis at hand. For

example, the social behaviours could represent local interactions, as covered in Section 1.2.3, or

memories of past territorial conflicts in order to facilitate avoidance. Russell et al. (2016) devise a

similarly flexible approach where an animal’s movement is modelled with a weighted distribution

incorporating: the movement process (a continuous-time correlated random walk), observation

error and social interactions. The social element contributes to the weighted distribution through

a pairwise interaction function, which depends only on the distances between the animals. This

function can be defined to capture the assumed nature of the interactive behaviour being studied.

For instance, the function Russell et al. (2016) showcase is based on repulsion and attraction —

similar to the models in Section 1.2.3. Subsequently, a small distance between two animals will

produce a small interaction function value, which will then discourage those two animals from

moving towards each other at that time.

Schlägel et al. (2019) are able to infer asymmetric dyadic interactions through including occurrence

distributions into their step selection function model. An occurrence distribution being the spatial

distribution of where an animal has recently been. The model is fitted to each animal individually

to ascertain whether it is attracted to, repulsed by or neutral to the occurrence distributions of

other animals. Through this approach, they can see if an interaction between two animals is driven

by them both or just one of them and whether it is mutual or not (e.g. whether both are attracted

to each other or one is neutral). Additionally, in part due to the inclusion of repulsion, their model

is not limited to same-species analysis. Similarly to the above methods of Potts et al. (2014) and

Russell et al. (2016) though, the model detailed by Schlägel et al. (2019) does not allow for animals

to exhibit different social behaviours throughout the observation period.

In a discrete-time movement model fitted to ant data, Russell et al. (2017) incorporate social

interactions into individual behavioural state transitions. They do so by making the transition

probabilities functions of various social covariates: whether a moving ant is nearby; whether a

non-moving ant is nearby and whether the queen is nearby. An example of their findings is that a

stationary ant was more likely to transition to a moving state when there are moving ants nearby.

Whilst this framework requires an interaction radius, Russell et al. (2017) only explore different

values for it as opposed to inferring it. McKellar et al. (2015) develop a similar concept where

the transition probabilities of a HMM are functions of a social covariate (group size), as well as

environmental covariates. Through this, they find woodpeckers are more likely to be in a resting
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state when part of a larger group.

A discrete-time movement model (a HMM) developed by Langrock et al. (2014) allows animals

to switch between behavioural states that correspond to membership of a group or not. When a

member of the group, animals move with some bias (specifically, a biased random walk) towards

the group centroid — either a mathematical centroid or the group leader. The movement of

animals not in the group is modelled as a correlated random walk, representing the desire to forage

independently. Niu et al. (2016) developed a continuous-time analogue of the above model. The

movement of a group of animals is jointly modelled as a multivariate OU process, the drift of

which is directed towards a leading point — the movement of which is also modelled with an OU

process. Again, this leading point can be some central abstraction or an actual leading animal.

Niu et al. (2020) builds upon the framework of Niu et al. (2016) by allowing the animals to switch

between being a member of the group or being independent — modelled as BM. Additionally, Niu

et al. (2020) explore the scenario when the leading point does not have a point of attraction. The

movement of the leader is modelled with BM and, thus, is no longer stationary. This extension

to the non-stationary case was developed in conjunction with the work we will present in Chapter

3.

Scharf et al. (2016) jointly model the movement of multiple animals in discrete time using a Gaussian

Markov random field (GMRF), where the movement is conditional on the underlying social network.

Their GMRF contains two social mechanisms: attraction towards the mean position of those an

animal is connected to and connected animals moving in the same general direction. The social

network is dynamic and Markovian as the probability of two animals being connected at time T is

modelled as a Bernoulli random variable, with dependency on the their connection status at time

T − 1. Though, whilst this formulation offers temporal stability in social connections (as opposed

to a network based solely on proximity), it gives rise to a large number of model parameters.

Back in the realm of continuous time, Scharf et al. (2018) jointly model the movement of multiple

animals through a process convolution, which gives rise to a Gaussian process. One of the kernels

of the process convolution relates to social behaviours, using weighted pairwise connections. That

social kernel for an individual at a particular time is a weighted average of the convoluted process (so

far) of those it is connected to at that moment (including itself). The network weights are dynamic

and are obtained through a latent space model. Hooten et al. (2018) detail a similar approach. As

well as accounting for the dependency amongst individuals, this framework can reduce uncertainty

in individual trajectories. That is, when an individual lacks data, we can be more certain of their

trajectories if they are well connected to animals who don’t lack data.

Scharf & Buderman (2020) note that, despite the development of various modelling approaches

as discussed above, much of the work on collective movement models has so far concentrated

on ‘positive’ interactions (e.g. attraction or coordination), with more ‘negative’ interactions (e.g.

territorial battles) receiving relatively little attention. Though, there are exceptions — Schlägel
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et al. (2019) for instance.

1.2.5 Ad Hoc Analysis

Another route to investigate collective movement behaviours is through a more ad hoc approach.

For instance, Strandburg-Peshkin et al. (2015) investigated how a troop of baboons collectively

made their movement decisions through identifying ‘movement initiations’ in the spatial data.

‘Movement initiations’ were extracted through a method based on minima and maxima distances

between a pair of animals. Through this approach, they quantified the probability of a baboon

following a movement initiation in the context of the number of initiators and their consensus in

direction. Though, whilst drawing out particular features in the data can allow flexible and easy

to interpret analysis, it does not necessarily allow for causal relationships to be inferred. That is,

in this particular example, a movement sequence of an initiator being followed doesn’t necessarily

imply a causal relationship between those two animals.

1.3 Heterogeneity

As mentioned throughout Section 1.2, individual heterogeneity plays a key role in social groups and

thus accounting for such differences can provide a more complete picture of collective movement.

Features we may want to consider from the point of view of individual heterogeneity include:

physical differences (e.g. size); established social affiliations (e.g. kinship); physiological state (e.g.

nutritional deprivation); resource acquisition vs predation risk (e.g. vulnerable animals will take a

central, protected position in a group); aggression (e.g. lower ranking animals arriving at feeding

sites late to avoid confrontation); information (e.g. experienced/informed group members position

themselves at the front of the group) (del Mar Delgado et al., 2018).

To briefly recap some examples of when individual variation has been taken into account in collective

movement models: Delgado et al. (2014) define a sociability measure as the difference in the

observed proximity of an individual to conspecifics and the expected proximity from a non-social

(‘null’) model. Through this they are able to estimate individual heterogeneity in sociability. Using

a model where the expected heading of movement is a weighted average of directional persistence,

environmental features and social cues, Torney et al. (2018) investigate variation in social behaviour

according to life stage. After classifying each caribou as either a calf, an adult or a large bull,

they find that calves are more reliant on social cues than the other two categories and that their

interaction is based more on maintaining proximity than alignment. Couzin et al. (2002) show

that variation in movement parameters, such as speed and turning rate, relate to the position

of an animal within a group. Schlägel et al. (2019) fit their movement model to each individual

separately so they can obtain the different strengths at which they interact with others. The

methods of Scharf et al. (2018), Hooten et al. (2018) and Schlägel et al. (2019) are able to ascertain

the different strength/weighting of each dyadic interaction
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Aside from providing more insight into social behaviours, utilising prior information on individual

or demographic preferences can also help reduce the number of social parameters in the model (see

Scharf et al. (2016) for a similar discussion). For example, if it is known which animals are still

dependants, it may be assumed they mostly interact with their parents and so we can disregard

other potential interactions.

There is also an interest in studying how environmental variation interplays with collective move-

ment. Not only can doing so provide important insights into how social groups respond to that

variation or change (Snijders et al., 2017; King et al., 2018), but it can also help disentangle social

and nonsocial drivers of collective movement (Bode et al., 2012). As we have seen above, some

approaches to collective movement modelling have been designed to account for spatial hetero-

geneity. For example, the step selection approaches of Potts et al. (2014) and Strandburg-Peshkin

et al. (2017) can account for the importance or preference of spatial features such as habitat types,

landscape features (e.g. slope or forest canopy height), barriers to movement etc. Similarly, as men-

tioned above, the weighted heading of an animal can be influenced by features of the environment

in the approach of Torney et al. (2018). Russell et al. (2017) model movement with a spatially

varying stochastic differential equation to account for spatially dependent movement. However, in

the models developed so far, the environmental and social drivers of movement are generally treated

independently. We are then unable to examine how social behaviours transition in response to en-

vironmental change. Though, Strandburg-Peshkin et al. (2017) do measure group-level properties,

such as the speed and alignment of a group, as a function of the environmental context.

Environmental variation in collective movement models has generally been limited to spatial het-

erogeneity. However, temporal heterogeneity can also be an important factor in social behaviours

(Sueur et al., 2011). For example, seasonal changes in prey abundance impact the social behaviours

of lions (Mbizah et al., 2020). Whilst some models account for the dynamism of social behaviours

(Langrock et al., 2014; Scharf et al., 2018; Hooten et al., 2018; Niu et al., 2020), there has been

little progress in making them dependent on temporal information.

1.4 Aim of this Thesis

We aim to develop movement models in the same vein as those discussed in Section 1.1.2, but with a

flexible social framework so that we can capture the collective movement behaviours. We will do so

in continuous time, in part because of the continuous nature of movement, but also because many

of the issues with discrete-time modelling can be amplified when tracking multiple animals. That

is, missing data is inherently more likely to occur, tracking data may not be synchronised between

the animals and the temporal scale of the data may not be appropriate for the social behaviours

under examination.

The behavioural switching models discussed in Section 1.1.2 provide an ideal platform to build

upon. Behavioural switching in a collective movement model can account for the dynamism of social
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behaviour, something which is largely ignored in the work discussed in this chapter despite frequent

calls for its inclusion and its prevalence in nature (e.g. fission-fusion dynamics). Additionally,

frameworks already exist that can be extended (or have already been extended) to include some

heterogeneity (e.g. Blackwell et al. (2016)). In the context of analysing individual movement, this

is typically done with spatial or temporal heterogeneity in mind but, in multivariate versions of

these frameworks, extensions to individual heterogeneity should also be possible.

Sociality covers a vast scale, from dyadic relationships to swarms of locusts, and so some compromise

will be needed as one modelling framework cannot possibly be flexible enough to suit all needs. So

far, much of the collective movement modelling literature is focused on the extremes of this scale.

For instance, the methods of Long et al. (2014), Joo et al. (2018) and Schlägel et al. (2019) are

limited to studying dyadic relationships in isolation of other group members. The local-interaction-

based models are typically developed with larger groups in mind, such as schooling fish or flocks

of birds. Whilst those models work well in those contexts, they will have limited use for more

complex or sparser social structures such as dominance hierarchies and fission-fusion dynamics.

Additionally, they are not well suited to the coarser, longer-term data that is common in wildlife

tracking studies (Calabrese et al., 2018). Whilst the models developed by Langrock et al. (2014),

Niu et al. (2016) and Niu et al. (2020) could be deployed across a range of social group sizes,

their strengths lie in modelling larger groups too — such as reindeer/caribou herds as in their case

studies. Moreover, the social structure in those models is always represented as a ‘star’ network,

which may not be suitable for other types of social behaviours.

As both King et al. (2018) and Westley et al. (2018) discuss, there is much to be gained from

obtaining more granular information about the social drivers of collective movement. For example,

consideration of social hierarchies and ‘keystone’ animals can help guide conservation or population

management efforts. Understanding if or how the fission-fusion dynamics of a group changes in

response to environmental change can indicate how resilient that group is to that change. We are

therefore focusing on capturing these complex behaviours in our work.

As discussed in Section 1.2.1, there is a large body of work that drills down to the pairwise re-

lationships in order to piece together a view of the wider group structure. SNA and movement

ecology is currently quite disconnected, but there is a wealth of insight to be gained by bridging

that gap. Though, incorporating tournament-style networks into movement models, and the corre-

sponding dependencies in movement, may be an overly complex endeavour (both in terms of model

formulation and computational effort). However, the more tournament-style networks typically

presented and analysed in SNA encompass all of the social interactions over some time period. In

time-ordered SNA, the network at any given time is the result of the interactions occurring just

at that moment. Such a framework in a behavioural switching movement model has the potential

to provide detailed insight into complex, dynamic social behaviours. The methods presented by

Scharf et al. (2018) and Hooten et al. (2018) capture a dynamic network, but these methods are

better suited to scenarios when the social behaviours vary slowly relative to the movement process
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and the inferred network is undirected. Capturing the direction of relationships is important for es-

tablishing asymmetric interaction, which is in turn important to obtaining insight such as whether

there are key animals and if there is some hierarchical structure in the group.

1.4.1 Outline of this Thesis

In the following chapter, we provide a detailed overview of the modelling methods we will utilise

to undertake the above aim. In particular, we will discuss: diffusion processes, both univariate and

multivariate cases; behavioural state switching with a continuous-time Markov chain; algorithms to

reconstruct behaviours and locations in continuous time; the Markov chain Monte Carlo methods

used to fit the models to data.

In Chapter 3, we introduce the social framework and movement model that we use throughout

this thesis. We present the model in detail, along with the corresponding algorithm we use in

that chapter to fit it to data. This algorithm is largely based on work by Blackwell et al. (2016),

which will be discussed in more detail in Chapter 2. We also discuss various model extensions that

could better represent the analysis at hand. We trial our model with both simulated and zebra

data.

The above approach is refined in Chapter 4. In particular, we develop an improved algorithm to

reconstruct the animals’ behaviour in continuous time. With this improvement, we investigate the

robustness of the model to different social behaviours. Baboon data is analysed in this chapter to

showcase the insights that we can gain when fitting our model to data from animals that exhibit

complex social behaviours. Additionally, we investigate how the temporal scale of the data impacts

the results and we compare the relationships our model inferred with those when applying dyadic

metrics to the same data set.

In Chapter 5, we extend the model to the spatially heterogeneous case. We develop and present

a new algorithm with which we can reconstruct both the behaviours and locations of the animals

in continuous time. Analysis is undertaken to compare this new algorithm against other methods.

With this new functionality in mind, and inspired by the models in Section 1.2.3, we also extend

the model to include an inferred radius of interaction — a proximity that animals must be within

in order to interact. Restricting overly distant interaction both adds some biological realism into

the model and reduces the number of social interactions that need to be evaluated. We fit this new

model to the same baboon data set as in Chapter 4 in order to examine this new functionality.

In Chapter 6, we discuss to what extent our models meet the above aims and where future devel-

opments should lie.



Chapter 2

Statistical Background

Methods, processes and results that are frequently referenced in this thesis are discussed in detail

in this chapter. Namely, diffusion processes in Section 2.1, Markov chain Monte Carlo methods

in Section 2.2 and methods with which we can reconstruct an animal’s behaviour and location in

continuous time in Section 2.3.

2.1 Diffusion Processes

The general form of a stochastic differential equation (SDE) comprises of a drift term and a noise

term:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt (2.1)

where Xt is the value of some process X at time t with t ≥ 0. The function µ is the drift coefficient

and, as the name suggests, its form dictates the nature of the drift (if any) exhibited by the process

X. The function σ is the diffusion or ‘noise’ coefficient. It is considered the noise coefficient because

Wt denotes a Wiener process, which is used to represent ‘white noise’ in X (Øksendal, 2003). The

Wiener process is continuous, with independent, Gaussian increments such that:

Wt −W0 ∼ N(0, t) (2.2)

for all t ≥ 0 where W0 is the value of the process at time 0.

A diffusion process is a solution to an SDE (Øksendal, 2003). Diffusion processes are continuous-

time, stochastic processes which also satisfy the Markov property: P (Xtn+1 |Xtn , Xtn−1 , ..., Xt1) =

P (Xtn+1 |Xtn) when tn+1 ≥ tn ≥ tn−1 ≥ ... ≥ t1 ≥ 0 (Øksendal, 2003). The nature of the diffusion

process depends on the form of the µ and σ functions in equation 2.1. We are focusing on two

cases in particular, Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, which are

18
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both linear and Gaussian (Patterson et al., 2017).

As an aside, SDEs that don’t have tractable solutions can still be used to describe movement.

Though they provide a flexible modelling option, it comes at the expense of computation and

statistical tractability and thus they are not commonly used for movement models (Patterson

et al., 2017). As such, we will not discuss that approach.

2.1.1 Ornstein-Uhlenbeck

As mentioned in the previous chapter, OU processes are commonly used to model movement in

continuous time — either as a positional or velocity process. We are focusing on the positional

process, which was first used to model animal movement by Dunn & Gipson (1977) in order to

estimate home ranges (see Chapter 1). In a single dimension, an OU process is described by the

following SDE, which contains a linear drift or ‘attraction’ term:

dXt = −β(Xt − θ)dt+ ρdWt (2.3)

An OU process is a stationary process that is mean-reverting to some central location. θ rep-

resents that location whilst β represents the rate of attraction to it. The diffusion coefficient is

simply a constant value, ρ. There is a closed-form solution to equation 2.3, which is normally

distributed:

Xt|X0 ∼ N(e−βt(X0 − θ) + θ,
ρ2

2β
(1− e−2βt)) (2.4)

with the distribution of Xt as t −→∞ being N(θ, ρ
2

2β ) (Blackwell, 1997) — a unimodal distribution

around the central location with ρ2

2β as the stationary variance. This follows on from the restriction

that β > 0 so that e−βt −→ 0 as t −→ ∞ (Dunn & Gipson, 1977). The expected value of the

conditional distribution in equation 2.4 can be rearranged to the following: e−βtX0 + (1− e−βt)θ.
Through this form, we can see that the expected location at Xt is a weighted mean of the location

at X0 and θ, one which is dictated by the time interval t and the strength of the attraction to θ

(β).

Equations 2.3 and 2.4 both relate to the univariate case. We will consider two motivations for

extending them to the multivariate case: to model the movement of multiple animals, which we

will discuss in Section 2.1.3, and to model the movement of an individual in multiple dimensions,

which we will discuss now.

The movement we are focusing on modelling is two-dimensional — longitudinal and latitudinal.

Due to the linearity of the SDE in equation 2.3, two of them can be combined to create a two-

dimensional OU process (or, in general, d of them combined to create a d-dimensional OU process).
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The solution to this is:

Xt|X0 ∼ MVN(eBt(X0 −Θ) + Θ,Σ− eBtΣeBT t) (2.5)

but now Θ is a vector containing the centre of the process in each dimension whilst B and Σ are

(2× 2)-matrices — with Σ being the stationary covariance matrix. For biological plausibility, the

B matrix is taken to be isotropic — symmetric under rotation and reflection (Blackwell, 1997).

This is so that the drift is determined only by the distance to Θ, regardless of the direction to it,

meaning that we avoid placing any significance on the coordinate system used for the measurements

or by the animals themselves (Dunn & Gipson, 1977; Blackwell, 1997). Thus, B = βI where I is

the identity matrix and β > 0. Additionally, the noise coefficients of each dimension are typically

treated independently (Σ = ρ2

2βI). Due to the isotropic B and independent noise, each dimension

is independent and can be modelled separately.

2.1.2 Brownian Motion

BM is the simplest diffusion process (Patterson et al., 2017) and it is a continuous-time analogue

of a random walk model. It is described by equation 2.1 when the drift coefficient is set to 0 and

the diffusion coefficient is set to a constant, ρ say. As such, BM only has a single parameter, ρ,

which scales the variance of a BM step:

Xt|X0 ∼ N(X0, ρ
2t) (2.6)

for all t ≥ 0. In the context of movement modelling and when X is a positional process, the ρ

parameter can be considered to represent the speed of the movement.

BM is the limiting case of an OU process as the attraction parameter tends to 0 (Blackwell, 1997).

To show this, let’s take the conditional distribution of an OU process as in equation 2.4:

Xt|X0 ∼ N(e−βt(X0 − θ) + θ,
ρ2

2β
(1− e−2βt)) (2.7)

As β −→ 0, e−βt(X0 − θ) + θ −→ X0 and ρ2

2β (1 − e−2βt) −→ ρ2t after expanding the power series

of e−2βt and cancelling out the βs. Thus, the resulting distribution is the same as in equation

2.6.

Due to its simplicity, BM has limitations for modelling long-term movement. However, it does have

useful applications in diffusion-switching models in order to provide some flexibility (Blackwell,

1997). That is, it may not be realistic to assume an animal is always moving with some drift to a

central location and in a stationary manner — when an animal is exploring or foraging for example.

As BM doesn’t have drift, nor is it stationary, it may be better suited to modelling that type of

movement.
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2.1.3 Multivariate Diffusion

As mentioned above, the univariate SDEs can be combined to jointly model the movement of

multiple animals. Note, different spatial dimensions, or axes, are treated independently and so

the discussion below just relates to a single axis, with corresponding equations for further axes as

required.

To model the social behaviours in collective movement, Niu et al. (2016) utilise a multivariate OU

process to capture interaction explicitly. With the ‘leading’ animal (which can be an actual animal

or some abstract leading point) moving according to equation 2.3, with θ being some fixed location

such as a nesting site, they introduce a second animal — the ‘follower.’ The movement of the

follower, F , is also modelled with an SDE of the form seen in equation 2.3, the centre of which is

the location of the leader (L):

dFt = −α(Ft − Lt)dt+ σdVt (2.8)

where α is the rate of attraction to the leader and σ is the diffusion coefficient for the follower. Vt

is a distinct Wiener process from that of the leader. The bivariate OU process of these two animals

for a single axis is then:

dXt = A(Xt −Θ)dt+ ΣdBt (2.9)

where, using mostly the same notation as Niu et al. (2016),

Xt =

(
Lt

Ft

)
,A =

(
−β 0

α −α

)
,Θt =

(
θ

θ

)
,Σ =

(
ρ 0

0 σ

)
,Bt =

(
Wt

Vt

)
.

Lt is the positional process of the leader, as described by equation 2.3, and so the Xt vector

represents the locations of both animals. A is the attraction matrix, which encodes the interactions

within a group. In general for larger groups, which Niu et al. (2016) take to consist of a single

leader with all the remaining animals as its followers, the first row of A relates to the ‘leader’ and

it consists of zeros except for −β on the diagonal. All other rows relate to followers, with −α on

the diagonal, α in the first column and all other columns set to zero. Θ is a vector with all entries

being θ, indicating that followers are indirectly attracted to θ too. Σ is a diagonal matrix as we

take the noise for each animal to be independent.

This too has a closed-form solution (Niu et al., 2016), which is a multivariate normal distribu-

tion:

Xt|X0 ∼ MVN(eAt(X0 −Θ) + Θ,∆− eAt∆eA
T t) (2.10)

where ∆ is the multivariate stationary covariance. In order to obtain the conditional covariance
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then, we first need to derive ∆. This can be done using the following result (Niu et al., 2016):

ΣTΣ = −(A∆ + ∆AT ) (2.11)

We will not go into the derivation here, but we take a similar approach to derive the conditional

covariance for the modelling framework we introduce in Chapter 3 (the full details of which are in

Appendix A).

Niu et al. (2016) go on to expand this social framework for more animals where each subsequent

animal is a follower, resulting in a larger, single group where all followers are attracted to the same

animal (or leading point). However, there is scope for this approach to be more flexible in the

social behaviours it can model. For instance, there could be multiple leaders in order to capture

subgroups. Then, not all followers have to follow the same leader, with the A matrix detailing

the specific interactions. Equations 2.10 and 2.11 can then be utilised to derive the corresponding

conditional covariance matrix.

Additionally, as it is the limiting case of an OU process, there is also scope to include BM in this

framework. For instance, when combining this framework with state switching, switching to BM

would allow followers some time independent of the group (as in Niu et al. (2020)). BM could

also be used to model the movement of leading animals when collective movement without drift is

a suitable model. However, in both of these cases, some care is needed to avoid division-by-zero

errors in both the stationary and conditional covariance matrices as some rates of attraction will be

zero. See Section 2.1.2 for an example. We explore all of the above extensions in Chapter 3.

2.2 Markov Chain Monte Carlo

In this thesis, we are focusing on Bayesian inference, which involves estimating the posterior dis-

tribution of the model parameters, conditional on the data:

P (Ω|x) =
P (x|Ω)P (Ω)∫
P (x|Ω)P (Ω)dΩ

(2.12)

where Ω represents the model parameters; x is the observed data; P (x|Ω) is the likelihood; P (Ω)

is the prior (a distribution encompassing prior knowledge of Ω); the denominator is the marginal

of the data and a proportionality constant. Due to the integral in the proportionality constant,

the posterior distribution is often not analytically obtainable. Additionally, the data itself might

not be fully observed. For example, with a state-switching model, the posterior of the movement

parameters depends on the sequence of a typically unobserved behavioural process. It also depends

on the timings of the state switches which are, again, typically unobserved in continuous-time mod-

els. Thus, in order to analytically derive the posterior distributions of the movement parameters,

we would also need to integrate out the possible state sequences and timings of the switches.
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Monte Carlo methods can be used to estimate the properties of a distribution that cannot be

obtained analytically, thus providing an approximation of that distribution (Gilks et al., 1996).

This is achieved by drawing a large enough number of samples from the ‘target’ distribution, π, in

some way. π = P (Ω|x) in the above Bayesian context. When the samples are generated through

a (discrete-time) Markov chain, with π as its stationary distribution, this gives rise to a Markov

chain Monte Carlo (MCMC) algorithm (Gilks et al., 1996). This can be done with the Metropolis-

Hastings (MH) algorithm. Let Ωt denote the value of the Markov chain at time t, for t ≥ 1. A

candidate for the value at t + 1, say S, is sampled from a proposal distribution, Q. S is accepted

as the value of Ωt+1 with probability α(Ωt, S) where

α(Ωt, S) = min

(
1,
π(S)Q(Ωt|S)

π(Ωt)Q(S|Ωt)

)
(2.13)

Otherwise, S is rejected and Ωt+1 = Ωt. The second term passed in the minimum function is known

as the ‘MH ratio’. The resulting transition kernel of this Markov chain is:

P (Ωt+1|Ωt) = Q(Ωt+1|Ωt)α(Ωt,Ωt+1) + 1Ωt+1=Ωt

(
1−

∫
Q(S|Ωt)α(Ωt, S)dS

)
(2.14)

with the first term of the kernel relating to the acceptance of the proposal and the indicator

function term relating to the rejection of all possible candidates (Gilks et al., 1996). The proposal

distribution Q can take any form and the stationary distribution of this Markov chain will still

be π (Gilks et al., 1996). Note, though, that the MH ratio will simplify when Q is symmetric (as

Q(Ωt|S) = Q(S|Ωt)). Additionally, when Q is a Gaussian distribution centred on Ωt, the resulting

process is known as a random-walk MH.

As mentioned above, Monte Carlo methods require some means of generating samples from the

target distribution — a distribution which most likely won’t be analytically tractable due to the

integral in the proportionality constant. However, the MH algorithm circumvents this issue as,

when calculating the ratio of the posterior distribution evaluations, the proportionality constants

cancel out.

The above MH algorithm works regardless of whether Ω is a single parameter or a vector of param-

eters. If it is a vector, the algorithm can either be implemented to update all of the parameters in

a single step, or the vector can be split up into disjoint sets — with each set being updated in turn

(Gilks et al., 1996). Whilst we are updating a set of parameters, we condition on the latest values

of the other parameters. Say the set of parameters we are updating in the current step is Ωu, with

Ω−u denoting the remaining parameters. Let Ωt,u represent the values of Ωu at time t and Ωt,−u

represent the latest values of Ω−u:

Ωt,−u = (Ωt+1,1, ...,Ωt+1,u−1,Ωt,u+1, ...,Ωt,n) (2.15)

where n is the number of sets and sets Ω1, ...,Ωu−1 have already been updated in this iteration. New
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candidates, Su, are proposed for Ωt+1,u and they are accepted with the following probability:

α(Ωt,u,Ωt,−u, Su) = min

(
1,

π(Su|Ωt,−u)Q(Ωt,u|Su,Ωt,−u)

π(Ωt,u|Ωt,−u)Q(Su|Ωt,u,Ωt,−u)

)
(2.16)

Otherwise, Ωt+1,u = Ωt,u. π(Su|Ωt,−u) is called the ‘full conditional’ distribution for Su. If it is

possible to propose new candidates from the full conditional distribution (i.e. Q(Su|Ωt,u,Ωt,−u) =

π(Su|Ωt,−u)), then the acceptance probability is always 1 — a method known as Gibbs sampling.

A common scenario in which Gibbs sampling is used is when there is a suitable conjugate prior for

the likelihood of Ωu.

Whilst the MH algorithm is a simple means to construct the required Markov chain, the implemen-

tation of it and the subsequent analysis of the output requires careful attention (van Ravenzwaaij

et al., 2018). Consideration must be made to the starting value of the Markov chain, Ω1. It is

considered good practice to initialise the Markov chain with ‘over-dispersed’ values from the target

distribution, in part so that a wider range of the parameter space can be more readily explored.

As such, the early part of the Markov chain will not have been sampled from the stationary dis-

tribution. This part of the chain is considered the ‘burn-in’ period and is discarded before any

analysis of the chain is undertaken. Inspection of the chain’s trace plots can help determine this

period.

The choice of proposal distribution effects how well the algorithm ‘mixes’ (van Ravenzwaaij et al.,

2018). For example, a proposal with an overly small variance will produce a high acceptance rate,

but it will take a long time to explore the parameter space and the samples may get stuck at local

maxima. A proposal distribution with an overly large variance will result in a low acceptance rate

as it will frequently propose values that are beyond the tails of the target distribution. Both of

these extremes decrease the independence between successive values of the Markov chain. Markov

chains with a high level of autocorrelation will need to run for longer than a counterpart with a low

level of autocorrelation in order to achieve the same effective sample size (ESS) with which we can

approximate the target distribution. The parameters of the proposal distributions are therefore

called ‘tuning parameters.’

We also need to evaluate whether the chain (beyond the burn-in period) has converged to the

target distribution. Informal techniques to do this include inspecting the trace plots and running

the MCMC algorithm multiple times from different starting values to confirm (or not) if all runs

produce the same posterior properties. A common tool used to assess convergence is the Gelman-

Rubin diagnostic (Gelman & Rubin, 1992; Brooks & Gelman, 1998). The Gelman-Rubin diagnostic

evaluates the convergence of multiple chains (relating to the same parameter(s)), with each one

being initialised with over-dispersed values. The diagnostic is called the ‘potential scale reduction

factor’ (PSRF) and it is a ratio of a weighted average of the within-chain and between-chain

variances compared to the within-chain variance. The PSRF therefore tends to 1 (from above) as

the multiple chains converge to the same distribution. There is no set figure to indicate convergence,
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but PSRF values less than 1.1 or 1.2 (depending on the level of rigour required) are sometimes used

(Brooks & Gelman, 1998). The univariate PSRF regards the convergence of a single parameter in

Ω. There is also a multivariate PSRF (MPSRF), which evaluates within-chain and between-chain

covariance, for when there is expected to be some correlation between parameters. The MPSRF is

the maximum scale reduction factor of any linear combination of Ω and bounds above the largest

univariate PSRF (Brooks & Gelman, 1998).

2.3 Modelling Behavioural Switching in Continuous Time

2.3.1 Continuous-Time Markov Chain

As mentioned in Chapter 1, we are focusing on movement models that allow the animals to switch

between a finite number of ‘behaviour’ states. Regardless of whether time is being treated as

discrete or continuous, a common approach is to assume the behavioural process is Markovian.

Whilst the Markov assumption is simplistic, it still accounts for temporal stability in an animal’s

behaviour (Scharf et al., 2016) and so it represents a good compromise between model complexity

and tractability (Patterson et al., 2017). A continuous-time Markov chain (CTMC) is therefore a

natural choice with which to model switching behaviours in continuous time.

A CTMC, with a finite state space, is described by its generator matrix, Λ. The off-diagonal

elements of Λ (λuv for u, v = 1, ..., n where n is the number of states and u 6= v) represent the

infinitesimal transition rate from state u to state v. The diagonal elements of Λ are determined by

the off-diagonal ones: λuu = −λu where λu is the rate of leaving state u (λu =
∑

u6=v λuv).

Whilst a generator matrix and its transition rates are perhaps not as immediately intuitive as the

transition probability matrix of a discrete-time Markov chain, there is a simple interpretation of a

CTMC. That is, the Markovian process will stay in state u for a holding time, which is exponentially

distributed with rate λu. After this holding time, the animal switches to state v with probability

puv = λuv/λu. State switches are thus drawn from a single-trial multinomial distribution. When

discussing CTMCs, we will always do so with regards to this parameterisation of it.

Let m be a completely observed CTMC at times 0 < t1 < ... < tn, with t0 = 0; mi representing the

state of the process at time ti; hi representing the holding time from time ti such that hi = ti+1−ti.
The likelihood of a generator matrix, Λ, given the observed CTMC, is a product of the likelihoods

of each holding time and the subsequent state switch:

L(Λ|m) =

n−1∏
i=0

λmie
−λmihipmimi+1 (2.17)
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2.3.2 Reconstructing Switching Diffusion Processes

Movement data is usually collected at discrete intervals. Even if it’s not, it is unlikely to be collected

at times of behaviour changes. Therefore, to facilitate modelling behaviour in continuous time, we

need to reconstruct the behavioural process between the observations. Blackwell (2003) detail a

method to do this in the spatially homogeneous case and when the behavioural process is known

at the observations. However, the behavioural process will typically be completely unobserved and

thus needs to be reconstructed in its entirety. Additionally, we may want the switches in behaviour

to be dependent on location, as in the spatially heterogeneous case. We will then also need to

reconstruct the movement of an animal at the times of those switches. A flexible method to do all

of that was introduced by Blackwell et al. (2016) — a method which we will refer to as the ‘kappa’

method. In both Blackwell (2003) and Blackwell et al. (2016), inference is undertaken with MCMC

techniques, with the posteriors of the movement parameters, transition parameters and trajectories

being sampled from separately. For example, new behavioural/movement trajectories are proposed

conditional on the current movement and transition parameter estimations. Both of the above

methods are presented in the context of modelling the movement of an individual animal.

The kappa method was developed with the aim of enabling exact Bayesian inference (that is,

avoiding approximations due to discrete time) for a flexible class of models (Blackwell et al., 2016).

The key to this method is the reconstruction/simulation of where an animal is and what it is doing

when it is unobserved. This is done by augmenting the observed data with sampled state switching

times and locations. These movement and behavioural trajectories are repeatedly sampled and

subsequently evaluated with a MH ratio, a process which accounts for the uncertainty regarding

the unobserved parts of an animal’s trajectory.

A key component to this method is the parameter κ. κ has no biological interpretation, but it

serves as an upper bound of the transition rates: κ ≥ max(λu) for all states u. The holding times

of all of the states are therefore probabilistically bounded below by the exponential distribution

with rate κ (Blackwell et al., 2016). This means, in the spatially heterogeneous case, an animal’s

behaviour is not forced to change instantaneously when it changes habitat — a concept that aligns

with the notion of ‘separable’ models as discussed by Harris & Blackwell (2013). That is, whilst

transition rates can depend on location, the movement parameters and trajectories do not (though

they are indirectly dependent on location via the behaviour states). Say, then, the behavioural

process starts at t0 = 0 in state m0. Rather than sample a holding time with rate λm0 , we do so

with rate κ (t1 ∼ Exponential(κ)). A state switch does not necessarily occur at t1 as κ ≥ λm0 ,

merely t1 is a potential switching time. A state switch occurs at t1 with probability λm0/κ. If that’s

the case, the new state is state v with probability λm0v/λm0 . In general, ti− ti−1 ∼ Exponential(κ)

and ti is only ever a potential switching time, regardless of the state at ti−1. The state at ti+1 is
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drawn from the single-trial multinomial distribution:

mi =

v v with probability λmi−1v/κ when v 6= mi−1

mi−1 otherwise.
(2.18)

As the time difference between each sequential pair of potential switching times is exponentially dis-

tributed with rate κ, the set of potential switching times over some time interval can be represented

as a Poisson point process, also with rate κ (Blackwell et al., 2016). Note, in the above discussion

of state switches in the kappa method, we have used a simplified notation. The transition rates

can be dependent on location and time (see Blackwell et al. (2016)). For example, the rate λmi−1v

could read λmi−1v(ti, xi) — the rate of switching to state v at time ti when at location xi.

With this method, trajectories are typically simulated through small segments of data, rather than

the entire data set, as simulations tend to deviate further from a reasonable realisation the longer it

is. So, say we want to simulate both the movement and behavioural processes through the interval

[ta, tb], where ta and tb are observed times. We first propose a new set of potential switching times,

τ̂s, for this interval from a Poisson(κ) process. Then, let τo represent the observed data times in

the interval [ta, tb] and τ̂ = τo∪ τ̂s so that τ̂ = {τ̂1 < ... < τ̂p̂}, where p̂ is the size of τ̂ . Additionally,

let x̂i and m̂i represent the location and state respectively at τ̂i. Starting with x1 and m̂1 = m1,

we simulate the trajectory forwards through each time in τ̂ :

• If τ̂i ∈ τo for i = 2, ..., p̂, the behavioural state at τ̂i is carried forward from τ̂i−1 (m̂i−1) as

observed times are not part of the behavioural process.

• If τ̂i ∈ τ̂s for i = 2, ..., p̂−1, we simulate x̂i from the movement process corresponding to state

m̂i−1. Then, the state m̂i is sampled using equation 2.18

As this trajectory proposal only concerns the interval [ta, tb], it must remain consistent with the

augmented data outside of that interval — hence why we initialised the simulation with state m1.

Additionally, the state at the final switching time, τ̂p̂−1, must be consistent with the currently

estimated state at tb. If not, the simulation is automatically rejected.

If that condition is met, the trajectory proposal is accepted or rejected with a MH ratio. For

each interval in the segment of data being updated, the sampled trajectory (both in terms of

the movement and behaviours) is proposed from the model itself, and so the distribution of that

trajectory up to (and including) the final switching time cancels out with the proposal distribution.

The MH ratio then only concerns the likelihood of the observed data conditional on the locations

sampled at those final switching times (or the previous observed location if an interval doesn’t

contain a switching time): ∏
i∈[2:p̂]∧τ̂i∈τo f(x̂i|x̂i−1, m̂i−1, τ̂i, τ̂i−1,Ω)∏
i∈[2:p]∧τi∈τo f(xi|xi−1,mi−1, τi, τi−1,Ω)

(2.19)
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where Ω represents all movement parameters. p, xi−1, mi−1 and τi−1 relate to the size, locations,

states and times of the previously accepted trajectory.

Whilst the kappa method was designed for spatial heterogeneity, the same framework can also be

utilised in the spatially homogeneous case. In the spatially homogeneous case, when proposing a

new trajectory, only the behavioural process is required to be reconstructed. The MH ratio thus

consists of terms relating to the likelihood of the observed movement through the proposed state

switches. Blackwell (2003) details how to calculate those likelihood terms when the movement is

modelled with the diffusion processes outlined in Section 2.1 — an approach we utilise and discuss

further in Chapter 3 and Appendix C.

