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Abstract

The Basel Committee on Banking Supervision has introduced a revised market risk framework

and banks are expected to adopt the new rules by January 2023. This work addresses two

of the major amendments to the framework: the capital calculation formula and the model

validation standards for the internal model approach. The capital calculation formula has

changed fundamentally and now relies on the expected shortfall measure and takes into account

liquidity risk. We explain the details and state the mathematical foundations of the new formula

for capital calculation and extend it to elliptical distributions. We demonstrate that in this case

the formula gives an upper bound which can be explained by the aggregation across time

taking place in the formula. The model validation regime for internal models now requires

that models perform satisfactorily at trading desk level and for a range of quantiles in the tails

of the loss distributions. To this end, we develop multi-desk backtests, which simultaneously

backtest all trading desk models and which exploit all the information available in the presence

of correlation between desks. We first consider tests based on indicator time series for VaR

violations before proposing a multi-desk extension of the mono-desk spectral test of Gordy and

McNeil (2020) which allow the evaluation of a model at more than one confidence level. The

spectral tests make use of realised probability integral transform values based on the estimated

loss distribution and these contain more information than the VaR violation indicators. A

further proposed test extends Cochran Q-test to obtain a test that VaR violation rates across

desks are equal as well as consistent with the targeted exception rate. The new backtests are

easy to implement with reasonable running time. In extensive simulation studies, we compare

the performance of the tests in terms of size and power.
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Chapter 1

Introduction

1.1 The Basel Accords

The establishment of consistent rules for banking regulation worldwide and the strengthening

of the ability of banks to absorb unexpected shocks due to market stress is an ongoing concern

for international regulators. The Basel Committee on Banking Supervision (BCBS) was estab-

lished in 1974 in order to improve and align banking supervision globally across its member

jurisdictions. In 2019 it had 45 members from 28 jurisdictions. The members consist of cen-

tral banks and other authorities responsible for banking regulation1. The BCBS sets high-level

supervisory standards and guidelines for the regulation of banks and promotes exchange in

banking supervision. The BCBS itself is coordinated on a supranational level by the Financial

Stability Board, which in turn is authorised by the ‘Group of Twenty’. Developed standards set

out by the BCBS are interpreted as minimum requirements and are not binding automatically.

However, members are expected to implement them through their own domestic authorities.

The most important task of the BCBS is the development of the Basel Accords (Basel I, Basel

II, Basel II.5 and Basel III2). Note that Basel III has fully been integrated into the consolidated

Basel framework in January 2021, BCBS (2021), which is now known as Basel III.53. The Basel

Accord sets high-level standards for banking supervision and specifically provides recommen-

dations for the three pillars: (1) minimum capital and liquidity requirements; (2) supervisory

review process and firm-wide risk management and capital planning; (3) risk disclosure and

market discipline. The rules of the minimum capital requirements concern the preservation of a

minimum amount of capital which has to be held by banks in order to absorb unexpected losses.

1Bank of International Settlements (2020).
2BCBS (1988), BCBS (2006), BCBS (2011a) and BCBS (2011b).
3Sometimes referred to as Basel IV.

11
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The Basel III Accord focusses on the three major risks that financial institutions are exposed to:

credit risk, operational risk and market risk. Market risk is defined as the risk of losses resulting

from movements in market prices. This includes, for example, the subtypes interest rate risk,

credit spread risk and foreign exchange risk. On a European level, the Basel standards devel-

oped by BCBS are passed by the European Parliament under the label Capital Requirements

Regulation (CRR) and Capital Requirements Directive (CRD). The adopted framework also

guides the responsibility for the implementation of the standards. The CRR becomes binding

European law immediately, whereas the directives (CRD) have to be implemented by domestic

authorities.

The BCBS issued its first recommendations on market risk as early as 1996, in the form of the

‘Amendment to the Capital Accord to incorporate market risks’ also known as the ‘Market Risk

Amendment’4. Banks with trading activities have been required by their national competent

authorities5 to set aside capital to protect the bank against extreme losses resulting from adverse

movements in market prices of instruments held in the trading book. However, the financial

crisis of 2007 to 2009 revealed that the existing framework of Basel II was insufficient since many

banks were materially undercapitalised in their trading books during this period of extreme

market stress. As a consequence, the BCBS introduced some enhancements to the existing

market risk framework, which are referred to as Basel II.56. Simultaneously, the BCBS started

an extensive review of the existing market risk framework, known as the Fundamental Review

of the Trading Book (FRTB). This review addresses structural deficiencies and shortcomings

in the existing minimum capital requirements of Basel II and II.5 for market risk and aims to

ensure a more robust market risk measurement. On 14 January 2016 (revised February 2019),

the BCBS published its initial version of the revised minimal capital requirements for market

risk (BCBS (2019b)). On 27 June 2019 CRR II, which enacts the new FRTB requirements,

became European law. Due to the COVID-19 crisis, the deadline for the implementation of the

revised market risk framework was postponed by one year to January 2023.

1.2 The Fundamental Review of the Trading Book

According to BCBS (2019a), p.1, the revised minimum capital requirements for market risk

address the following four areas:

4BCBS (1996).
5For example Bundesanstalt für Finanzdienstleistungsaufsicht and Deutsche Bundesbank for Germany, Pru-

dential Regulation Authority and Financial Conduct Authority for United Kingdom.
6In particular the introduction of a stressed value-at-risk.
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• specification of stricter criteria for the assignment of instruments to the trading book,

• the overhaul of the internal model approach to better address risks that were observed

during the crisis,

• the reinforcement of the supervisory approval processes for the use of internal models,

• the introduction of a new, more risk-sensitive standardised approach.

Stricter criteria for the assignment of instruments to either the banking book or trading book

were introduced since the assignment had previously been based on trading intentions only.

Positions in the trading book are subject to market risk capital requirements, whereas positions

in the banking book are subject to credit risk capital requirements. Therefore, banks could

potentially optimize their capital requirements and understate the risk inherent in an instrument

(BCBS (2019a), p.3). The distinction between the two books is still based on a bank’s trading

intentions but this is buttressed by some predefined allocation rules for specific instruments.

Furthermore, the movement of positions between books is now restricted. The standardised

approach is a non-model-based approach to calculating the market risk capital requirements. It

is a simple formulaic approach prescribed by the regulatory framework. It is applied by banks

which do not use or are not allowed to use the internal model approach. Its design in Basel II

was not risk-sensitive enough, which is why changes have been made in the latest version. In the

revised framework, the internal market risk model approach is subject to major changes both in

the area of model validation and in the capital calculation formula. Banks that have approval

to adopt the internal model approach can use an internally developed model to determine their

minimum capital requirements for the market risk inherent in their trading book activities. One

of the major changes in the internal model approach is the shift from the value-at-risk (VaR)

to the expected shortfall risk measure, which now is part of the equation which determines the

capital that banks have to set aside for market risk. The intention of this change is to better

capture tail risk, since the VaR only measures the loss that a portfolio will not exceed with a

certain probability, whereas the expected shortfall measures the average of the losses beyond

the VaR cut-off point. Since it also turned out during the financial crisis that many instruments

were not as liquid as thought (in the sense that a bank can quickly exit the position or hedge its

risk without affecting market prices). Therefore, the new approach includes the risk of market

illiquidity. Whereas the old framework assumed a uniform ten day holding period7, the revised

framework recognises granular, asset specific liquidity buckets of differing lengths.

7The time required to liquidate asset positions in the trading book or to execute trades to hedge their risks.
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The revised framework also introduces more stringent validation standards for internal market

risk models. The mandated validation tests still rely heavily on the VaR measure. However,

validation actions now have to be performed at bank-wide level as well as at trading desk level8.

Desks failing to meet the regulatory requirements fall back to the standardised approach, which

is generally more costly in terms of capital requirements9. Under the revised framework, it is

now also required that the performance of the internal models should be satisfactory beyond the

usual mandated 99% confidence level. Increased emphasis on the accuracy of VaR estimates at

a wider range of confidence levels in the estimated loss distribution seems natural since assessing

a wider range of the model will also inform about the adequateness of risk measures read off

the estimated distribution function. This also relates to the expected shortfall measure, which

has a new prominent role in the capital calculation formula and is calculated by averaging all

of the returns in the distribution that are worse than the VaR cut-off point.

1.3 Aims of this thesis

These two revisions motivated this work, which specifically covers aspects of the FRTB in

connection with the liquidity-adjusted capital formula based on the expected shortfall measure

and the new validation requirements. Regarding the new capital formula, we were especially

interested in thoroughly stating the theoretical foundations of the formula and in extending the

underlying assumption to more realistic distributions. For the new validation requirements we

are interested in formulating a new methodology for bank-wide and desk-level model validation

tests, since this issue is left open by the regulations.

The work starts with the analysis of the new Basel liquidity formula. In a nutshell, the formula

works as follows. The base liquidity horizon used for the calculation of the expected shortfall is

10 days. Mandated risk factor categories (like interest rates or commodity prices) are mapped

to liquidity horizons of differing lengths, where the mapping rule is given by the regulator. The

10-day expected shortfall measure is calculated for various subportfolios of risk factors. The

formula then aggregates the various risk factor categories by an approach that relies on square-

root-of-time scaling of the base values for the 10-day expected shortfall. Since the regulation

itself gives no detailed motivation or thorough statement of the theoretical background and

mathematical assumptions for the formula, our research question is what justifies the Basel

8Large banks typically organise their trading operations in separate trading desks for different kind of instru-
ments such as equities, currencies or derivatives.

9Approval for the use of an internal model is now also given on a trading desk basis, and is thus more granular
than the previous process mandated in Basel II.5, which allowed the use of an internal model directly at bank-wide
level.
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liquidity formula and does it remain valid for non-Gaussian risk factors? We will explain the

Basel liquidity formula which is based on the assumption that the 10-day risk factor changes

form a multivariate Gaussian white noise process, and that the changes in the portfolio value

are a linear function of these risk factor changes. We will also analyse the formula under the

more general assumption that the risk factor changes form a multivariate elliptical distribution

and will show that the regulatory formula gives an upper bound in that case. We will also

derive a new formula for calculating the expected shortfall by Fourier inversion for univariate

spherical random variables with known characteristic generator, which can be used when we

have no access to the density.

The remaining part of this work concerns the revised validation standards. We thereby focus on

the new requirement that internal models have to demonstrate satisfactory performance both at

bank-wide and trading desk level, as well as the stipulation that a wider range of the estimated

loss distribution should be validated. The proposed statistical tests complement bank’s existing

validation frameworks and can detect potential problems in their models that the latter are

likely to miss.

A key research question is thus are the trading risks of the bank modelled adequately across all

desks? Since the number of trading desks can be quite large, univariate backtesting, that is

backtesting of each trading desk model separately, can be quite time consuming and resource

intensive; if enough parallel tests are carried out, some are very likely to fail. Moreover, univari-

ate backtesting does not account for cross-sectional dependencies between desks. Conversely,

aggregation of the trading desk data into one portfolio data set will result in loss of information

and potential biases in the results (for instance one trading desk model under-estimates the

risk which is compensated by the over-estimation of risk in another trading desk model). On

the other hand, multi-desk backtesting, where all desks are tested jointly and simultaneously,

increases the amount of data and thus, in theory, the power of the test.

We suggest that a comprehensive validation framework for a bank should include backtests

which exploit all the information available in the separate internal trading desk models and

which also control for correlation across desks.

We will first consider tests based on indicator time series for VaR violations, since most lit-

erature concentrates on those. Another aim is to develop a multi-desk extension of the more

general framework of mono-desk spectral backtests developed by Gordy and McNeil (2020).

Their spectral tests make use of the realised probability integral transform (PIT) values of the

estimated loss distribution. More precisely, their tests are built upon transformations of the
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realised PIT level exceedance indicator function, which contains more information than simple

VaR violation indicators. The tests we are going to propose are also very flexible, since the

risk modelling group can emphasize the region of the estimated loss distribution about which

it is most concerned with respect to model performance and can choose a weighting scheme for

observed violations accordingly.

Both types of multi-desk backtests (multi-desk VaR backtesting and multi-desk backtesting

using PIT-values) take the form of Z-tests. In these tests the distribution of the test statistic

is asymptotically normal but the rate of convergence may distort the performance of the test.

Although we will show that the new proposed tests work satisfactorily for backtesting periods

typically considered by banks (the number of observations used in backtesting is usually 250

or 500 days), we will also study the benefits of using bootstrap methods. We will see that in

our setting, the bootstrap methods generally do not offer any clear advantages over the Z-tests,

particularly when the additional computational complexity and increased time resources are

taken into account.

The final research question is also connected to desk-based backtesting but focuses on com-

parative tests, that is tests comparing the performance of the various internal desk models.

The formulated research question is are the trading desks equally good at modelling risk? To

address this research question, the well-known Cochran Q-test (Cochran (1950)) can be used,

which is designed to detect significant differences between outcomes for correlated binary data.

We will first provide a more thorough derivation of the test’s statistical distribution, which

is derived heuristically in Cochran’s original paper. However, the standard application of the

Cochran Q-test can only provide an indication if all desks perform equally (meaning that the

observed VaR violation rates do not differ significantly across desks). Since the regulator is

particularly interested in whether all internal models lead to numbers of VaR violations that

are no more than expected, our aim is to extend the Cochran Q-test to a test that also tests the

unconditional coverage hypothesis at the same time. The unconditional coverage hypothesis

tests if the unconditional probability of a VaR violation is equal to the expected α coverage

rate10. Since the new test’s distribution has no simple closed-form expression, we will exploit

the quadratic form of the test and use a little-known method called Imhof’s method (Imhof

(1961)) to approximate the distribution of the quadratic form.

All tests in this work are implemented in R (R Core Team (2020)). All codes related to the

simulation studies are availably publicly on the Open Science Framework (OSF), see Balter

(2021).

10See Definition 15 in Section 4.2 for the definition of the unconditional coverage hypothesis.



Chapter 2

Literature review

This chapter gives an overview of the regulatory and academic literature on the topics studied

in this thesis.

2.1 Risk measures and capital calculation

The amount of required market risk capital is related to the portfolio risk both under the old and

new framework. Under the old framework of Basel II and Basel II.5, banks using the internal

model approach were obliged to measure and report their market risk based on a (stressed) 99%

VaR of the profit and loss distribution of the their aggregated trading book on a 10-day horizon

(see BCBS (2006), p.195, para. 718(b) and (c)). The application of the square-root-of-time

rule to scale a one-day VaR measure to a 10-day horizon was not forbidden (see BCBS (2006),

p.195, para. 718(c)). The square-root-of-time rule is an attempt to account for illiquidity risk

and is based on the scaling of variances with time in diffusion models for asset prices.

The VaR at level α of a portfolio is the loss (measured in currency units) which is not exceeded

with probability α over the given time horizon, where α is some high percentage11. The VaR

measure came under criticism during the financial crisis (see, for example, Committee on Science

and Technology (2009)), as it does not give any indication about the potential loss when violated.

Also, it is not a coherent risk measure, generally lacking the property of sub-additivity (see

Artzner et al. (1999), Rootzén and Klüppelberg (1999) and Embrechts (2000), for example).

Therefore, in Basel III.5, the formula for the calculation of the capital requirements for market

risk is based on the ES, which is defined as the average of all losses which are greater than

the VaR at some level α. That is, the VaR can be interpreted as an interval estimate for large

11See Definition 2.

17
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losses at some cut-off point of the profit and loss distribution, whereas the ES is the average of

this interval. Also, in contrast to the VaR, the ES is a coherent risk measure (see, for example,

Acerbi and Tasche (2002), Frey and McNeil (2002), Inui and Kijima (2005)).

In total, the new formula for the calculation of the capital requirements for market risk is

the sum of three components (see BCBS (2019a), pp.5). The ES is used for ‘modellable’ risk

factors, meaning risk factors for which a sufficient amount of historically observed data exists.

A second capital add-on is required for risk factors not deemed as modellable (non-modellable

risk factors). The third component covers the default risk for credit and equity positions since

credit defaults and/or significant downgrades (the migration of an instrument from one rating

class to a worse rating class, leading to depreciation of the market value of the position) are

often accompanied by disturbances in market liquidity.

The ES metric has to be calculated according to certain rules set out in BCBS (2019b), pp.89. It

determines the potential loss a bank might face under a period of market stress, where the time

horizon depends on the liquidity of its trading book positions. The required level of confidence

for the calculation of the ES is set to 97.5%12. Another important change is that the square-

root-of-time rule is no longer permitted and has been replaced by a more complex liquidity

calculation.

2.2 Liquidity risk

Under Basel II, the relevant VaR measure had to be estimated on a standard 10-day horizon

with the option to obtain the 10-day horizon by scaling a one-day VaR to the required 10-

day VaR. This implicitly assumed that all positions in the trading book could be exited or

hedged within 10 days. The validity of this standard 10-day horizon for all trading positions

and the adequacy of the square-root-of-time rule has long been questioned in the literature.

Diebold et al. (1998) emphasized that the square-root-of-time rule applied to the VaR only

holds under the assumption of independent identically normal distributed underlying (high-

frequency) returns, which is usually violated. Danielsson and Zigrand (2006) showed that VaR

is underestimated by the square-root-of-time rule in the case where the underlying returns follow

a jump-diffusion process. Wang et al. (2011) considered different stylized facts in returns and

analysed how they impact the applicability of the square-root-of-time rule. They found that for

certain behaviours in the data, like serial dependence, the application of the square-root-of-time

12The decrease in the confidence level is due to the fact that for the normal distribution, the 99% quantile
mandated in Basel II and Basel II.5 for the VaR is approximately the average of the 97.5% tail.
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rule leads to biased results. Regarding the standard 10-day horizon there has been discussions

in the literature about the adequacy of this assumption since it does not incorporate liquidity

risk and does not recognize that some positions probably require a longer time horizon to be

hedged or exited. Finger (2009) noted that internal risk management in banks itself is realised

on positions level. That is, the relevant risk horizon is the frequency with which a position can

be traded. This is also acknowledged by Lawrence and Robinson (1997), for example. They

argue that liquidity risk (in the VaR) is best incorporated by applying the time horizon the

investor believes he needs to exit a position. In other words the risk calculation should not rely

on one standard time horizon for all positions. A study by Hung et al. (2020) analysed the

effect of liquidity on the VaR measure. Based on their findings they suggested liquidity risk in

VaR models to prevent underestimated market risk capital requirements.

The new regulatory framework addresses these shortcomings. Under the new framework, the

ES has to be calculated on a base liquidity horizon of 10 days, using overlapping 10-day changes

of the risk factors. To include illiquidity risk, the granularity of liquidity horizons is increased.

Different liquidity buckets are applied for different risk factors, ranging from 10 days (for ex-

ample for interest rates of specific currencies), to 120 days (for example for volatility of certain

commodity prices)13. In total, five liquidity buckets are defined. A bank has to calculate five

unscaled ES measures on the base 10-day liquidity horizon according to the five given liquidity

buckets. That is, first the ES for all risk factors with a liquidity horizon of 10 days or more

has to be calculated. Then the ES for all risk factors with liquidity horizon of 20 days or more

and so on. The formula for the total ES is obtained from these five ES measures by scaling.

As stated in BCBS (2019a), p.7, the new formula also reduces the potential for risk-reducing

diversification effects, since the capital requirement resulting from the ES metric is calculated

as the average of (i) the sum of single risk factor ES values, which does not benefit from diver-

sification effects and (ii) an integrated ES calculation, which recognizes diversification effects

across risk factors.

Despite the shift from VaR to ES in the calculation of the capital requirements for market risk,

the VaR still plays a central role, namely in the validation of internal market risk models since

the new framework still anticipates backtesting of the VaR value, see BCBS (2019b), p.18, para.

32.4. Under Basel II and Basel II.5, a ‘traffic light approach’ was mandated in order to assess

the accuracy of a VaR model by counting the number of VaR violations within the last 250

observed days. Under the new framework, model validation standards are more stringent. The

validation actions have to be performed at desk level and bank-wide level, with desks failing to

13The liquidity buckets are specified in BCBS (2019b), p.92, table 2, which are 10, 20, 40, 60 and 120 days.
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meet the requirements obliged to compute their capital using the standardised approach. The

framework also explicitly mentions, that at bank-wide level, backtesting may also be conducted

at calibration levels other than the 99% one and other statistical tests may be performed (see

BCBS (2019b), para. 32.13). At trading desk level, a bank must analyse the performance of

the VaR measure not only at the 99% but also at the 97.5% level (see BCBS (2019b), para.

32.18). This indicates that the regulator has become more interested in the performance of

internal models not only at one confidence level but also at other quantiles. Since the ES is now

the measure which determines the capital charge, an indirect validation by assessing the model

performance at a wider range of quantiles in the tail of distribution seems reasonable.

2.3 VaR estimation and validation

Over the last few decades, many VaR estimation methods have been proposed in the literature.

Methods for the direct modelling of the quantile have been suggested as well as methods for the

estimation of the profit and loss distribution (PnL) from which the VaR can be inferred. The

various options include non-parametric methods (like historical simulation), parametric models

(like GARCH or Monte Carlo simulation) or semi-parametric ones (like extreme value theory

or the CaViaR method). For an extensive review of VaR estimation methods see, for example,

Abad et al. (2014)).

In this thesis we assume that the risk modelling group estimates or forecasts the unknown PnL

distribution function on a filtered probability space (Ω,F , (Ft)t∈N0 ,P) using the information

available at time t−1. The conditional PnL distribution function at each time point is denoted

by Ft = P(Lt ≤ x|Ft−1), where Lt is an Ft-measurable random variable representing the

portfolio loss at time t in currency units (i.e. we consider the negative PnL where losses are

positive, profits negative).

Since the VaR itself is not observable ex-post, traditional assessment criteria like the mean

squared error are not applicable. A method of testing the predictive models using historical

data, known as backtesting14, has become the industry standard for validating VaR models.

Under the regulatory framework of Basel II and Basel II.5, backtesting required the comparison

of the one-day-ahead VaR forecast to the ex-post observable realised loss. Backtesting strategies

in the literature are therefore often based on VaR violation indicators. Most proposed backtests

for the accuracy of VaR forecasts are of univariate nature and are based on univariate time

14Jorion (2007), for example, defines backtesting as a set of statistical procedures designed to check if the real
losses are in line with VaR forecasts.
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series of VaR violations for one portfolio. Let It(α) = I{Lt≥V̂aRt(α)} denote a time series of

n consecutive violation indicators based on forecasts V̂aRt(α). Christoffersen (1998) defined

criteria which should be fulfilled if these forecasts are adequate estimates of the true underlying

VaR values. These are known as the unconditional coverage and independence hypotheses.

Both can be combined to obtain the conditional coverage hypothesis. One can easily show

that the conditional coverage hypothesis holds true if the sequence (It(α))t∈N is a series of

independent identically distributed (i.i.d.) Bernoulli variables with event probability 1 − α15.

Christoffersen emphasizes the importance of testing for the conditional coverage hypothesis in

the presence of dynamics associated with stochastic volatility. These are expected in VaR time

series since the underlying financial market data typically show stochastic volatility. Moreover,

the portfolio composition changes over time and thus portfolio value changes may be non-

stationary. Various tests have been proposed using the unconditional coverage, independence

and conditional coverage hypotheses as test criteria. Multivariate extensions have largely been

neglected. The extension is indeed not straightforward since the data from, for example, several

trading desks are likely to be serially correlated over time and cross-correlated across desks.

Multivariate backtesting needs to take this into account.

Testing for the unconditional coverage hypothesis means testing whether the number of observed

VaR violations is significantly different from the expected number of VaR violations. As already

mentioned the VaR forecast is made quite deep in the tail of the PnL distribution with levels

around α = 0.99. Considering a historical period of 250 days (or one trading year), which is

a standard time frame used in market risk model validation, we expect 2.5 violations. If the

number of observed VaR violations is significantly higher than (1−α)×n, the risk is potentially

under-estimated. Tests of the unconditional coverage hypothesis are closely connected to the old

regulatory framework for the calculation of the minimum capital requirements of market risk.

The market risk capital multiplier applied to a bank was determined according to the number

of VaR violations observed over the past 250 trading days. One of the earliest approaches

for verifying the unconditional coverage hypothesis is given by Kupiec (1995) who proposes

a likelihood-ratio statistic based on the proportion of VaR violations observed over a certain

period of time. The null hypothesis states that the observed VaR violation rate is equal to the

expected violation rate under the applied α level. A rejection of the null hypothesis indicates

inaccuracies in the internal market risk model used to estimate the VaR. As Kupiec points out,

tests for the unconditional coverage hypothesis usually have low power and therefore struggle

to detect misspecified VaR models for sample sizes which are typical in the validation of market

15See Christoffersen (1998), p.844, Lemma 1.
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risk models (one or two years of data, that is 250 or 500 trading days, respectively). The

importance of correct conditional coverage of an interval forecast like the VaR (which can be

thought of as a special interval forecast bounded at one side only) is also highlighted in Engle

(1982): An interval forecast should be dynamic in the sense that it is narrow during an economic

stable environment and wider in volatile times. If not, the forecast can be correct on average,

i.e. it can satisfy the requirement of correct unconditional coverage, but it may show undesired

clustering of VaR exceptions violating the requirement of independence. This is particularly

important in the presence of dynamics caused by stochastic volatility in price changes, which

can typically be observed in financial data.

The unconditional coverage hypothesis analyses the frequency of VaR violations, whereas the

independence hypothesis says something about the way in which they may occur. Independence

of any two observations of the VaR violation sequence means that the previous history of VaR

violations does not include any further valuable information for future VaR predictions. For

example, the presence of violation clusters (VaR violations appearing jointly within a short

period of time) contradicts the independence hypothesis and hence contradicts the validity of

the underlying VaR model. A valid VaR model must be able to respond to changing market

conditions and to reflect them in the VaR predictions so that VaR violations are spread evenly

across time and do not appear in clusters. Tests of the unconditional coverage hypothesis

usually have no power or only very weak power to detect unwanted dependencies between the

VaR violation indicator variables.

One of the first approaches to test for the independence of the sequence of VaR violation

indicators (It(α))t∈N is presented in Christoffersen (1998). The author proposes a likelihood

ratio based test of the hypothesis of independence against an explicit first-order Markov chain

(Markov test). The sequence of VaR violations is expressed as a first-order Markov chain

with two states, where the transition probability matrix is derived under the independence

assumption. The test then compares the likelihood function under independence with the

likelihood under the more general Markov model. Under the null hypothesis, these transition

probability matrices should be equal. As pointed out in Christoffersen (1998), this test only

tests for independence and the unconditional coverage hypothesis of correct coverage rate can

still be violated.

Note that most tests of the independence hypothesis have in common that they need an as-

sumption about the dependence structure which is tested against in the alternative hypothesis.

In the case where the VaR violation sequence exhibits a different dependence structure to the

one assumed in the alternative hypothesis, the test may have no power to detect this. Another
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drawback is also pointed out in Ziggel et al. (2014) who noted that previously, tests for the

occurrence of clustered violations focus on testing the violations for independence and neglect

testing whether they have an identical distribution. They argue that VaR violation clusters can

occur even when the time series of VaR violations is independent. As an example, they mention

the fact that the series may not be identically distributed, showing varying probabilities of VaR

violations across time. Therefore, they propose a univariate VaR backtest for the full i.i.d.

hypothesis, explicitly testing for clusters in the time series of VaR violations.

Duration-based tests are a variety of tests which can be used for both the verification of the

conditional coverage hypothesis, the independence hypothesis as well as the unconditional cov-

erage hypothesis. Under the null hypothesis of a correctly specified model, the time between

two VaR violations should be ‘memory free’ and the average duration between violations should

be equal to 1/α days. As pointed out in Christoffersen and Pelletier (2004), the only memory

free continuous function is the exponential function. Duration-based tests need an alternative

which allows for dependent durations and which nests the exponential function. For example,

Christoffersen and Pelletier (2004) postulate a duration-based test for independence using the

Weibull distribution, amongst others. They show that the proposed test has more power than

the Markov test which relies on a more strict assumption on the form of the clustering in the

alternative hypothesis. A drawback of these kinds of duration-based tests is that they need

a specification for the distribution of the duration under the alternative hypothesis. Hurlin

et al. (2010) introduce duration based tests for unconditional coverage, conditional coverage

and independence hypothesis, which do not require an explicit distribution under the alter-

native hypothesis. Their tests use the durations between VaR violation indicator variables as

input variable and exploit the definition of orthonormal polynomials associated with the geo-

metric distribution. They then use the fact that the polynomial evaluated at a random variable

following a geometric distribution is zero under the null hypothesis.

As pointed out in Campbell (2007), joint tests of the unconditional coverage and independence

are not automatically preferable to separate testing. Inadequate VaR models, which violate only

one of the two hypotheses, are less likely to be detected by a joint test than by the two separate

tests. Campbell (2007) therefore suggests separate testing of the hypotheses when previous

knowledge about the potential deficiency (a violation of the unconditional or independence

property) is present.

Another strand of testing is based on the fact, that the VaR estimate should be valid for every α

level and not just for one specific α level when a PnL distribution is estimated adequately. This

is also acknowledged by the revised regulatory requirements for the measurement of market risk,
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which emphasize that testing should be carried out not only at the 99% level. Testing for more

than one specific α level becomes also more important with the new market risk regulations

since the expected shortfall is now one of the components of the formula which determines the

required capital for market risk. Defined as the average of all losses which are greater than the

VaR at level α, an adequate estimate of the expected shortfall requires a PnL forecast, which

is accurate in the respective tail of the distribution.

Tests based on multiple VaR α levels, which test simultaneously for the adequacy of a finite

number of VaR estimates at different levels α1, . . . , αN were proposed by Kratz et al. (2018),

for example. They propose tests for both the unconditional coverage and the independence

hypothesis and show that they are more powerful than single-level binomial VaR violation

tests when N ≥ 4. They suggest that these tests can also be used as an implicit backtest of

the expected shortfall. In Pérignon and Smith (2008), a multivariate unconditional coverage

test is proposed, which takes the form of a multilevel likelihood-ratio test, where the VaR is

backtested at several distinct α-values. It is a multivariate generalization of the unconditional

test of Kupiec. Another multilevel test is presented in Campbell (2007). He uses the Pearson’s

chi-squared test for goodness of fit in order to examine regions of α values.

2.4 Backtesting based on PIT-values

Testing for the accuracy of the VaR at more than one α level implies that we move away from a

simple assessment of the validity of value-at-risk to a more thorough assessment of the forecasted

PnL distribution from which the VaR forecast is calculated. If the PnL distribution is adequately

estimated, the VaR must be adequate for every α level in [0, 1]. In the extreme case that we test

for every α level, we backtest the complete PnL distribution. One advantage of backtesting (a

region of) the forecasted PnL distribution is that we exploit much more information to verify

the validity of the internal model in comparison to using the series of VaR violation indicators at

a specific α level. It is obvious that the VaR violation indicator only exploits a limited amount

of data. It takes only the values zero and one at every time point t, which provides information

whether a VaR violation has occurred or not. Moreover, in risk management applications, we

typically face α levels around 99%, so violations occur very rarely. Consequently, the indicator

variable is mostly zero. Some backtests for the forecasted PnL distribution are based on realised

probability-integral transform (PIT) values16. For this, the series L1, . . . , Ln of observed profits

16The nomenclature in the Fundamental Review of the Trading Book has also been realised p-values in some
versions.
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and losses is transformed to a series of i.i.d. variables via the probability integral transform.

Rosenblatt (1952) shows17 that the series (Ut)t∈N consisting of the variables

Ut =

∫ Lt

−∞
ft(u|L1, . . . , Lt−1)du = Ft (Lt)

forms a series of i.i.d. standard uniform distributed variables. In this formula, ft denotes the

conditional density of the PnL distribution function of the variable Lt. In the following Ut is

called the theoretical PIT value. Note that this transformation holds even when the random

variables Lt, t = 1, . . . , n, are non-stationary.

Using this insight, backtests of the forecasted PnL distribution function F̂t can be constructed

by arguing that one would expect that the sequence of realised PIT-values Pt = F̂t (Lt), t =

1, . . . , n, to behave like i.i.d. standard uniform variables when a risk modelling group provides

ideal forecasts F̂t of Ft at any point in time in the sense of Gneiting et al. (2007). As pointed

out in Gordy and McNeil (2020), PIT-values contain information about VaR violations at any

α level18:

Ut ≥ α ⇒ Lt ≥ VaRt(α).

So tests based on realised PIT-values are expected to be more powerful than tests based on the

VaR violation sequence alone when it comes to the detection of deficiencies in the the forecasts

F̂t, t = 1, . . . , n. Note that the criteria defined by Christoffersen (1998) can be directly applied

to the sequence of realised PIT-values (Pt)t∈N:

Uniformity In the case that F̂1, . . . , F̂n are ideal forecasts of the PnL distribution function,

the sequence (Pt)t∈N must be uniformly distributed on the unit interval [0,1]. Note that

this condition is directly linked to the unconditional coverage hypothesis when using the

sequence of VaR violation indicators, since both require that the VaR at level α should

be violated (1− α)-times:

P(Pt ≥ α) = E(I{Pt≥α}) = 1− α.