κ can be defined to be fixed or it can be allowed to fluctuate — either within the MCMC process

(during the burn-in period) or dependent on time. Typically, it is taken to be fixed. As such,

during transition rate updates, the likelihood of the rates consists only of a product of single-trial

multinomial likelihoods, similar to the probabilities given in equation 2.18, with a term for each

potential switching time. In the case where the rates do not depend on location (or anything

else), each potential switching time has an identical likelihood. Therefore, we can use a conjugate

Dirichlet prior to obtain the full conditional distribution of the rates and resample them using

Gibbs sampling (Blackwell et al., 2016).



Chapter 3

Modelling Social Interaction

In this chapter, we introduce a continuous-time movement model containing a social framework

that allows us to capture the social drivers of animal movement. We describe the social framework

and assumptions in Section 3.1 before detailing the movement model within which that framework

resides (Section 3.2). The intuition of our approach is presented in Section 3.3. The Markov chain

that facilitates dynamic social behaviours is detailed in Section 3.4, followed by a discussion of

various extensions that can be made to the model in Section 3.5. The inference algorithm with

which we fit the model to data is presented in Section 3.6 before finally doing so to simulated data

(Section 3.7) and zebra tracking data (Section 3.8). We then make some concluding remarks on

this chapter in Section 3.9. The sections that introduce the concept of the model (Sections 3.1, 3.2

and 3.4) and some of Section 3.9 have been presented in Milner et al. (2021).

3.1 Influence Hierarchies

To capture the social drivers of a group’s movement, our assumption is: a period of direct interaction

between two animals can be characterised by the movement of one of those animals being attracted

to the other. This is an assumption shared with other areas of animal movement literature (Long

et al., 2014) and one that considers there to be some social ordering in an interaction.

For ease of reference, we will refer to the roles in this dyadic relationship as ‘dominant’ and ‘sub-

ordinate’ (see the Social Definitions box on page 31) but, as with all behaviour modelling, we need

to be careful not to over-interpret the behaviour labelling. That is, ‘subordinate’ or ‘attracted to’

have certain connotations but the movement behaviour just broadly translates to the movement

of an animal being influenced by the other in some sense. Similar considerations also need to be

made for our subgroup-level labels of ‘leader’ and ‘follower’.

This dyadic concept can be naturally extended for larger social groups to give rise to social hier-

archies (see Figure 3.1a). In order to keep this framework tractable and easy to interpret, we are

29
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A

B

C

(a)

A

B C

=

A

B C

or

A

B C

(b)

Figure 3.1: In (a), whilst C is subordinate to B, we see B is in turn subordinate to A which
enables us to learn how the influence in movement is cascaded through the group. In (b), we have
a transitive triad where A dominates B, B dominates C and A dominates C. We only capture the
influence that best describes C’s movement and consequently the structure we estimate will either
be A dominates B, B dominates C or A dominates B, A dominates C. In all of the above hierarchies,
A is the leader whilst B and C are followers.

restricting these hierarchies to essentially a thinned network that contains the edges representing

the most causal interaction. That is, an animal can have at most one dominant but it can have

multiple subordinates. This is as opposed to a tournament-style network where there is some de-

gree of relationship between every pair of nodes, which is a rare occurrence in nature (McDonald

& Shizuka, 2013). Thus, our resulting social structure will represent the most causal influence

to explain a group’s movement — hence ‘influence hierarchies’ (see Figure 3.1b). We restrict the

possible hierarchies to avoid any cycles, to ensure that the pattern of relationships is meaningful

and that the movement models will be well-defined. The hierarchical structure is therefore what is

often known in statistical contexts as a directed acyclic graph (DAG).
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Social Definitions

Dominant: with respect to an edge in the hierarchy between animals i and j where j is

attracted to i, i is dominant towards j.

Follower: an animal in a subgroup that is not the leader.

Group: all animals in the data set.

Independent: an animal is independent if it is neither a dominant or a subordinate.

Leader: the focal point of a subgroup. That is, this animal is a dominant to at least one

animal, but a subordinate to none. Animal i’s leader is the leading animal of the subgroup

i is in.

Subgroup: all animals in a single hierarchy structure, i.e. a component of the graph formed

as in Figure 3.1. Independent animals are their own subgroup.

Subordinate: with respect to an edge in the hierarchy between animals i and j where j is

attracted to i, j is subordinate to i.

3.2 Movement Process

To model the movement of the animals, we use a diffusion process including a linear attraction

term to represent the attraction-based interaction we have assumed. Then the movement of an

individual animal i that is attracted to animal j can be described by the following stochastic

differential equation (SDE):

dAyit = −α(Ayit −A
y
jt

)dt+ σdW y
it

(3.1)

where Ayit is the location of animal i at time t in the y coordinate; α is the rate of attraction

towards Ayjt where i 6= j; σ is the coefficient of ‘noise’, the component of movement modelled

not in terms of social interaction but as Brownian motion (BM, with W y
it

representing the Wiener

process). Equation 3.1 has two components: the noise term, which is a continuous-time analogue of

a random walk, and the attraction term, which captures any persistence in the movement towards

another animal. For leading and independent (that is, non-subordinate) animals, this reduces to

BM as they have no attraction term:

dAyjt = ρdW y
jt

(3.2)

where ρ is a distinct noise parameter. The movement of non-subordinate animals is therefore

non-stationary. This approach is similar to that of Niu et al. (2020), and covers the cases when

self-driven animals either have no attraction to some particular point/area or the attraction is not

relevant to the time scale of the data. Note, though, compared to Niu et al. (2020) (and Niu

et al. (2016)), our definition of a ‘follower’ is more relaxed. We do not restrict followers to only be

attracted to a leading animal, they can be attracted to any animal. As such, we can capture social
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structures other than ‘star’ shaped networks.

The x and y coordinates are treated as independent (see Blackwell (1997) and Chapter 2 for

justification) and so there are corresponding equations for the x axis with common parameters

α, σ and ρ but with independent Wiener processes. That is, W y
it

is independent of W x
it

and W y
jt

is

independent of W x
jt

.

Because of their linearity, these univariate SDEs can be combined into a multivariate Ornstein-

Uhlenbeck process to model the group’s movement jointly as detailed by Niu et al. (2016). For n

animals, say, in the y axis:

dGt = Ft(Gt −Θt)dt+ ΣdBt (3.3)

where

Gt =


Ay1t

...

Aynt

 ,Θt =


Ly1t

...

Lynt

 ,Bt =


W y

1t
...

W y
nt


and Lyit is the location of animal i’s leader at time t. Ft and Σ are (n× n)−matrices where

Fti,j =


−α, i = j and i is a subordinate

α, i 6= j and i is subordinate to j

0, otherwise,

and

Σi,j =


σ, i = j and i is a subordinate

ρ, i = j and i is a leader or independent

0, otherwise.

Gt is a vector of locations for all animals at time t and matrix Ft is the attraction matrix for the

group which details the interactions within the hierarchy at time t, that is, who is subordinate to

whom. All of the social structures possible in Section 3.1 are able to be represented in Ft. Θt is

a vector which contains the location of each animal’s leader at time t and the diagonal matrix Σ

contains the coefficient of noise for each animal.

The solution to the multivariate SDE is given by

Gt = eF0t(G0 −Θ0) + Θ0 +

∫ t

0
ΣeF0(t−s)dBs (3.4)

with the following closed form solution — a multivariate normal distribution (Niu et al., 2016):

Gt|G0 ∼ MVN(µ(G0,F0, t),Ξ(F0, t)) (3.5)
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where G0, F0 and Θ0 correspond to the animals’ locations, the attraction matrix and the leaders’

locations at time 0 respectively. The OU process is Markovian with the animals’ locations at time

t conditional on their previous locations at time 0.

The expected value of this distribution is given by:

E[Gt|G0] = µ(G0,F0, t) = eF0t(G0 −Θ0) + Θ0 (3.6)

and Var[Gt|G0] is given by Ξ(F0, t) which consists of the following five expressions (to ease notation,

we simplify Ξ(F0, t) to Ξ and F0 to F ):

Ξi,j =



ρ2t, (a)

Ξdom(i),j −
ρ2eF ti,j
α , (b)

Ξdom(i),j+Ξi,dom(j)

2 − ρ2eF ti,l e
F t
j,l

2α − σ2(eF ti,−l·e
F t
j,−l)

2α , (c)

Ξi,dom(i) −
ρ2eF ti,l e

F t
i,l

2α +
σ2(1−eF ti,−l·e

F t
i,−l)

2α , (d)

0, (e)

(3.7)

where dom(i) is the dominant of animal i; l is the leader of the subgroup both i and j are in; −l
indicates all animals except l. The scenarios of (a) to (e) are as follows:

(a) i = j and i is a leading or independent animal.

(b) i 6= j and j is the leader of i’s subgroup.

(c) i 6= j, i and j are in the same subgroup and neither are the leader.

(d) i = j and i is a subordinate.

(e) i 6= j and i and j are in different subgroups.

The derivation of these terms is provided in Appendix A. In practice, the terms of Ξ(F0, t) need

to be calculated in a specific order as some expressions rely on other values within Ξ(F0, t). See

Appendix B for the algorithm.

3.3 Model Interpretation

Statistical models can often be abstract and difficult to interpret. Therefore, in this section we will

discuss the intuition and interpretation of the above framework. We will do so in the context of

just two interacting animals: a dominant and its subordinate.

To begin with, we will discuss the restrictions we place on the parameters. Firstly, we restrict α to

be positive as discussed in Chapter 2. Therefore, as t −→∞, the expected value of a subordinate’s
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movement at time t is the location of its dominant at time 0. Both σ and ρ are also positive as

they are coefficients of noise.

To help explain the movement and interaction that this model produces, and the role of each of the

parameters, we simulated the movement of a dominant and its subordinate for 10,000 steps (each

step being a unit of time) and we repeated that simulation for a number of different parameter

values. In order to capture the scenario that interaction may be initiated when the two animals

are some distance apart, we began the simulations with the subordinate 100 units of distance away

from the dominant in both axes.

The dominant only has one associated movement parameter: ρ. Figure 3.2a displays the effect the

value of ρ has on the movement of the dominant. The densities relate to the difference between

its location at time i and at time i − 1 for i = 2, ..., 10000, with a difference of (0, 0) (the centre

of each plot) indicating that it didn’t move. Simply, the greater the value of ρ, the greater the

variability in the movement. Thus, ρ can be thought of as a representation of the speed the animal

is travelling at: larger values of ρ increase the probability of larger movement steps.

A dominant's location relative
to its previous location

y 
co

or
di

na
te

ρ = 30 Density

1.8e−04
1.4e−04
1.1e−04
7.0e−05
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0.0e+00
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(a) The effect of ρ

A subordinate's location relative
to its previous location

x coordinate

A subordinate's location relative
to its dominant's previous location

α = 0.2
σ = 30
ρ = 50

α = 2
σ = 30
ρ = 50

α = 20
σ = 30
ρ = 50

x coordinate

(b) The effect of α

A subordinate's location relative
to its previous location

x coordinate

A subordinate's location relative
to its dominant's previous location

α = 2
σ = 30
ρ = 50

α = 2
σ = 50
ρ = 50

α = 2
σ = 70
ρ = 50

x coordinate

(c) The effect of σ

Figure 3.2: (a) displays the effect of different ρ values on the movement step of the dominant
animal relative to its own previous location. (b) displays the effect different α values have on the
movement step of the subordinate relative to its own previous location (left column) and that of its
dominant (right column). Similarly, (c) displays the effect different σ values have on the movement
step of the subordinate relative to its own previous location (left column) and that of its dominant
(right column). Note, the axes are consistent across all plots but the labels are omitted for ease of
presentation and the specific values are not important here.
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Subordinate animals have two associated movement parameters: α and σ. The expected value

of the subordinate’s movement at time t is St = e−αtS0 + (1 − e−αt)D0 where S0 and D0 are

the subordinate’s and dominant’s previous location respectively at time 0. α thus represents the

strength of the influence of its dominant: the greater the value of α, the more the expected value

of the subordinate’s movement weighs towards D0 as opposed to S0. This effect is shown in Figure

3.2b, where the left column displays densities relating to the difference between the subordinate’s

location at time i and at time i − 1, whilst the right column displays densities relating to the

difference between the subordinate’s location at time i and the dominant’s location at time i − 1

for i = 2, ..., 10000. As we can see when α = 0.2, a relatively weak attraction in the context

of a unit time interval, the subordinate’s movement is still heavily concentrated around its own

previous location. Though, it is clearly influenced by the dominant to some degree. When α = 2, the

movement becomes more concentrated towards the dominant’s previous location — the subordinate

is moving with a greater degree of persistence towards it.

However, when α = 20, the densities in both columns look similar. The model loses some in-

terpretability for larger values of α. In fact, as α tends to ∞, the marginal distribution of the

dominant’s and subordinate’s movement converge:

E[Dt|D0, S0] = D0 (3.8)

lim
α→∞

E[St|D0, S0] = lim
α→∞

e−αt(S0 −D0) +D0 −→ D0 (3.9)

Var[Dt|D0, S0] = ρ2t (3.10)

lim
α→∞

Cov[St, Dt|D0, S0] = lim
α→∞

ρ2t− ρ2(1− e−αt)
α

−→ ρ2t (3.11)

lim
α→∞

Var[St|D0, S0] = lim
α→∞

ρ2t− ρ2(1− e−αt)
α

− ρ2(1− e−αt)2

2α
+
σ2(1− e−2αt)

2α

−→ ρ2t (3.12)

where equation 3.11 is term (b) from equation 3.7. In this context of a subgroup of two animals,

eF ti,j = 1 − e−αt when i is the subordinate and j is the dominant and Ξdom(i),j = Ξj, j = ρ2t.

Equation 3.12 is term (d) from equation 3.7 where Ξi,dom(i) = Ξi,j = Cov(St, Dt|D0, S0) and

eF ti,−l = eF ti,i = e−αt. The derivations of the eF t terms can be found in Appendix A. In this scenario,

whilst the subordinate and dominant may be some distance apart at time 0, their movement

processes are identical, meaning the densities of the subordinate’s location relative to its own and

its dominant’s previous location will be one and the same. Similarly, the densities of the dominant’s

location relative to its own and its subordinate’s previous location will be one and the same. This

scenario may occur when the resolution of the data is too coarse to be able to capture enough

information about this interaction and, as such, we cannot ascertain the ordering. It may also

occur when the interaction doesn’t have an ordering at all. This co-movement is a scenario which

our modelling framework is not able to represent correctly. A final possibility is that the animals

are not interacting — they are simply moving in a similar pattern due to some other factor such



CHAPTER 3. MODELLING SOCIAL INTERACTION 36

as an environmental cue.

The effect of σ on a subordinate’s movement is merely similar to ρ’s effect on the dominant’s —

increasing the variance. The strength of the interaction is unaltered. α and σ both contribute to

the speed of the subordinate and so, if σ = ρ, the subordinate can be thought of as travelling at a

greater speed than the dominant, a feature which we discuss later in Section 3.5.

3.4 Behavioural States

The movement model we have described so far relies on some knowledge of which animal is subor-

dinate to which and when. However, we are unlikely to know either of those pieces of information

and so we treat them as unknown. To estimate them, we incorporate behavioural state switching

where the states correspond to the animal’s social behaviour. As we are operating in continuous

time, we do so with a continuous-time Markov chain with a discrete state space.

The state space we want to explore is the space of all possible hierarchies as defined in Section

3.1. Ideally, the transition rates of our Markov chain would correspond to switching between those

hierarchies. However, even for a group as small as four animals there are in excess of 100 of

these structures, meaning that approach is not practical. The resulting transition matrix would be

unwieldy and difficult to define and interpret.

We can, however, explore the same state space by defining our behavioural states to represent each

individual animal’s behaviour, as opposed to the group’s. That is, an individual can be in a state

that corresponds to being attracted to (i.e. subordinate to) a particular animal or be in a Brownian

motion (i.e. leading or independent) state. The following generator matrix is then used from the

point of view of an individual animal:

Λ =

SA1 . . . SAn BM


SA1 λ1,1 . . . . . . λ1,n+1

...
...

. . .
...

SAn
...

. . .
...

BM λn+1,1 . . . . . . λn+1,n+1

(3.13)

where n is the number of animals in the data and state SAi represents being subordinate to animal

i. Here we use the parameterisation of a continuous-time Markov chain in which an animal stays

in state u for a holding time, which is exponentially distributed with rate λu where λu is the rate

of leaving state u (λu =
∑

u6=v λuv). After this holding time, the animal switches to state v with

probability λuv/λu. The diagonal elements of λ are therefore determined by the off-diagonal ones:

λuu = −λu.

There are two types of heterogeneity to consider with this approach. Firstly, heterogeneity between
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animals — where each animal would have their own set of transition rates. Secondly, heterogeneity

within Λ. That is, the transition rates to different subordinate states are distinct. Both heterogene-

ity approaches will provide more granular insights into the animals’ behaviours. However, both will

also increase the complexity of the model. For the analysis in this chapter, we compromise through

defining homogeneity between animals, but heterogeneity within Λ. With homogeneity between

animals, the transition rate λuv is the rate of switching from state u to v averaged over all animals

in the group. With heterogeneity within Λ, the rate of switching to SAi is distinct from the rate of

switching to state SAj (where i 6= j) and thus the rates will be a more accurate representation of

the influence of each animal.

With this approach, in the case of n = 4 as in the above example, the number of transition

parameters is a more manageable 20 as well as being more intuitive than a transition matrix

relating to group-level behaviours.

3.5 Model Formulation

As well as the above considerations for Λ, there are several other variations or extensions that can

be made to the model described thus far to customise it for the analysis at hand. We will discuss

them here.

3.5.1 Simultaneous or Sequential Switching

As we are dealing with multiple animals, the question arises as to how many animals can switch

state at any one time. Should a change in the social behaviour of a group be restricted to the

transition of a single animal, or should multiple animals be able to switch state simultaneously?

It is perhaps more natural to think of a group of animals undergoing a structural transformation

to be switching state sequentially. The transition of an animal may well be the result of the

previous behavioural changes of its peers. However, this approach requires a greater number of

switching times (compared to simultaneous switching to represent equivalent hierarchical changes)

in the behavioural process that we are reconstructing. As such, sequential switching carries a

heavier computational burden. The downside to simultaneous switching is that we may lose some

information as to how a change in structure occurred (e.g. ascertaining which animal initiated the

change in behaviour) — though it can still accommodate sequential switching in principal. The

model which we use in this chapter allows simultaneous switching.

3.5.2 Options for Leading or Independent Movement

The model described so far assumes leading or independent animals are restricted to a single BM

state and movement parameter ρ. To capture richer movement for these animals, various extensions

to the model can be made.

Firstly, additional BM states with distinct noise parameters can be included to represent different
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A
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C

Figure 3.3: Our state estimation of C being subordinate to A implies a direct interaction between
the two. However, we may not have complete data on a social group of animals and we may
be missing links in the hierarchy. For example, B is missing from the data and in reality C is
subordinate to B, who is in turn subordinate to A.

speeds of movement. In the results to be discussed, we use two BM states to loosely embody slow

and fast movement. Secondly, we might assume that the non-stationary case is not sufficient and

that leading or independent animals are themselves attracted to some location, a resource or nesting

site for example. It would then be natural to model the movement of these animals with an OU

process. In this case, the expressions that make up the conditional variance matrix Ξ (equation

3.7) would alter. These can be derived using the same method detailed by Niu et al. (2016), which

we also used to derive equation 3.7 in Appendix A. We would need a more general form of eFt and

∆ than those given in Niu et al. (2016) in order to model the movement of all possible hierarchies

our social assumptions allow in Section 3.1. However, we assumed the movement of leading and

independent animals contained some attraction during the eFt and ∆ sections of our derivation

of equation 3.7. The majority of the work required for this extension therefore already exists in

Appendix A.

Both methods add movement parameter(s) and may add further row(s) and column(s) to the

transition matrix, meaning some consideration is needed as to the costs and benefits of these

extensions.

3.5.3 Direct and Indirect Following

Our definition of the social structure in Section 3.1, and the accompanying behavioural states in

Section 3.4, assume that all the relevant animals have been tagged. Say we infer animal C as being

subordinate to animal A, we are therefore implying a direct link between the two. In reality though,

we may not have complete data on a social group of animals and we may be missing links in the

hierarchy. See Figure 3.3 for an example.

This situation leads to a couple of issues. Firstly, we must be aware that our state labels and

resulting hierarchy do not represent the de-facto social structure as there may be other interacting

animals in the group that we don’t have data on. Secondly, direct and indirect subordination would

no doubt result in different α and σ values. It may therefore be prudent to reformat the state space

to allow for ‘strong’ following (direct subordination) and ‘weak’ following (indirect subordination).
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Our generator matrix would then take the following form:

Λ =

ISA1 DSA1 . . . ISAn DSAn BM



ISA1 λ1,1 . . . . . . . . . . . . λ1,2n+1

DSA1
. . .

...
...

...
. . .

...

ISAn
...

. . .
...

DSAn
...

. . .
...

BM λ2n+1,1 . . . . . . . . . . . . λ2n+1,2n+1

(3.14)

where n is the number of animals, ISAi is indirect subordination to animal i and DSAi is direct

subordination to animal i.

Whilst we haven’t performed a thorough analysis with this extension, our exploratory trials with

simulated data suggest this approach may not provide any more detailed information than the

Markov chain defined in Section 3.4. That is, both the indirect and direct subordination states

often converged to similar behaviours. Furthermore, this extension greatly increases the complexity

of an already complex state space.

An alternative method to gain some flexibility in the strength of an interaction could be through a

statistically-hierarchical α. Aside from the above issue of incomplete data, Wittemyer et al. (2005)

highlight another scenario when this approach might be fruitful as they show that different ‘tiers’

of a social structure of Africa elephants contain different levels of cohesion. For example, when

family-based groups fuse together to form kinship groups, there is a greater level of cohesion within

families than between them.

3.6 Inference

Markov chain Monte Carlo (MCMC) methods are used to infer both the behavioural and movement

parameters. Each iteration of the MCMC algorithm consists of two parts. Firstly, we sample the

behaviours of the animals in continuous time. This is done through simulating state switches

between the observed data points and the acceptance of these behavioural trajectories is evaluated

by a Metropolis-Hastings (MH) ratio. The exact algorithm for this step is detailed in Section

3.6.1. Secondly, the parameters of the Ornstein-Uhlenbeck and Brownian motion processes are

sampled in accordance with the latest behavioural process reconstruction by means of a MH random

walk. Further details of this, including restrictions we place on the parameters, are in Section

3.6.3. Moreover, due to the complexity of the state space we are exploring and the accompanying

computational burden, we explore some preliminary analysis methods in section 3.6.4 with which

we aim to aid this process.
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3.6.1 Behavioural Parameters

To estimate the behavioural parameters, both the states and Λ, we reconstruct the animals’ be-

havioural trajectories between the observed data points. Through this, we treat the behavioural

process in continuous time and account for our uncertainty in what the animal is doing at unob-

served times, which enables us to undertake exact inference in a Bayesian setting. For the analysis

in this chapter, we allow multiple animals to switch state simultaneously at any one time. There-

fore, our method to simulate these trajectories is a straightforward multi-animal extension of the

‘kappa’ method introduced by Blackwell et al. (2016) (and discussed in Chapter 2), where the ob-

served data is augmented with sampled state switching times. Allowing multiple animals to switch

state simultaneously will help keep the size of the augmented data set (and therefore the compu-

tational cost of fitting the model) relatively small compared to sequential switching — see Section

3.5.1. In order to obtain a good acceptance rate for these trajectories, we only simulate over a

small segment of data in each proposal. The model and analysis in this chapter only concerns the

spatially homogeneous case.

Say we are proposing a new behavioural trajectory for the interval [ta, tb] where ta and tb are

observed times. Let τo represent the observed data times for that interval; τs represent the switching

times of the previously accepted trajectory through [ta, tb]; τ = τo ∪ τs so that τ = {τ1 < ... < τp}
where p is the size of τ ; β represent the behavioural states of all animals at times τ where βj is a

vector containing the states of all animals at time τj for j = 1, ..., p.

To propose a new trajectory in this interval, we discard τs, and the associated states in β, and

sample new potential state switching times, τ̂s. The new switching times are produced from a

homogeneous Poisson process over the interval (ta, tb) with rate λmax, where λmax ≥ max(λu) for

all states u. As we have set λmax ≥ max(λu), the expected number of potential switching times

sampled will be greater than the expected number when in the most volatile state. This guarantees

we have enough switching times in order to reconstruct the behavioural process appropriately.

Note, we are using the notation λmax instead of κ and, throughout this thesis, we set λmax as a

fixed value before running any inference algorithm.

Let τ̂ = τo ∪ τ̂s. Having sampled the new potential switching times τ̂s, we now simulate a new

behavioural trajectory (β̂) forwards through τ̂ = {τ̂1 < ... < τ̂p̂} where p̂ is the size of τ̂ . This new

trajectory is initialised with the current estimate of the behavioural states for all animals at time

ta. That is, β̂1 = β1. To simulate the trajectory, we loop through each time in τ̂ , where there are

two scenarios to account for:

• If τ̂j ∈ τo for j = 2, ..., p̂, the behavioural states of all animals at τ̂j are carried forward from

β̂j−1 as observations are not part of the behavioural process.

• If τ̂j ∈ τ̂s for j = 2, ..., p̂ − 1, we sample a state switch for each animal in turn (randomly

ordered). The probability of τ̂j being a switch for animal i is λu/λmax when i is in state u. If
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it is, the new state is v with probability λuv/λu. Otherwise, the state of i at τ̂j remains the

same as it was in β̂j−1.

We initialise β̂1 = β1 in order to keep our new sample consistent with the data before ta. Therefore,

we also require β̂p̂ = βp (except for when τ̂p is the final observation in the data set). If this

condition isn’t met at τ̂p̂, we reject the simulation and return to our previously sampled trajectory.

Furthermore, we also reject a trajectory if at any point a state is sampled which produces a cyclic

hierarchy.

If these conditions are met, we accept or reject the new trajectory proposal with a Metropolis-

Hastings ratio. As the behavioural trajectory is proposed from the model itself, the distribution

of that trajectory cancels out with the proposal distribution and so the MH ratio simplifies to a

ratio of likelihoods of the observed movement through the newly proposed state switches against

our previous reconstruction:

|τo|∏
k=2

f(gτok |gτok−1
, β̂[τok−1

,τok ], τ̂[τok−1
,τok ])

f(gτok |gτok−1
, β[τok−1

,τok ], τ[τok−1
,τok ])

(3.15)

where gτok are the locations of the animals in a particular axis at time τok ; β̂[τok−1
,τok ] are the

newly sampled states throughout the interval [τok−1
, τok ] at times τ̂[τok−1

,τok ]; β[τok−1,τok
]

are the

previous state estimations in the same interval at times τ[τok−1
,τok ]. Blackwell (2003) details how

these movement likelihood terms are calculated and more detail can be found in Appendix C. The

above likelihood terms are also conditional on the movement parameters.

Simulations over longer segments of the data have the potential to provide a more holistic view

of how the animals are behaving. That is, estimate how an animal traverses through behavioural

changes, rather than obtaining a piecemeal view of the transitions through several smaller simu-

lations. However, longer simulations are inherently more likely to deviate away from a reasonable

proposal and fall foul of the above conditions — leading to a poor acceptance rate. Therefore, a

mix of shorter and longer updates will facilitate good mixing of the behaviours.

We use the conjugate Dirichlet prior for the multinomial likelihood of the transition rates to obtain

their full conditional distributions and resample them using Gibbs sampling at each iteration of

the MCMC algorithm.

Individual Animal Updates

The above method of simulating collective trajectories, aside from the states at β̂1, doesn’t use

any information as to what behaviours have previously been deemed acceptable — each simulation

is a completely independent attempt at proposing a likely trajectory. Furthermore, there is no

consideration for the state in which the trajectory must end in. This naivety is compounded when

simulating the trajectories for multiple animals simultaneously and it leads to a low acceptance rate
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— even when only proposing trajectories over very small segments of data. Both the low acceptance

rate and the tunnel vision of short simulations are not conducive to well mixing parameters.

To work around this, the trajectory updates happen in a two-step process. First, the trajectory

of the entire group is reconstructed as detailed above (hereafter referenced as ‘collective updates’).

Secondly, we fine tune those trajectories an individual at a time (‘individual updates’). That is, we

resample the state switches of one animal through the currently accepted switching times whilst

keeping the rest of the trajectory fixed. In effect, the role of the collective updates is to resample

the number of switching points and the corresponding times, whilst the individual updates can

further explore the state space at those times. The acceptance rate of individual updates is much

higher than that of collective ones and the interplay between the two encourages better mixing of

the behavioural states. During this individual update, we relax the initialisation of β̂1 = β1 when

this concerns the first observation in the data set and we sample the initial state uniformly.

Note, we don’t propose a collective trajectory and then immediately fine tune it. Collective and

individual updates are carried out separately and for each one (both collective and individual) we

begin by randomly (uniformly) sampling the segment of data that will be updated.

3.6.2 Partial Observations

Partial observations, where we only have data on some of the animals we are tracking, are a

potential obstacle when analysing data from multiple animals: tracking equipment may not be fully

synchronised or a GPS tag may not have been able to transmit some data for example. However, the

above movement process and simulation algorithm are naturally adaptable to take into account the

uncertainty of any missing or asynchronous data using standard results for conditional multivariate

normal distributions. During a trajectory proposal, say τ̂j ∈ τo is partially observed. Using slightly

simplified notation, the distribution of the movement at τ̂j is:(
Pτ̂j
Mτ̂j

)
|

(
Pτ̂j−1

Mτ̂j−1

)
∼ MVN(

(
µP

µM

)
,

(
ΞPP ΞPM

ΞMP ΞMM

)
) (3.16)

where Pτ̂j and Mτ̂j are the locations of the observed and unobserved animals respectively at time

τ̂j ; µP and µM are the expected values of the locations of the observed and unobserved animals

respectively. ΞPP represents the covariance between the observed animals and similarly for the

other Ξ terms. In this context of partial observations, ‘unobserved’ animals are animals which are

tracked and we would normally expect to have data on, not animals which are not being tracked

at all. The likelihood of the observed data is calculated from:

Pτ̂j ∼ MVN(µP ,ΞPP ) (3.17)
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and the locations for the unobserved animals are sampled from the following conditional distribu-

tion:

Mτ̂j |Pτ̂j = p ∼ MVN(µM + ΞMPΞ−1
PP (p− µP ),ΞMM −ΞMPΞ−1

PPΞPM ) (3.18)

The sampled locations are then taken as fixed for calculating the likelihood of the movement to the

next observation. This method is only applicable for observations in the interior of τo in order to

be consistent with the data outside of τo.

3.6.3 Movement Parameters

Treating the current behavioural process reconstruction as fixed, we update the parameters of all

Ornstein-Uhlenbeck and Brownian motion processes simultaneously through a Metropolis-Hastings

random walk. We use independent, normally-distributed proposals for each movement parameter.

Whilst we place certain bounds on the range of each one, the prior distribution within those bounds

is flat, with samples outside of that range automatically rejected. As such, the Metropolis-Hastings

ratio (for appropriate values) is again reduced to equation 3.15. In general, all parameters must be

greater than 0 and we have added the restriction that σ ≤ ρ, the justification being that an animal

influenced by another should have less variability in their movement than an animal following a BM

process. In the case of building multiple BM states into the model, this restriction is loosened to σ ≤
ρmax where ρmax = max(ρ1, ..., ρm) for m BM states. This case also brings potential complications

to the state labelling and so, in order to keep consistency, we define ρ1 < ... < ρm.

3.6.4 Preliminary Pairwise Analysis

The state space of our model is large and complex, and it may take a substantial amount of time

to fully explore it. However, aside from the case when all animals reside in a single subgroup, each

animal will not exert some influence (directly or indirectly) on all of the others all of the time.

If we knew which animals did not interact with each other and when, we could limit the area of

the state space we need to explore and therefore mitigate some of the computational cost of our

complex state space. This may be achievable by running a preliminary pairwise analysis and then

feeding those results into a group-level analysis in order to guide it. This concept of building up

the group-level social structure from dyadic analysis is found in other areas of social behaviour

research such as social network analysis (SNA) (Hobson et al., 2013).

One approach to this is to fit our model to each pair of animals in the data set, the result of

which will establish which animals exert some influence on which others and when. As there are

only three ways to arrange two animals in a hierarchy, it is a simpler and faster model to fit than

when considering all animals in the data. Though the resulting computational effort is by no means

trivial, this approach lends itself well to parallel computing as each pairwise analysis is independent

of the others — although there may be some difficulty in finding tuning parameter values so that
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each run mixes well. This method would also provide us with a reasonable initial value for both

the behavioural and movement parameters, potentially reducing the burn-in period required of the

group-level inference.

Dyadic metrics (Long et al., 2014; Joo et al., 2018) offer another route for this preliminary step, one

that is likely to be substantially faster than the pairwise fitting of our model. Some consideration

will be needed to determine which metric is suitable for the particular analysis at hand, and

potentially some combination of metrics might provide a more comprehensive view of interactive

behaviour. In addition, some metrics contain user-inputted parameters and some aren’t well suited

to capturing the dynamics of interaction.

There are a number of other routes we could take to undertake this preliminary step. However,

all of the methods with which we can constrain the social space pose the risk of constraining it

too much and prohibiting the exploration of the state space in the group-level analysis. In theory,

fitting the same model in the preliminary analysis and the group-level analysis is the least likely

to produce conflicting outputs as the modelling framework is common to both steps. Thus, in this

chapter, I will only discuss and experiment with fitting our model to each pair of animals during a

preliminary analysis.

There are multiple approaches one could take to then use this pairwise step in the group-level

inference. The method we have used in our analyses is to add extra conditions into the trajectory

updates when sampling new state switches. That is, when sampling a state switch, we can con-

dition on whether or not our newly sampled state is a behaviour we have ‘seen’ in the pairwise

analyses. If not, we automatically reject the switch and trajectory proposal. For example, during

a trajectory proposal in the group-level inference at time t, we sample animal 4 to switch to state

SA1 (subordinate to animal 1). This switch is deemed acceptable if during the preliminary analysis

between animals 1 and 4 (which I will denote as pair {1, 4}) the posterior probability of animal 4

being subordinate to animal 1 at time t is high enough. If so, the rest of the proposal is contin-

ued. Otherwise, the state switch (and subsequently the whole trajectory proposal) is rejected. Of

course, there is some ambiguity as to what ‘high enough’ constitutes. In our analysis below, we

will examine different boundaries for this.

Furthermore, we only condition on the sampled times that contain an actual state switch. That is,

if a sampled time during an update, say t, doesn’t result in a state switch, the animal remains in

the state it is currently in. We don’t condition on whether or not this continued state was ‘seen’ at

time t for this animal during the pairwise analyses. The pairwise analysis is only intended to act

as a guide and adding in those further conditions may restrict the exploration of the state space to

too greater an extent.

An alternative approach would be to sample state switches in the group-level inference from a

proposal distribution that is derived from the pairwise analysis. For instance, say at time t in the

pair {1, 4} analysis, the posterior probability of animal 4 being in state SA1 is 0.3. If t is a potential
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switching time during the group-level analysis, animal 4 will be proposed to switch to state SA1

with a probability of 0.3 (though, this would need scaling so that all probabilities summed to 1).

As our state switches would not be sampled from Λ, we would not be able to cancel the likelihood

of switches with the proposal terms in the MH ratio as in Section 3.6.1. This guided proposal

distribution approach would potentially be more efficient in proposing acceptable trajectories than

the conditioning method. However, there is likely to be little difference between the methods as

the wasted computational effort from rejecting updates in the conditioning approach is small and

will be somewhat cancelled out by the added complexity of the MH ratio in the guided proposal

method.

The approach of deriving the proposal distributions of the state switches from the pairwise analysis

could also be applied, in theory, to the locations of the animals when modelling in a spatially

heterogeneous setting.

3.7 Simulated Data Analysis

We assessed our influence hierarchy model and inference algorithm as described above through

fitting the model to simulated data. This data consists of five dynamically interacting ‘animals’

over 100 observations, with two units of time between each one. We randomly deleted 10% of the

data (uniformly across all data) to provide us with the setting of having partial observations. The

‘observed’ times were augmented with switching times with a Poisson process as detailed in section

3.6.1; the movement of the group was simulated forwards through the augmented data set using

a multivariate OU process as in section 3.2; and state switches were sampled using a continuous-

time Markov chain as in section 3.4. With regards to the model formulation, we included two BM

states for leading or independent animals to capture ‘slow’ and ‘fast’ movement and, as previously

discussed, we are allowing multiple animals to switch state at any switching time. Whilst we

simulated the movement and behaviours of the animals in continuous time, the model is only fitted

to the discrete-time ‘observed’ data in order to mirror typical real data. The parameters used to

simulate this data set are provided in Table 3.1.

Parameter Value

α 0.5
σ 0.7

ρslow 0.4
ρfast 1.8

Parameter Value

λOU−OU 0.00 - 0.04
λOU−BM 0.00 - 0.01
λBM−OU 0.00 - 0.01
λBM−BM 0.00 - 0.12

Table 3.1: Parameter values used to simulate data. The table on the left details the movement
parameters whilst the table on the right details the transition rates. λOU−OU represents switching
between Ornstein-Uhlenbeck (that is, subordinate) states, λOU−BM represents switching from a
subordinate state to a Brownian motion state (that is, leading or independent) and similarly for
λBM−OU and λBM−BM . The values of the transition rates indicate the range that the rates in each
of those categories were uniformly sampled from.
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We will also examine the practicality of the preliminary pairwise analysis. That is, does including

this step improve the speed at which we can generate the posterior distributions for the model

parameters? Or perhaps, will the inclusion of the extra conditions hamper the mixing of the

MCMC process? We will compare model fittings on the same data set; one which utilises the

pairwise step (‘informed’) and one which foregoes it (‘uninformed’). Furthermore, the level of

conditioning we introduce with the pairwise analysis will be investigated.

Both the simulation and inference methods (in this and subsequent chapters) were fully imple-

mented in R (R Core Team, 2017). Aside from the MCMCpack package (Martin et al., 2011),

which is used for the Dirichlet distribution, and making some use of some of the ideas in the code

published alongside Blackwell et al. (2016) and Niu et al. (2016), the code we have developed is

original. For reference, when running times are discussed, all inference runs (in this and subsequent

chapters) were performed on the University of Sheffield’s HPC ‘ShARC’ where each core runs at

2.4GHz with 4.0GB of RAM (a single core being used for each run).

3.7.1 Inference vs Simulation Model

As described above, the inference algorithm can propose that an animal, say i at time t, switches to

a state, say v, that results in a cyclic hierarchy (including subordination to itself). If that occurs,

the whole trajectory is rejected (‘method 1’). In effect, the rate of switching to these cycle-inducing

states is set to 0 after establishing i will switch state and so the rates of switching to other states

are inflated. That is, we still expect t to be a switching time for animal i with probability λu/λmax

when i is in state u, but it cannot switch to v or other cycle-inducing states.

An alternative approach (‘method 2’) would be to set the transition rates from u to cycle-inducing

states to be 0 before sampling whether or not t is a switching time for i. Thus, i will simply have an

increased probability of remaining in state u. Either approach is valid, but they each have different

pros and cons.

With method 1, in a spatially homogeneous setting (which we are currently working in), each state

switch is sampled independently from the exact same single-trial multinomial distribution. The

likelihood of the transition rates is therefore an s-trial multinomial, where s is the total number of

potential switching times, concerning the number of successful switches to each state. As mentioned

above and in Chapter 2, we can then use the conjugate Dirichlet prior to obtain the full conditional

distribution of the rates and resample them using Gibbs sampling. This offers some efficiency

both from a computational (sampling from the full conditional distribution vs calculating all of the

separate likelihood terms) and proposing reasonable rate samples (sampling from the full conditional

distribution vs random-walk proposals for example) point of view. This efficiency opportunity isn’t

afforded to method 2 as each state switch is sampled from a single-trial multinomial distribution

that depends on the social context at the time. However, method 2 is perhaps more biologically

sound — that is, we aren’t encouraging an animal to switch state until an acceptable state is
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found.

In this chapter (and in Chapter 4), as we are working in the spatially homogeneous case, we

developed the inference algorithm using method 1 in order gain the aforementioned efficiencies.

Furthermore, we are using a heterogeneous transition matrix in these chapters and so the benefit of

being able to sample the rates from their full conditional distribution, as opposed to a random-walk

MH approach, is substantial. Furthermore, the cost of rejecting trajectories with cyclic hierarchies

is small as trajectory proposals only consist of computationally-simple state switches. However,

method 1 is not easily translatable to simulated data. Simulating the state switches of five (or indeed

more) interacting animals over a decent length of time without sampling any cyclic hierarchy is not

likely. Therefore, the simulated data in this and all subsequent chapters was derived using method

2. This discrepancy is obviously not ideal (for example, analysis of how well the transition rate

posteriors compare to the true values is not straightforward) but the simulation analysis in Chapters

3 and 4 will still serve as a useful sensor check as to whether the model ‘works’ or not.

In Chapter 5, as we move into a spatially heterogeneous context, we lose the ability to calculate

the full conditional distributions of the transition rates (as the rates depend on the locations of the

animals) and we move to a homogeneous transition matrix. The efficiencies of method 1 are now

negated and therefore the inference model in Chapter 5 is the same as the one that the simulated

data is derived from — the more biologically sound method 2.

3.7.2 Uninformed Analysis

To initialise the MCMC process, we randomised the behavioural parameters and started with over-

dispersed movement parameter values. We set λmax as 0.4 as that was sufficiently high for the

transition rates used for the simulation and we updated segments of the behavioural trajectories

ranging from 2 to 3 observations long for collective updates and 3 to 15 observations for individ-

ual updates. We simulated 50 new collective trajectories and 60 new individual trajectories per

iteration. We ran the inference algorithm for 1 million iterations, of which 30k was burn-in, and

we recorded every second output for the movement parameters and transition rates and every 20th

output for the trajectories for file size practicality — an approach we take for the remainder of this

chapter. An uninformed Dirichlet prior was used for the transition rates.

Figure 3.4 displays the movement parameter posteriors against the true values used to derive the

simulation. All are consistent with the true value and all looked to converge quickly (Figure 3.5).

To check convergence, the Gelman-Rubin diagnostic is used to assess the potential improvement

from running more or longer chains. The multivariate potential scale reduction factor (MPSRF)

is 1, calculated from two separate MCMC runs using coda (Plummer et al., 2006); this indicates

that each chain is exploring the same posterior distribution, after burn-in. Further results of the

Gelman-Rubin diagnostic are in Table 3.2. Due to the reasons discussed in Section 3.7.1 and

the large number of transition rates (42 in a heterogeneous transition matrix regarding 7 states)



CHAPTER 3. MODELLING SOCIAL INTERACTION 48

0.40 0.45 0.50 0.55

0
5

10
15

20
25

α posterior distribution

D
en

si
ty

0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

σ, ρslow and ρfast posterior distributions

σ
ρslow
ρfast

Parameter True Value Point Estimate Standard Deviation Effective Sample Size

α 0.5 0.487 0.0198 4645
σ 0.7 0.688 0.0233 22405

ρslow 0.4 0.373 0.0185 22187
ρfast 1.8 1.830 0.1680 6841

Figure 3.4: Top: posterior distributions for the four movement parameters from the uninformed
simulation analysis. The blue vertical line indicates the true value used. Bottom: a summary of
the movement parameter results. The effective sample size is calculated using using coda (Plummer
et al., 2006).

Movement Parameters Min 1st Quartile Median Mean 3rd Quartile Max

Uninformed — Point Est. 1.000 1.000 1.000 1.001 1.001 1.002
Uninformed — Upper C.I. 1.000 1.000 1.000 1.002 1.003 1.009

Transition Rates Min 1st Quartile Median Mean 3rd Quartile Max

Uninformed — Point Est. 1.000 1.000 1.001 1.003 1.003 1.030
Uninformed — Upper C.I. 1.000 1.000 1.002 1.006 1.006 1.061

Table 3.2: Summaries of the point estimates and upper confidence limits of the univariate potential
scale reduction factors for the uninformed simulation analyses. The limits correspond to a coverage
of 95%.

compared to the number of data, it is not straight forward or even meaningful to compare the

inferred rates with the true values used in the simulation. For instance, it is unlikely all transitions

set with a rate greater than 0 will be properly represented in a single simulation. However, from

Table 3.2, we are able to at least see that the rates are estimated consistently across different runs.

The multivariate PSRF for the rates is 1.02.

Figure 3.6 displays the behavioural state posteriors for animal 2, along with the true states from

the simulation. We have presented the state posteriors at the discrete times of the observations.

This is purely for simplicity of presentation and discussion — the posteriors can be calculated in

continuous time for further analysis. Note that since this output refers to animal 2, the probability

of it being in state SA2 (which would represent ‘following itself’) is necessarily zero. The posterior
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Figure 3.5: Trace plots for the four movement parameters from one of the uninformed simulation
analyses. The chains have been thinned by a factor of 50.

estimates are broadly correct and confident. However, when the animals are in a close-knit group,

there can be uncertainty as to the exact interaction. For example, around observations 36 to 41 in

the simulation, animal 2 is subordinate to animal 5, who is in turn subordinate to animal 3. In this

segment of data, the states SA3 and SA5 represent relatively similar behaviours from the perspective

of animal 2 and thus we are uncertain as to which animal it is truly subordinate to.

Using Figure 3.6 alone, we cannot fully see in what capacity the animal interacts with its peers.

In particular, whether it is a leading animal or not when it is in a BM state. We can reconfigure

the state estimations for the whole group to estimate an animal’s role as seen in Figure 3.7. An

animal in a BM state is leading if they have a subordinate or independent if not. All animals in a

subordinate state are following. In this instance, animal 2 largely interacts as a subordinate aside

from the first 10 or so observations when it is leading others. We can now see that most of the

time it is in a BM state, it is simply independent.

Thus, our model and inference approach can provide rich insight into the dynamics of the social

behaviours that drive collective movement when our social assumptions (Section 3.1) are fair.

3.7.3 Informed Analysis

Preliminary Pairwise Analysis

In order to ascertain whether some preliminary pairwise analysis can aid the larger group-level

analysis, we fit our model to each pair of animals in turn. As with the uninformed group analysis,
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Figure 3.6: The state posterior distribution for animal 2 in the uninformed simulation analysis.
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Figure 3.7: The role posterior distribution for animal 2 in the uninformed simulation analysis. The
area of each box represents the posterior probability of being in that role at that observation, from
0 to 1. The black line is true role in the simulated data.
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we initialise each of our pair analyses with a randomised behavioural process and over-dispersed

movement parameter values. Due to the simpler setting of analysing just two animals, we can

sample longer behavioural trajectories whilst still obtaining good acceptance rates. In this instance,

collective (that is, pair) trajectories are updated over 2 to 7 observations whilst the individual

updates are now carried out over 3 to 15 observations. During each iteration of the MCMC

process, we undertake 17 collective and 24 individual updates. Again, the algorithm ran for 1

million iterations. We have chosen to use the longest burn-in period as a blanket rule for all 10

pairs, which was approximately 50k iterations.

Figure 3.8 displays the movement parameter posteriors for each of the pairwise analyses. Whilst

the posterior distributions broadly align with the true values and are consistent with each other,

there are some discrepancies. Largely, this will be caused by the missing information resulting from

analysing just two animals out of a larger interactive group. That is, say the full data contains the

social structure as shown in Figure 3.1a. Any interaction inferred in the pair {A, C} will (at best)

relate to interaction that is indirect in the data. The estimations of α and σ will therefore not align

with the true values as those parameters relate to direct interaction.

As mentioned earlier, we will use this pairwise analysis to add extra conditions whilst proposing

new trajectories during the group-level analysis. That condition is: when sampling a state switch

(in the group-level analysis) at time t, the new state must have a posterior probability of at least

x in at least one of the pairwise analyses concerning that animal at time t. For example, say at

time t in the group-level analysis we propose animal 2 to switch to state SA5 and we have set our

acceptance boundary at 0.10. In the pair {2, 5} analysis, we require the posterior probability of

state SA5 for animal 2 to be at least 0.10 at time t. If that’s not the case, the state switch (and

trajectory proposal) are rejected. Figure 3.9 showcases this example for all t in the data set.

The scale of the acceptance boundary is arbitrary. Though, we can see from Figure 3.10a that

almost, if not, all of the true states will still be deemed acceptable if the boundary is drawn at 0.20

or less. Beyond 0.20 we would begin to classify too many true states as unacceptable. Furthermore,

the main potential benefit of this conditioning is that the state space that requires exploring in

the group-level analysis will be reduced. We can see from Figure 3.10b that the majority of this

reduction occurs with boundaries up to 0.20. That is, during the pairwise analysis, almost 80%

of the states that would estimate a false direct subordination have a posterior probability of less

than 0.20 and they will be ignored during the group-level inference with an acceptance boundary of

0.20. The proportion of states we can ignore only increases slightly beyond 0.20. Therefore, there

is little to be gained from the boundary being set beyond 0.20. We will trial boundaries of 0.01,

0.05, 0.10 and 0.20 to ascertain where a good compromise may be drawn.

The collating of the pairwise states took approximately 60 minutes for each animal — but this

again lends itself well to parallelisation. The pairwise output was further thinned by a factor of 50

(so thinned by 1000 overall) to enable this step to be done in a semi-reasonable time frame.
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Figure 3.8: Posterior distributions of the four movement parameters for each of the pairwise analyses
of the simulated data. The blue vertical lines indicates the true values used.
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Figure 3.9: The posterior probability of state SA5 for animal 2 during the pair {2, 5} analysis. The
colour indicates when SA5 is deemed an acceptable state switch for animal 2 during the group-level
analysis when the acceptance boundary is drawn at 0.10.
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Figure 3.10: CDFs of the direct-subordination posteriors (that is, the posterior probability that
animal i is directly subordinate to animal j) from the preliminary pairwise analyses of the simulated
data. (a) concerns the direct-subordination posteriors at times of true direct subordination of
animal i to j in the simulation. (b) concerns the direct-subordination posteriors at all other times.
The CDFs encompass all pairwise analyses and both subordination orderings.

Group-Level Analysis

We can use the pairwise analysis output to initialise the behavioural parameters of the group-level

analysis, in particular, the initial state estimation at each observation. We could have estimated the

behaviours in continuous time, along with the required switching times, however, the estimation

of the behaviours at the discrete-time observations (along with some rudimentary switching times

where required) should suffice as a good starting point. Whilst various methods could be utilised

to do this, the method we have used seems simple and intuitive. That is, for each animal i at each

observation j, we look at the posterior distribution of the behavioural states in each pairwise analysis

involving that animal and simply select the most likely state (provided the resulting structure is

not cyclic). However, as an animal can be in the BM states in each pairwise analysis, whereas it

can only be in each subordinate state in a single analysis, the BM states can be over-represented.

To workaround this, we treat the combined BM posterior probability from each pairwise run as

independent and multiply them together to calculate the probability of animal i being in a BM

state at observation j. The subordinate posteriors are then weighted so that all state probabilities

sum to one. Figure 3.11 details an example.

The pairwise analysis also offers the opportunity to initialise the movement parameters. Figure 3.12

displays the movement parameter output (beyond burn-in) from all of the the pairwise analyses

aggregated. To initialise α, the value of the largest peak was taken whilst σ, ρslow and ρfast are

straightforward (although ρslow was heavily smoothed). Using these informed starting values for

the movement parameters and behavioural states, the burn-in period was reduced to 10k iterations
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{1, 2} {2, 3} {2, 4} {2, 5}

SA1 SA2 SA3 SA4 SA5 BM

{1, 2} 0.76 0.00 0.00 0.00 0.00 0.24
{2, 3} 0.00 0.00 0.10 0.00 0.00 0.90
{2, 4} 0.00 0.00 0.00 0.22 0.00 0.78
{2, 5} 0.00 0.00 0.00 0.00 0.06 0.94

Overall 0.56 0.00 0.07 0.16 0.04 0.16

Figure 3.11: The bar chart and table show the posterior distributions of the behavioural states
for animal 2 at observation 83 in all the relevant pairwise analyses. The Overall row in the table
contains the weighted probabilities, which are used to initialise the group-level inference. If BM is
the modal behaviour, the BM state with the greatest posterior is selected.

(from 30k in the uninformed analysis). Aside from the starting values and extra trajectory proposal

conditions, the MCMC algorithm was set up exactly the same as in the uninformed analysis. This

includes the tuning parameter values, which were also kept consistent between all informed analyses

(that is, for all acceptance boundary runs).

Tables 3.3, 3.4 and 3.5 detail the performance of each of the boundaries we have trialled. In Table

3.3, a simple proxy for how restrictive these boundaries are is found in the State Space row. To

obtain these percentages, we looked at each observation for each animal to see what proportion

of states met that particular boundary condition. The True States row indicates if the boundary

rejected any states that we know to be true from the simulated data, with 100% indicating that all

true states are still accepted in the group-level analysis. The 0.01 boundary manages to halve the

state space whilst still allowing all true states. The 0.05 and 0.10 boundaries further reduce the

state space whilst only rejecting one true state between all of the animals. That rejected state was

a state visit that only persisted through a single observation and one that also wasn’t picked up in

the uninformed analysis. The acceptance boundary of 0.20 appears to be a too demanding line to

draw. More true states are being discounted whilst only making marginal gains in the amount it

reduces the state space.

Whilst the uninformed run converges to the same movement posteriors as all of the informed runs
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Figure 3.12: The densities of the movement parameters after the output for all 10 pairwise analyses
was aggregated. The blue vertical lines indicates the values we used as the starting point for the
informed group-level analysis.

Boundary
Uniformed 0.01 0.05 0.10 0.20

Group-Level Burn-In 30k 10k 10k 10k 10k
State Space (%) 100 49.6 42.2 38.8 36.0
True States (%) 100 100 99.8 99.8 99.2

Pairwise Time (HH:MM) 00:00 12:20 12:20 12:20 12:20
Group Time (HH:MM) 26:18 25:55 26:23 22:46 25:32
Total Time (HH:MM) 26:18 39:15 39:43 36:06 38:52

Median Movement ESS 14515 14594 16912 17174 18010
Median Rate ESS 4861 4397 5278 7053 7143

Median Movement ESS/hr 551 371 425 475 463
Median Rate ESS/hr 184 112 132 195 183

Table 3.3: The State Space percentage row indicates how much of the state space can still to be
explored in the group-level analysis for each of the acceptance boundaries examined as well as the
uninformed case. The True States row indicates the percentage of true states that are deemed
acceptable by each of the boundaries. The Pairwise Time is the runtime of the analysis of one
pair as this step is easily parallelisable. The Group Time is the runtime of the group-level analysis
whilst the Total Time is the above two rows added together (along with the time it took to collate
the pairwise analysis — 60 minutes). The bottom four rows summarise the effective sample sizes
(ESS) of the movement parameters and transition rates and the rate at which they were created.

Boundary
Movement Parameters Uninformed 0.01 0.05 0.10 0.20

Boundary

Uninformed 1.00 1.01 1.01 1.02 1.03
0.01 - - 1.02 1.01 1.03
0.05 - - - 1.01 1.02
0.10 - - - - 1.01
0.20 - - - - -

Table 3.4: The Gelman-Rubin diagnostic (multivariate PSRF) of the movement parameters for
each combination of the uninformed and informed simulation analyses.
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Boundary
Transition Rates Uninformed 0.01 0.05 0.10 0.20

Boundary

Uninformed 1.02 1.08 1.38 1.41 1.53
0.01 - - 1.29 1.32 1.45
0.05 - - - 1.03 1.08
0.10 - - - - 1.06
0.20 - - - - -

Table 3.5: The Gelman-Rubin diagnostic (multivariate PSRF) of the transition rates for each
combination of the uninformed and informed simulation analyses.

(Table 3.4), the same can not be said for the transition rates (Table 3.5) — indicating that all

boundaries prohibitively impact the exploration of the state space to some extent. The evaluation

of the uninformed and 0.01 boundary analyses suggests a good level of convergence, but it is

nonetheless a downgrade from when comparing two uninformed analyses in Section 3.7.2. Beyond

the 0.01 boundary though, there is clear divergence from the uninformed posteriors. This is a result

of the more demanding boundaries restricting the exploration of the true state space, leading to

discrepancies in the estimated states and subsequently the transition rates. Note, we did not apply

the Rubin-Gelman diagnostic across runs with the same acceptance boundary. We were testing to

see if each boundary converged to the same posteriors in order to examine the importance of the

boundary value. Not only do the informed analyses produce different posteriors to the uninformed

case, they also do not provide a consistent improvement in the rate at which we generate effective

samples (Table 3.3).

Figure 3.13 explicitly shows the impact of the state space reduction. The state posteriors for animal

5 from an uninformed analysis are overlapped with those from the informed analyses with a 0.01

acceptance boundary (Figure 3.13a) and 0.20 acceptance boundary (Figure 3.13b). The posteriors

of the 0.01 boundary are highly consistent with the posteriors of the uninformed case. However, as

the 0.20 boundary restricts the state space to a greater extent, the posteriors deviate further from

the (more accurate) distributions that are the result of a freely explored state space.

Overall, we were able to initialise the movement and behaviour parameters for the informed group-

level analysis from the pairwise output. Doing so enabled us to reduce the burn-in period required

from 30k iterations to 10k (Table 3.3). However, these benefits are negligible compared to both the

extra runtime required for the pairwise analysis and the restrictions more demanding conditions

have on state space exploration. Though, the 0.01 boundary may be useful in scenarios where

group-level model fittings struggle to move through the burn-in period by providing sensible initial

parameter values.
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Figure 3.13: The state posteriors for animal 5 from an uninformed analysis overlapped with those
from an informed analysis with a 0.01 acceptance boundary (a) and a 0.20 acceptance boundary
(b). The black line is true state in the simulated data.
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3.8 Zebra Data Analysis

We fitted the model to GPS data of four wild Burchell’s zebra (Equus burchellii) in northern

Botswana to examine its capability when applied to real data. The data is available on Movebank

(Bartlam-Brooks & Harris, 2013) and was originally analysed by Bartlam-Brooks et al. (2013) to

predict effects of environmental change on zebra migration, during which the movement of each

zebra was analysed independently. Data was collected for seven adult mares at hourly intervals

over 20 months, but not all were tagged simultaneously for the entire time span.

The subset of data that we have analysed encompasses approximately 11 days for four zebra that

are simultaneously tracked (tag IDs 6399, 6402, 6405 and 6407). This period was purely selected

due to this synchronicity occurring for a large enough number of observations that would allow us

to suitably trial our model. In total, this subset contains 1056 observations over the four animals.

Whilst most of these (1021) were recorded at hourly intervals, some slightly deviated by a minute

(30) or two (5). For the purpose of this analysis, we rounded the slightly asynchronous observations

to the nearest hour as little information would be gained from keeping those slight deviations, and

it enabled us to reduce the data set from 298 asynchronous to 264 synchronous observations. We

were informed by the original collectors of the data that the zebra were not from the same harem.

Whilst that will limit the amount of social interaction in the data, the zebras may be thought of

as a proxy for their harem and so we can potentially gain insight into how the harems interact

when they join together to form larger herds (see Wittemyer et al. (2007) for a similar tactic with

African elephants).

We have included two BM states for leading or independent animals when formulating the spe-

cific model to be fitted. In a brief attempt to fit the model with only a single BM state to the

data, the subordination states translated to a pseudo-BM process (that is, an OU process with

extremely weak attraction) that represented a different speed of movement to that of our actual

BM state. It therefore became necessary to include an additional BM state to better model that

diversity of movement and allow the subordination states to represent the social behaviours. We

will again compare analyses when being ‘informed’ by a preliminary pairwise analysis and when

not (‘uninformed’).

3.8.1 Uninformed Analysis

As this is an uninformed analysis, the behaviour and movement parameters were initialised ran-

domly and/or over-dispersed. After some tuning runs it became apparent we required a greater

λmax than in the simulated data, this time it was set to 1, to enable an appropriate level of state

switching (max(λu) = 0.91 in the resulting analysis). As a result of this increased level of switching,

trajectories were only reconstructed over tiny segments of data in order to obtain decent accep-

tance rates. The collective trajectories were simulated over only a single interval whilst individual

updates were undertaken over 3 to 5 observations. Even then, the acceptance rates were only 14%
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Figure 3.14: Trace plots for the four movement parameters from one of the uninformed model
fittings to the zebra data. The chains have been thinned by a factor of 50.

and 30% for collective and individual updates respectively. We simulated 263 new collective and

individual trajectories per iteration. We ran the MCMC algorithm for 1 million iterations and an

uninformed Dirichlet prior was used for the transition rates.

We ran the uninformed inference twice, neither of which reached convergence. Figure 3.14 shows

the movement parameter trace plots for one of the runs. The α and σ samples struggle to settle

in a particular range and the ρfast samples look like they are still shifting slightly — a stark

contrast with the trace plots of the uninformed simulation analysis in Figure 3.5. In order to

analyse these runs, we have taken the burn-in to be 700k iterations as the chains beyond that look

relatively stable. Not only do the two runs not converge separately, they do not approach the same

posteriors. This is most explicit at times when the state posteriors from the different runs estimate

opposing behaviours. Figure 3.15 shows an example of this with the state posteriors for two zebra

(IDs 6399 and 6402) where, through observations 69-83, the posteriors from the different analyses

estimate opposing interaction. That is, in Figure 3.15a (from uninformed run 1) zebra 6399 is

subordinate to 6402, whilst in Figure 3.15b (from uninformed run 2) zebra 6402 is subordinate to

6399. The difference in behaviours is then accompanied by differing posteriors for the movement

parameters as shown in Figure 3.16.

From Figure 3.16, we can see that in both analyses α is quite high in the context of a subordinate’s

movement distribution (see equations 3.8 — 3.12 in Section 3.3 with t = 1 in this case). As

discussed in that section, this potentially alludes to: the resolution of the data is too coarse to
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Figure 3.15: The state posteriors for zebras 6399 (a) and 6402 (b). These are from two different
uninformed runs. Through observations 69-83 the state posteriors estimate opposing interaction.
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Figure 3.16: The posterior distribution of the four movement parameters from the two uninformed
zebra analyses.

accurately capture the interaction, or the interaction of these animals is not suitably modelled by

our assumption of there being some social order. The opposing interaction estimations may be

born out of the scenario where the animals are interacting in a mutually informed sense but we are

forcing the state labels to declare a social order — with either order being equally likely if not a good

representation of the interaction. Alternatively, both animals could be moving according to some

environmental cue that we are not observing and so we are falsely inferring some interaction.

All of the above reasons suggest our model is not well suited to modelling the movement described

by this data set. Whilst that might be the case, the opposing state estimations might also be born

out of the poor mixing that such short trajectory updates will result in. It may be that undertaking

a pairwise step before the group-level analysis can help alleviate some of that difficulty.

3.8.2 Informed Analysis

Preliminary Pairwise Analysis

For the pairwise analysis we have again fitted our model to each pair of animals. Whilst the

motivation for this is to ascertain the interaction between each pair in a simpler context, the rate

of accepting trajectory proposals was still low and we were restricted to updating them over the

same lengths of data as in the uninformed group-level analysis. The movement and behavioural

parameters were initialised with random and/or over-dispersed values and we ran each pair for 1

million iterations.

For this pairwise analysis, we had to use different proposal distributions for the movement parame-

ters for each pair (i.e. the standard deviations were different pair to pair). We initially trialled using

the same standard deviations but they didn’t universally facilitate good mixing. This necessity was

mostly driven by the attraction parameters α and σ. As we can see from Figure 3.17, which contains

the posterior distributions of the movement parameters for each pair, those two parameters took

vastly different values in each analysis. For this particular data set, this extra tuning requirement
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Figure 3.17: Posterior distributions of the four movement parameters for each of the zebra data
pairwise analyses. Note the different scales of the α plots and pair {6407, 6405} noise coefficients
plot.

was merely a nuisance as there are only six pairwise analyses to tune for a group of four animals.

However, for larger groups, this could be a substantial hurdle as one may need to separately tune(
n
2

)
runs for a group of n animals.

Even with this customisation, we were not able to obtain entirely satisfactory results. For example,

there appears to be some bi-modality in α for pair {6399, 6402} (as shown in Figures 3.17 and 3.19)

that was not fully explored in the set number of iterations. That posterior, as well as the posterior

of α for pair {6407, 6402}, covers a huge range of values. There is little interaction inferred in those

two pairs (see Figure 3.18) and so we would expect a large degree of uncertainty in the posterior of

α. Though, we suspect in these cases these posteriors are a consequence of the issues discussed in

the uninformed zebra analysis. That is, this model does not accurately capture the true interaction

(if any) between these animals and so there is little to distinguish between higher values of α. Pair

{6399, 6405} also contains little estimated interaction (Figure 3.18), but this time the interaction

inferred is very weak when compared to the other pairs (Figure 3.17).
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Figure 3.18: The posterior distributions of a pair of zebras interacting from their respective pairwise
analysis. The posteriors encompass either interaction ordering.

As only a small of amount of interaction is inferred in all three of the aforementioned pairs, we

would also expect a lot of uncertainty with regards to σ — which is exactly what we have. However,

each σ posterior for those pairs has a peak overlapping with the posterior of ρfast. Rather than

the σ peaks indicating a larger degree evidence for those values, we suspect they are a result of

our restriction that σ < ρmax = ρfast (Section 3.6.3), the large standard deviations we used for the

noise coefficients proposal distributions in order to cover the wide range of possible values and the

fact that we update all movement parameters simultaneously. As such, when the current samples of

σ and ρfast are similar, newly proposed candidates for those parameters often fall foul of the above

restriction and so the chains momentarily get stuck. Additionally, in cases of large α values, as in

pairs {6407, 6402} and {6399, 6402}, the restriction that σ < ρmax = ρfast loses some intuition

and purpose as the two animals tend towards the same movement process (see Section 3.3). The

peak of σ in those cases may therefore be beyond the peak of ρfast. These three pairs highlight

how tricky it can be to tune this pairwise step.

The movement posteriors for pairs {6407, 6399} and {6407, 6405} are more straightforward —

these pairs also contain the most amount of interaction. For pairs that contain no interaction,

the α and σ samples are effectively a random walk — as seen for pair {6402, 6405}. Despite the

above challenges in running this pairwise step, we do not require the pairwise analyses to have
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Figure 3.19: Trace plots for the four movement parameters from the zebra pair {6399, 6402}
analysis. The chains have been thinned by a factor of 50.

converged in order to guide the group-level analysis, merely that they have surpassed the burn-in

period — particularly when using lenient acceptance boundaries. We have taken the burn-in to be

500k iterations for all pairs, which seems sufficient in each case.

Similar to the uninformed zebra analysis, the pairwise runs also estimate conflicting interaction.

For example, in pair {6407, 6405}, there is a segment of data for which the modal state estimation

in one run classifies zebra 6407 as being subordinate to 6405, whereas in another run zebra 6405 is

subordinate to zebra 6407. This can be seen in Figure 3.20 through observations 89-94.

In order to use this pairwise information to guide the group-level inference, similarly to Section

3.7.3, we deploy an acceptance boundary when determining which states are acceptable during

the group-level trajectory proposals. Based on the results from Section 3.7.3, we will only run a

0.01 acceptance boundary as more demanding conditioning impaired the ability of the group-level

inference to explore the necessary state space whilst offering little benefits. However, as we have

seen from two different runs of the pairwise analysis in Figure 3.20, the interaction between two

animals has not converged to the same ordering. Which analysis we use to guide the group-level

conditions will then dictate the state space we can explore. We have therefore decided to use a

‘mutual’ acceptance boundary for the informed zebra analysis. That is, when using an acceptance

boundary of x, if the posterior of zebra i being subordinate to zebra j is at least x in the pair {i,
j} run, not only will this behaviour be acceptable in the group-level analysis but so too will zebra

j being subordinate to i.
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Figure 3.20: The state posteriors for pair {6407, 6405}. (a) are the posteriors for zebra 6407 and
(b) are the posteriors for zebra 6405 but from a separate analysis. The two analyses estimate a
conflicting modal state (and therefore interaction) through observations 89-94.

Group-Level Analysis

We initialise the behavioural parameters of the group-level analysis much like in Section 3.7.3

for the informed simulation analysis. However, similar to the acceptance boundary, there is an

obvious issue with this method when our pairwise analysis has not converged. Or at least, we

know that multiple pairwise analyses do not converge to the same posteriors. Nevertheless, we still

implemented this approach as it is just intended to be a sensible starting point and a guide for the

group-level MCMC run. Furthermore, we have relaxed the conditioning on the pairwise output,

as mentioned above, which enables both contrasting interactions to be proposed in the group-level

updates.

When looking to initialise the movement parameters of the group-level analysis using the informa-

tion we have gained from the pairwise step, we can see from Figure 3.17 that this step is not as
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Figure 3.21: The densities of the movement parameters after the output for all six pairwise analyses
was aggregated for the ρ parameters and the output of pairs {6407, 6399} and {6407, 6405} was
aggregated for α and σ. The blue vertical lines indicates the values we used as the starting point
for the group-level zebra analysis.

straightforward as it was for the simulated data. In particular, this is difficult for the attraction

parameters α and σ. There are wide ranges of values covered by the pairwise analyses and so se-

lecting some arbitrary point in some combined distribution will unlikely offer any benefit. However,

as mentioned above, pairs {6407, 6402} and {6399, 6402} (the cause of most of the diversity in the

α values) are perhaps not interacting in a way that is suitably modelled by our social framework.

Furthermore, pair {6399, 6405} only contains a minuscule amount of inferred interaction whilst

{6402, 6405} doesn’t contain any. Therefore, we only utilised the output from pairs {6407, 6399}
and {6407, 6405} to select an appropriate starting value for α and σ (Figure 3.21). Regarding the

ρ parameters, the smaller peaks in Figure 3.21 are due only to pair {6407, 6405} whilst all other

pairs contribute to the higher-valued peaks — we have therefore selected the higher-value peaks as

the initial values.

The state posteriors for the informed run are highly consistent with one of the uninformed runs

(uninformed run 2) as shown in Figure 3.22. However, that inherently means they are inconsistent

with uninformed run 1 due to the discrepancies between the two uninformed analyses. The method

we used to initialise the behavioural process in the group-level inference produced a starting point

that was more aligned to uninformed run 2. Whilst the inference algorithm allows for this interac-

tion to reverse during the trajectory updates, in practice this would be an extremely unlikely event

given the poor mixing resulting from having to propose new trajectories over very small segments

of data in order to obtain a reasonable acceptance rate.

Figure 3.23 compares the posteriors of the movement parameters from multiple informed runs.

These runs were initialised with the same movement parameters and behavioural process estimated

from the pairwise step. Despite this, the posteriors clearly have not converged as further indicated

by the Gelman-Rubin diagnostic — the multivariate PSRF of these parameters is 1.25. Addition-

ally, the multivariate PSRF for the transition rates is 1.99. However, Figure 3.24 does highlight

the benefit of being able to initialise the model parameters with sensible values as within-chain

convergence was achieved with fewer iterations. The greatly reduced burn-in period in turn facili-

tated a greater rate of generating effective samples — even when taking into account the sizeable
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Figure 3.22: The state posteriors for zebra 6405 from the informed analysis and uninformed run 2
overlapped.
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Figure 3.23: Movement parameter posteriors from uninformed run 2 and the informed zebra anal-
ysis.

run time of the pairwise analysis (Table 3.6). Given that the acceptance rates of the trajectory

updates remain consistent between the uninformed (13.9% (collective) and 30.2% (individual)) and

informed analyses (14.4% and 30.6%), it appears that the ESS improvement is from the burn-in

improvement alone and not through better mixing of the behaviours. It is interesting that the

pairwise analysis doesn’t run much quicker than the group-level analysis — though this is perhaps

a blessing from the point of view of increasing the number of animals in future analyses.
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Figure 3.24: The trace outputs of the movement parameters from uninformed run 2 (top row) and
the informed zebra analysis (bottom row). The chains have been thinned by a factor of 50.

3.9 Discussion

Our influence hierarchy model offers a flexible method in continuous time with which we can capture

social interactions in animal movement. Modelling the state switches in continuous time means we

avoid approximation from using discrete data and our social behaviour analysis is not bound to

the temporal scale of the data. Through the influence hierarchy framework, a wide range of social

constructs can be captured: from despotic leadership to fission-fusion dynamics. Furthermore,

social hierarchies are a simple and common concept meaning a certain amount of the abstraction

of statistical models is stripped away.

Our formulation of the behavioural states allows us to capture rich information with regards to the

social behaviours in a group’s movement. Animals consistently influencing the movement of other

animals may be considered ‘keystone’ animals and identifying such individuals can have productive

applications in conservation and management decisions (King et al., 2018; Westley et al., 2018).

Obtaining a picture of a group’s social structure may also help us understand how resilient or

adaptive they are to change (King et al., 2018) and we can monitor how anthropogenic activity

might be impacting them (Westley et al., 2018).

We restrict the social structure to the hierarchies defined in section 3.1 in order to keep the model

tractable. However, this does mean we omit certain interactive behaviours. For instance, the

‘double-subordinate’ as in McDonald & Shizuka (2013) and discussed in Strandburg-Peshkin et al.

(2018), where an animal is equally influenced by two others (or more). Cyclic structures are also

not accounted for in our model, but analysis from McDonald & Shizuka (2013) suggests social

structures tend to be highly orderly and so this may not be problematic.
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Uniformed Informed

Group-Level Burn-In 700k 75k
State Space (%) 100 37.7

Pairwise Time (HH:MM) 00:00 54:45
Group Time (HH:MM) 76:51 78:08
Total Time (HH:MM) 76:51 133:33

Median Movement ESS 502 1550
Median Rate ESS 1054 5680

Median Movement ESS/hr 6.5 11.6
Median Rate ESS/hr 13.7 42.5

Table 3.6: The State Space percentage row indicates how much of the state space is still to be
explored in the group-level analysis given the acceptance boundary used. The Pairwise Time is
the runtime of the analysis of one pair as this step is easily parallelisable. The Group Time is the
runtime of the group-level analysis whilst the Total Time is the above two rows added together
(along with the time it took to collate the pairwise analysis — 40 minutes). The bottom four
rows summarise the rate at which effective movement parameter and transition rate samples were
created.

Whilst the collective movement model we have detailed above is inspired by the one presented

by Niu et al. (2016), there are some key differences to both that model and the one subsequently

presented by Niu et al. (2020). Our followers can be attracted to any animal, not just a leader, and

so we can model a wider range of social structures. Through the behavioural switching process, all

animals can switch between being a follower or a leader (or independent). As such, we can capture

changes in influence over time. It is these differences that provide our modelling framework with

greater flexibility. For instance, allowing all animals the possibility to be leaders means that we can

represent multiple subgroups, which will be required to model fission-fusion dynamics. Though,

whilst these changes have the potential to capture complex social behaviours, they will not always

be warranted.

Our social interaction assumption is one based on order — that is, there is a dominant and subor-

dinate in each edge of the hierarchy. However, that will not always be a fair assumption — such

as the case where two or more animals are mutually influenced or informed by each other. This is

evident in Section 3.8 when we fit the model to zebra movement data as separate analyses inferred

opposing interaction with similar certainty. Furthermore, through this definition of the behavioural

states, any interaction we do infer is direct. This is susceptible to falsely declaring direct influence

when not all relevant animals have been tagged. Again, this is demonstrated within the zebra data

analysis. The data set we have analysed contains only four zebra and each one was from a different

harem. There are many other animals they are likely to be interacting with that we don’t have data

on and so we have to be conscious not to over-interpret our results as the de-facto social behaviour.

Even if we took the approach of viewing each zebra as a proxy for their harem, it is unlikely only

four harems have collated to form a larger herd at times of interaction. Niu et al. (2016) and Niu

et al. (2020) use a moving central point that acts as the focus of a group’s movement which can
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navigate the case of having incomplete data on a social group. Whilst that approach doesn’t allow

the finer details of social behaviour to be examined, treating the group as a mutually-informed

collective may be a more suitable route to model the social drivers of zebra movement.

Whilst probing further into the social interactions can offer richer information, the sheer size of the

state space can be problematic as a considerable amount of time is needed to fully explore it. We

offer a potential solution to this problem in the form of the preliminary pairwise analysis, which can

simplify the state space of the group-level analysis. However, the results from both the simulation

and zebra analyses suggest this pairwise step does not improve the rate at which we can explore

it. Furthermore, the conditioning on the pairwise analysis can be quite a sensitive process and can

easily lead to ‘correct’ areas of the state space being ignored. The pairwise step does potentially

have some benefit through reducing the burn-in period of the group-level analysis by enabling us to

initialise a complex inference algorithm with sensible parameter values. Though, even that is not

without its risks — particularly in the context of a slowly mixing algorithm. That is, the modelling

fitting algorithms may struggle to move on from the initial, reasonable parameter values that might

just be local maxima.

Overall, whilst the model has the potential to gain detailed insight into the social drivers of animal

movement when our modelling assumptions are fair, it is currently limited by the inference methods.

The current method of proposing trajectories is naive as we simulate forwards through the data

whilst ignoring the required end state and the previously accepted trajectory. Furthermore, we

currently require collective updates in order to resample the switching times as we allow all animals

to switch simultaneously. The naivety of forwards simulation is compounded when doing so with

respect to multiple animals and so acceptable trajectories are rarely sampled — limiting the wider

MCMC process. If we are to extract the potential of this influence hierarchy framework, and further

extensions such as spatial heterogeneity, we require a much more efficient means of proposing new

trajectories. This is explored in Chapter 4.