Independence For ideal forecasts F̂1, . . . , F̂n, the realised PIT-values P1, . . . , Pn must be inde-

pendent from each other. A VaR violation at level α should not contain any information

about the occurrence of a future VaR violation at level α̃. This property is directly linked

17Under the assumption that the conditional PnL distribution is continuous at each point in time.
18Note that the distribution function has to be strictly increasing to apply the following equivalence.
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to the independence hypothesis of the sequence of VaR violations indicators.

Both properties can be summarized in the hypothesis that

Pt
i.i.d.∼ U(0, 1), t = 1, . . . , n,

where U(0, 1) denotes the standard uniform distribution on [0, 1]. Backtests can be constructed

by testing the uniformity and/or the independence hypothesis. An external regulator can use

realised PIT-values as the basis for further validation actions when the forecasts F̂1, . . . , F̂n made

by the risk modelling group are reported to them. Note that these properties hold irrespective

of the method used to forecast the true underlying PnL distribution.

Berkowitz (2001) proposed a backtest based on realised PIT-values based on the fact that for a

sequence of i.i.d. standard uniform variables (Ut)t∈N it holds that Zt = N−1(Ut), t = 1, . . . , n,

is a sequence of i.i.d. standard normal distributed variables. Using (Zt)t∈N he exploits that

this sequence must be independent across observations and that the variables must be serially

independent and standard normally distributed. More precisely, he proposes a likelihood-ratio

test based on a censored (or truncated) likelihood. As he explains, the test compares only

the tail of the estimated density to the observed tail and not the entire density (see Berkowitz

(2001), p.469). A standard (non-censored) likelihood test will reject a model no matter in

which part of the density the forecast deviates from the observation in the first two conditional

moments of the data. The proposed test uses the transformed sequence of realised PIT-values

(Zt)t∈N, which are truncated to a desired cut-off point like VaR at a certain α level and then

calculates the log-likelihood function using the insight that the values Zt should have a normal

distribution for all t. Another test which accentuates certain areas of a distribution forecast in

the backtesting exercise has been proposed by Amisano and Giacomini (2007). Their weighted

likelihood ratio test is a relative test, comparing the performance of two competing density

forecasts. Their approach is based on weighted averages of the logarithmic scoring rule, where

the weights can be chosen according to the preferences of the risk modelling group. Diks

et al. (2011) also proposed tests for the comparison of competing forecasts but based them on

conditional likelihood and censored likelihood scoring rules. Their test has the advantage that it

circumvents unjustified favouritism of density forecasts which place more probability mass on the

accentuated region. Gneiting and Ranjan (2011) adopted the weighting approach in Amisano

and Giacomini (2007) but applied the (quantile-weighted) continuous ranked probability score

instead of the logarithmic score. All of these tests have in common that they analyse a specific

region of interest.
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Recently, Gordy and McNeil (2020) proposed so-called spectral tests of the unconditional and

conditional coverage hypothesis, which covers many of previously proposed approaches to back-

testing as special cases. Their tests are absolute tests evaluating the weighted performance of

one distribution forecast. The tests are based on transformations of the realised PIT-value level

exceedances indicators Yt(α) = I{Pt≥α} of the form

Wt =

∫
[0,1]

I{Pt≥u}dν(u), t = 1, . . . , n (2.1)

where ν is a Lebesgue-Stieltjes measure defined on [0, 1]. This form is very flexible. The risk

modelling group or banking regulator can choose the kernel window, which defines the area of

the forecast distribution he or she is interested in assessing, mostly in the area around the 99%

quantile. Moreover, by choice of the kernel it can also be decided how to weight the probabilities

within the observed kernel window since preferences may not be monotonic. Gordy and McNeil

(2020) state that the statistic translates to many existing backtesting approaches by choosing

specific kernels. For example, the Dirac measure concentrated at α conforms to the test of

Kupiec. The statistic also subsumes the test in Berkowitz (2001). The spectral risk measure

test of Costanzino and Curran (2015) and the expected shortfall test of Du and Escanciano

(2017) are further special cases of the spectral tests in Gordy and McNeil (2020) obtained by

choosing a kernel truncated to tail probabilities. Costanzino and Curran (2015) proposed a

backtest for any spectral risk measure that is based on spectrally weighted VaR violations.

The test assesses the spectral risk measure’s performance on a specific tail of interest. Du and

Escanciano (2017) proposed a backtest for the expected shortfall.

To apply the spectral tests, only the observed realised PIT-values are required and no informa-

tion about the forecast distribution is needed. A test of the unconditional coverage hypothesis

means to test that the distribution of the Wt values is the one implied when the realised PIT-

values are in fact uniform. One test, which is proposed in Gordy and McNeil (2020) for the

unconditional coverage hypothesis, takes the form of a Z-test, based on the asymptotic be-

haviour of the average of the values W1, . . . ,Wn. For a large class of kernels, this Z-test statistic

is analytically tractable and its distribution function is approximated by the standard normal

distribution. Besides the univariate transformation Wt where one single kernel measure ν is

considered, they also propose a multivariate transformation where a set of different kernel mea-

sures ν1, . . . , νm is considered. Hence we have a vector Wt = (W 1
t , . . . ,W

m
t ), where each entry

is an univariate transformation Wt with a different kernel with the form given in (2.1).
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2.5 Multivariate backtesting

So far, all of the above tests make use of univariate time series. Under the revised regulatory

framework for the trading book (BCBS (2019b)), multivariate backtesting has acquired a new

relevance since backtesting of VaR is now required at a bank-wide level and trading desk-level.

However, multivariate extensions of univariate VaR backtests have not been widely developed

(see, for example, Berkowitz et al. (2011), p.8, where some ideas to approach this topic are

mentioned but left for future research).

To the best of our knowledge, only two papers deal with multivariate backtesting of the VaR,

where we interpret multivariate backtesting in the sense of backtesting VaR forecasts for several

portfolios (or desks) simultaneously.

Both Danciulescu (2016) and Wied et al. (2016) propose simultaneous backtests for a set of VaR

forecasts using the multivariate time series of the VaR violation indicators as input variable. In

the multivariate setting we assume that the bank builds a PnL model Ft,i for the Loss Lt,i at

time t for each desk (or sub-portfolio/bank) i = 1, . . . , d. V̂aRt,i(α) is the VaR forcast for time

t for desk i. Then the multivariate VaR violation indicator variable is given by

It,i(α) =


1 if Lt,i ≥ V̂aRt,i(α),

0 if Lt,i < V̂aRt,i(α).

(2.2)

The VaR violation vector can be defined as It,α = (I1
t,α, . . . , I

d
t,α)′, for t = 1, . . . , n.

Danciulescu (2016) suggests a test for the unconditional coverage hypothesis and a test for

the independence hypothesis. The author proposes a multivariate portmanteau test statistic

of Ljung-Box type which is applied to the multivariate time series of VaR violation indicator

variables. The test for the independence hypothesis simultaneously tests for the absence of

cross- and autocorrelations in the multivariate time series of VaR violation indicator variables

up to lag K. The sample covariance matrix of the VaR violation vector is used in the test

statistic.

In Wied et al. (2016) multivariate tests are proposed for the detection of clustered VaR viola-

tions, which violates the conditional coverage hypothesis. They argue there can be two reasons

for the occurrence of clustered violations. One reason why clustered violations occur is that the

probability of observing a VaR violation could vary over time. For this, Wied et al. propose a

backtest for non-constant expectations, formally testing if the sum of observed violations across
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desks is constant across time. Another reason for the occurrence of clustered violations is that

the time series of VaR violations may not fulfill the multivariate independence hypothesis that

the time series are independent across time and across desks19. For this, they propose a χ2-

test for the conditional coverage hypothesis, testing for cross-sectional and serial dependence

(with correct coverage rates). The null hypothesis assumes that the time series show no serial

dependence or cross-sectional dependence up to a lag K with K > 020.

It also has to be mentioned that due to limited availability there are very few studies using

empirical data on bank-wide PnL data and even less on desk-level PnL data. One study on desk-

level PnL data is given by Berkowitz et al. (2011). Their data set includes daily realisations from

the PnL distribution and the daily forecast of the VaR (calculated using historical simulation)

from each of four separate business lines of a large international commercial bank. In this

study, various univariate tests like the Markov test of Christoffersen (1998) for the conditional

coverage hypothesis, the CaViaR test for autocorrelation of Engle and Manganelli (2004) and

the unconditional coverage hypothesis test of Kupiec (1995) are used to backtest the VaR for

each trading desk separately. Moreover, the tests are assessed based on their finite-sample size

and power properties in a Monte Carlo study. The authors find that the VaR models for two

out of the four business lines are rejected due to volatility clustering and that the model of a

third business line is rejected by the unconditional coverage hypothesis test of Kupiec.

2.6 Expected shortfall validation

As described in Section 2.3, backtesting of the estimated VaR can be very simple. In order to

prove its adequateness, it suffices to compare the series of realised losses with the VaR estimates.

For the expected shortfall, validation is not that simple, since it is calculated as the averages

of the losses beyond the VaR cut-off point. In fact, it was shown by Gneiting (2011) that the

expected shortfall (as opposed to VaR) lacks the property of elicitability (see Definition 19 in

Section 4.2). For elicitable risk measures scoring functions exist (see Definition 18 in Section

4.2) which can be used to rank competing forecasting methods. It has long been argued that the

lack of elicitability leads to the impossibility of a rigorous backtesting of the expected shortfall

(see discussions in Acerbi and Szekely (2017), Emmer et al. (2013), Pitera and Schmidt (2018) or

Ziegel (2016), for example). However, Fissler et al. (2015) showed that the expected shortfall is

jointly elicitable with VaR and they provide strictly consistent scoring functions which are used

19Note that the authors do not speak about desks but business lines, sub-portfolios or more generally banks.
20They also proposed a test for the more restrictive null hypothesis assuming K ≥ 0.
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to construct comparative backtests for model selection. It has already been argued in Acerbi and

Szekely (2014) that the lack of elicitability only impacts the feasibility of model selection and

not the possibility for model testing. In fact, many implicit and explicit backtesting methods

for expected shortfall have been proposed in the recent past, which serve as absolute tests of

the adequacy of the expected shortfall measure (see Costanzino and Curran (2015), Costanzino

and Curran (2018), Du and Escanciano (2017), Kratz et al. (2018), for example).



Chapter 3

On the Basel liquidity formula

3.1 Introduction

With the introduction of the Basel III.5 standard (see BCBS (2021)), the formula for the

calculation of the capital requirements for market risk changed fundamentally. Whereas the

market risk capital was based on a stressed 99% value-at-risk (VaR) of the profit and loss

(PnL) distribution under the old Basel Accords, the Basel III.5 formula relies on expected

shortfall (ES). Moreover, the revised rules acknowledge that the previously applied standard

10-day liquidity horizon did not differentiate sufficiently between liquidity risks associated with

different risk factors. In fact, during the last financial crisis it turned out that not all instruments

are equally liquid.

The ES metric has to be calculated according to certain rules set out in BCBS (2019b), pp.89.

In short, the ES has to be calculated at a 97.5% level on a daily basis both for the bank-wide

internal model and for each trading desk that uses the internal model approach. The base

liquidity horizon for the ES is 10 days, which has to be computed by using overlapping 10-day

changes of the relevant risk factors. The formula then aggregates the risk factor categories based

on the new concept of liquidity horizons and square-root-of-time scaling from the 10-day ES.

This concept of liquidity horizons defines five different liquidity horizons ranging from 10 days

(for example for interest rates of specific currencies), to 120 days (for example for volatility of

certain commodity prices). These horizons are (conservative) estimates of the amount of time

that would be required to execute trades that would eliminate the effects of these risk factors

on the value of the portfolio in a period of market illiquidity. The prescribed mapping of risk

factors to one of these five liquidity horizons is given in the Basel III.5 framework. Every risk

factor affecting the value of positions in the trading book has to be assigned by the bank to it’s

31
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unique liquidity horizon LHj . In total, a bank has to calculate five unscaled ES measures on

the base 10-day liquidity horizon (one for each liquidity bucket). The first ES measure includes

all risk factors belonging to the first to the fifth liquidity horizon, the second ES measure

includes all risk factors belonging to the second to the fifth liquidity horizon and so on. That

is, the expected shortfall measures are calculated with respect to shocks to the risk factors with

specified liquidity horizons while the other risk factors are held constant. The precise formula

for the regulatory liquidity-adjusted expected shortfall is given by

ES =

√√√√(EST (P ))2 +
∑
j≥2

(
EST (P, j)

√
LHj − LHj−1

T

)2

(3.1)

(see BCBS (2019b), p.90), where

• T = LH1 is the the base liquidity horizon of 10 days.

• EST (P ) is the expected shortfall at horizon T for a portfolio P with respect to shocks to

all risk factors to which the positions in the portfolio are exposed (total ES).

• EST (P, j) is the expected shortfall at horizon T for a portfolio P with respect to shocks

to the risk factors which have a liquidity horizon of length LHj or greater, with all other

risk factors held constant (four partial ES).

The expression
LHj−LHj−1

T in formula (3.1) is the scaling factor used to scale up EST (P, j) from

the base liquidity horizon of T = 10 days to the required liquidity horizon. The Basel III.5

framework considers five liquidity buckets of liquidity horizons of 10, 20, 40, 60 and 120 days.

Under the assumption that all risk factors belong to the bucket of the longest liquidity horizon

of 120 days, the regulatory liquidity-adjusted ES would directly scale from the base expected

shortfall EST (P ) by ES = EST (P )
√

12, which is roughly a tripling of the base ES.

In this chapter we study this new formula and formulate the following research question:

Question 1. What justifies the Basel liquidity formula and does it remain valid

for non-Gaussian risk factors?

So the aim of this chapter is to provide a theoretical justification for the Basel liquidity formula

in (3.1) and to investigate how it can be generalised to allow more realistic distributional

assumptions. Precisely, we show that the Basel liquidity formula can be justified under the

assumption that the 10-day risk factor changes form a multivariate Gaussian white noise process
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with the additional common assumption that changes in the portfolio value are a linear function

of these risk factor changes. Following this, we analyse the Basel liquidity formula under the

more general assumption that the 10-day risk factor changes form a multivariate elliptical

distribution and derive a generalised formula. The behaviour of the Basel liquidity formula for

elliptically distributed risk factor changes is interesting because the elliptical family contains

more realistic distributions which are able to model heavy tails and tail dependencies. In

fact, many results in quantitative risk management apply equally when multivariate normal

assumptions are generalised to multivariate elliptical assumptions. In particular, when losses

depend linearly on the underlying risk factors, aggregation of risk measures across different

business lines, desks or risk factors can generally be based on a common formulaic approach,

regardless of the exact choice of elliptical distribution, see McNeil et al. (2015), pp.275. The

difference in the regulatory liquidity-adjusted ES formula is that aggregation takes place not

only across risk factors, but also across time and a central limit effect takes place. We show in

a simulation study that formula (3.1) gives an upper bound when the distribution of risk factor

changes belong to the family of heavier-tailed symmetric generalised hyperbolic distributions.

That means that in this case the formula leads to a higher capital charge than is actually

necessary to achieve the targeted level. The simulation study also analyses how the level of

accurateness of the Basel liquidity formula is influenced by correlated risk factors. As a by-

product of our analyses we also demonstrate a new (Fourier) approach for the calculation of VaR

and ES for general univariate symmetric loss distributions when the characteristic function is

known. This approach is particularly useful in cases where we take convolutions of symmetrically

distributed univariate random vectors and do not have a simple closed-form expression for their

probability densities.

3.2 Mathematical foundations

In this section we will provide some mathematical background which is used in this chapter.

In particular, we state the formal definition of value-at-risk and expected shortfall. We also

review some definitions and properties in multivariate time series which are used both in this

chapter and subsequent chapters of this thesis. Moreover, we define some specific multivariate

distributions which are considered in this chapter including elliptical distributions. We also

present some prominent examples of normal variance mixture models which are used in the

simulation study. The primary reference is McNeil et al. (2015).
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3.2.1 Risk measures

We now turn to the definitions of the risk measures value-at-risk and expected shortfall. For

this we have to define the quantile function.

Definition 1 (Quantile Function). Given some distribution function F , the generalised inverse

F← is called the quantile function of F . For α ∈ (0, 1) the α-quantile of F is given by

qα (F ) = F← (α) = inf{x ∈ R : F (x) ≥ α}.

See McNeil et al. (2015), p.65, Definition 2.9 (ii).

In the following, we consider a portfolio of risky assets. By L we denote the random variable

which describes the portfolio loss over some fixed time horizon21. The corresponding distribution

function is given by FL(l) = P(L ≤ l). The distribution function of L is also called the Profit

and Loss distribution. Note that we consider the negative Profit and Loss function.

The value-at-risk (VaR) defines the maximum loss which is not exceeded with a given probability

1− α, where α describes the desired confidence level (also known as the coverage rate).

Definition 2 (Value-at-risk). Given some confidence level α ∈ (0, 1), the VaR of the distribution

function of L at confidence level α is given by the smallest number l such that the probability

that the loss L exceeds l is not larger than 1− α. Formally,

VaR(α) = VaRL(α) = inf{l ∈ R : P(L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}.

See McNeil et al. (2015), p.64. So the VaR is basically a quantile of the profit and loss distribu-

tion and can also be interpreted as a one-sided interval. Next, we define the expected shortfall

(ES), which is the average of the VaR values over all confidence levels u > α.

Definition 3 (Expected Shortfall). For a loss L with E (|L|) < ∞ and distribution function

FL(l) = P(L ≤ l), the expected shortfall at confidence level α ∈ (0, 1) is defined as

ES(α) = ESL(α) =
1

1− α

∫ 1

α
qu(FL)du,

21More precisely, it describes the change in the portfolio value, also describing the profits (loss positive, profits
negative). However, the general term loss is often used in the literature so we follow this notation.
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where qu(FL) denotes the quantile function.

See McNeil et al. (2015), p.69. Note that when FL is continuous we have ESL(α) = E(L | L ≥

VaRL(α)).

3.2.2 Multivariate time series

Mostly, market risk modelling is based on historical observations of financial risk factor changes

or Monte-Carlo methods to simulate possible future financial risk factor changes which influence

the value of a bank’s trading portfolio. The set of risk factor changes forms a multivariate time

series. In the following we will list some important definitions and properties of multivariate

time series which are either used later or are helpful for the understanding of some of the

concepts.

A multivariate time-series model for two or more risk factors is a stochastic process (Xt)t∈Z,

i.e. a family of random vectors, indexed in time order and defined on some probability space

(Ω,F ,P). That is, for any time t we have a d-dimensional random vector Xt = (Xt,1, . . . , Xt,d),

which follows some multivariate distribution. The i-th entry of Xt is the random variable Xt,i.

For a strictly stationary process the joint probability distribution function of any subset of the

multivariate times series (Xt)t∈Z is independent of time.

Definition 4 (Strictly Stationary). A multivariate time series (Xt)t∈Z is strictly stationary if

(Xt1 , . . . ,Xtn)
d
= (Xt1+k, . . . ,Xtn+k) ,

for all t1, . . . , tn, k ∈ Z and for all n ∈ N.

A stochastic process is covariance (or weakly or second-order) stationary if the mean of the

process is independent from time, the covariance matrix is finite and the covariance between

two observations Xt and Xs only depends on the lag (that is the time between two realisations).

Definition 5 (Covariance Stationary). A multivariate time series (Xt)t∈Z is covariance sta-
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tionary (or weakly or second-order stationary) if the first two moments exist and satisfy

µ(t) = µ = E[Xt], t ∈ Z,

Γ(t, s) = Γ(t+ k, s+ k), t, s, k ∈ Z

with mean function µ(t) and covariance matrix function Γ(t, s) = E[(Xt − µ(t))(Xs − µ(s))′]

of (Xt)t∈Z.

For a multivariate time series (Xt)t∈Z which is covariance stationary, it holds that the covariance

between two observations Xt and Xs only depends on the lag h = t − s. To see this we can

choose k = s and calculate Γ(t−s, 0) = Γ(t, s). Due to this, we can define the covariance matrix

function of a weakly stationary process simply by Γ(h) = Γ(h, 0).

Note that Γ(0) = Var(Xt) = E[(Xt − µ)(Xt − µ)′] is the variance-covariance matrix

Var(Xt) =


var(Xt,1) . . . cov(Xt,1, Xt,d)

...
. . .

...

cov(Xt,d, Xt,1) . . . var(Xt,d)

 .

The covariance matrix function of a weakly stationary process gives in general the cross-

covariance between Xt and Xt+h. The cross-covariance between two random vectors Z1 =

(Z1,1, . . . , Z1,d)
′ and Z2 = (Z2,1, . . . , Z2,d)

′ is defined as

Cov(Z1,Z2) = E[(Z1 − E[Z1])(Z2 − E[Z2])′].

A univariate white noise process is a random process whose values are uncorrelated at different

points in time, have zero mean and finite variance. The multivariate extension is given below

formally. For the definition we first need to introduce the correlation matrix function.

Definition 6 (Correlation Matrix Function). Let (Xt)t∈Z be a covariance stationary multi-

variate time series. Writing D = diag
(√

var(Xt,1), . . . ,
√

var(Xt,d)
)
, the correlation matrix

function R(h) of (Xt)t∈Z is

R(h) := D−1Γ(h)D−1, ∀h ∈ Z.

With this we can formally define a multivariate white noise process.
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Definition 7 (Multivariate White Noise). (Xt)t∈Z is multivariate white noise if it is covariance

stationary with correlation matrix function given by

R(h) =


R, h = 0,

0, h 6= 0

for some positive-definite correlation matrix R.

Note that in our notation the correlation matrix is R = Cor(Xt) = D−1Var(Xt)D
−1 where D

is defined as in Definition 6:

R = Cor(Xt) =


1 cor(Xt,1, Xt,2) . . . cor(Xt,1, Xt,d)
...

...
...

...

cor(Xt,d, Xt,1) cor(Xt,d, Xt,2) . . . 1

 .

Note that (Xt)t∈Z being a multivariate white noise process implies that the components of

(Xt)t∈Z show no cross-correlation except for lag zero. In the case that the components are

independent (with finite covariance matrix) we have a multivariate strict white noise process.

Definition 8 (Multivariate Strict White Noise). (Xt)t∈Z is a multivariate strict white noise if

it is a series of i.i.d. random vectors with finite covariance matrix.

We now assume that the stochastic process (Xt)t∈Z is adapted to a filtration (Ft)t∈Z which

represents the information available up to time t. That is the process (Xt)t∈Z is defined on

a filtered probability space (Ω,F , (Ft)t∈Z,P). A process (Xt)t∈Z is adapted to the filtration

(Ft)t∈Z for every t ∈ Z if Xt is Ft-measurable for every t. We can now define a martingale

difference sequence, which is a stochastic process with certain properties.

A martingale is a sequence of random vectors Zt such that the expected value of Zt given the

previous history of the sequence is Zt−1. Defining Xt = Zt − Zt−1 we obtain a martingale

difference:

Definition 9 (Multivariate Martingale Difference). (Xt)t∈Z has the multivariate martingale-
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difference property with respect to the filtration (Ft) if E|Xt| <∞ and

E (Xt|Ft−1) = 0, ∀t ∈ Z.

3.2.3 Multivariate distributions

Definition 10 (Multivariate Normal Distribution). A n-dimensional vector of random variables

X = (X1, . . . , Xn) has a multivariate normal or Gaussian distribution if

X
d
= µ+AZ, (3.2)

where Z = (Z1, . . . , Zn) is a vector of i.i.d. univariate standard normal random variables,

A ∈ Rn×k and µ ∈ Rn are a matrix and a vector of constants, respectively.

See McNeil et al. (2015), p.178. Since the multivariate normal distribution is characterised by

its mean and covariance matrix we write for multivariate normal distributed random variables

X ∼ Nn (µ,Σ) .

It is easy to calculate that the mean of X is given by E(X) = µ and the covariance matrix

by Var(X) = Σ = AA′, where Σ is a positive-semidefinite matrix. It is well-known that

the characteristic function of a standard univariate normal random variable Z is given by

φZ(t) = E[eitZ ] = exp(−t2/2). The characteristic function of a multivariate normal distributed

random vector X can then easily be derived

φX(t) = E
(
eit
′X
)

= exp

(
it′µ− 1

2
t′Σt

)
, t ∈ Rn. (3.3)

See McNeil et al. (2015), p.178. The multivariate normal distribution has some drawbacks,

when it comes to the modelling of short-term financial returns (like daily returns). It is well-

known that financial returns show certain typical characteristics (often summarized as so-called

stylized facts, see for example Cont (2001)), like fat-tails and a profit/loss asymmetry.

Multivariate distribution functions which generalise the multivariate normal distribution to cap-

ture fat tails are multivariate normal variance mixture distributions which introduce randomness

into the covariance matrix.
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Definition 11 (Normal Variance Mixture Distribution). The random vector X = (X1, . . . , Xn)

is said to have a multivariate normal variance mixture distribution if

X
d
= µ+

√
WAZ, (3.4)

where

• Z ∼ Nk (0, Ik);

• W ≥ 0 is a non-negative, scalar-valued random variable that is independent of Z, and

• A ∈ Rn×k and µ ∈ Rn are a matrix and a vector of constants, respectively.

See McNeil et al. (2015), p.183. The vector µ is referred to as the location vector and Q = AA′

is the dispersion matrix of the distribution. Note that Cov(X) = E(W )Q, that is the dispersion

matrix Q only coincides with the covariance matrix ofX when E(W ) = 1. For the characteristic

function we have

φX(t) = exp
(
it′µ

)
Ĥ

(
1

2
t′Qt

)
, (3.5)

where Ĥ(θ) =
∫∞

0 e−θνdH(ν) is the Laplace-Stieltjes transform of the distribution function H of

W . In case that the distribution functionH has a density h we can write Ĥ(θ) =
∫∞

0 e−θνh(ν)dν.

Based on this remark we will write for normal variance mixture distributed random variables

X ∼Mn

(
µ, Q, Ĥ

)
. (3.6)

Next we will introduce elliptical distributions. The members of the family of elliptical distri-

butions build a class of symmetric distributions which are generally able to model fat tails.

Multivariate normal variance mixture distributions belong to this class. Spherical distributions

are a special case of elliptical distributions and extend the theory of multivariate standard

normal distributions. Spherical distributions are elliptical distributions with a zero mean and

uncorrelated components. That is for two vectors of the same length, the value of the density

at these points is the same.

Definition 12 (Spherical Distribution). A random vector X = (X1, . . . , Xn) has a spherical
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distribution if, for every orthogonal map U ∈ Rn×n (i.e. maps satisfying UU ′ = U ′U = In),

UX
d
= X. (3.7)

See McNeil et al. (2015), p.196. It is shown in McNeil et al. (2015), p.196, Theorem 6.18, that

the following is equivalent

(1) X is spherical.

(2) There exists a function ψ : R→ R of a scalar variable such that, for all t ∈ Rn,

φX(t) = E
(
eit
′X
)

= ψ(t′t) = ψ
(
t21 + · · ·+ t2n

)
. (3.8)

Equation (3.8) shows that the characteristic function of a spherically distributed random variable

is fully determined by a function ψ of a scalar variable. The function ψ is also known as the

characteristic generator of the spherical distribution. We therefore write

X ∼ Sn (ψ) (3.9)

for a spherical distributed random vector. Next we state the characteristic generators for two

special cases: the standard multivariate normal and the standardized normal variance mixture

distribution which we will need later.

Examples 1. • For a standard normal distributed random vector with uncorrelated mar-

gins, X ∼ Nn(0, In), which is also a spherical distributed random vector, X ∼ Sn (ψ),

since the density is f(x) = 1/
√

2π exp(−1/2x2), the characteristic generator ψ is given by

ψ(s) = e−s/2 (3.10)

because of φ(t) = eit
′0−1/2t′Int = e−t

′t/2 = ψ(t′t).

• For a standardized normal variance mixture distributed random vector with uncorrelated

margins, X ∼ Mn(0, In, Ĥ), which is also a spherical random vector, the characteristic

generator is

ψ(s) = Ĥ

(
1

2
s

)
(3.11)

because of φ(t) = exp (it′0) Ĥ
(

1
2t
′Int

)
= Ĥ

(
1
2t
′t
)

= ψ(t′t).
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See McNeil et al. (2015), p.185, equation (6.20) and p.197.

Elliptical distributions are a generalisation of the spherical distribution, given by affine trans-

formations of spherical distributions.

Definition 13 (Elliptical Distribution). X has an elliptical distribution if

X
d
= µ+AY , (3.12)

where Y ∼ Sk(ψ) for some characteristic generator and A ∈ Rn×k and µ ∈ Rn are a matrix

and vector of constants, respectively.

See McNeil et al. (2015), p.200.

That is, elliptical distributions are a class of distributions with symmetric margins, where the

joint density has an elliptical contour with mean (location vector) µ and dispersion matrix

Q = AA′. The characteristic function of an elliptical distribution is given by

φX(t) = E[eit
′X ] = E[eit

′(µ+AY )] = eit
′µE[ei(A

′t)′Y ]

= eit
′µφ(A′t) = eit

′µψY
(
t′Qt

)
. (3.13)

Consequently, the characteristic function of a centred elliptical distribution is reduced to ψ (t′Qt).

Due to the dependence of the distribution on its characteristic generator we write

X ∼ En (µ, Q, ψ) (3.14)

for elliptical distributions. The following is important in relation to the characteristic generator.

Remark 1. The distribution of an elliptical distributed random vector determines only µ

uniquely. Q and ψ are only determined up to a positive constant. That is, when an ellipti-

cal distributed random vector X can be represented by En (µ, Q, ψ) it is equally represented by

En (µ, cQ, ψ(·/c)) with a constant c > 0.

The following properties of elliptical distributions will be useful later.

Theorem 1. Let X ∼ En (µ, Q, ψ), where µ ∈ Rn and Q ∈ Rn×n, be an elliptical distributed
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random vector

• Every linear combination of an elliptical distributed random vector is elliptical distributed

with the same characteristic generator ψ : R→ R:

BX + b ∼ Ek
(
Bµ+ b, QB′, ψ

)
(3.15)

for all B ∈ Rk×n and b ∈ Rk.

• The convolution of two independent elliptical distributed random vectors with the same

dispersion matrix Q is also elliptical. If X ∼ En (µ, Q, ψ) and Y ∼ En
(
µ̃, Q, ψ̃

)
then we

have

X + Y ∼ En
(
µ+ µ̃, Q, ψ̄

)
, (3.16)

where ψ̄(u) = ψ(u)ψ̃(u).

See McNeil et al. (2015), p.202.

3.2.4 Symmetric generalised hyperbolic distributions

In the previous section, we have introduced multivariate normal variance mixture distributions,

which are a generalisation of the multivariate normal distribution. In a later simulation study,

we assume risk factor changes to follow some distribution belonging to the family of symmet-

ric generalised hyperbolic distributions, a prominent example of the normal variance mixture

distribution and a special case of the more general so-called generalised hyperbolic distributions.

A multivariate symmetric generalised hyperbolic distribution is obtained by choosing a gen-

eralised inverse Gaussian distribution for the non-negative, scalar-valued random variable W

in Definition 11 of normal variance mixture models. The density of the generalised inverse

Gaussian is given by

fW (w) =
χ−λ

(√
χκ
)λ

2Kλ

(√
χκ
) wλ−1e−1/2(χw−1+κw) ,


χ > 0, κ ≥ 0 ifλ < 0

χ > 0, κ > 0 ifλ = 0

χ ≥ 0, κ > 0 ifλ > 0,

where Kλ denotes a Bessel function of the third kind.

In the simulation study, we will consider special cases of the symmetric generalised hyperbolic
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distribution. The symmetric hyperbolic distribution and the normal inverse Gaussian distribu-

tion are special cases of the symmetric generalised hyperbolic distribution. The multivariate

Student t distribution and the variance-gamma distribution are boundary cases of the symmet-

ric generalised hyperbolic distribution:

Hyperbolic distribution (HY)

For λ = 1, we get the symmetric multivariate hyperbolic distribution (HY).

Normal Inverse Gaussian distribution (NIG)

For λ = −0.5, we get the normal inverse Gaussian distribution (NIG) which is often used in the

modelling of univariate financial returns.

Multivariate Student t distribution (t)

X ∼ td(ν,0, Id). Note that the multivariate Student t distribution is a boundary case of the

symmetric generalised hyperbolic distribution (choosing λ = −ν/2 and χ = ν, κ→ 0).