Chapter 4

An Improved Model Fitting

Algorithm and Model Evaluation

The influence hierarchy model we outlined in Chapter 3 has the potential to capture the social

drivers of animal movement. The results in that chapter begin to show that potential, particularly

when the model was fitted to simulated data. However, it is clear that the inference approach

previously outlined is not efficient enough in order to fit such a complex model. We introduce a

newly developed algorithm in Section 4.1, which we then use to fit the influence hierarchy model

to simulated data (Section 4.2) and baboon data (Section 4.3). In Section 4.4, we explore the

robustness of our model, which is followed by an investigation in Section 4.5 into whether data

sets can be thinned in order to ease the computational cost of the model fitting process whilst

still obtaining useful results. Finally, we compare our approach to modelling the social element of

animal movement to some existing methods in Section 4.6. The majority of the material in this

chapter was introduced in Milner et al. (2021).

4.1 New Model Fitting Algorithm

Much like in Chapter 3, Markov chain Monte Carlo (MCMC) methods are used to infer both the

behavioural and movement parameters. Again, each iteration of the new algorithm consists of two

parts. Firstly, we sample the behavioural process of the animals in continuous time. Secondly, the

parameters of the Ornstein-Uhlenbeck (OU) and Brownian motion (BM) processes are sampled in

accordance with the latest behaviour trajectory reconstruction by means of a Metropolis-Hastings

(MH) random walk. The updates to the inference algorithm are entirely contained in the first part

— simulating the behavioural trajectories of the animals. As such, the element of the inference

process regarding the movement parameters is exactly the same as in Section 3.6.3.

In Chapter 3, we allowed all animals to switch state simultaneously at each sampled switching

71
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time in order to reduce the size of the augmented data (see Section 3.5.1). This approach proved

inefficient as it meant we had to update the trajectories of all animals simultaneously. Collective

updates involve discarding the entirety of the previously accepted trajectory and performing a

new forwards simulation for the entire group. The likelihood of a forwards simulation for all

animals meeting all of the relevant conditions (such as completing in the required state), as well as

proposing reasonable behaviours for each of the animals, is slim. As such, the rate of acceptance

of the proposals is small. Even after adding in individual-level updates to improve the exploration

of the behaviours, the previous algorithm just didn’t mix well.

We have therefore decided to restrict each switching time to contain at most one switch. That is,

at most one animal can switch state at any given time. With this restriction in place, we have

developed an algorithm which only proposes a trajectory for a single animal in each update, whilst

treating the current trajectory estimates of the other animals as fixed. Note, this is different from

the ‘individual-level’ updates in Chapter 3 as we can now resample the switching times an animal at

a time as each switching time only relates to a single animal — thus negating the need for collective

updates. Through this approach, we explore the social behaviours of the group in a stepwise

fashion by making relatively small modifications to the overall group-level trajectory. This approach

will require numerous updates to result in wholesale changes to the social structure estimated (if

required), but each update will be based on a trajectory that is already deemed plausible and will

be beholden to fewer conditions (as it is only simulating a single animal). Therefore, in theory,

newly proposed trajectories will be accepted more often, which in turn will mean they can be

simulated over longer segments of data — both of which will improve the mixing of the MCMC

process. This approach will also allow us to see how changes in hierarchy evolve over time (as

opposed to just spontaneously occurring), and it is a feature/assumption shared with other social

network approaches such as the stochastic actor-based model by Snijders et al. (2010). This new

algorithm is detailed in Section 4.1.1.

Note that we are still using the transition matrix defined in Section 3.4. That is, the states of

the Markov chain relate to the behaviour of an individual animal. Whilst the restriction that

only one animal can switch state at any one time would mean a transition matrix relating to

a group switching between hierarchies would be mostly populated with 0s, it would still be a

large, unwieldy and difficult to define matrix. Thus we are persisting with the individualistic

approach. Additionally, the work in this chapter is still contained within a spatially homogeneous

context.

4.1.1 Behavioural Parameters

Similarly to the previous algorithm (Section 3.6.1), we estimate the behavioural parameters (both

the states and Λ) by sampling the animals’ behavioural trajectories between the observed data

points. That is, the observed data is augmented with sampled state switching times in order

to treat the behaviours in continuous time. As before, we only simulate a small section of the
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trajectory with each proposal.

Let τo represent the observed data times for the interval [ta, tb]; τsi represent the current switching

times in the same interval for animal i; τ = τo ∪ τs so that τ = {τ1 < ... < τp} where p is the size

of τ and τs =
⋃
i τsi for all animals i. Finally, let β represent the behavioural states of all animals

at times τ where βj is a vector containing the states of all animals at time τj for j = 1, ..., p.

To propose a new trajectory for a given animal, say i, in the interval [ta, tb], we discard the current

switching times for i, τsi , and sample new ones, τ̂si . The new potential switching times are produced

from a homogeneous Poisson process over the interval (ta, tb) with rate λmax, where λmax ≥ max(λu)

for all states u. τ̂si is combined with τs−i , the remainder of τs, to produce a new set of switching

times, τ̂s, and augmented times, τ̂ = τo ∪ τ̂s.

We then simulate the behavioural process forwards through τ̂ = {τ̂1 < ... < τ̂p̂}, where p̂ is the size

of τ̂ , to obtain our new behavioural trajectory β̂. We initialise β̂1 = β1, after which there are three

scenarios to account for:

• If τ̂j ∈ τo for j = 2, ..., p̂, the behavioural states of all animals at τ̂j are carried forward from

β̂j−1 as observations are not part of the behavioural process.

• If τ̂j ∈ τs−i for j = 2, ..., p̂ − 1, we use our previously sampled states for all animals except i

at these times whilst the behavioural state of i is carried forward from β̂j−1.

• If τ̂j ∈ τ̂si for j = 2, ..., p̂ − 1, the behavioural states of all animals except i at τ̂j are carried

forward from β̂j−1. The probability of τ̂j being a switch for i is λu/λmax when i is in state u.

If so, the new state is v with probability λuv/λu, otherwise, the state of i at τ̂j is also carried

forward from β̂j−1 .

As with the old algorithm in Section 3.6.1, we require β̂1 = β1, β̂p̂ = βp (except for when τ̂p is the

final observation in the data set) and the new trajectory must not create a cyclic hierarchy at any

point. If any of these conditions aren’t met, we reject the trajectory and return to our previously

accepted trajectory for i.

If the above conditions are met, we accept or reject the new trajectory with a Metropolis-Hastings

step. The behavioural trajectories are once again proposed from the model itself (like in Chapter

3), and so the MH ratio simplifies to a ratio of likelihoods of the observed movement through the

newly proposed state switches against our previous reconstruction:

|τo|∏
k=2

f(gτok |gτok−1
, β̂[τok−1

,τok ], τ̂[τok−1
,τok ])

f(gτok |gτok−1
, β[τok−1

,τok ], τ[τok−1
,τok ])

(4.1)

where gτok are the locations of the animals in a particular axis at time τok ; β̂[τok−1
,τok ] are the newly

sampled states throughout the interval [τok−1
, τok ] at times τ̂[τok−1

,τok ]; β[τok−1
,τok ] are the previous
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state estimations in the same interval at times τ[τok−1
,τok ]. The above terms are also conditional on

the movement parameters.

We again use the conjugate Dirichlet prior for the multinomial likelihood of the transition rates

to obtain their full conditional distributions and resample them using Gibbs sampling during each

iteration of the MCMC algorithm.

Note, in both the old and new trajectory simulation algorithms, we sample new switching times

with a Poisson process with rate λmax. Though, in the old algorithm that Poisson process relates

to the switching times for all n animals in the data, whilst in the new algorithm it relates to

the switching times for just a single animal. Let’s say we use the same value of λmax in both

algorithms to update the interval [ta, tb]. In the old algorithm, the expected number of switching

times is (tb − ta)λmax and so each animal has the potential to switch (tb − ta)λmax times. In the

new algorithm, the expected number of switching times is also (tb− ta)λmax, but only animal i can

switch state at these times. Overall though, with the new algorithm, the behaviours in the interval

[ta, tb] are simulated for all n animals during their own updates and so there will, on average, be

n(tb − ta)λmax sampled switching times in this interval. Through these, each animal can switch

state (tb − ta)λmax times as before, but now we have n times as many switching times.

4.2 Simulated Data Analysis

We analysed simulated data to show the theoretical capabilities of both our model and inference

approach. Here, we analyse a single data set to examine the outputs of the model in detail, whilst

in Section 4.4, we analyse 400 different simulations to provide insight into the robustness of the

model in different scenarios.

As before, the simulation consists of five dynamically interacting animals for 100 discrete-time

intervals, with each interval two units of time, and we randomly deleted 10% of the data to simulate

partial observations. Though this time, the ‘observed’ times were augmented with switching times

obtained through a Poisson process as detailed in Section 4.1.1 (i.e. each animal has their own

switching times). The exact parameters used to simulate this data set are provided in Table 4.1.

We again incorporated two BM states for leading/independent animals to allow for different speeds

of movement, meaning we have seven behavioural states in total.

To initialise the MCMC algorithm we randomised the behavioural parameters and started with

over-dispersed movement parameter values. We set λmax as 0.2 as that was sufficiently high for the

transition rates used for the simulation and we updated sections of an animal’s trajectory ranging

from 3 to 12 observations long. We proposed a new trajectory 70 times per iteration of the MCMC

and randomly selected the focal animal each time. We ran the algorithm for 1.4 million iterations,

of which 50,000 was burn-in, and we recorded every second iteration for the movement parameters

and every 20th iteration for the behavioural parameters. We used an uninformative Dirichlet prior
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Parameter Value

α 0.5
σ 0.7

ρslow 0.4
ρfast 1.8

Parameter Value

λOU−OU 0.00 – 0.04
λOU−BM 0.00 – 0.01
λBM−OU 0.00 – 0.01
λBM−BM 0.00 – 0.12

Table 4.1: Parameter values used to simulate data. The table on the left details the movement
parameters whilst the table on the right details the transition rates. λOU−OU represents switching
between Ornstein-Uhlenbeck (that is, subordinate) states, λOU−BM represents switching from a
subordinate state to a Brownian motion state (that is, leading or independent) and similarly for
λBM−OU and λBM−BM . The values of the transition rates indicate the range that the rates in each
of those categories were uniformly sampled from.
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Parameter True Value Point Estimate Standard Deviation Effective Sample Size

α 0.5 0.478 0.0269 4755
σ 0.7 0.685 0.0281 15075

ρslow 0.4 0.424 0.0216 10175
ρfast 1.8 1.840 0.1640 8358

Figure 4.1: Top: posterior distributions of the four movement parameters for our simulation anal-
ysis. The blue vertical line indicates the true value used. Bottom: a summary of the movement
parameter results. The effective sample size is calculated using using coda (Plummer et al., 2006).

for the transition rates.

Figure 4.1 shows the movement parameter posteriors against the true values used. All are consistent

with the true value and the multivariate potential scale reduction factor (MPSRF) of the Gelman-

Rubin diagnostic is 1 (calculated from two separate MCMC runs using coda (Plummer et al., 2006)).

Further details of the Gelman-Rubin diagnostic (for these and subsequent analyses in this chapter)

are in Table 4.2. Due to the reasons discussed in Sections 3.7.1 and 3.7.2 it is not meaningful to

compare the inferred rates with the true values used in the simulation. However, from Table 4.2, we

are able to at least see that the rates converged to the same posterior distributions across different

runs. The multivariate PSRF for these is 1.03.

Figure 4.2 shows our behavioural state posteriors for animal 3, along with the true states from
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Movement Parameters Min 1st Quartile Median Mean 3rd Quartile Max

Simulation — Point Est. 1.000 1.000 1.001 1.001 1.001 1.001
Simulation — Upper C.I. 1.000 1.001 1.002 1.003 1.003 1.005

Baboon — Point Est. 1.001 1.003 1.005 1.006 1.008 1.014
Baboon — Upper C.I. 1.003 1.016 1.021 1.028 1.033 1.067

Transition Rates Min 1st Quartile Median Mean 3rd Quartile Max

Simulation — Point Est. 1.000 1.000 1.001 1.006 1.004 1.046
Simulation — Upper C.I. 1.000 1.001 1.003 1.011 1.009 1.101

Baboon — Point Est. 1.000 1.003 1.012 1.031 1.031 1.380
Baboon — Upper C.I. 1.000 1.005 1.046 1.123 1.104 3.226

Table 4.2: Summaries of the point estimates and upper confidence limits of the univariate potential
scale reduction factors for both the simulated and baboon data analyses. The limits correspond to
a coverage of 95%.

the simulation. The posterior estimates are broadly correct and confident, though quick, relatively

nuanced switches as around observations 67 and 68 can be smoothed over. Through this depiction,

we are able to see that this animal was strongly influenced by its peers throughout the data,

particularly by animal 2 until a change of behaviour around observation 80 when it then followed

animal 5.

The uninformed simulation analysis in Chapter 3 (Section 3.7.2) took approximately 26 hours to run

1 million iterations whilst the above analysis with the new inference algorithm took approximately

36 hours to run 1.4 million iterations — which equates to a similar number of iterations per

hour. Whilst we cannot directly compare the old and new algorithms as the data sets analysed

are different, at first glance it appears that the model fitting undertaken with the old algorithm

produced effective samples at a faster rate (roughly twice as fast). However, the fundamental issue

with the old algorithm is the requirement of collective updates and the extent to which they are

limited by the number of animals in the data set. Recall that collective updates are required to

resample switching times and that these were carried out over only 2 to 3 observations for a group

of 5 animals in order to obtain a decent acceptance rate. Increasing the number of animals increases

the challenge of simulating an acceptable trajectory for the entire group, which in turn decreases

the length of data we can reasonably simulate over, and so there is not a lot of room to study a

larger group. The new algorithm does not suffer such a drastic limit as we are able to carry out

trajectory updates (that resample both the times and behaviours) up to 12 observations long with

ease for an analysis containing the same number of animals. So whilst we would still likely have to

decrease the length of those simulations when analysing a greater number of animals, we have more

capability to do so. Overall, moving from simultaneous to sequential switching has increased the

computational effort of fitting the model to data, but we have greatly reduced the biggest limitation

of the previous approach.
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Figure 4.2: The state posterior distribution for animal 3 in the simulation data. There are seven
states: the two Brownian motion speeds and five subordinate behaviours where state SAi indicates
attraction to animal i. The area of each box represents the posterior probability of being in that
state at that observation, from 0 to 1. The black line is true state in the simulated data.

4.3 Baboon Data Analysis

To test our new method ‘in the field’, we have taken a subset of wild olive baboon data that was

originally analysed by Strandburg-Peshkin et al. (2015), which is available on Movebank (Crofoot

et al., 2015). The GPS data was collected at the Mpala Research Centre in Kenya for 26 baboons

in a single troop. The data was recorded at a frequency of 1Hz, for 12 hours a day (06:00 – 18:00)

over 30 days. We took a subset of this data for five baboons (ID’s 3, 4, 5, 11, 9) for 15 minutes (899

observations) to act as a test for the model. We chose this time period to contain some directional

conflict as in movie S2 in the supplementary materials of Strandburg-Peshkin et al. (2015). We

converted the GPS coordinates to UTM zone 37N easting-northing using sp (Pebesma & Bivand,

2005; Bivand et al., 2013).

For similar reasons to the zebra data analysis in Chapter 3, we have included two BM states for

leading or independent animals. The MCMC algorithm was initialised as in Section 4.2. After

some tuning runs, λmax was again set as 0.2, which seems sufficient given the resulting transition

rates. Updates of an animal’s trajectory are performed over lengths of 3 to 40 observations and

we proposed 210 trajectories in each iteration. The MCMC ran for 500,000 iterations, of which
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Independent (%) Leading (%) Following (%)

baboon 3 47.2 37.2 15.7
baboon 4 54.1 10.0 35.9
baboon 5 20.4 38.0 41.6
baboon 11 28.7 4.0 67.3
baboon 9 47.7 21.4 30.9

Table 4.3: The percentage of observations each baboon spent in each role based on the modal state.

baboon 3 (%) baboon 4 (%) baboon 5 (%) baboon 11 (%) baboon 9 (%)

baboon 3 - 0.2 7.8 0.1 7.2
baboon 4 7.8 - 18.4 6.5 3.0
baboon 5 28.5 10.0 - 1.3 1.9
baboon 11 16.1 0.0 34.6 - 15.9
baboon 9 13.9 0.0 9.8 7.2 -

Table 4.4: The percentage of observations each baboon is subordinate to another based on the
modal state. Cell ij in the table corresponds to baboon i being subordinate baboon j.

100,000 was burn-in, and we recorded every second iteration for the movement parameters and

every 20th iteration for the behavioural parameters. An uninformative Dirichlet prior was used for

the transition rates.

Figure 4.3 shows the posterior distributions for the movement parameters. The posterior for α

shows strong evidence that there is indeed interaction between the five baboons in the data analysed.

The Gelman-Rubin diagnostic is again used to check convergence over two MCMC runs and the

multivariate potential scale reduction factor of the movement parameters is 1.02.

The state posteriors of baboon 5 are shown in Figure 4.4, through which we can observe the

dynamics of this baboon’s social behaviour in a subordinate sense. That is, it mostly alternates

being attracted to baboons 3 and 4, though there is some uncertainty as to which baboon it is

subordinate to in the last 200 observations. We can obtain a clearer picture of the dynamics of

an animal’s influence on the group by looking at the role posteriors as shown in Figure 4.11a (for

baboon 9 in this case). For this baboon, we estimate it largely interacts as a subordinate until

around observation 700, which is when it takes on a consistent leadership role. Looking at the

data, this time corresponds to a change in the direction that the baboons are moving in.

These results also allow us to see the long-term manner in which the animals interact, both in

the sense of their role (Table 4.3) and with each other (Table 4.4). Though both of these tables

only show us a static overview of the social interaction, they highlight which animals seem to have

persistently high levels of influence in the group (baboons 3 and 5) and potentially strong bonds

within it (baboons 3, 5 and 11 for example).

It is worth noting that these baboon runs have not completely converged as indicated by the
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Parameter Point Estimate Standard Deviation Effective Sample Size

α 0.0263 0.000359 1033
σ 0.3020 0.004620 1479

ρslow 0.0751 0.001430 1620
ρfast 0.8580 0.011900 5625

Figure 4.3: Top: posteriors distributions of the four movement parameters for the baboon data
analysis. Note the different scales of the Density axes. Bottom: a summary of the movement
parameter inference. The effective sample size is calculated using using coda (Plummer et al.,
2006).

Gelman-Rubin diagnostic for some of the transition rates (Table 4.2) and the corresponding trace

plots (Figure 4.6). The trace plots for the majority of the transition rates (and all of the movement

parameters — Figure 4.5) indicate the chains quickly moved past the burn-in period and converged.

However, this is not the case for a small number of rates — see the rate of switching from SB11 to

BMslow in Figure 4.6 for example. Similarly, whilst the univariate PSRF point estimate for the vast

majority of rates was less than 1.04, the highest was 1.38 — resulting in a multivariate PSRF of

1.4. It may be we could have aided the inference of the rates by increasing the number of trajectory

updates per iteration. Improving the mixing of the behaviours will inherently improve the mixing

of the transition rates. Or we simply could have run a greater number of iterations. Either way,

exact inference by means of simulating when behavioural switches occur is a computationally costly

task. The results described above were obtained over approximately 2.8 days and so we have not

yet overcome the computational hurdle that can come with continuous-time models, particular ones

with a complex state space. Doing so would not only enable quicker convergence, but facilitate

the analyse of larger data sets (both in terms of the number of animals and the time period) and
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Figure 4.4: The state posterior distribution for baboon 5. There are seven states: the two Brownian
motion speeds and five subordinate behaviours where state SBi indicates attraction to baboon i.
The area of each box represents the posterior probability of being in that state at that observation,
from 0 to 1.

investigation of more long-term and biological questions.

This data set has previously been analysed in a number of studies (Strandburg-Peshkin et al.,

2015; Farine et al., 2016, 2017; Strandburg-Peshkin et al., 2017). It was originally analysed by

Strandburg-Peshkin et al. (2015) to investigate how a troop of baboons collectively make their

movement decisions. ‘Movement initiations’ were extracted from the data of 25 baboons through a

method based on minima and maxima distances between a pair of animals. Through this approach,

Strandburg-Peshkin et al. quantified the probability of a baboon following a movement initiation in

the context of the number of initiators and their consensus in direction — situation-based covariates

that would not be trivial to implement in our model.

Though, whilst their interaction assumption of a following animal moving towards the initiator is

conceptually similar to ours, it is perhaps more restrictive. Our OU approach models the subordi-

nate’s movement as being distributed around the location of its dominant. As a result, we do not

have to constrain our definition of influence to being the ‘initiator’ or the animal at the front of

the group (Strandburg-Peshkin et al., 2015) for example. Along with the state switching we have

defined, this will also help to smooth out erroneous interactions in the data.
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Figure 4.5: Trace plots for the four movement parameters from one of the model fittings to the
baboon data.

This data set was subsequently analysed to investigate how cohesion is then maintained during

movement (Farine et al., 2016). The movement of a baboon was best predicted when the locations

of 4 to 6 of its peers were taken into account — though this is open to individual variation (Farine

et al., 2017). In the short term (approximately less than 10 minutes), those 4 to 6 animals consisted

of local neighbours. Beyond 10 minutes, they consisted of an animals top ‘spatial affiliates’ — those

with whom it is most often the nearest neighbour with. Distilling interaction down to the most

causal, as we do, discards the opportunity to allow movement to be informed (or indeed, predicted)

by several others. However, this spatial affiliate approach does not take into account any changes

in social behaviour as affiliation is calculated over the entire study time frame. Whilst that might

be a reasonable approach to take for a stable social animal such as baboons, it might not be in

other cases.

4.4 Reliability

Whilst the above results are encouraging, there is scope for the model to infer false positives

(interaction where there is none) and false negatives (no interaction where there is some). To

investigate this, we have analysed 400 different simulations derived from four different sets of

parameters — 100 from each set. The parameters of set 1 are identical to those used to create

the simulated data in Section 4.2; set 2 has been derived to simulate similar movement and social

behaviours as inferred from the baboon data; set 3’s parameters were chosen to represent different
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Figure 4.6: Trace plots for a sample of transition rates from one of the model fittings to the baboon
data.

behaviours from those of sets 1 and 2. For instance, the three noise parameters are less distinct than

in the other sets to provide a tougher inference scenario (see Table 4.5). Set 4 consists of animals

solely moving in Brownian motion in order to analyse the rate at which the model introduces

false positives. Whilst the movement parameters and Λ were kept constant across all simulations

for that parameter set, the initial behavioural states at time 0 were sampled from the stationary

distribution of Λ in order for each data set to contain different behaviours. All simulations allow

for two BM states and consist of 100 movement steps.

Generally, each run was initialised much like those in Section 4.2. Each set was treated to its

own movement parameter proposal distributions in order to encourage good mixing, with the same

configuration being used for all runs corresponding to that set. Additionally, to encourage false

positives in set 4, we initialised α to be low on the assumption that any false positives inferred

would point to weak attraction. Each run was carried out for 1 million iterations with a burn-in
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Parameter Set α σ ρslow ρfast

1 0.5 0.7 0.4 1.8
2 0.0266 0.297 0.0751 0.855
3 0.2 0.7 0.5 1.4
4 0.4 1.8

Parameter Set λOU−OU λOU−BM λBM−OU λBM−BM

1 0.000 – 0.040 0.000 – 0.010 0.000 – 0.010 0.000 – 0.120
2 0.000 – 0.031 0.001 – 0.087 0.000 – 0.019 0.000 – 0.028
3 0.000 – 0.015 0.000 – 0.015 0.000 – 0.015 0.000 – 0.020
4 0.000 – 0.000 0.000 – 0.000 0.000 – 0.000 0.000 – 0.075

Table 4.5: The four sets of values used to simulate data. For sets 1, 3 and 4, the values of the
transition rates indicate the range that the rates in each of those categories were uniformly sampled
from. The values for set 2 were chosen (within the above ranges) to simulate similar behaviours
inferred from the baboon data.

of 500,000 to be confident we had indeed surpassed the actual burn-in period without manually

checking each output. For these runs, we only recorded every fifth iteration for the movement

parameters and every 50th iteration for the behavioural parameters in order to keep the total size

of the output files manageable.

In order to evaluate the rate of false positives and false negatives in interaction, we use our state

estimations of the whole group to calculate the probability of two animals interacting at a given

time, whether directly or indirectly and regardless of dominance and subordination ordering. This

probability is an interaction posterior. At times of true interaction in the simulations, we would

expect the interaction posterior to be close to 1; at times of true non-interaction, we would expect

the complimentary non-interaction posterior to be close to 1. The CDFs of these posteriors for

each run are plotted in Figure 4.7.

The CDFs relating to sets 1 and 3 form the desired curve, though those of set 3 display more

uncertainty. This is intuitive as α is smaller in set 3 compared to set 1 (that is, the attraction

is weaker) and the noise parameters were set to provide more of a challenge. The anomalous

result in the non-interaction posteriors for set 3 comes from a data set where there is very little

non-interaction — each pair of animals don’t interact for only approximately 8.7% of the data on

average. Uncertain state estimations during some of those segments of non-interaction are a blot on

otherwise reasonable results for that data set. With regards to set 4, there are no plots concerning

true interaction as there isn’t any in those simulations — a feature confidently estimated in the

non-interaction posteriors. However, there are clearly two erroneous results. The most spurious

of those is the consequence of not tuning each simulation separately and the resulting acceptance

rate of the movement parameters was extremely low (approximately 1%). Whilst this is clearly

not a desirable outcome, ordinarily we would be able to tune the MCMC differently to navigate

this issue; as it is, the problem is evident from the most cursory diagnostics, so would not mislead
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Figure 4.7: The plots in the left column contain the CDFs of the interaction posteriors at times of
true interaction. The plots in the right column contain the CDFs of the non-interaction posteriors
at times of true non-interaction. Each row of plots corresponds to a parameter set and each CDF
is derived from the posteriors for all pair combinations during a single run.

in an actual analysis. The second erroneous result simply inferred some interaction. A small

number of segments of the data are estimated, with a large degree of uncertainty, to contain weak

interaction.
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Figure 4.7 indicates a greater degree of uncertainty in the interaction posteriors of set 2 compared to

those of sets 1 and 3. In part, this effect will be due to set 2’s simulations containing comparatively

little interaction and so false negatives are more pronounced in their interaction posterior CDFs

than those of sets 1 and 3. Similarly, they will also be more pronounced than false positives in

set 2’s corresponding non-interaction posterior CDFs. More importantly though, this uncertainty

highlights a limitation of modelling the movement of leading/independent animals only through

Brownian motion. The difference in certainty of the state posteriors in Section 4.3 and those of the

simulations derived from Section 4.3’s results will in part be due to there being some feature of the

real movement that is not captured by BM, such as persistence. Without that feature, for example,

independent animals and subgroups in the simulations will frequently overlap movement paths.

It therefore becomes a challenge to identify the exact interactions taking place. This produces

scenarios in the simulations that are perhaps not biologically relevant and another process, such as

Ornstein-Uhlenbeck, may be better suited to model the movement of the leading and independent

animals.

We can examine this uncertainty further with Figures 4.8 and 4.9. The role posteriors compared

against the true role show that we are generally certain whether an animal is a subordinate or

not at any given time — though there are some instances of independence inferred at times of

true subordination. The consistency of the movement parameter posteriors with the true values

are further evidence of this reliability. However, there is some uncertainty whilst ascertaining

exactly which animal a subordinate is following. Depending on the resulting social structure, a

number of misclassifications might occur. For example, the true dominant might now be estimated

to be independent instead of leading and a true independent might now be estimated to be the

subordinates leader. The effect of this uncertainty is more noticeable in the CDFs relating to true

leadership as there is comparatively little true leadership in the data. This scenario also ties in with

the simulations containing jumbled subgroups as discussed above. Overall though, these simulation

results display a good level of robustness.

4.5 Data Thinning

Alongside our model being slow to fit to data, a recurring question in animal tracking studies is: at

what frequency should data be collected at for the analysis at hand (Hughey et al., 2018; Scharf &

Buderman, 2020; Williams et al., 2020)? We have therefore experimented with thinning the same

baboon data analysed above (henceforth referenced as the ‘full analysis’) to investigate how the

inference speed can be improved by fitting the model to a thinned data set, and how the results

compare to the full analysis. We experimented by thinning the data by a factor of five and of

20.

We will also discuss our choices of λmax for these experiments. λmaxδt is the mean number of

potential switching points sampled from the Poisson process between sequential observations over
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Figure 4.8: CDFs of the role posteriors compared to the true role in the simulated data. Each
CDF is derived from the posteriors of all animals of a single run. All graphs relate to parameter set
2. The graphs on the diagonal contain the posteriors of being in the correct role and so they are
expected to be close to 1. The off-diagonal graphs contain the posteriors of being in an incorrect
role and so they expected to be close to 0.

a time span of δt. Whilst we have stated previously that λmax ≥ max(λu) to ensure all state

switches can be sampled appropriately, if λmaxδt is high, say five, there is little information to

be gained from sampling that many state switches between sequential observations. Reducing

λmax will reduce the size of the augmented data set and therefore the number of computations

needed.



CHAPTER 4. AN IMPROVEDMODEL FITTING ALGORITHMANDMODEL EVALUATION87

0.00 0.02 0.04 0.06

0
50

10
0

15
0

20
0

25
0

α posterior distributions

α

D
en

si
ty

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0
10

20
30

40
50

σ posterior distributions

σ

D
en

si
ty

0.05 0.06 0.07 0.08 0.09 0.10 0.11

0
50

10
0

15
0

20
0

25
0

ρslow posterior distributions

ρslow

D
en

si
ty

0.7 0.8 0.9 1.0 1.1 1.2

0
10

20
30

40
50

ρfast posterior distributions

ρfast

D
en

si
ty

Figure 4.9: Posterior distributions of the four movement parameters. Each line is the posterior for
a single run and they all relate to parameter set 2. The blue horizontal line indicates the true value
used for the simulations. Note the different scales of the Density axes.

4.5.1 Thinning by a Factor of Five

We took every fifth observation of the baboon data detailed above, leaving us with 180 observations

(at 0.2Hz) instead of 899 (at 1Hz). We ran the inference again for 500K iterations to provide a

comparable analysis. λmax was kept at 0.2 and so λmaxδt = 1 for sequential observations.

As a result of thinning the data, the uncertainty of the movement parameter posteriors increased as

can be seen in Figure 4.10. We also see from those plots that the posteriors shift. The differences in

the estimations will most likely be for two reasons. Firstly, any discrepancies in state estimations

between the two analyses and secondly, the model we have chosen to fit may not be sufficient

to represent some of the movement behaviours. That is, we chose to model the movement of

leading/independent animals through Brownian motion. However, if there is some persistence in
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Figure 4.10: Posterior distributions of the four movement parameters for the full analysis (top row),
thinned by a factor of five (middle) and thinned by a factor of 20 (bottom).

their movement in reality, the noise coefficient of BM will not remain constant as the data is

thinned.

To illustrate this, say an animal is moving in one dimension through three observations and each

of the two intervals span time δt. Let’s denote the movement through the intervals as m1 and

m2. If there is no persistence in the animal’s movement, the correlation between m1 and m2 is

0. Therefore, if we removed the middle observation, the variance of the movement over time 2δt

is: Var(m1 + m2) = Var(m1) + Var(m2) = 2Var(m1) as Var(m1) = Var(m2). Thus, the diffusion

coefficient of the BM process will remain constant regardless of the data thinning. However, if in

the true process there is some persistence, then Corr(m1,m2) = c where c > 0. Removing the

middle observation then gives: Var(m1 +m2) = Var(m1) + Var(m2) + 2Cov(m1,m2) = 2Var(m1) +
2c

Var(m1)Var(m2) . The variance of m1 + m2 in the persistent case is therefore greater than that in

the non-persistent case as all c, var(m1), var(m1) > 0. Thus, the estimated diffusion coefficient of

the BM process will increase as we thin the data. Section 3.5.2 detailed how this model may be

extended to capture any persistence.

When comparing the role posteriors of baboon 9, this thinned analysis (Figure 4.11b) smooths
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over the state estimations from the full analysis (Figure 4.11a). To investigate this smoothing, we

looked at the modal state estimations at the 1Hz observation times in both analyses and quantified

the periods of behaviour that were present in the full but absent from the thinned analysis. To

classify a period of behaviour as being smoothed over, we require that at least 80% of that period

to have a different modal state estimated in the thinned analysis. Or rather, we require at least

20% of that period to have the same modal state estimated in the thinned analysis in order for it

to be accounted for. The 80% threshold is arbitrary, but it prevents a period from being accounted

for in the thinned analysis by an overly short visit to that state whilst still capturing significant

smoothing. Figure 4.12 shows that the smoothed-over periods are predominately small in length

— mostly under five seconds which is our new temporal scale.

This smoothing is likely to be a result of our assumption that the animal’s behaviour is Markovian.

If the full data suggests the short state transitions as seen in Figures 4.4 and 4.11a, the Markovian

behavioural process will readily accommodate them. The constant transition rates incorporate no

presumption against very short visits, as reflected in the exponentially distributed holding times.

Through thinning the data, the ‘evidence’ of these transitions is no longer present, though they

may remain with much lower probability.

4.5.2 Thinning by a Factor of 20

We took every 20th observation of the data set used for the full analysis, leaving us with 45

observations (at 0.05Hz). We ran the inference again for 500K iterations but for this analysis we

reduced λmax to 0.05. As discussed above, the motivation for this was to keep λmaxδt small.

Whilst this amount of thinning can be thought of as extreme smoothing, where we’d expect to get

results largely in agreement to those of the full analysis, Figure 4.11c shows the state/role posteriors

can be drastically different. For example, the thinned data no longer supports the two periods of

subordination that baboon 9 undertakes between observations 600-700 in Figure 4.11a. Thus, the

resulting social structure has a different picture. These different behavioural estimations then have

further impacts on the movement parameter posterior distributions (Figure 4.10).

In the full analysis, max(λu) = 0.153 and so we wouldn’t expect an animal to switch state much

more frequently than every 7 seconds. We therefore suspect thinning the data to 0.2Hz keeps enough

information in order to estimate similar behaviours. Thinning the data further, and reducing λmax,

reduces the scope of social behaviours that can be captured. That is, short-term interactions can’t

be seen and are unlikely to be sampled. Whilst the thinning-by-20 results aren’t wrong per se,

they offer a different temporal perspective of the social behaviours of the baboons. These thinning

experiments backup the view that the results of an analysis will be most informative (and efficient)

if the temporal resolution of the data collected is informed by the nature of the behaviours that

are to be investigated (Pinter-Wollman et al., 2013).

With regards to the speed of the inference, the thinned-by-five analysis was completed in approx-
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Figure 4.11: The role posterior distribution for baboon 9 for the full analysis (a), thinned by a
factor of five (b) and thinned by a factor of 20 (c). The area of each box represents the posterior
probability of being in that role at that observation, from 0 to 1.

imately 24 hours, as opposed to approximately 67 hours for the full analysis. Whilst the number

of observations was reduced to a fifth, the number of simulated data was equivalent as we kept the

same λmax. Though, there is scope to use a smaller λmax during the thinned-by-five analysis as

the resulting max(λu) was 0.111. The thinned-by-20 analysis was completed in approximately 7

hours.
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Figure 4.12: A histogram of the number of observations in a state before switching in the full
analysis (black) and which of these periods were smoothed over in the thinned analysis (grey).

4.6 Comparison of Methods

To compare our approach with other methods, we have examined our results from both the simula-

tion and full baboon analyses alongside those obtained when applying dyadic metrics (Long et al.,

2014; Joo et al., 2018) to the same data. Much like our approach, dyadic metrics utilise move-

ment data from multiple animals to investigate any interdependence and in turn better understand

their collective behaviours. As their name suggests, the dyadic metrics are built to analyse the

interdependence of two animals.

The metrics we have chosen to implement are proximity and dynamic interaction using the wildlifeDI

R package from Long et al. (2014). Joo et al. (2018) indicate each metric offers an informative

view into a specific element of interaction. Proximity evaluates whether two animals are within a

distance threshold defined by the user; dynamic interaction, when split into its displacement and

direction components, offers insight into whether two animals are moving at a similar speed or in a

similar orientation respectively. Furthermore, whilst most other metrics are restricted to producing

a single output to define the interaction over the whole data set, the ones we chosen have ‘local’

variations that allow us to evaluate the interaction throughout time.

In order to compare results, we use the same interaction posterior approach that we used in Section

4.4 as that is comparable to the interpretation of the dyadic metrics. This is done for every data

point in which both animals are simultaneously observed as this is a necessary criterion for the

metrics. The scaling parameter of dynamic interaction in displacement, β in Joo et al. (2018), is

1.
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Figure 4.13a plots our interaction posterior against each of the three metrics for animals 1 and

3. These animals were chosen as ideal candidates to compare methods as they undertook periods

of both direct and indirect interaction. Whilst the interaction posterior is largely (and correctly)

concentrated at 0 and 1, the displacement and direction metrics are uniform across their ranges

regardless of whether there was true interaction or not. Proximity fares better as most simultaneous

data less than 2m apart correspond to true interaction and most simultaneous data greater than 4m

apart correspond to true non-interaction. However, the distances in between highlight the difficulty

in determining interaction from proximity alone.

Figure 4.13b displays the same comparison for baboons 4 and 9. Whilst the interaction posterior

is again largely concentrated towards 0 and 1, the proximity metric does not offer a discernible

pattern. It is uninformative when the interaction posterior is close to 0 and interaction appears to

be grouped at distinct ranges of proximity — at approximately 60m and less than 20m. For both

displacement and direction, there is moderate concentration at (1, 1) — indicating a consensus

between our model and these metrics on some moments of interaction. However, both metrics

are quite uniform when the interaction posterior is certain there is no interaction. In particular,

direction is just as likely to suggest interaction as it is non-interaction.

Overall, there is some consistency of the metrics with our model in estimating when two animals

interact. However, when the animals are not interacting (either known from the simulated data or

estimated from our model), the dyadic metrics are generally not in agreement and are fairly uniform

across their ranges. We suspect this is because the metrics can have quite relaxed definitions of

interaction. For instance, dynamic interaction can hint at interaction without any concern as to

whether the animals are reasonably proximate to one another. That is in contrast to our perhaps

more defined notion of interaction where we are not likely to introduce false positives (see Section

4.4). Though, that definition comes with its own limitations such as not being able to capture

co-movement. From a practical point of view, the dyadic metrics are much faster to run than

our approach and they will require less tuning. However, our model can more naturally handle

incomplete or unsynchronised data. The metrics require essentially simultaneous data to evaluate

the cohesion of two animals at a given time whereas our model is able provide an estimate of

interaction in continuous time across the temporal range of the data. Furthermore, our model has

the capability to jointly analyse the data of larger social groups.

4.7 Discussion

The new trajectory proposal algorithm provides a huge improvement in performance compared

with the one developed in Chapter 3. We initially chose, in Chapter 3, to allow all animals the

possibility of switching state at each switching time in order to reduce the number of data points

required. This decision proved to be a false economy. The previous algorithm required a two-step

process where, in effect, collective updates resampled the switching times whilst individual updates
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Figure 4.13: The interaction posteriors (the posterior probability of two animals being in the same
subgroup) from the simulation analysis (Section 4.2) are plotted against the proximity, dynamic
interaction in displacement (DId) and dynamic interaction in direction (DIθ) dyadic metrics for
the same data set (a). The results used are for animals 1 and 3 and each point corresponds to a
simultaneous observation. Similarly, the same approach has been taken for baboons 4 and 9 from
Section 4.3 (b). Both axes have been jittered in order to help display the density of the points.

resampled the state switches at those times. Whilst the individual updates improved the mixing of

the behaviours, the whole process was slow as it hinged on the sluggish collective ones. In the new

approach, through the restriction of only one animal being allowed to switch state at each switching

time, a single update is now able to resample both the behaviours and the times at which they

occur for a single animal. Thus, we can now propose new trajectories over sizeable segments of data

and still obtain a good acceptance rate. So whilst the new method requires a greater number of

switching times than in the previous method in order to capture the same behaviours, it facilitates

much better mixing.

With the new algorithm, we were able to examine the robustness of our model through 400 model

fittings, a task that would not have been desirable with the previous algorithm. Whilst this analysis

highlighted the limitations of modelling self-driven animals with a BM process, the model was

proven to be highly reliable in limiting the amount of false positive and false negative interactions
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estimated. We were also able to fit the model to high-frequency baboon data, if only for a short

segment of it. Through this analysis, we are able to see clear evidence of interaction between

the baboons during their movement and obtain both a dynamic and static view of their social

behaviours. The dynamic view enables us to see how the social behaviour evolves over time in

terms of specific relationships, the role of individuals and the overall structure. The static view can

help pin point long-term influential animals and bonds within the group.

However, despite the improvements in this chapter, a considerable amount of time is still required

to explore such a complex state space. The current method is still naive, as we simulate forwards

through the data whilst ignoring the end state of the trajectory. One potential route to remedy this

is to explore techniques based on the Forward Algorithm (widely used for efficient implementation

of hidden Markov models) as proposed by Blackwell (2018).

In order to ease the computational burden of the model fitting process, we can scale the frequency of

the data to be analysed to the nature of the behaviours under investigation. The scaling could either

take place at the data collection stage or through data thinning. Our data thinning investigation in

Section 4.5 showed that sizeable computational gains can be made whilst still being able to infer the

social and movement behaviours at the desired temporal scale. However, this analysis also showed

that our assumption that the behavioural process is Markovian may not be biologically sound. An

alternative approach may be to model the behavioural process as semi-Markovian in order for the

times spent in a state to be more realistically distributed.

Various elements of the model can be treated as either heterogeneous or homogeneous. In the

analyses in this chapter (and in Chapter 3), we used a heterogeneous Λ. An alternative approach

would be to treat it as homogeneous, potentially resulting in just four transition rate parameters

relating to being in an OU (subordinate state) or a BM (leading/independent) state. Whilst this

will provide coarser results, the number of rate parameters can quickly become undesirable in a

heterogeneous Λ and it should improve the mixing of the inference. The model and inference

we have detailed is spatially homogeneous. However, more rich and beneficial information could

be obtained through including spatial covariates such as environmental data or the positions of

the animals relative to each other. These may affect the social behaviour, or independent and/or

leading animals may be affected by a static (Blackwell et al., 2016) or dynamic (Wang et al., 2019)

environment rather than following Brownian motion. The algorithm detailed in Section 4.1.1 to

propose new trajectories is easily extended to the spatially heterogeneous case, though it slows

it down considerably — a problem we examine and look to solve in Chapter 5. Furthermore, we

could add some heterogeneity into the animals themselves. For example, we could use characteristic

information such as the animal’s age or sex to ascertain how they interplay with social dominance.

Or independent transition rates could be estimated for each animal in a model that is hierarchical in

the statistical sense, but some consideration will be needed to weigh up the benefits of substantially

increasing the number of parameters.
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Data Availability

The R code required to run the inferences in Sections 4.2, 4.3, 4.4 and 4.5, along with the simulated

data, is available at the following GitHub repository:

https://github.com/jemilner/influenceHierarchy (Milner et al., 2020, doi:10.5281/zenodo.3972134).

The baboon data used in Section 4.3 is available on Movebank (Crofoot et al., 2015). The particular

subset that we used relates to baboons 3, 4, 5, 9 and 11 between the times 05:51:38 and 06:06:36

on 2012-08-03 (YYYY-MM-DD).

Additionally, in the GitHub repository, there is a brief readme file that instructs on how to

use the code in R. This includes guidance on what format the data is required to be in, what

tuning parameters need consideration and altering the number of states which model leading and

independent movement. There is also information for reproducing the analysis in this chapter.



Chapter 5

Towards Spatial Heterogeneity

Previous work on developing our model has concentrated on the spatially homogeneous case and

we discuss the merits of extending it to the spatially heterogeneous one in Section 5.1. In order to

unlock those merits, we first present a new method with which we can sample animal movement

and behaviour in heterogeneous space in continuous time in Section 5.2. The accompanying model

fitting algorithm is detailed in Section 5.3 and we examine the capability of this new approach in

Section 5.4. Whilst we don’t utilise this new functionality to undertake analysis that incorporates

spatial covariates, we do utilise it to introduce a zone of interaction into our model — a proximity

that animals must be within in order to interact. The justification for doing so, along with the

implementation details, are presented in Sections 5.5 and 5.6. The zonal model is tested and refined

in Section 5.7 through being fitted to simulated data, after which we revisit the baboon troop from

Chapter 4 in Section 5.8.

5.1 Spatial Heterogeneity

A spatially heterogeneous movement model has the capacity to provide more insight than its spa-

tially homogeneous counterpart. As the spatial context within which an animal (or group of an-

imals) is moving changes, a spatially heterogeneous model is able to capture how the animal’s

movement behaviour responds to that change. For example, a species of schooling fish (golden

shiners) modulates their movement speed depending on the level of light (Berdahl et al., 2013). An

extended model could also capture information on spatial utilisation. For instance, roads and sleep-

ing sites are important predictors of baboon movement (Strandburg-Peshkin et al., 2017).

Studies have also shown there is an important interplay between social structure and the environ-

ment. For example, group composition has an impact on the effectiveness of obstacle avoidance

(Croft et al., 2015); returning to the golden shiners, collective dynamics enhance their environ-

mental gradient-tracking ability (Berdahl et al., 2013); the ranking of African elephant families is

correlated with spatial behaviours such as time spent near water and in protected areas (Wittemyer

96
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et al., 2007). Such insights can provide useful tools in monitoring the resilience of (or impact on)

social groups (due) to environmental change (King et al., 2018).

Extending our influence hierarchy approach to the spatially heterogeneous case and capturing

the environmental context in which the social behaviours occurred therefore provides a greater

opportunity to learn about and monitor social animals.

5.2 Spatially Heterogeneous Movement

In previous chapters, which are entirely concerned with the spatially homogeneous case, we used

a forwards simulation approach for simulating an animal’s behavioural trajectory between two

observations, say at times ta and tb. That is, we sample their state switches forwards in time from

ta. The new trajectory must finish in the (currently estimated) behavioural state at tb so that it is

consistent with the trajectory outside of those two observations.

In order to extend the model to the spatially heterogeneous case though, we also need to sample

the animals locations between ta and tb. A potential candidate with which to do this is a spatially

heterogeneous extension of the forwards simulation approach as detailed by Blackwell et al. (2016).

However, as the name suggests, forwards simulation is naive in that it does not take into account

the animal’s next known location at tb. As a result, quite wayward movement trajectories can

be simulated (relative to the end location at tb) and acceptance rates of these can be low. We

have therefore developed a new movement proposal method which is conditional on the animal’s

next known location in order to facilitate good mixing of our model in a spatially heterogeneous

context. We will first provide details of this method, along with information on how to use it in the

inference process, and then examine it with regards to tuning and how it performs against forwards

simulation.

5.2.1 Latent Diffusion Bridge

Say we are proposing the location of an animal at a switching time, ts, between observations ta

and tb (where ta < tb). Conceptually, conditioning the proposal distribution of the movement from

ta to ts on the location at tb is simple enough. For example, for animals moving under Brownian

motion (BM) processes this would translate to a Brownian bridge. However, as ts is a switching

time and we are now operating in heterogeneous space, we must propose an animal’s location at ts

before any potential state switch as the transition may depend on the spatial context. Therefore,

we don’t actually know (or have not yet estimated) the state the animal is in from ts to tb at the

moment of proposing its location. This lack of knowledge is heightened when there are multiple

switching times between two observations as the animal may switch state multiple times before

tb.

In order to satisfy our requirement of conditioning on the next known location whilst not knowing

the behavioural state(s) of the remaining movement, we introduce a latent diffusion state. That is,
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a BM process separate from any included in the movement model and we will refer to this state as

the latent diffusion process (LDP). This method in general will be referred to as the latent diffusion

bridge (LDB). So when proposing the location of an animal at time ts, conditional on its location

at time tb, we derive that proposal distribution on the basis that the animal is moving according to

one of the diffusion processes in the movement model in the interval [ta, ts) and according to the

LDP in the interval [ts, tb].

We use BM for the LDP as we know (or assume) the animal is moving according to some diffusion

process, in particular either BM or OU, and BM can be thought of as a special case of an OU

process. It also offers a simple interpretation. A small diffusion coefficient of the LDP will result

in location samples at ts that are streamlined towards the location at tb. On the other hand,

a large coefficient will provide little guidance — much like forwards simulation. In the context

of Markov chain Monte Carlo (MCMC) sampling, this coefficient is much like any other tuning

parameter.

Note that the LDP is solely part of the proposal process and it is not part of the movement

model. That is, the declaration that the focal animal moves under the LDP from ts to tb is merely

temporary. Once the location at ts is sampled, we can then sample the state the animal will be in

for their next movement step as normal, given their new spatial context.

5.2.2 Latent Diffusion Bridge Distribution

In order to use it, we need to derive the proposal distribution of the LDB. Similarly to Chapter

4, we propose new trajectories (now including movement) one animal at a time (the focal animal)

whilst treating those of its peers as fixed. Thus, there are two different scenarios when we utilise the

LDB and require the corresponding proposal distribution. Firstly, when ts is a switching time for

the focal animal, we sample the locations of all the animals. We require this complete information

on the group as the focal animal may end up interacting with any of its peers at ts. Secondly, when

ts is a switching time for another animal, we resample the focal animal’s location.

Switching Time of the Focal Animal

For a potential switching time for animal i between two observations, ta and tb, we need to sample

the location of the whole group. Let t0 = ta and let a potential switching time, ts, for animal

i be the sth switching time in the interval (t0, ts], with ts < tb. In general, the times of the

1st, ..., sth switches correspond to times t1, ..., ts. Let τc = {ts−1, ts, tb}, βc = {βs−1, βs} (where

βs is a vector containing the states of all animals at time ts) and Ω represent all movement and

transition parameters and the coefficient of diffusion of the LDP. The location of the group at time
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ts in a particular axis, given their location at time ts−1, is distributed as follows:

Gs|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(µ,Ξ) (5.1)

Gs|Gs−1 = gs−1, τc, βc,Ω = Ags−1 +BΘs−1 +C (5.2)

where equation 5.2 is simply equation 5.1 written out more explicitly. Here we have used a simplified

notation, compared to equation 3.5, where µ = µ(Gs−1,Fs−1, δt), Ξ = Ξ(Fs−1, δt) and δt =

ts−ts−1. A = eFs−1(ts−ts−1), B = 1−A, C ∼ MVN(0,Ξ) and Fs−1 is the attraction matrix at time

ts−1. The respective leader’s locations in Θs−1 are taken from gs−1. Note, here we are conditioning

on βs (which we will not have sampled yet) and tb even thoughGs is independent of both. However,

it is useful to include them to provide consistency with other conditional distributions during the

derivation of equation 5.6. With the forwards simulation method, the locations of the animals at

ts are proposed with the distribution in equation 5.1.

We, however, want to propose the locations at ts conditionally also on the next known locations,

Gb. Firstly, we note:

Gb|Gs = gs, τc, βc,Ω ∼ MVN(µ̃, Ξ̃) (5.3)

Gb|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(µR,ΞR) (5.4)

Gb|Gs−1 = gs−1, τc, βc,Ω = ÃGs + B̃Θs + C̃ (5.5)

where equation 5.3 is the distribution of the movement from ts to tb. Equation 5.4 is the recursive

distribution of the movement through the times ts−1, ts and tb. The recursive method with which

we obtain this distribution is the same one used in Chapters 3 and 4 and more details can be found

in Appendix C and Blackwell (2003). Equation 5.5 is the distribution of equation 5.4 explicitly

written out where Ã = eFs(tb−ts), B̃ = 1 − Ã, C̃ ∼ MVN(0, Ξ̃) and the leader’s locations in Θs

are taken from the expectation of Gs, µ. We can use the above and the following result to derive

Gs|Gs−1,Gb: (
Gs

Gb

)
|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(

(
µ

µR

)
,

(
Ξ (ÃΞ)T

ÃΞ ΞR

)
(5.6)

where (ÃΞ)T is the transpose of ÃΞ. The derivation of Cov[Gb,Gs|Gs−1 = gs−1, τc, βc,Ω] = ÃΞ

is provided in Appendix D. Having derived equation 5.6, we can then use standard results for a

conditional multivariate normal distribution such that:

E[Gs|Gs−1 = gs−1,Gb = gb, τc, βc,Ω] = µ+ (ÃΞ)T (ΞR)−1(gb − µR) (5.7)

Car[Gs|Gs−1 = gs−1,Gb = gb, τc, βc,Ω] = Ξ− (ÃΞ)T (ΞR)−1(ÃΞ) (5.8)

Note that the behavioural states at ts (βs) that feed in to Fs are the same as those at ts−1 but with
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the state/movement process of the focal animal changed to the LDP. Consequently, as the LDP

has no attraction term, if the focal animal is in a subordinate state from ts−1 to ts, it will lose its

social link to its dominant (and the rest of the subgroup that is ‘above’ it) for the bridge step from

ts to tb. Whilst that may not seem ideal, we do not know if that animal will retain that social link

when we come to sample its state at ts.

Switching Time of Another Animal

Whilst resampling the location of animal i at the switching time of another animal, we treat the

locations and behaviours of the other animals as fixed. Say ts, still within (ta, tb), is now a switching

time for one of the other animals. We can use the information of the group’s location at time tb to

propose more reasonable samples for animal i’s location at ts. First, note the following:

Gsi |Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ N(µ,Ξ) (5.9)

Gs|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω = (gs1 , ..., gsi−1 , Gsi , gsi+1 , ..., gsn)T (5.10)

Gb|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ MVN(µR,ΞR) (5.11)

Gb|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω = ÃGs + B̃Θs + C̃ (5.12)

where Gs−i are the locations of all animals except i at time ts. µ and Ξ in equation 5.9 are derived

from equation 5.1 when we ‘know’ the locations of all animals except i at ts and therefore we

can condition on them. Equation 5.10 concatenates this univariate random variable with the fixed

locations of the other animals at time ts, where n is the number of animals in the group in total.

We wrap the univariate distribution of equation 5.9 in this vector to create consistent dimensions

in equation 5.12 and further derivations below. Ã, B̃, C̃ and Θs in equation 5.12 are the same as

in equation 5.5 above.

Similarly to using equation 5.6 in the case of animal i’s switching time, we can use equation 5.13

here: (
Gsi
Gb

)
|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ MVN(

(
µ

µR

)
,

(
Ξ (Ã1iΞ)T

Ã1iΞ ΞR

)
(5.13)

where 1i represents a column vector of 0s with a 1 at the ith position, the length of which is the

number of animals in the group. The derivation of Cov[Gb, Gsi |Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω]

is once again supplied in Appendix D. Having derived equation 5.13, we can then use standard

results for a conditional multivariate normal distribution such that:

E[Gsi |Gs−1 = gs−1,Gb = gb,Gs−i = gs−i , τc, βc,Ω] = µ+ (Ã1iΞ)T (ΞR)−1(gb − µR) (5.14)

Var[Gsi |Gs−1 = gs−1,Gb = gb,Gs−i = gs−i , τc, βc,Ω] = Ξ− (Ã1iΞ)T (ΞR)−1(Ã1iΞ) (5.15)

Note, in the above algorithm, we propose the locations at ts conditionally on the next observed
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locations at tb. An alternative approach would be to propose them conditionally on the previously

accepted trajectory. That is, we could condition on the locations at the time, in the previously

accepted trajectory, with the smallest interval after ts, say ˆgs+ at time ˆts+ . That time ˆts+ could be

an observation, but it could also be a switching time for one of the other animals. There are pros

and cons between using the next observed locations or ˆgs+ . Whilst the ˆgs+ approach will sometimes

result in conditioning on estimates, those estimates will have been deemed ‘acceptable’. However,

the time difference between ts and ˆts+ will be relatively small (compared to the difference between

ts and tb) and so conditioning on ˆgs+ will propose new locations that do not stray far from our

previous estimate (as the variance of the LDB distribution is a function of that time interval). That

will restrict the trajectories from mixing well and exploring the spatial possibilities. Conditioning

on the next observed locations will still ‘guide’ the distribution of gs (or gsi), but, through contain-

ing a greater variance, will restrict it less. Furthermore, conditioning on the previous trajectory

will create a dependency in the proposal distribution, causing complications when calculating the

Metropolis-Hastings (MH) ratio.

5.2.3 Transition Rates

With this extension to spatial heterogeneity, we can no longer use Gibbs sampling for the transition

rates. Previously, in the spatially homogeneous case, all the state switches are drawn from the same

single-trial multinomial distribution (derived from the current estimate of the transition rates).

The likelihood of the rates was therefore an s-trial multinomial, where s is the total number

of potential switching times, and so, using a Dirichlet prior, we were able to derive their full

conditional distribution from which to sample from. However, in the spatially heterogeneous case,

each (potential) state switch may have been sampled from a different distribution as the transition

rates depend on location. We therefore lose the above ability and resort to a Metropolis-Hastings

random walk.

Consequently, we now formulate our transition matrix to be homogeneous, whereas previously we

have used a heterogeneous one with each transition rate being distinct. Random-walk proposals

would not have been desirable with the 42 transition rates used in previous chapters. This change is

also partly motivated from the suspicion that a homogeneous Λ will mix better than a heterogeneous

one, even if the end results are less rich. This improvement in mixing will be valuable now we have

moved to the trickier context of spatial heterogeneity.

There are several ways we could categorise the rates; the one we have chosen results in only four tran-

sition rates: subordinate-to-subordinate (λOU−OU ), subordinate-to-leader/independent (λOU−BM ),

leader/independent-to-subordinate (λBM−OU ) and lastly leader/independent-to-leader/independent

(λBM−BM ). This grouping significantly reduces the number of parameters (four compared to the

previous 42 in a seven state example) whilst still providing a good level of granularity in the Markov

chain. This categorisation is quite general, but it would also be quite simple to categorise the rates

specifically for the analysis at hand. For instance, dividing the above categories by age or sex.
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An example of what form this homogeneous transition matrix might take in this model is given

below, where there are three animals in the data set, two BM states in the model, λOU−OU = 0.04,

λOU−BM = 0.02, λBM−OU = 0.03 and λBM−BM = 0.02. Let’s say at a particular switching

time for animal 2: animal 1 is subordinate to animal 2, who is in turn subordinate to animal 3.

Animal 2 cannot switch to states SA2 (subordinate to itself) or SA1 (producing a cyclic structure).

Therefore, rates λSA3,SA1
= λSA3,SA2

= 0 and λSA3
for this particular animal/scenario is 0.04 (from

the possibility of switching to either BM state).

Λ =

SA1 SA2 SA3 BM1 BM2


SA1 0 λOU−OU λOU−OU λOU−BM λOU−BM

SA2 λOU−OU 0 λOU−OU λOU−BM λOU−BM

SA3 λOU−OU λOU−OU 0 λOU−BM λOU−BM

BM1 λBM−OU λBM−OU λBM−OU 0 λBM−BM

BM2 λBM−OU λBM−OU λBM−OU λBM−BM 0

(5.16)

Note, even though the transition rates depend on the locations of the animals in the spatially

heterogeneous case, we have not explicitly accounted for that dependency in the notation. That

is, instead of using λuv(gt) to denote the rate of switching from state u to state v when an animal

is at location gt, we are using the simplified notation λuv. All analysis that we undertake in this

chapter concerns hard spatial boundaries — an animal is either in a particular region or it isn’t.

As such, each transition rate to state v, say, at any given switching time is either its full value (e.g.

λuv) when an animal is in an appropriate region for behaviour v, or 0 when it isn’t. Therefore,

when we discuss a transition rate, it is on the basis that the animal in question is in an appropriate

region. When we discuss the rate of leaving a state (e.g. λu), that rate is simply a sum of all the

transition rates (from u) to states that are possible given the spatial context at that time.

5.3 Inference with the Latent Diffusion Bridge

Once again, Markov chain Monte Carlo methods are used to infer both the behavioural and move-

ment parameters. Each iteration of the MCMC algorithm consists of three parts. Firstly, we

propose new movement and behavioural trajectories in continuous time, with help of the LDB, as

detailed in Section 5.3.2. Secondly, we propose new transition rates in accordance with the current

behavioural trajectories by means of a Metropolis-Hastings random walk. Finally, we propose new

movement parameters in accordance with the current movement trajectories in exactly the same

fashion as in Section 3.6.3. That is, with a Metropolis-Hastings random walk.
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5.3.1 Fitted Model Structure

As discussed in Section 3.7.1, there has thus far been a discrepancy between the exact model used

to simulate data and the one fitted to it. The inference model developed in this chapter now aligns

with that used to simulate data. That is, transition rates that result in a cyclic hierarchy are set

to 0 before sampling a state switch. The reasons for this realignment are presented in Section

3.7.1.

5.3.2 Movement and Behavioural Trajectories

The algorithm with which we propose an animal’s movement and behavioural trajectory is largely

the same as that in Chapter 4 (Section 4.1.1) — though we now sample the animal’s location at

switching times too. Using the same notation as in that section, there are again three scenarios to

account for:

• If τ̂j ∈ τo for j = 2, ..., p̂, the locations are known. If τ̂j is a partial observation (that is, i’s

location was not observed at this time), the missing location can be proposed using the LDB

method as this scenario is equivalent to updating animal i at the switching time of another

animal. That is, we can condition on the locations of all animals except i at time τ̂j and the

locations of all animals at the next observation (equations 5.14 and 5.15). Here though, we

‘know’ what state i is in in both sections of the bridge, as it cannot switch at an observation.

So whilst we don’t need the LDP, the derivation of the movement distribution is the same as

that for the LDB. The behavioural states of all animals at τ̂j are carried forward from β̂j−1.

• If τ̂j ∈ τs−i for j = 2, ..., p̂−1, we propose animal i’s location at τ̂j from a distribution defined

by equations 5.14 and 5.15, which conditions on the locations of all animals except i at time

τ̂j and the locations of all animals at the next observation. We use our previously sampled

states for all animals except i at these times whilst the behavioural state of i is carried forward

from β̂j−1.

• If τ̂j ∈ τ̂si for j = 2, ..., p̂−1, we propose the locations of all animals with a distribution defined

by equations 5.7 and 5.8, which conditions on their next known locations. The behavioural

states of all animals except i at τ̂j are carried forward from β̂j−1. The probability of τ̂j being

a switch for i is λu/λmax when i is in state u. If so, the new state is v with probability λuv/λu,

otherwise, the state of i at τ̂j is also carried forward from β̂j−1.

In all three above scenarios, we carry out any location sampling before any state switching. As

with Chapter 4, we require β̂p̂ = βp (except for when τ̂p is the final observation in the data set)

and that i’s new behavioural trajectory does not conflict with the previously accepted states of

all of the other animals at their own switching times. Recall that p̂ is the length of the new

trajectory (both observed and sampled switching times) whilst p is the length of the previous

trajectory. Finally, similarly to previous chapters, state estimations for the first observation are

sampled uniformly.
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When using forwards simulation to sample movement, the distribution of that trajectory (up to

the final switching time) cancels out with the proposal distribution — greatly simplifying the MH

ratio (see Chapter 2). This is not the case with the LDB algorithm as our proposal distribution

is different from that of a movement step in our model. However, as in previous chapters, the

behavioural process is still proposed from the model and so the resulting MH ratio is based entirely

on movement: ∏p̂
j=2 Ψ̂j∏p
j=2 Ψj

(5.17)

where

Ψj =


P (Gj | Gj−1 = gj−1), τj ∈ τo
P (Gji | Gj−1=gj−1, Gj−i=gj−i ) P (Gj−i | Gj−1)

Q(Gji | Gj−1=gj−1, Gj−i=gj−i , Gj+=gj+) τj ∈ τs−i
P (Gj | Gj−1=gj−1)

Q(Gj | Gj−1=gj−1, Gj+=gj+) τj ∈ τsi

(5.18)

and each term is also conditioned on τc = {τj−1, τj , τj+}, βc = {βj−1, βj}, all movement and

transition parameters and the coefficient of diffusion of the LDP. τj+ is the time of the next

observation after τj and Ψ̂j takes an identical form but for the new simulation.

In order to keep the notation as simple as possible in the above MH ratio, we have assumed complete

observations. So for τj ∈ τo, Ψj is simply the likelihood of the movement of the whole group from

τj−1 to τj . For τj ∈ τs−i , Ψj consists of the likelihood of our sample of animal i at τj given the

locations of all others at τj . This is multiplied by the marginal of all animals except i of the

movement step from τj−1 (obtained from equation 5.1). For τj ∈ τsi , the likelihood is again simply

the movement of the whole group from τj−1 to τj

The proposal distributions, Q, are normally distributed and defined by equations 5.14 and 5.15

for τj ∈ τs−i and equations 5.7 and 5.8 for τj ∈ τsi . In both scenarios, the proposal for the latest

trajectory is independent of the previous trajectory (and vice versa).

5.3.3 Transition Rates

Treating the current sample of the animals’ behavioural and movement trajectories as fixed, we

update all of the transition rates simultaneously through a Metropolis-Hastings random walk.

Independent, normally-distributed proposals are used for each rate and so the MH ratio is reduced

to a ratio of likelihoods: ∏
j∈τ̂s P̂(β̂j,i = v | β̂j−1,i = u)∏
j∈τs P(βj,i = v | βj−1,i = u)

(5.19)
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where τs are all the switching times of all the animals, βj,i is the behavioural state of animal i (the

animal which switching time j concerns) at switching time j and u and v are states. Therefore,

P̂ =

 λ̂uv
λmax

, u 6= v

1− λ̂u
λmax

, u = v
(5.20)

and

P =

 λuv
λmax

, u 6= v

1− λu
λmax

, u = v
(5.21)

where λ̂uv is the newly sampled rate of switching from state u to state v and λ̂u is the new rate

of leaving state u. λuv and λu relate to the previously accepted rates. We require each rate to be

greater than or equal to 0 and the rate of leaving each state must be less than or equal to λmax. If

λ̂u > λmax, the probability of remaining in a state would be negative.

5.4 Latent Diffusion Bridge Evaluation

5.4.1 Trajectory Simulation Amendment

The trajectory proposal algorithm we have described above samples each potential behaviour switch

from the current Λ estimate. Doing so means all terms relating to state switching (or remaining in

a state) in the likelihood cancel with the corresponding proposal terms in the MH ratio. However,

our complex state space means that the condition that the final switch must result in animal i being

in the required state plays an overwhelming role in the trajectory updates. That is, a prohibitive

amount of proposals get rejected because of it.

To investigate this effect, we looked at the percentage of trajectory proposals that are rejected

before MH evaluation due to each condition. To do so, we fitted the model to 10 simulations, each

containing three animals and two BM states (so five states in total) for 100 discrete-time intervals

of two units of time each. The 10 simulated data sets were derived from a single set of parameter

values (Table 5.1) but they each contained a different realisation of the behaviours possible. A

value of 0.2 was used for λmax, a more than sufficient value for the transition rates used, and we

undertook trajectory updates over 2 to 7 observations.

Similarly to previous chapters, the behavioural process is initialised in the MCMC process randomly

and initial transition rates and movement parameter values are well dispersed. We carried out

enough trajectory updates per iteration so that each interval for each animal will be resampled

(not necessarily accepted) on average. Mostly motivated by the size of the output files, but also

with an eye on autocorrelation, we only recorded every second iteration for the movement and

transition parameters and every 20th iteration for the behavioural process. The above is consistent
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Parameter Value

α 0.2
σ 1.1

ρslow 0.4
ρfast 2.5

Parameter Value

λOU−OU 0.04
λOU−BM 0.02
λBM−OU 0.03
λBM−BM 0.02

Table 5.1: Parameter values used for the 10 simulations used in the LDB analysis.

Condition
Rejected (%)

Standard Forced

End State 36.8 0.0
Cyclic Hierarchy 1.9 2.3

No Switches 7.6 7.5

Table 5.2: The percentage of trajectory proposals that are rejected before before MH evaluation
during the first 2 hours of the standard and ‘forced’ methods. End state is where the proposal
doesn’t finish in the required state; cyclic hierarchy is where a sampled state results in a cyclic
hierarchy; no switches is where an update must contain a switch (the start and end states are
different) but no switches are sampled. These percentages are averages from fitting each method
to 10 simulations, each containing three interacting animals.

in all analyses in this chapter unless otherwise stated.

Table 5.2 displays the percentage of trajectory proposals that are rejected due to each condition

averaged across the 10 simulations. A considerable 36.8% are rejected due to the required end state

condition. In previous chapters, throwing away trajectory proposals in a spatially homogeneous

context was not a massive computational waste as they consisted purely of computationally simple

state switches. However, we are now also proposing the animal’s movement in the trajectories with

the LDB, which involves more complex computations (multiple conditional variance matrices, sam-

ples from multivariate normal distributions and inverse matrices for example). It would therefore

be prudent to investigate if there is a way of avoiding all of that wasted effort.

A potential route around this hurdle is to ‘force’ the last potential switch to result in the required

state. Table 5.2 contains the percentage of trajectory proposals that are rejected before MH eval-

uation with this method (from fitting the model to the same 10 simulations as above with the

same tuning parameters and initial parameter values). Figure 5.1 contains further comparisons

between the two approaches over the 10 runs. In order to provide a fair comparison, each run

was carried out for 24 hours to allow for the standard method being computationally quicker as

more trajectory proposals require evaluating with the forced method. That is, in 24 hours the

standard method worked through an average of 305k iterations whilst the force method worked

through 228k. Though, we did not delve into the exact burn-in period for each run and the ESS

was calculated from the second half of the output for simplicity (a more-than sufficient burn-in

period in all cases). It is clear this forced approach is not a silver bullet. The acceptance rate of the

proposals has improved, but maybe not quite to the extent one might expect given 36.8% would
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Standard Forced

Trajectory Acceptance Rate — Overall (%) 20.4 25.2
Trajectory Acceptance Rate — First 2k Iterations (%) 16.8 24.6

Figure 5.1: Comparison between the standard and forced methods for sampling the final switch
in a trajectory update. Results are averaged over 10 runs each, the length of which was dictated
by time, as opposed to number of iterations. (a) displays the effective sample size (ESS) on the
movement parameters, whilst (b) contains the ESS of the transition rates. The dashed horizontal
lines represent the average across the corresponding parameters. ESS is calculated using coda
(Plummer et al., 2006).

normally fail the end state condition. Whilst it ensured that all trajectories finished in the required

state, it may be that many of those that would normally fail the end state condition were already

off-piste and unreasonable. However, it does improve the rate at which we generate effective sam-

ples as there is an increase in the amount produced over the same time period compared with the

standard method. This improvement in the effective sample size (ESS) will be a consequence of the

improvement in the mixing of the behaviours caused by the increase in the trajectory acceptance

rate. Additionally, it appears the forced approach has a more pronounced effect early on in the

inference process. As we can see in Figure 5.1, there is a greater discrepancy in the trajectory

acceptance rates during the first 2k iterations. This will help encourage good mixing in the early

stages of the inference process and help the parameters approach the correct area of the parameter

space without getting stuck in local maxima. Whilst we didn’t examine the burn-in period for all

of these runs, it was heavily reduced during a separate exploratory analysis on data containing five

animals (from approximately 60k to 10k).

Using the ‘forced’ method requires us to keep track of the last switching time in the update (re-

gardless of whether a switch occurs or not) in the MH ratio. The proposal for this is 1 as there

is only a single state that would meet the condition. The term in the likelihood is the probability

of that switch (λuv/λmax) or stay (1 − λu/λmax). Thus, the practicalities of this method, both in

terms of implementation and running cost, are minimal.

All subsequent analyses in this chapter are conducted with the ‘forced’ method.
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5.4.2 Tuning the Bridge

The LDB brings with it a tuning parameter — the diffusion coefficient of the LDP we are using

to represent the focal animal’s movement from ts to tb. We will use the notation of ρb for this

parameter. In this section we will discuss how to interpret and consider this tuning parameter.

First, we will discuss the limits of the coefficient. As ρb −→ ∞, this method will tend towards

forwards simulation. To explain, consider the case when we are sampling the locations of the

entire group (Section 5.2.2). The term (ÃΞ)T (ΞR)−1 in equations 5.7 and 5.8 will tend towards

0, as the recursive covariance (ΞR) will tend to ∞, and so the distribution of Gs|∗ will converge

to MVN(µ,Ξ). This is the same distribution as in equation 5.1 — that of sampling a forwards

movement step. A similar calculation unfolds for the case when we are sampling the location of

just the focal animal.

We require the coefficient to be greater than or equal to 0. To show how the bridge behaves as

ρb −→ 0, consider an individual animal which is moving in a BM state with coefficient ρs from ta

to ts. The univariate equivalents of equations 5.7 and 5.8 result in the following distribution:

Gs|∗ ∼ N(µ+ (ρ2
s(ts − ta)/(ρ2

s(ts − ta) + ρ2
b(tb − ts)))(gb − µR), (5.22)

ρ2
s(ts − ta)− ((ρ2

s(ts − ta))2/(ρ2
s(ts − ta) + ρ2

b(tb − ts)))) (5.23)

As ρb −→ 0 and µ = µR, this distribution tends to N(gb, 0). The location of this animal at time ts

will therefore be proposed as its location at time tb with absolute certainty. Whilst the calculation

is more complex for the multivariate case, the result will be the same for the focal animal — their

sample for Gs will tend to gb as ρb −→ 0.

The value used for the LDP diffusion coefficient will clearly affect the acceptance rate of the

trajectory samples. Therefore, the usual method of observing the acceptance rates can be used to

tune this parameter. Aside from that, it appears a rule of thumb for a reasonable value will be

within the range of the diffusion coefficients of the BM processes in the movement model. Though,

this does present a chicken-or-the-egg style problem. However, it also appears that the tuning of

the LDP coefficient is not overly sensitive. To showcase this, for several values of the coefficient,

we fit an otherwise identical model (tuned as detailed in Section 5.4.1) to 10 simulations (also as

detailed in Section 5.4.1).

Table 5.3 shows that for quite a wide range of values (in the context of the movement model’s BM

coefficients being 0.4 and 2.5) we obtain good mixing. The acceptance rates all remain reasonable,

with a slight peak from 1.5 to 2.5 and the only significant decrease occurring at 0.5. Due to this

decreased level of mixing, the runs with a coefficient of 0.5 did have to be tuned separately. The

mean ESS of both the movement parameters and transition rates follow a similar pattern. Applying

the Gelman-Rubin diagnostic (multivariate potential scale reduction factor, MPSRF) on each pair

of analyses, we can see (in Tables 5.4 and 5.5) that they all converge to the same posteriors, with the
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LDP Coefficient
0.5 1.0 1.5 2.0 2.5 3.0

Trajectory acceptance rate (%) 17.7 22.7 25.2 26.2 26.0 23.6
Movement parameters ESS 1253 1241 1444 1515 1463 1339

Transition rate ESS 856 980 1128 1082 948 904
Augmented data length 201 217 219 219 219 219

Table 5.3: The trajectory acceptance rate, ESS output and augmented data length for each of the
LDP coefficients. Each number is the mean calculated over the 10 runs for each coefficient.

Movement Parameters LDP Coefficient
Multivariate PSRF 0.5 1.0 1.5 2.0 2.5 3.0

LDP Coefficient

0.5 - 1.95 1.70 1.70 1.67 1.68
1.0 - - 1.18 1.20 1.19 1.19
1.5 - - - 1.02 1.02 1.02
2.0 - - - - 1.01 1.01
2.5 - - - - - 1.01
3.0 - - - - - -

Table 5.4: The Gelman-Rubin diagnostic (multivariate PSRF) of the movement parameters between
each different tuning run. For example, using a coefficient of 0.5 to fit the model to simulation 1
compared to using a coefficient of 1.0. These are the means over the 10 simulations.

Transition Rates LDP Coefficient
Multivariate PSRF 0.5 1.0 1.5 2.0 2.5 3.0

LDP Coefficient

0.5 - 2.30 2.49 2.49 2.48 2.49
1.0 - - 1.19 1.18 1.18 1.18
1.5 - - - 1.01 1.01 1.01
2.0 - - - - 1.01 1.01
2.5 - - - - - 1.01
3.0 - - - - - -

Table 5.5: The Gelman-Rubin diagnostic (multivariate PSRF) of the transition rates between each
different tuning run. For example, using a coefficient of 0.5 to fit the model to simulation 1 compared
to using a coefficient of 1.0. These are the means over the 10 simulations.

exception of the 0.5 and 1.0 coefficient runs. Note, we did not apply the Gelman-Rubin diagnostic

across runs with the same coefficient. We were testing to see if each tuning converged to the same

posteriors in order to examine the importance of the coefficient value.

These results can be seen further in Figures 5.2a and 5.2b. The posteriors for coefficients 1.5 to 3.0

are largely in agreement with each other and the true parameter values. The posteriors from these

coefficient runs overlap to such an extent we can clearly see 10 distinct distributions — one for each

of the simulations. Some of the transition rate posteriors don’t align strongly with the true value.

However, this is just symptomatic of the variation that will naturally occur between 10 simulations.

For example, the group of λBM−BM posteriors that are close to 0 relate to a simulation containing
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only one switch between BM states. The posteriors relating to coefficients 0.5 and 1.0 (particularly

0.5) do not align strongly with the others and produce spurious results.