Variance-Gamma distribution (VG)

Choosing λ > 0 we get the symmetric variance-gamma distribution (VG) as a boundary case

(χ→ 0) of the symmetric generalised hyperbolic distribution.

Note again that if the random vector X has a spherical distribution, then the characteristic

function φX takes the form φX(t) = ψ
(
t21 + · · ·+ t2n

)
, t ∈ Rn, where ψ is the characteristic

generator of the spherical distribution (see also Equation (3.8)). Therefore, the characteris-

tic generator is related to the characteristic function of an univariate spherical distribution by

φX(x) = ψ(x2). Thus it is easy to infer the characteristic function of a multivariate spher-

ical distribution from the characteristic function of the univariate spherical distribution. In

the following, we give the characteristic function of some special cases of univariate spherical

distributions, which are needed in the remainder of this chapter.

From (3.5) we know that the characteristic function of an univariate normal variance mixture

random variable is given by

φ(s) =

∫ ∞
0

exp(−1/2s2w)fW (s). (3.17)
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From this, the characteristic functions of the Student t distribution and the symmetric gen-

eralised hyperbolic distribution can be derived (see Appendix for the detailed steps). The

characteristic function of all other distributions mentioned in this section can be derived from

those cases as boundary cases.

Student t distribution. Let Z have a Student t distribution with ν degrees of freedom. The

characteristic function is given in terms of a Bessel function of the third kind Kλ and a gamma

function Γ by

φ(s) =
νν/4sν/2

2ν/2−1Γ(1
2ν)

Kν/2(
√
νs), s > 0 (3.18)

and var(Z) = ν/(ν − 2) for ν > 2.

Symmetric generalised hyperbolic. Let Z have a symmetric generalised hyperbolic (GH)

distribution with parameters λ, χ and κ satisfying χ > 0, κ ≥ 0 if λ < 0, χ > 0, κ > 0 if λ = 0

and χ ≥ 0, κ > 0 if λ > 0. The characteristic function is given by

φ(s) =

(
κ

s2 + κ

)λ/2 Kλ

(√
χ(s2 + κ)

)
Kλ

(√
χκ
) , s > 0. (3.19)

3.3 A justification for the Basel liquidity formula

Let (Xt)t∈N be a d-dimensional time series of risk-factor changes for all relevant risk factors and

assume that these are all defined in terms of simple differences or log-differences. We interpret

Xt+1 as the vector of risk factor changes over the time step [t, t+ 1]. For h ∈ N, the risk factor

changes over the time step [t, t+ h] are given additively by

X[t,t+h] =
h∑
j=1

Xt+j . (3.20)

Without loss of generality let the risk calculation be made at time t = 0. We make the following

assumptions.

Assumption 1. (i) The risk factor changes (Xt)t∈N form a multivariate white noise process

with mean zero and covariance matrix Σ. That is the process is covariance stationary and

is serially uncorrelated.

(ii) Each risk factor is assigned to a liquidity bucket Bk defined by a liquidity horizon hk ∈ N,
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k = 1, . . . , n.

(iii) The loss (or profit) attributable to risk factors in bucket Bk over any time horizon h ∈ N

is given by b′kX[0,min(h,hk)] where bk is a weight vector with zeros in any position that

corresponds to a risk factor that is not in Bk.

Assumption 1 (iii) ensures that only risk factors assigned to liquidity bucket Bk are taken into

account in bucket Bk and the minimum function min(h, hk) guarantees that the holding period

is only hk in case the the liquidity horizon hk assigned to liquidity bucket Bk is shorter than h.

Note that Assumption 1 includes a linearity assumption which is that the change in the portfolio

value is a linear function of the underlying risk factors. This assumption is quite common when

short time horizons are considered.

Under these assumptions we compute the portfolio loss L over the maximum time horizon

hn assigned to liquidity bucket Bn (for example 120 days). This will be the hypothetical loss

incurred if for each risk factor in each liquidity bucket the full liquidity horizon of these liquidity

buckets were required to hedge/sell the risk positions. We find that

L =

n∑
k=1

b′kX[0,hk]
(1)
=

n∑
k=1

k∑
j=1

b′kX[hj−1,hj ]
(2)
=

n∑
k=1

n∑
j=k

b′jX[hk−1,hk]

=
n∑
k=1

β′kX[hk−1,hk] (3.21)

where βk =
∑n

j=k bj and h0 = 0. That is βk describes the considered portfolio subset. For

example, β1 =
∑n

j=1 bj describes the total portfolio, whereas βn = bn represents the risk factors

belonging to liquidity bucket Bn.

• Step (1) follows from the fact that X[0,hk] = X[h0,h1] + · · ·+X[hk−1,hk] =
∑k

j=1X[hj−1,hj ]

for the mutually exclusive time steps [hj−1, hj ], j = 1, . . . , k, see equation (3.20).

• To see step (2) compare

n∑
k=1

k∑
j=1

b′kX[hj−1,hj ] = b′1
(
X[h0,h1]

)
+ b′2

(
X[h0,h1] +X[h1,h2]

)
+ · · ·+ b′n

(
X[h0,h1] + · · ·+X[hn−1,hn]

)



CHAPTER 3. ON THE BASEL LIQUIDITY FORMULA 46

with

n∑
k=1

n∑
j=k

b′jX[hk−1,hk] =
(
b′1 + · · ·+ b′n

)
X[h0,h1] + · · ·+ b′nX[hn−1,hn].

Note that we transformed the expression for the Loss L in (3.21) to a sum of vectors of risk

factor changes over the time steps [hk−1, hk], k = 1, . . . , n. To derive a formula for the variance

of L let us write

Lk = β′kX[hk−1,hk] for k = 1, . . . , n (3.22)

for the summands in the final expression in (3.21). These are uncorrelated due to Assumption

1 (i) and we may easily calculate that

var(L) =

n∑
k=1

β′kVar(X[hk−1,hk])βk =
n∑
k=1

(hk − hk−1)β′kΣβk, (3.23)

where the first step follows from the assumption that the risk factor changes are serially uncorre-

lated. The final step follows from the assumption that the process of risk factor changes (Xt)t∈N

is assumed to be covariance stationary with covariance matrix Σ and because equation (3.20)

implies that

X[hk−1,hk] =

hk−hk−1∑
j=1

Xhk−1+j . (3.24)

We now introduce the random variables

L(k) = β′kX[0,h1]

with k = 1, . . . , n. These represent the losses attributable to all risk factors in the union

of liquidity buckets Bk ∪ · · · ∪ Bn over the base liquidity horizon h1. Note that the random

variables Lk and L(k) differ in general (unless k = 1 which describes the loss attributed to all

risk factors over the time step [0, h1]).

Since var(L(k)) = h1β
′
kΣβk, we have

var(L) =

n∑
k=1

(hk − hk−1)β′kΣβk =

n∑
k=1

hk − hk−1

h1
var(L(k)). (3.25)
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With that we obtain the following formula for the standard deviation of L

sd(L) =

√√√√ n∑
k=1

(√
hk − hk−1

h1
sd(L(k))

)2

. (3.26)

Suppose that (Xt)t∈N is a Gaussian process. In this case (Xt)t∈N is actually a strict white

noise process (a process with independent and identically distributed vectors). It follows that

Lk ∼ N(0, (hk − hk−1)β′kΣβk)

due to the well-known properties of multivariate Gaussian distributions and applying (3.24).

Moreover, we have that the random variables Lk are independent for all k. Recall that L =∑n
k=1 Lk. Thus, by the convolution property for independent normals, which says that the sum

of two independent normal distributed random vectors is again normal distributed where the

mean and the covariances are simply added up (see McNeil et al. (2015), p.180), we have

L ∼ N

(
0,

n∑
k=1

(hk − hk−1)β′kΣβk

)
. (3.27)

Moreover, L(k) ∼ N(0, h1β
′
kΣβk).

For any zero mean normal random variable Z it is easy to show that

ESZ(α) = cα sd(Z) with cα = φ(Φ−1(α))/(1− α),

where φ denotes the density of the standard normal distribution and Φ−1(α) denotes the α-

quantile of the standard normal distribution function Φ, see McNeil et al. (2015), p.70, for

example.

It follows from (3.26) that

ESL(α) = cα

√√√√ n∑
k=1

(√
hk − hk−1

h1
sd(L(k))

)2

= cα

√√√√ n∑
k=1

(√
hk − hk−1

h1

ESL(k)(α)

cα

)2

=

√√√√ n∑
k=1

(√
hk − hk−1

h1
ESL(k)(α)

)2

, (3.28)

which is the proposed standard formula for the trading book.
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3.4 The liquidity formula for elliptical distributions

In this section we assume that the process of risk factor changes (Xt)t∈N follows a centred

elliptical distribution. This class of distributions includes the multivariate normal distribution

as a special case. In addition to Assumption 1 we assume the following:

Assumption 2. (i) The process (Xt)t∈N is a multivariate strict white noise (an i.i.d. pro-

cess).

(ii) The distribution of Xt is elliptical with location vector 0, positive-definite dispersion ma-

trix Σ and characteristic generator function ψ = ψ(s). We write Xt ∼ Ed(0,Σ, ψ).

Assumption 2 (ii) means that it is Xt = AYt for some matrix A ∈ Rd×d satisfying Σ = AA′ and

some random variable Yt which is spherically distributed, written Yt ∼ Sd(ψ). The characteristic

function of Yt is then given by φ(s) = E(eis
′Yt) = ψ(s′s) (see equation (3.8)). See also Fang

et al. (1990) and McNeil et al. (2015) for further details of this special class of distributions.

Note that under the Basel III.5 framework, we consider 10-day risk factor changes. The in-

dependence assumption is a strong assumption but less problematic in case of 10-day periods

compared to daily data. The assumption is required to analyse convolutions of elliptical dis-

tributed random vectors with different characteristic generators.

We need three key properties of elliptical distributions, which follow from Remark 1 and The-

orem 1. Let X ∼ Ed(0,Σ, ψX) and Y ∼ Ed(0,Σ, ψY ) be independent elliptically distributed

random variables with the same dispersion matrix Σ and possibly different characteristic gen-

erators ψX and ψY . Then

β′X ∼ E1(0,β′Σβ, ψX) for β ∈ Rd and β 6= 0. (3.29)

X ∼ Ed(0, cΣ, ψ(s/c)) for any c > 0. (3.30)

X + Y ∼ Ed(0,Σ, ψ̃), where ψ̃(s) = ψX(s)ψY (s). (3.31)

First note that if the process (Xt)t∈N is assumed to be elliptical distributed, Xt ∼ Ed(0,Σ, ψ),

then it follows from (3.20) and (3.31) that X[hk−1,hk] ∼ Ed(0,Σ, ψk) with ψk = ψhk−hk−1 . Recall

that we need to calculate the distributions of

Lk = β′kX[hk−1,hk], L =
n∑
k=1

Lk and L(k) = β′kX[0,h1]. (3.32)
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Using property (3.29), we have for Lk and L(k) that

Lk ∼ E1

(
0,β′kΣβk, ψk

)
and L(k) ∼ E1(0,β′kΣβk, ψ1)

with ψ1 = ψh1 .

Using property (3.30) which states that the dispersion matrix of an elliptical distribution is only

uniquely determined up to a positive constant c > 0, we can rewrite Lk ∼ E1 (0, 1, ψk(sβ
′
kΣβk)).

Now, each Lk has the same dispersion matrix and we can use the convolution property (3.31)

to conclude that L ∼ E1(0, 1, ψ∗) with

ψ∗(s) =

n∏
k=1

ψk(sβ
′
kΣβk). (3.33)

It may be easily verified that when ψ(s) = exp(−s/2) (the Gaussian case) that the characteristic

function φ(s) = ψ∗(s2) implied by (3.33) is the characteristic function of the normal distribution

in (3.27).

The key distributional statements may also be written in terms of spherical distributions since

X ∼ Ed (µ,Σ, ψ)⇐⇒ Σ−1/2 (X − µ) ∼ Sd(ψ)

in case that Σ is positive definite:

L(k)/
√
β′kΣβk ∼ S1 (ψ1) , L ∼ S1(ψ∗).

For any location-scale family (like the family of elliptical distributions), there exist positive

constants cα,ψ∗ and cα,ψ1 , depending on the characteristic generators ψ∗ and ψ1, such that

ESL(α) = cα,ψ∗ sd(L) and ESL(k)(α) = cα,ψ1 sd(L(k)). In general these constants will differ

(except for the Gaussian case). We can then easily conclude that the general liquidity formula

is

ESL(α) = cα,ψ∗

√√√√ n∑
k=1

(√
hk − hk−1

h1

ESα(L(k))

cα,ψ1

)2

=
cα,ψ∗
cα,ψ1

√√√√ n∑
k=1

(√
hk − hk−1

h1
ESL(k)(α)

)2

. (3.34)

In general, we expect that cα,ψ∗ ≤ cα,ψ1 , due to the central limit/aggregation across time effect

when the distribution of the risk factor changes is heavier-tailed than the normal distribution.
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Due to the aggregation across time, more and more 10-day returns are aggregated, which makes

the distribution less heavy tailed and more normal-like. Due to the applied square-root-of-time

scaling it is implicitly assumed that the distribution of the 20-day to 120-day risk factor changes

follow the same distribution as the 10-day risk factor changes. This additionally overestimates

the risk. So we expect that the Basel liquidity formula, which is given when cα,ψ∗ = cα,ψ1 , gives

an upper bound for the ratio of the two constants.

3.5 Calculating expected shortfall by Fourier inversion

To calculate ESα(L), we require a method of computing the constants for univariate spherically

distributed random variables. We can not rely on always having access to a density since we will

take convolutions of spherical distributions. In the following, we derive a formula that can be

used to compute the expected shortfall from the characteristic function of a spherical random

variable, which will always be accessible to us, when the characteristic generator is known.

A univariate spherical random variable Z ∼ S1(ψ) is symmetric about the origin with a real-

valued even characteristic function given by φZ(s) = ψ(s2). We give a general result that applies

to univariate random variables that are symmetric about the origin.

Theorem 2. Let Z be symmetrically distributed about the origin with an integrable character-

istic function φ(s). Let −∞ < a < b <∞. Then the following formulas hold:

fZ(z) =
1

π

∫ ∞
0

cos(sz)φ(s)ds, (3.35)

FZ(z) =
1

2
+

1

π

∫ ∞
0

sin(sz)

s
φ(s)ds, (3.36)

E(ZI{a≤Z≤b}) =
1

π

∫ ∞
0

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2
φ(s)ds . (3.37)

Proof. The characteristic function φ(s) of a random variable that is symmetric about the origin

is real-valued and even. If φ is integrable then the density exists and the standard Fourier

inversion formula for the characteristic formula yields

fZ(z) =
1

2π

∫ ∞
−∞

e−iszφ(s)ds =
1

π

∫ ∞
0

cos(sz)φ(s)ds.

The step is a consequence of the symmetry property of the sine and cosine function.

The formula (3.36) for the distribution function is obtained from a well-known representation
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of the distribution by Gil-Pelaez (1951).

To derive (3.37) we observe that

∫ b

a
zfZ(z) =

1

π

∫ b

a

∫ ∞
0

z cos(sz)φ(s)dsdz

=
1

π

∫ ∞
0

(∫ b

a
z cos(sz)dz

)
φ(s)ds

by Fubini’s Theorem since |z cos(sz)φ(s)| ≤ |z||φ(s)| and the latter is integrable on [a, b]×[0,∞).

The inner integral can be solved by parts to obtain

∫ b

a
z cos(sz)dz =

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2

and (3.37) follows.

These formulas permit the accurate evaluation of the value-at-risk and expected shortfall using

one-dimensional integration. Calculation of VaRα(Z) for α > 0.5 is accomplished by numerical

root finding using (3.36). If E|Z| <∞ for the distribution in question, the expected shortfall is

defined and can be calculated by setting a = VaRα(Z) and computing the limit

ESZ(α) = lim
b→∞

1

π(1− α)

∫ ∞
0

bs sin(bs) + cos(bs)− as sin(as)− cos(as)

s2
φ(s)ds . (3.38)

3.6 Calculation of the scaling ratio

In this section, we describe the steps required to calculate the scaling ratio cα,ψ∗/cα,ψ in (3.34)

when the underlying real-valued risk factors have some known symmetric distribution function.

Recall the basic components we require for the calculation. It is L ∼ S1(ψ∗), where ψ∗ is given

in (3.33). It further is L(k) =
√
β′kΣβkZ with Z ∼ S1(ψ1) and ψ1 = ψh1 . We assume that

X ∼ S1(ψ) has some known characteristic function φX(s) = ψ(s2) (one-to-one correspondence

with inversion formula) with known standard deviation. The steps are:

1. Calculate ESZ(α) using (3.38) and φZ(s) = φh1X (s)

2. Calculate sd(Z) =
√
h1 sd(X)

3. Hence calculate cα,ψ1 = ESZ(α)/ sd(Z)

4. Calculate ESL(α) using (3.38)
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5. Calculate sd(L) using (3.26) and the fact that sd(L(k)) =
√
h1β′kΣβk sd(X)

6. Calculate cα,ψ∗ = ESL(α)/ sd(L)

7. Calculate the ratio cα,ψ∗/cα,ψ1

Note that sd(Z) =
√
h1 sd(X) follows from the fact that Z

d
=
√
h1X and var(

√
h1X) = h1 var(X)

due to the assumption that (Xt)t∈N is a strict white noise process.

3.7 Application to market data

We follow the calculation steps described in the previous section to calculate cα,ψ∗/cα,ψ in

(3.34) using real market data. We assume that the market data follow some known symmetric

distribution function, with parameter values that are estimated from the data.

In order to calibrate the considered distributions, we use 10 years (2,518 observations) of stan-

dardised log-returns of the S&P500 index, ranging from 15 May 2006 to 14 May 2016. The

daily log-returns are calculated using the adjusted closing prices. The distribution parameters

are derived by fitting them to biweekly log-returns, i.e. roughly 10 trading days, which is the

liquidity base horizon under the Basel III.5 framework. For the fitting, we use the R package

ghyp (see Breymann and Lüthi (2013)).

In our experiment, we consider distributions belonging to the family of symmetric generalised

hyperbolic distributions (see Section 3.2.4), which also belong to the class of elliptical distribu-

tions.

Table 3.1 states the fitted shape parameters.

dists | para λ/ν α

Gauss 0
t 2.93
NIG -0.5 0.49
Hyp 1 0.11
VG 0.96 0

Table 3.1: Hyperbolic distributions fitted to market data

Next, we calculate the ratio cα,ψ∗/cα,ψ for each distribution, applying the parameters stated in

Table 3.1. Note that for normal variance mixture models (like the multivariate Student t and

symmetric generalised hyperbolic distribution), the covariance matrix is in general not given by
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the dispersion matrix Σ, but by E(W )Σ. So, we have to calculate E(XI{X≥a})/E(W ) in order

to obtain cα,ψ∗ and cα,ψ. For all distributions we consider here, E(W ) is known22.

We conduct four experiments:

• We consider two independent risk factors following one of the distribution functions men-

tioned above. For the dispersion matrix we assume Σ = Id (i.e. independent risk factors).

One risk factor belongs to liquidity bucket B1 with a liquidity horizon of 10 days, the

other risk factor belongs to liquidity bucket B2 with a liquidity horizon of 20 days.

• The second experiment follows in the same fashion but we assume five independent risk

factors, each belonging to one of the five liquidity buckets stipulated in the Basel III.5

framework. Recall that the five buckets have liquidity horizons of 10 (h1 = 1), 20 (h2 = 2),

40 (h3 = 4), 60 (h4 = 6) and 120 days (h5 = 12).

• Both experiments are also considered under an equicorrelation model with correlation

ρ = 0.5.

Table 3.2 and Table 3.3 state the results for various confidence levels α. We report the values

for the constants cα,ψ and cα,ψ∗ as well as the ratio of the two.

We have seen in Section 3.3 that the standard formula for the trading book holds true for the

Gaussian case meaning that the ratio of cα,ψ∗ and cα,ψ must be one. This is verified by our

experiments (see row ‘Gauss’). It also becomes apparent that the scaling ratios are smaller than

one for all other distributions meaning that the Basel liquidity formula is indeed conservative

when the risk factors follow one of the four multivariate elliptical distributions from a generalised

hyperbolic sub-family.

Introducing correlation (see column ρ = 0.5) in general leads to larger values for the constant

cα,ψ∗ . The reason is that the constant depends on the characteristic generator ψ∗ and with

that depends on the ‘variance factors’ β′kΣβk (see equation (3.33)) and larger correlation means

bigger variance factors. We conclude that the weaker the correlation, the more inaccurate the

liquidity formula is (in the sense that the ratio deviates more from the value one). We attribute

this to the central limit effect. Considering formula (3.23) we can think of the variance factors

as the relative weights attached to each of the n liquidity buckets. When ρ = 0, these weights

are (5, 4, 3, 2, 1) but when ρ = 0.5, for example, they are (15, 10, 6, 3, 1). The intuition is that,

for high correlation, the first few liquidity buckets dominate more in the convolution calculation

and the central limit effect is mitigated.

22If unknown, the calculation of the standard deviation of X is possible using the density function (3.35).
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By comparing Table 3.2 with Table 3.3 we further see that the convolution of five independent

random variables produces more conservative estimates than the convolution of two independent

random variables. The intuition is that we aggregate over more liquidity buckets which increases

the central limit effect.

Analysing the results for the different distributions, we see that the Student t distribution

produces the least conservative estimates with ratios close to one. Between the variance-gamma,

normal inverse Gaussian and the hyperbolic distribution, only slight differences appear. For

α = 0.975 the normal inverse Gaussian shows the most conservative estimates in the case of the

convolution of five independent random variables.

Higher confidence levels α lead to more conservative estimates which indicates that the central

limit effect due to convolution is stronger in the tails. Considering the relevant confidence level

for the expected shortfall applied under the Basel III.5 framework (α = 0.975), we see that the

overestimation amounts up to 19.47% in case of independence (16.96% in case of equicorrelation)

when we consider five liquidity buckets.

α 0.95 0.975 0.99

dists res | ρ 0 0.5 0 0.5 0 0.5

Gauss cα,ψ 2.063 2.063 2.338 2.338 2.665 2.665
cα,ψ∗ 2.063 2.063 2.338 2.338 2.665 2.665
ratio 1 1 1 1 1 1

t cα,ψ 2.225 2.225 2.906 2.906 4.063 4.063
cα,ψ∗ 2.213 2.213 2.831 2.839 3.866 3.892
ratio 0.995 0.995 0.974 0.977 0.951 0.958

VG cα,ψ 2.344 2.344 2.842 2.842 3.497 3.497
cα,ψ∗ 2.247 2.26 2.67 2.696 3.218 3.267
ratio 0.959 0.964 0.94 0.949 0.92 0.934

Hyp cα,ψ 2.331 2.331 2.821 2.821 3.463 3.463
cα,ψ∗ 2.237 2.25 2.653 2.679 3.194 3.241
ratio 0.959 0.965 0.94 0.949 0.922 0.936

NIG cα,ψ 2.373 2.373 2.974 2.974 3.828 3.828
cα,ψ∗ 2.295 2.304 2.799 2.823 3.498 3.551
ratio 0.967 0.971 0.941 0.949 0.914 0.928

Table 3.2: Constants cα,ψ, cα,ψ∗ and ratios for two risk factors
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α 0.95 0.975 0.99

dists res | ρ 0 0.5 0 0.5 0 0.5

Gauss cα,ψ 2.063 2.063 2.338 2.338 2.665 2.665
cα,ψ∗ 2.063 2.063 2.338 2.338 2.665 2.665
ratio 1 1 1 1 1 1

t cα,ψ 2.22 2.22 2.898 2.898 4.042 4.042
cα,ψ∗ 2.16 2.169 2.636 2.67 3.398 3.483
ratio 0.973 0.977 0.91 0.921 0.841 0.862

VG cα,ψ 2.344 2.344 2.842 2.842 3.497 3.497
cα,ψ∗ 2.112 2.132 2.429 2.467 2.823 2.89
ratio 0.901 0.909 0.855 0.868 0.807 0.826

Hyp cα,ψ 2.33 2.33 2.819 2.819 3.458 3.458
cα,ψ∗ 2.108 2.128 2.423 2.459 2.814 2.877
ratio 0.905 0.913 0.859 0.872 0.814 0.832

NIG cα,ψ 2.373 2.373 2.975 2.975 3.83 3.83
cα,ψ∗ 2.142 2.167 2.49 2.544 2.939 3.041
ratio 0.902 0.913 0.837 0.855 0.767 0.794

Table 3.3: Constants cα,ψ, cα,ψ∗ and ratios for five risk factors

3.8 Summary

The main conclusions of this chapter are:

• We explained the theoretical background of the Basel liquidity formula, which is based

on the assumption that the risk factor changes form a Gaussian white noise process when

the portfolio loss depends linearly of these risk factor changes.

• We derived a formula for the more general assumption that risk factor changes form an

elliptical distribution and showed that the Basel liquidity formula gives an upper bound

in that case, which we attributed to the aggregation across time effect.

• We presented a new Fourier approach for the calculation of VaR and ES for univariate

symmetric loss distributions with known characteristic function. The approach is used to

calculate the VaR and ES of convolutions of spherical distributions when we do not have

access to the density function.

• In the simulation study we analysed the impact of correlation in the risk factors on the

Basel liquidity formula. The weaker the correlation the more inaccurate is the Basel liq-

uidity formula, which can be attributed to the fact that the buckets with smaller liquidity

horizon dominate more for correlated data, which mitigates the aggregation effect.



Chapter 4

Multi-desk VaR backtesting

4.1 Introduction

We begin this chapter by recalling some key facts from Chapter 2 about validation of value-at-

risk (VaR) estimates, which are relevant in this chapter.

Accurate backtesting of the VaR forecast plays a crucial role for both bank regulators and

bank risk managers due to its high importance in the bank’s internal steering of market risk

and because of its role in the regulatory requirements for internal market risk models. The

internal market risk model produces a series of out-of-sample VaR forecasts for a historical

period (typically one or two years, i.e. 250 and 500, respectively, trading days), which can be

compared to the ex-post observable changes in the PnL distribution. VaR backtesting is often

based on VaR violations, which are defined as a realised portfolio loss which exceeds the VaR

forecast23. Backtesting of the VaR value is therefore well studied in the literature (see Section

2.3). Following Christoffersen (1998), the series of the VaR violation indicator (It(α))t∈N should

satisfy two hypotheses in order to be viewed as being consistent with a valid model used for VaR

predictions: the unconditional coverage hypothesis (see Definition 15 in Chapter 4.2) and the

independence hypothesis (see Definition 16 in Chapter 4.2). Both properties combined mean

that VaR violations follow a martingale difference sequence. Many tests have been proposed

testing for these properties.

In the Basel III.5 framework, the revised minimum capital requirements for market risk postulate

extended validation actions. Previously, the formal requirements stipulated daily backtesting

on the bank-wide portfolio level. This means, the ex-ante forecast for the VaR aggregated for

23Both under the former and new capital requirements regulation, the capital charge for market risk is directly
linked to VaR violations, see Articles 366(2) and 366(3) of Council of European Union (2013) and Article 325bf(6)
of Council of European Union (2019).
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all relevant trading book positions had to be compared to the ex-post realised loss. Under

the Basel III.5 framework, approval for the usage of an internal market risk model is given at

trading desk level. In large banks, financial assets which are exposed to market risk are traded

on separate trading desks, like desks for commodities, equities or exchange rates. Under the

Basel III.5 requirements, a bank must demonstrate for each trading desk separately that the

desk’s internal market risk model is adequate to measure the inherent risk. Only then approval

is given by the regulator to include (respectively to keep) the trading desk in the scope of the

internal model (otherwise the trading desk will fall/remain under the standardised approach).

However, it is still required that an internal market risk model is also accurate at the bank-

wide portfolio level (so on the aggregated desk level data). The requirements in BCBS (2019b)

do not specify which methods and tests have to be used in order to verify the adequateness

of the internal market risk models but gives some orientation. It is stated in BCBS (2019b),

paras. 32.5 and 32.13, that backtesting of bank-wide risk models should be based on a 99%

VaR and that banks should also consider backtesting on other quantiles than the 99% and other

statistical tests not listed in the framework. As a consequence, banks are required to implement

meaningful tests in order to assess the adequacy of their internal models both at bank-wide and

trading desk level. Since the number of trading desks can be quite large, univariate backtesting,

that is separate backtesting of each trading desk model separately can be quite consuming in

terms of resources (like IT resources and time). Also, separate univariate testing raises the

multiple testing issue. If one carries out a certain number of tests each of nominal level β, β%

of the tests will falsely reject the null hypothesis (since the probability of falsely rejecting the

null hypothesis is given by the nominal level β for each test). Moreover, testing each individual

trading desk model separately will not incorporate any cross-correlations across desks. On the

other hand, aggregating all trading book data will result in loss of information and probably

biased results (imagine that one desk under-estimates the risk but is compensated by the over-

estimation of risk in another desk). However, multi-desk backtesting, where all desks are tested

jointly, increases the amount of data and thus, in theory, the power of the test, that is the

probability of correctly rejecting the null hypothesis when it is false.

Therefore, a meaningful backtesting framework should also include backtests which exploit

all the information available in the separate internal desk models and which controls for any

correlation structures present across desks.

One way to achieve this is to consider what we call multi-desk tests opposed to the previously

described univariate, or single desk tests. A multi-desk test is a simultaneous backtest of all

trading desk models. That is we do not aggregate the univariate time series of VaR violations
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across the entire portfolio but instead use all desk’s univariate time series of VaR violations

separately. This not only allows us to incorporate methods to control for potential dependencies

across desks but also allows us to use more information compared to single desk backtesting

(simple bank-wide portfolio backtesting). Considering that more information is utilized, multi-

desk backtesting could prove to be more powerful in the detection of any falsely specified desk

models.

The formulated research question is as follows:

Question 2. Are the trading risks of the bank modelled adequately across desks?

This research question concerns the overall quality of the internal risk models across desks. The

aim is to assess the overall quality of the models used by banks to calculate the market risk they

are exposed to in their different trading desks. The key technical challenge in the construction

of multi-desk tests is to develop a testing method that can overcome the lack of information

about the correlation between the trading desks’ data.

The chapter is organized as follows. We first state some useful mathematical background re-

quired in this and the following chapters. Then we explain the general methodology. That is

we will describe the input data of the tests, the hypothesis linked to our research question and

we present the general simulation setup, which holds throughout this thesis.

After presenting the general methodology, we consider a univariate24 binomial score test. We

first show why it is problematic to extend this univariate test to a multivariate test by using the

well-known Bonferroni method without any control for dependencies across desks. We will show

theoretically and in a simulation study why the control for inter-desk dependence data is crucial

in order to produce well-sized tests. Then we develop a multi-desk version of the binomial score

test which controls for inter-desk dependence and we analyse the size and power properties of

the test in an extensive simulation study. The proposed new multi-desk VaR backtests extends

the traditional form of univariate testing used in banks.

24Univariate in the sense that one univariate time series of VaR violations is considered.
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4.2 Mathematical foundations

4.2.1 VaR violation indicator and (un)conditional coverage hypothesis

Accurate backtesting of the VaR forecast plays a crucial role for both bank regulators and bank

risk managers due to its high importance in the financial risk measurement for banks and due

to its role in the regulatory requirements for internal market risk models. The internal market

risk model produces a series of out-of-sample VaR forecasts for a historical period (typically

one or two years, i.e. 250 and 500, respectively, trading days), which can be compared to

the ex-post observable realisation of the change in the PnL distribution. VaR backtesting is

often based on VaR violations, which are defined as a realised portfolio loss which exceeds the

VaR forecast. For backtesting purposes, banks have to analyse a historical time series of VaR

violations of a minimum length of 250 observations. For every historical point in time, the

internal one day ahead VaR forecast is compared to the realised loss. Therefore, we are now

considering the loss Lt at time t to introduce the time component. Formally, we consider a

portfolio of risky assets, where Lt is a random variable, defined on a filtered probability space

(Ω,F , (Ft)t∈N0 ,P), which describes the loss at time t. Ft represents the information available

at time t and N0 = {0, 1, 2, . . . }. At every point in time t ∈ N, Lt is a Ft-measurable random

variable. We now define the VaR violation indicator.

Definition 14 (VaR Violation Indicator). Let Lt denote the portfolio loss realised at time t.

It(α) denotes the variable associated to the ex-post observation of a V̂aRt(α) violation

It(α) =


1, if Lt ≥ V̂aRt(α)

0, if Lt < V̂aRt(α),

(4.1)

where V̂aRt(α) is an estimate of the VaR of Lt (a VaR forecast made at t-1).

In Christoffersen (1998) criteria are defined which have to be fulfilled by the VaR violation

indicator sequence (It(α))t∈N to speak of valid VaR forecast V̂aRt(α). VaR forecasts are valid

if and only if the violation process It(α) satisfies the unconditional coverage hypothesis and

the independence hypothesis. Both hypotheses can be combined to the conditional coverage

hypothesis. We will define and explain the three hypotheses below.
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Definition 15 (Unconditional Coverage Hypothesis). The unconditional probability of a VaR

violation must be equal to 1− α, where α is also referred to as the coverage rate:

P(It(α) = 1) = E(It(α)) = 1− α , ∀ t.

In the case that the probability is higher than 1 − α, we have observed more violations than

expected, that is we face a (possibly significant) underestimation of risk.

The importance of correct conditional coverage of an interval forecast like the VaR is also

highlighted in Engle (1982). An interval forecast should be dynamic in the sense, that it is

narrow during an economic stable environment and wider in volatile times. If not, the forecast

can be correct on average, i.e. having correct unconditional coverage, but can show unwanted

clustering of outliers (observations outside the predicted range). This is particularly important

in the presence of higher-order dynamics in the underlying time series, which can typically be

observed in financial data.

Definition 16 (Independence Hypothesis). VaR violations are said to occur independently, if

It(α) and Is(α) are independent for every t 6= s.

The unconditional coverage hypothesis deals with the frequency of VaR violations, whereas the

independence hypothesis says something about the way in which they may occur. Independence

of the violation sequence means that the previous history of VaR violations does not include

any further valuable information for the next VaR predictions. For example, violation clusters

(the event of more than expected VaR violations in a short period of time) contradicts the

independence hypothesis and thereby throws doubt on the validity of the VaR model. A valid

VaR model must be able to respond to changing market conditions and to take account of

them in the VaR prediction so that VaR violations are spread evenly and not clustered over the

considered time period. An unconditional coverage test only tests whether E(It(α)) = 1 − α.

These tests usually have no power to detect unwanted dependencies between the indicator

variables. They only test whether the observed number of VaR violations differs significantly

from the expected number.

The conditional coverage hypothesis implies that the series of VaR violations (It(α))t∈N is

independent and each violation indicator has correct coverage.
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Definition 17 (Conditional Coverage Hypothesis). The violation process is said to have correct

conditional coverage if

E (It(α)|It−1(α), . . . , I1(α)) = 1− α, ∀ t.

Note that any two of these three hypotheses imply the other. Christoffersen (1998) shows that

testing for correct conditional coverage is equivalent to testing that the underlying sequence

(It(α))t∈N is an i.i.d. Bernoulli process, where each Bernoulli variable It(α) has correct coverage

probability α

It(α) ∼ Bern(1− α), ∀ t.

See Christoffersen (1998), proof of Lemma 1.

The following remark will be used later.

Remark 2. The sum of independent, identically Bernoulli distributed variables with some pa-

rameter α is Binomial distributed with parameter α:

n∑
t=1

It(α) ∼ B(n, 1− α).

Those insights can be used to construct tests for the accuracy of VaR models by testing for the

unconditional coverage, independence or conditional coverage hypothesis.

Especially in the context of backtesting the expected shortfall measure, the concept of elic-

itability is often mentioned. According to McNeil et al. (2015), elicitable statistical functionals

are ‘functionals that minimise expected scores where the expected scores are calculated using

scoring functions’ (see p.356). The scoring functions (or scoring rules) describe the difference

between a realised value and its forecast by assigning a score and are used to assess the quality

of probabilistic forecasts. The formal definition of scoring functions is as follows.

Definition 18 (Scoring Function). A scoring function is a function S : R × R → [0,∞)

satisfying, for any y, l ∈ R:

(i) S(y, l) ≥ 0 and S(y, l) = 0 if and only if y = l;

(ii) S(y, l) is increasing for y > l and decreasing for y < l;

(iii) S(y, l) is continuous in y.
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A scoring function is called proper if the forecaster maximises the expected score when the true

distribution is forecasted. Scoring functions are closely connected to the theory of elicitability.

Definition 19 (Elicitability). A real-valued statistical functional T defined on a space of distri-

bution functions X is said to be elicitable on XT ⊆ X if there exists a scoring function S such

that, for every F ∈ XT ,

(1)
∫
R S(y, l)dF(l) <∞, ∀y ∈ R,

(2) T (F ) = argminy∈R
∫
R S(y, l)dF(l).

See McNeil et al. (2015), p.356. The scoring function is then said to be strictly consistent for

T . If L is a random variable with loss distribution function FL, then an elicitable risk measure

minimises the expected score

E (S(y, L)) =

∫
R
S(y, l)dFL(l) (4.2)

with respect to y for every FL ∈ XT , where XT is the set of distribution functions for which the

integral in (4.2) is defined (compare McNeil et al. (2015), p.356).

4.2.2 Properties of estimators

We will later consider estimators, which we prove to be consistent. In this section, we formally

introduce consistent estimators and state some well-known theorems which are required to prove

consistency. An estimator is said to be consistent if it converges in probability: (Tn
P→ θ)

Definition 20 (Consistent Estimators). Let Tn be an estimator for θ on a sample X1, . . . , Xn.

Tn is a consistent estimator for θ if for every ε > 0

P (|Tn − θ| > ε) = 0 for n→∞.

The continuous mapping theorem is useful to obtain consistency for functions of consistent

estimators.

Theorem 3 (Continuous Mapping Theorem). Let Tn be a consistent estimator for θ and g is

a real-valued function continuous at point θ, then g(Tn) is consistent for g(θ).
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A useful theorem to proof consistency of an estimator is the strong law of large numbers, which

states that the sample mean converges to the expected value almost surely.

Theorem 4 (Strong Law Of Large Numbers). Let X1, . . . , Xn be a sequence of independent

identically distributed (i.i.d.) random variables with finite mean

E[Xi] = µ <∞∀ i = 1, . . . , n.

Then the sample mean X̄n = 1/n
∑n

i=1Xi converges to µ almost surely: X̄n
a.s.→ µ.

See Resnick (2005). Note that the assumption of i.i.d. random variables can be weakened. For

this we define an ergodic stochastic process.

Definition 21 (Ergodic Stochastic Process). A stationary stochastic process (Xt)t∈N is said to

be ergodic if, for any two bounded functions f : Rn → R and g : Rm → R,

lim
n→∞

∣∣E[f (Xt, . . . , Xt+k) g (Xt+n, . . . Xt+n+m)]
∣∣

=
∣∣E[f (Xt, . . . , Xt+k)]

∣∣ ∣∣E[g (Xt, . . . , Xt+k)]
∣∣ (4.3)

That is, a stationary process is ergodic if it is asymptotically independent in the sense that

dependencies weaken with increasing separation of the variables. The i.i.d. assumption can be

weakened to stationary ergodic processes as it is stated in the next proposition.

Proposition 1. Let X1, . . . , Xn be a stationary and ergodic sequence of random variables with

finite mean

E[Xi] = µ <∞∀ i = 1, . . . , n.

Then the sample mean X̄n = 1/n
∑n

i=1Xi converges to µ almost surely: X̄n
a.s.→ µ.

4.2.3 Copulas

The concept of a copula can be used to describe the dependence between random variables,

isolating the description of the dependence structure between individual random variables. The
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marginal distributions of the multivariate distribution are thereby uniform on [0, 1]. The formal

definition is given in the following (see McNeil et al. (2015), p.221).

Definition 22 (Copula). A d-dimensional copula is a distribution function on [0, 1]d with stan-

dard uniform marginal distributions.

We will use the notation C(u) = C(u1, . . . , ud) for multivariate distribution functions that are

copulas. As stated in McNeil et al. (2015), p.221, a copula C is a mapping C : [0, 1]d → [0, 1]

and three properties must hold:

1. C(u1, . . . , ud) = 0 if ui = 0 for any i.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d}, ui ∈ [0, 1].

3. For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.

In this thesis we use two specific copulas, which are the Gauss copula and a t copula (see

McNeil et al. (2015), p.226 and p.228). If a d-dimensional random vector X is multivariate

normal, X ∼ Nd(µ,Σ), its copula is called Gauss copula. Note that for the Gauss copula the

marginal distributions are independent if Σ = Id. For the t copula this does not hold true,

since uncorrelated t-distributed random variables are not independent. We use the two copulas

in our simulation study to generate data from them (see McNeil et al. (2015), pp.229, for a

description of the algorithm).

4.3 Methodology

4.3.1 Data

Let the number of desks approved for the use of an internal model be d. The variable Lt,i

describes the profit and loss (PnL) of the risky assets attributed to desk i at time t (note that

we consider the negative PnL distribution, following the convention of a positive sign for a

loss). Ft,i denotes the conditional profit and loss distribution function given the information up
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to time t − 1 of the random variable Lt,i, Ft,i(x) = P (Lt,i ≤ x|Ft−1). We assume throughout

that the PnL distribution functions are continuous 25. At time t − 1 the risk modelling group

builds a one-day ahead forecast of the PnL distribution function for each desk i, represented

by the estimate F̂t,i. This is the internal model used by the bank to generate a one-day ahead

forecast of the risk measure of interest, like the VaR. Let V̂aRt,i(α) (see Definition 2) represent

the one-day ahead forecast (that is the estimate) of the VaR at level α (typically 99%) of desk i

generated at time t− 1. A VaR violation at time t in desk i, It,i(α) = I{Lt,i≥V̂aRt,i(α)} (compare

Definition 14), occurs when the realised loss Lt,i exceeds the estimated one-day ahead forecast

of the VaR for desk i. Let n be the length of the backtesting period, that is the number of days

used for the backtesting exercise (typically 250 or 500 days, which is roughly one, two years,

respectively). (It,i(α))t∈N denotes the time series of VaR violations (VaR violation indicator

sequence) of desk i.

We group the data of VaR violation indicators It,i(α), t = 1, . . . , n, i = 1, . . . , d, in a matrix

where the columns contain the desks data, so that the rows represent the days. Table 4.1 shows

the structure for some stylized sample data.

H
HHH

HHt
i

desk 1 desk 2 desk 3 desk 4 desk 5 . . . desk d

day 1 1 1 1 1 0 . . . 0
day 2 I2,1=0 I2,2=0 0 0 0 . . . 1

day 3 I3,1=1 0 0 0 0 . . . 1
day 4 0 1 0 0 1 . . . 1
day 5 0 0 0 0 0 . . . 1

...
...

...
...

...
...

...
...

day n 1 0 0 0 0 . . . 0

Table 4.1: Stylized sample of the data structure of the VaR violation indicator sequence

Note that VaR violation clusters can naturally both appear across time or across desks. Vio-

lations across time violate the independency hypothesis, see Definition 16. Heuristically, this

means that the information available at time t (which also includes the previous history of VaR

violations up to time t) is not helpful to predict the future state of the VaR violation indica-

tor. VaR violation indicators should be independent across time. In the multivariate setting

considering several desks this translates to

It,i(α) and Is,j(α̃) are independent for every t 6= s (4.4)

25In our simulation study, the distribution functions are continuous as well.
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for all α, α̃ ∈ [0, 1]. Note that in condition (4.4), VaR violation indicators can be correlated

across desks within one trading day. Correlation across desks does not violate the property of

independence across time. For fixed α we define

Yt,i = It,i(α) = I{Lt,i≥V̂aRt,i(α)} (4.5)

4.3.2 Hypotheses

In this section, we formulate the hypothesis corresponding to our research question 2. Our

research question concerns the overall quality of the internal risk models across desks. So we

like to assess the overall quality of the models used by banks to calculate the market risk they

are exposed to in their different trading desks. Let Yt = (Yt,1, . . . , Yt,d) be the vector of VaR

violation indicators of the desk’s data at time t. An appropriate hypothesis for research question

2 is given by

H0 : Y1, . . . ,Yn are i.i.d. Bernoulli withP(Yt,i = 1) = 1− α ∀ t, i. (4.6)

We understand our test as a test of the unconditional coverage hypothesis, meaning that the

probability of observing a realised loss larger than the estimated VaR (respectively a realised

PIT-value larger than α as considered in chapter 5) must be equal to 1−α. Although the tests

we propose in this chapter are derived under the independence (across time) assumption under

the null hypothesis, it is not specifically designed as a test for the independence hypothesis.

The proposed tests will only have limited power to detect independence, as noted in Gordy and

McNeil (2020). So the focus of our tests remains on the unconditional coverage hypothesis.

4.3.3 Simulation study

In our simulation studies, we analyse both the size (the probability of falsely rejecting the

null hypothesis when it is true) and the power (the probability of correctly rejecting the null

hypothesis when it is false) of various tests under different settings. The tests are one-sided

right-tailed tests since we follow the regulator’s perspective, who is primarily interested in a

potential risk underestimation. For tests with an asymptotic χ2-distribution, the tests are

two-sided, since the test statistics look for both under- and overestimation by construction.

We will analyse the performance of the tests by varying the following variables potentially

having an influence:
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• sample size: We look at different sample sizes. The sample size corresponds to the num-

ber of days used in the bank’s backtesting exercise. The length of the backtesting period

is typically small (one or two years of daily data). If we only know the asymptotic distri-

bution of a test, the test statistic will converge to its respective asymptotic distribution

with the sample size. Therefore, it is of interest how the tests behave for finite sample

sizes.

• number of desks: The number of trading desks in a bank can be quite large. It is of

interest in which way the number of desks influence the test’s performance, in particular

if only a small number of desks violates the null hypothesis.

• dependence across desks: We will assume different dependence structures across desks

via sampling from different copulas (in order to consider different correlation structures

between the marginal distributions, that is different dependence structures). Further, we

will simulate correlated data varying the levels of correlation across desks.

The test performances are compared with respect to size and power :

• size: in order to analyse the size of the test statistics, we assume that the risk modelling

group builds correct forecasting models for all desks throughout time and measure how

often the null hypothesis is falsely rejected on average.

• power: in order to analyse the power, we assume that the risk modelling group uses a

misspecified model for a certain amount of desks (ranging from 25% to 100%) and measure

how often the null hypothesis is correctly rejected on average.

The nominal level β of all tests is 0.05. A test is called oversized when its empirical size is larger

than the nominal level of β = 0.05.

In our simulation study, we highlight the size and power results with colours. Table 4.2 shows the

logic behind the colouring, which shows when we deem the size and power as good, neutral, poor

or bad. Note that the choice is rather arbitrary but aids in the interpretation and comparison

of the results.

good neutral poor bad

size ≤ 6 (6,9) [9,12) ≥12
power ≥ 70 (30,70) (10,30] ≤10

Table 4.2: Colouring of size and power results

The general simulation setup is as follows:
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Let Pt = (Pt,1, . . . , Pt,d)
′ denote the vector of realised probability integral transform values

(PIT-values) at time t for all desks i = 1, . . . , d. To examine the size and power of the test we

will generate independent random vectors

Pt ∼ C (G1(u1), . . . , Gd(ud)) , (4.7)

for different copulas C (see Definition 22) and distribution functions Gi which aim to simulate

the effects of correct and incorrect estimation of desk-level models. We consider two copula

families: the Gauss copula CGaR and the t4 copula Ct4,R, where R is a given correlation matrix.

For both copulas we consider two different correlation levels for R: the identity matrix (zero

correlation) and an equicorrelation (flat) structure in which all pairwise correlations are 0.5.

To check size and power, we simulate from (4.7) choosing Gi(u) = Φ(F−1
i (u)), where Φ is the

standard normal distribution (choice of the risk modeller). To check size, all distribution func-

tions Fi, i = 1, . . . , d, must be standard normal distributed. Then, the marginal distributions

are uniformly distributed, Gi(u) = u, which means that the null hypothesis is correct. To check

power, we choose a distribution with a heavier tail than the normal distribution for a certain

proportion of the desks. Concretely, we choose all or a certain proportion of distributions Fi

being a standardized t4 distribution (scaled so that the variance is one). Then it holds that

Gi(u) < u, so that we can check the power of the test. Note that these two distribution choices

are just a device to generate data which fulfil, respectively violate the null hypothesis. We do

not claim that these distributions are the true distributions. We vary the proportion of mis-

specified desks between 25% (one in four desks is not correctly specified) to 100% (all desks are

not correctly specified).

Note that in the case of the t copula, when parametrised with the identity matrix for the

correlation structure, the marginal distributions are not independent since the t copula models

tail dependence, meaning that the null hypothesis is not true.

In this setting we basically test if the marginal distributions are correct under the null hypoth-

esis. We do not test for the correlation structure. For our simulation study we have chosen

the Gauss copula and the very flexible t copula, which allows for tail dependencies and varying

correlation across desks. It could be thought of using further, especially asymmetric copulas

(like Gumbel or Clayton). This was dismissed in this thesis for simplicity of exposition and

restricted resources.

Throughout this thesis we apply the notations presented in Table 4.3. Further parameters may

be introduced in the respective sections. The values in the table are the predominantly used
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values. Deviations can occur in specific simulation studies which will be made clear in the

context.

Variable Description Value

n.sim number of repetitions 1000
n number of days 250 or 500
F True marginal distribution of desk Normal or t4
C Copula used for simulation Gauss or t4
d number of desks 25 or 50
rho level of correlation 0 (‘Zero’) or 0.5 (‘Flat’)
fraction ratio of misspecified desks 25 to 100 percent
alpha VaR level α 0.99

Table 4.3: Description of variables used in the simulation studies

The simulation studies were performed using the R package simsalapar, which is a very flex-

ible tool for conducting large-scale simulation studies (see Hofert and Mächler (2016)). The

described simulation approach is used throughout the whole thesis. See, for example, Section

4.4.1, Table 4.4 for the first practical example.

4.4 Multi-desk VaR violation tests

In this section we first present a simple approach to extend a univariate test to a multivariate

test problem by applying the well-known Bonferroni method to the binomial score test. We

show why this simple approach does not work well within our framework. The second approach

also considers the binomial score test but controls for dependencies across desks.

4.4.1 Bonferroni method

Kratz et al. (2018) showed that the best alternative out of several compared variants of the

binomial test for VaR violations counts is the binomial score test:

ZBinScore =

1
n

∑n
t=1 I{Lt≥V̂aRt(α)} − (1− α)√

1
nα(1− α)

. (4.8)

A simple way to extend this (or other) test(s) to a multi-desk VaR violation test is the Bonferroni

method, named after Carlo Emilio Bonferroni (see, for example, Dunn (1959)). The method

corrects for the cumulation of Type I errors when considering multiple tests simultaneously (i.e.

testing multiple hypotheses at the same time).
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Let us suppose that we consider d desks. This means that we face d null hypotheses, which

allows us to use the Bonferroni method to obtain an overall test of desired nominal size β.

Recall that we defined the binomial variable Yt,i = I{Lt,i≥V̂aRt,i(α)} in (4.5), which takes the

value one in case of an observed VaR violation.

Consider the i-th desk. The observed total desk exception rate is given by Ȳi = Ni/n, where

Ni =
∑n

t=1 Yt,i is the number of observed violations in desk i. We expect n(1−α) VaR violations

in a desk in the considered time period of n days.

The binomial score test in (4.8) for desk i is based on the statistic

Ti =
√
n
Ȳi − (1− α)√
α(1− α)

. (4.9)

Using asymptotic theory, this test statistic is approximately normally distributed under the null

hypothesis, when Y1,i, . . . , Yn,i are independent. The p-value is then given by Qi = 1 − Φ(Ti)

(for a right-tailed test), Φ being the standard normal distribution.

In order to form a multivariate test of size β based on the Bonferroni method for testing multiple

hypotheses simultaneously, the d null-hypotheses

H i
0 :P (Yt,i = 1) < 1− α ∀ t

H i
1 :P (Yt,i = 1) ≥ 1− α for at least one i

are rejected if min {Q1, ..., Qd} ≤ β/d.

This is a rather crude backtest. For example, for n = 250 days, d = 50 desks, α = 0.99 and a

desired nominal level of β = 0.05 we have

1− Φ(Ti) ≤ 0.05/d⇐⇒ Ti ≥ Φ−1(0.999)⇐⇒ Ti ≥ 3.09⇐⇒ Ni ≥ 7.36. (4.10)

This means that all d single hypotheses are rejected when more than eight violations are observed

in one of the desks. This can be attributed to the fact that Ti is of discrete nature since Ȳi

describes the average number of violations in desk i, so the actual distribution is discrete and

not normal. So the assumption of uniform distributed p-values Qi under the null hypothesis

is a false assumption. This is problematic in the setting of market risk measurement. We face

sample sizes of around n = 250 or n = 500 in the bank’s backtestings, combined with required

α levels close to one (like 0.99). Moreover, the Bonferroni method implicitly assumes that all

tests are independent of each other. For correlated desk data this is certainly not the case.
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The probability of rejecting the null hypothesis using the Bonferroni method under the assump-

tion that the underlying desks data are independent is given in the following proposition.

Proposition 2. Let Q1, . . . , Qn be independent identically distributed random variables. Then

we have

P (min {Q1, ..., Qd} ≤ β/d) = 1− (1− P (Qi ≤ β/d))d .

Proof. The expression P (min {Q1, ..., Qd} ≤ β/d) implies that at least one Qi, i = 1, . . . , d, is

smaller than β/d. It follows that

P (min {Q1, ..., Qd} ≤ β/d) = 1− P (Q1 > β/d, . . . , Qd > β/d) .

Since Q1, . . . , Qd are independent, the last equation is equal to

1−
d∏
i=1

P (Qi > β/d) .

Since all Q1, . . . , Qd have the same distribution it follows 1− (1− P (Qi ≤ β/d))d.

Using (4.9) we can calculate P (Qi ≤ β/d) for one i:

P (Qi ≤ q) = P
(
N1 ≥ n(1− α) +

√
nα(1− α)Φ−1(1− q)

)
.

Using this formula with Proposition 2 it can be calculated that for n = 250, d = 50, α = 0.99

and β = 0.05 that P (min {Q1, ..., Qd} ≤ β/d) ≈ 0.182. This greatly exceeds the desired nominal

size of β = 0.05. So the nominal size cannot be controlled using the Bonferroni method. This

is also evident in the simulation study. We consider the single desk binomial score test in (4.9),

counting VaR violations at level α = 0.99 with the Bonferroni method for correction of the

accumulated sizes. The desired nominal size is β = 0.05. Table 4.4 shows the results. It is

obvious that the Bonferroni method greatly exceeds the desired nominal level of β = 0.05 (see

rows with F = Normal for the empirical sizes of the test under various settings).
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d 50 100

ρ Zero Flat Zero Flat

n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

250 Normal 18.4 16.5 14.7 11.3 32.8 27.0 26.5 18.2
t4 85.9 73.4 67.8 49.5 97.4 86.4 81.6 64.1

500 Normal 20.6 21.6 19.3 14.1 15.5 16.0 13.4 9.2
t4 97.8 93.2 86.9 76.1 98.1 91.7 83.4 70.5

Table 4.4: Estimated size and power of the binomial score test applying the Bonferroni method
with α = 0.99

4.4.2 Multi-desk VaR violation tests with adjustment for unknown depen-

dencies across desks

In the previous section we have seen that the Bonferroni method is unable to control the size

of the mono-desk binomial score test. To construct better sized tests, we will build multi-desk

VaR violation tests, considering all desks simultaneously. That is we are not testing d single

hypothesis like in the Bonferroni method but rather the Hypothesis in (4.6). We define the

total number of VaR violations on a day t by Nt =
∑d

i=1 Yt,i and the desk exception rate on

day t by Zt = d−1Nt. Let the expected value given by µZ = E (Zt) = 1 − α and the variance

by σ2
Z = var(Zt). Let

Z̄ =
1

n

n∑
t=1

Zt

be the total average desk exception rate. Then the test statistic

TMV aR =
√
n
Z̄ − (1− α)

σZ
∼̇N (0, 1) (4.11)

is asymptotically standard normally distributed due to the Central Limit Theorem. The test

in (4.11) can be used to test if the observed number of VaR violations in the d desks over the

backtesting period of length n is significantly higher than expected.

The variance σZ is unknown and has to be estimated. Since we expect intra-day correlation

across desks (that is correlation on the same trading day t), we have to find appropriate estimates

that can control for this unknown correlation. We propose different estimation methods for σ2
Z

and will analyse the performance of test statistic (4.11) using the proposed alternatives.
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Variance estimation This estimation of σ2
Z is particularly tricky due to the data basis.

Typical α levels, which are wide in the tail, mean that for an appropriate VaR model, a VaR

violation will occur quite rarely. For example, a confidence level of 0.99 means that we would

expect 2.5 VaR violation in 250 days on average for an appropriate VaR model26. Therefore, the

VaR violation indicators of desk i, Y1,i, . . . , Yn,i, will mainly be zeros. This leads to severe prob-

lems in the estimation of σ2
Z . If the individual desks VaR violation indicators are independent

across desks at any day t, we have

σ2
Z =

α(1− α)

d
. (4.12)

However, positive dependencies across desks are likely on the same trading day t so it can be

expected that the unknown variance is larger than (4.12).

In our simulation study, we will apply

σ̂2
Z = max(σ2

min, σ̃
2
Z),

where σ2
min = α(1− α)/d is the variance of Zt when we ignore any dependencies between desks

and σ̃2
Z is one of the variance estimators which we will describe below. By taking the maximum,

we correct for estimation errors and ensure that the variance is at least as high as the variance

under independence.

In the following, we present four alternatives for the estimation of σ̃2
Z . Their performance will

be analysed in a simulation study.

None We set σ̃2
Z = 0. That is σ̂2

Z = σ2
min. This is true in the case of independent desks. In the

case of dependencies across desks, we expect this measure to be too small (since we ignore

the correlation structure).

M1 Under the null Hypothesis in (4.6) (when the random vectors Y1, . . . ,Yn are independent

across time and identical distributed) we infer for any t

σ2
Z = var

(
1

d

d∑
i=1

Yt,i

)
=

1

d2

d∑
i=1

var(Yt,i) +
2

d2

d∑
i=1

∑
i 6=j

cov(Yt,i, Yt,j)

=
α(1− α)

d
+

2

d2

d∑
i=1

∑
i 6=j

cov(Yt,i, Yt,j),

26The regulatory framework requires that the backtest compares if the number of observed VaR violations is
consistent with a 99% confidence level with the notation that other α levels should be added to the backtesting
exercise, see BCBS (2019b), p.81, para. 32.5 and p.83, para. 32.13.
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where we used var(Yt,i) = α(1− α) ∀ i. For the covariance we exploit the equality

cov(Yt,i, Yt,j) = E(Yt,iYt,j)− (1− α)2

for t = 1, . . . n and i, j = 1, . . . , d, i 6= j.

Using the consistent estimator for E(Yt,iYt,j) given by Ỹij = 1/n
∑n

t=1 Yt,iYt,j , we get

σ̃2
Z =

α(1− α)

d
+

2

d2

d∑
i=1

∑
i 6=j

(Ỹij − (1− α)2).

As we will also see later in the simulation study, the usage of the proposed variance esti-

mate M1 leads to an undersized test. It seems that the covariance estimate overestimates

the true covariance. Since the distribution of variance or covariance estimates tends to be

asymmetric, the intuition is that there is a positive bias in the estimate which leads to an

overestimation. This in turns leads to undersized tests.

M2 Using the coefficient of variation of Zt given by cν = σZ/µZ we exploit

σ2
Z = (1− α)2 c2

ν = (1− α)2 σ
2
Z

µ2
Z

.

Replacing the squared coefficient of variation with the empirical estimator,

ĉ2
ν =

1
n−1

∑n
t=1(Zt − Z̄)2(

1
n

∑n
t=1 Zt

)2
we use

σ̃2
Z = (1− α)2ĉ2

ν .

Note that by using the coefficient of variation, we ‘correct’ the sample variance estimator

by its sample mean in the denominator. So we would expect better estimates compared

to using M1.

M3 Using Zt = d−1
∑d

i=1 Yt,i = d−11′Yt, 1 = (1, . . . , 1)′, we infer

σ2
Z =

1

d2
1′Var(Yt)1 =

σ2
Y

d2
1′RY 1,

where σ2
Y = var(Yt,i) = α(1 − α) ∀ t, i and RY is the correlation matrix of the random

vector Yt. Note that under the null hypothesis we have that RY is independent of t. This
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suggests the estimator

σ̃2
Z =

α(1− α)

d2
1′R̂Y 1,

using the sample correlation matrix R̂Y with entries

ĉor(Yt,i, Yt,j) =

∑n
t=1

(
Yt,i − Ȳi

) (
Yt,j − Ȳj

)√∑n
t=1

(
Yt,i − Ȳi

)2√∑n
t=1

(
Yt,j − Ȳj

)2 (4.13)

with Ȳk = 1/n
∑n

t=1 Yt,k. Compared to M1 and M2 we do not use a variance or covariance

estimate. Since correlation estimates are less prone to positive biases than variance and

covariance estimates we deem this a good candidate too.

Note that when estimating R̂Y , we have to disregard desks with zero violations (i.e. the

daily observed loss for this desk did not exceed the respective estimated VaR on any

occasion in the considered backtesting period). If we would not exclude these desks, the

sample variance of the desk is zero, resulting in an error in the calculation of the sample

correlation in (4.13)27. The probability that a desk is excluded depends on the considered

α level. If we consider a time series of VaR violation indicators of length 250 for one desk,

the probability to observe no violations is (1− α)250, when we assume independence.

Consistency of the variance estimates All proposed estimates described under M1, M2,

M3 are consistent estimates for the unknown variance σ2
Z of Zt under the null hypothesis as a

consequence of the well known strong law of large numbers; see Theorem 4 in Section 4.2.

Proposition 3. Let Yt = (Yt,1, . . . , Yt,d), t = 1, . . . , n, denote the vector of desk’s data at time

t. The vectors Yt are assumed to be i.i.d. Bernoulli distributed. Then, the variance estimates

σ̃2
Z described in M1, M2, M3 are consistent estimates for the unknown variance σ2

Z of Zt.

Proof. M1 We will proof almost sure convergence for the expression Ỹij = n−1
∑n

t=1 Yt,iYt,j ,

from which convergence in probability (see Definition 20) follows. Since the vectors

Y1, . . .Yn are assumed to be i.i.d. Bernoulli, {Yt,iYt,j}nt=1 is an i.i.d. sequence (with

some finite mean). Due to the strong law of large numbers we have

Ỹij
a.s.→ E (Yt,iYt,j) .

27The same problem arises in case that we observe 100% exceptions in a desk. However, due to the usually
chosen α levels in the area close to one, this case is irrelevant.
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Note that var(Yt,i) and with that E (Yt,iYt,j) exists ∀ t, i, j, because Yt,i is bounded. Using

the continuous mapping theorem (see Theorem 3 in Section 4.2) and Fatou’s Lemma it

follows that

σ̃2
Z =

α(1− α)

d
+

2

d2

d∑
i=1

∑
i 6=j

(Ỹij − (1− α)2)
P→ σ2

Z .

M2 By the strong law of large numbers we have n−1
∑n

t=1 Zt
a.s.→ µZ since the sequence

Z1, . . . , Zn is i.i.d. (with some finite mean). It follows by the continuous mapping theorem

that (
1/n

n∑
t=1

Zt

)2
a.s.→ µ2

Z .

For the expression 1
n−1

∑n
t=1(Zt − Z̄)2 we have n−1

∑n
t=1(Zt − Z̄)2 = n−1

∑n
t=1 Z

2
t − Z̄2.

Applying the strong law of large numbers, we have

1

n

n∑
t=1

Z2
t
a.s.→ E

(
Z2
t

)
and Z̄

a.s→ E (Zt) = µZ .

By the continuous mapping theorem it follows that

1

n

n∑
t=1

(Zt − Z̄)2 a.s→ E
(
Z2
t

)
− E (Zt)

2 = σ2
Z .

We directly get

n

n− 1

1

n

n∑
t=1

(Zt − Z̄)2 a.s.→ σ2
Z (4.14)

since n/(n−1)→ 1 as n→∞. Using again the continuous mapping theorem we conclude

σ̃2
Z = (1− α)2ĉ2

ν = (1− α)2
1

n−1

∑n
t=1(Zt − Z̄)2(

1
n

∑n
t=1 Zt

)2 a.s.→ σ2
Z .

Note that
(

1
n

∑n
t=1 Zt

)2 6= 0 because the sample mean of Zt converges to the expected

value µZ which is 1− α. Almost sure convergence implies convergence in probability.

M3 To show the consistency of R̂Y , we rewrite the entries of R̂Y as

1
n

∑n
t=1

(
Yt,i − Ȳi

) (
Yt,j − Ȳj

)√
1
n

∑n
t=1

(
Yt,i − Ȳi

)2√ 1
n

∑n
t=1

(
Yt,j − Ȳj

)2 . (4.15)
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Following the same arguments as in (4.14) we know that the denominator in (4.15) con-

verges almost surely. We rewrite the numerator in (4.15) as

1

n

n∑
t=1

(
Yt,iYt,j − Yt,j Ȳi − Yt,iȲj + ȲiȲj

)
. (4.16)

– The expression 1
n

∑n
t=1 Yt,iYt,j is the sample mean of Yt,iYt,j , ∀i, j. We have already

seen for estimate M1 that this expression converges to E (Yt,iYt,j) almost surely.