The multivariate PSRFs (concerning a coefficient of 0.5) are much poorer with regards to the

transition rates than they are for the movement parameters. The cause of both of these discrepancies

will partly come from the poor mixing using this coefficient, but, for the transition rates, it also

stems from the quirk that using a too-small coefficient results in a smaller than expected augmented

data set. Over an interval (ta, tb), the expected number of switching times that will be sampled

for an individual is (tb − ta)λmax. Therefore, for simulated data consisting of 101 observations for

3 animals over 200 time units, the expected length of the augmented data will be 101 + (200 −
0) × 0.2 × 3 = 221 when using λmax = 0.2. From Table 5.3, the mean data length for coefficients

1.5 to 3.0 is 219, whilst for 0.5 it is 201. As explained above, as ρb −→ 0, new locations for an

animal at time ts are proposed increasingly towards its location at tb and with increasing certainty,

potentially producing erratic and unlikely movement steps. Additionally, subsequent movement

steps (towards switching times between ts and tb) will be highly unlikely as the focal animal

remains rooted to gb, particularly in the case when the focal animal is in a subordinate state and

some persistent movement towards their dominant is expected. Therefore, it will be unlikely that

a new trajectory proposal containing a relatively high number of switching times (compared to

the previously accepted trajectory) will contain a more acceptable series of movement steps. A

knock-on effect is that the transition rate samples are evaluated over a smaller number of switching

times than would normally be expected for the λmax used. This leads to the transition rates being

inflated if the behaviours estimated are broadly correct. This is because the more-or-less correct

number of state switches now consume a greater proportion of the switching times than if the

augmented data set length was closer to 221. That is, the rate of leaving a state will inflate towards

λmax, which is still 0.2.

A similar story to the movement and transition parameters unfolds with the state estimations

(Figure 5.3). All the coefficient runs align with each other and (mostly) with the true state, but

with notable exceptions for coefficients 0.5 and 1.0. The example in Figure 5.3 was chosen as the

results of coefficients 1.5 to 3.0 closely aligned both with each other and the true state. This enables

the plots to clearly show the runs for coefficients 0.5 and 1.0 (0.5 in particular) deviating even when

all others are correct. For a more complete view, Figure 5.4 shows the CDFs of the correct state

posteriors for each run under each tuning. The posteriors from coefficients 1.5 to 3.0 are similarly

confident — in Figure 5.4a the CDFs from these coefficient runs are once again heavily overlapping.

In Figure 5.4b, we can then see the state estimations are less accurate for coefficient 0.5.

The tuning of the diffusion coefficient of the LDP is therefore quite insensitive, only the too-

small or too-large extremes need to be avoided. Coefficients 1.5, 2.0 and 2.5 all look optimum for

these simulations and so, without much to choose from, a value of 1.5 is used in the subsequent

section comparing the LDB method against the forwards simulation approach (as well as in Section

5.4.1).
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Figure 5.2: (a): posterior distributions of the movement parameters for each of the LDP coefficient
runs. Both rows are identical except that the top row omits the posteriors for coefficients 0.5 and
1.0. (b): posterior distributions of the transition rates for each of the LDP coefficient runs. Both
rows are identical except that the top row omits the posteriors for coefficients 0.5 and 1.0. The
blue vertical lines indicate the true value used.

5.4.3 LDB vs Forwards Simulation

In order to examine any efficiency gained from the LDB method, we ran both the LDB and forwards

simulation algorithms on the same 20 simulated data sets. These simulations are deriving exactly
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Figure 5.3: The modal state estimation for each of the LDP coefficients for one of the simulations.
The lines have been shifted to avoid overlap.

as described in Section 5.4.1. We ran the inference for a set amount of time (24 hours), as opposed

for a set number of iterations, to allow for the computational differences between the two methods.

That is, forwards simulation will complete an iteration quicker than the LDB algorithm due to a

more simplified movement proposal process. Again, we analysed the second half of these chains,

rather than precisely locating the burn-in period for each run. Whilst this is always sufficient for

the LDB runs, it is not always for the forwards simulation output as we will shortly discuss.

Forwards simulation, due to its rudderless movement proposals, does not mix well. Reasonable

trajectories of the animal’s movement are not proposed frequently and therefore the behavioural

states are not resampled frequently. Subsequently, the movement and transition parameters do not

mix well as they are beholden to the current, stubborn trajectory realisation. The movement and

transition rate samples may well be jumping around their parameter space sufficiently enough in

order to aid good mixing and exploration of the behavioural states, but the trajectory proposals are

still likely to go awry and so the opportunity to explore is lost. The movement and transition rate

samples will then persist in an area of the parameter space corresponding to a particular trajectory

realisation for some time.
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Figure 5.4: Each line represents the CDF of the true state posterior. That is, the probability an
animal is estimated to be in the true state. Each CDF is derived from the posteriors for all animals
during a single run at the times of the observed data. (a) contains the CDFs for each run for each
coefficient 1.5 to 3.0. (b) adds in the CDFs for coefficients 0.5 and 1.0 for comparison.

The naivety of forwards simulation is compounded when updating longer segments of the data.

Whilst the movement trajectories essentially reset at each observation in the segment being updated,

each interval (between two observations) has the potential to contain a wildly unreasonable sample.

We propose new trajectories in the LDB runs over 2 to 7 observations. Whilst this provides a

good level of mixing for that algorithm, it is too ambitious for forwards simulation. For example,

using the LDB, updates over 4 observations are accepted approximately 23% of the time. With

forwards simulation, this acceptance rate drops to 8%. As a result, trajectory updates with forwards

simulation are undertaken over 2 to 4 observations. However, updating over such a small section of

data, although it increases the acceptance rate, harms the mixing in another way if used in isolation

(that is, not in conjunction with longer updates). It is akin to not being able to see the forest for

the trees.

Figures 5.5 and 5.6 show more concrete evidence for this improvement in mixing when using the

LDB method. The ESS of the movement parameters increase by over a third on average, whilst that

of the transition rates increases by roughly a quarter. The ESS is calculated over the second half of

the chains and thus is calculated over 12 hours in each case. Whilst this suggests an improvement,

the ESS comparison underplays the advantage gained. Not only does the ESS increase, but it

is also drawn from a posterior that more closely resembles the true values used. The LDB runs

average out to be extremely consistent with the true value for both the movement parameters and

transition rates, whilst the forwards simulation runs are more prone to spurious results.
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Parameter True Value
Forwards LDB

Point Est. ESS Point Est. ESS

α 0.2 0.196 1144 0.204 1407
σ 1.1 1.193 960 1.118 1577

ρslow 0.4 0.465 807 0.402 1306
ρfast 2.5 2.459 1360 2.468 1467

Figure 5.5: Posterior distributions from 20 runs for the four movement parameters for both the
forwards simulation (top row) and LDB (bottom row) methods. The blue vertical line indicates
the true value used. The table contains a summary of the movement parameter results. Point
estimates are averages of the density peaks; the effective sample size is the mean over the 20 runs.

Through Figure 5.7 we can see the improved mixing in action to a greater extent. The forwards

simulation chains move towards convergence in a stepped fashion (Figure 5.7a). This feature in

the chains is due to the aforementioned struggle to resample the trajectories of the animals and

thus the movement parameter samples spend considerable time exploring values corresponding

to particular trajectory estimations, estimations which will be quite wayward at the start of the

inference process. Whilst the movement parameter trace plots indicate the forwards simulation runs

reach convergence, the transition rate trace plots tell a different story. We suspect, particularly for

simulations 1 and 16, we are still observing the burn-in period for these runs as the transition rate

samples wrestle towards the correct area of the parameter space. The LDB runs, on the other hand,

converge quickly. It is hard to tell from the transition rate trace plots, but all starting parameter

values were initiated to be well dispersed from the eventual posteriors. Additionally, these trace

plots indicate that if we had taken into account the burn-in periods, the ESS comparison in Figures

5.5 and 5.6 would be in the favour of the LDB algorithm to an even greater extent.
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λBM−BM 0.02 0.024 898 0.024 1001

Figure 5.6: Posterior distributions from 20 runs for the four transition rates for both the forwards
simulation (top row) and LDB (bottom row) methods. The blue vertical line indicates the true
value used. The table contains a summary of the transition rate results. Point estimates are
averages of the density peaks; the effective sample size is the mean over the 20 runs.

Finally, we can observe the difference between the two methods on the state estimations of the

animals in Figure 5.8. The LDB produces state estimations that are more certain and more con-

sistent with the true state. We would normally expect the two results to align, even with the

improved mixing with the LDB method. However, as seen above, this improved mixing facilitates

convergence, something which has yet to be reached in some of the forwards simulation runs. It

will also help the MCMC process avoid getting stuck in local maxima and approach the most likely

estimate.

Overall, whilst the spatially heterogeneous version of the forwards simulation is a perfectly sensible

approach in other contexts (Blackwell et al., 2016), it struggles to propose reasonable movement

trajectories in the context of our model. The naivety of forwards simulation is compounded by the

fact we are jointly modelling the movement of multiple animals and so wayward simulations are

not only unlikely with respect to the focal animal, but also to any others in their subgroup. In

order to examine the robustness of our model and inference methods, we like to provide challenging
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Figure 5.7: (a) contains the trace plots of the movement parameter ρslow (the diffusion coefficient
of state BMslow) for a sample of runs of both the forwards simulation and LDB methods. (b)
contains the trace plots of the transition rate λBM−BM in the same context as (a). The horizontal
blue lines indication the true value used in the simulation and the chains have been thinned.

scenarios. Therefore, we initialise the behaviours randomly — meaning the animals are potentially

switching state between every observation initially. This, in conjunction with the fact that we

could only reasonably propose new trajectories over four or fewer observations, means the inference

process when using forwards simulation struggles to get going, as seen in Figure 5.7. Even when it

does, the poor mixing has a persistent effect. Figures 5.7 and 5.8 suggest the parameter samples

can get close to the true value, but they struggle to make the leap to the global maxima.

The above analysis points towards the LDB providing a sizeable mixing improvement over forwards

simulation, an advantage that far outweighs the added computational cost. The advantage of the

LDB would be further highlighted in the scenario where we had a reduced computational ability or

time to undertake the analysis. For example, say we were only able to run a half or even a third of the

number of iterations currently completed. As indicated by the trace plots in Figure 5.7, we would

still obtain good parameter estimations when using the LDB. However, the forwards simulation

runs would most likely still be within the burn-in period. Furthermore, some exploratory analysis

indicates the above improvements are amplified when the data set contains more animals.
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Figure 5.8: Each line represents the CDF of the true state posterior. That is, the posterior proba-
bility an animal is estimated to be in the true state. Each CDF is derived from the posteriors for
all animals during a single run at the times of the observed data.

5.5 Proximity

The distance between two animals has frequently been utilised in various approaches to analysing

social behaviour in animal groups. In its various guises: interactive ranges add biological realism to

self-propelled particle (SPP) models for mass-migrating animals (Couzin et al., 2002; Buhl et al.,

2006; Codling et al., 2007); distance to a group has been used to define membership of it (Haydon

et al., 2008); proximity based approaches are used to define social networks (Wittemyer et al., 2005;

Castles et al., 2014; Farine & Whitehead, 2015; Davis et al., 2018), which can then be used for

network-based diffusion analysis (Franz & Nunn, 2009); and proximity can be used as metric to

quantify dyadic interaction (Long et al., 2014; Joo et al., 2018). Outside of the animal kingdom,

proximity is built into latent space models, which are used to investigate social networks in a

range of contexts such as sociology and marketing (Sarkar & Moore, 2005). The motivation behind

proximity being a staple of social analysis is intuitive: it is a prerequisite for an interaction to occur

between animals (Castles et al., 2014; Farine, 2015). Indeed, Garroway et al. (2013) concluded that

spatial proximity was a better predictor for social associations than kinship — at least for their

study animal, southern flying squirrels. Though, despite the above uses and intuition, proximity

should not be considered an infallible tool with which to analysis social interaction. For example,

other studies point to interaction in some species being driven by topological distance, rather than

metric distance (Ballerini et al., 2008; Camperi et al., 2012). See Section 1.2.3 for further discussion.

We will therefore discuss in the following section why adding some notion of proximity into our
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model can complement our existing framework.

5.6 Zone of Interaction

Incorporating some sense of proximity into our social movement model was not possible in Chapters

3 and 4 as we did not sample the animals’ locations at behavioural switching times. Though, now

that our model has been extended to the spatially heterogeneous case, we can begin to utilise that

capability. Here, we incorporate a zone of interaction into our modelling framework.

In a commonly used class of models, Couzin et al. (2002) split their interactive zone into ones of

repulsion, alignment and attraction in order to simulate collective movement in self-propelled parti-

cles. Their work shows that, from simulation experiments, the radii of these zones is a determinant

of the type of collective behaviour displayed by the particles, which may be thought to represent a

school of fish or a flock of birds. This formulation of the interaction zone is different to ours, in that

we are using a single range. That is, a pair of animals that are within some interaction radius can

directly interact through our defined behavioural states (see Figure 5.9). These differences are born

out of the different ‘biological realism’ we require the radii to represent. For Couzin et al. (2002),

part of the motivation was that the zone of repulsion allowed collisions between the particles to be

avoided. This feature is not required in our model as avoidance isn’t a focus of our approach and we

do not model the animals as self-propelled particles. Both approaches provide a boundary, beyond

which animals cannot interact and so spurious, distant interactions are prevented. In our case, this

has an added bonus in that OU attraction can lead to quite extreme movement behaviours if the

distance between interacting animals is large. Having a radius of interaction will mitigate the worst

of this effect. An additional perk is that it will reduce the state space that needs exploring (also

discussed by Scharf et al. (2016)). That is, our behavioural states correspond to interacting with

specific animals. If some of those animals are out of range, the corresponding states are effectively

removed from the state space at that time.

It is worth noting that our zone of interaction only comes into effect at actual switching times.

That is, in order to switch to a subordinate state, the dominant must be in range of the focal

animal. However, at non-switching times, the animals can drift apart to distances greater than the

interaction radius as it does not seem biologically realistic for the zone to act as a strict cut-off for

interaction. Furthermore, the zones only relate to interactive behaviours. Thus, the animals can

switch to a BM state regardless of the spatial context.

Much of the literature mentioned above requires user input on what constitutes proximity. Whilst

that input can be based on expert advice, the exact nature of that advice can lead to significantly

different social networks (Castles et al., 2014; Davis et al., 2018). Therefore, we explore methods

with which to infer the interaction radius, both to circumvent that problem and to increase the

richness of information we can obtain by analysing animal movement data.
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Figure 5.9: A diagram representing the zone of interaction for animal A. Animal B is within this
zone and so can interact with A (and vice versa). Animal C is too far away in order to be influenced
by A (and vice versa).

5.6.1 Interaction Radius

We explore the posterior of the interaction radius, r, with a random walk MH (with an independent,

normally-distributed proposal). In order for new a radius sample to be consistent with the currently

estimated movement and behavioural trajectories, we require that new sample, r̂, to be greater than

the maximum distance between directly interacting animals at the times when they start interacting

(according to the current trajectories). If that’s not the case, r̂ is rejected as at least one state

switch would not have been possible with this new radius and so the likelihood of it is 0.

To evaluate the new radius, we need to evaluate the likelihood of the currently sampled behaviours

under both the new and old radii. Thus, we update the radius simultaneously with the transition

rates. The MH ratio is exactly the same as in the non-zonal case (Section 5.3.3), except the

transition rates are now dependent on the radius. That is, transition rates to subordinate states

are now set to 0 if the potential dominants are out of range of the focal animal. As a result,

there is some interplay between the samples of the interaction radius and the transition rates. For

example, if λ̂OU−OU > λOU−OU and r̂ > r then λ̂u ≥ λu if u is a subordinate state as there is a

greater rate of switching to other possible subordinate states and the focal animal may now be in

the interaction radius of more animals. If, say, λ̂OU−OU > λOU−OU but r̂ < r, the effect on λ̂u

depends on which change had the greater effect. For example, in the scenario where λ̂OU−OU is

only marginally greater than λOU−OU but r̂ means the focal animal is now out of range of more

animals than with r, λ̂u would likely decrease.
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5.6.2 New Trajectory Simulation Conditions

Including the zone of interaction only slightly alters the trajectory proposal process (Section 5.3.2).

The MH ratio remains identical as detailed in that section, as does the simulation algorithm aside

from two alterations. Firstly, we require an extra condition during the movement proposal part

of the process. That is, the focal animal i may move to a location which causes another animal’s

switch (say animal j’s switch) to be out of range. This situation can only occur at a time when

animal j switches to state SAi and we resample i’s location at this time to one that would’ve

made that switch impossible. If this scenario does play out, we reject the trajectory update as it

does not meet the condition that it must remain consistent with the data we are treating as fixed.

Secondly, we must take into account which transitions are allowed by the interaction radius when

we are sampling state switches. That is, transitions to states that correspond to subordination to

an out-of-range animal are set to 0.

5.7 Zone of Interaction Evaluation

5.7.1 Inferring the Radius

In our first steps in exploring this approach, we look at how robustly we can infer the interaction

radius. That is, we fit this model to a number of simulations that have interaction zones built in

to them. Obviously we are interested in how well we can infer the radius of the zones, but we will

cast a keen eye over the estimations of the transition rates as well, as these are now dependent on

the radius.

We fit the model to 20 different simulations. As in previous sections in this chapter, these are

derived from a single set of parameter values but each simulation contains a different realisation

of the behaviours possible under those values. The values used (Table 5.6) were chosen to allow a

broad mix of behaviours that are inspired by fission-fusion dynamics. That is, the animals do not

form a stable social group. As usual, two BM states are included to represent different speeds of

movement but for these simulations we have included four interacting animals. A greater number

of animals would provide more scenarios to simulate, however, there is a trade off with computation

speed when analysing a sizeable number of data sets. In principle though, a group of four allows for

most scenarios — such as two distinct subgroups. Each simulation consists of 100 discrete intervals

of two units of time. A value of 1.5 was used for the coefficient of the LDP.

In order to test the inference of the interaction radius, 10 of the runs were initialised with a radius

that was too small, whilst the other 10 were initialised to be too big. We set λmax = 0.25 as the

maximum rate of leaving a state in the simulations is 0.18 (providing an animal is in all of the

relevant zones). However, some of the rate posteriors (Figure 5.12) indicate that a slightly larger

λmax would’ve allowed the samples to explore more freely. Again though, some consideration was

given to the computational needs of analysing 20 simulations. Trajectories were updated over 2 to
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Parameter Value

α 0.2
σ 1.1

ρslow 0.4
ρfast 2.5

Parameter Value

λOU−OU 0.03
λOU−BM 0.02
λBM−OU 0.05
λBM−BM 0.03

r (interaction radius) 12.0

Table 5.6: Parameter values used for the simulations containing the zone of interaction.

6 observations.

Each run was carried out for 36 hours and, for all of the results in this section, we analyse the

second half of the outputs. Whilst this was a sufficient burn-in for all cases, each run could have

been tuned more effectively. Each run was tuned identically, rather than arduously tuning each

one separately, which in theory is a suitable approach as all simulations are derived from the same

parameter values. However, as the behaviours exhibited in each simulation are different, our one-

size-fits-all approach is less than optimal. The results that follow could therefore, in theory, be

enhanced (an increased ESS for example) under more optimal settings.

Figure 5.10 plots the posterior distribution of the radius from each of the simulation runs. The

majority of them are consistent with the true value (Figure 5.10a) — the difference between the

point estimates is the result of the long tails that occur in some of the posteriors. However, there

are some notable exceptions (Figure 5.10b). The spurious results can be better explained with

the help of the trace plots in Figure 5.11. Both the posterior and trace plot for simulation 10

indicate some evidence of bimodality. Whilst analysing the modal state estimations for iteration

ranges 25k-50k (‘early’, larger radius), 150k-250k (‘middle’, smaller radius) and 300k-350k (‘late’,

larger radius), we found identical interaction estimated in both the early and late iteration ranges

between two animals — an interaction that is beyond the radius samples during the middle range.

This interaction commences when those two animals are roughly 19 units of distance apart — a

distance in line with larger radius samples. Thus, the evidence of those two animals interacting in

the data (albeit, not true) led to the larger radius samples. The radius samples for simulation 3

cover a wide range of values. It may be that there is simply some evidence of interaction further

afield in the data. However, the meandering trace plot for this simulation indicates that a tuning

(with regards to the radius) more specific for this data set would prevent the samples wandering

so freely.

Simulation 14 produces the most cause for concern. The trace plot indicates the samples are mixing

well until around iteration 170k. This explosion of radius estimation highlights a flaw in how we

had setup up the MCMC process. We used an uninformative, flat prior for the radius and so only

the data contributes to the posterior. However, if the radius sample jumps above the maximum

distance between any two animals in the data (the red line in the trace plots), the radius no longer

has any impact on any likelihood terms and thus it is free to randomly walk off. In the case of
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Parameter True Value Mean Median Mode ESS

r 12.0 12.8 12.0 11.4 231

Figure 5.10: Posterior distributions from 20 runs for the interaction radius. (a) contains all the
posteriors except for the those of simulations 3, 10 and 14. (b) overlays those spurious results on
top of the same posteriors in (a). The blue vertical line indicates the true value used. The point
estimates and ESS are averages from the 20 runs, except for simulation 14.

simulation 14, it did. In the cases of simulations 1 and 16, we were fortunate that the radius samples

walked back into a meaningful range. Other runs on simulation 14 with different seeds produced

a posterior more consistent with those in Figure 5.10a. A flat prior in this instance is therefore

not a sensible choice as not all of the parameter space is reasonable. A more sensible prior would

discourage radius samples beyond that maximum proximity — an idea that we explore in Section

5.7.2.

The posteriors of the transition rates for all runs are shown in Figure 5.12. They are largely confident

and consistent with the true value. λOU−OU appears to be the most difficult to infer as for this

transition to be possible an animal must be in the interaction zone of two others (its current and

prospective dominant) — a relatively rare occurrence in data sets of 4 animals. Therefore, some of

the simulations will contain fewer subordinate-to-subordinate switches than we would like in order

to confidently estimate that rate. The variation in the point estimates is indicative of this — with

some wide, uncertain posteriors inflating the mean and median away from the mode.

A potential, unwanted side-effect of introducing an interaction radius is that it may hamper our

ability to correctly infer the more distant true interaction. That is, as the radius samples bounce
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Figure 5.11: Trace plots of the interaction radius samples from each of the 20 simulation runs. The
blue line indicates the true radius whilst the red line indicates the maximum distance between any
two animals throughout that simulation. The y axis has been truncated to 150 as little information
is contained beyond that — the radius samples in simulation 14 continue to randomly walk.

around, some of those samples may deem interaction that we know to be true in the simulation to

be overly distant — thus, our ability to infer the true behaviour is restricted. Figure 5.13 displays

the interaction posteriors from all simulation runs at each observed time (for simplicity). An
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Parameter True Value Mean Median Mode ESS

λOU−OU 0.03 0.037 0.034 0.022 432
λOU−BM 0.02 0.025 0.024 0.022 474
λBM−OU 0.05 0.044 0.044 0.044 617
λBM−BM 0.03 0.036 0.035 0.032 585

Figure 5.12: Top: posterior distributions from 20 runs for the four transition rates. The blue
vertical line indicates the true value used. Bottom: a summary of the transition rate results. Point
estimates and the ESS are averages from the 20 runs.

interaction posterior in this context is the posterior probability of two animals directly interacting

at times of true direct interaction, regardless of ordering. We overlay these posteriors with the 20th,

40th, 60th and 80th percentiles for a number of proximity ranges: each third of the true radius

and all distances beyond that. The aforementioned side-effect would present itself through smaller

percentile values for the larger proximity ranges as the inference of true interaction was restricted.

However, this is not the case as the percentiles selected are consistent across the ranges. Note, the

zone of interaction only limits switching to a subordinate state — interaction can persist outside of

it as seen in this figure. Whilst persisting interaction beyond the radius was rare (as subordinates
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Figure 5.13: The interaction posteriors (the posterior probability of two animals directly interacting
at true direct interaction) are plotted against their proximity. The results encompass all simulation
runs and come from the state estimations at observations. The horizontal lines indicate the 20th,
40th, 60th and 80th percentiles for the corresponding proximity ranges. The blue line represents
the true value of the interaction radius. Points beyond that proximity result from animals moving
outside the zones during persistent interaction (the zones only limit switching). Both axes have
been jittered in order to help display the density of the points.

either gravitate back to the dominant or eventually switch to a BM state), it is important to show

that the radius does not act as strict cut-off point for interaction, and these wanderings are still

confidently inferred.

5.7.2 Interaction Radius Prior

As mentioned above, a flat prior for the interaction radius is not a sensible choice. We have therefore

trialled a prior distribution which is relatively flat for meaningful values of the radius, but whose

density gradually reduces to 0 beyond that. Namely, a half-normal distribution with a sufficiently

large standard deviation.

Figure 5.14 displays the trace of the radius samples whilst fitting this version of the model to

the 20 simulations. The standard deviation was set to 110 units of distance, which encompasses

all observed distances between any two animals in all of the simulations. Therefore, the half-
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normal distribution will be relatively flat for meaningful values of the radius, but the radius chain

is discouraged from wandering off too far. Ignoring simulation 1 for now, this figure shows fewer

instances where the radius sample jumps above the maximum distance line for extended periods

when compared to Figure 5.11. In particular, see the plots for simulations 14 and 16.

Simulation 1 represents a tricky case as the maximum distance between two animals (beyond which

the radius doesn’t impact any likelihood terms) is not much greater than the true radius and the

range of values for which there is some evidence of. The radius sample can therefore quite easily

jump above that maximum distance. This is true even with our new prior as, given the prior’s

large standard deviation in the context of this data set, the prior will have little impact on the

evaluation of radius samples around that part of the parameter space. However, a number of other

simulations represent a similar situation (simulations 7, 9, 16 and 18), but they didn’t have this

problem. Another explanation for the erratic radius samples of the simulation 1 run is that there

just isn’t strong evidence in the data for a zone of interaction. Nonetheless, we can see in Figure

5.14 the samples are now reluctant to wander off too far due to the prior. Through longer runs,

we would therefore be in a better position to ascertain exactly how much evidence there is of an

interaction radius as the samples have a greater chance of returning to meaningful values — thus

avoiding the situation of simulation 14 in the flat prior case.

Figure 5.15 compares the posterior distribution of the radius when using a flat prior and when using

the half-normal prior. Aside from the already discussed runs (regarding simulations 1 and 14), all

posteriors are consistent — including the biomodality found in simulation 10. Furthermore, the

prior did not negatively restrict the radius sampling as the ESS, averaged over all runs, remained

consistent — 245 compared to 231 previously.

Strictly speaking, the standard deviation of the prior should not be informed by the data — which

is broadly in line with our approach in setting the prior above. However, it may be reasonable in

some circumstances to set the standard deviation of the prior to be a bit more restrictive than what

we have used thus far. For most of our simulations, the standard deviation was much greater than

any observed distance between animals. An alternative approach could be to use the maximum

distance observed (or thereabouts) for the standard deviation. The half-normal prior will remain

relatively flat for all values of the radius that impact the likelihood terms, but it will discourage

the samples from wandering off to an even greater extent. We ran the simulation inferences again

with exactly that approach for the prior. The results obtained (Figure 5.16) are consistent with

previous results, except that this time the samples for simulation 1 are constrained further and thus

we are able to see the radius values for which there is some evidence. However, this more restrictive

prior may just be forcing the inference process to look for evidence of a zone of interaction, even

if the data doesn’t support it — as what might be happening with the simulation 1 run in Figure

5.16.
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Figure 5.14: Trace plots of the interaction radius from each of the 20 simulation runs when using
a half-normally distributed prior. The blue line indicates the true radius; the red line indicates
the maximum distance between any two animals throughout that simulation; the dotted red line
indicates the standard deviation of the prior distribution. The y axis has been truncated to 150 as
little information is contained beyond that.
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Figure 5.15: The posterior distributions of the interaction radius from each of the 20 simulation
runs. The silver posteriors are the products of using a flat prior for the radius, whilst the gold
posteriors are obtained when using the half-normally distributed prior with a standard deviation
of 110. Note: the posterior for simulation 14 from the flat prior run does not appear in this range,
neither does most of the posterior for simulation 1 from the half-normal run.
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Figure 5.16: Trace plots of the interaction radius from each of the 20 simulation runs when using a
half-normally distributed prior — the standard deviation of which is set by the maximum distance
between any two animals throughout that simulation (the red line). The blue line indicates the
true radius.
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5.8 Revisiting the Baboons

5.8.1 Setup

In order to trial our extended model on real data, we revisit the baboon troop we analysed in

Chapter 4. As the subset of data we analysed was chosen because it included some directional

conflict, through which the group temporally splits up, it represents a useful case study for these

extensions also. Whilst we are interested in the insight that can be gained from including the zone

of interaction in the model, we have also carried out a number of runs without it so that we can

evaluate its impact on the model fitting process.

Our results from Chapter 4 found that thinning the data still allowed us to obtain useful information

from the model whilst reducing the computational effort of fitting it. However, the amount of

thinning does change the scale of behaviours we can analyse. Furthermore, our results in Chapter

4 alluded to there being some persistence in the movement of leading and independent animals.

That persistence is another factor to consider when deciding on how much data thinning to carry

out. That is, the more data we retain, the smaller the average time interval will be between a

sampled switching time and the next observed time. As a result, the LDB proposal distributions

will be more ‘guided’ towards the next observed location, an effect that is particularly useful in our

scenario of modelling the movement of leading/independent animals with BM despite the suggested

persistence. We have therefore decided to thin the data by a factor of two in order to reduce the

computational effort of the inference process, but whilst still retaining enough data to analyse fine-

scale behaviours and provide a good level of guidance for the LDB. After a few tuning runs, a value

of 1.1 was used for the diffusion coefficient of the LDP.

We are still modelling the movement of self-driven baboons with BM, even though previous analysis

suggests it is insufficient, as the temporal range of the data set we are analysing (15 minutes) does

not really lend itself to modelling that movement with an OU process. That is, it is not long-term

enough to establish a fixed site of interest. Moreover, investigating that type of behaviour is not

the focus of our analysis in this chapter.

During the tuning process, it became clear that the model was mixing slowly. This was evident

from the radius trace plots as a single run would spend half the time in one range of values and

half the time in a different range (see Figure 5.17). We briefly trialled using a greater standard

deviation for the radius proposal distribution, and a distribution with heavier tails, in order to see

if the limiting factor was the (lack of) ability of the proposal distribution to traverse the parameter

space. However, neither method facilitated better mixing. In fact, both methods only hindered

the inference process. Increasing the standard deviation of the proposal distribution (and to a

lesser extent, increasing the heaviness of the tails) led to more radius samples being automatically

rejected as they were more likely to fall foul of the condition that they must be large enough to

facilitate all currently sampled interaction (recall Section 5.6.1).



CHAPTER 5. TOWARDS SPATIAL HETEROGENEITY 131

0
50

10
0

15
0

20
0

Iteration

r

0 70000 140000 210000 280000

Figure 5.17: The trace plot of the interaction radius from a tuning run .The solid red line indicates
the maximum distance observed between any two baboons whilst the dotted red line indicates the
standard deviation of the prior distribution.

The radius samples appeared to mix well enough then, but the trajectories that would backup the

new radius were not being proposed and accepted frequently enough — despite obtaining a good

acceptance rate for trajectory updates over 2 to 10 observations. For instance, if the latest radius

sample was large enough to allow some new interaction, that new interaction wouldn’t be proposed

and accepted quick enough before the radius value dropped back down again. A more fruitful

change to our inference process was therefore to increase the number of trajectory updates per

iteration. Thus far, we have tended to set the number of trajectory updates so that roughly every

interval for every animal will be resampled per iteration (on average). Now though, with the added

complexity of spatial heterogeneity and the zone of interaction, we have doubled that in order to

improve the above situation. Whilst that does have a knock-on effect on the computational effort

required per iteration, and so reducing the number of iterations possible, we can see from Figure

5.18 that increasing the number of updates per iteration has led to an improvement in mixing.

However, it is also clear from these plots that many more iterations would be required in order to

gain a complete picture of the radius posterior from a single run.

As the above mixing problem emanates from the trajectory updates, as opposed to the radius

sampling, the same problem will occur with the behavioural state posteriors — more iterations will

be required for any one run to be insightful on its own. During this section then, in order to obtain

well-explored posteriors, we have collated the output of 10 runs that include the zone of interaction

(zonal runs) and, separately, we have also collated the output of 10 runs that don’t (non-zonal

runs). That is, the radius and state chains (post burn-in) from the 10 zonal runs will be combined
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to produce the respective posteriors (and similarly for the non-zonal runs).

5.8.2 Zonal vs Non-Zonal

Curiously, including the zone of interaction did not increase the burn-in period. Both the zonal

and non-zonal runs had a burn-in period of approximately 15k iterations on average. Though,

determining the burn-in period is not an exact science, and that is even more so the case here. For

example, we judged the radius chains as having passed the burn-in period when they had spent an

extended period at a range within 60m to 95m as all runs suggest that’s where the evidence of a

radius lies. A similar approach was taken for the movement and rate parameters as newly sampled

behaviours can cause slight deviations in their traces — though to a far lesser extent than seen with

the radius. Initialising the radius to be excessively small typically produced the longer burn-ins as

larger samples of the radius need to be locked in by the coinciding behaviours.

Figure 5.19 displays a noticeable difference between the zonal and non-zonal transition rate poste-

riors. Namely, λOU−OU and λBM−OU are estimated to be greater when the zone of interaction is

included. This is to be expected as, in the zonal runs, animals can only switch to an OU (subor-

dinate) state when they are within range of a potential dominant. As such, the likelihood of these

rates are no longer evaluated at times when switching to a subordinate state is unlikely (i.e. when

an animal is beyond any reasonable interacting proximity with its peers).

The λBM−BM posteriors are the most erratic with regards to the transition rates. This is not an

artefact of the zone of interaction as this is true for both the zonal and non-zonal runs. Nor does

it appear to be an artefact of the model in general as the λBM−BM rate posteriors from a number

of runs in Section 5.4.2 are highly consistent with each other (Figure 5.2b). It is not clear why the

λBM−BM posteriors in Figure 5.19 are less aligned with each other than the posteriors of the other

rates are. Some exploratory analysis suggests it is due to some of the runs containing differing

levels of evidence for some quick BM to BM transitions (that is, a short period of time in a BM

state immediately before or after a spell in another BM state ). The varying levels of evidence for

these transitions will most likely be a casualty of the slow mixing of the trajectory updates.

The movement parameter posteriors are very consistent between the zonal and non-zonal runs as

seen in Figure 5.20. α is estimated to be slightly larger in the zonal runs, indicating a stronger

level of interaction. Whilst the most distant interaction that is inferred in the non-zonal runs is

not necessarily weak interaction, that is the case here. Eliminating that will bolster the average

strength of the remaining interaction.

As mentioned previously, a single run will not provide us with the complete picture of the radius

posterior. This can be seen in Figure 5.21. Whilst each run is consistent in that the peak of their

posterior and that the majority of their evidence of the radius is within roughly 70m to 80m, they

are not consistent outside of that range. It appears most runs also find some evidence for the radius

to be within 80m to 100m. Due to the slow mixing of the trajectory updates, a single run is not
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Figure 5.18: Trace plots of the interaction radius from each of the 10 baboon runs that included
the zone of interaction. The solid red line indicates the maximum distance observed between any
two baboons whilst the dotted red line indicates the standard deviation of the prior distribution.
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λOU−OU 0.0033 236 0.0057 253
λOU−BM 0.0214 520 0.0226 445
λBM−OU 0.0087 593 0.0130 406
λBM−BM 0.0155 327 0.0148 326

Figure 5.19: Posterior distributions for the four transition rates from each of the 10 non-zonal
and 10 zonal baboon runs. The table contains a summary of the transition rate results. Point
estimates and ESS are averages over the 10 runs — all averaging methods produce very similar
point estimates.

able to properly explore the entirety of this range. Through combining the (post burn in) chains

of the 10 zonal runs, we can see that the various smaller peaks in the individual posteriors in the

80m to 100m range simply result in a heavy tail for the combined distribution. Despite this heavy

tail dragging up the mean, all points estimates are fairly consistent.

Figure 5.22 provides a glimpse of how the zone of interaction interplays with the behavioural states.

For instance, baboon 5 moves within interaction range of baboon 3 sometime between observations

101 and 111 — after which they quickly begin to interact. Both the radius and behaviours shown

are based on the modal estimations.
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Figure 5.20: Posterior distributions for the four movement parameters from each of the 10 non-zonal
and 10 zonal baboon runs. The table contains a summary of the movement parameter results. Point
estimates and ESS are averages over the 10 runs — all averaging methods produce very similar
point estimates. Note the different densities for each of the parameters.

Figure 5.23 displays the modal state estimation for each baboon at each observed time for both

the zonal and non-zonal analyses. As we can see, there is a large degree of consistency between the

zonal and non-zonal mode. Whilst there is the occasional brief discrepancy or lag in alignment, the

only major difference was at point A (around observation 270 for baboon 5). By major difference,

we mean the the posterior probability of the modal state in the zonal analysis was not within 0.2

of the posterior probability of that same state in the non-zonal analysis (and vice versa). The

0.2 boundary is arbitrary, but it is to be expected that there will be some difference between the

runs — particularly as the difference in the movement and rate parameter estimations will have a
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Figure 5.21: The grey plots represent the posterior distributions of the radius from each of the 10
baboon runs that included the zone of interaction. The overlaid bolder, teal plot is the distribution
resulting from combining the (post burn in) chains of those 10 runs. The point estimates and ESS
are taken from the combined distribution.

knock-on effect on the behaviours proposed and accepted. However, discrepancies larger than that

are worth investigating. For reference, most discrepancies were less than 0.09. It transpires that,

in the non-zonal analysis, the brief period where baboon 5 is subordinate to baboon 9 (at point

A) is the only interaction strongly inferred that occurs at a distance that is beyond the interaction

radius as estimated in the zonal analysis. Or at least, it’s the only interaction with a proximity

(approximately 84m to 89m) that is within or beyond the tail of the radius posterior. The zonal

analysis still infers baboon 5 is influenced by another, but this time it is baboon 3 — albeit with

less certainty and the posterior probability of this is smaller than 0.5. The overall change in group

structure is shown in Figure 5.24. It may seem odd that the zone of interaction has caused baboon

5 to change subgroup. However, there are numerous other baboons in the troop that we have

not analysed. If we had analysed them all, we may have found that all of the relevant baboons

are in fact in the same subgroup (e.g. baboons 3 and 9 share a dominant) and so we would have

merely inferred a new dominant for baboon 5. Though, in this case, an exploratory look at the

full data suggests that baboon 5 being subordinate to baboon 9 in the non-zonal case is a spurious

result.