– The term Vt = 1
n

∑n
t=1 Yt,j Ȳi = 1

n

∑n
t=1 Yt,j

1
n

∑n
t=1 Yt,i, converges to E (Yt,j)E (Yt,i)

almost surely for every i, j, i 6= j due to the law of large numbers and the continuous

mapping theorem.

Summarizing, we have for the numerator in (4.15) that

1

n

n∑
t=1

(
Yt,i − Ȳi

) (
Yt,j − Ȳj

) a.s.→ E (Yt,iYt,j)− E (Yt,j)E (Yt,i) .

Therefore we have ĉor(Yt,i, Yt,j)
a.s.→ cor(Yt,i, Yt,j) for all entries of R̂Y and with that

R̂Y
a.s.→ RY. From this it follows that

σ̃2
Z =

α(1− α)

d2
1′R̂Y 1

P→ σ2
Z .

4.4.3 Results simulation study: multi-desk VaR violation tests

We analyse the ability of the different variance estimation methods described above to control

the unknown correlation cross desks in a simulation study. For this we use the multi-desk

binomial score test presented in (4.11). We assume the the risk modelling group either correctly

specifies or misspecifies all desk models (variable fraction is frozen at 100). The remaining

setting is as stated in Table 4.3 in Section 4.3.3. Table 4.5 shows the results. The rows called

‘Normal’ show the empirical size of the test. The rows called ‘t4’ the power. The following is

observed

• Ignoring dependencies across desks by using method None, that is σ̂2
Z = d−1α(1 − α),

gives strongly oversized tests. The only exception is when simulating data from a Gauss

copula with correlation matrix equal to the identity matrix (correlation structure ‘Zero’),

which corresponds to independent desks.
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• Proposal M1 leads to undersized tests. No clear structural pattern appears when moving

from 50 to 100 desks or from sample size 250 to 500.

• Using alternative M2 (coefficient of variation) gives slightly oversized tests and shows

good power properties.

• Method M3 shows better size properties than M2 and a comparable level of power.

• In general, the differences between d = 50 desks and d = 100 desks is rather small and no

clear improvement in size or power is recognised. Choosing a larger sample size tends to

improve power when comparing tests with comparable level of empirical size.

d 50 100

ρ Zero Flat Zero Flat

cor n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

None 250 Normal 3.9 20.4 24.2 27.8 4.5 27.2 29.5 31.7
t4 99.9 93.2 90.1 78.4 100.0 97.1 92.9 83.0

500 Normal 4.5 22.0 26.0 32.9 6.1 28.2 31.6 36.2
t4 100.0 99.6 97.8 92.1 100.0 99.8 98.8 93.9

M1 250 Normal 3.1 1.9 1.9 1.2 3.4 1.5 2.1 1.3
t4 99.9 67.2 51.5 23.6 100.0 69.8 52.4 24.1

500 Normal 3.9 2.6 2.6 1.9 4.4 2.4 1.9 1.6
t4 100.0 94.2 81.9 51.5 100.0 95.5 84.6 52.3

M2 250 Normal 3.9 6.0 7.0 7.8 4.4 6.3 6.6 7.4
t4 99.9 83.7 71.7 49.6 100.0 83.8 73.1 50.2

500 Normal 4.5 5.8 6.8 7.2 6.1 5.5 6.7 7.0
t4 100.0 97.0 91.1 71.7 100.0 98.1 92.3 72.4

M3 250 Normal 3.9 4.1 4.1 4.0 4.4 4.5 4.0 4.2
t4 99.9 79.8 65.3 39.5 100.0 80.6 67.5 41.5

500 Normal 4.2 4.3 4.8 4.6 6.0 4.5 4.7 4.5
t4 100.0 96.2 87.9 64.5 100.0 97.7 89.5 66.1

Table 4.5: Estimated size and power of binomial score test using α = 0.99 with different variance
estimation methods
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4.5 Summary

The main conclusions of this chapter are:

• We considered the well-known binomial score test and applied the Bonferroni method to

extend this test to a multi-desk VaR violation test, based on VaR violation indicators

as input variable. The Bonferroni method tests the adequateness of several desk models

(several null hypotheses) at once. We showed both theoretically and in a simulation study

that the Bonferroni method is not able to control the size of the test and leads to heavily

oversized tests.

• We proposed a new multi-desk VaR backtest, based on VaR violation indicators as input

variables, which consider all desks simultaneously in the test function. In particular, we

considered a Z-test where the average of the desk’s daily exceptions rates is standardized,

so that the test is asymptotically standard normally distributed due to the Central Limit

Theorem.

• We suggested and analysed three different variance estimation methods to estimate the

unknown variance in the test function. In a simulation study it turned out that the

method, where only the correlation part of the covariance is estimated (and the known

analytical variance under the null hypothesis is used), is best to control for the unknown

correlation between desks. In this case, the test is well-sized with good power properties

(mostly well above 70%).

• The simulation study also revealed that an increase of the number of desks from 50 to 100

did not improve the size and power performance of the proposed multi-desk VaR violation

test. The performance improved when the number of observations was increased from 250

(roughly one year of observations) to 500 (roughly two years of observations).



Chapter 5

Multi-desk backtesting using

PIT-values

5.1 Introduction

We have argued in Chapter 4 that multi-desk backtesting is beneficial and that controlling for

the unknown dependency across desks is crucial to develop well-sized tests. While we developed

tests based on indicator time series for VaR violations in Chapter 4, we will generalise this

theory to multi-desk tests based on realised probability integral transform values (PIT-values).

The new tests also answer research question 2 (see Section 4.1).

In Gordy and McNeil (2020), mono-desk spectral backtests for the unconditional (see Definition

15) and conditional coverage (see Definition 17) hypothesis are proposed. Their spectral tests

make use of the realised PIT-values of the estimated PnL distribution, which serve as the

input variable. The proposed class of spectral backtests includes many well-known tests as

special cases including the binomial likelihood ratio test of Kupiec (1995), which simply counts

the number of VaR violations in the observed sequence of VaR violations. More precisely,

the proposed tests are built upon transformations of the realised PIT-value level exceedance

indicator function, which are weighted. By the choice of the weighting function (or kernel

function) used to weight the realised PIT-value level exceedances, the risk modelling group can

emphasize the region of the PnL distribution about which it is most concerned with respect to

model performance. Moreover, the benefit of using realised PIT-values - as already exploited in

the USA - becomes apparent since the new tests turn out to be quite powerful.

The new Basel framework also indicates that the regulator is not only interested in the perfor-

80
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mance of the VaR model at the confidence level used to calculate the required capital (99%)

but also in the performance at the 97.5% level (see in BCBS (2019b), p.83, para. 32.13). The

proposed tests in Gordy and McNeil (2020) permit the risk modelling group to choose a region

of the estimated PnL distribution on which the assessment should be focused (e.g. an area

around the 99% quantile or just the 99% quantile).

Generally, tests based on realised PIT-values level exceedance indicators are expected to be

more powerful than tests based on the VaR violation indicator sequence alone, since they include

information about any α level and can be used to assess a wider range of the PnL distribution.

However, one drawback is that information about the whole PnL distribution function F is

required and not only information on one specific quantile F←(α). In practice, more emphasis

is given to the modelling of the tail of the PnL distribution function, where the extreme losses

occur. It is expected that for moderate α levels, the estimated distribution is likely to be less

adequate. Consequently, for the purposes of backtesting one has to find a range of α levels

which give a good balance between powerful tests and precision.

In this chapter we draw on the findings in Gordy and McNeil (2020) and develop various tests

based on realised PIT-value level exceedance indicators which extend the theory of the proposed

mono-desk tests28 to multi-desk tests, which test several trading desk models simultaneously.

Since the realised PIT-value exceedances are likely to be correlated across desks, we apply the

proposed variance estimates from Chapter 4 to account for correlation.

The chapter is organized as follows. We first explain the rational behind PIT-values and state

the hypothesis linked to the research question. After that we present multi-desk monospectral

tests and multi-desk bispectral tests, all being generalisations of the tests proposed in Gordy

and McNeil (2020) to the multi-desk framework. The chapter concludes with an extensive

simulation study, which follows the principles set out in Section 4.3.3.

5.2 Methodology

5.2.1 Data

The general setup is the same as in Section 4.3.1. The number of desks approved for the use

of an internal model is d. The variable Lt,i describes the profit and loss of the risky assets

attributed to desk i at time t. It is defined on a filtered probability space (Ω,F , (Ft)t∈N0 ,P),

28In our interpretation, the univariate case corresponds to a mono-desk test or a test at bank-wide portfolio
level.
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where Ft represents the information available at time t and N0 = {0, 1, 2, . . . }. Ft,i denotes the

conditional profit and loss (PnL) distribution function given the information up to time t− 1

Ft,i(x) = P (Lt,i ≤ x|Ft−1) .

We assume throughout that the PnL distribution functions are continuous. As before let

V̂aRt,i(α) represent the one-day ahead forecast of the VaR at level α of desk i generated at

time t− 1.

The multi-desk tests presented in this chapter are based on realised probability integral trans-

form or PIT-values (sometimes also known as p-values) of the conditional PnL distribution

function Ft,i. Formally, a theoretical PIT-value is defined as

Ut,i = Ft,i (Lt,i) ,

where the probability integral transformation is applied which transforms a random variable

with some continuous distribution function into a random variable with standard uniform dis-

tribution. More precisely, Rosenblatt (1952) showed that, under the assumption that the condi-

tional distribution function is continuous, the sequence (Ut)t∈N is a sequence of i.i.d. standard

uniform distributed random variables.

The Rosenblatt transformation maps a n-dimensional random vector X = (X1, . . . , Xn)′ de-

fined on some probability space (Ω,F ,P) with some distribution function F (x1, . . . , xn), to

a uniform distribution on the n-dimensional hypercube. The transformation is defined by

z = (z1, . . . , zn)′ = T (x1, . . . , xn)′ with

z1 = P (X1 ≤ x1) = F1(x1) (5.1)

z2 = P (X2 ≤ x2|X1 = x1) = F2(x2|x1)

...

zn = P (Xn ≤ xn|Xn−1 = xn−1, . . . , X1 = x1) = Fn(xn|xn−1, . . . , x1).

Rosenblatt showed that for Z = T (X) with Z = (Z1, . . . , Zn)′ the variables Z1, . . . , Zn are

uniformly, independently distributed. Applying this transformation, we have that the sequence

(Ut,i)t∈N with Ut,i = Ft,i(Lt,i) is a sequence of i.i.d. standard uniform variables. Note that this

transformation holds true even when the process (Lt,i)t∈N is non-stationary.

Under the assumption that the bank constructs an ideal probabilistic forecast F̂t of Ft at
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any point in time, we would expect that the sequence of realised PIT-values (Pt,i)t∈N with

Pt,i = F̂t,i(Lt,i) forms a series of i.i.d. standard uniform variables. Note that we interpret an

ideal forecast F̂t of Ft at any point in time in the sense of Gneiting et al. (2007), where the risk

modelling group always knows the truth.

One advantage of PIT-values is that they give information about the entire forecast distribution

since for any α ∈ [0, 1]

Ut,i ≥ α =⇒ Lt,i ≥ F←t,i (α)⇐⇒ Lt,i ≥ V aRt,i(α). (5.2)

The distribution function has to be increasing to apply the first inference and the equality holds

for continuous distribution functions Ft,i. For discontinuous functions small issues exists for

certain values. That is the realised PIT-value level exceedance contains information about a

VaR violation at any level α, whereas the VaR violation indicator just provides information if

there was a violation at the pre-specified level α of the VaR. Due to (5.2), the (realised) PIT-

value level exceedance indicator function I{Pt,i≥α} is equivalent to the VaR violation indicator

function I{Lt,i≥V̂aRt,i(α)}.

As in Gordy and McNeil (2020), the tests we consider are based on transformations of indicator

variables for realised PIT-value level exceedances. We set

Wt,i =

∫
[0,1]

I{Pt,i≥u}dν(u), (5.3)

where ν is a Lebesgue-Stieltjes measure defined on [0, 1], which is designed to apply different

weights to different quantile levels. Following Gordy and McNeil (2020) we will refer to ν as the

kernel measure for the transformed indicator variables for realised PIT-value level exceedances.

By choosing ν, the risk modelling group has the flexibility to choose the area of the PnL

distribution function about which it is most concerned with respect to model performance. The

risk modelling group can also assign more weight to specific quantiles or quantile areas within

its specified region of interest. We will refer to (5.3) as W-values. Let Pt = (Pt,1, . . . , Pt,d)

denote the vector of PIT-values containing the PIT-values of each desk at point in time t. We

structure the desk data into the columns, as shown in Table 5.1.
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H
HHH

HHt
i

desk 1 desk 2 desk 3 desk 4 desk 5 . . . desk d

day 1 P1,1 P1,2 P1,3 P1,4 P1,5 . . . P1,d

day 2 P2,1 P2,2 P2,3 P2,4 P2,5 . . . P2,d

day 3 P3,1 P3,2 P3,3 P3,4 P3,5 . . . P3,d

day 4 P4,1 P4,2 P4,3 P4,4 P4,5 . . . P4,d

day 5 P5,1 P5,2 P5,3 P5,4 P5,5 . . . P5,d
...

...
...

...
...

...
...

...
day n Pn,1 Pn,2 Pn,3 Pn,4 Pn,5 . . . Pn,d

Table 5.1: Stylized sample of the data structure of the PIT-values

For example, the risk modelling group could choose a continuous weighting function, placing

weights in an area [α1, α2] ⊂ [0, 1] according to some continuous function g : [0, 1] → [0,∞).

Then the W-values are

Wt,i =

∫ α2

α1

g(u)I{Pt,i≥u}du, i = 1, . . . , d (5.4)

(more details on this can be found in Section 5.3). For example, if we choose a uniform weighting

function g(u) = 1, Wt,i is given by the function Pt,i shown in Figure 5.1. The maximum value

of Wt,i is reached at α2 − α1. We used α1 = 0.75 and α2 = 0.90 in our example. In the region

between α1 and α2, equal weights are placed on realised PIT-value level exceedances.
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Figure 5.1: W-values for a uniform weighting function

5.2.2 Hypotheses

Research question 2 concerns the overall quality of the internal risk models across desks. So we

like to assess the overall quality of the models used by banks to calculate the market risk they

are exposed to in their different trading desks.

We know from Section 5.2.1 that under the assumption that the bank builds an ideal forecast

F̂t of Ft at any point in time, that the sequence of realised PIT-values (Pt,i)t∈N with Pt,i =

F̂t,i(Lt,i) forms a series of i.i.d. standard uniform variables. Let F 0
W be the unknown distribution

function of the d-dimensional vector of W-values Wt = (Wt,1, . . . ,Wt,d), when the realised PIT-

values Pt,1, . . . , Pt,d are indeed uniform for any t, t = 1, . . . , n. Then we can formulate the null

hypothesis

H0 : W1, ...,Wn are i.i.d. with the same distribution functionF 0
W. (5.5)

Note that the null hypothesis implicitly assumes that two desks are independent for two different

point in times, like Wt,1 to Ws,2 for t 6= s. Note also that we explicitly allow for correlations

across desks on the same trading day t under the null hypothesis in our convention. This seems

to be a reasonable assumption since desk models are usually built using the same underlying
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methodology and the same correlated risk factor data. The challenge is to develop a test that

overcomes the lack of information about the correlation between the trading desks data since

correlation cannot be observed but has to be estimated.

We understand our tests as tests of the unconditional coverage hypothesis (see Definition 15),

meaning that the probability of observing a realised PIT-value larger than α must be equal to

1−α. Although the tests we propose in this chapter are derived under the independence (across

time) assumption under the null hypothesis, they are not specifically designed as a test for the

independence hypothesis. The proposed tests will only have limited power to detect deviations

from the independence hypothesis, as noted in Gordy and McNeil (2020). So the focus of our

tests remains on the unconditional coverage hypothesis.

In the case of a bispectral test, we face a two-dimensional vector of W-values using two different

kernel measures νj , j = 1, 2:

W j
t,i =

∫
[0,1]

I{Pt,i≥u}dν
j(u), j = 1, 2

such that W j
t = (W j

t,1, . . . ,W
j
t,d) (see Section 5.3.2 for more details on the bispectral test). In

this case, the hypothesis reads as

H0 : W̃1, . . . ,W̃n are i.i.d. with distribution functionF 0
W, (5.6)

where F 0
W is the marginal distribution function of the two-dimensional vector W̃t = (W1

t ,W
2
t ),

when Pt,1, . . . , Pt,d are i.i.d. uniformly distributed.

5.3 Multi-desk tests based on PIT-values

We build on the findings in Gordy and McNeil (2020) and extend their theory of mono-desk

spectral tests to multi-desk spectral tests.

From expression (5.3), the closed form expression for the W-values is easily derived:

Wt,i =

∫
[0,1]

I{Pt,i≥u}dν(u) =

∫
[0,Pt,i]

dν(u) = ν ([0, Pt,i]) . (5.7)

Following Gordy and McNeil (2020), we will refer to ν as the kernel measure for the transformed

indicator variables for realised PIT-value level exceedances. From (5.7) it becomes clear that

Wt,i is an increasing function in Pt,i. Recall that Wt = (Wt,1, . . .Wt,d) denotes the vector of the
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W-values of the d desks at time t.

In Gordy and McNeil (2020) both discrete and continuous weighting functions are considered

for the weighting scheme implied by the measure ν. For simplicity of exposition, we concentrate

on the continuous case in this thesis. For continuous weighting, we can choose a continuous

function defining a weighting structure for a subset of [0, 1]. For this, the measure ν has the

form dν = g(u)du for some continuous function g defined on [0, 1]. The measure ν can be

thought of as a probability measure with probability density g. However, it is not needed that

ν([0, 1]) = 1.

Assumption 3. For the weighting function g it holds that g(u) = 0 for u /∈ [α1, α2], g is

continuous and positive on (α1, α2).

With this assumption it is guaranteed that ν([α1, α2]) =
∫ α2

α1
g(u)du is positive, that [α1, α2] is

the kernel window and that we exclude non-trivial tests, where ν([α1, α2]) = 0.

For a continuous measure, the expression for the W-values in (5.7) then becomes

Wt,i =

∫ α2

α1

g(u)I{Pt,i≥u}du.

Let G be the integral of the function g

G(u) =

∫ u

−∞
g(t)dt =

∫ u

α1

g(t)dt,

where the latter is due to Assumption 3. Then, Wt,i can be written as

Wt,i =

∫ α2

α1

g(u)I{Pt,i≥u}du = I{Pt,i≥α1}

∫ min (Pt,i,α2)

α1

g(u)du

= I{Pt,i≥α1} (G(Pt,i ∧ α2)−G(α1)) = G(α1 ∨ (Pt,i ∧ α2))−G(α1)

= G(P ∗t,i)−G(α1). (5.8)

with Pt,i ∧ α = min{Pt,i, α} and Pt,i ∨ α = max{Pt,i, α}. From (5.8) it is clear that Wt,i

truncates the realised PIT-values Pt,i on [α1, α2] and that Wt,i is always a strictly increasing

and continuous function of the truncated realised PIT-values P ∗t,i := α1 ∨ (Pt,i ∧ α2) for g (see
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Assumption 3). The truncated PIT-values satisfy

P ∗t,i =


α2 forPt,i ≥ α2

Pt,i forPt,i ∈ [α1, α2]

α1 forPt,i < α1.

(5.9)

So for Wt,i we obtain

Wt,i =


G(α2)−G(α1) forPt,i ≥ α2

G(P ∗t,i)−G(α1) forPt,i ∈ [α1, α2]

0 forPt,i < α1.

(5.10)

This means that observed PIT-values smaller than α1 count as a zero observation. Realised PIT-

values in [α1, α2] are violations which are weighted according to the chosen weighting function

g. For realised PIT-values larger than α2, the weighting is fixed at G(α2) − G(α1). In our

simulation study, we consider different functions g.

The following two expressions can be easily calculated analytically. The expected value of Wt,i

is

µW = E(Wt,i) = E
(∫ α2

α1

g(u)I{Pt,i≥u}du

)
=

∫ α2

α1

g(u)E
(
I{Pt,i≥u}

)
du =

∫ α2

α1

g(u)(1− u)du.

We can further derive

µ2,W = E(W 2
t,i) = E

((∫ α2

α1

g(u)I{Pt,i≥u}du

)2
)

= E
((∫ α2

α1

g(u)I{Pt,i≥u}du

)(∫ α2

α1

g(v)I{Pt,i≥v}dv

))
=

∫ α2

α1

2g(u)(G(u)−G(α1))(1− u)du. (5.11)
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To see the final step of (5.11) we calculate

Wt,iWt,i =

(∫ α2

α1

g(u)I{Pt,i≥u}du

)(∫ α2

α1

g(v)I{Pt,i≥v}dv

)
=

∫ α2

α1

∫ α2

α1

g(u)g(v)I{Pt,i≥u}I{Pt,i≥v}dudv

=

∫ α2

α1

∫ u

v=α1

g(u)g(v)I{Pt,i≥u}dvdu+

∫ α2

α1

∫ α2

v=u
g(u)g(v)I{Pt,i≥v}dvdu

=

∫ α2

α1

g(u)

(∫ u

v=α1

g(v)dv

)
I{Pt,i≥u}du+

∫ α2

v=α1

g(v)

(∫ v

u=α1

g(u)du

)
I{Pt,i≥v}dv

=

∫ α2

u=α1

g(u) (G(u)−G(α1)) I{Pt,i≥u}du+

∫ α2

v=α1

g(v) (G(v)−G(α1)) I{Pt,i≥v}dv

=

∫ α2

α1

g(u) (G(u)−G(α1)) I{Pt,i≥u}du+

∫ α2

α1

g(v) (G(v)−G(α1)) I{Pt,i≥v}dv

= 2

∫ α2

α1

g(u) (G(u)−G(α1)) I{Pt,i≥u}du.

For the variance we have σ2
W = µ2,W − µ2

W . Note that the variance must be finite in order

to apply the Central Limit Theorem underpinning those test, which take the form of a Z-test

statistic. Assumption 3 satisfies the existence of moments. Conditions for the finite expectation

of the product Wt,iWt,i are given in Gordy and McNeil (2020), Proposition 3.2. All the weighing

functions considered in this thesis satisfy the condition.

5.3.1 Multi-desk monospectral tests

Our spectral test takes the form of a Z-test statistic which distribution function can be ap-

proximated by the normal distribution under the null hypothesis. We test for the hypothesis

stated in (5.5) in Section 5.2.2. The test is based on the W-values Wt,i presented above, using

a continuous kernel measure. The desk exception rate is given by

Zt =
1

d

d∑
i=1

Wt,i =
1

d

d∑
i=1

∫ α2

α1

g(u)I{Pt,i≥u}du.

The proposed Z-test is then

TMspec =
√
n
Z̄ − µW
σZ

with average desk exception rate Z̄ = n−1
∑n

t=1 Zt, variance σ2
Z = var(Zt) and

µW = E(Z̄) = n−1
n∑
t=1

E(Zt) = E (Wt,i) =

∫ α2

α1

g(u)(1− u)du.
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Under the null hypothesis and with a consistent estimator of the variance σ2
Z , we can use the

Central Limit Theorem to base a test on the normality of the test statistic:

TMspec =
√
n
Z− µW
σZ

∼̇N (0, 1) . (5.12)

Since σZ is unknown, it has to be estimated. We will apply different alternative estimates

derived in the following section. In general, these are the same estimators presented in Section

4.4.2 adapted to the setting of our monospectral tests.

Estimation of the variance We use the different variance estimation approaches presented

in Section 4.4.2. Note that in our simulation study, we will again truncate the variance estimate

to the minimum variance which holds true under the assumption of independent desks:

σ̂2
Z = max(σ2

min, σ̃
2
Z).

The variable σ2
min is the variance of Zt when we ignore any dependencies between desks, i.e.

σ2
min = var(Zt) = d−1(µ2,W − µ2

W ), and σ̃2
Z is one of the variance estimators described below.

None We set σ̃2
Z = 0.

M1 We set

σ̃2
Z =

1

d
(µ2,W − µ2

W ) +
2

d2

d∑
i=1

∑
i 6=j

(µ̃ij − µ2
W ).

M2 We set

σ̃2
Z = µ2

W ĉ
2
ν with ĉ2

ν =
1

n−1

∑n
t=1(Zt − Z̄)2(

1
n

∑n
t=1 Zt

)2 .

M3 We set

σ̃2
Z =

µ2,W − µ2
W

d2
1′R̂W1,

where R̂W is the estimated sample correlation matrix of the vector Wt. Note that when

estimating R̂W , we have to disregard desks with zero violations, which means that the

realised PIT-value Pt,i of this desk did not lie once within the kernel window (i.e. the

realised PIT-value did not exceed the threshold α1) in the considered backtesting period.

If we do not exclude those desks, the sample variance of the desk will be zero in those cases,
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resulting in an error in the calculation of the sample correlation. In our simulation studies,

we consider regions in the extreme right tail (for example the region [0.9805, 0.9995]).

Considering for example n = 250 days, this amounts to a probability of 4.88 × 10−431

that one desk has to be excluded (no violations observed) in the simulations under the

assumption of independence.

All three estimates described in M1, M2 and M3 are consistent estimates of σ2
Z under the

null hypothesis. To show this one can follow the arguments as in the proof of Proposition 3 in

Section 4.4.2 and use the fact that Wt,i is bounded for all t, i, t = 1, . . . , n, i = 1, . . . , d.

5.3.2 Multi-desk bispectral tests

In the monospectral Z-test, we considered one continuous weighting function g. That is we had

a d-dimensional vector Wt = (Wt,1, . . . ,Wt,d) for every point in time t:

Wt,i =

∫ α2

α1

g(u)I{Pt,i≥u}du.

This setting can be generalised to a multispectral test, where more than one weighting function

g is considered, that is we consider a set of W-values. In this thesis we concentrate on the

multi-desk bispectral test, i.e. we consider the set (W 1
t,i,W

2
t,i) where

W 1
t,i =

∫ α2

α1

g1(u)I{Pt,i≥u}du,

W 2
t,i =

∫ α2

α1

g2(u)I{Pt,i≥u}du,

where g1 and g2 are functions fulfilling Assumption 3. In this way, the risk modelling group can

choose two weighting schemes for the PIT-value level exceedances for each desk, which can give

a better idea about the quality of the tail of the model. Note that in this setting each of the

d desks receives the same two weighting functions. The advantages of using multispectral tests

have also been highlighted in Gordy and McNeil (2020). Whereas the monospectral Z-test tests

for the first moment of Wt,i = G(P ∗t,i) − G(α1), the bispectral Z-test effectively tests for two

first moments which differ in the chosen weighting scheme. This can be beneficial if one chosen

weighting scheme fails to efficiently detect deviations of the realised PIT-values distribution func-

tion from the PIT-values distribution function expected under the null hypothesis (uniformity).

It is generally expected that the power of the spectral test is higher the larger the discrepancy

between these two distribution functions is within the considered kernel window. The spectral

Z-tests measure the average distance of these two distribution functions within the kernel win-



CHAPTER 5. MULTI-DESK BACKTESTING USING PIT-VALUES 92

dow, weighting the deviation according to the chosen weighting scheme. Two weighting schemes

are beneficial in the case where the distribution function of realised PIT-values crosses the true

distribution function of PIT-values within the kernel window. This becomes apparent in Figure

5.2, which shows the distribution function for realised PIT-values when the true model Ft,i is

either standard normal, scaled t3 or scaled t5 and the risk modelling group assumes a normal

distribution. That is we plot P(Pt,i ≤ u) = P(Φ(Lt,i) ≤ u) = P(Lt,i ≤ Φ−1(u)) = Ft,i(Φ
−1(u)).

When the true distribution function is normal, that is when the null hypothesis is true, the cu-

mulative distribution function is the identity line. A crossing of the identity line in the chosen

kernel window decreases the average distance to the identity line. This is challenging for the

monospectral test, which tests for the first moment of Wt,i.
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Figure 5.2: Cumulative distribution function of realised PIT-values when true loss model is
standard normal (green line), scaled t3 (red line) or scaled t5 (blue line)

For the bispectral test, we define two desk exception rates

Z1
t =

1

d

d∑
i=1

W 1
t,i, Z2

t =
1

d

d∑
i=1

W 2
t,i,

which differ in the choice of the weighting function g. Let W 1
t = (W 1

t,1, . . .W
1
t,d) and W 2

t =

(W 2
t,1, . . .W

2
t,d) denote the vectors of the respective W-values at time t with weighting function

g1, respectively g2. We further define the 2-dimensional vector W̃t = (W 1
t ,W

2
t )′.
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We consider the bispectral test

TBspec = n
(
Z− µW

)′
Σ−1
W

(
Z− µW

)
, (5.13)

where

Z̄ = (Z̄1, Z̄2) with Z̄k = n−1
n∑
t=1

Zkt , k = 1, 2

is the average desk exception rate and

µW = (µW 1 , µW 2) =
(
E(Z̄1),E(Z̄2)

)
=
(
E(W 1

t,i),E(W 2
t,i)
)

=

(∫ α2

α1

g1(u)(1− u)du,

∫ α2

α1

g2(u)(1− u)du

)′
.

Note that Var(Z̄) = n−1ΣW with

ΣW = Var(Z1
t , Z

2
t ) =

 var(Z1
t ) cov(Z1

t , Z
2
t )

cov(Z1
t , Z

2
t ) var(Z2

t )

 . (5.14)

Under the null hypothesis, the test statistic in (5.13) is approximately χ2-distributed with 2

degrees of freedom. This is a consequence of the multivariate Central Limit Theorem (Van der

Vaart (2000)) from which follows that Z̄ is approximately bivariate normal distributed under

the null hypothesis with finite covariance matrix ΣW . For the estimation of the variances in

(5.14) we use method M3, which turned out to produce the best simulation results. That is we

split the covariance into a variance part (which is known explicitly under the null hypothesis)

and a correlation part (which is estimated from data). We have

Var(Zkt ) =
1

d2
1′Var(W k

t )1 =
µ2,Wk − µ2

Wk

d2
1′RW k1,

with correlation matrix RW k = Cor(W k) for any t. For the correlations in RW k we use the

sample correlation estimate.

For the covariances in (5.14) we follow the same idea:

Cov(Z1
t , Z

2
t ) =

1

d2
1′Cov(W 1

t ,W
2
t )1

=
1

d2

√
µ2,W 1 − µ2

W 1

√
µ2,W 2 − µ2

W 21
′RW 1W 21.

with RW 1W 2 = Cor(W 1,W 2) for any t.
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Note that we assume that RW 1W 2 is independent of t. This suggests the estimator

1

d2

√
µ2,W 1 − µ2

W 1

√
µ2,W 2 − µ2

W 2ι
′R̂W 1W 2ι,

where we use the sample correlation matrix as an estimator for RW 1W 2 .

5.4 Results simulation study: PIT-value based tests

In this section, we present the results of our simulation study, which analyses the size and power

of our spectral backtests. We illustrate how size and power are influenced by the various simu-

lation parameters presented in Section 4.3.3, like the number of desks or the level of correlation.

Additionally, we consider different kernels to see if the choice of the kernel function influences

the performance of the tests.

For our Z-tests we decided to look at the following three continuous weighting functions g

defined on [α1, α2]:

(1) The uniform weighting function g(u) = 1

(2) The linear weighting g(u) = u

(3) The exponential weighting function g(u) = exp(k(u− α1))− 1 with k = 1.

The values α1 and α2 determine the kernel window. We choose α1 = 0.9805 and α2 = 0.9995,

which gives a symmetric interval around 0.99. Note that the functions are non-decreasing,

placing more weight on more extreme outcomes (in the right tail).

For the multi-desk monospectral Z-tests the kernel functions listed above lead to three different

tests which we denote by:

• SP.U: Uniform weighting function

• SP.L: Linear weighting function

• SP.E: Exponential weighting function

For multi-desk bispectral Z-tests, we will look at two different Z-tests, which combine the

continuous kernel functions mentioned above:

• SP.UL: Uniform and linear weighting function

• SP.UE: Uniform and exponential weighting function



CHAPTER 5. MULTI-DESK BACKTESTING USING PIT-VALUES 96

Comparison of variance estimation methods In Section 5.3.1 we introduced various

alternatives for the estimation of the unknown variance in our spectral Z-test. In this section,

we analyse the performance of these estimators with respect to the monospectral tests. The

fraction parameter is kept at 100%, meaning that the risk modelling group misspecifies all desks.

The results are presented in Table 5.2. We observe the following:

• For method ‘None’, dependencies across desks are ignored. All three multi-desk monospec-

tral Z-tests are strongly oversized except for the case when we draw random variables from

the Gauss copula with zero correlation. Note that in the case that we draw from a t4

copula, our test is oversized even in the case of zero correlation. This is due to the fact

that t4 copulas exhibit tail dependencies, which are not grasped by the variance estimator.

• Method M1 leads to strongly undersized tests. Method M2 (coefficient of variation) is

close to the nominal size but slightly oversized for samples with correlation, especially for

small samples.

• Method M3 leads to a well sized test both for n = 250 and n = 500 and in case of

correlated data by simultaneously showing very good power results, especially in the

larger sample of n = 500.

• Regarding the kernel weighting functions, no function seems to systematically outperform

the others.

• Considering more desks in the simulation leads to slightly better power results.

Due to the findings above, we will concentrate on method M3, which turned out to be the best

method to control for correlations across desks.

Bispectral tests We analyse the performance of the multi-desk bispectral Z-tests SP.UL and

SP.UE. For the estimation of the variance, we apply method M3, which appeared to work

best for the monospectral test. The fraction parameter is kept at 100%, meaning that the risk

modelling group misspecifies all desks. Table 5.3 shows the results.

Interestingly, for both tests the tests’ sizes are higher than for the monospectral Z-tests, when

using method M3. The power is slightly higher, which can also be a consequence of the size.

Concerning the size we observe that the results are noticeable better when n = 500.

We therefore analysed the performance under increased and decreased sample size, see Table

5.4 for the results. Increasing the sample size to 1000 leads to reasonable (slightly undersized)
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tests. Testing for more than one moment seems to require a larger sample size so that the test

statistic can be assumed to be χ2-distributed.

Fraction In the simulation studies before the desk models were either all correctly specified

or all were misspecified. This is a rather theoretical assumption. In a realistic scenario it is

more likely that only a certain proportion of desk models is misspecified.

Therefore, we analyse the performance of the monospectral Z-tests SP.U, SP.L and SP.E when a

certain proportion of the desks models were not correctly classified by the risk modelling group.

In the simulation study, the risk modelling group assumes that the desks underlying data follow

a standard normal distribution, Gi(u) = Φ(F−1(u)). The simulation parameter ‘fraction’ gives

the proportion of desks, which underlying data follow a t-distribution with 4 degrees of freedom

(meaning that F is a t4-distribution). The higher the fraction, the more desks are wrongly

classified as being standard normal distributed.

Table 5.5 shows the results. We restrict to variance estimation method M3. The following is

observed:

• For 25% of misspecified desks, tests are well-sized but the power is rather low (for both

considered sample sizes n). The power increases slightly when more desks (d = 100) are

considered.

• The power is good for larger samples when the data are generated from the Gauss copulas

with zero correlation. We attribute this to the intuition that independent data increase

the effective sample size, whereas correlated data decrease it.

• The power highly increases when we consider 50% wrongly classified desks and further

increases for 75%, where we have acceptable power even for small sample sizes.
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d 50 100

ρ Zero Flat Zero Flat

test cor n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

SP.U None 250 Normal 5.0 23.6 26.2 29.2 5.1 29.6 30.5 32.9
t4 100.0 93.6 89.8 79.0 100.0 96.4 92.4 82.4

500 Normal 5.1 24.7 27.5 32.9 5.4 29.4 32.5 36.7
t4 100.0 99.4 97.7 91.1 100.0 99.7 98.6 93.4

M1 250 Normal 3.9 1.8 2.0 1.1 3.5 1.6 1.9 0.9
t4 100.0 64.5 46.7 22.3 100.0 66.6 47.3 22.2

500 Normal 4.7 1.7 2.4 1.6 4.1 2.2 2.0 1.7
t4 100.0 91.6 78.0 46.6 100.0 93.5 80.6 47.2

M2 250 Normal 5.0 5.9 6.7 7.6 5.1 6.0 6.7 7.0
t4 100.0 79.6 67.7 47.0 100.0 79.6 69.3 46.6

500 Normal 5.1 5.2 6.8 6.9 5.4 5.0 6.5 6.7
t4 100.0 95.8 87.7 68.2 100.0 97.0 89.1 68.5

M3 250 Normal 4.6 4.4 4.2 4.5 4.9 4.9 4.4 4.6
t4 100.0 80.0 65.7 41.7 100.0 80.0 67.2 42.9

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 100.0 95.9 87.3 65.8 100.0 97.3 88.9 66.3

SP.L None 250 Normal 4.6 22.7 25.5 28.9 5.1 28.5 29.3 32.1
t4 100.0 98.7 96.4 90.2 100.0 99.2 97.8 92.2

500 Normal 5.1 25.5 26.6 34.2 5.5 30.4 32.4 37.7
t4 100.0 100.0 99.7 97.4 100.0 100.0 99.9 98.4

M1 250 Normal 3.9 1.5 1.8 1.1 3.6 1.3 1.7 1.1
t4 100.0 87.7 75.0 34.7 100.0 89.2 77.4 34.9

500 Normal 4.5 1.7 2.4 1.2 4.3 2.3 1.7 1.3
t4 100.0 99.5 96.7 71.0 100.0 99.6 97.2 70.8

M2 250 Normal 4.6 6.2 7.0 7.6 5.1 6.3 6.9 8.1
t4 100.0 94.2 89.5 65.8 100.0 96.3 90.3 67.0

500 Normal 5.0 5.2 7.2 7.1 5.5 4.7 7.0 7.1
t4 100.0 99.9 98.1 86.5 100.0 99.8 98.7 87.0

M3 250 Normal 4.3 4.6 4.2 5.4 4.8 5.1 4.3 5.2
t4 100.0 94.3 88.9 62.8 100.0 96.4 90.1 64.5

500 Normal 5.0 3.3 5.1 5.0 5.5 3.5 4.6 5.2
t4 100.0 99.9 98.1 86.0 100.0 99.8 98.7 86.3

SP.E None 250 Normal 5.0 23.6 26.2 29.2 5.1 29.6 30.5 32.9
t4 100.0 93.6 90.0 79.0 100.0 96.5 92.5 82.5

500 Normal 5.1 24.7 27.5 32.9 5.4 29.4 32.5 36.8
t4 100.0 99.4 97.7 91.3 100.0 99.7 98.6 93.5

M1 250 Normal 3.9 1.8 2.0 1.1 3.5 1.6 1.9 0.9
t4 100.0 64.7 47.0 22.3 100.0 66.8 47.4 22.3

500 Normal 4.7 1.7 2.4 1.6 4.1 2.2 2.0 1.7
t4 100.0 91.8 78.1 46.6 100.0 93.6 80.8 47.5

M2 250 Normal 5.0 5.9 6.7 7.6 5.1 6.0 6.7 7.0
t4 100.0 79.7 67.9 47.0 100.0 80.1 69.5 46.7

500 Normal 5.1 5.2 6.8 6.9 5.4 5.0 6.5 6.7
t4 100.0 95.8 88.0 68.4 100.0 97.1 89.5 68.6

M3 250 Normal 4.6 4.4 4.2 4.4 4.9 4.9 4.4 4.6
t4 100.0 80.2 66.1 42.0 100.0 80.3 67.8 43.0

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 100.0 96.1 87.4 66.1 100.0 97.5 89.1 66.4

Table 5.2: Size and power of monospectral Z-tests using different variance estimation methods
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d 50 100

ρ Zero Flat Zero Flat

test n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

SP.UL 250 Normal 5.8 9.4 11.6 18.6 4.1 12.3 12.2 21.0
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

500 Normal 2.7 5.4 5.0 10.2 3.1 7.2 6.6 10.0
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SP.UE 250 Normal 6.6 11.2 12.7 20.2 4.9 14.0 14.5 22.4
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

500 Normal 3.0 6.2 5.4 10.6 3.6 7.7 6.8 10.7
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.3: Size and power of bispectral Z-tests

d 50 100

ρ Zero Flat Zero Flat

test n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

SP.UL 100 Normal 17.7 33.9 30.2 49.9 20.2 38.9 35.0 54.6
t4 100.0 99.7 100.0 98.6 100.0 100.0 100.0 99.4

1000 Normal 3.0 3.1 3.1 4.8 2.3 4.5 4.6 5.5
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SP.UE 100 Normal 22.6 40.0 35.4 54.8 25.2 45.2 38.0 57.2
t4 100.0 99.7 100.0 98.7 100.0 100.0 100.0 99.5

1000 Normal 3.1 3.0 3.3 5.2 2.5 4.7 4.8 6.0
t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.4: Size and power of bispectral Z-tests with decreased and increased sample size
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d 50 100

ρ Zero Flat Zero Flat

test fraction n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

SP.U 25 250 Normal 4.6 4.4 4.2 4.5 4.9 4.9 4.4 4.6
t4 43.0 15.6 12.8 10.1 69.9 16.8 14.1 10.7

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 66.7 22.2 18.3 13.4 90.4 24.0 19.6 13.1

50 250 Normal 4.6 4.4 4.2 4.5 4.9 4.9 4.4 4.6
t4 89.0 36.5 29.6 18.5 99.3 39.6 29.3 19.9

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 99.3 56.2 43.1 27.8 100.0 58.9 43.5 27.7

75 250 Normal 4.6 4.4 4.2 4.5 4.9 4.9 4.4 4.6
t4 99.6 59.2 46.7 29.3 100.0 63.1 48.6 29.9

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 100.0 82.5 69.8 46.5 100.0 85.3 72.3 47.7

SP.L 25 250 Normal 4.3 4.6 4.2 5.4 4.8 5.1 4.3 5.2
t4 67.2 23.1 19.1 13.0 89.7 25.9 20.3 14.5

500 Normal 5.0 3.3 5.1 5.0 5.5 3.5 4.6 5.2
t4 88.8 34.7 28.1 18.7 99.3 37.8 30.8 19.7

50 250 Normal 4.3 4.6 4.2 5.4 4.8 5.1 4.3 5.2
t4 99.2 56.7 46.5 27.4 100.0 58.7 47.4 27.2

500 Normal 5.0 3.3 5.1 5.0 5.5 3.5 4.6 5.2
t4 100.0 80.0 68.7 43.3 100.0 82.1 70.2 44.5

75 250 Normal 4.3 4.6 4.2 5.4 4.8 5.1 4.3 5.2
t4 100.0 82.0 71.0 45.1 100.0 84.2 74.8 45.6

500 Normal 5.0 3.3 5.1 5.0 5.5 3.5 4.6 5.2
t4 100.0 96.5 91.3 67.7 100.0 98.1 92.8 69.0

SP.E 25 250 Normal 4.6 4.4 4.2 4.4 4.9 4.9 4.4 4.6
t4 43.1 15.6 12.9 10.3 70.1 16.9 14.1 10.7

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 66.8 22.3 18.3 13.4 90.4 24.2 19.6 13.1

50 250 Normal 4.6 4.4 4.2 4.4 4.9 4.9 4.4 4.6
t4 89.1 36.6 29.6 18.5 99.3 39.8 29.5 20.0

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 99.3 56.6 43.4 27.9 100.0 59.1 43.7 28.0

75 250 Normal 4.6 4.4 4.2 4.4 4.9 4.9 4.4 4.6
t4 99.6 59.3 46.9 29.6 100.0 63.3 48.9 30.4

500 Normal 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6
t4 100.0 82.6 69.9 46.9 100.0 85.5 72.5 47.8

Table 5.5: Size and power of monospectral Z-tests when a certain proportion of desks is mis-
specified



CHAPTER 5. MULTI-DESK BACKTESTING USING PIT-VALUES 101

5.5 Summary

The main conclusions of this section are:

• Based on the theory in Gordy and McNeil (2020) we proposed multi-desk spectral tests

to answer the research question if the trading risks of the bank are modelled adequately

across desks. The tests take the form of a Z-test, averaging the daily desks exception rates,

and make use of transformed indicator variables for realised PIT-value level exceedances

as input variable. The tests are designed in a way that the risk modelling group can em-

phasize the region of the estimated loss distribution about which it is most concerned with

respect to model performance and can choose a weighting scheme for observed violations.

• In the case of multi-desk monospectral tests, one weighting function is considered. We also

proposed multi-desk bispectral tests, which consider more than one weighting function.

• We suggested and analysed three different variance estimation methods to estimate the

unknown variance in the test function. In a simulation study it turned out that the

method, where only the correlation part of the covariance is estimated (applying the

analytically calculable variance), is best to control for the unknown dependencies between

desks. In this case, the test is well-sized with good power properties (mostly well above

70% when a certain proportion of desks are misspecified).

• The simulation study revealed that an increase of the number of desks from 50 to 100

did not improve the size and power performance of the proposed multi-desk tests in a

significant way. The performance improved when the number of observations was increased

from 250 (roughly one year of observations) to 500 (roughly two years of observations).

The choice of the weighting function did not have an impact on the performance.

• According to the simulation study more than 25% of the desks must be misspecified to

yield acceptable power levels.

• Compared to the monospectral Z-test, the bispectral Z-tests lead to (slightly) oversized

tests, especially for n = 250 observations. Testing for more than one first moment seems

to require larger sample sizes for the Central Limit Theorem.



Chapter 6

Bootstrap Z-tests

6.1 Introduction

The proposed multi-desk spectral tests presented in Chapter 5 take the form of Z-tests. In these

tests the distribution of the test statistic is asymptotically normal but the rate of convergence

may distort the performance of the test. Although we have shown in the previous chapter that

the new proposed tests work satisfactorily for the typical backtesting periods applied in risk

management applications (where the number of observations is usually 250 or 500 days), we want

to analyse the effect of using bootstrap methods instead of relying on the Central Limit Theorem.

Since our multi-desk spectral Z-tests have been analysed using simulated rather than real bank

backtesting data29, insights into the possible gains of using bootstrapping can be valuable

to decide whether the asymptotic Z-tests can be improved upon. Using bootstrap methods,

we are independent of any distributional assumption. This can be beneficial in comparison

to the application of asymptotically justified tests since the latter may sometimes result in

too few correct rejections of the null hypothesis, which lead to a reduction in the power of

a statistical test. In fact, it has been shown that confidence intervals based on bootstrapped

data can be asymptotically more accurate than confidence intervals built on the normality

assumption (DiCiccio and Efron (1996)). As explained in Efron and Tibshirani (1993), p.156,

every bootstrap hypothesis test is dual to a bootstrap confidence interval. We will use this

insight to construct bootstrap confidence intervals equivalent to our null hypotheses for multi-

desk monospectral and multi-desk bispectral tests.

In this chapter, we propose a bootstrap confidence interval for the multi-desk monospectral test,

29There is currently very little data available to researchers due to the sensitivities surrounding bank risk
reporting both in the EU and the USA.
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which is more or less straightforward since it builds on the well-known theory of (Studentized-t)

bootstrap confidence intervals in the one-dimensional space. For the multi-desk bispectral test,

finding a confidence region for the vector-based test statistic is more complex. We propose

and analyse two alternatives: an intuitive circular confidence region; a confidence region based

on Tukey’s concept of half-space depth. In a simulation study, we compare the size and power

properties of the proposed bootstrap methods. For the multi-desk bispectral test we also analyse

the advantages and disadvantages of the two proposed methods for confidence regions.

6.2 Mathematical foundations

6.2.1 Bootstrapping

Bootstrapping is a computational method which can be used to estimate the standard error of

an estimate (for example, an estimate of the mean of a random variable) in order to assess its

accuracy. It was popularized in the seminal paper of Efron (1979). The advantage of empirical

bootstrapping is that it is a non-parametric method so that it does not require any assumptions

about the distribution of the underlying data. Using the bootstrap estimate for the standard

error it is possible to construct bootstrap confidence intervals for a point estimate. Since every

confidence interval is dual to a statistical hypothesis, this interval can be used for hypothesis

testing.

Suppose we have univariate data points x1, . . . , xn, which have been randomly drawn from some

distribution function F . An empirical bootstrap sample of x1, . . . , xn is generated by sampling

with replacement from x1, . . . , xn using the same sample size n. The bootstrap sample x∗1, . . . , x
∗
n

can be thought of as a sample drawn from the empirical distribution function Fn of the data

points x1, . . . , xn. The standard deviation σθ of an estimator θ = f(x1, . . . , xn) is approximated

by the bootstrap estimate of σθ, which is the standard deviation of θ = f(x1, . . . , xn) calculated

on the data sets of the same size n which were randomly sampled from the empirical distribution

function Fn. Note that this form of bootstrapping procedure is designed for independent and

identically distributed data. For dependent data various generalisations of the original boot-

strapping procedure, like block-bootstrap methods, have been proposed. For a review, see for

example Kreiss and Lahiri (2012).
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6.2.2 Tukey depth and multivariate trimmed means

We will later study multivariate tests, where the test statistic is a two-dimensional vector.

The test performance will be analysed using both the asymptotic distribution derived from the

Central Limit Theorem and using a bootstrap procedure. For the latter, a number of bootstrap

samples (say R) are drawn and for each of these samples the particular test statistic is calculated.

The R bootstrap test statistic values are used to derive a rejection area for the null hypothesis.

In the two-dimensional case, the test statistics form two-dimensional vectors.

In the univariate case we form an empirical confidence interval from the bootstrap sample using

empirical quantiles of the sample. In the multivariate case we need an analogous procedure, but

there is more flexibility in how to proceed. We need a measure of centrality for each bootstrap

data point and one method for achieving this is based on the concept of Tukey depth (Tukey

(1975)). Instead of simply taking the sample mean, a (multivariate) trimmed mean is used for

the ‘most central point’ as proposed in Massé (2009). A depth function measures the centrality

of a data point within a point cloud or a probability distribution. Tukey depth is one out of a

number of depth concepts in the literature and arguably the most popular.

Definition 23 (Tukey Depth). Let X be a Rp random variable with probability distribution F

and let H denote the class of closed halfspaces H in Rp. The Tukey depth (or halfspace depth)

of a point x ∈ Rp (with respect to F) is defined as

D(F, x) := inf{F (H) : H ∈ H, x ∈ H},

where F (H) denotes the probability that the random variable X is in the halfspace H.

See Massé (2009), p.367. When we have a data sample this concept can be analogously applied

based on the empirical distribution of the data. Given a finite set S of n data points and a

point s ∈ Rp, the Tukey depth of s is then the minimum number of points of S contained in

any closed halfspace with s on its boundary.

One can think of depth as a value which decreases monotonically the farther a data point is

away from the centre of the distribution F in any direction. The concept of depth is used in

Massé (2009) to define a multivariate analogue of a univariate trimmed mean by calculating the

mean of a finite set of points which have a certain depth with respect to a probability function.

An α-trimmed region with respect to F is defined as Qα = Qα(F ) = {x : D(F, x) ≥ α}. A
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depth-based multivariate trimmed mean is then defined by averaging the elements that belong

to the trimmed region. The sample trimmed mean based on the Tukey depth for two or more

dimensions is implemented in the R package depth (Genest et al. (2019)).

6.3 Spectral tests with bootstrap confidence intervals

In this section we consider the case of multi-desk monospectral tests. Note that the method

explained here can also be applied to the multi-desk Binomial score test in (4.11). Recall that

the multi-desk monospectral Z-test takes the form

TMspec =
√
n
Z̄ − µW
σZ

(6.1)

with average desk exception rate

Z̄ = n−1
n∑
t=1

Zt,

and where σ2
Z = var(Zt) and

µW = E(Z̄) = n−1
n∑
t=1

E(Zt) = E (Wt,i) =

∫ α2

α1

g(u)(1− u)du,

see Section 5.3.1. Under the null hypothesis and using a consistent estimator of the variance

σ2
Z , we constructed a test that assumed the asymptotic normality of the test statistic.

Now we are looking for a confidence interval with confidence level 1−β, such that we reject the

null hypothesis, if

T =
µ0
W − µW
σ0
Z

/∈ R̃β,

where µ0
W and σ0

Z denote estimates of µW and σZ based on the original sample before boot-

strapping and the factor n1/2 is absorbed in T compared to expression (6.1). An interval of

desired confidence level 1− β for µW is then given by

[µ0
W − Tβ/2σ0

Z , µ
0
W + T1−β/2σ

0
Z ], (6.2)
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where Tβ is the β quantile of the distribution of T . The null hypothesis is rejected if

µW /∈ [µ0
W − Tβ/2σ0

Z , µ
0
W + T1−β/2σ

0
Z ] = R̃β. (6.3)

Since this distribution of T is unknown, the empirical bootstrap distribution is used as an

approximation for the unknown distribution. The so-called Studentized-t bootstrap confidence

interval (see, for example, Hall (1987)), is based on the distribution of values

T bi =
µbiW − µ0

W

σbiZ
, (6.4)

where µbiW and σbiZ denote the bootstrap estimates from bootstrap replication i for i = 1, . . . , R.

From this, we can construct a Studentized-t bootstrap confidence interval of the form (6.2)

replacing Tβ with the respective quantiles from the empirical bootstrap distribution.

6.4 Bispectral tests with bootstrap confidence regions

The idea of using bootstrap methods to find an appropriate rejection region dual to some

hypothesis can also be applied to estimates of an unknown vector of dimension d. In such cases,

we are looking for confidence regions instead of confidence intervals. Whereas the construction of

bootstrap confidence intervals (d = 1) is widely studied, the construction of bootstrap confidence

regions (d ≥ 2) is more complex (as pointed out, for example, in Yeh and Singh (1997)). The

construction is not straightforward since it requires a measure which excludes a proportion β

of the set of possible values of some parameter vector θ ∈ Rd in higher dimensions in order

to construct a confidence region of confidence level 1 − β for the parameter vector θ. For the

special case d = 2, the problem reduces to a point cloud in the two-dimensional space where

some contour has to be found which includes 1 − β percent of the data points. This contour

defines the bootstrap confidence region.

Similar to our monospectral tests, for the bispectral test we want to test whether the unknown

vector µW = (µW 1 , µW 2) lies within a bootstrap confidence region of confidence level 1− β. If

µW does not lie in this confidence region, the null hypothesis must be rejected.

Recall that the bispectral test is based on a random vector S given by

S = Σ
−1/2
Z

(
Z̄ − µW

)
, (6.5)

where Z̄ = (Z̄1, Z̄2) with Z̄k = n−1
∑n

t=1 Z
k
t , Zkt = d−1

∑d
i=1W

k
t,i, µW = E(Z̄) and ΣZ =
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Var(Z1
t , Z

2
t ), which is assumed to be positive definite. The form of the bispectral test in (5.13)

is obtained by taking the square of the norm of (6.5) times the sample size n.

We want to find a confidence region Rβ such that we reject the null hypothesis in (5.6) if

µW /∈ Rβ. A confidence region of desired confidence level 1− β is given by

Rβ =
{
Z̄ − Σ

1/2
Z s : s ∈ Sβ

}
,

where Sβ is any region such that P (S ∈ Sβ) = 1− β under the null hypothesis. This is easy to

see. Let Σ
−1/2
Z

(
Z̄ − µW

)
= s with s ∈ Sβ. This is equivalent to Z̄−µW = Σ

1/2
Z s which can be

written as µW = Z̄−Σ
1/2
Z s. Consequently, the shape of the region Rβ depends on the shape of

Sβ. Ghosh and Polansky (2014), for example, considered ellipsoidal confidence regions, which

would in our case be implied when choosing a circular form for Sβ.

Using the boostrap idea, we approximate Z̄ and ΣZ by their bootstrap estimates to find the

contour for Sβ. We consider two alternative forms which are

• an intuitive circular form for Sβ, which implies an ellipsoidal form for Rβ (we refer to it

as circular confidence region);

• a convex hull, using half-space depth sets based on Tukey’s depth (we refer to it as

depth-based confidence region).

The circular form encloses a proportion of 1−β of all observations around the center, where the

center is calculated as the trimmed mean based on the Tukey’s depth. The confidence region

based on half-space depth encloses all data with a depth of 1− β.

6.4.1 Circle

Let Sβ be a d-dimensional circle centred at the origin such that P(S ∈ Sβ) = 1− β. Then

Rβ = {Z̄ − Σ
1/2
Z s : s ∈ Sβ} (6.6)

is a confidence region for µW with confidence level 1 − β (under the null hypothesis). In the

previous section we have seen that the confidence region Rβ is designed to contain a possible

set of values around µW such that P (S ∈ Rβ) = 1 − β. A circular bootstrap Studentized-t

confidence region based on (6.6) can be constructed by considering

T bi =
(

Σbi
Z

)−1/2 (
µbiW − µ

0
W

)
, (6.7)
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where µ0
W is the value for the expectation of Z̄ calculated on the original sample and µbiW the

expectation based on the bootstrap sample. We calculate the center of the R bootstrap statistics

T b1 , . . . , T bR using the multivariate trimmed mean (see Section 6.2.2). Then we determine the

radius of a circle with this center which encloses (1−β)% of the data. This is the circular region

Sβ. If it holds for S that S = Σ
−1/2
Z

(
Z̄ − µW

)
∈ Sβ the null hypothesis cannot be rejected.

6.4.2 Depth sets

The first steps are the same as in the derivation of the circular bootstrap confidence region. We

first calculate the studentized statistic

T bi =
(

Σbi
Z

)−1/2 (
µbiW − µ

0
W

)
using the bootstrap sample to estimate the variance-covariance matrix and the mean µbiW . These

bootstrap test values are used to construct Sβ. Instead of using a circle, we use Tukey’s concept

of depth to delete all points T bi until the desired confidence level of 1−β is reached. We do this

by calculating the Tukey depth of each data point T bi and exclude the β% points with smallest

depth. So we remove the β% most exterior points from the data cloud. A boostrap confidence

region of the form

Rβ =
{
Z̄ − Σ

1/2
Z s : s ∈ Sβ

}
,

is built with Sβ being the contour around all data points with depth larger than the β%-quantile

of the depth values distribution.

6.5 Simulation setup

In the following, we briefly describe the simulation procedure used to construct the bootstrap

confidence intervals and regions described in the previous sections.

Note again that we consider functions of the form

Wt,i =

∫ α2

α1

g(u)I{Pt,i≥u}du,

which are transformed indicators of realised PIT-values Pt,i = F̂t,i(Lt,i).
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6.5.1 Bootstrap confidence intervals

For monospectral tests, the simulation works as follows: Let P 0
1 , . . . ,P

0
n be the vectors of daily

PIT-values across all desks so that P 0
t = (P 0

t,1, . . . , P
0
t,d), t = 1, . . . , n, where Pt,i denotes the

PIT-value of desk i at day t. In each bootstrap replication a bootstrap sample P bi
1 , . . . ,P

bi
n ,

i = 1, . . . , R, is generated by sampling directly total vectors of length d from the data set

P 0
1 , . . . ,P

0
n with replacement. Note that by sampling vectors from the ‘rows data’ P 0

1 , . . . ,P
0
n ,

the correlation structure inherent in the desks on a day t is not destroyed. For each bootstrap

sample, we calculate the bootstrap mean µbiW and the bootstrap standard deviation σbiZ , i =

1, . . . , R,

(
µb1W , σ

b1
Z

)
, . . . ,

(
µbRW , σ

bR
Z

)
.

These empirical bootstrap estimates are then used to calculate the required β-quantiles in the

calculation of the Studentized-t bootstrap confidence interval for the mean µW :

[µ0
W − T bβ/2σ

0
Z , µ

0
W + T b1−β/2σ

0
Z ], (6.8)

where µ0
W and σ0

Z are the empirical mean and empirical standard deviation of Z̄ calculated from

the observed data sample. T bβ denotes the β-quantile of the empirical bootstrap distribution of

the R bootstrapped Student’s t values

T bi =
µbiW − µ0

W

σbiZ
, i = 1, . . . , R,

that is the sample quantile of level β. In the simulation study, a Studentized-t bootstrap interval

is generated based on the R bootstrapped data for each simulation dataset. We check for each

simulated dataset if the confidence interval (6.8) covers the value µW i.e. we check

µW ∈ [µ0
W − T bβ/2σ

0
Z , µ

0
W + T b1−β/2σ

0
Z ].

If µW is not covered by the interval, the null hypothesis in (5.5) must be rejected. If the null

hypothesis is true, we expect µW to lie within the confidence interval for a proportion of (1−β)

of the simulation samples. For the calculation of the Studentized-t bootstrap confidence interval

we use the R package boot, see Angelo and Ripley (2020) and Davison and Hinkley (1997).
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6.5.2 Bootstrap confidence regions

For bispectral tests, we proposed confidence regions of two different shapes. The bootstrap test

statistics T bi , i = 1, . . . , R, are simulated in the same way for both cases. The difference is in

the decision against the null hypothesis, which incorporates the shape of the region (circle or

contour derived from halfspaces).

For each bootstrap sample, we calculate the empirical bootstrap means and the components of

the empirical bootstrap variance-covariance matrix Σbi
Z

Σbi
Z =

 σbi
Z1 covbiZ

covbiZ σbi
Z2

 ,

where σbi
Zj

are the empirical bootstrap variances of Zjt , j = 1, 2, and covbiZ denotes the empir-

ical bootstrap covariance cov(Z1
t , Z

2
t ). The variances σbi

Zj
are estimated according to variance

estimation method M3 (see Section 5.3.1). All formulas can be found in Section 5.3.2.

The empirical bootstrap estimates are then used to calculate the bootstrap test statistics T bi .

For each simulated dataset, we calculate the test value S in (6.5).

For the circular confidence region we check for each simulation step if the distance of the test

value to the center of the bootstrap data T bi , i = 1, . . . , R, is larger than the distance of the

bootstrap value T bi with the 95% largest distance. If so, the null hypothesis is rejected. The

center of the point cloud T bi is calculated using the multivariate trimmed mean of Tukey (see

Section 6.2.2).

For the depth-based confidence region we check in each simulation step, if the depth of the test

value is smaller than the 95% quantile of the distribution of depth values of T bi , i = 1, . . . , R.

If so, the null hypothesis is rejected.

6.6 Results simulation study: bootstrapping

The higher the number of bootstrap samples‘R the smaller the potential random sampling

error, which can lead to less robust standard error estimates. In Efron et al. (2015) is has been

shown that numbers of repetitions as low as 50 can lead to reliable estimates. However, for the

construction of bootstrap confidence intervals, higher numbers are recommended (see Efron and

Tibshirani (1993), p.161). We compared the performance of the multi-desk Binomial score test

for R = 100 and R = 500 for d = 50 desks and α = 0.99. Comparing the results for R = 100
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and R = 500 in Table 6.1, we see that an increase of the number of bootstrap repetitions from

R = 100 to R = 500 does not significantly improve the size. Therefore, we consider R = 100

bootstrap repetitions in all of the following simulation studies, unless stated otherwise.

Monospectral tests We analyse the performance of the three versions of the monospectral

Z-tests, which have been presented and analysed in Section 5.3.1. That is we consider the same

weighting functions: the uniform (test SP.U); the linear (test SP.L); and the exponential (test

SP.E) one. Due to computational speed, we restrict ourselves to d = 50 desks, considering that

the previous simulation results in Section 5.4 have already shown that the test performance

is quite similar for d = 50 and d = 100 desks. We assume that the risk modelling group

misspecifies a certain proportion of desks ranging from 25% to 75%. Table 6.2 shows the

results. The following can be observed:

• SP.U is well-sized. However, the power properties are generally mediocre, especially for

25% misspecified desks. Interestingly, the power is quite high with values above 70%

when at least 50% desks are misspecified and the simulated data are independent (Gauss

copula with zero correlation). The latter can be explained by the fact that for independent

desks, the effective sample size is increased. Power properties improve when considering

500 instead of 250 days.

• The findings for SP.L and SP.E are very similar to the ones of SP.U. The choice of the

weighting function does not heavily influence the performance of the spectral tests with

respect to size and power, whereby the general results seem to be best for SP.L.

• Comparing the results with Table 5.5, which gives the analogous results of the monospec-

tral Z-test using the Central Limit Theorem instead of bootstrapping, we see that the

general results are the same. There are no significant performance differences in the size.

However, the power is on a higher level when using the normality approximation. For

example, for 25% misspecified desks for SP.U for independent data, the power is 27.8%

using the bootstrap method, whereas it is 43.0% using the normality approximation. In

both versions (Central Limit Theorem and bootstrapping), we observe that the power is

highest for Gaussian independently distributed data.

Bispectral tests For the bispectral Z-test we analyse the performance of the SP.UL test, both

using a circular confidence region and using a depth-based confidence region. We concentrate on

SP.UL since previous results in Section 5.4 have shown that the performance of the bispectral
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Z-tests is not much influenced by the choice of the weighting functions.

First, we compare the size and power of the tests, when 100% of the desks are misspecified

(parameter fraction is 100%). The results for the circular confidence region can be found in

Table 6.3, the findings for the depth-based confidence region in Table 6.4. For R = 100, it

can be observed that for the circular confidence region, the considered bispectral test shows

adequate sizes, which are however a bit lower than expected, especially for n = 250 days.