Whilst the non-zonal analysis didn’t infer much interaction beyond the bulk of the interaction radius

posterior (obtained in the zonal analysis) in terms of the modal state, Figure 5.25a shows that the
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Figure 5.22: Each frame plots the locations of the five baboons at the indicated data point. The
data has been annotated with the modal interaction radius and behavioural states at those times.
The coloured in circles are the baboons. The border represents that baboon according to the
legend. The colour of the filling represents which baboon it is subordinate to. If the filling is the
same colour as the border, that baboon is in a BM state. The large, hollow circles represent the
zone of interaction for the baboon of the same colour.
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Figure 5.23: The modal state estimation for both the non-zonal and zonal baboon analyses. The
modal state was calculated after the output from each of the 10 non-zonal and 10 zonal runs
were collated. The lines have been shifted to avoid overlap. Label ‘A’ highlights the only major
difference.
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Figure 5.24: The difference in the estimated social structure between the non-zonal and zonal runs
(based on modal state estimation) at point A in Figure 5.23. Each node represents a baboon and
unconnected nodes are estimated to be independent at that time.

non-zonal runs still spent a decent amount of time considering quite distant interactions — up to

140m apart. Interestingly, the most distant interaction strongly inferred in the non-zonal analysis

(i.e. baboons 5 and 9 as discussed above) is hardly considered a possibility in the zonal analysis

(less than 0.01 posterior probability) even though the proximity of that interaction is within the

heavy tail of the radius posterior. In conjunction with the radius, it appears there is not much

evidence for that interaction.

On average, using the point estimates of the radius in Figure 5.21, a baboon was within the

interaction zones of 3.15 (mode) to 3.19 (mean) others. Even when using the 95th percentile (a

radius of 87.3m), this only rose to 3.28 others. This is as opposed to effectively being in the zones

of 4 other baboons in the non-zonal case. Therefore, although the value of the radius itself needs

to be explored and this data set concerns a typically stable social animal (Farine et al., 2016),

the zone of interaction had a sizeable impact in reducing the state space by discouraging spurious

interactions. Furthermore, the addition of the zone of interaction did not impede the mixing of the

model. As mentioned above, the burn-in period did not increase and the non-zonal analyses only

produced a marginally greater ESS of the movement and transition rate parameters. Looking at

the Gelman-Rubin diagnostic (Table 5.7), there is again little difference between the non-zonal and

zonal runs — with perhaps the zonal runs having a slight edge. Again though, this table highlights

that most of the runs have not converged and so they would be of limited use on their own. Overall

then, the zone of interaction offers the ability to gain more insight into the social behaviours of a

group of animals, whilst also limiting perhaps biologically extreme behaviours, at little cost.

5.9 Discussion

Understanding how animals interact with their environment can play an important role in ecosystem

management. For example, the ability of schooling fish (or any other species that behaves with a

similar mechanism) to respond to environmental information may decline if populations or group

sizes decrease (Berdahl et al., 2013). Extending our influence hierarchy model to the spatially

heterogeneous case therefore greatly increases the scope of its applications. Though, this extension
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Figure 5.25: The interaction posteriors (the posterior probability of two baboons directly inter-
acting) plotted against their proximity (wildlifeDI R package). The plots encompass all possible
pairs of baboons at each observation. (a) are the posteriors from the non-zonal analysis whilst
(b) are the posteriors from the zonal analysis. The interaction posteriors were calculated after the
output from each of the 10 non-zonal and 10 zonal runs were collated. The solid teal line represents
the modal point estimate of the interaction radius, whilst the dashed lines indicate the 5th and
95th percentile. Note, the radius estimates are included in the non-zonal plot for illustrative and
comparative purposes only as the radius does not feature in the non-zonal model. Both axes have
been jittered in order to help display the density of the points.

Movement Parameter Transition Rates
Non-Zonal Zonal Non-Zonal Zonal

MPSRF Minimum 1.000 1.020 1.020 1.010
MPSRF 1st Quartile 1.060 1.050 1.070 1.070
MPSRF Median 1.090 1.110 1.150 1.120
MPSRF Mean 1.118 1.117 1.177 1.164
MPSRF 3rd Quartile 1.170 1.160 1.220 1.200
MPSRF Maximum 1.350 1.310 1.730 1.580

Upper C.I. Minimum 1.000 1.000 1.000 1.000
Upper C.I. 1st Quartile 1.010 1.010 1.040 1.040
Upper C.I. Median 1.090 1.075 1.125 1.145
Upper C.I. Mean 1.181 1.178 1.282 1.308
Upper C.I. 3rd Quartile 1.230 1.220 1.330 1.482
Upper C.I. Maximum 2.790 2.620 4.380 3.910

Table 5.7: Summaries of the Gelman-Rubin diagnostic for the zonal and non-zonal baboon runs.
The diagnostic was calculated for each pair of runs and the upper confidence limits correspond to
a coverage of 95% for the individual potential scale reduction factors.
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provided a hurdle. The spatially heterogeneous version of forwards simulation, as a means to

propose an animal’s trajectory, is naive with regards to the known and required end point of that

trajectory. This naivety compounds in the context of jointly modelling multiple animals and, as a

result, it proved to be an inefficient means of proposing new trajectories. We therefore developed

the LDB, which conditions on the next known location and thus provides more reasonable samples

of an animal’s movement. The LDB proved easy to tune as it added only a single tuning parameter

to the model, one which performed well for a large range of values. It also had a sizeable impact

in reducing the burn-in period when compared to forwards simulation, even for a group as small

as three animals. That reduction is symptomatic of the general improvement in mixing that the

LDB provides. The acceptance rate of trajectory updates almost tripled and, subsequently, longer

trajectories could be sampled — further aiding mixing of both the behaviours and movements.

Whilst the LDB does come at a computational cost, the benefits it brings far outweigh that cost.

Based on some rough analysis not presented here, the above effects are amplified for larger groups —

greater computational cost but even greater benefits to the efficiency of the inference process.

The above extension allowed us to implement a zone of interaction in the model — a familiar concept

in the world of social movement models. Our version consists of a single distance which two animals

must be within of each other in order to directly interact. Typically in other implementations of

this concept, the radius (or radii when distinct zones are used for attraction, repulsion or alignment)

is an inputted parameter of the model, requiring some previous knowledge on the matter. Here

though, the radius is a parameter that we can infer whilst fitting the model to data. Not only does

this avoid the pitfall of inferring different social structures depending on the radius inputted (Castles

et al., 2014; Davis et al., 2018) but it can also provide more insight into the social behaviour of the

study species. The zone and the inference of the radius slot neatly into our modelling framework

and only a simple prior is required in order to keep the radius samples honest if there is no prior

knowledge.

Results from fitting zonal and non-zonal versions of the model to baboon data indicate that the

increased complexity of the zonal version doesn’t have a consequential impact on how well the model

mixes, nor increase the burn-in period. The zones did however reduce the size of the state space

that is deemed sensible — even for a stable social animal such as baboons. In this case study then,

the increased complexity accompanying the zonal feature is cancelled out by this practical benefit.

The two different versions of the model inferred largely the same social behaviours, with the zonal

runs only eliminating a quick, distant interaction. The zone therefore can increase the biological

realism of the model by discouraging spurious interactions at little cost. Furthermore, the boundary

of interaction can serve to limit the scale of a movement step a subordinate can take. Without that

boundary, unreasonably large movement steps are possible as the expected value of a subordinate’s

next location is a weighted mean between the current location of itself and its dominant. With the

boundary, those overly large movement steps can be avoided as it limits the distance within which

interaction can occur. However, it therefore introduces the possibility of ruling out interactions that
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do in fact occur over relatively large distances (compared to a reasonable movement step) (Farine

& Whitehead, 2015; Scharf et al., 2016; Calabrese et al., 2018). For instance, when interactions

occur through acoustic signalling.

There are ways to add flexibility into the radius. In a model containing multiple BM states, one

method could be to have a distinct radius value for each BM speed. For instance, an animal moving

under fast BM could have a larger zone of interaction than an animal moving under a slower BM

process, with subordinates inheriting the radius from their leader. This would take into account

that groups may interact differently whilst stationary than whilst on the move (Farine, 2015).

Another method would be to have a smooth boundary for the interaction zones. For example,

the strength of interaction decays exponentially with distance (see Torney et al. (2018) for an

example of this approach). Not only would this method not outright reject distant interaction,

it would also remove a problem of inferring a hard-boundary radius. That is, in order for more

distant interactions (than the current radius sample allows) to be sampled and evaluated in the

trajectory updates, the radius sample needs to jump above that prospective distance. If the jump

required is sizeable, that will limit how well the model can explore potential interactions. Using

an exponentially decaying smooth boundary would circumvent that problem as we would need to

infer the rate of decay, rather than the radius.

Despite the extensions and improvements detailed in this chapter, several caveats of previous iter-

ations of this model persist. In particular, the assumption that all relevant animals are tagged and

the increasing complexity of the Markov chain (and the accompanying increase in computational

effort required to explore that) resulting from more animals in the data. In fact, the extension to

spatial heterogeneity and adding space, alongside behaviour and time, to the sample space that

requires exploring has only exacerbated the slowness with which the trajectory updates mix (as

well as adding a substantial computational cost in proposing a trajectory). Additionally, in the

scenario where some relevant animals haven’t been tagged, the zone of interaction must carry an

interpretation warning. Missing animals from the analysis will likely inflate the radius estimation

as that radius will correspond to what may in reality be indirect interaction.

As before, for groups where there are likely to be missing animals, the approach of Niu et al. (2016)

may be a more suitable option as missing animals have little impact on that model. Additionally,

that approach has recently been developed on by Niu et al. (2020) to allow the animals to switch

between membership of the group or independence. Thus, the model in Niu et al. (2020) can be

thought of as a special case of our influence hierarchy approach where the social structure is either

despotic (led by a fixed individual) or democratic (‘led’ by a central abstract point in the group).

The model therefore does not grow in complexity as the number of animals in the data increases.

This provides much needed computational respite, but alongside a much simpler view of the social

behaviours of the study group.



Chapter 6

Discussion and Future Work

6.1 Review of the Thesis Aims

We have developed a flexible model with which we can obtain an in-depth view of the social drivers

behind collective movement when it is fitted to tracking data. The influence hierarchy approach,

coupled with the behavioural switching process we have defined, can capture a wide array of complex

social behaviours. This framework is based on the common concept of social hierarchies and so,

despite the complexity of the model and the inference algorithms, the output is simple to interpret.

With the inclusion of behavioural state switching, we are able to capture the dynamism of social

interaction. Through this, we are able to infer the most causal influence at any given time, which

can then highlight ‘keystone’ animals or persistent relationships within the group. We are also

able to observe how the social structure changes over time — a feature which is particularly useful

when investigating how animal groups are impacted by external factors or how social behaviours

are adapted to heterogeneity (e.g. environmental heterogeneity). Moreover, we can still aggregate

our results to obtain a longer-term static view of the social structure — similar to that of social

network analysis (SNA). That is, obtain a more network-based picture of the social structure that

encompasses all interactions observed during the study period, which can then facilitate a range of

network analysis (Sosa et al., 2021).

The models we have developed are formulated in continuous time. As such, the behavioural process

is not married to the temporal resolution of the data and there is a greater deal of flexibility with

regards to the data collection process. For instance, we do not require the data for all animals to be

synchronous. Moreover, we avoid the approximations introduced when using a discrete-time model

as we are able to undertake exact Bayesian inference of the model parameters.

We have also developed new algorithms with which we can fit this class of models to data. This

process culminated in the development of the latent diffusion bridge (LDB) in Chapter 5, which

provides a more efficient means to extend our modelling framework to spatial heterogeneity than

143
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existing methods. The LDB removes some of the naivety of forwards simulation approaches by

taking into account where a trajectory reconstruction is required to end. In particular, it takes

into account the next known location of both the focal animal and the animals it is estimated to

be interacting with. As such, realistic trajectories are proposed more frequently, which in turn

improves the mixing of the wider MCMC algorithm. However, our modelling framework harnesses

a complex state space and the LDB still naively reconstructs the behavioural process. Therefore, a

considerable amount of time is still required to fully explore the state space. We discuss potential

solutions to this problem in Section 6.3.

We examined how robust our modelling framework is to the particular social behaviours being

analysed in Section 4.4. We found that, after analysing 400 simulated data sets which covered a

broad range of social behaviours, that our model does not frequently infer false positives or false

negatives with regards to two animals interacting. One shortcoming highlighted in this reliability

testing, as well as during the data thinning experiments in Section 4.5, was that modelling the

movement of leading and independent animals with Brownian motion (BM) is often not sufficient.

When that is the case, the model can be formulated so that the movement of those animals is

modelled with an Ornstein-Uhlenbeck (OU) process, with some attraction towards a geographical

location (see Section 3.5.2). However, non-stationary processes can model the scenario when there

is no persistence in the movement and their inclusion can provide some flexibility into the model

(Blackwell, 1997). For instance, we could formulate the model so that leading and independent

animals can switch between OU and BM movement. The non-stationary multivariate diffusion

process we defined in Section 3.2, whilst perhaps overly simplistic on its own, would therefore play

an important role in a switching, but overall stationary, version. Note, much of the work required

to derive the stationary version of the conditional covariance matrix was completed in the process

of deriving the non-stationary form (see Section 3.5.2 and Appendix A).

The spatial heterogeneity extension developed in Chapter 5 will widen the applicability of our

model and allow us to investigate the interplay between social behaviours and the environment.

We took advantage of that increased functionality to implement a zone of interaction, a similar

concept to that found in the local-interaction-based models discussed in Section 1.2.3. This feature

reduces the possibility of overly-large movement steps being produced by the model whilst also

shrinking the behavioural state space that needs to be explored. As we infer the radius of this

zone, we also obtain more information on the social interactions of the study species. Furthermore,

the implementation of the interaction zone showcased how easily individual heterogeneity (with

regards to interaction preferences) can be incorporated into the model. That is, we just need to

keep track of those preferences when proposing state switches and evaluating their likelihoods. As

such, demographics such as age and sex can be readily built into the model to examine the role

they have in the social structure.

Whilst the above suggests we have made considerable progress towards meeting the aims we outlined

in Chapter 1, the following sections provide some discussion on the limitations of our approach and
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recommendations for future developments that could circumvent them.

6.2 Modelling Assumptions

6.2.1 Social

Whilst our influence hierarchy approach, coupled with the behavioural process we have defined,

provides a very flexible framework, it has its limitations. We restrict the structure to represent

the most causal influence and so an animal can only have one ‘dominant.’ However, this fails to

account for non-dyadic interaction, where an animal is influenced by multiple others (Strandburg-

Peshkin et al., 2018) (the ‘double-subordinate’ in terms of network triads (McDonald & Shizuka,

2013)). Behavioural states could be included in our framework to represent such influence. For

example, a state for subordination to animals x and y where the focal animal has some level

of attraction to both x and y. However, the movement model is not currently defined for such

interaction and, perhaps more importantly, this approach would rapidly increase the number of

states required for larger groups. As such, this method is unlikely to be practical for groups of

more than three or four animals. Additionally, co-movement cannot be modelled with our current

social framework. As we saw with the zebra data analysis in Chapter 3, our assumption of there

always being some ordering to interaction will not always be a fair one. A movement process, similar

to the one we defined in Chapter 3, can in theory be constructed to explicitly capture mutually-

informed movement. Again though, incorporating such behaviour into our model (to cover both

co-movement and subordination) would produce a prohibitively large state space. However, if the

estimation of explicit interaction is not required, similar models already exist which can model a

group of animals as a mutually-informed collective (Niu et al., 2016, 2020).

We assume the behavioural process is Markovian. Whilst this assumption no doubt ignores some

of the complexity of animal behaviour, it represents a good compromise between model complexity

and tractability (Patterson et al., 2017). In some scenarios though, we may want to ‘improve’

on this Markovian assumption as highlighted by the baboon data analysis in Chapters 4 and

5. As discussed in Section 4.5.1, the constant transition rates of a Markov chain incorporate no

presumption against very short state visits, as reflected in the exponentially distributed holding

times. When there is some prior belief that short state visits are unlikely, an alternative approach

may be to model the behavioural process as semi-Markovian. That is, the time spent in a state is

modelled with some other non-negative distribution, one which may be more appropriate for the

analysis at hand.

One way in which a semi-Markov process could be implemented is to make the transition rates

depend on the time since the last actual state switch. Such an approach is relatively simple to

implement in our existing framework. In this scenario, λmax bounds above the hazard function of

the chosen holding time distribution, as opposed to the transition rates. A state switch occurs at a

potential switching time with probability h(t)/λmax, where h(t) is the value of the hazard function
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t time units after the last switch. Such an approach provides a large degree of flexibility as to

the nature of the holding times. Alternatively, we could represent each behavioural state (that we

believe shouldn’t have exponentially distributed holding times) with multiple substates — each of

which is associated with the same movement process of the original state. For example, we could

replace state u with states ua and ub in the Markovian behavioural process, with the holdings times

of the new states still exponentially distributed. That is, hua ∼ exponential(λua), where hua is the

holding time for state ua and λua is the rate of leaving state ua (and similarly for ub). For ease of

interpretation, we could dictate that the substates must be visited in sequence. For instance, if u

is a subordinate state, ua might then be considered to represent the earlier stages of interaction,

whilst state ub might be considered to represent the later stages. The total time spent in state u is

then hu = hua + hub . hu, in this particular in-sequence example, is hypoexponentially distributed

— the shape of which is dictated by the rates λua and λub . In general, u can be substituted with

any number of substates and they don’t have to be visited in sequence (or even limited to one visit

each). As such, hu has a phase-type distribution, which can approximate any positive distribution.

See Langrock et al. (2012) for an example of this approach in the context of discrete-time hidden

Markov models (HMMs). In the context of our model though, one which already contains a complex

state space, this approach may not be suitable.

6.2.2 Data

Our social framework drills into the social structure to the point of dyadic interactions. This brings

forth one of two scenarios: all of the animals have been tagged and so each dyadic interaction

inferred is a direct interaction, or some of the relevant animals haven’t been tagged and so some of

the inferred relationships are indirect. Even as tracking tags become smaller and cheaper, it won’t

necessarily be possible to tag all of the interacting animals. For instance, group composition may

change throughout a long-term study. Consideration must therefore be given to not over interpret

the inferred relationships.

When all relevant animals haven’t been tagged, the inferred interactions will be a mix of direct and

indirect influence. The model we have described in this thesis will not be able to distinguish between

direct and indirect interaction as each interaction is based on the same scalar attraction parameter,

α. A route that would potentially be able to prize the two apart is to make α a statistically-

hierarchical parameter. The strength of an interaction would therefore able to fluctuate. Not only

would this enable direct and indirect interaction to be expressed through different α values, but it

would also allow interactions to differ in strength due to other factors. For example, a parent-child

interaction may be stronger than one between two adult males.

Tracking data is becoming increasingly accurate. As such, we have ignored measurement error

during the development of our models as the error will generally by inconsequential compared to

the movement of an animal. However, that won’t always be the case as even modern devices can

produce very spurious observations (Frair et al., 2010). In that scenario, our model can be extended
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to take into account measurement error. One method to do this would be to resample the observed

locations during the trajectory proposals. For example, the proposed true location could simply

be drawn from a distribution centred on the observed location, a distribution which corresponds

to the known or estimated form of the measurement error.

Tracking tags offer a range of benefits as a means to collect animal movement data (see Chapter 1).

In models such as ours though, that look to analyse social behaviours, the interactions inferred are

then based entirely on spatial data. Whilst we use terms such as ‘dominant’ and ‘subordinate’ for

ease of reference, we are unable to obtain the nature of an interaction from spatial data alone. As

such, we refer to our social framework as an ‘influence hierarchy’ to cover the ambiguity regarding

the type of interaction. Directly observing interaction would provide that further detail (again, see

Chapter 1), but movement models are often utilised where direct observation is not feasible. Pairing

tracking tags with other sensors, such as accelerometers, may prove to be a fruitful direction in this

regard. Accelerometers are already used to analyse behaviour and energy use (Kays et al., 2015) and

can typically record data at a much fast rate than GPS devices (Hughey et al., 2018). Therefore,

they may be able to shed some light on the nature of an interaction. For instance, Fehlmann

et al. (2017) use accelerometer data and supervised machine learning methods to determine when

baboons are grooming others.

6.3 Running Time

Perhaps the main critique of our model is the length of time it takes to fit it to data. We originally

planned to undertake some analysis on how increasing the number of animals in the data set effects

the running time and uncertainty of the model. In particular, as the proportion of tagged animals

within a group increases, do some of the subordinate states become indistinguishable? However, it

is clear that, even with the improvement obtained with the LDB algorithm, the model is currently

too slow to be practically useful for larger data sets (due to a larger social group and/or number of

observations). It would therefore be more prudent to explore some of the options outlined below

before performing any analysis on how the number of animals affects the model fitting.

A simple, but effective, means with which we can speed up the inference process is to thin the

data if its original resolution is deemed surplus to requirements. In Chapter 4, we investigated

the impact that data thinning had on the inference of the model parameters. We found that the

parameter estimations ultimately reflected the behaviours that could still be captured with the

new resolution. For instance, thinning by a factor of 20 meant that the evidence for the short term

interactions that we saw in the original data was unlikely to still be present in the heavily-thinned

data. Whilst we took a simplistic approach to thinning the data, merely taking every fifth or 20th

observation, there are more formal (and potentially more fruitful) methods available. For example,

Drovandi et al. (2017) treat data thinning akin to experimental design, where the design choice

is which subset of data to analyse. That is, deciding which (minimal) subset of data the analyst
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would have ideally collected in the first place in order to carry out the analysis at hand. After

selecting an initial subset of data, some utility function is defined so that a decision can be made as

to whether or not to include some more of the data in the analysis. One approach to this could be

to evaluate the increase in the precision of the parameter estimations the extra data may provide

whilst taking into account the cost of analysing a larger data set. Alternatively, locating turning

points in an animal’s movement path could be a way of stripping back ultra-high-resolution data

to its more informative observations (Potts et al., 2018).

Our granular social framework is more informative as a greater proportion of the animals are

tagged. This requirement quickly increases the complexity of the Markov chain we use to model

the animals’ behaviours, which in turn increases the computational effort required to explore it.

Moreover, coupling this complex behavioural process with time (Chapters 4 and 5) and space

(Chapters 5) creates a huge sample space that requires exploring. One approach to simplify that

sample space is to restrict the behavioural state space — similarly to how the interaction radius

does so in Chapter 5. For example, it may be deemed biologically spurious (or just uninformative)

for a social structure to contain more than, say, four levels of hierarchy. Such a restriction could

be easily implemented through the transition rates — at a potential switching time, the rates of

transitions that would produce a fifth level of hierarchy would simply be set to 0 before a switch is

proposed. Alternatively, demographics might play some role. For instance, different types of whale

are not known to interact (Scharf et al., 2016). Of course, this method is only suitable if there is

some prior knowledge that suggests such a restriction.

Our method of proposing trajectory realisations is still largely naive with regards to the behavioural

process. We still ignore the required end state of the trajectory aside from ‘forcing’ the simulation

to switch to (or stay in) that state at the last potential switching time. As such, we are slow to

explore the state space. Hobolth & Stone (2009) detail some methods that can be used to simulate

a continuous-time Markov chain conditional on the end state. One of those methods could slot into

our existing ‘uniformization’ approach where we sample potential switching times with a Poisson

process with rate λmax. Though, in that method when sampling a state switch, the transition rates

also need to be known at each future switching point of the trajectory — information we won’t yet

have in the spatially heterogeneous case. Another route for a more efficient means of reconstructing

the behavioural process may be to do so with integrated continuous-time hidden Markov models

(InCh) (Blackwell, 2018). During a trajectory reconstruction, potential switching times are still

sampled with a Poisson process but here, in a spatially heterogeneous case, the corresponding

locations are sampled with Brownian bridges (as opposed to being sampled from the ‘correct’

movement process). Then, conditional on those times and locations, the behavioural process is

effectively a time-inhomogeneous HMM (Blackwell, 2018). The likelihood of the trajectory can

then be calculated with the Forward Algorithm (as used alongside HMMs), integrating out the

behavioural states. The state sequence can then be decoded using the Viterbi algorithm. This use

of the efficient Forward and Viterbi algorithms within a wider MCMC framework could provide an
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economical means of obtaining the posterior distributions of the model parameters.

Perhaps the approach that could provide the greatest gains in terms of computational efficiency is

to approximate the model in discrete time. One approach would be to only allow state switches to

occur at observed times, removing the need to augment the observed data with potential switching

times. The model would still be formulated in continuous time, but rather than reconstruct the

behavioural process in continuous time, we would approximate it in discrete time. For example,

the observed time ti contains a switch out of state u with probability 1− eλu(ti−ti−1) where ti−1 is

the immediately previous observed time. If so, that switch is to state v with probability λuv/λu as

before.

If the data for all of the animals is synchronous, the behavioural process can then be modelled

with a HMM (a time-inhomogeneous one if the data is irregular) and we can utilise the efficient

algorithms that are in place to implement them. Otherwise, some trajectory reconstruction will still

be required in order to obtain synchronous data — which the multivariate diffusion process defined

in Chapter 3 requires. However, proposing a trajectory in the discrete-time-approximation case will

be a much simpler and quicker process than in the continuous-time case. Mainly, in the spatially

heterogeneous case, that is because we will no longer be required to propose locations at potential

switching times as we will not be augmenting the observed data with them. The calculation of

those proposal distributions, and the accompanying likelihood evaluations, encompass the bulk of

the computational effort required for the trajectory updates as described in Chapter 5. Additionally,

as the data set won’t be augmented with switching times, we will be able to undertake trajectory

updates over larger segments of the observed data, which will improve the mixing of the MCMC

process.

The above method introduces some approximation — which we were keen to avoid as stated in our

thesis aims. However, that approximation will be limited in cases where the data has been collected

at a high frequency, such as the baboon data used in Chapters 4 and 5. Such a scenario will only

become more commonplace as tracking technology continues to evolve. Additionally, the model

will still be formulated in continuous time and so neither the movement or behavioural process will

be married to a particular time interval. Thus, it will still be time invariant, enabling comparisons

between studies and data collected at different resolutions, and it will still work seamlessly with

irregular data. When data can’t be collected at a high frequency then (for example, marine animal

diving data), a discrete-time approximation of our continuous-time model still affords benefits over

a purely discrete-time approach.
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Appendix A

Conditional Covariance Derivation

As Niu et al. (2016) details, the conditional covariance Ξ(F , t), where F is the attraction matrix

and t is the time length of the movement step, can be calculated using the following:

Ξ(F, t) = ∆− eFt∆eFT t (A.1)

where ∆ is the stationary covariance matrix. The derivation of the terms in the Ξ matrix therefore

consists of three steps: deriving eFt, ∆ and then Ξ itself. However, Niu et al. (2016) only does this

to the extent that is required for their model. That is, the social structure (represented in F ) is

limited to there being a single leader, with all of the remaining animals following it. Thus, we need

to carry out the above three steps in the context of the wider range of social interactions that our

influence hierarchy approach allows (see Section 3.1). We will derive a more general form of eFt in

Section A.1, ∆ in Section A.2 and Ξ in Section A.3. By general form, we mean general enough to

represent all the possible social interactions our social assumptions allow in Section 3.1.

Note, all of eFt, ∆ and Ξ are matrices and, in each case, each row and column relates to a specific

animal. That is, row i relates to animal i and column j relates to animal j. As such, reference to

i concerns both animal i and the ith index in the relevant matrix (and similarly for j).

Whilst we only ever use Brownian motion (BM) in this thesis to model the movement of leading

and independent animals, and so there is no attraction term for these animals, it useful to begin

this derivation assuming that they do have some attraction to some location. That is, we model

their movement with an Ornstein-Uhlenbeck (OU) process. This helps avoid division by 0 issues

throughout Section A.2. We are able to set their attraction to 0 at the end of this process, in

Section A.3, to obtain the conditional variance terms when leading and independent animals are

modelled with BM.
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A

D B

C

Figure A.1: A dominates B, B dominates C and A also dominates D. Animal A is rank 1, both B
and D are rank 2 and C is rank 3. As such rank(A) = 1, rank(B) = 2 etc. An animal’s ‘direct’
hierarchy just concerns the branch of the structure they are in. For example, for C, their direct
hierarchy is A ←− B ←− C and D is in a different branch. The notation i(r) represents the animal
at the rth rank in animal i’s direct hierarchy. Still from the perspective of C, i(1) is A, i(2) is B
and i(3) is C itself. Then, A is 2 ranks directly above C and B is 1 rank directly above C. Even
though D is ranked higher than C, it is in a different branch of the hierarchy and so it is not ranked
directly above it. Animal i is ‘lower’ (or ‘higher’) in the hierarchy than animal j when it is of lower
(or higher) rank than j in the same subgroup.

A.1 eFt

This section contains the derivation of the general form of the exponential matrix eFt when the

movement of leading and independent animals contains some attraction. We will show the general

form is:

eFti,j =



e−βt E1 — i = j and i is a leading/independent animal

e−αt E2 — i = j and i is a subordinate

(αt)de−αt

d! E3 — i 6= j and i is d ranks directly below non-leading j

α
α−β (eFtdom(i),j − e

Ft
i,i(2)) E4 — i 6= j and i is lead by j

0 E5 — otherwise

where dom(i) is the dominant animal of animal i and i(r) is the animal at the rth ‘rank’ in animal

i’s direct hierarchy above it. See Figure A.1 for an explanation of the hierarchy terminology. α

is the rate of attraction of subordinates and β is the rate of attraction of leading/independent

animals.

To derive these terms, we will use the power series of eFt:

eFt =
∞∑
n=0

(Ft)n

n!
= I + Ft+

(Ft)2

2!
+

(Ft)3

3!
+ ... (A.2)

where I is the identity matrix.
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For all derivations in this section, without loss of generality, let F be ordered in accordance with

the group’s hierarchy. That is, the first row corresponds to an animal of rank 1 (i.e. a leading

animal), the next row(s) correspond to the animal(s) of rank 2 in that same subgroup etc. If there

is more than one subgroup, the first x rows correspond to a subgroup of size x, the following y rows

correspond to another subgroup of size y etc, with the rows of each subgroup ordered as above.

The upper triangle of F is therefore 0 (Section 3.2 details how F is constructed).

E5 — otherwise

We will first derive E5 as it makes the derivation of the other terms simpler. During this derivation,

the subscript of F indicates the number of animals in the group. That is, Fk is the attraction matrix

of a group of k animals.

This case relates to when i and j are in different subgroups, different branches of the same subgroup

or when j is directly below i in a branch. The derivation for being in different subgroups or branches

is identical. Say the (k + 1)st animal is subordinate to animal k − 1 and let i = k + 1, j = k. i

and j are therefore either in different subgroups or different branches of the same subgroup (due to

the ordering of Fk). We will show that (Fkt)
n
i,j = 0 for all n ≥ 0 by induction. For the base case,

n = 0:

(Fk+1t)
0 = Ik+1 =⇒ (Fk+1t)

0
k+1,k = 0 as (k+1, k) is off the diagonal

We assume true for n = p− 1. Then for n = p:

(Fk+1t)
p = (Fk+1t)(Fk+1t)

p−1

=

(
Fkt 0

0 . . . 0 αt 0 −αt

)(
(Fkt)

p−1 0

(Fk+1t)
p−1
k+1,1 . . . (Fk+1t)

p−1
k+1,k (Fk+1t)

p−1
k+1,k+1

)

=

 (Fkt)
p 0

αt(Fk+1t)
p−1
k−1,1−

αt(Fk+1t)
p−1
k+1,1

. . .
αt(Fk+1t)

p−1
k−1,k−

αt(Fk+1t)
p−1
k+1,k

−αt(Fk+1t)
p−1
k+1,k+1


For the (k+1, k) index:

(Fk+1t)
p
k+1,k = αt(Fk+1t)

p−1
k−1,k − αt(Fk+1t)

p−1
k+1,k

= 0

as the first term is in the upper triangle (which is 0) and the second term is 0 through our induction

assumption. As (Fkt)
n
i,j = 0 for all n ≥ 0, it therefore holds that eFti,j =

∑∞
n=0

(Fkt)
n
i,j

n! = 0 when

i and j are in different branches or subgroups of the hierarchy. Note, the above holds when the

(k + 1)st animal is subordinate to any animal other than animal k, not just k − 1.

As Fkt is a lower triangular matrix, (Fkt)
n is also a lower triangular matrix for all n ≥ 0. Therefore,
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(Fkt)
n
i,j = 0 for all n ≥ 0 and eFkti,j = 0 when j is directly below i.

As a result of E5, all the non-zero terms in row i of eFkt relate to animals directly above animal

i in the hierarchy. As such, we only have to consider hierarchies consisting of a single branch in

the derivations of the remaining terms of eFt. This allows us to make use of the following as the

(k + 1)st animal will always be subordinate to the kth animal:

(Fk+1t)
n =

(
Fkt 0

0 . . . 0 αt −αt

)(
(Fkt)

n−1 0

(Fk+1t)
n−1
k+1,1 . . . (Fk+1t)

n−1
k+1,k (Fk+1t)

n−1
k+1,k+1

)

=

 (Fkt)
n 0

αt(Fk+1t)
n−1
k,1 −

αt(Fk+1t)
n−1
k+1,1

. . .
αt(Fk+1t)

n−1
k,k −

αt(Fk+1t)
n−1
k+1,k

−αt(Fk+1t)
n−1
k+1,k+1

 (A.3)

With this in mind, we introduce some notation simplifications:

• the row and column of eFt relating to the leader of the subgroup will be indexed with 1

• the row and column of eFt relating to dom(i) will be indexed with i− 1

E1 — i = j and i is a leading/independent animal

We will show that (Ft)n1,1 = (−βt)n for all n ≥ 0 by induction. For the base case, n = 0:

(Ft)0 = Ik =⇒ (Ft)0
1,1 = 1 = (−βt)0

We assume true for n = p− 1. Then for n = p:

(Ft)p1,1 = (Ft)1,• · (Ft)p−1
•,1

= −βt(Ft)p−1
1,1 as a leaders row in Ft only contains 0 except for −βt at (1, 1)

= −βt(−βt)p−1 by our induction assumption

= (−βt)p

As (Ft)n1,1 = (−βt)n for all n ≥ 0, it therefore holds that
∑∞

n=0

(Ft)n1,1
n! =

∑∞
n=0

(−βt)n
n! as both

sides of the equality have been modified identically. As such, eFt1,1 = e−βt (note,
∑∞

n=0

(Ft)n1,1
n! =

(
∑∞

n=0
(Ft)n

n! )1,1).
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E2 — i = j and i is a subordinate

We will show that (Ft)ni,i = (−αt)n when i is a subordinate for all n ≥ 0 by induction. For the

base case, n = 0:

(Ft)0 = Ik =⇒ (Ft)0
i,i = 1 = (−αt)0

We assume true for n = p− 1. Then for n = p:

(Ft)pi,i = (Ft)i,• · (Ft)p−1
•,i

= −αt(Ft)p−1
i,i by equation A.3

= −αt(−αt)p−1 by our induction assumption

= (−αt)p

As (Ft)ni,i = (−αt)n for all n ≥ 0, it therefore holds that
∑∞

n=0

(Ft)ni,i
n! =

∑∞
n=0

(−αt)n
n! as both sides

of the equality have been modified identically. As such, eFti,i = e−αt.

E3 — i 6= j and i is d ranks directly below non-leading j

We will show this in three parts. Firstly, that (Ft)ni,j = 0 for all n = 0, ..., d − 1. Secondly,

(Ft)ni,j = n!(αt)d(−αt)n−d
d!(n−d)! for all n = d. Thirdly, the same as n = d but for n > d. Each part will be

done by induction. Note, E3 excludes the case where j is leading a subgroup — that scenario is

covered by E4.

Part 1 - n < d

For the base case, n = 0:

(Ft)0 = Ik =⇒ (Ft)0
i,j = 0 as (i, j) is off the diagonal for all d > 0

The base case therefore holds for all d greater than 0. We assume true for n = p− 1 for all d such

that p− 1 < d− 1. Then for n = p for all d such that such that p < d:

(Ft)pi,j = (Ft)i,• · (Ft)p−1
•,j

= αt(Ft)p−1
i−1,j − αt(Ft)

p−1
i,j

= αt(Ft)p−1
i−1,j − 0 by our induction assumption

= 0 by our induction assumption

The first use of our induction assumption follows as animal i is d ranks below j. As d > d− 1, the

assumption holds. The second use follows as animal i− 1 (dom(i)) is d− 1 ranks below j.
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Part 2 — d = n.

For the base case, d = n = 1 (as d must be greater than 0).

(Ft)1
i,j = αt =

1!(αt)1(−αt)0

1!0!
as required

We assume true for d = n = p− 1. Then for d = n = p:

(Ft)pi,j = (Ft)i,• · (Ft)p−1
•,j

= αt(Ft)p−1
i−1,j − αt(Ft)

p−1
i,j

= αt(Ft)p−1
i−1,j − 0 by part 1

=
αt(p− 1)!(αt)d−1(−αt)p−1−d+1

(d− 1)!(p− 1− d+ 1)!
by our assumption

=
(p− 1)!(αt)d(−αt)p−d

(d− 1)!(p− d)!

=
p!(αt)d(−αt)p−d

d!(p− d)!
by multiplying by p = d

We substitute in part 1 as d is greater than p−1. The last line follows by multiplying the numerator

by p and the denominator by d (as p = d in this case).

Part 3 — d < n

For the base case, n = 2 and d = 1 as d must be greater than 0:

(Ft)2
i,j = αt(Ft)i−1,j − αt(Ft)i,j

= αt(−αt)− αtαt as i− 1 = j

=
2!(αt)1(−αt)2−1

1!(2− 1)!

=
n!(αt)d(−αt)n−d

d!(n− d)!
as required.
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We assume true for n = p − 1 for all d > 0 such that d − 1 < p − 1. Then for n = p for all d > 0

such that such that d < p:

(Ft)pi,j = (Ft)i,• · (Ft)p−1
•,j

= αt(Ft)p−1
i−1,j − αt(Ft)

p−1
i,j

= αt(Ft)p−1
i−1,j −

αt(p− 1)!(αt)d(−αt)p−1−d

(d)!(p− 1− d)!
by our assumption or
part 2 (*)

=
αt(p− 1)!(αt)d−1(−αt)p−1−d+1

(d− 1)!(p− 1− d+ 1)!
− αt(p− 1)!(αt)d(−αt)p−1−d

d!(p− 1− d)!
by our assumption or
E2 (**)

=
(p− 1)!(αt)d(−αt)p−d

(d− 1)!(p− d)!
− αt(p− 1)!(αt)d(−αt)p−1−d

d!(p− 1− d)!

= (p− 1)!(αt)d(−αt)p−d( 1

(d− 1)!(p− d)!
+

1

d!(p− 1− d)!
)

= (p− 1)!(αt)d(−αt)p−dd!(p− d− 1)! + (d− 1)!(p− d)!

d!(d− 1)!(p− d)!(p− d− 1)!

= (p− 1)!(αt)d(−αt)p−d (p− d− 1)!(d! + (d− 1)!(p− d))

d!(d− 1)!(p− d)!(p− d− 1)!

= (p− 1)!(αt)d(−αt)p−d (d− 1)!d+ (d− 1)!(p− d)

d!(d− 1)!(p− d)!

= (p− 1)!(αt)d(−αt)p−d p

d!(p− d)!

=
p!(αt)d(−αt)p−d

d!(p− d)!
as required.