The size stabilises around the desired nominal level for all considered copulas and correlation

levels when the number of observations increases from n = 250 to n = 500. Increasing the

number of bootstrap repetitions from R = 100 to R = 500, we see that the test tends to be

more undersized especially for n = 250 days. The power ranges up to 100%, indicating that

the confidence region could be too small. For the depth-based confidence region, the sizes

are too large to be acceptable for R = 100. This also does not change when increasing the

number of observations to n = 500. For the depth-based confidence region, we see that the size

generally improves when using R = 500 instead of R = 100 bootstrap repetitions, leading to

the conclusion that for depth-based confidence regions a larger number of bootstrap repetitions

is necessary. In nearly all simulations settings, the test detects around 100% of the misspecified

desks, especially for n = 500 days. However, the high size levels could be the reason for the

observed high power when using the depth-based confidence region.

Comparing the results obtained using bootstrap confidence regions with Table 5.3, which shows

the size and power properties of the SP.UL test when using the normality assumption, we

see that for n = 250 days the results are more similar to the findings using the depth-based

confidence region, whereas for n = 500 the results resemble the ones using a circular confidence

region. We have already seen in Section 5.4 that the observed large levels of size for the bispectral

test using the normality assumption improves when increasing the sample size to n = 1000 (see

Table 5.4). We conclude that testing for more than one moment seems to require a larger sample

size so that the test statistic can be assumed to be χ2-distributed. The simulation study in this

section indicates that a circular confidence region could be the better option compared to the

normality assumption when the observed sample size is less than 1000 days.

Next, we compare the performance when the risk modelling group misspecifies the distribution

for a certain ratio of desks. Table 6.5 shows the findings for the SP.UL test when a circular and

depth-based confidence region is used. We again observe that using a depth-based confidence

region leads to highly oversized test. For the circular confidence region, the size is around the

nominal level for n = 500 for all fractions. The power is mediocre for 25% misspecified desks

but clearly improves for 50% and 75% of misspecified desks, power results being close to 100%
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for 75% misspecified desks.

To get a clearer picture why the performances are quite different for the circular confidence

region and the depth-based confidence region, we plot the bootstrapped test values as a point

cloud and include the test statistics value as well as the circular confidence region and the

depth-based confidence region. Doing this 10 times we get an impression why the test using

a circular rejection area tends to be undersized whereas the test using a rejection area based

on halfspace depths is heavily oversized. We used R = 500 bootstrap repetitions30 and we

concentrate on the Gauss copula with flat correlation and n = 250 observations.

Figure 6.1 shows the situation under the null hypothesis. This is the situation where the risk

modelling group correctly specifies the risk model for each desk. Therefore, we would expect

around 5% rejections. However, as we have seen in the previous study, using a circular region

leads to slightly undersized tests for n = 250 (for both R = 250 and R = 500 bootstrap

repetitions), whereas applying depth-based confidence regions leads to oversized tests for both

n = 250 and n = 500. This can be explained by the pictures as well. In all but one case the

test value lies within the circular confidence region31. For the depth-based confidence region,

the test value lies outside the confidence region in two cases (20%). The radius of the circle

seems to be a bit too high. The depth-based confidence region is shaped very closely around

the point cloud so that the test is more likely to reject the null hypothesis, especially in cases

where the point cloud is less circular shaped.

Figures 6.2-6.5 show the situation under the alternative hypothesis. The setting is generally

the same as before (bispectral test SP.UL with α1 = 0.9805 and α2 = 0.9995 and d = 50 desks)

but a certain proportion (25%, 50%, 75% and 100%) of desks are t-distributed. That is the

risk modelling group misspecifies the distribution of a certain proportion of desks. For 25%

misspecified desks, three test values lie outside the circular and two outside the depth-based

confidence region. The more desks are misspecified, the better the power performance becomes.

For 75% and 100% misspecified desks, the test values lie (far) outside of both confidence regions,

which explains the observed high power results found in the simulation studies describe above.

In comparison, especially for 25% to 50% of misspecified desks, the circular confidence region

shows more rejections than the depth-based confidence region, which is supported by the results

shown in Table 6.5.

30We used R = 500 instead of the usually applied R = 100 because it turned out in the simulation study that
for R = 100, the convex hull originated by the halfspace depths just goes through all outer points, so that a
comparison to the circular region is difficult.

31In fact, for 10 cases we would expect zero to one rejected null hypothesis on average for a well-sized test of
nominal level 5%.
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R 100 500

ρ Zero Flat Zero Flat

fraction n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

25 250 Normal 4.7 4.7 5.6 5.3 4.2 4.6 5.8 5.6
t4 23.8 7.0 8.3 6.0 26.2 8.0 9.4 5.0

500 Normal 5.9 3.8 6.1 4.7 5.8 3.9 6.3 5.0
t4 44.6 12.5 12.0 8.1 47.8 12.2 12.8 7.6

50 250 Normal 4.7 4.7 5.6 5.3 4.2 4.6 5.8 5.6
t4 75.9 21.8 17.8 9.2 78.0 23.7 17.9 10.1

500 Normal 5.9 3.8 6.1 4.7 5.8 3.9 6.3 5.0
t4 95.1 40.9 30.5 17.3 96.5 42.7 32.5 18.2

75 250 Normal 4.7 4.7 5.6 5.3 4.2 4.6 5.8 5.6
t4 96.4 43.3 31.7 16.2 97.5 43.3 33.2 16.3

500 Normal 5.9 3.8 6.1 4.7 5.8 3.9 6.3 5.0
t4 100.0 69.4 54.4 31.3 100.0 72.4 57.9 31.2

Table 6.1: Estimated size and power of the multi-desk Binomial score test using a bootstrap
confidence interval, d = 50 and α = 0.99

test SP.U SP.L SP.E

ρ Zero Flat Zero Flat Zero Flat

fraction n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4 Gauss t4 Gauss t4

25 250 Normal 5.6 4.6 5.6 4.9 5.0 4.7 6.3 5.1 5.6 4.6 5.6 4.9
t4 27.8 7.5 8.3 5.5 48.8 11.1 10.5 7.1 27.9 7.5 8.3 5.5

500 Normal 5.8 4.7 5.8 5.1 5.8 4.4 5.9 5.1 5.8 4.7 5.7 5.1
t4 51.0 11.7 12.0 8.2 76.9 20.2 18.0 10.9 51.2 11.7 12.0 8.2

50 250 Normal 5.6 4.6 5.6 4.9 5.0 4.7 6.3 5.1 5.6 4.6 5.6 4.9
t4 77.4 20.8 16.5 9.2 96.5 36.1 29.8 13.3 77.8 21.0 16.5 9.4

500 Normal 5.8 4.7 5.8 5.1 5.8 4.4 5.9 5.1 5.8 4.7 5.7 5.1
t4 96.7 39.7 28.7 15.5 99.9 62.8 50.9 27.1 96.7 39.9 28.9 15.5

75 250 Normal 5.6 4.6 5.6 4.9 5.0 4.7 6.3 5.1 5.6 4.6 5.6 4.9
t4 97.4 40.0 29.8 15.0 99.9 61.7 51.2 24.1 97.4 40.2 29.9 15.2

500 Normal 5.8 4.7 5.8 5.1 5.8 4.4 5.9 5.1 5.8 4.7 5.7 5.1
t4 100.0 66.6 50.5 29.0 100.0 90.9 80.0 47.6 100.0 66.8 50.7 29.2

Table 6.2: Estimated size and power of SP.U, SP.L and SP.E using a bootstrap confidence
interval, R = 100, d = 50, α1 = 0.9805 and α2 = 0.9995
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R 100 500

ρ Zero Flat Zero Flat

n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

250 Normal 4.0 2.8 3.0 1.8 3.3 1.8 1.8 1.1
t4 100.0 99.8 98.9 63.5 100.0 99.8 98.9 59.9

500 Normal 5.0 5.2 5.4 6.3 3.6 4.5 5.0 5.6
t4 100.0 100.0 100.0 98.9 100.0 100.0 100.0 99.4

Table 6.3: Estimated size and power of SP.UL with circular confidence region for 100% mis-
specified desks, d = 50, α1 = 0.9805 and α2 = 0.9995

R 100 500

ρ Zero Flat Zero Flat

n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

250 Normal 7.7 10.6 14.1 17.6 5.0 8.5 11.9 16.5
t4 100.0 95.8 91.5 45.1 100.0 97.4 94.2 38.1

500 Normal 8.0 11.0 12.1 13.7 5.4 8.3 9.4 12.5
t4 100.0 99.9 99.8 91.9 100.0 100.0 100.0 96.0

Table 6.4: Estimated size and power of SP.UL with depth-based confidence region for 100%
misspecified desks, d = 50, α1 = 0.9805 and α2 = 0.9995

circular depth-based

ρ Zero Flat Zero Flat

fraction n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

25 250 Normal 4.0 2.8 3.0 1.8 7.7 10.6 14.1 17.6
t4 63.7 15.4 29.0 2.2 55.5 10.6 20.3 7.7

500 Normal 5.0 5.2 5.4 6.3 8.0 11.0 12.1 13.7
t4 94.2 51.8 65.7 11.2 91.0 40.3 55.0 12.1

50 250 Normal 4.0 2.8 3.0 1.8 7.7 10.6 14.1 17.6
t4 99.9 77.9 84.9 18.5 99.2 54.4 65.4 16.5

500 Normal 5.0 5.2 5.4 6.3 8.0 11.0 12.1 13.7
t4 100.0 99.5 99.4 59.6 100.0 94.7 95.3 49.1

75 250 Normal 4.0 2.8 3.0 1.8 7.7 10.6 14.1 17.6
t4 100.0 97.7 96.3 43.3 100.0 85.8 84.7 31.3

500 Normal 5.0 5.2 5.4 6.3 8.0 11.0 12.1 13.7
t4 100.0 100.0 100.0 91.2 100.0 99.3 99.0 79.6

Table 6.5: Estimated size and power of SP.UL with circular and depth-based bootstrap confi-
dence region for R = 100, 100% misspecified desks, d = 50, α1 = 0.9805 and α2 = 0.9995
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Figure 6.1: Null hypothesis, R = 500; circular (blue) and depth-based (red). The test value is
highlighted in red
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Figure 6.2: Alternative hypothesis with fraction 25%, R = 500; circular (blue) and depth-based
(red). The test value is highlighted in red
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Figure 6.3: Alternative hypothesis with fraction 50%, R = 500; circular (blue) and depth-based
(red). The test value is highlighted in red
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Figure 6.4: Alternative hypothesis with fraction 75%, R = 500; circular (blue) and depth-based
(red). The test value is highlighted in red
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Figure 6.5: Alternative hypothesis with fraction 100%, R = 500; circular (blue) and depth-based
(red). The test value is highlighted in red

6.7 Summary

The main conclusions of this section are:

• We have explored bootstrap options both for the new multi-desk monospectral test and

the multi-desk bispectral test to derive the test statistic’s distribution and analysed the

possible benefits from not using the asymptotic normality assumption.

• For the multi-desk monospectral desk we considered the Studentized-t bootstrap con-

fidence interval which is dual to our hypothesis. The simulation study did not indicate

significant differences in the general performance compared to using the normality assump-

tion. However, the power of the Z-test is higher than that of the bootstrap test. This

means that using the normality assumption, we have a better chance to detect wrong

models (under the given simulation parameters, especially 100 bootstrap repetitions).

• For the multi-desk bispectral test, we analysed two alternatives to build confidence regions

for the mean vector. Firstly, we considered an intuitive circular confidence region (with

centre at the multivariate trimmed mean of Tukey). Secondly, we analysed half-space

depth sets (based on Tukeys depth) to build a confidence region more adapted to the

observed data.

• In an extreme case where all desks have been misspecified or correctly specified by the

risk modelling group, the circular confidence region results in power values around 100%
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but values for size that tend to be on the low side. The depth-based confidence region is

heavily oversized in this situation.

• In a more realistic scenario where a certain proportion of desks is misspecified, power

results deteriorate for the circular confidence region and are mediocre for 25% misspecified

desks. For the depth-based confidence region power results are good for 75% misspecified

desks but then also quickly deteriorate for lower fractions.

• Analysing the situation graphically it seems that the circular confidence region tends to

be too large. As can be seen, the test value lies more often than expected within the

confidence region when the null hypothesis is true. On the other hand, the depth-based

confidence region is too adapted to the data such that the test value lies outside the

confidence region too often. When the alternative hypothesis is true and a high ratio of

desks is misspecified, the graphical analysis showed that the test value lies far beyond

both confidence regions, which explains the observed high power values.

• Overall, using bootstrapping methods instead of the normality assumption does not seem

to come with many benefits considering that bootstrapping methods are very computa-

tionally intensive. However, for the bispectral test, a circular bootstrap confidence region

can be the better choice compared to using the normality assumption when observations

are below 1000 days.



Chapter 7

Comparative tests across desks

7.1 Introduction

The previous two chapters have covered research question 2 which examined whether trading

risk was adequately modelled in aggregate across all desks. In this chapter, we concentrate on

comparative tests, which assess whether the internal models used to measure the market risk

are of similar quality for all desks. That is we address our third research question:

Question 3. Are the trading desks equally good at modelling risk?

This research question can be addressed in the framework of the well-known Cochran Q-test

(Cochran (1950)). Cochran presented a test for significant differences between outcomes for

correlated binary data, violating the assumption of the standard χ2-test which requires inde-

pendent samples. He showed that his proposed test statistic follows a χ2-distribution asymptot-

ically when certain conditions are met. The test is a generalisation of one proposed in McNemar

(1969) to more than two samples. Cochran Q-test is a non-parametric statistical test, which

means that no distributional assumption for the underlying data is required.

A typical application for Cochran Q-test is testing for significant differences in the propor-

tions between matched samples in a before and after scenario, for example examination results

(passed/not passed) before and after a lecture. Other test problems concern clinical studies

where a patient is subject to different treatments and the relative effectiveness of treatments

is analysed32. In this kind of testing problem, each patient is given each of the treatments

32This is also one of the examples given in Cochran (1950).
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under consideration at different times and the response to the treatments is measured. Each

patient represents one correlated (matched) sample. The null hypothesis is that all treatments

are equally effective (or equally ineffective).

Research question 3 fits into this kind of testing framework since we expect all trading desks to

show the same proportion of violations if they are equally good at modelling risk. The matched

sample consists of the results for all desks on one particular day. Since Cochran Q-test requires

binary data as input variables, we use the VaR violation indicators Yt,i = I{Lt,i>V̂ aRt,i(α)}.

Recall that this variable is equivalent to a PIT-value level exceedance indicator (see the relation

in (5.2)). That is for each day we have a vector of length d, Yt = (Yt,1, . . . , Yt,d) consisting of

the observations for the d desks. Each of these vectors represents a matched correlated sample

of binary observations. We can then test for significant differences in the proportions of VaR

violations between the d desk with Cochran Q-test.

However, this standard application of Cochran Q-test can only provide an indication if all desks

perform equally (equally good or equally bad). In this chapter, we therefore also develop a

new extension of Cochran Q-test which tests for the unconditional coverage hypothesis (see

Definition 15) at the same time. This test not only assesses whether all desks show an equal

proportion of violations, but also tests whether this proportion is in line with the expected value

when all desks are modelling risk effectively.

The remaining of this chapter is organised as follows: We first provide the necessary mathe-

matical background. We then describe the general methodology, including the input data and

the formal definition of the null hypotheses of interest. This is followed by the presentation of

the standard version of Cochran Q-test. Since this theory requires that the underlying data are

exchangeable, we present a generalisation of the theory of Cochran Q-test for non-exchangeable

data. After that we present the new test which extends Cochran Q-test to a joint test of equality

across desks and unconditional coverage. For this, we exploit the quadratic form representation

of the test because there is no simple closed-form expression for it’s distribution. The chapter

closes with a simulation study, specifically comparing the performance of the two presented

tests.

7.2 Mathematical foundations

The only new mathematical theory required is a general expression for sums of squares of

Gaussian random vectors and the definition of exchangeable random variables.
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7.2.1 Exchangeability

For an exchangeable random vector it holds that it’s distribution function does not change

under any permutation.

Definition 24 (Exchangeability). A d-dimensional random vector X is exchangeable if

(X1, . . . , Xd)
d
=
(
XΠ(1), . . . , XΠ(d)

)
(7.1)

for any permutation (Π(1), . . . ,Π(d)) of (1, . . . , d).

See McNeil et al. (2015), p.234, Definition 7.16. It implies that all variables Xi, i = 1, . . . , d,

have the same variance and that the variables are equicorrelated.

7.2.2 Walsh’s theorem

In this section we present a well-known theorem of Walsh (1947), see Theorem 1, p.94, which

is used by Cochran to derive the limit distribution of his test statistic.

Theorem 5. A vector of d random variables X1, . . . , Xd with multivariate normal distribution

with common variance σ2
X and common covariances ρXσ

2
X satisfies

d∑
i=1

(
Xi − X̄

)2 ∼ σ2
X(1− ρX)χ2 (d− 1) , (7.2)

where X̄ = 1/d
∑d

i=1Xi.

Note that this Theorem includes the special case of exchangeable random vectorsX = (X1, . . . , Xd)

but is more general since the expected values of X1, . . . , Xd can be different.

7.2.3 Imhof’s method

The next proposition shows how the sum of squared Gaussian random variables can be expressed

as a linear combination of independent non-central χ2-distributed variables.

Proposition 4. Let X = (X1, . . . , Xn) be a random vector which follows a multivariate normal
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distribution with mean vector 0 = (0, . . . , 0) and non-singular covariance matrix Σ ∈ Rn×n. Let

c = (c1, . . . , cn) be some constant vector and let A ∈ Rn×n be some constant matrix. The

quadratic form Q = (X + c)′A (X + c), has the representation

Q =

m∑
r=1

λrYr, (7.3)

where m is the rank of AΣ, λr are the non-zero eigenvalues of AΣ and Yr, r = 1, . . . ,m, are

independent χ2-distributed variables with hr degrees of freedom and non-centrality parameter δr.

The hr are the respective orders of multiplicity of the eigenvalues of AΣ.

For the derivation, see Imhof (1961), p.419 and references therein. The variables Yr in (7.3) can

be represented as Yr = (Z1 + δr)
2 +

∑hr
i=2 Z

2
i , where Z1, . . . , Zh are independent unit normal

variables. Note that for δr = 0 this represents the usual χ2- distribution for Yr.

It is well-known that the distribution function FQ of a positively weighted sum of i.i.d. χ2-

distributed variables Q has no closed-form (Bodenham and Adams (2016)). However, in ap-

plications one is often interested in P(Q > x) for some given value x. There are some ap-

proximations for this distribution available. Bodenham and Adams (2016), p.917, compare the

computational speed and accuracy of some of the proposed methods. They point out that the

method proposed by Imhof (1961) should be the preferred choice when computational resources

are sufficient. Imhof’s method provides a numerical solution for FQ(x) = P(Q < x) for fixed x

with a desired accuracy by numerically inverting the characteristic function of Q. The numeri-

cal solution of Imhof’s method is implemented in the R package CompQuadForm (Duchesne and

de Micheaux (2010)).

7.3 Methodology

7.3.1 Data

As binary input data we use the VaR violation indicators, Yt,i = I{Lt,i>V̂ aRt,i(α)}. The vector

Yt = (Yt,1, . . . , Yt,d) contains the data of the d desks at time t. We group the indicator variables

Yt,i into a n × d table in which the columns correspond to the d desks and the rows to the n

observed days. Each day then represents a matched correlated sample of binary observations.

We can then test for significant differences in the proportions of VaR violations between the d

desks. Table 7.1 shows the ordering of the data.
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H
HHH

HHt
i

desk 1 desk 2 desk 3 . . . desk d

day 1 Y1,1 Y1,2 Y1,3 . . . Y1,d

day 2 Y2,1 Y2,2 Y2,3 . . . Y2,d
...

...
...

...
...

...
day n Yn,1 Yn,2 Yn,3 . . . Yn,d

colum totals Y1 Y2 Y3 . . . Yd

Table 7.1: Stylized sample of the data structure of the VaR violation indicators

In the table, Yi represents the column totals Yi =
∑n

t=1 Yt,i. Note that correlation between

desks is explicitly allowed.

7.3.2 Hypotheses

In this section, we will formulate the hypotheses corresponding to our research question 3. We

want to assess whether all desk models are equally good at modelling market risk. We deem

the desk models to perform equally when the numbers of observed VaR violations show no

significant differences across desks. To test the assertion of research question 3 we can therefore

test

H0 :P(Yt,1 = 1) = ... = P(Yt,d = 1), ∀ t

H1 :P(Yt,i = 1) 6= P(Yt,j = 1) for at least one i 6= j (7.4)

Under the null hypothesis, we expect an equal amount of VaR violations in each desk. If the

null hypothesis is rejected, there is at least one desk with average violation rate which differs

significantly from the others. This would be an indication for a misspecified desk model. Note

that the interpretation is not restricted to (technical) misspecifications in the internal desk

models. The reason for a rejection of the null hypothesis can also come from an increased

riskiness of one or more trading desks (for example due to economic circumstances) or because

traders do not respect their VaR trading desk limits.

With this hypothesis, we do not test for the correct coverage rate in each desk but merely if

there is a significant difference in the observed violation rates across desks (regardless of whether

there are significantly more or less violations than expected). However, we will also develop a
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test which extends the null hypothesis to

H0 :P(Yt,1 = 1) = ... = P(Yt,d = 1) = 1− α, ∀ t

H1 :P(Yt,i = 1) 6= 1− α for at least one desk i. (7.5)

This hypothesis includes the unconditional coverage hypothesis (see Definition 15), which is

tested for all desks at once. Note that in the case of a rejection of the null hypothesis, it is

unknown which desk triggered this decision. A violation of the hypothesis should therefore

ideally be followed by post hoc analyses to find the root of the significant test result.

7.4 Cochran Q-test

In this section, we present more details on the theory behind the derivation of Cochran Q-test

as given in Cochran (1950). This test is used to test the hypothesis stated in (7.4). Cochran

Q-test is based on the idea that the random variables forming the rows (the desk data on some

day t) are exchangeable (see Definition 24), which is a bit restrictive in our application. It

implies that every pair of desks is equicorrelated. Therefore, we also derive a generalisation of

Cochran Q-test under non-exchangeable data. Finally, we state an extension of Cochran Q-test

to a joint test of equality across desks and the unconditional coverage hypothesis. This test is

used to test the hypothesis stated in (7.5).

Note that for deriving the results we assume throughout that the desks data Yt,i, t = 1, ..., n,

are independent across time for each desk d.

7.4.1 Methodology Cochran Q-test

The Cochran Q-test formally applies the test criterion

d∑
i=1

(
Yi − Ȳ

)2
,

where Yi =
∑n

t=1 Yt,i describes the sum of VaR violations in desk i over the observation period of

n days (the column totals) and Ȳ = 1/d
∑d

i=1

∑n
t=1 Yt,i is the average number of VaR violations

across desks. To derive the limit distribution of the test, Cochran uses Theorem 5 stated in

Section 7.2.2.

An exchangeable Gaussian random vector with E(Xi) = µ for all i = 1, . . . , d satisfies (7.2)
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where σ2
X is the common variance of all variables and ρX is the common correlation for all

pairs. In our application this would mean that VaR violation indicators across desks on day

t, Yt,i, i = 1, . . . , d, must be exchangeable in order to apply Theorem 5. Although we assume

that the VaR violation indicators across desks have the same variance on day t under the

null hypothesis, the equicorrelation assumption for VaR violation indicators across desks seems

unlikely in our framework. We will later argue that Cochran Q-test is fairly robust against a

relaxation of this assumption (see Section 7.4.2).

Cochran derives his test statistic by analysing the conditional distribution of the data given the

row totals Ut =
∑d

i=1 Yt,i are fixed at the observed values ut. He then exploits that when the

row total of violations is fixed, that the row total has zero variance. For exchangeable data,

every desk is then equally likely to show one of the ut violations on day t. That is the probability

to observe a violation in some desk i at day t given Ut = ut is pt = ut/d. We define the vector

U = (U1, . . . , Un), which consists of the n row totals and the vector u = (u1, . . . , un).

We have to assume that the following terms converge to some limit value when n goes to infinity.

(i) p̄(n) = n−1
∑n

t=1 pt,

(ii) σ̄2(n) = n−1
∑n

t=1 pt(1− pt).

It is for each single row t, t = 1, . . . , n

var

(
d∑
i=1

Yt,i
∣∣Ut = ut

)
=

d∑
i=1

var
(
Yt,i
∣∣Ut = ut

)
+

d∑
i=1

∑
j 6=i

cov
(
Yt,i, Yt,j

∣∣Ut = ut
)

= dpt(1− pt) + d(d− 1)pt(1− pt) cor
(
Yt,i, Yt,k

∣∣Ut = ut
)

= 0,

from which directly follows that cor
(
Yt,i, Yt,k

∣∣Ut = ut
)

= −1/(d− 1).

We define the variable Zi = n−1
∑n

t=1 Yt,i, which presents the average column total of column

i. It is E(Zi
∣∣U = u) = n−1

∑n
t=1 pt = p̄(n). For the conditional variance of Zi we have

var(Zi|U = u) = n−2
∑n

t=1 pt(1 − pt) = n−1σ̄2(n). For the calculation of both conditional

moments, we used the assumption that rows are independent.

It directly follows

cov(Zi, Zk|U = u) =
1

n2

n∑
t=1

n∑
s=1

cov(Yt,i, Ys,k
∣∣U = u) = − 1

n2

n∑
t=1

pt(1− pt)
d− 1

= − 1

n(d− 1)
σ̄2(n),

where we exploited the fact that Yt,i, i = 1, . . . , d, are exchangeable.

In vector notation, if Z = (Z1, . . . , Zd) then E(Z
∣∣U = u) = p̄(n)1 and cov(Z

∣∣U = u) =
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n−1σ̄2(n)P with matrix

P =


1 −1/(d− 1) . . . −1/(d− 1)

−1/(d− 1) 1 . . . −1/(d− 1)
...

...
...

...

−1/(d− 1) −1/(d− 1) . . . 1

 .

Then we can apply the Central Limit Theorem conditional on U to see that

√
n (Z − p̄1)

σ̄

·∼ Nd (0, P )

as n→∞ using assumption (i) and (ii). We can now apply Theorem 5 with the random variables

X1, . . . , Xd taken to be Xi =
√
n(Zi − p̄) since they are approximately normally distributed for

large n. Then we have that

d∑
i=1

n (Zi − p̄)2 ·∼ σ̄2 d

d− 1
χ2
d−1

is asymptotically χ2-distributed with d − 1 degrees of freedom if n → ∞. Simple conversion

gives

d∑
i=1

(
Yi − Ȳ

)2
n

·∼
n∑
t=1

pt(1− pt)
n

d

d− 1
χ2
d−1.

Summarised we have

TQC =
d− 1

d

∑d
i=1

(
Yi − Ȳ

)2∑n
t=1 pt(1− pt)

∼̇χ2(d− 1), (7.6)

which is the Cochran Q-test statistic.

7.4.2 Generalisation of Cochran Q-test to non-exchangeable data

As mentioned above, the asymptotic theory of Cochran Q-test is based on the assumption that

the VaR violation indicators across desks on day t, Yt,i, i = 1, . . . , d, are equicorrelated, which

is a strong assumption. In this section, we generalise this theory to non-exchangeable data

relaxing the assumption of equicorrelation.

Note that in the standardised test statistic in (7.6), the expression
∑d

i=1

(
Yi − Ȳ

)2
is ‘weighted’
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with the factor

d− 1

d
∑n

t=1 pt(1− pt)
.

This has been derived under the assumption that the vector of random variables Y1, . . . , Yd

is (approximately) multivariate normal distributed with common correlation ρY (see Section

7.4.1). We show how this changes for non-exchangeable data making use of Proposition 4

stated in Section 7.2.3. That is we consider the situation where we allow for different pairwise

correlations ρYi,Yk = cor(Yi, Yk):

P =


1 ρY1,Y2 . . . ρY1,Yd

ρY2,Y1 1 . . . ρY2,Yd
...

...
...

...

ρYd,Y1 ρYd,Y2 . . . 1

 ,

where P is the correlation matrix of the vector Y = (Y1, . . . , Yd). Under this setting the

following can be shown for the test criterion
∑d

i=1

(
Yi − Ȳ

)2
of Cochran Q-test:

Proposition 5. Let Y1,i, . . . , Yn,i, i = 1, ..., d, be independent Bernoulli distributed random

variables with parameter 1 − α. Let Yi =
∑n

t=1 Yt,i, i = 1, . . . , d and Ȳ = d−1
∑d

i=1

∑n
t=1 Yt,i.

Let A = Id − d−1Jd, where Id is the identity matrix and Jd the all-ones matrix. Then

d∑
i=1

(
Yi − Ȳ

)2 ∼̇ d∑
i=1

λ∗iZ
2
i ,

where Zi are i.i.d. standard normal distributed random variables and λ∗i are the eigenvalues of

nα(1− α)APA with correlation matrix P ∈ Rd×d given by Pi,k = cor(Yi, Yk) for all i, k.

Proof. We consider the expression

Vi =
1√
n

(
Yi − Ȳ

)
, i = 1, . . . , d. (7.7)

Note that
(
Yi − Ȳ

)
in (7.7) is part of the test criterion of Cochran Q-test, which is multiplied

with n−1/2 to get Vi. We have V = (V1, . . . , Vd) = n−1/2AY with A = Id − d−1Jd. For the

covariance matrix it holds that Var(V ) = n−1AVar(Y )A. Since var(Yi) = nα(1− α) it follows
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that Var(V ) = α(1− α)APA. In the limit n→∞ we have

V → N (0, α(1− α)APA) .

We now consider V V ′ = n−1
∑d

i=1

(
Yi − Ȳ

)2
. In the limit, as n → ∞, this quadratic form is

distributed as

d∑
i=1

λiZ
2
i ,

where Zi are the i.i.d. standard normal distributed random variables and λi are the eigenvalues

of α(1 − α)APA (see (7.3)). Using again central limit arguments we can deduce that the

distribution of Yi =
∑n

t=1 Yt,i, i = 1, . . . , d, can be approximated by the normal distribution for

large n. Equivalently, we have for n→∞ that

nV V ′ =
d∑
i=1

(
Yi − Ȳ

)2 ∼̇ d∑
i=1

λ∗iZ
2
i , (7.8)

where λ∗i are the eigenvalues of nα(1− α)APA.

To calculate the p-value P(Q > x) with Q =
∑d

i=1

(
Yi − Ȳ

)2
one can use the Imhof’s method

(see Proposition 4). We performed a small simulation with equicorrelated data (that is ρYi,Yk = ρ

for all i, k) and compared the p-values of the test TQC in (7.6) and the p-values using the Imhof’s

method. The p-values were quite similar. We then considered a situation with differing pairwise

correlations. It turned out that in this situation the p-values were quite similar as well. Thus,

the relaxation of the equicorrelation assumption should have a minor effect on the asymptotic

distribution.

7.4.3 Extended Cochran Q-test to test for unconditional coverage

As already mentioned, Cochran Q-test has power against the null hypothesis that all desks

are modelled equally well or badly. The test has no power to detect ‘badly’ modelled desks

where the sum of violations observed in a desk differs from the expected number of violations.

However, regulators are interested in testing whether one or more desk’s VaR violation rates

exceed the expected ratio, possibly leading to an underestimation of the capital set aside for

market risk.

In the following, we consider the test statistic of the Cochran Q-test and extend the approach to

a joint test of equality across desks and unconditional coverage, meaning that we test the null
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hypothesis that the desk’s VaR violation rates are consistent with their theoretical expectation

under the null hypothesis (see hypothesis in (7.5)). That is we want to test whether the column

totals Yi differ from the expected value of Yi, which is µY = n(1−α) under the null hypothesis.

The applied test criterion of Cochran Q-test then changes to

TQE =
d∑
i=1

(Yi − µY )2 . (7.9)

The limit distribution of this extended version of the test statistic of Cochran Q-test does not

follow a χ2-distribution. This is easy to see when we decompose the test statistic in the following

way

d∑
i=1

(Yi − µY )2 =
d∑
i=1

(
Yi − Ȳ

)2
+ d

(
Ȳ − µY

)2
. (7.10)

We know from Walsh’s Theorem (see Theorem 5 stated in Section 7.2.2) for the more restricting

assumption of exchangeable data that the first summand asymptotically follows a χ2(d − 1)

distribution scaled by the common covariance ρY of the random variables Y1, . . . , Yd, which

have common variance σ2
Y = np(1 − p) under the hypothesis in (7.5). However, the second

term in (7.10) has a scalar multiple of a χ2(1) distribution in the limit. Since the scaling factors

differ, it is not possible to simply add the distributions of the first and second term together. To

find the limiting distribution of (7.9), we will express the test statistic as a linear combination

of independent χ2-distributed variables and then exploit the Imhof’s method (see Section 7.2.3)

to find the required quantiles of the distribution.

Proposition 6. Let Y1,i, . . . , Yn,i, i = 1, . . . , d, be independent Bernoulli distributed random

variables with parameter 1−α and invertible variance-covariance matrix Σ. Let Yi =
∑n

t=1 Yt,i,

i = 1, . . . , d, where µY = n(1−α) is the mean of Yi for all i. Furthermore, let Ỹ = (Ỹ1, . . . , Ỹd)

with Ỹi = Yi − µY . Then as n→∞

d∑
i=1

(Yi − µY )2 ∼̇
d∑
i=1

λiU
2
i ,

where U1, . . . , Ud are i.i.d. standard normal variables and λi are the eigenvalues of Σ.

Proof. Let Ỹ = (Ỹ1, . . . , Ỹd) with Ỹi = Yi − µY . The sum
∑d

i=1 Ỹ
2
i can be written in the
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quadratic form Q = Ỹ ′Ỹ . Defining Z = Σ−1/2Ỹ we have

Q = Z ′Σ1/2Σ1/2Z = Z ′ΣZ. (7.11)

It is well-known by the spectral theorem that for a normal matrix like Σ (since Σ is symmetric

it holds Σ′Σ = ΣΣ′), there exists an orthogonal matrix V , i.e. V ′V = V V ′ = I, such that

Σ = V ′DV , where D is a diagonal matrix with the eigenvalues of matrix Σ as diagonal elements.

The matrix V has the eigenvectors of Σ as rows. We can then compute

Q = Z ′ΣZ = Z ′V ′DVZ = (VZ)′DVZ. (7.12)

It directly follows

Q = (VZ)′D (VZ) =

d∑
i=1

λiU
2
i , (7.13)

where U = (U1, . . . , Ud) is a multivariate normal distributed random vector with zero mean

and identity covariance matrix and λi are the eigenvalues of the variance-covariance matrix Σ.

For the last equation we used (7.3). Since Ỹ follows approximately for large n a multinormal

distribution with zero mean and covariance matrix Σ (by central limit arguments), the stochastic

presentation (7.13) holds true in the limit as n→∞.

To derive the distribution of (7.11) numerically, we use the R package CompQuadForm (Duchesne

and de Micheaux (2010)), which computes the distribution function of a quadratic form of a

multivariate normal random vector with a regular covariance matrix.

More precisely, we use Imhof’s method. For a multivariate normal random vector Ỹ =

(Ỹ1, . . . , Ỹn) with covariance matrix Σ, Imhof’s method computes the quantile P(Q > q) for

a quadratic form Q = Ỹ ′AỸ , such as the quadratic form in (7.13). In our application, we esti-

mate the unknown variance-covariance matrix Σ by Σ̂ = nα(1−α)R, where R is the empirical

correlation matrix. Note that, since we apply a consistent estimate for the correlation matrix,

the eigenvalues of Σ converge to the true eigenvalues.

7.5 Results simulation study: comparative tests across desks

In this section, we present the results of our simulation study, which analyses the size and power

properties of the two comparative tests we presented:
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• Cochran Q-test for equal VaR violation rates across desks as in Cochran (1937) (TQC in

(7.6), called QC in the simulation study)

• An extended version of the Cochran test which also tests for unconditional coverage (TQE

in (7.9), called QE in the simulation study)

The general simulation setup is presented in Section 4.3.3. We illustrate how size and power

are influenced by the different simulation parameters.
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7.5.1 Impact of days without VaR violations

When it comes to market risk modelling, typical sample sizes used to validate the model are

250 or 500 trading days (approximately one, two years respectively). In fact, the regulatory

backtesting requirements mandate a period of one year when counting the number of VaR

violations, which can trigger supervisory actions (BCBS (2019b), p.81, para. 32.4 and p.82,

Table 1). Combined with the required high confidence levels around 99% a rather low number

of observed violations can be expected, even for misspecified models.

The comparative tests we consider in this chapter could potentially be affected by this since days

without violations do not add any additional information. This can influence the test’s power.

Both versions of Cochran Q-test use binary data as an input variable. As Cochran pointed

out (Cochran (1950), p.258), the value of Cochran Q-test is not affected by rows consisting

of only zeros (meaning that no violations are observed on a specific day across the desks) or

only ones (meaning that all desks show a violation). Since these rows add no information,

the effective sample size can be significantly lower than assumed (having a large number of

zero-rows effectively decreases the number of days). This can be problematic for the speed of

convergence to the asymptotic limit. This is also pointed out by Tate and Brown (1970), who

summarised some results from previous studies regarding the necessary sample sizes. According

to their analyses, as a rule of thumb, the number of rows times the number of columns after

deleting rows with only zero’s or only one’s should be at least 24 when the number of rows is

at least four (Tate and Brown (1970), p.159). In this case, the approximation can be deemed

satisfactory.

To get an impression how likely it is to observe days without any violations and how likely it

is to observe at least a certain number of violations in our simulation study, we consider the

following experiment. Given a set of confidence levels around 99%, we state the proportion of

days showing no VaR violations at all as well as the proportion of days on which we observe at

least five or ten VaR violations across desks.

Table 7.2 shows the results. Let next denote the number of desks showing exceptions on day

t. The variable nex expresses the average percentage of days on which next takes certain

values. The row nex = 0 shows the average proportion of days t showing no violation (that is

Lt,i ≤ V̂ aRt,i(α) for all desks i on day t). For each simulation step we determine the number of

days with zero VaR violations. The average is then taken over the total number of simulation

steps. Row nex = 10 shows the average proportions of days showing at least 10 violations (that

is Lt,i ≥ V̂ aRt,i(α) for at least 10 desks on some day t). We chose the values next = 5 and
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next = 10 since this roughly means that at least 10% of desks showed a violation on some day

t in our simulation setting.

Looking at Table 7.2, row nex = 0, we see that in the case of independent, Gaussian distributed

desks (ρ = Zero, F = Normal and C = Gauss), the proportion of days without any VaR violation

violation equates to αd as expected. These percentages increase up to 99% for α = 0.999 when

the desks data are correlated (ρ = Flat). In this case it is nearly the case that Lt,i ≤ V̂aRt,i(α)

for all t. That is, nearly no violations were simulated at all. Considering the rule of thumb

mentioned in Tate and Brown (1970), considering 50 and 100 desks (column data) in our

simulation study, the constraint is that at least four rows should remain after deleting all zero-

rows. For n = 500 days the rule of thumb is violated as soon as more than 99.2% of the days

show no violation across desks. For n = 250 days, a percentage of more than 98.4% violates

the rule of thumb. For better representation, we coloured results below 98.0% green and results

greater 99.2% red for n = 500 (for n = 250: green for results below 97.0% and red for results

greater 98.4%). Taking into account that this is a rough rule of thumb, according to our results,

convergence speed could be problematic for α values around 0.999, where the average number

of violations observed in the sample breaks or are close to the rule of thumb in various cases,

especially for n = 250. At such high α levels, the number of violations in the sample data may

be too low for the asymptotic in TQC and TQE to work.

Looking at row nex = 5 and nex = 10, we see that the percentage is well below 5% and in most

settings lies around zero for the higher α levels. So the proportion of days showing at least 10%

desk violations on some day is rather low.

When looking at t4-distributed marginal distributions (F = t4) and comparing it to normal

distributed marginal distributions (F = Normal), we see that the number of violations are

lower for t4 when looking at the higher α levels. This reverses for the lower α levels considered

where the number of violations are higher for t4. This is reasonable, since the variance of the

t4 distribution is normalised to one in our simulation so that at one point in the distribution,

the t4 distribution lies below the Normal distribution.

Moving from a Gauss copula (C = Gauss) to a t4 copula (C = t4) we observe more days without

violations. Showing at least five violations (nex = 5) is more likely when sampling from the

Gauss copula and not from the t4 copula. This pattern is reversed for nex = 10. This could

be attributed to the tail-dependence in the t4 copula. When violations are observed, there is a

tendency for clustered violations across desks on a day.

The results show that violations are generally a rare event in our simulation study when looking
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at confidence levels around 99%. Since this is consistent with what can be observed in reality

as well, it is of interest, which tests still can extract enough information from the (simulated)

data to show reasonable power.
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d 50 100

ρ Zero Flat Zero Flat

α nex n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

0.900 0 250 Normal 0.52 12.32 34.72 43.45 0.00 5.83 26.20 35.82
t4 2.39 23.73 43.63 54.14 0.06 14.35 34.39 46.82

500 Normal 0.53 12.21 34.77 43.43 0.00 5.79 26.19 35.81
t4 2.36 23.63 43.63 54.07 0.06 14.24 34.36 46.71

5 250 Normal 56.74 44.22 32.02 29.12 97.61 68.07 45.16 39.52
t4 29.01 30.20 23.69 21.37 85.35 51.22 35.53 29.97

500 Normal 56.81 44.29 32.02 29.12 97.65 68.07 45.22 39.50
t4 29.09 30.23 23.74 21.37 85.45 51.18 35.60 30.00

10 250 Normal 2.42 15.59 17.84 17.72 54.80 42.48 30.86 28.24
t4 0.25 9.30 12.14 12.41 18.41 28.28 22.67 20.68

500 Normal 2.44 15.64 17.80 17.74 54.76 42.53 30.92 28.28
t4 0.26 9.35 12.09 12.44 18.35 28.33 22.67 20.60

0.950 0 250 Normal 7.75 38.07 53.11 64.54 0.60 27.02 43.64 58.01
t4 12.87 46.19 58.31 69.89 1.64 35.07 48.89 63.90

500 Normal 7.68 37.86 53.11 64.48 0.59 26.90 43.60 57.88
t4 12.78 46.00 58.28 69.87 1.62 34.95 48.89 63.87

5 250 Normal 10.32 19.52 16.66 14.93 56.33 35.72 26.58 21.70
t4 5.06 15.15 13.44 12.10 37.57 28.70 22.10 17.77

500 Normal 10.31 19.54 16.64 14.98 56.29 35.84 26.56 21.65
t4 4.96 15.16 13.36 12.11 37.56 28.76 22.14 17.76

10 250 Normal 0.02 5.46 7.76 8.38 2.78 17.97 15.71 14.37
t4 0.00 4.06 5.90 6.65 0.72 13.74 12.58 11.59

500 Normal 0.01 5.47 7.67 8.40 2.81 17.95 15.70 14.34
t4 0.00 4.07 5.85 6.65 0.73 13.77 12.52 11.56

0.990 0 250 Normal 60.56 82.33 82.84 90.76 36.58 76.54 76.54 88.34
t4 46.76 74.76 77.19 86.74 21.78 67.20 69.73 83.40

500 Normal 60.52 82.24 82.82 90.76 36.63 76.50 76.51 88.37
t4 46.69 74.70 77.25 86.65 21.86 67.16 69.80 83.35

5 250 Normal 0.01 3.11 2.88 2.99 0.34 6.66 5.88 4.69
t4 0.10 4.93 4.62 4.55 1.77 10.26 8.94 7.01

500 Normal 0.01 3.12 2.87 3.01 0.32 6.68 5.83 4.68
t4 0.10 4.95 4.62 4.56 1.79 10.30 8.86 6.99

10 250 Normal 0.00 0.69 0.88 1.54 0.00 2.70 2.55 2.83
t4 0.00 1.13 1.60 2.34 0.00 4.31 4.16 4.32

500 Normal 0.00 0.71 0.90 1.54 0.00 2.71 2.53 2.85
t4 0.00 1.16 1.60 2.35 0.00 4.33 4.14 4.33

0.999 0 250 Normal 95.16 97.96 97.14 98.93 90.53 97.12 95.54 98.63
t4 74.16 88.83 88.14 94.19 54.93 84.90 83.21 92.60

500 Normal 95.15 97.96 97.15 98.94 90.56 97.12 95.53 98.64
t4 74.15 88.81 88.21 94.22 54.92 84.87 83.28 92.68

5 250 Normal 0.00 0.26 0.16 0.28 0.00 0.61 0.44 0.47
t4 0.00 1.76 1.55 1.80 0.04 3.89 3.41 2.85

500 Normal 0.00 0.28 0.17 0.30 0.00 0.61 0.45 0.48
t4 0.00 1.78 1.55 1.80 0.04 3.89 3.37 2.85

10 250 Normal 0.00 0.05 0.03 0.14 0.00 0.22 0.13 0.27
t4 0.00 0.38 0.42 0.88 0.00 1.52 1.33 1.70

500 Normal 0.00 0.06 0.03 0.15 0.00 0.24 0.14 0.28
t4 0.00 0.39 0.44 0.90 0.00 1.55 1.33 1.69

Table 7.2: Average percentage of days with zero, at least 5 or at least 10 violations across all
desks
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7.5.2 Cochran Q-test

In this section, we analyse the performance of the two presented tests. First, we look at the

results for the two extreme cases when all desks are specified either correctly (F = Normal) or

wrongly (F = t4) by the risk modelling group. Table 7.3 shows the results.

For the assessment of the performance of the original Cochran Q-test (QC) we have to keep

in mind that the test is designed as a test to detect significant differences in correlated binary

data. Therefore, we expect that both in the case of 100% correctly specified desks and in case

of 100% misspecified desks, the null hypothesis is rejected with the nominal level since the null

hypothesis is true in both cases. Looking at Table 7.3, this is exactly what we see. The original

Cochran Q-test shows rejection rates in the area of the nominal level of 5%. Looking at row QE,

which shows the extended version of the Cochran Q-test, we see that the test generally shows

satisfactorily sizes around the nominal level. The only exception is in the case of independent

data in combination with n = 250 days, when the null hypothesis is satisfied (n = 250, ρ = Zero,

F = Normal, C = Gauss). In this case, the test is oversized with values of 12% and 13%. For

n = 500 days, the effect does not occur. Looking at Table 7.5 which shows the simulation

results for different α levels, we see that the effect is also absent for n = 250 days when the

level of α is decreased, i.e. when there is a tendency to observe more violations on a day. The

asymptotic convergence seems to be too slow in case of 250 days in combination with α levels

of 0.99 or higher for Imhof’s method. This is supported by the findings in Section 7.5.1. For

250 days, as a rule of thumb, α levels beyond 98.4% become critical. What also has to be

noted is that for QE, the correlation between the VaR violation indicators is estimated from the

data. This brings additional uncertainty when there are too many zero-rows in the data. The

question remains, why this only is a problem for independent data and not, for example, for

the t4 copula (C = t4). Judging from the results stated in Table 7.2 for nex = 5 and nex = 10,

the case of independent data, when the null hypothesis is satisfied (F = Normal, C = Gauss,

ρ = Zero) produces the fewest number of violations across all considered simulation settings,

what could explain the observed behaviour.

The power of the extended Cochran Q-test is quite satisfactory even for 250 days, with levels

generally above 60%, when 100% of desks are misspecified.

Next we look at the tests performances when the risk modelling group misspecifies a certain

fraction of desks. Table 7.4 shows the results.

For the original Cochran Q-test, QC, it is only relevant if all desks behave the same. Therefore,

the power is highest (albeit still on a moderate level) in the case that 50% of desks are misspec-



CHAPTER 7. COMPARATIVE TESTS ACROSS DESKS 138

ified. In this case an equal amount of desks is equally bad, respectively equally good. In case

of 25% and 75% misspecified desks, the number of equally good, respectively equally bad desks

seems to be too high for the test to be significant. The size of the test is satisfactory.

For the extended version of Cochran Q-test, QE, the power increases significantly compared to

QC. This is expected since the extended Cochran Q-test tests a narrower hypothesis. Whereas

the null hypothesis of QC encompasses all models for which desks are equally good or bad, the

null hypothesis of QE is more detailed testing for equally good desks, which violation rates have

to match the mean. For QE, power is highest when 75% of desks are misspecified. This make

sense since in case of 75% misspecified desks, the unconditional coverage hypothesis is violated

in most desks. In case of 25% misspecified desks, the power is rather poor in most cases but

still better compared to the analogous case for the original Cochran Q-test.

Next, we analyse how the tests are influenced by the choice of the α level. We only look at α

levels below 0.99, since the results in Section 7.5.1 indicate that levels beyond 0.99 might show

too few violations within a day. Table 7.5 shows the results for various levels of α. We see that

for α levels of 0.90 and 0.95, the size is around the nominal level for both for QC and QE, the

latter being a bit undersized. For QE, the test’s power increases when moving from α = 0.95 to

α = 0.90. This is expected since lower α levels create more violations, that is a lower number of

zero-rows. This implies more information for both Cochran tests which tendentially increases

the power. For α = 0.95 and n = 250 the power is rather low. This is non-intuitive to the

findings in Table 7.3 where the power is better, albeit the α level is higher with α = 0.99. In

general, the case of n = 250 seems to be problematic in combination with higher α levels.

d 50 100

ρ Zero Flat Zero Flat

test n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

QC 250 Normal 4.7 4.2 4.0 4.3 5.4 4.9 3.9 4.5
t4 3.9 4.3 5.6 5.2 4.9 4.4 4.5 4.4

500 Normal 5.0 3.8 5.7 4.0 4.6 3.6 6.2 4.5
t4 4.7 3.7 4.4 5.0 4.8 3.7 5.6 4.4

QE 250 Normal 12.0 5.3 4.4 5.0 12.7 4.1 4.3 4.9
t4 97.0 70.8 60.2 35.9 100.0 75.9 63.3 37.4

500 Normal 4.8 3.2 4.4 4.6 4.2 2.8 3.7 4.4
t4 100.0 90.5 82.5 60.1 100.0 95.0 86.5 60.9

Table 7.3: Estimated size and power of Cochran Q-test and extended Cochran Q-test for α =
0.99 and 100% misspecified desks
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d 50 100

ρ Zero Flat Zero Flat

test fraction n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

QC 25 250 Normal 4.7 4.2 4.0 4.3 5.4 4.9 3.9 4.5
t4 14.8 14.0 13.0 15.9 19.9 21.0 21.3 24.4

500 Normal 5.0 3.8 5.7 4.0 4.6 3.6 6.2 4.5
t4 26.9 28.4 30.4 39.7 42.0 43.3 48.8 58.3

50 250 Normal 4.7 4.2 4.0 4.3 5.4 4.9 3.9 4.5
t4 15.2 16.6 17.4 20.2 24.5 24.3 26.4 30.4

500 Normal 5.0 3.8 5.7 4.0 4.6 3.6 6.2 4.5
t4 33.8 32.9 41.0 48.4 51.8 56.4 60.9 71.6

75 250 Normal 4.7 4.2 4.0 4.3 5.4 4.9 3.9 4.5
t4 11.0 10.5 12.2 12.7 15.2 16.4 16.6 18.2

500 Normal 5.0 3.8 5.7 4.0 4.6 3.6 6.2 4.5
t4 21.9 20.4 24.7 32.1 32.2 35.9 40.1 48.7

QE 25 250 Normal 12.0 5.3 4.4 5.0 12.7 4.1 4.3 4.9
t4 42.6 20.8 18.4 11.2 60.9 24.0 17.7 11.5

500 Normal 4.8 3.2 4.4 4.6 4.2 2.8 3.7 4.4
t4 56.2 34.5 27.5 15.9 78.4 40.0 31.2 16.2

50 250 Normal 12.0 5.3 4.4 5.0 12.7 4.1 4.3 4.9
t4 72.3 42.6 35.1 20.8 90.0 47.5 37.7 19.8

500 Normal 4.8 3.2 4.4 4.6 4.2 2.8 3.7 4.4
t4 89.6 66.1 56.5 31.6 99.2 73.6 61.3 32.7

75 250 Normal 12.0 5.3 4.4 5.0 12.7 4.1 4.3 4.9
t4 87.7 58.8 49.3 28.7 98.8 65.0 53.7 29.1

500 Normal 4.8 3.2 4.4 4.6 4.2 2.8 3.7 4.4
t4 98.7 81.5 73.1 47.6 100.0 89.6 77.7 50.0

Table 7.4: Estimated size and power of Cochran Q-test and extended Cochran Q-test for various
fractions at level α = 0.99
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d 50 100

ρ Zero Flat Zero Flat

test α n F | C Gauss t4 Gauss t4 Gauss t4 Gauss t4

QC 0.90 250 Normal 4.3 4.4 4.6 4.9 4.4 4.0 5.1 3.5
t4 4.7 4.7 5.4 4.1 4.6 5.2 4.5 4.3

500 Normal 4.1 5.1 4.9 5.9 5.3 5.0 4.9 5.1
t4 3.9 5.1 5.5 5.5 4.5 4.1 5.6 4.6

0.95 250 Normal 4.7 3.4 6.4 4.6 4.5 4.7 4.6 5.6
t4 5.2 3.7 5.2 5.0 3.6 5.6 4.2 4.7

500 Normal 5.2 5.4 4.9 3.9 4.7 4.5 6.0 3.8
t4 5.2 3.9 4.9 4.1 5.0 4.4 4.3 4.6

QE 0.90 250 Normal 3.0 3.1 5.6 4.6 1.6 2.8 5.2 5.1
t4 100.0 99.0 80.9 71.5 100.0 99.4 81.9 73.6

500 Normal 3.6 5.0 5.0 5.5 4.0 4.8 5.4 5.7
t4 100.0 100.0 98.6 95.8 100.0 100.0 99.0 96.3

0.95 250 Normal 3.8 3.0 4.7 4.0 1.8 3.7 5.4 4.0
t4 34.7 28.5 22.7 18.2 55.2 32.9 24.3 19.6

500 Normal 4.7 3.9 4.4 5.9 3.7 4.2 4.4 5.2
t4 95.4 72.1 50.9 38.3 99.7 78.5 53.0 39.3

Table 7.5: Estimated size and power of Cochran Q-test and extended Cochran Q-test for various
levels of α

7.6 Summary

The main conclusions of this chapter are:

• We presented the Cochran Q-test which can be used to address our third research ques-

tion which concerns the question of whether all trading desk models are equally good at

modelling risk. Since this test has only power against the null hypothesis that all desks

behave equally (either equally good or equally bad) we developed a new test based on

Cochran’s test statistic which also tests for the unconditional coverage hypothesis. To de-

rive the asymptotic theory of the new test, we used Imhof’s method, which approximates

the distribution of a quadratic form.

• We analysed the performance of these comparative tests in a simulation study. We found

that the new test has comparably better power. This is explainable, since the new test tests

a narrower hypothesis. Whereas power is only on a moderate level for 25% misspecified

desks, it improves considerably when 50% and 75% are misspecified.

• The new test shows some non-intuitive behaviour in simulation studies where we consider
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250 (backtesting) days in combination with high α levels of 0.95 and 0.99. Looking at

some complementary studies we attribute this to the fact that the effective sample size is

not high enough when the combination of number of days and the α level leads to too few

violations to guarantee a sufficient rate of convergence. This is supported by a conducted

simulation study analysing the percentage of days showing no violations. We therefore

recommend looking at lower percentile levels such as 0.90 when applying the new test

with 250 days in regulatory contexts.



Chapter 8

Summary and Outlook

After more than 10 years in the making, the reforms of the Basel III framework finally have an

impending deadline for their full implementation. The reforms encompass a major revision of

the market risk framework. Among other new features, the formula for the calculation of the

minimum capital requirements for market risk is now based on the expected shortfall measure

and includes liquidity risk. Moreover, banks now have to show that their internal market risk

models work appropriately not only at bank-wide level but also at trading desk level and at a

wider range of quantiles.

In this work we have thoroughly derived the revised capital formula, which is based on the

assumption that the 10-day risk factor changes form a multivariate Gaussian white noise process,

and that the changes in the portfolio value are a linear function of these risk factor changes.

We have analysed the formula under the more general assumption that the risk factor changes

form a multivariate elliptical distribution and showed that it gives an upper bound in this case.

This means that the formula leads to a higher capital charge than actually necessary to achieve

the target. The results provide valuable insights into the functionality of the formula.

The remaining part of this work concerned the revised validation standards, which will likely

motivate banks to review their internal validation framework. We thereby focused on the new

requirement that internal models have to demonstrate satisfactory performance both at bank-

wide and trading desk level, as well as the stipulation that a wider range of the estimated

loss distribution should be validated. To this end we proposed various multi-desk backtests,

which simultaneously backtest all trading desk models in the presence of intra-desk correlation.

Multi-desk backtests have several advantages to univariate (mono-desk) backtests, which test

each of the internal trading desk models separately. However, to the best of our knowledge, only

two papers have proposed concrete tests which could be used as multi-desk backtests. Both
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of them use indicator variables for value-at-risk violations as input variables. We developed a

multivariate extension of the spectral tests proposed in Gordy and McNeil (2020), which are

based on probability integral transform values, exploiting more data than the usual indicator

variables of value-at-risk violations. In fact, the newly developed multi-desk spectral tests

turn out to be quite powerful. The tests are also very flexible, since the risk modelling group

can emphasize the region of the estimated loss distribution about which it is most concerned

with respect to model performance and can choose a weighting scheme for observed violations

accordingly. We also analysed the benefits of using bootstrap methods but generally found no

clear advantages over the Z-tests, particularly when the additional computational complexity

and increased time resources are taken into account.

The final research question was also connected to desk-based backtesting but focused on com-

parative tests, that is tests comparing the performance of the various internal desk models. To

address this research question, the well-known Cochran Q-test can be used, which is designed

to detect significant differences between outcomes for correlated binary data. We first provided

a more thorough derivation of the test’s statistical distribution, which is derived heuristically in

Cochran’s original paper. The standard application of the Cochran Q-test can only provide an

indication if all desks perform equally. Since the regulator is particularly interested in whether

all internal models lead to numbers of VaR violations that are no more than expected, we ex-

tended the Cochran Q-test to a test that also tests the unconditional coverage hypothesis at the

same time. Our simulation studies showed that the new proposed test has good size and power

properties. Due to some complementary simulation studies, we recommend using this new test

only for percentiles below 0.95 when the length of the used backtesting history is 250 days or

less.

Overall, the performance and structural advantages of the new proposed multi-desk tests (such

as the possibility to assess a wider range of the estimated loss distribution or the fact that

they control for correlation across desks) suggest that they are a valuable addition to a bank’s

validation framework. Nevertheless, it has to be noted, that we generally found that multi-desk

backtests require a certain proportion of desks to be misspecified. Detecting a handful of ‘bad’

desks in a (realistic) setting of 50 to 100 trading desks is rather unrealistic. The tests are more

powerful when at least 25% of internal models are misspecified. However, compared to univariate

mono-desk tests, multi-desk tests are able to incorporate existing correlation structures across

trading desks and avoid the multiple testing issue and are therefore still a valuable addition to

a validation framework. If a multi-desk test fails, it is likely that a larger amount of internal

trading desk models do not perform satisfactorily. A post hoc testing should then be used to
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identify the internal models, which are inadequate. For future research, the simulation setting

could be extended to a fewer number of desks and asymmetric copulas (like Gumble or Clayton)

in order to analyse if the observed effects still persist. Moreover, due to the fact that real data

are not easily accessible, it could be thought about using indices to approximate desk level data.

It can also pointed out that the multi-desk spectral backtests can be used to assess a wider range

of the internal model. This in turn can inform about the adequacy of the expected shortfall

measure, which measures the average of the losses beyond the VaR cut-off point. Additionally,

since the benefits of using probability integral transform values are already being exploited in the

USA, it is likely that other regulatory authorities will probably exploit this kind of information

more systematically in the future as well. Moreover, it could be explored in the future if the

multi-desk spectral test can be extended in a way that the PIT-value level exceedances of every

desk are weighted differently across the desks. This seems to be a useful extension considering

that less risky trading desks can receive less attention compared to higher risky desks.

Since the preferred tests have the form of Z-tests, they are easy to implement and the calculation

time is not excessive. Moreover, perceived model risk in the Z-tests and comparative tests

is no higher than for other tests already widely adopted in validation frameworks. This is

an important factor. Especially in on-site investigations, the regulator audits in-depth the

underlying model assumptions and challenges the model choices. Banks have to be prepared to

show that all model choices made are reasonable and valid33.

Finally, we can also say that the new multi-desk backtests can probably also serve to backtest a

whole banking system instead of several trading desks whilst including spill-over effects across

banks. In this way, systemic risk could be detected. Another interesting field of application

could be in the area of capital allocation. The new multi-desk backtests could serve to detect

traders, which are not respecting their allocated VaR limits, for example. However, these

aspects as well as the application of the new tests on real data, are left for future research.

The application on real data is complicated in particular since there is currently very little data

available to researchers due to the sensitivities surrounding bank risk reporting both in the EU

and the USA.

33See the requirement as laid down in BCBS (2019b), p.69, para. 30.17(1), which requires banks to show that
any assumptions made within internal models are appropriate.



Appendix

Characteristic function of univariate spherical distributions In the following, we de-

rive the characteristic functions for the symmetric generalised hyperbolic distribution and the

Student t distribution. In both cases we reduce the characteristic function of the respective

distribution to the integral over the support of the density of the generalised inverse Gaussian

distribution, which is one.

Symmetric generalised hyperbolic distribution Let Y be a univariate symmetric gener-

alized hyperbolic random variable. That is it can be represented by a normal variance mixture

Y
d
=
√
WZ, (8.1)

where W ≥ 0 is a non-negative, scalar-valued random variable (see Definition 11) which follows a

so-called Generalised Inverse Gaussian (GIG) distribution W ∼ N−(λ, χ, κ) and Z is a standard

normal variable. The density of the GIG is given by

fW (w) =
χ−λ

(√
χκ
)λ

2Kλ

(√
χκ
) wλ−1e−1/2(χw−1+κw) ,


χ > 0, κ ≥ 0 ifλ < 0

χ > 0, κ > 0 ifλ = 0

χ ≥ 0, κ > 0 ifλ > 0,

where Kλ denotes a Bessel function of the third kind. We know from (3.5) that the characteristic

function of Y is given by

φ(s) =

∫ ∞
0

e−1/2s2wfW (s) (8.2)

and the variance is E[W ].
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Replacing the density fW in (8.2) by the density of the GIG we get

φ(s) =

∫ ∞
0

e−1/2s2wχ
−λ (√χκ)λ

2Kλ

(√
χκ
) wλ−1e−1/2(χw−1+κw)dw.

This can be transformed to

χ−λ
(√
χκ
)λ

2Kλ

(√
χκ
) ∫ ∞

0
e−1/2(χw−1+(κ+s2)w)Awλ−1 1

A
dw (8.3)

with

A =
χ−λ

(√
χ(κ+ s2)

)λ
2Kλ

(√
χ(κ+ s2)

) .
Cancelling expressions out in (8.3) leads to

(√
χκ
)λ

Kλ

(√
χκ
)Kλ

(√
χ(κ+ s2)

)
(√

χ(κ+ s2)
)λ ∫ ∞

0
e−1/2(χw−1+(κ+s2)w)Awλ−1dw.

The integral in the last expression is the integral over the density of the GIG distribution which

is one (note that the support of the Inverse Gaussian is (0,∞)). We therefore have

φ(s) =

(
κ

s2 + κ

)λ/2 Kλ

(√
χ(κ+ s2)

)
Kλ

(√
χκ
) , s > 0

which gives (3.19).

Student t distribution By assuming W in (8.1) to be a Inverse Gamma (IG) distributed

random variable, W ∼ IG(1/2ν, 1/2ν), we obtain the Student t distribution with ν degrees of

freedom with E(W ) = ν/(ν − 2), ν > 2.

That is, in the case of the Student t distribution, fW is the density of an IG random variable

W ∼ IG(1
2ν,

1
2ν). Replacing fW in (8.2) with the density of the IG distribution we obtain

φ(s) =

∫ ∞
0

e−
1
2 s

2w (1
2ν)ν/2

Γ(1
2ν)

w−
ν
2
−1e−

1
2
νw−1

dw.

We transform the former expression to

(1
2ν)ν/2

Γ(1
2ν)

∫ ∞
0

w−
ν
2
−1e(− 1

2
(s2w+νw−1))B

1

B
dw (8.4)
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with

B =
2Kν/2(

√
νs2)

νν/2
(√

νs2
)−ν/2 .

We then transform (8.4) to

(1
2ν)ν/2

Γ(1
2ν)

2Kν/2(
√
νs2)

νν/2
(√

νs2
)−ν/2 ∫ ∞

0
w−

ν
2
−1e(− 1

2
(s2w+νw−1)) 1

B
dw.

In the last expression we have the integral of the density of the GIG distribution, which equals

one. We therefore have

φ(s) = Kν/2(
√
νs)

(√
νs2
)ν/2

2ν/2−1Γ(1
2ν)

, s > 0

which is (3.18).
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