(*) as d < p, either d = p − 1 or d is still less than p − 1. We can then substitute in part 2

or our assumption respectively. (**) when 2 ≤ d < p (animal i − 1 is at least one rank below

j) we can substitute in our assumption. When d = 1, animal i − 1 is animal j. We can then

substitute in E2, which can be reconfigured to take on the required form: (Ft)p−1
j,j = (−αt)p−1 =

(p−1)!(αt)0(−αt)p−1

0!(p−1)! .

Altogether, the above three parts show that:

(Ft)ni,j
n!

=

0 when 0 ≤ n ≤ d− 1

(αt)d(−αt)n−d
d!(n−d)! when n ≥ d
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Thus,

∞∑
n=0

(Ft)ni,j
n!

= 0 +
(αt)d

d!

∞∑
n=d

(−αt)n−d

(n− d)!

=
(αt)d

d!

∞∑
n=0

(−αt)n

n!

=
(αt)de−αt

d!

E4 — i 6= j and i is lead by j

We will show (Ft)ni,1 = α
α−β ((Ft)ni−1,1−(Ft)ni,i(2)) for all n ≥ 0 by induction for two scenarios: when

i is subordinate to j (d = 1) and when i is further down the hierarchy (d > 1). Let’s consider the

former first. Note, in this scenario, i− 1 = j = 1. For the base case, n = 0:

(Ft)0 = Ik =⇒ (Ft)0
i,j = 0 as i 6= j

=
α

α− β
(1− 1)

=
α

α− β
((Ft)0

i−1,1 − (Ft)0
i,i(2)) as i− 1 = 1 and i(2) = i

We assume true for n = p− 1. Then for n = p:

(Ft)pi,1 = (Ft)i,• · (Ft)p−1
•,1

= αt(Ft)p−1
i−1,1 − αt(Ft)

p−1
i,1

= αt(Ft)p−1
i−1,1 − αt(

α

α− β
((Ft)p−1

i−1,1 − (Ft)p−1
i,i(2))) by our assumption

= αt(Ft)p−1
i−1,1 −

α2t

α− β
(Ft)p−1

i−1,1 +
α2t

α− β
(Ft)p−1

i,i(2)

= αt(Ft)p−1
i−1,1(1− α

α− β
) +

α2t

α− β
(Ft)p−1

i,i(2)

= αt(Ft)p−1
i−1,1

−β
α− β

+
α2t

α− β
(Ft)p−1

i,i(2)

=
α

α− β
(Ft)pi−1,1 +

α2t

α− β
(Ft)p−1

i,i(2) by E1 and i− 1 = 1

=
α

α− β
(Ft)pi−1,1 −

α

α− β
(Ft)pi,i(2) by E2 and i(2) = i

=
α

α− β
((Ft)pi−1,1 − (Ft)pi,i(2))
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Now let’s consider the scenario when i is further down the hierarchy. For the base case, n = 0:

(Ft)0 = Ik =⇒ (Ft)0
i,j = 0 as i 6= j

=
α

α− β
(0− 0)

=
α

α− β
((Ft)0

i−1,1 − (Ft)0
i,i(2))

which holds for all d > 1. We assume true for n = p− 1 for all d > 1. Then for n = p:

(Ft)pi,j = (Ft)i,• · (Ft)p−1
•,1

= αt(Ft)p−1
i−1,1 − αt(Ft)

p−1
i,1

= αt(Ft)p−1
i−1,1 − αt(

α

α− β
((Ft)p−1

i−1,1 − (Ft)p−1
i,i(2)))

by our as-
sumption

= αt(
α

α− β
((Ft)p−1

i−2,1 − (Ft)p−1
i−1,i(2)))− αt(

α

α− β
((Ft)p−1

i−1,1 − (Ft)p−1
i,i(2)))

by our as-
sumption

=
α2t

α− β
(Ft)p−1

i−2,1 −
α2t

α− β
(Ft)p−1

i−1,i(2) −
α2t

α− β
(Ft)p−1

i−1,1 +
α2t

α− β
(Ft)p−1

i,i(2)

=
α

α− β
[(αt(Ft)p−1

i−2,1 − αt(Ft)
p−1
i−1,1))− (αt(Ft)p−1

i−1,i(2) − αt(Ft)
p−1
i,i(2)))]

=
α

α− β
((Ft)pi−1,1 − (Ft)pi,i(2)) by equation A.3

The second use of our induction assumption isn’t applicable when d = 2 as the rank difference

between i−1 and j is 1. However, in that case, we can substitute in the result proved above relating

to that scenario. As (Ft)ni,1 = α
α−β ((Ft)ni−1,1 − (Ft)ni,i(2)) for all n ≥ 0 and d ≥ 1, it therefore holds

that
∑∞

n=0

(Ft)ni,1
n! = α

α−β (
∑∞

n=0

(Ft)ni−1,1

n! −
∑∞

n=0

(Ft)n
i,i(2)

n! ) as both sides of the equality have been

modified identically. As such, eFi,1 = α
α−β (eFti−1,1 − eFti,i(2)).

A.2 ∆

This section contains the derivation of the general form (in terms of our social framework) of the

stationary covariance matrix, ∆. Again, we are still considering the case when there is an attraction

term for leading/independent animals. This general form is:
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∆i,j =



ρ2

2β D1 — when i = j and i is a leading/independent animal

α
α+β∆dom(i),j D2 — when i 6= j and i is lead by j

∆i,dom(j)+∆dom(i),j

2
D3 — when i 6= j, i and j are in the same subgroup but neither
are the leader

σ2

2α + ∆dom(i),i D4 — when i = j and i is a subordinate

0 D5 — when i 6= j and i and j are in different subgroups

where ρ and σ are the noise coefficients for leading/independent animals and subordinate animals

respectively.

In Niu et al. (2016), this matrix is derived from:

ΣTΣ = −(F∆ + ∆F T ) (A.4)

where Σ is the diagonal matrix containing the relevant noise coefficients. Thus, ΣTΣ is a diagonal

matrix with ρ2 at leading/independent animal indices and σ2 at subordinate animal indices. We

too will use equation A.4 to derive ∆.

D1 — i = j and i is a leading/independent animal

(ΣTΣ)i,i = −(Fi,•∆•,i + ∆i,•F
T
•,i)

(ΣTΣ)i,i = −((−β)∆i,i + ∆i,i(−β)) as the i row of F and i column of F T are 0 except for −β at
the i index

ρ2 = 2β∆i,i as the i index of ΣTΣ is ρ2 when i is leading/independent

∆i,i =
ρ2

2β
as required

D2 — i 6= j and i is lead by j

(ΣTΣ)i,j = −(Fi,•∆•,j + ∆i,•F
T
•,j)

(ΣTΣ)i,j = −(α∆dom(i),j − α∆i,j + ∆i,•F
T
•,j)

as the i row of F is 0 except for α at the dom(i)
index and −α at the i index

(ΣTΣ)i,j = −(α∆dom(i),j − α∆i,j + ∆i,j(−β)) as the j column of F T is 0 except for −β at the
j index

0 = ∆i,j(α+ β)− α∆dom(i),j as the (i, j) index of ΣTΣ is off-diagonal

∆i,j =
α

α+ β
∆dom(i),j as required



APPENDIX A. CONDITIONAL COVARIANCE DERIVATION 170

D3 — i 6= j, i and j are in the same subgroup but neither are the leader

(ΣTΣ)i,j = −(Fi,•∆•,j + ∆i,•F
T
•,j)

(ΣTΣ)i,j = −(α∆dom(i),j − α∆i,j + ∆i,•F
T
•,j)

as the i row of F is 0 except for α
at the dom(i) index and −α at the i
index

(ΣTΣ)i,j = −(α∆dom(i),j − α∆i,j + ∆i,dom(j)α+ ∆i,j(−α))
as the j column of F T is 0 except for
α at the dom(j) index and −α at the
j index

0 = 2∆i,j − (∆dom(i),j + ∆i,dom(j))
as the (i, j) index of ΣTΣ is off-
diagonal

∆i,j =
∆dom(i),j + ∆i,dom(j)

2
as required

D4 — i = j and i is a subordinate

(ΣTΣ)i,i = −(Fi,•∆•,i + ∆i,•F
T
•,i)

(ΣTΣ)i,i = −(α∆dom(i),i − α∆i,i + ∆i,•F
T
•,i)

as the i row of F is 0 except for α at
the dom(i) index and −α at the i index

(ΣTΣ)i,i = −(α∆dom(i),i − α∆i,i + ∆i,dom(i)α+ ∆i,i(−α))
as the i column of F T is 0 except for
α at the dom(i) index and −α at the i
index

σ2 = −2α∆dom(i),i + 2α∆i,j

as the (i, i) index of ΣTΣ is σ2 when i
is a subordinate, i = j and ∆ is sym-
metric

∆i,j =
σ2

2α
+ ∆dom(i),i as required

D5 — i 6= j and i and j are in different subgroups

This term relates to the scenario when i and j are in different subgroups. Subgroups are independent

of each other and thus the covariance of animals from two different subgroups is 0.

A.3 Ξ

This section contains the derivation of the general form of the conditional covariance matrix Ξ and

it follows on from establishing the general form of eFt and the stationary matrix ∆. As shown in the

algorithm for computing Ξ (Appendix B), when calculating the Ξ terms for a particular animal we

only consider the terms that relate to animals ranked higher than itself in the same subgroup and

animals with the same rank as itself (again, in the same subgroup) who we have already iterated

through. The covariance terms with animals lower than itself in the hierarchy will be calculated
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when the algorithm iterates through those animals.

As mentioned earlier, the form of Ξ can be derived using equation A.1. We will therefore derive

the various terms of Ξ using that equation and then manipulate out β for the case when we model

the movement of leading/independent animals with BM.

Using equation A.1, the terms of Ξ consist explicitly of:

Ξi,j = ∆i,j −
rank(i)∑
n=1

rank(j)∑
m=1

e(i, i(n))e(j, j(m))∆i(n),j(m) (A.5)

where e(i, i(n)) is shorthand for eFti,i(n). Note, the full version of equation A.5 is:

Ξi,j = ∆i,j −
k∑

n=1

k∑
m=1

e(i, n)e(j,m)∆n,m (A.6)

where k is the number of animals and therefore the number of rows and columns of eFt. However,

the terms e(i, n) and e(j,m) are 0 when animals n and m are not directly above animals i and j

respectively. Thus, we can reduce the full equation down to equation A.5.

The summation in equation A.1 contains two exponential terms. The first one corresponds to

animal/row i and the second to animal/row j. These will be referenced to as i-exponential terms

and j-exponential terms respectively.

Furthermore, we will make use of the feature of eFt where terms that correspond to the same level

of relationship in the hierarchy are equivalent (except when the leader is concerned). That is, if

animal i is d ranks below j in the hierarchy and k is also d ranks below l, then e(i, j) = e(k, l). This

is particularly useful when we want e(i, i(3)) say, but we only know e(dom(i), dom(i)(2)).

The following sections will derive the five covariance expressions in turn:

Ξ(F, t)i,j =



ρ2t, C1

Ξdom(i),j −
ρ2eF ti,j
α , C2

Ξdom(i),j+Ξi,dom(j)

2 − ρ2eF ti,l e
F t
j,l

2α − σ2(eF ti,−l·e
F t
j,−l)

2α , C3

Ξi,dom(i) −
ρ2eF ti,l e

F t
i,l

2α +
σ2(1−eF ti,−l·e

F t
i,−l)

2α , C4

0, C5
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C1 — i = j and i is a leading/independent animal

Ξi,i = ∆i,i −
1∑

n=1

1∑
m=1

e(i, i(n))e(i, i(m))∆i(n),i(m) the rank of i is 1

=
ρ2

2β
− e(i, i(1))e(i, i(1))

ρ2

2β
substitute in ∆ terms and i(1) = i

=
ρ2

2β
− e−2βt ρ

2

2β
substitute in eFt terms

=
ρ2

2β
(1− (1 + (−2βt) +

(−2βt)2

2!
+

(−2βt)3

3!
+ ...)) expand out the exponential

=
ρ2

2β
(2βt− (−2βt)2

2!
− (−2βt)3

3!
...))

=
ρ22βt

2β
(1 +

(−2βt)

2!
+

(−2βt)2

3!
...))

= ρ2t(1 +
(−2βt)

2!
+

(−2βt)2

3!
...))

= ρ2t when β = 0

C2 — i 6= j and j is the leader of i’s subgroup

Taking a cue from the stationary covariance, we might expect the conditional covariance between

animal i and it’s leader to relate to the conditional covariance between i’s dominant and their

mutual leader. In order to find the difference between Ξi,j and Ξdom(i),j we want Ξdom(i),j to

contain as many similar terms to Ξi,j as possible. That is, transform

Ξdom(i),j = ∆dom(i),j −
rank(dom(i))∑

n=1

e(dom(i), dom(i)(n))e(j, j)∆dom(i)(n),j

to look like

Ξi,j = ∆i,j −
rank(i)∑
n=1

e(i, i(n))e(j, j)∆i(n),j

Note, rank(j) = 1 and therefore there is a single j-exponential term. We do the following to

Ξdom(i),j :

• the dom(i)-exponential term relating to the subgroup leader, e(dom(i), dom(i)(1)), is substi-

tuted with e(dom(i), dom(i)(1)) = α−β
α e(i, i(1)) + e(i, i(2)) using results from eFt (see E4).

Note, dom(i)(1) = i(1) = j. This almost provides us with the first two required i-exponential
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terms.

• all other dom(i)-exponential terms, e(dom(i), dom(i)(2)), ..., e(dom(i), dom(i)(rank(dom(i))),

can be rewritten in terms of i. For example, e(dom(i), dom(i)(2)) = e(i, i(3)) as dom(i) and

dom(i)(2) have the same rank difference as i and i(3) (see E3 in eFt). This provides us with

the remaining e(i, i(3)), ..., e(i, i(rank(i)) terms with rank(i) = rank(dom(i)) + 1.

• multiply all terms by α
α+β

• note ∆dom(i)(n),j = ∆i(n),j and, from D2 in ∆, ∆i(n),j = α
α+β∆i(n−1),j

Now, we have:

α

α+ β
Ξdom(i),j =

α

α+ β
∆dom(i),j −

rank(i)∑
n=1

e(i, i(n))e(j, j)∆(n)

where

∆(n) =

∆i(1),j
α−β
α+β when n = 1

∆i(n),j otherwise

When subtracting α
α+βΞdom(i),j from Ξi,j , we are left with the following:

Ξi,j −
α

α+ β
Ξdom(i),j = −e(i, i(1))e(j, j)∆i(1),j+

α− β
α+ β

e(i, i(1))e(j, j)∆i(1),j as all other terms cancel out

= −(1− α− β
α+ β

)e(i, j)e(j, j)∆j,j as i(1) = j

= − 2β

α+ β
e(i, j)e−βt

ρ2

2β
substitute in from ∆ and eFt

= − ρ2

α+ β
e(i, j)e−βt

Ξi,j − Ξdom(i),j = −ρ
2

α
e(i, j) when β = 0

= −ρ
2

α
eFti,j

C3 — i 6= j, i and j are in the same subgroup and neither are the leader

C3 and C4 follow a similar process to term C2. Taking a cue from the stationary covariance,

we might expect the conditional covariance between animal i and another in the same subgroup,

say j, to be related to the conditional covariance between i and j’s dominant and the conditional

covariance between j and i’s dominant.

Similar to C2, we want to make the terms that make up Ξi,dom(j) and Ξdom(i),j as similar as possible
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to those of Ξi,j . That is, transform

Ξi,dom(j) = ∆i,dom(j) −
rank(i)∑
n=1

rank(dom(j))∑
m=1

e(i, i(n))e(dom(j), dom(j)(m))∆i(n),dom(j)(m)

Ξdom(i),j = ∆dom(i),j −
rank(dom(i))∑

n=1

rank(j)∑
m=1

e(dom(i), dom(i)(n))e(j, j(m))∆dom(i)(n),j(m)

to look like

Ξi,j = ∆i,j −
rank(i)∑
n=1

rank(j)∑
m=1

e(i, i(n))e(j, j(m))∆i(n),j(m)

To start with, we do the following to Ξi,dom(j):

• the dom(j)-exponential term relating to the subgroup leader, e(dom(j), dom(j)(1)), is substi-

tuted with e(dom(j), dom(j)(1)) = α−β
α e(j, j(1)) + e(j, j(2)) using results from eFt (see E4).

Note, dom(j)(1) = j(1). This almost provides us with the first two required j-exponential

terms.

• all other dom(j)-exponential terms, e(dom(j), dom(j)(2)), ...,

e(dom(j), dom(j)(rank(dom(j))), can be rewritten in terms of j. For example,

e(dom(j), dom(j)(2)) = e(j, j(3)) as dom(j) and dom(j)(2) have the same rank difference as

j and j(3) (see E3 in eFt). This provides us with the remaining e(j, j(3)), ..., e(j, j(rank(j))

terms with rank(j) = rank(dom(j)) + 1.

So now,

Ξi,dom(j) = ∆i,dom(j) −
rank(i)∑
n=1

rank(j)∑
m=1

e(i, i(n))e(j, j(m))∆(m)

where

∆(m) =

∆i(n),j(1)
α−β
α when m = 1

∆i(n),j(m−1) otherwise

Similarly, for Ξdom(i),j :

• the dom(i)-exponential term relating to the subgroup leader, e(dom(i), dom(i)(1)), is substi-

tuted with e(dom(i), dom(i)(1)) = α−β
α e(i, i(1)) + e(i, i(2)) using results from eFt (see E4).

Note, dom(i)(1) = i(1). This almost provides us with the first two required i-exponential

terms.

• all other dom(i)-exponential terms, e(dom(i), dom(i)(2)), ..., e(dom(i), dom(i)(rank(dom(i))),
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can be rewritten in terms of i. For example, e(dom(i), dom(i)(2)) = e(i, i(3)) as dom(i) and

dom(i)(2) have the same rank difference as i and i(3) (see E3 in eFt). This provides us with

the remaining e(i, i(3)), ..., e(i, i(rank(i)) terms with rank(i) = rank(dom(i)) + 1.

So now,

Ξdom(i),j = ∆dom(i),j −
rank(i)∑
n=1

rank(j)∑
m=1

e(i, i(n))e(j, j(m))∆(n)

where

∆(n) =

∆i(1),j(m)
α−β
α when n = 1

∆i(n−1),j(m) otherwise

Adding the new representations of Ξi,dom(j) and Ξdom(i),j together produces the following:

Ξi,dom(j) + Ξdom(i),j = 2∆(i, j)−
rank(i)∑
n=1

rank(j)∑
m=1

f(n,m)

where

f(n,m) =



2α−βα e(i, i(1))e(j, j(1))∆i(1),i(1) (1) when n = m = 1

e(i, i(1))e(j, j(m))[∆i(1),j(m−1) + α−β
α ∆i(1),j(m)] (2) when n = 1,m > 1

e(i, i(n))e(j, j(1))[∆i(n−1),j(1) + α−β
α ∆i(n),j(1)] (3) when n > 1,m = 1

2e(i, i(n))e(j, j(m))∆i(n),j(m−1) (4) when n,m > 1 and i(n) = j(m)

e(i, i(n))e(j, j(m))[∆i(n),j(m−1) + ∆i(n−1),j(m)] (5) otherwise

Term (2) can be rearranged as follows, using D2 from ∆ in both the first and last step:

e(i, i(1))e(j, (j(m))[∆i(1),j(m−1) +
α− β
α

∆i(1),j(m)] = e(i, i(1))e(j, (j(m))∆i(1),j(m−1)(1 +
α− β
α+ β

)

= 2
α

α+ β
e(i, i(1))e(j, (j(m))∆i(1),j(m−1)

= 2e(i, i(1))e(j, (j(m))∆i(1),j(m)

and similarly for term (3). Term (4) is obtained as when i(n) = j(m) then subsequently i(n− 1) =

j(m− 1) (note, ∆i(n),j(m−1) could also be written as ∆i(n−1),j(m)). Term (5) is simplified using D3

from ∆:

e(i, i(n))e(j, j(m))[∆i(n),j(m−1) + ∆i(n−1),j(m)] = 2e(i, i(n))e(j, j(m))∆i(n),j(m)

Then, when subtracting
Ξi,dom(j)+Ξdom(i),j

2 from Ξi,j , terms (2), (3) and (5) cancel out with their
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counterpart in Ξi,j and we are left with:

Ξi,j −
Ξi,dom(j) + Ξdom(i),j

2
= −e(i, i(1))e(j, j(1))∆i(1),j(1)(1−

α− β
α

)

−
rank(i)∑
n=2

rank(j)∑
m=2

1i(n)=j(m)

(
e(i, i(n))e(j, j(m))[∆i(n),j(m) −∆i(n),j(m−1)]

)
= −e(i, i(1))e(j, j(1))

ρ2

2β

β

α

−
rank(i)∑
n=2

rank(j)∑
m=2

1i(n)=j(m)

(
e(i, i(n))e(j, j(m))[∆i(n),j(m) −∆i(n),j(m−1)]

)
= − ρ

2

2α
e(i, i(1))e(j, j(1))

−
rank(i)∑
n=2

rank(j)∑
m=2

1i(n)=j(m)

(
e(i, i(n))e(j, j(m))[∆i(n),j(m) −∆i(n),j(m−1)]

)
As i-exponential terms are 0 when relating to animals not directly above it in the hierarchy (and

similarly for the j-exponential terms), the double summation equates to a dot product of the ith

and jth rows of eFt with the exception of the i(1) = j(1) column. Furthermore, as n,m > 1 and

i(n) = j(m), the difference ∆i(n),j(m) − ∆i(n),j(m−1) is always σ2

2α as j(m − 1) = dom(j(m)) =

dom(i(n)) (see D4 in ∆). Thus,

Ξi,j =
Ξdom(i),j + Ξi,dom(j)

2
−
ρ2eF ti,l e

F t
j,l

2α
−
σ2(eF ti,−l · eF tj,−l)

2α

C4 — i = j and i is a subordinate

Once again, taking a cue from the stationary covariance, we might expect the conditional variance of

a subordinate animal to relate to the conditional covariance between that animal and it’s dominant.

Similar to previous derivations, we want to make the terms that make up Ξi,dom(j) as similar as

possible to those of Ξi,j . That is, transform

Ξi,dom(i) = ∆i,dom(i) −
rank(i)∑
n=1

rank(dom(i))∑
m=1

e(i, i(n))e(dom(i), dom(i)(m))∆i(n),dom(i)(m)

to look like

Ξi,i = ∆i,i −
rank(i)∑
n=1

rank(i)∑
m=1

e(i, i(n))e(i, i(m))∆i(n),i(m)

We do the following to Ξi,dom(i):
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• the dom(i)-exponential terms relating to the subgroup leader, e(dom(i), dom(i)(1)), is sub-

stituted with e(dom(i), dom(i)(1)) = α−β
α e(i, i(1)) + e(i, i(2)) using results from eFt (see E4).

Note, dom(i)(1) = i(1). This almost provides us with the first two required i-exponential

terms.

• all other dom(i)-exponential terms, e(dom(i), dom(i)(2)), ..., e(dom(i), dom(i)(rank(dom(i))),

can be rewritten in terms of i. For example, e(dom(i), dom(i)(2)) = e(i, i(3)) as dom(i) and

dom(i)(2) have the same rank difference as i and i(3) (see E3 in eFt). This provides us with

the remaining e(i, i(3)), ..., e(i, i(rank(i)) terms with rank(i) = rank(dom(i)) + 1.

So now,

Ξi,dom(i) = ∆i,dom(i) −
rank(i)∑
n=1

rank(i)∑
m=1

e(i, i(n))e(i, i(m))∆(m)

where

∆(m) =

∆i(n),i(1)
α−β
α when m = 1

∆i(n),i(m−1) otherwise

When subtracting Ξi,dom(i) from Ξi,i we are left with the following:

Ξi,i − Ξi,dom(i) = ∆i,i −∆i,dom(i) +

rank(i)∑
n=1

rank(i)∑
m=1

f(n,m)

where

f(n,m) =



−e(i, i(1))e(i, i(1))∆i(1),i(1)(1− α−β
α ) (1) when n = m = 1

−e(i, i(1))e(i, i(m))[∆i(1),i(m) −∆i(1),i(m−1)] (2) when n = 1,m > 1

−e(i, i(n))e(i, i(1))[∆i(n),i(1) − α−β
α ∆i(n),i(1)] (3) when n > 1,m = 1

−e(i, i(n))e(i, i(m))[∆i(n),i(m) −∆i(n),i(m−1)] (4) when n = m > 1

−e(i, i(n))e(i, i(m))[∆i(n),i(m) −∆i(n),i(m−1)] (5) otherwise

∆i,i −∆i,dom(i) simplifies to σ2

2α from D4 in ∆. Term (1) simplifies as follows:

−e(i, i(1))e(i, i(1))∆i(1),i(1)(1−
α− β
α

) = −e(i, i(1))e(i, i(1))
ρ2

2β
(1− α− β

α
)

= − ρ
2

2α
e(i, i(1))e(i, i(1))
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Term (2) simplifies after making use of D2 from ∆ and setting β = 0 for the last step:

−e(i, i(1))e(i, i(m))[∆i(1),i(m) −∆i(1),i(m−1)] = −e(i, i(1))e(i, i(m))∆i(1),i(m−1)(
α

α+ β
− 1)

= −e(i, i(1))e(i, i(m))
ρ2

2β
(

α

α+ β
)m−2 −β

α+ β

=
ρ2

2α
e(i, i(1))e(i, i(m))

Term (3) simplifies in a similar fashion, again using D2 from ∆ and setting β = 0 for the last

step:

−e(i, i(n))e(i, i(1))∆i(n),i(1)(1−
α− β
α

) = −e(i, i(n))e(i, i(1))∆i(n),i(1)
β

α

= −e(i, i(n))e(i, i(1))
ρ2

2β
(

α

α+ β
)n−1β

α

= − ρ
2

2α
e(i, i(n))e(i, i(1))

Terms (2) and (3) cancel each other out as there will be corresponding terms for each n and m.

Term (4) simplifies using D4 from in ∆:

−e(i, i(n))e(i, i(m))[∆i(n),i(m) −∆i(n),i(m−1)] = −σ
2

2α
e(i, i(n))e(i, i(m))

when n = m > 1. Term (5) will eventually cancel out. For each combination of n and m (when

n 6= m and n,m > 1), there is a corresponding term with the values of n and m switched (after

making use of the symmetry of ∆). We can group these together and make use of D3 from ∆ as

follows:

−e(i, i(n))e(i, i(m))[∆i(n),i(m) −∆i(n),i(m−1) + ∆i(m),i(n) −∆i(m),(n−1)]

= −e(i, i(n))e(i, i(m))[2∆i(n),i(m) − 2∆i(n),i(m)]

= 0

We are then left with the following:

Ξi,i − Ξi,dom(i) =
σ2

2α
− ρ2

2α
e(i, i(1))e(i, i(1))− σ2

2α

rank(i)∑
n=2

rank(i)∑
m=2

1n=m (e(i, i(n))e(i, i(m)))

= − ρ
2

2α
e(i, i(1))e(i, i(1)) +

σ2

2α
(1−

rank(i)∑
n=2

rank(i)∑
m=2

1n=m (e(i, i(n))e(i, i(m))))

As the double summation equates to a dot product of the ith row of eFt and itself with the exception
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of the i(1) column, then:

Ξi,i = Ξi,dom(i) −
ρ2eF ti,l e

F t
i,l

2α
+
σ2(1− eF ti,−l · eF ti,−l)

2α

C5 — i 6= j and i and j are in different subgroups

Ξi,j = ∆i,j −
rank(i)∑
n=1

rank(j)∑
m=1

e(i, i(n))e(j, j(m))∆i(n),j(m)

For all n and m, animals i(n) and j(m) will be in different subgroups and so ∆i(n),j(m) = 0 for all

n and m. The resulting expression is therefore 0.



Appendix B

Conditional Covariance

Computation

input : ord: order the animals in the hierarchy as found in F from top to bottom.
Multiple animals in the same level of the hierarchy (or of the same rank) can be
in any order.

output: Ξ(F , t)
for i in ord do

if i is a leader then
calculate Ξ(F , t)i,i using (a)

else
calculate Ξ(F , t)i,l(i) = Ξ(F , t)l(i),i using (b)
before← ord[2 : (i− 1)]
for j in before do

calculate Ξ(F , t)i,j = Ξ(F , t)j,i using (c)
end
calculate Ξ(F , t)i,i using (d)

end
Algorithm 1: How to compute Ξ(F , t). l(i) is the leader of i and before corresponds to all the
animals before i in ord except for l(i).
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Recursive OU distribution

Between two observations, there are m ≥ 2 time points consisting of the two observations and m−2

sampled switching times. To calculate the likelihood of the movement between the observations,

say at times t1 and tm, we perform a recursive calculation through ti (for i = 1, ...,m) to find the

distribution of the movement at tm. The following equations are conditional on t1, ..., tm, β1, ..., βm

and the movement parameters, where βi are the behaviour states of all animals at time ti.

For i = 2, ...,m, we can write

Gti = ÃtiGti−1 + B̃tiΘti−1 + C̃ti (C.1)

from the definition of the OU process. Here, Gti is the location of the animals at time ti in a

particular axis; Ãti = eFti−1 (ti−ti−1); B̃ti = (1− eFti−1 (ti−ti−1)); C̃ti ∼ MVN(0,Ξ(Fti−1 , ti − ti−1));

Θti−1 is a vector which contains the location of each animal’s leader at time ti−1; Fti−1 is the

configuration of the attraction matrix at time ti−1.

Through writing Gti−1 as follows (which we can do for all i)

Gti−1 ∼ MVN(ηi−1, ξi−1) (C.2)

then it follows that Gti is also a multivariate normal, with mean

ηi = Ãtiηi−1 + B̃tiΘti−1 (C.3)

and variance-covariance matrix

ξi = Ξ(Fti−1 , ti − ti−1) + Ãtiξi−1Ã
T
ti (C.4)
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Since we know Gt1 , Gt1 = g say, then the recursive process starts with

η1 = g (C.5)

ξ1 = 0 (C.6)



Appendix D

LDB Distribution Derivation

Switching Time of Animal i

For a potential switching time for animal i between two observations, ta and tb, we need to sample

the location of the whole group. Let t0 = ta and let a potential switching time, ts, for animal

i be the sth switching time in the interval (t0, ts], with ts < tb. In general, the times of the

1st, ..., sth switches correspond to times t1, ..., ts. Let τc = {ts−1, ts, tb}, βc = {βs−1, βs} (where

βs is a vector containing the states of all animals at time ts) and Ω represent all movement and

transition parameters and the coefficient of diffusion of the LDP. The location of the group at time

ts in a particular axis, given their location at time ts−1, is distributed as follows:

Gs|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(µ,Ξ) (D.1)

Gs|Gs−1 = gs−1, τc, βc,Ω = Ags−1 +BΘs−1 +C (D.2)

where equation D.2 is simply equation D.1 written out more explicitly. Here we have used a sim-

plified notation, compared to equation 3.5, where µ = µ(Gs−1,Fs−1, δt), Ξ = Ξ(Fs−1, δt) and

δt = ts − ts−1. A = eFs−1(ts−ts−1), B = 1−A, C ∼ MVN(0,Ξ) and Fs−1 is the attraction matrix

at time ts−1. The respective leader’s locations in Θs−1 are taken from gs−1. Note, here we are

conditioning on βs (which we will not have sampled yet) and tb even though Gs is independent of

both. However, it is useful to include them to provide consistency with other conditional distribu-

tions during the derivation of equation D.6. With the forwards simulation method, the locations

of the animals at ts are proposed with the distribution in equation D.1.

We, however, want to propose the locations at ts conditionally also on the next known locations,
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Gb. Firstly, we note:

Gb|Gs = gs, τc, βc,Ω ∼ MVN(µ̃, Ξ̃) (D.3)

Gb|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(µR,ΞR) (D.4)

Gb|Gs−1 = gs−1, τc, βc,Ω = ÃGs + B̃Θs + C̃ (D.5)

where equation D.3 is the distribution of the movement from ts to tb. Equation D.4 is the recursive

distribution of the movement through the times ts−1, ts and tb. The recursive method with which

we obtain this distribution is the same one used in Chapters 3 and 4 and more details can be found

in Appendix C and Blackwell (2003). Equation D.5 is the distribution of equation D.4 explicitly

written out where Ã = eFs(tb−ts), B̃ = 1− Ã, C̃ ∼ MVN(0, Ξ̃) and the leader’s locations in Θs are

taken from the expectation of Gs, µ.

We can use the above and the following result to derive Gs|Gs−1,Gb:(
Gs

Gb

)
|Gs−1 = gs−1, τc, βc,Ω ∼ MVN(

(
µ

µR

)
,

(
Ξ (ÃΞ)T

ÃΞ ΞR

)
(D.6)

where (ÃΞ)T is the transpose of ÃΞ. The Cov[Gb,Gs|Gs−1 = gs−1, τc, βc,Ω] is derived from the

following:

Cov[Gb,Gs|∗] = E[GbGs|∗]− E[Gb|∗]E[Gs|∗] (D.7)

= E[(ÃGs + B̃Θs + C̃)Gs|∗]− µRµ (D.8)

= E[ÃGsGs|∗] + E[B̃ΘsGs|∗]− µRµ (D.9)

= ÃE[G2
s|∗] + B̃Θsµ− µRµ (D.10)

= ÃVar[Gs|∗] + ÃE[Gs|∗]2 + B̃Θsµ− µRµ (D.11)

= ÃVar[Gs|∗] + (Ãµ+ B̃Θs)µ− µRµ (D.12)

= ÃVar[Gs|∗] + E[Gb|∗]µ− µRµ (D.13)

= ÃVar[Gs|∗] (D.14)

= ÃΞ (D.15)

To simplify notation, ∗ is used as shorthand to represent being conditional on Gs−1 = gs−1, τc, βc

and Ω. Equation D.9 omits E[C̃Gs|∗] = 0, which is true as C̃|∗ and Gs|∗ are independent and

E[C̃|∗] = 0.

Having derived equation D.6, we can then use standard results for a conditional multivariate normal
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distribution such that:

E[Gs|Gs−1 = gs−1,Gb = gb, τc, βc,Ω] = µ+ (ÃΞ)T (ΞR)−1(gb − µR) (D.16)

Var[Gs|Gs−1 = gs−1,Gb = gb, τc, βc,Ω] = Ξ− (ÃΞ)T (ΞR)−1(ÃΞ) (D.17)

Note that the behavioural states at ts (βs) that feed in to Fs are the same as those at ts−1 but with

the state/movement process of the focal animal changed to the LDP. Consequently, as the LDP

has no attraction term, if the focal animal is in a subordinate state from ts−1 to ts, it will lose its

social link to its dominant (and the rest of the subgroup that is ‘above’ it) for the bridge step from

ts to tb. Whilst that may not seem ideal, we do not know if that animal will retain that social link

when we come to sample its state at ts.

Switching Time of Another Animal

Whilst resampling the location of animal i at the switching time of another animal, we treat the

locations and behaviours of the other animals as fixed. Say ts, still within (ta, tb), is now a switching

time for one of the other animals. We can use the information of the group’s location at time tb to

propose more reasonable samples for animal i’s location at ts. First, note the following:

Gsi |Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ N(µ,Ξ) (D.18)

Gs|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω = (gs1 , ..., gsi−1 , Gsi , gsi+1 , ..., gsn)T (D.19)

Gb|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ MVN(µR,ΞR) (D.20)

Gb|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω = ÃGs + B̃Θs + C̃ (D.21)

where Gs−i are the locations of all animals except i at time ts. µ and Ξ in equation D.18 are

derived from equation D.1 when we ‘know’ the locations of all animals except i at ts and therefore

we can condition on them. Equation D.19 concatenates this univariate random variable with the

fixed locations of the other animals at time ts, where n is the number of animals in the group

in total. We wrap the univariate distribution of equation D.18 in this vector to create consistent

dimensions in equation D.21 and further derivations below. Ã, B̃, C̃ and Θs in equation D.21 are

the same as in equation D.5 above.

Similarly to using equation D.6 in the case of animal i’s switching time, we can use equation D.22

here: (
Gsi
Gb

)
|Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω ∼ MVN(

(
µ

µR

)
,

(
Ξ (Ã1iΞ)T

Ã1iΞ ΞR

)
(D.22)

where 1i represents a column vector of 0s with a 1 at the ith position, the length of which is the

number of animals in the group. The Cov[Gb, Gsi |Gs−1 = gs−1,Gs−i = gs−i , τc, βc,Ω] is derived
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from the following:

Cov[Gb, Gsi |∗] = E[GbGsi |∗]− E[Gb|∗]E[Gsi |∗] (D.23)

= E[(ÃGs + B̃Θs + C̃)Gsi |∗]− µRµ (D.24)

= E[(Ã(gs1 , ..., gsi−1 , Gsi , gsi+1 , ..., gsn)T + B̃Θs + C̃)Gsi |∗]− µRµ (D.25)

= E[Ã(0, ..., 0, Gsi , 0, ..., 0)TGsi + Ã(gs1 , ..., gsi−1 , 0, gsi+1 , ..., gsn)TGsi+

B̃ΘsGsi |∗]− µRµ (D.26)

= ÃE[(0, ..., 0, G2
si , 0, ..., 0)T |∗] + Ã(gs1 , ..., gsi−1 , 0, gsi+1 , ..., gsn)TE[Gsi |∗]+

B̃ΘsE[Gsi |∗]− µRµ (D.27)

= Ã1iE[G2
si |∗] + Ã(gs1 , ..., gsi−1 , 0, gsi+1 , ..., gsn)Tµ+ B̃Θsµ− µRµ (D.28)

= Ã1iVar[Gsi |∗] + Ã1iµ
2 + Ã(gs1 , ..., gsi−1 , 0, gsi+1 , ..., gsn)Tµ+ B̃Θsµ−

µRµ (D.29)

= Ã1iVar[Gsi |∗] + (Ã(gs1 , ..., gsi−1 , µ, gsi+1 , ..., gsn)T + B̃Θs)µ− µRµ (D.30)

= Ã1iVar[Gsi |∗] + E[Gb|∗]µ− µRµ (D.31)

= Ã1iΞ (D.32)

To simplify notation, ∗ is used as shorthand to represent being conditional on Gs−1 = gs−1,Gs−i =

gs−i , τc, βc and Ω. Equation D.26 omits E[C̃Gsi |∗] = 0, which is true due to independence and

E[C̃|∗] = 0.

Having derived equation D.22, we can then use standard results for a conditional multivariate

normal distribution such that:

E[Gsi |Gs−1 = gs−1,Gb = gb,Gs−i = gs−i , τc, βc,Ω] = µ+ (Ã1iΞ)T (ΞR)−1(gb − µR) (D.33)

Var[Gsi |Gs−1 = gs−1,Gb = gb,Gs−i = gs−i , τc, βc,Ω] = Ξ− (Ã1iΞ)T (ΞR)−1(Ã1iΞ) (D.34)


